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Summary

This thesis contributes to the research on optimization algorithms for non-

linear programming, and to the application of such algorithms to nonlinear

model predictive control.

Regarding the contribution to research on algorithms for nonlinear pro-

gramming, a novel algorithm is put forward with a complete theory for global

and local convergence. This is the main contribution of the thesis. The al-

gorithm, named rFSQP, is a reduced Hessian Feasible Sequential Quadratic

Programming method. It remains feasible with respect to nonlinear inequal-

ities at all SQP iterations, but nonlinear equality constraints are treated as in

general reduced Hessian SQP methods. The rFSQP algorithm is implemented

in MATLAB and tested on a number of small scale problems with encouraging

results. However, the algorithm is designed for large scale problems with

few degrees of freedom. Some preliminary testing of the algorithm on large

scale problems are investigated.

The thesis also contributes to the understanding of the relation between

sequential and simultaneous reduced gradient methods, and to the under-

standing of the relation between discretization methods for dynamical sys-

tems and the choice of optimization algorithms.

The thesis also contributes to model based control approaches of grate

sintering. Grate sintering is a complex metallurgical process, where melt-

ing of solids and fast gas dynamics give rise to sti� process models, i.e.

the "time constants" of the system di�er by many decades in magnitude.

Hence, application of real-time optimization methods like nonlinear model

predictive control to the grate sintering process is challenging. The thesis

gives a framework for implementing nonlinear model based control of grate

sintering by giving a control objective, a nonlinear model and choosing an

appropriate discretization scheme. The thesis gives a reduced order model

which is less computationally demanding. Data from industrial experiments

are used to adapt the model and to assess the control objective.
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Chapter 1

Introduction

1.1 Motivation

Optimality is a natural phenomenon which has engaged scientists in vari-

ous guises for centuries. The following quote illustrates its generality and

importance:

"Since the fabric of the universe is most perfect, and is the work

of a most wise Creator, nothing whatsoever takes place in the

universe in which some form of maximum and minimum does

not appear."

Leonhard Euler, 17441

A creek always taking the steepest path downhill is an example of mini-

mization of energy. Consider another example; imagine a blind person, call

him Mr. Iterate, on top of the mountain Besseggen2 and ask him to �nd

his way down on his own. By careful steps he explores the downhill path,

going one step at a time, adapting his step lengths to the terrain and pos-

sibly using his memory to correct zig-zagging. Eventually, he arrives at the

saddle point between the two lakes, and after testing for further descent di-

rections, declares that he is now at the lowest point. Of course, if he strayed,

say 5 meters, towards any of the two lakes he would have sensed a descent

direction and continued his path. However, from his point of view there

1Restated from Troutman (1996), p. 339.
2A famous mountain hike in Norway crosses this ridge which has a saddle point between

a grey and a green colored lake on each side of the trek between two peaks. It is commonly

believed that Ibsen's character Peer Gynt jumped o� this ridge on his buck.
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2 Introduction

is nothing to gain by moving away from his present position. The terrain

seems to be 
at, i.e. he has stopped at a local solution.

Although there exists a considerable body of optimization examples that

can be handled by pen-and-paper calculations, computerized solutions of

optimality problems have emerged during the last few decades as a powerful

tool for solving larger and harder optimization problems.

A computer program for solving optimization problems commonly iter-

ates the problem, and tries to improve on the present solution. If the problem

is nonlinear but smooth and analytic (exists and is di�erentiable), a com-

mon approach is to linearize and solve simpler subproblems. The solutions

to these subproblems become search directions, and it is then customary to

moderate the step lengths to compensate for the error in the linearization.

Linearization only provides local information and extrapolating information

too far can be hazardous.

Returning to Mr. Iterate, this could be the way he chooses where to

place his next step; he perturbs ("linearizes") the terrain in front to �nd

the steepest descent and moderates his step length if the terrain is rugged

or very steep. Note that Mr. Iterate does not have a look-ahead property,

but he has a memory. Using his memory he can speed up his descent if the

steepest descent path tend to zig-zag. I.e. if he experiences zig-zagging he

can bend his step directions towards what seems to be the historical average

direction towards the minimum. Needless to say, he would not be pleased if

the terrain suddenly revealed a discontinuous vertical wall.

If there are fences in the terrain and it is required that the optimal point

should be within the fences, Mr. Iterate may consider searching within the

fences, or to cross them and search for the lowest topological point on the

outside, but keeping in mind that he should return to the inside for the �nal

point. Perhaps it is reasonable that he would make only conservative strolls

outside the fences, and hesitate straying too far away from them?

If there are stronger requirements, e.g. that the optimal point should lie

on a fence or a trek, Mr. Iterate could be forced to follow the trek or to

stray from it. If there are many treks it could then be time consuming to

trace them all.

Summarizing the various ways and reasonings of Mr. Iterate in an al-

gorithm and implementing this in a computer program is precisely what

is undertaken in this thesis. The algorithm shall be a generic and e�ec-

tive set of rules that applies to all problems falling within a speci�ed set of

assumptions. The proposed algorithm, termed rFSQP, is designed to solve

nonlinear optimization problems with thousands of variables subject to non-

linear constraints. Speci�cally, rFSQP is designed to always remain within
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1.2 Contributions 3

(e.g. feasible) all in-/outside fences (inequalities), but may stray from "on"-

fences (equalities) away from the �nal point, i.e. it is an inequality feasible

algorithm for nonlinear optimization problems3.

Like Mr. Iterate the algorithm will converge to a locally optimal point,

and close to the optimal point the convergence will be suÆciently fast. The

computer program is tested on a number of small sample problems, and on

two larger problems. The �rst large problem behaves nicely, i.e. it changes

by relatively moderate rates in all directions. The second problem is more

challenging; it is the case of grate sintering. The dynamical model of this

problem has strong nonlinearities and the time constants are separated by

several decades. Both problems are examples of nonlinear model predictive

control (NMPC).

1.2 Contributions

The main contribution of this thesis is the optimization algorithm rFSQP.

A complete convergence analysis is given, considering both global and local

properties, and the algorithm is implemented and tested on a number of

problems.

The main case is grate sintering. For this case a reduced order model

is developed from models available in the literature. Industrial experiments

including special measurements were conducted, and the data was used for

model adaption and assessing the control objective.

Various implementation issues concerning the interplay between dis-

cretization and optimization nonlinear MPC are explored. This provides

insight into how a continuous time model must be discretized to allow opti-

mization.

Appendix D gives a generic approach to representing hyperbolic PDE's

as multi-models. Due to numerical diÆculties the approach has not been

pursued further.

1.3 Outline

This chapter has presented the motivation for the present work, what is be-

lieved to be its main contribution, and placed it in a broader context. More

detailed background, including references, are given in the introductions to

chapter 2 and 3.

3Such problems belong to the class of nonlinear programming problems, which is a

subclass of mathematical programming problems.
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4 Introduction

Chapter 2 presents the grate sintering case, with a nonlinear PDE model,

control objective, industrial experiments and data analysis.

Chapter 3 presents the optimization algorithm rFSQP with global and local

convergence analysis, implementation details and numerical results on

a selection of small sample problems.

Chapter 4 applies the optimization algorithm rFSQP to two di�erent non-

linear model predictive control (NMPC) examples of di�erent complex-

ity. The second example is the grate sintering example.

Chapter 5 ends the thesis and gives its conclusions.

Appendices A to C provide some additional details for the various chap-

ters.

Appendix D is a reprint of the paper Martinsen, Johansen, and Foss

(1999).

The notation is consistent within each chapter, but to conform to the

common notation within the sintering and optimization literature, respec-

tively, the notation is not consistent between di�erent chapters. The nota-

tion for chapter 2 is given in section 2.1.
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Chapter 2

Sintering

This chapter considers the metallurgical process of grate sintering. The

purpose is to develop and assess a dynamic model suitable for modelbased

control. The model is adapted to industrial data from experiments con-

ducted at the sintering plant at Sauda in south-west Norway. The process

at Sauda is batch-wise sintering of manganese ore, but much of the discus-

sion, and in particular the model, is equally relevant for travelling grate

sintering. It should be noted that manganese is in many aspects similar to

iron which is most frequently considered in the literature.

This chapter starts with some background on sintering in section 2.2,

i.e. the process is described with some comments on the sintering plant as a

whole. The underlying principles governing the quality and production rate

of sintering are reviewed. In section 2.3 the model is documented and dis-

cussed, while the industrial experiments and measurements are described in

section 2.4. Model adaption to the industrial data and model validation are

adressed in section 2.5, while data reconciliation and analysis is considered

in section 2.6. Some concluding remarks and a summary of the contribu-

tions of this chapter follows in section 2.7. The notation used in this chapter

is summarized in section 2.1. Parts of this chapter have been published in

Martinsen, Johansen, and Foss (1999), which is reprinted in appendix D.

2.1 Notation for chapter 2

Arabic letters

ai - polynomial coeÆcient [-]
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6 Sintering

Ab - speci�c surface area [m2=m3]

Af - frequency factor [m=s
p
K]

cp - speci�c heat capacities of solid [J=kgK] and gas [J=molK]

dp - average particle diameter [m]

DON - axial gas dispersion coeÆcient (O2-N2) [m
2=s]

E - activation energy [kJ=mol]

G - mass 
ow rate of gas used in equation (2.2)[m2t=h]

Gs - gas volume per sinter mass used in equation (2.2) and (2.3) [m3=t]

Fi - liquid fraction

hc - convective heat transfer coeÆcient [J=m2sK]

hm - mass transfer coeÆcient [m=s]

�H - heat of reaction [J=mol]

kth - thermal conductivity of gas [J=mK]

kr - chemical reaction rate [m=s]

Kr - overall combustion rate constant [m=s]

L - height of bed [m]

Lf - latent heat of fusion [kJ=mol]

Lv - latent heat of evaporation [J=kg]

mi - exponent [-]

Mi - molecular weight [kg=mol]

nC - number of coke particles per unit bed volume [1=m3]

ni - molar 
ow [mol=m2s]

pi, �p - (partial) pressure, di�erential pressure [Pa]

P V oice
l;t - Laminar or turbulent Voice gas permeability of bed (units vary ac-

cording to exponent m1 in equation (2.1))
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2.1 Notation for chapter 2 7

ri - reaction rate [mol=m3s]

R - universal gas constant 8.314 [J=molK]

~RR, RR - reaction rate for water [mol=m3s]

si - stoichiometric constant [-]

Ts;g - temperature, solid or gas [K]

Tfu - incipient melting temperature of solids [K]

Tw - wet-bulb temperature [K]

v - gas velocity [m=s]

v0 - gas velocity as referred to the empty bed used in equation (2.2) and

(2.3) [m=h]

vw - heat wave velocity used in equation (2.3) [m=h]

W - actual moisture content (= xH2O(l)) [kg=m
3]

Wcr - critical moisture content [kg=m3]

xi - component concentration of solids [kg=m3] or gas [mol=m3]

Greek letters

" - void fraction [�]

' - scaling factor for the Sherwood relation [-]

�g - adiabatic constant [�]

� - viscosity [kg=ms]

� - density [kg=m3]

! - speci�c humidity [-]
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8 Sintering

Dimensionless numbers

Re - Reynolds number: Re =
dpG
�

Sh - Sherwood number: Sh =
hmdp
DON

Sc - Schmid number: Sc = �
�DON

Nu - Nusselt number: Nu =
hcdp
k

Pr - Prandtl number: Pr =
cp�
k

2.2 Background

The main purpose of sintering is to convert weakly-bounded granules into a

partially fused porous sinter cake suitable for feeding a furnace. In the fur-

nace the sintered ore is reduced with carbon. Sintering is an agglomeration

process in which �ne graded materials are partially fused into larger lumps

by heating the charge through coke combustion. Fusion occurs when the

solid charge particles undergo re-crystallization across the old grain bound-

aries, and possibly by simultaneous softening and partial melting. Sinter-

ing is a complex process involving 
ow of gas through a packed bed, heat

and mass transfer between gas and solids, heterogeneous chemical reactions,

and melting of solids. The heat for sintering of oxidic ores like FexOy and

MnxOy is provided by heat exchange between gas and solids and by com-

bustion of coke. Typically the temperature must be raised to the range of

1000oC � 1400oC. Since only approximately 5% (weight) of coke is needed

to raise the temperature to this level, the process is generally considered to

be economic in terms of energy. Water is added to micro-agglomerize �ner

granules by the capillary forces of water. Micro-agglomeration increases the

gas permeability of the bed allowing a larger gas
ow, which in turn im-

proves sintering conditions. The critical water content is typically below 8%

(weight). Typical granule sizes of the incoming material are in the range

3mm to 6mm. A large fraction of �ner grades can cause low gas perme-

ability of the bed, while coarser grades can give poor micro-agglomeration.

Both cases give poor sintering conditions.

Sintering plants are commonly located close to a furnace, since, due to

its low mechanical strength, sinter is ill-suited for transportation and ex-

tensive handling. The mechanical strength of the sinter can be increased

by adding more coke and thereby increasing the sintering temperature. In-

creased sintering temperature allows a larger fraction of the solids to melt
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2.2 Background 9

thereby giving a stronger sinter. However, this also gives a glassy surface

of the sinter, which impairs its reducibility since the e�ective surface area

is reduced. Hence, there is a compromise between mechanical strength and

reducibility which is mainly controlled by the coke weight percent.

The metallurgical process of sintering prepares the ore to form suitable

feed for a (blast) furnace. Granulated ore and coke are mixed, moistened

with water and micro-pelletized to form the charge. The charge is loaded

onto a grate and levelled to form a bed which is ignited by a gas-fuelled

ignition hood. A heat wave and coke combustion zone travels down through

the bed under the in
uence of a suction pressure. Hot gas from the com-

bustion zone passes through moist charge deeper in the bed where water

evaporates. The process can be divided into �ve subsequent zones; heat ex-

change, fusion, combustion, drying and overmoist charge. This is illustrated

in �gure 2.1. A number of operations, such as feed mixing, feed charging,

crushing of the produced sinter cake, screening and recycling of �nes are

needed. A simpli�ed outline of the overall sintering plant is shown in �gure

2.2. The sintering plant as a whole is only considered in section 2.4 where

the experiments conducted at the plant are described. The dynamic model

in section 2.3 is concerned with the sintering process itself, i.e. the process

taking place inside the sintering pan.

The industrial plant at Sauda produces manganese alloys, such as fer-

romanganese (FeMn) and silicomanganese (SiMn) from manganese ore

in electric furnaces. FeMn is typically used as an addition in the steel

industry to produce certain steel qualities. Such steel qualities are used

in rail-way tracks, wear-plates, etc. Because of the high reduction tem-

perature the electric furnace is competitive with the blast furnace, espe-

cially for high purity qualities where the carbon content of FeMn must be

low. FeMn-alloys with low and medium carbon (LC=MC) content are pro-

duced in a subsequent re�ning process (MOR). Limestone, CaO, is commonly

added in ironmaking to adjust the basicity de�ned by the weight-ratio of

(CaO + MgO)=(SiO2 + Al2O3). Limestone is not used at the sintering

plant in Sauda, and is not included in the model. For a discussion of basic-

ity in the context of manganese reduction, see Rosenqvist (1983), p. 357.

General properties of the sintering process are described in Schluter and

Bitsianes (1962).

2.2.1 Process goals

For the sintering process the overall goal is to produce sinter at a prescribed

quality and rate at the lowest possible cost. The process dependent outputs
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o
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5
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Zone 5: Overmoist
Preheating of wet charge
R ater vapore-condensation of w

Zone 4: Drying and preheating
Water evaporates

Zone 3: Coke combustion alone

Zone 2: Fusion: Melting of solids
When all coke is combusted at level 4 the
temperature cools off to the freezing level 5

Zone 1: Cooling
Incoming cold air heat-exchanges with
the hot sinter cake

Dry air at 1 atm and room-temperature

Offgas

Figure 2.1: Zones 1-5 in the sintering bed. The �gure shows a snapshot of a
vertical slice of the sintering bed approximately mid-way through the process. The
�ve zones are described to the left, with the corresponding temperature pro�le to
the right. As time goes by the temperature pro�le proceeds down through the
bed, i.e. at a time earlier than the snap-shot in the �gure the temperature pro�le
is shifted upwards, and at later times the pro�le is shifted downwards relative to
the one shown in the �gure. The o�gas is led through pipes to a cyclone, and the
pressure below the pan is less than 1atm. At the time instance shown in the �gure
cool air from the surroundings is being sucked into zone 1 where it heat-exchanges
with the hot sinter cake. I.e. the air is preheated, and the sinter is cooled. At level
5 the temperature is 1200oC, which is the approximate freezing point of the sinter.
In zone 2 the temperature is above the freezing point, and the solids are partly
melted depending on the heat available for fusion. At level 4 all the coke in the
bed has been combusted. Hence, above this point there are no sources of energy
and the available energy between level 4 and 5 is being used for fusion and heat-
exchange. At level 3 the heat from coke combustion has raised the temperature in
the bed to the melting point of the charge. From level 3 to 4 coke is combusted
and fusion commences. At level 2 the ignition temperature of coke is reached, and
the heat from coke combustion quickly raises the temperature. In zone 4, hot gas
from zone 3 pre-heats the charge, and evaporates water. Water vapor is being
transported down through the bed to zone 5 where it may recondensate. At level 1
the temperature of the charge is at the boiling point of water, and above this level
water evaporates.

are the quality in terms of mechanical strength and reducibility (Dawson

1993), and the production rate.
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2.2 Background 11

Figure 2.2: Simpli�ed sintering plant. Feed, consisting of a mix of various ores,
coke and usually lime stone, enters to the left. The composition of the feed is
known, but not the moisture content. The feed is mixed with water and (hot)
recycle of undersized particles. The adhesive capillary forces of water gives micro-
agglomeration of the �ner particles. Only �ne particles are micro-agglomerized,
and large fractions of coarser particles are usually undesirable. The temperature of
the recycle can be above the boiling point of water, hence evaporation of water can
make it diÆcult to mix in the optimal water content. The mix of ore, coke, water
and recycle is then charged onto the sintering bed which is supported underneath
by a grate. A suction pressure is established and air is drawn down through the bed.
The sintering process commences when ignition is applied to the top of the bed.
The coke in the top layer of the bed is ignited and the sintering process proceeds
as described in �gure 2.1. After completion of the sintering process the produced
sinter cake is crushed into manageable lumps by a mechanical device. The sinter
is then screened, and the �nes are recycled, while coarser sinter is stored or fed to
the furnace.

Production rate

The productivity is quanti�ed by the stationary Voice gas permeability

P V oice (Voice, Brooks, and Gledhill 1953) in the laminar and turbulent 
ow

regimes:

P V oice
l = v

�
L
�p

�1:0
= 1

150� �
"3

(1�")2
� d2p

P V oice
t = v

�
L
�p

�0:5
=
q

1
1:75�

�
�

"3

1�"

�0:5
� d0:5p

(2.1)

The productivity relation thus becomes (Olsen 1997):

G =
v

Gs
=
P V oice

Gs
�
�
�p

L

�m1

(2.2)

wherem1 = 0:5 for turbulent 
ow andm1 = 1 for laminar 
ow. The mass air


ow G then serves as an on-line measure of production rate. Note that when

signi�cant melting occurs, the solids becomes a continuous media and the

particle size dp is not a meaningful parameter. Dawson (1993) suggests to

select dp as the minimummeasured sieve fraction of incoming ores in the case
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12 Sintering

of signi�cant melting. The process variable in
uencing on production rate

is mainly the permeability P of the bed which in turn is in
uenced mainly

by water content. Water is added to micro-agglomerize �ner particles by

the capillary forces of water. This increases the average particle diameter

and the void fraction of the bed if the water content is kept below a critical

value Wcr. A large air 
ow is promoted by a large permeability which in

turn forces the heat wave to travel faster through the sintering bed, thus

giving a shorter batch duration and consequently an increased production

rate.

Utilizing the Voice permeability P V oice to estimate production rate is

impractical since it does not account for the amount of recycle in the plant.

In the present work, P V oice is discarded and the production rate is estimated

from the calculated recycle. The recycle stream serves as an indirect on-

line measure of mechanical sinter quality: Poor mechanical quality will give

increased recycle rate, which in turn reduces the production rate.

Quality

The sinter quality is determined by the amplitude and shape of the heat

wave. Increased coke content increases the maximum sintering tempera-

ture, Ts;max (Venkataramana, Gupta, Kapur, and Ramachandran 1998),

but to achieve high reducibility Ts;max should not be too high (Toda, Sen-

zaki, Isozaki, and Kato 1984). In addition, proper ignition is necessary to

establish initial conditions for sintering (Dash and Rose 1977). As discussed

above there is an optimal water content yielding the highest bed permeabil-

ity. Hence, there is an optimum depending both on the coke (Toda et al.

1984) and water content (Hinkley, Waters, O'Dea, and Litster 1994). Due

to the large (hot) recycle and time delays present, the process is considered

diÆcult to control, with quality and production rates being hard to predict

(Cumming and Thurlby 1990).

Control objective

To summarize, the control objective should balance an optimal temperature

pro�le, while considering quality, against minimizing sintering batch time.

The sintering batch time is reduced by an increased air mass 
ow G since the

heat wave velocity vw is increased by an increasing air 
ow. The vertical

velocity of the travelling combustion zone is assumed to follow the linear
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2.2 Background 13

relationship (Olsen 1997), p.30:

vw =
v0

Gs�b
(2.3)

where v0 [m=h] is the gas velocity, �b = (1� ")�s [t=m3] is the bulk density

of the bed and Gs [m
3=t] is the gas volume per sinter mass.

The optimal temperature pro�le can be quanti�ed by integrating the

part of the solid temperature that has values above the fusion temperature

Tfu. The fusion temperature Tfu is de�ned by the liquidus curves of the

ore composition. Partial melting of the solids occur when the temperature

is raised above Tfu. Fusion is discussed in more detail in section 2.3.1.

The temperature pro�le at various levels inside the bed should be evenly

distributed during the batch to give equal sintering conditions in throughout

the whole sintering bed. A measure for the temperature pro�le at each

spatial level is

�z �

8<
:

tendR
0

(Ts;z � Tfu)dt if Ts;z � Tfu

0 otherwise

(2.4)

where the subscript z emphasizes the spatial distribution of the temperature

pro�le and tend is the batch duration time. Since the fusion temperature

Tfu is uncertain and will vary with varying ore composition, a "smooth"

switch is suggested to approximate the switch caused by equation (2.4).

The smoothing function is chosen as the sigmoid function

�(Ts) =
1

1 + e�k(Ts�Tfu)
(2.5)

This is plotted with Tfu = 1200oC and k = 0:1 in �gure 2.3

Hence, the control objective is to maximize an objective � subject to the

nonlinear inequality constraint imposed by quality as discussed in section

2.2.1. This is expressed formally as

max
Ts

�(Ts) =
LR
0

w(z)
tendR
0

�(Ts)(Ts � Tfu)dtdz

s:t:  z(Ts) =
tsR

t=0

�(Ts)(Ts � Tfu)dt � q

additional constraints

(2.6)

where the parameter q remains to be selected. Observe that  z is a vector

function since Ts is spatially distributed. Hence, � must be evaluated at

URN:NBN:no-1287



14 Sintering

1000 1050 1100 1150 1200 1250 1300 1350 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Sigmoid fcn.

T
s
 [oC]

σ
(T

s
)

Figure 2.3: Sigmoid function. The �gure shows the sigmoid function � with
parameters Tfu = 1200oC and k = 0:1. The sigmoid function is used as a smooth
switch in the control objective.

each spatial position in the sintering bed, see appendix A.1 for details. The

weighting function w(z) is introduced to give varying contributions to the

objective at di�erent spatial levels. The parameter q is not chosen as a

function (of Ts) since the uncertainty is assumed to be captured by the

smoothing inherent in the sigmoid function. The validity of the objective

function � is assessed in section 2.6.3. The parameter k in � can be tuned

down to reduce the negative contribution following from Ts < Tfu.

2.2.2 Control objectives

There are few reported results on control of the sintering process. Kim and

Kwon (1998) considers a linear MPC scheme designed to control the burn-

through point of travelling grate sintering, using an identi�ed input/output

model. To the best of the authors knowledge, this is the only reference on

model predictive control of the sintering process reported in the literature.

Across multiple batches

Controlling the coke and water content as discussed above can only be done

across several batches, since the composition inside each sintering pan cannot

be altered once it has been charged. The experiments documented in section
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2.2 Background 15

2.4 make some preliminary investigations of the relationship between the

coke and water inputs, and the quality and production rate outputs. Inside

the sintering pan, the coke and water contents have a negative bias due

to the mixing of unmeasured (hot) recycle into the measured fresh feed.

Note that the accuracy of the weights measuring the fresh feed may vary

considerably. Manipulated inputs are the added coke, ignition energy, water

and air 
ow rate, while the feed is regarded as a disturbance.

During one batch

The model and the control strategy considered in the following only considers

the process taking place inside the sintering pan, i.e. the coke and water

concentrations are not considered as control inputs. The only control action

that in
uences the sintering process as the batch proceeds is the gas velocity.

The gas velocity is controlled by adjusting the choke valve in the o�gas-pipe,

thus altering the di�erential pressure drop across the bed. We also assume

that the there is suÆcient ignition in the sense that the duration and quality

of ignition allows the sintering process to start at the top of the bed. Below

a qualitative assessment of the gas velocity as a control action is outlined,

while a quantitative discussion is given in section 2.3.4.

The heat exchange properties of the initial raw charge is much better

than the heat exchange properties of the sintered material. I.e., the heat

transfer properties are altered by melting since the surface area is reduced,

and the heat capacity of sintered material is altered due to the change in

chemical composition. To compensate for this, a large amount of excess

air is used in the sintering process, and it is not expected that the O2

concentration will be rate limiting in coke combustion. There is an upper

bound on the gas velocity, since too large gas velocities can cause the bed

to collapse giving poor sintering conditions. The upper limit is dependent

upon the permeability P V oice as discussed in section 2.2.1, since a larger

permeability allows a larger gas
ow without collapsing the bed.

The large di�erence in heat exchange properties of charge and sinter

causes the fusion zone to widen as the batch proceeds, giving di�erent sin-

tering conditions at the various layers of the bed. Commonly this is discussed

in terms of "matching" of the combustion heat wave and the heat exchange

wave in the literature. Adjusting the gas velocity, based on a model and

the measured o�gas quantities, then controls the width of the fusion zone

at the various layers of the bed. This conjecture is investigated by ballistic

simulations in section 2.5, and nonlinear MPC based on this control strategy

is implemented in chapter 4. Preliminary experiments were conducted to
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investigate this conjecture at the industrial plant, see section 2.4.3. The

results of these experiments are not conclusive but the hypothesis cannot be

rejected on the basis of these experiments.

Note that by assuming a constant velocity of the heat wave as it passes

through the bed, simpler control schemes not depending on real-time op-

timization and a complex process model may be considered. This has not

been considered in the present work, since it is outside the scope of the thesis

which focuses on optimization and nonlinear MPC.

To summarize; the control objective is to maintain the same heat wave

shape at all layers in the sintering bed. Informally the objective then is to

balance the heat wave pro�le spatially for product quality, while simulta-

neously maximizing the gas velocity for production rate. These issues are

revisited a number of times throughout this chapter.

2.3 Modeling

Several models of the sintering process are presented in the literature (Muchi

and Higuchi 1972), (Dash and Rose 1977), (Hoislbauer and Jaquemar 1983),

(Kasai, Yagi, and Omori 1984), (Cumming and Thurlby 1990), (Patisson,

Bellot, Ablitzer, Marli�ere, Dulcy, and Steiler 1991), (Nath, Da Silva, and

Chakraborti 1997), (Venkataramana, Gupta, Kapur, and Ramachandran

1998). These models are presented as nonlinear PDE's, and mainly focus

on reproducing important process quantities. Noting that nonlinear PDE

models are diÆcult to implement in a control strategy, we seek to exploit the

underlying structure of the sintering process to develop a simpli�ed model

which later on can be utilized to develop a MPC strategy for the sintering

process.

The model in this section should be a control relevant model suitable

for MPC. Reproduction of the internal states is important since a driving

hypothesis is that synchronization of the model and process through state

estimation is bene�cial in an industrial implementation. If the states cannot

be measured and estimation is hard, it is likely that the MPC algorithm

performs poorly.

This section will emphasize the development of the control relevant

model, and the control algorithm itself is to be investigated in chapter 4. The

global PDE model discussed in section 2.3.1 is compiled from cited references.

Modelling assumptions are summarized in section 2.3.2.
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2.3 Modeling 17

2.3.1 Global PDE model

A global PDE model is understood as a nonlinear PDE model describing the

whole sintering bed as in �gure 2.1 without explicit consideration of zones.

In this section a model valid for the sintering bed is compiled from cited

literature. A detailed review of the various physical and empirical relations

used in the literature is included.

The following states are included in the model

x =
�
Ts; Tg; xC ; xH2O(l); xO2

; xN2
; xCO2

; xH2O(v)

�
i.e. temperature of solids and gas, coke concentration in solid, liquid water

content1 and gas composition including water vapor. The gas velocity and

pressure drop are not included as states in the model, see section 2.3.4 for

a discussion. The hyperbolic PDE's constituting the model are, for the mass

balance of gas (Patisson et al. 1991)

"
@xO2
@t

+ v
@xO2
@x

= �rO2

"
@xCO2
@t + v

@xCO2
@x = rO2

"
@xH2O(v)

@t + v
@xH2O(v)

@x = rH2O

"
@�g
@t

+ v
@�g
@x

= MCrO2
+MH2OrH2O

for the mass balance of solids (Patisson et al. 1991),

@�C
@t

= �MCrO2

@�H2O(l)

@t = �MH2OrH2O
@�s
@t = �MCrO2

�MH2OrH2O

and for the energy balance (Patisson et al. 1991)

"
@Tg
@t + v

@Tg
@x = k1(Ts � Tg)
@Ts
@t

= k2(Tg � Ts) + k3g(Ts)

k1 =
Abhc
�gcp;g

, k2 =
Abhc
�scp;s

and k3 =
1

�scp;s
are aggregated temperature depen-

dent parameters. The gas is assumed to be ideal and we assume plug-
ow.

The solid states are assumed not to move, i.e. @Ts=@x = 0 etc.

Kinetic parameters are only considered for coke combustion, fusion and

drying in the model. The chemical reactions considered are

C +O2 ! CO2

H2O(l) $ H2O(v)

1Liquid and solids are lumped in one phase.
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The kinetic relations ri

g(Ts) = (��Hr)rO2
� Lv(Ts)MH2OrH2O � Lfrf

rO2
(Ts) = sO2

RC(Ts)

rH2O(Ts) = sH2ORw(Ts)

rf (Ts) = sfRf (Ts)

are discussed in the following subsections. The kinetic parameters of coke

combustion rO2
, fusion and solidi�cation of solids rf and condensation rH2O

are not known in detail. The kinetic model of coke combustion is discussed

in Parker and Hottel (1936) and Muchi and Higuchi (1972) assuming the

reaction C + O2 ! CO2. The kinetics of fusion of solids is described by

empirical schemes based on slag diagrams (Patisson et al. 1991) or linear

schemes based on process experience (Cumming and Thurlby 1990). The

kinetics of condensation of water is derived from laboratory tests (Patisson

et al. 1990) or by heuristics and experience (Dash and Rose 1977), (Zou,

Huang, Yang, and Chen 1995). The heat of coke combustion is released to

the solid phase, see discussion in Cumming and Thurlby (1990). Limestone

is not utilized in the industrial plant, and is not included in the model. We

continue by specifying the model parameters in the next subsections.

Introductory relations

Some introductory relations are derived. Subscript b refers to bulk sizes, s

refers to spherical particle while p refers to (non-spherical) particle. Recall-

ing that As = �d2s and Vs =
�
6
d3s, resembles

As
Vs

= 6
ds

and As
ms

= 6
ds�s

=
As=Vs
�s

,

where ms = Vs�s. The void fraction " is de�ned by:

1� " =
volume of solids

volume of bed
=
m=�b

AL
= 1�

�b

�a
(2.7)

where �b is the bulk density of the bed and �a is the granule apparent

density (see Hinkley, Waters, and Litster (1994) for details). The volume

occupied by solid (spheres) in the total volume is Vb = (1 � ")V . This

implies for spherical particles that Ab
V = Ab

Vb=(1�")
= (1 � ")AbVb =

6(1�")
ds

. For

a non-spherical particle of the same density as a sphere occupying the same

volume (�s = �p = � and Vs = Vp), de�ne the mean particle diameter as

dp =
6m
Ap�

= 6Vs
Ap

. Then de�ne the form factor �f as the ratio between the

surface area of a sphere and the surface area of a particle occupying the

same volume:

�f =
As

Ap
=
dpAs

6Vs
=
dp

ds
� 1
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i.e. Ap = As=�f =
�d2s
�f
� As. Finally, the reaction rate per unit surface area

is given by rAb = �
dn=dt
Ab

, and per unit mass and unit volume by rm =
6rA

b

dp�

and rV =
6(1�")rA

b

dp
, respectively. Typical values of void fraction and form

factor of the present materials (prior to sintering) are " 2 [0:4 � 0:6] and

�f � 0:75, see Rosenqvist (1983), p. 143. Ab is in the order 2000 [m2=m3].

The harmonic mean diameter of the charge particles is calculated from

mesh analysis of the raw charge as (Hinkley, Waters, and Litster 1994):

1

dp
=
f1

d1
+
f2

d2
+ � � � +

fn

dn
(2.8)

where fn is the fraction of particles between two sieve sizes with a mean

diameter dn.

Empirical relations

Parameter uncertainties are present in the global models, since essential

parameters typically are determined from empirical formulas valid only un-

der idealized conditions. In industrial sintering processes the formation of

cracks and channels leads to areas where air passes through without inter-

acting with the mass in the sinter bed. In particular, the mass, hm, and

heat, hc, transfer coeÆcients are calculated from the Nusselt and Sherwood

numbers. Empirical relations for Sh and Nu are stated in equations (2.10)

and (2.9) (Wakao and Kaguei 1982):

Nu =
hcdp

kth
=

1

"

�
2 + 1:1Pr1=3Re0:6

�
(2.9)

Sh =
hmdp

DON
=

1

"

�
2 + 1:1Sc1=3Re0:6

�
(2.10)

valid for an idealized bed with homogeneous packing. The Reynolds, Schmid

and Prandtl numbers are given by

Re =
�gvdp

�

Sc =
�

�gDON

Pr = 0:7
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where the value Pr = 0:7 holds for diatomic gases2. In an industrial bed

the gas 
owing through channels and large cracks does not interact with the

solid, and the values estimated from the empirical relations for an idealized

bed will deviate from the actual values. Various heuristics are utilized to

overcome this in the literature, i.e. altering the constants of the empirical

relations (Dash and Rose 1977), (Hoislbauer and Jaquemar 1983), (Nath

et al. 1997), and introducing a scaling factor (Cumming and Thurlby 1990),

(Patisson et al. 1991). According to the discussion above the gas fraction

passing through possible large cracks and channels in the sinter cake does not

contribute to the mass transfer and should not be included when calculating

hm from Sh. Therefore a factor ' is introduced to compensate the Sherwood

relation (Schluter and Bitsianes 1962):

hm = '
DON

dp"

�
2 + 1:1Sc1=3Re0:6

�
(2.11)

The Nusselt relation is scaled by the same factor '.

The heat capacity of the solid and the void fractions will change in a

complicated way as sintering proceeds. The speci�c heat capacity of sintered

material for Fe-sinter is given by (Rose and Dash 1979)

cp;s = 753 + 24 � 10�3Ts [J=kgK] (2.12)

As seen from �gure 2.4 this linear approximation is suitable for iron ore.

For manganese ore the situation is di�erent, and the relation for cp;s used in

the model is the dashed curve in the right part of �gure 2.4. This relation

was obtained as a linear combination of the data for the three Mn-oxides.

The linear combination was chosen from plant data where the ore contained

47.0% MnO2, 25.5% Mn2O3 and 27.5% Mn3O4.

This model of cp;s does not include other elements contained in the ore,

and it does not re
ect changes caused by fusion, chemical reactions and

thermal decomposition of the Mn-oxides.

The temperature dependence of cp;g is modelled as:

cp;g

R
= a1 + a2T + a3T

2 + a4T
3 + a5T

4 [J=kgK] (2.13)

where ai values are speci�ed in Moran and Shapiro (1993), p. 680. For ideal

gases cp;g � cv;g = R gives a similar expression for cv;g. The temperature

2A diatomic gas contains two atoms in its molecules. O2 is a diatomic gas, whileH2O(v)

has three atoms in its molecules. A small error is introduced by this, but since H2O(v) is

not present in the combustion zone, the error is assumed to be of minor importance.
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Figure 2.4: Speci�c heat capacities of Mn-oxides. The �gure shows speci�c heat
capacities of Fe-oxides (left) and Mn-oxides (right). The dashed line Femix to the
left is the straight line given by the linear approximation (2.12), while the dashed
line Mnmix is computed as a linear combination of the three Mn-oxides shown.
Observe that the compound heat capacity of Mn-oxides is not well approximated
by a straight line. Data for the Fe-oxides are taken from Perry and Green (1984),
p.3-131/2, while the data for the Mn-oxides are taken from HSC (Roine 1997).

dependence of the viscosity � is modelled by Sutherland's formula (White

1999), p. 771:

� = �0

����TgT0
����
3=2 ����113 + 273:1

113 + Tg

����
m2

[kg=ms] (2.14)

where �0 = 1:72 � 10�5 [kg/ms] and m2 � 0:9. The temperature dependency

of the axial gas dispersion coeÆcient DON is modelled as:

DON = D0
ON

���� Tg273

����
m3

[m2=s]

where m3 � 1:5. The thermal conductivity of gas kth is estimated from the

Prandtl number:

kth =
�cp;g

Prm4

where m4 � 10:7 is determined by adapting the computed kth to tabulated

data from Perry and Green (1984).
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Coke combustion and overall heat of reaction

A number of di�erent reactions occur during sintering of manganese ore. The

equilibrium diagram in �gure 2.5 shows the possible reactions at given oper-

ating conditions. These reactions contribute to the overall heat of reaction,

�Hr. Since only coke combustion is considered to be of major importance

with respect to the dynamic properties, the kinetics of reduction of Mn-ore

is neglected.
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Equilibrium gas ratio for reduction of Mn−oxides

Figure 2.5: Equilibrium gas ratio log10 (pCO2
=pCO) for reduction of Mn-oxides.

The Boudouard-line (2CO $ C + CO2) crosses the MnO �Mn line at approxi-
mately 1400oC. The measurements conducted at the Sauda plant show that the
temperature in the sintering bed is nominally below this point. Hence, reduction to
Mn is not likely to occur. The slopes of the other oxide-components slants upward,
and reduction in the presence of CO will occur endothermic.

In a (reducing) atmosphere of CO the following endothermic reactions

are observed in �gure 2.5:

MnO2 +
1
2
CO$ 1

2
Mn2O3 +

1
2
CO2; �Hr;1 � �100 kJ/mol C

1
2
Mn2O3 +

1
6
CO $ 1

3
Mn3O4 +

1
6
CO2; �Hr;2 � �30 kJ/mol C

1
3
Mn3O4 +

1
3
CO $MnO + 1

3
CO2; �Hr;3 � �22 kJ/mol C

where the heat of reaction is taken as the average over the temperature

range of interest. These reactions move to the right during combustion and

fusion, cf. �gure 2.1. However, due to the large air excess during sintering,

only a small amount of CO is actually present. According to Olsen (1997)

the o�gas ratio � = CO
CO+CO2

subsequent to combustion can become as high
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as 0:25 � 0:30. I.e. we have log10(
pCO2
pCO

) � log10(3) � 0:47 showing by

inspection of �gure 2.5 that the three reactions above are possible. The

Boudouard-reaction:

2CO $ C + CO2; �H
o
298 = �172:5 kJ/mol C

which is strongly endothermal, prevents further reduction by CO. In addi-

tion thermal dissociation at pO2
= 1atm occurs:

500oC :MnO2 $
1

2
Mn2O3 +

2

12
O2; �Ho

298 = 41:8 kJ/mol C

800oC :
1

2
Mn2O3 $

1

3
Mn3O4 +

1

6
O2; �Ho

298 = 16:3 kJ/mol C

Expressing XCO = �
1+�

XCO2
and assuming that coal is present as pure

carbon, combustion is expressed as:

C+(1+�)O2+3:76(1+�)N2+L$(1��)CO2+�CO+3:76(1+�)N2+L

where excess air L consisting of 79% N2 and 21% O2 is utilized. Choosing

� = 0:25 gives a heat of reaction �Hr;c = �335 kJ/mol C � �28 MJ/kg C.

The heat of combustion for coal is experimentally determined to approxi-

mately �Ĥr;c � �35MJ=kg C (Olsen 1997), i.e. 7MJ=kg more than indi-

cated by the enthalpy of reaction stated above. This is attributed to volatile

components present in industrial coal. The overall heat of reaction used in

the model is �Hr = �Ĥr;c � �Hr;1 � �Hr;2 � �Hr;3 � �270 kJ=mol C
which is close the reported values for Fe-sintering in the literature. Note

that thermal dissociation is not included since it is completed before coke

combustion proceeds.

The reaction rate of coke combustion is important due to the large tem-

perature gradients present in grate sintering. Coke combustion is a heteroge-

nous reaction, and the overall combustion rate is controlled by two physical

phenomena; the chemical combustion rate and the gas transport rate to the

individual coke particle. The combustion rate for a coke particle is governed

by (Parker and Hottel 1936), (Muchi and Higuchi 1972)

kr = Af � e�E=RTs
p
�s � xO2

(2.15)

with the frequency factor Af = 6:53�105 m=s
p
K and E = 185 kJ=mol. �s is

the gas temperature at the solid surface. This relationship is extensively used

in the literature, but it assumes the �rst order reaction C+O2 ! CO2 (� =
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0) and that combustion commences on the coke particle surfaces (Muchi and

Higuchi 1972). Both of these assumptions are inconsistent with industrial

experience. Still, equation (2.15) is used in the present model assuming

�s = Ts. The activation energy, however, is reduced to approximately 70

kJ=mol to �t the model to the measured data. By using the ideal gas law

(2.15) can be written in terms of pO2
instead of xO2

.

Since the transport of reactants and products to and from the coke parti-

cle surface can be rate limiting at elevated temperatures, the overall reaction

rate, including both chemical and transportation phenomena, is modelled

by the relation (Muchi and Higuchi 1972):

Kr =
krhm

kr + hm

where hm [m=s] is calculated from equation (2.11). Pore di�usion Dpd may

be included similarly according to

1

Kr
=

1

kr
+

1

hm
+

1

Dpd

This is not included in the present model. This gives the overall combustion

rate of coke:

Rr = 4� (dp;C=2)
2 nCKrxO2

(2.16)

where nC [1=m3] is the number of coke particles per unit bed volume and

dp;C is the average coke particle diameter.

Fusion

Particle growth due to fusion is modelled according to Dash and Rose (1977)

as

dp;f = dp(1 + kfLf )

where kf is a constant to be determined experimentally and Lf is the en-

thalpy of fusion (melting). If signi�cant melting does not occur, the scheme

of Dawson (1993) where smaller particles attaches to larger particles is as-

sumed to be prevailing. This is termed heterogeneous texture, i.e. the mean

particle size of sintered particles is in the region of the larger sieve sizes

of the charge. However, if signi�cant melting occurs the situation will be

completely altered, with formation of larger continuous blocks which again
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forms a homogeneous texture. This is assumed to correspond to a texture

of very �ne particles, with particle sizes in the region of the �nest mesh

sizes present in the charge. The transition between these two regimes is

controlled by the sintering temperature (Dawson 1993). Particle growth is

not included in the present model.

Fusion itself is complex and is modelled by the following equations (Patis-

son et al. 1991):

rf = �s
dFi
dTs
� @Ts@t

F1 = (1� xh)
�
a0 + a1(Ts � Tdf ) + a2(Ts � Tdf )2 + a3(Ts � Tdf )3

�
F2 = Fm

Ts�Tfs
Ts;m�Tfs

where the function F1 denotes the liquid fraction during melting, xh is the

hematite fraction of the ternary system FeO � MnO � SiO2, Tdf is the

incipient melting temperature, and ai are dependent on the basicity index

and can be found from a liquidus surface diagram, see Verein Deutscher

Eisenh�uttenleute (VDEh) (1995), �gure 3.286. During solidi�cation, com-

position is assumed to be constant and the simpli�ed relation F2 is adopted

where Fm is the liquid fraction at Ts;max and Tfs is the temperature at the

end of solidi�cation.

Using the liquidus surface diagram is impractical and the present model

only considers linear schemes based on process experience (Cumming and

Thurlby 1990). The present model implements a quadratic approximation

where the parameters were tuned to �t the data.

rf = (â1 � (Ts � Tdf ) + â2 � (Ts � Tdf )2) � �s [mol=s]

Lf = 255 [kJ=mol]
(2.17)

with Tdf = 1250oC and di�erent values of âi for melting and freezing follow-

ing the scheme of Nath, Da Silva, and Chakraborti (1997). This simpli�ed

model gives a kink in the temperature pro�le when the model switches from

melting to freezing. Since these parameters were selected without reference

to liquidus diagrams, the model is conceptual, and re�nements should be

considered since the sinter quality is governed by the shape of the tempera-

ture pro�le. Note that fusion has a signi�cant in
uence on the falling edge

of the temperature pro�le.

Water

Water evaporates and condensates according to

H2O(l) $ H2O(v) (2.18)
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The drying model is governed by (Patisson, Bellot, and Ablitzer 1990)

~RR = RM � P (Wr)

P (Wr) = 1� (1�Wr)(1� 1:796Wr + 1:0593W 2
r )

RM (Tw) =
Abhc

MH2O
�Hv(Tw)

RR(Ts) =
Abkth
RTg

(pv;sat(Ts)� pH2O)

pv;sat(Ts) = exp
�
25:541 � 5211

Ts

�
kth =

hcTg

3:155pg

r
(1�0:24xlg)

�
1+

x
lg

7

�
(1�xlg)

(2.19)

where Wr = W=Wcr and the given coeÆcients of P (Wr) determined from

laboratory tests (Patisson, Bellot, and Ablitzer 1990) are valid for a Fe-

charge. CoeÆcients for Mn must be determined experimentally3. The

wet-bulb temperature Tw can be calculated by solving a nonlinear equa-

tion (Patisson et al. 1990). The present approach uses the approximation

(Rose and Dash 1979)

Tw = 293:4 + 324:6 �W � 594:1 �W 2 + 292:1 �W 3

which is based on tabulated data from Perry and Green (1984). xlg is the

logarithmic mean of the molar fraction of vapor in the bulk gas and at the

saturated surface:

xlg =
xv;g � xv;s
ln

xv;g
xv;s

Since xv;s is unknown the present model implements xlg = 0:5 � xv;g. The

heat transfer coeÆcient hc for the water-vapor system may di�er from the

overall heat transfer coeÆcient from equation (2.9). This is not considered

in the present model. If RR > 0 and W � Wcr (falling rate) rH2O = ~RR. If

RR > 0 and W < Wcr (constant rate) rH2O = RR. The heat capacity of the

moist o�gas is modelled by (Perry and Green 1984), p. 12-3:

cp = 0:24 + 0:45!

where ! = 0:622 p
p�pH2O

. Simpli�ed schemes for RR are found in Nath, Da

Silva, and Chakraborti (1997) and Zou, Huang, Yang, and Chen (1995).

The latent heat of evaporation is approximated by (Patisson et al. 1990)

Lv(Tw) = 3:1563 � 106 � 2396:6 � Tw [J=kg]

3The present model is implemented with the Fe-coeÆcients.
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2.3.2 Modelling assumptions

In this section the main assumptions on which the global PDEmodel is based,

are summarized.

i. The total pressure p is assumed to drop linearly down through the bed.

The gas velocity v is considered as a control action and is assumed

not to be distributed. I.e. all levels experience the same velocity at any

given time instance.

ii. The manganese ore is treated as one substance, i.e. various oxidation

levels of manganese are not considered. Likewise other substances con-

tained in the ore are neglected. More speci�cally, the various oxidation

levels of manganese are treated as inerts, and only in
uence on the

speci�c heat capacity of the ore.

iii. Complete coke combustion is assumed, hence CO is not generated.

The gas N2 is considered to be inert.

iv. Gas dynamics are assumed to be plug-
ow. The gas dynamics are

approximated by �rst order �nite di�erences in the spatial dimension.

v. Radially homogenous mixing is assumed. Adding another dimension

should include Fourier's law to allow conduction in the solid phase. In-

cluding radial conduction is not considered to be of major importance

in a control relevant model. Channeling e�ects may have a signi�-

cant in
uence on the sintering process, and taking this into account

is a possible extension to the present model. The present model only

considers this through the scaling of the Sherwood relation (2.10).

vi. Solid particles have homogenous density and temperature. Coke par-

ticles are porous, but the void fraction of coke is considered as part of

the gas phase. Small particle sizes gives uniform temperature inside

particles, due to high thermal conductivity.

vii. Fusion (i.e. sintering) is modelled by a polynomial approximation. The

polynomial was selected by adaption to measurements.

viii. Coke combustion and water evaporation/condensation are the only

chemical reactions considered. Coke combustion generates the heat

necessary for sintering/fusion to occur, and its kinetic parameters

control especially the leading edge of the temperature front. A wa-

ter evaporation model based on the literature is implemented. Other
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reactions in
uence on the overall energy requirements, but are expected

to have little in
uence on the dynamic characteristics. Decomposition

of limestone is not modelled, but can be included without altering the

structure.

ix. Thermodynamic relations are approximated by polynomials.

x. Slump and shrinkage are neglected. The sinter bed at Sauda is ob-

served to shrink about 5cm during a batch. This alters the heat ex-

change volume above the fusion zone, cf. �gure 2.1. A small reduction

in the cooling zone is expected to have minor in
uence on the condi-

tions inside the fusion zone. Slump is only relevant for travelling grate

sintering.

2.3.3 Comparison with existing models

There are three good models presented in the literature; (Hoislbauer and

Jaquemar 1983), (Cumming and Thurlby 1990) and (Patisson, Bellot, Ablitzer,

Marli�ere, Dulcy, and Steiler 1991). The model by Hoislbauer and Jaquemar

(1983) has the best numerical qualities, while the model by Cumming and

Thurlby (1990) is the most extensive. Note that the paper by Hoislbauer

and Jaquemar (1983) focuses on numerical properties, and that the model

is comparable in complexity to the one given by Patisson et al. (1991).

Cumming's model gives no data for the numerous chemical reactions con-

sidered. Hence, reproducing the results is hard. The numerical simulations

are reasonable but seem to be based on simplifying assumptions not fully

documented. The present model is based on Patisson et al. (1991). Their

model includes the basic PDEmodel restated in section 2.3.1, the fusion, coke

and water kinetics considered herein. Hence, the model by Patisson et al.

(1991) includes the most important physical phenomena, and gives data for

the water kinetics. The fusion data is not given, and the present model uses

a simpli�ed polynomial approximation. No models in the literature gives

gas velocity simulations, and all use Ergun's relation. Ergun's relation is

discussed in section 2.3.4 below.

2.3.4 Computation of the control input v

As discussed in section 2.2.2 the gas velocity is considered as a control input.

The simplest approach, which is the method implemented in chapter 4, is

to consider v directly as a control input. In an industrial implementation
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the control actuator will typically be a valve disc in the outlet gas pipe.

Manipulating the valve disc will alter the pressure drop across the bed which

is a measured quantity. Therefore it is necessary to model the relationship

between the pressure drop and gas velocity, and include gas velocity as a

state in the model. The gas velocity model is derived below as

dv
dx =

RTg
p

P
i;j r̂i;j +

v
Tg
� dTgdx �

v
p �

dp
dx (2.20)

The ideal gas law with molar 
ow ni in [mol=m2s] and apparent velocity v

in [m=s] is

ni =
piv

RTg

Di�erentiation gives

dni

dx
=

pi

RTg
�
dv

dx
+

v

RTg
�
dpi

dx
�

piv

RT 2
g

�
dTg

dx

assuming v > 0 and reorganizing

dpi

dx
=
RTg

v
�
dni

dx
�
pi

v
�
dv

dx
+
pi

Tg
�
dTg

dx

Using

dni

dx
= siri

where si is a stoichiometric constant gives

dpi

dx
=
RTg

v
� siri �

pi

v
�
dv

dx
+
pi

Tg
�
dTg

dx

The total molar 
ow is

dnt

dx
=
X
i

siri

and

v =
ntRTg

p

Di�erentiation and using the expression for nt gives

dv
dx =

RTg
p �

dnt
dx + ntR

p �
dTg
dx �

RTgnt
p2
� dpdx

=
RTg
p �

P
i

siri +
v
Tg
� dTgdx �

v
p �

dp
dx

(2.21)
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The term
P

i;j r̂i;j in equation (2.20) occurs from the matrix-vector prod-

uct S � r when there are more components present. Assuming in�nite fast

gas dynamics a mechanistic energy balance yields the pressure drop as the

isothermal Ergun's relation:

dp

dx
= 150

�v(1 � ")2

(�fds)2"3
+ 1:75

�v2(1� ")
�fds"3

(2.22)

For small particle sizes, low 
uid velocity and high 
uid viscosity, the 
ow

will be laminar (viscous). For larger particle sizes, high 
uid velocity and

less viscous 
uids, the 
ow will be turbulent. In grate sintering, the 
ow

is a priori expected to vary continuously from laminar to turbulent 
ow as

the sintering batch proceeds. The �rst term in Ergun's formula refers to the

viscous and the second to the turbulent pressure drop.

Given the measured pressure drop across the bed the velocity is calcu-

lated by equation (2.21) under some simplifying hypotheses discussed next.

Considering dp=dx as a control input (i.e. a linear decay from top to bot-

tom, the bottom pressure being a manipulated variable), assuming known

(constants) " and �fdp, and computing � by equation (2.14). Hence, all

terms of equation (2.21) are de�ned and dv=dx can be integrated to give

the state v. However, assuming a linearly decaying pressure drop across the

bed is not physical since it neither accounts for the distributed temperature

pro�le, nor evaporation of water which produces additional gas molecules.

In addition equation (2.22) is derived for isothermal conditions, while the

temperature in the sintering bed is not constant. Since both the density and

viscosity of the gas are temperature dependent, the extended Ergun rela-

tion of Wonchala and Wynnyckyj (1987) should be considered. Calculation

of the pressure pro�le dp=dx is also dependent upon the parameters " and

dp = �fds, which are dependent on the degree of melting.

As outlined in Rosenqvist (1983), p. 146, Ergun's relation allows calcu-

lation of " and dp if two sets of measurements are available. Here dp=dx

is the pressure drop per unit height of the bed, � and � are viscosity and

density of the 
uid, and v is the super�cial velocity of the 
uid, i.e. velocity

referred to the empty bed. Laboratory tests for accurate measurement of

" and dp are suggested in Hinkley, Waters, and Litster (1994) and Hinkley,

Waters, O'Dea, and Litster (1994). Hinkley, Waters, and Litster (1994) also

suggests that other constants should be utilized in the Ergun relation when

wet charge is considered. The average particle diameter, dp, will not have

a physical interpretation once melting in the fusion zone has occurred, see

the discussion on fusion in section 2.3.1. Still, all cited models utilize some

equivalent particle diameter when melting has occurred.

URN:NBN:no-1287



2.3 Modeling 31

0.4
0.45

0.5
0.55

0.6
0.65

0.7

0.5

1

1.5

2
0

5

10

15

20

25

30

35

40

ε [−]

The isothermal Ergun relation

d
p
 [mm]

∆ 
p 

[k
P

a]

Figure 2.6: Ergun's relation. The �gure shows Ergun's relation for � = 1:7e �
5Pa s, � = 1:29kg=m2 s, L = 0:4m, v = 1m=s. The nonlinearity in Ergun's relation
is considerable especially for small void fractions, ", and small particle sizes, dp.
Noting that since the measurements presented in section 2.4 shows a typical pressure
drop of 5kPa, the nominal values of " and dp cannot be too low. �p = 5kPa and
" = 0:4 implies a dp = 2:2mm, while " = 0:6 implies a dp = 0:6mm.

Figure 2.6 shows the nonlinearity of Ergun's isothermal relation as a

function of " and dp. As the discussion in the �gure caption indicates the

Ergun relation is moderately nonlinear in the region of interest. Using con-

stant values for " and dp is reasonable as an initial approximation in a control

relevant model. A model for " and dp should comply to the following heuris-

tics (Olsen 1997)

� "ch remains unchanged during the batch

� "f is altered due to the particle growth caused by fusion. The fusion

zone has the lowest permeability and thus has the lowest void fraction.

� "hex is the largest.

where "f < "ch < "hex are the void fractions in the fusion (zone 2 and

3), charge (zone 4 and 5) and heat exchange (zone 1) as referred to �gure

2.1. The literature only give qualitative models for void fraction and particle

growth (Cumming and Thurlby 1990).

A simpli�ed approach compared to including v as a state and apply-

ing Ergun's relation is to compute v directly from the quadratic equation
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(2.22) in v for a speci�ed dp=dx. This approach should be validated against

the complete model outlined above. Due to the added complexity of the

extended Ergun relation and the uncertainty in modelling " and dp, the

velocity v itself is considered as a control action in the following.

2.4 Experiments and measurement campaigns

Experiments conducted at the sintering plant in Sauda, Norway, were ini-

tially designed to collect data which could be used to obtain the following

goals:

� Identi�cation of an input-output model.

� Adaption and validation of the nonlinear PDE model.

� Veri�cation of the connection between charge composition, process

operation and product quality.

� Provide realistic feedback (process simulator) for testing nonlinear MPC.

In addition thorough knowledge of the sintering process was gained. The

�rst goal was not achieved, since the unknown recycle led to large distur-

bances. Hence, the information content in the measured output was domi-

nated by disturbances. The measurements allowed calculation of the recycle

which showed that the recycle was much larger than expected. Initially the

recycle was assumed to be in the order 20-30% with small variations. In

section 2.6 the actual recycle is calculated to vary in the range 0-53%.

In addition the process output "production rate" was not well-de�ned in

terms of on-line measurements at the time the experiments were conducted.

Model adaption and validation has been performed by visual comparison

of the measurements against the simulations. This was an iterative proce-

dure where model parameters were manually updated, the model simulated,

and the result compared to the measurements, see �gures 2.13 and 2.15

below. The relationship between in- and outputs has been veri�ed by the

experiments, and this motivated a mathematical formulation of a control

objective suitable for use in nonlinear MPC. Nonlinear MPC is documented in

chapter 4. The measurements were not used directly as process simulator,

but the model was adapted to the data. Hence, the model is a realistic

representation of the industrial process.

In section 2.4.1 follows a description of the experiment setup, including

a more detailed description of the plant and the available instrumentation
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relevant for the experiments. The measurements conducted at the plant are

documented in section 2.4.2. Data analysis is documented in section 2.6.

2.4.1 Plant and experiment description

The industrial sintering plant under investigation is located in Sauda, Nor-

way and was owned by the Elkem ASA company at the time the experiments

were conducted. It is now owned by Eramet Norway AS, a subsidiary of the

Eramet Group. Two independent measurements campaigns were carried

out. The �rst in March 1998, and the second during the Spring of 1999.

� The �rst campaign investigated the e�ect of altering the gas
ow through

the bed without altering the charge composition, see section 2.4.3.

� The second campaign investigated the e�ect of altering the charge

composition without altering the gas
ow. These experiments occupy

the bulk of the remaining part of this chapter, in particular section

2.4.2. Note that some of the measurements documented in section

2.4.2 were available during the �rst measurement campaign as well.

The plant layout together with relevant instrumentation is described in

�gures 2.7 and 2.8. The sintering plant is part of a larger plant for electrical

reduction to FeMn and SiMn, and the sintering plant is designed to provide

suitable feed for the electrical furnaces at the plant. The sintering plant in

Sauda is a batch-wise plant with six parallel Greenawalt-pans.

To allow the set-point change in coke composition to propagate into the

pan, each experiment was designed as outlined in �gure 2.9. Letting each

experiment span three consecutive batches was based on the assumption

of 20-30% recycle, i.e. accepting a bias in the coke composition, and com-

pensating for this once the actual recycle has been calculated. Since each

experiment spans 3 consecutive batches, it is relevant to investigate the rela-

tionship between any two consecutive batches. From the di�erence in fresh

feed between two consecutive batches given in table 2.1, an empirical proba-

bility distribution function F was calculated, see �gure 2.10. Based on the

third column of table 2.1 a bootstrap estimate (Efron and Tibshirani 1986)

was computed. 1000 new observation series was generated. Note that since

there are only 11 observations the variance estimates are uncertain. The

expectation, standard deviation and BC (bias-corrected) con�dence intervals

are given in table 2.2.
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Figure 2.7: Detailed sintering plant. The �gure shows the details of the sintering
plant that are important for the experiments, together with the available instru-
mentation. Starting from the upper left there are 12 feed bins containing coke,
Mn-ore and various scrap from the plant. The mass-
ow from each bin is mea-
sured automatically (FT). Added water is manually controlled (C) and the water

ow is measured manually by a 
otameter (L). The amount of recycle is unknown,
as indicated by the irregular and unknown shape of the recycle bin. The recycle
level is measured manually by lowering a mechanical device into the bin (L). The
recycle output is controlled from the control room by adjusting the set-point of a
vibrating device (C). The recycle temperature is measured automatically by a sen-
sor attached to the outer wall (point-welding) of the recycle bin (TT). Inputs are
mixed in a rotary mixer and stored in the charge bin. The feed is charged into the
six sintering pans. The moisture content of the feed is measured manually by a
drying test of a sample taken from a pan (A). Details of the instrumentation of the
sintering pans inside the dotted box are shown in �gure 2.8. After completion of the
sintering process the produced sinter cake is crushed into manageable lumps by a
mechanical chrushing device. The sinter is then screened, and the �nes (dp < 3mm)
are recycled, while coarser sinter is stored or fed to the furnace. Manual samples
of the produced sinter are taken by shu�ing approximately 40-50kg of sinter into
containers before screening (A).

2.4.2 Measurements at plant: Campaign 2

This section summarizes the measurement campaign carried out at the sin-

tering plant in Sauda during the Spring of 1999. The measurements logged

during each experiment are shown for experiment 1 in �gure 2.11 and A.1

in appendix A.2. The sampling period was 5 seconds. In addition to the
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Figure 2.8: Instrumentation of sin-
tering pan. The �gure shows the de-
tails of the instrumentation of the sin-
tering pan that were available for the
experiments. The �gure shows the
details of the block inside the dot-
ted box in �gure 2.7. The experi-
ments were conducted in pan no. 1 of
the six pans. Temperature measure-
ments on the top and 15cm down into
the pan by K- and S-elements respec-
tively, in addition to sensors (point-
welding) on the outer wall at depths
15cm and 30cm were logged (TT).
The o�gas temperature and di�eren-
tial pressure were logged for both pan
1 and 2 (TT) and (PT). The o�gas-
ow
is controlled from the control room
by a chocking valve (C). This is oper-
ated according to a prescribed recipe.
The pressure after the cyclones was
logged (PT), with a pitot-element (Pt-
100) intended for 
ow-measurements.
The gas 
ow must be compensated
for temperature, measured by (TT) at
the same location. Just below this
point a thin pipe was inserted allow-
ing for gas-samples to be taken (A).
A fan was attached to this tube, and
moisture and composition tests were
taken by sucking out o�gas.

Pan 1 Pan 2

TT TT

TT

TT

PT

TT

PT

TT

C C

Cyclone Cyclone

TT

PT

A

To scrubber

Offgas

measurements shown in the �gure mass-
ows from the feed-bins and the

wall-temperature of the recycle bin were logged. Various manual samples

such as the recycle level, the water content of the charge and o�gas and

sinter were also taken. Some details of the curves in �gure 2.11 deserve spe-

cial attention. In the �rst sub�gure the solid temperature and ignition gas

temperature in pan 1 are shown. The �rst batch starts at approximately 17

minutes as seen from the ignition gas temperature (dashed curve). Just be-

fore 20 minutes the ignition hood is removed and the S-element (cf. caption

of �gure 2.8) is inserted into a ceramic tube placed into the bed prior to ig-

nition. At approximately 53 minutes the S-element is removed and pan 1 is

fetched to be emptied into the crushing machinery. This pattern is repeated

for each batch.
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Experiment 1 Experiment 2

Set-point 1
Set-point
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Sample 2Sample 1

Set-point 2

Figure 2.9: Batchwise experiments. The �gure shows how the batchwise plant
in
uences on the conducted experiments. The horizontal axis of the �gure is time,
and one batch lasts approximately one hour. To the left, experiment 1 starts by
setting the feed set-point to the desired value. Due to the hold-up of the plant,
the feed charged into the pans will not be in
uenced by the set-point change until
approximately batch 2 or 3 (depending on the amount of recycle which is unknown).
Note that each batch (labeled 1, 2, 3) consists of six pans as indicated on the �gure
by the six overlapping boxes. After batch 3 is �nished, pan 1 is emptied into the
crushing machinery and a sample is taken by shu�ing a large amount of sinter
into a container. Now experiment 1 is completed, and experiment 2 commences by
setting the feed set-point to its desired value. Note that the set-point for experiment
2 may be altered earlier than indicated due to the plant hold-up. Since the recycle
is unknown a degree of conservatism wrt. set-point alterations was introduced to
guarantee that the feed composition in the pan in batch 3 actually was as desired.

In sub�gure 2 it is observed that the batch in pan 2 starts about 5 minutes

prior to the batch in pan 1. This is due to the sequential nature of the

batch cycle at the plant, and was not altered during the experiments. The

pressure does not vary substantially during the batch, despite the generation

of gas molecules caused by evaporation. This indicates that the gas velocity

increases during the batch. The pressure di�erence between pan 1 and 2 is

discussed in the �gure caption. No large leakages in the pipes were observed.

Towards the end of each batch the o�gas temperature is expected to

approach the gas temperature in the combustion zone. Sub�gure 3 shows

considerably lower o�gas temperatures than the solid temperature shown in

sub�gure 1.

The slowly falling o�gas temperature during the �rst part of a batch

is attributed to a change from laminar to turbulent 
ow due to the lower

di�erential pressure during the initial phase of the batch, combined with

the large di�erence in heat-capacities between the solid and gas phase of

the packed-bed system. I.e. initially the Reynolds-number is low giving

poor heat-exchange and the hot ignition gas is transported through the pan

without loosing to much heat to the solid phase. Once the pressure di�erence

is increased, the Reynolds-number increases and the heat-exchange between

the two phases is increased. Hence, the o�gas temperature is expected to
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Fresh feed [t]

Experiment s2 s3 �s

1 28.1 22.4 -5.7

2 24.3 21.0 -3.3

3 19.7 17.3 -2.4

4 - 14.9 -

5 16.6 20.0 3.4

6 25.8 29.0 3.2

7 15.0 26.1 11.1

8 27.6 21.1 -6.5

9 25.1 26.4 1.3

10 - 16.5 -

11 27.6 17.4 -10.2

12 28.5 20.2 -8.3

13 18.4 31.2 12.8

Table 2.1: Measured fresh feed from the feed bins. The table shows measured fresh
feed from the feed bins for series 2 and 3 for all experiments. The last column is
used to estimate the variance between consequtive series shown in �gure 2.10. Due
to logging errors for the second series of experiment 4 and 10 they are not included
in the variance estimates.

Non-parametric Parametric

EfFg -0.304 -0.381

SD 2.28 2.08

BClower -3.88 -3.74

BCupper 3.73 3.21

Table 2.2: Bootstrap estimates. The table gives the computed expectation, stan-
dard deviation and BC (bias corrected) con�dence intervals for the bootstrap esti-
mates shown in �gure 2.10.

fall abruptly. As the �gure shows it falls smoothly, and this is attributed to

the di�erence in heat capacity.

2.4.3 Control action experiments: Campaign 1

This section contains a summary of an unpublished report (Martinsen 1998b)

which summarizes measurements taken at the sintering plant at the Elkem

(now owned by Eramet) plant in Sauda from 3rd to 5th of March 1998.

Air is sucked through the six sintering pans by means of three fans,
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Figure 2.10: Bootstrap estimates. The �gure shows the empirical distribution
function (upper part) formed by sorting the data in the third column of table 2.1.
The estimates in the lower part shows that the parametric (right part) normal
distribution estimate is well suited for estimating the variance. This is concluded
due to the similarity with the non-parametric estimate (left part). The normal
distribution generated 1000 new datasets from the distribution X� � N( �Xn; Yn)
where �Xn = 1

n

P
n

i=1
Xi, Yn = 1

n

P
n

i=1
X2

i
and n = 11. The estimates show that the

variance is considerable, and it cannot be expected that two consequtive batches
are well correlated. I.e. large variations in fresh feed caused by large variations in
recycle, makes it diÆcult to predict the charge composition in each batch.

each fan being connected to two pans. This produces a di�erential pressure

between atmosphere and the pipes connecting the pans to the fan inlet.

Temperature and pressure are measured inside these pipes for each of the

pans, hereafter denoted o�-gas (bottom) temperature, Ti;bot, and pressure,

pi;bot where i indexes pans 1 to 6, see �gure 2.8. Gas-
ow through the

pans is controlled by means of valve discs for each pan. These valve discs

were operated manually during the experiments to obtain increased gas-


ow as compared to nominal operation. The e�ect of increased gas-
ow on

sintering time gives insight into how the disc valve should be operated if

considered as an actuator. Possible negative side-e�ects of increased gas-


ow are mainly the possibility of bed-collapse. The sampling period was

preset to 5 seconds, and the sintering batch time was set to 38 minutes.

The ignition time for each pan was set to 150 seconds. Figure 2.12 shows

temperature measurements in pan 1 logged with two di�erent pressure drops

across the bed. As seen from the �gure the batch with increased pressure
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Figure 2.11: Experiment 1: Measurements. The �gure shows the logged measure-
ments during all three batches included in experiment 1. Sub�gure 1 shows the
temperature measured inside the pan 15cm down by a S-element (solid), and the
temperature measured on top during ignition by a K-element (dashed). The dashed
line at 1200oC indicates the fusion temperature Tfu. The dotted curves show the
scaled value of the objective function �(Ts). Sub�gure 2 shows the di�erential pres-
sure measured beneath pan 1 (solid) and pan 2 (dashed). The large di�erence in
level between the two parallell pans can be due to instrumentation errors, valve
malfunction, channeling inside the pans or leakages. The third sub�gure shows the
temperature measured beneath pan 1 (solid) and pan 2 (dashed).

drop rises faster to its peak value, but due to measurement noise the results

are uncertain. In these experiments temperature pro�les were measured by

K-elements inserted directly into the bed. K-elements are not designed for

temperatures above 1250oC, and the measured values may deviate from the

actual values. The non-smoothness of the solid temperature pro�le in �gure

2.12 is attributed to breakage, since at approximately 41 minutes no further

measured values were logged. The four "steps" towards the end of the

measured p1;bot in �gure 2.12 are caused by couplings between the di�erent

fans, possibly through the electric power supply or the common scrubber

following the three fans. The four steps correspond to batch completion

of pan 6, 5, 4 and 3 respectively. Pan 2 was not included in the batch

cycle during this experiment. Such steps did not appear during the second

measurement campaign carried out a year later, see section 2.4.2.
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Figure 2.12: Control action experiments. The �gure shows the logged measure-
ments of one batch duration in pan 1 for two consecutive batches. Dashed-dotted
lines in all three parts shows measurements taken during the �rst batch with pbot
at its nominal value. Solid lines in all three parts shows measurements taken dur-
ing the second batch with pbot at an increased value. The upper part shows the
measured pressure drops across the bed. The spikes from approximately 10-12
minutes indicates that the actuator was manually adjusted to the desired value by
trial and error. The middle part shows temperature pro�le measurements 20 cm
down into the bed, while the lower part shows the ignition gas pressure. The lower
part is included for syncronization issues; when pign increases at approximately 9
minutes, the ignition is shut o� and the K-elements are inserted into the charge.
Ignition starts at approximately 6 minutes. The abrupt termination of the solid
temperature pro�le indicates a broken K-element, and the remaining samples has
been removed. The non-smooth corner in the dashed-dotted temperature pro�le at
approximately 45 minutes was caused by manual removal of the K-element at the
end of the batch.

Another run (not shown) in a neighboring pan showed that although the

actuator was set at its maximum value, the pressure drop did not increase.

Despite this, the di�erence in measured temperature pro�le were signi�cant.

Hence, the results reported from the experiments are not conclusive in the

sense that it cannot be judged whether the di�erences in measured temper-

ature pro�les are caused by the pressure drops or by other factors. From

�gure 2.10 consecutive batches cannot be expected to be well correlated,

mainly due to varying recycle and channeling e�ects. Further investigations

into the relation between the pressure drop and temperature pro�le require
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further experiments, preferably on laboratory equipment were disturbances

are easier to handle.

Apart from the deviation case documented below and in �gure 2.12, the

plant was in nominal operation during the experiments. The production rate

was logged to be above average with a low recycle, and a high production

rate. As a consequence, the measurements are representative to the nominal

operation mode. By nominal operation it is understood that the plant is

operating without large deviations from the average operating conditions

observed throughout a year. The measurements taken with increased suc-

tion have a larger air-
ow through the pans (not nominal operating mode).

These experiments were conducted in order to investigate whether increased

gas-
ow would lead to faster sintering batch times without collapsing of sin-

tering beds or other undesired e�ects. The measurements are presented after

�ltering and interpolation to reduce measurement noise.

The results do show that increasing the nominal gas
ow will not neces-

sarily increase the sintering batch time. The present nominal value coincides

with the maximum allowable value when all pans are operated simultane-

ously. This maximum value is upward limited by the fan capacity. Hence,

pan 2 was excluded from the experiments shown in �gure 2.12 to allow an

increased pressure drop.

There are signi�cant di�erences between pan-positions that should be

investigated thoroughly. In practice the current actuators for adjusting the

disk valve openings at the plant are not suited for automatic control. Hence,

the actuators and possibly the disc valves must be replaced, and the fan

capacity increased if automatic control of gas-
ow is to be implemented.

2.5 Model adaption and validation

This section discusses implementation issues and documents how the model

was adapted to data by comparing simulations and measurements. Two

models are considered. In section 2.5.1 a full model is considered, where

"full" indicates that all the states are included in the simulations. In sec-

tion 2.5.2 a reduced order model is considered which includes a subset of

the states of the full model. In section 2.5.3 some preliminary simulations

illustrate the use of gas velocity as a control input to the reduced model. In

section 2.5.4 the model is compared to data which it has not been adapted

to.
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2.5.1 Full PDE model

The model from section 2.3.1 was implemented in MATLAB and solved with

ode15s, see �gure 2.13. ode15s is an implicit solver of varying order using

adaptive step lengths. It uses �nite di�erences in solving the nonlinear

equations. The spatial derivatives were approximated to the �rst order

with 10 spatial elements. The simulated model was tuned by manually
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Figure 2.13: Simulation - full model. The �gure shows simulations of the model
with all states included. The upper part shows gas temperatures (dashed-dotted) at
depths 4, 8, 16 (boldface solid) and 40cm, along with the ignition pro�le (dashed).
The second part shows solid temperature pro�les (dashed-dotted) at the same
depths along with the measured pro�le (dashed boldface) at 15cm. The third
part shows coke concentration pro�les at the same depths, while the fourth part
shows water concentration pro�les at the same depths. The lower part shows the
velocity (spatially uniform).

adapting the activation energy E in equation (2.15) and visually comparing

the boldface curves in the second sub�gure of �gure 2.13. Observe the

"kink" in the temperature pro�les caused by switching the fusion model from

"melting" to "freezing". This kink is not desired, and future re�nements of

the model should include a more realistic model of fusion. The kink in the

measured pro�le is caused by manual removal of the thermo-element from

the sintering bed, see �gure 2.11 for further details. Note that the velocity

pro�le is spatially uniform in the sense that the velocity at any time instant

was as shown in �gure 2.13 in all spatial elements. Figure 2.13 shows that

the solid temperature pro�les in the upper layers are narrow, while the
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temperature pro�les in the lower layers are wide. The �gure also shows

that the gas temperature pro�les are almost equal to the solid temperature

pro�les. This does not comply with the measurements shown in �gure 2.11,

and further model re�nements are needed. Towards the end of the batch,

air passes through a bed almost completely converted to sinter with poor

heat exchange properties, hence the air will not receive much heat from the

sinter. The model does not re
ect the di�erent heat exchange capacities of

wet charge and sintered material.

Since the model does not produce a physical gas temperature, the model

must be re�ned if industrial implementation of model based control is to be

considered. A physical gas temperature is essential for a control relevant

model since the o�gas temperature should be utilized for state estimation

in an industrial implementation. If the gas temperature is considerably

lower than the model temperature, other mechanisms may be important for

transporting heat down through the bed, i.e. conduction by Fourier's law

and radiation. The adaption of the activation energy, together with the

discrepancy in gas temperatures shows that further re�nements are needed

in an industrial implementation.

The models by Hoislbauer and Jaquemar (1983) and Patisson et al.

(1991) are both simulated with �nite element methods. Using the implicit

solver ode15s resulted in acceptable simulation times but gave inexact gas

concentrations (a "ripple" is introduced by the plug-
ow assumption), see

�gure 2.14. I.e. the accuracy of the gas pro�les was improved by increased

spatial resolution, but this did not in
uence markedly on neither the tem-

perature pro�les nor the solid coke and water pro�les. Hence, since the

inaccuracy in gas concentrations has little in
uence on the important pro-

cess states, water was excluded from the model and gas was considered as

dry air in order to reduce the computational complexity.

2.5.2 Reduced model

The state vector after eliminating water and the gas components becomes

xred = [Tg; Ts;XC ]

The gas phase was lumped into dry air under the assumption that there is

always excess air so that coke combustion is never limited by oxygen con-

centration. Water was excluded under the assumption that it does not have

signi�cant in
uence on the shape of the heat pro�le at elevated temper-

atures. The water does in
uence on the overall energy balance, and this

in
uences on the temperature pro�les in lower layers due to the distributed
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Figure 2.14: Gas concentrations - full model. The �gure shows simulations of the
model with all states included (the full model). Sub�gure 1 and 3 shows coke and
water (respectively) concentration pro�les reprinted from �gure 2.13. Sub�gure 2, 3
and 5 shows the ripple in the simulated gas pro�les. Solid coke and water have units
kg=m3 while gas components have units mol=m3. The ripple in gas composition is
caused by limited spatial resolution combined with the plug-
ow assumption.

nature of the process. Still the reduced model can be tuned to �t the mea-

surements. The activation energy of the reduced model was tuned to be

Er = 74kJ=mol, while the value for the full model is E = 70:9kJ=mol. The

activation energy is increased slightly to make coke combustion of the re-

duced model harder to start. This is as expected since no energy is needed

to evaporate water. The resulting reduced model after tuning was simulated

with ode15s as shown in �gure 2.15.

The computational time on a COMPAQ Deskpro with a Pentium II pro-

cessor and 128Mb memory for simulating the full model as shown in �gure

2.13 was approximately 5 minutes, while it was approximately 20 seconds

for the model shown in �gure 2.15. The condition number of the Jacobian

of the reduced model at the initial point xred = [14oC; 14oC; 18kg=m3] (with

uniform spatial distribution) is in the order 1014, i.e. the system is very sti�.

Attempts to solve both the full and reduced model with explicit and modi-

�ed Euler, Runge-Kutta 4 and implicit Euler were unsuccessful. Due to the

ill-conditioning and the limited accuracy of implicit Euler, very short step-

lengths lead to excessive computational times. Simulating with the level

2 implicit Runge-Kutta method Lobatto IIIC allowed increasing the step
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Figure 2.15: Simulation - constant v. The �gure shows simulations with the
reduced model. The upper part shows gas temperatures (dashed-dotted) at depths
4, 8, 16 (solid) and 40cm, along with the ignition pro�le (dashed). The second
part shows solid temperature pro�les at the same depths along with the measured
pro�le (dashed) at 15cm. The third part shows coke concentration pro�les at the
same depths, while the lower part shows the velocity (spatially uniform).

length to h = 1s. The total simulation time with Lobatto IIIC was approx-

imately 10 hours. Adaptive step lengths did not reduce the simulation time

for Lobatto IIIC. These issues in
uence on the MPC implementation and are

revisited in chapter 4.

2.5.3 Introductory control action simulations

The suggested control scheme from section 2.2.2 is investigated by simulat-

ing the reduced model with two di�erent velocity inputs as shown in �gure

2.15 and 2.16. As is seen by comparison of �gure 2.15 and 2.16, the temper-

ature pro�les are in
uenced by the velocity pro�le. The modi�ed velocity

pro�le gives a more evenly distributed temperature pro�le at di�erent levels,

but the sintering time is prolonged. I.e. a control objective should balance

sintering time against a uniformly shaped temperature pro�le.

The full order model exhibited similar responses as the reduced model

when exposed to the modi�ed velocity pro�le. The spatial temperature

pro�les for the full model at selected time instances are shown in �gure

2.17. Observe again the more even pro�le and prolonged sintering time

in the lower part. Hence, maximizing � alone from equation (2.5) may
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Figure 2.16: Simulation - pro�led v. The �gure shows simulations with the reduced
model. The depths and pro�les are as in �gure 2.15. Observe the altered velocity
pro�le, and the in
uence this has on the temperature pro�les as compared to �gure
2.15.

lead to prolonged sintering times, and the control problem (2.6) should be

augmented to penalize the batch duration time tend. The present model

is implemented with a �xed batch time tend, which may lead to impaired

solutions. If this turns out to be a problem, the objective can be augmented

as discussed above as a remedy.

2.5.4 Model validation

The reduced model is compared to the measurements of the �rst campaign.

In �gure 2.18 the dashed pressure measurements from �gure 2.12 are re-

peated (dashed). The model is seen to �t well to the new data. Observe

that the measured pressure pro�le is used in the model to generate a spatial

pressure pro�le as discussed in section 2.3.4. This pressure pro�le then al-

lows direct calculation of the gas density �g(Tg; p) by the ideal gas law. The

velocity is scaled to re
ect the level di�erence in the �gure, since the pres-

sure and velocity are not linked in the present model. Note that the scaling

discussed in the �gure caption can be done by using Ergun's relation, equa-

tion (2.22). I.e. solving Ergun's relation for p1 = 5kPa and p2 = 6kPa for

a given set of parameters4 gives approximately the same ratio 6/5.

4� = 1:7 � 10�5kg=ms, �g = 1:29kg=m3, dp = 2mm, " = 0:4 and �f = 0:43.
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Figure 2.17: Simulation - Ts-pro�les. The �gure shows simulations with the full
model. The abscissa is position inside the bed with 0cm being the top and 40cm
being the bottom. The �gure shows solid temperature pro�les at time instances
5.8, 10, 14.2, 18.3 (boldface), 22.5, 26.7, 30.8, 35 (boldface), 39.2, 43.3, 47.5, 51.7,
55.8, 60 and 64.2 minutes. The upper part shows pro�les obtained with the nominal
velocity pro�le from �gure 2.15, while the lower part shows pro�les obtained with
the velocity pro�le shown in �gure 2.16.

The simpli�ed fusion model does not allow the simulated temperature

to increase signi�cantly above 1250oC. Validating against measurements for

other experiments is hard since the temperature pro�le is poorly correlated

with the coke input, see �gure 2.23 in section 2.6 for details.

2.6 Data analysis

The data from the experiments documented in section 2.4 are analyzed in

this section. The aim of this section is a veri�cation of the control strat-

egy suggested in section 2.2.2. In particular, the validity of the suggested

control objective (2.6) is assessed. By conventional experiment planning

methodology (Dougherty 1990), section 14, the input (feed composition)

was perturbed in two dimensions (water and coke) and the output responses

(quality and production rate) were measured. Since the perturbations were

not conducted directly in the sintering pan, the hold-up of the recycle and

charge bins forced a degree of conservatism in the experiment design, cf.

�gure 2.9.
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Figure 2.18: Validation of model. The �gure shows simulations with the reduced
model and validation data. The upper part shows the ignition pro�le from �gure
2.11, batch 3, and simulations of reduced model with this ignition pro�le. The
measured pro�le (dashed-dotted boldface) is the one shown in �gure 2.12. The
lower curve shows the measured pressure drop for experiment 1, batch 3, (solid)
which was used to tune the model along with the one from �gure 2.12 (dashed).
The approximate ratio between these is 6/5, hence, the simulated pro�le in the
upper part was generated with the velocity pro�le from �gure 2.15 scaled by 6/5,
i.e. 0.42m/s. The solid simulated pro�le is plotted for the level corresponding to
20cm.

The coke content in the pan is not directly measurable. In particular,

assuming a constant recycle will give a constant bias of coke content, while a

varying recycle will give a varying bias. Figure 2.19 shows the set points and

calculated real values of each experiment labeled 1 through 13. The �gure

clearly shows that the locations of the real operating points marked by (�)

are not well correlated to the set-points labeled by (o), and identi�cation

of an input-output model based on the experiments was abandoned due to

this. The experiments were designed to have �2% deviation from normal

operating values in coke and water concentrations. The water content in

the pan was measured by drying a small sample of charge, and measuring

the weight loss caused by evaporation. The coke content in the pan was

calculated by calculating the recycle, see details in section 2.6.1.

The production rate is calculated by a mass balance in section 2.6.1,

and the qualities reducibility and mechanical strength are analyzed in sec-

tion 2.6.2. The objective function suggested in equation (2.6) is assessed in
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Figure 2.19: Set-points for experiments. The �gure shows the set-points (o) and
real values (�) for coke and water concentrations for experiment 1-13. Note that
a 2% bias is added to the real coke values. The real coke values were calculated by
compensating for the recycle as described in the text, while the real water values
are measured. The dashed circle only serves to emphasize the positions of the
set-points at a circle with radius 2 and centered at the normal operating point.

section 2.6.3.

2.6.1 Productivity

A realistic measure of production rate should weight the recycle and mass

gas-
ow. The recycle is calculated from a stationary mass balance given by

the di�erence between the measured output from the feed bins 1-12 in �gure

2.7 and the calculated maximum production from the six Greenawalt-pans.

An uncertainty is introduced by how the total mass of fresh feed (i.e. from

the feed bins) is calculated from the measurements: The output from the

feed bins is logged, but, due to the plant automation system, it is uncertain

which parts of the logged time-series to include in the calculation. I.e. feed is

added from the feed bins at irregular intervals based on level measurements

and various time-stamps in the automation system. Close investigation of

the batch-cycles was done to determine which parts to include in the calcu-

lation of the total mass of fresh feed. Then, the fresh feed was calculated

by integrating the time-series from each feed bin. In addition to this, the

calibration of the weights in the sintering plant was uncertain. Hence, the

calculated real values for the set-points given in �gure 2.19 are uncertain.
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The total mass of the six pans is calculated by calculating �ch from the

measured output from the feed-bins and multiplying by the volume:

mch = 6(1� ") � �ch � L � A

where L = 0:4 [m] is the height and A = 32 [m2] is the cross-sectional area

of each pan. The void fraction " is unknown, but can be measured if the

density of solids is known. The bulk solid density �ch is computed from

the logged feed-ratio and the measured moisture content. Since the coke

and water fractions are small and do not vary much, assuming �ch � 3600

[kg=m3] will not introduce large errors. The value " = 0:3 was computed

by assuming a 100% production rate for the "best" experiment (no. 13),

and computing the equivalent void fraction as " = 1 �mmeas=mmax where

mmeas is measured feed, and mmax is the value achieved for mch with " = 0.

Using " = 0:3 in calculating the production rates gave the results shown in

table 2.3. As can be seen from the table, the recycle is larger than expected

and the variations are profound. Keeping in mind the large variance of

consecutive batches from �gure 2.10, the calculated productivity indicate

that it is unlikely that the coke concentration in the pan will follow the

set-point due to the large variations in the recycle.

2.6.2 Quality tests

The quality in terms of mechanical strength and reducibility was measured

o�-line by taking product samples from each of the thirteen experiments

described in section 2.4.2. The mechanical strength was measured by the

standard test equipment used at the plant. 12.50kg of sinter of fraction dp 2
[10; 16]mm was tumbled according to a preset program. The weight fractions

>10mm, 1-10mm and <1mm after tumbling were measured. The results are

given in table 2.4. The reducibility of the sinter samples were measured by

reduction in a CO-atmosphere in the laboratory scale retort shown in �gure

2.20. Sinter lumps were loaded into the retort, and the retort was hung

from a scale and placed in an electric heater. The retort was purged with

the inert gas N2 and preheated to 1000
oC. ThenN2 was replaced by CO and

reactions similar to Mnx1Oy1 + CO!Mnx2Oy2 + CO2 gives a weight loss

since oxygen from the charge is transported out of the retort. The weightloss

for all 13 experiments were calculated in grams weight loss between 10% and

90% reduction from start to total weight loss. The reducibility experiments

were conducted for both 10-16mm and 5-10mm fractions. The two di�erent
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Production rate (calculated)

Experiment Prod.rate [%] Coke [%]

1 71.1 3.56

2 66.7 4.00

3 54.1 4.03

4 46.8 1.10

5 62.6 1.88

6 90.9 3.92

7 82.2 2.75

8 66.4 2.67

9 83.7 3.78

10 52.0 2.67

11 54.1 4.10

12 63.1 5.28

13 100.0 3.66

Table 2.3: Production rates. The table gives the calculated production rates for
the experiments. The table shows calculated production rates for experiments 1-13.
The production rate varies between a maximum of 100% at experiment 13 and a
minimum of 46.8% at experiment 4. The recycle, which is obtained by subtracting
the production rate from 100 varies between 53.2% and 0%. Note that 100% pro-
duction rate at experiment 13 was achieved under the hypothesis of a void fraction
" = 0:3. This void fraction is a lower bound on the void fraction for experiment
13. The actual void fractions were not measured. The coke concentration numbers
were computed by a mass balance adding the measured feed and calculated recycle
and assuming no coke in the recycle.

fractions gave almost equal reducibility measures. The reducibilities are

summarized in table 2.5.

By assuming a linear dependence between the function �z from equation

(2.4) and strength and reducibility, the MATLAB NAG toolbox function g02caf

was used for linear regression. The heuristic rule that a certain minimum

strength is required while simultaneously maintaining a high reducibility

was implemented by weighting the two linear regression functions as shown

in �gure 2.21.

The computed quality model is conceptual since no data exists that allow

veri�cation, and there are no quantitative quality requirements given at the

plant. Note that the choice of the weighting functions controls the shape of

the quality model, hence di�erent quality models can be formed by altering

the weights. The quality model is founded on the arguable assumption that

a linear regression is adequate. However, including heuristics by weighting
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Fractions [kg]

Experiment +10mm 1-10mm -1mm

1 6.42 5.27 0.72

2 7.45 4.28 0.65

3 6.63 5.17 0.61

4 7.55 4.24 0.59

5 6.96 4.73 0.65

6 7.00 4.76 0.65

7 7.95 3.87 0.56

8 6.34 5.25 0.69

9 8.08 3.73 0.67

10 7.91 3.94 0.57

11 7.82 4.00 0.64

12 7.23 4.57 0.63

13 6.67 4.61 0.59

Table 2.4: Mechanical strength of sinter. The table gives the mechanical strength
of produced sinter for experiments 1-13. The mechanical strength quality is de�ned
as the normalized +10mm fraction. The numbers were measured by a tumbler test
using the regular equipment at the sintering plant.

functions can still be applied even if the underlying functions are changed.

The standard errors of the adapted parameters in the linear regressions

allows assessment of the standard error of the quality model as is shown in

�gure 2.22.

The second column in table 2.6 gives the normalized values of �z for all

experiments. This �gure gives a direct measure of the conditions inside the

bed during sintering. As discussed in section 2.2 the quality of the produced

sinter is governed by the temperature pro�le in the bed. The third column

gives the values of the objective  z
5 from equation (2.6) as calculated from

the data. The fourth and �fth column show the calculated integral of the

sigmoid
R
�zdt from equation (2.5) and Tz;max from the same data.

The identi�ed quality model do show that the results from the exper-

iments conform to the heuristics reported in the literature as discussed in

section 2.2.1. The relation between the inputs coke and water and the out-

puts production rate, strength and reducibility are shown in �gure 2.23.

The linear regression models shows that �z increases (slightly) as ex-

pected with the coke content. The inverse proportionality towards water

5The level z being the position of the S-element, i.e. 15cm down into the bed.
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Figure 2.20: Retort used for reduc-
tion experiment. The �gure shows
the laboratory scale equipment used
for reduction experiments. 350g of
sinter lumps are loaded into the re-
tort, and the retort with sinter is
hung from a scale and pre-heated to
1000oC. During preheating the retort
is purged with N2. When the temper-
ature reaches 1000oC N2 is replaced
by a CO gas
ow. In the reducing CO
atmosphere oxygen is removed from
the sinter and transported out with
the gas giving a weight loss which
is logged on the scale. The inter-
nal diameter of the retort is 5.3cm,
and the outer diameter is 5.7cm. The
grate is placed 1cm above the bottom,
and the height from the bottom to
the lid is 33cm. About 5cm charge
is used. The retort is made of an
FeCrAl-alloy and it is magnetic up
to 950oC. At 1000oC the magnetic
in
uence is low, but appears as noise
on the logged measurements.
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content is attributed to the competing properties of water: An optimal wa-

ter content W � yields a higher permeability allowing the heat wave to travel

faster through the bed, giving shorter sintering batch times. Increasing the

water content beyond W � does not increase permeability, and additional

energy is needed for evaporation, resulting in poorer sintering conditions.

Hence a linear regression model is not well suited for analyzing water con-

tent with any output.

The production rate vs. coke content varies as expected, while strength

and reducibility are almost 
at. This is why the "intermediate" quality

model based on �z shown in �gure 2.21 was suggested. "Intermediate" hints

to the logical "chain" that a higher coke content implies a higher integral �z
yielding increased strength and decreased reducibility. The 90% con�dence

intervals are wide for all regression models, indicating that input-output

identi�cation cannot be expected to give good results. Nonlinear identi�ca-

tion is not considered due to the known uncertainties in the experiments.
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Reducibility (+10mm fraction)

Experiment �m [g] time [min] � _m [g/min]

1 22.27 119.5 0.41

2 20.05 147.5 0.43

3 19.91 143.5 0.34

4 20.06 95.5 0.36

5 21.98 150.5 0.54

6 21.56 119.0 0.41

7 18.96 98.5 0.40

8 22.54 114.5 0.43

9 23.00 95.0 0.45

10 19.71 99.5 0.43

11 21.74 122.0 0.46

12 19.98 88.0 0.49

13 21.52 125.0 0.44

Table 2.5: Reducibility of produced sinter. The table gives the measured reducibil-
ity of produced sinter for experiments 1-13. The quality reducibility is de�ned as
the number �m in the second column. The reducibility experiments were con-
ducted on laboratory equipment located at the metallurgical department at NTNU
in Trondheim, Norway.

2.6.3 Assessment of the objective function

From the discussion above, it is apparent that the validity of the objective

function � suggested in equation (2.5) can be evaluated by comparing it to

�z. The large variations in integrated sintering temperatures shown in the

�rst column of table 2.6 suggest that a more detailed metallurgical analysis

of the produced sinter can be used to verify the data on which the qual-

ity model from �gure 2.21 is based on. Figure 2.25, 2.26 and 2.27 show

microprobe images of sinter samples taken from experiment 1, 7 and 11 re-

spectively. From the �rst column of table 2.6 these experiments correspond

to the second smallest, maximum and (approximate) average of integrated

sintering temperature. Experiment 1 was chosen in favor of experiment 5

(the minimum) since experiment 1 has been shown with in greater detail in

the preceding sections. The pictures were taken by a scanning electron mi-

croscope (SEM) (EPMA - Electron Probe Micro Analyzer) with 4 wavelength-

dispersive spectrometers and an energy-dispersive spectrometer, capable of

taking both area and point measurements. The �gures show (row-wise) a

grey scale overview, Al,Mn, Ca, O, Si, Fe and K plots for the same area of

URN:NBN:no-1287



2.6 Data analysis 55

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

0.9

1
Quality model − data and identification

S
ca

le
d 

da
ta

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
W

ei
gh

ts

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

0.9

1

Q
ua

lit
y

Scaled temperature

Figure 2.21: Quality model. The �gure shows the normalized reducibility ('o')
and strength ('x') data along with the linear regression models (upper part). The
weighting functions (middle part) were chosen somewhat arbitrarily, but according
to the hypothesis in section 2.2.1. I.e. to balance the competing objectives that the
temperature should be high to give good strength but not too high to give good
reducibility. The quality model (lower part) is formed as the convex combination
of the two linear regression models using the weighting functions. The dotted lines
in the lower sub�gure are reprints of the linear regression models from the upper
sub�gure.

each of the three samples. The color coding along with the bars to the right

gives the relative content of each component. Note the coarser resolution

used for experiment 1.

The grey scale plots show that for experiment 1 the light gray phase

(containing mainly Mn- and Fe-oxides) has sharp corners indicating that

the amount of melting is minor. Similarly for experiment 7 the corners of

the light gray phase are rounded and neighboring crystals grow together

and extensive melting and recrystallization are prevailing. The average case

in experiment 11 shows an intermediate stage where the smaller crystals in

the light gray phase have rounded corners, while the larger crystals have

sharp corners. Figures 2.25-2.27 support the calculated integral tempera-

tures shown in table 2.5 and it can be concluded that the linear regression

models in �gure 2.21 are based on reasonable data. Observe that the results

are based on point samples in a distributed media, and local e�ects such as
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Figure 2.22: Standard deviation of quality model. The �gure shows the computed
standard deviation of the quality model. The standard errors of the parameters of
the linear regression models were used to generate 100 new models (upper part)
from a normal distribution (Monte-Carlo simulation). 100 new quality models were
formed by the same procedure as shown in �gure 2.21. The 95% standard deviations
were found by counting the points between 5 and 95 as shown by the solid lines.
The bold face solid curves are reprints from �gure 2.21.

channeling, where/when the sinter samples are taken etc. must be kept in

mind. Despite these limitations, the results conform well to the hypothesis

in section 2.2.1. I.e. the competing objectives that the temperature should

be high to give good strength but not too high to give good reducibility are

reproduced. Note that �gure 2.25 and 2.26 corresponds to experiments 1

and 7 with coke content as shown in table 2.3. Along with the �rst sub�g-

ure in �gure 2.23, this indicates that the calculated real setpoints as shown

in �gure 2.19 are wrong. I.e., since the locations of the calculated real set

points are questionable, the hypothesis that increased coke content increases

the sintering temperature cannot be assessed by the data.

From �gures 2.25-2.27 and table 2.6 it is observed that �z is well suited

as an objective. Since �z is non-smooth, the objective function  z from

equation (2.6) was suggested. In �gure 2.24 the correlation between  z and

�z is shown. The objective function  z is seen to �t well to the integral.

Observe from the lower part of �gure 2.24 that the use Tmax gives an inap-

propriate objective function since it is not well correlated to �z. Note that
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Experiment �z [-]  z=15cm(Ts)=1000 [-]
R
�z=15cm(Ts) [-] Tmax [oC]

1 0.09 4.86 81.7 1300

2 0.32 17.21 121.0 1430

3 0.65 34.74 269.5 1410

4 0.44 23.61 139.3 1450

5 0.06 3.05 38.3 1330

6 0.44 23.46 154.0 1450

7 1.00 53.48 312.8 1450

8 0.11 6.04 100.3 1290

9 0.58 31.16 263.3 1340

10 0.67 35.74 245.8 1430

11 0.40 21.50 168.4 1420

12 0.45 21.50 168.4 1430

13 0.28 15.15 183.7 1390

Table 2.6: Assessment of the objective function. The table assesses the validity of
the objective function for experiments 1-13. The �rst column shows the normalized
integral of the measured temperature Ts > Tfu for all experiments. The second
column shows the value of the objective function �(Ts) from equation (2.6) inte-
grated over the time series for each experiment. The third column shows similar
data for the integral of the sigmoid function �(Ts) from equation (2.5). The last
column shows the achieved maximum temperature for each experiment.

Tmax was scaled to the interval [0; 1] by choosing its lower value as the zero

point and its upper value as one and scaling the intermediate values accord-

ingly. Note also that using
R
�(Ts)dt alone as an objective is not as good

as using  z, since � doesn't pay extra credit for solid temperature pro�les

with temperatures above, say 1250oC, cf. �gure 2.3.

It is concluded that  z is well correlated to �z, and then the overall

objective � from equation (2.6) is a valid objective since this is a weighted

integral of  z in the spatial dimension.

The parameter q from equation (2.6) can be selected by inspecting the

second column of table 2.6. The mean value q = �� = 22:42 � 103 may serve

as an initial choice6.

6The actual value of q used in the implementation must be compensated for varying

sampling period. The values in table 2.6 were obtained by direct summation over the time-

series of the output from the MATLAB function logsig(Ts). Hence, the sampling periods of

5 seconds is inherent in table 2.6.
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Figure 2.23: In- and output data. The �gure shows the datapoints ('x') along with
linear regression models (solid lines) of various output variables plotted against the
normalized calculated coke content (�rst column) and normalized measured water
content (second column). The �rst row shows the normalized integral

R
(Ts > Tfu)

for all experiments. The second row shows the normalized calculated production
rate, the third row shows the normalized measured quality strength and the last
row shows the normalized measured quality reducibility. The standard errors of the
parameters of the linear regression models were used to generate 100 new models
from a normal distribution (Monte-Carlo simulation). The 90% standard deviations
(dotted lines) were found by counting the points between 10 and 90 (similar to �gure
2.22).

2.7 Conclusions

A dynamic model of grate sintering is gathered from the literature, adapted

to data, and simulated in MATLAB. A reduced order model including only

the solid and gas temperatures and coke concentration was suggested to re-

duce the computational complexity. Extensive experiments were conducted

to validate the model and the hypothesis on which the control strategy is

founded. A control strategy was suggested, and simulations support the

hypothesis discussed in sections 2.2.1 and 2.2.2.

The model is implemented using MATLAB's ode15s giving reasonable com-

putational times, but inaccurate gas dynamics. The inaccurate gas dynamics

has little in
uence on the temperature pro�les. Since the gas dynamics has

little in
uence on the temperature pro�les, the gas states along with the
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Figure 2.24: Assessment of the objective function. The �gure shows the dat-
apoints ('x') along with linear regression models (solid lines) of the normalized
objective �(Ts) from equation (2:6) plotted against the normalized temperature in-
tegral (lower left) and measured maximum temperature (lower left). The normal-
ized sigmoid function �(Ts) from equation (2:5) is plotted against the normalized
temperature integral (upper right). The normalized temperature integral is also
plotted against the measured maximum temperature (lower right). The standard
errors of the parameters of the linear regression models were used to generate 100
new models from a normal distribution (Monte-Carlo simulation). The 95% stan-
dard deviations (dotted lines) were found by counting the points between 5 and 95
(similar to �gure 2.22).

water is excluded from the model in the reduced model. The reduced order

model is considerably faster to simulate; the simulation time drop from 5

minutes to approximately 20 seconds per batch. The reduced model main-

tains approximately the same level of accuracy as the full model. The gas

temperature pro�les do not comply with the measurements, and the acti-

vation energy of coke combustion has been extensively tuned to adapt the

model to the data. The solid temperature pro�les are satisfactory repro-

duced by the model. The model is good in the sense that it is intended as

a control relevant model, and it is essentially the solid temperature pro�les

that govern the process outputs quality and production rate.

The gas velocity is suggested as a control input, and its viability has

been documented by the experiments. However, an industrial implementa-
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tion using pressure as control input must include the velocity as a state. In

addition to correcting the erroneous gas temperature and activation energy,

including velocity as a state and improving the fusion model are essential

for an industrial implementation. This is left as future work. Despite these

shortcomings, the principal properties are maintained and model based con-

trol with the present model is sound. An improved model is expected to �t

into the same control framework as the present model.

The main contribution of this chapter is the reduced order model which

along with the implementation gives short simulation times. The model

is adapted to industrial data, and a control objective formally stated in

equation (2.6) is proposed. Industrial experiments explore and support the

viability of the proposed objective.

URN:NBN:no-1287



2.7 Conclusions 61

Figure 2.25: SEM exp. 1. The �gure shows SEM (scanning electron microscope)
plots for a sample taken from experiment 1.
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Figure 2.26: SEM exp. 7. The �gure shows SEM plots for a sample taken from
experiment 7.
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Figure 2.27: SEM exp. 10. The �gure shows SEM plots for a sample taken from
experiment 10.
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Chapter 3

rFSQP - a feasible SQP

method

This section considers nonlinear programming. By that we understand

that we are seeking local solutions to smooth nonlinearly constrained op-

timization problems. We do not consider global, stochastic, or any form of

discontinuous mathematical programming. Neither do we consider linear,

quadratic or convex programming although quadratic programming is an

important part in solving the subproblems occurring in nonlinear program-

ming. Our main focus is on maintaining feasibility with respect to inequal-

ities in reduced Hessian SQP methods. We start in section 3.1 with some

general background relevant for comparison of various implementations of

nonlinear programming codes. Then we continue with an introduction in

section 3.2 pertaining to speci�c issues relevant to the suggested algorithm.

In section 3.3 we suggest the algorithm rFSQP which is a feasible reduced

Hessian SQP method. Then the convergence properties of rFSQP is analyzed

in section 3.4, and we present some simulation results in section 3.5. We

summarize this chapter in section 3.6.

Sections 3.2 through 3.4 and parts of section 3.5 have been submitted for

possible publication in SIAM Journal on Optimization (Martinsen and Foss

2001).

3.1 Background

Our interest in nonlinear programming is due to our interest in nonlinear

MPC which rely heavily on real-time optimization. Nominal stability results

for nonlinear MPC relies on nominal feasibility of the model constraint and
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feasibility of some other stabilizing inequality constraints at each iteration

of the nonlinear MPC algorithm. Few results are available on robust stability

of nonlinear MPC, but such results should not rely on nominal feasibility

of the model constraint. The model constraint is an equality constraint,

and currently the only eÆcient method available for maintaining feasibility

with respect to equality constraints is by evolution. This is also known as

the sequential method, single shooting or the Newton method. This method

perform a simulation over the MPC horizon to �nd a solution to the nonlinear

equalities, see chapter 4 for further discussions and references. See Ascher,

Mattheij, and Russell (1995), sections 4.1 and 4.6.2, for an exposition of

single shooting.

Simulating over the horizon to solve a nonlinear equality constraint like

f(x; u) where x is dependent on u results in an optimization problem in the

reduced space of u which typically is known as the control input. However,

if there are nonlinear inequality constraints on the original nonlinear MPC

problem, it is not trivial to resolve these in the reduced problem since they

must be transformed through a nonlinear map from the space of (x; u) into

the reduced space of u. This chapter focus on optimization issues alone, and

for now we leave the application issues until chapter 4.

This section continues by outlining some basic optimization principles

needed to facilitate a comparison between various approaches to nonlinear

programming. Then other work on reduced Hessian and feasible methods is

summarized. We conclude this section with a summary of the most popular

nonlinear programming codes with particular references to where numerical

results can be found.

3.1.1 Background on optimization

This section contains brief descriptions of optimization methods used for

nonlinear programming. Since this is mainly text-book material, we do not

go into detail, but provide a few relevant references. The text-books by Gill,

Murray, and Wright (1981) and Nocedal and Wright (1999) have been the

main sources of information, but the books by Fletcher (1987) and Dennis

and Schnabel (1996) have also been used to some extent.

General approaches

Note that the items below do not provide a mutually exclusive list. As

an example an SQP method may be implemented with a reduced gradient

method for step-computation. Likewise, the augmented Lagrangian method
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is more a question of choice of merit function, which is listed below in the

section on low-level implementation issues. The list is therefore intended

as a compilation of "buzz-words" with a few comments and references to

further reading.

Reduced gradient methods There are a number of approaches that result

in variations of reduced gradient methods. These methods separate the

variables into dependent and independent variables. The dependent

are resolved from the equalities, while the independent ones are opti-

mized subject to remaining constraints. The original reduced gradient

method is GRG which seeks to remain feasible with respect to equalities,

but also reduced Hessian SQP methods are reduced gradient methods.

Reduced Hessian methods does not remain feasible with respect to

equalities. Also interior methods can use decomposition strategies for

step-computation. Even the sequential method frequently used in MPC

results in a reduced gradient method. See Gill et al. (1981) for an

introduction to reduced gradient methods.

Augmented Lagrangian methods replaced the earlier quadratic penalty meth-

ods by introducing explicit multiplier estimates in the merit function,

thereby reducing ill-conditioning. The multipliers of the subproblem

must converge to the optimal multipliers of the nonlinear program-

ming problem for the algorithm to converge. In particular, it cannot

converge faster than the multipliers, i.e. a �rst order estimate of the

multipliers is not suÆcient for superlinear convergence which is needed

in practical algorithms. Elaborate multiplier schemes are therefore

needed, and with such schemes augmented Lagrangian methods show

excellent local convergence properties (noting that the merit function

is smooth and that the full Newton step will be accepted locally).

Global convergence is somewhat impaired by the strong dependence

on the multiplier estimates which may be poor far from the solution.

See Gill et al. (1981), pp. 225-233, Nocedal and Wright (1999), pp.

513-523, for introductions and Bertsekas (1982) for a deeper exposition

of augmented Lagrangian methods.

Projected Lagrangian methods uses a model of the nonlinear program

for step computation. Two variants SLC and SQP, exist of projected

Lagrangian methods. Sequential linearly constrained (SLC) program-

ming uses a nonlinear objective with linearized constraints. Sequen-

tial quadratic programming (SQP) uses a quadratic model of the La-

grangian with linearized constraints. The workload of each subproblem
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is therefore lower in SQP, but at the expense of the need for a merit

function to measure overall progress. Fewer function evaluations are

typically observed in SQP than in SLC, since the subproblems in SLC

must be solved to great accuracy. SQP methods may be implemented

with incomplete solutions of the subproblems, see Murray and Prieto

(1995).

Interior point methods for nonlinear programming typically use slacks

for inequalities, and then put the slacks in a logarithmic barrier term.

Then the slacks are kept positive, but since the inequalities are solved

as equalities (with slacks), there is no feasibility guarantee for the in-

equalities. To avoid ill-conditioning, the slacks should not approach

zero away from the solution, since this would make the barrier term

exceedingly large. This is accomplished by computing a modi�ed New-

ton direction, see Wright (1997b) and Nocedal and Wright (1999), pp.

510-512 for further details. Note that even though the iteration count

usually is low for interior methods, the workload of each iteration may

be high. Originally interior methods with barriers were suggested by

Frich (1954), section 12, and further investigated by Fiacco and Mc-

Cormick (1990), but they were considered inferior to SQP methods

due to the ill-conditioning until Karmarkar (1984) published his algo-

rithm for linear programming. See Martinsen (1998a) for a historical

overview of interior methods. Currently primal-dual interior methods

for nonlinear programming are being implemented with considerable

success, see the section on overview of existing methods below.

Feasibility

We illustrate the di�erence between infeasible and feasible steps by a con-

ceptual example in �gure 3.1:

The infeasible method to the left uses the usual decomposition into

null- and range-space steps. The qp-subproblem generates a step

ZkpZ;k in the null-space, while the range-space step YkpY;k is com-

puted from the constraint linearizations at xk. The vector sum dk =

ZkpZ;k+YkpY;k gives the next trial-point xk+1 indicated on the �gure.

To ensure convergence from remote starting points a line-search on

an exact penalty function is performed along dk = xk+1 � xk giving

the actual next iterate as xk+1 = xk + �dk. We observe that poor

scaling and ill-conditioning may unbalance the null- and range-space

steps which in turn alters the composite direction dk which in turn
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Figure 3.1: Conceptual comparison between an infeasible SQP (left) and a feasible
GRG (right)method. The dotted line through xk is the null-space of the equality con-
straint c(x) at xk. The range-space is orthogonal to the null-space. The optimum
of the constrained objective f(x) is located at x�.

may cause small steps in the line-search, especially far from the opti-

mum x�. Note that the line through xk is evaluated at an infeasible

point, and that its slope need not be a "parallel" displacement of the

tangent-plane through the point given by projecting xk onto c. It is

even possible that the next iterate xk+1 is located at a point where c(x)

is unde�ned. The feasible GRG method to the right alternates between

solving a SLC-problem for the free variables (i.e. reduced gradient),

and evaluating the model at trial points generated by a modi�cation

of the search direction to step back to the equality constraint. Note

that the step back onto c(x) = 0 does not lie in the range-space in

general.

Low level implementation issues

It is important to realize that the actual performance of an algorithm de-

pends heavily on the implementation. That is, some successful codes do not

have a sound theoretical foundation, and some that do have poor results.

In general, even the very same code can lead to very di�erent performance

when compiled with di�erent compilers (or options) or operating systems,

due to small di�erences in rounding, orders in addition etc. For a code, there

may be that for some examples, where on one machine the method works

�ne, and on another just fails; and in particular in ill-conditioned problems

the number of iterations can easily di�er1.

Step computation by solving the subproblems can be done in the full space

of all variables, or by decomposition strategies where dependent vari-

ables are eliminated and a dense qp is solved for the dependent vari-

1Personal cummunication from Andreas W�achter.
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ables. Conjugate gradients, possibly projected, may also be consid-

ered. The time spent in the qp can be reduced if an incomplete so-

lution can be incorporated in the overall algorithm, see Murray and

Prieto (1995) for further details.

Line search/trust-regions The line search computes a direction in a

subproblem and then determines step length by reducing the step

length according to the Wolfe conditions applied to a penalty function.

Usually only the �rst Wolfe condition is tested, and the BFGS update

is skipped if the step length is too short. An implementation of the

full Wolfe conditions is provided by Mor�e and Thuente (1994). Trust

regions determine the step length �rst based on the relative success of

previous iterations, and modi�es the subproblem for step computation

with the additional constraint kdkk � � where dk is the step to be

computed and � is the (current) trust-region radius. The trust region

approach is more involved than the line search, but is better suited to

deal with inde�niteness of the model-Hessian. See Nocedal and Wright

(1999), sections 3 and 4 for further details.

Hessian Exact second derivatives of the objective and constraint functions

can be incorporated if the method is able to deal with inde�nite Hes-

sians. In favor of second derivatives are sparsity, accuracy and a speed-

up due to improved curvature information, i.e. a quadratic convergence

rate may be obtained. Counter-acting this is the need for handling a

possibly inde�nite Hessian, and the cost of producing second deriva-

tives. Two major alternatives for dealing with inde�niteness exist;

adding a multiple of the identity to the diagonal or using a trust-

region that limits the step-size. Adding a multiple of the identity gives

a convex model and can be done by perturbed Cholesky factorization.

This gives a model-Hessian that deviates from the original Hessian.

Trust-regions, on the other hand, limit the step-size in case of an un-

bounded solution which may occur with inde�nite Hessians. A step

to the boundary of the trust-region in the computed direction is then

expected to "bypass" saddle points etc., and the iteration can proceed

from the new point. Both approaches have been implemented with

success in production codes. BFGS approximations, on the other hand,

lead to a dense positive de�nite model-Hessian, but the convergence

rate is only superlinear. In addition the quality of the model-Hessian

may be poor during earlier iterations. In large-scale methods limited

memory BFGS is used to reduce the storage requirement. See Murray
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(1997) for further details and references.

Penalty functions, or merit functions, are commonly used to provide global

convergence results. Exact penalty functions have minimizers that co-

incide with the minimizers of the nonlinear program for �nite values

of the penalty weight. Inexact penalty functions like barrier-functions

and the quadratic penalty function, which are smooth in relevant re-

gions, does not have minimizers that coincide with the minimizers of

the nonlinear program unless the penalty parameter is in�nity. In-

�nite values of the penalty parameter give ill-conditioning, which is

undesirable. Augmented Lagrangian methods are exact penalty func-

tions that are smooth but depend strongly on the multiplier estimates

as discussed above. The l1-penalty function is exact but non-smooth

like any norm-based penalty function would be. The l1-function is

less dependent upon the multiplier estimates, but needs complicated

line search mechanisms (a watch-dog is frequently used) to accept the

full Newton step locally. Hence, augmented Lagrangian methods have

good local convergence properties, but global convergence is hard to

establish. On the other hand, l1-methods have better global conver-

gence properties, but local convergence needs sophisticated line search

mechanisms to be superlinearly convergent. See Fletcher (1987), chap-

ters 12 and 14 for further details.

Numerical linear algebra is essential for the actual performance of any

algorithm. On large-scale problems exploiting sparsity is essential.

Avoiding unnecessary factorizations by directly updating the factor-

ization itself is common. The choice of pivoting strategies is important

for rank-de�cient systems, see Golub and Van Loan (1996) for further

details.

Other work on reduced Hessian methods

The method of Biegler et al. (1995) maintains a dense approximation of the

reduced Hessian using quasi-Newton updates. In Tjoa and Biegler (1991) in-

equality constraints are slacked, and the slacks are resolved using a dense qp

algorithm. These methods are designed for problems dominated by equality

constraints with few degrees of freedom. Betts and Frank (1994) use second

derivatives in combination with a sparse qp solver and sparse KKT factoriza-

tions and is not limited to problems with few degrees of freedom. Coleman

and Conn (1982b), (1982a) consider inequalities, but need to resort to �nite

di�erences for the reduced Hessian to converge which can be costly. SNOPT
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uses a full limited memory Hessian but computes the step by a null-space

approach involving the reduced (i.e. projected) Hessian. A number of fur-

ther references on reduced Hessian methods is given and discussed by Biegler

et al. (1995).

Other work on feasible methods

By feasible methods we understand methods that remain feasible with re-

spect to all inequalities at all intermediate iterates. These methods may

still evaluate the problem functions outside the feasible region for example

in the line search. We note that any method can easily be made feasible

with respect to linear inequalities, so our discussion implicitly assumes the

presence of nonlinear inequalities.

Mayne and Polak (1976) suggested a modi�cation that would make any

interior point method feasible. Their method were adapted to SQP methods

by Tits and co-workers in a series of papers; Panier and Tits (1987), (1993),

Lawrence and Tits (1996), (2000). Their algorithm FSQP has emerged as a

reliable code which is commercially available. Interior methods can also be

designed as feasible methods by including the inequalities and not the slacks

in the barrier function. This approach has been pursued by Gay, Overton,

and Wright (1998), but leads to complex algebraic manipulations in the

derivation of the algorithm. Recently Byrd, Nocedal, and Waltz (2000)

have suggested a feasible interior method using slack resetting with good

results.

In optimal control feasibility of equality constraints has been approached

by evolution of the dynamic model constraint over the relevant time-span.

See Pytlak (1999) for further references. We return to these issues in chapter

4.

Overview of other large scale methods

The methods described in the following are a selection of established opti-

mization codes. The selection is not exhaustive, and the description of each

method is only of limited depth. The interested reader will need to resort

to the cited references for a deeper presentation of each method.

GRG Until the mid-eighties generalized reduced-gradient (GRG) methods were

recognized as the most successful methods for nonlinear programming.

GRGmethods try to remain feasible with respect to equalities by a feasi-

bility restoration phase following the step computation. The feasibility

restoration phase needs to evaluate the constraint functions at possibly
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many trial points which can be costly. GRG methods therefore tend to

perform poorly on problems with severe nonlinearities in the equality

constraints, and when initialized far from the optimum. To remedy

this practical implementations do not require feasibility at early itera-

tions, and thus become more related to projected Lagrangian methods.

For a description of a general GRG method see Gill et al. (1981), pp.

220-223. See Edgar and Himmelblau (1989), p. 362, for a comparison

of GRG with other methods available in the mid-eighties. Further refer-

ences are provided in the references above. Today the most successful

GRG implementation is CONOPT by Drud (1985).

MINOS is a SLC method which solves a linearly constrained subproblem with

a nonlinear objective. Although SLC methods are commonly agreed

to be inferior to SQP methods due to the excessive number of function

evaluations, MINOS by Murtagh and Saunders (1995) remains a suc-

cessful implementation. For a description of a general SLC method see

Gill et al. (1981), p.234-236, and Nocedal and Wright (1999), pp. 523-

525. For an assessment of the performance of MINOS see Bondarenko

et al. (1999). MINOS and CONOPT are designed for large problems with

a modest number of degrees of freedom. MINOS does not implement

globalization mechanisms like merit functions.

LANCELOT is a sequential augmented Lagrangian method. LANCELOT by

Conn, Gould, and Toint (1992) is designed for large problems with

many degrees of freedom. See Bondarenko et al. (1999) for numerical

results.

SNOPT by Gill, Murray, and Saunders (1997) is an active-set SQP algo-

rithm using a modi�ed augmented Lagrangian merit function with line

search. Global convergence results are diÆcult to establish because the

merit function is treated as a function of the variables, slacks and mul-

tipliers and is not minimized by a solution point, i.e. it is not an exact

penalty method. The convergence theory for SNOPT is similar to the

properties of NPSOL addressed in Gill, Murray, Saunders, and Wright

(1992). SNOPT uses a limited memory convex quasi-Newton approxi-

mation to the Hessian of the Lagrangian. It uses a reduced Hessian

approach in solving the qp subproblems. See Gill et al. (1997), Bon-

darenko et al. (1999) and Morales et al. (2001) for numerical evalua-

tions. SNOPT is expected to outperform MINOS on problems with highly

nonlinear constraints.
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filterSQP by Fletcher and Ley�er (1998) is a trust-region SQP method us-

ing second derivatives of the objective and constraints, and it solves

the subproblem by an active-set method for inde�nite quadratic pro-

gramming. If a direction of negative curvature is detected it takes a

step to the trust-region boundary in this direction. filterSQP uses a

"�lter" mechanism that eliminates the need for a merit function. See

Morales et al. (2001) for numerical evaluations. Convergence results

are an ongoing research.

LOQO by Vanderbei and Shanno (1999) implements a line search primal-dual

interior method. It uses second derivatives of the objective and con-

straint functions, and slacks for inequality constraints. It uses the

quadratic inexact penalty function, hence global convergence results

are diÆcult to obtain. It uses a variant of modi�ed Cholesky factor-

ization to handle inde�nite subsystems. See Morales et al. (2001) for

numerical evaluations.

KNITRO is a trust-region primal-dual interior-method using second deriva-

tives. Unlike most interior methods it computes the steps in a SQP-like

manor that approximately minimize the barrier function. It uses pro-

jected conjugate gradients (CG) to handle inde�niteness. I.e. when

the CG-iteration breaks down due to inde�niteness, it takes a step

to the trust-region boundary in the computed direction. It uses a

non-di�erentiable merit function for global convergence. KNITRO is de-

scribed in Byrd, Hribar, and Nocedal (1999), and analyzed in Byrd,

Liu, and Nocedal (1998) and Byrd, Gilbert, and Nocedal (2000). See

Morales et al. (2001) for numerical evaluations.

3.2 Introduction

In this section we suggest a feasible reduced Hessian SQP method. The

method implements the l1-merit function and BFGS updates for the reduced

Hessian. The method is feasible with respect to inequality constraints. Since

inequalities are the main problem in reduced Hessian methods, see Nocedal

and Wright (1999) p.551, our method is aimed at continuous large-scale

nonlinearly constrained optimization problems with few degrees of freedom.

In particular we expect our method to be eÆcient for problems dominated

by nonlinear equality constraints, with relatively few nonlinear inequalities.

Note that any SQP method will be feasible with respect to aÆne inequalities

and simple bounds. The method extends FSQP' of Tits and co-workers Panier
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and Tits (1987), (1993), Lawrence and Tits (1996), (2000) to the reduced

Hessian setting. The work of Tits and co-workers extends the work of Mayne

and Polak (1976).

The local convergence analysis for the present algorithm simply states

that after the correct active set has been identi�ed, the problem is equality

constrained and two-step superlinear convergence follows as in Byrd and

Nocedal (1991) or one-step superlinear convergence as in Biegler, Nocedal,

and Schmid (1995).

In the following the NLP

min
xk

f(xk)

s:t: cE(xk) = 0

cI(xk) � 0

(3.1)

is considered with objective function f : Rn ! R, equality constraints

cE : R ! R
p1 and inequality constraints cI : R ! R

p2 . n is the number

of variables, p1 is the number of nonlinear equality constraints and p2 is the

number of nonlinear inequality constraints. Subscript k refers to iteration

index. We design our algorithm for the case p1 >> p2 > 0, which corre-

sponds to a large number of nonlinear equality constraints and few nonlinear

inequality constraints. We associate two sets with the NLP (3.1):

X = fxk 2 Rn j cE(xk) = 0; cI(xk) � 0g
XI = fxk 2 Rn j cI(xk) � 0g

with X � XI . A point xk 2 XI satis�es the inequality constraints but

not necessarily the equality constraints. Points in X are feasible, while

points in XI are (at least) feasible with respect to inequalities. We will

generate iterates xk 2 XI and a solution x� 2 X. The Lagrangian L :

R
n � Rp1 � Rp2 ! R associated with (3.1) is de�ned by

L(xk; �E;k; �I;k) , f(xk) +

p1X
i=1

�i
E;kc

i
E
(xk) +

p2X
i=1

�i
I;kc

i
I
(xk) (3.2)

where the real-valued vectors �E;k and �I;k are the Lagrange multipliers.

Practical experience with reduced Hessian methods indicate that they

require a good starting point to converge. This is expressed in assumption

4.1 in Biegler et al. (1995), i.e. that the sequence of iterates fxkg is contained
in a convex set D. In the present method this assumption can be satis�ed

by a suitable choice of the feasible set XI with respect to the inequalities.
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The prize to pay for this is the need for an initial point x0 2 XI . Prob-

lems dominated by nonlinear equality constraints, possibly with nonlinear

inequality constraints, occur in optimal control problems such as nonlinear

MPC. Nonlinear inequalities may occur if there are quality-related constraints

and quality is a nonlinear function of the problem variables, i.e. such as

q = q(x�) and q(xk) � 0. Solving this with q as a slack variable cannot

guarantee q(xk) � 0 away from the solution x�. Initialization in nonlinear

MPC may involve a shifted solution from the previous MPC-iteration, hence

a feasible initial point is a reasonable assumption, see Allg�ower, Badgwell,

Qin, Rawlings, and Wright (1999) and the references therein.

General bene�ts of feasible iterates are summarized in Lawrence and

Tits (2000), and we restate them here with some comments pertaining to

our algorithm.

� The qp subproblems may become infeasible if the constraint lineariza-

tions are inconsistent. This can happen since we include equality con-

straints in addition to inequalities.

� The objective cannot be used as merit function when equality con-

straints are present. We use the l1-merit function for global conver-

gence.

� Keeping the iterates inside a feasible region can ensure that the prob-

lem functions always are evaluated at points where they are de�ned. If

the feasible region is de�ned by linear constraints and simple bounds,

this can be guaranteed for any SQP-method. In our method a Maratos

correction term is computed by evaluating the constraint functions at

the point xk + dk, where the vector dk is a step. The point xk + dk
may lie outside the set XI unless XI is de�ned by linear constraints

and simple bounds. See section 3.3.2, equation (3.32) for details. In

addition the line search may evaluate the problem functions at points

where inequality constraints are infeasible. These considerations ap-

plies to FSQP' as well.

� Meaningful exploration of trade-o�s between design alternatives.

� The optimization algorithm will have iterates that are feasible with

respect to inequalities. If terminated prior to convergence the non-

optimal solution may be utilized.
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The usual SQP direction �nding qp associated with (3.1) is

min
d0
k

1
2



d0k;W (xk)d

0
k

�
+


gk; d

0
k

�
s:t: ci

E
(xk) +



rci

E
(xk); d

0
k

�
= 0 i = f1; : : : ; p1g

ci
I
(xk) +



rci

I
(xk); d

0
k

�
� 0 i = f1; : : : ; p2g

(3.3)

where we introduce the objective gradient gk = rfk and W (xk) is the

Hessian r2Lk of the Lagrangian or an approximation to it. The qp (3.3)

produces the ordinary SQP direction d0k. Superscript 0 refers to ordinary SQP

directions throughout this chapter. The rFSQP algorithm tilts the ordinary

SQP direction and produces a direction dk.

A feasible direction for xk 2 XI is a direction d
0
k 2 R

n generated by (3.3)

such that there exists an �� > 0 satisfying�
xk + �d0k

�
2 XI 8� 2 [0; ��] (3.4)

De�ne the index-set of �-active inequality constraints as

J �(xk) ,
�
i j � � < ci

I
(xk) � 0

	
(3.5)

for a small � > 0. Observe that (3.3) allows d0k 2 span
�
rci

I
(xk) j ciI(xk) = 0

	
?

which may violate (3.4). De�ne

A(xk) =
h
rci

E
(xk) rc

j
I
(xk) j 8i 2 f1; : : : ; p1g ;8j 2 J �(xk)

i
(3.6)

To the best of our knowledge only Coleman and Conn (1982b), (1982a)

give theoretical results for inequality constrained reduced Hessian methods.

Tjoa and Biegler (1991) include simple bounds, and use slacks for the in-

equalities. In addition there exists a successful implementation, SNOPT, by

Gill et al. (1997) with promising results (see Bondarenko et al. (1999) for

results). We observe that varying dimension of the working set matrix will

present additional challenges when inequality constraints are present in re-

duced Hessian methods, since BFGS updates do not generally allow varying

dimensions. We discuss this issue as part of our implementation, but do not

intend to resolve this issue since we take the view that since we are able

to identify the correct active set at a �nite but potentially large iteration

index k0 the problem is equality constrained thereafter. Hence, the tools

of Byrd and Nocedal (1989) can be applied to handle the case of in�nitely

many BFGS updates.

This section continues with a description of the algorithm in section 3.3,

then global and local convergence analysis are provided in section 3.4. Some

implementation issues and numerical results are discussed in section 3.5, and

some concluding remarks are provided in section 3.6.
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3.3 The rFSQP algorithm

We adapt the feasibility mechanisms from FSQP' (Lawrence and Tits 2000)

to the reduced Hessian setting. Observe that neither the equality constraints

nor the reduced gradients we wish to investigate are present in FSQP'. We

make the assumptions:

Assumption 3.1 X 6= ;.

Assumption 3.2 The functions f : Rn ! R, ci
E
: Rn ! R and ci

I
: Rn ! R

are continuously di�erentiable on XI for all i.

Assumption 3.3 The set
�
rci

E
(x�) j 8i 2 f1; : : : ; p1g

	
[
�
rci

I
(x�) j i 2 J�;�

	
is linearly independent (LICQ).

Assumption 3.4 Strict complementary slackness holds at x�, i.e. ci
I
(x�)�

�;i
I

=

0 for i = f1 : : : p2g and if ci
I
(x�) = 0 then �

�;i
I
> 0.

Under assumptions 3.1-3.4 and �rst and second order KKT-conditions,

it is well known (see, for example Fiacco and McCormick (1990), Fletcher

(1987)) that x� is an isolated local constrained minimizer of the NLP (3.1)

with unique multipliers. We assume that at least one such isolated local con-

strained minimizer of (3.1) exists. The LICQ-assumption guarantees that the

constraint linearizations are consistent at x�. Note that we make a stronger

assumption related to the LICQ-assumption in section 3.4.2, assumption 3.6.

Recovering from infeasibility resulting from inconsistency is considered an

implementation issue, see Marazzi and Nocedal (2000) for an exposition and

Gill et al. (1997) for an example strategy.

3.3.1 The feasibility mechanism

We restate the essential features of FSQP' (Lawrence and Tits 2000). In

FSQP' the qp (3.3) is perturbed as

min
dk;
k

1
2
hdk;Wkdki+ 
k

s:t: hgk; dki � 
k
ci
E
(xk) +



rci

E
(xk); dk

�
= 0 i = f1; : : : ; p1g

ci
I
(xk) +



rci

I
(xk); dk

�
� 
k�k i = f1; : : : ; p2g

(3.7)

with real scalars 
k and �k � 0, and where we have added equality con-

straints. The tilting parameter �k controls the amount of tilting. Large val-

ues emphasize feasibility, while small values emphasize descent. Lawrence

URN:NBN:no-1287



3.3 The rFSQP algorithm 79

and Tits (1996) handle equality constraints by rewriting them as doubly

bounded inequalities, while we keep them as equalities. Problem (3.7) mo-

tivates the derivation of our reduced gradient mechanism in section 3.3.2.

Note that sign(
k) = �sign(�k) must be inferred to yield feasibility of the

inequality constraints.

Lawrence and Tits (1996) update �k based on the following least-squares

problem. Given an estimate JEk of the active set, FSQP' computes an esti-

mate dEk of the SQP-direction d0k by solving the qp (3.8).

min
dE
k

1
2



dEk ;Wkd

E
k

�
+


gk; d

E
k

�
s:t: ci

E
(xk) +



rci

E
(xk); d

E
k

�
= 0; i = f1; : : : ; p1g

ci
I
(xk) +



rci

I
(xk); d

E
k

�
= 0; i 2 JEk

(3.8)

This estimate is used to update the parameter �k to provide adequate tilting

into the feasible set, and in FSQP' this is cheaper to compute than d0k itself

since (3.8) is a least-squares problem.

The present algorithm solves qp's in the reduced space, so the need for

the estimate dEk to reduce the computational workload is less important.

Hence, we simply compute the SQP-direction. The notation dEk is retained

for ease of exposition and to allow direct comparison between FSQP' and

rFSQP. Showing that dEk = d0k for k suÆciently large is a simple observation,

but it is still necessary to show that

�k = O(


dEk 

2) (3.9)

(with a suitable order constant C
�
k ) is suÆcient to guarantee global conver-

gence and local superlinear convergence.

In FSQP' a Maratos e�ect avoidance scheme is implemented near the

solution by

min
dC
k

1
2



dk + dCk ;Wk(dk + dCk )

�
+


gk; dk + dCk

�
s:t: ci

E
(xk + dk) +



rci

E
(xk); d

C
k

�
= 0; i = f1; : : : ; p1g

ci
I
(xk + dk) +



rci

I
(xk); d

C
k

�
= �kdkk� ; i 2 J �k

(3.10)

In (3.10) dCk denotes the correction to the direction dk, and � is a scalar in

the range (2; 3). However, rFSQP is implemented with an l1-penalty function,

and we do not expect (3.10) to remedy the well-known Maratos e�ect asso-

ciated with this. Instead, to promote local convergence analysis, we assume

that a step-length of one is accepted near the optimum, and work through

the local analysis in view of this. This assumption is also made by Biegler
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et al. (1995), and is motivated by that the Maratos e�ect can be handled

by implementing a non-monotone line-search like the watch-dog method of

Chamberlain, Powell, Lemarechal, and Pedersen (1982). Other alternatives

are listed in Nocedal and Wright (1999), section 18.11. Summarizing, the

correction dCk from (3.10) is needed to guarantee that the feasibility condi-

tion ci
I
(xk + dk + dCk ) � 0 with a unit step-length is satis�ed. I.e. that the

watch-dog method can be implemented without interfering with feasibility

of inequality constraints.

We require that the sequence fdkg possesses the following properties:

P1 dk = 0 if xk is a KKT point for (3.1).

P2 D��(xk; dk) < 0 if xk is not a KKT point for (3.1) (the l1-merit function

�� is to be de�ned in (3.11)). The directional derivative operator D

is used due to the non-derivative property of l1-merit functions.

P3


rci

I
(xk); dk

�
< 0 for all i 2 J �k if xk is not a KKT point for (3.1).

P4 dk = d0k +O(


d0k

2).

Observe that P2 di�ers from P2 in Lawrence and Tits (2000) since we

need a descent in the l1-merit function. Next the reduced gradient method

and the algorithm will be outlined.

3.3.2 The feasible reduced Hessian method (rFSQP)

The algorithm is essentially a restatement of algorithm II by Biegler et al.

(1995) with some extensions to allow for the additional inequality constraint

and the parameters 
k and �k in equation (3.7). Note that the dimension of

Ak generally will change when the active set J �k changes. The next iterate is

computed as xk+1 = xk +�kdk +�2kd
C
k where �k is a step-length parameter

chosen to reduce the value of the constrained l1-merit function

��(xk) = f(xk) + �k kcE(xk)k1
s:t: cI(xk) � 0

(3.11)

with penalty parameter �k. Including a term �kmax f0; cI;kg is oblivious
by a strictly feasible search direction. Observe that (3.11) di�ers from the

merit functions used in both Biegler et al. (1995) and Lawrence and Tits

(2000).

De�ne the nonsingular matrix [Yk Zk] where Yk 2 R
n�mk and Zk 2

R
n�(n�mk ). Yk is a basis for the range space R(AT

k ) of the Jacobian Ak

URN:NBN:no-1287



3.3 The rFSQP algorithm 81

from equation (3.6), while Zk is a basis for the null space N (AT
k ). The

dependence of m on k where mk = p1 + jJ �kj allows adaption to varying size

of the working set matrix Ak. Here jJ �kj denotes the length, i.e. number of
elements in the vector J �k. The null-space of A

T
k is the tangent space of the

active constraints, and since Zk is a basis for the null-space of A
T
k we have

AT
kZk = 0 (3.12)

We choose the variable-reduction factorization, see Gill et al. (1981),

p.221, A(xk)
T = [C(xk) N(xk)] where

Z(xk) =

�
�C(xk)�1N(xk)

I

�
; Y (xk) =

�
I

0

�
(3.13)

More details on the factorization are found in Xie and Byrd (1999). The

solution to (3.7) can then be separated as

dk = YkpY;k + ZkpZ;k (3.14)

where the vectors pY;k 2 Rmk and pZ;k 2 R(n�mk ). By (3.12), the range-

space step becomes

pY;k = �(AT
k Yk)

�1ck (3.15)

where

ck ,

�
cE(xk)

~cI(xk)

�
and ~cI(xk) ,

�
ci
I
(xk)� 
k�1�k j i 2 J �k

	
(3.16)

Since 
k is unavailable at this stage 
k�1 is used. Convergence of the se-

quence f
kg is established in section 3.4, hence, using 
k�1 is suÆcient. Then
dk = �Yk(AT

k Yk)
�1ck + ZkpZ;k. Observe that Yk(A

T
k Yk)

�1 is a right inverse

of AT
k and that (3.15) is a particular solution to the linearized equations. To

compute dk, solve for pZ;k and 
k from (derived in section 3.4)

BkpZ;k = �ZT
k gk � �kwk


ZT
k gk + �kwk; pZ;k

�
� 
k

(3.17)

In (3.17) the cross-term approximation ZT
k WkYkpY;k = �kwk is introduced

where �k is a scalar damping parameter and wk is an approximation to the

rectangular matrix-vector product ZT
k WkYkpY;k. Assuming positive de�-

niteness of the reduced Hessian approximation Bk, equation (3.17) gives a

unique pZ;k while there is freedom in choosing 
k. This might have been
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anticipated, since augmenting the problem (3.7) with 
k gives a semide�nite

Hessian.

Since the inactive constraint linearizations are excluded, pZ;k is com-

puted by an EQP strategy, see Gill et al. (1981), p. 244, Fletcher (1987),

sections 11.2 and 11.3, and Nocedal and Wright (1999), p. 534. The main

motivation for choosing the EQP strategy is that it allows use of theorem 3.1

from Byrd and Nocedal (1989) restated below (note that ZT
k rc

i
I;k 6= 0 when

i =2 J �k in general). The active inequalities are treated as equalities and are

included in ck in (3.15).

The Lagrange multipliers are estimated from

�k , [�E;k �I;k] = �(Y T
k Ak)

�1Y T
k gk (3.18)

where �I;k =
n
�i
I;k j i 2 J

�
k

o
. This is a �rst-order estimate of the form

min kAk�k + gkk, obtained by observing that (Y T
k Ak)

�1Y T
k is a left-inverse

to Ak. I.e. any gk 2 R(Ak) is compatible with (3.18), and we cannot assume

that the estimated multipliers coincide with the NLP-multipliers away from a

solution x�, see Gill et al. (1981), p. 248. By assumption 3.3 (LICQ), we have

that �� exists and is unique. We choose the multipliers �i
I;k = 0, i =2 J �k.

The update-rule for �k follows by solving

�̂k

h
2 cos �BFGSk (pZ;k)

��gTk Zkwk��+ wT
k B

�1
k ZT

k gk + �̂kw
T
kB

�1
k wk

i
= � kckk1

�k = min
n
1; �̂k

o
(3.19)

for a constant � > 0. cos �BFGSk is de�ned in equation (3.38), and measures

the angle between pZ;k and BkpZ;k. The null-space component ZkpZ;k must

make an acute angle with the projection of �gk onto the null-space to give

descent. For the moment neglecting the cross-term wk, we have from (3.17)

that BkpZ;k = �ZT
k gk. Byrd and Nocedal (1991) derive the cos �BFGSk re-

lation for reduced Hessian methods. Note the dependence �k(pZ;k) through

cos �BFGSk (pZ;k), which is not available at this stage since �k must be com-

puted before (3.17). Therefore the actual implementation is done as in

Biegler et al. (2000). The update rules for the damping factor �k 2 (0; 1]

and the penalty parameter �k

�k =

�
�k�1 if �k�1 � k�kk1 + 2�

k�kk1 + 3� otherwise
(3.20)

are derived in lemma 3.3, section 3.4.2 and follows Biegler et al. (1995)

closely.
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As in Biegler et al. (1995) we approximate the cross term ZT
k WkYk by a

rectangular matrix Sk. SinceWk+1 = r2
xxL(xk+1; �k+1), the approximation

ZT
kWk+1(xk+1 � xk) � ZT

k [rxL(xk+1; �k+1)�rxL(xk; �k+1)] (3.21)

holds when xk+1 is close to xk. I.e., in section 3.4.3, lemma 3.11, we prove

that J �k = J� for all k suÆciently large. If Z(xk) is locally Lipschitz contin-

uous the approximation (3.21) holds locally, and the comments in Nocedal

and Wright (1999), p. 567, applies. This continuity assumption is also made

in Biegler et al. (1995). The error in the approximation is of order O(kdkk
2
).

The matrix Sk+1 is required to satisfy the secant relation

Sk+1(xk+1 � xk) = ZT
k [rxL(xk+1; �k+1)�rxL(xk; �k+1)]

and comparing with (3.21) we have Sk+1 � ZT
kWk+1. Hence, computing the

full matrix ZT
k WkYk is avoided as in Biegler et al. (1995) by approximating

Sk by Broyden's method, (see Dennis and Schnabel (1996), p. 170):

Sk+1 = Sk +
(�yk � Sk�sk) �sTk

�sTk �sk
(3.22)

where

�yk = ZT
k [rxL(xk+1; �k+1)�rxL(xk; �k+1)]

�sk = xk+1 � xk
(3.23)

and computing

wk = SkYkpY;k
�wk = �kSk+1YkpY;k

(3.24)

Since the Broyden approximations may become unbounded they are safe-

guarded as in Biegler et al. (1995). I.e. choose a constant � and de�ne

wk =

8<
:

wk if kwkk � �

kpY;kk1=2
kpY;kk

wk
�kpY;kk1=2

kwkk
otherwise

(3.25)

Choose a sequence of positive numbers f
wk g such that
P
1

k=1 

w
k <1, and

set

�wk =

8<
:

�wk if k �wkk �
�kkpY;kk


w
k

�wk
�kkpY;kk

w
k
k �wkk

otherwise
(3.26)
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However, if the BFGS update criterion (to be discussed) is not satis�ed, wk
is recalculated by �nite di�erences:

wk = ZT
k [rxL(xk + YkpY;k; �k)�rxL(xk; �k)]

�wk = ZT
k [rxL(xk + �kYkpY;k; �k+1)�rxL(xk; �k+1)]

(3.27)

which require reevaluation of the constraint gradients at two extra points.

Biegler et al. (1995) argues that �nite di�erence updating of wk and �wk does

not occur too often. However, with inequality constraints and changes in the

active set �nite di�erence updating is likely to be required more often since

the conditions for application of the Broyden-update, see (3.36) below, may

be harder to satisfy when adding constraints to the active set. The cross

term approximations wk and �wk does not in
uence on the global convergence

properties. Hence, an eÆcient implementation may only calculate them if

the algorithm seems to approach a solution to speed up the local convergence

rate.

The auxiliary subproblems (3.8) and (3.10) from FSQP' must be adopted

before the algorithm is summarized. Since dCk is computed with J �k and d
E
k is

computed with J �k+1, no extra factorizations of Ak is needed to compute dCk
and dEk . (Since the algorithm can compute dEk after the new updates fk+1,

gk+1, ck+1, Ak+1, Yk+1, Zk+1 and Bk+1 are available, the next active set is

available to us at this stage, so we can actually compute the SQP-direction

directly (without estimating JEk as in FSQP')).

Consider the null-space approach for (3.8)

dEk+1 = Yk+1p
E
Y;k+1 + Zk+1p

E
Z;k+1 (3.28)

where pEY;k+1 2 R
mk+1 and pEZ;k+1 2 R

(n�mk+1 ) are computed from

pEY;k+1 = �(A
T
k+1Yk+1)

�1cEk+1 (3.29)

where cEk+1 ,

�
cE(xk+1)

~cI(xk+1)

�
with ~cI(xk+1) ,

�
ci
I
(xk+1) j i 2 J �k+1

	
, and the

unconstrained (observe that (3.8) only has equality constraints)

min
pE
Z;k+1

D
ZT
k+1gk+1 + �Ek+1w

E
k+1; p

E
Z;k+1

E
+ 1

2

D
pEZ;k+1; Bk+1p

E
Z;k+1

E

The approximation �Ek+1w
E
k+1 is computed in the same manner as �k+1wk+1.

Assuming a positive de�nite Bk+1 this gives

Bk+1p
E
Z;k+1 = �

�
ZT
k+1gk+1 + �Ek+1w

E
k+1

�
(3.30)
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The Maratos correction term dCk+1 has a similar decomposition, observing

that only equality constraints are present in (3.10). Construct the right-hand

side cCk =

�
cE (xk + dk)

~cI(xk + dk)

�
with ~cI(xk+dk) =

�
ci
I
(xk + dk) + kdkk

� j i 2 J �k
	
.

Compute

dCk = Ykp
C
Y;k + Zkp

C
Z;k (3.31)

where pCY;k 2 R
mk and pCZ;k 2 R

(n�mk ),

pCY;k = �(A
T
k Yk)

�1cCk (3.32)

and the unconstrained

min
pC
Z;k

D
ZT
k gk + �k(wk + wC

k ) +BkpZ;k; p
C
Z;k

E
+ 1

2

D
pCZ;k; Bkp

C
Z;k

E

giving (assuming Bk positive de�nite)

Bkp
C
Z;k = �

�
ZT
k gk + �k(wk + wC

k ) +BkpZ;k
�

(3.33)

The approximation wC
k is computed by the same method as wk was

computed (Broyden or �nite di�erences). Note that equations (3.15, 3.29,

3.32) requires solving a set of linear equations with changing right-hand sides

which can be done eÆciently, since the same factorizations apply. However,

this strategy requires evaluation of the constraint functions at three di�erent

points in addition to the �nite di�erence updates for wk and �wk above, which

may be costly.

3.3.3 The BFGS update scheme

An updating scheme for the reduced Hessian Bk = ZT
kWkZk allowing for

changes in the active set is discussed next. It is well known that the BFGS

formula

Bk+1 = Bk �
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
(3.34)

will give a positive de�nite update Bk+1 2 Rm � Rm provided that Bk is

positive de�nite and that sTk yk > 0. De�ne

sk = �kpZ;k
yk = ZT

k [rxL(xk+1; �k+1)�rxL(xk; �k+1)]� �wk
(3.35)
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When the working-set changes from iteration k to k + 1 the dimensions

of the secant vectors sk and yk will not be compatible with the dimension

of Bk. In rFSQP Bk+1 is re-initialized to I when the working set changes.

To the best of our knowledge, BFGS updates for reduced Hessian methods

with inequality constraints are not available in the literature. (The updating

scheme in SNOPT by Gill et al. (1997) updates the sparse but full HessianWk,

but applies LUSOL by Gill, Murray, Saunders, and Wright (1987) to allow

for adding and deletion of rows and columns in the working-set matrix Ak,

from which Zk is formed. Then the reduced Hessian can be produced by

computing Bk = ZT
kWkZk.) This topic is also addressed in MINOS (Murtagh

and Saunders 1995).

A similar scheme allows varying dimensions in the Broyden update (3.22).

In addition the BFGS update criterion I of Biegler et al. (1995) is imple-

mented. I.e. choose a constant 
fd > 0 and a sequence of positive numbers

f
wk g such that
P
1

k=1 

w
k < 1 (this is the same sequence as in (3.26)).

Compute sk and yk by the secant relation (3.35).

� If �wk is computed by Broyden's method (3.24, 3.26), and if both

sTk yk > 0 and

kpY;kk � (
wk )
2 kpZ;kk (3.36)

hold at iteration k, then update Bk by the BFGS formula (3.34). Oth-

erwise, set Bk+1 = Bk.

� If �wk is computed by �nite di�erences (3.27), and if both sTk yk > 0

and

kpY;kk � 
fd kpZ;kk =�
1=2
k (3.37)

hold at iteration k where �k = max fkekk ; kek+1kg, ek = xk�x�. Then
update Bk by the BFGS formula (3.34). Otherwise, set Bk+1 = Bk.

The dependence �(x�) is circumvented as in Biegler et al. (1995), noting

that the KKT condition measure must be modi�ed as in equation (3.44)

de�ned in section 3.4. The main bene�t of the scheme is that it allows

application of the following theorem from Byrd and Nocedal (1989). De�ne

cos �BFGSk =
sTkBksk

kskk kBkskk
(3.38)
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Theorem 3.1 Byrd and Nocedal (1989): Let fBkg be generated by the BFGS
scheme above, where for all k � 1, sk 6= 0 and

yT
k
sk

sT
k
sk
� m1 > 0

kykk
2

yT
k
sk
� M

(3.39)

Then there exist constants �1, �2 and �3 > 0 such that, for any k � 1, the

relations

cos �BFGSj � �1

�2 �
kBjsjk
ksjk

� �3

hold for at least
�
1
2
k
�
values of j 2 [1; k].

Since the updates are skipped for the remaining iterates; Bk+1 = Bk, all

matrices in fBkg are characterized by the theorem. This theorem applies to

the present update scheme since we are able to identify the correct active

set at a �nite index k0, see section 3.4.3, lemma 3.11.

Since adding rows and columns will only take place a �nite number of

times, the condition number will be �nite at index k0. After k0 theorem

3.1 applies directly. In practice, �nite precision numerics can impair the

�nite conditioning, and some testing and/or restarting procedure must be

implemented. The de�nition of good iterates follow as in Biegler et al.

(1995).

3.3.4 The rFSQP algorithm

This is based on algorithm FSQP' in Lawrence and Tits (2000) and algorithm

II in Biegler et al. (1995).

Algorithm 3.1 rFSQP

i. Choose constants � 2 (0; 1
2
), � 2 (2; 3), �l > 0, 0 < C� < �C�,

�D > 0, 0 < � < � 0 < 1, � > 0, � > 0, 
fd > 0 for (3.25,

3.37), 
�1 < 0 for (3.15), �0 > 0 for (3.16) and C
�
0 2

�
C�; �C�

�
for (3.9). Select a summable sequence of positive numbers f
wk g for

(3.26, 3.36). Choose a bound � > 0 for the active set identi�cation.
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Set k = 0 and select a starting point x0 2 XI , set the initial active set

J �0 =
�
i j � � < ci

I
(x0) � 0

	
. Choose the initial penalty parameter �o,

a (n�m)� (n�m) symmetric and positive de�nite matrix B0 and a

(n�m)� n starting matrix S0 for the Broyden approximation.

ii. Evaluate f0, g0, c0 and A0. Compute Y0 and Z0 from (3.13).

iii. Set �ndi�=false. Solve for the range space step pY;0 from (3.15).

iv. Compute an approximation w0 by Broyden's method (3.24,3.25)

v. Compute the damping parameter �0 2 (0; 1] from (3.19) and compute

the tilted null-space step pZ;0 and 
0 from (3.17).

vi. If (3.37) is satis�ed, but (3.36) is not satis�ed, set �ndi�=true and

recompute w0 by �nite di�erences (3.27), with �0 replaced by kKKTk
from (3.44). Further, recompute �0 from (3.19) and recompute pZ;0
and 
0 from (3.47).

vii. MAIN LOOP: De�ne the tilted SQP direction by dk = YkpY;k + ZkpZ;k
from (3.14). If dk = 0 STOP.

viii. Compute the Maratos correction term dCk from (3.31,3.32,3.33) if it

exists and satis�es


dCk 

 � kdkk. Otherwise set dCk = 0. Set �k = 1.

ix. Arc search. Test the constrained Armijo condition

��k(xk + �kdk + �2kd
C
k ) � ��k(xk) + ��kD��k(xk; dk)

s:t: ci
I
(xk + �kdk + �2kd

C
k ) � 0; i = f1; : : : ; p2g

(3.40)

x. If (3.40) is not satis�ed, choose a new �k 2 [��k; �
0�k] and go to

step (ix), otherwise set xk+1 = xk + �kdk + �2kd
C
k , and de�ne J �k+1 =�

i j � � < ci
I
(xk+1) � 0

	
from the last evaluation of cI in (3.40).

xi. Evaluate fk+1, gk+1, ck+1 and Ak+1. Compute Yk+1 and Zk+1 from

(3.13).

xii. Compute the Lagrange multiplier estimates from (3.18) for i 2 J �k+1,

set �i
I;k+1 = 0 for i =2 J �k+1. Update the weight �k+1 of the merit

function from (3.20).

xiii. Update Sk+1 from (3.22, 3.23). If �ndi�=false, calculate �wk by Broy-

den's method (3.24, 3.26), otherwise calculate �wk by �nite di�erences

(3.27).
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xiv. Compute sk and yk from (3.35). If sTk yk � 0 or if [�ndi�=true and

(3.37) is not satis�ed] or if [�ndi�=false and (3.36) is not satis�ed]

set Bk+1 = Bk. Otherwise compute Bk+1 by the BFGS update scheme

in section 3.3.3.

xv. Set �ndi�=false. Compute pEY;k from (3.29). Compute an approxi-

mation wk+1 by Broyden's method (3.24,3.25), and �k+1 2 (0; 1] from

(3.19). Compute pEZ;k from (3.30).

xvi. If (3.37) is satis�ed, but (3.36) is not satis�ed, set �ndi�=true and re-

compute wk+1 by �nite di�erences (3.27), with �k+1 replaced by kKKTk
from (3.44). Further, recompute �k+1 from (3.19) and recompute pEZ;k
from (3.30).

xvii. Select C
�
k+1 2

�
C�; �C�

�
.

If (kdkk < �l) then, compute d
E
k+1 from (3.28). Then

if


dEk+1



 � �D then set �k+1  C
�
k+1



dEk+1



2
else set �k+1  C

�
k+1 kdkk

2

else set �k+1  C
�
k+1�

2
l

xviii. Compute pY;k+1 from (3.15). Compute pZ;k+1 and 
k+1 from (3.17)

with wk+1 and �k+1 computed in step (xv,xvi). If �ndi�=false and

if (3.37) is satis�ed, but (3.36) is not satis�ed, set �ndi�=true and

recompute wk+1 by �nite di�erences (3.27), with �k+1 replaced by

kKKTk from (3.44). Further, recompute �k+1 from (3.19) and recom-

pute pZ;k+1 and 
k+1 from (3.17) with the new wk+1.

xix. Set k  k + 1 and go to step (vii)

3.4 Global and local convergence

This section is based on Lawrence and Tits (2000) and Biegler et al. (1995).

The �rst subsection summarizes KKT conditions. Subsection 3.4.2 and 3.4.3

are concerned with global convergence, i.e. that the algorithm will converge

from any starting point x0 2 XI , and local convergence, i.e. the convergence

rate when initialized within a suÆciently small neighborhood of a local min-

imizer x�. Global convergence is based on descent, while local convergence

is based on Newton's method.

Previous work on inequality constrained reduced Hessian SQP methods

include Coleman and Conn (1982b), (1982a), and Fletcher and co-workers,
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see Fletcher (1987), p. 317. In particular Byrd and Nocedal (1991) and

Biegler et al. (1995) only consider equality constraints, while SNOPT by Gill

et al. (1997) includes nonlinear inequality constraints. The convergence

properties of SNOPT are similar to the properties of NPSOL addressed in Gill,

Murray, Saunders, and Wright (1992).

The local convergence analysis in section 3.4.3 is based on Biegler et al.

(1995). I.e. by proving that the optimal active set is identi�ed, i.e. J �k = J�;�

for all k suÆciently large. A complicating factor is the updating rule for

the reduced Hessian ZT
k WkZk with varying dimension of Zk, see section

3.3.3. Still, our main focus remains on feasibility mechanisms and not on

approximations to the reduced Hessian. Changes in the active set might

be handled if we accept refactorization of the null-space matrix Zk of the

working set matrix Ak (6= Ak�1) at each major iteration. The e�ort needed

for this can be reduced by application of LUSOL, see Gill et al. (1997), Gill

et al. (1987) for further comments. In the present algorithm the choice of

the parameter � in equation (3.5) has signi�cant in
uence on the practical

performance. Choosing a large value for � causes the algorithm to stay well

away from inequalities, hence refactorizations are less frequent than what

could be anticipated. On the other hand, a large �-value causes the algorithm

to approach inequalities conservatively. Large �-values therefore seem to give

the algorithm a practical behavior more related to interior methods than to

conventional SQP methods.

Observe that eliminating variables, by considering the equality con-

straints only, cannot lead to superlinear convergence, since the Hessian of

the Lagrangian

r2L� = r2f(x�) +

p1X
i=1

�
�;i
E
r2ci

E
(x�) +

X
i2J�;�

�
�;i
I
r2ci

I
(x�) (3.41)

also depends on the active inequality constraints (note the in
uence of strict

complementary slackness, assumption 3.4). Superlinear convergence can

only be achieved if the reduced Hessian approximation scheme Bk converges

to the projection of r2L� in the tangent space of active constraints at x�.

De�ne the projection onto the tangent space of equality constraints and

active inequality constraints by

P(xk) = I �A(xk)
�
A(xk)

TA(xk)
��1

A(xk)
T

The corresponding projection onto the range space of A(xk) is written

Q(xk) = I �P(xk)
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Denote P(xk) = Pk andQ(xk) = Qk. From Boggs and Tolle (1995), theorem

3.5, two-step superlinear convergence of xk ! x� requires

lim
k!1



Pk �Wk �r2L�
�
Pk (xk+1 � xk)




kxk+1 � xkk

= 0

with superlinear convergence occurring for tangential convergence, i.e. if

lim
k!1

Qk (xk+1 � xk)
kxk+1 � xkk

= 0

I.e. if there are active inequality constraints at x� we will not be able to

achieve superlinear two-step convergence by excluding inequality constraints

in the matrix A(xk). In addition, the conditions for theorem 3.5 in Boggs

and Tolle (1995) in the reduced Hessian case requires that the null-space

matrices Zk are smooth, i.e. that

kZ(xk)� Z(x�)k = O (kxk � x�k) (3.42)

We prove in the following that for k large enough that J �k = J�;�, hence

(3.42) can be achieved near the solution x� by using the QR-factorization

or updating the factors of this, see Nocedal and Wright (1999), p. 567, for

further comments. Alternative implementations from Biegler et al. (2000)

and Xie and Byrd (1999) for the decomposition (3.13) below have not been

shown to satisfy (3.42). Note that close to the solution refactorization is

rarely needed once the optimal active set has been identi�ed. Hence, this

may not be an important issue in practice.

3.4.1 KKT conditions

The KKT-conditions of the original NLP (3.1) are

g(x�) +
p1P
i=1

�
�;i
E
rci

E
(x�) +

p2P
i=1

�
�;i
I
rci

I
(x�) = 0

ci
E
(x�) = 0; i = f1; : : : ; p1g

ci
I
(x�) � 0; i = f1; : : : ; p2g

�
�;i
I
ci
I
(x�) = 0 and �

�;i
I
� 0; i = f1; : : : ; p2g

(3.43)

A measure of the error �k = max fkekk ; kek+1kg, ek = xk � x� used in

equation (3.37) must be speci�ed without knowledge of x� to be practical.

Denote the pseudo-inverse of ZT as Z+;T , then Z+;TZT = I. The �rst line

of the KKT conditions (3.43) is restated as

Z+;T
�

ZT
�
(g� +A���) = Z+;T

�
ZT
�
g� = 0
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implying ZT
�
g� = 0. Then a distance measure of (3.43) can be stated as

kKKTk ,


ZT

k gk


+ kcE;kk+ k�I;kcI;kk+ kmax f0; cI;kgk+ kmin f0; �I;kgk

(3.44)

We need to establish the relationship between the SQP direction d0k from

(3.3) and the feasible direction dk = Y pY;k + ZpZ;k from (3.15, 3.47), when

implemented as a reduced gradient method. It is well known that when Wk

is positive de�nite and X 6= ; that d0k (unique due to convexity) is a KKT

point for (3.3) i� 9(�0
E;k; �

0
I;k) such that

Wkd
0
k + gk +

p1P
i=1

�
0;i
E;krc

i
E
(xk) +

p2P
i=1

�
0;i
I;krc

i
I
(xk) = 0

ci
E
(xk) +

D
rci

E ;k; d
0
k

E
= 0; i = f1; : : : ; p1g

ci
I
(xk) +

D
rci

I;k; d
0
k

E
� 0; i = f1; : : : ; p2g

�
0;i
I;k

�
ci
I
(xk) +

D
rci

I;k; d
0
k

E�
= 0 and �

0;i
I;k � 0; i = f1; : : : ; p2g

(3.45)

The KKT-conditions for the reduced gradient problem in Biegler et al.

(1995) subject to inequality constraints and treated as an EQP are

ZT
kWkZkp

0
Z;k +

�
ZT
k gk + �kwk

�
= 0 (3.46)

The pZ;k and 
k relations in (3.17) are motivated by considering the following

reduced qp

min
pZ;k;
k

1
2
hpZ;k; BkpZ;ki+ 
k

s:t:


ZT
k gk + �kwk; pZ;k

�
� 
k

(3.47)

The KKT-conditions for this are

ZT
kWkZkpZ;k + �k

�
ZT
k gk + �kwk

�
= 0

�k = 1

ZT
k gk + �kwk; pZ;k

�
� 
k

�k
�

ZT
k gk + �kwk; pZ;k

�
� 
k

�
= 0 and �k � 0

(3.48)

These conditions are always consistent since (pZ;k; 
k) = (0; 0) satis-

�es the constraints, and always gives a unique solution due to convex-

ity, see lemma 3.1 below. This guarantees the existence of the associated

qp-multiplier �k. Assuming ZT
k WkZk positive de�nite, bounded �k, and

assumption 3.2, pZ;k and 
k can be computed from (3.17) directly with

ZT
k WkZk = Bk.
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3.4.2 Global convergence

It is established in the following that a sequence fxkg generated by the al-

gorithm has accumulation points that are KKT points of the original NLP.

We start with some modi�cations of some of the lemmas in Lawrence and

Tits (2000) to incorporate the equality constraints, range-null space decom-

position and reduced Hessian. These lemmas state that solving the problem

(3.15, 3.47) resemble solving the original NLP with xk 2 XI 8k and x� 2 X.

Note that most of the results in the following represent minor modi�cations

to the results in Lawrence and Tits (2000), but that the multipliers are han-

dled di�erently since we use the estimate (3.18) and not the qp-multipliers.

We maintain the same structure as in Lawrence and Tits (2000) to facilitate

comparison.

Assume in the sequel a positive de�nite and bounded reduced Hessian

approximation Bk = ZT
k WkZk;

Assumption 3.5 K1 kpZ;kk
2 � hpZ;k; BkpZ;ki � K2 kpZ;kk

2, 8pZ;k 2 R(n�mk ),

K1 and K2 strictly positive.

This assumption is introduced for ease of exposition, since it is satis�ed

for the BFGS update rule we use, see discussion in section 3.3.3 in conjunction

with theorem 5.6 in Biegler et al. (1995).

Assumption 3.6 Assume that there exists positive constants 
a and �0
such that 


Y (xk) �AT (xk)Y (xk)

�
�1



 � 
a; kZ(xk)k � �0 (3.49)

for all xk 2 XI . This implies kYkpY;kk � 
a kckk. Assume also that (3.39)

holds for all k � 1 when Bk is updated, and that there exist a constant �c > 0

such that for all k

kwkk � �c kckk
1=2

(3.50)

This is satis�ed for both �nite di�erences and Broyden updating, see

Biegler et al. (1995), section 4, for a discussion. Note that assumption 3.6 is

related to assumption 3.3 (LICQ) since AT
k Yk must have linearly independent

columns to be invertible. The implementation of rFSQP handles this by using

a feature of the LU-decomposition routine MA28AD. I.e. linaerly dependent

rows are included into the null-space which guarantees full rank of AT
k Yk.
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Lemma 3.1 Suppose assumptions 3.1-3.6 hold. Then, since Bk is symmet-

ric positive de�nite, if xk 2 XI , then pZ;k is well-de�ned and (pZ;k; 
k) is

the unique KKT point of (3.47). Furthermore, pZ;k is bounded over compact

subsets of XI � P � R+ , where P is the set of symmetric positive de�nite

n�mk � n�mk matrices and R+ the set of nonnegative reals. In addition

dk = YkpY;k+ZkpZ;k exists and is unique and bounded over XI�R�P�R+

where R is the set of nonsingular mk �mk matrices de�ned by AT
k Yk and

the decomposition of Ak in (3.13).

Proof : Observe that (pZ;k; 
k) = (0; 0) always satis�es the inequality con-

straint of (3.47). Boundedness of pZ;k and 
k is a consequence of the Frank-

Wolfe theorem (Frank and Wolfe 1956), (Perold 1980) and assumption 5:

"Every quadratic program whose objective function is bounded below on

the feasible set has a �nite global minimizer." Uniqueness follows from as-

sumption 3.5 (convexity). I.e. (pZ;k; 
k) is well-de�ned. By theorem 6 in

Fiacco and McCormick (1990) the solution is continous. The multiplier �k
is obviously bounded. Due to non-singularity of (AT

k Yk) the range-space

step pY;k is well-de�ned, unique, continous and bounded for all bounded ck
which are bounded on the compact the set XI by assumption 3.2. Then

dk = YkpY;k + ZkpZ;k exists and is continous, unique and bounded as well.

�

This extends lemma 1 of Lawrence and Tits (2000) to include equal-

ity constraints, partitioning of dk in (3.14) and the reduced Hessian Bk

and establishes existence, uniqueness, continuity and boundedness of dk =

YkpY;k+ZkpZ;k. The lemma characterizes the solution of the problem (3.47),

which is utilized to characterize the solution of (3.17) in lemma 3.2.

Lemma 3.2 Suppose assumptions 3.1-3.6 hold. Then, given Bk symmetric

positive de�nite and �k � 0

i) 
k � 0 8xk 2 XI . Moreover, 
k = 0 i� pZ;k = 0

ii) dk = YkpY;k + ZkpZ;k = 0 i� xk is a KKT point for the NLP (3.1),

where 
k and pZ;k are de�ned by equation (3.47), pY;k is de�ned by

(3.15) and dk by (3.14).

Proof: To prove i) observe that since (pZ;k; 
k) = (0; 0) is always feasible

for (3.47) the optimal value is non-positive. Since Bk is positive de�nite we

have hpZ;k; BkpZ;ki � 0, i.e. 
k � 0. If pZ;k = 0 the inequality of (3.47)

gives 
k = 0 by squeezing. Finally suppose 
k = 0, then for xk 2 XI ,

Bk � 0 we observe that since pZ;k = 0 is feasible it is also optimal due to the
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non-negativeness of the objective. Convexity gives uniqueness of pZ;k = 0.

To prove ii) suppose that dk = 0, from (3.14) this solution is satis�ed by

choosing YkpY;k = �ZkpZ;k. In detail, (3.13) gives

�
I

0

�
pY;k = �

�
�C�1k Nk

I

�
pZ;k

The last n�mk rows implies pZ;k = 0, which inserted in the �rst mk rows

implies pY;k = 0. We have

dk = 0() (pY;k; pZ;k) = (0; 0) (3.51)

If Ak is factorized by QR-factorization the relation (3.51) follows from the

direct sum span(Ak) = R(AT
k ) � N (Ak). When (pY;k; pZ;k; 
k) = (0; 0; 0)

then by (3.48) there exist a scalar multiplier �k � 0 such that

�k
�
ZT
k gk + �kwk

�
= 0

�k = 1
(3.52)

Thus, since by the selection in step (x) of algorithm rFSQP ci
I
(xk) = 0

8i 2 J �k, the last line of the optimality conditions (3.52) become �
T
I;kcI(xk) =

0 since �k's estimated by (3.18) are bounded, and we choose �i
I;k = 0,

8i =2 J �k. Also pY;k = 0 implies wk = 0 if either Broyden's method or �nite

di�erences is used. The �rst line of (3.52) then becomes ZT
k gk = 0. We have

ZT

k gk


 =



ZT
k (gk +Ak�k)



 = 0. Hence, the KKT-conditions (3.43) are

satis�ed by following the derivation of (3.44). To prove the converse part of

ii) note that if xk is a KKT point for the NLP, then the NLP's KKT-conditions

(3.43) and (3.48) show that (pY;k;pZ;k; 
k) = (0; 0; 0) is a KKT point of the

reduced gradient problem. Assumption 3.3 implies uniqueness of ��. �

This adapts lemma 2 of Lawrence and Tits (2000) to our setting. The

lemma is concerned with problem (3.47). We observe that the KKT-conditions

(3.48) imply (3.17), hence statements about the solution to (3.47), are

equally valid for pZ;k and 
k computed by (3.17).

The next two lemmas establish that the line search is well de�ned.

Lemma 3.3 Suppose assumptions 3.1-3.6 hold. Suppose xk 2 XI is not a

KKT point for the NLP, Bk is symmetric positive de�nite and �k > 0. Then

i) D��(xk; dk) < 0, and

ii)


rci

I
(xk); dk

�
< 0, for all i 2 J �k
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iii) ��(xj)� ��(xj+1) � 
�

�


ZT
j gj




2 + kcjk1
�
for the good iterates j and

constant �j in (3.11).

This lemma is modeled after section 3.4 and lemma 4.1 of Biegler et al.

(1995), and replaces lemma 3 in Lawrence and Tits (2000). The proof is

almost identical to the proof in Biegler et al. (1995), and is given in ap-

pendix B for completeness. Item iii) guarantees the existence of a non-zero

steplength for non-stationary points. The use of Taylor's theorem for the

continous non-di�erentiable merit function locally is justi�ed by observing

that existence of the directional derivative in a point implies existence in a

small "neighbourhood" in the relevant direction of the point by continuity.

This is also assumed implicitly in Biegler et al. (1995). A related alternative

to this is to apply the mean-value theorem locally. The lemma allows direct

application of theorem 4.2 in Biegler et al. (1995).

From the proof in appendix B we get the usual update rule for the

penalty parameter �k

�k =

�
�k�1 if �k�1 � k�kk1 + 2�

k�kk1 + 3� otherwise
(3.53)

The update-rule for �k follows by choosing �k = min
n
1; �̂k

o
where �̂k is

de�ned by solving equation (B.4) with equality.

Lemma 3.4 Suppose assumptions 3.1-3.6 hold. Then, if �k = 0, xk is a KKT

point for the NLP (3.1) and the algorithm will stop in step (vii) at iteration

k. On the other hand, whenever the algorithm does not stop in step (vii),

the line search is well de�ned, i.e. step (ix) is satis�ed for a step �kj > 0

for some �nite kj.

Proof: Suppose that �k = 0. Then k > 0 and, by step (xvii), either dEk = 0,

or dk�1 = 0. The latter cannot hold due to step (vii). If dEk = 0 equation

(3.30) with (pEY;k; p
E
Z;k) = (0; 0) implies



ZT
k+1gk+1



 = 0. Lemma 3.3 ii)

gives feasibility of ci
I
(xk). For all i 2 J �k we have ci

I
(xk) = 0, and for i =2 J �k

we are free to choose �
E;i
k = 0, hence �Ek cI(xk) = 0. We have ci

E
(xk) = 0

from (3.29) whenever pEY;k = 0. Since the KKT measure (3.44) is zero we

have that xk is a KKT point for the NLP with multipliers ��;i from (3.18) for

i 2 J �k�1 and �
�;i = 0 for i =2 J �k�1. By lemma 3.2 item ii) dk+1 = 0 and the

algorithm will stop in step (vii). The �rst claim is proved. Also, we have

established that �k > 0 whenever step (ix) is reached. Lemma 3.3 (descent

and feasibility) and assumption 3.2 (continuity) gives the second claim. �
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This is equivalent to lemma 4 in Lawrence and Tits (2000). Lemma 3.3

and 3.4 show that the algorithm is well de�ned. Lemma 3.2 shows that if the

algorithm generates a �nite sequence terminating at a point xN , then xN is

a KKT point for the NLP (3.1). We now turn to consider in�nite sequences

fxkg, i.e. that �k > 0 for all k by lemma 3.4.

Lemma 3.5 Suppose assumptions 3.1-3.6 hold. Then the sequence f�kg
generated by algorithm rFSQP is bounded. Further, the sequence fdkg is

bounded on subsequences on which fxkg is bounded.

Proof: The �rst claim follows from step (xvii) of algorithm rFSQP. When �k
is bounded, so is dk by lemma 3.1 under assumption 3.5 on compact subsets

XI �R�P � R+ . �
This is lemma 5 of Lawrence and Tits (2000), and neither the lemma

nor the proof is a�ected by the reduced gradient approach. We restate proof

since it is very short.

Lemma 3.6 Suppose assumptions 3.1-3.6 hold. Suppose K is an in�nite

index set such that xk
k2K! x� 2 X; f�kg is bounded on K, and dk

k2K! 0.

Then J �k � J
�;�, for all k 2 K, k suÆciently large and the multiplier sequence

f�kg is bounded on K. Further, given any accumulation point �� � 0 of

f�kgk2K, (0; 0) is the unique solution of (3.17) when pY;k = 0.

Proof: From (3.51) pY;k
k2K! 0, pZ;k

k2K! 0. We have 
k
k2K! 0 by squeezing

in (3.17). Arguing as in Lawrence and Tits (2000) we have for an i0 =2 J�;�

and a Æi0 > 0 that

ci
0

I
(xk) +

D
Y T
k rc

i0

I;k; pY;k

E
� 
k�1�k � �

Æi0

2
< 0

I.e. i0 =2 J �k for all k 2 K and k suÆciently large, hence J �k � J�;� is proved.

Boundedness of f�kg follows from (3.18). The third claim follows by taking

limits in (3.17) with pY;k = 0 proving that (0; 0) is the unique solution. �

This is equivalent to lemma 6 of Lawrence and Tits (2000).

Lemma 3.7 Suppose assumptions 3.1-3.6 hold. Then, if K is an in�nite

index set such that dk
k2K! 0, all accumulation points of fxkgk2K are KKT

points for the NLP (3.1).

Proof: Suppose K0 � K is an in�nite index set on which xk
k2K0

! x� 2 X. In

view of assumption 3.5 and lemma 3.5, assume, without loss of generality
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that Bk
k2K0

! Z�;TW �Z�, a positive de�nite matrix, and �k
k2K0

! �� � 0. In

view of lemma 3.6, (pY;k; pZ;k; 
k) = (0; 0; 0) is the unique solution to (3.15,

3.47), which is a KKT point satisfying kKKTk = 0 in (3.44) by lemma 3.2. �

This is equivalent to lemma 7 of Lawrence and Tits (2000). The proof is

unaltered and follows from lemma 3.2 and 3.6 herein. Note that requiring

Bk
k2K0

! Z�;TW �Z� is less strict than requiring Wk
k2K0

! W �.

Theorem 3.2 Under assumptions 3.1-3.6, algorithm rFSQP generates a se-

quence fxkg for which all accumulation points are KKT points for the NLP

(3.1).

Proof: Suppose K is an in�nite index set on which xk
k2K! x�. In view of

lemma 3.5 and assumption 3.5 we may assume without loss of generality

that dk
k2K! 0, �k

k2K! �� � 0 and Bk
k2K! Z�;TW �Z�. If �� = 0 step (xvii)

of algorithm rFSQP implies the existence of an in�nite index set K0 � K
such that either dEk

k2K0

! 0 for all k 2 K0, or dk�1
k2K0

! 0. If dk�1
k2K0

! 0,

xk�1
k2K0

! x�, since jxk � xk�1j � 2 jdk�1j
k2K0

! 0. Lemma 3.7 implies that x�

is a KKT point. When dEk
k2K0

! 0 from step (xvii) and J �k � J
�;� for all k 2 K0

from lemma 3.6. Boundedness of f�Ek g follows since we are free to choose

them as the estimates (3.18). Taking limits in (3.29, 3.30) we conclude from

ZT
k gk



 k2K0

! 0, kckk1
k2K0

! 0 and (3.44), that x� is a KKT point for the NLP.

For �� > 0 lemma 3.3 applies and the claim follows from theorem 4.2

in Biegler et al. (1995). I.e. bounded fk�kkgk2K implies that there exist a

k0 such that �k is constant for k > k0 by the update rule (3.53). Consider

k > k0 and using lemma 3.3 iii)

��(xk0)� ��(xk+1) =
kP

j=k0

(��(xj)� ��(xj+1))

� 
�
P

j2J\[k0;k]

�


ZT
j gj




2 + kcjk1
�

where J is the set of good iterates as de�ned by Biegler et al. (1995). By

descent from lemma 3.3 i) and assumption 3.2 �� is bounded below and

the sum is �nite. The multiplier estimate (3.18) at x� and assumption 3.3

implies kKKTk = 0 in (3.44). �

This is equivalent to theorem 1 of Lawrence and Tits (2000), and the

�rst part concerning the case �� = 0 is restated for the sake of completeness.
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3.4.3 Local convergence

The local convergence section in Lawrence and Tits (2000) is mainly con-

cerned with restating global convergence under stronger 2nd order condi-

tions, and proving that the FSQP' direction dk + dCk converges to the SQP

direction d0k. Once this is established a step-length of 1 is accepted locally

and 2-step superlinear convergence follows by a standard result. On the

other hand, the local convergence analysis of Biegler et al. (1995) is mainly

concerned with establishing 1-step superlinear convergence. This is possible

due to the approximation terms wk and �wk, and a detailed order analysis.

Note that the Maratos correction term dCk in FSQP' does not handle the

Maratos e�ect for the l1-merit function used in the present algorithm. As in

Biegler et al. (1995) we implement a standard watch-dog strategy to handle

the Maratos e�ect, and prove in proposition 3.1 that the constraint in (3.40)

does not prevent a step-size of one to be accepted for a large enough k.

The regularity assumptions are strengthened;

Assumption 3.7 The functions f; ci
E
; ci
I
: Rn ! R, for all i are three times

continuously di�erentiable on XI , and their Hessians are Lipschitz contin-

uous in a neighborhood of x�.

De�nition 3.1 A point x� satis�es second order suÆciency conditions with

strict complementary slackness for the NLP (3.1) if there exist a multiplier

vector �� 2 Rp1+p2 such that;

� The pair (x�; ��) satis�es (3.43), i.e. x� is a KKT point for the NLP (3.1).

� ��;i > 0 8i 2 J�;�

� ZT
�
r2
xxL (x�; ��)Z� is positive de�nite on the subspace

�
rci

E
(x�) j 8i 2 f1; : : : ; p1g

	
[
�
rci

I
(x) j i 2 J�;�

	
In section 3.4.2, we proved that every accumulation point of fxkg is a

KKT point of the NLP (3.1). We de�ne the reduced Hessian of the Lagrangian

function

Gk = ZT
k r

2
xxL(xk; �k)Zk

To prove that the sequence fxkg converges to a KKT point x�, we need

the following assumptions.

Assumption 3.8 The sequence fxkg has an accumulation point x� which

satis�es the second order suÆciency conditions with strict complementary

slackness.
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Assumption 3.9 Biegler et al. (1995) (assumption 5.1): The point x� is

a local minimizer for the NLP (3.1), at which the following conditions hold:

i) For all q 2 Rn�m, q 6= 0, we have qTG�q > 0.

ii) There exists constants 
a, �0 and 
c such that, for all xk in a neighbor-

hood of x�, 


Y (xk) �A(xk)TY (xk)��1


 � 
a
kZ(xk)k � �0


[Y (xk) Z(xk)]�1


 � 
c

(see assumption 3.6 as well.)

iii) Z(xk) and �(xk) are Lipschitz continuous in a neighborhood of x�, i.e.

there exist constants 
� and 
Z such that

k�(x)� �(z)k � 
� kx� zk
kZ(x)� Z(z)k � 
Z kx� zk

for all x; z near x�.

Item numbers i)-iii) follow item numbers iii)-v) in Biegler et al. (1995).

Assumption 3.9 v) requires that we are able to identify the correct active set

J�;� for a �nite k0. Then, for a k1 � k0, for all k � k1 the assumption requires
that any possible refactorization of A(xk) will result in a continuous Z(xk).

This assumption can be satis�ed if no further factorizations are needed for

all k � k1. This holds locally by continuity, i.e. a �nite condition number of

A(x�) will give a �nite condition number of AT
k Yk in a neighborhood of x�.

Then there is no need to refactorize A(xk). If the algorithm is implemented

with refactorization at each iteration, the assumption is violated unless QR-

factorizations are employed.

Assumption 3.10 Biegler et al. (1995) (assumption 5.2): The line search

has the property that, for all large k, ��((1�#)xk�#xk+1) � ��(xk) for all
# 2 [0; 1]. In other words, xk+1 is in the connected component of the level

set fx j ��(x) � ��(xk)g that contains xk.

As in Biegler et al. (1995) assumption 3.10 is only likely to hold locally

with practical line search methods. The presence of inequalities does not

in
uence on assumption 3.10 since we are always feasible with respect to

them in algorithm rFSQP. Thus assumption 3.10 applies for all k � k1, and

we can assume that lemma 4.1 and 4.2 of Byrd and Nocedal (1991) (lemma

4.1 in Xie and Byrd (1999)) hold in the level sets de�ned by assumption

3.10.
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Lemma 3.8 Suppose assumptions 3.1 and 3.3-3.10 hold. Then the entire

sequence generated by algorithm rFSQP converges to a point x� satisfying

de�nition 3.1.

Proof: Note that points x� satisfying de�nition 3.1 are isolated by theorem

2.1 in Robinson (1974) under assumption 3.3. I.e. there exists a ball B(x�; ")
containing x� in its interior as the only KKT point. From assumption 3.8 the

sequence has such an accumulation point x�. By descent from lemma 3.3 i)

and assumption 3.7 �� is bounded below, then we have that the sequence

f��gk is bounded below. By the Armijo condition (3.40) we have that

f�kD��k(xk; dk)g ! 0, giving

f�k hgk; dki � �k�k kckk1g ! 0

where �k > 0 by (3.53). If gk = 0 and ck = 0, we are at a KKT point according

to (3.44) and there is nothing to prove. Assume gk 6= 0, then since ck 6= 0

implies dk 6= 0 by (3.15), it suÆces to consider the �rst part, i.e. we have

f�k hgk; dkig ! 0, implying f�kdkg ! 0 since gk 6= 0. We have

jxk+1 � xkj =
���kdk + �2kd

C
k

��
� 2�k jdkj

by step (viii) and 0 < �k � 1. Obviously jxk+1 � xkj ! 0 for large enough

k. I.e. kxk+1 � xkk = kxk+1 � x� + x� � xkk � kxk+1 � x�k + kxk � x�k <
"
2
+ "

2
= ", and we cannot leave B(x�; ") without creating another clusterpoint

and hence another KKT point in B(x�; "). �
This is equivalent to lemma 8 of Lawrence and Tits (2000). Observe

that the lemma is concerned with the case where the algorithm rFSQP never

stops in step (vii). The proof follows Panier and Tits (1987), (1993).

The next lemmas guarantee that the sequence
�
dk + dCk

	
approach the

sequence
�
d0k
	
of ordinary SQP directions suÆciently fast, where d0k =

�
p0Y;k; p

0
Z;k

�
is the solution to the unperturbed problem (3.46) with p0Z;k = pZ;k.

Lemma 3.9 Suppose assumptions 3.1 and 3.3-3.10 hold. Assume that the

sequence fxkg converges to a KKT point x�. Then d0k ! 0 and �0k ! ��.

Proof: At x� we have from (3.43) that ZT
�
g� = 0, ci

I
(x�) � 0, �

�;i
I
ci
I
(x�) = 0

and �
�;i
I
� 0; i = f1; : : : ; p2g. Since cE(x

�) = 0 and ci
I
(x�) = 0 8i 2

J�;� continuity and (3.15) with ck ,
�
cT
E
(xk) ~cT

I
(xk)

�T
and ~cI(xk) ,�

ci
I
(xk) j i 2 J �k

	
, imply p0Y;k ! 0 implying wk ! 0. Assumptions 3.2, 3.5

URN:NBN:no-1287



102 rFSQP - a feasible SQP method

and 3.6 gives strict convexity and boundedness of (3.46), implying p0Z;k !
0 by (3.44). Evidently all multipliers estimated by (3.18) will converge

since (Y T
k Ak)

�1Y T
k is a left-inverse of Ak, and g

� = �A��� by (3.43), then

assumption 3.3 and 3.8 gives a unique �� satisfying strict complementary

slackness. Assumption 3.2 implies that LICQ holds in a small neighborhood

of x�, and �0k ! �� follows. �

This is equivalent to lemma 9 of Lawrence and Tits (2000) modi�ed

to allow for the decomposition. The proof partly follows Panier and Tits

(1987). If


dEk+1



 > 0 and kdkk > 0, then we know from step (xvii) that

�k > 0. If kdkk = 0 the algorithm will stop in step (vii). Comparing (3.29,

3.30) with (3.44), we observe that


dEk+1



 = 0 can only occur at KKT points,

and by lemma 3.2, the algorithm would have stopped at step (vii). Hence,

�k > 0 can be assumed for all xk 6= x�.

Lemma 3.10 Suppose assumptions 3.1 and 3.3-3.10 hold. Then, if K is

a subsequence on which f�kg converges, say to �� � 0, then dk ! 0 and


k ! 0.

Proof: We prove that (dk; 
k)
k2K! (0; 0) by contradiction. I.e. suppose

that on some in�nite index set K0 � K that (dk; 
k) is bounded away from

zero. Assumption 3.5 allows the assumption Bk
k2K0

! B� without loss of

generality. When assumption 3.8 holds at x� lemma 3.2 ii) and (3.51) imply

(p�Y ; p
�

Z) = (0; 0). Assumption 3.7 implies for any xk
k2K0

! x� that pZ;k
k2K0

! 0,


k
k2K0

! 0. Clearly pY;k
k2K0

! 0 by (3.15) since kc(xk)� c(x�)k
k2K0

! 0 by

continuity, and the contradiction proves the claim.

Now suppose pZ;k 9 0. Since fBkg and f�kg are bounded, there exists
an in�nite index-set K on which fBkg and f�kg converge and pZ;k is bounded

away from zero. This contradicts pZ;k
k2K0

! 0 established above, i.e. pZ;k ! 0.

Then 
k ! 0 by squeezing in (3.47). A similar argument gives pY;k ! 0,

hence dk ! 0 by (3.14). �

This is equivalent to lemma 12 of Lawrence and Tits (2000) modi�ed

to allow for the decomposition. This lemma is included to show that as-

sumption 3.8 does not inhibit convergence. The next lemma shows that we

eventually identify the correct active set.

Lemma 3.11 Suppose assumptions 3.1 and 3.3-3.10 hold. Then, for all k

suÆciently large J �k = J�;�.

Proof: Since f�kg is bounded and lemma 3.10 implies (dk; 
k) ! (0; 0),

lemma 3.6 implies J �k � J�;� for all k suÆciently large. Choose an i0 2 J�;�.
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By assumption 3.7 we have ci
0

I;k ! ci
0

I;�. Hence J �k ! J�;� asymptotically.

Then for any � > 0 we will have
���ci0
I;k

��� > �� for all k large enough. Then,

since xk 2 XI 8k and i0 was arbitrarily, J �k = J�;� for all k large enough. �

This is equivalent to lemma 13 of Lawrence and Tits (2000) modi�ed

to allow for the decomposition. In FSQP' the qp-multipliers are used to

identify the correct active set as done by Powell (1978). In rFSQP we use

�-active constraints J �k, and prove by continuity of ck that asymptotically

J �k ! J�;�. Then J �k will be stable for all large enough k. Note that the

complementary slackness assumption was not utilized in the proof. Since

there exists a �nite k0 such that J �k = J�;� for all k � k0 we have an equality

constrained problem. Identi�cation of the optimal active set allows us to

treat the problem as equality constrained locally (see Powell (1978)), and

the local analysis will follow directly from Biegler et al. (1995) and Byrd and

Nocedal (1991), provided that our tilted direction approach the ordinary SQP

direction d0k suÆciently fast, and that the constrained line-search accepts a

unit step-length. These provisions are proved in the following.

Identi�cation of the correct active set in full-space methods is important

since it says that the qp actually solves the problem in the correct tangent

space. When we solve for pY;k from (3.15) we always satisfy this, provided

that we pick the correct active set in step (x) of algorithm rFSQP. Thus,

a pre-assigned active set strategy depends on accurate identi�cation of the

correct active set near the solution. Choosing the �-active set J �k+1 from

(3.5) in step (x) of algorithm rFSQP, identi�cation of the optimal active set

occurs when the algorithm converges to a KKT point. The bound � > 0

can be chosen as the nonlinear inequality feasibility tolerance featol and is

typically a small number.

Lemma 3.12 Suppose assumptions 3.1 and 3.3-3.10 hold. For all k suÆ-

ciently large, dEk is uniquely de�ned and dEk = d0k.

Proof: Since (3.29) with the associated cEk+1 equals equation (12) in Biegler

et al. (1995), augmented with the additional active inequalities, pEY;k = p0Y;k
follows. The estimate pEZ;k is de�ned as the unique solution of (3.30), where

uniqueness follows from assumption 3.5. Then pEZ;k = p0Z;k follows since

(3.30) is identical to (3.46). Note that �Ek+1 and wE
k+1 are computed by

the same relations as �k+1 and wk+1, see steps (xv,xvi) in algorithm rFSQP.

Uniqueness and dEk = d0k then follow from (3.28). �

This is equivalent to lemma 15 of Lawrence and Tits (2000) modi�ed to

allow for the equality constraints. The lemma shows that dEk is a "good"
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estimate of the SQP direction d0k, which is obvious since in fact it is the

SQP-direction.

Lemma 3.13 Suppose assumptions 3.1 and 3.3-3.10 hold. Then, �k ! 0.

Proof: This follows from step xvii of algorithm rFSQP since by lemma 3.10

and 3.12 fdkg and
�
dEk
	
both converge to 0. �

This is lemma 16 of Lawrence and Tits (2000). The proof is unchanged.

Note that the lemma establishes that �k actually converges, a property that

has been assumed so far.

We now consider the approximation error between dk, d
C
k and d0k.

Lemma 3.14 Suppose assumptions 3.1 and 3.3-3.10 hold. Then,

i) �k = O
�

d0k

2�

ii) pY;k = p0Y;k +O
�

d0k

2� and pZ;k = p0Z;k

iii) dk = d0k +O
�

d0k

2�

iv) 
k = O
�

d0k

�

Proof: �k = O
�

d0k

2� follows without modi�cations from Lawrence and

Tits (2000), i.e. by step (xvii) of algorithm rFSQP: Lemma 3.12 gives ex-

istence and uniqueness of dEk = d0k. Lemma 3.10 and 3.9 ensure that step

(xvii) of algorithm rFSQP chooses �k = C
�
k



dEk 

2 for all k suÆciently large,

thus item i) follows.

From equation (3.17) and (3.46) pZ;k = p0Z;k. From (3.15) and the asso-

ciated ck we have

(AT
k Yk)pY;k = �ck = �

�
cE;k
cI;k

�
�

"
0


k�1�kejJ�
k
j

#

= �c0k �

"
0


k�1�kejJ�
k
j

#

where ejJ�
k
j is a vector of ones of length jJ

�
kj. We have pY;k = p0Y;k+O(



d0k

2),
since 
k�1 < 0 away from KKT points by lemma 3.2. By item ii) dk =

Ykp
0
Y;k + Zkp

0
Z;k + O(



d0k

2) = d0k + O(


d0k

2) for all k suÆciently large.

From inequality (3.47) we have


ZT
k gk + �kwk; pZ;k

�
� 
k � 0. By lemma

5.8 in Biegler et al. (1995), wk = O(pY;k), 
k � 0, assumption 3.2, and using
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c


d0k

2 � d(


p0Y;k


2+ 


p0Z;k





p0Y;k


+ 


p0Z;k


2), we have from item ii) that

j
kj � c1 kpZ;kk+ c2 kpZ;kk kpY;kk

� c1




p0Z;k


+ c3




p0Z;k


 (


p0Y;k


+ 


p0Y;k


2 + 


p0Z;k





p0Y;k


+ 


p0Z;k


2)
= c1




p0Z;k


+ c3




p0Z;k





p0Y;k


+ c3




p0Z;k





p0Y;k


2 + c3




p0Z;k


2 


p0Y;k



+ c3




p0Z;k


3
Now, since for a; b � 0

(a+ b) � a

(a+ b)2 � 2ab

(a+ b)3 � a2b+ ab2 + b3

we have, writing (a+ b) = (



p0Z;k


+ 


p0Y;k


)

j
kj � c1(



p0Z;k


+ 


p0Y;k


) + c4(




p0Z;k


+ 


p0Y;k


)2 + c5(



p0Z;k


+ 


p0Y;k


)3

then 
k = O
�


p0Z;k


+ 


p0Y;k


� = O �

d0k

� by (3.51). �

This is equivalent to lemma 17 of Lawrence and Tits (2000) modi�ed to

allow for the decomposition.

Lemma 3.15 Suppose assumptions 3.1 and 3.3-3.10 hold. Then dCk =

O
�

d0k

2�.

Proof: Let ~cI;k =
�
ci
I
(xk + dk) + kdkk

� j i 2 J�;�
�T
. Then, for ti 2 (0; 1)

~cI;k = ci
I
(xk) +



rci

I
(xk); dk

�
+
1

2



dk;r2ci

I
(xk + tidk)dk

�
+ kdkk

�

when dk = YkpY;k + ZkpZ;k, we have by (3.15), (3.16), ZT
k rc

i
I;k = 0 8i 2 J �k

and lemma 3.11 for i 2 J�;� and k suÆciently large

= �k
k�1 +O(kdkk2) + kdkk�

and from lemma 3.14

= O(


d0k

2)O(

d0k

) +O(kdkk2) +O(kdkk�)

= O(


d0k

2)
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since � > 2. We have from (3.32), assumption 3.6 and the Broyden safe-

guards (3.25, 3.26) (see also lemma 5.8 in Biegler et al. (1995)) that pCY;k =

O([cE(xk + dk) ~cI;k]) = O(


d0k

2). We have from (3.33) that Bk

�
pCZ;k + pZ;k

�
=

�
�
ZT
k gk + �k(wk + wC

k )
�
, using (3.17)

Bkp
C
Z;k = ��kw

C
k

We have by assumption 3.5

pCZ;k = O(p
C
Y;k) = O(



d0k

2)
and the claim follows from (3.31). �

This is equivalent to lemma 18 of Lawrence and Tits (2000) modi�ed to

allow for the decomposition.

Proposition 3.1 Suppose assumptions 3.1 and 3.3-3.10 hold. Then a step-

length �k = 1 satis�es the feasibility requirement in the line-search (3.40) of

algorithm rFSQP for all k suÆciently large.

Proof: Consider �k = 1, then xk+1 = xk + dk + dCk . We need to prove

ci
I
(xk+1) � 0. The de�nitions

c(xk)=

2
4 ci

E
(xk) 8i 2 f1; : : : ; p1g

ci
I
(xk)� 
k�1�k; i 2 J �k

3
5; cC(xk)=

2
4 ci

E
(xk + dk) 8i 2 f1; : : : ; p1g

ci
I
(xk + dk) + kdkk

� ; i 2 J �k

3
5

allows

c(xk+1) = c(xk + dk) +


A(xk + dk); d

C
k

�
+O

�

dCk 

2�
expanding and using lemma 3.15 gives

= c(xk + dk) +


A(xk); d

C
k

�
+


dk;r2c(xk)d

C
k

�
+O

�
kdkk

2
�
dCk +O

�

d0k

4�
denoting A(xk) = Ak and using lemmas 3.14 and 3.15 give

= c(xk + dk) +


Ak; Ykp

C
Y;k

�
+


Ak; Zkp

C
Z;k

�
+O

�

d0k

3�

inserting pCY;k = �(A
T
k Yk)

�1cCk from (3.32) and using AT
kZk = 0 gives

= c(xk + dk)�AT
k Yk(A

T
k Yk)

�1cC(xk) +O
�

d0k

3�
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�nally the above de�nitions of c(xk) and c
C(xk) result in

= �
�

0


k�1�k + kdkk
�

�
+O

�

d0k

3�

By lemma 3.14 
k�1�k = O(


d0k

3), then � < 3 gives ci

I
(xk+1) < 0; i 2 J �k.

�

This is equivalent to the �rst part of proposition 1 of Lawrence and Tits

(2000). Note that we do not prove descent, since we are working with a

l1-penalty function. We observe by AT
kZk = 0 in the proof above that pCZ;k

only serves to minimize


dk + dCk




B
i.e. that the correction dCk does not tilt

the overall step dk unnecessarily away from the SQP direction.

Theorem 3.3 Suppose assumptions 3.1 and 3.3-3.10 hold. Then algorithm

rFSQP generates a sequence fxkg which converges 1-step superlinearly to x�.

Proof: The proof follows from Biegler et al. (1995) since the algorithm

produces a convergent sequence of iterates satisfying

xk+1 � xk = d0k +O(


d0k

2)

Note that by lemma 3.11 the local analysis is an equality constrained prob-

lem and then lemma 3.3 and assumption 3.9 and 3.10 gives theorem 5.4 of

Biegler et al. (1995). Then theorem 5.6 of Biegler et al. (1995) follows and

assumption 3.5 is satis�ed by our Hessian update scheme. �k = 1 is allowed

in equation (3.19) for large k since

�̂k

h
2 cos �BFGSk

��gTk Zkwk��+wT
k B

�1
k ZT

k gk + �̂kw
T
k B

�1
k wk

i
� � kckk1

The last inequality will be satis�ed with �k = 1 for large enough k (see

Biegler et al. (1995), section 6). Lemma 6.2 and 6.3 in Biegler et al. (1995)

then gives the claim. �

As in Biegler et al. (1995) removing the approximation term wk will

give a two-step superlinearly convergent algorithm. This will reduce the

workload of each iteration, and may therefore give a better algorithm in

practice. See Biegler et al. (2000) for numerical comparisons of this issue.

3.5 Implementation and results

We discuss implementation and test the algorithm on selected problems from

the Hock-Schittkowski (Hock and Schittkowski 1981) test-set. The results
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presented in this section illustrate some of the properties of rFSQP, but do

not expose it to its intended use; large-scale optimization of problems dom-

inated by equality constraints with a few nonlinear inequality constraints.

Two such cases are investigated in chapter 4.

3.5.1 Implementation details

Some essential details are discussed next. The algorithm was implemented

in MATLAB 6.0 (R12) and Visual FORTRAN 6.52 developing studio, with

mex-gateways to some FORTRAN routines.

Most implementation issues follow the same strategy as described in

Biegler et al. (2000) and Lawrence and Tits (2000), but are somewhat

simpli�ed by vectorization in MATLAB. We treat linear constraints AI;Lxk �
bI;L and AE;Lxk = bE;L and simple bounds, L � xk � U , by solving a

qp for pZ;k and 
k. This requires an explicit Zk. Hence, the "adjoint"

approach for computing products like ZT
k gk without forming an explicit Zk

is not implemented. Note that simple bounds and linear constraints are

not included in the Jacobian matrix Ak in equation (3.6) which de�nes the

matrix Zk. The qp solved when utilizing the speci�c form of Zk and Yk is

min
pZ;k;
k

1
2
hpZ;k; BkpZ;ki+ 
k

s:t:


ZT
k gk + �kwk; pZ;k

�
� 
kD

ZT
k A

T
I;L; pZ;k

E
� bI;L �AI;Lxk �CkpY;kD

ZT
k A

T
E;L; pZ;k

E
= bE;L �AE;Lxk � CkpY;k

L� xk � YkpY;k � ZkpZ;k � U � xk � YkpY;kD
ZT
k rc

i;T
I;k; pZ

E
� 
k�k � �ciI(xk)�

D
Y Trci;T

I;k; pY;k

E
; i =2 J �k

(3.54)

where the last line includes the inactive inequality constraints not included

in the computation of pY;k. I.e. we do not implement the EQP strategy which

was assumed during the analysis to facilitate use of theorem 3.1.

Similar qp's, but without 
k, are solved for pEZ;k and pCZ;k as well, i.e. 3

reduced size qp's are solved at each iteration. The clipping of dCk and dEk
occurring in Lawrence and Tits (2000) is not needed, since all bounds are

accounted for in the qp's. If a qp was declared infeasible, we set pZ;k to

zero and cut dk = YkpY;k so as to satisfy bounds. This is only introduced to

2MATLAB is a licensed product from The Mathworks Ltd. Visual FORTRAN 6.5 is a licensed

product from COMPAQ.
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recover from inconsistent constraint linearizations away from the solution.

Alternatives are described by Gill et al. (1997) (elastic programming). We

use the qp-solver e04naf from the NAG toolbox. The NAG-solver only accepts

dense Jacobians, and should be replaced by a sparse solver in a production

code3.

The update rule for �k is vectorized, and the update rule for C
�
k is as in

FSQP:

i. If the full step �k = 1 was accepted set C
�
k+1 = C

�
k .

ii. If �k < 1 and no constraints were infeasible at any trial points, set

C
�;i
k+1 = max

�
C
�;i

k

Æ ; C�

�
(decrease C

�;i
k+1).

iii. If �k < 1 and some constraints were infeasible at some trial points, set

C
�;i
k+1 = min

n
ÆC

�;i
k ; �C�

o
(increase C

�;i
k+1) for the constraints that were

infeasible at some trialpoints, and set C
�;i
k+1 = C

�;i
k for the rest.

All parameter values are as given in Biegler et al. (2000), and Lawrence

and Tits (2000) except for the tolerance �f controlling the �k-updates. We

use the default value �f = 1e� 3. The parameter � controlling the inclusion

in the active set J �k is critical for the performance of rFSQP. We use the

default value � = 1. To speed up the algorithm, it may be advantageous to

start with a large value, say � = 1, and decrease it down to k��featol, where
featol is the feasibility tolerance for the nonlinear inequalities and k� > 1,

during the progress of the algorithm. This is problem dependent though,

and the results reported are for constant values of �. The value � = 1 was

found by trial and error. A large value of � is bene�cial for problems where

the solution x� does not lie on active inequality constraints. For problems

where the solution does lie on active inequality constraints, large values of �

can cause slow convergence, since the algorithm may approach the solution

conservatively.

Basis selection in MATLAB can be done by LU-decomposition using partial

pivoting given n > mk provided rank(Ak) = mk. If rank(Ak) < mk the

system is not guaranteed to have a solution, and this can cause numerical

problems. To deal with rank-de�cient problems row and column pivoting

are necessary, and we use the Harwell routine MA28 (Harwell Laboratory

3In the present implementation of rFSQP the constraint Jacobian is converted to a

dense matrix by issuing the MATLAB command full just before the call to e04naf. Still

this works better than using MATLAB's quadprog which accepts sparse Jacobians, but does

not handle poorly conditioned Jacobians appropriately.
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1995) through a mex-gateway for this purpose. This routine allows reuse

of a previous pivoting sequence provided the same non-zero structure is

maintained. Hence, complete refactorization is rarely needed (this is similar

to the approach of Biegler et al. (2000)), except when a change in the active

set occurs.

To asses the relative level of sophistication of our implementation we

implemented the algorithm of Biegler et al. (2000) which we term rSQP

for brevity. In fact rFSQP is implemented as an extension to this algorithm

with some important modi�cations. Our implementation of the algorithm

by Biegler and co-workers was sensitive to the results from the qp-solver on

some of the harder problems. Since the MATLAB qp-solver seems to produce

inaccurate solutions for badly conditioned problems, we implemented rSQP

with the qp-solver QPKWIK obtained with kind permission from Professor

Lorenz T. Biegler. QPKWIK is also used in Biegler's implementation. Since

QPKWIK needs the inverse Cholesky-factors of the Hessian as input, we also

replaced the BFGS-updating scheme with Biegler's updating scheme for the

inverse Cholesky-factors (which makes use of the qp-multipliers). Since the

Hessian of the implemented qp (3.54) is semi-de�nite, the inverse Cholesky

factors are unde�ned and use of QPKWIK in rFSQP is therefore not trivial.

However, since rFSQP worked well with both MATLAB's quadprog and NAG's

e04naf in combination with a standard BFGS updating scheme we did not

consider using QPKWIK in rFSQP. Clearly this puts a bias on the comparison

of the two algorithms, and we only include the results on rSQP to give an

idea of the level of sophistication of rFSQP. Some of the results reported

below give unexpectedly poor results for rSQP and we expect that this is a

result of our implementation.

The line search is identical in both implementations apart from the feasi-

bility check in rFSQP, and follows as in Dennis and Schnabel (1996) modi�ed

to allow for checking of constraint violations. The constrained line search

tests for feasibility prior to descent, but does not re-order constraints as in

Lawrence and Tits (2000). I.e. vectorization in MATLAB allows a simulta-

neous test, while a FORTRAN program must perform this test in a loop. In

the present version of rFSQP the qp-multipliers are not used other than for

updating the penalty parameter �.

When constraints are removed from the active set, we re-initialize the

corresponding reduced Hessian to I. The current implementation does not

implement a watch-dog strategy, and we do not handle a rank-de�cient

Jacobian. The algorithm detects this and stops, but this does not occur

on any of the test-problems. From table 4 in Biegler et al. (2000) we

note that the cross-terms wk and �wk have relatively little in
uence on the
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iteration counts for the selected problems from the Hock-Schittkowski test-

set. Therefore we implemented both algorithms with Broyden corrections

only. Then, since we never resort to �nite di�erences the iteration counts

and gradient evaluation counts reported below are identical for both rSQP

and rFSQP.

3.5.2 Results

We give preliminary test results for a selection from the Hock-Schittkowski

test set for our implementation of rSQP by Biegler et al. (2000), and rFSQP

in table 3.1. The results for rSQP are included to illustrate the level of

sophistication of the implementation of rFSQP. In rSQP nonlinear inequalities

were implemented as equalities with slacks.

On hs33 both implementations converge to ~x� = (0; 0; 2) with objective

value f� = �4 (which is also reported in table 6.4 of Gill et al. (1997)).

The value ~x� is the same value as returned by the NAG routine e04ucf. On

hs34 rFSQP performs poorly, and needs � = 0:1 to converge. On hs93 rFSQP

attracts very slowly to x�, and no BFGS-updates occurs. On hs111 both

algorithms converge to a point ~x� 6= x� given by Hock and Schittkowski

(1981). The value ~x� is the same value as returned by the NAG routine

e04ucf. In hs112 there is an error in the problem, and the problem was

solved with the modi�cation stated in the CUTE (Bongartz, Conn, Gould,

and Toint 1995) test set. We expect that the di�erence between rSQP and

rFSQP on hs111 is caused by the di�erent choices of Hessian update schemes

in combination with di�erent qp-solvers.

The rSQP-results indicate the inadequate level sophistication of the code

which we based rFSQP on. I.e. it solves the simpler problems with iteration

and function evaluation counts comparable to Biegler et al. (2000), but

experiences problems especially on hs100 and hs111 and fails on hs84 and

hs117. The rFSQP-results show that on some problems the iteration count

increases (as expected), when the SQP-direction is tilted. In other cases the

performance is improved, since feasible iterates may remain in a "nicer"

region than the pure SQP iterates. This may be bene�cial during later iter-

ations. Observe that the workload of each iteration of rFSQP is larger than

for rSQP since 3 subproblems must be solved instead of one.

Comparing to the results reported for FSQP' by Lawrence and Tits (1996),

Lawrence and Tits (2000) show that FSQP' performs better on most of the

problems reported in table 3.1. In particular, rFSQP performs poorly on

hs12, hs34, hs43, hs84, hs93 and hs117. Comparing with SNOPT it is observed

that rFSQP experiences problems on hs34, hs43, hs66, hs80, hs84, hs93,

URN:NBN:no-1287



112 rFSQP - a feasible SQP method

rSQP rFSQP

Problem IT NF NG IT NO/NC NG �

hs1 28 45 28 28 45/45 28 (-)

hs12 22 22 22 15 33/48 15 (def)

hs29 14 23 14 10 18/27 10 (def)

hs30 17 17 17 9 11/19 9 (def)

hs31 9 16 9 12 30/41 12 (def)

hs33 5 5 5 5 6/10 5 (def)

hs34 10 11 10 34 86/119 34 0.1

hs43 28 94 28 27 68/94 27 (def)

hs66 8 9 8 10 12/21 10 (def)

hs80 11 11 11 11 11 11 (-)

hs81 11 11 11 11 11 11 (-)

hs84 fail 23 45/67 23 (def)

hs93 37 77 37 fail

hs99 10 15 10 16 79/79 16 (def)

hs100 63 169 63 30 101/130 30 (def)

hs111 136 361 136 67 128/128 67 (-)

hs112 24 57 24 30 68/68 30 (-)

hs113 41 62 41 15 29/43 15 (def)

hs117 fail 32 38/69 32 (def)

Table 3.1: rFSQP on the Hock-Schittkowski test set. The table gives the results
on the Hock-Schittkowski (Hock and Schittkowski 1981) test set. rSQP=our imple-
mentation of the algorithm of Biegler et al. (2000), rFSQP=the present algorithm,
IT=iterations, NF=function evaluations, NG=gradient evaluations, NO=objective
evaluations, and NC=constraint evaluations. For rSQP NO=NC�NF. Since �nite dif-
ferences are turned o� we have IT=NG. � is the active set tolerance for rFSQP. The
default value �=1 is marked with (def). For equality constrained problems � is
irrelevant and marked with (-).
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hs100 and hs117. Hence, further testing is necessary to evaluate the possible

advantages of the rFSQP algorithm over the algorithms of Lawrence and

Tits (2000), Biegler, Nocedal, and Schmid (1995) and Gill, Murray, and

Saunders (1997). It may be that the reported results can be improved by

improving the implementation of rFSQP. Hence, the poor results need not

necessarily be a result of the method rFSQP, but rather a consequence of the

implementation.

We experienced that the rFSQP algorithm is sensitive to the threshold

value � for J �k on certain problems. On equality constrained problems � is

irrelevant. A large value like � = 1 causes the algorithm to stay well inside

the interior of the feasible region, and this reduces the number of changes in

the active set, which reduces the frequency of complete re-factorization of

the constraint Jacobian to �nd a new pivoting strategy. However, this causes

the algorithm to approach inequalities conservatively, which may cause slow

convergence on problems where the optimum is located on active nonlinear

inequalities. The observed behavior of the algorithm is thus more related to

interior methods4 than to "working set" SQPmethods. Still it is implemented

and analyzed as a SQP method, and in particular larger counts for function

evaluations are expected on large scale problems, as is usual for SQPmethods.

There are a number of issues to be addressed to improve the present

implementation. It should be tested on large-scale problems, the Hessian

updates should be improved, possibly by exploiting the qp-multipliers. 2nd

derivative Hessians may be introduced, for example by partial separability

of the Lagrangian combined with perturbed Cholesky factorization or with

trust-regions combined with conjugate-gradient steps. Other line searches

and mechanisms for global convergence should be implemented, in partic-

ular how to implement a watch-dog in combination with the constrained

line search. Finite di�erences and rank-de�cient Jacobians should be han-

dled. Hot-starting the qp-solver by re-use of the last active set, and sparse

linear algebra qp-solvers could be used. A production code should also be

independent of the interpreted MATLAB environment.

To illustrate the workings of rFSQP we compare it with the iterations

of rSQP on hs12 from the Hock-Schittkowski test-set and a modi�cation of

hi3 in Himmelblau (1972), p. 394. The modi�cation is that we multiply the

objective by 1000 and alter the second constraint. Note that hi3 is quite

4Some feasible interior methods for nonlinear programming has appeared recently;

Forsgren and Gill (1998) and Byrd, Nocedal, and Waltz (2000).
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similar to hs59. We restate these problems for completeness.

min
x

:5x21 + x22 � x1x2 � 7x1 � 7x2

s:t: 25� 4x21 � x
2
2 � 0

(3.55)

min
x

1000 � f(a; x; x2; x3; x4; exp(x))

s:t: 700� x1x2 � 0
x21
125
� x2 � 0

5(x1 � 55)� (x2 � 50)2 � 0

0 � x1 � 75

0 � x2 � 65

(3.56)

In hs12, equation (3.55), the initial point is x0 = (0; 0) while the solution

is x� = (2; 3). In hi3, equation (3.56), the original initial point is infeasible,

so we start from x0 = (70; 40) instead. The solution is x� = (75; 65). The

iterations are plotted with objective contours and constraints as equalities

in �gures 3.2 and 3.3. The feasible regions are evident from the bold face

lines which are the borders of the inequalities. The iteration sequences for

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0
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0
 = [0 0]

Figure 3.2: Iterations for rSQP (o) and rFSQP (�) on hs12 from the Hock-
Schittkowski test set.

rSQP and rFSQP on hs12 are given in table 3.2. The iteration sequences for

rSQP and rFSQP on hi3 are given in table 3.3.
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Figure 3.3: Iterations for rSQP (o) and rFSQP (�) on
hi3 from Himmelblau (1972).

We observe from �gure 3.2 that rSQP produces infeasible iterates, while

rFSQP remain feasible. The e�ect of the constrained line search is observed

in iteration 1 where both methods generated the same step d1 = (3:5; 3:5).

In rSQP the full step was accepted since this gives a reduction in the merit

function, but in rFSQP the full step gives infeasibility and the next trial

value � = 0:5 is tested. � = 0:5 is accepted since it is feasible and gives a

decrease in the merit function. In Biegler et al. (1995) one-step superlinear

convergence was proved with �nite di�erences for the correction terms wk
and �wk. Since we only implement Broyden corrections we expect 2-step

superlinear convergence, i.e. that we get one extra correct �gure every 2nd

iteration (for large k). The results for hs12 shows that this is nearly obtained

for both algorithms. We have �k;rSQP = 1 for all k and �k;rFSQP = 0:5 for all

k on hs12. Improvements in performance can be expected by implementing

a watch-dog for rFSQP to allow unit step-lengths for large k and including

�nite di�erences. The quality of �nite di�erence corrections depends on good

multiplier estimates, and using the qp multipliers should be considered.

On hs12 one could anticipate that reducing � = 1 down towards featol=

10�5 would improve the result for rFSQP. It turned out that rFSQP was
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rSQP rFSQP

Iteration no. x1 x2 x1 x2

0 0 0 0 0

1 3.5000 3.5000 1.7500 1.7500

2 3.5000 3.5000 1.6638 3.4783

3 2.1956 6.1283 1.9345 3.0917

4 1.3217 4.7830 1.9811 3.0133

5 1.8346 3.7076 1.9934 2.9994

6 2.1901 2.7060 1.9973 2.9980

7 1.9942 3.0615 1.9988 2.9985

8 2.0128 2.9674 1.9995 2.9991

9 1.9946 3.0149 1.9997324 2.9995665

10 2.0033 2.9915 1.9998641 2.9997889

11 1.9983 3.0045 1.9999316 2.9998958

12 2.0009 2.9975 1.9999657 2.9999482

13 1.9995 3.0013 1.9999828 2.9999741

14 2.0003 2.9993 1.9999914 2.9999871

15 1.9998548 3.0003874 1.9999957 2.9999935

16 2.0000787 2.9997903

17 1.9999575 3.0001133

18 2.0000230 2.9999387

19 1.9999876 3.0000331

20 2.0000067 2.9999821

21 1.9999964 3.0000097

22 2.0000020 2.9999948

Table 3.2: rFSQP on hs12. The table gives the iterations for rSQP and rFSQP on
hs12 from the Hock-Schittkowski test set.

insensitive to � on hs12, and the same result was achieved for all trial values

� 2 [10�5; 10]. However, increasing the parameter Æ used in updating the

parameter C
�
k has an e�ect. C

�
k in turn in
uence on the updating of �k

through step xvii in the rFSQP algorithm. Increasing Æ from 2 to > 2:5

reduced the iteration count from 15 to 12 iterations on hs12.

Figure 3.3 illustrates the practical performance of rFSQP in the face of a

nonconvex feasible region. Observe that rFSQP tends to stay far away from

the inequality boundary during the early iterations, which in this case is

bene�cial. In hs12 where the optimum is located on a nonlinear inequality

boundary, rFSQP is seen to be somewhat conservative. On hi3 rSQP also
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rSQP rFSQP

Iteration no. x1 x2 x1 x2

0 70 40 70 40

1 69.5840 41.3540 57.5890 43.4455

2 68.9159 41.6532 56.0615 46.2790

3 67.2837 42.1434 53.2885 49.2451

4 65.0578 42.8566 52.6044 56.9472

5 63.1240 43.5463 75 65

6 61.4623 44.2100

7 58.5788 45.5074

8 56.3748 46.8613

9 54.6501 48.4721

10 56.2571 47.1791

11 55.1728 48.2882

12 53.8286 50.5531

13 54.3550 55.1590

14 57.9557 59.1733

15 74.7619 65

16 75 65

Table 3.3: rFSQP on hi3. The table gives the iterations for rSQP and rFSQP on hi3
from Himmelblau (1972).

walks round the third inequality constraint in equation (3.56). The �rst

direction for (x1; x2) = (70; 40) is d1 = (�0:4160; 1:3540). (The direction for
the third slack is zero, with s3(0) = 0.) The full step is accepted, but does

not enter or cross the feasible region in this case. Note that not all �k's are

equal to one for rSQP in this example. The number of function evaluations

NF is 32 for rSQP and NO/NC is 5=10 for rFSQP. For hi3 we have �k;rFSQP = 1

for all k.

3.6 Conclusions

rFSQP is a reduced Hessian SQP method that remains feasible with respect

to inequality constraints at all iterates. rFSQP is designed for large scale

problems dominated by equality constraints, but with a few nonlinear in-

equality constraints of which we wish to remain feasible. It can be argued

that feasibility of inequalities can give general bene�ts as discussed in section

3.2, which motivate the extension to large scale methods like reduced Hes-
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sian methods. The bene�t of feasible iterates must be traded o� against the

main bene�t of SQP methods; the iterates need not be feasible, see Boggs

and Tolle (1995) (feasibility can be very expensive to achieve in the presence

of nonlinear constraints). However, we are only concerned with feasibility

of inequalities, and the trade-o� is thus shifted in favor of rFSQP, although

of course no general recommendation can be provided.

The preliminary results in section 3.5.2, show that on some problems

rSQP performs better, while on other problems rFSQP perform better. As

could have been anticipated there is no general recommendation to be made

about the method of choice for a given problem. Comparing the results

of rSQP with the results of Biegler et al. (2000) shows that there is a

signi�cant potential for improvements in rFSQP as well. Hence, the testing

is not conclusive. Given the complexity of the algorithm, further testing

and re�nements are needed to show any clear advantages of the proposed

algorithm.
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Chapter 4

NMPC

Nonlinear model predictive control (NMPC) is a control strategy where appli-

cation of nonlinear optimization methods is essential. The motivation for

this chapter is to combine the model from chapter 2 and the optimization

algorithm from chapter 3 in a NMPC framework. This chapter is application

oriented, and contributes to the practical knowledge of implementation of

NMPC. Parts of this chapter has been submitted for possible publication to

the 15th IFACWorld Congress on Automatic Control (Martinsen and Biegler

2002).

Optimal control problems generally lead to boundary value problems

(BVP), since the adjoint equations must be integrated backwards in time

(Vinter 2000), (Lewis and Syrmos 1995). Since NMPC is a special case of

optimal control problems, it is expected that numerical methods suitable

for BVP's should be adapted in NMPC as well. The most popular numerical

methods for solving BVP's are (�nite) element methods, possibly in combi-

nation with orthogonal collocation (Finlayson 1980). Multiple shooting has

also been applied to BVP's with success, see Ascher, Mattheij, and Russell

(1995) for details on multiple shooting and orthogonal collocation. However,

it is important to observe that batch-processes may be formulated as initial

value problems (IVP), since stabilizing end-point constraints are irrelevant.

The chapter focuses on application of SQP optimization algorithms in

NMPC, but emphasizes that appropriate model discretization is essential for

the performance. A rule of thumb is that if it is impossible to integrate

a model with a certain method, the method cannot be used in NMPC. In

particular, since the sinter model from chapter 2 could not be integrated

by explicit methods, it should not be represented with explicit methods in

NMPC.
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We discuss the di�erences and similarities between feasible and infeasible

path methods, sequential and simultaneous methods and reduced and full

space methods. We informally assess the suitable choices between these

various strategies by applying them to two cases of di�erent complexity.

The chapter starts with some background in section 4.1. In section

4.2 a conceptual comparison between single shooting and reduced Hessian

methods is provided. Simulation results follow in section 4.3. Discussion

and conclusions to the chapter follow in sections 4.4 and 4.5.

4.1 Introduction

This chapter is concerned with practical issues related to optimization within

nonlinear model predictive control (NMPC), which is one of the major obsta-

cles to be overcome in industrial applications of NMPC (Qin and Badgwell

2000). We consider di�erent approaches to optimization, such as feasible

vs. infeasible methods, sequential vs. simultaneous methods, reduced vs.

full space methods and dense vs. sparse algebra methods, and apply these

methods to two cases; a CSTR with �rst order reaction and to the grate

sintering from chapter 2.

The theory of optimization algorithms is not dependent on how the

equality constraints are formed. For instance in optimal control, and in

particular in the special case of nonlinear model predictive control (NMPC),

much concern is put into discretization schemes for the nonlinear equal-

ity constraints. These equality constraints result from a continuous-time

nonlinear dynamical system repeated over a time horizon P . Three major

variants are usually considered to handle unstable modes; orthogonal collo-

cation, multiple shooting and single shooting (possibly with a variable grid).

Ascher, Mattheij, and Russell (1995) discuss the general bene�ts of these ap-

proaches, and Barclay, Gill, and Rosen (1998) discusses this in conjunction

with SQP algorithms. Vassiliadis (1993) addresses the dynamic optimiza-

tion of general DAE systems. These approaches seek to �nd formulations of

the equality constraints that are less hard to satisfy, while simultaneously

reducing the discretization error.

Nonlinear inequality constraints may be introduced for stability purposes

in NMPC (Scokaert, Mayne, and Rawlings 1999), (Chen and Allg�ower 1998b),

(1998a). These references extends earlier work (Li and Biegler 1988), (Li

and Biegler 1989), (Li, Biegler, Economou, and Morari 1990), (de Oliveira

and Biegler 1995). These references are concerned with nominal stability.

Hence, termination prior to convergence of the optimizer cannot guarantee
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stability unless the equality constraints are satis�ed.

The immediate answer to this is single shooting; i.e. always solving the

model. Single shooting algorithms progress towards a solution by iterating

between solving the model and solving a reduced size optimization problem.

Due to this, single shooting is said to be a sequential method. Single shooting

produces a reduced gradient problem in the free variables to be solved at each

NMPC iteration. Maintaining feasibility of nonlinear inequalities involving

dependent variables can then be obtained by use of rFSQP from chapter 3

or FSQP' of Lawrence and Tits (2000). This may be costly if evaluation

of the problem functions is costly, e.g. if an implicit discretization scheme

must be applied. In addition, according to Ascher et al. (1995), section

4.1 and 4.6.2, single shooting lacks robustness when applied to unstable

systems. This problem can be somewhat alleviated by using an adaptive

step length (Baker and Polak 1994), (Pytlak and Vinter 1998), (Pytlak and

Vinter 1999), (Pytlak 1999).

To solve optimization problems with stabilizing endpoint constraints si-

multaneous methods must be applied. End-point constraints make the prob-

lem a two-point boundary value problem (TPBVP) which in general cannot

be resolved with single shooting. Simultaneous methods do not solve the

model at each iteration. Instead a simultaneous search for a model solution

and optimal point is carried out. Multiple-shooting and orthogonal collo-

cation, possibly on �nite elements (Finlayson 1980), are the most widely

used simultaneous methods. Since simultaneous methods do not solve the

model at each iteration, they cannot guarantee stability in the nominal sta-

bility setting of dual-mode or quasi-in�nite horizon NMPC if terminated prior

to convergence. Note that the results reported in Bock, Diehl, Schl�oder,

Allg�ower, Findeisen, and Nagy (2000) show that termination prior to con-

vergence in multiple shooting may be viable for some applications. Decom-

position strategies for orthogonal collocation on �nite elements have been

considered by Cervantes and Biegler (2000) and Biegler, Cervantes, and

W�achter (2001).

Initialization near the optimal point can happen frequently in real-time

applications like model predictive control and receding horizon estimation

(see Allg�ower et al. (1999)). In NMPC an optimization problem is solved re-

peatedly with (usually) small changes from one problem to the next. These

are real-time applications where termination prior to convergence may be

necessary, and an improved but non-optimal feasible solution is favorable

if early termination is required. The only method that can be terminated

prior to convergence is single shooting. As shown in section 4.3 below, choos-

ing an appropriate optimization algorithm may have signi�cant in
uence on
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the overall computation time, in particular for processes where implicit dis-

cretization schemes are necessary.

Observe that for �nite time batch-processes stability in the sense of Lya-

punov1 is irrelevant, provided the process does not have �nite escape time.

Hence, the grate sintering case is formulated as a NMPC problem without

endpoint constraints, and it is not established that the objective is a Lya-

punov function for the NMPC problem. As a consequence, TPBVP techniques

are not needed to solve this problem. Due to the sti�ness of the model the

implicit Lobatto IIIC scheme was adapted in the solution.

The choice between active set vs. interior-point methods is also impor-

tant in NMPC. Bartlett, W�achter, and Biegler (2000) discuss this issue both

on the NLP and the qp level. The results in section 4.3 were achieved with

the qp solver e04naf from the MATLAB NAG toolbox. This is an active set

solver, where the constraint Jacobian must be presented as a dense matrix.

De�ne the superscript notation zk = fzkgk�N for an entity z indexed by

k. The nonlinear MPC problem with dim(uk) = nu and dim(xk) = nx

minx;u;k
1
2

�PP�1
k=0 kxk+1k

2
Q +

PM
k=0 kukk

2
R

�
s.t. cE;k = cE(xk; uk) = f(xk; uk)� xk+1 = 0; k = 0; � � �P � 1

xk 2 X � � � � � X
uk 2 U � � � � � U

(4.1)

with M < P is considered in this paper. The equality constraints in (4.1)

have been formed by assuming an explicit discretization scheme. Endpoint

constraints or augmentation of the objective may be included to guaran-

tee nominal stability of the MPC algorithm, see Mayne, Rawlings, Rao, and

Scokaert (2000). Observe that reference tracking and non-zero set-points

can be handled in this framework with minor modi�cations. We assume

suÆciently smooth 1st principles state-space models with measured states,

analytic 1st order derivatives and that

(X ;U) = (X � � � � � X;U � � � � � U)

can be described by bounds.

1For example, cf. Khalil (1996), theorem 3.1.
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4.2 Optimization methods

First we consider SQP in general. The MPC problem (4.1) can be restated as

a general nonlinear programming (NLP) problem:

minx f(x)

s.t. cE (x) = 0

cI(x) � 0

(4.2)

where f : Rn ! R, cE : Rn ! R
m and cI : Rn ! R

p where n =

nxP +nuM , m = nx(P +1) and p = 2n (assuming upper and lower bounds

on (xk; uk) over the horizons P andM). The Jacobian matrix of the equality

constraints is denoted AT
k = A(xk)

T = [rc1
E
(xk);rc2E (xk); � � � ;rc

m
E
(xk)]

where ci
E
(xk) is the i-th component of the vector c(xk). The matrix G(xk)

made up of AT
k and the gradients of the active inequality constraints is

assumed to have full column rank. The null-space of G(xk)
T de�nes the

tangent space to the equality and active inequality constraints at xk. Denote

HLk the Hessian of the Lagrangian function L(xk; �E;k; �I;k) = f(xk) +

�T
E;kcE (xk) + �T

I;kcI(xk) where �E;k and �I;k are the multiplier vectors. We

assume strong second order suÆcient conditions, i.e. that x� is an isolated

minimum of the NLP (4.2) and that ��
E
and ��

I
are unique. The strong second

order conditions are:

A1 The 1st order necessary conditions hold, i.e. 9 ��
I
� 0; ��

E
(opti-

mal multipliers) s.t. rL� = rf(x�)+rcE (x�)��E+rcI(x
�)��

I
=

0.

A2 The columns of G(x�) are linearly independent.

A3 Strict complementary slackness hold, i.e. ci
I
(x�)�

i;�
I

= 0; i =

1; � � � ; p and if ci
I
(x�) = 0 then �

i;�
I
> 0.

A4 The Hessian of the Lagrangian function with respect to x is

positive de�nite on the null space of G(x�)T , i.e. dTHL� d >

08d 6= 0 s.t. G(x�)Td = 0.

The quadratic subproblem to be solved at each iteration of the SQP al-

gorithm becomes:

mindk rf(xk)T dk + 1
2
dTkBkdk

s.t. rcE(xk)Tdk + cE (xk) = 0

rcI(xk)Tdk + cI(xk) � 0

(4.3)
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where Bk � 0 usually is an approximation to HLk. The inequality con-

straints of this qp can be resolved either by an active-set strategy or an

interior-point strategy. Interior-point methods usually introduce slacks s �
0 to the inequality constraints s.t. cI(x) + s = 0, and augment the objec-

tive; f(x) + �
Pp

i=1 log si. This leads to ill-conditioning when s ! 0 and

consequently modi�ed Newton methods must be applied to ensure rapid

convergence, see Wright (1997b) for further details. Both active-set and

interior-point methods can be implemented with sparse matrix solvers, but

this seems to be easier to implement for the latter approach (Wright 1997a).

If Bk is uniformly positive de�nite on the null space N (GT
k ), then the

solution dk of problem (4.3) forms a strong descent direction for an exact

penalty function �� . The minimum of �� corresponds to a solution of

problem (4.2) (Fletcher 1987). Therefore a step size �k along dk can be

found which is bounded away from zero yielding convergence. Convergence

from remote starting points is not guaranteed by this since the linearized

constraints might lead to infeasible subproblems. This can be resolved by

resorting to elastic programming giving "good" infeasible points, see e.g.

Gill, Murray, and Saunders (1997). We have argued that the basic SQP-

method will converge to stationary (KKT) points, but special provisions must

be made to avoid convergence to maximum and saddle points. This usually

involve exact second order derivatives and trust-region methods, see Biegler

(2000) for an introduction. Further details on SQP can be found in Boggs

and Tolle (1995). The basic SQP-algorithm with quasi-Newton updates is

summarized as:

Algorithm 4.1 SQP

i. Guess x0, set B0 = I.

ii. At xk evaluate f(xk), cE(xk), cI(xk), rf(xk), rcE (xk) and rcI(xk).

iii. If a certain curvature condition is satis�ed update Bk by a BFGS for-

mula.

iv. Solve (4.3) for dk.

v. Test for convergence.

vi. Find a step-size �k s.t. 0 < �k � 1 and ��(xk + �kdk) < ��(xk).

vii. Set xk+1 = xk + �kdk, k = k + 1 and go to ii.
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4.2.1 Reduced gradient methods

The qp (4.3) can be resolved in the full space of free and independent vari-

ables, or in the reduced space of free variables by a suitable elimination of

variables. Elimination of variables exploits that if nxP �nuM >> nuM and

that nuM is small, the reduced subproblem for the null-space step will be

small (but dense). In the full space the sparsity of both the Hessian (which

commonly requires analytic Hessians) and the Jacobian can be exploited to

yield fast solutions (Rao, Wright, and Rawlings 1998). This section shows

that a reduced gradient approach can be derived by following two di�er-

ent strategies. The �rst uses a sequential approach, see e.g. de Oliveira

and Biegler (1995), while the second follows the simultaneous null-space ap-

proach (Nocedal and Wright 1999), (Biegler, Nocedal, and Schmid 1995).

We only outline the central issues necessary to promote a qualitative com-

parison of the methods.

Sequential approach (sSQP)

By iterating the model over the horizon P , the transformation xk = 	(x0; u
k)

allows the equivalent form

minuk fuk (u
k)

s:t: 	k(x0; u
k) 2 X

uk 2 U
(4.4)

The transformation 	(�) for linearized and discretized systems is essentially

a projection onto the subspace U . The sequential approach solves the model

at each iteration, i.e. the qp-subproblem is solved following a feasible path

strategy. The KKT conditions for problem (4.1) are (temporarily assuming

inactive bound constraints on xk and uk without loss of generality)

rxkfk +rxkc
k;T
E
�k
E
= 0

rukfk +rukc
k;T
E
�k
E
= 0

ck
E
= 0

Details on the partial derivatives are given in appendix C.4. We eliminate

�k
E
= �

�
rxkc

k
E

�
�T rxkfk, de�ne S

T
k = �rukc

k;T
E

�
rxkc

k
E

�
�T

and get the

reformulated KKT conditions

rukfk + STk rxkfk = 0

ck
E
= 0
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Note that the above result also can be derived by considering the total dif-

ferential of ck
E
= 0, which is dck

E
= rxkc

k;T
E
dxk+rukc

k;T
E
duk = 0, and de�ne

STk =
�
dxk

duk

�T
= �rukc

k;T
E

�
rxkc

k
E

�
�T

(hence the notion of sensitivity2). In

the view of problem (4.4), consider the objective and model derivatives with

respect to uk

dfk
duk

= rukfk +
�
dxk

duk

�T
rxkfk = rukfk + STk rxkfk

dck
E

duk
= rukc

k
E
+rxkc

k
E
Sk

Note that the sensitivity matrix gives search directions dxk = Skd
u
k , hence

dck
E

duk
duk = (rck

E
)T dk. Also note that by de�ning ZT

k = [STk I] we have

ZT
k rf

T
k = 0: Linearizing the reformulated KKT conditions with respect to

uk gives the Newton system�
ZT
k r

2fTk +rfkrZT
k

rukc
k
E

�
duk = �

�
rukfk + STk rxkfk

ck
E

�

We observe that the following qp in duk 2 R
nuM has the same KKT condi-

tions (except for the term rfkrZT
k )

mindu
k
2R

nuM

�
rukf

T
k + Skrxkf

T
k

�
duk +

1
2
(duk)

T
�
STk r

2
xk
fkSk +r2

uk
fk
�
duk

s:t: ck
E
+

dck
E

duk
duk = 0

(4.5)

The bound constraints in dxk are restated as

�
Sk
�Sk

�
duk �

�
xkU � x

k

xk � xkL

�

The algorithm evolves the model to get xk = 	(x0; u
k). Then the algo-

rithm solves the qp (4.5) for duk , giving u
k+1 which again is used to evolve

the model giving xk+1 and so on.

Neglecting the second order derivatives of the model, rfkrSTk , sacri�ces
the quadratic convergence of Newtons method, but it gives a positive de�-

nite Hessian. This is also known as the Gauss-Newton method, which will

deteriorate to linear convergence if the projected contributions of the model

2This de�nition of S gives the same result as that of de Oliveira (1994), but is faster

to compute in MATLAB which bene�ts from vectorization. Note that the inversion is not

necessary to numerically solve for S from AS = B.
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are signi�cant (Biegler 2000). Since the HessianHL� is positive de�nite, this
means that we will have linear convergence (possibly to a saddle or maxi-

mum point of the original system) of a convex and small system due to the

assumption on nuM . We also note that we will have quadratic convergence

of (4.5) near the solution, if there are no active bounds at the solution. We

observe from (4.4) that it is not meaningful to consider full-space sequential

methods.

Reduced Hessian approach (rSQP)

In the null-space method a decomposition is applied to the KKT conditions

to eliminate variables. Consider the SQP subproblem which at an iterate k

generates a search direction dk by solving

mindk2R(nxP+nuM) gTk dk +
1
2
dTkW (xk;uk) dk

s:t: cE (x; u; k) +A(x; u; k)T dk = 0

xk 2 X
uk 2 U

(4.6)

Here rfk = gk, Wk (usually) is a positive de�nite approximation of

HLk. Where HLk is the Hessian of the Lagrangian function L(xk; uk; �k
E
) =

fk(x
k; uk) + �

k;T
E
ck
E
(xk; uk) evaluated at (x�; u�; ��

E
). A(x; u; k) = rck

E
de-

notes the constraint Jacobian. The next iterate is computed as (xk+1; uk+1) =

(xk; uk)+�k(d
x
k ; d

u
k) where �k is the step length parameter chosen to reduce

a suitable merit function. Denote A(x; u; k) = Ak etc.

We partition (xk; uk) 2 R
(nxP+nuM) into state and control variables

through the basis given by a nonsingular matrix [Yk Zk]. This allows the

representation of the search vector as dk = YkpY;k + ZkpZ;k. Assume that

Zk is a basis for N (AT
k ), i.e. A

T
kZk = 0, and that Yk is a basis for R(AT

k ).

Hence, we decompose dk into a range and null-space component. The model

constraint from problem (4.6) can now be rewritten as ck
E
+ AT

k YkpY;k = 0.

Since [Yk Zk] is non-singular, assuming full column rank of Ak leads to

pY;k = �
�
AT
k Yk

�
�1
ck
E
which gives us dk = �Yk

�
AT
k Yk

�
�1
ck
E
+ ZkpZ;k. We

arrive at the reduced size SQP subproblem (considering pY;k as a constant)

minpZ;k2RnuM (ZT
k gk + ZT

kWkYkpY;k)
T pZ;k +

1
2
pTZ;kZ

T
kWkZkpZ;k

xk 2 X � � � � � X
uk 2 U � � � � � U

(4.7)

The choice of Yk and Zk is motivated by the partitioning into dependent

and free variables. Biegler et al. (1995) argues that the partitioning AT
k =
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[Ck Nk] with

Zk =

�
�C�1k Nk

I

�
Yk =

�
I

0

�
(4.8)

should be utilized, assuming a non-singular Ck and A
T
kZk = 0. If we choose

the natural partitioning [Ck Nk] =

��
@ck

E

@xk

�T �
@ck

E

@uk

�T�
arising from lin-

earization with respect to (xk; uk), this leads to the following relations

Zk =

�
�C�1k Nk

I

�
=

�
Sk
I

�
dxk = pY;k + SkpZ;k

duk = pZ;k

Summarizing, the search direction in rSQP has an added range-space

component pY;k which is not present in the sSQP method. Inserting pY;k = 0

into (4.7) and comparing with (4.6), we observe that the search directions

for the sSQP approach coincide with the rSQP approach for the choice

Wk =

�
r2
xxfk

r2
uufk

�

and with [Ck Nk] selected from the linearization. The step pZ;k is in the null

space of Ak, i.e. it is tangential to the constraints, while pY;k is in the range

space of Ak. Then, informally pZ;k aims at reducing the objective while pY;k
searches for feasibility. Since the sSQP method is a feasible path method,

pY;k is not needed.

In comparing the two approaches we observe that the sequential ap-

proach maintains feasibility of all iterates, while rSQP searches for feasibility

and optimality simultaneously. In addition the sequential method solves the

model at each iteration, while rSQP only solves the model once. We also

observe that the sequential method does not utilize BFGS updates, while

this must be utilized in rSQP since we do not assume available second or-

der derivatives. Recall that we neglected the cross-term involving second

order model derivatives in equation (4.5). We also note that the sequen-

tial approach only handles initial value problems (IVP), i.e. xP 2 
x can-

not be guaranteed since it implements a shooting strategy in evolving the

model over the horizon. The endpoint constraint changes the problem into

a boundary value problem (BVP) which must be handled by simultaneous

strategies. Therefore the sequential approach is limited to open-loop stable
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and non-sti� systems. In fact, the stability of the algorithm requires an

in�nite prediction horizon which is intractable unless the step length can be

increased to in�nity, see de Oliveira (1994) and Chen and Allg�ower (1998a)

for details. We also observe that the reduction of the size of the qp to be

solved, introduces an additional cost of calculating Sk (sSQP) and Zk (rSQP)

respectively.

Additional equality (or active inequality) constraints reduce the available

degrees of freedom, and consequently a manual decomposition of the Jaco-

bian Ak = [Ck Nk] as indicated in section 4.3 is not recommended. There

is a number of commercial routines available for both dense and sparse al-

gebra that can be applied. Decomposition strategies for sparse matrices are

implemented in the Harwell subroutine libraries MA28 and MA48 (Harwell

Laboratory 1995). We observe that in addition to assuming stability, we

must assume non-singularity of rxkc
k
E
and Ck. Note that these are sparse

lower triangular matrices of order nxP . Hence, solving for Sk (sSQP) and Zk
(rSQP) is cheap i.e. of order O ((nxP )

p), with p = 2 instead of p = 3 due to

sparsity. Since the matrix is both sparse and lower triangular p 2 [1; 2] could
be approached by a proper strategy. Recall that the eÆciency of reduced

gradient algorithms relies on the assumption that nxP � nuM >> nuM

and that nuM is small. Alternatives to computing the Jacobian by analytic

partial derivatives is by perturbation or by forward di�erences. This will

have a signi�cant impact on the computational demands, see the results in

section 4.3.2.

4.3 Simulations

We implemented NMPC on two cases with three di�erent optimization meth-

ods. The �rst is a basic full space SQP method following algorithm 4.1.

The second is the reduced Hessian method rFSQP, cf. algorithm 3.1, and

the third is the sequential method (sSQP). The �rst case is a CSTR while

the second case is grate sintering from chapter 2. The CSTR example was

thoroughly explored by application of various discretization methods and

�nite di�erence approximations to the Jacobian. For the CSTR there are no

nonlinear inequality constraints, and rFSQP switches to nonlinear equality

constrained mode for this case, i.e. it is equivalent to a rSQP method for this

case.
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4.3.1 Implementation issues

The basic SQP full-space method was implemented with the common l1-

penalty function. The rFSQP algorithm uses sparse linear algebra and, since

rFSQP always remain feasible with respect to inequalities, uses an l1-penalty

function without penalization of inequality constraints. sSQP implemented

an l1-penalty function without penalization of equality constraints, since

sSQP always remain feasible with respect to equalities. The di�erent penalty

functions are

�basic(xk) = f(xk) + �k kcE(xk)k1 + �kmax fcI(xk); 0g
�rFSQP (xk) = f(xk) + �k kcE(xk)k1

�sSQP (xk) = f(xk) + �kmax fcI(x); 0g

where cE (xk) is nonlinear equality constraints, and cI(xk) is nonlinear in-

equality constraints. The line search for all methods is backtracking line

search (Dennis and Schnabel 1996).

The update rule for the penalty parameter is (Biegler, Nocedal, Schmid,

and Ternet 2000):

�k+1 = max([1:001 + k�k+1k1 ; (3�k + k�k+1k1)=4; �0])

where �k+1 is an estimate of the Lagrange multipliers.

The relaxed convergence criteria from Gill, Murray, and Wright (1981),

section 8.2.3, was implemented with tolerance 10�5 for the basic SQPmethod

and sSQP. In rFSQP the algorithm stops whenever a certain KKT measure is

decreased below the tolerance 10�5. Hence, the rFSQP algorithm does not

implement the relaxed termination criteria of Gill et al. (1981). The im-

plementation of rFSQP is generally more carefully performed than the basic

SQP and sSQP methods. Hence, the relaxed termination criteria used in

basic SQP and sSQP partly compensates for a rudimentary implementation.

However, as the discussion in section 4.2 indicates, the sSQP method may

show linear convergence in certain circumstances, and relaxed termination

criteria can therefore be of crucial importance in production codes as well.

For the CSTR case the model was discretized with explicit and implicit Eu-

ler, Lobatto IIIC and ordinary Runge-Kutta 4. The Jacobian matrices with

almost block-diagonal (ABD) structure for the selected discretization meth-

ods are given in appendix C. The CSTR case was implemented with both

analytic Jacobian and �nite di�erence approximations of the Jacobian. Fi-

nite di�erences were considered for both the full Jacobian (a dense matrix)

and the elements along the block diagonal (a sparse matrix). In sSQP an-

alytic and �nite di�erence Jacobians were implemented as documented in
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appendix C.4. I.e. the sensitivity matrix S was approximated directly by

�nite di�erence perturbations of the simulator. The CSTR case was investi-

gated with di�erent sampling rates and prediction and move horizons. For

the sinter case only sSQP using MATLAB's ode15s and rFSQP using Lobatto

IIIC were investigated.

4.3.2 Case1: CSTR

Case 1 is the following isothermal CSTR with 1st order reaction from Mat-

suura and Kato (1967) also investigated by de Oliveira (1994)

dx1
dt = u1 + u2 � k1

p
x1

dx2
dt

= (CB1
� x2)u1x1 + (CB2

� x2)u2x1 �
k2x2

(1+x2)2
(4.9)

with parameter values k1 = 0:2, k2 = 1, CB1
= 24:9 and CB2

= 0:1. For

(u1; u2) = (1; 1) the CSTR has three equilibrium points at x1 = 100; x2 2
(0:633; 2:72; 7:07), with the middle equilibrium point being unstable, and

the others stable. The system (4.9) was discretized with a time step h,

prediction horizon P , move horizon M and simulated for NMPC samples,

i.e. the NMPC problem is repeatedly solved NMPC times. At time step 10 the

process experiences a +50% step in CB1
which is seen by the NMPC algorithm

through the feedback only. We choose Q = 10Inx and R = Inu in equation

(4.1) and penalize deviation from stationary values. I.e. the control objective

is to keep the states and controls at their initial values x = (100; 0:633) and

u = (1; 1).

We require that the physical bounds (xi; ui) � 0 are maintained over

the horizons. The SQP-algorithms were initialized with the output from

the previous call for each NMPC iteration. Note that integral action is not

implemented. This is justi�ed by the fact that we are mainly interested

in comparing the optimization methods, and we expect that introducing

integral action will not in
uence on this comparison. A representative simu-

lation result is shown in �gure (4.1). The process was simulated by MATLAB's

ode45 in all cases.

Note that with the given initial conditions and the given disturbance, this

case is pathological with respect to inequality constraints, i.e. the active set

is empty and unaltered throughout the horizon P . The control inputs in

�gure 4.1 are nearly constant after a short transient subsequent to the pa-

rameter disturbance. Observing this typical behavior of the NMPC methods,

we searched for the optimal control among those at set point until the step

appears and constant thereafter. This produced the contours of �gure (4.2).

The �gure caption provides a more detailed description on how the contours
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Figure 4.1: NMPC of CSTR. The �gure shows typical results for NMPC of the CSTR

case with h = 1. The various discretization methods produced nearly identical
results. In the lower sub�gure the solid curve is for u1 and the dashed curve is for
u2. The step in CB1

enters at time step 10, and this drives the state x2 away from
the equilibrium. If the control inputs are kept at the equilibrium input [1; 1], the
system will settle at an equilibrium point at x = (100; 15:94).

were generated. Observe the steep contours on the �gure indicating that

even minor deviations will in
uence on the result. Observe also that the

contours were generated for the class of constant controls described above,

and do not match the contours for the di�erent NMPC implementations. The

contours are elongated, i.e. the system is poorly conditioned.

The computations were implemented in MATLAB with the qp-routines

available as mex/dll-�les on a Compaq Deskpro EN / Pentium II / 450MHz

/ 128Mb RAM running Windows NT4.0. Computational results are shown

in tables 4.1-4.3 The results in tables 4.1-4.3 are summarized in the following

conclusions:

� sSQP is sensitive to the choice between implicit and explicit integration

methods, while both basic SQP and r(F)SQP is insensitive to this.

� Finite di�erence approximations of the full Jacobian in basic SQP and

r(F)SQP should be avoided.

� r(F)SQP is superior for large number of variables.
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310
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7.79e+004
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Contours of objective: min(obj)=23.86 at u*=[0.67,1.33]

u*=[0.67,1.33]

Figure 4.2: Contours of NMPC of CSTR. Contours of constant control. The control
u was �xed at the stationary value u = [1; 1] until the step in CB1

entered. Then u
was set to another constant value for remaining part of the horizon. The objective
minimum 23.6 at (u1; u2) = (0:67; 1:33) is marked by a �. Note that the optimum
is located at the 
oor of a narrow valley with elongated contours. The condition
number is 9 � 1010.

In the list above the notation r(F)SQP emphasizes that in this case, rFSQP

is equivalent to rSQP. Note that a consequence of the �rst item is that si-

multaneous SQP methods can have fewer variables when implemented with

implicit discretization methods. I.e., the step length h can be increased

beyond the stability limit of explicit methods (but not beyond reasonable

accuracy). Since the basic SQP and sSQP methods are approximately simi-

lar in implementation complexity, sSQP should be chosen when explicit dis-

cretization schemes suÆce. In the face of more challenging processes reduced

Hessian methods are superior provided that the assumption that there are

few degrees of freedom continue to hold. This assumption commonly holds

in NMPC. Note that none of the problems reported in tables 4.1-4.3 could be

solved by the MATLAB NAG toolbox routine e04ucf. The CSTR example has

also been solved by de Oliveira (1994), but there the focus is on viability of

the sSQP method and no comparisons to other approaches are given.

As a preparation for section 4.3.4, some additional simulations were per-

formed. The consequence of terminating sSQP early (after one SQP iteration)

was investigated, since it is of interest to see whether this signi�cantly im-
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Discretization Horizons # vars. Jacobian Results

method h=P=M tot/dep/free analytic/fd1/fd2 Obj CPU time

Explicit Euler 2/6/5 22/12/10 analytic 33.55 5.9s

Explicit Euler 1/12/10 44/24/20 analytic 28.33 19s

Implicit Euler 2/6/5 22/12/10 analytic 31.41 9.5s

Implicit Euler 1/12/10 44/24/20 analytic 27.85 45s

Lobatto IIIC 2/6/5 34/24/10 analytic 32.37 7.3s

Lobatto IIIC 2/6/5 34/24/10 fd1 32.35 22s

Lobatto IIIC 2/6/5 34/24/10 fd2 32.35 25s

Lobatto IIIC 1/12/10 68/48/20 analytic 28.07 35s

Lobatto IIIC 1/12/10 68/48/20 fd1 28.06 96s

Lobatto IIIC 1/12/10 68/48/20 fd2 28.06 222s

RK4 2/6/5 70/60/10 analytic 32.40 14.1s

RK4 2/6/5 70/60/10 fd1 32.39 30s

RK4 2/6/5 70/60/10 fd2 32.40 117s

RK4 1/12/10 140/120/20 analytic 28.05 119s

RK4 1/12/10 140/120/20 fd1 28.04 338s

RK4 1/12/10 140/120/20 fd2 28.05 1136s

Table 4.1: Nonlinear MPC on a CSTR: Basic SQP. The table shows results for the
basic SQP method. h=P=M are the sampling time, prediction and move horizons.
The # vars. tot/dep/free are the total, dependent and free number of variables.
Note that there are no active inequality constraints in this case. The Jacobian is
either analytic or approximated by �nite di�erences. In mode fd1 only elements
along the block diagonal were approximated, while in mode fd2 the full (dense)
Jacobian was approximated. Obj is the objective value measured by summing
the actual prosess outputs and implemented control actions over the NMPC horizon
NMPC . CPU time is the time measured by MATLAB's cputime command from start
to end of the main NMPC loop.

pairs the performance. On the CSTR case terminating after 1 SQP iteration

gave nearly identical results as compared to �gure 4.1 and table 4.1. For the

CSTR case the sSQP algorithm always terminates after 3-4 iterations. The

similarity between early termination and normal termination is explained

by that the �rst step gets very close to the optimum, and the following

steps only provide minor improvements to the �rst step. However, early

termination is problem dependent and for the sintering case other results

are achieved, see the discussion of �gure 4.5 and 4.6 in section 4.3.4.
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Discretization Horizons # vars. Jacobian Results

method h=P=M tot/dep/free analytic/fd Obj CPU time

Explicit Euler 2/6/5 22/12/10 analytic 33.18 4.4s

Explicit Euler 2/6/5 22/12/10 fd 33.54 5.7s

Explicit Euler 1/12/10 44/24/20 analytic 28.15 13.1s

Explicit Euler 1/12/10 44/24/20 fd 28.33 19.4s

Implicit Euler 2/6/5 22/12/10 analytic 31.41 33s

Implicit Euler 2/6/5 22/12/10 fd 31.41 131s

Implicit Euler 1/12/10 44/24/20 analytic 27.85 94s

Implicit Euler 1/12/10 44/24/20 fd 27.83 745s

Lobatto IIIC 2/6/5 34/24/10 analytic 32.37 49s

Lobatto IIIC 2/6/5 34/24/10 fd 32.36 192s

Lobatto IIIC 1/12/10 68/48/20 analytic 28.07 118s

Lobatto IIIC 1/12/10 68/48/20 fd 28.07 1121s

RK4 2/6/5 70/60/10 analytic 32.40 4.3s

RK4 2/6/5 70/60/10 fd 32.40 10.0s

RK4 1/12/10 140/120/20 analytic 28.05 12.2s

RK4 1/12/10 140/120/20 fd 28.05 58s

ode45 2/6/5 22/12/10 fd 23.03 36s

ode45 1/12/10 44/24/20 fd 28.49 149s

Table 4.2: Nonlinear MPC on a CSTR: sSQP. The table shows results for the sSQP
method. The results for ode45 with h = 2 showed some ripple that were caused by
the relaxed termination criteria. See table 4.1 for explanation of symbols.

4.3.3 Large scale applications of rFSQP

The rFSQP algorithm was tested on (pathological) large problems by de-

creasing the sampling time h to give very long prediction horizons in the

CSTR case. The move horizon was limited to 20 in these simulations in order

to limit the size of the constraint Jacobian for the qp3.

The rFSQP algorithm was tested on the CSTR case with 40000 dependent

and 20 free variables. This was done by choosing a very small step length and

adjusting the prediction and move horizons accordingly. The task manager

image in �gure 4.3 shows that the system is running close to its limits. In

particular, the lack of physical memory is critical. Attempts to run rFSQP

with 100000 variables failed with an "unhandled exception" message from

Windows.

3The NAG toolbox routine e04naf needs the Jacobian as a dense matrix.
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Discretization Horizons # vars. Jacobian Results

method h=P=M tot/dep/free analytic/fd1/fd2 Obj CPU time

Explicit Euler 2/6/5 22/12/10 analytic 33.57 6.1s

Explicit Euler 1/12/10 44/24/10 analytic 28.27 13.4s

Implicit Euler 2/6/5 22/12/10 analytic 31.43 6.2s

Implicit Euler 1/12/10 44/24/10 analytic 27.99 12.8s

Lobatto IIIC 2/6/5 34/24/10 analytic 32.37 7.1s

Lobatto IIIC 2/6/5 34/24/10 fd1 32.35 11.5s

Lobatto IIIC 2/6/5 34/24/10 fd2 32.35 17.3s

Lobatto IIIC 1/12/10 68/48/20 analytic 28.07 17.2s

Lobatto IIIC 1/12/10 68/48/20 fd1 28.05 39s

Lobatto IIIC 1/12/10 68/48/20 fd2 28.06 95s

RK4 2/6/5 70/60/10 analytic 32.40 9.1s

RK4 2/6/5 70/60/10 fd1 32.39 19s

RK4 2/6/5 70/60/10 fd2 32.40 71s

RK4 1/12/10 140/120/20 analytic 28.05 23s

RK4 1/12/10 140/120/20 fd1 28.04 58s

RK4 1/12/10 140/120/20 fd2 28.05 781s

Table 4.3: Nonlinear MPC on a CSTR: rFSQP. The table shows results for the rFSQP
method. See table 4.1 for explanation of symbols.

The text below is a copy of the text output on screen during the �rst

90 iterations. The algorithm was interrupted after this, and the results are

plotted in �gure 4.4. The results show that the algorithm works well, but

machine limitations limits application to large scale problems.

The rFSQP algorithm has an option that allows direct call of the subrou-

tine MA28BD if a pivoting sequence from MA28AD is given. This reduces the

computational burden in NMPC where the SQP algorithm is called repeatedly,

since complete refactorization is not necessary at each call from the outer

NMPC algorithm. From the printout below it is observed that each SQP iter-

ation in the beginning takes about 45 seconds. This includes initialization,

LU decomposition by MA28BD, calculation of the range and null space steps

and a convergence test. However, disk swapping adds considerably to com-

putational times and with more physical memory, the computational time

will decrease.

It is important to note that inadequate memory handling in MATLAB

causes memory leaks in the program, i.e. when MATLAB enters a subfunction

it allocates memory to the internal variables. Upon exit, the variables are
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Figure 4.3: Task manager crop image. The image shows the task manager when
running rFSQP on the CSTR case with 40000 dependent variables. As can be seen
all physical memory is occupied, and the page �le is almost fully occupied. The
CPU load is very low due to exessive disk swapping.

deleted but memory does not seem to be completely deallocated. Hence,

each time MATLAB calls a subfunction, it leaks memory up to the size of the

local variables. To the best of the authors knowledge, the only solution to

this problem is to make all variables global. In rFSQP all matrix variables

are sparse and global, but vectors are not global. Note that if a subroutine

allocates 10 vectors of 100000 variables at each call, MATLAB will leak up to
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2Mb (in double real) at each call.

Printout from screen:

****************************************************

* NMPC/CSTR: RK4 *

* Frode Martinsen, 28/06/01 *

****************************************************

RK4 w/rFSQP (ANALYTIC=1)

Total nos. of vars.: ntot=40020 (dependent=40000, free=20)

MPC: It:5/11999 (CTOT=3.3e+002s, CTnow=45s. Last iSQP=1)

MPC: It:10/11999 (CTOT=5.4e+002s, CTnow=41s. Last iSQP=1)

STEP =1

MPC: It:15/11999 (CTOT=2.6e+003s, CTnow=3.1e+002s. Last iSQP=4)

MPC: It:20/11999 (CTOT=4.3e+003s, CTnow=3.5e+002s. Last iSQP=4)

MPC: It:25/11999 (CTOT=8.9e+003s, CTnow=1.1e+003s. Last iSQP=4)

MPC: It:30/11999 (CTOT=1.4e+004s, CTnow=1.3e+003s. Last iSQP=4)

MPC: It:35/11999 (CTOT=1.6e+004s, CTnow=3.7e+002s. Last iSQP=4)

MPC: It:40/11999 (CTOT=1.8e+004s, CTnow=5.1e+002s. Last iSQP=4)

MPC: It:45/11999 (CTOT=2e+004s, CTnow=4e+002s. Last iSQP=4)

MPC: It:50/11999 (CTOT=2.2e+004s, CTnow=3.6e+002s. Last iSQP=4)

MPC: It:55/11999 (CTOT=2.4e+004s, CTnow=3.5e+002s. Last iSQP=4)

MPC: It:60/11999 (CTOT=2.6e+004s, CTnow=3.3e+002s. Last iSQP=4)

MPC: It:65/11999 (CTOT=2.8e+004s, CTnow=3.7e+002s. Last iSQP=4)

MPC: It:70/11999 (CTOT=2.9e+004s, CTnow=3.4e+002s. Last iSQP=4)

MPC: It:75/11999 (CTOT=3.1e+004s, CTnow=3.9e+002s. Last iSQP=4)

MPC: It:80/11999 (CTOT=3.3e+004s, CTnow=3.7e+002s. Last iSQP=4)

MPC: It:85/11999 (CTOT=3.5e+004s, CTnow=4.1e+002s. Last iSQP=4)

MPC: It:90/11999 (CTOT=3.7e+004s, CTnow=5.7e+002s. Last iSQP=4)

4.3.4 Case2: Grate sintering

The sintering process from chapter 2 is a batch process. Hence, stability

of the nonlinear MPC algorithm with the objective (2.6) is not essential to

the performance of the algorithm. The limited accuracy of the model, cf.

section 2.7, indicates that analyzing nominal stability of the nonlinear MPC

algorithm is of little value. Hence, checking whether the suggested objective

(2.6) is a Lyapunov function is not considered. Due to the problem de�ned
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Figure 4.4: rFSQP on large scale CSTR. The �gure shows the results from rFSQP

after interruption at NMPC iteration 90. Comparing with �gure 4.1, the sampling
period h = 0:005 used in this �gure implies that 200 time steps here corresponds
to 1 time step in �gure 4.1. I.e. the 80 datapoints from the step enters in this
�gure correponds to about a half time step in �gure 4.1. Hence, the state and
control values cannot be visually distinguished in the two �gures, and the results
are concluded to be good. Note that the step enters at time step 10 in both �gures
which is not the same physical time. Physical time is given by h � timestep.

in equation (2.6), this is a large scale problem with a nonlinear inequality

constraint and a large number of equality constraints.

The reduced model de�ned in section 2.5.2 was simulated with the im-

plicit MATLAB solver ode15s in section 2.5. Attempts to simulate the model

with explicit Runge-Kutta of 4th order (RK4) failed due to numerical insta-

bilities (recall the condition number of � 1014 for the constraint Jacobian
@f
@x

at the initial point). In nonlinear MPC with rSQP and the model dis-

cretized by RK4, the algorithm spent about 90 seconds in forming the initial

[@f
@x
; @f
@u
] of size P � 5nx � (P � 5nx +M � nu) = 11600 � 11640 � 270Mbyte

(as a sparse matrix!) with nx = 29 and nu = 1. The horizons P = 80

and M = 40 were selected to give a prediction horizon of 40 minutes with

a sampling rate h = 30s. Note that the reduced Hessian is of size 40 � 40,

and approximating this by a dense BFGS matrix presents no limitations.

The algorithm spent about 130 seconds in LU-decomposition inside MA28AD4.

4The PC used had only 128Mbyte memory. Virtual memory on the disk was in use,
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The computed steps for the �rst SQP-iteration was in the order kpY k � 1028

and kpZk � 1024 indicating a large error introduced by inadequate dis-

cretization. With the use of Lobatto IIIC, the sintering process could be

simulated with a step length h = 1. With a 45 minute prediction horizon

this leads to a problem with approximately 2*78300 dependent variables5. A

sparse Jacobian for this case requires about 3.2Mb using double real format.

Single shooting (sSQP) for the reduced sinter model did not converge.

Lack of robustness of single shooting is well known, see (Barclay, Gill, and

Rosen 1998) and (Ascher, Mattheij, and Russell 1995). The results presented

for sSQP in �gure 4.5 and 4.6 were obtained by limiting the number of

SQP iterations to 5 and 1 respectively. The line search was aborted after

5 iterations in both cases. Note that aborting the line search was done in

order to reduce the number of model evolutions to obtain xk (superscript

notation de�ned above equation (4.1)). Aborting the line search will not

guarantee that the step taken gives descent. The number of control breaks

were limited to 3 by control action blocking. The sensitivity matrix then has

three columns, each corresponding to one control break. Perturbing ode15s

to get S is done by three evolutions, which took about 75 seconds. Note

that S is a narrow and dense lower trapezoidal matrix. The computational

times given in the �gures are longer than the batch time, and the approach

cannot be implemented in the industrial plant. The objective value in �gure

4.5 (see text on top) is lower than the number given in �gure 4.6.

4.4 Discussion

In this chapter we implemented di�erent MPC strategies on two cases and

investigated the computational load and quality. From tables 4.1-4.3 we

observe that among the di�erent NMPC methods, the rSQP method seems

preferable in view of computational time. In NMPC computational time is lim-

ited, and feasibility of intermediate iterates is essential for stability (Mayne,

Rawlings, Rao, and Scokaert 2000), (Scokaert, Mayne, and Rawlings 1999).

SQP is an adaptive subproblem, i.e. its computational time is not determin-

istic. Consequently, in NMPC feasible path SQP methods are preferred since

they allow termination prior to convergence (Mayne 1997). Such meth-

ods must solve the model constraints at each SQP iteration, which may be

time consuming if the model is represented with an implicit discretization

scheme. Hence, sSQP becomes computationally demanding if implicit dis-

and part of the given times could be due to disk swapping.
5The 2� follows from the additional set of variables in Lobatto IIIC.
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Figure 4.5: NMPC of reduced sinter model with sSQP, MAXIT=5. The �gure shows
the results applying sSQP to the reduced sinter model. The full sinter model was
used as process simulator. The upper part shows the gas temperatures. The dashed
line indicates the fusion temperature. The boldface curve is the measured ignition
temperature, while the solid curves show the computed pro�les at spatial discretiza-
tion levels n = 2; 5; 10 where n = 10 is the bottom level. The second sub�gure shows
the solid temperature pro�les at levels n = 1; 2; 5; 10 along with the measured tem-
perature pro�le (boldface) at 15cm depth, cf. �gure 2.11. The dashed line shows
the fusion limit. The third sub�gure shows the computed coke concentrations at
levels n = 1; 2; 5; 10. The last sub�gure shows the computed control input v (solid).
The dashed-dotted line shows the control pro�le uk computed for the last iteration
of the NMPC algorithm, and is only included to show the e�ect of control action
blocking. I.e. the time scale is not relevant for this pro�le.

cretization methods are applied, whereas rSQP preforms equally well regard-

less of whether implicit or explicit discretization scheme is applied. Both

methods require that the selected discretization scheme is appropriate, i.e. if

the model cannot be simulated with a given method, it cannot be expected

that the optimization algorithms perform well either.

Feasibility with respect to inequality constraints is easier to achieve. The

FSQP method of Tits and co-workers (Lawrence and Tits 2000), (Lawrence

and Tits 1996) and the rFSQP method from chapter 3 maintain feasibility

with respect to inequality constraints, and asymptotic feasibility with respect

to nonlinear equality constraints by combining these with an exact penalty

function and an arc search. The feasible path sSQP method investigated
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Figure 4.6: NMPC of reduced sinter model with sSQP, MAXIT=1. The �gure shows
the result applying sSQP to the reduced sinter model with the maximum number
of SQP iterations limited to MAXIT=1. The sub�gures are as in �gure 4.5. In the
last sub�gure the dashed line is computed control at the �rst NMPC iterate. Only
the �rst value is implemented, i.e. the time scale is irrelevant.

in section 4.2.1 does not seem to perform well in the presence of strong

nonlinearities. This is contradictory to the needs for NMPC; problems with

strong nonlinearities and trajectory tracking (Qin and Badgwell 2000).

The large scale example investigated in section 4.3.3 shows that appli-

cation of rFSQP in the grate sintering case is not computationally feasible

with the presently available computing equipment. Hence, this has not been

solved. Grate sintering is a complex process with pronounced nonlinearities

and where the time constants of the system di�er by many decades in mag-

nitude. Hence, application of real-time optimization methods like nonlinear

model predictive control to the grate sintering process is challenging.

The thesis still contributes to the application of model based control to

grate sintering. The thesis gives a framework for implementing nonlinear

model based control of grate sintering by giving a control objective. Fur-

ther, a nonlinear model along with an appropriate discretization scheme is

presented. To complete the course of NMPC for grate sintering two directions

may be investigated; providing a better discretization method or acquiring

a better computer. Reimplementing rFSQP in C++ or FORTRAN may also be
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considered.

4.5 Conclusion

The practical considerations discussed in this chapter explore the choices an

engineer must take if he wants to implement NMPC at a given process. The

interplay between discretization methods and optimization algorithms has

been investigated informally.

First the engineer must select an appropriate discretization scheme. If he

chooses an explicit discretization scheme, he can choose between sequential

or simultaneous optimization methods. Sequential methods are easy to im-

plement, while simultaneous methods are harder to implement. This applies

in particular to reduced Hessian methods which may be quite sophisticated.

If implicit discretization methods must be applied, the performance of sSQP

deteriorates while rSQP does not degrade.
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Chapter 5

Conclusion

5.1 Conclusions to the thesis

Grate sintering

A reduced order model of the grate sintering process was developed from

models available in the literature. Both the full model and the reduced

model were simulated with the MATLAB function ode15s, which is an implicit

variable step length solver of varying order. Industrial experiments including

special measurements were conducted, and the data was used for model

adaption and assessing the control objective. The models were adapted

by visual comparison to data collected from industrial experiments. Data

analysis supports the proposed control objective. The reduced model is less

computationally demanding, and reproduces the important process states

satisfactorily.

A control objective for use in nonlinear MPC was suggested and assessed

by data analysis based on industrial data.

In conclusion, the fusion model needs to be re�ned, the gas velocity must

be included as a state and pressure must be used as control input before the

model can be used in an industrial model based control setting. Improved

numerical schemes must be investigated if the model is to be applied in real-

time optimization. The reduced model provides an adequate basis on which

to continue.

rFSQP

The optimization algorithm is described, and global and local convergence

results are given. The algorithm was implemented in MATLAB and tested
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on small scale problems. The algorithm is a reduced Hessian method and

the algorithm is expected to be eÆcient for large scale problems with few

degrees of freedom.

The algorithm worked well, and it is concluded that the present MATLAB

implementation serves as a good alternative for small to medium scale prob-

lems with, say, up to 10000 variables. A number of possible algorithmic

extensions to the algorithm may be implemented and tested on the exist-

ing platform. In particular, analytic Hessians and trust-region extensions

should be investigated. A watch-dog algorithm should also be implemented.

NMPC

A qualitative comparison between sequential and simultaneous reduced gra-

dient methods is given and illuminates the similarities and di�erences be-

tween these approaches. The comparison was supplemented with simula-

tions on a simple nonlinear MPC case, where the interplay between choices

among various optimization methods and discretization methods was inves-

tigated.

The rFSQP algorithm was tested on a simple large scale problem with

promising results. However, the computing environment limits testing on

very large scale problems with number of variables in the range from 100000

and upwards. Hence, the algorithm was not tested on the grate sintering

case which has about 150000 variables when discretized with Lobatto IIIC.

The sequential method sSQP was tested on the sintering case with ter-

mination prior to convergence. The results are modestly encouraging, since

the computational load is excessive. It is concluded that simultaneous opti-

mization algorithms are well suited for problems where explicit discretization

methods are inadequate.

The grate sintering case should be implemented with discretization schemes

allowing fewer variables, or alternatively ran on a more powerful computer.

rFSQP should be reimplemented in C++ or FORTRAN to allow for large

scale applications. Further testing on large scale applications, in particular

problems with nonlinear inequalities, should be performed.

URN:NBN:no-1287



Bibliography

Allg�ower, F., T. A. Badgwell, J. S. Qin, J. B. Rawlings, and S. J. Wright

(1999). Nonlinear Predictive Control and Moving Horizon Estimation{

An Introductory Overview. In P. M. Frank (Ed.), Advances in Control:

Highlights of ECC'99. Springer.

Ascher, U. M., R. M. M. Mattheij, and R. D. Russell (1995). Numeri-

cal solution of boundary value problems for ordinary di�erential equa-

tions. Philadelphia, PA: Society for Industrial and Applied Mathemat-

ics (SIAM). Classics in Applied Mathematics.

Baker, T. E. and E. Polak (1994). On the optimal control of systems

described by evolution equations. SIAM J. Control Optim. 32 (1), 224{

260.

Barclay, A., P. E. Gill, and J. B. Rosen (1998). SQP methods and their

application to numerical optimal control. In Variational calculus, opti-

mal control and applications (Trassenheide, 1996), pp. 207{222. Basel:

Birkh�auser.

Bartlett, R. A., A. W�achter, and L. T. Biegler (2000). Active set vs. inte-

rior point strategies for model predictive control. In J. Zhu (Ed.), Pro-

ceedings of the American Control Conference (ACC 2000), Chicago,

IL., 2000, pp. 4229{4233.

Bertsekas, D. P. (1982). Constrained optimization and Lagrange multiplier

methods. New York: Academic Press Inc. [Harcourt Brace Jovanovich

Publishers].

Betts, J. T. and P. D. Frank (1994). A sparse nonlinear optimization

algorithm. J. Optim. Theory Appl. 82 (3), 519{541.

Biegler, L. T. (2000). EÆcient solution of dynamic optimization and

NMPC problems. In Nonlinear model predictive control (Ascona,

1998), pp. 219{243. Basel: Birkh�auser.

URN:NBN:no-1287



148 BIBLIOGRAPHY

Biegler, L. T., A. M. Cervantes, and A. W�achter (2001). Advances in

simultaneous strategies for dynamic process optimization. Technical

report, Carnegie Mellon University. Submitted for possible publica-

tion.

Biegler, L. T., J. Nocedal, and C. Schmid (1995). A reduced Hessian

method for large-scale constrained optimization. SIAM J. Optim. 5 (2),

314{347.

Biegler, L. T., J. Nocedal, C. Schmid, and D. Ternet (2000). Numerical

experience with a reduced Hessian method for large-scale constrained

optimization. Comp. Opt. and Appl. 15, 45{67.

Bock, H. G., M. M. Diehl, J. P. Schl�oder, F. Allg�ower, R. Findeisen, and

Z. Nagy (2000). Real-time optimization and nonlinear predictive con-

trol of processes governed by di�erential-algebraic equations. In L. T.

Biegler, A. Brambilla, and C. Scali (Eds.), Prepints: International

Symposium on Advanced Control of Chemical Processes (ADCHEM

2000), Pisa, Italy, 2000, pp. 695{703.

Boggs, P. T. and J. W. Tolle (1995). Sequential quadratic programming.

In Acta numerica, pp. 1{51. Cambridge: Cambridge Univ. Press.

Bondarenko, A. S., D. M. Bortz, and J. J. Mor�e (1999). COPS: Large-

scale nonlinearly constrained optimization problems. Technical report,

Argonne National Laboratory, Argonne, IL. ANL/MCS-TM-237.

Bongartz, I., A. R. Conn, N. I. M. Gould, and P. L. Toint (1995).

CUTE: Constrained and unconstrained testing environment. ACM

Trans. Math. Software 21, 123{160.

Byrd, R. H., J. C. Gilbert, and J. Nocedal (2000). A trust region method

based on interior point techniques for nonlinear programming. Math.

Program. 89 (1, Ser. A), 149{185.

Byrd, R. H., M. E. Hribar, and J. Nocedal (1999). An interior point al-

gorithm for large-scale nonlinear programming. SIAM J. Optim. 9 (4),

877{900 (electronic). Dedicated to John E. Dennis, Jr., on his 60th

birthday.

Byrd, R. H., G. Liu, and J. Nocedal (1998). On the local behaviour of

an interior point method for nonlinear programming. In Numerical

analysis 1997 (Dundee), pp. 37{56. Harlow: Longman.

Byrd, R. H. and J. Nocedal (1989). A tool for the analysis of quasi-Newton

methods with application to unconstrained minimization. SIAM J.

Numer. Anal. 26 (3), 727{739.

URN:NBN:no-1287



BIBLIOGRAPHY 149

Byrd, R. H. and J. Nocedal (1991). An analysis of reduced Hessian meth-

ods for constrained optimization. Math. Programming 49 (3 (Ser. A)),

285{323.

Byrd, R. H., J. Nocedal, and R. A. Waltz (2000). Feasible interior methods

using slacks for nonlinear optimization. Technical report, Optimization

Technology Center, Northwestern University. OTC 2000/11.

Cervantes, A. M. and L. T. Biegler (2000). A stable elemental decomposi-

tion for dynamic process optimization. J. Comput. Appl. Math. 120 (1-

2), 41{57. SQP-based direct discretization methods for practical opti-

mal control problems.

Chamberlain, R. M., M. J. D. Powell, C. Lemarechal, and H. C. Pedersen

(1982). The watchdog technique for forcing convergence in algorithms

for constrained optimization.Math. Programming Stud. (16), 1{17. Al-

gorithms for constrained minimization of smooth nonlinear functions.

Chen, H. and F. Allg�ower (1998a). A computationally attractive nonlinear

model predictive control scheme with guaranteed stability for stable

systems. J. Proc. Cont. 8 (5-6), 475{485.

Chen, H. and F. Allg�ower (1998b). A quasi-in�nite horizon nonlinear

model predictive control scheme with guaranteed stability. Automatica

J. IFAC 34 (10), 1205{1217.

Coleman, T. F. and A. R. Conn (1982a). Nonlinear programming via

an exact penalty function: asymptotic analysis. Math. Program-

ming 24 (2), 123{136.

Coleman, T. F. and A. R. Conn (1982b). Nonlinear programming via an

exact penalty function: global analysis. Math. Programming 24 (2),

137{161.

Conn, A. R., N. I. M. Gould, and P. L. Toint (1992). LANCELOT. Berlin:

Springer-Verlag. A Fortran package for large-scale nonlinear optimiza-

tion (release A).

Cumming, M. J. and J. A. Thurlby (1990). Developments in modelling

and simulation of iron ore sintering. Ironmak. Steelmak. 17 (4), 245{

254.

Dash, I. and E. Rose (1977). An analytical study of processes occurring in

an iron ore sinter bed. In F. Lancaster (Ed.), Automation in Mining,

Mineral and Metal Processing, IFAC Proc., pp. 649{659.

Dawson, P. R. (1993). Part 2 Research studies on sintering and sinter

quality. Ironmak. Steelmak. 20 (2), 137{143.

URN:NBN:no-1287



150 BIBLIOGRAPHY

de Oliveira, N. M. C. (1994). Newton-type algorithms for nonlinear con-

strained chemical process control. Ph. D. thesis, Carnegie Mellon Uni-

versity, Pittsburgh, PA.

de Oliveira, N. M. C. and L. T. Biegler (1995). An extension of

Newton-type algorithms for nonlinear process control. Automatica J.

IFAC 31 (2), 281{286.

Dennis, Jr., J. E. and R. B. Schnabel (1996). Numerical methods for

unconstrained optimization and nonlinear equations. Philadelphia, PA:

Society for Industrial and Applied Mathematics (SIAM). Corrected

reprint of the 1983 original.

Dougherty, E. R. (1990). Probability and Statistics for the Engineering,

Computing and Physical Sciences. Englewood Cli�s, NJ: Prentice Hall.

Drud, A. (1985). CONOPT: a GRG code for large sparse dynamic non-

linear optimization problems. Math. Programming 31 (2), 153{191.

Edgar, T. F. and D. M. Himmelblau (1989). Optimization of chemical

processes. New York, NY: McGraw-Hill.

Efron, B. and R. Tibshirani (1986). Bootstrap methods for standard er-

rors, con�dence intervals, and other measures of statistical accuracy.

Statist. Sci. 1 (1), 54{77. With a comment by J. A. Hartigan and a

rejoinder by the authors.

Fiacco, A. V. and G. P. McCormick (1990). Nonlinear programming (Sec-

ond ed.). Philadelphia, PA: Society for Industrial and Applied Math-

ematics (SIAM). Sequential unconstrained minimization techniques.

Finlayson, B. A. (1980). Nonlinear analysis in chemical engineering.

Chemical engineering. New York, NY: McGraw-Hill.

Fletcher, R. (1987). Practical methods of optimization (Second ed.).

Chichester: John Wiley & Sons Ltd.

Fletcher, R. and S. Ley�er (1998). Nonlinear programming without a

penalty function. Technical report, Department of Mathematics and

Computer Science. The University of Dundee. NA/171.

Forsgren, A. and P. E. Gill (1998). Primal-dual interior methods for

nonconvex nonlinear programming. SIAM J. Optim. 8 (4), 1132{1152

(electronic).

Frank, M. and P. Wolfe (1956). An algorithm for quadratic programming.

Naval Research Logistics Quarterly 3, 95{110.

URN:NBN:no-1287



BIBLIOGRAPHY 151

Frich, R. (1954). General principles of the double gradient method. In

Principles of linear programming, Chapter 12. Oslo: Inst. of Eco-

nomics, Univ. of Oslo.

Gay, D. M., M. L. Overton, and M. H. Wright (1998). A primal-dual

interior method for nonconvex nonlinear programming. In Y. Yuan

(Ed.), Advances in Nonlinear Programming, pp. 31{56. Kluwer.

Gill, P. E., W. Murray, and M. A. Saunders (1997). SNOPT: An SQP

algorithm for large-scale constrained optimization. Technical report,

Dept of EESOR, Stanford University. Report SOL 97-3.

Gill, P. E., W. Murray, M. A. Saunders, and M. H. Wright (1987).

Maintaining LU factors of a general sparse matrix. Linear Algebra

Appl. 88/89, 239{270.

Gill, P. E., W. Murray, M. A. Saunders, and M. H. Wright (1992). Some

theoretical properties of an augmented Lagrangian merit function. In

P. Pardalos (Ed.), Advances in Optimization and Parallel Computing,

pp. 101{128. North Holland.

Gill, P. E., W. Murray, and M. H. Wright (1981). Practical optimization.

London: Academic Press Inc. [Harcourt Brace Jovanovich Publishers].

Golub, G. H. and C. F. Van Loan (1996). Matrix computations (Third

ed.). Baltimore, MD: Johns Hopkins University Press.

Harwell Laboratory (1995). Harwell Subroutine Library Speci�cations

(Release 12). Oxfordshire, UK.: AEA Technology.

Himmelblau, D. M. (1972). Applied Nonlinear Programming. New York,

NY: McGraw-Hill.

Hinkley, J., A. Waters, and J. Litster (1994). An Investigation of Pre-

ignition Air Flow in Ferrous Sintering. Int.J.Miner.Proc. 42 (1-2), 37{

52.

Hinkley, J., A. Waters, D. O'Dea, and J. Litster (1994). Voidage of Ferrous

Sinter Beds: New Measurement Technique and Dependence on Feed

Characteristics. Int.J.Miner.Proc. 41 (1-2), 53{69.

Hock, W. and K. Schittkowski (1981). Test examples for nonlinear pro-

gramming codes. Berlin: Springer-Verlag.

Hoislbauer, F. and C. Jaquemar (1983). Mathematical modelling of heat

and mass transfer in iron ore packed bed industrial processes. In

R. Lewis, K. Morgan, and B. Schre
er (Eds.), Num. Met. Heat Transf.,

Volume II, Chapter 19, pp. 485{510. Wiley.

URN:NBN:no-1287



152 BIBLIOGRAPHY

Karmarkar, N. (1984). A new polynominal time algorithm for linear pro-

gramming. Combinatorica 4 (4), 373{395.

Kasai, E., J.-i. Yagi, and Y. Omori (1984). A mathematical model of sin-

tering process considering melt-formation and solidi�cation phenom-

ena. In Proc. Ironmak. Conf., Volume 43, pp. 241{249. AIME.

Khalil, H. K. (1996). Nonlinear systems (Second ed.). Upper Saddle River,

NJ: Prentice Hall.

Kim, Y. and W. Kwon (1998). An application of min-max generalized

predictive control to sintering processes. Control Engn. Practice 6 (8),

999{1007.

Lawrence, C. T. and A. L. Tits (1996). Nonlinear equality constraints in

feasible sequential quadratic programming. Optimization Methods and

Software 6 (4), 265{282.

Lawrence, C. T. and A. L. Tits (2000). A computationally eÆcient fea-

sible sequential quadratic programming algorithm. Technical report,

Institute for Systems Research, University of Maryland. TR 98-46,

Submitted for possible publication in SIAM J. Optim.

Lewis, F. L. and V. L. Syrmos (1995). Optimal control (Second ed.). New

York, NY: John Wiley.

Li, W. C. and L. T. Biegler (1988). Process control strategies for con-

strained nonlinear systems. Ind. Eng. Chem. Res. 27, 1421{1433.

Li, W. C. and L. T. Biegler (1989). Multistep, Newton-type control strate-

gies for constrained nonlinear processes. Chem. Eng. Res. Des. 67,

562{577.

Li, W. C., L. T. Biegler, C. G. Economou, and M. Morari (1990). A con-

strained pseudo-Newton control strategy for nonlinear systems. Com-

puters Chem. Engng. 14 (4/5), 451{468.

Marazzi, M. and J. Nocedal (2000). Feasibility control in nonlinear opti-

mization. Technical report, Optimization Technology Center, North-

western University, Evanston Il. OTC 2000/04. To appear in Founda-

tions of Computational Mathematics, Cambridge University Press.

Martinsen, F. (1998a). Interior-point methods. In E. W. Jacobsen (Ed.),

Literature for the 8th Nordic Process Control Workshop, Stockholm,

Sweden, 1998, pp. 350{369.

Martinsen, F. (1998b). Temperature pro�le measurements. Technical re-

port, Dep. of Engneering Cybernetics, NTNU. Unpublished report.

URN:NBN:no-1287



BIBLIOGRAPHY 153

Martinsen, F. and L. T. Biegler (2002). Application of optimization in

nonlinear MPC. In Proceeedings of the 15th IFAC World Congress on

Automatic Control, Barcelona. Submitted.

Martinsen, F. and B. A. Foss (2001). A feasible reduced Hessian SQP

method. Technical report, Department of Engineering Cybernetics,

NTNU, Norway. ITK-2001-5-W. Submitted for possible publication in

SIAM Journal on Optimization.

Martinsen, F., T. A. Johansen, and B. A. Foss (1999). A control relevant

dynamic model of grate sintering. In CCA'99, Kona, HI. IEEE.

Matsuura, T. and M. Kato (1967). Concentration stability of the isother-

mal reactor. Chem. Eng. Sci. 22, 171{184.

Mayne, D. Q. (1997). Nonlinear model predictive control : An assessment.

In J. C. Kantor, C. E. Garcia, and B. Carnahan (Eds.), CPC-V :

Proceedings of the Fifth International Conference on Chemical Process

Control, Tahoe City, CA., 1996, AIChE symposium series ; no. 316,

pp. 217{231. CACHE.

Mayne, D. Q. and E. Polak (1976). Feasible directions algorithms for

optimization problems with equality and inequality constraints. Math.

Programming 11, 67{80.

Mayne, D. Q., J. B. Rawlings, C. V. Rao, and P. Scokaert (2000). Con-

strained model predictive control: Stability and optimality. Automat-

ica J. IFAC 36 (6), 789{814.

Morales, J. L., J. Nocedal, R. A. Waltz, G. Liu, and J.-P. Goux (2001).

Assessing the potential of interior methods for nonlinear optimization.

Technical report, Optimization Technology Center, Northwestern Uni-

versity. OTC 2001/x.

Moran, M. M. and H. N. Shapiro (1993). Fundamentals of Engineering

Thermodynamics (Second ed.). New York, NY.: Wiley.

Mor�e, J. J. and D. J. Thuente (1994). Line search algorithms with guaran-

teed suÆcient decrease. ACM Trans. Math. Software 20 (3), 286{307.

Muchi, I. and J. Higuchi (1972). Theoretical analysis of sintering opera-

tion. Trans. Iron Steel Inst. Jpn. 12, 54{63.

Murray, W. (1997). Sequential quadratic programming methods for large-

scale problems. Comput. Optim. Appl. 7 (1), 127{142. Computational

issues in high performance software for nonlinear optimization (Capri,

1995).

URN:NBN:no-1287



154 BIBLIOGRAPHY

Murray, W. and F. J. Prieto (1995). A sequential quadratic programming

algorithm using an incomplete solution of the subproblem. SIAM J.

Optim. 5 (3), 590{640.

Murtagh, B. and M. A. Saunders (1995). MINOS 5.4 User's guide. Techni-

cal report, Dept of EESOR, Stanford University. Report SOL 83-20R.

Revised 1995.

Nath, N. K., A. J. Da Silva, and N. Chakraborti (1997). Dynamic process

modelling of iron ore sintering. Steel Research 68 (7), 285{292.

Nocedal, J. and S. J. Wright (1999). Numerical optimization. New York:

Springer-Verlag.

Olsen, S. E. (1997). Jernfremstilling. Kompendium, Metallurgisk insti-

tutt, NTNU.

Panier, E. R. and A. L. Tits (1987). A superlinearly convergent feasible

method for the solution of inequality constrained optimization prob-

lems. SIAM J. Control Optim. 25 (4), 934{950.

Panier, E. R. and A. L. Tits (1993). On combining feasibility, descent and

superlinear convergence in inequality constrained optimization. Math.

Programming 59 (2, Ser. A), 261{276.

Parker, A. S. and H. C. Hottel (1936). Combustion rate of carbon. Ind.

Eng. Chem. 28, 1334{1341.

Patisson, F., J. P. Bellot, and D. Ablitzer (1990). Study of moisture trans-

fer during the strand sintering process. Metall. Trans. 21B, 37{47.

Patisson, F., J. P. Bellot, D. Ablitzer, E. Marli�ere, C. Dulcy, and J. M.

Steiler (1991). Mathematical modelling of iron ore sintering process.

Ironmak. Steelmak. 18 (2), 89{95.

Perold, A. (1980). A generalization of the Frank-Wolfe theorem. Math.

Programming 18, 215{227.

Perry, R. H. and D. Green (1984). Perry's Chemical Engineers' Handbook

(6 ed.). McGraw-Hill.

Powell, M. J. D. (1978). The convergence of variable metric methods for

nonlinearly constrained optimization calculations. In O. Mangasarian,

R. Meyer, and S. Robinson (Eds.), Nonlinear Programming 3, pp. 27{

63. New York: Academic Press.

Pytlak, R. (1999). Numerical methods for optimal control problems with

state constraints. Lecture notes in mathematics: 1707. Germany:

Springer-Verlag.

URN:NBN:no-1287



BIBLIOGRAPHY 155

Pytlak, R. and R. B. Vinter (1998). A feasible directions algorithm for op-

timal control problems with state and control constraints: convergence

analysis. SIAM J. Control Optim. 36 (6), 1999{2019 (electronic).

Pytlak, R. and R. B. Vinter (1999). Feasible direction algorithm for op-

timal control problems with state and control constraints: implemen-

tation. J. Optim. Theory Appl. 101 (3), 623{649.

Qin, S. J. and T. A. Badgwell (2000). An overview of nonlinear model

predictive control applications. In F. Allg�ower and A. Zheng (Eds.),

Nonlinear model predictive control (Ascona, 1998), pp. 128{145.

Birkh�auser.

Rao, C. V., S. J. Wright, and J. B. Rawlings (1998). Application of

interior-point methods to model predictive control. J. Optim. Theory

Appl. 99 (3), 723{757.

Rawlings, J. B. (2000). Tutorial overview of model predictive control.

Control Systems Magazine 20 (3), 38{52.

Robinson, S. M. (1974). Perturbed Kuhn-Tucker points and rates of con-

vergence for a class of nonlinear-programming algorithms. Math. Pro-

gramming 7, 1{16.

Roine, A. (1997). Outokumpu HSC Chemistry for Windows. User's Guide,

v.3.0, Outokumpu Research Oy, Finland.

Rose, E. and I. Dash (1979). An analytical study of factors a�ecting gas


ow in sintering. Ind. Eng. Chem. Process Des. Dev. 18 (1), 67{72.

Rosenqvist, T. (1983). Principles of Extractive Metallurgy (2 ed.).

McGraw-Hill.

Schluter, R. and G. Bitsianes (1962). The combustion zone in the iron ore

sintering process. In W. Knepper (Ed.), Agglomeration, pp. 585{639.

Scokaert, P. O. M., D. Q. Mayne, and J. B. Rawlings (1999, March). Sub-

optimal model predictive control (feasibility implies stability). IEEE

Trans. Auto. Cont 44 (3), 648{654.

Tjoa, I.-B. and L. T. Biegler (1991). Simultaneous solution and opti-

mization strategies for parameter-estimation of di�erential-algebraic

equation systems. Ind. Eng. Chem. Res. 30 (2), 376{385.

Toda, H., T. Senzaki, S. Isozaki, and K. Kato (1984). Relationship be-

tween heat pattern in sintering bed and sinter properties. Trans. Iron

Steel Inst. Jpn. 24, 187{196.

URN:NBN:no-1287



156 BIBLIOGRAPHY

Troutman, J. L. (1996). Variational calculus and optimal control (Sec-

ond ed.). New York: Springer-Verlag. With the assistance of William

Hrusa, Optimization with elementary convexity.

Vanderbei, R. J. and D. F. Shanno (1999). An interior-point algorithm

for nonconvex nonlinear programming. Comput. Optim. Appl. 13 (1-3),

231{252. Computational optimization|a tribute to Olvi Mangasarian,

Part II.

Vassiliadis, V. (1993). Computational solution of dynamic optimization

problems with general di�erential-algebraic constraints. Ph. D. thesis,

University of London, U.K.

Venkataramana, R., S. S. Gupta, P. C. Kapur, and N. Ramachandran

(1998). Mathematical modelling and simulation of the iron ore sinter-

ing process. Tata Search, 25{30.

Verein Deutscher Eisenh�uttenleute (VDEh) (Ed.) (1995). Slag Atlas (sec-

ond ed.). Stahleisen, D�usseldorf.

Vinter, R. (2000). Optimal control. Boston, MA: Birkh�auser Boston Inc.

Voice, E. W., S. H. Brooks, and P. K. Gledhill (1953). The permeability

of sinter beds. JISI 174, 136{139.

Wakao, N. and S. Kaguei (1982). Heat and Mass Transfer in Packed Beds,

Volume 1 of Topics in Chemical Engineering. Gordon and Breach Sci-

ence Publishers.

White, F. M. (1999). Fluid Mechanics (Fourth ed.). Mechanical engineer-

ing series. New York, NY: McGraw-Hill.

Wonchala, E. and J. Wynnyckyj (1987). Nonisothermal 
ow of gases

through packed beds. Metall. Trans. B 18B, 279{280.

Wright, S. J. (1997a). Applying new optimization algorithms to model

predictive control. In J. C. Kantor, C. E. Garcia, and B. Carnahan

(Eds.), CPC-V : Proceedings of the Fifth International Conference on

Chemical Process Control, Tahoe City, CA., 1996, Volume 93, pp.

147{155. CACHE.

Wright, S. J. (1997b). Primal-dual interior-point methods. Philadelphia,

PA: Society for Industrial and Applied Mathematics (SIAM).

Xie, Y. F. and R. H. Byrd (1999). Practical update criteria for reduced

Hessian SQP: global analysis. SIAM J. Optim. 9 (3), 578{604.

URN:NBN:no-1287



BIBLIOGRAPHY 157

Zou, Z., T. Huang, X. Yang, and J. Chen (1995). Mathematical model

and computer simulation of moisture transfer process during sintering.

Trans. NFsoc 5 (1), 15{20.

URN:NBN:no-1287



158 BIBLIOGRAPHY

URN:NBN:no-1287



Appendix A

Appendices to chapter 2

A.1 Sinter objective

The objective from equation (2.6) is restated

� =

LZ
0

w(z)

tendZ
0

1

1 + ek1(Ts�Tfu)
(Ts � Tfu)dtdz

 z =

tendZ
t=0

�(Ts)(Ts � Tfu)dt

The double integral is approximated by a sum over the prediction horizon

for each spatial element j. Choosing P � h = ts where h is the sampling

time and tend is the sintering batch time. The integrals are approximated

by summation:

� =

nX
j=1

wj

PX
k=1

1

1 + e
k1(T

j

s;k
�Tfu)

(T
j
s;k � Tfu)

 j =

PX
k=1

f
j
k(Ts) =

PX
k=1

1

1 + e
k1(T

j

s;k
�Tfu)

(T
j
s;k � Tfu) for j = 1; : : : ; n

where n is the spatial resolution and wj are weights. The kernel fk for a

given j is considered.

fk =
(Ts;k � Tfu)

1 + ek1(Ts;k�Tfu)
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The gradient is

gk =
@fk

@Ts;k
= �

k1(Ts;k � Tfu)ek1(Ts;k�Tfu)�
1 + ek1(Ts;k�Tfu)

�2 +
1

1 + ek1(Ts;k�Tfu)

The Hessian is

Hk=
@g
k

@T
s;k

=
2k21(Ts;k�Tfu)

�
e
k1(Ts;k�Tfu)

�2
�
1+e

k1(Ts;k�Tfu)
�3 �

2k1e
k1(Ts;k�Tfu)�

1+e
k1(Ts;k�Tfu)

�2�
k
2
1(Ts;k�Tfu)e

k1(Ts;k�Tfu)

�
1+e

k1(Ts;k�Tfu)
�2

The variable vector for the reduced sinter model with n spatial stages is

x = [xT1 ; x
T
2 ; : : : ; x

T
P ; u

T
0; : : : ; u

T
M ]T where

x1 = [T 2
g;1; : : : ; T

n
g;1; T

1
s;1; : : : ; T

j
s;1; : : : ; T

n
s;1; x

1
C;1; : : : ; x

n
C;1]

T

where the subscript is the time index k and the superscript is the spatial

index j. The gradient of  zj is formed as rx1 j = [0; : : : ; 0; g
j
1; 0; : : : ; 0]

T

which gives rx j = [0; : : : ; 0; g
j
1; 0; : : : ; 0; g

j
2; 0; : : : ; 0; g

j
P ; 0; : : : ; 0]

T . The ob-

jective gradient is

rx� =
nP
j=1

wjrx j = [0; : : : ; 0; w1g
1
1 ; w2g

2
1 ; : : : ; wng

n
1 ; 0; : : :

: : : ; 0; w1g
1
2 ; w2g

2
2 ; : : : ; wng

n
2 ; 0; : : :

...

: : : ; 0; w1g
1
P ; w2g

2
P ; : : : ; wng

n
P ; 0; : : : ; 0]

T

�nally

r� = [rx�
T ;ru�

T ]T = [rx�
T ; 0; : : : ; 0]T

The objective Hessian is formed as a block diagonal matrix with r2�j =

wjHk;j, k = 1; : : : ; P along the block diagonal. Observe that there are no

couplings across spatial discretization boundaries or time indexes.

A.2 Pitot measurements

The pitot measurements are shown in �gure A.1. These measurements give

an estimate of the gas velocity in the pipe following the cyclones, see �gure

2.8. The gas velocity in the sintering pans is upward limited by the gas

velocity shown in the �gure. Through consideration of the pressure drops

across the two pans connected in parallell an estimate of the gas
ow through

the pan can be achieved. This relies on identi�cation of cracks, channeling

e�ects and pipe leaks. The gas volume 
ow can be calculated from the pitot

measurements. This allows further adaption of the gas
ow predicted by the

model. This is left as future work.
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Figure A.1: Experiment 1: Pitot measurements. The �gure shows measurements
placed after the cyclones shown in �gure 2.8 during all three batches included in
experiment 1. Sub�gure 1 shows the pitot pressure measured by a dP-cell connected
to a pitot sensor. Sub�gure 2 shows the gas temperature measured at the same spot.
The third sub�gure shows the absolute pressure which is calculated by patm�p2;bot
where p2;bot is the solid curve in �gure 2.11, sub�gure 2. Sub�gure 4 shows gas
density calculated from the ideal gas law by assuming dry air and using pabs from
sub�gure 3. Sub�gure 5 shows the calculated gas velocity using the relation v =q

2�9:8�ppit

�g
.
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Appendix B

Appendix to chapter 3

B.1 Proof of lemma 3.3

The lemma is restated for ease of reading:

Lemma B.1 Suppose assumptions 3.1-3.6 hold. Suppose xk 2 XI is not a

KKT point for the NLP, Bk is symmetric positive de�nite and �k > 0. Then

i) D��(xk; dk) < 0, and

ii)


rci

I
(xk); dk

�
< 0, for all i 2 J �k

iii) ��(xj)� ��(xj+1) � 
�

�


ZT
j gj




2 + kcjk1
�
for the good iterates j and

constant �j in (3.11).

Proof: The descent property follows by an appropriate choice of the penalty

parameter � in (3.11). The directional derivative is

D��(xk; dk) = hgk; dki � �k kckk1
= hgk; YkpY;ki+



ZT
k gk; pZ;k

�
� �k kckk1

From (3.15) and (3.18) hgk; YkpY;ki = h�k; cki. Recalling h�k; cki � k�kk1 kckk1
and by choosing �k � k�kk1 + 2� for a constant � > 0, we get

D��(xk; dk) �


ZT
k gk; pZ;k

�
� 2� kckk1

=


ZT
k gk + �kwk; pZ;k

�
� h�kwk; pZ;ki � 2� kckk1

(B.1)

We have BkpZ;k = �
�
�kwk + ZT

k gk
�
from (3.17). Considering Bksk =

�kBkpZ;k and equation (3.38) as in Biegler et al. (1995), section 3.4,

cos �BFGSk =
sTkBksk

kskk kBkskk
= �



ZT
k gk + �kwk; pZ;k

�

ZT
k gk + �kwk



 kpZ;kk
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is well-de�ned. We have that

D��(xk; dk) � �


ZT

k gk + �kwk


 kpZ;kk cos �BFGSk � �k hwk; pZ;ki � 2� kckk1

holds for all k. This is equation (68) in Biegler et al. (1995), and the

derivation for the good iterates indexed by j follows

kskk
kBkskk

=
kpZ;kk

ZT

k gk + �kwk




1

�3



ZT
j gj + �jwj



 � kpZ;jk � 1

�2



ZT
j gj + �jwj



 (B.2)

and the assumption �3 > 1 is valid since �3 is an upper bound. We get

D��(xk; dk) � �
�1

�3



ZT
j gj


2 + �2�j cos �BFGSj

��gTj Zjwj��� �jwT
j pZ;j

�
� 2� kcjk1

Choosing

2�j cos �
BFGS
j

��gTj Zjwj��� �jwT
j pZ;j � � kcjk1

gives for all good iterates

D��(xk; dk) � �
�1

�3



ZT
j gj


2 � � kcjk1 (B.3)

which is zero only at KKT points according to (3.44). As in Biegler et al.

(1995) we get the update rule (for all iterates)

�k
�
2 cos �BFGSk

��gTk Zkwk��+ wT
k B

�1
k ZT

k gk + �kw
T
k B

�1
k wk

�
� � kckk1 (B.4)

This inequality is clearly consistent for a suÆciently small and positive

�k, hence 0 < �k � 1 is feasible and gives descent. For the non-good iterates

the angle �BFGSk is �=2 so ��kwT
k pZ;k � � kckk1 holds, giving

D��(xk; dk) � �


ZT

k gk + �kwk


 kpZ;kk cos �BFGSk � � kckk1

which is nonpositive, and zero only at KKT points since ck = 0 implieswk = 0.

The �rst claim is proved.

To prove item ii), strict feasibility, from lemma 3.2 i) we have 
k�1 < 0

otherwise by lemma 3.2 ii) and equation (3.51), the algorithm would have
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stopped in step (vii). Then, since ZT
k rc

i
I;k = 0, i 2 J �k we have by (3.15)

and the associated de�nition of ck

rci

I
(xk); dk

�
=


Y T
k rc

i
I
(xk); pY;k

�
= �k
k�1 < 0

for i 2 J �k.
To establish the third claim we follow the derivation of lemma 4.1 of

Biegler et al. (1995). From (B.3) we have

D��(xk; dk) � �b2
h

ZT

j gj


2 + kcjk1i

where b2 = f�1=�3; �g. Continuing as in Biegler et al. (1995) we establish

kdjk2 � 3�20




pjZ


2 + 3
2a kcjk
2

where kcjk2 � sup
xj2XI

kc(xj)k kcjk1, since k�k � k�k1. From (B.2), the as-

sumption kwkk � �c kckk
1=2, k�k � k�k1, �j � 1 and a2+2ab+b2 � 3a2+3b2

for a; b � 0 we have

kpZ;jk2 �
3

�22

h

ZT
j gj


2 + �2c kcjk1

i

giving

kdjk2 � �9�20
�22
kpZ;jk+

 
9�20
�22
�2c + 3
2a sup

xj2XI

kc(xj)k

!
kcjk1

� b3

�


ZT
j gj




2 + kcjk1
�

where

b3 = max

(
9�20
�22

;
9�20
�22

�2c + 3
2a sup
xj2XI

kc(xj)k

)

The non-zero lower bound on ~� >
(1��BFGS

j
)b2

b1b3
holds and the Armijo condi-

tion then holds for �j = � ~�. Then �D��(xj ; dj) � b2

�


ZT
j gj




2 + kcjk1
�

in equation (3.40) gives

��(xj)� ��(xj+1) � 
�

�


ZT
j gj




2 + kcjk1
�
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where


� = �BFGSj b2min

(
1;
(1� �BFGSj )�b2

b1b3

)

where min is only needed to handle an �j = 1. �
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Appendices to chapter 4

The almost block diagonal (ABD) form used in nonlinear MPC in chapter 4 is

derived in detail below. The ABD form depends on the discretization method.

General ABD forms are given for explicit Euler, Runge-Kutta of 4th order

(RK4) and for Lobatto IIIC. The ABD forms are given for a general nonlinear

model _x = f(x; u) with prediction horizon N and move horizonM . Only the

model constraint over the horizon is considered, but additional constraints

can be �tted into the same scheme. Note that for distributed systems the

Jacobian rx;uf(x; u) has a sparse structure that should be exploited. This

is not considered in the following, since it is problem dependent.

C.1 Explicit Euler

Explicit Euler gives the discretization scheme

xk+1 = xk + hf(xk; uk)

where h is the time-step. Introduce

g(xk; uk) = �(xk+1 � xk) + hf(xk; uk); k = 0; : : : ; N � 1

De�ne the variable vector

~x = [ xT1 � � � xTN uT0 � � � uTM ]T

Newtons method for solving this nonlinear equation is given by

J(~x)pk = �g(~x); k = 0; : : : ; N � 1 (C.1)
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where J(~x) = r~xg(~x) with the vector function

g(~x) =

2
6664

�(x1�x0)+hf(x0;u0)

�(x2�x1)+hf(x1;u1)

...

�(xN�1�xN�1)+hf(xN�1;uM )

3
7775 =

2
6664

g1(x1;u0)

g2(x2;x1;u0)

...

gN (xN ;xN�1;uM )

3
7775 (C.2)

The Jacobian is de�ned by

J(~x) = r~xg(~x) =

2
6664

r~xg1(~x)

r~xg2(~x)

...

r~xgN (~x)

3
7775 =

2
6664

rx
1
g1 rx

2
g1 ��� rx

N
g1 ru

0
g1 ��� ru

M
g1

rx
1
g2 rx

2
g2 ��� rxN

g2 ru
0
g2 ��� ruM

g2

...
. . .

. . .

rx
1
gN rx

2
gN ��� rxN

gN ru
0
gN ��� ruM

gN

3
7775

which by de�ning

rx f jk = Ak

ru f jk = Bk

gives

J(~x) =2
666666664

�I hB0

(I+hA1) �I hB1

. . .
. . .

. . .

(I+hAM ) �I hBM

. . .
. . .

...

(I+hAN�1) �I hBM

3
777777775

(C.3)

The nonlinear system (C.1) is now de�ned by substituting in (C.2) and

(C.3). The Jacobian is sparse, a property that can be utilized by sparse

optimization algorithms.
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C.2 Runga-Kutta 4

RK4 for the system _x = f(x; u) is de�ned by the discretization scheme

xk+1 = xk +
1
6
(y1 + 2y2 + 2y3 + y4)

y1 = hf(xk; uk)

y2 = hf(xk +
y1
2
; uk)

y3 = hf(xk +
y2
2
; uk)

y4 = hf(xk + y3; uk)

Observe that the property uk = uk +
y1
2

= uk +
y2
2

= uk + y3 has been

utilized. De�ne the variable vector

~x = [ y11 y12 y13 y14 x1 y21 ��� y24 x2 ��� yN4 xN u0 ��� uM ]

and the vector function

g(~x) =

2
666666666666666664

�y11+hf(x0;u0)

�y12+hf(x0+
y11
2
;u0)

�y13+hf(x0+
y12
2
;u0)

�y14+hf(x0+y13;u0)

�(x1�x0)+
1
6
(y11+2y12+2y13+y14)

�y21+hf(x1;u1)

�y22+hf(x1+
y21
2
;u1)

�y23+hf(x1+
y22
2
;u1)

�y24+hf(x1+y23;u1)

�(x2�x1)+
1
6
(y21+2y22+2y23+y24)

...

3
777777777777777775

=

2
666666666666666664

g11(y11;u0)

g12(y11;y12;u0)

g13(y12;y13;u0)

g14(y13;y14;u0)

g15(y11;y12;y13;y14;x1)

g21(x1;y21;u1)

g22(x1;y21;y22;u1)

g23(x1;y22;y23;u1)

g24(x1;y23;y24;u1)

g25(x1;y21;y22;y23;y24;x2)

...

3
777777777777777775

=

2
6664

g1

g2

...

gN

3
7775

where the last vector emphasizes that the initial pattern is repeated over

the horizon N . The Jacobian matrix is de�ned by

J(~x) = J(y; x; u) =

2
6664

r~xg1(~x)

r~xg2(~x)

...

r~xgN (~x)

3
7775 =

2
666666664

ry11
g11 ��� ry14

g11 rx1
g11 ��� ry

N4
g11 rx

N
g11 ru0

g11 ��� ru
M
g11

...
...

...
...

...
...

...

ry11
g15 ��� ry14

g15 rx1
g15 ��� ry

N4
g15 rx

N
g15 ru0

g15 ��� ru
M
g15

ry11
g21 ��� ry14

g21 rx1
g21 ��� ry

N4
g21 rx

N
g21 ru0

g21 ��� ru
M
g21

...
...

...
...

...
...

...

ry11
gN5 ��� ry14

gN5 rx1
gN5 ��� ry

N4
gN5 rx

N
gN5 ru0

gN5 ��� ru
M
gN5

3
777777775
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By de�ning

rx f jxk;uk = A0
k ru f jk = B0

k

rx f jxk+ y1
2
;uk

= A1
k ru f jxk+ y1

2
;uk

= B1
k

rx f jxk+ y2
2
;uk

= A2
k ru f jxk+ y2

2
;uk

= B2
k

rx f jxk+y3;uk = A3
k ru f jxk+y3;uk = B3

k

the Jacobian for RK4 becomes
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J
(y ;
x
;u

)
=

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4�

I

h
B
0 0

h
A
1 0

�

I

h
B
1 0

h 2
A
2 0

�

I

h
B
2 0

h 2
A
3 0

�

I

h
B
3 0

1 6

1 3

1 3

1 6

�

I

0

h
A
0 1

�

I

h
B
0 1

h
A
1 1

h 2
A
1 1

�

I

h
B
1 1

h
A
2 1

h 2
A
2 1

�

I

h
B
2 1

h
A
3 1

h
A
3 1

�

I

h
B
3 1

I

1 6

1 3

1 3

1 6

�

I

0

. .
.

. .
.

. .
.

h
A
0 N
�

1

�

I

h
B
0 M

h
A
1 N
�

1

h 2
A
1 N

�

I

h
B
1 M

h
A
2 N
�

1

h 2
A
2 N

�

I

h
B
2 M

h
A
3 N
�

1

h
A
3 N

�

I

h
B
3 M

I

1 6

1 3

1 3

1 6

�

I

0

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5
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Comparing the variable vectors for explicit Euler and RK4 reveals that

the number of variables is considerably larger in RK4. Assuming xk 2 Rnx
and uk 2 Rnu the number of variables in explicit Euler is �euler = nxN +

nuM . In RK4 the dimension of yi equals the dimension of x giving �RK4 =

5nxN + nuM . Observe that the degrees of freedom nuM is unaltered by

the choice of discretization schemes. Assuming nuM � nxN shows that

RK4 has approximately 5 times the number of variables as compared to

explicit Euler. Hence, the increased order of accuracy of RK4 comes at the

expense of a larger optimization problem. Note that the calculations above

are somewhat counteracted by the enlarged stability region of RK4 allowing

longer step-lengths.

Considering the sintering case from section 2.3 with the state vector

x = [Tg; Ts; XC ] of dimension nx = (nz � 1) + 2nz = 29 if the spatial

dimension is nz = 10. Choosing a batch time of 40 minutes and a sampling

interval of 30 seconds gives a prediction horizon of N = 80. The control

action has dimension nu = 1 and the move horizon is chosen as M = 40.

This gives

�euler = nxN + nuM = 29 � 80 + 1 � 40 = 2360

�RK4 = 5nxN + nuM = 5 � 29 � 80 + 1 � 40 = 11640

Note that due to the sti�ness of the system choosing the sampling interval

as 30 seconds leaves both explicit Euler and RK4 numerically unstable.

C.3 Lobatto IIIC

Lobatto IIIC is an A-stable implicit Runge-Kutta method with second order

accuracy. The Butcher table is

c A

bT
=

0 1
2
�1

2

1 1
2

1
2

1
2

1
2

Since the last row of A equals bT Lobatto IIIC is a FSAL method. The

discretization scheme for a time-invariant system can be written as�
1
h
(X1 +X2 � 2xk�1)� f(X1; U)

1
h
(�X1 +X2)� f(X2; U)

�
= 0

and setting xk = X2. Choosing the variable vector

~x = [ X1;1 X1;2 X2;1 X2;2 ��� XN;1 XN;2 U1 ��� UM ]
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where the �rst index is the time index over the prediction/move horizons

gives the following right-hand side:

g(~x) =

2
6666666664

1
h
(X1;1 +X1;2 � 2x0)� f(X1;1; U1)
1
h
(�X1;1 +X1;2)� f(X1;2; U1)

1
h
(X2;1 +X2;2 � 2X1;2)� f(X2;1; U2)

1
h
(�X2;1 +X2;2)� f(X2;2; U2)

...
1
h(XN;1 +XN;2 � 2XN�1;2)� f(XN;1; UM )

1
h(�XN;1 +XN;2)� f(XN;2; UM )

3
7777777775
= 0

Observe that xk�1 has been replaced by Xk�1;2 throughout the horizon. By

de�ning

rX f jXk;1;Uk
= A1

k rU f jXk;1;Uk
= B1

k

rX f jXk;2;Uk
= A2

k rU f jXk;2;Uk
= B2

k

the constraint Jacobian becomes:
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J
(~x
)
=

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4I h

+
A
1 1

I h

B
1 1

�

I h

I h

+
A
2 1

B
2 1

�

2
I h

I h

+
A
1 2

I h

B
1 2

�

I h

I h

+
A
2 2

B
2 2

�

2
I h

. .
.

. .
.

. .
.

�

2
I
h

I h

+
A
1 M

I h

B
1 M

�

I h

I h

+
A
2 M

B
2 M

. .
.

. .
.

. . .

�

2
I h

I h

+
A
1 N

I h

B
1 M

�

I h

I h

+
A
2 N

B
2 M

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5
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For the grate sintering case with prediction data etc. as discussed for RK4,

but with a sampling time of h = 1s, a dense Jacobian will require about

12.2Gb in double real, while a sparse Jacobian will require about 1.6Mb of

memory.

C.4 sSQP

The sensitivity matrix S for the sequential method (de Oliveira 1994), pp.19-
20, is considered in the following. Given the system

_x = f(x; u)

y = c(x)

De�ne

rx f jk = Ak

ru f jk = Bk

rx cjk = Ck

We have

@yk+1

@uk
=

@yk+1

@xk+1

�
@xk+1

@uk
= Ck+1Bk

@yk+2

@uk
=

@yk+2

@xk+2

�
@xk+2

@xk+1

�
@xk+1

@uk
= Ck+2Ak+1Bk

@yk+2

@uk+1

=
@yk+2

@xk+2

�
@xk+2

@uk+1

�
@xk+1

@uk
= Ck+2Bk+1

which gives the general case

Sij =

8>><
>>:

0 if i > j

Ck+iBk+j�1 if i = j

Ck+i(
i�jQ
m=1

Ak+i�m)Bk+j�1 otherwise
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The sensitivity matrix for a prediction horizon P and move horizon M be-

comes (with k = 0 and Ci = I for all i)

S =

2
6666666666666666664

B0

A1B0 B1

A2A1B0 A2B1 B2

...
. . .

. . .
MQ
m=1

AmB0 � � � AMBM�1 BM

M+1Q
m=1

AmB0 � � � AMBM�1 AM+1BM +BM+1

...
...

...
N�1Q
m=1

AmB0 � � � AN�1BM�1
~B

3
7777777777777777775

(C.4)

where

~B =

N�1Y
m=M+1

AmBM +

N�1Y
m=M+2

AmBM+1 + � � �+AN�1BN�1 +BN

Considering the lower leftmost element of S it is observed that this element

corresponds to the observability matrix of the linearized system. Complete

observability then suÆces to guarantee full rank of S since all other elements
are truncated versions of the lower left element. Full rank of S implies

observability of all (unstable) modes, and the system may be stabilized by a

suitable strategy. Note that pinning down unstable modes by an end-point

constraint xuN = 0 is susceptible to numerical roundo� errors (Rawlings

2000). The stability proof of the sequential method is only valid for open

loop stable systems (de Oliveira and Biegler 1995).

If the discretization scheme is known beforehand (i.e. if solvers like

MATLAB's ode15s are not used), an analytic Jacobian can be implemented

without the need for extensive for-loops as would be the case if the elements

of S were to be constructed explicitly. Note that by perturbation of inputs to
the simulator, the Jacobian constructed by �nite di�erences in the simulator

outputs gives the sensitivity matrix directly. I.e. perturbing each control ui
over the horizon M gives the variations in each output yi;j for i = 1; : : : ; ny
and j = 1; : : : ; N . This results in nuM calls to the simulator. If the process

can be stably discretized with explicit Euler or RK4 considerable savings can

be achieved. Note that the grate sintering case from chapter 2 cannot be

stably discretized with explicit methods, while such methods work well with
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the CSTR-example. We consider explicit Euler only in the following, but

observe that the approach �ts equally well with all (explicit and implicit)

discretization schemes.

For explicit Euler the right hand side function is given by equation (C.2)

and the Jacobian is given by equation (C.3). Partition the Jacobian from

equation (C.3) such that the parts for the states and the controls are sepa-

rated in matrices A and B as below:

A =

2
666666664

�I

(I+hA1) �I

. . .
. . .

(I+hAM ) �I

. . .
. . .

(I+hAN�1) �I

3
777777775

and

B =

2
666666664

hB0

hB1

. . .

hBM

...

hBM

3
777777775

The sensitivity matrix from chapter 4 is given by S = �(rxkh
k)�1rukh

k =

�A�1B with A and B given above in the explicit Euler case. Since

A�1 =

2
6666664

�I

� ~A1 �I

� ~A2
~A1 � ~A2 �I

...
. . .

. . .

�

N�1Q
m=1

~Am ��� � ~AN�1 �I

3
7777775

where ~Aj = (I + hAj), the sensitivity formed by S = �A�1B is given by

equation (C.4). Observe that partitioning of the Jacobian into appropriate

submatrices A and B continue to hold for the other discretization methods

as well. Hence, analytic sensitivity matrices can easily be formed for RK4

and Lobatto IIIC as well.

This gives two alternative methods for forming the sensitivity matrix.

If analytic derivatives are know the last approach should be chosen. If
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the discretization scheme is given (and not hidden inside the solver as in

ode15s or HYSYS) the latter approach may be chosen (with matrices A and

B adapted to the discretization scheme), even if analytic derivatives are not

known. This is of particular interest with implicit discretization methods

where the model can be hard to solve, since a simple evolution does not

suÆce. This is seen by the fact that perturbing the "derivative" function

f(�) in _x = f(x; u) in x and u to get Ak and Bk and composing A and B from

these may be cheaper than simulating the system to get S directly. If the

discretization scheme is hidden inside the simulator numerical perturbation

to get S directly is the only option.

For large scale systems it is essential that the matrix A is formed directly

as a sparse matrix. In the grate sintering case with approximately 10000

variables the storage of a full A would require 100002 � 2 = 200Mb in

double precision, and about 2 � 10000 � 2 = 40Mb (depending on the non-

zero structure of the Ak's) in sparse form. The sensitivity matrix S (and B)

has much smaller dimension if nuM is small. In the grate sintering case S
has dimension 10000 � 1 since there is only one control. The dimension of S
is the same as the dimension of B.
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Appendix D

Reprint of the CCA-paper

This is a reprint of the paper Martinsen, Johansen, and Foss (1999). The

issues in this paper was not pursued further during the progress of the

doctoral work. The paper suggests a generic multi-model for hyperbolic

PDE's. The main drawback is that the switching between zone-boundaries

causes problems when the system is being integrated by conventional solvers

like MATLAB's ode15s. The results in the paper were obtained by signi�cant

de-tuning of the model parameters to allow integration by explicit schemes.

The approach is thus viable for PDE's that can be integrated by explicit

solvers, but extensions to sti� and unstable systems are left as future work.
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A control relevant dynamic model of grate sintering
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Abstract

In this paper a control relevant nonlinear dynamicmodel
of grate sintering is presented. The model is designed
for control purposes for use in future model predictive
control (MPC) strategies. A multi-model approach is
utilized where the model is presented as a convex combi-
nation of locally a�ne models. The model performance
is compared to global models listed in the literature by
simulations and by comparison to industrial plant data.

1 Introduction

The metallurgical process of sintering prepares the
(iron) ore to form suitable feed for the blast furnace.
Granulated ore and coke are mixed, moistened with wa-
ter and micro-pelletized to form the charge. The charge
is loaded onto a grate and leveled to form a bed which is
ignited by a gas-fueled ignition hood. A heat wave and
coke combustion zone travels down through the bed un-
der the in
uence of a suction pressure. Hot gas from the
combustion zone passes through moist charge deeper in
the bed where water evaporates. The process can be
divided in �ve subsequent zones; heat exchange, fusion,
combustion, drying and over-moist charge. This is il-
lustrated in �gure 2 a). The main purpose of sintering
is to convert weakly-bounded granules into a partially
fused porous sinter cake suitable for feeding to the blast
furnace. Sintering is a complex process involving 
ow of
gas through a packed bed, heat and mass transfer be-
tween gas and solids, heterogeneous chemical reactions
and melting of solids.

Several models of the sintering process is presented in
the literature [1], [2], [3], [4], [5], [6], [7], [8]. These
models are presented as nonlinear PDE's, and mainly fo-
cus on reproducing important process quantities. There
are few reported results on model based control of the

sintering process. Kwon et al. [9] uses a linear MPC
scheme with an identi�ed input/output model to control
the burn-through point of traveling grate sintering. The
reported real-time experiments and simulations demon-
strates that the chosen MPC algorithm performs well.

In the present work, the problem of controlling produc-
tion rate and quality is directly addressed by identifying
a model from designed experiments. As argued below
there is an economic criteria restricted by constraints
involved, and investigating MPC as a means to control

grate sintering is motivated. We seek to exploit the un-
derlying structure of the sintering process to develop a
structured model which later on can be utilized to de-
velop a robust control strategy for the sintering process.
In the present approach the global nonlinear PDE model
is approximated by a convex combination of locally lin-
ear or a�ne models. The local (zone) models are in-
terconnected by both boundary values and propagation
of zone positions as sintering proceeds. The intercon-
nection of the zones are handled by the multi-modeling
techniques of Johansen and Foss [10]. This method gives
smooth interpolation of zones and is chosen since exact
zone boundaries are uncertain and overlap.

Early attempts to model the sintering process divided
the process into zones [1]. This approach was later aban-

doned [2]. The present approach re-investigates this ap-
proach, but the motivation for this di�ers from earlier
works. The model in this paper aims at a control rele-

vant model, not a detailed �rst principles model. In a
control relevant model reproducing the internal states
is not as important as reproducing the outputs. This
becomes important in a state space oriented MPC strat-
egy due to the need for either measuring or estimating
the next internal state value xk+1. If xk+1 cannot be
measured and estimation is hard, it is likely that the
MPC algorithm performs poorly. In such a case an in-
put/output oriented MPC strategy might perform bet-
ter, despite the model being less accurate in reproducing
the internal states.

The present paper will emphasize the development of
the control relevant model, and the control algorithm
itself is to be investigated in a later paper.
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2 Model

A model can be derived either from physical knowledge,
identi�ed from data or as a combination of these. A
control relevant model is tailored to the selected control
strategy, i.e. the control strategy in
uence on what in-
formation the model should produce. For the sintering
process the overall goal is to produce sinter at prescribed
quality and rate at the lowest possible cost. Manipu-
lated inputs are coke, water, ignition energy and air 
ow,
while the feed is regarded as a disturbance. The process
dependent outputs are quality in terms of mechanical
strength and reducibility [11], and production rate. The
amplitude and shape of the heat wave determines the
quality: Increased coke content increases the maximum
sintering temperature, Ts;max [8], but to achieve high
reducibility Ts;max should not be too high [12]. In addi-
tion proper ignition is necessary to establish the initial
conditions for sintering [2]. The process variable in
u-
encing on production rate is mainly the permeability
of the bed which in turn is in
uenced mainly by wa-
ter content. There is an optimal water content yielding
the highest bed permeability, i.e. there is an optimum
in both coke [12] and water content [13] which can be
formulated in a MPC criterion. Bounds on Ts;max and
minimum ignition energy are formulated as constraints
in the MPC formulation. Due to the large (hot) recycle
and time delays present the process is considered di�-
cult to control, with quality and production rates being
hard to predict [5].

The recycle stream is an important process variable
serving as an on-line measure of mechanical sinter qual-
ity: Poor mechanical quality will give increased recycle
rate, which in turn reduces the production rate. Re-
ducibility can be quanti�ed from the temperature pro�le
in the fusion zone [12]. Since modeling the sinter qual-
ity is di�cult, it is identi�ed from experimental data not
modeled explicitly at this stage. The stationary equa-
tions of the Voice permeability P in the laminar and
turbulent 
ow regimes are respectively:

Pl = v

�
L
�p

�1:0
= 1

150�
�

"3

(1�")2
� d

2
p

Pt = v

�
L
�p

�0:5
=
q

1
1:75�

�

�
"3

1�"

�0:5
� d

0:5
p

The productivity relation thus becomes:

G =
v

Gs

=
P

Gs

�

�
�p

L

�n

(1)

where n = 0:5 for turbulent 
ow and n = 1 for laminar

ow. The mass air 
ow G serves as an on-line measure
of production rate. Note that when signi�cant melting
occurs dp becomes a conceptual parameter.

The discussion above on in- and outputs is represented
graphically in �gure 1.

Water, air flow

Coke, ignition

Production rate

Quality

System;
(strength, reducibility)

h(�)

Figure 1: System description. The sinter quality is in
u-
enced mainly by coke content and ignition tem-
perature, i.e. hq = hq(xC; Tign), while produc-
tion rate is in
uenced mainly by water content
and air 
ow, i.e. hp = hp(xH2O(l);G). Reduced
mechanical quality increases recycle, which in
turn decreases the production rate, i.e. the sys-
tem is not decoupled.

Amechanistic model based on models reported in litera-
ture is presented in section 2.1, and a state-space multi-
model is suggested in section 2.2. The models considered
in this paper does not incorporate radial distributions,
and the industrial process considered is batch-wise sin-
tering of manganese ore in Greenawalt pans.

2.1 Mechanistic model

The general PDE model is stated in appendix A. Pa-
rameter uncertainties are present in the global models,
since essential parameters typically are determined from
empirical formulas valid only under idealized conditions.
In industrial sintering processes the formation of cracks
and channels leads to areas where air passes through
without interacting with the mass in the sinter bed. In
particular, the mass, hm, and heat, hc, transfer coef-
�cients are calculated from the Nusselt and Sherwood
numbers. These number are again calculated from the
empirical relations [14]:

Nu =
hcdp
k

= 1
"

�
2 + 1:1Pr1=3Re0:6

�
(2)

Sh =
hmdp
DON

= 1
"

�
2 + 1:1Sc1=3Re0:6

�
(3)

valid for an idealized bed with homogeneous packing. In
an industrial bed the gas 
owing through channels and
large cracks are not interacting with the solid, and the
values estimated from the empirical relations for an ide-
alized bed will deviate from the actual values. Various
heuristics are utilized to overcome this in the literature,
i.e. altering the constants of the empirical relations [2],
[3], [7], and introducing a scaling factor [5], [6].

The kinetic parameters of coke combustion, fusion and
solidi�cation of solids and condensation are also not
known in detail. The kinetic model of coke combustion
is discussed in [1] assuming the reaction C+O2 ! CO2.
The kinetics of fusion of solids is described by empirical
schemes based on slag diagrams [6] or linear schemes
based on process experience [5]. The kinetics of conden-
sation of water is derived from laboratory tests [15] or
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by heuristics and experience [2]. In addition the heat
capacity of the solid and the void fraction will change in
a complicated way as sintering proceeds. The average
particle diameter, dp, will not have a physical interpre-
tation once melting in the fusion zone has occurred. Still
all cited models utilize some equivalent particle diame-
ter when melting has occurred.

Assuming in�nite fast gas dynamics a mechanistic en-
ergy balance yields the pressure drop as the isothermal
Ergun's relation:

@p

@z
= 150

�v(1� ")2

d2p"
3

+ 1:75
�v

2(1� ")

dp"
3

(4)

The pressure pro�le @p
@z

is highly nonlinear in " and
dp, and estimating them by use of the Ergun relation
will lead to uncertain values. Consequently the mod-
els available in literature uses heuristic estimates of the
pro�les @"

@z
and

@dp
@z

. All these phenomena gives rise to
a model with many uncertain parameters, which must
be accounted for when applying model based control to
the sintering process.

2.2 State-space multi-model

The bed is divided in a �xed number nz of vertical layers
named elements �zi. Each element is allocated a model
type Mz;i, i 2 1; � � � ; 5. These zone models are models
of the natural zone partitioning depicted in �gure 2 a).
The allocation is based on process knowledge, i.e. as the
state of the element as a function of either Ts and/or
xC , xH2O(l). Once the model in an element has changed
fromMz;i to Mz;i�1, it can never change back to Mz;i.

As an example the transition from Mz;4 to Mz;3 is con-
trolled by the ignition temperature of coke TC;ign �

900�1050oC, i.e. in an element �zi with solid tempera-
ture in this range, bothMz;4 andMz;3 is calculated, and
the resulting states become a weighted sum of the two
models. Similar heuristics controls the transition be-
tween other zone models. The void fraction pro�le @"

@z

is estimated by combining the weighting functions, the
measured pressure and the Ergun relation in equation
(4). A graphical illustration of the modeling concept and
weighting functions is presented in �gure 2 b). Note that
a transition spans more than one element in general. In
addition the same technique can be applied independent

of the model type, linear vs. nonlinear etc., allocated to
the individual elements. However, if the structure of the
zone models di�ers explicit handling of initial conditions
must be done to prevent inconsistencies. In the present
model the model structure inside each zone is identical
(linear or a�ne), and such initialization problems does
not occur.

Viewed as a discretization of a system of PDE's, the de-
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Figure 2: Sintering zones. a) The sinter bed is composed of
�ve zones modeled separately. The zone widths
and positions vary during the batch. The �g-
ure shows a typical situation at a time instance
midway through the batch. The width and tem-
perature of the fusion zone determines the sinter
quality. b) Zone interconnection is handled by
multi-modeling techniques. The elements �zi
to the right have stationary vertical positions
throughout the batch, but are allocated di�er-
ent models Mz;i depending on the value of the
weighting functions wi which are moving as the
batch proceeds. In transition regions the new
model state in the element is computed as a
weighted sum of the neighboring model types.

scribed multi-modeling technique is related to the �nite
element method (FEM)1. Extensions to FEM is that in

the present approach interpolation is done in the state-
space as well as in time and the spatial domain.

3 Simulations

Simulations of the global and multi-model approaches
are compared to measurements taken on an industrial
plant. The plant data and simulations are shown in
�gure 3.

The temperature dependent aggregated parameters of
the mechanistic model were manually tuned against the
plant data. Similarly, the parameters associated with
each of the �ve multi-models were tuned against the

1FEM is applied in [6].
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Figure 3: Process data, simulations and weighting func-
tions. The upper part shows measured igni-
tion temperature (dashed) and solid tempera-
ture measured at 15cm depth. The measured
value has its peak value 1300oC at sample 285.
The sudden fall at sample 463 is caused by re-
moving the S-element from the sintering pan.
The middle part shows simulated temperatures
at 15 cm depth, together with the applied ig-
nition temperature (dashed, samples 1-36). The
mechanistic model (solid line) has its peak value
1337oC at sample 179, while the multi-model
(dashed line) has its peak value 1305oC at sam-
ple 233. The lower part shows the values of the
weighting functions w5 to w1 from left to right.
Note the resemblance to �gure 2 and the simu-
lated multi-model temperature.

plant data. Since the multi-models are valid in di�er-
ent operating ranges as de�ned by the weighting func-
tions, tuning the multi-models was easier than tuning
the mechanistic model. The interpolation functions are
linear (non-smooth), with support and localization se-
lected by process knowledge.

4 Discussion

Noting that simpli�ed kinetics of fusion and water evap-
oration/condensation have been utilized, some improve-
ments of the mechanistic model are expected upon
introducing the results of Patisson et al. [6], [15].
The model does not incorporate radial spatial inhomo-
geneities, which are known to appear regularly in in-
dustrial applications in form of channels, cracks and in-

homogeneous �lling and mixing. Such inhomogeneities
causes radial temperature and concentration gradients,
in addition to the axial gradients modeled herein. Fu-
ture work on mechanistic modeling should incorporate

radial gradients, possibly with additional simplifying as-
sumptions.

Manual tuning of parameters in a non-linear, coupled
distributed system is non-optimal, and a suitable identi-

�cation scheme should be implemented. Manual tuning
of the parameters of the (a�ne) multi-models is again
non-optimal, and work is in progress to implement aug-
mented Kalman �ltering in each operating regime. The
observability of the (distributed) system is yet to be
investigated. Tuning has only been performed for one
set-point xc;0; xw;0 and is not expected to be robust to
set-point variations. The a�ne multi-model uncertainty
problem can be adressed by the method of Slupphaug
and Foss [16].

The mechanistic model was simulated by applying New-
ton iterations to an implicit �nite di�erence scheme giv-
ing unconditional stability. The stability of the multi-
model simulation scheme has not been analyzed. The
linear weighting functions can be replaced by smooth
functions, and the elements �zi of the multi-model can
be decoupled from the spatial discretization resolution
of the implicit di�erence scheme. The relation between
FEM and the proposed state-space multi-model algo-
rithm should be pursued further. A multi-model un-
certainty class should be de�ned and identi�ed. The
control algorithm itself is to be investigated in a later
paper.

The simulations showed that the performance of the
simpler model gave satisfactory results as compared to
the mechanistic model. However, an improved mech-
anistic model can give better simulation performance.
The proposed multi-model algorithm reveals an inter-
esting relation between multi-modeling techniques and
�nite-element methods which suggests a direction for
future research. This also suggests that stability issues
of the proposed multi-model algorithm can be analyzed
with methods previously applied to FEM. Finally, multi-
models have so far been extensively investigated for data
driven models, while the present case is motivated by
acknowledging that models published in the literature
have important parameter uncertainties.

A Mechanistic model

The following states are included in the model x =�
Ts; Tg; xc; xw; xO2

; xN2
; xCO2

; xH2O(v)

�
; i.e. tempera-

ture of solids and gas, coke concentration in solid, liquid
water content2 and gas composition including water va-
por. Void fraction and particle size are estimated from

2Liquid and solids are lumped in one phase.
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measured values, the pressure pro�le and (4).

@Ts
@t

+ k1 (Ts � Tg) = g(Ts)

@Tg
@t

+ v�g
@Tg
@z

+ k2 (Tg � Ts) = 0

@xc
@t

= �MCRr(Ts)

@xw
@t

= �MH2Or4

@xj
@t

+ v
@xj
@z

= rj

where k1, k2 and k3 are aggregated temperature depen-
dent parameters and

g(Ts) = [k3Rr(Ts)�Hr�

k3Rf (Ts)�Hf � k3rH2O�Hv(Ts)]

r1(Ts) = �Rr(Ts)

r2(Ts) = 0

r3(Ts) = Rr(Ts)

r4(Ts) = rH2O(v)

Relations for Rr(Ts) are given by [1], Rf (Ts)�Hf and
rH2O by [7]. Kinetic parameters is only considered
for coke combustion, fusion and drying in the model.
Shrinkage and slump is not included. The heat of coke
combustion is released to the solid phase, see discussion
in [5]. Limestone is not utilised in the industrial plant,
and is not included in the model.

B Notation

Parameters:

" - void fraction

dp - average particle diameter

hm - mass transfer coe�cient

hc - heat transfer coe�cient

k - thermal conductivity of gas

v - gas velocity

� - viscosity

� - density

DON - axial gas dispersion coe�cient (O2-N2)

G - mass 
ow rate of gas

Gs - gas volume per sinter mass

L - height of bed

p - pressure

�g - adiabatic constant

�H - heat of reaction

cp - speci�c heat capacity

Dimensionsless numbers:

Re - Reynolds number: Re =
dpG

�

Sh - Sherwood number: Sh =
hmdp
DON

Sc - Schmid number: Sc = �
�DON

Nu - Nusselt number: Nu =
hcdp
k

Pr - Prandtl number: Pr =
cp�

k
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