
CAGISTrans:
Adaptable Transactional Support

for Cooperative Work

Herindrasana Ramampiaro

Doctoral Thesis

Submitted in Partial Fulfilment of the
Requirements for the Degree of

Doktoringeniør

Department of Computer and Information Science
Norwegian University of Science and Technology

N-7491 Trondheim, Norway

URN:NBN:no-2103URN:NBN:no-2103

NTNU Trondheim
Norges teknisk-naturvitenskapelig universitet
Doktoringeniør avhandling 2001:94

Institutt for datateknikk og informasjonsvitenskap (IDI)
IDI-rapport 2001:06

ISBN 82-471-5360-2
ISSN 0802-6394

Copyright 20©01 by Herindrasana Ramampiaro
All Rights Reserved

URN:NBN:no-2103

i

Preface

This is a doctoral thesis submitted to the Department of Computer and In-
formation Science (IDI), Norwegian University of Science and Technology in
partial fulfilment of the degree of “Doktoringeniør” (Ph.D.). The work has been
carried out at the Database Systems Group1. It was done in the context of the
CAGIS – Cooperative Agents in a Global Information Space – project during
the period 1997 - 2001. Part of the work was conducted during a 7 month visit
to the Cooperative System Engineering Group (CSEG)2, Computing Depart-
ment, Lancaster University, UK.

Acknowledgments
This work could not be carried out without direct or indirect support and

help from others. I would therefore like to express my gratitude and apprecia-
tion to all those who gave me comments, assistance and support during my
work for this thesis.

My first and sincere thanks go to my adviser Professor Mads Nygård for
the enormous amount of time he spent with me while doing this work. This
work could not be done without his direction, guidance and encouragement. I
also appreciate the opportunities he has provided me to present and discuss
the ideas in this thesis through publications and conferences.

Parts of this work would not be possible without the efforts of the gradu-
ate students Tomas Holt, Lars Killingdag, Mufrid Krilic, Rune Selvåg, Pål Are
Sætre, and Tor Martin Kristiansen who I advised. I would particularly like to

1. See http://www.idi.ntnu.no/grupper/db.
2. See http://www.comp.lancs.ac.uk/computing/research/cseg.

URN:NBN:no-2103

ii PREFACE

thank them for their contributions in implementing the CAGISTrans proto-
types.

My former and present colleagues at the CAGIS project – in alphabetical
order – Terje Brasethvik, Professor Reidar Conradi, Associate Professor Monica
Divitini, Jens-Otto Larsen, Associate Professor Mihhail Matskin, Sobah A. Pe-
tersen, Professor Arne Sølvberg, and Alf Inge Wang deserve appreciation for
their contributions to this work through discussion and comments. Special
thanks to my neighbour and former office mate, Alf Inge, for also being a good
friend.

I also would like to offer thanks to all my colleagues at the Database Sys-
tems Group – Professor Kjell Bratbergsengen, Professor Svein-Olaf Hvasshovd,
Olav Sandstå, Associate Professor Ketil Nervåg, Jon Olav Hauglid, John Hegg-
land, Rune Humborstad, Tore Mallaug, and Maitrayi Sabaratnam. Special
thanks to Associate Professor Roger Midtstraum for his valuable comments
and suggestions about this work.

I further thank Professor Ian Summerville for generously hosting my visit
to the Computing Department, Lancaster University, and to all members of the
CSEG group for making my stay fruitful, enjoyable and interesting.

I thank all administrative and technical support staff at IDI for providing
necessary infrastructure.

I also thank Joe Gorman for his contribution in proof-reading this thesis
and his suggestions for improving its readability and Stewart Clark at NTNU
for doing the final editing.

This work has been supported by the Research Council of Norway
through grant 112567/43 via the Distributed Information Systems (DITS) pro-
gramme and the CAGIS project. Their financial support is much appreciated.

I am immensely grateful for the love and support my parents and family
have given me over the years. And last but not least, I would like to thank my
wife Grethe, without whom nothing would be worth doing. This “ego-trip”
would not be possible without her understanding and support.

Trondheim, 1 October 2001.

Herindrasana Ramampiaro.

URN:NBN:no-2103

iii

Abstract

The theme of this thesis is on transactional support for cooperative work
environments, focusing on data sharing. It is thus concerned with the provision
of suitable mechanisms to manage concurrent access to shared data and re-
sources. This subject is not new, per se. In fact, maintaining data consistency in
multiuser environments is a classical problem that has been addressed thor-
oughly since the introduction of transaction management. However, while tra-
ditional transaction models – also called ACID (atomicity, consistency,
isolation, and durability) transactions – have provided satisfactory and effi-
cient consistency management for traditional multiuser database and business
applications such as banking and flight reservation applications, they have
been found to be too restrictive in the context of cooperation. Atomicity is inap-
propriate for cooperative environments, where activities are normally of long
duration. The isolation of transactions does not allow cooperation, which is
thus unsuitable for cooperative environments.

Several solutions have been proposed and developed in terms of ad-
vanced transaction models and frameworks. The goal has primarily been to
overcome the limitations of traditional transactions. However, although there
are many solutions, there are some problems that are not solved. Among these
are the problems that result from the dynamic and heterogeneous nature of co-
operative work. Finding solutions to these problems has been a subject for in-
tensive research over the past couple of decades. However, it is widely agreed
that they still deserve careful attention. The solution here is to provide transac-
tional support that not only can be tailored to suit different situations, but can
also be modified in accordance with changes in the actual environment while
the work is being carried out – i.e., is adaptable. As part of this solution, we
have identified and extracted the beneficial features from existing models and

URN:NBN:no-2103

iv ABSTRACT

attempted to extend these to form a transactional framework, called CAGIS-
Trans. This is a framework for the specification of transaction models suiting
specific applications. The main contribution in handling dynamic environ-
ments is in the way of organising the elements of a transaction model to allow
runtime refinement. In addition, a transaction management system has been
developed, built on the middleware principle, to allow interoperability and da-
tabase independence, and support for non-database resources. This thereby ad-
dresses the problems induced by the heterogeneous nature of cooperative
environments.

The solution depends on setting requirements based on the practical real-
life needs for a system supporting cooperative work. This shows how this
framework meets these requirements. One of the issues that is not emphasised
is system throughput. From a transaction processing perspective, this issue is
generally considered to be critical. However, since transactions in cooperative
environments normally span long periods of time, they are mainly more sensi-
tive to response time performance than system throughput.

A CAGISTrans system has been implemented, using several technologi-
cal tools such as Java1, XML and software agents. The thesis discusses the spe-
cific use of and general experience with these technological tools. The
CAGISTrans prototypes have implemented the major parts of the framework.

The main conclusion is that the current CAGISTrans framework is able to
support the basic features of dynamic and heterogeneous transaction manage-
ment, allowing users to specify models and have the system execute their
transactions in a flexible and controlled manner.

1. Java is a trade mark of Sun Microsystems. See http://java.sun.com.

URN:NBN:no-2103

v

Table of Contents

Preface ..i

Abstract ... iii

Table of Contents..v

List of Figures ...xi

List of Tables ... xiii

PART I BACKGROUND AND CONTEXT..1

Chapter 1 Introduction.. 3

1.1. Motivation ... 3

1.2. The problem with transactions .. 4

1.3. Research questions ... 5

1.4. Research approach.. 6
1.4.1. Exploratory research ... 7
1.4.2. Testing-out research.. 7
1.4.3. Problem-solving research... 7
1.4.4. Approach of this thesis ... 8

1.5. Research environment ... 8

1.6. Publications ... 9

1.7. Contributions... 10

1.8. Organisation of the thesis .. 12

Chapter 2 Basic Transaction Concepts... 15

2.1. Introduction ... 15

2.2. Transaction model ... 16

URN:NBN:no-2103

vi TABLE OF CONTENTS

2.2.1. Properties of a transaction..16
2.2.2. Concurrency control.. 17
2.2.3. Recovery concepts ... 19

2.3. Transactions and advanced applications ...22

Chapter 3 Technological Overview.. 25

3.1. Computer Supported Cooperative Work..25
3.1.1. Groupware..26
3.1.2. CSCW related to this work...29

3.2. Middleware ..30
3.2.1. Middleware classes ... 31
3.2.2. Relation to this work ... 32

3.3. Agent Technology ..33
3.3.1. Advantages of agents.. 33
3.3.2. Challenges with agents ... 34
3.3.3. Agents and this work.. 35

Chapter 4 State-of-the-Art Survey.. 37

4.1. Introduction ...37

4.2. Classical advanced models ... 38
4.2.1. Nested Transaction model ...38
4.2.2. Sagas ..39
4.2.3. Open nested transaction and multilevel transaction models..39
4.2.4. Cooperative Transaction Hierarchy..40
4.2.5. Split and Join Transaction model ..41

4.3. Newer transaction models.. 42
4.3.1. Coo...42
4.3.2. EPOS ..44
4.3.3. TransCoop/CoAct... 45
4.3.4. Relative serialisability- RSR ...46
4.3.5. New timestamp ordering ...49

4.4. Customisable transaction models... 51
4.4.1. ACTA...51
4.4.2. ASSET..52
4.4.3. TSME ...54
4.4.4. RTF...55

PART II DESIGN AND ARCHITECTURE.......................................57

Chapter 5 Requirement Analysis ... 59

5.1. Motivating scenario ...59

5.2. Cooperative work characteristics ... 61

URN:NBN:no-2103

TABLE OF CONTENTS vii

5.2.1. Definition of cooperative work ... 61
5.2.2. Characteristics of cooperative work ... 61

5.3. Requirements for transactions... 63
5.3.1. Transactional properties... 63
5.3.2. Transactional behaviour and support .. 64
5.3.3. Services provided .. 65

5.4. The requirements and the scenario .. 65

5.5. Additional requirements .. 68

5.6. Concluding remarks... 68

Chapter 6 The CAGISTrans Transactional Framework 71

6.1. Introduction ... 71

6.2. Bridging the gap between flexibility and strictness using workspaces 72
6.2.1. Workspace organisation ... 72
6.2.2. Extended workspace access operations 74
6.2.3. Workspace access coordination... 75

6.3. Distinguishing between characteristics and execution specifications....... 75
6.3.1. The necessity of design time and runtime specifications 75
6.3.2. ACID requirements and their impacts 77

6.4. Dynamic re-specification of transactional behaviour 82
6.4.1. Managing transactional behaviour ... 83
6.4.2. Dynamic user re-definable correctness criteria......................... 89

6.5. Supporting heterogeneity .. 91

6.6. XML as a specification language... 92

6.7. Concluding remarks... 94

Chapter 7 Formalising the CAGISTrans Framework 95

7.1. Introduction ... 95

7.2. Allowing design time and runtime specifications 95
7.2.1. Customising the ACID properties and its implications on

transaction characteristics .. 96
7.2.2. Preserving consistency and durability 96
7.2.3. Switching between full and relaxed atomicity.......................... 97
7.2.4. Switching between full and relaxed isolation 99
7.2.5. Analysing the combination of isolation and atomicity

properties.. 106

7.3. Management of transactional behaviour at runtime 107
7.3.1. Management operations... 107
7.3.2. Advanced operations .. 110
7.3.3. Managing and controlling transactional behaviour............... 113

URN:NBN:no-2103

viii TABLE OF CONTENTS

7.3.4. Handling dynamic re-specifications of correctness
constraints...119

7.4. Integrating workspace management ..122
7.4.1. Flexible workspace support ...122
7.4.2. Correctness insurance and coordination..................................125

7.5. Chapter summary ..125

Chapter 8 A System Supporting the CAGISTrans Framework...... 127

8.1. Introduction ...127

8.2. System requirements..128

8.3. The CAGISTrans architecture... 130
8.3.1. The specification environment ..131
8.3.2. The runtime management system...131
8.3.3. Ensuring correctness ... 134
8.3.4. Mapping between workspaces and resource bases................136

8.4. Experiments with conflicts and patterns ...138

8.5. Comparison with other work ... 138

8.6. Meeting the system requirements..139

PART III IMPLEMENTATION AND ASSESSMENT.......................141

Chapter 9 Realisation of a CAGISTrans System............................... 143

9.1. Implementation infrastructure .. 143
9.1.1. Agent platform – IBM Aglets...143
9.1.2. Agent communication language – KQML144
9.1.3. Realising KQML with JKQML...144

9.2. Prototype architecture..145
9.2.1. The specification environment ..146
9.2.2. The runtime management system...147
9.2.3. Interface to external agents ..148

9.3. Towards agent-based groupware with transactional support150
9.3.1. Agent-based groupware model...150
9.3.2. The challenges..152

Chapter 10 Integration with the CAGIS Environment 155

10.1. Document models and tools ... 156
10.1.1. Domain Model Construction ...157
10.1.2. Document Classification... 157
10.1.3. Browsing and Retrieval .. 157

10.2. Process models and tools..159
10.2.1. Workflow system supporting distributed mobile processes 159

URN:NBN:no-2103

TABLE OF CONTENTS ix

10.2.2. Software agents to support dynamic, cooperative processes160
10.2.3. Agent-Workflow GlueServer ... 161

10.3. A practical test scenario: conference management 162
10.3.1. Suggest sessions... 162
10.3.2. Select papers and plan sessions... 163

10.4. The CAGIS environment applied to the scenario 164

10.5. Summary and discussion... 167

Chapter 11 Discussion and Evaluation.. 169

11.1. Discussion.. 169
11.1.1. User intervention vs. system transparency 169
11.1.2. Performance issues.. 170
11.1.3. The use of agents ... 171
11.1.4. Implementation issues .. 171

11.2. Evaluation.. 172
11.2.1. Meeting cooperative work requirements................................. 172
11.2.2. Answering the research questions .. 175
11.2.3. Limitations of the CAGISTrans framework 176

11.3. Consolidated comparison with other work .. 178

Chapter 12 Conclusions and Future Work.. 183

12.1. Important themes... 183

12.2. Contributions of this thesis.. 184

12.3. Future work ... 185
12.3.1. Extensions of the CAGISTrans implementation 185
12.3.2. Further research... 186

Bibliography .. 189

Index.. 201

URN:NBN:no-2103

x TABLE OF CONTENTS

URN:NBN:no-2103

xi

List of Figures

2.1 Examples of concurrency anomalies. ..17
2.2 Illustration of a serialisable and a non-serialisable executions................18
2.3 The serialisation graphs for the executions in Figure 2.2.19
3.1 Grudin’s (1994) extended time/space groupware typology.27
3.2 Rodden’s (1991) groupware classification. ...28
3.3 Groupware classification dimensions according to Ellis et al. (1991).....29
3.4 Illustration of the multiuser support alternatives.30
4.1 Illustration of the nested transaction model...38
4.2 Illustration of execution of Saga transactions...39
4.3 Illustration of the multi-level transaction model.40
4.4 Illustration of the cooperative transaction hierarchies.41
4.5 Illustration of the principle of split and joining transactions...................41
4.6 Relation between object consistencies and database types.43
4.7 Illustration of a workspace with nesting structure in EPOS.44
4.8 TransCoop workspaces and exchange operations.46
4.9 Illustration of the use of the relative serialisability criterion.47
4.10 Illustration of the use of the new timestamp ordering approach............50
4.11 Effects on transactions and objects in ACTA (Chrysanthis and

Ramamritham 1994). ..52
4.12 The ASSET primitives. ...53
4.13 The TSME system architecture (Georgakopoulos et al. 1996)..................54
4.14 The transaction adapters in RTF (Barga and Pu 1997).56
5.1 Illustration of distribution and organisation of Aviasioft.60
6.1 Nested workspace structure with corresponding

operations and object states. ...73

URN:NBN:no-2103

xii LIST OF FIGURES

6.2 Illustration of the distinction between characteristics
specification and execution specification..76

6.3 Illustration of the distinctions in the transaction execution
specification. ..83

6.4 Elements of the execution specification. ...84
6.5 The mechanisms of the user-defined correctness criteria.........................90
6.6 CAGISTrans high-level architecture..91
6.7 Illustration of specification processing alternatives.93
7.1 Illustration of abort dependency. ...99
7.2 Illustration of abort dependency across two nested transactions.100
7.3 Advanced operations illustration...112
7.4 Illustration of the use of the three constraints. ...114
7.5 Incorrect scenario..115
7.6 Correct scenario using conflicts and permits. ...116
7.7 Invalid scenario according to conflicts and demands constraints........117
7.8 Valid scenario following conflicts and demands constraints.................117
7.9 Illegal scenario due to incompleteness of conflicts and permits.118
7.10 Legal scenario using conflicts, permits and demands.119
7.11 Illustration of an In-Between constraint..121
7.12 Illustration of an Occur-Follow constraint..122
7.13 Illustration of workspace operations applied on GUI and P modules. 123
7.14 Illustration of workspace Tom and John’s interactions.124
7.15 Illustration of the use of workspace operations.124
8.1 Architecture of the transaction management system..............................130
8.2 Interfaces to serialisable resource management systems........................134
8.3 Managing user-defined correctness criteria. ..135
8.4 Illustration of mapping between several resource management systems

and workspaces...137
9.1 Implemented system architecture..145
9.2 Components of the administration and specification manager.............146
9.3 Components of the advanced transaction manager.147
9.4 Interface to external agents. ..148
9.5 Interaction between an agent and the external agent interface

components. ..149
9.6 Illustration of a possible agent-based groupware model.151
10.1 Conceptual modelling for meta-data descriptions.156
10.2 Overview of the system architecture. ..158
10.3 The CAGIS Process Centred Environment. ..161
10.4 Grouping of Accepted Papers into Sessions...163
10.5 The CAGIS framework applied to the scenario.164

URN:NBN:no-2103

xiii

List of Tables

5.1 Dimensions of cooperative work. ... 62
5.2 Requirements with transaction models.. 64
6.1 Atomicity and relevant elements. ... 78
6.2 Consistency and relevant elements. ... 80
6.3 Isolation and relevant elements... 81
6.4 Durability and relevant elements.. 82
6.5 Summary of effect management. .. 84
6.6 Summary of execution management operations. 88
7.1 Isolation with corresponding correctness criteria and applied

policies. ... 101
7.2 Compatibility matrix of the lock intentions... 104
7.3 Relevance for notification types. ... 106
7.4 Possible combinations of atomicity and isolation properties. 106
7.5 Illustrations of advanced operation specification..................................... 113
7.6 Properties of the execution constraints. ... 119
8.1 Summary of CAGISTrans high level requirements.................................. 129
8.2 Overview of implemented components... 132
11.1 Summary of how the CAGISTrans framework meets the requirements for

Cooperative work. ... 173
11.2 A summary of CAGISTrans features and their relation to other

frameworks... 179

URN:NBN:no-2103

xiv LIST OF TABLES

URN:NBN:no-2103

1

Part I

BACKGROUND

AND

CONTEXT

URN:NBN:no-2103

URN:NBN:no-2103

3

Chapter 1

Introduction

The theme of this thesis is transactional support for cooperative work en-
vironments. The focus is on developing a transactional framework called CAG-
ISTrans, allowing specification and customisation of transactional models to fit
specific needs. This chapter outlines the motivation for such a transactional
framework, defines the problems addressed, and highlights the contributions
of this work. It also describes the structure of this thesis, serving as a roadmap
for the reader.

1.1. Motivation
The widespread availability and use of computers and networking – i.e.,

Internet and the World Wide Web (Web for short) – has undoubtedly contrib-
uted to a change in the way people carry out their work. Increasingly, work is
performed in teams distributed over a network, where people get together to
have the work done without strict organisational and power structures. As a
result, the induced work environments are dynamic – thus the members and
the structure of the teams may vary from time to time, and the imposed re-
quirements may be in continuous change. This makes it important and chal-
lenging to provide suitable tools to facilitate cooperative activities of this type.

The field of CSCW – Computer Supported Cooperative Work – has
emerged due to the need to provide appropriate computer-based tools to sup-
port group work (Batory and Kim 1985, Greif and Sarin 1987, Schmidt and Ban-
non 1992, Grudin 1994). The support needed ranges from informal interaction
among co-workers – such as meeting and conferencing systems – to the sharing
and exchange of information. Our main focus is on supporting team work
within product design – Software Engineering, CAD/CAM, among others –

URN:NBN:no-2103

4 CHAPTER 1 INTRODUCTION

and product manufacturing, that are mainly based on data sharing and ex-
change.

Support for sharing in multi-user environments has long been a main
concern of both the database and the CSCW communities (Gray et al. 1975,
Gray 1981, Korth 1983, Bancilhon et al. 1985, Bernstein et al. 1987, Greif and Sa-
rin 1987). Normally, support for sharing through the use of computers implies
provisions of concurrent access to shared resources, such as databases and Web
servers. However, though sharing is important, considering product design
and manufacturing, the avoidance of inconsistency is crucial. This calls for the
adoption of mechanisms to synchronise, coordinate and manage the aforemen-
tioned resource access. An example of a solution that has gained a considerable
attention – also in the CSCW community (Ellis et al. 1991, Mariani and Rodden
1996) – originates from the database community, namely transactions and trans-
action models.

Note that the above-mentioned consistency may have different meanings
in (traditional) database transactions and in CSCW-oriented transactions. From
a traditional transaction perspective, shared data are said to be consistent if
they satisfy all specified consistency constraints for the underlying database.
An underlying premise is that accesses to shared data are not interfered with
by any other accesses. Thus, data shared among several users can be said to be
consistent only if both the final and all temporary results are considered correct
(see Section 2.2 for an overview).

From the CSCW perspective, the above premise may be too strong, as si-
multaneous access to shared data is normal and needed. For this reason, shared
data may sometimes violate some of the specified consistency constraints, but
they could still be accepted as being consistent enough. The ways to reach the
final results are not important as long as these results can be considered cor-
rect.

Bearing the above gap in mind, in order to successfully deal with incon-
sistency in cooperative work settings, it is important to find an appropriate
trade-off, but this is not an easy task. In this thesis the premise is to view con-
sistency as dependent on the requirements of the applied domain, hence stress-
ing the provision of adaptable transactional support for cooperative work.

1.2. The problem with transactions
Transactions and transaction models have been widely used in managing

concurrent accesses to shared data. However, the main problem with transac-
tions – as they were traditionally intended – is their strictness. In particular, the

URN:NBN:no-2103

1.3. RESEARCH QUESTIONS 5

support for long-running activities and cooperation is missing, as a result of
their atomicity and isolation requirements (Elmagarmid 1992, Conradi et al.
1997, Jajodia and Kerschberg 1997).

In order to overcome these limitations, numerous advanced transaction
models have been suggested (Moss 1982, Garcia-Molina and Salem 1987, El-
magarmid 1992, Mohan 1994, Ramampiaro and Nygård 1999). In general, the
main emphasis has been on the relaxation of atomicity and isolation. In terms
of cooperative work, it is widely agreed that the goal has not yet been attained.
For instance, many of the models were suggested with specific applications in
mind, thus having fixed semantics and fixed correctness criteria. For this rea-
son, they may fail to provide sufficient support for wide areas of applications.

One possible solution is to provide a framework for specifying and tailor-
ing the transaction models to the application needs. This idea is not new. Most
notable are ACTA (Chrysanthis and Ramamritham 1994), ASSET (Biliris et al.
1994), TSME (Georgakopoulos et al. 1996), and RTF (Barga 1999), among oth-
ers. However, although these provide the ability to specify and implement ex-
tended transaction models that are suitable for specific applications, there are
problems that still remain unsolved. First, support for dynamic environments –
e.g., process shift – is needed but still not fully supported. One of the main rea-
sons is that with many existing solutions, the specification of transaction mod-
els must be done before the execution of the actual transactions. Hence, they
offer little or no support for adjustment during runtime. Second, cooperative
work is diverse (Schmidt and Bannon 1992, Schmidt and Rodden 1996). This
makes the support for heterogeneous environments highly relevant. However,
the existing solutions are mainly built on DBMSs – database management sys-
tems. This means that other resource management systems other than legacy
databases, such as Web servers, may not be well supported. For this reason, the
heterogeneity aspect may not be adequately addressed.

1.3. Research questions
Based on the above motivation, the problems addressed in this thesis are

concerned with finding appropriate ways to provide transactional support for
dynamic and heterogeneous cooperative work environments.

Therefore, the main question that this thesis aims to answer is:

How can one provide transactional support that is able to deal with the dy-
namic and heterogeneous properties of cooperative work?

This question leads to the definition of the following subquestions, deter-

URN:NBN:no-2103

6 CHAPTER 1 INTRODUCTION

mining the development of the work:

Q1 Current situation: are there efforts that have already answered the main
question?

Q2 Requirements: what is the nature of cooperative work and how can it be
characterised? Then, what requirements does this impose on the transac-
tional support to be provided?

Q3 Solution: what foundations are necessary for the design of a system fulfill-
ing these requirements? In other words, how can we meet these require-
ments for transactions?

Q4 Evaluation: how well do our research results solve the problems, and how
does the solution compare to previous work?

1.4. Research approach
The term research is not easily understood when looked at by itself with-

out placing it in a context. Its meaning is nonetheless important to explore, as it
is the main foundation for any doctoral work. So, what do we exactly mean by
research? In general, we may see research as the process through which we re-
veal or discover knowledge. But, this definition is too wide, since it does not
state anything about the context of the process. For instance, one may discover
knowledge by measuring the air temperature, to find out what type of clothes
to wear – but this process is not research per se. By contrast, if we discovered
our knowledge by collecting data consisting of multiple air temperature meas-
urements, resulting in statistical information – e.g., temperature variation – and
its relation to current climate changes, such a process might be regarded as re-
search. This leads us to a more generic definition – adopted from the Oxford
Dictionary and Thesaurus (Tulloch 1995) – viewing research as:

“the systematic investigation into and study of materials, sources, etc., in
order to establish facts and reach new conclusions and an endeavour to dis-
cover new or collate old facts, etc., by the scientific study of a subject or by
the course of critical investigation.”

As we will see later in this section this fits well with my view of what re-
search is.

Traditionally, research methodologies have been divided into two basic
types comprising “pure research” and “applied research”. Pure research deals with
finding theories that applied research uses and tests in real world. However, as
pointed out by Phillips and Pugh (1994), such a distinction may be too restric-

URN:NBN:no-2103

1.4. RESEARCH APPROACH 7

tive. For instance, applied research in many disciplines generates its own theo-
ries that it applies to real world experiments. This is the case with this research.
Part of this work may be seen as pure research attempting to set up theories of
transactions, but in addition, it is aimed at finding ways to allow use of these
theories in practical “real world” cooperative applications.

Rather than the above distinctions, the nature of research towards a doc-
toral degree may be classified into three types (Phillips and Pugh 1994); explor-
atory, testing-out, and problem-solving research.

1.4.1. Exploratory research

Exploratory research is concerned with addressing new problems, issues or
topics that are not well known. Thus, the idea underlying the research cannot
be defined very well. But once formulated, it can be approached with theoreti-
cal investigation or empirical studies. Then, the research work will attempt to
find suitable theories and concepts – developing new ones, if necessary, and
deciding whether existing methodologies can be utilised or not.

1.4.2. Testing-out research

Testing-out research deals with finding the limits of previously proposed
generalisations. This method thus involves a careful testing process, aimed at
improving the important but incomplete generalisations developed by previ-
ous research. From this perspective, a researcher will have to designate a
methodology, and apply it to a topic to which it has not been applied before,
providing advantageous new knowledge and theoretical insights. Alterna-
tively, one may apply competing theories to a new problem to determine
which are best, or develop crucial experiments to make it more evident how to
choose among them. A possible result of such work that can be gained is an in-
novative variant of an existing methodology or theory.

1.4.3. Problem-solving research

Problem-solving research uses a specific problem from “the real world” as a
starting point, and finds a new methodology for its solution. In this method,
the researcher will be required to discover the problem and the methodology
or theory to solve that problem. In this respect, one may have to create and de-
termine solutions addressing all aspects of a problem. Due to the complexity of
real world problems, however, theories and methods may involve more than
one discipline, making them more difficult to solve within the restricted
bounds of a doctoral research.

URN:NBN:no-2103

8 CHAPTER 1 INTRODUCTION

1.4.4. Approach of this thesis

The research method applied in this thesis may be best classified as test-
ing-out research. A problem is approached by first analysing the current situa-
tion, attempting to gather enough knowledge about existing approaches that
have related solutions to the problem. This also sets up the context of the work,
which is described in the first part of this thesis, including Chapters 1 (this
chapter), 2, 3 and 4. As part of this, each approach has been evaluated with re-
spect to what part of the problem it addresses, how it does this – i.e., the theory
and methodology – and what problems are still necessary to solve.

The results from the first part of this thesis have revealed and extracted
beneficial features of existing solutions, and led to the development of the CA-
GISTrans framework. This is aimed at solving the remaining problems. What
these features are and how they are exploited and extended are treated in the
second part of this thesis, comprising Chapters 5, 6, 7 and 8.

To evaluate this work, I have focused on the design and implementation
of the framework in proof-of-concept prototypes which aim at demonstrating
the capability of the framework, and test its feasibility. A comparison with re-
lated approach is also provided. This part of this work is treated in the third
part of the thesis, consisting of Chapters 9, 10, 11 and 12. The results from this
work were mainly measured in terms of which parts of the proposed frame-
work could be implemented, thus providing an indication of the feasibility of
this approach.

1.5. Research environment
The work presented in this thesis has primarily been conducted in the

context of the CAGIS project (Conradi et al. 1996)1. Consequently, the work in
this project is referred to as “our work” in this thesis.

CAGIS stands for Cooperative Agents in a Global Information Space. It is
a basic research project in the Norwegian Research Council programme for dis-
tributed information systems (DITS). The project was devoted to provide coop-
erating human problem solvers – e.g., designers and engineers – with support
for distributed and concurrent team work, and to develop a framework for the
corresponding information technology (IT) support with distributed agents,
distributed data stores, and specific formalisms and tools.

To address these objectives the project was divided into three modules
concentrating on smaller more focused parts. These include handling of dis-

1. See also http://www.idi.ntnu.no/~cagis.

URN:NBN:no-2103

1.6. PUBLICATIONS 9

tributed documents and document understanding, support for cooperative
processes in distributed environments, and management of sharing of distrib-
uted and heterogeneous resources. The work in this thesis covers the last mod-
ule, focusing on management of sharing using transactions.

A more thorough presentation of the other modules is provided in Chap-
ter 10, which also discusses the integration of this work into the CAGIS envi-
ronment.

1.6. Publications
This thesis is partly based on papers presented at conferences published

during the work that I was part of, as listed below:

• Heri Ramampiaro and Mads Nygård, “Cooperative Database System: A
Constructive Review of Cooperative Transaction Models“, In Proceedings of
the 1999 International Symposium on Database Applications in Non-
Traditional Environments (DANTE'99), pp. 315-324, IEEE Computer
Society Press, Kyoto, Japan, Nov. 1999.

This is a state-of-the-art paper, presenting a result of our initial litera-
ture studies. It reviews existing transaction models with respect to their
appropriateness for cooperative work.

• Heri Ramampiaro, Monica Divitini and Sobah A. Petersen, “Agent-based
groupware: Challenges for cooperative transaction models“, In Proceedings
of the International Process Technology Workshop (IPTW 99), J.
Estublier, G. Alonso, and H. Schlichter (ed.), Grenoble, France, Sept.
1999.

This is a position paper following up the ideas generated from the work
with the previous paper. It discusses the challenges of adopting trans-
action models into agent-based groupware, providing an indication of
what transactional support should cover.

• Heri Ramampiaro, Alf Inge Wang and Terje Brasethvik, “Supporting
Distributed Cooperative Work in CAGIS“, In Proceedings of the 4th
Annual IASTED International Conference on Software Engineering
and Applications (SEA 2000), Las Vegas, Nevada, USA, Nov. 2000.

This paper was written as result of a joint effort with colleagues in CA-
GIS. It specifically discusses the integration of the three components of
the CAGIS project into a single environment supporting distributed co-
operative work.

URN:NBN:no-2103

10 CHAPTER 1 INTRODUCTION

• Heri Ramampiaro and Mads Nygård, “CAGISTrans: A Transactional
Framework for Cooperative Work“, In Proceedings of the 14th
International Conference on Parallel and Distributed Systems (PDCS
2001), pp. 43-50, Dallas, USA, Aug. 2001.

This is an overview paper, introducing the CAGISTrans framework. It
provides an initial overview and analysis of the transactional support
that should be provided. It thus gives an overview of the ideas of CAG-
ISTrans.

• Heri Ramampiaro and Mads Nygård, “CAGISTrans: Providing Adaptable
Transactional Support for Cooperative Work“, In Proceedings of the 6th
INFORMS Conference on Information Systems and Technology
(CIST’01), pp. 3 - 29, Florida, USA, Nov. 2001.

This is a core paper, discussing the technical foundations of our CAGIS-
Trans transactional framework in detail. It presents its specification, de-
sign and implementation, constituting the base of this thesis.

• Heri Ramampiaro and Mads Nygård, “Supporting Customisable
Transactions for Cooperative Work: An Experience Paper“, In Proceedings
of the 2002 Western Multi conference (WMC’02) – Collaborative
Technologies Symposium 2002 (CTS’02), San Antonio, USA, Jan. 2002.
(To appear).

This is an experience paper, discussing the implementation of a CAGIS-
Trans prototype. It discusses and evaluates our framework with respect
to requirements for cooperative work. It also outlines our experience
from the implementation of the prototype and discusses further issues
that must be taken into account.

1.7. Contributions
The main contributions of the thesis are as follows:

• Provision of customisable transactional models with integrated workspace
support. The work develops a transactional framework with both a
possibility to customise transaction models to specific applications and
integrated workspace support to increase the support for controlled
sharing of resources.

• A useful and effective way to organise vital elements of transaction models. A
transactional framework identifying elements that transaction models
should provide is proposed. This includes how these are organised to

URN:NBN:no-2103

1.7. CONTRIBUTIONS 11

improve the transactional support for cooperative work. Fundamental
to this is distinguishing between characteristics and execution
specifications of transaction models. In this way, we gain an increased
modularity by allowing component-based specification. This
distinction also allows a user1 to distinguish between design time and
runtime specifications of transaction models, thus achieving an
increased flexibility and increased support for dynamic environments.

• A new way to support runtime management of transactional behaviour. This
work is aimed at developing an efficient way to manage runtime
specification of transactional behaviour. This further improves the
support for evolution in cooperative work processes by enabling users
to fit the behaviour of their transactions to their current needs. Because
of this, the need for a complete a priori knowledge of actions to be
carried out is strongly reduced, thus improving the transactional
support for unpredictably. Further, users have better control over the
execution of tasks, making them able to choose appropriate actions
based on current needs.

• Analysis and development of dynamic user re-definable correctness
constraints. A transactional framework is proposed that not only allows
users to specify suitable correctness constraints but also refine these at
runtime. Hence, the proposed framework allows users to define
correctness constraints in accordance with the needs of their
applications. As a result, we can gain an increased flexibility and
increased support for cooperation. Further, the ability to refine these
constraints during runtime makes it possible to meet new requirements
while the work is in progress.

• Development of a transactional framework architecture supporting
heterogeneous systems. The CAGISTrans framework is designed and
implemented in a system built on the middleware principle, providing
not only advanced transactional support to various types of
applications, but also running on a variety of resource management
systems, including Web servers and legacy databases.

• Application of a specification language making use of XML. The
development of our CAGISTrans framework exploits the extensibility
of XML in a new and useful way to enable the specification of
transaction models and adjust these at runtime.

1. A user is normally a transaction model designer.

URN:NBN:no-2103

12 CHAPTER 1 INTRODUCTION

1.8. Organisation of the thesis
This thesis consists of twelve chapters divided into three parts, organised

as follows:

• Part I provides the setting of the thesis, outlines the background and
context and reviews previous relevant work.

– Chapter 1 (this chapter) describes the background and context for the
work. It also outlines the problem that the work is addressing.

– Chapter 2 provides an overview of basic concepts underlying this
work. It focuses on the background theory of transaction processing.

– Chapter 3 outlines the technology relevant to this work and discusses
how these relate to the work.

– Chapter 4 is a state-of-the-art chapter and thus provides a survey of ex-
isting solutions, focusing on transactions. Together with Chapter 2, it
attempts to give an initial answer to research question Q1 (see
Section 1.3).

• Part II discusses the requirements for cooperative work, introduces the
CAGISTrans framework, and discusses the design and architecture of
the framework.

– Chapter 5 analyses the characteristics of cooperative work and the im-
posed requirements. It thus attempts to answer research question Q2.

– Chapter 6 presents the CAGISTrans framework, discussing and ana-
lysing the contributions of this work.

– Chapter 7 outlines the theory, the specification and the design of the
CAGISTrans framework to solve the problems arising from the dy-
namic nature of cooperation environments. This chapter thus at-
tempts to answer research question Q3 (see Section 1.3).

– Chapter 8 provides a presentation of the design of a CAGISTrans sys-
tem architecture. Thus, it particularly shows how the CAGISTrans
framework deals with problems incurred by the heterogeneous na-
ture of cooperative environments, in addition to those incurred by
their dynamic nature. Therefore, this chapter further answers research
question Q3.

URN:NBN:no-2103

1.8. ORGANISATION OF THE THESIS 13

• Part III discusses the realisation of the CAGISTrans system, evaluates
the thesis and concludes this work.

– Chapter 9 discusses the realisation of a CAGISTrans system in a proof
of concept prototype. It uses the results from Chapter 7 and Chapter
8, serving as a test-bed for the transactional framework.

– Chapter 10 evaluates the CAGISTrans framework. It discusses several
issues that have been taken into account. It also provides a critical as-
sessment of our solution and compares this with previous work. It is
thus aimed at answering research question Q4 (see Section 1.3).

– Chapter 11 presents how our framework is integrated in the CAGIS
environment. It also describes in a practical scenario how the CAGIS
modules interact.

– Chapter 12 concludes the work, summarising its contributions and
suggesting directions for future research.

Work in this thesis is developed based on a set of research questions and
two sets of requirements. They are treated in this thesis as follows:

• Research questions [Q1 – Q4]. These research questions are introduced in
Section 1.3. They are implicitly addressed throughout the thesis, but
explicit, consolidated answers are provided in Section 11.2.2.

• Transaction requirements [TR1 – TR7]. These consist of a set of
requirements that cooperative work imposes on transactional support.
They are introduced in Section 5.3 and are implicitly addressed through
the development of the CAGISTrans transactional framework. An
explicit, consolidated treatment is given in Section 11.2.1.

• System requirements [SR1 – SR5]. These include a set of requirements
used as bases for the development of a CAGISTrans system
architecture. They are presented in Section 8.2 and explicitly addressed
in Section 8.6.

To illustrate the ideas in this work, two sets of scenarios are included:

• The first scenario is a software development scenario, used as basis for
explaining the ideas of our CAGISTrans framework. This scenario is
presented in Section 5.1 and applied in Chapters 5 and 7.

• The second scenario is a conference management scenario, used to
illustrate the integration of the three CAGIS components and their

URN:NBN:no-2103

14 CHAPTER 1 INTRODUCTION

functionality. This scenario is presented in Section 10.3 and applied in
Section 10.4.

A list of main contributions is presented in Section 1.7, discussed
throughout the thesis and then again summarised in Section 12.2.

URN:NBN:no-2103

15

Chapter 2

Basic Transaction
Concepts

This chapter introduces the basic concepts of database transactions. Its
main goal is to provide basic understanding of transactions, which are the basis
for the work in this thesis.

2.1. Introduction
A database is a collection of persistent data objects satisfying a set of integ-

rity constraints. For example, in a flight reservation database, an integrity con-
straint may be that no seat can be reserved for more than one passenger and
that a data item containing the number of passengers for each flight is equal to
the sum of the number of seats reserved. A database management system (DBMS)
is responsible for coordinating all access to the database. This implies that all
database manipulation must be performed by means of its DBMS. Users inter-
act with the DBMS by executing special application programs. Such an execu-
tion results in a partial ordered set of read and write operations, called
transactions (Bernstein et al. 1987). Broadly speaking, a transaction is thus the
set of operations that access and change the content of a database, together
with transactional commands – i.e., begin, commit and abort – marking its
boundaries. In other words, a transaction may be regarded as a program seg-
ment starting with a begin command and ending with a commit (or abort) com-
mand. A commit command indicates that the execution of the transaction was
successful, and thus all its updates should be incorporated into the database.
An abort commands means that the transaction has failed, and hence all its ef-
fect should be cancelled or abolished by the DBMS.

URN:NBN:no-2103

16 CHAPTER 2 BASIC TRANSACTION CONCEPTS

2.2. Transaction model

2.2.1. Properties of a transaction

A primary goal of a DBMS is to allow several user transactions to concur-
rently access an underlying database. It thus ensures that each transaction that
updates the objects of the database always preserves the integrity constraints of
the database. In addition, a DBMS must protect user programs from hardware
and software failures. To achieve this, transactions are constrained by the fol-
lowing four fundamental properties, also known as the ACID properties (Gray
1981, Härder and Reuter 1983, Bernstein et al. 1987).

• Atomicity referring to the fact that a transaction must be executed
successfully or it appears as if it had not been executed at all – i.e., all or
nothing. This means that all operations of a transaction must be
executed, or none of them. Thus a transaction must be treated as an
indivisible unit of work.

• Consistency requiring that each executed transaction always preserves
the consistency of the database. A transaction must transform a
database from one consistent state to another consistent state. This
means that each successful transaction by definition only commits legal
results.

• Isolation referring to the fact that a transaction must not observe the
intermediate results of other transactions. This means that a transaction
must not make its modification visible to other transactions until it has
successfully completed.

• Durability requiring that once a transaction has committed, all its
updates become permanent in the database. This means that once a
transaction has successfully reached its end, none of its results are
forgotten by the DBMS. All committed results must be able to survive
any type of subsequent failure.

The above requirements imply that individual transactions must be pro-
grammed in such a way that they always preserve the consistency of the data-
base. The DBMS must, in addition, ensure that each of the properties is
guaranteed for interleaved executions of transactions. This is achieved by a com-
bination of two different sets of protocols (Bernstein et al. 1987, Gray and Reu-
ter 1993): (1) concurrency control protocols and (2) recovery protocols, outlined
below.

URN:NBN:no-2103

2.2. TRANSACTION MODEL 17

2.2.2. Concurrency control

The main purpose of concurrency control is to deal with anomalies that
arise when executing two or more transactions in parallel. It is reasonable to as-
sume that in a multiuser database system several transactions will be active si-
multaneously. Uncontrolled execution of these transactions is likely to cause
problems. Typical examples are dirty reads and lost updates (Gray and Reuter
1993), illustrated in Figure 2.1. Dirty reads occur when a transaction T1 reads
an object x previously written by another transaction T2 which later aborts.
With lost updates, a transaction T2 writes to an object x that is ignored by an-
other transaction T1, which writes to this object based on its original value.

To deal with these problems, traditional concurrency control protocols
are applied to ensure that concurrent executions of transactions have the same
effect on the database as some serial execution of the transactions. This is
known as serialisability (Bernstein et al. 1987). An execution is serial if and only
if for every pair of transactions, all the operations of one transaction are exe-
cuted in sequence before all the operations of the other.

2.2.2.1. Correctness criterion: the serialisability theory

Serialisable execution is necessary to satisfy the isolation property of
transactions. The idea behind serialisability is that if individual transactions
can be assumed consistent, serial execution of a set of transactions must be cor-
rect. Therefore, since each serialisable execution of concurrent transactions has
the same effect as one or another serial execution, such executions are correct.

There are two typical examples of serialisability; view serialisability and
conflict serialisability. An execution of a set of concurrent transactions is said to
be view serialisable if there exists a possible serial execution of the same set such

Figure 2.1 Examples of concurrency anomalies.

w: write r: read a: abort

Dirty read Lost update

T1

T2

T1

r1(x)

w2(x)

w1(x)

T1

T2

T1

w1(x)

r2(x)

a1

URN:NBN:no-2103

18 CHAPTER 2 BASIC TRANSACTION CONCEPTS

that each transaction reads the same values and the final values of all data
items in the database are the same.

Unfortunately, ensuring view serialisability has been proven to be an NP-
complete problem – i.e., a computationally infeasible problem (Papadimitriou
1979). This means that finding an efficient algorithm for view serialisability is
hard. For this reason, conflict serialisability, defined by means of conflicting op-
erations – i.e., read and write operations, has been developed. In general, two
operations are in conflict if they belong to two different transactions and the or-
der in which they are executed matters. This means that with read and write
operations of different transactions, two operations conflict if both of them are
on the same object and at least one is a write operation (Bernstein et al. 1987).
For example, for two transactions T1 and T2, write1(x) and read2(x), read1(x) and
write2(x), and write1(x) and write2(x) all conflict. Now, an execution is said to be
conflict serialisable if the order of each pair of conflicting operations is the same
as that in one or another serial execution. See Figure 2.2 for an illustration of
this. Note that any conflict serialisable execution is also view serialisable, but
not vice versa.

A simple way to verify that an execution is conflict serialisable is to use a
serialisation graph (Bernstein et al. 1987). This is a directed graph that is con-
structed based on the prevailing conflict dependencies among transactions. A
transaction Ti is said to depend on another transaction Tj if there is an opera-
tion of Ti that precedes and conflicts with another operation of Tj. Based on
this, the nodes of the serialisation graph are transactions, while the edges are
the dependencies. It has been shown that an execution is conflict serialisable iff
its serialisation graph does not contain any cycle (Bernstein et al. 1987). To il-

Figure 2.2 Illustration of a serialisable and a non-serialisable executions.

Serial Non-Serialisable Serialisable

T2

T3

T2

T1

T3

T3

T2

T2

T3

T1 w2(z)

w1(x)

w3(z)

w3(x)

r2(x)

w1(x)

w3(z)

w2(z)

w3(x)

r2(x)

T2

T2

T1

T3

T3

r2(x)

w2(z)

w1(x)

w3(x)

w3(z)

w: write r: readconflict dependency

URN:NBN:no-2103

2.2. TRANSACTION MODEL 19

lustrate this, the serialisation graphs for our examples in Figure 2.2 are de-
picted in Figure 2.3. The first execution is not serialisable as its serialisation
graph contains a cycle. Conversely, since the graph for the second execution
does not contain any cycles, it is serialisable.

2.2.2.2. Concurrency control protocols

There are several efficient concurrency control protocols that can ensure
serialisable executions. These can be classified as pessimistic and optimistic pro-
tocols. Pessimistic protocols require a transaction to ask for permission before it
can perform an operation. Locking protocols, such as 2-phase locking (2PL), are
in this category. Here, locks represent the permission to perform operations. In
the case of potential conflicts, a transaction requesting a lock will have to wait
until the conflicting lock is released. Otherwise, the lock request is granted. The
2PL requires a transaction to acquire all its locks before it releases any lock. It
may thus suffer from deadlocks since cyclic waits may occur – i.e., two or more
transactions wait for each other forever. Another drawback is long duration
blocking, that is likely to occur when transactions are long-running. A non-
locking pessimistic protocol that avoids deadlocks is timestamp ordering (Bern-
stein et al. 1987).

Another possible way to deal with both blocking and deadlocks is to al-
low transactions to perform their operations without requiring them to ask for
permission first. Instead, when they attempt to commit, the transactions are
validated to make sure that their executions are serialisable. If this fails, one or
more transactions will be forced to abort. Such protocols are called optimistic
protocols. The main drawback with this is that a lot of work could be thrown
away if the execution was not serialisable. For this reason, pessimistic protocols
are often preferred.

2.2.3. Recovery concepts

Recovery protocols are aimed at dealing with failure anomalies (Bernstein
et al. 1987, Gray and Reuter 1993). Thus, their primary purpose is to enforce the

Figure 2.3 The serialisation graphs for the executions in Figure 2.2.

T1 T2 T3

Serialisable

T1 T2 T3

Non-Serialisable
Cycle

URN:NBN:no-2103

20 CHAPTER 2 BASIC TRANSACTION CONCEPTS

atomicity and durability properties of transactions. Along this line, the under-
lying basic idea of the recovery protocols is that the DBMS has to make sure
that the database contains (1) all of the effects of committed transactions and (2)
none of the effects of aborted ones.

There are three typical categories of failures that recovery protocols must
handle (Bernstein et al. 1987, Gray and Reuter 1993):

1. Transaction failure. This type of failure occurs as a result of faults relat-
ing to a specific transaction, and does not involve any loss of storage.
Such faults imply that a specific transaction aborts. They are detected
and enforced by the transaction – such as finding wrong values when
accessing data items – or by the system – such as selecting the transac-
tion as a victim to resolve a deadlock. To handle transaction failures,
the DBMS executes undo actions (see Section 2.2.3.2).

2. System failure. This type of failure occurs due to loss of volatile storage
such as primary memory. It could be caused by power loss or the like.
System failures only affect the volatile storage, while data – e.g., the
system state – in non-volatile storage, such as disks, survives system
failures. To handle system failures, the DBMS must make sure (1) that
the effects of transactions that were in a committed state are incorpo-
rated into the database, and (2) that the effects of all active or aborted
transactions at the time of the system failure are wiped out from the
database. For this reason, the DBMS executes undo and redo actions
(again see Section 2.2.3.2).

3. Media failure. This type of failure occurs because of a loss of non-vola-
tile storage such as disk memory. It could be caused by disk head
crashes. It may result in a loss of the current database only or even the
whole database, including the current database and diverse logs (see
Section 2.2.3.2). Because of this, all transactions will be affected, and the
damage may in some cases be hard to repair. In this type of failure, the
DBMS executes redo actions.

2.2.3.1. Recoverability, cascading aborts and strictness

A primary requirement of recovery protocols is that concurrent execu-
tions of transactions must be recoverable in addition to being serialisable (Bern-
stein et al. 1987). An execution is recoverable if any transaction that reads
values written by a transaction T only commits after T has committed. In other
words, if T aborts, all transactions that have read values written/modified by T
must abort too. These aborts may in turn lead to abortions of other transactions

URN:NBN:no-2103

2.2. TRANSACTION MODEL 21

and so on. This phenomenon known as cascading aborts – i.e., abortion of T1 im-
plies the abortion of T2, then T3, etc.

The simplest way to avoid such a situation is to require transactions to
only read committed data. Thus, Tj may read values written by another trans-
action Ti only if Ti has committed. Otherwise, Tj must wait. Executions follow-
ing this rule are referred to as executions that avoid cascading aborts (Bernstein
et al. 1987).

This far, it suffices to restore the original value of an object, when the
transaction that has changed the object value aborts – i.e., restoring the before
image value. However, this could still cause problems if abortions appear after
two or more consecutive writes. This means that restoring the before image
may result in incorrect final values. For this reason, an additional restriction is
necessary. This requires transactions to only read or modify data written by
other transactions that have either committed or aborted. Executions satisfying
such a restriction are known as strict executions (Bernstein et al. 1987).

2.2.3.2. Undo and redo actions: logging

Recoverability, avoid cascading aborts and strictness only concern trans-
action failures. To handle system and media failures too, recovery protocols try
to make sure that the database system can be brought back to the most recent
state – i.e., the latest consistent state – it had before the failure occurred. For this
to be possible the protocols must address the usage of volatile buffers and dif-
ferent strategies to propagate updates to the permanent database.

A failure often causes the state of the system in volatile buffers to be lost,
while the state in the permanent database may survive. Recovery from such
failures can be accomplished by two basic actions (Bernstein et al. 1987):

(1) Undo action, eliminating the effects of updates on the database done by
a “failing” transaction. This action is needed for transaction failures and
system failures – i.e., due to the presence of uncommitted data in the
database.

(2) Redo action, reprocessing updates on the permanent database done by
a “successful” transaction. This action is needed for system failures and
media failures – i.e., due to the absence of committed data in the data-
base.

Bookkeeping must be performed to successfully use these actions. This is
kept in the database log in stable storage. The log keeps track of all transactions
that have committed and aborted, and all operations that have read and modi-

URN:NBN:no-2103

22 CHAPTER 2 BASIC TRANSACTION CONCEPTS

fied data objects in the database. Thus, the above actions, together with the log
are often used for a system to recover from system and media failures.

2.3. Transactions and advanced applications
The usefulness of transactions in multiuser environments is evident.

Transactions allow well-defined correctness criteria and efficient failure hand-
ling. Thus, they achieve consistent and reliable data management.

However, the increased use of transactions in non-traditional database
environments challenges the traditional transaction model. In particular, the
atomicity and isolation properties have two implications that are rather unde-
sirable in advanced applications. First, they limit cooperation. We recall that
data must be kept private or locked by a transaction until it is terminated.
Hence, other transactions will be forced to wait for this termination. This pre-
vents data from being freely exchanged among cooperating parties and made
accessible as soon as needed. A possible solution is to relax the isolation re-
quirement, thus allowing parties to share their intermediate results. Second, if
a transaction fails – due to a transaction failure, a system failure or a media fail-
ure – all work performed inside its context must be abolished. As a result, a lot
of invested effort could be wasted, although not directly influenced by the
causes of failure. Moreover, cascading aborts may occur if cooperation took
place with the transaction that has failed, and this is unacceptable. A possible
way around is to allow a transaction to abort its private work at a fine-grained
level, and to restart it without causing related but unaffected cooperating trans-
actions to suffer.

The main conclusion is that traditional ACID transactions are inappropri-
ate for advanced (cooperative) applications. For this reason, efforts in develop-
ing solutions to make use of the transaction concept in these applications have
gained an increasing relevance. Early work in extending the traditional trans-
action model kept all the ACID properties, but added a nesting structure to al-
low fine-grained recovery management and increased intra-transaction
concurrency (Moss 1982). Other approaches took advantage of semantic
knowledge of database operations (Korth 1983, Weihl 1988, Badrinath and
Ramamritham 1992) to reduce the probability of conflicts and hence to increase
the level of concurrency. However, they still do not provide adequate coopera-
tion support.

Newer efforts have attempted to find efficient ways to compromise on the
atomicity and isolation properties but at the same time preserve consistency
and durability properties (Elmagarmid 1992, Mohan 1994, Kaiser 1994). The

URN:NBN:no-2103

2.3. TRANSACTIONS AND ADVANCED APPLICATIONS 23

work presented in this thesis attempts to follow up these efforts, addressing
problems in modern environments, characterised by their dynamic and hetero-
geneous natures. Satisfactory solutions to these problems are still absent in ex-
isting transaction models. Chapter 4 further reviews existing transaction
models developed for advanced applications.

URN:NBN:no-2103

24 CHAPTER 2 BASIC TRANSACTION CONCEPTS

URN:NBN:no-2103

25

Chapter 3

Technological Overview

The goal of this chapter is to provide a background survey of the techno-
logical platforms underlying the realisation of the ideas of this thesis. First,
Section 3.1 gives an overview of computer supported cooperative work,
mainly focusing on groupware. It outlines the categories of existing groupware
applications through a set of existing classifications. Section 3.2 outlines the no-
tion of middleware, providing an overview of different middleware classes
and stating the relation of middleware to this work. Finally, Section 3.3 gives
an overview of agent technology, stating its role in the work presented in this
thesis.

3.1. Computer Supported Cooperative Work
Computer supported cooperative work – CSCW for short – has existed as

a research field since the early eighties. The CSCW acronym was coined by
Chasman and Greif as a theme of a workshop that they organised in 1984.
Their goal was to invite people from different fields, sharing interests in under-
standing how people work and the role of technology in their work environ-
ments. One of the main motivations for this initiative was the fact that the
technological aspect of approaches to group support, such as office automa-
tion, were no longer the only challenge. To provide satisfactory support, tech-
nologists needed to learn how people work in groups and organisations, and
how technology affects that (Grudin 1994).

Soon after its introduction, CSCW became a multi-disciplinary field, aim-
ing at examining how groups of people work and attempting to find a way to
provide appropriate technological (computer) support for the work process.
Although since its origin CSCW has been criticised for being too vague due to

URN:NBN:no-2103

26 CHAPTER 3 TECHNOLOGICAL OVERVIEW

its lack of clear focus (Schmidt and Bannon 1992), the field is now well estab-
lished, with annual international and European conferences – e.g., the ACM
CSCW and ECSCW conferences – and a variety of journals.

3.1.1. Groupware

Given the rapid evolution of computer technology, it is still necessary to
focus on the technical aspect of CSCW. The part that deals with CSCW applica-
tions is referred to as groupware (Grudin 1994). Thus, while CSCW is con-
cerned with the theoretical foundations and methodologies for teamwork and
its computer support, groupware is the software system supporting teamwork
and integrating theoretical foundations achieved by CSCW research (Borghoff
and Schlichter 2000). Early experiments with groupware applications have re-
sulted in various classes of tools. Examples of these typically include desktop
and video conferencing systems, collaborative authoring applications, elec-
tronic classrooms, and group support systems, among others.

3.1.1.1. Advantages of groupware systems

From a cooperative work perspective, the usefulness of groupware is evi-
dent. First, they facilitate communication by making it faster, clearer and more
persuasive. Second, they support communications where they would not oth-
erwise be possible. Third, groupware systems enable telecommuting and thus
cut down on travel costs. Fourth, since sharing is possible, they bring together
multiple perspectives and expertise, and form groups with common interests
where it otherwise would be impossible to gather a sufficient number of people
face-to-face. Finally, groupware systems make it possible to save time and costs
in coordinating group work and facilitating problem solving.

There are several groupware products that have attempted to exploit
these advantages. As yet, only a few have enjoyed the commercial success of
Lotus Notes1 (Notes for short), which now has more than 55 million users (Mo-
han et al. 2000). Notes is a groupware system consisting of several modules, in-
cluding a client-sever messaging system, calendaring, scheduling, high-level
workflow process definition, a ODBC driver for accessing external databases,
and conferencing facilities (Papows 1995). From the database perspective,
Notes provides an extensive support for semi-structured data, which also
allows the exchange and manipulation of unstructured information. It is also
one of the earliest groupware systems that have provided support for data rep-
lication. Further, Notes provides traditional transactional support with sophis-

1. Lotus Notes is a trade mark of the IBM Lotus Corporation.
See http://www.notes.net.

URN:NBN:no-2103

3.1. COMPUTER SUPPORTED COOPERATIVE WORK 27

ticated recovery management, using the ARIES log-based recovery methods
(Mohan and Narang 1994, Mohan et al. 2000). Notes provides database access
that can be characterised by high availability and a certain degree of resource
heterogeneity. Since cooperative transactional support is not emphasised in
Notes, it is in this sense different from the approach of CAGISTrans. Also the
scope of the present work is not developing a groupware, per se. Rather, the fo-
cus here is on the provision of the transactional support for the cooperative ac-
tivities. In a sense, such a support could be integrated in a groupware system.

3.1.1.2. Classification of groupware systems

The classification and characterisation of groupware systems or applica-
tions has been argued to be useful for the development of such groupware ap-
plications (Ellis et al. 1991, Grudin 1994). In particular, it can be used to identify
applications that pose common technical challenges – e.g., those dealing with
concurrent activities. Since the birth of groupware, there have been a variety of
classifications of groupware applications. One of the earliest, which is perhaps
the most familiar, is the time/space taxonomy (DeSanctis and Gallupe 1987).
This taxonomy classifies groupware applications into four classes according to
time – i.e., synchronous and asynchronous collaboration modes, and space – i.e.,
same and different geographic locations. This has since been extended by other
researchers to cover other dimensions of collaboration types. An example is
that proposed by Grudin (1994) depicted in Figure 3.1. He extended the origi-
nal taxonomy with an extra measure along each dimension indicating whether

Same

Different but
predictable

Different and
unpredictable

Same
Different but
predictable

Meeting
facilitation

Tele/video/
desktop

conferencing

Interactive
multicast
seminars

Team
rooms

Collaborative
writing

Workflow

Work
shifts

Electronic
mail

Computer
bulletin
boards

Different and
unpredictable

Time

P
la

ce

Figure 3.1 Grudin’s (1994) extended time/space groupware typology.

URN:NBN:no-2103

28 CHAPTER 3 TECHNOLOGICAL OVERVIEW

the modes and locations of the collaboration are predictable or unpredictable.
Activities can be carried out at different times that are highly predictable or
constrained. An example of this is sending e-mail to a colleague, where one
may expect him/her to read the message within a day or so (see middle col-
umn in Figure 3.1). Alternatively, activities can be performed at different times
that are unpredictable, as in open-ended collaborative writing projects (see
right-hand column in Figure 3.1).

Another extension based on the time/space matrix was proposed by Rod-
den (1991). In contrast to Grudin’s (1994) – i.e., instead of adding extra dimen-
sions, he presented an application level classification, identifying applications
having more than a fixed time or space characteristics. See Figure 3.2, a repro-
duction of (Rodden 1991), for an illustration. For example, people engaged in
activities involving the use of a multimedia conferencing systems may be co-
located or distributed – i.e., some people may be co-located while others are
distributed, and so on.

The time/space classification is incomplete by far. In fact, it has been crit-
icised by some researchers due to this incompleteness (Schmidt and Rodden
1996, Greenberg and Roseman 1998). In particular, the necessity of seamless
transition among the different dimensions is stressed. Teamwork often shifts
easily from being asynchronous to being synchronous, or from co-located to
distributed. Therefore, to successfully capture these changes, classifications
have to take into account the fact that groupware must deal with many types of
cooperative processes and modes, and facilitate seamless transition from one

Asynchronous
Co-authoring

and Argumentation

Meeting Rooms
Multimedia

Conferencing

Conferencing
System

Message
Systems

Real-Time
Conferencing

Synchronous

Co-located Remote

Location

In
te

ra
ct

io
n

Message Systems

Meeting Rooms

Conferencing

Key

Co-authoring

Figure 3.2 Rodden’s (1991) groupware classification.

URN:NBN:no-2103

3.1. COMPUTER SUPPORTED COOPERATIVE WORK 29

type of cooperation to another. To further emphasise this, Greenberg and Rose-
man (1998) claimed that many systems developed based on the time/space tax-
onomy may fail to cover all aspects of real-world cooperative work processes.

A classification by Ellis et al. (1991) seems interesting from this perspec-
tive. They proposed two classification dimensions that are continuous, and do
not consider an explicit distinction between synchronous and asynchronous
cooperation. Also they do not explicitly consider the locations of cooperating
individuals. As depicted in Figure 3.3, the two dimensions considered are com-
mon task, identifying the supported degree of task sharing, and shared environ-
ment, identifying provided information about the participants, the current state
of projects and the social atmosphere etc. (Ellis et al. 1991). As an example, a
timesharing system such as a traditional database lies at the low end of the
common task dimension. Although such a system supports several users per-
forming concurrent tasks, these tasks are mainly separate and independent. On
the other hand, the CSRS – collaborative software review system (Tjahjono
1996) allows a group of designers to evaluate a software module during a run-
time interaction and thus lying at the high end of the common task dimension.
Further, most electronic mail systems support the notion of common task, but
they do not support a shared environment, in the way that, for instance, elec-
tronic classroom systems (Shaw 1995) do.

Other classifications also exist. Examples are (Greenberg and Roseman
1998) and (Farshchian 2001). In Chapter 5, we will discuss cooperative work
characteristics that are relevant for the development of transaction models sup-
porting cooperative work.

3.1.2. CSCW related to this work

This work can be regarded as an intersection between database and
groupware. This means that the focus is on the technological aspect of coopera-
tive work. It also recognises the importance of understanding the way people

Figure 3.3 Groupware classification dimensions according to Ellis et al. (1991).

Common Task Dimension

Timesharing System Software Review System

HighLow

Shared Environment Dimension

Electronic Mail System Electronic Classroom System

HighLow

URN:NBN:no-2103

30 CHAPTER 3 TECHNOLOGICAL OVERVIEW

work in their environment. But, it is beyond the scope of this work to do a
study of this. Instead, the focus is on the way to make the developed system
flexible and adaptable enough to cover the widest possible situations and ap-
plication areas.

In general, the main emphasis of groupware systems is the notion of
“what you see is what I see” – WYSIWIS for short. This means that in addition
to sharing, an important issue that groupware systems have focused on is the
way to provide efficient infrastructures and user interfaces, making partici-
pants aware of other people and events that are relevant to their tasks (see
Figure 3.4a). The literature calls this awareness (Ellis et al. 1991, Gutwin et al.
1996, Greenberg and Roseman 1998, Farshchian 2001). From this perspective,
the underlying philosophy of groupware contradicts with that of traditional
database systems. Database systems strive to enforce isolation – cf., Chapter 2,
providing their users with the illusion of operating alone (see Figure 3.4b).
Thus, awareness is de-emphasised. Further, while most cooperative applica-
tions leave the control of concurrency to the collaborating individuals to find
out – though its importance has been advocated by some groupware research-
ers (Ellis et al. 1991, Greenberg and Marwood 1994) – database systems stress
the necessity of providing transparent system-based concurrency control
(Bernstein et al. 1987). The former may introduce anarchy. Thus, consistency of
resources cannot be guaranteed. By contrast, the latter – isolation – could be
just a burden since sharing is not possible. Bearing this in mind, the work in
this thesis is aimed at finding a way to bridge these gaps. This means finding
ways to provide “transparent walls” among users, allowing them to be aware
of others, and enabling the controlled sharing of resources among them (see
Figure 3.4c).

3.2. Middleware
Middleware is a notion that covers a very broad area of distributed com-

Object X Object Y Object Z

Shared repository

CAGISTrans

Object X Object Y Object Z

Shared repository

CSCW/Groupware

Object X Object Y Object Z

Shared repository

Database

(a) (b) (c)

Figure 3.4 Illustration of the multiuser support alternatives.

URN:NBN:no-2103

3.2. MIDDLEWARE 31

puting. Because of this, an exact formal definition is hard to find. Some define
middleware as a software component that connects two otherwise different ap-
plications1. Others view middleware as the component of distributed systems
that addresses the scalability issue by providing a distributed infrastructure
layer supporting applications.

3.2.1. Middleware classes

Despite the lack of exact definition, many agree that middleware is capa-
ble of dealing with the impact of problems related to the development of appli-
cations in heterogeneous environments. This is achieved by providing an
isolation layer of software that relieves application developers of handling
such heterogeneity themselves, by presenting their own enabling layer of APIs
– application programming interfaces. This layer decouples applications from
any dependencies on platform specific APIs. Hence, heterogeneity becomes
transparent to developers (Bernstein 1996, Spahni et al. 1998).

Five commonly known middleware categories are:

1. Remote Procedure Call (RPC) based middleware, providing interfaces
allowing applications to execute functions on a remote host in a trans-
parent way – i.e., as if these functions were local. RPC provides devel-
opers with the possibility to define their functions using an interface
definition language (IDL). Then these functions are compiled into cli-
ent and server stub code that does the networking. Examples of exist-
ing RPC products include the Sun Microsystems’ RPC2 and NobleNet’s
RPC3.

2. Message Oriented Middleware (MOM), offering a basic set of network
commands such as SEND and RECEIVE, to allow programs to send
and receive data to and from other programs in real time. MOM is
analogous to e-mail in the sense that it is asynchronous. It requires the
recipients of messages to interpret their contents and meaning, and
take suitable actions based on this interpretation. Examples of products
within this category include BEA’s MessageQ system4 and IBM’s
MQSeries5.

3. Distributed Transaction Processing (DTP) monitors, providing an environ-
ment for handling transactions over a network. DTP monitor systems

1. See http://webopedia.internet.com/TERM/m/middleware.html.
2. See http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1057.html.
3. See http://www.geibelpr.com/noblenet.htm.
4. See http://www.bea.com/products/messageq.
5. See http://www-4.ibm.com/software/ts/mqseries.

URN:NBN:no-2103

32 CHAPTER 3 TECHNOLOGICAL OVERVIEW

are often built on top of MOM and RPC technology, but also offer con-
trol and management functionality. Examples of existing DTP moni-
tors include Transarc’s Encina1 and BEA’s Tuxedo2.

4. Database Oriented Middleware (DOM), offering APIs to facilitate trans-
parent accesses to database systems. DOM systems often use widely
accepted APIs such as ODBC – open database connectivity – and JDBC
– Java database connectivity. Using ODBC or JDBC, applications access
remote data using structured query language (SQL). Several commer-
cial products are available supporting this API, including Oracle’s
SQL*Net3, Sybase’s Open Client4/Open Server5, among others.

5. Object Request Brokers (ORBs), enabling objects that comprise an appli-
cation to be distributed and shared across heterogeneous networks.
ORB systems provide interfaces that relieve application programmers
from having to create the links among objects and functions or other
APIs offered by other middleware solutions. Today, there are several
ORB specifications. Examples of these are OMG’s common object
request broker architecture – i.e., CORBA (Object Management Group
1998) and Microsoft’s object linking and embedding – i.e., OLE (Brock-
schmidt 1995). Examples of products supporting the ORB middleware
include IONA’s Orbix6 and Microsoft’s distributed component object
model DCOM7.

Refer to (Bernstein 1996) and (Spahni et al. 1998) for detailed treatment of
middleware systems.

3.2.2. Relation to this work

Several middleware properties are useful with respect to the develop-
ment of the CAGISTrans framework. Middleware may help us to deal with
many connectivity and interoperability problems. In this perspective, middle-
ware is used as an enabling technology to provide the architecture and tools
needed in the development of a CAGISTrans system. Our developed CAGIS-
Trans architecture is built on and extended from TP-monitor functionality –
supporting the specification and execution of transactions, database middle-

1. See http://www.transarc.com/Product/Txseries/Encina/Brochure2.0/encina.html.
2. See http://www.bea.com/products/tuxedo/index.shtml.
3. See http://www.oracle.co.uk/support/bulletins/net2.html.
4. See http://www.sybase.com/products/eaimiddleware/openclient.
5. See http://www.sybase.com/products/eaimiddleware/openserver.
6. See http://www.orbix.com/docs/orbix/orbix33.html.
7. See http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/

html/msdn_dcomtec.asp.

URN:NBN:no-2103

3.3. AGENT TECHNOLOGY 33

ware – supporting accesses to heterogeneous shared resource bases, and re-
mote method invocation – enabling accesses and execution of remote actions.

Using the middleware principle, this work attempts to address some of
the problems relating to the heterogeneous nature of cooperative environ-
ments. This includes the heterogeneity of resource management systems and
the diversity of application areas. Further discussion of our specific use of mid-
dleware is provided in Chapters 6, 8, and 9.

3.3. Agent Technology
Agent technology – hereafter called agents – has along with the growth of

the Web gained increasing attention from several research communities. De-
spite this, there is no commonly agreed definition of the term agent. A synthe-
sis of definitions frequently used would be that an agent is a software entity
that can autonomously perform delegated tasks, with or without communica-
tion with other entities, and by possibly moving from one host to another.

The following discusses the advantages of and challenges using agents in
the cooperative work context.

3.3.1. Advantages of agents

The motivation for using agents in cooperative work support is mainly to
address the distributed, heterogeneous and dynamic nature of cooperative
work.

Agents as (semi-) autonomous entities – making them able to adapt to
their environments – provide a suitable platform for the development of sys-
tems characterised by a high degree of distribution and openness. Agents are
inherently distributed, thus enabling decentralised control. This, in turn, facili-
tates management of changes in specification and performance of cooperative
tasks. Agents can also – thanks to their “social ability” – i.e., their ability to
communicate and interact with other entities – handle sophisticated interac-
tions with other partners. This feature, combined with their autonomous be-
haviour, makes it possible to provide high level support to users, both with
respect to heterogeneity and the dynamic nature of cooperative environments.

Moreover, the mobility aspect of agents is useful when considering dis-
tributed environments. Mobility can be exploited mainly to reduce the commu-
nication cost (Harrison et al. 1995, Kiniry and Zimmerman 1997, Wong et al.
1999). First, because mobile agents can be transported from one host to another,
the number of remote interactions can be reduced by bringing two entities that

URN:NBN:no-2103

34 CHAPTER 3 TECHNOLOGICAL OVERVIEW

frequently interact with each other to the same location. Second, agent mobility
provides an efficient, asynchronous method for attaining information and serv-
ices in rapidly evolving networks such as the Web. As a result, we can achieve
a minimised amount of message interchanges and simplify the necessary dis-
tribution of computation.

Bradshaw (1997) uses agents to further simplify the complexity of distrib-
uted computing. The author suggests that this can be achieved by developing
and providing agent-to-agent interfaces that are more sophisticated and uni-
form than the heterogeneous, traditional (possibly proprietary) program-to-
program interfaces. From this perspective, the role of agents could be a means
to overcome the limitations imposed by factors, such as the lack of interopera-
bility among existing programs. In cooperative environments, this would allow
the co-existence of several computing systems, each equipped with a generic
agent interface, thus making it easier to perform distributed cooperative activi-
ties in heterogeneous environments (Bradshaw 1997). This also implies that the
communication between cooperating systems would be performed at the agent
level.

Another aspect is to exploit agents as a means to reduce the amount of in-
teraction between humans and the computer system, thus allowing humans to
concentrate on the actual work to be done rather than investing effort in doing
“slave work” such as collecting, sorting and filtering information.

To summarise, the properties of agents such as autonomy, social ability,
mobility, decentralised control and, to some extent, autonomous behaviour
make agents well-suited for use in cooperative work. From a systems develop-
ment point of view, exploiting these features may meet many of the challenges
that arise due to the distributed, heterogeneous, and dynamic nature of cooper-
ative environments.

3.3.2. Challenges with agents

Although the beneficial features of agents may be many, there are con-
cerns that have to be considered.

Agents have been widely used for providing specific services such as
message filtering and information retrieval. As yet, however, there are not
many cooperative systems that fully exploit the autonomy of agents. The rea-
son is probably that there are risks connected to the use of agents as they are
utilised in Artificial Intelligence (AI). In particular, there is a chance that users
might get the feeling of “losing” control. The more one builds intelligent sup-
port, the more one increases the risk that users will lose the whole picture of

URN:NBN:no-2103

3.3. AGENT TECHNOLOGY 35

what is going on. This is dangerous as the technology may still be too imma-
ture to fully deal with the dynamic nature of any working environment. There-
fore, the trend is rather to use agents to assist humans with their work.

Further, we stress the necessity of providing support for handling interac-
tions among agents. In particular, there is a need to provide a flexible mecha-
nisms to manage and control the sharing of resources. This is based on the
observation that agents mainly cooperate by means of sharing of resources and
information. Thus, failing to address this may lead to conflicts and data incon-
sistency – i.e., loss of integrity.

In summary, the challenges of using agents in cooperative work mainly
concern the way the properties of agents are to be exploited. Users that have
highly autonomous and intelligent agents acting on their behalf might get a
feeling of losing control. However, one of the key lessons learned in the AI
community over the years is that even a little “intelligence” may, to some ex-
tent, help (Wooldridge and Jennings 1998). For example, even an agent keeping
the user informed of which documents have been changed or updated would
be potentially useful. Consequently, using highly “intelligent” agents in CSCW
might pose problems, but implementing a certain degree of “intelligence” and
autonomy with agents could be useful.

3.3.3. Agents and this work

The use of agents in this work concerns their mobility and cooperative as-
pects. Here, agents are primarily used as an implementation infrastructure.
Further, due to the increased application of agents as user assistants in cooper-
ative activities, we address the need of support to allow user agents to access
necessary resources through a CAGISTrans system. Other reasons are illumi-
nated in Chapter 10, concerning the integration into the CAGIS environment.

Existing agent system alternatives are many. The following surveys some
of those relevant for this work.

• Aglets framework (Lange and Oshima 1998), initially developed by IBM
Research Laboratory in Japan, and now maintained by the Open Source
Community1. Essentially, aglets provide support for executing Java2

programs and enable them to move in a network from one host to
another host. An aglet can execute its code on a host, suspend this exe-
cution, and migrate to another remote host then start execution again.
An aglet can communicate with another aglet, and in this way they may

1. See http://www.aglets.org.
2. Java is a trade mark of Sun Microsystems. See http://java.sun.com.

URN:NBN:no-2103

36 CHAPTER 3 TECHNOLOGICAL OVERVIEW

cooperate to achieve a goal. An aglet carries its state along with it when
moving around, and it is able to move in the network following some
specified path.

• Voyager (ObjectSpace Inc. 1997), developed by ObjectSpace as a product
family consisting of an application server, an ORB, diverse service
extensions (e.g. transaction service, etc.), predefined applets, and a set
of algorithm libraries (so-called JGL Libraries). Voyager provides the
support for mobile agents through the ORB, through which objects can
travel from one host to another. It has an advanced messaging system
that can track agents around the network, and forward messages onto
them via secretary objects. It also supports remote invocation of agents
and applications.

• Mole agents (Straßer et al. 1997), developed in the Mole project at the
University of Stuttgart (Germany), similar to aglets. Mole provides pol-
icies for resource management, to allow charging for service and
resource control. It differs from aglets in that it has a predefined
resource management mechanism. In addition, mole supports an event
service that can notify mobile agents.

• Grasshopper (Breugst et al. 1998), developed by IKV++, Germany to ena-
ble the user to create a number of applications based on agent technol-
ogy. Grasshopper allows users to create agent applications enabling
electronic commerce applications, dynamic information retrieval sys-
tems, advanced telecommunication services, and mobile computing
systems. Grasshopper is implemented entirely in Java and based on
CORBA. Thus, it allows a smooth integration of new technologies with
legacy systems, and enables the use of both agents and client/server
computing in one application.

The above overview illustrates the diversity of existing agent platforms.
The choice of an implementation infrastructure for a CAGISTrans system was
done based on ease of use, extensibility and modularity. In this respect, aglets
were found the most appropriate platform. It provides us enough program-
ming freedom without forcing us to follow specific design patterns, and at the
same time allows us exploit its extensibility. Further discussion on the relevant
features of aglets is provided in Section 9.1.

URN:NBN:no-2103

37

Chapter 4

State-of-the-Art Survey

4.1. Introduction
As initially pointed out, although traditional ACID (normally flat) trans-

actions provide well-defined correctness criteria through serialisability (Bern-
stein et al. 1987) and efficient support for failure and exception handling
through recoverability (Bernstein et al. 1987), they seem inappropriate for ad-
vanced applications (see Section 2.3). This has resulted in a call for more ad-
vanced and flexible transaction models. Since the early nineties, there has been
an enormous effort in the attempts to develop such models. This chapter gives
a review of some selected models. They were primarily chosen based on their
relevance to this research, and to illustrate the diversity of existing solutions.

Existing transaction models can be divided into three main categories:

1. Classical advanced transaction models, primarily aimed at improving the
ACID model to handle advanced applications, also called extended
transaction models (ETMs).

2. Newer transaction models, particularly aimed at providing support for
cooperative work, also called cooperative transaction models.

3. Customisable transaction models, especially aimed at tailoring transaction
models to handle diverse situations.

These three categories will be covered in Sections 4.2, 4.3 and 4.4 respec-
tively.

URN:NBN:no-2103

38 CHAPTER 4 STATE-OF-THE-ART SURVEY

4.2. Classical advanced models
While database transactions have traditionally been mainly intended for

business applications such as banking and the like, they have increasingly be-
come relevant for more advanced applications such as CAD/CAM and design
for manufacturing. In the course of the last decades or so, several extended
transaction models have therefore been suggested and developed to improve
the ACID model. The goal was to increase the application areas of transactions.
Some of these are treated and reviewed in (Barghouti and Kaiser 1991, El-
magarmid 1992, Mohan 1994, Kaiser 1994). This section presents the models
that have provided foundations towards unified support for advanced and co-
operative work. These are Nested transaction model (Moss 1982), providing a ba-
sis for modular modelling of transactions, Sagas (Garcia-Molina and Salem
1987), providing a basis for transaction compensations, which were further ex-
ploited in Open nested and multilevel transaction model (Weikum and Schek 1992),
a generalisation of Moss’ nested transaction model, Cooperative transaction hier-
archy (Nodine and Zdonik 1992), providing the idea of cooperative transactions
using user-defined correctness criteria, and Split and join transaction models
(Kaiser and Pu 1992), providing the idea of dynamic restructuring of transac-
tions – outlined below.

4.2.1. Nested Transaction model

The nested transaction model was introduced by Moss (1982) to extend
the flat transaction by splitting transactions hierarchically into several sub-
transactions (see Figure 4.1 for an illustration). A child transaction may start af-
ter its parent has started, and may commit locally. The committed local results
are, however, released only when all of its parents up to the root have success-
fully terminated (Moss 1982). A parent transaction, on the other hand, may ter-
minate only when all of its children have terminated, and it may execute
another alternative transaction if a child fails. Note, however, that if this parent
aborts, all of its children must also rollback, independently of their current
state.

T1.1 T1.2 T4.1 T4.2

T1 T2 T3 T4

T0 Root transaction

Sub-transactions

Figure 4.1 Illustration of the nested transaction model.

URN:NBN:no-2103

4.2. CLASSICAL ADVANCED MODELS 39

The nested transaction does not address cooperation since full isolation is
required. However, it allows increased modularity, more concurrency and
finer recovery granularity than the traditional flat transaction. Several sub-
transactions can be executed simultaneously, and a subtransaction can abort
without necessarily leading to the abortion of siblings.

4.2.2. Sagas

The Sagas model was introduced by Garcia-Molina and Salem (1987) pri-
marily to deal with long transactions, by using the concept of compensating
transactions. A Saga is a transaction that consists of a sequence of several ACID
(sub-) transactions and associated compensating transactions. Each sub-trans-
action is allowed to commit individually. A compensating transaction is then
used to explicitly undo its effect if the whole Saga transaction has to abort (Gar-
cia-Molina and Salem 1987). Finally, a Saga can terminate only when all of its
sub-transactions including any compensating sub-transactions have run suc-
cessfully. This is illustrated in Figure 4.2.

By allowing sub-transactions to commit, thus revealing their partial re-
sult(s), Sagas relax the full isolation requirement. This means that some degree
of cooperation is permitted. However, the main drawback of the concept is that
it is not fully implemented (Mohan 1994). This means that it is difficult to pro-
vide a complete evaluation of its performance and usefulness. Nevertheless,
the idea has been used to implement other models. More specifically, the idea
underlying compensating transactions has a lot of potential.

4.2.3. Open nested transaction and multilevel transaction models

Open nested and its specialisation multilevel transaction models were
both proposed by Weikum and Schek (1992). They were suggested to improve
the nested transaction model, by allowing sub-transactions to issue final com-
mit and by using compensation as in Sagas to further enhance inter-transaction
parallelism. As in the nested transaction model, they are both tree-based ap-

Unsuccessful execution: tl aborts

t1 t2 t3 tl

ct1 ct2 ct3 ctl

...
...

t1 t2 t3 tn...

ct1 ct2 ct3 ctn

Successful execution

Figure 4.2 Illustration of execution of Saga transactions.

URN:NBN:no-2103

40 CHAPTER 4 STATE-OF-THE-ART SURVEY

proaches, but the tree for the multilevel model is balanced (see Figure 4.3). This
means that all leaf nodes in the tree are at the same level. Nodes in the multi-
level transaction tree correspond to executions of specific operations at particu-
lar levels of abstraction. Ergo, all transaction trees have the same height
(Weikum and Schek 1992).

With both the open nested and the multilevel transaction models, all in-
stantiated sub-transactions do not need to run successfully for the transaction
to terminate. This means that the atomicity property is compromised, thus al-
lowing flexibility. They also permit a higher degree of cooperation than the
previous nested transaction model by relaxing isolation. Both models allow
running transactions to reveal their partial results to other concurrent transac-
tions. However, these partial results can be used by operations that commute
only (Weikum and Schek 1992). This is managed by using semantic-based con-
currency control (Weihl 1988). The main drawback of both models is that both
stick to serialisability as their correctness criterion, making full flexible sharing
of tentative data impossible. Finally, the implementation of the model is, to the
present author’s knowledge, still limited.

4.2.4. Cooperative Transaction Hierarchy

Cooperative transaction hierarchy is a transaction model proposed by
Nodine and Zdonik (1992) for design environments. It is like the nested trans-
action model, a tree-based approach. In this case, the tree is organised into
three main levels (see Figure 4.4): a root, one or more transaction groups (TG)
and several cooperative transactions (CT). The cooperative transactions corre-
spond to the leaf nodes, which are grouped into transaction groups. They are
each associated with a designer in the environment and can, within a transac-
tion group, cooperate on some task. The cooperative transaction hierarchy
model does not apply serialisability as the correctness criterion (Nodine and
Zdonik 1992). Instead, it uses user-defined criteria. More specifically, these are
patterns and conflicts – specified for each transaction group. Here, patterns are a
set of rules for how operations can be interleaved, whereas conflicts are a set of
rules that specify which operations are not allowed to run concurrently. Both

T2

T1 T4 T5

T3 T6 T7

Level 0

Level 1

Figure 4.3 Illustration of the multi-level transaction model.

URN:NBN:no-2103

4.2. CLASSICAL ADVANCED MODELS 41

patterns and conflicts can be tailored to the needs of the application.

Although cooperative transaction hierarchy addresses cooperation, its
main weakness is the need to define both patterns and conflicts in advance. Be-
cause of this, all sets of operations must be known a priori, which limits the use
of the model to applications with a well-defined work structure.

4.2.5. Split and Join Transaction model

The split and join transaction model was proposed by Keiser and Pu
(1992). Its main goal is to provide transactions with the ability to share re-
sources by allowing dynamic restructuring of running transactions. It was orig-
inally developed for activities with uncertain duration, unpredictable
developments, and interaction with other activities. The principle is basically to
split a running transaction into two or more transactions and later join transac-
tions by merging their resources (Kaiser and Pu 1992) – as illustrated in
Figure 4.5.

Thus, the model addresses cooperation among users by allowing the
transfer of resources from one transaction to other transactions. Further, it in-
troduces an adaptive recovery mechanism which allows part of the work done
to be recoverable, and a committing transaction may release parts of its re-

Root

TG1

TG1.1 TG1.2 TG1.3

TG: Transaction Group

CT: Cooperative transaction

CT1.1.1 CT1.1..2 CT1.1.3 CT1.2.1 CT1.2.2 CT1.2.3 CT1.3.1 CT1.3.2 CT1.3.3 CT1.3.4

Figure 4.4 Illustration of the cooperative transaction hierarchies.

TD
TB

TC

Join

TA

TB

TC

Split

Split

Join

Figure 4.5 Illustration of the principle of split and joining transactions.

URN:NBN:no-2103

42 CHAPTER 4 STATE-OF-THE-ART SURVEY

sources. The main drawbacks are the emerging complex merging mechanisms.
Moreover, the transactions resulting from the split command still have to obey
a serialisability criterion. This implies that the two transactions still must be
seen as two isolated transactions while running, thus prohibiting explicit coop-
eration among transactions.

4.3. Newer transaction models
The classical advanced transaction models do not cover all aspects of col-

laboration. In the past few years, researchers have therefore tried to develop
transaction models and frameworks that further improve the support for coop-
erative work. This effort can be divided into two categories. The first category
consists of developments based on cooperative work requirements, focusing
on the CSCW perspective: Coo (Godart 1993, Godart et al. 1996), EPOS (Con-
radi et al. 1997) and TransCoop/Coact (de By et al. 1998, Wäsch 1999). The sec-
ond category are those developed based on extensions of existing database
fundamentals (e.g. locking protocols and timestamp ordering): Relative Serialis-
ability (Agrawal et al. 1995) and New Timestamp Ordering (Zhang et al. 1999) -
outlined below.

4.3.1. Coo

Coo is a research project aiming to develop a framework to support coop-
eration between software developers, by encapsulating software processes into
long and cooperative transactions (Godart 1993). The transaction model was
developed based on software development processes requirements. A new
model with relaxed atomicity and relaxed isolation was suggested.

In Coo, relaxing the atomicity is achieved by allowing long transactions to
save their intermediate results adopting the principles of partial rollback and
savepoints from traditional transaction models (Fussell et al. 1981, Gray et al.
1981), thus minimizing losses in the case of crashes. Relaxed isolation allows
several software processes to access these intermediate results without violat-
ing the correctness criterion.

Intermediate results are managed by applying three different object sta-
bility levels. These are stable, semi-stable, and unstable. An object is stable when
it is fully consistent. This means that stable objects are those that all processes
view as correct, specified in the correctness criteria. Semi-stable objects are
those some specific processes may generate as tentative data, and can be seen
as “consistent enough”, but may violate some of the correctness criteria. For
this reason, access to such objects is restricted to processes that satisfy specific
semantic rules and integration constraints which are called safety constraints

URN:NBN:no-2103

4.3. NEWER TRANSACTION MODELS 43

and vivacity constraints in the literature (Godart 1993). Finally, unstable objects
are those that do not satisfy the correctness criterion at all, and are currently
locked by some processes. It is inaccessible until it becomes stable or semi-sta-
ble.

The three types of objects are stored in different databases, which are
managed through the use of check-in/check-out operations – as illustrated in
Figure 4.6. The double arrows show which databases contain which object
types. As depicted in Figure 4.6, Coo provides two types of shared object bases
in addition to private databases. The first base is a public object base which
contains all stable objects. The second base is a scratch pad for software proc-
esses containing semi-stable objects. Data are exchanged between private and
shared databases using the standard check-in and check-out operations. In addi-
tion, there are two other operations: upward-commit and refresh. The former is
used by a process to make its intermediate results available to other processes
in its scratch pad. The latter can be issued when these intermediate results have
been modified.

Coo introduces a formal framework. However, its use of perhaps too for-
mal temporal logic may impose difficulties in practical implementations. Nev-
ertheless, a working prototype is provided. Coo was specifically developed for
software development processes. Correctness constraints and management of
activities are tailor-made to suit such a type of cooperation. Moreover, the data-
base system in Coo is developed specifically for this model. As a result, some
aspects of cooperation, such as dynamic processes and heterogeneous resource
bases or applications, may not be well supported. However, the idea of using
three degrees of stability is useful on the way towards more flexible support for

Public object "Scratch pads"

Shared Database

Private Database

Stable Object
Semi-stable Object

Unstable Object

check-out

check-in

upward-commitrefresh

Figure 4.6 Relation between object consistencies and database types.

URN:NBN:no-2103

44 CHAPTER 4 STATE-OF-THE-ART SURVEY

cooperative work than with the classical advanced transaction models.

4.3.2. EPOS

EPOS (Conradi et al. 1997, Wang et al. 1998) was a research project at the
Norwegian University of Science and Technology to develop a framework for
quality assured software engineering. To support different software engineers,
a database called EPOS-DB was designed to manage resources produced in the
development process. For consistent access to the database, a flexible transac-
tion model was proposed. This is another extension of the standard ACID
transaction model to support cooperation between co-workers in a Software
Engineering Environment (SEE). It shares some of the ideas of Coo in the sense
that it is based on the use of workspaces (both private and common work-
spaces). The transaction model also uses check-in/check-out operation for in-
teraction through/with the workspaces. As in Coo, Conradi et al. (1997)
assumed that transactions for software development are generally long-lived.
The use of transactions with nested structures, used in private and shared
workspaces, was therefore suggested. In this view, the check-in/check-out
model in EPOS also shares the basic ideas of Kim et al. (1984) and Bancilhon et
al. (1985). However, EPOS has extended these by integrating the concepts with
the software process technology and process modelling (Wang et al. 1998).
Figure 4.7 illustrates this structure for a parent transaction T with N children Ti.

To deal with concurrency, EPOS uses locks to regulate access to a shared
workspace. Awareness support is also provided to allow users to know about
events that may affect their work. Correctness of execution is achieved by ap-
plying awareness mechanisms to help handling access conflicts. This means
that notifications will be sent out to all involved parts to warn about potential
conflicts. In this case, serialisability is not applied.

Figure 4.7 Illustration of a workspace with nesting structure in EPOS.

Data object

Shared Database

Private Database

T1

T

T2

T3

check-in

check-out

URN:NBN:no-2103

4.3. NEWER TRANSACTION MODELS 45

The EPOS transaction model shares many of the assumptions underlying
Coo. It presents a useful framework that allows co-workers in an SEE to coop-
erate with a high degree of flexibility. The requirements for the transaction
model were mainly derived from those applied in software development. Be-
cause of its flexibility, EPOS can be used to support other types of applications.
However, the framework does not provide explicit guidelines for how this can
be used effectively. This is left to the users to figure out. Nevertheless, a proto-
type implementing the basic ideas of EPOS has been developed.

4.3.3. TransCoop/CoAct

TransCoop was an ESPRIT basic research project involving research
groups from GMD-IPSI (Germany), the University of Twente (The Nether-
lands) and VTT Information Technology (Finland) (de By et al. 1998, Wäsch
1999). The goal of the project was to develop a transaction model and a specifi-
cation language to enable effective information sharing. In this presentation,
we will consider the TransCoop transaction model only. The transaction model
was called CoAct and was developed based on an extension of existing ad-
vanced transaction models. Their motivation was to overcome the limitations
imposed by the use of a standard ACID model. The requirements for the trans-
action model were defined by using four application scenarios such as

• cooperative authoring, being based mainly on ad-hoc processes,

• software engineering, being characterised by semi-structured processes,

• design for manufacturing, being characterised by structured activities and

• workflow, focusing mainly on automated business processes.

Like other researchers in the field, they advocated the need for both re-
laxed atomicity and relaxed isolation. In addition, the model should allow us-
ers to explore several alternatives to solve a problem and to revise erroneous
actions (retraction of decision). Moreover, it should provide support for man-
agement of alternative versions of data objects (private and shared data). Fi-
nally, the transaction model should allow the use of execution constraints to
coordinate individual and joint work.

Basically, the ideas of CoAct were built on classical advanced transac-
tions, such as those described in the previous section. These are compensation
and semantic-based concurrency control from the open nested and multi-level
transaction models, and resource exchange from the split and join transaction
model. Further, they adopted the basic idea underlying delegation in ACTA (see
Section 4.4.1). They then extended the Check-In/Check-out, versioning and

URN:NBN:no-2103

46 CHAPTER 4 STATE-OF-THE-ART SURVEY

workspace models with sophisticated history merging mechanisms.

Figure 4.8 illustrates how different workspaces are used in CoAct. It is
worth noting that, in CoAct, exchange of operations among transactions associ-
ated with specific workspaces is applied instead of explicit exchange of data
among workspaces – e.g., as in Coo and EPOS. Correctness of interactions is
checked by validating the history produced after each exchange (delegation,
import or merging).

TransCoop/CoAct is one of the models that has attempted to cover the
broadest application area. They based their approach on four application sce-
narios that cover both structured and ad-hoc activities. Moreover, formal foun-
dations based on provable mathematical formalismes are provided. This
implies that the approach can be formally validated. However, the merging
mechanisms introduced in the model may impose some complexity, which af-
fects the overall manageability of the system. The available prototype proves
its applicability in co-authoring applications.

4.3.4. Relative serialisability- RSR

Agrawal et al. (1995) suggested a new database approach to manage con-
current activities in collaborative environments. Their work was inspired both
by the attempts by database researchers to relax the requirements of atomicity
and isolation, and by the proposals by software engineering and design envi-
ronments. Their main goal was therefore to develop a transaction model by
merging flexible transaction models from collaborative environments and se-

Delegate/Import

Merge/
delegate

Private Workspace

Common Workspace

Private Workspace

Figure 4.8 TransCoop workspaces and exchange operations.

URN:NBN:no-2103

4.3. NEWER TRANSACTION MODELS 47

mantic based correctness criteria.

The relative serialisability (RSR) model is built on the notion of relative at-
omicity originated from (Lynch 1983). Their idea is to specify relative atomici-
ties of co-actions1 to relax the traditional atomicity property – i.e., absolute
atomicity. It determines how a co-action can be interleaved relative to other co-
actions without breaking the pre-defined consistency requirement for the ac-
tual collaborative activity (Agrawal et al. 1995). So, before a collaborative activ-
ity takes place, a collaboration channel must be established. Then, by connecting
to this channel, different transactions may cooperate on the same data objects
following the relative atomicity specifications. Correctness of execution is
checked against the so-called relative serialisability (RSR) correctness criterion, a
more relaxed criterion than traditional (conflict) serialisability (SR). Thus, the
underlying assumption is that any execution obeying the RSR criterion would
preserve the consistency of the database even if it is not serialisable.

Figure 4.9 illustrates how different transactions can specify their atomic-
ity relative to other transactions, and how this specification can be used to ver-
ify the relative serialisable executions of concurrent transactions. Here, the

1. A co-action is a sequence of read and write operations executed on data objects.

Not allowed
w: write
r: read

Consider a set of transactions T = { T1, T2, T3}, where
T1 = r1(x) w1(x)r1(z)
T2 = w2(y)
T3 = r3(y) w3(z)

Relative atomicity specification for T – i.e., Atomicity(Ti, Tj):

r1(z)S2 = w3(z)

w1(x) r1(z)w2(y)S1 = r3(y) r1(x) w3(z)

w1(x)

w2(y)

r3(y) w3(z)

w2(y)

w3(z)r3(y)

T2T1 T3

T2

T1

T3

r1(x) w1(x) r1(z) r1(x) w1(x) r1(z)

w2(y) r3(y) r1(x)

Figure 4.9 Illustration of the use of the relative serialisability criterion.

URN:NBN:no-2103

48 CHAPTER 4 STATE-OF-THE-ART SURVEY

relative atomicity is denoted by Atomicity(Ti, Tj). It is defined based on the no-
tion of atomic unit. An atomic unit of a transaction Ti relative to another transac-
tion Tj is a sequence of Ti’s operations within which no operations of Tj are
allowed to be executed. This means that Atomicity(Ti, Tj) consists of all atomic
units of Ti relative to Tj.

In our example, we consider a set T consisting of three transactions T1, T2,
and T3. As depicted in Figure 4.9, the relative atomicity relation Atomicity(T1,
T2)=à[r1(x)w1(x)], [r1(z)]ð means that T2’s operations may appear between
[r1(x)w1(x)] and [r1(z)], but must not be interleaved within [r1(x)w1(x)]. Atomic-
ity(T3, T1)=à[r3(y)],[w3(y)]ð means that T1’s operations may appear between
[r3(y)] and [w3(y)], before [r3(y)] and after [w3(y)]. With respect to the relative
atomicity specifications in Figure 4.9, execution S1 is correct since it does not
contain any illegal interleavings. By contrast, according to Atomicity(T1, T2) the
three last operations in S2 are illegal. Ergo, S2 is not correct.

To guarantee the relative serialisable execution of co-actions, a new lock
protocol is suggested. It extends the standard 2-phase lock protocol (2PL)
(Bernstein et al. 1987) by introducing the notions of push-forward and push-back-
ward locks. To handle conflicts, both such locks have to be acquired before an
involving operation sets a normal lock. A push-forward lock causes any con-
flicting operation to be delayed until the last operation of the actual atomic unit
with which it conflicts is run, whereas a pull-backward lock is used to move
operations backward before the start of an atomic unit. Acquiring push-for-
ward and pull backward locks is only possible if the cause of pulling or push-
ing operations does not change their effects.

The relative serialisability model is based on formal foundations. It ex-
tends traditional databases with a more flexible correctness criterion to support
collaboration. A typical application area is design environments. However, to
be able to specify relative atomicity, one must know the complete sets of opera-
tions before the involved transactions can be executed. This implies that dy-
namic applications are not well supported because new operations may not be
introduced once transactions are in progress – i.e., transactions may not be ad-
justed dynamically. Also, from the illustration above, we can see that the “cross
product” of semantic information must be provided. This means that each
transaction that wishes to relax atomicity must first analyse any other poten-
tially existing transactions in order to create atomicity specifications. Although
the algorithm for guaranteeing correctness here does not necessarily create any
major difficulties, the space complexity of creating the atomicity specifications
could put a severe limitation on the usability of the RSR approach.

URN:NBN:no-2103

4.3. NEWER TRANSACTION MODELS 49

4.3.5. New timestamp ordering

Zhang et al. (1999) suggest a new timestamp ordering (NTO) approach
that allows both traditional short transactions and long cooperative transac-
tions to be run within the same system. Their method is in the same category as
that of Agrawal et al. (see Section 4.3.4) in the sense that they also use database
concepts as a starting point for their approach.

The main idea with this new timestamp ordering is to facilitate the co-
existence of long, cooperative transactions and traditional, short transactions.
Fundamental to the NTO model is that conflicts between operations of cooper-
ative transactions and traditional (ACID) transactions should not crash the co-
operative ones. This means that although two operations – like a read operation
of a cooperative transaction and a write operation of a traditional transaction –
conflict, the cooperative transaction will not need to abort (see examples be-
low). Rather, it is assigned a new virtual timestamp, allowing it to incorporate
the recent updates into its own processing, and both transactions may proceed
as normal. By enabling this, it has been shown that by still using the traditional
timestamp ordering (Bernstein et al. 1987) on all involved short transactions,
the serialisability among these short transactions can be preserved. However,
for the long cooperative transactions, the NTO scheme puts high priority on
the last read or write conflicts in developing the correctness criteria. Although
this implies that these transactions may not satisfy the serialisability criterion,
correctness of the final result can still be achieved, by fulfilling a relaxed serial-
isability criterion called final conflict serialisability (Zhang et al. 1999).

Figure 4.10 illustrates how a long cooperative transaction T is run to-
gether with several short transactions, and how the suggested timestamp or-
dering approach handles conflicts. Let t(T) be the timestamp of the transaction
T. The following are examples of the different situations that may occur:

(1) T reads a value A – i.e., r(A) – that later is updated by T1 – i.e., w1(A) –

before it commits. This means that r(A) < w1(A). T1 has started before T

and therefore it has a smaller timestamp than T – i.e., t(T1)<t(T). With

traditional TO, T1 would have to abort and restart with a larger time-

stamp. Instead, the scheduler partially rolls back T and lets it re-run
the read operation r(A). No new timestamp is needed since t(T1) is

already smaller than t(T).

(2) T tries to read a value B written by T2 after T2 has committed – i.e., we

now have w2(B) < r(B). Since t(T) <t(T2), traditionally we should abort

URN:NBN:no-2103

50 CHAPTER 4 STATE-OF-THE-ART SURVEY

T. Instead, T is assigned a new timestamp larger than T2 and T may

proceed.

(3) Now, T3 updates C, which T reads before T3 aborts – i.e., we now have

w3(C) r(C) a3. If T3 had committed, we would have to assign T a new

timestamp as in (2) before it could proceed. However, since T3 aborts,

r(C) is “a dirty read” and the scheduler has to partially roll back T so
that the read can be re-run. In this case, due to T3‘s abort, no new

timestamp is needed.

(4) T has read a value that T4 later updates and then commits – i.e., we

now have r(C) < w4(C). Since the newest timestamp for T is still smaller
than for T4 – i.e., t(T) <t(T4), T must incorporate T4’s changes as in (1)

and acquire a new timestamp as in (2). Note, if t(T4) <t(T), this case

would be the same as (1).

(5) We have a conflict between r(E) and w5(E), and this occurs before T5

aborts – i.e., we now have w5(E) r(E) a5. Here, since T5 aborts, r(E)

becomes “a dirty read”. Therefore, T has to partially roll back, and re-
run r(E). Note, because of the new timestamp of T from (4), we now
have t(T5)<t(T). If not, this case would be similar to (3).

Following the final conflict serialisability principle with the NTO scheme,
these five cases cover all conflict situations that may occur – in addition to
those covered by traditional timestamp ordering (TO), and the corresponding

t(T5)

w5(E) a5

t(T4)

w4(D) c4

t(T1)

w1(A) c1

t(T2)

w2(B) c2

t(T3)

w3(C) a3

t(T)

r(A) r(B) r(C) r(D) r(E)r(C)r(A) r(D) r(E)

1

2

3

4
5

time
Legend

Partial rollback

Assignment of a new timestamp

r: read

w: write

a: abort

c: commit

t(T) t(T)

Figure 4.10 Illustration of the use of the new timestamp ordering approach.

URN:NBN:no-2103

4.4. CUSTOMISABLE TRANSACTION MODELS 51

TO rules produce correct transaction executions. To prove correctness, the final
conflict serialisability is applied. Executions of short transactions will still fol-
low the standard basic TO rules. Hence, they are serialisable (Bernstein et al.
1987). F-conflict serialisability is only applied to executions of cooperative
transactions with respect to short transactions. Note that because of their ex-
plicit focus on final conflicts, Zhang et al. (1999) do not seem to put much em-
phasis on the impact of the timestamp changes on previously executed
operations.

The new timestamp ordering approach is a useful approach, which bases
the support of cooperative transactions on extensions of existing database con-
currency control mechanisms. Support for dynamic activities is better than for
the relative serialisability method (see Section 4.3.4) since a definition of opera-
tion sets is not needed before execution.

4.4. Customisable transaction models
The effort to develop cooperative transaction models has contributed to

an increased acceptance of transaction models in other communities than the
database community, such as CSCW. However, it is a widely accepted fact that
there are problems that remain unsolved. For instance, existing models have
restricted application areas. Therefore, the trend is rather towards the develop-
ment of frameworks for transaction models, that can be tailored to different sit-
uations.

4.4.1. ACTA

ACTA1 (Chrysanthis and Ramamritham 1990, Chrysanthis and Ramam-
ritham 1994), is a transactional framework that allows formal reasoning and
synthesising about the properties of transaction models. It is a formal frame-
work that can be used to specify transaction models by determining the effects
of transactions on other transactions (interaction between transactions) and the
effects of transactions on objects. The building blocks of ACTA are illustrated
in Figure 4.11.

• The effects of transactions on other transactions are specified or determined
by inter-transaction dependencies – i.e., dependencies among transaction
arising from structure (e.g. nested transactions) or from behaviour (e.g.
reads/writes of transactions).

• The effects of transactions on objects are determined by:

1. This name was adopted from the latin word “acta”, meaning action.

URN:NBN:no-2103

52 CHAPTER 4 STATE-OF-THE-ART SURVEY

– view of a transaction, specifying the objects and the state of these
objects visible to a transaction at a specific point of time

– conflict set of a transaction, containing a set operations that are in
progress and that a transaction must use to determine conflicts

– delegation among transactions, allowing a transaction to delegate the
responsibility for committing or aborting a specific set of operations
to other transactions

ACTA uses first-order logic to capture properties of transactions, such as
visibility, consistency, recovery, and permanence. A new extended transaction
model can be specified by using ACTA-axioms. Based on the above main build-
ing blocks, these can be used to “invent” new transaction models or just extend
existing models by methodically modifying their definitions. Using ACTA a
Saga can, for instance, be extended by giving it a new nested structure (Chry-
santhis and Ramamritham 1992). In view of this, the usefulness of the ACTA
framework depends on which models we want to specify and modify. Its
power lies in the ability to represent structural behaviour of transactions and
the dependencies between them. However, although ACTA is a very useful
formal tool to specify and verify new transaction models, it is merely a formal
and theoretical framework, providing no tools or mechanisms to explicitly al-
low transactions to be operational during runtime.

4.4.2. ASSET

ASSET – A System Supporting Extended Transactions – is a transactional
framework suggested by Biliris et al. (1994) to implement some of the ideas of
ACTA with O++ language primitives. The idea is to allow coding of extended
transaction models (ETMs) using the O++ programming language, and to
make these models operative on top of a DBMS. The ASSET primitives are in-

Effects

Inter-transaction
dependencies

Delegation
among transactions

Conflict set a
of transaction

View of a
transaction

On transactions On objects

Figure 4.11 Effects on transactions and objects in ACTA (Chrysanthis and
Ramamritham 1994).

URN:NBN:no-2103

4.4. CUSTOMISABLE TRANSACTION MODELS 53

itiate(func, args) – registering and initiating a new transaction executing
func with arguments args, begin(t) – starting a transaction execution with
a transaction id t, abort(t)– aborting a transaction t, commit(t) – committing
a transaction t, wait(t) – waiting for a transaction t to terminate, self() –
returning the id of the currently executing transaction, and parent() – returning
the id of the parent of the current transaction. In addition, ASSET introduced
new primitives allowing a transaction model designer to delegate resources
among transactions and permitting conflicting operations – thus allowing co-
operation among them. These are (see Figure 4.12):

• delegate(ti, tj, obj_set), which tells transaction ti to transfer its
responsibilities for the operations it runs on obj_set to tj.

• permit(ti, tj, obj_set), which allows tj to perform operations
upon obj_set that normally conflict with ti‘s operations.

• form_dependency(type, ti, tj), which defines a dependency type
between ti and tj.

In (Biliris et al. 1994), the authors use these primitives to specify ETMs,
demonstrating the usefulness of the framework. The strength of the framework
is its ability to capture the characteristics of advanced transactions and use this
to implement and execute these on a database system. However, the ASSET’s
low level focus is risky with respect to programming bugs. Moreover, since a
transaction model has to be coded and compiled before the involved transac-
tions are executed, there is a need for complete a priori knowledge about the
tasks to be carried out as well as the allowed sharing “patterns”. This makes it
impossible to provide adequate support for dynamically evolving collabora-
tive activities. A change in a model would require full interruption and rede-
sign. Regarding heterogeneity support, ASSET was primarily designed for

Delegate

Form_dependency

Permit

Initiate
Begin
Commit
Abort
Wait
Self
Parent

Standard
primitives

ASSET primitives

Figure 4.12 The ASSET primitives.

URN:NBN:no-2103

54 CHAPTER 4 STATE-OF-THE-ART SURVEY

databases supporting the O++ programming language. Therefore, only sys-
tems supporting this language would be able to directly incorporate the primi-
tives of this framework.

4.4.3. TSME

TSME – Transaction Specification and Management Environment (Geor-
gakopoulos et al. 1994, Georgakopoulos et al. 1996) is another transactional
framework, allowing specification and implementation of ETMs. TSME was
developed as a complete transaction management system with a programma-
ble transaction manager that enforces the specified transaction models during
runtime. The main building blocks of transaction specification in TSME are de-
pendencies. These are classified into state dependencies, specifying dependencies
related to transaction states; begin, abort and commit, and correctness depend-
encies, specifying dependencies related to correctness criteria; determining
which concurrent executions of complex transactions preserve consistency and
produce correct results.

Figure 4.13 shows the block diagram of the TSME system architecture.
The TSME system consists of two main components:

(1) A transaction dependency specification facility (TDSF), providing an envi-
ronment for specification of complex transactions, specification of

Transaction Dependency
Specification Facility (TDSF)

Programmable
TMM (PTMM)

Service Runtime TMM
Components

DOMS Objects

Configuration
instruction

Transactional object
capabilities

Specifications
of extended
transaction
models

Mismatches
between
specifications Extended transactions

Transactional workflow

Transaction model
designerObject

designer Application
programmer

Figure 4.13 The TSME system architecture (Georgakopoulos et al. 1996).

URN:NBN:no-2103

4.4. CUSTOMISABLE TRANSACTION MODELS 55

transactional objects, and control and management of the specifica-
tions – e.g., catching mismatches between specifications.

(2) A programmable transaction management mechanism (PTMM), providing
services to enforce the specified ETMs at runtime.

The aforementioned dependencies are submitted by a transaction model
designer to the TDSF which translates them into combinations of event-condi-
tion-action (ECA)1 rule definitions and commands, and sends them to the
PTMM that will manage and control the execution structure of the individual
transactions. Once processed, the specifications of extended transactions are
stored in a repository managed by the TDSF. The PTMM component makes
sure that the specified dependencies are preserved at runtime.

TSME is a promising framework that has further demonstrated the ad-
vantages of allowing a model designer to specify several application specific
transaction models within a single environment, and supporting them at runt-
ime. One of the main strengths of TSME is its extensive support for execution
control, allowing sophisticated coordination of transaction execution. How-
ever, TSME does not provide support for dynamic restructuring, making it less
appropriate for dynamically evolving environments. Moreover, the transaction
manager component in TSME appears to be built from scratch, and integration
with and support for other resource bases than DBMSs, such as Web servers, is
to the present author’s knowledge de-emphasised.

4.4.4. RTF

RTF – Reflective Transaction Framework (Barga and Pu 1997, Barga 1999)
is yet another framework, with the aim at specifying and implementing appli-
cation specific ETMs. The main focus of RTF was to develop modules that im-
plement existing ETMs on top of commercial TP-monitors. The base
components are transaction adapters – i.e., add-on software modules providing
extensible transactional services for advanced applications (see Figure 4.14).
Using these adapters, RTF extends the facilities of a TP-monitor, allowing it to
execute transactions beyond the ACID models.

Initially, RTF was implemented on top of Encina2, demonstrating the ap-
plicability of the framework. It is important to note, however, that RTF does
not provide support for user-defined correctness criteria. This was beyond the
scope of RTF, and was left for future studies (Barga 1999). Rather, the focus was

1. The ECA concept was introduced in (Dayal et al. 1990).
2. See http://www.transarc.com/Product/Txseries/Encina/Brochure2.0/

encina.html.

URN:NBN:no-2103

56 CHAPTER 4 STATE-OF-THE-ART SURVEY

on provision of extensible lock protocols handling concurrency. Moreover, RTF
is mainly a database-centred framework, and does not explicitly address the
support for other resource bases that are not directly supported by the actual
underlying TP-monitors. Hence, support for heterogeneous resource bases is
de-emphasised.

Transactional Application

Meta Interface Meta Interface Meta Interface Meta Interface

Transaction
Manager
Adapter

Lock
Adapter

Conflict
Adapter

Log
Adapter

Metalevel

Baselevel
Transaction Manager Lock Manager Log Manager

TP - Monitor

Transaction
adapters

An underlying
TP-monitor

Figure 4.14 The transaction adapters in RTF (Barga and Pu 1997).

URN:NBN:no-2103

57

Part II

DESIGN
AND

ARCHITECTURE

URN:NBN:no-2103

URN:NBN:no-2103

59

Chapter 5

Requirement Analysis

In order to be able to reason about requirements for cooperative work, we
must know the characteristics of this type of work. Consequently, this chapter
starts by describing a motivating scenario in Section 5.1. In Section 5.2, we ana-
lyse the characteristics of cooperative work, and use this to outline the require-
ments for cooperative work. This chapter then discusses cases from the
motivating scenario that can be related to the requirements.

5.1. Motivating scenario
In the following we consider a case1 of a modern software engineering

process to illuminate the characteristics of cooperative work and the require-
ments that it imposes. We will base our examples in Chapter 6 and Chapter 7
on this scenario.

Aviasoft Inc.2 is a software company that specialises in software for avia-
tion. At present, the company is developing a computer-based flight instru-
mentation system (CFIS). The main purpose of this software to calibrate
landing systems at airports.

Aviasoft is an international company with divisions in the USA, Canada,
India, and South Africa as well as Norway (see Figure 5.1). Its headquarters are
in Trondheim. Each division is connected to headquarters through the Internet.
Documents produced in the development process are stored where they are
generated, but they ought to be accessible from other divisions. In this way,

1. This case was inspired by a software development project that the present author was
a member of, for a Norwegian aviation software company.

2. Aviasoft is a fictive name used here for illustration purpose only.

URN:NBN:no-2103

60 CHAPTER 5 REQUIREMENT ANALYSIS

they can be updated and retrieved as needed. The type of documents are devel-
opment agenda1 (mainly XML-based forms describing the development proc-
ess each engineer must follow, and project state documentation), source code
(written in Java), code documentation (written in HTML and Latex format, de-
scribing the functionality and the use of a module), and several specification
documents (written in HTML and Latex format – such as requirement specifi-
cation, design specifications, quality assurance specification, etc.).

The CFIS software consists of three main modules:

• Interface to plane sensors – called the Interface module – i.e., a driver
module for plane sensors

• Graphical user interface consisting of menus, flight instruments, etc. –
called the GUI module – i.e., the interface to the user

• Processing module being a main module – called the Process module –
i.e., a module collecting data read by the Interface module, processing
these and converting them to internal representations

Each module is developed by groups of 3 to 20 engineers in the divisions
located in the USA, Canada, India, South Africa and Norway. They are put to-
gether into a single software artefact at a later project stage.

1. A development agenda is the same as a development plan.

Trondheim Headquarters

Internet

South Africa Division

Aviasoft Inc.

Private
Workspace

Data

Shared workspace

Data

Shared workspace

Canada Division

Data

Shared workspace

USA Division

Data

Shared workspace

Figure 5.1 Illustration of distribution and organisation of Aviasioft.

URN:NBN:no-2103

5.2. COOPERATIVE WORK CHARACTERISTICS 61

The development process goes through several phases before the soft-
ware is installed in a plane. These consist of analysis, requirements specifica-
tion, and design, coding, and testing. Further, to meet the strict reliability
requirements for aviation software, Aviasoft applies independent code inspec-
tion to discover bugs and software faults. This is often performed while the in-
volved engineers are programming their modules. To ensure objective results,
code inspections are normally performed by one or more engineers from other
divisions than that of the programmer.

5.2. Cooperative work characteristics

5.2.1. Definition of cooperative work

The term cooperative work may have different meanings within different
disciplines – sociology, computer science, etc. Therefore, it has no widely ac-
cepted exact definition, and several attempts can be found in the literature. One
of the earliest definitions was given by (Marx 1867) as:

“When people work together side by side in accordance with a plan,
whether in the same process, or in different but connected processes, this
form of labour is called cooperation.”

This is not a complete definition. It is too narrow since it assumes that co-
operative work is always planned. For example, consider our Aviasoft sce-
nario. A requirement specification must be in place before the coding process
starts. However, during coding, the specification may have to be adjusted due
to some inaccuracy or imposed limitations. Therefore, the involved engineers
may be required to perform different “unplanned” actions.

In conclusion, the assumption that cooperative work is always planned is
not accurate. An intuitive and generic definition based on the intention with
the work to be performed could be: “a work process involving several people
acting together, in a shared context, performing some tasks in order to achieve a
pre-specified common goal”. This fits well with the context of Aviasoft.

5.2.2. Characteristics of cooperative work

Several researchers from the CSCW community have done analyses of co-
operative work characteristics (Rodden and Blair 1991, Schmidt and Bannon
1992, Schmidt and Rodden 1996). Using these analyses, our Aviasoft example
and the definition above as starting points, the following are various dimen-
sions that are relevant for the provided transactional support (see also Table 5.1
for a summary).

URN:NBN:no-2103

62 CHAPTER 5 REQUIREMENT ANALYSIS

(1) The degree of cooperation among the involved parts may differ depend-
ing on the situation needs. Sometimes a tight cooperation or collabora-
tion may be required in order to get the work done, while in other
cases, cooperation may not be required at all. The means that the spec-
trum of cooperation spans from individual separate tasks to collabora-
tive activities.

(2) The size of the group of parties engaged in a work process is not stable,
and may vary over time. This means that the participants may be sin-
gle users, or they may consist of several individuals organised in
teams.

(3) Temporal distribution is quite usual. The interaction among the partici-
pants may be synchronous – i.e. real time interaction, or it may be
asynchronous – i.e., deferred interaction.

(4) Geographical distribution is normal. A cooperative activity may take
place in the same location, thus all participants are co-located, or it
may be carried out at different places, thus one or more participants
may be dispersed.

(5) The work duration is not always possible to predict in advance. Some-
times, a complete set of actions can be specified before the task is initi-

Dimensions Comments

Degree of
cooperation

Any cooperation spans from separate independent tasks to a
tight collaboration.

Group size The participants may be single users, or they may be
organised in teams, each consisting of several parties.

Temporal
distribution

The interaction among the involved parts may be
synchronous – i.e., real-time interaction,
or asynchronous – i.e., deferred interaction.

Geographical
distribution The participants may be co-located or dispersed.

Work duration The duration of any interaction is unpredictable,
thus being impossible to estimate in advance.

Work structure
The activities range from being well-structured – e.g.,
workflow, via semi-structured – e.g., software development,
to ad-hoc – e.g., collaborative learning.

Resource usage The artefacts used and their access properties may vary over
time – i.e., with variable degrees of resource sharing.

Table 5.1 Dimensions of cooperative work.

URN:NBN:no-2103

5.3. REQUIREMENTS FOR TRANSACTIONS 63

ated. For such an activity, it is possible to estimate an approximate
duration. For other cases, such an estimation is neither practical nor
feasible.

(6) The work structure may differ depending on the type of activities.
Cooperative activities range from being well structured – e.g. activity
that involves the use of workflow, via semi-structured – e.g. software
development – to ad-hoc – e.g. publication activities.

(7) The resource usage is not predictable. The artefacts used in a coopera-
tive activity and their access properties may vary from time to time.
This means that the degree of data sharing may not be stable.

5.3. Requirements for transactions
A conclusion that we may draw from this is that cooperative work is in-

herently diverse and dynamic. This makes it important – though challenging –
to provide unified support. Using the cooperative work characteristics above,
we have set up a set of requirements that a successful transaction model should
satisfy (Ramampiaro and Nygård 1999). A summary is shown in Table 5.2.

5.3.1. Transactional properties

Due to their rigidity, the necessity of relaxing the ACID properties – thus
allowing tighter cooperation – has traditionally been advocated. However, re-
laxation alone may still not be sufficient. Most people agree that consistency
and durability should still be preserved in order to provide correct and reliable
data management. In addition, there is a need to provide tailorable atomicity –
i.e., finer abortion scheme – and controlled sharing of intermediate results – i.e.,
an adjustable isolation requirement.

TR1 Tailorable atomicity. First, to prevent long transactions from wasting
work upon failures or exceptions, the transaction model should pro-
vide a fine grained abort management scheme, allowing partial roll-
back in addition to automatic total rollback. This implies that it
should be possible to customise the (failure) atomicity requirement
to fit different situations.

TR2 Controlled sharing of intermediate results. Since cooperation among
parties may be necessary, enabling resource sharing is crucial. For
this reason, requiring transactions to always execute as isolated
units of work is unacceptable. This implies that a transaction model
should allow flexible interleaving between transactions when this is

URN:NBN:no-2103

64 CHAPTER 5 REQUIREMENT ANALYSIS

needed. However, concurrency control mechanisms are still neces-
sary to prevent inconsistencies. In conclusion, the isolation property
should be customisable to fit different sharing needs.

5.3.2. Transactional behaviour and support

The nature of cooperative work imposes several additional requirements
that must be taken into account. These include those related to transactional be-
haviour and support. Transactional behaviour is associated with how transac-
tions are executed at runtime. This includes execution duration, interactiveness
and delegation of resources and responsibility. Transactional support is associ-
ated with how transactions address the distribution and heterogeneity of coop-
erative work environments.

TR3 Support for open-ended execution. The fact that we may not be able to
predict the composition of actors involved in a cooperation, and that
the interaction may have an uncertain duration and form, implies
that the transaction model should enable open-ended execution of
transactions. This means that it should be possible for a transaction
to delegate resources to other transactions at runtime. This could,
for instance, allow a transaction to make its resources available to
other transactions although it aborts. Further, due to unpredictably,
the ability for users to start and stop their transactions as desired is
useful, making interactive support necessary.

Requirements Description

TR1 Tailorable atomicity The transaction model should allow partial aborts in addition to
traditional total aborts.

TR2 Controlled sharing of
intermediate results

The transaction model should allow the isolation properties to be
relaxed to enable cooperation, while still providing adequate
concurrency mechanisms to prevent inconsistencies.

TR3 Support for
open-ended execution

The transaction model should support runtime delegation of
responsibility and interactive executions of transaction to cope
with unpredictably.

TR4 Distribution and
heterogeneity

The transaction model should meet the distributed and diverse
nature of cooperative work.

TR5 Awareness
The transaction model should provide notification mechanisms to
make participants aware of events that may affect their actions
and help them handling potential conflicts.

TR6 Temporal data
management

The transaction model should provide participants with enough
knowledge about activities performed and changes made on
shared resources to allow these participants to leave and join an
activity without facing too severe restrictions.

TR7 Access control The transaction model should provide rules defining which
objects can be accessed by whom.

Table 5.2 Requirements with transaction models.

URN:NBN:no-2103

5.4. THE REQUIREMENTS AND THE SCENARIO 65

TR4 Support for distribution and heterogeneity. Cooperative work is diverse
in nature. Distributed and heterogeneous environments are com-
monplace. Therefore, it is important that the transactional model
considers these two issues.

5.3.3. Services provided

To provide flexible transactional support, there are several services that
should be provided to address the needs of cooperative activities. These in-
clude awareness – which is necessary as a result of allowing sharing. Then
there is temporal data management – which is necessary to help cooperating
parties to manage their tasks. Finally, there is access control – which is neces-
sary for security and privacy reasons.

TR5 Awareness. Flexible sharing of information calls for mechanisms that
allow involved actors to be aware of events that may affect their
actions. This include those related to access to shared objects. This
means that with relaxed isolation, awareness services should be pro-
vided to help handle potential conflicts.

TR6 Temporal data management. It is desirable to allow members of a coop-
erative activity to leave and join their group without facing undue
restrictions. For this reason, the transaction model should provide
these members with enough knowledge about activities performed,
and about changes made on shared resources while they were away.

TR7 Access control. Sharing of artefacts is important in cooperative set-
tings. Still, users may not want to share all of their objects. As a
result, there is a need for a set of rules that define which data/
objects can be accessed by whom.

5.4. The requirements and the scenario
Recalling our Aviasoft illustration and considering the following cases,

we can illustrate the necessity of meeting the above requirements. Specific as-
pects of these requirements will be further addressed throughout the thesis.

Case 1: Document production

It is common to require that documents and program codes are inaccessi-
ble to others until they reach a mature phase – e.g., when they are released.
However, after such a phase one may still want to update released documents
so as to satisfy some new requirements, or for bug fixing. At the same time,
other engineers may want to observe changes that are being made so that they

URN:NBN:no-2103

66 CHAPTER 5 REQUIREMENT ANALYSIS

can take these into account. Clearly, if the document was locked – such as with
serialisable transactions – these engineers would have to wait until the docu-
ment lock was released. This is unacceptable since it may unduly delay the
overall development process. For this reason, mechanisms to allow gradual re-
laxation of the isolation property are needed. This means that requirement TR2
must be satisfied.

Further, the fact that engineers need to “protect” their code until some
stage of the development process calls for rules and mechanisms allowing
them to define and determine suitable access rights. This is also necessary when
a document is released to restrict the actual access to a specific group, e.g., di-
rect members of the module production. This means that requirement TR7
must be satisfied.

Case 2: Module test

Suppose the project has reached the test phase. Each module is tested by a
team of several engineers. Assume that no bugs were found in the interface
module, but that parts of its base class do not fully satisfy its requirement spec-
ification, and must be modified. Moreover, the two other modules use this in-
terface base class, and are thus affected. Some minor modifications are
therefore needed. However, the only way to allow the other teams to discover
this problem is by making them aware of this explicitly, so a notification mech-
anism is needed. This means that requirement TR5 must be met.

They also need to know exactly which parts of the modules must be
changed and how to do this. To help them with such tasks, it is useful to know
what actions they previously have performed on the modules. This requires an
activity history – i.e., an “activity log”, thus calling for temporal data management
satisfying requirement TR6.

Now, as the GUI and Process teams are aware of the changes being made,
they have two options: either wait until the changes are made permanent, or
observe the progress, make the necessary modifications, recompile, and test in
parallel with other “processes”. If we assume that waiting is unacceptable, it is
necessary to have mechanisms that both allow the teams to be aware of the
changes and allow them to perform their updates in accordance with the new
base class. Note that both teams need to work cooperatively on the interface
module, and thus none of them can lock it while they are performing their
modifications. This exemplifies situations where one needs transaction models
going beyond standard isolation – i.e., meeting TR2.

URN:NBN:no-2103

5.4. THE REQUIREMENTS AND THE SCENARIO 67

Case 3: Code modification

Cooperative code modification often lasts for long periods of time (hours
or days). Much work could be invested during such periods. Therefore, if an
engineer needs to cancel some actions, it would be unacceptable to also throw
away other related parts that could or must be “saved”. Moreover, it would be
even more unacceptable that other engineers’ tasks be affected by this cancella-
tion. Therefore, the ability to provide a finer abort management scheme is neces-
sary. This means that TR1 must be fulfilled.

Moreover, if an engineer is not able to accomplish a coding process, it
would be useful if parts of the work or the results achieved so far could be
handed over to other engineers in a controlled but flexible manner. This calls
for mechanisms and tools to make such delegation of responsibilities possible –
i.e., meeting TR3.

Case 4: Code inspection

Aviasoft’s code inspection policy is to ensure as objective results as possi-
ble. For this reason, the inspection team consists of engineers from other divi-
sions than the programmer’s division. The team’s tasks include not only
checking the code for bugs, but also making sure that the code conforms to the
underlying requirement specification, design and programming “procedures”
for aviation software. For this reason the team has to access several types of
documents including the code documentation from the Aviasoft’s Intranet
Web servers, the requirement specification documents from its file system, as
well as the program code. To save money and exploit Aviasoft’s networking fa-
cilities, the members of the inspection team are spread over the network, per-
forming their tasks in a distributed fashion. Hence, to make this possible the
underlying environment support has to make such access to distributed and
heterogeneous documents possible – i.e., fulfilling TR4.

Case 5: Agenda update

Modifications to Aviasoft’s project agenda are normally of short duration.
This is done by computers and does not involve user interactions. Since an
agenda normally contains the list of actions each engineer must perform, such
updates must be done in a way that gives correct results. Users are often re-
quired to temporarily suspend their activities to alleviate them from doing un-
necessary work. For this reason, both atomicity and isolation may be required.
Here, atomicity ensures that either an update is executed successfully, or the
agenda is left unchanged. Isolation means that each engineer should only ob-
serve a final version of the agenda. Hence, all other involved activities must
temporarily stop until the update is accomplished. However, to let all involved
parties know about such an agenda update, they must be notified. This case il-

URN:NBN:no-2103

68 CHAPTER 5 REQUIREMENT ANALYSIS

lustrates a situation where full ACID transactions are also required in ad-
vanced applications like software development, in addition to traditional
business applications such as accounting and banking. It also shows that even
simple awareness services could prove useful. Ergo, again TR5 must be met.

5.5. Additional requirements
There are additional requirements that have been considered but not inte-

grated in this work because of their scope. An important requirement is the
support for version control. Let us, for example, consider the following case re-
lated to our Aviasoft scenario. A version x of a CFIS module is in the code
inspection phase, while a successor version is in a requirement specification
phase and a new code is generated from version x. This means that several ver-
sions of the same module may be in use so that the underlying consistency
handling tools must consider their co-existence/co-activeness. For this reason,
mechanisms for dealing with issues such as concurrency and atomicity should
be provided that take other versions into account.

Although the importance of version control is recognised by this work,
there are challenges that must be dealt with. First, the notion of version muta-
bility may pose some difficulties. Several versions of the same object can be cre-
ated by several users. This would challenge consistency management as it is
not always possible to identify which versions are consistent and which are
not. A possible solution is, of course, providing merging mechanisms, which
could be used to merge some specific versions into a single final one. A chal-
lenge that this again may cause is the provision of a merging mechanism that is
powerful enough, but at the same time does not result in computation com-
plexity. Nevertheless, several approaches applying versioning and version
control exist – including the NT/PV transaction model (Korth and Speegle
1994) and EPOS (Conradi et al. 1995, Conradi et al. 1997) – and this work could
benefit from their adoption.

5.6. Concluding remarks
The key lesson we learned from setting up the above requirements is that

it is hard to develop a single transaction model that can adequately meet the re-
quirements of cooperative work. A possible solution is to provide a framework
that allows customisation of transaction models to fit different situations and
applications. This has been the main motivation for the development of our
CAGISTrans framework, which is thus a framework for adaptable transac-
tional support for cooperative work. For simplicity, we hereafter call this a
transactional framework. A transactional framework is a vehicle used to de-

URN:NBN:no-2103

5.6. CONCLUDING REMARKS 69

fine, analyse and apply the essential properties of transactions. The next chap-
ters will elaborate on our CAGISTrans framework.

URN:NBN:no-2103

70 CHAPTER 5 REQUIREMENT ANALYSIS

URN:NBN:no-2103

71

Chapter 6

The CAGISTrans
Transactional Framework

6.1. Introduction
This chapter gives an overview of the ideas behind the CAGISTrans

transactional framework. It focuses on ways to support cooperation that is dy-
namic and heterogeneous, using transactions. First, Section 6.2 outlines a pro-
posed solution to support object and data exchange through workspace
management. Second, using this as a starting point, Section 6.3 proposes a new
way to organise the transaction modelling process to meet the dynamic re-
quirements of cooperative work. It discusses how this can be achieved by sepa-
rating design time and runtime specification of application specific transaction
models. Third, as the main result of the distinction discussed in Section 6.3,
Section 6.4 outlines how transactional behaviour can be managed at runtime to
further meet the requirements imposed by dynamic environments. This in-
cludes a discussion of how user-managed transaction correctness criteria can
be achieved, as an alternative to serialisability (Bernstein et al. 1987). Fourth, to
meet the aforementioned heterogeneous requirements, Section 6.5 discusses a
middleware approach to provide the required transactional service. Fifth,
Section 6.6 discusses the need for a specification language that can enable runt-
ime specifications. We focus this discussion on XML, including the main ad-
vantages and the challenges that must be taken into account.

URN:NBN:no-2103

72 CHAPTER 6 THE CAGISTRANS TRANSACTIONAL FRAMEWORK

6.2. Bridging the gap between flexibility and
strictness using workspaces

A widely accepted solution to support cooperation is to provide work-
spaces – i.e., virtual spaces or places where groups of distributed people can
cooperate in solving a problem or performing a task. Usually, one distin-
guishes between private and shared workspaces. This makes it possible to al-
ternately perform work in cooperation, and carry out individual activities in
private. Such a separation has been considered important since it is neither de-
sirable nor practical to share all data all the time. In effect, control and manage-
ment of workspace access is necessary.

However, in existing systems, the main problem is that either the control
and management are left to the users themselves to figure out – cf., groupware-
based approaches, or they are unduly strict – cf., database-centred approaches.
To bridge this gap, there is a need to organise the workspaces in such a way
that different levels of sharing can be enabled. This can be achieved by provid-
ing workspaces with nested structure. Moreover, operations to allow access to
workspaces at different nesting levels are needed. This is achieved by extend-
ing the traditional check-in/check-out models (Tichy 1985, Rochkind 1975)
with advanced check-in and check-out operations. Finally, mechanisms to synchro-
nise and coordinate the involved accesses must be provided.

These are the workspace features that will be discussed in the following.
Their relation to other work is discussed in Chapter 11. In summary, their main
benefit is the ability to control the access to workspaces, while at the same time
increasing the possibility of sharing, compared to traditional check-in/check-
out models.

6.2.1. Workspace organisation
Aviasoft’s (see Section 5.1) software development process involves sev-

eral engineers. Because of the size and complexity of the CFIS software artefact
to be developed, the engineers are organised into small groups developing dif-
ferent but related modules. To allow flexible cooperation, engineers belonging
to the same group have to be supported by a shared workspace where they can
exchange their document – i.e., program codes, etc., specific to their module.
However, until reaching some stage of their coding process, each engineer
needs to work in private. This is true, for example, when the code that is being
written is still so incomplete that sharing would not be reasonable. To cope
with this, each engineer must have a private workspace. Further, when a mod-
ule reaches some maturation phase, it may be of interest for other related
groups to have access to what has been achieved so far. Therefore, the module

URN:NBN:no-2103

6.2. BRIDGING THE GAP BETWEEN FLEXIBILITY AND STRICTNESS USING WORKSPACES 73

and all its related data can be made available by copying them to a public
workspace. This could, in addition, be necessary when the modules are to be
integrated into a single software artefact.

As can be inferred from this simple illustration, at least two levels of data
sharing may be needed: sharing among engineers within the same group, and
sharing among and across different groups. As a result, distinguishing be-
tween private and public workspaces alone would not be sufficient. In addi-
tion, group workspaces may be needed. This means that workspaces must be
organised, as illustrated in Figure 6.1, to form a nested structure, with unlim-
ited nesting levels. The main idea is to compromise on isolation among work-
spaces, but at the same time limit or avoid unintended and unauthorised
manipulation of data at a specific workspace.

Another aspect is the management of objects. As a supplement to ver-
sions, we may apply different levels of object consistency through object states.
The idea is that each object is associated with a state depending on the nesting
level of the workspace where it resides. This means that we distinguish
between intra-workspace consistency, group consistency and inter-group consist-
ency. In other words, objects in private workspaces are only intra-workspace con-
sistent. When they are released or copied to a parent – i.e., group – workspace,
their consistency level is upgraded to group consistency. Since such objects may
still be inconsistent with respect to the final results – e.g., the final software ar-
tefact, sharing is restricted to members of the group who own that workspace,

Figure 6.1 Nested workspace structure with corresponding
operations and object states.

Group workspace

Public workspace

Group workspace

read-check-out
write-check-out

upward-check-in
refresh

check-in

upward-check-in

Object states

Inter-group consistent objects

Intra-group consistent objects

Intra-workspace consistent objects

Group workspace

Private workspace

URN:NBN:no-2103

74 CHAPTER 6 THE CAGISTRANS TRANSACTIONAL FRAMEWORK

only. Finally, when the objects are checked in to the public workspace, they are
considered inter-group consistent.

6.2.2. Extended workspace access operations
An extension of the traditional check-in/check-out model is required as

the main consequence of the workspace and data organisation. This extension
serves as a means to manage the relevant object states. Moreover, additional
operations can be used to distinguish between submitting objects to a sub-
workspace and releasing objects to a public workspace.

The following operations are needed in addition to check-in and check-
out:

• write-check-out and read-check-out: distinguish the intention behind the
check-out operation. They check-out data from the public workspace
for write and read, respectively. The main advantage is that this facili-
tates the control of sharing, and allows the use of appropriate lock
modes.

• upward-check-in: check in data to a parent group workspace – i.e., up
one level only.

• check-in: check in data from any workspace to the public workspace.

• refresh: update a copy of data in the private workspace with the one
residing in the parent workspace – e.g, check-out from a group work-
space to a private workspace.

• Workspace data operations such as read, write, update (i.e., read and
then write), and some advanced operations (see Section 6.4) which are
needed to manipulate data at a specific workspace. Advanced opera-
tions include those needed for consistency level upgrade, after an
upward-check-in.

Note that the ideas of extending the standard check-in/check-out model
share some ideas with those previously proposed in the literature (Kim et al.
1984). For example, the idea here of allowing access to data in semi-public
workspaces (group workspaces) is similar to that approach. However, Kim et
al. (1984) consider the direct connection between workspace access operations
and the nested transaction structure. For example, this approach distinguishes
between downward commit and upward commit. Downward commit allows trans-
actions to check-in data to a semi-public database such that they can be check-

URN:NBN:no-2103

6.3. DISTINGUISHING BETWEEN CHARACTERISTICS AND EXECUTION SPECIFICATIONS 75

out by other transactions. Transactions that check out these data become, by
default, subtransactions of that issuing the downward commit. These subtrans-
actions can then use upward commit to check in data to the semi-public database
of their ancestors. In this sense, upward commit and downward commit only apply
to transactions that are family related. By contrast, the upward-check-in opera-
tion used in the CAGISTrans framework can be issued by arbitrary transac-
tions that are not necessarily family related. The only requirement here is that
these transactions are executed by people sharing a group workspace.

6.2.3. Workspace access coordination
Correctness of each object state can be managed by synchronising and co-

ordinating the access to workspaces. To facilitate this coordination, workspace
operations can be executed as part of a transaction. Hence, consistency of ob-
jects that are shared among several users can be controlled by indicating neces-
sary operations to be carried out, and enforcing the order in which they are
performed. This implies that if transaction executions obey such criteria, it may
be assumed that their results are correct. How this is done is one of the main
topics of the rest of the thesis (see Section 6.4).

6.3. Distinguishing between characteristics and
execution specifications

One of the main limitations of the transactional frameworks that were de-
veloped for cooperative work is their restricted support for changing environ-
ments – i.e., dynamic support. Despite their ability to define transaction models
for specific applications, they generally lack the ability to make adjustment and
modification at runtime. One of the main reasons is that a complete specifica-
tion of a particular transaction model must be done before a transaction based
on that model can be executed. This is, however, practical only for applica-
tions/situations where all necessary requirements are possible to predict in ad-
vance. Normally, in cooperative work, this is not the case. For instance, in
modern software engineering environments, the requirements may change all
the time. So, to meet these changes, the model needs to be modifiable at run-
time.

6.3.1. The necessity of design time and runtime specifications
Modifiability can be achieved only by allowing both design time and runt-

ime specifications. This means that we need to organise the specification of the
transaction model into two separate but connected parts, consisting of one that
can be designed before any transactions are executed, and another that can be
modified while the involved transactions are being executed. The former is

URN:NBN:no-2103

76 CHAPTER 6 THE CAGISTRANS TRANSACTIONAL FRAMEWORK

called characteristics specification and the latter is called execution specifica-
tion. This distinction is illustrated in Figure 6.2.

The idea is to collect elements of a transaction model that are fixed and
possible to predict in advance into the characteristics part, and include the ele-
ments of the transaction model that are only partly predictable into the execu-
tion specification. In this respect, the transaction characteristics consist of the
elements that are vital and must be known prior to the execution of transac-
tions. First, they specify, at a high level, the main properties of the involved
transactions, i.e., the ACID properties. Second, they determine suitable struc-
tures of the transactions, and define how they affect each other’s processing,
i.e., the relationship among the involved transactions. Third, the elements de-
fine appropriate correctness criteria to be applied. This means that they specify
whether one should rely on an underlying DBMS and/or enable user-defined
criteria. Finally, the characteristics elements determine the mechanisms and
policies to be utilised in order to satisfy the designated correctness criteria. In
other words, they define mechanisms that should be made available, and the
rules and guidelines for how and when to use them to achieve the required cor-
rectness.

As mentioned above, the transaction execution part is a collection of ele-
ments that are most often only partly possible to specify in advance. For this
reason, they may need to be adjusted at runtime. Further, they determine how
transactions having the specified characteristics should behave during run-
time. This means that the execution specification must be composed of build-
ing blocks which, together, satisfy the requirements imposed by the character-
istics specification. In addition, the execution specification extends the
characteristics specification since it contains elements that are not included in
the characteristics specification. Thus, the idea is to collect all elements that af-
fect the trans- actional behaviour into the part that is specific for transaction ex-
ecution. Briefly, these are primitives that are needed to manage and control the
execution of transactions - i.e., initiation and termination operations, those
needed for dynamic restructuring of transactions at runtime - i.e., spawning

Figure 6.2 Illustration of the distinction between characteristics
specification and execution specification.

Characteristics Specification Execution Specification

Design Time Runtime

Static (fixed) Dynamic (partly fixed,
partly re-tailorable)

URN:NBN:no-2103

6.3. DISTINGUISHING BETWEEN CHARACTERISTICS AND EXECUTION SPECIFICATIONS 77

and resource transfer, and those used to define advanced operations that will
be executed by the transaction. A more detailed discussion is given in
Section 6.4.

6.3.2. ACID requirements and their impacts
This discussion will be centred on the elements of the characteristics spec-

ification. It analyses the transactional properties in more detail, and shows how
the rest of the elements of the specification are derived.

The first issue concerns the reasons for explicit specification of ACID
properties. Since (Härder and Reuter 1983) coined the ACID acronym, it has
been used extensively within the database community as the ultimate concept
for achieving correctness of transaction processing. As mentioned before, how-
ever, when used in advanced applications, such as cooperative applications,
some of the properties have to be compromised in order to provide the re-
quired support. Which of the properties that should be relaxed depends very
much on the nature of particular applications. Therefore, it is necessary to ex-
plicitly specify each of the properties in order to tailor them for specific appli-
cations or situations.

The main advantage of such an approach is that allows the user to iden-
tify the main characteristics of the application he/she is involved in. For exam-
ple, some situations within advanced applications may still require atomicity
to guarantee the correctness of data in the event of crashes. Others may see it as
a burden since it might require people to unnecessarily repeat work that has al-
ready been considered finished. Similar arguments can be used for the remain-
ing properties. So, the idea is that users do the designation themselves by first
identifying application needs, and then defining appropriate “ACID proper-
ties”.

This leads us to the next issue: what properties should be compromisable
and how can that be implemented? From the literature, the “porting” of ACID-
ity from traditional database applications to advanced applications has implied
compromising the atomicity and isolation properties only. It seems that it is
widely accepted that both consistency and durability should still be preserved
(Elmagarmid et al. 1992, Kaiser 1994, Jajodia and Kerschberg 1997).

6.3.2.1. Atomicity

Starting with atomicity, there should be two options: full atomicity or re-
laxed atomicity. Going for full atomicity should be possible, since it may still be
vital to preserve the all-or-nothing property of transactions. This may, for in-
stance, be relevant in activities that do not involve user interaction, and are

URN:NBN:no-2103

78 CHAPTER 6 THE CAGISTRANS TRANSACTIONAL FRAMEWORK

short. The idea is that atomicity should be kept whenever it is appropriate. Re-
laxation of atomicity, on the other hand, may be required for several reasons.
First, the presence of failures in long running activities may be expensive since
lots of work could be thrown away. Therefore, it is necessary to compromise on
the all-or-nothing law. Thus, relaxed atomicity should serve as a means to al-
low finer grained abort management in the form of partial abort. Further, it is
common in cooperative environments that users choose the actions within
their activities as they go along - i.e., interactive transactions. In such a case, re-
quiring transactions to perform automatic abort is inconvenient. This means
that users should be able to control the rollback themselves. However, this may
be achieved only if the atomicity property is relaxed.

To achieve relaxed atomicity by means of partial rollback, a user or a
transaction model designer needs to specify the desired structure of the trans-
actions to be run. It means for example choosing explicitly between flat and
nested, and the intended dependencies among transactions. First, relaxed ato-
micity is most relevant for transactions with a nested structure. Therefore, to al-
low partial abortion, the choice will fall on nested structure. Second, the effect
of the abortion of one transaction on others needs to be specified. This means
that a user or a transaction model designer needs to define the abort dependen-
cies (Chrysanthis and Ramamritham 1990) among the involved transactions.
This will explicitly determine the transactions that have to abort, regardless of
their read-write dependencies. Hence, partial rollback is accomplished by first
checking the abort dependency specifications, and then aborting only (sub-
)transactions that are included in those specifications.

Table 6.1 provides a summary of the relevant elements impacted by the
value of the atomicity property.

It is worth noting that some of the above ideas concerning nested transac-
tions and abort management can be compared with some of the basic ideas of

Full Atomicity Relaxed Atomicity

Transactional
relationship

Flat or Nested structure Nested structure

Inter-transaction dependencies:
begin, commit and abort

Inter- and intra-transaction
dependencies:
begin, commit and aborta

a. Boldface means the dependencies are mandatory.

Correctness
criteria

Depending on isolation, see Table 6.3

Applied policies Depending on isolation, see Table 6.3

Table 6.1 Atomicity and relevant elements.

URN:NBN:no-2103

6.3. DISTINGUISHING BETWEEN CHARACTERISTICS AND EXECUTION SPECIFICATIONS 79

HiPac (Dayal et al. 1988). In general, ideas related to event-condition-action
(ECA) rules can also be applied here to specify (1) the abort-events, (2) the con-
dition for these events in terms of abort dependencies, and (3) the actions to be
taken – i.e., aborting affected subtransactions – determined by the abort de-
pendency specifications. Further, the idea of failure management in the
CAGISTrans framework has some similarity with that of HiPac (Dayal et al.
1995) in that partial rollbacks are managed through exploiting the nesting
structure of nested transactions. This means that when a specific subtransac-
tion fails, the effect on other transactions can be determined depending on ex-
isting conditions.

Despite the above similarities, there are ideas of the CAGISTrans frame-
work that differ from those of HiPac. First, although the active rules of HiPac
can also be used in the specification of transaction models – such as with TSME
(Georgakopoulos et al. 1996) – supporting transaction model customisation it-
self was not the primary focus of HiPac. Moreover, its specific way of manag-
ing rollbacks is different from that of CAGISTrans. For example, with HiPac’s
nested transactions, when a subtransaction fails, this failure is by default prop-
agated to one or more ancestors, which then decide appropriate further ac-
tions. With CAGISTrans a more general abortion scheme can be achieved (see
also Section 7.2.3). Another difference is that in HiPac a failure of a subtransac-
tion only affects other sibling subtransactions that are specified in their par-
ents’ event rules. This means that the parent transaction is fully responsible for
handling the abortion of subtransactions. In CAGISTrans, a parent transaction
does not necessarily have such responsibility. Moreover, abortion of a sub-
transaction can be specified to affect other specific siblings, independently of
their parents.

Regarding the distinction between characteristics specification and execu-
tion specification, note that atomicity mainly affects the way transactions
achieve their specified structure. Recall that transactions with relaxed atomicity
are nested. This means that it is likely that some of these transactions need to
restructure – i.e., spawn and delegate some responsibilities – at runtime. There-
fore, to allow this, a primitive for transaction restructuring should form part of
the transaction execution building blocks.

6.3.2.2. Consistency

Consistency needs to be fully preserved to ensure the correctness of the fi-
nal result of a transaction execution. Though some kinds of inconsistency may
have to be tolerated by transactions executed in cooperative environments,
who is interested in introducing inconsistencies in a database or other involved
resource base? Further, this is one of the main reasons that research on transac-

URN:NBN:no-2103

80 CHAPTER 6 THE CAGISTRANS TRANSACTIONAL FRAMEWORK

tions is relevant at all, also within the context of cooperative work. The concept
of transactions is meaningless if consistency cannot be achieved in the final re-
sults.

However, there is a challenge that needs to be considered. The relaxation
of the atomicity property implies that a transaction may commit parts of its to-
tal processing. A question that may arise is then how to define the correctness
of such a transaction? As an answer to this question, specific the correctness
criteria should be prerequisites. Usually, a minimal set of criteria must be de-
fined before a transaction is executed. This means that either a user defines an
appropriate criterion or that an underlying DBMS provides one – e.g., serialisa-
bility. Table 6.2 summarises the relevant elements concerned with ensuring
consistency. Full consistency implies that if an underlying DBMS does not pro-
vide any suitable correctness criterion, the user must specify the constraints to
be enforced on the execution of transactions. This means that the execution
specification must contain a block that allows the definition of such constrains.

6.3.2.3. Isolation

As for the atomicity properties, we should provide two isolation options:
full isolation or relaxed isolation. Full isolation is still required in some situa-
tions where sharing is not a prerequisite. For example, in the cooperative pro-
gramming environment in Section 6.2, one would need to work in private until
the source code has reached some maturation phase such as the first release.
However, often in the context of cooperative work, full isolation would contra-
dict the required level of sharing. Moreover, transactions executed in the con-
text of cooperative work normally have long duration. Therefore, requiring
other transactions to wait until specific transactions commit would be unac-
ceptable.

Thus, to achieve relaxed isolation there is a need to specify and apply cor-
rectness criteria that are more relaxed than serialisability. As a result of the
above mentioned consistency requirement, appropriate constraints must be
added. Further, to allow sharing among transactions, a sharing primitive must
be provided to explicitly specify the interleaving that is allowed. To achieve the
criterion specified, policies defining mechanisms and the corresponding rules

Full Consistency

Transactional relationship Depending on atomicity, see Table 6.1
Correctness criteria Either database dependent or user-defined, see Table 6.3
Applied policies Depending on applied correctness criteria

Table 6.2 Consistency and relevant elements.

URN:NBN:no-2103

6.3. DISTINGUISHING BETWEEN CHARACTERISTICS AND EXECUTION SPECIFICATIONS 81

for their usage should be provided. For instance, diverse locking types (isola-
tion) can be combined with awareness primitives – i.e., notification. In order to
cope with the problems that possible cascading aborts may cause – like abort-
ing all transactions that share the same data, relaxed isolation (further) moti-
vates the need to explicitly define the abort dependencies that apply on the
involved transactions. In other words, if a transaction fails, not all cooperating
transactions have to be affected. Only those covered by such abort dependen-
cies are required to rollback.

Table 6.3 provides a summary of the relevant elements impacted by the
value of the isolation property.

As shown in Table 6.3, abort dependencies are necessary when the isola-
tion is relaxed. The main reason for the connection between abort and isolation
is to allow flexible handling of aborts that may result from the sharing of data.
Abort dependencies are only applicable where one or more transactions simul-
taneously access shared objects. However, at a specific time, transactions may
be isolated (no sharing). Later, they may become cooperative, thus sharing
some specific objects. (Such situations may, for example, occur in version based
systems). Here, the dependencies will first be applicable from the time these
data are concurrently accessed by two or more transactions. Hence, assuming
that all objects that are made accessible to other transactions are either commit-
ted (checked in) or pre-committed (upward-checked in), the abort dependen-
cies here will not be affected by the occurrence of isolation of execution at a
point in the past.

With respect to the distinction suggested in this thesis, there is an implica-
tion similar to that of the atomicity property. As already mentioned, relaxed
isolation requires that a user needs to specify correctness criteria. This means
that specification of how transactions view and affect other’s processing must
be given. More details about how this is achieved are given in Section 6.4.

Full Isolation Relaxed Isolation

Transactional
relationship

Depending on atomicity,
see Table 6.1

Depending on atomicity,
see Table 6.1
Mandatory inter- and intra-
transaction abort dependencies

Correctness
criteria Database dependent User-defined

Applied policies Strict locking policy Collaborative locking
policy and awareness

Table 6.3 Isolation and relevant elements.

URN:NBN:no-2103

82 CHAPTER 6 THE CAGISTRANS TRANSACTIONAL FRAMEWORK

6.3.2.4. Durability

As for the consistency requirements, the final results of transactions must
be permanent. Provision of persistence for committed data is one of the key
philosophies underlying DBMSs. The main idea is that once the results are
committed, it should survive crashes, and other similar system failures.

One important question that may arise is, when to save data in long run-
ning activities that may involve cooperation? It is reasonable to assume that
long-running transactions are split into several sub-transactions, resulting in a
nested structure. Consider that each sub-transaction wants to commit its re-
sults. These results can be made permanent by saving them in the underlying
repository. But, how such commits affect the final results depends on the com-
mit dependency specifications for the involved transactions. Further, as a result
of relaxed isolation, sharing may occur. To handle abort propagation in such
cases, compensating transactions – cf., (Korth et al. 1990, Levy et al. 1991) – must
be provided to explicitly discard the effect of committed results. Hence, abort
dependencies among transactions must also be defined and to be able to fulfil the
durability requirement, all transaction operations must be logged. This means
that either an underlying DBMSs does the logging, or a supported mechanism
describing the transaction execution is provided. Table 6.4 summarises the rel-
evant elements concerned with ensuring durability.

6.4. Dynamic re-specification of transactional
behaviour

A widely accepted solution to overcome the diverse nature of cooperative
applications is to have transaction models that can be adapted to different
needs. The dynamic properties of the involved cooperation environments
have, on the other hand, broadened the scope of adaptability to comprise mod-
ifiability and extensibility. New requirements may occur while transactions are
being executed. Therefore, the specification of a transaction model must be ad-
justable at runtime. In particular, this affects the definition of how transactions

Full Durability

Transactional relationship
Flat or Nested structure
Inter- and intra-transaction dependencies:
begin, commit, and aborta

a. Boldface means the dependencies are mandatory.

Correctness criteria Depending on isolation, see Table 6.3
Applied policies Depending on correctness criteria

Table 6.4 Durability and relevant elements.

URN:NBN:no-2103

6.4. DYNAMIC RE-SPECIFICATION OF TRANSACTIONAL BEHAVIOUR 83

behave. Normally, it is not practical or possible to plan complete transaction
schedules a priori due to the aforementioned dynamic properties. This also
means that transactions are normally interactive. This makes it important as
well as challenging to allow such redefinition.

The ability to modify and adjust the specification of transactional behav-
iour at runtime yields several advantages. First, this may overcome the restric-
tion caused by dependencies on a complete knowledge of actions. In other
words, as extensions and adjustments can be accomplished while the involved
transactions are being scheduled, users do not need to worry about setting up
complete actions to be carried out in advance. Moreover, as users can do part of
the specification themselves – as their activities go along – they have better con-
trol of the execution of their (trans)actions. This means that a user can, to some
degree, choose the necessary actions to attain his/her goals, including transac-
tion termination and restructuring. This, in turn, implies that open-ended and
long running activities may be supported.

To achieve all this, we need make the distinctions shown in Figure 6.2. In
addition, there is a need to separate the execution specification into two main
parts: fixed execution specification and modifiable execution specification, as
depicted in Figure 6.3. In this way, predictable execution primitives can be col-
lected in a fixed part, whereas those that may have to be modified at runtime
are included in a modifiable part.

6.4.1. Managing transactional behaviour
The building blocks of the execution specification that affect transactional

behaviour are as follows (see also Figure 6.4):

1. Transaction constraints, which are used to control and manage the
effects of the execution of transactions on other transactions.

2. Management operations, which are used to control and manage the initi-
ation, termination, and dynamic restructuring of transactions.

Fixed Execution
Specification

Initial
Addition/
Removal

Modifiable Execution
Specification

RuntimeDesign time

Figure 6.3 Illustration of the distinctions in the transaction execution specification.

URN:NBN:no-2103

84 CHAPTER 6 THE CAGISTRANS TRANSACTIONAL FRAMEWORK

3. Advanced operations, which are used to specify operations at higher
abstraction levels than read and write.

4. Transaction execution descriptor, which contains all the information on
the execution of transactions as well as information related to transac-
tion model specification.

This discussion is centred on these primitives.

6.4.1.1. Effect management using transaction constraints

The effect of a transaction on other transactions depends on the interac-
tion among the involved transactions. It can be managed by defining con-
straints that explicitly determine the interleavings that are a) forbidden, b)
allowed, and c) mandatory. Each of these constraints are elaborated below.
Table 6.5 summarises this discussion.

Conflicts

Constraints identifying operations that are not allowed to execute concur-
rently are referred to as conflicts – as in (Nodine and Zdonik 1992). Their main

Purpose Relevant when Not Needed when

Conflicts To hinder
interference

Possible to predict
a set of actions

Impossible to predict
a complete set of actions

Permits To allow
flexible sharing

Isolation is relaxed, and
conflicts are defined or
locking is used

Isolation is full, or
no conflicts are defined and
no locking is used

Demands To ensure
correct execution Always relevant when isolation is relaxed

Table 6.5 Summary of effect management.

Design Time Run-time

Fixed Tailorable

Execution Constraints:
Conflicts (if relevant)

Default operations

Execution Constraints: Permits, Demands

Advanced Operations

Management operations

Execution descriptor

Figure 6.4 Elements of the execution specification.

URN:NBN:no-2103

6.4. DYNAMIC RE-SPECIFICATION OF TRANSACTIONAL BEHAVIOUR 85

purpose is to hinder interference by forbidding specific interleavings to occur.
Hence, an operation is allowed to execute only if it obeys the conflict rules. In
this sense, conflicts can be seen as an analogy to locks.

Now, the question that may arise is: when are conflicts relevant? Conflicts
should be made available if flexible locking mechanisms – i.e., those allowing
different degrees of sharing – are not supported. Clearly, to be able to hinder
interference, a system must provide protocols or mechanisms to manage con-
currency. At the same time, it is important that such mechanisms and protocols
are flexible enough to allow cooperation. Therefore, as long as it is possible to
predict the set of actions to be carried out within the cooperative activities, the
definition of conflicts is encouraged. Because conflicts may be customised to
the application needs, they may generally allow a higher degree of flexibility
than standard locking protocols – e.g., 2PL (Bernstein et al. 1987).

But, should conflicts be fixed or modifiable? The answer lies in finding a
trade-off between manageable flexibility and “anarchy”. Manageable flexibility
can be achieved only if conflicts are fixed. This means that if conflicts are rele-
vant, they must be specified before the involved transactions are executed.
However, to cope with the limitations caused by the dependency on complete a
priori knowledge of actions, conflicts can be supplemented with a locking pro-
tocol that allows users to issue locks on their behalf as their activities are in
progress. Such type of locks are called user-controlled locks, and are similar to
those utilised in existing cooperative systems – e.g., BSCW1. Our user-control-
led locks differ from existing ones in that instead of totally relying on users to
issue all locks, they serve as a supplement to conflicts. Hence, freedom may be
restricted to a manageable level.

The idea is that user transactions do not have to follow strict protocols
that require automatic acquisition of specific locks for specific operations. In-
stead, at some point in the cooperation process, a user can lock the objects he/
she wants to control access to. This means that if the rules defined by conflicts
are incomplete, user-controlled locks may be applied. On the other hand, if
conflicts are too restrictive with respect to cooperation, “allowed interleavings”
is relevant.

Permits

Such constraints define relationships among operations that are normally
conflicting – such as according to the conflict rules – but are allowed to appear,
anyhow. These are referred to as permits – see (Biliris et al. 1994). Their main
purpose is to allow controlled but flexible sharing. Broadly speaking, permits

1. See http://bscw.gmd.de.

URN:NBN:no-2103

86 CHAPTER 6 THE CAGISTRANS TRANSACTIONAL FRAMEWORK

define a set of relationship identifying transactions that are allowed to cooper-
ate on a set of data, whether their operations are conflicting or not.

As in conflicts, questions of relevance and modifiability may arise. Initial
permits can be defined before runtime to allow a set of transactions to override
a possible conflict definition. This means that, based on permits, some execut-
ing transactions performing conflicting operations are granted access to the
same data, but others are prohibited. Further, due to the interactive form of
transactions, it is not always possible to predict a priori the interaction or inter-
leavings among transactions that are needed at runtime. Therefore, the ability
to modify permits at runtime is required. This includes the addition and removal
of permits. New permits may, for instance, be needed when new transactions
are initiated. This is normally unproblematic, since it will only affect future ex-
ecution of actions. Conversely, a situation in the cooperative process may cause
permission to share being irrelevant or undesirable. Therefore, the ability to
temporarily or permanently remove some specified permits must also be con-
sidered. The removal of permits may imply that interleavings that have al-
ready appeared become illegal with respect to applicable conflict rules. This, in
turn, may result in invalidation of already performed actions, thus wasting a
lot of work. Therefore, it is necessary to make sure that removal of specific per-
mits does not cause expensive invalidation of actions.

Although the introduction of permits does not affect already executed ac-
tions, this may allow concurrency anomalies such as dirty reads and lost up-
dates, that must be taken into account. Dirty reads are the least serious of these,
referring to reads of uncommitted data. Although they are generally undesira-
ble, avoiding dirty reads would contradict the whole philosophy of permits.
Nevertheless, the usage of permits has to be managed explicitly in order to
avoid inconsistency of the final results. As a solution, the definition of permits
is accompanied with specification of dependencies among the involved transac-
tions – cf., relaxed isolation in Section 6.3. In addition, there is a need to apply
notification mechanisms that make users aware of the effects of particular sharing
situations, and help them manage and adopt vital changes into their transac-
tions.

The other anomalies should normally be avoided. Lost updates occur
when a transaction writes data that are later directly updated by another trans-
action. Such situations may occur when permission to overwrite data is given.
A simple workaround is to prohibit overwrite situations. But this may cause
blocking. A solution is to allow collaborating transactions to hold locks that are
normally considered conflicting – i.e., similar to those applied in Solaris1 file

1. Solaris is a trade-mark of Sun Microsystem.

URN:NBN:no-2103

6.4. DYNAMIC RE-SPECIFICATION OF TRANSACTIONAL BEHAVIOUR 87

systems, but at the same time control simultaneous updates on data. Such locks
are referred to as collaborative locks. As with user-controlled locks, such lock
types are managed by users. In contrast, while user-controlled locks avoid all
types of conflicting situations, collaborative locks only control overwriting sit-
uations. In other words, when locks are acquired, other users may acquire
other conflicting locks. But, in the case of concurrent updates, the involved us-
ers will be warned, requiring them to choose the way to resolve the specific
conflicts on their behalf, before any further action is taken. Other restrictions
that apply are determined by the existing commit dependencies, – such as deter-
mining the valid commit order.

Demands

Constraint c) defines the interleavings that are required for transactions to
produce a correct execution. These are referred to as demands1, defining se-
quences of operations or steps that must appear. Considering the required dy-
namic behaviour of transactions, specification of demands should be
modifiable. Normally, only part of such a specification can be done before run-
time for the same reasons as permits. In this respect, modification of demands
includes removals and additions of constraints. Removal of demands means
that required actions are no longer needed. This is normally unproblematic
since it will not affect already performed or committed actions.

Additions mean that new actions are inserted into the demands specifica-
tions. This may be needed when new transactions are initiated, or when new
steps are required. In contrast to removal, inserting new constraints may im-
pose some difficulties. For instance, new actions may appear between two al-
ready executed steps. Therefore, the addition could be useless. Alternatively, it
might imply that results from executed transactions are no longer correct with
respect to the new demands. The addition of new constraints is restricted to in-
volve actions that have not been executed yet – checked using the execution de-
scriptor. If new steps appear between already executed actions, such actions
may have to be aborted, and re-executed to reflect the new constraints.

6.4.1.2. Management of transaction execution

Management operations consist of primitives that are used to manage
and control the initiation, termination and dynamic restructuring of transac-
tions (see Table 6.6). Initiation of transactions is done by issuing begin. To ter-
minate initiated transactions, either commit or abort is issued. Due to the
required user control, transaction terminations are usually interactive. But, the

1. Demands are built on patterns (Skarra 1989, Nodine and Zdonik 1992) with modifica-
tions and extensions.

URN:NBN:no-2103

88 CHAPTER 6 THE CAGISTRANS TRANSACTIONAL FRAMEWORK

effects of a termination on other transactions depend on specified dependen-
cies – i.e., commit and abort dependencies. This means that if a user terminates
a transaction he/she will also be informed which other associated transactions
may have to be terminated. Note that due to the incurred “cascading aborts”, a
list of affected actions is provided informing the user about this effect, so that
he/she may first choose to commit partial (possibly finalisable) results, thus
minimising the cost of the aborts. Users may not always be able to understand
the real cost of such aborts – e.g. in terms of wasted person-hour work. There-
fore, finding an efficient way to provide users with as accurate information as
possible concerning the above cost is an important challenge that must be still
considered.

The concept of the dynamic restructuring of transactions has been recog-
nised as an important primitive to allow cooperation among transactions (Kai-
ser 1994). The concept can be realised in several different ways, with possibly
different purposes (see below). The use of dynamic restructuring of transac-
tions is stressed here to realise a specified transaction structure (e.g spawning
new transactions) and allow transactions to delegate responsibilities to other
transactions at runtime. To this extent, the relevance of dynamic restructuring
depends on the defined structure for the transactions. In other words, full re-
structuring can only be achieved if the involved transactions have a nested
structure, as defined by the characteristics specification. This means that if a
transaction is flat then only operation transfer is allowed, since spawning is ir-
relevant. If the transaction, on the other hand, is nested then dynamic restruc-
turing may be accomplished in two ways. Operations can be transferred to
existing sub-transactions. Or, if a target does not exist, creation of a new sub-
transaction precedes the intended operation transfer.

Operation types Usage and effects

Control of execution

Initiation: begin User-controlled if relaxed atomicity

Termination:
commit or abort

User-controlled if relaxed atomicity.
The effects on other transactions depend on
commit and abort dependencies

Dynamic
restructuring

Delegate for
flat transactions Transfer of operations only

Delegate for
nested transactions

If target child(ren) exists, then
operation transfer only
If target child(ren) does not exist, then
spawning before operation transfer

Table 6.6 Summary of execution management operations.

URN:NBN:no-2103

6.4. DYNAMIC RE-SPECIFICATION OF TRANSACTIONAL BEHAVIOUR 89

6.4.1.3. Support for advanced operations

The idea of advanced operations is to allow the specification of operations
at an abstraction level higher than, but based on, read and write. Such an ap-
proach is useful because of its ability to exploit the operation semantics to in-
crease concurrency (Korth 1983, Weikum and Schek 1992). Moreover,
abstraction beyond read and write is required for advanced applications, such
as software engineering environments and the like (Ramamritham and Chry-
santhis 1997). Modelling software engineering activities – e.g., compile, edit,
and so on – with read and write is generally a complex task. Using advanced
operations, we may increase the modularity and thus simplify the modelling
task.

To this extent, one of the main goals of advanced operations is to further
improve the usability of the transactions within advanced applications. How-
ever, there are issues that need further consideration. An important one is
whether the definition of advanced operations at runtime should be allowed or
not. As for transaction constraints, it is desirable to allow runtime definition.
Recall that a complete set of tasks is not always possible to predict in advance.
New operations may be required as activities proceed. The complexity of intro-
ducing new advanced operations at runtime may, however, impose some diffi-
culties. First, introduction of new operations may require the definition of new
conflicts. However, referring to Section 6.4.1.1, conflicts cannot be modified.
Therefore, runtime definition of new operations is only allowed if it does not
require new conflicts. Further, since no new conflicts exist, new permits are only
necessary if user-controlled locks are used. Finally, the introduction of new de-
mands may be required as new steps will be executed. The restrictions that this
may imply are that new operations added to the actual demands should not
appear between already executed steps (see also Section 6.4.1.1).

In conclusion, most of the advanced operations must be specified before
the execution of transactions, but new operations may be introduced during
runtime given that they do not need to modify conflicts.

6.4.2. Dynamic user re-definable correctness criteria
The discussions in Section 6.4.1.1 imply that user-defined correctness cri-

teria constitute a combination of conflicts, demands, and permits. They serve as
vehicles to ensure the correctness of transaction execution that, in terms of flex-
ibility, go beyond serialisability.

First, conflicts are a set of application specific rules identifying forbidden
interleavings to hinder bad interferences. Second, demands define the neces-
sary sequence of steps that are required to appear, thus providing a possibility

URN:NBN:no-2103

90 CHAPTER 6 THE CAGISTRANS TRANSACTIONAL FRAMEWORK

to control the execution of transactions towards consistent final results. Third,
permits serve as a means to weaken conflict rules and provide the possibility to
allow flexible but controlled sharing among transactions. This is despite the
fact that the inferred interleavings that may occur could have been considered
illegal in traditional DBMSs.

The user-defined correctness criterion can be specified and tailored to a
specific application. In addition, parts of this – i.e., permits and demands – can
be adjusted and modified at runtime (see Figure 6.5). This means that an incre-
mental specification is possible, thus limiting the requirements for predictabil-
ity. This again implies that such criteria may fit well in continuously changing
environments. Since the specification can be extended gradually, the problem
implied by the accompanying complexity could be alleviated.

As can be inferred from the above discussion, the CAGISTrans frame-
work has primarily focused on achieving correctness through execution con-
straints – rather than using data consistency predicates. The main reason for
this is the emphasis on flexibility – though using such predicates also allow re-
laxed correctness criteria – which is one of the main requirements for coopera-
tive work. Flexibility here means the ability for users to control the execution of
transactions and tailor these to their needs. By providing transaction execution
constraints, this can be achieved more easily than with data consistency con-
straints as a transaction model designer can specify and customise the con-
straints to be applied on the transaction execution according to the application
needs. However, the present author also recognises the advantages of the latter
approach. Allowing user-defined execution constraints may be subject to
errors, which again could jeopardise the correctness of final results. Using data
consistency predicates, on the other hand, we might cope with such error-
prone specification tasks by allowing the system to do automatised control
based on some specified data consistency predicates (Korth and Speegle 1994,
Bancilhon et al. 1985), and relieving the users from doing the specifications

Figure 6.5 The mechanisms of the user-defined correctness criteria.

Initial Permits

Inital Demands

Relevant Conflicts
Fixed

Delete Permits

Design Time Run Time

New Permits

Remove Demands

Add Demands

URN:NBN:no-2103

6.5. SUPPORTING HETEROGENEITY 91

themselves. The cost that might have to be paid is, however, that developing a
customisable framework would be a challenge as data constraints are defined
implicitly and users cannot specify them to suit their specific applications. In
conclusion, choosing between data consistency and execution consistency is a
matter of finding an appropriate trade-off between (1) flexibility in term of
adaptability and (2) error-free (automatised) correctness preservation.

6.5. Supporting heterogeneity
A main requirement for cooperative work is support for heterogeneity.

The problems of addressing heterogeneity of resource management systems
have long been a subject of intensive research in the database field. Examples
of work in this respect are those on multidatabases focusing on transaction
management over heterogeneous and autonomous DBMSs (Breitbart et al.
1995, Mehrotra et al. 1998, Mehrotra et al. 2001).

Despite the usefulness of the techniques from the multidatabase systems,
only a few existing customisable transaction models have adopted their basic
ideas. An example of those is TSME (Georgakopoulos et al. 1996). Morever, the
support for other resource managers than DBMSs seems de-emphasised. This
may be a shortcoming, since users in the cooperative environment may want to
access information or data from several places that do not necessarily reside in
a database. For example, data needed during a collaboration process may re-
side on a Web server, in regular file systems, heterogeneous database systems,
or other storage services. For this reason, openness is crucial.

To cope with openness and other factors such as dynamic properties, a
system supporting the CAGISTrans framework has been implemented as mid-
dleware bridging user-applications and resource bases (see Figure 6.6). The ad-

Figure 6.6 CAGISTrans high-level architecture.

DatabaseDatabase FilesystemWebserver

Transactional
applications

Other
applications

...

User and application

Resource

CAGISTrans Transactional Support

DBMS

...

Users
Users

URN:NBN:no-2103

92 CHAPTER 6 THE CAGISTRANS TRANSACTIONAL FRAMEWORK

vantage of this is that we do not have to build the system from scratch as in the
case with TSME.

Because of this, CAGISTrans inherits several advantages from the well-
known middleware approach, combined with those from the multidatabase
system techniques:

• Increased support for distribution is achieved by means of Web support.
The CAGISTrans middleware allows information and data that are
administered by the transactional framework to be accessible from the
Internet. Thus, people can work together independently of their geo-
graphical location.

• Increased resource availability is gained by allowing resources adminis-
trated by the CAGISTrans system to reside on repository types other
than databases. This makes it possible to access richer information and
data types than those supported by database systems. Such data may
be of interest or even critical for the accomplishment of the cooperative
process.

• Database independence is attained since CAGISTrans is developed as
middleware rather than a complete transaction management system –
e.g., an advanced TP-monitor. This is based on the observation that the
transaction specification and execution can be accomplished independ-
ently of the underlying repository support. This also enables the port-
ing of the transaction models to different types of systems, thus
extending the usability of transaction models to wider application
areas.

0
The main open question concerning this approach is the performance is-

sue. As can be inferred from the discussion in Section 6.4, execution of such
transactions may introduce some overheads. This could be a bottleneck with
respect to transaction execution speed. Nevertheless, in the context of coopera-
tive work, transactions are generally long-lived. Therefore, the extra seconds
used for management and control purposes would, in the global picture, be in-
significant.

6.6. XML as a specification language
A language that allows runtime interpretation is required in order to al-

low dynamic specification of transaction models. In practice, this means that a
successful modelling language should allow the introduction of new aspects in
the transaction model specification while transactions are being scheduled.

URN:NBN:no-2103

6.6. XML AS A SPECIFICATION LANGUAGE 93

Figure 6.7 illustrates the two alternatives of how a transaction model
specification can be processed. The most common in existing systems is the
first one, where a transaction model is specified, compiled, and then put into
execution. The main drawback of this in terms of advanced applications is that
if changes are required after transactions have been initiated, they must be sus-
pended or even aborted before new aspects in the specification can be incorpo-
rated. Since this may contradict the goal of avoiding unnecessary and
expensive repetition of work, the second alternative is preferred – specification
and interpretation at runtime. This leads us to an investigation of the use of
XML – eXtensible Markup Language (Bray et al. 1998).

Despite the increased use of XML in many applications – including data-
bases – research on the application of XML in the database context seems to be
restricted to storing and querying semi-structured data. To our knowledge,
XML has not yet been used in connection with transaction modelling.

So, how can XML be utilised in CAGISTrans? Actually, XML and the cor-
responding DTD – Document Type Definition – in specification of transaction
models offers several significant advantages. First, it is easy to develop parsers
for XML. In fact, several such parsers are available without cost. Therefore, the
effort needed to develop a new specification language was reasonable. Second,
XML documents are portable and can be exchanged across different platforms,
including different database systems. Regarding openness, this aspect is highly
relevant. Third, XML is generic and capable of providing a user-friendly repre-
sentation of documents. This aspect has been exploited in the representation of
the execution descriptor in a human readable format, using the Extensible Style-
sheet Language (XSL)1for transformation of XML to HTML. This has also been
useful in monitoring transaction executions. Finally, since XML-documents can
be edited and parsed at runtime, it meets one of the main requirements for dy-
namic respecification of transactional behaviour.

1. See http://www.w3.org/TR/xsl.

Figure 6.7 Illustration of specification processing alternatives.

SPECIFICATION

Interpretation

SPECIFICATION

Compilation

Execution

Previous approach Present approach

URN:NBN:no-2103

94 CHAPTER 6 THE CAGISTRANS TRANSACTIONAL FRAMEWORK

Nevertheless, the main concern of XML has been providing effective stor-
age and query mechanisms for the content of XML-documents. This is cur-
rently the subject of intensive research. These aspects are beyond the scope of
this work. Another concern has been the representation of parallel execution of
transactions and conditional rules, as they are not directly supported. This im-
plies that scripting-like languages, such as PHP1 – a Perl-based scripting lan-
guage for the Web – are required.

6.7. Concluding remarks
This chapter has presented our CAGISTrans framework for customising

and tailoring transaction models to application needs. The main contribution of
this work is its way of organising the vital elements of a transaction model to
meet the requirements imposed by the dynamic nature of cooperative environ-
ments. To achieve this, the framework is built on existing transaction models
and transactional frameworks, rather than developing a new transaction
model. This is because it is neither practical nor feasible to provide a transac-
tion model that can handle all types of situations. Therefore, extracting positive
features from existing models and frameworks can extend these models and
frameworks to address the remaining problems within transactional support
for cooperative work. The issue of heterogeneity has been addressed through
exploiting the middleware principle with respect to supporting advanced
transactions independently of the underlying resource systems. This allows the
use of the CAGISTrans framework in a wide range of applications, where
openness and portability are required.

1. See http://www.php.net.

URN:NBN:no-2103

95

Chapter 7

Formalising the
CAGISTrans Framework

7.1. Introduction
Chapter 6 presented an overview of the CAGISTrans transactional frame-

work. In this chapter we will use this as a starting point to outline the theory,
the specification and the design of our CAGISTrans framework. This chapter is
organised as follows.

Section 7.2 discusses one way of organising the transaction model ele-
ments which aims at meeting the requirements of dynamic and heterogeneous
cooperative work environments. To derive these elements, adaptations of the
ACID requirements are used as baseline. One of the main findings, discussed
in Chapter 6, is the way to separate the model specification into design time
and runtime specifications. Section 7.3 shows how transaction specification
and execution can be managed at runtime. An important aspect is the use and
management of user-defined correctness criteria, suitable for concurrent and
dynamic environments. One of the new aspects of our CAGISTrans frame-
work, which existing transactional frameworks have not emphasised, is an in-
tegrated support for workspace management. Section 7.4 outlines the way such
a support is provided in the framework.

7.2. Allowing design time and runtime
specifications

The fact that it is not always possible or feasible to have a complete trans-

URN:NBN:no-2103

96 CHAPTER 7 FORMALISING THE CAGISTRANS FRAMEWORK

action schedule in advance has made it necessary to allow both design time
and runtime specifications of transactions. This has implied the necessity of or-
ganising the elements of transaction models such that parts of the specification
can be done before the actual transactions are executed, while the remaining
parts can be defined during runtime. To address this need, our CAGISTrans
framework provides transaction modelling building blocks that are organised
in characteristics specification and execution specification (see Figure 6.2).

Fundamental to our framework is the ability for users to tailor transaction
properties to meet the requirements of their applications. For this reason we
have advocated the need for specifying the “ACID requirements” to be applied
– i.e., customised non-ACID properties. The following sections explain how
this specification can be accomplished.

7.2.1. Customising the ACID properties and its implications on
transaction characteristics

This section shows that customisation of the ACID properties may well be
used as bases for the transaction characteristics specification.

To deal with the undue strictness of full ACIDity, the ability is required to
seamlessly tailor the ACID requirements. As some situations – within a single
advanced application – may still demand parts of the ACID requirements to be
maintained, most situations may see them just as a burden. Thus the proposed
solution is to allow users to customise the ACID properties according to the
needs of their applications, rather than providing them with fixed properties.
Basically, the idea is to allow users to first identify the main requirements, and
thereafter to designate the appropriate properties.

Customisation of the ACID properties should only affect the atomicity
and isolation requirements. However, consistency and durability should be
maintained by definition. This is despite of the fact that some transactions may
have to tolerate some temporary inconsistencies, and parts of a transaction exe-
cution may not be required to be permanent.

7.2.2. Preserving consistency and durability

As the fundamental requirements underlying transaction processing are
that (1) executing transactions always transform a database from one consistent
state to another consistent state, and (2) once the execution is terminated the fi-
nal result is permanent (Gray and Reuter 1993). These requirements are neces-
sary both to ensure the correctness of data shared among users and to make
sure that all committed results survive possible crashes. These have been the

URN:NBN:no-2103

7.2. ALLOWING DESIGN TIME AND RUNTIME SPECIFICATIONS 97

main motivation for the need to preserve both the consistency and durability
properties.

To recapitulate, full consistency implies that a set of user-defined or data-
base dependent criteria must be provided. In addition, policies determining
relevant mechanisms and specifying the rules for their applicability are neces-
sary (Ramampiaro et al. 1999, Ramampiaro and Nygård 2001).

Further, full durability implies the use of logging facilities that maintain
all necessary information about executing transactions in a persistent store. In
addition, there is a need for mechanisms that allow transactions to explicitly
discard the effect of committed results – e.g., by transaction compensation (Ko-
rth et al. 1990, Levy et al. 1991).

7.2.3. Switching between full and relaxed atomicity

Existing transaction models for advanced applications have emphasised
the necessity of relaxing the atomicity property to meet the requirements of
long, interactive transactions. The suggested solution is often to provide abort
management with finer granularity than that provided by full atomic transac-
tions – i.e., allowing partial aborts. However, there are still situations where
full atomicity is necessary to achieve acceptable processing. An example is
Case 5 in Section 5.4. Ideally, users should be provided with the ability to chose
the way to manage transaction aborts. This is why the necessity for seamlessly
switching between full and relaxed atomicity is stressed. Thus, the flexibility is
increased, in terms of the ability to manage transaction termination exactly ac-
cording to the application needs.

The necessity of specifying the transaction structure, distinguishing be-
tween flat and nested structures has already been indicated. In this way, transac-
tion abortion may be managed in accordance with the actual structure.
Assuming that transactions that are short-lived and do not involve interaction,
are flat. They are seen as atomic satisfying the all-or-nothing law.

By contrast, assuming that long-lived transactions are nested, consisting
of recursively defined constituent transactions, aborts of transactions can be
managed in a more controlled manner – cf., Moss’ nested transaction model
(Moss 1982).

It is now proposed to specify transaction atomicity by means of transac-
tion dependencies. This is based on the dependency theory from e.g., (Chry-
santhis and Ramamritham 1994, Georgakopoulos et al. 1996). Note that
existing solutions involving dependencies assume the existence of parent to
children abort dependency schemes, specifying by default that if a parent

URN:NBN:no-2103

98 CHAPTER 7 FORMALISING THE CAGISTRANS FRAMEWORK

transaction aborts then all its children automatically abort as well. The abortion
of a child, on the other hand, does not have any direct effect on the parent. The
source of dependencies in such a case is thus the transaction structure.

The main disadvantage of such an approach is that abortion of a parent
always discards the effects of its children, making it impossible to define alter-
native, more relaxed, abortion schemes. For example, consider a software
project consisting of several activities – as in our Aviasoft example. Although
the project is cancelled, it might be desirable to “save” the results of some al-
ready completed activities that could be useful in future projects. Moreover,
there are examples where it is necessary to define the effects of a child’s abor-
tion on its parent as well as on possible siblings. This stresses the necessity for
defining a more generalised dependency scheme than that based on structure.
This is called an atomicity abort dependency scheme.

The idea is to allow an explicit designation of a desired abort specification
depending on the application needs. In this sense, prevailing abort dependen-
cies can be defined regardless of any existing access dependencies – i.e., read/
write dependencies – or their structural dependencies – e.g., parent/children
dependencies. The specification of these dependencies is primarily intended to
be done for specific executions of transactions.

Consider a transaction T with constituent transactions t0, t1, t2,..., tn – i.e., T
={t0, t1, t2,..., tn}. To allow the transaction scheduler to deduce which transac-
tions have to abort in case a transaction ti fails, it manages sets, containing lists
of affected transactions, called AbortSet(ti):

AbortSet(ti) is the set of transactions that have to abort if ti aborts:

This means that AbortSet(ti) is a set of transactions tj such that if ti aborts, tj

must also abort.

In the CAGISTrans framework, there is a data structure maintaining a set
of AbortSet(ti) that the transaction manager uses to determine which other
transactions must abort in case a specific transaction aborts. This means that
when a transaction ti aborts, the scheduler will execute DoAbort(ti) as fol-
lows:

(1) Mark ti “aborted”.

(2) If then for each

if tj is not already aborted then DoAbort(tj).

AbortSet ti() tj T∈ abort ti() abort tj() i j≠,→
í ý
ì ü
ë û T, t0 t1 t3 ..., tn, , ,

í ý
ì ü
ë û= =

AbortSet ti() ∅≠ tj AbortSet ti()∈

URN:NBN:no-2103

7.2. ALLOWING DESIGN TIME AND RUNTIME SPECIFICATIONS 99

To illustrate, Figure 7.1 depicts a nested transaction T1 with subtransac-
tions T1.1, T1.2 and T1.2.1. From this, we get the constituent transactions T = {T1,
T1.1, T1.2} and T’ = {T1.2, T1.2.1}. The arrows denote the specified abort dependen-
cies among the involved transactions – i.e., T1.1 depends on T1, and T1 and
T1.2.1 depend on T1.2. Hence, following our definition, AbortSet(T1) ={T1.1},
AbortSet(T1.1) ={ }, AbortSet(T1.2)={T1, T1.2.1} and AbortSet(T1.2.1) ={ }.

As this indicates, if T1 aborts then T1.1 must also abort. The abortion of T1.2
will, cause T1 and T1.2.1 to abort. In other words, the abortion of T1.2 will affect
its parent transaction T1 as well as its child T1.2.1. But the abortion of T1.1 or T1.2.1
will not affect other (sub) transactions.

How does all this affect the execution of transactions? We have assumed
that all transactions with relaxed atomicity are nested.The effect of the specifi-
cations of the atomicity properties are relevant in the way transactions realise
their specified structures during runtime. This means that some transactions
may have to restructure – i.e., spawn new transactions and delegate some re-
sponsibilities, making it necessary to provide operations for dynamic restruc-
turing (see Section 7.3 for an elaboration).

7.2.4. Switching between full and relaxed isolation

Traditional multi-user database systems often assume that users do not
need to cooperate on data, only compete, giving them the impression of being
solely in charge of some specific resources. Clearly, such an assumption contra-
dicts the cooperative work philosophy. In fact, sharing of tentative data is
needed for cooperation to be possible. Therefore, transactions must be able to
reveal their intermediate results. However, this may again cause undue cascad-
ing abortion, which was originally one of the main reasons for the isolation re-
quirement (see Section 2.2). Hence, it is important to have an acceptable
abortion scheme to ensure that only those that are directly affected by a failure
have to abort. The other cooperating transactions should be able to proceed as
normal. To achieve this, we again use the AbortSet and its corresponding algo-
rithm from above, but now we are also interested in dependencies among

T1

T1.1

T1.2

a
a

a

T1.2.1 a

Figure 7.1 Illustration of abort dependency.

URN:NBN:no-2103

100 CHAPTER 7 FORMALISING THE CAGISTRANS FRAMEWORK

transactions that are not “family” related. Thus, instead of only traversing the
AbortSet containing children of a specific transaction, the abortion algorithm
will also go through an “abort set” containing cooperating transactions that
should be aborted with a specific transaction.

Formally, we now define a constituent transaction set Ti as
Ti={ti.0,ti.1,ti.2,...ti.Ni}, i=1,..., m. Thus, the new AbortSet is defined as

This means that the abort set of a transaction may contain trans-
actions that are children of other transactions.

To illustrate this, consider the two nested transactions T1 and T2 depicted
in Figure 7.2. Using our definition, AbortSet(T1) ={T1.1}, AbortSet(T1.1) ={ }, Abort-
Set(T1.2) ={T1, T1.2.1}, AbortSet(T1.2.1) ={T2.2}, AbortSet(T2) ={T2.1, T2.2} and Abort-
Set(T2.1) = AbortSet(T2.2) = { }. This implies that an abortion of T1.2.1 will cause T2.2
to abort, while T2.1 may proceed as normal.

In addition to this relaxed abortion scheme, it is necessary to have relaxed
correctness criteria allowing the above mentioned sharing of intermediate re-
sults. Of course, such criteria will have to be user defined since not all applica-
tions have the same needs. How such a criterion is provided in the
CAGISTrans framework is discussed in Section 7.3.3.

AbortSet ti.j() t Ti
i 1=

m

∪∈ abort ti.j() abort t()→

í ý
î î
ì ü
î î
ë û

where Ti

,

ti.j ti.j ti.j ... ti.Ni, , , ,{ } i, 1 2 ..., m., ,

=

= =

ti.j Ti∈

T1

T1.1

T1.2

a
a

a

T1.2.1 a
T2

T2.1

a
a

T2..2 a

Figure 7.2 Illustration of abort dependency across two
nested transactions.

URN:NBN:no-2103

7.2. ALLOWING DESIGN TIME AND RUNTIME SPECIFICATIONS 101

Further, to achieve a specified criterion, we have to define which policy
should be applied. Such policies are necessary to determine the mechanisms
that are relevant and the rules for when and how to use the mechanisms.
Table 7.1 provides an overview of the correctness criteria and policies associ-
ated with the isolation property.

For full isolation, we apply the serialisability correctness criterion and use
the standard locking policies described in the literature (Bernstein et al. 1987).
For relaxed isolation, on the other hand, we apply user-defined correctness cri-
teria, which are elaborated on in Section 7.3. The relevant mechanisms are flex-
ible locking (treated in Section 7.2.4.1) – user-controlled locks and collaborative
locks, workspace usage (treated in Section 7.4), and awareness mechanisms
(treated in Section 7.2.4.2).

7.2.4.1. Flexible locks

The user-controlled lock protocol is defined and implemented as follows:

(1) Locks are acquired to lock specific objects – i.e., each object has an
attribute telling which transaction is holding a lock on it.

(2) No lock mode – e.g., read-lock vs. write-lock – is required, as the lock
is associated directly with an object rather than with an operation.

(3) Once an object is locked, no other transactions may acquire a lock on
that object until the existing lock is released.

The main characteristic of this locking protocol is that locking is basically
done interactively, without following any strict automatic locking rules. Each
lock is accompanied by a notification tag providing information about the
owner of the lock and the object being locked. In this way, when a lock request
is issued, the system will be able to provide the necessary feedback about the
current lock held (see also Section 7.2.4.2). Such feedback would help the re-
quester finding appropriate course of actions upon conflicts. There are several
possibilities. First, normally if the object is locked by a transaction, the request-
ing transaction would have to wait until the lock on this object is released.

Full Isolation Relaxed Isolation
Correctness Criteria Serialisability User defined, see Section 7.3.3

Applied
Policies

Mechanisms Strict locking and
awareness

Flexible locking, workspaces and
awareness

Rules 2PL protocol User-controlled lock protocol and
Collaborative lock protocol

Table 7.1 Isolation with corresponding correctness criteria and applied policies.

URN:NBN:no-2103

102 CHAPTER 7 FORMALISING THE CAGISTRANS FRAMEWORK

However, since (long) waits are often undesirable, alternative actions could be
useful. Note that when a transaction request a lock, the lock holder will be
made aware of the request by default. He/she may then

(1) “set a permit” on the requesting transaction, and downgrade the lock
into collaborative lock (see below), or

(2) if the transaction no longer needs to use the data, it can release the lock
so that the lock request can be granted.

In cooperative activities, two or more transactions may have to cooperate
on the same object. The locking protocol above restrict explicit cooperation. To
cope with this, we apply the collaborative lock protocol. This is defined and im-
plemented as follows:

(1) As with user-controlled locks, these locks are acquired to lock specific
objects.

(2) And again, no lock modes are required.

(3) But, although an object is locked, other transactions may also acquire a
lock on that object, regardless of the operation semantics.

(4) When a transaction requests a lock on an object already locked by
another transaction, it will be informed about the locking situation,
and asked to specify the intention: browse, incorporate, or modify.

(a) If the intention is to browse, the lock is granted right away.

(b) If the intention is to incorporate, the lock is granted, but the
sequence of future actions must be specified using demands (See
Section 7.3.3).

(c) If the intention is to modify, the lock owner and the requester will
first be warned. Thereafter, they are required to solve the conflicts
through negotiation.

As can be inferred, this locking protocol allows collaborating transactions
to hold conflicting locks. These are similar to those found in the Solaris1 file
system. However, the main difference is that before a lock request is granted,
the intention must be specified, and concurrent updates are allowed only after
explicit agreement among the collaborative partners.

The premises for the use of collaborative locks in the CAGISTrans frame-
work are that (1) there is not always a strong link between what objects that

1. Solaris is a trade-mark of Sun Microsystem. See http://www.sun.com.

URN:NBN:no-2103

7.2. ALLOWING DESIGN TIME AND RUNTIME SPECIFICATIONS 103

transactions read and what actions that they perform based these reads, and (2)
in some situations, inconsistency can be allowed for limited periods of time –
i.e., until a time the users choose to resolve any induced conflicts.

In this view, the lock intention proposed here can be used to overcome
conflicts in the following manners:

• Browse lock intention allows a transaction to read objects that are being
locked by other transactions. However, it does not allow the reading
transaction to manipulate – e.g., deleting or modifying – the objects that
are read. Further, it is assumed that no explicit changes of actions are
required due to changes of the objects read (see the discussion concern-
ing the example in Section 7.3.2). Note that the users will be notified of
any changes to the objects read. Thus, if changes to other objects are
considered useful, the lock intention on these objects should be
upgraded to incorporate. A browse lock intention is by default compati-
ble with browse, incorporate and modify lock intentions.

• Incorporate lock intention allows a transaction to conditionally read
objects that are being locked by other transactions. As for browse, it does
not allow the reading transaction to manipulate – e.g., deleting or mod-
ifying – the objects that are read. However, it assumes explicit changes
of actions when updates on the objects read occur. This means that the
actions must conform to the updates on the object being incorporated.
Hence, demands should be specified to determine necessary actions.
Such actions will, for instance, “compensate” the changes made by fac-
tors such as a new “incorporation” (see the illustrations in Case 4,
Section 7.3.3.2). An incorporate lock intention is by default compatible
with browse and incorporate intentions, but not with modify inten-
tions. However, this incompatibility can be overridden through the use
of demands.

• Modify lock intention allows a transaction to manipulate objects (condi-
tionally if the objects are being locked by other transactions). Conflict-
ing modify lock intentions lead to negotiation in order to resolve the
incurred conflicts. Such negotiation is performed on the basis of the
object that is being altered. The involved users that hold conflicting
locks on that object are informed about the conflict. Based on this, they
may decide upon agreement on the order of their updates, and whether
the lock requesting transactions have to cancel the lock acquisition.
Note that other related “incorporation” would have to specify demands
in accordance with the resulting modifications. A modify lock intention
is, by default, incompatible with incorporate and modify intentions, but

URN:NBN:no-2103

104 CHAPTER 7 FORMALISING THE CAGISTRANS FRAMEWORK

this incompatibility can be overridden through negotiation, and
demands may have to be specified. A modify intention is compatible
with browse.

To summarise this discussion, Table 7.2 shows the compatibility matrix of
the lock intentions.

This discussion shows that the locking protocol relies on users choosing
appropriate collaborative lock intentions. It is recognised that this could im-
pose some important challenges that still deserve careful investigation. In par-
ticular, indirect conflicts can occur, which may again lead to concurrency-
induced inconsistency. Therefore, it is necessary for the CAGISTrans frame-
work to provide sufficient user support in order to address this issue. How-
ever, it is important to still consider the trade-off between (1) total system
control, resulting in error-free interactions and (2) flexibility, allowing users to
choose appropriate actions according to their needs. Early studies of computer
supported teamwork have indicated that humans are indeed prepared to ac-
cept some responsibility for processing information (Ellis et al. 1991). Never-
theless, it is recognised that it is still of immense importance that the system
offers appropriate support in order for the users to be able to handle inconsist-
ency and concurrent conflicting access to objects. Note that in providing such
support one should not neglect the importance of finding the sensible trade-off
between supporting teamwork and controlling it (Sommerville and Rodden
1993).

Also note that, as mentioned earlier, user-controlled locks may be de-
graded to collaborative locks upon request. In other words, if an object is
locked using a user-controlled lock, this lock can be degraded to a collaborative
lock when another transaction requests to access the object. However, before
such access can be accomplished, a permit relationship must be established
(again see Section 7.3.3).

Browse Incorporate Modify
Browse True True True

Incorporate True True Falsea

a. Overridable, but demands must be specified if overridden.

Modify True Falsea Falseb

b. Overridable, but negotiation is required.

Table 7.2 Compatibility matrix of the lock intentions.

URN:NBN:no-2103

7.2. ALLOWING DESIGN TIME AND RUNTIME SPECIFICATIONS 105

7.2.4.2. Awareness mechanisms

Awareness in CAGISTrans is realised with event notification mecha-
nisms. They are aimed at providing users engaged in an activity with knowl-
edge about events that are of possible interest to them.

There are several types of events that are relevant. Related to concurrent
execution of transactions, significant events may be associated with transaction
start, transaction termination, acquisition of locks and object change. These are
realised as follows:

1. Notify on begin. When a transaction starts executing, a notification mes-
sage is broadcasted to all involved parties.

2. Notify on terminate. When a transaction commits or aborts, a notifica-
tion message is sent to all involved parties.

3. Notify on lock. When a lock is acquired or released by a transaction, a
notification message is broadcasted to all involved parties, specifying
which type of lock was acquired or released and on which data the lock
is/was applied.

4. Notify on change. When a data object is being altered by a specific trans-
action operation, a notification message is sent to all involved parties.

Here, involved parties mean all users executing transactions that share a
common resource. For example, in cases where workspaces apply, all users
connected to a shared workspace can be seen as involved parties.

With relaxed isolation, all four notification events are useful due to poten-
tial cooperation. With full isolation, on the other hand, the knowledge about
the existence of other transactions is normally less crucial. Therefore, none of
the notification events are primarily required. Still, events (1) and (2) may be
useful. Recall, for instance, the scenario from Case 5 in Section 5.4. Although
the execution of an agenda update must be atomic and isolated, affected engi-
neers would appreciate notification about the beginning and the termination of
this update, so that they may accommodate their activities accordingly.

Summarising (see Table 7.3), notification types (1), (2), (3) and (4) are rele-
vant when the isolation property is relaxed, whereas types (1) and (2) might be
useful when the isolation property is full.

URN:NBN:no-2103

106 CHAPTER 7 FORMALISING THE CAGISTRANS FRAMEWORK

7.2.5. Analysing the combination of isolation and atomicity
properties

Table 7.4 indicates possible combinations of atomicity and isolation prop-
erties of transactions. Combining full atomicity and full isolation is readily
okay as for the ACID models – cf. (Härder and Reuter 1983).

We may also combine full isolation with relaxed atomicity, allowing
transactions to provide partial rollback or controlled abort management, but at
the same time prohibiting cooperation. An example of a transaction model hav-
ing this combination is the nested transaction model (Moss 1982).

However, combining full atomicity and relaxed isolation may not always
be convenient due to the cost of rollback. An example is a variant of open
nested transactions (Weikum and Schek 1992) allowing subtransactions to co-
operate. If a transaction aborts then all associated transactions must abort too,
whether they have performed conflicting operations or not. Clearly, such a re-
quirement would not be suitable within cooperative environments involving
several associated interactive activities of long duration. Still, this combination
could be useful for small cooperative tasks – i.e., tasks that do not involve too
much invested effort – that must still meet the all-or-nothing objective for the
results to be reliable.

The final case – combining of relaxed isolation and relaxed atomicity –
will always be okay, assuming the consistency and durability requirements can

Full
Atomicity

Relaxed
Atomicity

Full
Isolation Okay Okay

Relaxed
Isolation

Not always
convenient Okay

Table 7.4 Possible combinations of atomicity and isolation properties.

Full
Isolation

Relaxed
Isolation

Notify on begin Useful Relevant

Notify on terminate Useful Relevant

Notify on lock N/A Relevant

Notify on change N/A Relevant

Table 7.3 Relevance for notification types.

URN:NBN:no-2103

7.3. MANAGEMENT OF TRANSACTIONAL BEHAVIOUR AT RUNTIME 107

be met. This last combination is one of the main issues that will be elaborated
on in the rest of this thesis.

7.3. Management of transactional behaviour at
runtime

Adaptability is a prerequisite for the support of dynamic cooperative en-
vironments. Adaptability means the ability to tailor the provided support to
different needs, including those that may change while involved activities are
in progress. In the context of transactional support, meeting such a require-
ment is not a trivial matter. The main challenges are concerned with how to ap-
ply changes while transactions are being processed.

However, it may be concluded from the discussion in Section 6.4.1 that
we can cope with these challenges by allowing a user to specify transaction
models partially at design time and partially at runtime. As was pointed out,
three main building blocks are necessary to manage the transactional behav-
iour during runtime:

• Operations used to manage the execution of transactions

• Advanced operations specifying the actions a transaction can execute

• Rules defining constraints to manage and control the effect of transac-
tion executions

These three issues will be covered in Sections 7.3.1, 7.3.2 and 7.3.3 respec-
tively.

7.3.1. Management operations

Management of transaction execution is achieved through operations that
manage initiation, termination and restructuring respectively.

7.3.1.1. Managing initiation and termination

We can assume that every transaction starts executing with a begin and
eventually terminates with either a commit – if it succeeds, or an abort – if it has
to discard any changes. To allow the widest possible application areas, CAGIS-
Trans is designed to enable both automatic management – i.e., transparent ini-
tiation and termination applicable to ACID transactions, and interactive
management – i.e., user-controlled initiation and termination relevant for coop-
erative interactive environments. The former is realised by allowing the system
to perform the initiation/termination without any intervention by the user.

URN:NBN:no-2103

108 CHAPTER 7 FORMALISING THE CAGISTRANS FRAMEWORK

The latter, on the other hand, is realised in such a way that a user can freely
choose the way transactions execute and terminate. However, to avoid anar-
chy, there is a need to define dependencies among the involved transactions.
These will indicate the order that transactions begin and commit, and the effect
of a transaction’s abort on other transactions. This means that the freedom of
users to execute and terminate transactions will be restricted by the prevailing
begin dependencies (Chrysanthis and Ramamritham 1994), commit dependencies
(Chrysanthis and Ramamritham 1994) and abort schemes.

For example, initiation of a transaction Ti may not be accomplished if a
begin dependency specification says that another Tj has to start first. Similarly,
a specific transaction Ti may not be terminated if there is a commit dependency
specification that enforces Ti to wait for another transaction Tj to finish. Fur-
thermore, aborting a specific transaction Ti may cause another transaction to
abort depending on the prevailing abort scheme (see Section 7.2.1).

Let us formalise these rules adopting Klein’s event rules (Klein 1991). Let
e be an event. The order in which two consecutive events e1 and e2 must appear
is denoted by .

Using this, the above dependency rules can be defined as follows:

• Begin dependency (Chrysanthis and Ramamritham 1994): If a transaction
t2 is begin dependent on t1, then t2 may only begin after t1 has started.

This can be expressed as

• Commit dependency (Chrysanthis and Ramamritham 1994): If a transac-
tion t2 is commit dependent on t1, then t2 may only commit after t1 has

started. This can be expressed as

To illustrate the utility of these dependencies, let us consider our Aviasoft
scenario from Section 5.1.

Let t1 be a coding task for the GUI module and t2 be a quality assurance
(code inspection) task for the same module. Clearly, t2 cannot start until t1 has
started and has made available any code for inspection. Until then, t2 has to
wait. Note that normally this would not require t1 to commit first. Similarly, we
could say that the coding task is not finished until the assurance task is accom-
plished. This means that the commitment of t2 must occur before t1’s commit.

7.3.1.2. Managing dynamic restructuring

The ability of a transaction to delegate responsibilities and spawn new
transactions during runtime is referred to as dynamic restructuring. Referring

e1 e2<

begin t1() begin t2().<

commit t1() commit t2().<

URN:NBN:no-2103

7.3. MANAGEMENT OF TRANSACTIONAL BEHAVIOUR AT RUNTIME 109

to our discussion in Section 6.4.1.2, this has been identified as a useful coopera-
tion primitive in addition to being a means to realise a specified structure dur-
ing runtime.

The main reason for adopting the basic ideas of this notion is the ability to
support open-ended activities. By allowing a transaction to delegate responsi-
bilities, it will be able to release resources that are no longer needed until it ter-
minates. In this way, resources can be made available to other transactions at
an earlier stage. For example, although a transaction aborts, some of its re-
sources may still be used by other still executing transactions.

In CAGISTrans we speak of two types of responsibilities: object locks and
operations. A transaction may thus transfer locks on specific objects to another
transaction, giving it the responsibility to – e.g., accomplish updates on these
objects. It may also transfer operations to another transaction, giving it the re-
sponsibility to commit these operations. From this perspective, the difference
between our approach and that of the Split and Join transaction model is the
use of both operation and object lock delegation. Restructuring in the Split and
Join transaction model is based on object lock transfers only. This is in addition
to the fact that transactions in that model stick to serialisability, but our frame-
work allows user-defined correctness criteria.

Performing delegations

Our dynamic restructuring will depend on the specified structure (see
Table 6.6). Flat transactions do not spawn new transactions, but may delegate
responsibilities to other transactions. This requires that a transaction maintains
two sets containing, respectively, object locks and the operations for which it
needs to delegate responsibilities. We call these ObjSet and OpSet, respec-
tively. An operation delegate(ti, tj, ObjSet, OpSet) performs a re-
source transfer from a transaction ti to another transaction tj. This means that
when a transaction ti executes delegate, this transaction will release its locks
on all objects in ObjSet, and tj will immediately take over these locks. In addi-
tion, all operations in OpSet will be removed from ti’s history, before they are
transferred to tj’s history. Consequently, at the time ti terminates, the opera-
tions that have been delegated to other transactions will not be affected.

Unlike flat transactions, nested transactions may spawn new transactions.
Thus dynamic restructuring may involve the generation of constituent transac-
tions. In that case, delegate(ti, tj, ObjSet, OpSet) transfers responsi-
bility from ti to one of its subtransactions tj. At the time this operation is issued,
tj may be active or not. If tj is active, then the restructuring is achieved as above.
If it is not active, it will be initiated as a child of ti, before the resource transfer is
accomplished as before.

URN:NBN:no-2103

110 CHAPTER 7 FORMALISING THE CAGISTRANS FRAMEWORK

From the above discussion it can be inferred that from the delegation
point of view, delegations for flat transactions appear more general than those
for nested transactions. The main reason for this is to keep the delegation com-
plexity at a manageable level. This would ease the decision for finding the
delegatee. Without such restriction, delegation across the nested structure
might be relevant, which could imply that any subtransaction from a nested
tree (subtree) could, in theory, perform the delegation to another subtransac-
tions in another tree (or subtree). As stated earlier, however, one of the main
reasons for having delegation in the CAGISTrans framework is primarily to
allow dynamic restructuring. Therefore, its management can be kept as simple
as possible by emphasising a more generalised delegation for flat transactions,
and focusing the restructuring for their nested counterparts.

Recovery issues

It is a prerequisite that delegation of responsibilities is atomic to ensure
consistent “results”. This means that when issuing delegate(ti, tj,

ObjSet, OpSet), either all locks on objects in ObjSet and all operations in
OpSet are successfully transferred from ti to tj or none.

Information concerning locks on objects in ObjSet must be recoverable,
whereas it is not necessary to make an explicit recovery management on the in-
formation concerning OpSet since it will still be saved in the delegator’s
history until the delegation is accomplished.

7.3.2. Advanced operations

Advanced operations mean commands specified at an abstraction level
higher than, but based on, read and write operations. As pointed out in
Section 6.4.1, there are several advantages in using advanced operations in
CAGISTrans. An important one is that advanced operations allow us to exploit
semantic knowledge about an operation. An example of such semantics is the
return information from executed operations – e.g., the changes operations
have made. Another example is the intention of an operation. Here, for in-
stance, we can speak of two types of read intentions; browsing and incorporation.
Browsing means that even if an object being read by a user had a different
value, this would not cause the user to perform different actions. In other
words, with browsing, changes will not affect users’ future actions. On the
other hand, if the intention is incorporation, changes on an object read are
likely to affect the way users act.

How do we realise advanced operations with intentions? We define a
general advanced operation as a tuple Op = àOptype, InSet, OutSet, Intentð,
where Optype denotes the type of operation, InSet is the set of input objects –

URN:NBN:no-2103

7.3. MANAGEMENT OF TRANSACTIONAL BEHAVIOUR AT RUNTIME 111

i.e., objects read, OutSet is the set of output objects – i.e., objects written, and In-
tent indicates the intentions of each input argument.

Using this, we can specify a general conflict rule based on operation com-
mutativity (Weihl 1988); two operations are in conflict if the order in which
they are executed matters. Disregarding intentions, this means that two opera-
tions Op1 = àOptype1, InSet1, OutSet1ð and Op2 = àOptype2, InSet2, OutSet2ð com-
mute if the objects read by Op1 are different from the objects written by Op2, the
objects read by Op2 are different from the objects written by Op1, and Op1 and
Op2 do not update any common object:

With intention knowledge, we relax this commutativity rule such that
even if the intersection between an InSet and OutSet pair is not empty, the two
operations will still commute when the objects in the intersection are for
browse with the inputting transaction.

In practice, we substitute the Intent in the operation tuple with a Browse-
Set, assuming that all objects found in InSet but not in BrowseSet are by default
incorporated. Based on this, the new commutativity rule can be formally de-
fined as follows. Considering Opi=àOpTypei, InSeti, OutSeti, BroweSetið:

This means that two operations Opi and Opj are compatible iff (1) Opi and
Opj do not perform updates on any common objects, and (2) objects read by
one of the operations and updated by the other operation only are for browse
with the inputting transaction. Note, this assumes that all elements of Browse-
Seti are elements of InSeti;

To illustrate, suppose that Aviasoft’s software development environment
provides the commands Edit_interface, Edit_class, and Compile_class for a coding
process. Assume that all these are abstractions of read and write operations.
Consider that two modules are to be created as part of the coding process as il-
lustrated in Figure 7.3 – i.e., the graphical user interface module (GUI for short)
and the process module (P) processing inputs from the GUI and producing
data to be displayed by the GUI. Further, Edit_class(GUI) implements the inter-
face part of the process module, called process interface (P_i for short). As indi-
cated in the illustration, this means that changes on P_i will affect the execution

InSet1 OutSet2∩ ∅=() InSet2 OutSet1∩ ∅=()
OutSet1 OutSet2∩ ∅=()

∧ ∧

Compatible Opi Opj,() OutSeti OutSetj∩ ∅=()
Ob InSeti OutSetj∩()Ob BrowseSeti∈∈∀()
Ob InSetj OutSeti∩()Ob BrowseSetj∈∈∀()

∨(
)

∧⇔

Ob Ob BrowseSeti∈() Ob InSeti∈().→,∀

URN:NBN:no-2103

112 CHAPTER 7 FORMALISING THE CAGISTRANS FRAMEWORK

of Edit_class(GUI). But, as depicted, although Edit_class(GUI) reads GUI_i,
changes on this object will not directly affect that operation, in that it had, for
example, to make new changes on GUI_c. To produce GUI_c, it suffices to in-
clude GUI_i in its “import list”. It is similar for Edit_class(P) and
Compile_class(P).

Here, we can say that a read does not have a direct effect on an operation
if there is no explicit connection between what objects and the values that the
transaction reads and what it performs as a consequence. This means that even
if the value for an object read by a transaction was modified, it would not have
to perform different actions, as for example to re-update other objects. As such,
some browse reads could well be executed as transactions on their own. How-
ever, sometimes their execution with other “conflicting” operations may still be
useful. For example, let us consider the Edit_class(P) operation in
Figure 7.3. To produce/update the class code P_c, both P_c and P_i are read.
If P_c already exists, its previous “value” is incorporated for updates. How-
ever, P_i is required here only for the user running Edit_class(P) to know
what has been made on P_i to find out whether the “list” of methods provided
in it conforms to those implemented in P_c. P_i is in addition to this needed for
compilation purposes. Note that although the “list” provided in P_i is still
incomplete and is being changed, the user would still be able to produce P_c,
and modification of P_c is not required. From this it can be concluded that any
inconsistency between P_i and P_c does not affect the production of P_c, per se.

Using the advanced operation type, we get the specifications given in

Figure 7.3 Advanced operations illustration.

GUI Module

P Module

Edit_interface(GUI)

Edit_class(GUI)

Compile_class(GUI)

Edit_interface(P)

Edit_class(P)

Compile_class(P)

Advanced
operations

GUI_i

GUI_c

GUI_o

S

S

O

P_i

P_c

P_o

S

S

O

Legend:

S: Source code

O: Object codeinput- incorporate

output

input - browse

URN:NBN:no-2103

7.3. MANAGEMENT OF TRANSACTIONAL BEHAVIOUR AT RUNTIME 113

Table 7.5.

Applying our advanced compatibility rule, we get for example:

¬Compatible(Compile_class(GUI), Edit_class(GUI))
¬Compatible(Compile_class(P), Edit_class(P))
¬Compatible(Edit_class(GUI), Edit_interface(P))
Compatible(Edit_class(GUI), Edit_interface(GUI))
Compatible(Edit_class(P), Edit_interface(P))
Compatible(Compile_class(GUI),Compile_class(P))

These results will be used in the illustrative examples in the rest of this
chapter.

7.3.3. Managing and controlling transactional behaviour

Transaction executions must be managed in a controlled manner to
achieve acceptable data consistency. Traditionally, serialisability has been the
ultimate and widely accepted criterion to achieve data consistency (Bernstein
et al. 1987). However, as pointed out earlier, a serialisability criterion requires
transactions to be isolated, thus prohibiting cooperation. To overcome such a
restriction, a set of user-controlled correctness constraints has been included to
allow a controlled sharing of data, and ensure that transactions terminate with
consistent final results. Such constraints may be used when the serialisability
criterion is considered inappropriate.

7.3.3.1. General discussion

To recapitulate, the constraints in CAGISTrans explicitly specify transac-
tion interleavings that are (1) prohibited, (2) allowed, and (3) mandatory. Con-
straints (1) are realised using conflicts, which define operations that cannot
execute concurrently to hinder incorrect effects. Constraints (2) are realised us-
ing permits, which identify operations that in general are considered conflicting

Operations applied on GUI
Edit_interface(GUI) = àEdit_interface, {GUI_i}, {GUI_i},{ }ð

Edit_class(GUI) = àEdit_class, {GUI_c, P_i, GUI_i}, {GUI_c}, {GUI_i}ð
Compile_class(GUI) = àCompile_class, {GUI_c, P_o}, {GUI_o}, {P_o}ð

Operations applied on P
Edit_interface(P) = àEdit_interface, {P_i}, {P_i}, { }ð
Edit_class(P) = àEdit_class, {P_c, P_i}, {P_c}, {P_i}ð
Compile_class(P) = àCompile_class, {P_c}, {P_o}, { }ð

Table 7.5 Illustrations of advanced operation specification.

URN:NBN:no-2103

114 CHAPTER 7 FORMALISING THE CAGISTRANS FRAMEWORK

by (1), but that still can execute concurrently. Finally, constraints (3) are real-
ised with demands, which specify operation sequences that must appear to
achieve correct executions. Different combination of conflicts, permits, and de-
mands thus constitute the user-defined correctness criteria in CAGISTrans.

Figure 7.4 is a general illustration of how combinations of the three con-
straint types can be exploited as user-defined correctness criteria. A table con-
taining a set of prohibited interleavings specifies the conflicts. This consists of a
list of operation pairs that cannot be executed concurrently, for the currently
executing transaction set. Consider now that T1={t5, t6, t10} and T2={t3, t7, t4}, are
two sets of cooperating transactions. While interacting, users running transac-
tions in T1 and T2 find out that they want to share some specific objects. How-
ever, due to the specified conflicts, this is impossible. There are, in particular,
two specific pairs of operations that they would like to execute concurrently.
To cope with this, they must specify a permit relationship for each transaction
set. However, the two permitted interleavings may now introduce some con-
currency anomalies. Therefore, they might also have to specify demand rules,
determining sequences of operations that the transactions in T1 and T2 have to
execute. Note that such demanded interleavings must still obey the conflicts de-
fined for the two transaction sets.

7.3.3.2. The necessity of conflicts, permits and demands

This section discusses the necessity of diverse combinations of the three
constraint types.

t10

t6

t9

t7

tn

t12

t1
t2

t8

t3

t11

t5

Prohibitted
Interleavings

Permitted
Interleavings

Executing transaction set

Required interleavings

Figure 7.4 Illustration of the use of the three constraints.

URN:NBN:no-2103

7.3. MANAGEMENT OF TRANSACTIONAL BEHAVIOUR AT RUNTIME 115

Case 1: Conflicts and Permits only

This case assumes that we only have conflicts and permits, where the per-
mits allow some specific transactions to violate some of the conflict rules. An
analogous example is allowing a transaction tj to write an object read by an-
other uncommitted transaction ti. As long as ti’s read does not affect its future
computation, any changes to this object will not be critical. But if this is not the
case, problems might arise. This means that there are situations where conflicts
and permits alone would not be sufficient to guarantee correctness. Rules spec-
ifying what sequences of actions must be executed for the final results to be ac-
ceptable from the viewpoint of both ti and tj are also needed.

To illustrate, two engineers Tom and John are assigned the responsibility
to create the two modules GUI and P from Section 7.3.2. Figure 7.5 illustrates a
possible interaction scenario.

According to our commutativity (conflict) rule, this scenario is illegal be-
cause of the concurrent execution of Edit_interface(P) and Edit_class(GUI). As a
result, Tom must wait until John finishes. Assume, however, that Tom and
John find such a wait unacceptable. Hence, they need a permit relationship to
enable their interaction. We may define this as permit(TTom, TJohn, [Edit_class,
Edit_interface], [GUI, P]). This allows Tom and John to execute Edit_class and
Edit_interface upon GUI and P, even if this violates a commutativity conflict.
Taking this permit relationship into account, Figure 7.6 shows the scenario that
may be considered correct.

Note, to achieve recoverability (Bernstein et al. 1987), we must ensure that
TTom does not commit before TJohn, specified as a commit dependency – i.e.,

Figure 7.5 Incorrect scenario.

Edit_class(P)

Compile_class(P)

Compile_class(GUI)

Edit_class(GUI)

TTom:Create GUI Module TJohn:Create P Module

Edit_interface(GUI)

Edit_interface(P)

... ...

time

URN:NBN:no-2103

116 CHAPTER 7 FORMALISING THE CAGISTRANS FRAMEWORK

 And if TJohn aborts then TTom must abort too –
i.e., AbortSet(TJohn)={TTom}.

Case 2: Permits and Demands only

This case only combines demands and permits. Permits identify allowa-
ble interleavings while demands specify steps that must appear. Since this as-
sumes that conflict rules do not exist, permits are used to allow accesses to data
that are controlled via locking. This implies that we will not be able to fully ex-
ploit the benefit of advanced operations, and so be unable to customise con-
flicts. The reason is that we would not be able to reason about conflicts
appearing beyond read/write.

Nevertheless, we may regard locks as a specialisation of conflicts. Hence,
this case is a special case of Case 4.

Case 3: Conflicts and Demands only

This case is equivalent to that of Nodine and Zodnik (1992). This combi-
nation may be applied to achieve correctness. However, since we may not di-
rectly refine a conflict definition (also true for the original conflicts from
(Nodine and Zdonik 1992)), there is no way to relax any prespecified conflict
rules if the requirements change. Nevertheless, it is often preferred to allow
some limited number of transactions to disregard some specific conflicts rather
than change these conflicts for all executing transactions collectively. Although
cooperation could be useful for Tom and John, allowing a third party to ob-
serve the changes made may not necessarily be convenient, since the results
may still be incomplete. In other words, removing some specific conflicts, thus
opening up for all the involved transactions, may sometimes be inconvenient

commit TJohn() commit TTom().<

Figure 7.6 Correct scenario using conflicts and permits.

time

Edit_class(P)

Compile_class(P)

Compile_class(GUI)

Edit_interface(P)

TTom:Create GUI Module TJohn:Create P Module

Edit_interface(GUI)

Add_permits
Reqest_permits

OK

Edit_class(GUI)

...
...

URN:NBN:no-2103

7.3. MANAGEMENT OF TRANSACTIONAL BEHAVIOUR AT RUNTIME 117

with respect to consistency of the final results. Therefore, we may also need
permits in addition to conflicts and demands.

To illustrate, consider the coding example involving Tom and John in
Figure 7.7. Due to our conflict rules and the lack of permits, Tom and John may
not execute Edit_interface(P) and Edit_Class(GUI) concurrently. This means that
only one of the two engineers can update both P_i and GUI_c at a time. For this
reason, Tom and John agree that Tom should do the necessary updates on P_i
as well as GUI_c, while John modifies P_c.

This far, the interaction between Tom and John’s transactions is legal.
However, to make sure that all interface information included in GUI_c are
complete, before producing the object code of GUI, Tom has to browse the ob-
ject code of P. Therefore, the scenario in Figure 7.7 must be considered invalid.
Tom has to wait until the object code of P is available.

Figure 7.7 Invalid scenario according to conflicts and demands constraints.

time TJohn:Create P ModuleTTom:Create GUI Module

Edit_class(P)

Edit_interface(GUI)

Edit_class(GUI)

Compile_class(GUI)

Edit_interface(P)

Edit_interface(P)

...
...

Figure 7.8 Valid scenario following conflicts and demands constraints.

Compile_class(GUI)

Edit_class(P)

Compile_class(P)

Edit_class(GUI)

Edit_interface(P)

time TJohn:Create P ModuleTTom:Create GUI Module

Edit_interface(GUI)

Add_demands

...
...

URN:NBN:no-2103

118 CHAPTER 7 FORMALISING THE CAGISTRANS FRAMEWORK

Hence, Tom and John need a demand specifying that before
Compile_class(GUI) can be executed – after GUI and P are modified,
Compile_class(P) must be performed. As a result, the interactions depicted in
Figure 7.8 represent a valid sequence of actions, using both conflict and de-
mand constraints. A discussion of demand additions (the thick lines) is pro-
vided in Section 7.3.4.

Case 4: Conflicts, Permits and Demands

The main conclusion of the discussions in the three cases above is that we
may need all the three constraints to both ensure correctness and enable some
degrees of flexibility – i.e., controlled sharing of data. To illustrate this case, re-
call our coding example with Tom and John from Case 1, and consider the sce-
nario in Figure 7.9.

Suppose that John has to make some modifications to P_i after Tom has
created the GUI-class. Because of the prevailing permits (see Case 1), this is
okay. However, due to these modifications, the P_i incorporated by Tom is no
longer up to date. This implies that Tom ought to re-execute Edit_class(GUI) to
reflect the changes made to P_i. A natural way to ensure this is to add a de-
mand enforcing the execution of Edit_class(GUI) after Edit_interface(P).

Figure 7.10 shows a scenario following this rule. Here, the commit de-
pendency between TTom and TJohn still applies, meaning that after the first
Compile_class(GUI), Tom must wait for John’s commit before he can terminate
too.

Figure 7.9 Illegal scenario due to incompleteness of conflicts and permits.

time

Edit_class(P)

Compile_class(P)

Edit_interface(P)

TJohn:Create P ModuleTTom:Create GUI Module

Edit_interface(P)

Add_permits
Reqest_permits

Edit_class(GUI)

Edit_interface(GUI)

Compile_class(GUI)

OK

OK

...
...

URN:NBN:no-2103

7.3. MANAGEMENT OF TRANSACTIONAL BEHAVIOUR AT RUNTIME 119

7.3.4. Handling dynamic re-specifications of correctness
constraints

We have several times stressed the ability to modify the three constraint
types – i.e., conflicts, permits and demands – at runtime. Table 7.6 summarises
the conclusions drawn from an analysis of the possible adjustments.

7.3.4.1. Conflicts

Conflicts should not be modifiable during runtime to avoid unmanagea-
ble complexity. However, indirect refinements are still possible. For instance,
user-controlled locks can be used (see Section 7.2.1) to gain more restriction,
and permits can be added to gain more flexibility.

Figure 7.10 Legal scenario using conflicts, permits and demands.

time

Edit_class(P)

Compile_class(P)

Edit_interface(P)

TJohn:Create P ModuleTTom:Create GUI Module

Edit_interface(P)

Add_permits
Reqest_permits

Edit_class(GUI)

Edit_interface(GUI)

Compile_class(GUI)

OK

OK

Compile_class(GUI)

Edit_class(GUI)

Add_demands

...
...

Addition Removal
Conflicts N/Aa

a. Conflicts are not modifiable.

N/Aa

Permits Always okay May cause
difficulties

Demands May cause
difficulties Always okay

Table 7.6 Properties of the execution constraints.

URN:NBN:no-2103

120 CHAPTER 7 FORMALISING THE CAGISTRANS FRAMEWORK

7.3.4.2. Permits

Addition of permits

Apart from the concurrency anomalies that may occur, and which are
managed separately (see Section 6.4.1), the introduction of permits at runtime
does not cause any problems since this will only affect operations that will be
performed in the future.

To handle a new permit relationship – i.e., permit(tj, ti, Op_set, Ob_set), al-
lowing ti and tj to perform a set of operations Op_set on a set of objects Ob_set, a
specification manager (see Section 8.3.1) executes the following steps:

Add_permit(tj, ti, Op_set, Ob_set)

(1) Check whether conflicts for Op_set and Ob_set exist. If this is true,
define the permits.

(2) If no conflicts exist, check whether the data in Ob_set are locked:

(a) If the lock type is user-controlled, request degradation. If this can
be granted, degrade the lock to a collaborative lock and define the
permits.

(b) If the lock type is collaborative, define the permits.

(3) Otherwise, no permits are necessary.

Removal of permits

In contrast, the removal of a permit relationship may not always be
straightforward. Difficulties may arise due to existing conflict specifications.
For example, some operations in the Op_set may be conflicting, thus causing an
execution to be invalid. However, this only applies if the involved operations
have already been executed. To manage the removal, the specification manager
executes the following steps:

Rem_permit(tj, ti, Op_set, Ob_set)

For all operations in Op_set, check for conflicts. For each conflict found,
check in the log whether the operation has already been executed:

(a) If the operation is found in the “log”, report the conflict to the user,
providing options for further actions: (i) Invalidate (through
abort), (ii) Ignore (not recommended), or
(iii) Cancel (the removal).

(b) If it has not been executed, remove the permits and return with
success.

URN:NBN:no-2103

7.3. MANAGEMENT OF TRANSACTIONAL BEHAVIOUR AT RUNTIME 121

It is important to note that given the length of transactions and the
amount of data that these transactions may touch, maintaining the information
concerning permits may become a difficult and complex task. To cope with this
complexity, the management of permits must be kept as simple as possible.

A proposed solution here is maintaining the permit information in a
“database” of permits. Each permit “relationship” for two specific transactions
is associated with table entries consisting of quadruple of the involved transac-
tions, operations, and objects. Each operation has a flag telling whether it has
been executed or not. When a permit is inserted to the “database”, the execu-
tion flags for all involved operations are unset (false). Then, when a transaction
executes a specific operation, the execution flag for that operation will be set
(true).

So, when a permit is to be removed, the search in the “log” in (a) means
issuing a query on the permit “database” and checking whether there are oper-
ations that have the execution flags set or not. When a transaction terminates,
one or more (associated) permits will be removed from the “database”.

7.3.4.3. Demands

Addition of demands

Although there are no problems adding permits, the introduction of de-
mands is not always so straightforward. The following discussion considers
different cases and situations that the specification manager must handle when
a user adds demand constraints.

Case 1: Force an occurring operation Opk in-between operations Opi and Opj

An In-Between (Opi, Opk, Opj) constraint requires that if all three opera-
tions Opi, Opj and Opk occur, then Opk must succeed Opi and precede Opj in se-
quence – i.e., This is illustrated
with a linking graph in Figure 7.11.

See Case 3 in Section 7.3.3.2 for an application of this constraint type. The
worst case here is when such an addition is requested just before Opk is to be
executed. It is okay if Opj has not already been executed (irrespective of
whether Opi has been executed) – it is just a matter of adding the linking re-
quirements and scheduling the involved operations appropriately (if all three

Opi Opj Opk, ,() Opi Opk<() Opk Opj<().∧,∃

Opi OpjOpk

Figure 7.11 Illustration of an In-Between constraint.

URN:NBN:no-2103

122 CHAPTER 7 FORMALISING THE CAGISTRANS FRAMEWORK

occur). But if Opj has already been executed, it has to be re-executed – with pos-
sible recursive effects – when Opk is executed (if Opi also occurs).

Case 2: Force a non-occurring operation Opk to occur and follow operation Opi

An Occur-Follow (Opi, Opk) constraint requires that if a specific operation
Opi occurs, then the given operation Opk must also occur and follow Opi in se-
quence – i.e., This is illustrated with a
linking graph in Figure 7.12.

See Cases 3 and 4 in Section 7.3.3.2 for three applications of this constraint
type. Such an addition typically involves forced scheduling of operations. The
only recursive effects here would be other forced executions but no re-execu-
tions.

Note that operations may be involved in several demand constraints – of
both types even – at the same time.

Removal of demands

Just like adding permits, the removal of a demand does not pose any dif-
ficulties. This is because occurring patterns of operations are not prohibited by
nonexistent demands.

7.4. Integrating workspace management
Integration of the workspace concept in CAGISTrans was motivated by

the need to facilitate the management of sharing in data intensive systems as
well as to further widen the application areas of the CAGISTrans framework.

7.4.1. Flexible workspace support

Several extended operations were listed in Section 6.2.2 that become ne-
cessary as a result of the flexible workspace management needed in CAGIS-
Trans. Recall that the operations provided are write-check-out (wco) and read-
check-out (rco), distinguishing the intentions behind the check-out operation,
upward-check-in (uci), checking in data from any level to the next level, check-in
(ci), checking in data from any workspace to the public workspace, refresh, up-
dating a local copy of data with the one residing in the parent workspace, and
data manipulation operations such as read, write, insert and delete, plus di-

Opi Opk Opi Opk<() Opi Opk→().∧,∀∃

Figure 7.12 Illustration of an Occur-Follow constraint.

Opi Opk

URN:NBN:no-2103

7.4. INTEGRATING WORKSPACE MANAGEMENT 123

verse advanced operations (see Section 7.3.2). Note that the main difference be-
tween uci and ci is that when a user performs uci(obj), he/she only puts a copy
of obj from his/her workspace into a parent workspace. He/she still has the
ownership on obj. But, with ci(obj), obj is moved to the public workspace, and
the ownership to obj is released. This distinction is similar to that proposed in
the literature (Kim et al. 1984, Bancilhon et al. 1985), allowing an object to be
checked-in either to a semi-public workspace or a public workspace. However,
as mentioned earlier, unlike the previous approaches, here the connection
between the transaction structure and the workspace operations is not consid-
ered, allowing check-in to either public or group workspace to be performed
independently of the current transaction structure. Moreover, the coordination
of these operations is performed differently compared to the previous
approaches. Here the workspace operations are coordinated through the
constraint tools in CAGISTrans.

To illustrate the use of these operations, consider our coding example.
Figure 7.13 incorporates in its right-hand side the workspace operations
needed for the interaction between Tom and John corresponding to
Figure 7.10. This figure is again an extension of Figure 7.3. The operations in
shaded boxes are operations executed on the GUI module, while the other op-
erations are executed on the P module.

The detailed interaction between Tom and John, illustrating the use of the
workspace operations, is depicted in Figure 7.14 and Figure 7.15.

GUI Module

P Module

wco:

wco, uci, uci:

Workspace
operations

rco, refresh:

Edit_interface(GUI)

Edit_class(GUI)

Compile_class(GUI)

Edit_interface(P)

Edit_class(P)

Compile_class(P)

Advanced
operations

GUI_i

GUI_c

GUI_o

S

S

O

P_i

P_c

P_o

S

S

O

wco:

wco:

Legend:

S: Source code

O: Object codeinput- incorporate

output

input - browse

Figure 7.13 Illustration of workspace operations applied on GUI and P modules.

URN:NBN:no-2103

124 CHAPTER 7 FORMALISING THE CAGISTRANS FRAMEWORK

Before editing the GUI interface (GUI_i), Tom must check out GUI_i for
write – i.e., wco(GUI_i). This allows him to make all the necessary changes to
GUI_i. John does the same with P_i. When John is finished, he updates the copy
of P_i to his and Tom’s group workspace by issuing uci(P_i). Here, John

P-moduleGUI-module
SGUI_i
SGUI_c
OGUI_o

GUI-module
SGUI_i
SGUI_c
OGUI_o

wco(GUI_i)

wco(GUI_c)

P_i

S
S
O

P_i
P_c
P_o

P_i

wco(P_i)

wco(P_c)

refresh(P_i)

uci(P_i)

rco(P_i)

P-module
S
S
O

P_i
P_c
P_oPublic Workspace

John's Private Workspace

Tom's Private Workspace

Group Workspace

uci(P_i)

Figure 7.14 Illustration of workspace Tom and John’s interactions.

Figure 7.15 Illustration of the use of workspace operations.

TTom:Create GUI Module TJohn:Create P Moduletime

Compile_class(P)

Edit_interface(GUI)

Edit_interface(P)

Edit_interface(P)

Compile_class(GUI)

Edit_class(P)

Edit_class(GUI)

Edit_class(GUI)

write-check-out(GUI_i)

refresh(P_i)

upward-check-in(P_i)

upward-check-in(P_i)

write-check-out(GUI_c)

read-check-out(P_i)

Compile_class(GUI)

write-check-out(P_i)

write-check-out(P_c)

...
...

URN:NBN:no-2103

7.5. CHAPTER SUMMARY 125

chooses uci rather than ci since he knows that P_i is still incomplete. Therefore,
making P_i publicly available is not reasonable yet. P_i is useful to Tom,
though. Actually, Tom is now ready to edit the GUI class (GUI_c). For this, he
needs a copy of P_i so he issues rco(P_i). Thereafter, he checks out GUI_c for
write – i.e., wco(GUI_c). Now, while Tom is performing his updates on GUI_c,
John finds out – after making some changes to P_c – that he must do some fur-
ther changes to P_i, which he afterwards checks in to the group workspace
once more. As Tom is forced to re-edit GUI_c (see Figure 7.10), he must update
his copy of P_i with the latest changes. Since Tom already has a copy of P_i, he
accomplishes this by issuing refresh(P_i), rather than another rco(P_i). Hence,
Tom will now update GUI_c to reflect the changes to P_i.

7.4.2. Correctness insurance and coordination

To ensure correctness and coordinate interactions through workspaces,
we use user-defined constraint tools to specify prohibited interactions, permit-
ted interleavings, and required sequences of operations, as described in
Section 7.3.3.

To illustrate this, let us assume that the commutativity (conflict) rules
from Section 7.3.2 apply and consider Figures 7.6, 7.10 and 7.15. Without the
permit relationship from Figure 7.6, when Tom issues rco(P_i), the execution
manager would have to request him to wait until John has committed his up-
dates on P_i. But, with the indicated permit relationship, upon request, John
will be requested to make available his partial results by issuing uci(P_i), allow-
ing Tom to proceed with his task.

Further, John’s repeated processing of P_i will affect Tom’s processing of
GUI_c. As indicated in Figure 7.10, this triggers a demand relationship too.
This again will force the execution of Tom’s refresh operation, after the new
copy of P_i is made available through John’s uci operation.

7.5. Chapter summary
This chapter has described the theory, the specification and the design of

our CAGISTrans framework.

It has addressed the dynamic properties of cooperative work by provid-
ing transactional support that not only can be tailored to fit different needs, but
can also be adapted to changes in the actual environments. The fundamental
approach is to exploit the beneficial features from existing transaction models
and frameworks, and extend these to form our CAGISTrans framework. An ex-
plicit comparison to related work is provided in Section 11.3.

URN:NBN:no-2103

126 CHAPTER 7 FORMALISING THE CAGISTRANS FRAMEWORK

URN:NBN:no-2103

127

Chapter 8

A System Supporting
the CAGISTrans Framework

8.1. Introduction
Cooperative work environments are heterogeneous in addition to being

dynamic. Therefore, openness is crucial. Previously, we indicated the necessity
of supporting changes in the environment, while users are executing their
transactions. Along the same line, the necessity of providing support for a wide
range of resource management systems was stressed. Motivated by this, the
CAGISTrans transaction management system has been developed as middle-
ware (see Section 6.5). The objective here is to provide a system built on top of
available DBMSs, which at the same time can offer features that extend these
DBMSs in terms of distribution support, increased resource availability and da-
tabase independence, as well as providing flexible cooperative transaction
management support.

This chapter presents of the design of a CAGISTrans system architecture.
Thus, it particularly shows how the CAGISTrans framework deals with prob-
lems incurred by the heterogeneous nature of cooperative environments, in ad-
dition to those incurred by their dynamic nature. To this end, this chapter is
organised as follows. Section 8.2 outlines system requirements based on the
discussion in Chapters 5, 6, and 7. Using this as a starting point, Section 8.3 out-
lines the CAGISTrans system architecture. A discussion of our experience from
experimenting with patterns and conflicts is provided then in Section 8.4. This
states the main reasons for the selection of our correctness constraint tools.
Section 8.5 then discusses the relation of our CAGISTrans system to other sys-

URN:NBN:no-2103

128 CHAPTER 8 A SYSTEM SUPPORTING THE CAGISTRANS FRAMEWORK

tems. Finally, Section 8.6 summarises how our system satisfies the require-
ments set up in Section 8.2.

8.2. System requirements
Our system requirements are derived from a combination of the coopera-

tive work requirements in Section 5.3 with the CAGISTrans framework objec-
tives derived from the results in Chapter 7. The following is the list of
requirements a CAGISTrans system must meet in order to adequately support
our CAGISTrans framework. See also Table 8.1 for a summary.

SR1 Support for transaction model specification. A CAGISTrans system
should provide an environment facilitating specification of transac-
tion models.

SR1.1 Support for characteristics specification. A CAGISTrans system
should allow a user to specify desired “transaction proper-
ties” – i.e., configuration of atomicity and isolation proper-
ties, and enable desired correctness constraints – i.e.,
enabling of system dependent or user-defined criteria.

SR1.2 Support for transactional behaviour specification. A CAGIS-
Trans system should allow specification of transactional be-
haviour. The specification environment should allow users
to define advanced operations, linking these to basic com-
mands provided by the underlying environments.

SR1.3 Support for definition of correctness constraints. If user-defined
constraints are enabled (see SR1.1), a user should be able to
specify conflicts, initial permits and initial demands. Fi-
nally, a CAGISTrans system should make it possible for a
user to modify any specified permits and demands at run-
time.

SR2 Support for transaction execution at runtime. A CAGISTrans system
should provide a platform for execution of transactions according to
the specified transaction model.

SR3 Support for transaction execution awareness. A CAGISTrans execution
environment should provide notification mechanisms that at least
indicate the start of a transaction, termination of a transaction, ac-
quisition of locks and object changes.

URN:NBN:no-2103

8.2. SYSTEM REQUIREMENTS 129

SR4 Provision of workspace support. A CAGISTrans system should enable
integrated workspace management, fulfilling the following sub-
requirements:

SR4.1 Mapping of workspaces to repositories. A workspace should be
mapped to repositories – including DBMSs, file systems
and Web servers – in order to facilitate data management.

SR4.2 Provision of workspace operations. CAGISTrans extended
workspace operations – including, at least, write-check-out,
read-check-out, check-in, upward-check-in and refresh –
should be provided by the CAGISTrans execution environ-
ment.

Req. ID Requirement description

SR1 A CAGISTrans system should provide support for specifying
transactions models.

SR1.1 A CAGISTrans system should support the specification of
transaction characteristics.

SR1.2 A CAGISTrans system should support the specification of
transactional behaviour.

SR1.3 A CAGISTrans system should support the definition of
correctness constraints whenever this is enabled.

SR2 A CAGISTrans system should provide a runtime environment
for execution of transactions applying a specific model.

SR3 A CAGISTrans system should provide awareness associated
with execution of transactions.

SR4 A CAGISTrans system should support integrated workspace
management.

SR4.1 A CAGISTrans system should allow mapping of workspaces to
repositories.

SR4.2 A CAGISTrans system should provide extended workspace
operations.

SR4.3 A CAGISTrans system should provide workspace information
services.

SR5 A CAGISTrans system should support at least three types of
resource management systems.

Table 8.1 Summary of CAGISTrans high level requirements.

URN:NBN:no-2103

130 CHAPTER 8 A SYSTEM SUPPORTING THE CAGISTRANS FRAMEWORK

SR4.3 Provision of workspace information. A CAGISTrans system
must provide the user with information concerning avail-
able workspaces, and the types, owners and contents of
such workspaces.

SR5 Openness with respect to resource base support. A CAGISTrans system
should provide interfaces allowing the use of at least three resource
storage types – i.e., DBMSs, file systems and Web servers.

Fulfilling these requirements is a key to the design and implementation of
our CAGISTrans architecture.

8.3. The CAGISTrans architecture
This section discusses the architecture of a CAGISTrans system.

Figure 8.1 depicts this architecture. A natural implication of the distinction in
Figure 6.2 is to provide an environment that allows both design time specifica-
tion of transaction models and runtime management of transaction execution.

User interface

Runtime Management System

Characteristics
Specification

Specification Environment

<XML>

XML-Parser

Specification
Analyser

Execution
Specification

Resource Management
Interface (RMI)

Runtime specification
Manager

Execution
Manager

Advanced
Transaction Manager

Internal characteristics
representation

Constraints and
Operation sets

Logging Resource
requests

...

Specification and
template database

Log Resource bases

<XML>

DTDDTD

DBMS

Feedbacks

Runtime specification
user-interface

XML-based desgn
time specification

user-interface

Figure 8.1 Architecture of the transaction management system.

URN:NBN:no-2103

8.3. THE CAGISTRANS ARCHITECTURE 131

Therefore, the transaction management system is divided into two separate en-
vironments, consisting of a specification environment and a runtime management
system. In order to meet SR1 and SR2 also necessitate such a separation.

The following sections explain these components.

8.3.1. The specification environment

An important aspect of our system is that all specifications are encoded in
XML. Therefore, the most dominant components of this environment are those
used to define, parse and validate transaction model specifications.

In this environment, a model designer specifies the desired transaction
characteristics and the initial execution constraints and operation sets, before
he/she executes his/her transactions. These are, thereafter, passed through an
XML parser, which checks the specification against prespecified DTDs – docu-
ment type definitions. Next, a specification analyser walks through the specifi-
cation and translates the generated elements from the XML parser into internal
representations of transaction characteristics – i.e., dependency formation
rules, enabled correctness criteria and applied policies, and operations sets and
execution constraints – i.e., conflict table entries, initial permit sets, and initial
demand rules (see Chapter 7).

Referring to Figure 8.1, we have implemented an XML-based design time
specification of transaction characteristics based on definitions of the desired
“non-ACID” requirements. In addition, a complete XML/DTD-based language
has been implemented. Here, DTD plays the role of a language dictionary. To
parse specifications, we have integrated an XML-parser from IBM (the XML4J-
parser1). Analysing and translating the outputs from the XML parser – i.e., the
specification analyser (SA) – is also an integrated part of the CAGISTrans proto-
type. An overview of the implementation status of the components is provided
in Table 8.2.

8.3.2. The runtime management system

The representations from the specification environment are used by the
runtime management system to control and manage the execution of transac-
tions. Its main component is the advanced transaction manager, responsible for
making sure that the execution of transactions conforms with the transaction
characteristics and execution specifications from the specification environment.
This manager again consists of two sub-components; the runtime specification

1. See http://www.alphaworks.ibm.com/aw.nsf/techmain/xml4j.

URN:NBN:no-2103

132 CHAPTER 8 A SYSTEM SUPPORTING THE CAGISTRANS FRAMEWORK

manager (RSM) and the execution manager (EM). Before transactions are exe-
cuted the RSM checks that the specifications can be supported. The CAGIS-
Trans system is designed to operate on top of DBMSs. Thus, if a user chooses to
rely on an underlying DBMS to handle correctness control, the RSM checks –
through the resource management interface (RMI) – that such support is present.
Unfortunately, many existing DBMSs have their own ways of implementing
concurrency control. For example, it is often impossible to access the lock tables
that are managed by these systems. Instead, some systems may allow locks to
be explicitly acquired and released through SQL-statements1. Therefore, “co-
operative” management of concurrency control between a CAGISTrans system
and DBMSs can only be achieved to a restricted degree. A way to overcome
this limitation is allowing the underlying DBMSs to do the required control of
sharing. As such, correctness of data managed by the DBMSs can be assured in
each system; but achieving global consistency (across the systems) is still an

1. See for example the GET_LOCK and RELEASE_LOCK statements in MySQL.

Blocks Implemented Comments on not fully
implemented components

User
interface

Design time
specification 60%

Fully functioned graphical user
interface is not finished yet. Using
standard text editor to hard-code the
specification.

Runtime
specification 100%

Characteristics and Execution
– XML & DTD 100%

XML-Parser 100%

Specification Analyser 60% Automatic check for supported model
is not available.

Runtime Specification
Manager 80% Handling of advanced conflict rules is

only designed.

Execution Manager 75%
Realisation of dynamic restructuring is
only designed. Enforcing advanced
conflict rules is not supported.

Resource Management
Interface 90%

Interfaces to standard ACID
transaction using JTA/JTS are
implemented, but not yet integrated
and tested.

Table 8.2 Overview of implemented components.

URN:NBN:no-2103

8.3. THE CAGISTRANS ARCHITECTURE 133

important challenge that must be further considered. This issue has been a sub-
ject for intensive research in the last couple of decades. Several solutions have
been proposed the literature (Breitbart et al. 1995, Mehrotra et al. 1998, Mehro-
tra et al. 2001). However, it is widely agreed that managing consistency across
multiple heterogeneous and autonomous DBMSs is an issue that still deserves
further attention.

From transaction commitment point of view, CAGISTrans can implicitly
affect the way underlying DBMSs handle commitment by enabling or disabling
auto-commit. In fact, there are database systems that allow this specification
through JDBC drivers.

From these perspectives, checking the underlying DBMSs for the support
provided means checking (1) which type of isolation level is supported for each
DBMS and (2) whether auto-commit can be enabled or disabled as needed.

Alternative to relying on DBMSs, the user may want to rely on the ad-
vanced support provided by the CAGISTrans system. In that case, the RSM
will manage the execution of user transactions in cooperation with the EM.

Further, we recall that new specifications may be introduced during runt-
ime. The RSM provides the necessary support for the required modifications.
For example, when new constraints are to be introduced, the RSM first checks
the actual specification. Then it gives the user all the necessary information on
the actions that must be taken. To illustrate this consider the addition of new
constraints to the current set of demands discussed in Chapter 7. The RSM
checks the log – i.e., an execution descriptor – for all executed operations. If any
new constraint may cause invalidation of some operations because a specific
operation is to appear between two already performed operations, the RSM
will inform the user about this, requesting him/her to choose the way to pro-
ceed – either to allow the invalidation or to cancel this introduction.

Validation of transaction executions is managed by EM. The EM uses the
specified correctness criterion to control the execution of a specific transaction.
The EM can be seen as a transaction scheduler in the sense that it is responsible
for executing the transactions on the basis of requests. In addition, it is respon-
sible for managing the execution of relevant management operations. This in-
cludes applying the prevailing dependencies, which are relevant when issuing
begin, abort or commit (see Section 7.3.1). Further, the EM allows transactions
having a nested structure to spawn new transactions upon request. And, if nec-
essary, the EM also accomplishes delegation of operations among transactions.

As shown in Table 8.2, we have implemented a major part of the runtime
management system. More specifically, we have designed and implemented the

URN:NBN:no-2103

134 CHAPTER 8 A SYSTEM SUPPORTING THE CAGISTRANS FRAMEWORK

user interface which supports interactive transaction initiation and termination.
The RSM component is implemented to handle read/write-based conflicts
only. Handling more advanced conflict rules has been designed, but this is still
not integrated in the CAGISTrans prototype. Permits and demands are, on the
other hand, part of the prototype implementation. The current implementation
of RSM also supports specification of the two latter constraints during runtime.
Further, the EM component allows validation of transaction executions using
permits and demands. However, even though dynamic restructuring is de-
signed, it is still missing from the EM prototype implementation. Finally, some
advanced operations are integrated and supported by the EM. These include
the operations used to handle access to workspaces that we elaborated in
Section 7.4.

8.3.3. Ensuring correctness

In CAGISTrans, there are two possible ways to achieve desirable final re-
sults: enforcing serialisable execution and adopting user-defined correctness
criteria.

The serialisability criterion is mainly supported by underlaying resource
management systems. Therefore, the CAGISTrans system provides this crite-
rion through the interfaces to serialisable resource management systems, as
shown in Figure 8.2. These interfaces are realised with JDBC – Java Database
Connectivity1 – and the JTA/JTS – Java Transaction API2 / Java Transaction
Service3 – interfaces. Using the JDBC interface, we are able to specify the isola-
tion level of the underlying DBMS connected to the CAGISTrans system. This

1. See http://java.sun.com/products/jdbc/.
2. JTA specifies standard Java interfaces between a transaction manager and the parties

involved in a distributed transaction system. See http://java.sun.com/products/jta.
3. JTS specifies the implementation of a Transaction Manager which supports the JTA,

based on the CORBA OTS (Object Management Group 1998). See http://
java.sun.com/products/jts/.

JDBC
Serialisable Isolation

Level

DBMS

JTS
ACID-Transactions

File System Web-servers

Interfaces to serialisable resource management

Figure 8.2 Interfaces to serialisable resource management systems.

URN:NBN:no-2103

8.3. THE CAGISTRANS ARCHITECTURE 135

means that we can enforce serialisable execution on that DBMS by choosing the
serialisable isolation level – i.e., “TRANSACTION_SERIALIZABLE”1. On the other
hand, if we use non-DBMS resource providers – such as standard file systems
and Web servers – the CAGISTrans system will use the JTA/JTS interface to
enforce serialisable execution. Note, however, that this enforces a full ACID ex-
ecution, making it impossible to use relaxed atomicity too. Note that JTA/JTS
is specified to support the 2-phase-commit (2PC) protocol2, which allows
atomic commitment of transactions executed on distributed resource bases.

Unlike serialisability, management and enforcement of user-defined crite-
ria is achieved through the CAGISTrans system itself. Figure 8.3 shows how
we implement this in CAGISTrans. As depicted, we are still able to use a data-
base as a resource provider through a JDBC interface. But, now the isolation
level is “TRANSACTION_NONE”, indicating that all transactions are handled by
the CAGISTrans system. JTA/JTS, on the other hand, only allows ACID trans-
actions. Therefore, a JTA/JTS interface for extended transactions is not applica-
ble. Rather, the CAGISTrans system takes over the responsibility for handling
advanced transactions through the specification analyser (SA) and the execu-
tion manager.

1. See http://java.sun.com/products/jdbc/.
2. The principle of the 2PC protocol is discussed thoroughly in the literature (Bernstein

et al. 1987, Özsu and Valduriez 1991).

Figure 8.3 Managing user-defined correctness criteria.

Applications Execution manager

JDBC
Tx_NONE Isolation

Level

DBMS

File System Web-servers

Interfaces to generic resource management

Transaction execution

requests

Correctness manager

Specification analyser

User interface

DemandsPermitsConflicts

Correctness Criteria

URN:NBN:no-2103

136 CHAPTER 8 A SYSTEM SUPPORTING THE CAGISTRANS FRAMEWORK

The user specifies the desired correctness criterion through a user inter-
face, allowing the specification of conflicts, permits, and demands. These are,
thereafter, handled by the specification analyser (SA) which checks their validity
and consistency (see Section 7.3.1.2 for a discussion). The SA cooperates with
the EM to ensure that the transactions meet the specified constraints when they
are executed.

Ideally, users should not be allowed to access the underlying resource
systems unless they do this through the CAGISTrans interface. Failure to do so
might jeopardise the overall consistency preservation on objects being shared.
However, the challenge is to provide an access control mechanism that is effi-
cient enough to fully restrict all accesses to the systems to those that only go
through CAGISTrans. A solution to this would depend very much on whether
the underlying systems allow data to be made accessible only to the CAGIS-
Trans resource interface.

Referring back to our implementation overview in Table 8.2, the JDBC in-
terface to DBMSs is supported by the current CAGISTrans prototype. For ex-
ample, we use a MySQL1 server as database for storing management and
control information. This database server was chosen due to its simplicity in
use and implementation. Further, we have tested the resource management in-
terfaces against a PostgresSQL2 DBMS. We are also currently investigating use
of the IBM DB23.

8.3.4. Mapping between workspaces and resource bases

Our workspace concept can be regarded as an abstract concept. This
means that physical workspaces do not exist by themselves. Instead, they are
logically mapped to underlying resource bases, as illustrated in Figure 8.4.

As depicted in this figure, objects reside on several types of repositories,
including databases, file systems and Web servers. Then, when an object is
checked-out or checked-in, it is “marked” with where it will logically belong –
i.e., to a private workspace, group workspace or public workspace. Thus, to facilitate
this mapping, we define an object as a tuple (id, type, ws-state, ad-
dress, owner), where

• id is a unique object identification,

• type is the object kind – i.e., file, web-doc, or relation (see
Figure 8.4),

1. See http://www.mysql.com/.
2. See http://postgresql.readysetnet.com/.
3. See http://www.ibm.com/db2/.

URN:NBN:no-2103

8.3. THE CAGISTRANS ARCHITECTURE 137

• ws-state identifies the type of workspace that the object is checked-
out or checked-in to – i.e., ws-state may be private, group or public,

• address denotes the physical location of the object:

– If the object type is file, the address will be a file path – i.e., “file://
<path-name>”

– If the object type is web-doc, the address is either an IP-address or an
HTTP URL – i.e., “http://<ip-address>” or “http://<web-url>”

– If the object type is relation, the address is a database URL – e.g.,
determining the JDBC driver; i.e., “jdbc://<database-proto-
col>:<database-host>/<database-name>”,

• owner identifies the current owner of the object – i.e, username or
groupname. If ws-state is public, the owner is empty.

Since workspaces are only logically defined, they can be created as
needed depending on the current cooperation situation. They are simply deter-
mined by the objects’ ws-state and owner. This means that objects residing in
the private workspace owned by Tom are all objects such that ws-
state=’private’ and owner=’tom’. Objects in a group workspace Gi are all
objects such that ws-state=’group’ and owner=’Gi’. Objects in a public
workspace are all objects such that ws-state=’public’ and owner=’ ’.

The above mapping facilitates the use of our extended workspace opera-
tions. This means that when an object is checked-out from or checked-in to a

Private
workspace

Group
workspace

Public
workspace

Web server DatabaseFile system

Workspace types

Resource management systems

...

Figure 8.4 Illustration of mapping between several resource management
systems and workspaces.

URN:NBN:no-2103

138 CHAPTER 8 A SYSTEM SUPPORTING THE CAGISTRANS FRAMEWORK

workspace, it suffices to update the objects ws-state and owner accordingly.
The address will thus specify the link to the resource base to be used.

8.4. Experiments with conflicts and patterns
The ideas underlying the correctness constraints tools of our CAGISTrans

framework have originally been inspired by conflicts and patterns from the co-
operative transaction hierarchy model (Nodine and Zdonik 1992).

Before implementing our constraint tools, we first tried to implement con-
flicts and patterns. We did some experiments with specification of grammars for
conflicts and patterns. From this we learned that meeting the dynamic require-
ments of cooperative work was not a trivial matter. First, we had to define a
complete LR(0)-grammar for the patterns and conflicts, and generate a lexical
analyser using – e.g., lex (Levine et al. 1992), and a parser using – e.g., yacc (Le-
vine et al. 1992), before we could execute the involved actions. For this to be
possible, however, we also needed complete transaction (operation) sets to be
carried out. Moreover, change incorporation at runtime would not be possible
as we first had to modify the grammar, then generate a new lexical analyser
and a new parser, before execution of the actual transactions could start again.
These are the main reasons for deciding to develop our own demands and a re-
vision of conflicts.

An additional lesson learned from these experiments was that the com-
plexity of the grammar increased proportionally with the number of transac-
tions and operations involved. Such a complexity would make the cost of
managing the transactions unduly high. This further supports our argument
for allowing runtime adjustments. In fact, by making such adjustments possi-
ble, we might allow stepwise specification, thus coping, to some extent, with
the aforementioned complexity.

8.5. Comparison with other work
The CAGISTrans system architecture distinguishes between a specification

environment, providing a means for specification and validation of transaction
models, and a runtime management system, offering support for execution of
transactions and management of their behaviour during runtime. The main ad-
vantage of such a separation is the ability to reason about properties and be-
haviour of transactions before they are executed, allowing a model designer to
customise his/her model as desired. Moreover, the ability to refine the model
at runtime is useful as we may need to support new requirements – e.g., due to
the evolutionary behaviour of the actual activity. There are other approaches

URN:NBN:no-2103

8.6. MEETING THE SYSTEM REQUIREMENTS 139

that apply similar separation of specification and runtime environments. Most
comparable with our work from this perspective are TSME (Georgakopoulos
et al. 1996) and TransCoop (de By et al. 1998). Compared to these, CAGISTrans
has attempted to improve the dynamic support. In TSME a specification is
tested with respect to whether it may be supported before it is applied. Once
the specification passes, and the transactions are executed, there is no way to
change the provided specification before the transactions are terminated or in-
terrupted. Moreover, support for dynamic restructuring was beyond the scope
of TSME. TransCoop realises the aforementioned separation by defining activ-
ity scenarios (de By et al. 1998) prior to transaction executions. Like TSME,
once the scenario is defined – i.e., specified, validated, and compiled – the runt-
ime environment does not provide any possibility for “on-line” refinement of
the scenario definition.

Further, while both TSME and TransCoop were implemented as complete
systems, our framework is built on the middleware principle, making it possi-
ble to provide support for a wide range of resource management systems.

Our system is implemented making use of both standard mature technol-
ogies such as XML1 and Java2 and advanced evolving technology such as Soft-
ware Agents. We refer to Chapter 10 for a more thorough description and
discussion of our general experiences with and specific use of these technologi-
cal tools.

8.6. Meeting the system requirements
Requirement SR1 is met as follows. Our CAGISTrans system allows users

to define the transaction properties and enables them to designate appropriate
correctness constraints. For this reason, SR1.1 is satisfied. Further, SR1.2 is met
by allowing users to specify the start and end of transactions interactively and
allowing them to specify advanced operations, primarily those used in connec-
tion with workspace management. Conflicts based on read and write conflicts
are currently supported, in addition to an extension with respect to compatibil-
ity rules based on workspace operations. Finally, the transaction system allows
users to define initial permits and demands, and refine these at runtime, thus
meeting SR1.3.

A CAGISTrans system has a runtime support system making it possible
to execute transactions in accordance with specified transaction characteristics.

1. See http://www.w3.org/XML.
2. Java is a trade mark of Sun Microsystems. See http://java.sun.com.

URN:NBN:no-2103

140 CHAPTER 8 A SYSTEM SUPPORTING THE CAGISTRANS FRAMEWORK

This means that the transaction system allows scheduling of transactions fol-
lowing specific correctness constraints. Hence, SR2 is satisfied.

All transactions executed by a CAGISTrans system are given notifications
informing them about the start or termination of a transaction. In addition, if a
user specifies some relaxed isolation, transactions are given notifications speci-
fying lock acquisitions and object changes. Through this, a CAGISTrans system
satisfies SR3.

Requirement SR4 is satisfied as follows. Workspaces are mapped logically
to the underlying repositories, hence simplifying data managements. Through
this, SR4.1 is met. Provision of workspace operations – i.e., SR4.2 – is supported
via workspace operations being implemented as default advanced operations.
Information concerning existing workspaces, owner of these workspaces and
their contents is available to users. Hence, SR4.3 is also supported.

SR5 requires a CAGISTrans system to be open, supporting at least three
types of resource bases. A CAGISTrans system provides interfaces allowing the
execution of transactions on top of DBMSs, file systems and Web servers. This
means that our CAGISTrans system meets SR5.

URN:NBN:no-2103

141

Part III

IMPLEMENTATION

AND

ASSESSMENT

URN:NBN:no-2103

URN:NBN:no-2103

143

Chapter 9

Realisation of a
CAGISTrans System

Proof of concept prototypes have been implemented to realise the CAGIS-
Trans framework based on the architecture described in the previous chapter.
These prototypes support major parts of this framework and architecture.
However, since the purpose of the implementation was primarily to illustrate
ideas, they might still lack robustness, user-friendliness, and performance.

This chapter is organised as follows. First, Section 9.1 presents the applied
implementation infrastructure. Section 9.2 presents the prototype architecture
built on this infrastructure. Finally, Section 9.3 discusses the possibility of using
a CAGISTrans system in the context of agent-based groupware. It particularly
focuses on the challenges that must be faced.

9.1. Implementation infrastructure
This section outlines the tools used in the implementation of the proto-

type. The prototype was mainly built using agent technology. The main reason
for this was to facilitate the integration of distribution support – e.g., Web sup-
port. Moreover, the choice of using agents as a platform for developing a CAG-
ISTrans system has been motivated by other agent-based components in our
CAGIS context (see Chapter 10). Other relevant aspects, such as mobility and
network latency, are discussed in Section 11.1.3.

9.1.1. Agent platform – IBM Aglets

At the time we started our first implementation, we decided to use the

URN:NBN:no-2103

144 CHAPTER 9 REALISATION OF A CAGISTRANS SYSTEM

IBM Aglets Software Development Kit1 – ASDK for short – for designing mo-
bile agent systems in Java2. One of the main features of aglets (denoting ASDK
agents) that we found useful was their mobility – i.e., their ability to move in a
network from one host to another. In addition, an aglet is able to communicate
and interact with other aglets, thus being in some sense cooperative.

Another positive aspect of the ASDK is its simplicity. Actually, we found
this development kit the simplest mobile agent framework among those availa-
ble for development purposes. Some other frameworks were those discussed in
Section 3.3. The ASDK package was easy to install. And more importantly, it
was a straightforward mobile agent technology that fitted well into the Java
programming language, which is the language used in our prototype.

9.1.2. Agent communication language – KQML

An important aspect of agents is their ability to interact with other agents.
To make our prototype generic, and to allow interaction with external agents
other than aglets, we decided to use the more or less de facto standard agent
communication language (ACL for short) KQML – knowledge and query ma-
nipulation language (Finin et al. 1994). KQML is both a language and a proto-
col for exchanging information and knowledge among agents. This means that
KQML defines both the format of the messages exchanged, and the protocol for
how the messages are handled during runtime. A detailed overview and dis-
cussion of the KQML language is given in (Finin et al. 1994).

9.1.3. Realising KQML with JKQML

A major limitation of many existing mobile agent systems is their lack of
support for a standard communication language. Most agent systems provide
their own solutions for communications. Therefore, there is no way to make
agents from one specific system talk with agents from another system. This has
stressed the necessity of a widely accepted (standard) ACL. However, it seems
that a commonly agreed upon standard is still missing. We have therefore cho-
sen to rely on JKQML.

JKQML – standing for Java KQML – is a KQML application program in-
terface (API) for Java developed by IBM Yamato Lab3. It provides a building
block for constructing KQML-speaking agents. One of the main reasons
JKQML is used in our work is its direct compatibility with the ASDK. With the
lack of a standard platform, this approach has been the least complex with re-

1.See http://www.trl.ibm.com/aglets or http//www.aglets.org.
2.Java is a trademark of Sun Microsystem.
3.http://www.alphaworks.ibm.com/formula/jkqml.

URN:NBN:no-2103

9.2. PROTOTYPE ARCHITECTURE 145

spect to the adoption of KQML.

9.2. Prototype architecture
We have implemented a system to handle both the specification of trans-

action models and the execution of transactions. Figure 9.1 depicts the imple-
mented system architecture for the CAGISTrans transaction management
system.

Conforming to the design of the CAGISTrans architecture (see
Section 8.3), the main components of the prototype are divided into two sepa-
rate environments consisting of a specification environment and a runtime man-
agement system. In addition, the system provides user interfaces and supports
interfaces to back-end resource servers. Users may also access the CAGISTrans
system through the external agents interface.

Now, let us walk through the architecture – including the user interfaces.
There are three main types of interfaces in the CAGISTrans system. The first in-

Client interface

Internal agent
system

Execution
history base

Special purpose agent

Distributed Resources

DBMS
Web-
server

File
system

Runtime Management System

Application
Client

External
Agent

System
base

Specification
base

User interface

Sepecification
Environment

Administrative
Client

Advanced transaction
manager

Administration and
specification manager

Figure 9.1 Implemented system architecture.

URN:NBN:no-2103

146 CHAPTER 9 REALISATION OF A CAGISTRANS SYSTEM

terface is the administrative client interface, used mainly to provide the system
administrative information. It consists of forms allowing a system administra-
tor to do user setup – i.e., registration of new users including passwords and
user names, and registration and setup of workspaces – i.e., creation of new
workspaces containing owner information, types (private, group, or public),
and physical addresses. The second interface is the application client interface –
i.e., CoopInterface. This is the interface provided to cooperating users, allowing
them to choose and connect to an available private workspace, group work-
space and/or public workspace. The CoopInterface also provides the possibility
for users to interactively initiate and terminate transactions, and to compose
actions (operations) belonging to a specific transaction. Further, to allow
awareness, this interface also provides a status window containing information
on ongoing activities, participants in these activities and all relevant events.

The third interface is an interface to external agents. In the current CAGIS-
Trans prototype, we have implemented this interface as part of the CoopInter-
face. The main reason for this is to increase the distribution support of a
CAGISTrans system by making it possible for other non-CAGISTrans specific
agents to have access to such a system. It allows users to access the CAGIS-
Trans transactional services through aglets or other KQML agents. Section 9.2.3
provides an elaboration on this interface.

9.2.1. The specification environment

The purpose of the specification environment is to manage user setup and
transaction model specifications. Its main component is the administration and
specification manager, consisting of an administrator manager (AM) and a specifi-
cation manager (SM), as illustrated in Figure 9.2. The AM is responsible for
maintaining information from the administration client interface. For security
and privacy reasons, all access to the system and its resources must be authen-
ticated. Thus, the AM also includes the provision of an authentication service
allowing users to log on to the system and connect to available workspaces.
Note that only users participating in a specific activity may access workspaces
for that activity. In the current version of the prototype all user and workspace
information is stored on an SQL database sever. This database contains current

Administration
manager

Specification
manager

Figure 9.2 Components of the administration and specification manager.

URN:NBN:no-2103

9.2. PROTOTYPE ARCHITECTURE 147

users of the system and currently available and active workspaces. The SM, on
the other hand, allows a model designer to specify the transaction characteris-
tics and an initial specification of relevant sets of advanced operations, plus
constraints to be applied – i.e., conflicts, permits, and demands, all being
parsed and stored in XML format (see Section 8.3). SM is thus composed of an
XML-parser – i.e., IBM’s XML4J parser – and a specification analyser that are
responsible for parsing and validating a specification document, and translat-
ing these into commands and rules that are passed to the advanced transaction
manager for execution and control purposes. In the current version of our pro-
totype, a model specification is produced using a general purpose editor with
XML capabilities, instead of an integrated specification user interface. There
the SM gets the specification XML-documents from disk rather than from a
user interface.

9.2.2. The runtime management system

The runtime management system (RMS) consists of components that man-
age transactions at runtime. In addition, the RMS is responsible for making
sure that transactions are executed according to the prevailing transaction
model and all applicable constraints. The dominant component of the RMS is
the advanced transaction manager (ATM). In accordance with our CAGISTrans
architecture in Figure 8.1 in Section 8.3, RMS consists of two main components
(see Figure 9.3): the runtime specification manager (RSM) and the execution man-
ager (EM).

As the CAGISTrans system is aimed at supporting runtime customisation
of transaction models, the main function of the RSM is to manage specifications
at runtime, including those that are introduced while transactions are being ex-
ecuted. The EM works like a transaction scheduler. It manages the execution of
transactions according to user requests. To make sure that the results from
transaction executions are correct, the EM cooperates with the RSM to validate
executions based on read/write conflict rules, existing permit relationships
and prevailing demands. This also conforms to the specified CAGISTrans ar-
chitecture. Further, the EM maintains a status database used for monitoring the

Advanced transaction manager

Runtime specification
manager

Execution
manager

Figure 9.3 Components of the advanced transaction manager.

URN:NBN:no-2103

148 CHAPTER 9 REALISATION OF A CAGISTRANS SYSTEM

execution of transactions. This database is also used by the RSM to store the
currently used transaction models.

9.2.3. Interface to external agents

The main purpose of the external agent interface is to allow external
agents to access resources administrated through the CAGISTrans system. Im-
plicitly, this means that if several agents cooperate via the same objects, our
system provides transactional services which support the cooperation.

Currently, we have implemented a system that allows both aglets and
other KQML-speaking agents to access such CAGISTrans services. This allows
agents assisting users in a cooperative process to follow a cooperative policy
specified for that cooperation. This means that when one or more agents access
a back-end resource server they will follow the prevailing correctness criteria
specified for their interaction.

Figure 9.4 depicts how the external agents interface in CAGISTrans is re-
alised. CAGISTrans currently supports two categories of agents: KQML-speak-
ing agents and aglets. KQML agents communicate with the CAGISTrans
system through a facilitator (see Figure 9.5), using the KQML communication
protocol. A facilitator is a service provider maintaining information about ac-
tive system agents – i.e., special purpose agents forming part of the CAGIS-

A
g

en
t

In
te

rf
ac

esKQML-Agents

Aglet Server

User Agent

User Agent

User Aglet

User Aglet

KQML

ATP

U
se

r
A

pp
lic

at
io

ns

A
ge

nt
 A

pp
lic

at
io

n
In

te
rf

ac
e

A
ge

nt
 A

pp
lic

at
io

n
In

te
rf

ac
e

...
...

External AgentsApplications CAGISTrans System

C
A

G
IS

T
ra

n
s

Figure 9.4 Interface to external agents.

URN:NBN:no-2103

9.2. PROTOTYPE ARCHITECTURE 149

Trans system itself – that accomplish agent requests. A system agent, which is
an aglet, advertises all available services to the facilitator along with its physi-
cal address and symbolic name. Such services include executing operations
through CAGISTrans, mediating transparent accesses to underlying distrib-
uted resource bases, and presenting notifications for awareness purposes. This
means that a client application can use agents to request executing operations
such as workspace operations through the CAGISTrans agent interface. They
can also be used to access remote resource servers where documents or objects
used in cooperative activities are stored. A list of such servers including their
exact addresses is managed in CAGISTrans. This list can be provided by a sys-
tem agent to external agents. Note that, as mentioned above, the distribution of
document servers is intended to be transparent to the users. Thus, the use of
agents here aims at facilitating such a transparency. Finally, external agents
may “poll” notification information that is useful for awareness purposes. This
means that some of the awareness presentation services can be presented by
system agents to external agents, which could be again “forwarded” to users.

An external agent asks the facilitator whether there are system agents that
can offer the services it needs. If the service request matches one of those being
advertised, the facilitator will provide the external agent with the address and
the symbolic name of an appropriate system agent. Hereafter, the two agents
will continue their dialogue until the external agent has accomplished its tasks.

User
Application

External
Agent

Retraction

Command

Reply

System
Agent External Agent

Interface

Service
Request

Reply

Reply
Service
Request

CAGISTransCAGISTrans

Service
advertisement

Request
forwarding

Facilitator

External
Agent

Dispatching

Figure 9.5 Interaction between an agent and the
external agent interface components.

URN:NBN:no-2103

150 CHAPTER 9 REALISATION OF A CAGISTRANS SYSTEM

In addition to being KQML agents, external agents may also be aglets.
Since our system agents are aglets, unlike a KQML agent, an (external) aglet
may communicate directly with a system agent, exchanging messages with it
until its service requests and corresponding tasks are accomplished. Thus, in-
tervention by the facilitator is not necessary. Here, communication between
two aglets follows the agent transport protocol (ATP) for message passing. See
(Lange and Oshima 1998) for an overview of the ATP.

9.3. Towards agent-based groupware with
transactional support
Since our CAGISTrans prototype is agent based it opens several opportu-

nities for use in the context of agent oriented applications. An example is in the
development of an agent-based groupware system with transactional support.
Although developing agent-based groupware is beyond the scope of this work,
the following discussion could still be useful considering the applicability of a
CAGISTrans system.

Parts of this section have appeared as (Ramampiaro et al. 1999), based on
a joint work with other CAGIS colleagues. The parts included in this section
are mainly written by the present author.

9.3.1. Agent-based groupware model

Agents have increasingly been used in development of groupware sys-
tems. The fact that they can handle sophisticated interactions with other part-
ners, thus being cooperative entities, has made them useful regarding support
for cooperative activities. For this reason, the transactional support provided
should also take agents into account as “partners” of the cooperative effort.
This introduces additional challenges as the cooperation is thus not only be-
tween two or more humans, but also between humans and agents as well as be-
tween two or more agents. Because of this, in agent-based groupware,
transactional support must play a role that is even more crucial than in tradi-
tional groupware, where only the cooperation among humans is primarily con-
sidered. Taking this into account, a possible interaction model that we have
outlined can be as depicted in Figure 9.6 (Ramampiaro et al. 1999).

As shown in Figure 9.6, there are three levels of cooperation. The highest
level is where the human users cooperate and interact with each other, possibly
through a computer. Here, the cooperation patterns are represented by dashed
arrows, while solid arrows correspond to generic non-cooperative interactions
such as database accesses etc. This level is called the human level. The next level

URN:NBN:no-2103

9.3. TOWARDS AGENT-BASED GROUPWARE WITH TRANSACTIONAL SUPPORT 151

is called the agent level, where the main components are agents. This is where
the agents cooperate and/or interact to perform tasks either on behalf of the
human users or on their own accord. These interactions may be triggered as a
result of the user interactions at the higher level. Finally, the lowest level in the
model is the technical level. It contains the underlying computer system (appli-
cations, tools, and documents) and the resource management system – e.g., a
database. The first two levels are together identified as the social level to focus
on the social abilities characterising the participants to any cooperative effort.

Based on the three levels identified, the following concepts must be ad-
dressed in the transaction support:

• Agents, including:

– human agents – i.e., the end-users of the system and the main partici-
pants in the cooperative effort. These can be either individuals or
groups. Human agents are the agents with the highest degree of free-
dom, bound only by the organisational context in which they act.

– “social” agents – i.e., the agents that have goals to support the cooper-
ative effort that takes place at the human level and that, thanks to
their social ability, play an active role in the effort itself. Some of these
agents act on behalf of human agents (user agents), who can delegate
them duties and responsibilities, binding their freedom. The duties
and responsibilities of the other social agents are instead determined

Social Level

Database

Human Level

Agent Level

Technical Level

Cooperation with
other agent

Human user

"Social" agent

System agent

Figure 9.6 Illustration of a possible agent-based groupware model.

URN:NBN:no-2103

152 CHAPTER 9 REALISATION OF A CAGISTRANS SYSTEM

by the role they play in the cooperative effort (possibly with the
mediation of users).

– system agents – i.e., the agents that are functional to the system, for
example, facilitating communication among agents and keeping
track of the system status. Though these agents can cooperate with
others in order to have their work done, they are not directly
involved in supporting the cooperative effort at the social level. Their
duties and responsibilities are determined by the system configura-
tion.

• Objects – i.e., all the components of the system (or external components
with which the system interacts) that cannot be classified as agents.
These include databases, file systems, document systems, and the likes
– e.g., the database in Figure 9.6.

In the following section, we outline some of the challenges that have to be
faced in order to provide transactional support for agent-based groupware sys-
tems that are able to support distributed cooperative teams, such as software
development teams. We anticipate that such teams involve cooperation not
only among humans, but also among all the other types of agents defined
above, thus introducing new challenges for transactional support.

9.3.2. The challenges

First, it is necessary to identify which types of transaction mechanisms
should be used at which level. For example, what is the meaning of preserving
consistency at the three levels, and how can it be supported? It is evident that
most of the terms used traditionally in the context of transactions take a differ-
ent meaning when fully considering the social level, and this requires a com-
plete rethinking of the support that can be provided. However, by providing
our user-oriented mechanisms such as awareness, user managed locks and
workspace management, our CAGISTrans system might address this chal-
lenge. We recall that our awareness service makes it possible to provide users
with knowledge about events that may be relevant for their actions. This will,
for instance, help them foresee potential conflicts such that they can avoid
them by, for instance, using our user-controlled and collaborative locks (see
Section 7.2.4.1). Hence, this could permit them to manage consistency at the
user level – i.e., consistency according to users’ view. Further, CAGISTrans
provides an infrastructure supporting agent interactions. This allows agents to
cooperate with other agents following specific cooperation “patterns” and pol-
icies that are specified by the user. Hence, our prototype allows a user to spec-
ify correctness criteria, and all external agents using the provided CAGISTrans

URN:NBN:no-2103

9.3. TOWARDS AGENT-BASED GROUPWARE WITH TRANSACTIONAL SUPPORT 153

services must obey criteria corresponding to their environments. Through this,
our CAGISTrans prototype may address the consistency management chal-
lenge at the agent level.

The second challenge is to find a constructive way to define and modify
policies at the different levels that also suit different situations. This requires
the definition of a language for describing policies. This language must be
“easy enough” to be used by human agents and, at the same time, “formal
enough” to be used by software agents. CAGISTrans allows specification of ap-
plied policies through the transaction characteristics specification. Our use of
XML addresses the need for a language that a user may understand, since most
users are familiar with basic ideas behind XML. Further, there is a mapping be-
tween XML and KQML (or ATP messaging for aglets) – as discussed in
Section 9.2.3. This makes it possible to propagate policies specified for user in-
teractions to agents at a lower level.

The third challenge is to find a constructive and effective way to delegate
responsibility and duties from one agent to another. This issue has been widely
investigated in traditional groupware systems, where the delegation can be
from one user to another, or from the user to the system. In agent-based sys-
tems, the scenario gets more complicated because delegation can involve all the
types of agents identified in the previous section. Delegation of responsibilities
and duties also implies the (often implicit) delegation of rights such as for ac-
cessing documents or modifying predefined patterns of actions. How can the
transactional framework support this delegation when it is done both explicitly
and implicitly or as a consequence of another delegation? CAGISTrans focuses
on delegation of responsibilities among transactions. This challenge can thus
be addressed if all actions performed by agents as well as human users can be
captured and represented as transaction operations. More specifically, agent
actions that are modelled as transactions can use the dynamic restructuring
feature of our framework to delegate tasks at runtime. In this way, delegation
of responsibilities, such as delegation of locks on objects or transaction opera-
tions, can be accomplished as described in Section 7.3.1.2. Nevertheless, help-
ing human users to avoid them from incorrectly altering the delegation of
responsibilities among transactions, and thus improperly breaking the barriers
among transactions, is an important challenge that still must be taken into ac-
count.

Related to the previous challenge, migration and merging of capabilities
or rights are not straightforward and need special consideration. How could
we, for instance, manage the effect of delegating responsibility at the human
level to the agent level? In other words, what is the effect of this on the human

URN:NBN:no-2103

154 CHAPTER 9 REALISATION OF A CAGISTRANS SYSTEM

and the user agents’ rights? For example, a human agent delegates the respon-
sibility for retrieving some data from a database or modification of a plan of ac-
tion to his/her user agent. What happens if the human agent and the user
agent access the information at the same time? Have the human agent’s rights
migrated to the user agent? Our access control policy considers a human user
as having privileges superior to agents. Therefore, although rights might have
been migrated to agents, the user can still override agents’ access rights. This is
also necessary for security reasons, hence preventing events such as virus
problems.

Exception handling must be considered at the three levels, and it repre-
sents a challenge that deserves special consideration. As a first step, it is essen-
tial to understand the meaning of the term “exception”. At the technical level,
exception is mostly referred to as “errors or faults”. This is, however, not al-
ways true at the social level, where exceptions are related to unexpected events
that can possibly have positive effects. For a discussion, see (Saastamoinen
1995). In addition to this, exceptions cannot be completely foreseen a priori, at
least at the social level. What is the support that is needed? In addition, how do
exceptions at one level influence the other levels? Exceptions such as concur-
rency anomalies or failure anomalies can be managed readily through tradi-
tional concurrency and recovery protocols (Bernstein et. al., 1987). At higher
levels, the picture becomes more complicated. However, by providing a flexi-
ble abort management scheme, allowing users to freely cancel actions as a re-
sult of, for example, completion of other actions, we may manage exceptions in
a “user-friendly” way. Further, our support for dynamic re-specification of cor-
rectness constraints, combined with workspace support, allows users to adjust
the level of cooperation as needed. So, for instance, in a cooperation situation, if
someone is stuck, and needs help from others, our system allows “on-line” re-
laxation of criteria such that cooperation is possible. Such a type of event – the
fact that someone can get help from others in an unplanned way – might be re-
garded as “positive exceptions”.

URN:NBN:no-2103

155

Chapter 10

Integration with
the CAGIS Environment

The work in this thesis was conducted in the context of the CAGIS project
(see Section 1.5). The CAGIS environment consists of three main components.

1. A system for handling distributed documents and document under-
standing – also called document models and tools.

2. A system for supporting cooperative processes in a distributed envi-
ronment – also called process models and tools.

3. A system for supporting transaction management for shared, distrib-
uted resources – also called transaction models and tools.

Component 3 has been presented in this thesis, now Sections 10.1 and 10.2
will describe the efforts in the two other research areas in more detail.
Section 10.3 presents a test scenario that we will use to outline the integration
of our CAGISTrans framework with the other CAGIS components in
Section 10.4. Finally in Section 10.5, we discuss our approach.

Parts of this chapter have appeared as (Ramampiaro et al. 2000), based on
joint work with colleagues in the CAGIS projects. Hence, Section 10.1 and
Section 10.2 came mainly from colleagues (with some minor modifications), the
scenario in Section 10.3 was a truly joint composition, while the material on
transactions in Section 10.4 and the main contents of Section 10.5 were written
by the present author.

URN:NBN:no-2103

156 CHAPTER 10 INTEGRATION WITH THE CAGIS ENVIRONMENT

10.1. Document models and tools
The development of a system for handling distributed documents and

document understanding in CAGIS was motivated by the fact that documents
published on the Web have to be organised, classified and described to facili-
tate later retrieval and use. Semantic classification – i.e., representation of docu-
ment contents – is one of the most challenging tasks. This is usually done using
a mixture of text-analysis methods, a carefully defined (or controlled) vocabu-
lary or ontology, and a scheme for applying this vocabulary when describing a
document. The CAGIS document model toolset is aimed at helping users in a
project group to do this semi-automatically, by way of a domain model ex-
pressed in a conceptual modelling language and by using text analysis tools as
an interface to perform the actual classification and search. This means that one
may use a conceptual model as a basis for creating meta-data descriptions (see
Figure 10.1). These meta-data descriptions may then be accessed through a
java-model viewer that enables search and browsing of documents through a
standard Web browser environment.

Fundamental to this approach is the use of a conceptual modelling lan-
guage to define and visualise the domain specific vocabulary to be used in the
classification and retrieval process. Conceptual modelling languages contain
the formal basis that is necessary to define a proper ontology. At the same time,

Search

ODF

doc

subscription
transaction

awareness
export

Present

ODF: Object descriptor file

Figure 10.1 Conceptual modelling for meta-data descriptions.

URN:NBN:no-2103

10.1. DOCUMENT MODELS AND TOOLS 157

they offer a visual representation that allows users to take part in the model-
ling, and read and explore documents by interacting directly with the models.
The conceptual modelling language may thus be used throughout the entire
process of classifying and retrieving documents on the Web. The modelling
language used in CAGIS is the referent model language (Sølvberg 1999), an ER-
like language with strong abstraction mechanisms and a sound formal basis.

Document handling in CAGIS may be described as a three-step process
(Brasethvik and Gulla 1999): Domain Model Construction, Document Classification
and Browsing and Retrieval – outlined below.

10.1.1.Domain Model Construction

Conceptual modelling is mainly a manual process. However, each do-
main model must be related to the text of the documents to be classified, hence
a textual analysis tool is used as input for the modelling. A reference set of doc-
uments from the domain is processed through a word frequency analysis tool,
which produces a list of high frequency terms as input candidates for the actual
conceptual modelling task. This is a manual and cooperative task performed
by a selected set of users. Concepts are carefully selected, related to each other
and given a textual definition. In order to prepare the finished domain model
for later document classification, lexical linguistic information is added to the
model. This means that the model is enhanced by adding a term-list for each of
the concepts in the model. The term-list is a list of synonyms, instances and
conjugations for each concept that will be used later in the classification of a
particular document.

10.1.2.Document Classification

Documents are classified by selecting domain model fragments that re-
flect the document content. This is performed semi-automatically by matching
the document text against the term-lists for each of the concepts in the model.
Concepts found in the document are then shown to the user as a selection in a
graphical model viewer, and the user may manually refine the classification by
selecting and deselecting concepts and relations. When the user is satisfied, the
selected model fragment is translated into XML and is stored as an Object De-
scriptor File (ODF). The user also has to provide a selected set of properties for
the document, such as its author, title etc. These attributes are also stored
within the ODF.

10.1.3.Browsing and Retrieval

In order to retrieve documents, the users enter a natural language query

URN:NBN:no-2103

158 CHAPTER 10 INTEGRATION WITH THE CAGIS ENVIRONMENT

phrase which is matched against the conceptual model in a similar way to the
classification process. The domain model concepts found in this search phrase
(if any) are extracted and used to search the stored document descriptions. Us-
ers may then refine their search by interacting with the model. Matching docu-
ments are presented as a list in a Web-browser interface. This system also has
an enhanced “document reader”, which means that when reading a document,
all the terms in the document that matched a model concept are marked as a
hyperlink pointing to the definition the model concept.

The layered architecture of the CAGIS document tool is shown in
Figure 10.2. The main parts of the system are the Web-enabled user interface
and a set of servlets running on a standard Web server.

• The user interface is centred around a Java-based Referent-model viewer.
As mentioned, users may interact with the model, explore concept defi-
nitions and relations, and then use the viewer directly in order to per-
form both classification and retrieval.

• The Java servlets define the overall functionality of the system. They are
invoked from the model viewer and coordinate the linguistic tools
incorporated in the system.

• At an “intermediary” layer, between the servlets and the Web server,
there are several linguistic tools that analyse natural language phrases
and give the necessary input to construct domain vocabularies and

Figure 10.2 Overview of the system architecture.

Sentence
Analysis

Word
Frequency
Analysis

WordSmith

NP-Tool

Morphological
Tagger

Lingsoft Toolset

Prolog Analysis

Model
Repository

(XML)

Classification
store (XML)

Documents
(HTML | TXT)

Lexicon
(TXT)

Webserver

Java Servlet

Domain
Model

Classification

Search

Java Applet

Referent Model Viewer

Document Classification

Document Retrieval

Model Construction

Storage User Interface (Web)System ControlLanguage Tools

URN:NBN:no-2103

10.2. PROCESS MODELS AND TOOLS 159

classify and retrieve documents. The word frequency analyser from
WordSmith is a commercially available application for counting word
frequencies in documents and producing various statistical analyses. A
Finnish company, Lingsoft, has two tools for analysing nominal
phrases and tagging sentences needed for the classification and
retrieval of documents. A smaller Prolog application for analysing rela-
tions between concepts in a sentence is being developed internally at
the Norwegian University of Science and Technology.

• Finally, the documents and their classifications are stored as files at the
Web server in HTML/TXT and XML format respectively. The domain
model is also stored in XML and must be maintained separately. The
linguistic tools use lexical information that is partly stored in the model
XML file or as a separate lexicon TXT file and partly integrated within
the tools themselves.

0
A more detailed presentation of this approach and the system is given in

(Brasethvik and Gulla 1999, Brasethvik and Gulla 2000).

10.2. Process models and tools
The development of the system for supporting cooperative work proc-

esses in CAGIS was motivated by the need to structure – i.e., plan, coordinate
and organise – work performed across a distributed network – i.e., the Web.

A prototype of a process centred environment (PCE) has been developed
to give process support to distributed, cooperative processes in CAGIS. The
CAGIS PCE consists of three main components (Wang 2001): (1) Workflow sys-
tem supporting distributed mobile processes, (2) Software Agents to support
dynamic, cooperative processes and (3) Agent-Workflow GlueServer – out-
lined below.

10.2.1.Workflow system supporting distributed mobile processes

The CAGIS workflow system is used to model simple, repeatable work-
flow processes, and the system offers an agenda-browser for the end users. The
workflow system allows an instantiated workflow model to be distributed as
several process fragments on different workspaces. One benefit of this is the
possibility to adapt the workflow to local environmental conditions. The work-
flow model instances are defined as XML-files distributed over several work-
spaces, and can be modified by the owner of the workspace. The ability to
move and change workflow instances during enactment, can be used for reallo-
cating activities, dealing with exceptions – i.e., when someone responsible for a

URN:NBN:no-2103

160 CHAPTER 10 INTEGRATION WITH THE CAGIS ENVIRONMENT

particular activity performs unexpected actions, and delegating work. The
workflow system is implemented in Perl, providing a CGI-interface through a
Web server. A more detailed description is provided in (Wang 1999, Wang
2000).

The Process Modelling Language (PML) for the workflow system defines
a process as a set of activities that can have mutual pre-order relationships
specified in XML syntax. This means that an activity can specify a set of pre-links
identifying the activities to be executed before, and post-links identifying the ac-
tivities to be executed after the current activity. The pre- and post-links are
written as URLs. Therefore they allow a process to be distributed over several
workspaces. Every activity definition specifies a code part (a script). This code
part is expressed in HTML, and can be used to simply present information, to
specify a user input through a form, or to start a Java-applet. The term process
fragment is used to name a group of activities in a workspace as part of the
whole process. A process fragment is specified by a name, a workspace (loca-
tion), and a list of references to activities.

10.2.2.Software agents to support dynamic, cooperative processes

While the workflow system described above takes care of simple, repeata-
ble processes, agents are used to support more cooperative and dynamic proc-
esses. Agents are typically responsible for inter-group activities such as brain-
storming, voting, negotiation activities – e.g., concerning resource allocation,
coordination – e.g., of artefacts and workflow elements between workspaces,
market support – e.g., agents as buyer and sellers of services, etc. The CAGIS
multi-agent architecture consists of four main elements (Wang 2001):

• Agents. An agent is set up to achieve a modest goal, characterised by
autonomy, interaction, reactivity to environment, as well as pro-active-
ness. There are three main types of agents: (1) Work agents to assist in
local production activities, (2) Interaction agents to assist with coopera-
tive work between workspaces, and (3) System agents to give system
support to other agents. Interaction agents are mobile, while system
and work agents are stationary.

• Agent Meeting Place (AMP). AMPs are where agents meet and interact.
AMPs support agents in providing efficient inter-agent communica-
tion. There can be different types of AMPs for different purposes. Each
AMP will have a defined ontology (the framework described in
Section 10.1 can be used here), which the agents have to follow. We can
perceive special AMPs for negotiation, coordination, information
exchange, selling and buying services etc.

URN:NBN:no-2103

10.2. PROCESS MODELS AND TOOLS 161

• Workspaces. A workspace is a temporary container for relevant data
(artefacts, models etc.) in a suitable format to be accessed by tools,
together with the processing (work) tools. Files stored in a repository
can be checked in and out to a workspace.

• Repositories. Repositories can be global, local, or distributed, and pro-
vide persistent storage of data. Experience bases are one specific type of
repository that we can use in our multi-agent architecture to support
community memory.

0
The multi-agent architecture is implemented in Java, using IBM aglets

software development kit (ASDK) to provide mobile agents. KQML is used for
inter-agent communication, and ORBIX CORBA is used to offer communica-
tion to other applications and other agent systems. A more detailed description
of the multi-agent architecture can be found in (Wang 2001).

10.2.3.Agent-Workflow GlueServer

The Agent-Workflow GlueServer provides interaction between the work-
flow system and the multi-agent system. A glue model in XML defines the rela-
tionship between workflow elements and agents. The GlueServer provides
services for a workflow activity – e.g., triggering an agent. An agent may also
initiate a workflow activity through this GlueServer. It is implemented in Java.
ORBIX CORBA is used to facilitate communication with the agent system and
workflow systems. The GlueServer is discussed in more detailed in (Wang
2001).

Figure 10.3 illustrates typical interactions among different components of

Global
repository

Glue
model

GlueServer

Workflow tool Workflow tool

AMP moving

agent

m
ov

in
g

ag
en

t

m
ov

in
g

ag
en

t

m
ov

in
g

ag
en

t

m
ov

in
g

ag
en

t

agent
interaction

Agent

Workflow
model

Workflow
model

Workspace Workspace

Figure 10.3 The CAGIS Process Centred Environment.

URN:NBN:no-2103

162 CHAPTER 10 INTEGRATION WITH THE CAGIS ENVIRONMENT

the CAGIS PCE. Here, each workspace executes a workflow tool (engine) using
a local workflow model. In practice, this workflow tool may be shared, and lo-
cal workflow models in two different workspaces may have relationships. The
figure also illustrates two different ways in which an agent may interact with a
workspace. It may interact directly with the user in the workspaces through a
graphical user interface used to configure and interact with the agents. Alterna-
tively, all interaction with agents can go through the GlueServer and the work-
flow tool. Finally, access to repositories can be achieved through workspaces
directly, or agents can be used to access them.

10.3. A practical test scenario: conference
management

Again, to best illustrate the use of the three CAGIS components, we have
adopted a conference organising scenario based on that presented in (Olle et al.
1982).

A conference organisation process may consist of several activities, start-
ing with a Programme Chair planning and announcing the conference. Thereaf-
ter, people may contribute to the conference by submitting their papers.
Members of the programme committee (PC) register submitted papers as well
as information about the authors. Then, referees for each paper are chosen based
on their expertise, and the paper review starts. The PC members collect the results
from the review, and an electronic review meeting is held to select papers for the
conference. Accepted papers are grouped into sessions and a final programme,
including a time-table for conference sessions, is produced.

Here, we focus on the last main activity – i.e., group accepted papers into ses-
sions. Figure 10.4 illustrates the two main sub-activities of this activity.

10.3.1.Suggest sessions

The Programme Chair is responsible for this activity, which can be de-
composed into the following process steps:

(1) Matching all papers against a document model, defining terms and
expressions, and the relationships among them for the research
domain.

(2) Suggesting a session division according to subjects.

(3) Creating a preliminary session schedule.

URN:NBN:no-2103

10.3. A PRACTICAL TEST SCENARIO: CONFERENCE MANAGEMENT 163

(4) Setting up session committees (from programme committee mem-
bers), one for each session.

10.3.2.Select papers and plan sessions

Each member of a session committee is responsible for selecting papers
and planing a session. This activity consists of the following process steps:

(1) Determining session subject and goals. An initial session description
contains the session subject and goals.

(2) Checking papers for session. Session committee members mark papers
that are relevant for a session, showing their interest. Papers are
marked “possible“.

(3) Allocating papers. If papers are marked by more than one session
committee, these committees must negotiate about which session is
going to get the paper. Papers finally allocated to a session will be
marked “taken“.

(4) Checking timeslot for session. Each session committee marks a times-
lot for the session.

(5) Allocating sessions. Sessions that have the same timeslot are subject to
negotiation. When all sessions are allocated, the result will be added to

Figure 10.4 Grouping of Accepted Papers into Sessions.

Accepted
Papers

Final
Schedule

Preliminary
Schedule

Suggest
Sessions

Programme
Chair

Select papers
&

Plan Sessions

Session
Committees

Grouped
Papers

Schedule

Subject (keywords)

Session:

Timeslots

Papers

URN:NBN:no-2103

164 CHAPTER 10 INTEGRATION WITH THE CAGIS ENVIRONMENT

the session description. The session description will now have the
state “final“.

(6) Publishing session description: Each session committee will publish
their session description to the other session committees and pro-
gramme chair.

Here, we assume that the programme committee members will be distrib-
uted across different locations, and that the organisation of the conference will
be done through computer interaction – i.e., without any physical meetings.

10.4. The CAGIS environment applied to the
scenario

This section outlines how our CAGIS tools and models – supporting doc-
uments, processes and transactions – can be applied to the scenario described
above. The CAGIS environment for this scenario is shown in Figure 10.5.

The two main activities that we are focusing on – i.e., suggest sessions
and select papers and plan sessions – are executed by the programme chair and
the session committees respectively. In our solution we have chosen to model

AMP

N
eg

ot
ia

tio
n

Negotiation
agent

Glue
model

GlueServer

User agent

Document
classification tool

User agent

Repository

Paper
record

Accepted
papers

Schedule

CAGISTrans
transaction manager

CAGISTrans
system agent

Session Committee

Workspace

Workflow tool

Session
Documents

Session Committee

Workspace

Workflow tool

Session
Documents

Session Committee

Workspace

Workflow tool

Session
Documents

Figure 10.5 The CAGIS framework applied to the scenario.

URN:NBN:no-2103

10.4. THE CAGIS ENVIRONMENT APPLIED TO THE SCENARIO 165

the scenario using one workspace for the programme chair and one workspace
for each session committee. Each workspace has a local process defined in a
process model, and a workflow tool that enacts this process model. The process
models are defined according to the process steps defined for suggest sessions
and select papers and plan sessions as described in Section 10.3.

The programme chair’s first task is to classify all papers according to their
themes. This is done by using the document classification tool to match all papers
against the domain model. The domain model defines the vocabulary of key-
words, extracted from the preliminary conference topics and from the submit-
ted papers. The matching of papers against the domain model is visualised in
the document model viewer, thus illustrating how the papers are thematically
related to the concepts in the domain model. The programme chair may inter-
act with the model viewer to achieve a proper subject division of papers.

The workflow tool will here notify the GlueServer, initialising a document
agent to access the documents through the document servlet. Next, the work-
flow tool provides the programme chair with necessary documents and tools
for creating a preliminary session schedule and setting up session committees.
When session committees are selected among PC members, the session com-
mittee members will be notified by e-mail describing what session committee
to attend and what workspace to access.

The session committees will then start working in their workspaces ac-
cording to the process model enacted by the workflow tool (recall that all con-
ference organising work is to be done with distributed computers). First, they
have to determine session topics and goals. For this, the workflow tool notifies
the GlueServer that initialises brainstorming agents for each session committee
member. The result from this brainstorming process is an initial session de-
scription written by a session chair. Further, the session committees select pa-
pers that are appropriate to their session. Here, the workflow tool notifies the
GlueServer to initialise paper select agents. The paper select agents will retrieve
information about available papers, and let the session committees mark inter-
est in papers. The paper select agents will then mark papers in the paper record
in the repository (see Figure 10.5). The result from marking papers is returned
to the GlueServer. In cases where a paper is marked by several session commit-
tees, negotiation agents are initiated to negotiate. This determines which ses-
sion will get the paper. If this negotiation process goes into a deadlock, the
programme chair will be notified, who will then make a final decision. After all
papers are marked, each session committee chooses a timeslot for the session.
This process is similar to paper selection, but session selection agents are used in-
stead. When all session committees have selected their timeslots, the final ses-

URN:NBN:no-2103

166 CHAPTER 10 INTEGRATION WITH THE CAGIS ENVIRONMENT

sion description is published to all participants, and the final conference
programme can be produced.

The role of the CAGISTrans transaction manager in this scenario is to en-
sure the integrity of the document in the repository, and to ensure that agents
always leave the system in an acceptable state. Based on the description above,
session committees share both the schedule document and the paper record.
Hence, conflicts are likely to occur. Our CAGISTrans system provides several
possibilities to resolve these conflicts. First, one may exploit the awareness fea-
ture (see Section 7.2.4) to notify each involved party so that they may prevent
potential conflicts. Alternatively, one may use a user controlled lock (see
Section 7.2.4) for each access, thus prohibiting others from seeing any changes
until a related process is finished. However, this is usually unacceptable, since
it might delay the session arrangement process. Another possibility is then to
permit read accesses, thus allowing other committees to see the intermediate
changes. This can be achieved by defining permits on data that were checked
out from the public repositories to committee workspaces. This will ease each
committee’s decision process. A third solution is to permit simultaneous up-
dates (i.e., write/write conflict). However, achieving consistency is subject to
negotiation determining which update results should be regarded as final – i.e.,
consistent in the eyes of all involved parties.

Further, tasks to support the session selection process are assigned to
agents. This also involves document accesses. To allow our transaction man-
agement system to ensure consistency, all agent operations involving reposi-
tory access are managed as part of transaction executions. This also ensures
that conflicting document access is managed properly. Moreover, suppose that
a transaction consisting of several agent operations is initiated by the Glue-
Server. Then, assume that one of the involved agents fails, for example, while
selecting papers from the paper record. Using traditional ACID transactions,
this would cause a global rollback, that would discard all changes made so far
and kill all associated agents. However, if a lot of effort has already been in-
vested, restarting all tasks from scratch could be unacceptable. To cope with
this, we model each agent operation as a subtransaction of that executed by the
GlueServer. Therefore, instead of aborting the transaction and killing all in-
volved agents, the transaction manager allows the failing agent to rollback its
tasks and restart if necessary. Other agents that are not directly affected may
proceed as normal.

Agents initialised by the GlueServer are seen as external agents from the
viewpoint of the CAGISTrans agents. Thus, referring to Section 9.2.3, when
agents from session committee workspaces access the global repository they

URN:NBN:no-2103

10.5. SUMMARY AND DISCUSSION 167

may do this through the CAGISTrans external agent interface. This interface
will then provide services according to the agents’ requests.

10.5. Summary and discussion
This chapter has presented the use of our CAGISTrans prototype as part

of the CAGIS toolset. This was done using a conference organisation scenario.
It has demonstrated the CAGIS toolset consisting of a set of separate tools
which can be used together to provide support for cooperative work across the
Web. The three major components of CAGIS presented and discussed in this
chapter have been developed within CAGIS. Each of these tools has been im-
plemented in true Web style – i.e. they are built around a standard Web server
and use XML as a data storage and interchange format. Fundamental to our
CAGIS approach is the development of tools that may be configured according
to the actual situation and use. The workflow tool allows creation of individual
workspaces supporting the execution of workflows. In addition, the workflow
tool offers the ability to enact parts of the process model supported by work-
spaces. The document classification tool uses a domain specific vocabulary – i.e., a
domain model – to help users classify and search documents. And, our CAGIS-
Trans – i.e., the transaction tool – offers support for the specification and execu-
tion of customised application-specific transaction models. A GlueServer was
used to bind the individual tools together. The GlueServer configures a set of
software agents that can interact with different CAGIS tools. As part of the
GlueServer, there is a glue model that defines the relations between individual
workflow elements residing in different workspaces and the software agents
used to access the individual tools.

Our CAGIS environment is not only applicable to conference organisa-
tion processes. It is our allegation that the CAGIS environment can be used to
support diverse processes involving people working together, where both peo-
ple and information are distributed. Examples of such processes include coop-
erative software engineering processes, distributed educational processes,
distributed organising processes, processes of selling and buying merchandise
on the Web etc. All these are characterised by distribution of people and infor-
mation, and require people to interact and cooperate to reach a goal.

An important result of integrating individual tools in a CAGIS environ-
ment is that we may benefit from enhanced functionality of each specific
CAGIS tool. From our point of view, this means that we may exploit the exist-
ence of a document model to define document integrity. This may, for instance,
be used to determine acceptable final results of transaction executions. Further,
a document model may be used to specify the ontology of the agents in our ex-

URN:NBN:no-2103

168 CHAPTER 10 INTEGRATION WITH THE CAGIS ENVIRONMENT

ternal agent interface. An ontology here is a static document that can be used to
specify diverse items – e.g., the agent communication language to be used.

The workflow tool can be used to model repeated, well-formed tasks.
From our perspective, this means that for activities consisting of repetitive
processes, the workflow tool can be used to capture actions that are necessary
to execute to achieve a “goal”. Hence, we may facilitate the specification of our
constraints determined by demands in our CAGISTrans framework. In conclu-
sion, the possibility to model activities using the workflow tool may be useful.

Seen from a document and workflow modelling point of view, the exist-
ence of our transactional support is also useful. For example, document models
are stored on databases or Web servers. We may then use transactions when
updating these models to ensure their consistency. Further, Wang (2000b) dis-
cusses the use of the transaction models and tools to offer a way of managing
consistency of changes to workflow models. Both document and workflow
modelling can benefit from the flexible, advanced transactional support pro-
vided by our CAGISTrans framework.

In conclusion, our CAGIS environment offers a selection of tools which
can be exploited in different combinations to give specific useful support. What
remains to be done is to further develop guidelines facilitating the designation
of tools suitable for specific scenarios. This will make our CAGIS tools even
more efficient and user-friendly.

URN:NBN:no-2103

169

Chapter 11

Discussion and Evaluation

This chapter discusses (Section 11.1) and evaluates (Section 11.2) my
work in the CAGISTrans part of the project and compares it with related work
(Section 11.3).

11.1. Discussion
This discussion will focus on issues concerning our CAGISTrans transac-

tional framework. These issues include discussing the trade-off between user
intervention and system transparency, addressing performance issues, using
agents as development platforms and some implementation issues – outlined
below.

11.1.1. User intervention vs. system transparency

The trade-off between system transparency and user intervention is a key
issue worth discussion. From a CSCW perspective, too much system manage-
ment and too little user control is unacceptable. Users might then get the feel-
ing of losing the whole picture of what is going on, which is against the
philosophy of CSCW. As a result, most CSCW applications rely on social inter-
actions to handle concurrency (see Section 3.1). But, from a database point of
view, this is unacceptable as data consistency cannot be guaranteed. Thus, this
has given rise to the need for a sensible trade-off. The specific combination of
user-managed specifications and system-based control in our CAGISTrans
framework may give an acceptable result. Our framework has been designed
to allow users to specify appropriate transaction models based on application
needs, and have the system do the validation, management and control based
on this. However, the cost still to be paid is that users may be required to have

URN:NBN:no-2103

170 CHAPTER 11 DISCUSSION AND EVALUATION

a level of expertise above what can be expected in an average user. This trig-
gers the necessity of developing a graphical user interface to make our system
more user friendly. This will, for instance, relieve users from coding transac-
tion models in XML themselves.

11.1.2. Performance issues

Another important issue is performance such as transaction throughput.
Traditionally, high transaction throughput has been one of the main require-
ments for transaction processing systems. The discussion in Section 7.3 indi-
cates that our framework’s execution of advanced transactions may introduce
some overhead. For example, several execution “parameters” have to be in
place before a transaction is executed. Further, introduction of new constraints
may also imply some control and management tasks, which could slow down
the overall speed. However, transactions supporting cooperative work exist for
long periods of time. Therefore, they may be more sensitive to response time
performance than system throughput. Hence, some extra time needed for vali-
dation, management and control purposes would be less critical in the global
picture. For this reason, we have primarily emphasised provision of flexible
support for cooperative activities rather than optimization of the transaction
speed itself. Nevertheless, since users would normally expect a minimal re-
sponse time, optimising the overall system performance is an important issue
that deserves further development. Thus, this will be a significant subject for
further research.

Following this line of arguments, another performance issue worth dis-
cussion is our use of Java1 as the implementation platform. Currently, the most
significant weakness of Java is its moderate performance, at least compared
with C/C++. However, Java is an interpreted object-oriented language with a
capability of being executed on heterogeneous environments. In addition, Java
programs are inherently capable of being transported over the network and ex-
ecuted at the remote system. Due to our distribution and heterogeneity re-
quirements, the choice of Java was a simple one to make. It is nonetheless
important to note that Java’s moderate performance can be improved by mak-
ing Java code executable instead of interpretable. In fact, to date, so-called Java
just in time compilers (JIT)2 are available to help improve the speed of “execut-
ing” Java applications.

1. See http://java.sun.com or http://javasoft.sun.com.
2. See http://www.sun.com/solaris/jit.

URN:NBN:no-2103

11.1. DISCUSSION 171

11.1.3. The use of agents

The CAGISTrans prototype has been developed based on an agent frame-
work. There are several reasons for this. First, a conclusion from the above dis-
cussion is that system throughput is not as critical as in traditional transaction
processing systems. However, since a CAGISTrans system operates in a dis-
tributed environment, its performance will also be affected by network latency.
In the long run, this is unacceptable. Our use of mobile agents such as aglets
was motivated by the need to cope with this problem. For example, by exploit-
ing the mobility aspect of aglets, our CAGISTrans system allows interaction be-
tween an external agent and a system agent to appear at the CAGISTrans
system site. When the interaction is accomplished, the external agent returns to
its application with the results. On the other hand, if we had used other distrib-
uted technologies such as CORBA1 and DCOM2, the application would have
had to interact with a CAGISTrans system directly through the network. Thus,
the system would very much have been dependent on network speed.

Moreover, the CAGISTrans framework is intended to provide flexible
transaction models for cooperative work. This implies that the technology plat-
form used must support such transaction models too. CORBA provides a
transaction service called OTS – object transaction service (Object Management
Group 1998). However, this service only supports the ACID model, which is
too rigid for our purposes (see Section 5.3). On the other hand, mobile agents
such as aglets are not bound to any specific transaction model. This has al-
lowed us to implement our framework with the ASDK. Hence, an explicit con-
tribution to agent research of our work ought to be the provision of adaptable
transactional services with agents.

Note that there are cases where current agent technology alone does not
solve all platform-related problems. It has been pointed out that there is no
widely accepted standard agent platform. Therefore, the issue of interoperabil-
ity is still a challenge. To cope with this, we have chosen to combine the use of
aglets with a more standard technology – i.e., Java RMI3. This has enabled us to
exploit both the mobility aspect of aglets and the interoperability aspect of Java
RMI.

11.1.4. Implementation issues

The external agent interface in our prototype has been implemented with
an aglet server, intended to handle several external agents (see Section 9.2.3).

1. See http://www.corba.org.
2. See http://www.microsoft.com/tech/dcom.asp.
3. See http://java.sun.com/j2se/1.3/docs/guide/rmi.

URN:NBN:no-2103

172 CHAPTER 11 DISCUSSION AND EVALUATION

However, our experience with the latest version of ASDK is that an aglet server
is not able to deal with more than one request at a time. Because of this, an aglet
server may become an additional performance bottleneck. A solution that we
are currently working on is extending the CoopInterface with a capability that
can handle several simultaneous requests from external agents. As part of this,
we are developing a host aglet that makes use of parallel threads, where the
main thread is responsible for communicating with the facilitator.

Further, JKQML has proved to be a useful and convenient tool due to its
simplicity and compatibility with ASDK. But, since JKQML has been used with
aglets, KQML messages have to be relayed using ATP – i.e., the agent transport
protocol (Lange and Oshima 1998). This implies that each mobile agent must
carry all its messages along with its state. However, since almost all interaction
among agents takes place on a specific host, this has not caused much diffi-
culty. In fact, this extends the degree of distribution of our prototype. How-
ever, a certain limitation of JKQML is the way the content language is
implemented. The content language supported is predefined. This has made it
impossible for us to use XML to encode the content description. For this reason,
future extensions of our prototype will benefit from further improvements con-
cerning how KQML and XML can be used together.

11.2. Evaluation
In order to evaluate our CAGISTrans framework, the first issue is how it

is able to meet the requirement for cooperative work. As part of this evaluation
there is also an outline of how we were able to reach our goal through answer-
ing our research questions. Finally, the limitations of our CAGISTrans frame-
work are presented.

11.2.1. Meeting cooperative work requirements

Fundamental to our framework is the provision of an explicit separation
of design time and runtime specifications. This allows a transaction model de-
signer to specify parts of a transaction model before transactions are executed,
and modify other parts while transactions are in progress. This is crucial and
necessary to cope with the dynamic nature of cooperative activities.

In addition, a set of requirements was set up in Section 5.3 as foundations
for the development of our CAGISTrans framework. The following outlines
how our framework meets these requirements (see also Table 11.1 for a sum-
mary).

Starting with TR1 and TR2, the characteristics specification is particularly

URN:NBN:no-2103

11.2. EVALUATION 173

aimed at providing the basic means to meet these requirements. First, it defines
the main properties of transactions based on “non-ACID-requirements” – i.e.,
customised ACIDity. Thus, it allows a user to fit both atomicity and isolation to
the needs of the application. Second, it determines suitable transaction struc-
tures, and defines the effects of one transaction on other transactions, in terms
of transaction dependencies, each defined based on actual “non-ACID-proper-
ties”. Such dependency management was used as a means to provide a fine
grained abort management scheme, hence providing a fulfilment of TR1.
Third, the characteristics specification allows a user to designate appropriate
correctness criteria to be applied, in addition to determining the mechanisms
and policies to be used to satisfy the designated correctness criteria. This serves
as a means to allow a controlled sharing of resources, thus fulfilling TR2.

Next, the execution specification consists of elements that essentially affect
the transactional behaviour. It is aimed at providing users with the possibility
to refine a transaction model at runtime, and thus enabling open ended execu-
tion. As the execution specification allows dynamic restructuring of transac-
tions, i.e, spawning of new transactions and delegation of responsibilities, this
implies that initiated activities may be terminated without accomplishing all
planned tasks. Furthermore, the ability to transfer responsibilities to other
transactions allows a transaction to release data before it aborts. Thus, referring
back to Section 5.3, such a dynamic restructuring support is useful in satisfying

Requirements How they are supported

TR1 Tailorable atomicity
Satisfied through our customised non-ACID
requirements, including a fine grained abort management
scheme.

TR2 Controlled sharing
of intermediate results

Also met through our customised non-ACID
requirements, including user-defined correctness
constraints and workspace usage.

TR3 Support for
open-ended execution

Fulfilled through our support for dynamic restructuring
and user re-definable correctness constraints.

TR4 Distribution and
heterogeneity

Supported through a CAGISTrans system exploiting the
middleware principle, supporting advanced transactions.

TR5 Awareness Satisfied through our integrated support of notification
mechanisms.

TR6 Temporal data
management

Met through our distinction between activity and
system logs, where the activity log is available to users.

TR7 Access control
Fulfilled through our usage of separated workspace
instances and support for access restrictions and
authentications.

Table 11.1 Summary of how the CAGISTrans framework meets the requirements for
Cooperative work.

URN:NBN:no-2103

174 CHAPTER 11 DISCUSSION AND EVALUATION

TR3. Further, with open-ended execution of transactions, requirements may
change. To meet new needs at runtime, CAGISTrans allows a user to refine the
prevailing correctness constraints while his/her transactions are being exe-
cuted. This aspect is also useful with respect to meeting TR3.

Motivated by the need to meet requirements TR2 and TR7, we decided to
integrate the concept of workspaces into our framework, further emphasising
the necessity of flexible but controlled sharing. Since a workspace allows
groups of people to perform tasks together and share their data or artefacts, the
existence of private and shared – i.e., group and public – workspaces enables
individuals to alternately work in groups and perform activities in private.
Thus, both TR2 and TR7 are satisfied through workspaces by allowing as much
sharing as possible, but at the same time avoiding unintended and unauthor-
ised manipulation of data. To be able to regulate the degree of sharing, we have
accentuated the necessity of providing group workspaces, in addition to private
and public workspaces (see Section 6.2). Such workspaces have made it possi-
ble to restrict sharing to members of a specific smaller group of people. Al-
though this may result in some increase in management complexity, the main
advantage is our ability to adjust the level of sharing according to – e.g., the
number of involved individuals. New extended workspace access operations
have been provided as part of the realisation of our workspace management. In
particular, some of these operations have made it possible to release and up-
date intermediate objects, which is useful for meeting TR2.

The CAGISTrans framework has been developed as middleware to fulfil
the distribution and heterogeneity requirements – i.e., TR4. Our use of an agent
platform has further satisfied this requirement. Moreover, CAGISTrans pro-
vides awareness support where cooperating parties can be notified of relevant
information related to their activities. This has been realised through aware-
ness agents and a status window. Hence, CAGISTrans meets TR5.

Further, our CAGISTrans framework distinguishes between system logs
and activity logs. System logs are stored on stable storage and keep track of all
actions that modify objects in a repository. They are used for recovery pur-
poses and are transparent to the user. Activity logs, on the other hand, are in-
tended for users, to let them know about the status of their ongoing tasks. This
is particularly useful when they temporarily have to disconnect from their cur-
rent activities. In this view, our framework addresses the temporal data man-
agement requirement TR6.

Finally, all users of the system must have a valid user name and pass-
word, and they must log on to the system before carrying out their activities.
The system will thereafter provide a list of activities and corresponding work-

URN:NBN:no-2103

11.2. EVALUATION 175

spaces that a user may join. Using this kind of control, the CAGISTrans system
further addresses TR7.

11.2.2. Answering the research questions

Answering our research questions is a way to see whether we have
achieved our goals with this research or not.

Starting with the main question – as stated in Section 1.3 – this thesis has
attempted to answer:

How can one provide transactional support that is able to deal with the dy-
namic and heterogeneous properties of cooperative work?

This question has been answered by an analysis of the problem, definition
of a set of requirements, development of the CAGISTrans framework, and de-
sign and implementation of a CAGISTrans system. Our framework allows
transaction models to be dynamically tailored in accordance with changes in
the environment. It is also aimed at being portable and interoperable, allowing
people to work together across different platforms and geographical bounda-
ries. Our system design not only provides advanced transactional support but
also allows utilisation of a wide variety of resource management systems, in-
cluding legacy databases, Web servers, etc.

The above main question led to the definition of several subquestions, de-
termining the development of the work:

Q1 Current situation: are there efforts that have already attempted or an-
swered the main question?

Our state-of-the-art survey has revealed the existence of a variety of solu-
tions to support selected aspects of cooperative work. From this we were able
to explore the current situation. This has allowed us to identify features that are
beneficial regarding the solution to our main problem. And, more importantly,
it enabled us to discover what is missing and still in need of attention.

Q2 Requirements: what is the nature of cooperative work and how can it be
characterised? Then, what requirements does this impose on the transac-
tional support to be provided?

An analysis of cooperative work characteristics has been necessary to de-
termine the requirements on transactions. This question was thus addressed by
our ability to identify important requirements that must be addressed to pro-
vide adequate transactional support for cooperative work. The requirements
were set up based on an analysis of characteristics of cooperative work.

URN:NBN:no-2103

176 CHAPTER 11 DISCUSSION AND EVALUATION

Q3 Solution: what foundations are necessary for the design of a system fulfill-
ing these requirements? In other words, how can we meet these require-
ments for transactions?

Our main conclusion from answering Q2 is that cooperative work is di-
verse in nature. Therefore, no single, fixed model (the approach used in many
existing approaches) can provide satisfactory support. Rather, the trend has
been on development of customisable transaction models or transactional
frameworks. This makes it possible for transactions to be tailored to specific
needs. So, to answer this question we have developed a transactional frame-
work that allows users to tailor transaction models to suit specific applications,
and at the same time enables them to refine models dynamically in accordance
with changes in the environment.

Q4 Evaluation: how well do our research results solve the problems, and how
does the solution compare to previous work?

Our CAGISTrans framework was shown to be able to support the basic
features of dynamic transaction management, allowing users to specify models
and have the system execute their transactions in a flexible but controlled man-
ner. Our combination of customisable non-ACID-requirements, support for
dynamic restructuring, dynamically adaptable user-defined correctness crite-
ria, explicit support for applied policies, and integrated workspace manage-
ment as a whole is unique compared to other existing transactional
frameworks. A further comparison with other approaches is provided in
Section 11.3.

11.2.3. Limitations of the CAGISTrans framework

There are several advantages with our framework. However there are
several issues that are not addressed, either because they are beyond the scope
of this work or because we were not able to do so, due to time and financial
constraints.

• Full ad-hoc support. Team work often requires full ad-hoc support. This
allows participants to perform work the way they want to, without the
control of the system. Concurrency control, for example, is often left to
social interactions. Seen from user’s point of view, allowing such a pos-
sibility can be very useful. However, our system requires that either a
user specifies correctness criteria and corresponding applied policies,
or the underlying system provides them. This implies that users do not
have the aforementioned freedom. Some may regard this as a short-
coming. We, however, argue that if full freedom is to be allowed, con-

URN:NBN:no-2103

11.2. EVALUATION 177

sistency cannot be guaranteed. Moreover, this type of cooperative work
support is covered by existing groupware applications. In conclusion,
full ad-hoc support is beyond the scope of the CAGISTrans framework.

• Stand-alone transaction management system. Several earlier solutions sug-
gest the development of a stand-alone transaction management system.
Examples of these are TransCoop (de By et al. 1998) and TSME (Geor-
gakopoulos et al. 1996). To develop a complete TP-monitor with
advanced transactional support would require the implementation of
every thing from scratch. Although this has several benefits such as
removing constraints imposed by pre-existing design decisions, and
allowing one to concentrate entirely on new ideas about the extended
transaction requirements for the development of a new advanced trans-
action management system, one would spend too much time building
basic transactional support and re-inventing wheels, and innovation
would be limited. Moreover, the effort needed – in terms of time and
money – would go far beyond works such as ours. As a result, we have
chosen to rely on developing our framework based on the middleware
principle, thus benefiting from its openness and extensibility.

• Complete implementation of specific ETMs. This work has not addressed
the implementation of specific sets of extended transaction models
(ETMs) – e.g., Sagas, Open nested transaction model, Semantic based
concurrence control, Cooperative transaction hierarchy (see
Section 4.2). Although these issues have been addressed in ASSET
(Biliris et al. 1994) and RTF (Barga 1999). On the one hand, this can be
regarded as a limitation of CAGISTrans. On the other hand, given the
diversity of existing models, combined with the lack of consensus on
which models that suit which situations, we have put our emphasis on
extracting beneficial features of relevant models, and exploiting their
combination to provide efficient, relevant support.

• Stand-alone specification language. An alternative to our extensive use of
XML would have been the development of a native transaction model
specification language. In fact, at an early stage of this work, we investi-
gated the use of LOTOS (van Eijk et al. 1989) as a basis for a specifica-
tion. The advantage of this could have been the possibility to exploit the
language’s formality and comprehensiveness. However, taking users’
competence and knowledge into account, we might have ended up
with a language which only few could use, due to lack of user-friendli-
ness. Rather, we have stressed the use of XML to enable portability and
interoperability. Moreover, due to its extensive use along with the Web,

URN:NBN:no-2103

178 CHAPTER 11 DISCUSSION AND EVALUATION

we may anticipate that most users are familiar with the basic ideas of
XML.

• Full recovery mechanisms. A possible shortcoming of our CAGISTrans
system is its rather incomplete recovery support. At the time we
designed our system, this was beyond the scope of our work. However,
our CAGISTrans system does allow the use of underlying database
management systems to do such things as logging for recovery pur-
poses. A problem first arises when the underlying resource bases are
other than legacy databases, which calls for CAGISTrans recovery man-
agement. Our system provides a simple logging mechanism to manage
transaction aborts.

• Study on how people work. The CSCW literature – cf. (Schmidt and Ban-
non 1992, Grudin 1994) – argues the necessity of studying how people
work prior to development of system support, thus discovering socio-
logical and psychological factors that affect the way they carry out their
work and use computers. However, as we initially pointed out,
although the chances of success might increase such as in terms of
acceptability – this is beyond the scope of our work. Providing support
covering all aspects of cooperative work is neither possible nor feasible.
Therefore, we have rather attempted to develop a framework that
should cover most user needs.

11.3. Consolidated comparison with other work
This section compares our CAGISTrans framework with other relevant

work.

Our CAGISTrans framework differs from other relevant work in our
combination of support for explicit customisation of non-ACID requirements,
user-defined correctness criteria, explicit support for applied policies, dynamic
restructuring and workspace support. This is summarised in Table 11.2. As il-
lustrated some features have been adopted from existing transaction models
and frameworks, and then extended in forming the CAGISTrans framework.
This is explained in the following.

• Explicit customisation of non-ACID requirements. To my knowledge, sup-
port for explicit definition of non-ACID requirements to specific appli-
cations has not been proposed before. Existing frameworks let non-
ACID requirements be implicitly tailored, but do not allow users to
define them in accordance with their application’s needs.

URN:NBN:no-2103

11.3. CONSOLIDATED COMPARISON WITH OTHER WORK 179

• User-defined correctness criteria. Patterns and conflicts as user-defined
correctness criteria tools were originally proposed by (Skarra 1989).
They were improved in the Cooperative Transaction Hierarchy (Nod-
ine and Zdonik 1992), where they were represented as state-machines.
The demands and conflicts of our CAGISTrans framework are built on
these concepts. However, in contrast to patterns, demands are repre-
sented as directed graphs identifying and representing sequences of
actions required to ensure correctness. In addition, while a complete set
of patterns has to be defined before transaction execution – without any
possibility for re-definition during runtime, demands can be modified
while transactions are being executed. Moreover, our conflicts are

CAGISTrans features
Inspiration or
origin

Supported by other
frameworks

Extension or
difference

Explicit customisation of
non-ACID requirements

None or not known. Done implicitly in all
other relevant frame-
works – i.e., explicit
specification not
supported.

Explicit support.

User-defined
correctness criteria

Conflicts:
Cooperative
transaction
hierarchy &
Semantic-based
concurrency control.

Permits:
ASSET.

Demands:
Patterns as in
Cooperative
transaction hierarchy.

TSME:
 Through correctness

dependencies.

ASSET:
Through permits.

The combination of all
three constraint tools.

Dynamic support in terms
of runtime modifications.

Explicit support for
applied policies

None or not known. Not supported by any
other relevant frame-
work.

Brand new.

Dynamic restructuring Splitting as in Split and
Join transaction model.

Delegation as in ACTA.

RTF:
Dynamic restruct-
uring.

ASSET:
Delegation of
operations (static).

Support for both lock
and operation delegation.

Application of user-
defined correctness
criteria.

Integrated Workspace
support

Classical and extendeda
check-in and check-out
models, & Coo, EPOS
and TransCoop.

a. Extended check-in/check-out operations which originated from (Kim et al. 1984, Ban-
cilhon et al. 1985).

Not supported by any
other relevant frame-
work.

The combination of
unlimited nested
structure, flexible
workspace operations, &
user-defined coordination.

Table 11.2 A summary of CAGISTrans features and their relation to other
frameworks.

URN:NBN:no-2103

180 CHAPTER 11 DISCUSSION AND EVALUATION

defined as tabular relationships rather than with a state-machine. In
fact, our conflict concept is more similar to that associated with seman-
tic-based concurrency control than those proposed in (Nodine and
Zdonik 1992). See (Ramamritham and Chrysanthis 1997) for a discus-
sion of semantic-based concurrency control issues. The benefit here is
that when transactions are to be validated, instead of checking a state-
machine which is usually complex, CAGISTrans utilises simpler tabu-
lar inquiries. Finally, permits were originally proposed with ASSET
(Biliris et al. 1994). Our use of the concept also allows flexible sharing.
However, permits in CAGISTrans are accompanied by conflicts and
demands. For example, we utilise permits both to override specific con-
flicts and to enable concurrent accesses to locked objects. Hence, CAG-
ISTrans aims at providing a more flexible, but controlled type of
sharing.

• Explicit support for applied policies. Applied policies in CAGISTrans
determine the relevant mechanisms, and specify rules for how and
when to use them. Although the distinction between mechanisms and
rules has long been known in both the database and the CSCW commu-
nities, to my knowledge, it is still not addressed in connection with
transaction models and frameworks. Hence, our use of this concept,
allowing users to explicitly fit policies in accordance with the needs of
the applications seems unique.

• Dynamic restructuring. This concept was originally proposed in the Split
and Join transaction model (Kaiser and Pu 1992). CAGISTrans applies a
similar approach to restructure transactions while they are being exe-
cuted. The differences lie in the way the restructuring is performed.
CAGISTrans realises dynamic restructuring by combining transaction
splitting – from the Split and Join transaction model – with the notion of
delegation – which originated with ACTA (Chrysanthis and Ramam-
ritham 1994). Finally, while Split and Join transactions apply serialisa-
bility as the correctness criterion, CAGISTrans allows user-defined
criteria.

• Integrated workspace support. In the context of transactions, the work-
space concept has been extensively used in EPOS (Conradi et al. 1995,
Conradi et al. 1997), Coo (Godart et al. 1996), and TransCoop (de By
et al. 1998, Wäsch 1999), among others. In brief, EPOS and Coo use tem-
porary, shared sub-databases (scratch-pads) for data exchange and
integration work. TransCoop focuses on exchange of operations instead
of exchanging data between private and public workspaces, while cor-

URN:NBN:no-2103

11.3. CONSOLIDATED COMPARISON WITH OTHER WORK 181

rectness control is handled through history validation and merging
mechanisms. Our workspace concept differs from these in combining
several aspects. First, we use a nested workspace structure that applies
unlimited nesting levels to regulate the degree of sharing. To our knowl-
edge, existing approaches are restricted to two – i.e., private and public,
and three levels – i.e., public, semi-public, and private. Second, our
CAGISTrans framework applies several extended workspace opera-
tions enhancing workspace interaction – sharing basic ideas of those in
(Kim et al. 1984, Bancilhon et al. 1985). Finally, our approach utilises
user-defined constraint tools – cf., conflicts, permits, and demands – for
coordinated workspace access.

URN:NBN:no-2103

182 CHAPTER 11 DISCUSSION AND EVALUATION

URN:NBN:no-2103

183

Chapter 12

Conclusions and Future Work

This chapter summarises the major achievements in this thesis and points
out some directions for further work.

12.1. Important themes
The diversity of cooperative work highly motivates the possibility to cus-

tomise all offered support, including transactional support. There are many
transaction models and a few transactional frameworks that have provided
useful foundations for such support. Still, there are problems that must be
faced due to the aforementioned diversity. This thesis has attempted to address
the following two main challenges:

• Dynamic nature of cooperative work. An important topic that the work in
this thesis has focused on, is the dynamic nature of cooperative work.
Our objective has been to extract beneficial features of existing models
and frameworks and then extend these in forming a new framework
that is able to meet this challenge. The fundamental idea in our frame-
work is to distinguish between design time and runtime management
of transactions. In this way, predictable parts of a transaction model can
be specified before a transaction is executed, while parts that are not
possible to reason about a priori can be specified at runtime. Hence, our
solution provides transactional support that not only can be customised
to suit specific applications, but also refined in accordance with changes
in the environment at runtime.

• Heterogeneous aspect of cooperative environments. Another important topic
that has been focused on, is the heterogeneity aspect of cooperative

URN:NBN:no-2103

184 CHAPTER 12 CONCLUSIONS AND FUTURE WORK

environments. In addressing this aspect, we have developed a system
exploiting the benefits of the middleware principle. The CAGISTrans
architecture allows the use of diverse resource management systems
and diverse types of applications.

12.2. Contributions of this thesis
A major contribution of this thesis has been the development of the

CAGISTrans framework providing adaptable transactional support for cooper-
ative work. Although some of the approaches applied in our work are not new,
we believe that the way we integrate these techniques and extend them to offer
such adaptable support, is unique. This uniqueness includes our combination
of explicit customisation of non-ACID-requirements, user-defined correctness criteria,
explicit support for applied policies, dynamic restructuring, and integrated workspace
support. The resulting CAGISTrans framework is able to support the basic fea-
tures of dynamic, heterogeneous transaction management, allowing users to
specify models and letting the system execute their transactions in a flexible,
but controlled manner.

The main achievements of this work can be summarised as follows:

• Customisation and integration. This thesis has accentuated the impor-
tance of providing both a possibility to customise transaction models to
specific applications and an integrated workspace management to
improve the support for controlled sharing of resources. Through this,
our transactional framework has attempted to bridge the gap between
the rigidity of traditional transaction processing and the flexibility
required by cooperative work.

• Separation and organisation. The development of our transactional frame-
work has produced a useful way to organise transaction model ele-
ments. A fundamental feature here is the separation between
characteristics and execution specifications of transactions. This separa-
tion has allowed both design and runtime time specification of transac-
tion models.

• Specification and management. Our transactional framework allows trans-
actional behaviour to be specified and managed at runtime – i.e.,
dynamic re-specification of transactional behaviour. This improves the
support for evolution in cooperative work processes. As a result, the
need for a complete a priori knowledge of operations to be carried out
can be strongly reduced.

URN:NBN:no-2103

12.3. FUTURE WORK 185

• Dynamics. Our transactional framework also allows users to define cor-
rectness constraints in accordance with the needs of their applications,
thus attaining increased flexibility and improved support for coopera-
tion. Moreover, the user’s ability to refine correctness constraints at
runtime is useful with respect to meeting new requirements while work
is in progress.

• Heterogeneity. We have designed and implemented a system in accord-
ance with our CAGISTrans framework. This has been based on the
middleware principle, running on a variety of resource management
systems. Our CAGISTrans system has clearly proven the applicability
of our approaches and concepts.

• XML usage. We have designed and applied a transactional modelling
language exploiting the simplicity, efficiency and extensibility of XML.

Major parts of our work have been published at several international con-
ferences (Ramampiaro and Nygård 1999, Ramampiaro et al. 1999, Ramampiaro
et al. 2000, Ramampiaro and Nygård 2001a, Ramampiaro and Nygård 2001b,
Ramampiaro and Nygård 2002). This has given us opportunities to discuss our
ideas with other researchers in the field, and has resulted in useful feedback.

12.3. Future work
It is beyond the scope of such a work to address all aspects of transac-

tional support for cooperative work. The following are issues left for further
studies. They are divided into two categories comprising further extension of
the implementation of the CAGISTrans framework and further research.

12.3.1.Extensions of the CAGISTrans implementation

The directions for extending the implementation of the CAGISTrans
framework proceed as follows:

• Implementation of the remaining CAGISTrans components. Chapters 8 and
9 have discussed the design and implementation of our framework. As
indicated there, we were not able to implement all components of the
CAGISTrans framework within the limited time boundaries of this
work. An important work will thus be to implement the remainder of
our framework. This will not only contribute to a better demonstration
of the capabilities of CAGISTrans, but also reveal further issues that we
may have to address.

URN:NBN:no-2103

186 CHAPTER 12 CONCLUSIONS AND FUTURE WORK

• Improvement of the user interface. There is a need for further improve-
ment of the graphical user interface (GUI). Currently, we are working
on the development of a transaction model specification tool. This
mainly focuses on improving the user friendliness of the CAGISTrans
specification environment, allowing the user to visually define transac-
tion models, hence avoiding the need for “hard-coding” of models in
XML.

12.3.2.Further research

Several issues have been left for further research that include the follow-
ing topics:

• Human interface and the CAGISTrans framework. Although the CAGIS-
Trans approach has attempted to find the trade-off between total sys-
tem control and user intervention, there is still a need to help users
accomplish their task efficiently through a CAGISTrans system. This
includes developing proper guidelines for utilising the CAGISTrans
framework. Several approaches from the human computer interface
(HCI) community may here be used as a starting point. However, it is,
as mentioned earlier, also important to investigate the proper trade-off
between supporting cooperation and controlling cooperation, and how
this can be realised in a transactional framework like CAGISTrans. The
result from such an investigation would, for instance, be useful in terms
of providing relevant cooperation mechanisms.

• Support for versioning and merging mechanisms. The use of versions has
been advocated as an important means to handle concurrency in design
environments. See for example the discussion in (Korth and Speegle
1994). Also, as pointed out by Sommerville (2001), versioning is neces-
sary to maintain different states for different design objects. To further
improve the applicability of our CAGISTrans – e.g., in design environ-
ments, an investigation of how to incorporate this is necessary. With
this again follows a need to develop support for merging operations to
facilitate the management of objects that exist in several different ver-
sions.

• Further evaluation and porting to “real world” applications. Ideally, all
research work should be evaluated in the “real world”. A continuation
of our CAGIS project – CAGIS-II – is currently being conducted, evalu-
ating the different components of CAGIS with respect to collaborative
learning. Another continuation is the MOWAHS-project – MObile
Work Across Heterogeneous Systems (Nygård et al. 2000) – that the

URN:NBN:no-2103

12.3. FUTURE WORK 187

present author is a member of. It will focus on porting our approaches
and concepts into mobile and heterogeneous environments. This may
reveal additional issues that we have not been able to address in the
current work. In conclusion, the above two projects will give us oppor-
tunities to further assess the practicality of CAGISTrans in more realis-
tic environments and reveal issues that must be further considered.

URN:NBN:no-2103

188 CHAPTER 12 CONCLUSIONS AND FUTURE WORK

URN:NBN:no-2103

189

Bibliography

(Agrawal et al. 1995): Agrawal, D., Bruno, J. L., Abbadi, A. E., and Krishnas-
wamy, V. (1995). Managing concurrent activities in collaborative environ-
ments. In Proceedings of the 1st IFCIS International Conference on Cooperative
Information Systems (CoopIS’95), pages 112–124.

(Badrinath and Ramamritham 1992): Badrinath, B. R. and Ramamritham, K.
(1992). Semantics-based concurrency control: Beyond commutativity.
Transactions on Distributed Systems, 17(1):163–199.

(Bancilhon et al. 1985) Bancilhon, F., Kim, W., and Korth, H. F. (1985). A model
of CAD transactions. In Pirotte, A. and Vassiliou, Y., editors, VLDB’85, Pro-
ceedings of 11th International Conference on Very Large Data Bases, August 21-
23, 1985, Stockholm, Sweden, pages 25–33. Morgan Kaufmann.

(Barga 1999): Barga, R. (1999). A Reflective Framework for Implementing Extended
Transactions. Ph.d. dissertation, Oregon Graduate Institute of Science and
Technology.

(Barga and Pu 1997): Barga, R. and Pu, C. (1997). A reflective framework for
implementing extended transactions. In Jajodia, S. and Kerschberg, L., edi-
tors, (Jajodia and Kerschberg 1997), Chapter 3, pages 63–90. Kluwer Aca-
demic Publisher.

(Barghouti and Kaiser 1991): Barghouti, N. and Kaiser, G. (1991). Concurrency
control in advanced database applications. ACM Computing Survey,
23(3):269–317.

(Batory and Kim 1985) Batory, D. S. and Kim, W. (1985). Modeling concepts for
VLSI CAD objects. TODS, 10(3):322–346.

URN:NBN:no-2103

190 BIBLIOGRAPHY

(Bernstein 1996): Bernstein, P. A. (1996). Middleware: A model for distributed
system services. Communication of the ACM, 39(2):86–98.

(Bernstein et al. 1987): Bernstein, P. A., Hadzilacos, V., and Goodman, N. (1987).
Concurrency Control and Recovery in Database Systems. Addison-Wesley.

(Biliris et al. 1994): Biliris, A., Dar, S., Gehani, N. H., Jagadish, H. V., and Ram-
amritham, K. (1994). ASSET: A system for supporting extended transac-
tions. In Snodgrass, R. T. and Winslett, M., editors, Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD 94).
ACM Press.

(Borghoff and Schlichter 2000): Borghoff, U. M. and Schlichter, J. H. (2000). Com-
puter Supported Cooperative Work – Introduction to Distributed Applications.
Springer.

(Bradshaw 1997): Bradshaw, J. (1997). Software Agents. AAAI Press/The MIT
Press.

(Brasethvik and Gulla 1999): Brasethvik, T. and Gulla, J. A. (1999). Semantically
accessing documents using conceptual model descriptions. In Chen, P.,
Embley, D., and Little, S., editors, Proc of workshop on Web and Conceptual
Modelling, Paris.

(Brasethvik and Gulla 2000): Brasethvik, T. and Gulla, J. A. (2000). Natural lan-
guage analysis for semantic document modelling. In Metais, E., editor,
Proceedings on 5th International Conference on Application of Nature Language
to Information Systems (NLDB’2000), Versailles.

(Bray et al. 1998): Bray, T., Paoli, J., and Sperberg-McQueen, C. M. (1998). Exten-
sible Markup Language (XML) 1.0 - W3C Recommendation 10-February-1998.
W3C, http://www.w3.org/TR/REC-xml.

(Breitbart et al. 1995): Breitbart, Y., Garcia-Molina, H., and Silberschatz, A.
(1995). Transaction management in multidatabase systems. In Kim, W.,
editor, Modern Database Systems: The object Model, Interoperability, and
Beyond, pages 573–591. ACM Press and Addison-Wesley.

(Breugst et al. 1998): Breugst, M., Busse, I., Covaci, S., and Magedanz, T. (1998).
Grasshopper – a mobile agent platform for IN based service environments.
In Proceedings of IEEE Intelligent Networks Workshop (IN’ 98), pages 279–290,
Bordeaux. IEEE CS Press.

(Brockschmidt 1995): Brockschmidt, K. (1995). Inside OLE. Microsoft Press, Red-
mond, Washington, 2nd edition.

URN:NBN:no-2103

BIBLIOGRAPHY 191

(Chrysanthis and Ramamritham 1990): Chrysanthis, P. K. and Ramamritham,
K. (1990). ACTA: A framework for specifying and reasoning about trans-
action structure and behavior. In Garcia-Molina, H. and Jagadish, H. V.,
editors, Proceedings of the 1990 ACM SIGMOD International Conference on
Management of Data (SIGMOD92), pages 194–203. ACM Press.

(Chrysanthis and Ramamritham 1992): Chrysanthis, P. K. and Ramamritham,
K. (1992). ACTA: The saga continues. In Elmagarmid, A. K., editor, Data-
base Transacation Models for Advanced Applications, pages 350–397. Morgan
Kaufmann.

(Chrysanthis and Ramamritham 1994): Chrysanthis, P. K. and Ramamritham,
K. (1994). Synthesis of extended transaction models using ACTA. ACM
Transactions on Database Systems, 19(3):450–491.

(Conradi et al. 1995): Conradi, R., Hagaseth, M., and Liu, C. (1995). Planning
support for cooperating transactions in EPOS. Information Systems,
20(4):317–326.

(Conradi et al. 1996): Conradi, R. et al. (1996). CAGIS – Cooperating Agents in
the Global Inforamtion Space. IDI-NTNU Project proposal. Accepted for
financing by the Research Council of Norway.

(Conradi et al. 1997): Conradi, R., Larsen, J.-O., Nguyen, M., Wang, A. I., and
Liu, C. (1997). Transaction models for software engineering database. In
Proceedings of the Dagstuhl Workshop on Software Engineering Databases.

(Dayal et al. 1988) Dayal, U., Blaustein, B. T., Buchmann, A. P., Chakravarthy,
U. S., Hsu, M., Ledin, R., McCarthy, D. R., Rosenthal, A., Sarin, S. K.,
Carey, M. J., Livny, M., and Jauhari, R. (1988). The HiPac project: Combin-
ing active databases and timing constraints. SIGMOD Record, 17(1):51–70.

(Dayal et al. 1995) Dayal, U., Hanson, E. N., and Widom, J. (1995). Active data-
base systems. In Kim, W., editor, Modern Database Systems: The object Model,
Interoperability, and Beyond, pages 434–456. ACM Press and Addison-Wes-
ley.

(Dayal et al. 1990): Dayal, U., Hsu, M., and Ladin, R. (1990). Organizing long-
running activities with triggers and transactions. In Garcia-Molina, H. and
Jagadish, H. V., editors, Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data, Atlantic City, NJ, May 23-25, 1990, pages
204–214. ACM Press.

(de By et al. 1998): de By, R. A., Klas, W., and Veijalainen, J. (1998). Transaction
Management Support for Cooperative Applications. Kluwer Academic Publ.

URN:NBN:no-2103

192 BIBLIOGRAPHY

(DeSanctis and Gallupe 1987): DeSanctis, G. and Gallupe, R. B. (1987). A foun-
dation for the study of group decision support systems. Management Sci-
ence, 33(5):589–609.

(Ellis et al. 1991): Ellis, C. A., Gibbs, S. J., and Rein, G. L. (1991). Groupware:
Some issues and experiences. Communications of the ACM, 34(1):9–28.

(Elmagarmid 1992): Elmagarmid, A. K. (1992). Database Transaction Models for
Advanced Applications. Morgan Kaufman.

(Elmagarmid et al. 1992): Elmagarmid, A. K., Leu, Y., Mullen, J. G., and
Bukhres, O. (1992). Introduction to advanced transaction models. In
Elmagarmid, A. K., editor, Database Transacation Models for Advanced Appli-
actions, pages 35–52. Morgan Kaufmann.

(Farshchian 2001): Farshchian, B. (2001). A Framework for Supporting Shared Inter-
action in Distributed Product Development Projects. Dr.ing. thesis, Dept. of
Computer and Information Science, Norwegian University of Science and
Technology. Trondheim.

(Finin et al. 1994): Finin, T., Fritzson, R., McKay, D., and McEntire, R. (1994).
KQML as an agent communication language. In Proceedings of the 3rd Inter-
national Conference on Information and Knowledge Management (CIKM’94),
pages 456–463. ACM Press.

(Fussell et al. 1981) Fussell, D., Kedem, Z. M., and Silberschatz, A. (1981). A.
deadlock removal using partial rollback in database systems. In Proceed-
ings of the ACM SIGMOD International Conference on management of data,
pages pp. 65–73, Ann Harbor, Michigan. ACM Press.

(Garcia-Molina and Salem 1987): Garcia-Molina, H. and Salem, K. (1987). Sagas.
In Proceedings of the ACM International Conference on Management of Data
(SIGMOD 87), pages 249–259.

(Georgakopoulos et al. 1994): Georgakopoulos, D., Hornick, M. F., Krychniak,
P., and Manola, F. (1994). Specification and management of extended
transactions in a programmable transaction environment. In Proceedings of
the 10th International Conference on Data Engineering (ICDE 94), pages 462–
473. IEEE Computer Society.

(Georgakopoulos et al. 1996): Georgakopoulos, D., Hornick, M. F., and Manola,
F. (1996). Customizing transaction models and mechanisms in a program-
mable environment supporting reliable workflow automation. IEEE
Transactions on Knowledge and Data Engineering, 8(4):630–649.

URN:NBN:no-2103

BIBLIOGRAPHY 193

(Godart 1993): Godart, C. (1993). COO: A transaction model to support cooper-
ating software developers coordiantion. In Proceedings of the 4th European
Software Engineering Conference, Garmisch, LNCS 717, pages 361–379.

(Godart et al. 1996): Godart, C., Canals, G., Charoy, F., Molli, P., and Skaf, H.
(1996). Designing and implementing COO: Design process, architectural
style, lessons learned. In Proceedings of the 18th International Conference on
Software Engineering (ICSE’96), pages 342–352. IEEE-CS Press.

(Gray 1981): Gray, J. (1981). The transaction concept: Virtues and limitations. In
In Proceedings of the 7th International Conference on Very Large Data Bases
(VLDB 81), pages 144–154. IEEE Computer Society Press.

(Gray et al. 1981) Gray, J., McJones, P. R., Blasgen, M. W., Lindsay, B. G., Lorie,
R. A., Price, T. G., Putzolu, G. R., and Traiger, I. L. (1981). The recovery
manager of the system R database manager. ACM Computing Surveys,
13(2):223–243.

(Gray and Reuter 1993): Gray, J. and Reuter, A. (1993). Transaction Processing:
Concepts and Techniques. Morgan Kaufmann.

(Gray et al. 1975) Gray, J. N., Lorie, R. A., Putzulo, G. R., and Traiger, I. L. (1975).
Granularity of locks and degrees of consistency in a shared database. In
Proceedings of the 1st International Conference on Very Large Databases (VLDB
’75), pages 25–33.

(Greenberg and Marwood 1994): Greenberg, S. and Marwood, D. (1994). Real
time groupware as a distributed system: concurrency control and its effect
on the interface. In Proceedings of the conference on Computer supported coop-
erative work, pages 207–217. ACM Press.

(Greenberg and Roseman 1998): Greenberg, S. and Roseman, M. (1998). Using a
room metaphor to ease transitions in groupware. Research report 98/611/
02, Department of Computer Science, University of Calgary.

(Greif and Sarin 1987): Greif, I. and Sarin, S. (1987). Data sharing in group work.
ACM Transactions on Office Information Systems, 5(2):187–211.

(Grudin 1994): Grudin, J. (1994). CSCW: History and focus. IEEE Computer,
27(5):19–26.

(Gutwin et al. 1996): Gutwin, C., Greenberg, S., and Roseman, M. (1996). Sup-
porting awareness of others in groupware. In Proceedings of the CHI ’96 con-
ference companion on Human factors in computing systems: common ground,
page 205. ACM Press.

URN:NBN:no-2103

194 BIBLIOGRAPHY

(Härder and Reuter 1983): Härder, T. and Reuter, A. (1983). Principles of trans-
action-oriented database recovery. Computing Surveys, 15(4):287–317.

(Harrison et al. 1995): Harrison, C. G., Chess, D. M., and Kershenbaum, A.
(1995). Mobile agents: Are the a good idea? Technical report, BM T.J.
Watson Research Center.

(Jain et al. 1999): Jain, A. K., Aparico, M., and Singh, M. P. (1999). Agents for
process coherence in virtual enterprises. Communication of the ACM,
42(3):62–69.

(Jajodia and Kerschberg 1997): Jajodia, S. and Kerschberg, L. (1997). Advanced
Transaction Models and Architectures. Kluwer Academic Publisher.

(Kaiser 1994): Kaiser, G. E. (1994). Cooperative transactions for multi-user envi-
ronments. In Kim, W., editor, Modern Database Systems: The Object Model,
Interoperability, and Beyond, Chapter 20, pages 409–433. ACM Press.

(Kaiser and Pu 1992): Kaiser, G. E. and Pu, C. (1992). Dynamic restructuring of
transactions. In Elmagarmid, A. K., editor, Database Transacation Models for
Advanced Applications, pages 265–295. Morgan Kaufmann.

(Kim et al. 1984) Kim, W., Lorie, R. A., McNabb, D., and Plouffe, W. (1984). A
transaction mechanism for engineering design databases. In Dayal, U.,
Schlageter, G., and Seng, L. H., editors, Proceeding of the 10th International
Conference on Very Large Data Bases (VLDB ’84), pages 355–362, Singapore.
Morgan Kaufmann.

(Kiniry and Zimmerman 1997): Kiniry, J. and Zimmerman, D. (1997). A hands-
on look at Java mobile agents. IEEE Internet Computing, 1(4):21–33.

(Klein 1991): Klein, J. (1991). Advanced rule driven transaction management. In
Proceedings of the 36th IEEE Computer Society International Conference (COM-
PCON), pages 562–567. IEEE, IEEE CS Press.

(Korth 1983): Korth, H. F. (1983). Locking primitives in a database system. Jour-
nal of the ACM, 30(1):55–79.

(Korth et al. 1990): Korth, H. F., Levy, E., and Silberschatz, A. (1990). A formal
approach to recovery by compensating transactions. In McLeod, D., Sacks-
Davis, R., and Schek, H.-J., editors, Proceedings of the 16th International Con-
ference on Very Large Data Bases (VLDB ’90), pages 95–106. Morgan
Kaufmann.

(Korth and Speegle 1994): Korth, H. F. and Speegle, G. D. (1994). Formal aspects
of concurrency control in long-duration transaction systems using the
NT/PV model. TODS, 19(3):492–535.

URN:NBN:no-2103

BIBLIOGRAPHY 195

(Lange and Oshima 1998): Lange, D. and Oshima, M. (1998). Programming and
Deploying Java[tm] Mobile Agents with Aglets. Addison Wesley.

(Levine et al. 1992): Levine, J., Mason, T., and Brown, D. (1992). lex & yacc.
O’Reilly, 2nd edition.

(Levy et al. 1991) Levy, E., Korth, H. F., and Silberschatz, A. (1991). A theory of
relaxed atomicity (extended abstract). In Proceedings of the 10th Annual
ACM Symposium on Principles of Distributed Computing, pages 95–109,
Montreal. ACM Press.

(Lynch 1983): Lynch, N. A. (1983). Multilevel atomicity - a new correctness cri-
terion for database concurrency control. ACM Transactions on Database Sys-
tems, 8(4):484–502.

(Mariani and Rodden 1996): Mariani, J. A. and Rodden, T. (1996). Cooperative
information sharing: Developing a shared object service. The Computer
Journal, 39(6):455–470.

(Marx 1867): Marx, K. (1867). Capital : A Critique of Political Economy, volume 1.
Penguin Classics, 1990. English translation by Ben Fowkes, reprint edition.

(Mehrotra et al. 1998): Mehrotra, S., Rastogi, R., Korth, H. F., and Silberschatz,
A. (1998). Ensuring consistency in multidatabases by preserving two-level
serializability. TODS, 23(2):199–230.

(Mehrotra et al. 2001): Mehrotra, S., Rastogi, R., Yuri Breitbart, H. F. K., and Sil-
berschatz, A. (2001). Overcoming heterogeneity and autonomy in multi-
database systems. Information and Computation, 167(2):137–172.

(Mohan 1994): Mohan, C. (1994). Tutorial: Advanced transaction models - sur-
vey and critique. In Proceedings of the ACM International Conference on Man-
agement of Data (SIGMOD 94), page 521.

(Mohan et al. 2000) Mohan, C., Barber, R., Watts, S., Somani, A., and Zahariou-
dakis, M. (2000). Evolution of groupware for business applications: A
database perspective on Lotus Domino/Notes. In Proceedings of 26th Inter-
national Conference on Very Large Data Bases (VLDB 2000), pages 684–687.
Morgan Kaufmann.

(Mohan and Narang 1994) Mohan, C. and Narang, I. (1994). ARIES/CSA: A
method for database recovery in client-server architectures. In Snodgrass,
R. T. and Winslett, M., editors, Proceedings of the 1994 ACM SIGMOD Inter-
national Conference on Management of Data, Minneapolis, Minnesota, May 24-
27, 1994, pages 55–66. ACM Press.

URN:NBN:no-2103

196 BIBLIOGRAPHY

(Moss 1982): Moss, J. E. B. (1982). Nested transactions and reliable computing.
In Proceedings of the 2nd IEEE Symposium on Reliability in Distributed Soft-
ware and Database Systems.

(Nodine and Zdonik 1992): Nodine, M. H. and Zdonik, S. B. (1992). Cooperative
transaction hierarchies: Transaction support for design applications.
VLDB Journal, 1(1):41–80.

(Nygård et al., 2000): Nygård, M. et al. (2000). MOWAHS – mobile work across
heterogeneous systems. IDI-NTNU Project proposal. Accepted for financ-
ing by the Research Council of Norway.

(Object Management Group 1998): Object Management Group (1998). The Com-
mon Object Request Broker: Architecture and Specification. OMG, v2.2 edition.

(ObjectSpace Inc. 1997): ObjectSpace Inc. (1997). Voyager core package: Techni-
cal overview. Technical White Paper.

(Olle et al. 1982): Olle, T. W., Sol, H., and Verrijn-Stuart, A. A., editors (1982).
Proceeding of the IFIP WG 8.1 Working Conference on Comparative Review of
Information Systems Design Methodologies, Noordwijkerhout. IFIP.

(Özsu and Valduriez 1991): Özsu, M. T. and Valduriez, P. (1991). Principles of
Distributed Database Systems. Prentice-Hall.

(Papadimitriou 1979): Papadimitriou, C. H. (1979). The serializability of concur-
rent database updates. Journal of the ACM, 26(4):631–653.

(Papows 1995) Papows, J. (1995). Notes for lotus and the world: Sighting the
goal. In Coleman, D. and Khanna, R., editors, Groupware: Technology and
Applications, Chapter 7, pages 201–223. Prentice Hall, Second edition.

(Phillips and Pugh 1994): Phillips, E. and Pugh, D. (1994). How to Get a Phd : A
Handbook for Students and Their Supervisors. Open University Press, 2nd
edition.

(Ramampiaro et al. 1999): Ramampiaro, H., Divitini, M., and Petersen, S. A.
(1999). Agent-based groupware: Challenges for cooperative transaction
models. In J. Estublier et. al, editors, Proceedings of the International Process
Technology Workshop (IPTW 99). Pages 18-22, Villard de Lens.

(Ramampiaro and Nygård 1999): Ramampiaro, H. and Nygård, M. (1999).
Cooperative database system: A constructive review of cooperative trans-
action models. In Kambayashi, Y. and Takakura, H., editors, Proceedings of
the 1999 International Symposium on Database Application in Non-Traditional
Environment (DANTE 99), pages 315–324, Kyoto. IEEE Computer Society
Press.

URN:NBN:no-2103

BIBLIOGRAPHY 197

(Ramampiaro and Nygård 2001a): Ramampiaro, H. and Nygård, M. (2001a).
CAGISTrans: A transactional framework for cooperative work. In Sha, E.,
editor, Proceedings of the 14th International Conference on Parallel and Distrib-
uted Computing Systems (PDCS 2001), pages 43–50, Dallas. ISCA.

(Ramampiaro and Nygård 2001b) Ramampiaro, H. and Nygård, M. (2001b).
CAGISTrans: Providing adaptable transactional support for cooperative
work. In Altinkemer, K. and Chari, K., editors, Proceedings of the 6th
INFORMS Conference on Information Systems and Technology (CIST 2001),
pages 3 – 29, Florida. INFORMS.

(Ramampiaro and Nygård 2002) Ramampiaro, H. and Nygård, M. (2002). Sup-
porting customisable transactions for cooperative work: An experience
paper. In Proceedings of the 2002 Western Multi conference (WMC 2002) –
Collaborative Technologies Symposium 2002 (CTS 2002), San Antonio. (To
appear).

(Ramampiaro et al. 2000): Ramampiaro, H., Wang, A. I., and Brasethvik, T.
(2000). Supporting distributed cooperative work in CAGIS. Presented at
the 4th IASTED International Conference on Software Engineering and Applica-
tions (SEA 2000), Las Vegas. Aslo in Hamza, M. H., editor, Proceedings of the
IASTED 2001 International Symposia on Applied Informatics (AI 2001), pages
609-616, Innsbruck. IASTED/ACTA Press.

(Ramamritham and Chrysanthis 1997): Ramamritham, K. and Chrysanthis,
P. K. (1997). Advances in Concurrency Control and Transaction Processing:
Executive Briefing. IEEE Computer Society Press.

(Rochkind 1975): Rochkind, M. J. (1975). The source code control system. IEEE
Transaction on Software Engineering, SE-1(4):364–370.

(Rodden 1991): Rodden, T. (1991). A survey of CSCW systems. Interacting with
Computers, 3(3):319–353.

(Rodden and Blair 1991): Rodden, T. and Blair, G. (1991). CSCW and distributed
systems: The problem of control. In Bannon, L., Robinson, M., and
Schmidt, K., editors, Proceedings of the 2nd European Conference on Computer-
Supported Cooperative Work, pages 49–64.

(Saastamoinen 1995): Saastamoinen, H. T. (1995). On the handling of exceptions in
Information Systems. PhD thesis, University of Jyvaskyla.

(Schmidt and Bannon 1992): Schmidt, K. and Bannon, L. (1992). Taking CSCW
seriously. supporting articulation work. Computer Supported Work. An
International Journal, 1(1-2):7–40.

URN:NBN:no-2103

198 BIBLIOGRAPHY

(Schmidt and Rodden 1996): Schmidt, K. and Rodden, T. (1996). Putting it all
together: Requirements for a CSCW platform. In Shapiro, D., Tauber, M.,
and Traunmüller, R., editors, The Design of Computer Supported Cooperative
Work and Groupware Systems, chapter 11, pages 157–175. Elsevier Science
B.V.

(Shaw 1995): Shaw, T. W. (1995). Development of an electronic classroom: the
promise, the possibilities and the practicalities. Engineering Science and
Education Journal, 4(2):63 –71.

(Skarra 1989): Skarra, A. (1989). Concurrency control for cooperating transac-
tions in an object–oriented database. SIGPLAN Notices, 24(4):466–473.

(Sølvberg 1999): Sølvberg, A. (1999). Data and what they refer to. In Chen, P.,
Akoka, J., Kangassalo, H., and Thalheim, B., editors, Conceptual modeling –
Current Issues and Future Directions, LNCS1565, pages 211–226. Springer
Verlag.

(Sommerville 2001): Sommerville, I. (2001). Software Engineering. Addison Wes-
ley, 6th edition.

(Sommerville and Rodden 1993) Sommerville, I. and Rodden, T. (1993). En-
vironments for cooperative systems development. In Proceedings of the
Software Engineering Environments Conference, pages 144 –155. IEEE Com-
puter Society Press.

(Spahni et al. 1998): Spahni, S., Scherrer, J.-R., Sauquet, D., and Sottile, P.-A.
(1998). Consensual trends for optimizing the constitution of middleware.
ACM SIGCOMM Computer Communication Review, 28(5).

(Straßer et al. 1997): Straßer, M., Baumann, J., and Hohl, F. (1997). Mole – a java
based mobile agent system. In Mühlhäuser, M., editor, Special Issues in
Object Oriented Programming, pages 301–308. dpunkt Verlag.

(Tichy 1985): Tichy, W. F. (1985). RCS: A System for Version Control. Software
Practice and Experience, 15(7):637–654.

(Tjahjono 1996): Tjahjono, D. (1996). Exploring the effectiveness of formal technical
review factors with CSRS, a collaborative software review system. PhD thesis,
Department of Information and Computer Sciences, University of Hawaii.

(Tulloch 1995): Tulloch, S., editor (1995). The Oxford Dictionary & Thesaurus.
Oxford University Press.

(van Eijk et al. 1989): van Eijk, P. H. J., Vissers, C. A., and Diaz, M., editors
(1989). The formal description technique LOTOS. Elsevier Science Publishers
B.V.

URN:NBN:no-2103

BIBLIOGRAPHY 199

(Wang 1999): Wang, A. I. (1999). Experience paper: Using XML to implement a
workflow tool. In 3rd Annual IASTED International Conference Software
Engineering and Applications, Scottsdale, Arizona.

(Wang 2000a): Wang, A. I. (2000a). Support for Mobile Software Processes in
CAGIS. In Conradi, R., editor, Seventh European Workshop on Software Proc-
ess Technology, Kaprun near Salzburg.

(Wang 2000b): Wang, A. I. (2000b). Using Software Agents to Support Evolution
of Distributed Workflow Models. In Proceedings of International ICSC Sym-
posium on Interactive and Collaborative Computing (ICC’2000), page 7pp.

(Wang 2001): Wang, A. I. (2001). Using a Mobile, Agent-based Environment to sup-
port Cooperative Software Processes. Dr.ing. thesis, Norwegian University of
Science and Technology, Dept. of Computer and Information Science,
NTNU, Trondheim.

(Wang et al. 1998): Wang, A. I., Larsen, J.-O., Conradi, R., and Munch, B. (1998).
Improving cooperation support in the EPOS CM system. In Gruhn, V., edi-
tor, Proceedings EWSPT’98, Weybridge (London), 18-19. Sept. 1998, Springer
LNCS 1487, pages 75–91.

(Wäsch 1999): Wäsch, J. (1999). Transactional Support for Cooperative Applications.
Phd thesis, GMD/IPSI and Darmstadt University of Technology.

(Weihl 1988): Weihl, W. E. (1988). Commutativity-based concurrency control for
abstract data types. IEEE Transaction on Computers, 37(12):205 – 214.

(Weikum and Schek 1992): Weikum, G. and Schek, H.-J. (1992). Concepts and
applications of multilevel transactions and open nested transaction. In
Elmagarmid, A. K., editor, Database Transacation Models for Advanced Appli-
cations, pages 350–397. Morgan Kaufmann.

(Wong et al. 1999): Wong, D., Paciorek, N., and Moore, D. (1999). Java-based
mobile agents. Communications of the ACM, 42(3):92–102.

(Wooldridge and Jennings 1998): Wooldridge, M. J. and Jennings, N. R. (1998).
Applications of intelligent agents. In Jennings, N. R. and Wooldridge,
M. J., editors, Agent Technology Foundations, Applications, and Markets,
chapter 1. Springer-Verlag.

(Zhang et al. 1999): Zhang, Y., Kambayashi, Y., Kambayashi, Y., Yang, Y., and
Sun, C. (1999). On interactions between co-existing traditional and cooper-
ative transactions. International Journal of Cooperative Information Systems,
8(1):1–24.

URN:NBN:no-2103

200 BIBLIOGRAPHY

URN:NBN:no-2103

201

Index

A
abort 15, 19

command 15
abort dependencies 81
AbortSet 98, 99
access control. 65
access dependencies 98
ACID 39

ACIDity 77, 96
atomicity 5, 16, 67, 77
consistency 16
durability 16
execution 135
isolation 5, 16, 67, 80
properties 16, 22, 63, 76, 96, 173
requirements 95, 173
transactions 68, 135

ACTA 45, 51–52, 179, 180
activity logs 174
adaptability 107
administrative client interface 146
administrator manager 146
advanced applications 23
advanced operations 110
advanced transaction manager 131, 147
agent 9

agent based groupware 9
systems 144
technology 25, 33

agents 33, 35, 148, 160, 165
aglets 35, 161
Aglets Software Development Kit. See
ASDK.

applied research 6
Artificial Intelligence 34
ASDK 144, 161, 172
ASSET 5, 52–54, 177, 179, 180
asynchronous 28
atomicity abort dependency scheme 98
atomicity and isolation properties 22
Aviasoft 59, 67, 98
avoid cascading aborts 21
awareness 30, 65, 68, 101, 105, 152

B
before image value 21
begin dependency 108
browse 102

C
CAGIS 8, 35, 155, 162, 186

document classification 167
document models and tools 155
document tool 158
glue model 161
GlueServer 161, 162, 165
process models and tools 155

URN:NBN:no-2103

202 INDEX

transaction models and tools 155
workflow 161, 165, 167

CAGISTrans 3, 8
components 185
framework 8, 68, 91, 95, 172, 174
middleware 92
prototype 10, 134, 136, 171
system 35, 128, 145, 152, 166
system. 130
transaction manager 166
transactional framework 95
workspace 101, 136
workspaces 72–75

cascading aborts 21, 22, 81
CFIS 59, 60, 72
characteristics specification 76, 96, 172
check-in 74
CoAct 45
collaborative lock 102
collaborative locks 87, 101
commit 15

command 15
commit dependencies 87
commit dependency 82, 108
common object broker architecture. See
CORBA.

compensation 39
Computer Supported Cooperative Work. See
CSCW.

computer-based flight instrumentation
system. See CFIS.

conceptual model 156
concurency control mechanisms 64
concurrency control protocols 16
conflict 18, 115
conflict dependencies 18
conflicts 84, 89, 113, 115, 138, 179
consistency 75
controlled sharing 30, 63
Coo 42–43, 44, 179, 180
cooperation 5, 22, 72
Cooperative Agents in a Global Information
Space. See CAGIS.

cooperative processes 9

cooperative work 5, 26, 29, 61, 80, 159,
178

environments 5
CoopInterface 146, 172
coordinate 4, 159
coordination 75
CORBA 32, 161, 171
correctness 75, 116
correctness constaints

permits 116
correctness constraints 11

conflicts 119
demands 121, 122
permits 118, 120, 121

correctness criteria 5, 22, 76, 95
user-defined 90

correctness criterion 133
CSCW 3, 4, 25, 26, 35, 51, 61, 169, 178
customise 10

D
database 15, 169
database log 21
database management system. See DBMS.

Database Oriented Middleware. See DOM.

DBMS 5, 15, 16, 76, 80
DCOM 32
delegate 109
delegation 133, 153, 180
demands 87, 89, 102, 114, 119, 179
distributed component object model. See
DCOM.

distributed documents 8
Distributed Transaction Processing
monitors. See DTP monitors.

document type definitions. See DTD.

DOM 32
DTD 131
DTP monitor 31
dynamic 33
dynamic environments 5
dynamic nature 35
dynamic restructuring 41, 109, 181

URN:NBN:no-2103

INDEX 203

E
electronic classroom system 29
electronic mail system 29
EPOS 44–45, 179, 180
execution descriptor 93, 133
execution Manager 147
execution manager 132
execution specification 76, 83, 96, 173
exploratory research 7
eXtensible Markup Language. See XML.

external agent 171
external agents 146

F
fine-grained recovery management 22
flexible mechanisms 35

G
group support 25
group workspaces 73, 174
groupware 26, 150
GUI 111, 124
GUI module 60

H
heterogeneous 33

environments 5, 31
heterogeneous systems 11

I
incorporate 102
intension 102

J
Java 35
Java RMI 171
JDBC 135
JKQML 144, 172
JTA/JTS 135

K
knowledge and query manipulation

language. See KQML.

KQML 144, 148, 153, 161, 172
KQML agents 150

L
legacy databases 5
locking types 81

M
media failure 20
Message Oriented Middleware. See MOM.

middleware 11, 30, 91, 184
mobile agents 33

systems 144
MOM 31
MOWAHS 186

N
new timestamp ordering 49–??

O
Object Descriptor File. See ODF.

Object Request Brokers. See ORB.

ODF 157
open-ended execution 64
optimistic protocols 19
ORB 32, 36

P
partial rollback 63, 78
patterns 138
performance 170
permit 53
permits 85, 89, 113, 115, 180
pessimistic protocols 19
policies 97
private workspace 72
problem-solving research 7
process 111
Process module 60
pure research 6

URN:NBN:no-2103

204 INDEX

R
read-check-out 74
recoverability 21, 37
recoverable 20
recovery 21, 178
recovery protocols 16, 19, 21
redo action 21
redo actions 20
referent model language 157
Reflective Transaction Framework. See
RTF.

refresh 74
relative serialisability. See RSR.

relaxed isolation 80
Remote Procedure Call. See RPC.

research 6
research questions 175
resource management interface 132
RPC 31
RSR 46–??
RTF 5, 55–56, 177, 179
runtime management system 133, 138, 145,
147
runtime specification manager 131

S
semantic knowledge 22
semantics 5

operation 89
serial execution 17
serialisability 37, 101
serialisable 17
serialisation graph 18
shared environment 29
social ability 33
software review system 29
specification analyser 131
specification environment 138, 145, 146
specification manager 146
SQL database 146
strict executions 21
structural dependencies 98

synchronise 4
synchronous 28
system agents 152
system failure 20
system requirements 128

T
teamwork 26, 28
testing-out research 7, 8
time/space matrix 28
time/space taxonomy 27
TP-monitor 32, 55, 92
transaction failure 20
transaction failures 21
transaction model 16

Cooperative transaction hierarchy 38,
40, 138

multilevel 40
Nested 38–39, 97
Open nested 38
Sagas 38, 39
Split and join 38, 41, 45, 180
traditional 22

transaction models 4, 5, 75
advanced 5, 37
cooperative 37
customisable. See also transactional

framework. 37
extended 5, 37
flexible 37

Transaction Specification and Management
Environment. See TSME.

transactional behaviour 11
transactional framework 3, 68
transactional support 5
transactions 4, 5, 15, 18

compensating 82
TransCoop 45–46, 139, 177, 179
TSME 5, 54–55, 139, 177, 179

U
undo action 21
undo actions 20
upward-check-in 74

URN:NBN:no-2103

INDEX 205

user-controlled lock 101
user-controlled locks 85, 101, 104

V
versioning 186
Voyager 36

W
Web servers 4, 5, 55, 67, 129, 130, 135,
136, 140, 168, 175

what you see is what I see. See WYSIWIS.

workspace 152, 161, 184
workspaces 73, 174
write-check-out 74
WYSIWIS 30

X
XML 11, 60, 93, 131, 139, 147, 153, 157,
159, 170, 177, 186

parser 131

URN:NBN:no-2103

206 INDEX

URN:NBN:no-2103

