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ABSTRACT 

Oil tanker traffic constitutes a vital part of the maritime 

operations in the High North and is associated with 

considerable risk to the environment. As a consequence, 

the Norwegian Coastal Administration (NCA) 

administers a number of vessel traffic services (VTS) 

centers along the Norwegian coast, one of which is 

located in the town of Vardø, in the extreme northeast 

part of Norway.  The task of the operators at the VTS 

center in Vardø is to command a fleet of tug vessels 

patrolling the northern Norwegian coastline such that 

the risk of oil tanker drifting accidents is reduced. 

Currently, these operators do not use computer 

algorithms or mathematical models to solve this 

dynamic resource allocation problem but rely on their 

own knowledge and experience when faced with 

constantly changing weather and traffic conditions. We 

therefore propose a novel sustainable model called the 

receding horizon mixed integer programming (RHMIP) 

model for optimal dynamic allocation of patrol vessels 

to oil tankers. The model combines features from model 

predictive control and linear programming. Simulations 

run with real-world parameters highlight the 

performance and quality of our method. The developed 

RHMIP model can be implemented as an operational 

decision support tool to the NCA.  

 
1. INTRODUCTION  

Maritime shipping is an important channel of 

international trade. More than seven billion tons of 

goods are carried by ships every year (Acar et al. 2009). 

In Norway, several hundred oil tankers transit each year 

along its northern coastline (Bye 2012). This traffic is 

associated with potential grounding accidents due to oil 

tankers losing control of steering or propulsion, a 

problem that is highly underreported and likely occurs 

almost every day
1
. Such accidents can have severe 

environmental consequences from oil spill and may 

even lead to loss of lives.  

     The VTS center in Vardø, located in the extreme 

northeast part of Norway, controls a fleet of tugs 

patrolling the coastline. By means of the automatic 

identification system (AIS) used by ships and VTS 

centers all over the world, the VTS center in Vardø 

obtains static (e.g., identity, dimensions, cargo, 

destination) and dynamic (e.g., position, speed, course, 

rate of turn) information about vessels along the coast. 

In addition to the AIS information, weather forecasts 

and dynamic models of wind, wave heights, and ocean 

currents can be used to predict possible drift trajectories 

and grounding locations of tankers that lose 

maneuverability. The aim of the patrolling tug vessels is 

to move along the coastline in a collectively intelligent 

manner such that potential drift trajectories can be 

intercepted. The closest tug vessel will then intercept 

the drifting oil tanker before it runs aground (Eide et al. 

2007). 

     The number of oil tanker transits off the northern 

coastline of Norway is predicted to increase rapidly in 

the coming years (Institute of Maritime Research 2010). 

In addition, the number of patrolling tug vessels may 

increase as a response to the increase in oil tanker 

traffic. Consequently, the VTS operators’ task of 

manually commanding the fleet of patrol tugs is 

becoming unmanageable without the aid of a decision 

support tool. Addressing this need, Bye (2012) and Bye, 

van Albada, and Yndestad (2010) used a heuristic and 

suboptimal receding horizon genetic algorithm (RHGA) 

to dynamically allocate patrolling tug vessels to oil 

tankers along the northern coastline of Norway. Our aim 

here is to present a receding horizon mixed integer 

programming (RHMIP) model to optimally solve the 

same fleet optimization problem. 

     The remainder of this paper is organized as follows: 

Section 2 explicitly describes the problem whereas 

Section 3 presents a methodology for the solution. 

Section 4 reports some computational experiments.  
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Finally, discussions and propositions for future research 

are made in Section 5.  

 

2. PROBLEM DESCRIPTION 

Oil tankers move, by law, along piecewise-linear 

corridors well defined in advance and approximately 

parallel to the coastline. We adopt the problem 

description used in Bye (2012) and Bye et al. (2010).  

Accordingly, we assume a set C of oil tankers moving 

in one dimension along a line of motion z. Moreover, 

we assume a set P of tug vessels moving along a line of 

motion y parallel to z and close to shore. An illustration 

of the problem is presented in Figure 1, where patrol tug 

vessels are represented as black circles, oil tankers as 

white circles, predicted oil tanker positions as dashed 

circles, and circles with a cross represent points where 

the predicted drift trajectories cross the patrol line y. We 

refer to these points as cross points.     

     Based on real-time information of oil tankers from 

the AIS and on a set of forecasting models developed  

previously by the NCA and partners, we assume that it 

is possible to predict future oil tankers positions as well 

as the corresponding potential drift trajectories.           

 
Figure 1: Problem illustration 

 

Specifically, for each current position of a given oil 

tanker  z t , there is a corresponding predicted drift 

trajectory which crosses the line y  at a cross point 

 y t where t t    represents the estimated drift 

time. Thus, the main goal is to make sure there is 

always a tug vessel at a position  y t   close enough to 

any potential cross point  y t to rescue the drifting oil 

tanker. That is, what is the optimal positioning of tug 

vessels along the coastline for a minimum rescue time 

of potentially drifting oil tankers? 

 

3. METHODOLOGY 

Task allocation in real-time systems in order to meet 

certain deadlines is known to be an NP-hard problem 

(Gertphol and Prasanna 2005).  In addition, the highly 

uncertain weather conditions and the dynamic 

environment add to the complexity of the problem. To 

overcome these challenges, we propose using a 

combination of different methods that complement each 

other. An iterative solution approach for different types 

of problems that integrate optimization and simulation 

methodologies have been developed by several 

researchers in the literature (Acar et al. 2009).  Here, we 

make use of the receding horizon control principle 

together with a linear optimization approach to develop 

our novel RHMIP model. Whilst this approach can be 

used to solve the specific problem presented in this 

paper, our model can likely be extended to solve other 

problems such as dynamic fleet optimization of 

platform supply vessels (PSVs) or other resource 

allocation problems both offshore and on land. 

     Model predictive control (MPC) or receding horizon 

control (RHC) is a class of control algorithms that uses 

explicit process models to predict the future response of 

a system and guide a system to a desired output using 

optimization as an intermediate step (Park et al. 2009). 

Receding horizon optimization is widely recognized as 

a highly practical approach with high performance 

(Zheng et al. 2011). It has become a very successful 

strategy in real-time control problems (Goodwin et al. 

2006). Morari and Lee (1999) showed that many 

important practical and theoretical problems can be 

formulated in the RHC framework.  The RHC algorithm 

consists of two main steps: (1) prediction of future 

system behavior on the basis of current measurements 

and a system model and (2) solution of an optimization 

problem for determining future values of the 

manipulated variables, subject to constraints (Wang et 

al. 2007).  For a given planning time horizon T , with 

step 0k   corresponding to the time instant 
kt k  

with  the sampling time, the future control sequence 

     , 1 ,..., 1k k k T     is computed by solving a 

discrete-time optimization problem over the period

 ,k k Tt t  in a way that a performance index defined 

over the considered period is optimized subject to some 

operational constraints. For our problem, tug vessels are 

constrained to move no faster than their maximal speed, 

which leads to a limitation on the number of oil tankers 

allocated to a given tug vessel. Once the optimal control 

sequence is computed, only the first control sample is 

implemented, and then the horizon is shifted. 

Subsequently, the new state of the system is estimated, 

and a new optimization problem at time 
1kt 

 is solved 

using this new information (Tarău et al. 2011). In effect, 

the RHC principle introduces feedback control, and thus 

robustness to changes in the environment.   

    Mixed-integer linear programming (MIP) problems 

are optimization problems with a linear objective 

function, subject to linear equality and inequality 

constraints and where some variables are constrained to 

be integers. The advantage of using this approach is the 

availability of efficient solvers that can compute the 

global optimal solution within reasonable time (Tarău et 

al. 2011).  

     Despite the high uncertainty related to weather, wave 

heights and ocean currents, we have decided to develop 

a deterministic MIP model. This decision is justified by 

the fact that the model is run dynamically and 
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parameters are updated at every time step, thus 

implicitly handling the stochasticity of the problem. 

 

 

3.1 RHMIP model 

Previous work done by Bye (2012) and Bye et al. 

(2010) aimed to reduce the distances between all cross 

points and the nearest patrol points in the planning 

horizon (which is equivalent to minimizing rescue time 

if all patrol tugs have the same maximal speed). Indeed, 

this is a logical choice that tries to maximize the number 

of oil tankers that can be rescued at any time.  

The following cost function was used as a minimization 

objective: 
1
min

d o

d

t T N
c p

t t
p Pt t c

y y


 

   

Here, 
c

ty represents the cross point of the drift trajectory 

of oil tanker c at time t , 
p

ty is the position of patrol tug 

p at time t ; 
oN  is the number of oil tankers, P is the 

set of patrol tugs, and T is the planning horizon. The 

above cost function can be rewritten as a linear cost 

function by adding some extra variables and can 

therefore be solved optimally using linear MIP.  

In this study, we implement two variants of our 

model, one using static tug vessels (Static MIP) and the 

other with dynamic tug vessels (RHMIP). The definition 

of sets, parameters and variables are as follows. 

 

Sets 

P set of tug vessels 

C set of oil tankers  

 

Parameters  

max

pv maximal speed of tug vessel p 

max

cv maximal speed of oil tanker c 

c

ty cross point of the cth oil tanker’s predicted drift 

trajectory at time t. Note that t represent the time at 

which the drifting oil tanker crosses the patrol line.  

0

py initial position of tug vessel p 

0

cy initial position of oil tanker c 

min drift time of oil tankers  

  length of each time period 

RHMIPT   number of simulation steps 

T  length of the planning horizon of the MIP
 

     optimization model  

M a large number
2
  

 

Decision variables  
p

tY position of tug vessel p in period t 

                                                           
2
 See constraints (4) and (8). 

,p p

t tI J direction of tug vessel p in period t. If 

0p p

t tI J  the tug vessel will move forward and 

backward if 0p p

t tI J  , otherwise it will remain static. 

,cp cp

t tX Z distance between potentially drifting oil tanker 

c and tug vessel p in period t. One of the variables will 

contain the distance and the other variable will be equal 

to zero. 
cp

t  distance from potentially drifting oil tanker c to its 

allocated tug vessel p in period t. Specifically, t 

represent the time period where the potentially drifting 

oil tanker c cross the patrol line. 

1 if tug vessel  is allocated to oil  tanker 

 in period  

0 otherwise

cp

t

p c

W t







 

 

3.2 Algorithm 

Below is an algorithm implementing the RHMIP model.   

 

Step 1:  

a- : 0; :p

tLet t  let y initial value p P    ; 

b- Compute predicted drift trajectories, cross points 

of oil tankers and the predicted maximal speed of 

oil tankers and tug vessels. 

c- Run MIP model to obtain the optimal position 

and allocation of patrolling tug vessels over the 

planning horizon  , ,...,t t 1 T , 

d- Implement the first period of the MIP solution 

Step 2:  

a- Let t:=t+1; 

Let  
min min

0 0 max: p Pp p p p py y v t I J
 

        

(Obtain current position of tug vessels) 

b- Update the predicted drift trajectories, cross 

points and the predicted new maximal speed of 

oil tankers and tug vessels. In addition, update the 

current number of oil tankers moving along the 

coastline as well as the available number of tug 

vessels. 

c- Run MIP model to obtain the optimal position 

and allocation of patrolling tug vessels over the 

planning horizon  , ,...,t t 1 T t  . 

d- Implement the first period of the new MIP 

solution 

Step 3: Go back to Step 2 or stop if t:= RHMIPT +1 

 

The basic idea in Step 2 is that the maximal speed of oil 

tankers and tug vessels may vary over time due to 

changing weather conditions such as ocean currents, 

wave heights, and wind, or change in cargo weight after 

loading or unloading. In addition, some tug vessels may 

be unavailable due to maintenance or change of crew. 

Finally, an oil tanker leaving the defined protection 

zone should be removed from the set for the next 



 

 

planning period, whereas other oil tankers may enter the 

zone and should be included in the next planning period.    

     The MIP model is used as an optimization phase in 

the algorithm: 

Minimize 

 min

cp

t

c C ,p P,t ..T   

   

Subject to  

 

  

p p p p p

t t 1 max t t

min

Y Y v I J ,

p P, t 1 ..T

    

     


                (1) 

 p p

t t minI J 1, p P, t ..T                                   (2)    

 cp cp c p

t t t t minX Z y Y , c C, p P, t ..T             (3) 

 

 

cp cp cp cp

t t t t

min

M 1 W X Z ,

c C, p P, t ..T

    

      


                        (4)              

 cp

t min

p P

W =1 , c C, t ..T


                    (5) 

 
min min min

p p p p p

0 max minY y v I J , p P
  

                   (6) 

 

   

   

 

0

0 1

0 1

0 0 0

p

t min

p p

t t min

cp

t min

cp cp cp

t t t min

Y , p P, t ..T

I ,J , , p P, t ..T                           (7)

W , , c C, p P, t ..T

X ,Z , , c C, p P, t ..T

     

     

       

         

 

 p c c

0 0 max
p P,c C

M max y y T v
 

                  (8)         

    Constraints (1), (2), and (6) determine the optimal 

speed and direction of each tug vessel at every time 

period. Because there are no cross points for

 mint 0, 1  , the model determines, in constraint (6), 

the speeds and directions of tug vessels at these time 

periods for an optimal allocation in period
min . 

Constraints (3) through (5) optimally allocate each oil 

tanker to one tug vessel, while constraint (7) define 

bounds on the decision variables.  

      For each time period of length λ in the planning 

horizon T, there is a predicted drift trajectory for each 

oil tanker which is expected to cross the patrol line after 

min  periods ahead in time. Thus, there will be cross 

points at every time period starting from min .  In case 

an oil tanker starts drifting in period t, the model gives 

direction and speed to its allocated tug vessel at each 

time period such that their distance, after mint  time 

period, is minimized. A tug vessel in period t will be 

allocated to cross point(s) in period mint  and possibly 

different cross point(s) at the next time period. The 

result is that the tug vessels will proactively move to 

make sure there is enough time to rescue any drifting oil 

tanker.  

 

 

 

3.3 Static MIP model  

The variant of the model with static tug vessels is 

obtained by replacing the variable 
p

tY  by 0

py in 

constraints (3) of the MIP model. In addition, only 

constraints (3), (4), (5) and (8) are kept and the rest are 

removed. The model is then run once for each time 

period in the planning horizon. This variant simply 

gives optimal allocation of static tug vessels to oil 

tankers and is only used for comparison.   

 

4. COMPUTATIONAL SIMULATION STUDY 

In this section, we present the simulation settings and 

results of the computational experiment used to evaluate 

the performance of our solution method to the tug 

vessels allocation problem.  

4.1 Simulation settings 

The mathematical models and algorithms for 

simulations were coded in AMPL and the MIP models 

were optimally solved with CPLEX 9.0. All the 

experiments were executed on a personal computer with 

an Intel Pentium IV 3.0 GHz CPU and 4.0 GB of RAM, 

with the operating system Microsoft Windows 7.  

     Notwithstanding the expected increase in oil tanker 

traffic along the northern coast of Norway, we have 

decided to use 6 oil tankers and 3 tug vessels for the 

simulation. These realistic numbers were provided by 

the NCA in 2010 and are reasonable choices for 

comparison with previous work done by Bye (2012). 

     The typical maximum speed of tug vessels in this 

region is about 28  km/h and the normal operating speed 

of oil tankers is about 18 to 26 km/h (Bye 2012). Based 

on this information, we conservatively chose to use a 

random speed of each oil tanker generated in the 

interval  20,30 (km/h), whereas a maximum speed of 

±30 km/h was used for the tug vessels. In both cases, a 

positive speed denotes a northbound movement and a 

negative speed a southbound movement.     A drift time 

of only 10 hours is considered fast drift, while slow drift 

means most tankers will not run ashore before having 

drifted for 20 to 30 hours (Eide et al. 2007). For this 

reason, Bye (2012) used a conservative estimate in the 

interval  8,12 (hours). Note that this interval represents 

the possible values of  presented in section 2.  To be 

even more risk averse, we decided to use a constant 

value of 
min 8  hours for each oil tanker in this study.   

     To introduce nonlinearity of drift trajectories, such as 

that caused by wave heights, wind, ocean currents, and 

oil tanker size and shape, we used the same simple 

formula as Bye (2012), which has no physical relation 

to real drift trajectories but was merely chosen for its 

nonlinearity:  

    min

2
siny t z t v

T

 
    

 
. Hence, any oil tanker 

will follow an eastbound sinusoidal trajectory with 

period equal to T scaled by its velocity v. The initial 

positions of oil tankers on the z line were randomly 



 

 

chosen in the range   750,750 km . For simplicity in 

the implementation, this interval was translated to 

  1000,2500 km  to obtain only positive values. In 

order to compare the dynamic RHMIP model with the 

static MIP model, we decided to divide the above 

interval into 3 equal subintervals and place one tug 

vessel, at a “tug base”, at the center of each segment for 

the static model. 

      The RHMIP and static MIP models were simulated 

for 
RHMIPT = 26 hours, a duration picked somewhat 

randomly, although we emphasize that the models 

should be simulated for at least a duration long enough 

to allow the tug vessels to move from initially bad to 

good positions and thenceforth remain in good 

positions, where “good” and “bad” positions refer to 

how well the tugs collectively optimize the cost function 

presented above.  

     At every step of λ =1 hour, the associated MIP model 

was run for a planning period of T=24 hours, but only 

the solution for the first hour was implemented.  A total 

number of 30 scenarios were simulated. Details on the 

simulation settings are presented in Table 1.  

 

Table 1: Simulation settings 

Number of oil tankers 6 

Random initial position (km)  1000,2500  

Random velocity (km/h)  20,30  

Minimal drift time 
min (hours) 8 

Number of tug vessels 3 

Initial tug positions  1250,1750,2250  

Maximal velocity (km/h) 30  

Planning horizon T (hours) 24 

Simulation step length λ (hours) 1 

Simulation  steps 
RHMIPT  (hours) 26 

Number of scenarios 30 

 

4.2 Results  

The static tug vessel policy resulted in an average total  

distance of 22234, with a high standard deviation of 

5880. The best case scenario had a total minimal 

distance of 12915 while the worst case scenario had a 

maximal distance of 27325. Unsurprisingly, using the 

static policy, a considerable number of potentially 

drifting oil tankers will not be rescued even at a 

maximal speed of the nearest tug vessel. However, the 

developed static MIP model can at least provide an 

optimal allocation of tug vessels to oil tankers, which 

cannot easily be achieved manually or using heuristic 

methods. The average running time for the MIP of this 

model was 10 sec for each time step.   

     The average total distance of the RHMIP model was 

7702 with a standard deviation of 2912. The best case 

scenario had a minimal total distance of 2989, whereas 

the worst case scenario had a maximal total distance of 

10609. The average performance improvement in terms 

of mean total distance of the RHMIP solution compared 

to the static policy was 66%. This dynamic variant of 

the model had a MIP average running time of 20 min at 

each time step, which is in the order of two magnitudes 

greater than the static MIP but is still acceptable for 

real-time implementation, since the calculation only 

needs to finish before the beginning of the next hourly 

receding horizon control step. The results are 

summarized in Table 2.  

           The parameters of our simulations were the same 

as those used in Bye (2012) except for the length of the 

drift trajectories, where our model was implemented as 

a worst case analysis with the minimum of 8 hours 

instead of random drift times in the interval  8,12

(hours). As a consequence, a few of our simulated 

scenarios will have a slightly higher number of cross 

points. Nevertheless, the results from the two studies are 

still comparable, since the scenarios were randomly 

drawn from the same population but with different 

random samples. Moreover, the main comparison is 

based on the performance improvement from the static 

tug vessel policy. Comparison of RHGA vs. RHMIP 

simulation results are presented in Table 3. 

 

Table 2: Simulation results 

 
Static MIP RHMIP Reduction by RHMIP 

 Mean 22234 7702 66% 

STD 5880.7 2911.6 50.5% 

      Min 12915 2989 - 

Max 27325 10609 - 

Step time 10 sec 20 min  

     

 The RHGA and RHMIP approaches used the same 

planning horizon of 24 hours at the optimization step. 

Compared with a static policy, the RHMIP showed a 

66% improvement, whereas the RHGA showed 57.5%, 

thus the RHMIP outperformed the RHGA by 8.5%. 

 

Table 3: Improvement from static policy 

 RHGA RHMIP 

Improvement  57.5% 66% 

 

Figure 2 highlights the difference between the MIP 

models. The two models were run once, with the same 

parameters, for T=24 hour time periods. The straight 

lines and piecewise linear functions represent the 

dynamic allocation of patrolling tug vessels over the 

planning horizon. The cross points, starting in period 

eight, are represented by circles in the figure. Compared 

to the MIP for static tug vessels, our dynamic MIP 

model cleverly and optimally allocates and tracks the 

potential drifting oil tankers for the given fixed planning 

horizon.  

     We recall that only the first period of the MIP model 

solution is implemented at each step in the simulation of 

the RHMIP model. At every step, the parameters 

(current numbers of oil tankers, maximal speeds, cross 

points and tug vessel positions) are updated. This allows 

tackling the weather uncertainty at each simulation step 

and coping with the variation of the parameters.  



 

 

    Another advantage of using the receding horizon 

approach is that of better tug vessels allocation at each 

time period. In fact, if we assume a situation where the 

weather is stable or accurately predicted for T=24 hours 

planning horizon, one may be tempted to implement the 

entire solution planned from a single MIP optimization, 

which will not allow better allocation of tug vessels at 

each period. The RHMIP model, run in the same 

conditions for 
RHMIPT = 24 hours, will give better 

allocation because the planning at each period will not 

be influenced by that of the previous, which is not the 

case in the MIP model.  This is illustrated in Table 4, 

where the letters A to F represent the oil tankers and 

columns for distances represent the sum of the distances 

between a tug vessel and its allocated oil tankers. The 

total distances demonstrate the advantage of using the 

RHMIP model although the weather is accurately 

forecasted and the parameters constant. 

  

4.3 Conclusions 

 The combined features of receding horizon control and 

mixed integer programming allow our model to 

optimally control tug vessels and allocate them to oil 

tankers in a dynamic and highly uncertain environment. 

   

 
 

 
Figure 2: An illustration of employing static (top) and 

dynamic (bottom) tug vessels for a planning horizon of 

T=24 hours. 

Table 4: Tug vessels allocations 
MIP RHMIP

A B C D E F Distance A B C D E F Distance

Tug1 1 Tug1 1

t=8 Tug2 7 t=8 Tug2 7

Tug3 16 Tug3 16

Tug1 13 Tug1 13

t=9 Tug2 63 t=9 Tug2 63

Tug3 Tug3 23

Tug1 25 Tug1 25

t=10 Tug2 132 t=10 Tug2 132

Tug3 31 Tug3 31

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
Tug1 134 Tug1 305

t=22 Tug2 0 t=22 Tug2 225

Tug3 404 Tug3 0

Tug1 0 Tug1 361

t=23 Tug2 387 t=23 Tug2 14

Tug3 346 Tug3 0

Tug1 223 Tug1 223

t=24 Tug2 0 t=24 Tug2 283

Tug3 536 Tug3 0

Total distance 5365 4567  
 

5. DISCUSSION AND FUTURE RESEARCH 

Combining features from model predictive control and 

linear programming, this paper presents a novel 

sustainable model called the receding horizon mixed 

integer programming (RHMIP) model for optimal 

dynamic allocation of patrol vessels to oil tankers. 

Compared with previous work (Bye, 2012; Bye et al., 

2010) that used a genetic algorithm to suboptimally 

minimize the proposed cost function, our model 

provides an exact (optimal) solution at every receding 

horizon time step. At the expense of slower 

computational evaluation, our optimal model 

outperforms the suboptimal heuristic method as well as 

providing a benchmark for future models. 

 

5.1 Sustainability  

International communities and government bodies such 

as NCA are expressing concern about the environmental 

impacts from shipping related activities. In fact,   

international shipping accounts for 2.7% of worldwide 

CO2 emissions (Psaraftis and Kontovas 2013). One of 

the measures used, at a tactical or operational level, to 

address this issue is the speed reduction of ships. 

Accordingly, the RHMIP is a sustainable model as it 

explicitly reduces the speed of tugs vessels from the 

parameters settings and implicitly inside the model as 

well. Noticeably, the average operational speed of tug 

vessels was equal to 5 km/h for all scenarios. This is 

considerable slow-steaming compared to the 30 km/h 

maximum speed. In addition, a constraint on the 

maximal daily fuel consumption of tug vessels could be 

easily included in the model. However, limiting fuel 

consumption would cause a trade-off to be made 

between the short term CO2 emissions reduction plan 

with long term potential environmental impact caused 

by drifting oil tankers that could not be rescued on time.  

 

5.2 Robustness  

For each time period of one hour in the simulation, the 

initial speed of each tug vessel is determined by the MIP 

model and a tug vessel is supposed to move with the 

same speed through the whole time period. However, 

the wave heights, ocean currents and other factors may 

also affect the speed of the related tug vessel, thus 

MIP for dynamic tug vessels  

MIP for static tugs vessels 



 

 

causing deviations from the predicted future position of 

the tugs. This problem is overcome by the receding 

horizon control strategy, which at every planning 

interval will take into consideration the very latest 

current information about tug and tanker positions as 

well as updated weather forecasts. In addition, some tug 

vessels may not be available for some time periods due 

to maintenance or other possible reasons. It will be 

interesting to run the model with a variable number of 

tug vessels in the planning horizon. 

     The consequences of accidents will likely depend on 

the type and characteristics of oil tankers as well as the 

place or zone of accident in the coastline. Identifying 

the high risk zone and weighing the oil tankers will be 

of great benefit and can be easily included in the model. 

     Simulations with very large test instance size may 

highly increase the computational time. But one way of 

handling this issue is to subdivide the problem into 

small reasonable sizes. That is, the coastline can be 

divided into a few numbers of zones and each group of 

tug vessels will then patrol along its allocated coastline 

zone.  

   

5.3 Future research 

Although oil tankers are required by law to sail along 

predetermined piecewise linear corridors parallel to the 

coastline, more research can be done on a 2D 

dimensions.  

     This paper aimed to minimize the distance between 

potential drifting oil tankers and their respective 

allocated tug vessels. Future research may be focused 

on other optimizations objective. For instance, one 

could decide to reduce the probability of an oil tanker 

running ashore. This can be achieved with probabilistic 

models or robust optimizations.  

     The development of oil and gas fields in the Barents 

Sea will considerably increase the number of oil tankers 

transits along the coastline in the next 10-15 years (Bye, 

2012). Further research could be conducted to determine 

the optimal number of required tug vessels as well as 

deciding whether the vessels should be homogeneous or 

heterogeneous. 
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