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Abstract

Smooth spline functions such as B-splines and NURBS are already an established tech-
nology in the field of computer-aided design (CAD) and have in recent years been given a
lot of attention from the computer-aided engineering (CAE) community. The advantages
of local refinement are obvious for anyone working in either field, and as such, several ap-
proaches have been proposed. Among others, we find the three strategies Classical Hierar-
chical B-splines, Truncated Hierarchical B-splines and Locally Refined B-splines. We will in
this paper present these three frameworks and highlight similarities and differences between
them. In particular, we will look at the function space they span and the support of the
basis functions. We will then analyse the corresponding stiffness and mass matrices in terms
of sparsity patterns and conditioning numbers. We show that the basis in general do not
span the same space, and that conditioning numbers are comparable. Moreover we show
that the weighting needed by the Classical Hierarchical basis to maintain partition of unity
has significant implications on the conditioning numbers.

1 Introduction

1.1 Background

Computer Aided Design (CAD) and Finite Element Analysis (FEA) are essential technologies
in modern product development. However, the interoperability of these technologies is severely
disturbed by differences in the mathematical approaches used. The main reason for inconsis-
tencies is that the technologies evolved in different communities with the focus on improving
disjoint stages in product development processes, and taking little heed on relations to other
stages. Efficient feedback from analysis to CAD and refinement of the analysis model are essen-
tial for computer-based design optimization and virtual product development. The current lack
of efficient interoperability of CAD and FEA makes refinement and adaptation of the analysis
model cumbersome, slow and expensive.

In any finite element analysis of real world problems, it is of great importance that the qual-
ity of the computed solution may be determined. Furthermore, numerical simulation of many
industrial problems in civil, mechanical and naval industry often require large computational re-
sources. It is therefore of utmost importance that computational resources are used as efficiently
as possible to make new results readily available and to expand the realm of which processes
may be simulated. We thus identify reliability and efficiency as two challenges in simulation
based engineering.

These two challenges may be addressed by a posteriori error estimation combined with
adaptive refinements. A lot of research has been performed on error estimation and adaptive
mesh refinement, see e.g. (Ainsworth and Oden, 2000 [1]) for an excellent overview. The
senior author of the present paper have been working with error estimation and adaptivity for
more than two decades (see e.g. [29], [36], [35], and [31]), and are well aware of the fact that
adaptive methods are not yet an industrial tool, partly because the need for a link between the
finite element program and traditional CAD-system. Here, the use of an isogeometric analysis
framework may facilitate more widespread adoption of this technology in industry, as adaptive
mesh refinement does not require any further communication with the CAD system.
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The new paradigm of Isogeometric Analysis, which was introduced by Hughes et al. [22]
(see also [11]), demonstrates that for smooth (enough) problems much is to be gained with
respect to efficiency, quality and accuracy in analysis by replacing traditional Finite Elements by
volumetric NURBS elements. However, a fundamental constraint of traditional NURBS is that
they are (global) tensor product and lack the potential for local refinement. The need for local
refinement has always been an issue, and several proposed solutions to local refinement has been
derived such as T-splines [42],[41], Hierarichal B-splines [15],[27], Truncated Hierarichal B-splines
[18] and Locally Refined B-splines [13]. The use of these techniques in CAD allows for more
freedom since it is often enough that a forward mapping exist and can be efficiently manipulated
or evaluated, and some conversion algorithms are available [48]. With their applications into
isogeometric analysis [4], [3], [14], [38], [5], [44], [45], [47], [34], [46], [6], [39], [23], [24], [28], and
[43] came new requirements of the basis. Linear independence [10], [9], [40], [2], [30], [20], [8],
stability [19] and partition of unity [18] became center topics of research as isogeometric analysis
is impractical or sometimes impossible without these properties. The research is ongoing for most
of these basis and the community has yet to settle on a single technology which encompass every
desired property without restrictions on the mesh.

With many different technologies addressing the same problem of local refinement, it is to
be expected that there is overlap. We hope to shed some light on this topic by presenting some
of these spline families, highlighting similarities and differences between them. In particular we
will be looking at the Classical Hierarchical, the Truncated Hierarchical and the Locally Refined
B-splines.

We will during this paper compare a set of metrics on the different basis, and immediately
comes the question of what is a fair comparison. While choices such as ”the same number of basis
functions” at first seem appropriate, this would depend on the particular refinement strategy (or
how did you get to those basis functions), which are not always compatible across technologies.
Instead we say that a fair comparison is to consider the different basis built on the exact same
mesh. This will ensure that we study the basis itself and not the refinement parameters [23].
However we cannot include analysis suitable T-splines in this particular comparison, since they
form a different set of admissible meshes; See Figure 1.

1.2 Aim and outline of the paper

The aim of this paper is to present several different local refinement strategies that currently
exist. We will emphasize differences in both their mathematical and numerical properties.

The paper is organized as follows:
In Section 2, we give a brief introduction to the approximation theory. We describe the finite

element method and least squares method with focus on derivation of the two matrices we will
be looking at: the stiffness matrix A and the L2 projection matrix M .

In Section 3, we define Hierarichal B-splines, Truncated Hierarichal B-splines and Locally
Refined (LR) B-splines. Our aim is to provide a common framework and notation to better
highlight their particular properties.

Numerical experiments are performed in Section 4. As our main measurement, we will
be looking at conditioning number and sparsity pattern of the system matrices over several
illustrative meshes.

We end this paper concluding upon our findings in Section 5.
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Figure 1: T-splines: The dotted lines are the extended T-mesh induced by the basis function
highlighted in red. This is the corresponding T-mesh which would be equivalent to the refinement
of one basis function of Hierarchical or LR B-splines. The mesh however, is not an analysis
suitable T-spline since the meshline extensions intersect. We will in this paper not consider
analysis suitable T-splines since they form a different set of admissible meshes than Hierarchical
and LR B-splines does.
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2 Finite Element Theory

In this section we give a very short introduction to the finite element theory, with the only
aim of presenting the quantities we will be using as our performance indicators. A thorough
explanation of the theory behind finite elements can be found in many sources like [25, 37, 7, 21].

One of the first steps when applying a finite element method to a problem, is to derive its so
called variational formulation and write the problem in a structure like: Find u ∈ V such that

a(u, v) = l(v) ∀v ∈ V (1)

where V is a Hilber space, a(· , ·) is a continuous bilinear forms, and l(v) is a continuous functional
on the dual space of V. The problem is also normally associated with some type of conditions,
like boundary or initial conditions. The existence and uniqueness of solutions is then guaranteed
by the Lax-Milgram theorem.

The Galerkin approach to this kind of problems consists of producing a finite-dimensional
approximation Vh of the infinite-dimensional function space V, and search for solutions uh ∈ Vh.
Specifically, we have Vh ⊂ V, and the problem reads: Find uh ∈ Vh such that

a(uh, vh) = l(vh) ∀vh ∈ Vh . (2)

The space Vh is defined to be the span of selected basis functions {ϕ1, ϕ2, . . . ϕn}. In the
Isogeometric setting, these functions are chosen to be spline functions, for which we use the
notation {B1, B2 . . . Bn}.

We now give some classical examples to introduce the stiffness and mass matrices.

2.1 Poisson equation

Poisson equation is the classical model problem for Elliptic PDEs. It arises in several engineering
problems like elastic membranes or magnetic fields and also appears as an important part of more
complicated problems like Navier-Stokes. Given a domain Ω ⊂ R2 and a continuous function
f : Ω→ R, we want to find a function u : Ω→ R such that

−∆u = f in Ω (3)

and satisfies certain prescribed conditions on the boundary of the domain ∂Ω. We typically have
two types of boundary conditions, namely Dirichlet:

u = ū at ∂ΩD (4)

and Neumann:
∂u

∂n
= t̄ at ∂ΩN (5)

Here ū is prescribed boundary value of the unknown u along ∂Ω, t̄ the prescribed (Neumann)
flux along ∂Ω and ∂u/∂n is the normal derivative of u, i.e. the directional derivative respect to
the outward normal vector n. Furthermore, we assume ∂ΩD ∪ ∂ΩN = Ω and ∂ΩD ∩ ∂ΩN = ∅.
In case of pure Neumann problem we introduce the following notation: Γ = ∂ΩN = ∂Ω

We now multiply by a test function v ∈ V and integrate over the domain, and write (3) as∫
Ω

∆u v dΩ =

∫
Ω
f v dΩ ∀v ∈ V .

Using Green’s formula and pure Neumann boundary condition we can rewrite the problem
as: Find u ∈ V such that∫

Ω
∇u∇v dΩ =

∫
Ω
f v dΩ +

∫
Γ
t̄ v dS ∀v ∈ V (6)
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The problem written as in (6) is the variational formulation for the Poisson’s equation.
We now apply Galerkin’s approach and choose Vh ⊂ V where Vh = span{B1, B2, . . . Bn}.

Any uh ∈ Vh can then be written as a linear combination of the basis functions

uh =
n∑
j=1

Bj uj

with uj ∈ R. Substituting this into (6) and systematically selecting v = Bi, i = 1, . . . , n allows
us to write

n∑
j=1

∫
Ω
∇Bi∇Bj dΩ uj =

∫
Ω
f Bi dΩ +

∫
Ω
t̄BidΩ ∀i = 1, . . . , n

which is simply a linear system of equation of the form

Au = b

where

Ai,j =

∫
Ω
∇Bi∇Bj dΩ (7)

u = [u1, u2, . . . un]T

bi =

∫
Ω
f Bi dΩ +

∫
Γ
t̄ Bi dS . (8)

Due to historical reasons, the matrix A is called Stiffness Matrix and the vector b is called Load
Vector, a nomenclature common in structural/solid mechanics for which the Finite Element
method was developed in the late 50’s.

2.2 Least Squares fitting

Performing a least-square fit of a surface is often encountered as a geometrical problem. In this
case, given a smooth continuous function f : Ω → R, we are searching for a function uh ∈ Vh
such that ‖uh − f‖L2 is as small as possible. It is possible to show that the solution uh is the
L2-projection of f and

uh = argmin
u∈Vh
‖u− f‖L2 ⇐⇒

∫
Ω
uh vh dΩ =

∫
Ω
f vh dΩ ∀vh ∈ Vh .

Applying the same procedure as in the Poisson’s equation case, we can write the problem as
a solution of a linear system of equations

Mu = b

where now the matrix M is called Mass Matrix and is defined as

Mi,j =

∫
Ω
BiBj dΩ . (9)

The load vector b is given by

bi =

∫
Ω
f Bi dΩ .
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2.3 Helmholtz equation

Helmholtz equation often arises in problems involving waves; in particular it is the time-
independent version of the wave equation and is written as

∆u+ k2 u = f . (10)

The solution u of Helmholtz equation represents the amplitude configuration of the wave in
space, and k is the wavenumber.

It is easy now to see that the first term in (10) is the Laplacian operator we already encoun-
tered in the Poisson equation, while the second term is, besides the constant k, the same as in
the least-squares fitting problem. Applying the same procedure as in the previous cases we are
therefore able to rewrite the problem as searching for solutions of the linear system of equations

Au+ k2Mu = b ⇒
(
A+ k2M

)
u = b .

As we have seen with the above examples, the matrices A and M play an important role in
the solution of partial differential equations using a Galerkin approach. Simple elliptic problems
may use only the stiffness matrix A; simple geometrical problems may use only the mass matrix
M ; while more complex or time-dependant problems use both.

The space Vh can be defined using several different types of basis functions. This choice is of
great importance as it will dictate the properties of the solution space. Different types of basis
functions will yield different system matrices and consequently this will affect the convergence
rate of the numerical methods for solving linear systems of algebraic equations. For this rea-
son, we will herein investigate the impact different classes of spline bases functions (presented
in Section 3 below) have on important properties of these matrices as conditioning number,
bandwidth, and sparsity.
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3 Spline functions

In this section we present the theory of the three classes of spline functions considered in this
paper: Classical Hierarchical, Truncated Hierarchical and LR B-splines. An effort has been
made in order to unify the different concepts under a common framework of notations, to ease
both the understanding and the comparison of the different technologies. We have included only
the essentials and we refer the interested reader to the papers on which we based our studies for
an in-depth introduction and details [13, 18, 23, 46].

3.1 Notation and common definitions

The Hierarchical (both Classical and Truncated) and the LR B-splines methodologies use quite
different points of view when considering meshes and refinements. As such, different notations
have been developed in the corresponding publications. We will in this paper use the following
notation when we will need to address mesh-related quantities:

• ε for meshlines;

• Ω for domains, i.e. regions of the mesh (excluding mesh lines);

• V for full tensor product meshes;

• M for general meshes.

In particular, the Hierarchical setting focuses more on regions of the mesh and their underlying
full tensor product meshes. For these reasons, Ω and V are often used in this context. The LR
B-splines setting instead focuses more on meshlines and meshes as a whole. To provide a formal
description of these different point of views we can write that a mesh M is seen as

M =
⋃
l

(Ωl ∩ V l) in the Hierarchical setting

M =
⋃
i

εi in the LR B-splines setting

where the index l denotes the Hierarchical level and i runs over all meshlines.
The notation we will use for basis functions is the following:

• N ∈ N for uniform (in the index domain) tensor product basis functions.

• B ∈ B for tensor product basis functions (possibly non-uniform).

• H ∈ H for Classical Hierarchical basis functions.

• T ∈ T for Truncated Hierarchical basis functions.

• L ∈ L for LR B-splines basis functions.

Of course, there exist cases where for some indices Ni = Bi = Hi = Ti = Li, but we hope the
different notation will ease the understanding of the technologies.

We have from elementary spline theory that a knot vector is a nondecreasing sequence of
coordinates in the parameter space of the form Ξ = [ξ1, ξ2, . . . , ξn+p+1], where each ξi ∈ R is
called a knot. If the knot values are equidistant the knot vector is called uniform, and non-
uniform otherwise. If the first and last knots have multiplicity p+1, the knot vector is called
open. A knot vector comprising of n+p+ 1 knot values will generate n univariate linearly
independent basis functions of degree p. We will focus our analysis on B-splines built from
uniform, non-open knot vectors.
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Corresponding to Ξ, we have the index domain I = [1, . . . , n + p + 1]. The index domain
is useful for considering non-uniform knots and also determine the support of functions. For
uniform knot vectors Ξ we have Ξ = γI for some scaling factor γ ∈ R, and this is what we will be
working with in our examples. We would however like to stress that it is possible to generalize
the same numerical tests using open or non-uniform knot vectors. For bivariate meshes, we
consider the index domain to be the finest level tensor mesh, i.e. VM , see Figure 3 for an
example.

Definition 1. Given a knot vector Ξ = [ξ1, ξ2, . . . , ξn+p+1] and a polynomial degree p, the n
univariate basis functions B1,p, . . . , Bn,p are recursively defined in the following way:

p = 0:

Bi,0(ξ) =

{
1 for ξi 6 ξ < ξi+1

0 otherwise
(11)

p > 0:

Bi,p(ξ) =
ξ − ξi
ξi+p − ξi

Bi,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Bi+1,p−1(ξ) (12)

The above definition is known as the Cox-de Boor recursion formula. From this definition
it follows that each basis function depends only on p + 2 knot values. For instance, for p= 2
the knot vectors Ξ = [0, 1, 2, 3, 4, 5] will generate three basis functions corresponding to the local
knot vectors Ξ1 = [0, 1, 2, 3], Ξ2 = [1, 2, 3, 4], and Ξ3 = [2, 3, 4, 5]. Due to this, we will often refer
to the basis functions using their local knot vectors. The notation will also be adjusted on a
case-to-case basis depending on what we need to emphasize, and we will use Bi = BΞi to keep
track of the local knot vector on which the function is built.

From the univariate basis functions it is possible to define multivariate functions using the
tensor product structure of B-splines:

Definition 2. A d-variate B-spline B(ξ) of degrees p = [p1, p2, . . . , pd] is a separable function
B : Rd −→ R defined as:

BΞ(ξ) =
d∏
i=1

BΞi(ξi)

where Ξi ∈ Rpi+1 is the local knot vector for the univariate basis function of degree pi along the
i-th parametric dimension.

Note that the polynomial degree is implicitly defined by the number of knots in the local
knot vectors. In the bivariate setting, it is customary to denote the two parametric coordinates
as ξ and η, and the corresponding polynomial orders as p and q. We denote a tensor product
basis B = {B1, B2, . . . , Bn} as a basis of functions defined by taking a tensor product of 1D basis
functions.

In the following we will construct the mesh such that the actual domain will be the unit
square, i.e. the initial tensor product basis will form a partition of unity on Ω0 = [0, 1]× [0, 1].
Since we will use uniform knot vectors, we will need to extend the mesh beyond Ω0 trough the
use of a ghost domain G. In this way the full parametric domain will be given by G ∪ Ω0.

We will represent bivariate basis functions on the same plot through the use of anchors.
A common choice for the coordinates of the anchor are the Greville abscissae. The Greville
abscissae (ξ̄, η̄) corresponding to a basis function are defined as

ξ̄ =
1

p

p+1∑
j=2

ξj , η̄ =
1

q

q+1∑
j=2

ηj (13)

where ξj and ηj are the knot values in the local knot vector. The choice of Greville Abscissa
for non-rectangular supports is not an obvious one, and turning to Giannelli et al. [19] it is
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(a) The coarse mesh with the initial basis (level 0)
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(b) The fine-scale basis (level 1)
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(c) The Hierarchical basis, constructed as a suitable com-
bination of the coarse and fine scale basis functions

Figure 2: Hierarchical Basis: Construction of a univariate basis using quadratic basis func-
tions. The highlighted area is selected for refinement, and the coarse functions contained therein
are substituted by finer basis functions.

defined as the coefficients which generates the linear monomoials. While this has many appealing
properties, it means that the Truncated and Hierarchical basis functions’ anchors will coincide.
In order to highlight the difference between the methods we will use area-averaged coordinates
defined as

ξ̄ =

∑
i:Ei∈suppT

Ai ξ
c
i∑

i:Ei∈suppT

Ai
, η̄ =

∑
i:Ei∈suppT

Ai η
c
i∑

i:Ei∈suppT

Ai
(14)

where the sum runs over all elements Ei in the support of the function, (ξci , η
c
i ) are the coordinates

of the centre of the element Ei and Ai is its area. The weighting by the area ensures that each
element contributes in the right way to the resulting coordinate of the anchor. This method of
calculating the coordinates allows to see the difference when the support is non-rectangular.

3.2 Hierarchical B-Splines

The application of the Hierarchical framework in Isogeometric Analysis is very well explained
by Vuong et al. in [46], and Giannelli et al. in [18]. We will look at how an admissible mesh is
constructed, and how the construction procedure defines a sequence of nested bounded domains
linked to the different Hierarchical levels.

3.2.1 Introduction and general idea

The basic idea underlying Hierarchical B-splines is very simple, yet results in a good and flexible
method to locally refine the mesh. A one-dimensional example for quadratic basis functions is
illustrated in Figure 2: One portion of the initial level 0 mesh is selected for refinement. The
coarse basis functions contained in that area are substituted by finer basis functions, and we
thus obtain the Hierarchical basis.

Figure 3 presents the Hierarchical approach on a simple 2D example with biquadratic basis
functions. When a selected area of the mesh is refined, the knot spans are halved in each direction
and this introduces one new level in the hierarchy. The basis functions from the previous level
that are contained in the refined region are then substituted by the corresponding finer basis
functions defined on the new knot spans.
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Meshes

Tensor Product
Basis

Hierarchical
Basis

Figure 3: 2D Hierarchical Basis: Example using biquadratic basis functions. Upper row: A
two-step refinement is applied to the initial mesh displaying Ω0,Ω1 and Ω2. Middle row: The
tensor-product basis defined on the finest knot span available showing the functions N l on the
mesh V l for all levels l = 0, 1, 2. From here we select the appropriate basis functions to include
in the Hierarchical basis. Lower row: The actual Hierarchical basis defined on the refined mesh
M above. At each step, the basis functions from the previous level that are contained in the
refined region are substituted by the finer ones, showing the Hierarchical basis H. The anchors
are positioned using Greville Abscissae.
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In the following we will focus mainly on the two dimensional case, and several examples will
be presented.

11



3.2.2 The Classical Hierarchical Basis

The construction of the mesh on which the Hierarchical basis is defined is a direct application
of the idea presented above: starting from an initial, tensor product mesh V 0, some areas are
selected for refinement. Once the areas have been selected, several new meshlines are introduced,
halving the knot spans of the local knot vectors of all the functions contained therein.

This gives a hierarchy of nested domains. We will remove certain functions from the coarser
domains, and add certain functions of the finer domains. These functions are going to be a
subset of the corresponding tensor product functions for the full mesh on that level.

We are now ready to construct the Hierarchical basis:

Definition 3. The Hierarchical B-spline basis H is recursively constructed as follows:

1. Initialization: H0 = {N ∈ N 0 : suppN 6= ∅}

2. Recursive case: Hl+1 = Hl+1
A ∪Hl+1

B for l = 0, . . . ,M − 1, where

Hl+1
A = {N : N ∈ Hl, suppN * Ωl+1}

Hl+1
B = {N : N ∈ N l+1, suppN ⊆ Ωl+1}

3. H = HM

The recursive definition ensures that we always select the correct functions to include in
the basis. The first step initializes the Hierarchical basis with all the relevant functions of
the underlying tensor product basis N 0. The recursive procedure then updates the basis by
removing the coarse functions contained inside the refined region and including the finer ones
substituting them.

Figure 4 presents some of the basis functions defined on the same mesh used in Figure 3. In
the Classical Hierarchical case, all the functions have rectangular support since they are plain
tensor product of univariate functions.

As a result of the definition, the Classical Hierarchical B-spline basis and the associated
spaces have the following properties, as proved in [46]:

• The functions in H are linearly independent.

• The spaces spanned by the basis are nested, i.e. spanHl ⊆ spanHl+1.

Borrowing the terminology introduced for T-splines [42, 41], we classify different hierarchical
basis by the following definition

Definition 4. We denote a basis {Ni}

• standard if
∑
Ni = 1

• semi-standard if there exists a choice of weights wi > 0, such that
∑
wiNi = 1

• non-standard no choice of wi > 0 exist to ensure partition of unity

The general definition of Hierarchical B-splines allows for all three kinds of basis. A tensor
product mesh will yield a standard basis, but this will not be the case for arbitrary meshes. We
will define our set of admissible meshes to be given as the following, which will ensure all basis
to be semi-standard.

Definition 5. In the Hierarchical setting, we will call a mesh admissible if at all levels the area
selected for refinement Ωl is defined as the union of the supports of previous-level basis functions
N ∈ N l−1.
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Figure 4: Classical Hierarchical Basis: Some of the biquadratic basis functions defined on
the same mesh used in Figure 3. For each function, on the left is presented a top view of the
evaluation plot and on the right the elements constituting its actual support.

The set of admissible meshes as defined above is a subset of the Hierarchical B-splines as it
rules out among other, all non-standard basis. A generalization, which is not considered in this
paper is that domain boundaries may not coincide with previous levels. This is known as weak
condition on domain boundaries, and is illustrated in Figure 5. Another generalization is small
refinement regions in which finer level functions appear, but coarser functions are not removed,
see Figure 6. It is important to note here that non-standard basis may be perfectly valid for
computations as they are linearly independent and well defined, but they form a different set of
admissible meshes, which is not covered by LR B-splines and it is thus not possible to construct
a basis on the same mesh and do a comparison study.

We consider Definition 5 to be highly relevant for mesh refinement. This is due to the fact
that it is customary for iterative refinement to produce an error measure and refine regions of
large errors. For Hierarchical B-splines, this error measure is often defined on an error per basis
function level, followed by refinement of the largest error functions [23], [18].
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(a) Strong condition on do-
main boundaries. The bound-
ary of Ωl+1 is aligned with the
knot lines of V l.

(b) Weak condition on domain
boundaries. The boundary of
Ωl+1 is aligned with the knot
lines of V l+1.

Figure 5: Hierarchical setting: Different conditions on the domain boundaries. Weak bound-
ary condition may produce non-standard basis and is not considered in this paper.

Figure 6: Hierarchical setting: Small domain sizes, may not be large enough to remove coarse
level functions. This results in a non-standard basis and will not be considered in this paper.
For this particular example, neither Ω1 nor Ω2 is large enough to remove any level 0 functions
(for p > 1), but they are both large enough to create level 1 and level 2 functions of degree p = 2
or p = 3.
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3.2.3 The Truncated Hierarchical Basis

While the Hierarchical B-splines presented above provide good flexibility and allow for local-
ized refinement, the number of overlapping basis functions can increase very rapidly with the
introduction of new levels. This happens because the large support of the coarse basis functions
may overlap with the support of several fine-scale ones. See for example in Figure 4, where the
top-right function, defined at level 0, overlaps with all the fine-scale functions in level 2.

This behaviour has a negative impact on the formation and solution of linear system of
algebraic equation associated to the solution of the discrete (finite element) variational problem:
A higher number of overlaps means we need to perform more functions evaluations and add more
elements in the system matrices. This on one side increases the assembly time required to build
such matrices as well as the sparsity. In order to, among others, address these problems, a new
basis for the Hierarchical space was proposed in [18]. The key idea is that we can appropriately
truncate the coarse basis functions, thus reducing their support and significantly decreasing the
number of overlaps.

To start, we note that the function spaces are nested. That is: coarse functions can be
represented as a linear combination of finer functions. For general knot vectors consider Equation
(18) in section 3.3, but for uniform meshes, this corresponds to a simpler expression. Each coarse
function can be represented as a sum of scaled, translated copies of itself.

NΞ(ξ) =

p+2∑
i=1

2−p
(
p+ 1

i− 1

)
NΞ(2ξ − ξi) (15)

Note that NΞ(2ξ− ξi) = NΞi where the new knot vector Ξi is constructed from Ξ halving all
the knot spans and taking p+ 2 subsequent knots. For example, for a quadratic basis function
defined on Ξ = [0, 1, 2, 3] we would have

Ξ1 = [0, 0.5, 1, 1.5] Ξ2 = [0.5, 1, 1.5, 2]

Ξ3 = [1, 1.5, 2, 2.5] Ξ4 = [1.5, 2, 2.5, 3]

The relation given in Equation (15) is at the core of the truncation: It tells us which functions
of level l + 1 we need to represent a function of level l.

The truncation of a basis function is defined as follows:

Definition 6. Let T be a basis function defined at level l, and let

T =
∑

j :Nj∈N l+1

αj Nj

be its representation respect to the fine-scale basis associated to level l + 1. The truncation of
T respect to N l+1 and Ωl+1 is defined as

trunc l+1 T =
∑

j :Nj∈N l+1,

suppNj*Ωl+1

αj Nj (16)

It is clear that the coefficients αj depend not only on the component Nj they refer to, but
also on the function T considered. We omitted the explicit dependence to ease the notation.

The Truncated Hierarchical basis is then defined as follows [18] :

Definition 7. The Truncated Hierarchical B-spline basis T is recursively constructed as follows:

1. Initialization: T 0 = H0
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Figure 7: Truncated Hierarchical Basis: The quadratic basis on the same mesh as in Figure
2. Partition of unity is automatically achieved by the truncation procedure.

2. Recursive case: T l+1 = T l+1
A ∪ T l+1

B for l = 0, . . . ,M − 1, where

T l+1
A = {trunc l+1 T : T ∈ T l ∧ suppT * Ωl+1}

T l+1
B = Hl+1

B

3. T = T M

Note that the representation of T in terms of next-level functions is easily obtained through
Equation (15). The truncation mechanism removes all those components of T that are explicitly
included in the basis by the recursive step of the definition. This procedure appropriately shrinks
the support of all functions that cross over multiple levels in the mesh, effectively reducing the
number of overlaps. Also note that the way of expressing the truncation as given in Equation
(16) is what we will call an additive representation. It is also possible to use a subtractive
representation, expressing the truncation as

trunc l+1 T = T −
∑

j :Nj∈N l+1,

suppNj⊆Ωl+1

αj Nj (17)

Both these representations have advantages and disadvantages which are discussed in Section 4.
Figure 7 shows the Truncated Hierarchical basis constructed on the same mesh as in Figure

2. Note that no weights are needed to maintain the partition of unity.
Figure 8 presents the same basis functions as in Figure 4 with the truncation procedure

applied. As we can see, the support of each Truncated function is modified in order to reduce the
number of overlaps with finer levels. This, however, makes some functions lose the rectangular
shape of their support.

The Truncated Hierarchical basis naturally inherits the properties of the Classical Hierar-
chical basis, and also adds some more. In particular:

• The functions in T are linearly independent.

• The spaces are nested, i.e. spanT l ⊆ spanT l+1.

• The basis maintains partition of unity.

In addition, if we consider the Classical Hierarchical basis H defined on the same mesh as T ,
then:

• The cardinality of the basis is the same: |H| = |T |.

• The spaces spanned are the same: spanH = spanT .

Proofs for the above can be found in [18].
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Figure 8: 2D Truncated Hierarchical basis: The biquadratic basis constructed on the same
mesh, and the corresponding functions, as in Figure 4. For each function, on the left is presented
a top view of the evaluation plot and on the right the elements constituting its actual support.

3.3 LR B-splines

LR B-splines were recently proposed by Dokken et al. in [13] and later applied to Isogeometric
Analysis by Johannessen et al. in [23]. We report here some of the theory contained in those
papers, while taking a different approach that focuses on clarity and ease of understanding.

LR B-splines differentiate themselves from the Hierarchical cases in the way the refinement
is applied: while Hierarchical functions rely on the subdivision rule given in Equation (15) and
generate up to p + 2 new functions from each original B-spline, LR B-splines use the knot
insertion procedure, inserting one knot at a time and splitting old B-splines into 2 new ones.
The fact the the knots are inserted one at a time is crucial, especially in the bivariate setting:
We will show that even when inserting the same knot values as produced by the subdivision
rule, the resulting refined B-spline basis may be different.

LR B-splines are locally refined in the same way the standard tensor-product B-splines are.
From basic spline theory we know that it is possible to perform knot insertion to enrich the
spline space while leaving the geometry description unchanged. In the univariate case, if we
want to insert the knot ξ̂ between the knots ξi−1 and ξi we have

BΞ(ξ) = α1BΞ1(ξ) + α2BΞ2(ξ) (18)

where

α1 =

{
ξ̂−ξ1

ξp+1−ξ1 ξ1 6 ξ̂ 6 ξp+1

1 ξp+1 6 ξ̂ 6 ξp+2
(19)

α2 =

{
1 ξ1 6 ξ̂ 6 ξ2

ξp+2−ξ̂
ξp+2−ξ2 ξ2 6 ξ̂ 6 ξp+2
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Figure 9: LR B-splines: Examples of knot insertion for ξ̂ = 3
2 . Dashed lines: The original

functions. Colors: The new functions resulting from the splitting.

and the knot vectors are

Ξ = [ξ1, ξ2 . . . ξi−1, ξi . . . ξp+1, ξp+2]

Ξ1 = [ξ1, ξ2 . . . ξi−1, ξ̂, ξi . . . ξp+1 ]

Ξ2 = [ ξ2 . . . ξi−1, ξ̂, ξi . . . ξp+1, ξp+2]

As we can see, inserting one knot splits the original B-spline into two new B-splines described
by the local knot vectors Ξ1 and Ξ2. The weights α1 and α2 are needed to maintain partition
of unity. Figure 9 shows some examples of the application of Equation (18).

In the bivariate case, functions are refined one parametric direction at a time. In this case
we obtain:

BΞ(ξ, η) = BΞ(ξ)BΨ(η)

= (α1BΞ1(ξ) + α2BΞ2(ξ)) BΨ(η) (20)

= α1BΞ1(ξ, η) + α2BΞ2(ξ, η)

In the following we will call meshline extension all mesh-altering actions like inserting a new
meshline, prolonging existing meshlines (possibly connecting two existing ones) or increasing the
multiplicity of meshlines. When a new meshline extension is inserted, we need to know which
basis functions are affected by it. For this purpose, we give the following definition:

Definition 8. A meshline ε is said to traverse the support of a function B[ξ1...ξp1+2;η1...ηp2+2] if

• ε is a horizontal line ε = [ξ∗1 , ξ
∗
2 ]× η∗ such that

ξ∗1 6 ξ1, ξp1+2 6 ξ∗2 , η1 6 η∗ 6 ηp2+2

• ε is a vertical line ε = ξ∗ × [η∗1, η
∗
2] such that

ξ1 6 ξ∗ 6 ξp1+2, η∗1 6 η1, ηp2+2 6 η∗2

In particular, a horizontal line is said to traverse the interior of B[ξ1...ξp1+2;η1...ηp2+2] if η1 < η∗ <
ηp2+2 and traverse the edge if η∗ = η1 or η∗ = ηp2+2. Similarly, a vertical line is said to traverse
the interior if ξ1 < ξ∗ < ξp1+2 and traverse the edge if ξ∗ = ξ1 or ξ∗ = ξp1+2.

Figure 10 shows some examples of lines traversing the support of a basis function.
When a meshline extension is applied, the refinement process is composed of two steps:

1. Split any function which support is traversed by the new meshline.

2. For all new functions, check if their support is traversed by any existing meshline, and
split again if this happens.

18



(a) Line traversing the
interior of B

(b) Line traversing the
interior of B

(c) Line traversing the
edge of B

(d) Line neither travers-
ing the edge nor the in-
terior of B

Figure 10: LR B-splines: Examples of lines traversing the support of a basis function.
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Figure 11: LR B-splines: The basis constructed on the same mesh as in figures 2 and 7.

In step 1 we test all current functions against one meshline. In step 2 we test all newly
created functions against all existing meshlines. Note that when the meshline extension is an
actual elongation, possibly connecting two separate existing meshlines, we will use the full length
of the resulting line to test the functions for splitting. When a function is flagged for splitting,
this is performed through the use of Equations (19) and (20).

In view of the above, we can give the following two definitions:

Definition 9. In the LR B-splines setting, an admissible mesh is any mesh which can be
obtained by a sequence of meshline extensions starting from an initial tensor product mesh.
Each extension must cause at least one basis function to be split, and the meshlines must end at
existing knot values (they cannot stop at the centre of an element). All tensor product meshes
are admissible.

Definition 10. An LR B-spline is a function which results from the application of the refinement
scheme and Equations (18)-(19). All tensor product B-splines are LR B-splines.

Figure 11 shows the 1D LR B-splines basis defined on the same mesh as in the previous
examples at Figures 2, and 7. Note that in the univariate setting the LR B-spline refinement
coincide with the normal knot insertion. In this case all the weights sum up to 1 and so the
LR B-spline basis is the normal B-splines basis originating from the non-uniform knot vector
Ξ = [0, 1, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8], and automatically maintains partition of unity. Also note
that in the general LR B-spline setting the notion of levels is not as present as in the Hierarchical
setting; we can however define the level of an LR B-spline function using the maximum knotspan
contained in its local knot vector.

For a thorough example in the bivariate case we refer the reader to [23, p. 481-483].
Given an initial tensor product mesh M0, a sequence of meshline extensions {εi}ni=1 and

corresponding admissible meshesMi = {Mi−1∪εi} and LR B-splines Li, the following properties
hold [13, 23]:

• The spaces are nested: spanLi ⊆ spanLi+1.

• The LR B-splines defined on a mesh are not affected by the order in which the meshline
extensions have been inserted, i.e. if M and M̂ are two identical LR B-splines meshes
that differ only for the order in which the meshlines extensions have been applied, then
the resulting LR B-splines functions are the same.
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• The LR B-splines form a partition of unity.

Note that, in general LR B-splines may be linear dependent. This is mostly due to the fact
that the single-line insertion mechanism used in this setting allows for several different types
of refinement strategies, and the particular choice naturally affects the spline space. However,
there are several ways to recover the linear independency as proposed in [13, 23]. The linear
independence of LR B-splines depending on the type of refinement strategy used is currently
object of research.

In all our examples we will use the Structured Mesh refinement presented in [23]. This
strategy focuses on refining functions, instead of elements. The idea of refining elements is
indeed a legacy from the classical Finite Element methodology. Using the Structured Mesh
approach, one instead selects which basis functions to refine. This can be done through the
use of custom-built criteria, just as one would do in an adaptive refinement scheme. The idea
proposed in [23] is to compute the error pertaining to each basis function as

‖e‖2suppBi
=

∑
K∈suppBi

‖e‖2K (21)

i.e. we define the B-spline error as the sum of the normal error ‖e‖ measured in the energy
norm over all elements in the support of Bi. Once the functions to be refined are identified,
we proceed to insert several knot lines in both directions, halving the knot spans of the largest
supported knot interval. Note that the Structured Mesh strategy will yield the same results on
the mesh as the subdivision rule used in the Hierarchical setting. This means that all meshes
which are admissible in the Hierarchical setting, i.e. they satisfy the conditions of Definition 5,
are also admissible in the LR B-splines setting and can be obtained using the Structured Mesh
refinement. For this reason we have always used this approach for our examples, as it provides
a better ground for comparison.
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Figure 12: LR B-splines: The biquadratic basis constructed on the same mesh, and the
corresponding functions, as in Figure 4 and 8. For each function, on the left is presented a top
view of the evaluation plot and on the right the elements constituting its actual support.

21



4 Results

We present here the results of our analysis on the different type of basis functions outlined
in Section 3. The Qualitative analysis sections collects results regarding the mathematical
properties of the various basis, many of which were already briefly listed in the corresponding
sections. The Quantitative analysis section focuses on implementation and numerical quantities
and discusses the properties of the stiffness and mass matrices generated using the different
splines functions.

4.1 Qualitative analysis

We would like to start pointing out that, under normal mesh refinement iterations (i.e. excluding
special constructed cases), on the qualitative level all the three classes of splines give comparable
results. However, there are some interesting distinctive features that are worth to be mentioned.

4.1.1 Different functions

With the notation introduced at page 7 we have that the general functions H ∈ H, T ∈ T , and
L ∈ L can be written as

H = N

T =
∑

αiNi

L = αB

for appropriate indices i and weights α
This can be seen as follows. Consider a set of nested domains Ω0 ⊃ Ω1 ⊃ . . . ⊃ ΩM , with

corresponding tensor mesh V 0 ⊂ . . . ⊂ VM , where V l = Ξl⊗Ψl, Ξl ⊂ Ξl+1 and Ψl ⊂ Ψl+1. The
knot vectors of N l

i ∈ N l is picked as connected subsets of Ξl and Ψl. These are uniform both in
the index domain of Ξl and ΞM . This is in contrast to how the LR B-splines are constructed, as
these are in general a unconnected subset of ΞM and ΨM and hence non-uniform in the index
domain.

For uniform starting meshes under dyadic refinement this becomes slightly more apparent
as every N will be comprised of uniform local knot vectors, while any B will potentially be
non-uniform. The Classical Hierarchical functions (Definition 3) are then uniform B-splines;
Truncated Hierarchical functions (Definitions 6 and 7) are generally a linear combination of
these uniform B-splines; LR B-splines functions (Equation (18) and Definition 10) are non-
uniform B-splines.

Figure 13 shows the Classical Hierarchical, Truncated Hierarchical and LR B-splines basis
for the knot vector Ξ = [0, 1, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8]. Note that on the uniform vector
[0 : 8] all three families of functions would be exactly the same. In the Classical Hierarchical
case, partition of unity is not preserved. In the Truncated Hierarchical case this is achieved
automatically by the truncation procedure, which removes some components from the old-level
functions. The LR B-splines are instead defined by non-uniform local knot vectors, and also use
weights to maintain partition of unity.

Figure 14 shows a comparison of the support for some of the basis functions presented in
the Figures 4, 8, and 12.

Another way of interpreting the difference between the functions is the following. While all
technologies are built on the same relation of nested functions (18) in general or (15) for uniform
knot vectors, the application of this equation is enforced at different steps. For Hierarchical
splines, one will only remove coarse functions and add new ones, while keeping existing functions
unchanged (save the ones being removed). For Truncated Hierarchical functions, one will alter
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Figure 13: Qualitative analysis: The different quadratic bases constructed using the same
knot vector.

(a) Left Column: Clas-
sical Hierarchical

(b) Centre Column:
Truncated Hierarchical

(c) Right Column: LR
B-splines

Figure 14: Qualitative analysis - Different Functions: The support of corresponding bi-
quadratic basis functions in the three spline families presented in the Figures 4, 8, and 12.
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(a) Classical Hierarchical (b) Truncated Hierarchical

(c) LR B-splines, first function (d) LR B-splines, second function

Figure 15: Qualitative analysis - Different spaces: An example of mesh on which the
biquadratic Hierarchical bases span different spaces than the LR B-splines basis. The central
level 0 function in the Hierarchical cases corresponds to two distinct functions in the LR B-
splines basis. Both the Hierarchical bases are constituted of 55 functions; the LR B-splines basis
contains 56 functions. The highlighted area is the support of the selected function, represented
with a square as anchor symbol. The anchors are placed as described at page 8.

any coarse functions whose support contains the entire span of a fine function, keeping all else
unchanged. For LR B-splines one will alter the shape of any coarse function whose support
overlaps (completely in one direction, partly in the other) with a fine domain. A consequence of
this is that truncated basis functions have smaller support on the diagonal or at level corners,
but LR functions have smaller horizontal and vertical support.

4.1.2 Different spaces

Perhaps the most important and interesting difference is that for some meshes the Hierarchical
basis and the LR B-splines set span different spaces. One such example is given in figure 15.

The central function appearing in the Classical and Truncated Hierarchical setting corre-
sponds to two distinct functions in the LR B-splines set. This is due to the way the refinement
works in the LR B-splines setting: As we can see there is one new meshline which completely
traverses the support of the central function. When this meshline is inserted, it triggers the LR
B-splines refinement algorithm which splits the original B-spline into two new ones as expected.
This does not happen in the Hierarchical framework, which leaves the function unchanged in
the Classical case or appropriately reduces its support in the Truncated case.

Mourrain [33] presented a formula for the maximum dimension of the space of piecewise
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Figure 16: Qualitative analysis: Different types of refinement strategies using LR B-splines.

polynomials with given continuity on a mesh: given a planar mesh with F faces (the elements),
εH horizontal and εV vertical internal edges and P vertices, the maximum dimension of the
space of bivariate piecewise polynomials of degrees (p, q) with continuity (k, l) along element
edges is given by

S = (p+ 1) (q + 1)F − (p+ 1) (l + 1) εH − (q + 1) (k + 1) εV + (k + 1) (l + 1)P + H (22)

where H is the homology factor of the mesh, which is equal to zero for all the refinement schemes
used here. For Hierarchical B-splines, as well as Truncated Hierarchical, it is possible to add
constraints on the mesh topology to ensure spanning the entire space [32], [20]. For LR B-splines
one may assure this by the so called ”hand in hand” process [13], which again puts restrictions
on mesh topologies. For meshes under Definition 5, this however cannot be guaranteed.

4.1.3 Different refinement strategies

Hierarchical functions rely on Equation (15) to apply the refinement. This procedure halves
the local knot vectors of the function and replaces the original B-spline with up to p + 2 new
functions in the univariate case, or (p+ 2)(q + 2) in the bivariate case.

LR B-splines use the knot insertion given in Equation (18), which introduces two new B-
splines functions. This procedure allows for more flexibility in the refinement approach as there
are no prescriptions on the number or positions of the new knots. In addition to the Structured
Mesh strategy, already presented in Section 3, in [23] two other different refinement strategies
are proposed: Minimum Span and Full Span. While all these strategies insert the meshlines so
that they halve the knotspans, this is not a requirement as the use of non-uniform knot vectors
is already built-in in the definitions of LR B-splines.

The Minimum Span strategy aim is to keep the refinement as localized as possible. Once an
element is marked for refinement, a cross is inserted through its centre and the meshlines are
made to be as short as possible, while still splitting at least one function.

In the Full Span strategy the idea is to split all B-splines with support on a selected element.
This is done inserting two meshlines in a cross through the centre of the element. The new
meshlines will have to span from the minimum to the maximum knot values of all functions
with support on the marked element in both parametric direction. This strategy makes sure
that all B-splines with support on the marked element are treated equally, but on the other
hand this results in an extension of the refinement away from the selected element, in particular
for high polynomial degrees.

A common drawback of both the Full and Minimum Span is that some elements will be tra-
versed by only one meshline and therefore will be split into two rectangular elements, effectively
doubling their aspect ratio.
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While the possibility of applying other refinement strategies is allowed by the definitions and
the theory of LR B-splines, some may lead to linearly dependant sets. The research in these
cases is still ongoing and, as of today, the Structured Mesh is the best candidate for a stable
refinement algorithm.

4.1.4 Different admissible meshes

A direct consequence of the various refinement approaches available with LR B-splines is that
some meshes which are legal in a LR setting cannot be reproduced using Hierarchical splines.
On the other hand, LR B-splines are not capable of achieving some configurations of the weak
conditions on domain boundaries available in the Hierarchical framework. For an example see
Figure 5b. In that case, the meshlines of Ω1 are stopping in the centre of the elements, a
behaviour that is disallowed by the LR definitions.

Another difference is that LR B-splines are currently defined starting from a global tensor-
product mesh, i.e. only on rectangular parametric domains. Conversely, Hierarchical B-splines
can be defined on non-rectangular parametric domains.

Meshes that are defined on a rectangular domain and also satisfy the conditions of Definition
5 are admissible in both the Hierarchical and LR B-splines framework.

4.2 Quantitative analysis

Here, we first discuss details related to different representation of Truncated Hierarchical basis,
and then present the numerical results obtained for different meshes and polynomial degrees,

4.2.1 Representation of Truncated functions

As we briefly mentioned earlier, Truncated Hierarchical B-splines can be represented in an
additive or subtractive fashion; we restate Equations (16) and (17) for reading convenience:

trunc l+1 T =
∑

j :Nj∈N l+1,

suppNj*Ωl+1

αj Nj Additive representation (23)

trunc l+1 T = T −
∑

j :Nj∈N l+1,

suppNj⊆Ωl+1

αj Nj Subtractive representation (24)

where Nj are the components of T with respect to the finer level basis functions and αj the
corresponding weights as given by Equation (15).

When implementing the code we found that choosing one representation over the other yield
important consequences. In a typical finite element code one has to deal with two important
aspects: determining which basis functions are active over a given element, and then evaluating
such functions.

To address the former a convenient way to retrieve or store the support of the functions is
essential. In the case of B-splines this is generally easy since the support is identified with the
local knot vectors. When the B-spline is a standard tensor product, and the support is therefore
rectangular, this becomes even easier since one only needs to check the starting and ending
points of the local knot vectors. As we have seen, however, Truncated Hierarchical functions
do not always have rectangular support, hence we need a representation that allows for an easy
way to retrieve it. The subtractive representation (24) is unfortunately not very helpful in this
sense: the fact that a given component is subtracted does not automatically guarantee that
the function itself vanishes in that area. Given an element E ∈ suppT we should check if all
possible components on that element are removed in order to know if truncT has support on E
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Figure 17: 1D Central Refinement: The first three steps of the refinement process in the
cases p = 2 (above) and p = 3 (below). When two functions are equally close to the centre, the
rightmost one is selected for refinement.

or not. The additive representation (23), on the other hand, is much more convenient: We can
simply loop over all components and check if any of them has support on E.

To address the latter point we need an efficient way to evaluate basis functions. This is
even more important in an Isogeometric setting: Since the Cox-de Boor algorithm is a typical
bottleneck of the code, we would like to perform as few basis evaluations as possible. In this
case the additive representation (23) is not efficient. In a biquadratic case a representation in
terms of next-level basis functions comprises of 16 fine-scale functions. This number clearly
increases when increasing the polynomial degree: 25 for bicubic functions, 36 for biquartic etc.
In addition, an additive representation may require to store the function in terms of the finest-
available scale, which would greatly increase the amount of components needed; let’s assume,
for simplicity, that this is not the case. To give an example, look at the biquadratic basis
functions of Figure 8. For each of the Truncated Hierarchical basis functions only 4 components
are removed. This means that in an additive representation we would still need to evaluate
12 fine-scale functions in order to compute the value of the B-spline we are interested in. In
a subtractive representation we would need to evaluate only 5 functions: The original tensor
product B-spline and the 4 components we need to subtract.

To summarize, we have the following:

• An additive representation (23) is useful when determining the support but not efficient
in the function evaluation process;

• A subtractive representation (24) does not allow to easily identify the support of the
function but is more efficient in its evaluation.

The above discussions are overall considerations: The disadvantages of the representations
might be accounted for by programming the algorithm in a smart efficient way. On the other
hand, this is still something that needs to be taken into consideration. For an in-depth discussion
on the implementation of Truncated Hierarchical B-splines we refer to [26].

4.2.2 1D examples

We now present the results obtained in various 1D examples. We performed several experiments
for polynomial degrees p = 2, 3, 4, and 5. In each case we started from a uniform, non-open
knot vector Ξ0 = [0, 1 . . . 5 p+ 1] and successively applied 6 refinement steps, always refining the
central basis function. Note that for odd polynomial degrees a central function always exists,
while for even-degree normally there are two functions near the knot vector centre. In this
case we chose to always refine the rightmost one. Figure 17 shows as examples the first two
refinement iterations for p = 2 and p = 3.

For each refinement iteration we constructed the stiffness matrix A and the mass matrix
M using the Classical Hierarchical, Truncated Hierarchical and LR B-splines functions defined
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Figure 18: 1D Central Refinement: Examples of sparsity patterns of the stiffness matrices at
the last(6th) refinement iteration. The Cuthill-McKee Algorithm has been applied to optimize
the bandwidth. Top: p = 2. Bottom: p = 5.

using the same knot vector. We then analysed some important numerical properties of these
matrices, namely the sparsity pattern, the conditioning number, and the spectrum. Note that
in the univariate case the LR B-splines basis coincides with the standard non-uniform B-splines
generated via knot insertion.

Sparsity Figure 18 shows the sparsity patterns of the stiffness matrix at the last refinement
iteration after a reordering using the Cuthill-McKee Algorithm [12] has been applied. The top
row corresponds to p = 2, while to bottom row corresponds to p = 5.

As expected the Classical Hierarchical basis functions produce the densest stiffness matrices.
This is normal since the support of coarse-level functions remains unaffected by the refinement
in neighbouring regions. The values for all polynomial degrees are collected in Table 1.

Conditioning Numbers The conditioning number of the stiffness and mass matrices can be
significantly influenced by the way the boundary conditions are imposed. In order to avoid any
such effect we decided to look at the “pure” conditioning numbers, i.e. before any imposition of
the boundary conditions. As is well known, with just pure Neumann boundary conditions the
stiffness matrix is singular; the conditioning number can then be defined as the ratio between
the largest eigenvalue and the smallest non-zero one. This means that for either the stiffness
matrix A or the mass matrix M , given the ordered set of their eigenvalues [λ1, λ2 . . . λn] we
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p HB THB LR H/T H/LR

2 393 183 129 215% 305%
3 803 315 247 255% 325%
4 1257 629 403 200% 312%
5 1919 853 597 225% 321%

Table 1: 1D Central Refinement: Number of non-zero elements in the stiffness matrix at the
last (6th) refinement iteration. The last two columns present the ratios, rounded to the nearest
percentage point.

Stiffness Matrix

Iter. 0 1 2 3 4 5 6

HB 12.7425 28.0291 55.7519 111.4035 222.7908 445.5791 891.158
THB 12.7425 25.8255 52.0501 105.3161 213.368 432.4906 876.3622
LR 12.7425 27.2848 55.6005 112.6381 228.1518 462.2306 936.1914

Mass Matrix

Iter. 0 1 2 3 4 5 6

HB 46.7947 52.5238 65.8931 116.2265 225.4839 448.1175 894.9733
THB 46.7947 41.5164 42.6706 45.6839 88.2484 176.373 352.7153
LR 46.7947 38.0372 38.4295 38.5944 67.7769 135.5371 271.0706

Table 2: 1D Central Refinement: The conditioning numbers for p = 2 throughout the mesh
refinement. Stiffness Matrix above, Mass Matrix below.

define

cond(A) =
λn
λ2

(25)

cond(M) =
λn
λ1

Figure 19 shows the plots for the conditioning numbers of both the stiffness and mass matrices
for each polynomial degree considered. While all values are quite close to each other, and always
remained in the same order of magnitude for our experiments, it is interesting to note that the
Truncated Hierarchical and LR B-splines perform very similarly.

Looking at the plots for the stiffness matrix we can see that, with the exception of the lowest
degree, i.e. p = 2, the conditioning numbers are ordered as

cond(AT ) < cond(ALR) < cond(AH)

while for the mass matrix we always have

cond(MLR) < cond(MT ) < cond(MH)

where the subscripts indicates the basis functions used.
We can also see that the conditioning numbers of the stiffness matrices are increasing with

each refinement iteration, while the conditioning numbers for the mass matrices for p = 4 and
5 are bounded from above and below by a constant. This behaviour was already presented by
Gahalaut and Tomar in [16] and Garoni et al. [17], although that result is proven for uniform
refinement only.

The Tables 2 and 3 present the numerical data for p = 2 and p = 3, respectively.
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Figure 19: 1D Central Refinement: Graphs of the conditioning numbers of stiffness matrices
(left column) and mass matrices (right column) from p = 2 (top) to p = 5 (bottom).
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Stiffness Matrix

Iter. 0 1 2 3 4 5 6

HB 37.5856 81.2603 162.2944 324.6481 649.3102 1298.622 2597.2442
THB 37.5856 74.0527 148.15 296.3336 592.6853 1185.3798 2370.7641
LR 37.5856 75.1932 150.6787 301.4619 602.9764 1205.9794 2411.9722

Mass Matrix

Iter. 0 1 2 3 4 5 6

HB 1405.2245 1553.052 1585.2845 1590.5673 1591.5617 2238.165 4476.3032
THB 1405.2245 1292.2619 1296.8079 1297.3633 1297.4726 1297.6033 2201.9071
LR 1405.2245 1190.1684 1191.548 1191.7976 1191.8173 1191.819 1191.8192

Table 3: 1D Central Refinement: The conditioning numbers for p = 3 throughout the mesh
refinement. Stiffness Matrix above, Mass Matrix below.
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Figure 20: 1D Central Refinement: The eigenvalues of the Stiffness Matrix (left) and Mass
Matrix (right) for p = 2 at the last refinement iteration. The plots are shown on a linear scale
(top) and logarithmic scale (bottom). The zero eigenvalue of the Stiffness Matrix is omitted.

Spectrum Figure 20 shows the spectra of the stiffness and mass matrices for p = 2 at the
sixth refinement iteration. The eigenvalues of the stiffness matrix are spread over a large interval,
while the eigenvalues of the mass matrix are much more clustered. In all cases the eigenvalues
tend to be denser near the origin, but there is no substantial difference between the various basis
functions.

Increasing the polynomial degree has different consequences on the eigenvalues of the stiffness
and mass matrices: While the large eigenvalues of the stiffness matrix are reduced, those of the
mass matrix are increased. The values of the smallest eigenvalues are instead reduced in all
cases, as we would expect by the increase in the conditioning numbers. We noted, however, that
only a small number of outliers quickly approaches zero, while the other smallest eigenvalues
are still reduced but not as fast. In particular, for the Classical and Truncated Hierarchical
basis functions the smallest eigenvalues seems to decrease faster than those associated with LR
B-splines. Figure 21 shows the spectra of the stiffness and mass matrices produced with basis
functions of degree p = 5.
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Figure 21: 1D Central Refinement: The eigenvalues of the Stiffness Matrix (left) and Mass
Matrix (right) for p = 5 at the last refinement iteration. The plots are shown on a linear scale
(top) and logarithmic scale (bottom). The zero eigenvalue of the Stiffness Matrix is omitted.

4.2.3 2D Example: Central Refinement

The first of the 2D examples we present is the natural extension of the 1D cases considered
above. Starting from a uniform tensor-product mesh, we performed five refinement iterations
where at each step the central basis function was selected for refinement. Experiments were
conducted for p = 2, 3, 4. As in the previous cases, for even polynomial degrees usually none of
the basis functions is perfectly in the centre of the mesh; when this happened we chose to refine
the lower-left function. Depending on the polynomial degree we also adjusted the knot vectors
to have a ghost domain such that the initial tensor product basis constitutes a partition of unity
in Ω0 = [0, 1] × [0, 1]. Figure 22 shows the first three steps of the refinement process for p = 2
and p = 3.

As in the previous examples, we constructed the stiffness and mass matrices using Classical
Hierarchical, Truncated Hierarchical and LR B-splines basis functions on the same meshes, and
compared their numerical properties.

Sparsity Figure 23 shows the sparsity pattern of the stiffness matrices after the fifth refinement
iteration for biquadratic and biquartic basis functions. All results are reported in Table 4.

As expected the Classical Hierarchical basis produces significantly denser matrices due to
the higher number of overlaps. While it may seem that the improvement gained by using the
Truncated basis is less than in the 1D case, we have to take into consideration that the refined
region is very small.

p HB THB LR H/T H/LR

2 8403 6079 6711 138% 125%
3 23625 14909 18909 158% 125%
4 47913 36943 40839 130% 117%

Table 4: 2D Central Refinement: Number of non-zero elements in the stiffness matrices at
the last (5th) refinement iteration. The last two columns present the ratios, rounded to the
nearest percentage point.
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Figure 22: 2D Central Refinement: The first three steps of the refinement process in the
cases p = 2 (above) and p = 3 (below). When four functions are equally close to the centre, the
lower-left one is selected for refinement.
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Figure 23: 2D Central Refinement: The sparsity patterns of the stiffness matrices at the
last (5th) refinement iteration. The Cuthill-McKee Algorithm has been applied to optimize the
bandwidth. Top: p = 2. Bottom: p = 4.
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Stiffness Matrix

Iter. 0 1 2 3 4 5

HB 83.6793 125.4868 142.641 152.964 159.1009 162.9791
THB 83.6793 94.7517 99.6748 102.4115 103.8121 104.6173
LR 83.6793 91.0205 91.0144 91.0061 91.006 91.0105

Mass Matrix

Iter. 0 1 2 3 4 5

HB 2.241e+03 2.245e+03 2.245e+03 2.245e+03 5.808e+03 2.323e+04
THB 2.241e+03 2.155e+03 2.154e+03 2.154e+03 5.554e+03 2.221e+04
LR 2.241e+03 2.153e+03 2.152e+03 5.981e+03 3.245e+04 1.757e+05

Table 5: 2D Central Refinement: The conditioning numbers for p = 2 in the various iterations
of the central refinement. Stiffness Matrix above, Mass Matrix below.

Stiffness Matrix

Iter. 0 1 2 3 4 5

HB 2.323e+04 3.410e+04 3.792e+04 3.960e+04 4.043e+04 4.088e+04
THB 2.323e+04 2.714e+04 2.977e+04 3.112e+04 3.186e+04 3.231e+04
LR 2.323e+04 2.416e+04 2.421e+04 2.421e+04 2.421e+04 2.421e+04

Mass Matrix

Iter. 0 1 2 3 4 5

HB 1.975e+06 2.016e+06 2.019e+06 2.019e+06 2.019e+06 2.019e+06
THB 1.975e+06 1.837e+06 1.837e+06 1.837e+06 1.837e+06 1.837e+06
LR 1.975e+06 1.836e+06 1.836e+06 1.836e+06 1.836e+06 1.836e+06

Table 6: 2D Central Refinement: The conditioning numbers for p = 3 in the various iterations
of the central refinement. Stiffness Matrix above, Mass Matrix below.

Conditioning Numbers Figure 24 shows the plots of the conditioning numbers of the stiff-
ness and mass matrices produced by the refinement procedure described above. As we can see,
the conditioning numbers for the mass matrices are bounded for the higher degrees.

Tables 5 and 6 contain the numerical values of the conditioning numbers for p = 2 and 3,
respectively.

Spectrum Figure 25 shows the spectra of the matrices obtained from the last refinement
iteration using biquadratic basis functions. While there is no substantial difference in the eigen-
value distribution produced by the three refinement methodologies, we can see how the smallest
eigenvalue of the mass matrix coming from LR B-splines functions is lower than its Hierar-
chical counterparts. This explains the higher conditioning number for LR B-splines than the
Hierarchical refinement schemes.

Increasing the polynomial degree to p = 4 compacts the spectrum, reducing the lower eigen-
values but also the higher ones. As in the univariate case, the smallest eigenvalues are outliers
and assume almost the exact same value for all three families of splines; the difference in the
magnitude of the conditioning numbers is therefore dictated by the values of the greatest eigen-
values.
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Figure 24: 2D Central Refinement: Graphs of the conditioning numbers of stiffness matrices
(left column) and mass matrices (right column) for the bivariate central refinement. p = 2 (top),
p = 3 (middle), and p = 4 (bottom).
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Figure 25: 2D Central Refinement: The eigenvalues of the Stiffness Matrix (left) and Mass
Matrix (right) for p = 2 at the last (5th) iteration of the central refinement, bivariate case. The
plots are shown on a linear scale (top) and logarithmic scale (bottom). The zero eigenvalue of
the Stiffness Matrix is omitted.
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Figure 26: 2D Central Refinement: The eigenvalues of the Stiffness Matrix (left) and Mass
Matrix (right) for p = 4 at the last iteration of the central refinement, bivariate case. The plots
are shown on a linear scale (top) and logarithmic scale (bottom). The zero eigenvalue of the
Stiffness Matrix is omitted.
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4.2.4 2D Example: Diagonal Refinement

We present here the results obtained applying a diagonal refinement. This configuration is a
classical benchmark often used in publications and, since the refinement area is quite large, it
provides a different point of view respect to the central refinement illustrated before.

Starting from the usual uniform tensor product mesh, we applied four refinement iterations
where we refine at each step all the basis functions along the diagonal. As in the centre refinement
case, we considered the polynomial degrees p = 2, 3, and 4. Again, the ghost domain was adjusted
in order for the first tensor product basis to constitutes a partition of unity in Ω0. Figure 27
shows the first three meshes in the biquadratic and bicubic cases. Note that we refined also a
portion of the ghost domain: This was done in order to avoid having T-joints on the boundary of
Ω0. The integration, however, was carried out only for the elements inside Ω0, as in the previous
cases.

Sparsity Due to the extension of the refinement region, and the number of overlapping zones,
we expected to see quite a difference in the sparsity pattern of the matrices produced by the
different spline technologies. Figure 28 presents the sparsity patterns for p = 2 and p = 4. The
results are presented in Table 7.

As we can see, due to the larger refined area the use of Truncated Hierarchical or LR B-splines
basis functions has a huge impact on the sparsity of the matrices: The Classical Hierarchical
basis produces almost twice as many non-zero elements as the Truncated basis, and more than
twice those of the LR B-splines basis. It also seems that increasing the polynomial degree
somewhat reduces the advantage of the Truncated basis, while the LR B-splines basis maintains
the same ratio.

Conditioning Numbers Figure 29 shows the conditioning numbers of the stiffness and mass
matrices obtained for this diagonal example. The numerical values of the conditioning numbers
for the stiffness and mass matrices are presented in Table 8 for the biquadratic case, and Table
9 for the bicubic case.

Spectrum Figures 30 and 31 present the spectrum of the stiffness and mass matrices in the
cases p = 2 and 4, respectively. As before, the magnitude of the smallest eigenvalues is the same
for all three types of basis functions considered. The value of the conditioning numbers depends
therefore from the values of the highest eigenvalues, which is typically greater for the Classical
Hierarchical functions.

p HB THB LR H/T H/LR

2 116366 61330 53558 190% 217%
3 304671 164039 140047 186% 218%
4 628862 356042 287594 177% 219%

Table 7: 2D Diagonal Refinement: Number of non-zero elements in the stiffness matrices at
the last refinement iteration of the bivariate diagonal refinement. The last two columns present
the ratios, rounded to the nearest percent point.
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Figure 27: 2D Diagonal Refinement: The first three steps of the refinement process in the
cases p = 2 (above) and p = 3 (below).

Stiffness Matrix

Iter. 0 1 2 3 4

HB 83.6793 139.708 169.439 225.641 318.5089
THB 83.6793 97.8692 173.2625 371.711 772.2455
LR 83.6793 95.6921 163.0508 346.4521 716.4894

Mass Matrix

Iter. 0 1 2 3 4

HB 2.241e+03 8.783e+03 3.511e+04 1.404e+05 5.617e+05
THB 2.241e+03 8.187e+03 3.275e+04 1.310e+05 5.240e+05
LR 2.241e+03 8.161e+03 3.264e+04 1.306e+05 5.223e+05

Table 8: 2D Diagonal Refinement: The conditioning numbers for p = 2 in the various
iterations of the diagonal refinement. Stiffness Matrix above, Mass Matrix below.
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Figure 28: 2D Diagonal Refinement: The sparsity patterns of the stiffness matrices at the
last refinement iteration for the 2D diagonal refinement. The Cuthill-McKee Algorithm has
been applied to optimize the bandwidth. Top: p = 2. Bottom: p = 4.

Stiffness Matrix

Iter. 0 1 2 3 4

HB 2.323e+04 3.661e+04 4.366e+04 4.588e+04 4.675e+04
THB 2.323e+04 2.666e+04 2.840e+04 2.927e+04 2.977e+04
LR 2.323e+04 2.522e+04 2.569e+04 2.581e+04 2.585e+04

Mass Matrix

Iter. 0 1 2 3 4

HB 1.975e+06 7.885e+06 3.160e+07 1.264e+08 5.057e+08
THB 1.975e+06 6.876e+06 2.750e+07 1.100e+08 4.400e+08
LR 1.975e+06 6.753e+06 2.701e+07 1.080e+08 4.321e+08

Table 9: 2D Diagonal Refinement: The conditioning numbers for p = 3 in the various
iterations of the diagonal refinement. Stiffness Matrix above, Mass Matrix below.

40



0 1 2 3 4
0

100

200

300

400

500

600

700

800

iterations

C
on

di
tio

ni
ng

 N
um

be
r

2D Stiffness Matrix, P=2

 

 
HB
THB
LR

0 1 2 3 4
0

1

2

3

4

5

6
x 10

5

iterations
C

on
di

tio
ni

ng
 N

um
be

r

2D Mass Matrix, P=2

 

 
HB
THB
LR

0 1 2 3 4
2

2.5

3

3.5

4

4.5

5
x 10

4

iterations

C
on

di
tio

ni
ng

 N
um

be
r

2D Stiffness Matrix, P=3

 

 
HB
THB
LR

0 1 2 3 4
0

1

2

3

4

5

6
x 10

8

iterations

C
on

di
tio

ni
ng

 N
um

be
r

2D Mass Matrix, P=3

 

 
HB
THB
LR

0 1 2 3 4
2.5

3

3.5

4

4.5

5

5.5
x 10

7

iterations

C
on

di
tio

ni
ng

 N
um

be
r

2D Stiffness Matrix, P=4

 

 
HB
THB
LR

0 1 2 3 4
0

2

4

6

8

10

12

14
x 10

11

iterations

C
on

di
tio

ni
ng

 N
um

be
r

2D Mass Matrix, P=4

 

 
HB
THB
LR

Figure 29: 2D Diagonal Refinement: Graphs of the conditioning numbers of stiffness matrices
(left column) and mass matrices (right column) for the bivariate diagonal refinement. p = 2
(top), p = 3 (middle), and p = 4 (bottom).
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Figure 30: 2D Diagonal Refinement: The eigenvalues of the Stiffness Matrix (left) and Mass
Matrix (right) for p = 2 at the last iteration of the diagonal refinement. The plots are shown on
a linear scale (top) and logarithmic scale (bottom). The zero eigenvalue of the Stiffness Matrix
is omitted.
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Figure 31: 2D Diagonal Refinement: The eigenvalues of the Stiffness Matrix (left) and Mass
Matrix (right) for p = 4 at the last iteration of the diagonal refinement. The plots are shown on
a linear scale (top) and logarithmic scale (bottom). The zero eigenvalue of the Stiffness Matrix
is omitted.
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4.3 Additional Results

In this section we present some additional results. We feel it is unnecessary to give the same
level of detail as in the previous examples, hence only the meshes and corresponding graphs of
the conditioning numbers are shown. We feel that this gives a solid base of different refinement
types that may appear in applications. Ranging from refinement around points, to curves to
areas.
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Figure 32: Half-Side Refinement: Refinement conducted only in the right half of the mesh.
Top: Final mesh and conditioning numbers for p = 2. Bottom: Final mesh and conditioning
numbers for p = 3.
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Figure 33: Triangle Refinement: Refinement along a triangular path. Top: Final mesh and
conditioning numbers for p = 2. Bottom: Final mesh and conditioning numbers for p = 3.
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Figure 34: Logo Refinement: Refinement along a familiar logo. Top: Final mesh and condi-
tioning numbers for p = 2. Bottom: Final mesh and conditioning numbers for p = 3.
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Figure 35: Curve Refinement: Refinement along a predefined curve. Top: Final mesh and
conditioning numbers for p = 2. Bottom: Final mesh and conditioning numbers for p = 3.
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Figure 36: Circle Refinement: Refinement along a unit circle. Top: Final mesh and condi-
tioning numbers for p = 2. Bottom: Final mesh and conditioning numbers for p = 3.
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5 Conclusions

In this paper we have analysed the Classical Hierarchical, Truncated Hierarchical and LR B-
splines basis on both a qualitative (more theoretical) and quantitative (more numerical) level.
Regarding the qualitative differences we believe that the most important points are:

• The Classical Hierarchical basis does not constitute a partition of unity;

• For some meshes, the basis generated by the Hierarchical B-splines and the structured
mesh LR B-spline refinement does indeed produce different function spaces;

• The Hierarchical and LR B-splines frameworks have different admissible meshes;

• While LR B-splines allow for more flexibility regarding the choice of refinement strategies,
a formal proof for the linear independence of the resulting set of functions is still lacking.

The difference in the functions spaces is perhaps the most important point. Since both hierarchal
and Truncated B-splines span the same space they are both resulting in the same discrete finite
element solution, meaning that the differences in the basis functions are going to affect only the
number of operations required to get to a certain precision. For LR B-splines versus Hierarchical
B-splines, the situation becomes a bit more nuanced as the discrete solution itself can be different.

For the quantitative case we presented several numerical examples which have shown that
there is a substantial difference between the three spline families especially for what concerns
the sparsity pattern of the matrices. The Classical Hierarchical basis always produced the
densest matrices, while those produced by the Truncated Hierarchical and LR B-splines were
much more sparse. In particular, it seems that when the refinement region affects only a small
portion of the mesh, the Truncated basis yields the best results regarding sparsity; if instead the
refinement covers a large portion of the mesh, then the LR B-splines basis produces the most
sparse matrices.

When it comes to the conditioning numbers, no clear and defined pattern emerged, and the
results seemed very dependant on several factors: the dimension of the problem (1D vs 2D), the
matrix considered (Stiffness Matrix vs Mass Matrix) and the polynomial degree. In particular,
in the univariate setting we had, for the stiffness matrix,

cond(AT ) < cond(ALR) < cond(AH)

while for the mass matrix we had

cond(MLR) < cond(MT ) < cond(MH)

In the bivariate setting things are not so definite, but there seem to be a tendency of

cond(MLR) ≈ cond(MT ) < cond(MH)

for the mass matrix, while the stiffness matrix doesn’t seem to show as prominent patterns. An
interesting observation is that for low p, the Classical Hierarchical have conditioning numbers
of A on par, or below that of Truncated or LR, but for p > 2 this is no longer the case.

On a general level we can say that the Classical Hierarchical basis performed worse than
the Truncated or the LR one, while these last two frameworks yielded very similar results.
Therefore, we conclude that for any application where sparsity or conditioning numbers are
important quantities, one of these two refinement schemes are to be preferred.
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