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Abstract

To solve the incompressible flow problems using isogeometric analysis, the div-compatible spline

spaces were originally introduced by Buffa [10, 11], and later developed by Evans [20]. In this

paper, we extend the div-compatible spline spaces with local refinement capability using Locally

Refined (LR) B-splines over rectangular domains. We argue that the spline spaces generated on

locally refined meshes will satisfy compatibility provided they span the entire function spaces as

governed by Mourrains [29] dimension formula. We will in this work use the structured refined LR

B-splines as introduced by Johannessen et al. [25]. Further, we consider these div-compatible LR

B-spline spaces to approximate the velocity and pressure fields in mixed discretization for Stokes

problem and a set of standard benchmark tests are performed to show the stability, efficiency and the

conservation properties of the discrete velocity fields in adaptive isogeometric analysis.

1 Introduction

Isogeometric analysis (IGA) was introduced in [23] as an innovative numerical methodology for the dis-

cretization of Partial Differential Equations (PDEs). The main idea was to improve the interoperability

between Computer Aided Design (CAD) and PDE solvers, and to achieve this, the authors in [23] pro-

posed to use CAD mathematical primitives, i.e. splines and NURBS, to also represent PDE unknowns.

The smoothness of splines is a new ingredient that yields several advantages: for example, it improves

the accuracy per degree of freedom and allows for the direct approximation of higher order PDEs. Iso-

geometric methods have been used and tested on a variety of problems of engineering interests, for flow

simulations [2, 4, 7, 10, 14, 20, 17, 18], and for electromagnetic problems [12, 13, 32].

In electromagnetic and incompressible fluids flow simulations, numerical discretizations have to pre-

serve the geometric structure of underlying PDEs in order to avoid spurious behaviors, instability or

non-physical solution. Thus the numerical discretizations have to be related through a discrete De Rham

complex. Compatible spaces for finite element approximations were in general introduced by Arnold et

al. [3], and more recently in isogeometric analysis context, by Buffa et al. [10, 11]. High regularity

of splines is advantageous for constructing compatible spaces. Some initial work to show the potential

impact of compatible spline based methodology for electromagnetic wave computations was presented

in [12, 32] and recently using T-spline complexes in [13]. The first isogeometric discretizations of in-

compressible fluid flows was done by Bazilevs et al. [6], generalizing Taylor-Hood elements to NURBS.

Later, Buffa et al. [10] investigated a solver based on three choices of discrete spline spaces to approxi-

mate the mixed discretization for Stokes problem, which were seen as a smooth extension of Taylor-Hood

(TH), Nedelec (N) and Raviart-Thomas (RT) pair of Finite Element (FE) spaces. One of their main find-

ing was the smooth RT pair of spline based FE spaces provides divergence-free discrete solutions. Later

using the idea of div-compatible spline spaces presented in the setting of discrete differential forms [11],

a series of isogeometric divergence conforming spline discretizations were derived to solve Stokes and

Brinkman equations, steady and unsteady Navier-Stokes equations by Evans in [17, 18, 19]. These ini-

tial developments show that isogeometric analysis is a highly accurate and efficient methodology to solve

incompressible flow problems. In this paper our aim is extend the div-comptaible spaces to locally re-

fined meshes and explore the benefit of adaptive refinement in solving incompressible flow problems.

Adaptivity and local refinement allows us to not only achieve optimal convergence by resolving strong

singularities, it also allows us to resolve local behaviour such as recirculation eddies in fluid flow. While

the framework presented here is formulated on an unmapped rectangular domain, it is conjectured that it
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is possible to extend it to mapped geometries using the Piola mapping in the same way as [10].

Non-uniform rational B-splines (NURBS) is the dominant geometric representation format for CAD.

The construction of NURBS are based on a tensor product structure and, as a consequence, knot insertion

is a global operation. To remedy this a local refinement can be achieved by breaking the global tensor

product structure of multivariate splines and NURBS. Several techniques have been proposed to address

this, among others are T-splines [36, 35], Hierarchical B-splines [21, 26], Truncated Hierarchical B-

splines [22] and Locally Refined (LR) B-splines [15]. While initially, most of the references address

the problem from a CAD point of view, later years have seen them applied to isogeometric analysis.

For T-splines consider [5, 16, 33, 37, 38], for Hierarchical B-splines consider [30, 39, 8, 34], and for

LR-splines see [25, 27].

1.1 Aim and outline of the paper

The aim of this paper is to present a class of compatible spline spaces with local refinement capability

which form a De Rham complex and provide a stable, divergence-free discretization of the 2D Stokes

problem.

The paper is organized as follows:

We start in Section 2 with our model Stokes problem which can be seen as a prototype of viscous

incompressible flows. The necessary conditions to derive a divergence conforming spline discretization

and the main results of the paper are presented.

In Section 3, we introduce the basic concepts of splines over locally refined Box-meshes (or T-

meshes). We present the dimension formula as given by Mourrain [29] which will be useful in proving

the compatibility among the splines spaces on locally refined meshes. Further we discuss the construc-

tion of derivatives spaces on locally refined meshes.

In Section 4, we present three different complete De Rham complexes on locally refined meshes. The

complexes are characterized by their boundary conditions for the velocity space: (i) without boundary

conditions, (ii) with no penetration boundary conditions, and (iii) with no slip boundary conditions.

To build a basis on the Box meshes we introduce the locally refined (LR) B-splines in Section 5.

We give a brief overview of their generality before defining a subclass which we will use for the local

refinement. This is the structured mesh refinement as introduced in [25].

In Section 6, we present some numerical results for Stokes problems. The numerical stability, conver-

gence rates, efficiency and conservation properties of the proposed LR B-spline discretization in adaptive

isogeometric analysis will be main focus.

Finally, some conclusions and perspectives are included in Section 7.
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2 Stokes problem and Divergence-conforming spline discretization

To model a viscous incompressible flow, we consider the following Stokes problem: find (u, p) such that

{

−ν∇2u +∇p = f in Ω
∇ · u = 0 in Ω

(1)

with suitable boundary conditions and a constant viscosity term ν. We consider f ∈ L
2(Ω) and Ω ⊂ R

2

is a rectangular domain.

We considered the mixed variational form of (1); find u ∈ H1(Ω) and p ∈ L2(Ω) such that

{

a(u, v) + b(v, p) = f(v) ∀v ∈ H1(Ω)
b(u, q) = 0 ∀q ∈ L2(Ω)

(2)

where

a(u, v) =

∫

Ω
ν∇u : ∇v

b(v, q) = −

∫

Ω
q div v and f(v) =

∫

Ω
f · v.

The discrete mixed form of (2) is obtain by solving the problem: find uh ∈ Vh ⊂ H1(Ω) and

ph ∈ Qh ⊂ L2(Ω) such that

{

a(uh, vh) + b(vh, ph) = f(vh) ∀vh ∈ Vh

b(uh, qh) = 0 ∀qh ∈ Qh,
(3)

where Vh and Qh are finite dimensional subspaces.

In order to guarantee the stability, we consider the choices of discrete pair of approximation spaces

{Vh, Qh} which satisfy the inf-sup stability conditions, i.e.,

inf
qh∈Qh
qh 6=0

sup
vh∈Vh
vh 6=0

b(vh, qh)

‖qh‖
2
L2(Ω)

‖vh‖H1(Ω)

≥ cis > 0 (4)

where cis is the inf-sup constant independent of h.

The discrete velocity approximation uh of problem (1) is in general not exactly divergence-free, i.e.,

div(uh) 6= 0. A sufficient conditions that guarantees divergence-free velocities is

{div v : v ∈ Vh} ⊆ Qh, (5)

which will conflict with (4), unless the equality holds in (5).

The discretization techniques that produce an exactly divergence-free velocity fields are of great

practical interest and are not easy to devise in the framework of classical finite elements. In the context

of Isogeometric Analysis, a few choices of spline based discrete pairs of spaces (Vh, Qh) which satisfy

(4) have been presented in Buffa et al. [12]. These choices are seen as spline generalization of well

known FE spaces, namely Taylor-Hood (TH) elements, Nédélec (N) elements of the second family and

Raviart-Thomas (RT) elements. Moreover, the spline generalization of Raviart-Thomas elements intro-

duced in [10] also enjoys property (5) and thus provides divergence-free discrete solutions.

On a rectangular domain Ω with the associated mesh M the choice of spline spaces (Vh, Qh) for the

Raviart-Thomas (RT) elements can be defined as

V RT
h = S

p+1,q
k+1,ℓ(M)× S

p,q+1
k,ℓ+1(M); QRT

h = S
p,q
k,ℓ(M); (6)
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where S
p,q
k,ℓ(M) denotes the two dimensional spline space of bi-degree (p, q) and continuity (k, ℓ) in the

two directions.

In the results of Theorem 3.1 of Buffa et al. [12], a characterization for the range of the div operator

in the situations of interest for the Raviart-Thomas elements Vh × Qh which ensure the stability and

divergence free conforming solutions were presented. In this paper, we extend their characterization

(results of Theorem 3.1) for the case of splines spaces over general meshes M. The main result is given

as follows:

Theorem 1. Let Sp+1,q+1(M) be a spline space of bi-degree (p, q) over a general homology1 free box

mesh M on the rectangular domain Ω, then the following pairs of spaces are equal

{div(v) : v ∈ Vh} = {q ∈ Qh}; (7)

{div(v) : v ∈ Vh, v · n|∂Ω = 0} = {q ∈ Qh :

∫

q = 0}; (8)

{div(v) : v ∈ Vh, v|∂Ω = 0} = {q ∈ Qh :

∫

q = 0 with, (9)

q(xi) = 0, i = 1...4};

with

Vh = S
p+1,q(M)× S

p,q+1(M) and Qh = S
p,q(M);

where n denotes the outward unit normal to the boundary of Ω and xi, i = 1, ..., 4 denote its four corner

points.

Proof. The proof of this theorem is given in three steps, as the result of Theorems 2-4 for the case of

(7)–(9), respectively, see Section 4.

Although the results of Theorem 1 have a general significance for spline spaces over a box meshes,

we will here consider the structured LR B-spline spaces as introduced by Johannessen et al. [25], which

is a subset of LR B-splines, as a suitable candidate for div-compatible splines spaces with local refine-

ment capability.

1See discussion in Section 3
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(a) Tensor mesh (b) Box mesh, not an LR mesh (c) LR mesh and box mesh

(d) Not an LR-mesh, nor a box mesh
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(e) LR mesh with multiplicities (f) Alternative way of drawing (e)

Figure 1: Note that there is no way to create the box mesh (b) from single line insertions (starting at

tensor mesh) where every intermediate state is also a box mesh. This is a prerequisite for all LR meshes.

3 Spline spaces over planar box meshes

The aim of this section is to set the notations and briefly state the definitions of several types of unstruc-

tured meshes and present the dimension of spline spaces over them. The dimension argument was first

presented by Mourrain [29] and later extended to multivariate case by Pettersen [31].

In the literature, one can classify several types of unstructured meshes as defined below.

Definition 1. A Box Mesh or T-mesh is a partitioning of a two-dimensional rectangular domain [x0, xn]×
[y0, yn] into smaller rectangles by horizontal and vertical lines.

Definition 2. A Tensor Mesh is a box mesh where there are no T-joints, i.e., all horizontal and vertical

lines span the entire length [x0, xn] or [y0, yn].

Definition 3. An LR-Mesh Mn is a box mesh which is the result from a series of single line insertions

{Ei}
n
i=1 starting from a tensor mesh M0, i.e. Mn ⊃ Mn−1 ⊃ ... ⊃ M1 ⊃ M0 and each intermediate

state Mi+1 = {Mi ∪ Ei} is a also a box mesh.

In other words, it should be possible to create an LR-Mesh by inserting one line at a time, where the

lines never stops in the center of an element (knot span) during its creation. Figure 1 shows different

types of unstructured meshes.

Definition 4. A box mesh, Tensor Mesh or LR-Mesh with multiplicities is a mesh M where each line

segment has a corresponding integer value µ, called the line multiplicity. Each multiplicity must satisfy

0 < µ ≤ s, where s is the polynomial degree (in x-direction for vertical lines and in y-direction for

horizontal lines).
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Now we define the spline space S
p,q(M) in term of piecewise polynomials of a given box mesh M

with multiplicities:

S
p,q(M) =

{

ϕ|F ∈ P
p,q ∧ ϕ|E⊥ ∈ Ck(E)

}

(10)

where P
p,q is polynomials of bi-degree (p, q) and M = {F ,Ey,Ex,V } is the mesh defined by the

collection of faces F , horizontal edges Ey, vertical edges Ex and vertices V . A continuity k is assigned

to each edge and is given by the multiplicity µ(E) as

k(E) =

{

p− µ(E), for vertical edges Ex

q − µ(E), for horizontal edges Ey.
(11)

Note that vertical lines reduce continuity in the x-direction, and horizontal lines in the y-direction. The

notation ϕ|E⊥ in (10) implies evaluation of ϕ across the edge E. We also define an associated horizontal

and vertical continuity with each vertex

k(V ) =

[

k1(V )
k2(V )

]

=

[

min{k(Ex)}
min{k(Ey)}

]

(12)

where Ex is all vertical edges connected to this particular vertex, and likewise for horizontal edges.

In the case of uniform mesh continuities (k, ℓ), we write S
p,q
k,ℓ(M). Even if the continuities are

implicitly defined in the mesh M and hence it is possible to drop the continuity subscripts, we feel that

they emphasize some key facts and it is illustrative to keep them whenever possible. We also note that

all results presented in this paper will hold true for mixed continuities Sp,q(M).
Now using the result from Mourrain [29], it can be shown that the dimension of the spline space

S
p,q(M) will be

dim (Sp,q(M)) =
∑

F∈F

(p+ 1)(q + 1)

−
∑

Ex∈Ex

(p+ 1)(k(Ex) + 1) (13)

−
∑

Ey∈Ey

(q + 1)(k(Ey) + 1)

+
∑

V ∈V

(k1(V ) + 1)(k2(V ) + 1)

+ Hp,q(M)

where Hp,q(M) denotes the homology term that depends on a given mesh M and polynomial bi-degree

(p, q). The homology is rather cumbersome to handle, but we will see later that all practical meshes

considered in this paper have zero homology term. For uniform continuity (k, ℓ) across the entire mesh,

and with Hp,q(M) = 0, equation (13) simplifies to

dim
(

S
p,q
k,ℓ(M)

)

= (p+ 1)(q + 1)#F

− (p+ 1)(ℓ+ 1)#Ex

− (q + 1)(k + 1)#Ey (14)

+ (k + 1)(ℓ+ 1)#V

where #F is the number of faces in the mesh, #Ex and #Ey is the number of interior vertical and

horizontal edges, respectively, and #V is the number of interior vertices. In the later sections of the

paper we shorten the notation and simply write F for the number of faces #F and likewise for edges

and vertices.
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(a) Mesh description:

p = 3, q = 2
k = 1, ℓ = 1
#F = 12, #V = 6
#Ey = 8, #Ex = 12
dim(Sp,q

k,ℓ) = 50 according to (14)

(b) Mesh description:

p = 2, q = 3
k = 1, ℓ = 2
#F = 174, #V = 171
#Ey = 172, #Ex = 172
dim(Sp,q

k,ℓ) = 190 according to (14)

C
2

C
1

C
0

(c) Mesh description:

p = 2, q = 3,
mixed continuity

#F = 15, #V = 12
#Ey = 12, #Ex = 14
dim(Sp,q) = 38 according to (13)

Figure 2: The dimension of different spline spaces S
p,q over box-meshes M of bi-degree (p, q) and

varying smoothness (k, ℓ).

Proposition 1. For an LR mesh M, a sufficient condition for the homology term Hp,q(M) to be zero

is that it is constructed of horizontal lines spanning p + 1 elements and vertical lines spanning q + 1
elements.

Proof. For this consult Pettersen [31].
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3.1 Derivative spaces

The derivative spaces of Sp,q(M) defined as a piecewise polynomial space in (10) over an arbitrary box

mesh M can be defined as follows:

Definition 5. Let {ϕi}
n
i=1 be a basis for the space Sp,q(M) as defined in (10). Then both components of

the derivative spaces can be defined as

∂xS
p,q(M) = span

{

∂

∂x
ϕi(x, y)

}n

i=1

(15)

∂yS
p,q(M) = span

{

∂

∂y
ϕi(x, y)

}n

i=1

. (16)

We make the following observation about the derivative spaces of Definition 5.

Proposition 2. Let M be an arbitrary box mesh with multiplicities and S
p,q(M) be a spline space over

M. Then we obtain

∂xS
p,q(M) ⊆ S

p−1,q(M) (17)

∂yS
p,q(M) ⊆ S

p,q−1(M). (18)

Proof. For a given ϕ ∈ S
p,q(M), under the x-derivative operation, the polynomial degree is reduced by

one, i.e. ∂ϕ
∂x |F ∈ P

p−1,q, and the continuity across vertical directions are also reduce by one, i.e. ∂ϕ
∂x |Ex ∈

Ck(Ex), where k(Ex) = p − 1 − µ(Ex) with the edge multiplicity µ(Ex). While the continuity across

horizontal edges remains unchanged. Hence ∂ϕ
∂x ∈ S

p−1,q(M). The proof of (18) is analogous.

Proposition 3. Let M be a tensor mesh with uniform multiplicities, i.e. µ(Ex) = p − k, ∀Ex and

µ(Ey) = q − ℓ, ∀Ey with (k, ℓ) being global continuities in each direction. Then

∂xS
p,q
k,ℓ(M) = S

p−1,q
k−1,ℓ(M) (19)

Proof. See [10] for the proof.

The results of Proposition 3 does not hold for general box meshes. For a counter example see

Figure 3, where we show a box mesh on which the derivative space is not the space of all polynomials

of one less degree and continuity.
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C
1

C
0

(a) Mesh description of S
p,q

k,ℓ(M) with

p = 2, q = 2, k = 1, ℓ = 1
#F = 106, #V = 115
#EH = 110, #EV = 110
dim(Sp,q

k,ℓ) = 94 according to (14)

C
1

C
0

(b) Mesh description of S
p,q

k,ℓ(M) with

p = 1, q = 2, k = 0, ℓ = 1
#F = 106, #V = 115
#EH = 110, #EV = 110
dim(Sp,q

k,ℓ) = 96 according to (14)

Figure 3: Derivative spaces: A counter example: On this box mesh, It is shown that the derivative space

is not the space of all polynomials of one less degree and continuity: ∂xS
p,q
k,ℓ(M) 6= S

p−1,q
k−1,ℓ(M) since

dim(Sp−1,q
k−1,ℓ(M)) > dim(Sp,qk,ℓ(M)). The continuity colours are derived from the edge multiplicities

which are the same for both figures.
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4 The spline complex over box meshes

We note that the results of this section will hold true for any properly defined spline spaces over box

meshes. We consider the dimensionality argument approach to prove the compatibility in the spline

spaces, where the dimensional formula’s of Mourrain [29] for box meshes is used as a main tool. Thus it

becomes a requirement that the spline spaces should span the full space of piecewise smooth polynomials

given by (13).

Theorem 2. Let M be a given box mesh with multiplicities and S
p+1,q+1(M) be a spline space as

defined in (10). If the homology term Hp+1,q+1(M) = 0, then the spline spaces X0
h, X

1
h and X2

h form a

De Rham complex and the following sequence is exact

R → X0
h

rot
−→ X1

h
div
−→ X2

h → 0 (20)

where

X0
h = S

p+1,q+1(M)

X1
h = S

p+1,q(M)× S
p,q+1(M)

X2
h = S

p,q(M).

Proof. The proof follows the same structure as outlined by Buffa el al. [13]. To prove (20), we need to

show the following:

R = ker(rot) (21)

im(rot) = ker(div) (22)

im(div) = X2
h, (23)

where rot(ϕ) = [∂yϕ,−∂xϕ]
T and div(u) = ∂xu1 + ∂yu2.

The proof of (21) is straightforward. We observe that

ϕ ∈ X0
h : rot(ϕ) = [0, 0]T ⇔ ϕ = c ∈ R.

Hence R = ker(rot).

To prove (22), we first note that

im(rot) ⊆ ker(div) since ∀ϕ ∈ X0
h ⇒ div(rot(ϕ)) = 0.

Conversely to show im(rot) ⊇ ker(div), assume div(u) = 0. Then there exists an ϕ ∈ X0
h such that

u = rot(ϕ) and ϕ is given as

ϕ(x, y) = −

∫ x

0
u2(t, 0) dt+

∫ y

0
u1(x, t) dt.

The proof of (23) is based on a dimensionality argument of the spline spaces. First using Proposi-

tion 2 we obtain im(div) ⊆ X2
h. Now to establish equality we need to show that the dimensions of both

spaces are equal, i.e.,

dim(im(div)) = dim(X1
h)− dim(ker(div))

= dim(X1
h)− dim(im(rot))

= dim(X1
h)− dim(X0

h) + dim(ker(rot))

= dim(X1
h)− dim(X0

h) + 1. (24)
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After assuming the uniform continuity over the mesh M we obtain from (14):

dim(Sp+1,q+1

k+1,l+1
) = (p+ 2)(q + 2)F − (p+ 2)(l + 2)Ey − (q + 2)(k + 2)Ex + (k + 2)(l + 2)V

dim(Sp+1,q

k+1,l ) = (p+ 2)(q + 1)F − (p+ 2)(l + 1)Ey − (q + 1)(k + 2)Ex + (k + 2)(l + 1)V

dim(Sp,q+1

k,l+1
) = (p+ 1)(q + 2)F − (p+ 1)(l + 2)Ey − (q + 2)(k + 1)Ex + (k + 1)(l + 2)V

dim(Sp,q

k,l ) = (p+ 1)(q + 1)F − (p+ 1)(l + 1)Ey − (q + 1)(k + 1)Ex + (k + 1)(l + 1)V.

Using (24), the problem reduce to

dim(X2
h) = dim(X1

h)− dim(X0
h) + 1

dim(Sp,qk,l ) = dim(Sp+1,q
k+1,l ) + dim(Sp,q+1

k,l+1 )− dim(Sp+1,q+1
k+1,l+1 ) + 1

which can be done once we realize that the Euler characteristic of a planar graph is 1, i.e.

F − Ex − Ey + V = 1.

Note that the assumption on the uniform continuity used here is not required as it is possible to obtain

the same conclusion by using (13) in (24).

The main aim of the paper is to show the use of locally refined div-compatible spline spaces in mixed

FE discretizations to solve incompressible flow problems. Thus we now present the extension of a De

Rhams complex result of Theorem 2 after imposing the boundary conditions on the velocity field. We

consider two main cases of imposing the boundary conditions.

4.1 No penetration boundary conditions

The No penetration boundary condition on the velocity is defined by u ·n = 0 on the domain boundary.

In order to produce an exact De Rham complex, we need to impose corresponding boundary conditions

for the other spaces.

Theorem 3. Let M be a given box mesh with multiplicities and S
p+1,q+1(M) be a spline space as

defined in (10). If the homology term Hp+1,q+1(M) = 0, then the spline spaces Y 0
h , Y

1
h and Y 2

h form a

De Rham complex and the following sequence is exact

0 → Y 0
h

rot
−→ Y 1

h
div
−→ Y 2

h

∫

−→ 0 (25)

where
Y 0
h = {ϕ ∈ S

p+1,q+1(M) : ϕ = 0 on Γ}
Y 1
h = {u ∈ S

p+1,q(M)× S
p,q+1(M) : u · n = 0 on Γ}

Y 2
h = {p ∈ S

p,q(M) :
∫

Ω p = 0}.

Here Γ is the boundary of our domain and n is the outward pointing unit normal.

Proof. The proof follows the main structure of Theorem 2. The main difference in the proof is to show

that im(div) = Y 2
h . For this, we need to introduce the exterior edges and vertices along the boundary of

our domain to account for the lost degrees of freedom when imposing the constraints. Let EE
y , E

E
x , V

E
y

and V E
x denote the number of horizontal edges (at the top/bottom of our domain), vertical edges (left-

/right), horizontal vertices (top/bottom) and vertical vertices (left/right), respectively. Here, we do not

count the four corner vertices among V E
x and V E

y as these do not contribute to inter-element regularity.

Then we obtain

dim(Y 0
h ) = dim(Sp+1,q+1

k+1,l+1
) − (p+ 2)EE

y − (q + 2)EE
x + (k + 2)V E

y + (l + 2)V E
x +4

dim(Y 1,1

h ) = dim(Sp+1,q

k+1,l ) − (q + 1)EE
x + (l + 1)V E

x

dim(Y 1,2

h ) = dim(Sp,q+1

k,l+1
) − (p+ 1)EE

y + (k + 1)V E
y

dim(Y 2
h ) = dim(Sp,q

k,l ) −1.
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The term +4 in the first line is due to the four corners being constrained twice in the four terms

prior to this. Realizing that dim(ker(rot)) = 0, due to the boundary conditions, we have to show the

dimension equality

dim(Y 2
h ) = dim(Y 1

h )− dim(Y 0
h ).

Here we use the fact that splitting a boundary curve into edges and vertices, we have the formula: EE
y −

V E
y = 1, which is enough to prove that the dimensions match.

4.2 No slip boundary conditions

The No slip boundary condition on the velocity field is defined by u = 0 on the boundary. Again, we

will need to provide corresponding restraints on the accompanying spaces (pressure and potential) to

make the spline complex exact.

Theorem 4. Let M be a given box mesh with multiplicities and S
p+1,q+1(M) be a spline space as

defined in (10). If the homology term Hp+1,q+1(M) = 0, then the spline spaces Z0
h, Z

1
h and Z2

h form a

De Rham complex and the following sequence is exact

0 → Z0
h

rot
−→ Z1

h
div
−→ Z2

h

∫

−→ 0 (26)

where

Z0
h = {ϕ ∈ S

p+1,q+1(M) : ϕ = 0 ∧ ∂ϕ
∂n = 0 on Γ}

Z1
h = {u ∈ S

p+1,q(M)× S
p,q+1(M) : u = 0 on Γ}

Z2
h = {p ∈ S

p,q(M) :
∫

Ω p = 0 ∧ p(xi) = 0 , i = {1...4}}

and M is a box mesh with multiplicities. Here Γ is the boundary of our domain and n is the outward

pointing unit normal while xi are the four corner points.

Proof. The proof here follows a similar structure of the dimensionality argument as above and we obtain

dim(Z0
h) = dim(Sp+1,q+1

k+1,l+1
) − 2(p+ 2)EE

y − 2(q + 2)EE
x + 2(k + 2)V E

y + 2(l + 2)V E
x +16

dim(Z1,1

h ) = dim(Sp+1,q

k+1,l ) − (p+ 2)EE
y − qEE

x + (k + 2)V E
y + lV E

x +4

dim(Z1,2

h ) = dim(Sp,q+1

k,l+1
) − (p+ 1)EE

y − (q + 2)EE
x + (k + 1)V E

y + (l + 2)V E
x +4

dim(Z2
h) = dim(Sp,q

k,l ) −5

To impose both the function value, and its normal derivative, we count the 4 corners and their associated

normals twice and hence we need to add 16 to compensate. Again, we have that dim(ker(rot)) = 0, and

the dimension equality

dim(Z2
h) = dim(Z1

h)− dim(Z0
h),

which can be verify by standard arithmetics.
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Figure 4: All quadratic basis functions generated by the knot Ξ = [0, 0, 0, 1, 2, 3, 3, 4, 4, 4]. Each indi-

vidual basis function can be described using a local knot vector of length 4.

5 LR-splines

In this section we will show how to construct a spline basis. We first introduce the traditional tensor

product B-splines as defined by the Cox-de Boor recursion formula, and then continue by presenting

locally refined (LR) B-splines. While these allow for quite general meshes, our focus will be the sub-

class arising from the refinement scheme and our adaptive solvers. These are denoted “structured mesh

refinement” and are discussed in the last part of this section.

5.1 Univariate B-splines

Consider a knot vector of non-decreasing knots {xi}
n+p+1
i=1 . By elementary spline theory, we can con-

struct a basis on the domain [xp+1, xn+1] by piecewise smooth polynomials using the Cox-de Boor

recursion formula

Ni,p(x) =
x− xi

xi+p − xi
Ni,p−1(x) +

xi+p+1 − x

xi+p+1 − xi+1
Ni−1,p−1(x) (27)

Ni,0(x) =

{

1 if xi ≤ x < xi+1

0 else

where, by slight abuse of notation, we define that 0
0 := 0. It is customary (but not required) that the knot

vector is open, that is, the first p+1 entries as well as the last p+1 entries are equal. In Figure 4 we show

an example of a basis constructed on a uniform open knot vector. We will in the following refer to the

basis functions Ni,p(x) as B-splines. The knot vector holds all the information of the basis constructed.

In particular, the following is true

• the B-splines Ni are polynomial and C∞ in between the knots

• the B-splines are Cp−m at the knots, where m is the knot multiplicity

• each B-spline is dependent on exactly p+ 2 knots.

It is the last point, which will allow us to define a local knot vector corresponding to each B-spline, and

this observation will be utilized below to introduce LR B-splines.

Definition 6. A local knot vector of degree p is a knot vector Ξ ∈ R
p+2 consisting of exactly p + 2

non-decreasing knots {xi}
p+2
i=1 .

One interpretation of local knot vectors is that they are ordinary knot vectors corresponding to a

single basis function, i.e. n = 1.
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Definition 7. A bivariate B-spline B(x, y) of bi-degree (p, q) is a separable function B : R2 → R

BΞ,Ψ(x, y) = NΞ(x)NΨ(y) (28)

defined by the local knot vectors Ξ ∈ R
p+2 and Ψ ∈ R

q+2, where NΞ(x) and NΨ(y) are univariate

B-spline functions defined by the Cox-de Boor recursion formula (27).

We will often just denote a single B-spline by Bi where it is understood that the local knot vectors Ξ
and Ψ are constructed using the refinement algorithm below.

5.2 Refinement of B-splines

At the core of the local refinement, i.e. knot insertion, rests the fact that a single coarse B-spline may be

described using a linear combination of two finer B-splines, their relation given by

NΞ(x) = α1NΞ1
(x) + α2NΞ2

(x), (29)

where

α1 =

{

1, xp+1 ≤ x̂ ≤ xp+2
x̂−x1

xp+1−x1
, x1 ≤ x̂ ≤ xp+1

(30)

α2 =

{

xp+2−x̂
xp+2−x2

, x2 ≤ x̂ ≤ xp+2

1, x1 ≤ x̂ ≤ x2

and the knot vectors are

Ξ = [x1, x2, ...xi−1, xi, ...xp+1, xp+2]

Ξ1 = [x1, x2, ...xi−1, x̂, xi, ...xp+1 ]

Ξ2 = [ x2, ...xi−1, x̂, xi, ...xp+1, xp+2].

Note that the insertion of the knot x̂ into Ξ yields a knot vector of size p + 3, meaning that it is

generating two B-splines. These two B-splines are described by the local knot vectors Ξ1 and Ξ2, both

of size p+ 2.

Let us look at an example using this technique. Say we want to insert x̂ = 3
2 into the B-spline

Ξ3 = [0, 1, 2, 3]. This would give us α1 = α2 = 3
4 and the three functions are plotted in Figure 5. If

one were to insert the knot x̂ = 3
2 into the set of B-splines in Figure 4, then this will require two more

functions to be split, namely the function Ξ2 = [0, 0, 1, 2] and Ξ4 = [1, 2, 3, 3]. All the three splitting

shown in Figure 5–6 will then take place. This insertion will replace three old B-splines with four new

linearly independent B-splines (see the knot vectors in the figure legend to identify the four distinctive

new B-splines).

Bivariate functions are refined in one parametric direction at a time. Using the fact that they are

separable we are able to reuse (29) to split one direction and reassemble the bivariate functions after.

This can be done as follows

BΞ(x, y) = BΞ(x)BΨ(y)

= (α1BΞ1
(x) + α2BΞ2

(x))BΨ(y) (31)

= α1BΞ1
(x, y) + α2BΞ2

(x, y).
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Figure 5: Splitting the B-spline Ξ = [0, 1, 2, 3] into two separate B-splines by inserting the knot 3
2 .
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(a) Inserting x = 3

2
in Ξ = (0, 0, 1, 2).
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Figure 6: Displaying function splitting in the case that x̂ is not at the knotvector center.

5.3 Local refinement algorithm

When talking about LR B-splines, we usually distinguish between the mesh M and the set of B-splines

S. The mesh is limited to an LR mesh (see Definition 3) and is represented by the set of all lines; vertical

and horizontal. The function space S is represented by the B-splines themselves, which are uniquely

determined by their local knot vectors. The refinement algorithm is the interplay in between these two

entities and is categorized by two operations: traversing and splitting.

Definition 8. A line in the mesh M is said to traverse a B-spline Bi if it passes through its support, and

all of its support.

See Figure 7 for examples on traversing meshlines.

Definition 9. A knot-line is said to exist in a B-spline BΞ,Ψ if its (constant) knot value is represented in

Ξ for vertical lines or Ψ for horizontal lines.

(a) Line traversing B (b) Line traversing B (c) Line not traversing B

Figure 7: Traversing the support of a basis function.
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Definition 10. A B-spline Bi can be split at the knot x (or y) by the application of (31) producing two

new B-splines B1 and B2. When inserting the two new B-splines into the existing space S, we either

update their control points and weights (if any) if they exist already, or create a new entry if they do not

exist.

Note that the B-splines are uniquely determined by their local knot vector, and this is used to identify

equal (existing) B-splines. Moreover we note the earlier remark on the weights and the control points.

The first is a simple multiplication of the B-spline by some scalar γ to maintain the partition of unity,

while the second is the control points, often used for the representation of geometric mappings. The

weights are optional, in the sense that they offer nothing in terms of the span of the functions (they do

however affect numerical stability). The control points are optional if we are not considering a geometric

mapping, but rather is only working in the parametric space.

Algorithm 1 Refinement algorithm

1: Insert new line E

2: for every B-spline Bi ∈ S do

3: if E traverse Bi and E does not exist in Bi then

4: split Bi

5: end if

6: end for

7: for every newly created B-spline Bj from line 4 or 10 do

8: for every existing line E ∈ M do

9: if E traverse Bj and E does not exist in Bj then

10: split Bj

11: end if

12: end for

13: end for

We have in this section deliberately simplified several points in the presentation. For a more technical

introduction (including details on the weights and control points) we refer the reader to [15] or [25]. For

our discussion in this paper however, it is enough to consider the functions as defined in the parametric

domain and without weights.

A motivational factor for the use of LR B-splines with spline complexes in Section 4 is their direct

construction on the mesh. The integration mesh is the same as the LR mesh where the edge multiplicities

are used to construct the reduced continuity lines. For implementation purposes this allows the user to

work on a common mesh M, and construct several sets of basis functions S
p+1,q+1(M), Sp+1,q(M),

S
p,q+1(M) and S

p,q(M). This not only speeds up computation, but also reduces implementation com-

plexity.

5.4 The LR B-spline complex

We will in this section present the structured mesh refinement as introduced in [25]. It has been shown

to provide optimal convergence rates under adaptive refinement for a number of problems containing

singularities or rough right-hand sides and we consider it a good choice for our local refinement strategy.

Definition 11. A B-spline refinement on an LR spline L = {M, S} is a refinement scheme where one

B-spline B ∈ S dictates a set of meshline insertions such that the largest knotspan of the local knot vector

in B is halved.

See Figure 8 for an example B-spline refinement.

Definition 12. A Structured LR Mesh of degree (p, q) is a box mesh resulting from a series of B-spline

refinements on an LR spline.
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(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 8: Three iterations of an example B-spline refinement given in definition 11. Notice that we at

each iteration halve the largest supported elements. A selection of LR B-splines over the mesh from

iteration 3 is depicted in Figure 9

(a) (b)

Figure 9: Some example quadratic LR B-splines over the LR mesh from Figure 8c

We note that the structured LR B-splines and Hierarchical refined B-splines may produce similar

meshes. However, as shown in [24] they are in general not identical, and they produce finite element

matrices with different sparsity patterns and conditioning numbers.

Proposition 4. Any structured LR mesh has homology term Hp,q(M) equal to zero.

Proof. Since every B-spline knot in the local knot vector is appearing in the mesh, and the knot vectors

are composed of p + 2 and q + 2 knots respectively, we know that each B-spline will span at least

(p + 1) × (q + 1) elements. Every new line inserted into the mesh will span this length and hence

the homology term never increases. Since our initial mesh: a tensorial mesh, has H = 0 the proof is

complete.

Proposition 5. A structured LR mesh of degree (p, q) is also a structured mesh of all degrees (p̂, q̂),
where p̂ ≤ p and q̂ ≤ q.

Proof. We here note that the definition of structured LR mesh is linked to the polynomial degree of

the basis constructed on it. For tensor products, we have that every lower order function is completely

contained in the support of a function of larger polynomial degree; in both directions. Due to Algo-

rithm 1, when a larger B-spline split, we note that the lower order functions will also be split. Any

B-spline of bi-degree (p, q) is thus guaranteed to contain enough functions of lower degree to span it’s

own support.

The contrary is not the case. For a structured mesh of bi-degree (p, q), it is not guaranteed that it will

be for degree (p+ 1, q) or (p, q + 1).
We now are able to construct our spline complex which we will use to discretize the Stokes equations.

Consider the four LR splines given on the same structured mesh M of degree (p+ 1, q + 1)
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L0 = {M, Sp+1,q+1}

L1,1 = {M, Sp+1,q}

L1,2 = {M, Sp,q+1}

L2 = {M, Sp,q}.

In order to remain a structured mesh and satisfy a complete De Rham complex, we let the highest

degree dictate the B-spline refinements which will drive our adaptive solvers. Let the velocity be given

on L1,1×L1,2 and the pressure be given on L2. Setting the LR B-splines S as the compatible spaces, we

have

X0
h = S

p+1,q+1

X1
h = S

p+1,q × S
p,q+1

X2
h = S

p,q

without boundary conditions. Replace X with Y or Z for no-penetration or no-slip boundary conditions,

respectively. In Figure 10 we show an example structured LR mesh with varying continuities. Figure 11

shows the corresponding LR B-splines basis representation constructed on the same mesh. By construct-

ing them with different polynomial degrees, we ensure they form a complete De Rham complex.
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(a) Box mesh M with multiplicities
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(d) Mesh for S2,3(M)
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(e) Mesh for S2,2(M)

Figure 10: Example spline spaces over a box mesh M with multiplicities. Note that it is the same mesh

which is used for all figures. The continuity is derived from the polynomial degree of the basis as well as

the knotline multiplicity. To construct the spline complex we let X0
h be given over (b), X1

h be given over

(c) and (d), while X2
h is defined over (e). When solving the Stokes problem, we let the velocity uh ∈ X1

h

and the pressure ph ∈ X2
h. The basis functions of X0

h is used for refinement purposes to ensure that the

De Rham diagram is exact and all meshes are legal.

19



(a) LR B-spline basis S3,3

(b) LR B-spline basis S3,2 (c) LR B-spline basis S2,3

(d) LR B-spline basis S2,2

Figure 11: Example LR B-spline basis functions over a structured LR mesh M. The functions are plotted

at their Greville abscissa and colored according to the following rules: No yellow functions have support

outside the finest elements, no teal functions have support on the largest elements and the functions

represented in red color are the only ones having support on the largest elements.
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6 Numerical results

In this section we present some numerical results to illustrate the performance of compatible LR B-

splines discretization for solving the incompressible Stokes problem. The main focus is to show:

• Numerical stability of compatible LR B-spline discretizations

• Divergence free computed FE solution

• Efficiency and optimal convergence rate achieved by adaptive analysis.

In the numerical computation we consider three different choices of discrete spaces for the approxi-

mation of velocity and pressure fields in the mixed discretization (3) for Stokes problem. These choices

of spline spaces, i.e, (Vh, Qh), over a general box mesh M in the domain Ω are defined as:

Type I : Vh := X1
h; Qh := X2

h; (32)

Type II : Vh := {v ∈ X1
h, v · n|∂Ω = 0}; (33)

Qh := {q ∈ X2
h :

∫

q = 0};

Type III : Vh := {v ∈ X1
h, v|∂Ω = 0}; and (34)

Qh := {q ∈ X2
h :

∫

q = 0 with q(xi) = 0, i = 1, . . . , 4}.

with

X1
h = S

p+1,q(M)× S
p,q+1(M) and X2

h = S
p,q(M);

where S
p,q
k,ℓ(M) denotes the two-dimensional spline space of degree (p, q) and continuity (k, ℓ) in both

directions, respectively, and n denotes the outward unit normal to the boundary of Ω and xi, i = 1, ..., 4
denote its four corners. In the numerical results presented in this section we always consider the case of

equal degree approximation in both directions, i.e., p = q.

Error evaluation:

For our model Stokes problem, we distinguish between the velocity and pressure errors. We compute

the error in velocity using the H1 semi-norm defined by

|u− uh|
2
H1(Ω) =

∫

Ω
∇ (u− uh) : ∇ (u− uh) dΩ, (35)

and the pressure error in L2 norm;

‖p− ph‖
2
L2(Ω) =

∫

Ω
(p− ph)

T · (p− ph)dΩ. (36)

For smooth problems, a div-compatible B-spline discretization is expected to satisfy:

|u− uh|H1 = O(hs)

‖p− ph‖L2 = O(hs+1) (37)

where s is the lowest polynomial degree in the approximation spaces pair of (Vh, Qh), i.e., s = min(p, q),
for the div-compatible LR discretization of uh and ph, and h is the radius of smallest circle encompass-

ing the largest element in our discretization.

For locally refined adaptive meshes, we have a wide range of element sizes and it becomes misleading

to measure the errors in terms of element size. We then reformulate the relations in (37) in terms of
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degrees-of-freedom ndof. By observing that a uniform mesh in two dimensions has ndof = O(h−2), we

state that the optimal rate of convergence, as measured against degrees of freedom is

|u− uh|H1 = O(n
−s/2
dof )

‖p− ph‖L2 = O(n
−(s+1)/2
dof ). (38)

Whenever the exact solution is available, we define the error estimate ηF using a norm [1] per element

(or face) F as

η2F = ν|u− uh|
2
H1 + ‖p− ph‖

2
L2 . (39)

When summed over the entire domain we denote this as the total norm. The error contribution to each

B-spline basis function ηB is defined as

η2B =
∑

F∈supp(B)

η2F . (40)

Marking strategy

The marking strategy, that is, the method of how to choose the basis functions for refinement in

structured mesh refinement is taken from [25], where once we have the value of estimated error at element

level given by (40) (here elements is the same as face that we denote F) then we sum the element error

on all elements within the support of each basis function. In the refinement strategies we always choose

to refine a percentage of basis functions which contribute the most error. In [25], it was demonstrated

that for a fixed percentage say β = 5, 10, 20 one achieved a proper adaptive refinement process resulting

in optimal convergence rates. For the implementation in this article we always consider β = 10. In our

refinement strategy, we always refine the LR B-spline basis functions of the potential space Sp+1,q+1(M)
and then the construction of div-compatible LR B-spline spaces follows as we discussed in Section 5.
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(a) Uniform mesh (b) Diagonal refinement (c) Center refinement

(d) Circular refinement (e) Random refinement
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(f) Mixed continuities

Figure 12: Stability tests on Structured LR meshes: LR meshes used for evaluation of the inf-sup

constant. Note that the refinements (e)-(f) were computed randomly and as such differ between each

simulation and discretization. The other meshes were computed algorithmically, and only depend on p.

6.1 Stability tests of Structured LR meshes

The performance of our methodology is based on the notion of Ladyženskaja-Babuška-Brezzi (LBB)

condition, or the discrete inf-sup condition, cf. (4).

The different choices of discrete spaces (Qh, Vh) as Type I, II, and III as defined above is consid-

ered on a set of structured LR meshes as shown in Figure 12. These meshes are constructed via some

particular refinements (see Figures 12(a)-(d)) or randomly generated meshes (see Figures 12(e)-(f)), and

represent the case of different compatible spline spaces of degrees p. Tables 1-3 show the computed

values of inf-sup constant cis with different choices of discrete spaces of Type I-III, respectively. It is

confirmed from our computation in Tables 1-3 and Figure 13 that the inf-sup constant cis > 0 and has

large values.

p Uniform Diagonal Center Circle Random Mixed

1 0.9370 0.6535 0.6837 0.6802 0.5876 0.6606

2 0.9375 0.6098 0.6204 0.6459 0.6278 0.5873

3 0.8818 0.5378 0.8818 0.5295 0.5171 0.5401

Table 1: Stability tests on Structured LR meshes: Computed inf-sup constant cis for Type I discretiza-

tion without boundary conditions.
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p Uniform Diagonal Center Circle Random Mixed

1 0.9306 0.6534 0.6837 0.6802 0.5842 0.6222

2 0.8912 0.6097 0.6204 0.6458 0.6117 0.5680

3 0.8240 0.5378 0.8240 0.5293 0.5810 0.5524

Table 2: Stability tests on Structured LR meshes: Computed inf-sup constant cis for Type II dis-

cretization with no penetration boundary conditions u · n = 0.

p Uniform Diagonal Center Circle Random Mixed

1 0.4591 0.4243 0.4592 0.4108 0.3540 0.3481

2 0.4908 0.4534 0.4908 0.4761 0.4447 0.2338

3 0.4833 0.4561 0.4833 0.4708 0.1387 0.3095

Table 3: Stability tests on Structured LR meshes: Computed inf-sup constant cis for Type III dis-

cretization with no slip boundary conditions u = 0.
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(a) Type I: p = 1
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(b) Type I: p = 2
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(c) Type I: p = 3
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(d) Type II: p = 1
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(f) Type II: p = 3

Degrees of freedom

0 1000 2000 3000 4000

in
f-

s
u

p
 c

o
n

s
ta

n
t

0.36

0.38

0.4

0.42

0.44

0.46
uniform

diagonal

center

circle

random

mixed

(g) Type III: p = 1
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(h) Type III: p = 2
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Figure 13: Stability tests on Structured LR meshes: Computed inf-sup constant on a series of meshes

under refinement. Six different refinement strategies was studied, all shown in Figure 12. We have

plotted the inf-sup constant cis as a function of the degrees of freedom. We see that cis > 0 is large for

all cases studied here. With the exception of uniform refinement (which goes like hmin = 1/n), all mesh

iterations are characterized by halving the smallest element between data points, i.e. hmin = 1/2n.

24



0 0.5 1
0

0.2

0.4

0.6

0.8

1

-0.02

-0.01

0

0.01

0.02

(a) Exact velocity x-component

0 0.5 1
0

0.2

0.4

0.6

0.8

1

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

(b) Exact velocity y-component

0 0.5 1
0

0.2

0.4

0.6

0.8

1

-0.1

-0.05

0

0.05

(c) Exact pressure

Figure 14: Stokes problem with smooth solution: The exact solution of the Stokes problem given in

(41).
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Figure 15: Stokes problem with smooth solution: Compatible LR B-splines approximation spaces for

the velocity and pressure fields on the irregular LR mesh M with mixed continuities using LR B-splines.
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Figure 16: Stokes problem with smooth solution: Finite element solution of Stokes problem with

smooth solution using LR B-spline compatible spaces on a (randomly generated) irregular LR mesh,

with no-slip boundary conditions u = 0. The LR B-spline compatible discretization shows pointwise

divergence free solution up to machine precision.
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6.2 Divergence free computed FE solution

Example 1: Stokes problem with smooth solution

We consider an example of Stokes problem with smooth solution on a square domain Ω = (0, 1)2

with no-slip boundary conditions as presented in Buffa et al. [10]. The viscosity term is taken as ν = 1
and f is constructed based on the exact solution given as:

u =

[

2ex(x− 1)2x2(y2 − y)(2y − 1)
−ex(x− 1)x(−2 + x(x+ 3))(y − 1)2y2

]

p = (−424 + 156e+ (y2 − y)(−456 + ex(456 + x2(228− 5(y2 − y)) (41)

+2x(−228 + (y2 − y)) + 2x3(−36 + (y2 − y)) + x4(12 + (y2 − y)))).

These exact solutions are depicted in Figure 14. We consider the Type III discretization to solve this

problem with the choice of compatible LR B-spline spaces defined on irregular and randomly generated

LR mesh in Figure 15. The computed FE solution using these compatible LR B-spline spaces are shown

in Figure 16. It can be observed from the divergence of computed velocity field shown in Figure 16(c)

that the LR B-spline compatible discretization gives pointwise divergence free solution up.

6.3 Optimal convergence rates

For the Type III choice of discrete spaces with tensor product B-splines, it has been pointed out [10]

that the error in H1-seminorm of the velocity will be of optimal order, i.e., O(hp), whereas the error in

L2-norm of pressure is limited to linear convergence, regardless the polynomial degree of approximation

spaces used. The results in Figure 17 show the same behavior in our FE computations for compatible

B-splines spaces with uniform h-refinement for Stokes problem with smooth solution. The authors in

[10] also proposed two solutions based on either augmenting the system by enforcing one component of

the momentum to be zero at the corners or by using a particular case of T-splines, and their results show

that both choices gave an optimal rate of convergence, i.e. O(hp+1), for the pressure.

The reason for suboptimal convergence of the pressure is that we require this to be prescribed at the

four corners as apparent from the choice of function space Z2
h. Observe that the analytic solution given

in (41) does not satisfy p(xi) = 0 at the corner points xi, and enforcing the approximated pressure ph
wrongly to zero is the cause of linear convergence. Strongly enforcing the pressure to the correct value

gives optimal convergence, but it is not customary to know this value a priori.

Several "tricks" may be applied to remedy this, including the two mentioned by [10]. For the purpose

of this work we propose a conceptual simple solution which proves effective. This is simply done by

setting the pressure to zero at the corners and refine away all problems arising from this. Mathematically

one may think of it like this. By setting the pressure (wrongly) to zero, one is introducing an artificial

singularity around these points, and we may resolve this singularity by local refinement.

The error plots results presented in Figure 18 show that an optimal rate of convergence is achieved

via adaptive refinements, i.e., O(hp+1) for L2-norm of the pressure and O(hp) for the total norm of the

solution. The LR meshes obtained at different steps of adaptive refinements are given in Figure 19.

26



Degrees of freedom

10
2

10
3

10
4

E
rr

o
r

10
-10

10
-8

10
-6

10
-4

10
-2

p=4, |u− uh|H1

p=4, ‖p− ph‖L2

p=3, |u− uh|H1

p=3, ‖p− ph‖L2

p=2, |u− uh|H1

p=2, ‖p− ph‖L2

O(n
−4/2
dof )

O(n
−3/2
dof )

O(n
−2/2
dof )

Figure 17: Stokes problem with smooth solution: Convergence rates for compatible spline discretiza-

tion with the choice of Type III discrete spaces. The error in L2-norm of pressure shows only linear

convergence rates, regardless of polynomial degree of discretization, while the error in velocity achieve

optimal rates.
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Figure 18: Stokes problem with smooth solution: Convergence rates for adaptive compatible LR spline

discretization with the choice of Type III discrete spaces based on exact total error. The total error

ν|u− uh|H1 + ‖p− ph‖L2 and pressure error shows optimal rate of convergence.
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(e) 5th iteration for p = 3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) 9th iteration for p = 3
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(h) 5th iteration for p = 4
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Figure 19: Stokes problem with smooth solution: The LR meshes obtained via adaptive refinements

using compatible LR B-splines with Type III discrete setting. As the polynomial degree increases, the

discrepancy between pressure error and velocity error for uniform meshes increases. Thus, for higher

polynomial degrees the error in the pressure is dominant, resulting in more refinement at the corners.
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6.4 The benchmark problem: Lid-driven cavity flow

In this section, we investigate the effectiveness of our methodology for a benchmark case of incompress-

ible flows: two-dimensional lid driven cavity problem. The problem setup is a square domain Ω = (0, 1)2

with fixed no-slip boundary conditions on the left, right and bottom side of the domain, with a prescribed

velocity u = [1, 0] in positive horizontal direction (i.e. to the right) on the top edge. This is illustrated in

Figure 20. The viscosity constant is taken as ν = 1 and the force f is defined as zero. The problem setup

is known to induce failures in unstable formulations due to the pressure singularities at both top corners

of the domain, while in some particular region of interest around both lower corners an infinite series of

recirculation regions appears.

Since the boundary conditions are discontinuous, we cannot exactly represent them in our function

space, but we impose them in a "leaky" fashion by setting all control points corresponding to the x-

velocity at the top to one, including the two corners. The rest of the boundary velocity control points are

set to zero. This results in a very small, but nonzero region on both the left and right edge where we have

velocity components in the x-direction. This region will decrease under refinement as the support of the

corner control points diminishes, and will in the limit approach discontinuous.

The exact solution for the lid driven cavity problem is not known, so we decide to locally refined the

LR mesh at all the four corners by hand. The local refinement at the two corners at the top is introduced

to suppress the pollution effect of the singularities in the pressure field at those points. The refinement at

the two lower corners are introduced to resolve the recirculation zone with high accuracy. The first four

hand made locally refined LR meshes are given in Figure 23. To solve the lid driven cavity problem, we

consider the Type III pair of discrete approximation spaces on these LR meshes where a no-slip condition

is imposed on all sides of the domain for velocity field, with the exception of prescribed velocity at the

top which is enforced strongly; and zero average pressure with additional four constraints to force the

pressure value to zero at the corner. The computed FE solutions, i.e., the component of velocity and pres-

sure with the divergence of computed velocity field, i.e., div(uh) are shown in Figure 21. The computed

solution displays pointwise divergence free solution (up to machine precision) with no spurious oscilla-

tions in Figure 21, whereas the velocity profiles across the center (horizontal and vertical direction) are

shown in Figure 24.

The streamlines plots of the computed velocity field uh are shown in Figure 25a. Due to the presence

of local refinement at the bottom corners we observe three moffat eddies in our computed FE solution,

even for relatively low degrees of freedom. In our FE-discretization used to compute the streamline

plots displayed in Figure 25, we consider (p, q) = (1, 1) and ndof = 3649 for the pressure field, and

(p, q) = (1, 2)× (2, 1), ndof = 7332 for the velocity fields.

To illustrate the performance our methodology for the lid cavity driven problem, we consider to com-

pare the curl of our computed FE solution at the point x = (1, 0.95) to available results in literature.

The value of the curl of our computed solution at (1, 0.95) using the compatible LR B-spline discretiza-

tion with uniform and adaptive refinement, along with two available reference solutions in literature, see

[20, 9], are shown in Tables 4–7 for Type III pair of discrete spaces of degrees, p = 1, 2, 3, 4, respectively.

Since our formulation in this paper are based on strong enforcement of the boundary conditions and in

Type III pairing of spaces we enforced the pressure at the top corner points to zero that causes the sin-

gularities in the solution. This degrades the convergence in the pressure error and hence produce worse

results for uniform refinement than those tabulated in [20]. However, our adaptive methodology using

local refinement is able to compensate after some iterations. From the results presented in Tables 4–7

the convergence in adaptive refinement can be noticed and as the value of p increases the curl value of

the computed solution quickly approach the reference value as given by using Pseduspectral method of

[9]. While if we compare our adaptive results with the uniform refinement results of Evans [20] then

the efficiency achieved by our adaptive methodology in term of degrees of freedom is clearly noticeable.
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Figure 20: Lid-driven cavity: Problem setup for the lid-driven cavity flow.

Present method hmin hmax ndof ω

Uniform B-spline 1/16 1/16 764 -14.6690

Uniform B-spline 1/32 1/32 3 068 7.6529

Uniform B-spline 1/64 1/64 12 284 15.2317

Adaptive step #1 1/32 1/16 1 676 7.6529

Adaptive step #2 1/64 1/16 2 588 15.2310

Adaptive step #3 1/128 1/16 3 500 20.7713

Adaptive step #4 1/256 1/16 4 412 22.5232

Adaptive step #5 1/512 1/16 5 324 23.2820

Adaptive step #6 1/1024 1/16 6 236 23.6602

Adaptive step #7 1/2048 1/16 7 148 23.8492

Adaptive step #8 1/4096 1/16 8 060 23.9436

Spline disct.(Ref. [20]) 1/64 1/64 12 804 19.0446

Spline disct.(Ref. [20]) 1/256 1/256 198 660 25.3224

Pseudospectral (Ref. [9]) - - - 27.2790

Table 4: Lid-driven cavity flow: Computed values for ω = curl(uh) at the point x = (1, 0.95) for

p = 1.

The difference in number of degrees of freedom for the case of uniform refinement between the present

study and the one reported in [20] is due to strong and weak enforcement of of the Dirichlet boundary

conditions, respectively.
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Present method hmin hmax ndof ω

Uniform B-spline 1/16 1/16 863 -0.2911

Uniform B-spline 1/32 1/32 3 263 17.8810

Uniform B-spline 1/64 1/64 12 671 23.5541

Adaptive step #1 1/32 1/16 1 775 17.8810

Adaptive step #2 1/64 1/16 2 687 23.5540

Adaptive step #3 1/128 1/16 3 599 25.3342

Adaptive step #4 1/256 1/16 4 511 26.3943

Adaptive step #5 1/512 1/16 5 423 26.9274

Adaptive step #6 1/1024 1/16 6 335 27.1947

Adaptive step #7 1/2048 1/16 7 247 27.3283

Adaptive step #8 1/4096 1/16 8 159 27.3951

Spline disct.(Ref. [20]) 1/64 1/64 13 199 32.8197

Spline disct.(Ref. [20]) 1/256 1/256 200 207 27.3440

Pseudospectral (Ref. [9]) - - - 27.2790

Table 5: Lid-driven cavity flow: Computed values for ω = curl(uh) at the point x = (1, 0.95) for

p = 2.

Present method hmin hmax ndof ω

Uniform B-spline 1/16 1/16 968 10.9593

Uniform B-spline 1/32 1/32 3 464 22.1396

Uniform B-spline 1/64 1/64 13 064 24.6936

Adaptive step #1 1/32 1/16 1 880 22.1396

Adaptive step #2 1/64 1/16 2 792 24.6937

Adaptive step #3 1/128 1/16 3 704 25.7774

Adaptive step #4 1/256 1/16 4 616 26.5183

Adaptive step #5 1/512 1/16 5 528 26.9092

Adaptive step #6 1/1024 1/16 6 440 27.1048

Adaptive step #7 1/2048 1/16 7 352 27.2025

Adaptive step #8 1/4096 1/16 8 264 27.2514

Spline disct.(Ref. [20]) 1/64 1/64 13 600 29.9294

Spline disct.(Ref. [20]) 1/256 1/256 201 760 27.5264

Pseudospectral (Ref. [9]) - - - 27.2790

Table 6: Lid-driven cavity flow: Computed values for ω = curl(uh) at the point x = (1, 0.95) for

p = 3.
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Figure 21: Lid-driven cavity flow: FE solution plot of the computed velocity, pressure and divergence.

This is the fifth iteration using polynomial degree (p, q) = (2, 2) for the pressure and (3, 2) × (2, 3) for

the velocity.

(a) First component of the velocity uh (b) Pressure solution ph (c) div(uh)

Figure 22: Lid-driven cavity flow: Details regarding the top left corner on the results from Figure 21.

(a) The discontinuous boundary conditions are implemented in a "leaky" fashion by setting all control

points at the top, including the corner one to the value 1. The rest are kept at 0. (b) The true solution

has a large negative pressure at the corner point. Since we don’t know this a priori and the space Z2
h

requires us to prescribe it, we are setting ph to zero at the corner. This error is localized by the local

refinement. (c) Numerical round-off is amplified when using local refinement and is most pronounced at

finer regions, hence we do not see O(10−15) in evaluation. Analytical expressions yield pointwise zero

divergence everywhere.
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(d) Fourth refinement

Figure 23: Lid-driven cavity flow: The hand-made adaptive mesh refinement used to solve the Lid-

driven cavity problem. For each iteration, we refine every B-spline completely contained within a 6.5 ·
2−4−i radius of each corner.
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Figure 24: Lid-driven cavity flow: Velocity profiles across the center of the domain.
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Figure 25: Lid-driven cavity flow: Streamlines of the solution uh. We achieve pointwise divergent

free solution (up to machine precision) using Type III discrete spaces. By refining around the corners

we observe three moffatt eddies around the corners, even for relatively low degrees of freedom. The

discretization shown here is (p, q) = (1, 1) and n = 3649 for the pressure, and (p, q) = (1, 2) ×
(2, 1), n = 7332 for the velocity.

Present method hmin hmax ndof ω

Uniform B-spline 1/16 1/16 1 079 17.9896

Uniform B-spline 1/32 1/32 3 671 22.1748

Uniform B-spline 1/64 1/64 13 463 23.7481

Adaptive step #1 1/32 1/16 1 991 22.1745

Adaptive step #2 1/64 1/16 2 903 23.7487

Adaptive step #3 1/128 1/16 3 815 26.5231

Adaptive step #4 1/256 1/16 4 727 26.6432

Adaptive step #5 1/512 1/16 5 639 26.9621

Adaptive step #6 1/1024 1/16 6 551 27.1183

Adaptive step #7 1/2048 1/16 7 463 27.1964

Adaptive step #8 1/4096 1/16 8 375 27.2354

Pseudospectral (Ref. [9]) - - - 27.2790

Table 7: Lid-driven cavity flow: Computed values for ω = curl(uh) at the point x = (1, 0.95) for

p = 4.
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7 Conclusions

The aim of this paper has been to take the first step in the direction of extending the previous work

on div-compatible spaces by Buffa et al. [10, 11] and Evans [20] to finite element analysis using LR

B-splines. Herein, we have developed the methodology for making div-compatible LR B-spline spaces,

i.e. which form complete De Rham complexes. These are stable, pointwise divergent free and facilitate

local refinement capabilities. The numerical tests demonstrate significant improvements in accuracy per

degree of freedom when solving Stokes problems.

No-slip discretizations are challenging as they require the pressure to be specified in the corners.

These will typically require special treatment or we will loose convergence properties. We show that it is

possible to set the corner values of the pressure to zero and “refine away” any problems arising from this

making it possible to use the strong formulation for no-slip problems. This methodology is conceptually

simple and still produces a compatible pointwise divergent free solution which shows optimal conver-

gence in both pressure and velocity.

We have shown that the properties of compatible space discretization carry over from tensor product

analysis to locally refined meshes.

The authors consider the following topics suited for future work in this field:

• Develop a closed expression for the pressure at the four corner points, only dependent on a pre-

scribed slip u = g on the boundary and the source term f in the interior.

• Include divergence-conforming mappings to handle realistic physical domains [10].

• Consider multiple patches or non-rectangular parametric domains for more complex geometries.

• Enable the use of weakly enforced boundary conditions [20].

• Extend to 3D by the use of the dimensional formula of Pettersen [31].

• Develop suitable error estimates for Stokes and Navier-Stokes flows.

• Investigate the applications of compatible discretization in electromagnetic differential equations [13].

• Show that the Hierarchical B-splines also satisfy the dimensional formula [28] and can be applied

in the same framework.
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A On the potential function in compatible space discretization

In this paper, we construct compatible spaces and show that they form a complete de Rham complex. We

collect these results in Theorem 2, 3 and 4. Seeing as these theorems are considered the main results of

the paper, we would like to elaborate on a specific part. During the proof, we say that

im(rot) = ker(div) (42)

for the sequence R → X0
h → X1

h → X2
h → 0, 0 → Y 0

h → Y 1
h → Y 2

h → 0 and 0 → Z0
h → Z1

h → Z2
h →

0.

This can be shown by proving that any potential field has a divergence-free velocity, and any divergence-

free velocity has a potential field. Written more formally, we say that

∀ϕ ∈ X0
h ∃ u ∈ X1

h : rot(ϕ) = u ∧ div(u) = 0 (43)

∀u ∈ X1
h : div(u) = 0 ∃ ϕ ∈ X0

h : rot(ϕ) = u (44)

and likewise for the spaces with boundary conditions, i.e. Yh and Zh.

A.1 Proving im(rot)⊆ker(div)

First note that any potential field maps to a divergence-free space under the rot operator

div(rot(ϕ)) = div

([

∂ϕ
∂y

−∂ϕ
∂x

])

=
∂2ϕ

∂x∂y
−

∂2ϕ

∂x∂y
= 0. (45)

rot(ϕ) =

[

∂ϕ
∂y

−∂ϕ
∂x

]

=

[

u1
u2

]

(46)

By considering spaces of boundary conditions, we will also need to check if these are satisfied under

mapping. First consider a ϕ ∈ Y 0
h . As ϕ = 0 along the edges, we have that the tangential derivative

along the edge is zero. That is ∂ϕ
∂x = −u2 = 0 on the top and bottom edge, while ∂ϕ

∂y = u1 = 0 on the

left and right edge. Hence rot(ϕ) ∈ Y 1
h .

For any ϕ ∈ Z0
h we have that both the normal and tangential derivative along the edge is zero, i.e.

∂ϕ
∂x = ∂ϕ

∂y = 0 on all edges. Hence u = 0 on the boundary and rot(ϕ) ∈ Z1
h.

A.2 Proving im(rot)⊇ker(div)

Assume we have u ∈ X0
h, such that div(u) = 0. We then want to construct a potential field ϕ such that

rot(ϕ) = u. This can be formalized as

∂ϕ

∂y
= u1(x, y) (47)

∂ϕ

∂x
= −u2(x, y). (48)

We integrate the first line to get

ϕ(x, y) =

∫ y

a
u1(x, t) dt+ C(x) (49)

which differentiated with x becomes

∂ϕ

∂x
=

∫ y

a
∂xu1(x, t) dt+ ∂xC(x). (50)
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Setting in (48) yields

−u2(x, y) =

∫ y

a
∂xu1(x, t) dt+ ∂xC(x)

∂xC(x) = −u2(x, y)−

∫ y

a
∂xu1(x, t) dt

∂xC(x) = −u2(x, y)−

∫ y

a
∂xu1(x, t) + ∂yu2(x, t)− ∂yu2(x, t) dt

∂xC(x) = −u2(x, y) +

∫ y

a
∂yu2(x, t) dt

∂xC(x) = −u2(x, y) + u2(x, y)− u2(x, a)

∂xC(x) = −u2(x, a)

C(x) = −

∫ x

b
u2(y, a) dt+ c (51)

where we have used that div(u(x, t)) = ∂xu1(x, t) + ∂yu2(x, t) = 0. By setting the constants all to

zero, i.e. a = b = c = 0 and combining (49) and (51) we arrive at the potential field presented in the

paper

ϕ(x, y) =

∫ y

0
u1(x, t) dt−

∫ x

0
u2(t, 0) dt (52)

and it can be checked that this satisfies rot(ϕ) = u.

A.2.1 The no penetration spaces Yh

The very same function will work under spaces with boundary conditions as well, but may be simplified.

Note that both Y 1
h and Z1

h consists of functions, which second component vanishes at the bottom edge,

i.e. u2(t, 0) = 0. For these spaces it is enough to consider the potential function

ϕ(x, y) =

∫ y

0
u1(x, t) dt. (53)

We show that this potential satisfies all boundary conditions, since we have from the derivations

above that rot(ϕ) = u. Assuming the unit domain Ω = [0, 1]2 we have for any u ∈ Y 1
h

u1(0, y) = 0

u1(1, y) = 0

u2(x, 0) = 0

u2(x, 1) = 0

which in turn gives

ϕ(0, y) =

∫ y

0
u1(0, t) dt = 0

ϕ(1, y) =

∫ y

0
u1(1, t) dt = 0

ϕ(x, 0) =

∫ 0

0
u1(x, t) dt = 0

ϕ(x, 1) =

∫ 1

0
u1(x, t) dt.
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The first two integrals equals to zero due to the boundary conditions on u, while the third term is zero

since the integration range is zero. The final term is also zero, but the reason is a little more subtle. For

any given x, consider the closed line integral containing the subdomain D = [0, x]× [0, 1], i.e.

∮

u · n̂ dS =

∫ 1

0
u1(x, t) dt+

∫ 0

x
u2(t, 1) dt+

∫ 0

1
−u1(0, t) dt+

∫ x

0
−u2(t, 0) dt.

Of the four right hand side integrals, only the first one does not immediately vanish as the three other are

along boundary curves and have zero contribution due to u ∈ Y 0
h . By using the divergence theorem we

have that the left hand side integral is zero
∮

u · n̂ dS =

∫∫

D
div(u) dA = 0.

We are left with
∫ 1
0 u1(x, t) dt = 0 which proves that ϕ(x, y) = 0 on all edges and hence ϕ ∈ Y 0

h .

A.2.2 The no slip spaces Zh

The no slip spaces are conceptually no different than the no penetration spaces, but we include them here

for completeness. The boundary conditions on Z1
h state

u1(0, y) = u2(0, y) = 0

u1(1, y) = u2(1, y) = 0

u1(x, 0) = u2(x, 0) = 0

u1(x, 1) = u2(x, 1) = 0

and we need to show that the generated ϕ satisfies the boundary conditions on Z0
h which states

ϕ(0, y) = ∂ϕ
∂x (0, y) = 0

ϕ(1, y) = ∂ϕ
∂x (1, y) = 0

ϕ(x, 0) = ∂ϕ
∂y (x, 0) = 0

ϕ(x, 1) = ∂ϕ
∂y (x, 1) = 0.

The conditions that ϕ = 0 on the boundary is analog to the previous section, and we now show that the

normal derivative is also zero. We first remember that ∂ϕ
∂x = −u2(x, y) and ∂ϕ

∂y = u1(x, y), which means

∂ϕ

∂x
(0, y) = −u2(0, y) = 0

∂ϕ

∂x
(1, y) = −u2(1, y) = 0

∂ϕ

∂y
(x, 0) = u1(x, 0) = 0

∂ϕ

∂y
(x, 1) = u1(x, 1) = 0.

We conclude that if we have a u ∈ Z1
h, we may create a ϕ ∈ Z0

h which will satisfy all the boundary

conditions in Z0
h, and also u = rot(ϕ).
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