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Summary 

A binary isotope mixture of Lennard-Jones/spline particles at equilibrium was perturbed by a sudden 

change in the system’s boundary temperatures. The system’s response was determined by non-

equilibrium molecular dynamics (NEMD). Three transient processes were studied: (1) The propagation 

of a pressure (shock) wave, (2) heat diffusivity and conduction, and (3) thermal diffusion (the Ludwig-

Soret effect). These three processes occur at different time scales, which makes it possible to separate 

them in one single NEMD run. The system was studied in liquid, supercritical, and dense gas states 

with various forms and strengths of the thermal perturbation. The results show that heat was initially 

transported by two separate mechanisms; (1) heat diffusion as described by the transient heat 

equation and (2) as a consequence of a pressure wave.  The pressure wave travelled faster than the 

speed of sound, generating a shock wave in the system. Local equilibrium was found in the transient 

phase, even with very strong perturbations and in the shock front. Although the mass separation due 

to the Ludwig-Soret effect developed much slower than the pressure and temperature fields in the 

system at large, it was found that the Soret coefficient could be accurately determined from the initial 

phase of the transient and close to the heat source. This opens the possibility of a new way to analyse 

results from transient experiments and thereby minimize effects of gravity and convection due to 

buoyancy. 
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1. Introduction 

The components of a fluid mixture in a temperature gradient will to a certain extent separate due to 

the Ludwig-Soret effect [1,2]. A measure of the effect is the ratio between the concentration gradient 

and the temperature gradient at stationary state, which can be quantified as the thermal diffusion 

factor or the Soret coefficient [3]. The Soret effect is one of the coupled transport processes in 

mixtures [3,4]. 

The Soret effect has been studied for many years, both experimentally and by computer simulations. 

High-quality data for binary and ternary mixtures are now available, see e.g. Bou-Ali [5] and references 

therein, and so are models with reasonable predictive power based on differences in molecular 

parameters such as mass, interaction energy, and molecular size [6-9]. However, the relationship 

between the molecular properties and the observed effect is still not developed to the extent that a 

robust, predictive model for the Soret coefficient is established. 

A nice and recent review of experimental methods to determine Soret coefficients in binary and 

ternary mixtures was given by Köhler and Morozow [10]. Other excellent reviews were written by 

Srinivasan and Saghir [11], Platten [12], and Wiegand [13]. The methods that are of most interest in 

the context of the present paper are fast methods that work at very small length scale, such as optical 

beam deflection [14], thermal diffusion forced Rayleigh scattering [15,16], and optical digital 

interferometry [17].  

Whereas a stationary-state thermal gradient is relatively quickly established in a fluid mixture, it takes 

longer to establish a stationary concentration gradient. A key dimensionless number is the ratio 

between the thermal and mass diffusivities, the Lewis number, which in a typical liquid mixture is of 

the order 100. Use of stationary-state methods is therefore often limited by the time it takes to reach 

a stable concentration gradient in the system. In order to avoid the effect of buoyancy and convection, 

which may corrupt the measurements of the Soret effect, different methods have been used [10], 

notably (1) Heating from the top of the sample, (2) zero-gravity measurements in ballistic flights or at 
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the International Space Station, and (3) transient methods. Fast transient methods have the advantage 

that they are not much affected by gravity and can therefore be used on Earth. A disadvantage is that 

the results are more difficult to interpret as compared with stationary-state methods. 

Computer simulations represent another important tool in studies of the Soret effect. Equilibrium as 

well as non-equilibrium molecular dynamics (NEMD) have been used; a recent review was given by 

Artola and Rousseau [6]. In the last twenty years or so, synthetic [18, 19] and boundary-driven NEMD 

(BD-NEMD) [20-22] methods have gained interest because they appear to be quite suitable for the 

coupled transport processes such as the Soret effect. [23] 

The work discussed in this paper is based on BD-NEMD. Several implementations of BD-NEMD 

methods are available, see e.g. Artola and Rousseau [6]. A common feature when applied to thermal 

or mass diffusion is that the simulation model is set up with source- and sink terms for the transport 

process of interest. For instance, a thermal gradient is generated with heat source and –sink terms in 

the form of kinetic energy source and –sink [21] or walls [20]. Alternatively, the heat source and sink 

may be implemented as thermostatted regions of the system. The thermostats operate typically with 

a simple velocity scaling algorithm that conserves energy and momentum like in the HEX algorithm 

[22] or the RNEMD algorithm [24,25]. These methods differ little in principle, and the choice between 

them is a matter of taste. Like all algorithms operating on single-particle velocities,1 the source- and 

sink regions of the system may be considered as separate systems contributing to the transport 

processes in the bulk of the system like diffuse walls. If it is important to control the system’s 

temperature settings, such as the location in the system’s phase diagram, thermostats are preferable. 

If it is important to control the heat flow or energy conservation, the HEX- or similar algorithms are 

preferable. The reader should be aware that a defect in the original implementation of the HEX 

algorithm was corrected recently by Wirnsberger et. al. [26] in the EHEX algorithm with excellent 

energy conservation. 

                                                           
1 Unlike for example dissipative-particle thermostats. 
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Most simulations aim at reaching a stationary state where mass fluxes have decayed to zero mean 

values. Although experiments with transient states were made and analysed, few simulations have 

addressed transient behaviours [27]. In the present paper, we examine transient properties of coupled 

heat and mass transport in a binary mixture and show that (at least in simulations) it is possible to 

extract reliable data for the Soret coefficient from the transient states. 

This paper addresses the following questions: 

(1) A sudden local heating gives a pressure increase ranging from a mild sound wave to an explosion. 

How does the pressure propagate through the system, and is its effect sufficiently distinct from the 

Ludwig-Soret effect in space and time to allow for determination of the latter in a transient 

experiment? 

(2) A local heat source gives a temperature gradient. How fast do the components in a mixture 

separate due to the Ludwig-Soret effect shortly after the heat is turned on? 

(3) Is local equilibrium fulfilled, so that the irreversible thermodynamics formalism may be used? 

(4) If there is local equilibrium, can the Soret coefficient be determined from data acquired during the 

transient period? 

NEMD simulations allow for detailed analyses of the system’s properties and transport processes as 

functions of space and time. In this work, we have employed BD-NEMD as described by Ikeshoji and 

Hafskjold [21]. The results from the simulations are interpreted in terms of the formalism given by 

irreversible thermodynamics [4] as described in Section 2. The details of the simulations are given in 

Section 3 and the results are presented in Section 4. In order to connect the NEMD results to 

irreversible thermodynamics, the assumption of local equilibrium in the system was analysed as 

described in Section 5. The conclusion from this analysis was then used to discuss the time-dependent 

Soret coefficient as described in Section 6. 
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2. Theory 

In a binary mixture of non-ionic molecules subject to a temperature gradient, there are two diffusive 

transport processes, a heat flux and a mass flux. We consider here a three-dimensional system with 

fluxes and forces in one direction only (the x-direction). The transport equations may be expressed as 

𝐽𝑞 = −𝐿𝑞𝑞

∇𝑇

𝑇2
− 𝐿𝑞1

1

𝑇
∇𝑇(𝜇1 − 𝜇2) (1a) 

𝐽1 = −𝐿1𝑞

∇𝑇

𝑇2
− 𝐿11

1

𝑇
∇𝑇(𝜇1 − 𝜇2) (1b) 

where 𝐽𝑞 is the heat flux2, 𝐽1 the mass flux of component 1 (the other mass flux depends trivially on 𝐽1 

through the reference frame), the coefficients 𝐿 are the phenomenological transport coefficients, 𝑇  

is the temperature, and 𝜇𝑘 is the chemical potential of component 𝑘. The subscript “𝑇” denotes that 

the gradient in the chemical potential shall be taken at isothermal conditions. 

The mass flux in Eq. (1b) may alternatively be expressed in a mean molar reference frame as  

𝐽1 = −𝑛𝑥1𝑥2𝐷𝑇∇𝑇 − 𝑛𝐷∇𝑥1 (2) 

where 𝑛 is the number density, 𝐷𝑇 the thermal diffusion coefficient, 𝐷 the mutual diffusion coefficient 

and 𝑥𝑘 the mole fraction of component 𝑘. The two diffusion coefficients are related to the 

phenomenological transport coefficients by 

𝐷𝑇 =
𝐿1𝑞

𝑛𝑥1𝑥2𝑇2
 (3) 

and  

𝐷 =
𝐿11

𝑛𝑥2𝑇

𝜕𝜇1

𝜕𝑥1
 (4) 

The Soret coefficient is defined as 

𝑆𝑇 =
𝐷𝑇

𝐷
 (5) 

                                                           
2 The heat flux is sometimes called the energy flux to distinguish it from the measurable heat flux, see e.g. ref. 
[4]. 
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At stationary state (𝐽1 = 0), the Soret coefficient may be expressed as 

𝑆𝑇 = −
1

𝑥1𝑥2
(

∇𝑥1

∇𝑇
)

𝐽1=0
 (6) 

The quantities on the rhs of Eq. (6) are thus function of space (x), but not of time. 

Equation (2) is, however, valid also in transient states. The Soret coefficient may in such case be 

expressed by rearranging Eq. (2): 

𝑆𝑇 =
𝐷𝑇

𝐷
= −

1

𝑤1𝑤2
(

∇𝑤1

∇𝑇
) −

𝐽1

𝑤1𝑤2𝑛𝐷∇𝑇
 (7) 

This expression may be used to analyse NEMD data as all the quantities are mechanical and functions 

of space and time, provided local equilibrium is fulfilled. The question that will be addressed in the 

following sections is whether it is possible or convenient to use Eq. (7) for determining 𝑆𝑇. The first 

term on the rhs of Eq. (7) is independent of the reference frame for a binary system, and so is the 

second term as long as 𝐽1 and 𝐷 are computed in the same reference frame. In the following, we shall 

use the mean molar reference frame for this term. 

Eq. (7) shows that the advantage of a stationary-state method is to avoid the need for data on 𝐽1 and 

𝐷, which are not easily obtained in a transient experiment. The purpose of this paper is therefore to 

examine the contribution to 𝑆𝑇 from the second term in Eq. (7). 

3. NEMD simulations 

A binary isotope mixture was modelled with a Lennard-Jones/spline (LJ/s) potential defined by the 

pair potential [28] 

𝑢(𝑟) = 

 

4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟
)

12

− (
𝜎𝑖𝑗

𝑟
)

6

] for 𝑟 ≤ 𝑟𝑠  

𝑎𝑖𝑗(𝑟 − 𝑟𝑐)2 + 𝑏𝑖𝑗(𝑟 − 𝑟𝑐)3 for 𝑟𝑠 ≤ 𝑟 ≤ 𝑟𝑐 (8) 

0 for 𝑟 ≥ 𝑟𝑐  

where 
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𝑟𝑠 = (
26

7
)

1/6

𝜎𝑖𝑗 
(9a) 

𝑟𝑐 =
67

48
𝑟𝑠 (9b) 

𝑎𝑖𝑗 = −
24192

3211

𝜀𝑖𝑗

𝑟𝑠
2  (9c) 

and 

𝑏𝑖𝑗 = −
387072

61009

𝜀𝑖𝑗

𝑟𝑠
3  (9d) 

The parameters 𝜀𝑖𝑗  and 𝜎𝑖𝑗 are the usual Lennard-Jones parameters. The LJ/s potential was chosen 

because it is uniquely defined with zero potential energy and zero force at 𝑟 = 𝑟𝑐 and of shorter range 

than a typical truncated LJ potential (at 𝑟𝑐 = 2.5𝜎 or larger), while containing essentially the same 

physics as the LJ potential. 

The system was a binary mixture with all molecular diameters being equal and all potential depths 

being equal, i.e. 𝜎𝑖𝑗 = 𝜎 and 𝜀𝑖𝑗 = 𝜀 for all combinations of i and j. The only difference between the 

components was the mass with a ratio, 
𝑚2

𝑚1
= 10, i.e. an “isotope” mixture. It is known that for this 

mixture, the heavier component (component 2) migrates to the system’s cold region [21]. 

A BD-NEMD method as described by Ikeshoji and Hafskjold [21] and by Hafskjold et. al. [22] was used, 

except that the HEX algorithm was replaced by thermostats in the boundary layers. A sketch of the 

NEMD cell layout is shown in Figure 1. 

The cell was non-cubic with an aspect ratio 𝐿𝑥: 𝐿𝑦 = 𝐿𝑥: 𝐿𝑧 = 32 with periodic boundary conditions 

in all three directions. 

Figure 1. NEMD cell layout. Please see text for explanation. 
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The cell was divided into 128 layers of equal thickness perpendicular to the x-direction. One layer at 

each end was thermostatted to a temperature 𝑇H and the two layers in the center of the cell was 

thermostatted to a temperature 𝑇L. The thermostats used a simple velocity rescaling algorithm with 

local momentum conservation, 

𝐯𝑖
new = 𝛾𝑘𝐯𝑖

old + 𝛃 (10) 

where 𝐯𝑖
old and 𝐯𝑖

new are the velocity of particle i before and after the rescaling, respectively. The 

parameters 𝛾𝑘 and 𝛃 were determined so as to adjust the velocity distribution of particles of each 

species k to the set kinetic temperature while retaining a local zero total momentum of all the particles 

in the thermostatted layers. Unless the thermostat was independently applied to the x-, y-, and z-

components of the velocities, the temperature in the hot region developed a non-isotropic profile due 

to heat loss in the x-direction.  

The regions marked “System” in the figure, separated from the thermostatted layers by at least one 

layer, was used for acquiring thermodynamic and transport data. The symmetry of the system was 

used to pool data from the left and right sides of the cold layers. 

The simulations were done with 𝑁 = 128,000 particles and overall mole fractions 𝑥1 = 𝑥2 = 0.5. The 

phase diagram of the 3D LJ/s system shows gas, liquid, and solid phases with a critical temperature 

𝑇c
∗ ≈ 0.9 in reduced Lennard-Jones units, a critical number density 𝑛𝑐

∗ ≈ 0.4, and a triple-point 

temperature 𝑇tp
∗ ≈ 0.5. Three cases were studied in this work, at overall densities 𝑛∗ = 0.02, 0.4, and 

0.8. 

The system was first equilibrated at a uniform temperature 𝑇∗ = 2.0. At time zero, the thermostat set 

point in the hot layers was suddenly (at time 𝑡∗ = 0) set to 𝑇H
∗ = 10.0 and maintained at that value as 

shown in Figure 2 while the cold layers were kept at 𝑇L
∗ = 2.0. The system in all the other layers was 

free to adjust its properties according to the impact from the thermostatted layers. The system’s 

response was monitored from then on. 
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Other values of 𝑇H
∗  and 𝑇L

∗  as well as pulsed heat source were also used without giving significantly 

different results from those reported here. These results are therefore not included in this paper.  

In order to estimate the magnitude of random errors in the transient phase, 20 runs were started from 

different equilibrium configurations, generated by initial Monte Carlo sequences of different lengths 

at 𝑇∗ = 10.0, then cooled down to 𝑇∗ = 2.0 and allowed to equilibrate with equilibrium MD. The time 

step was in all cases 𝑡∗ = 0.002 with the reduced time defined as                            . 

Instantaneous values for the properties of interest were acquired for each layer every 20 time step 

and accumulated for computation of averages over time intervals ∆𝑡∗ to obtain local properties. The 

values of ∆𝑡∗ are given in Table I. For comparison, the mean free path 𝜆∗ as computed from 

elementary kinetic theory is also given in the table. 

 

Table I. Parameters used for computation of local averages in space and time. The mean free path  
𝜆∗ is included for comparison with the layer thickness ∆𝑥∗. In all cases, 𝑇H

∗ = 10.0 and 𝑇L
∗ = 2.0. 

Case 𝑛overall
∗  ∆𝑥∗ 𝐿𝑥

∗ /2 𝜆∗ ∆𝑡∗ 𝑡run
∗  

Liquid 0.8 4.28 272.6 0.28 0.4 160 

Supercritical 0.4 5.39 343.3 0.56 0.8 200 

Dense gas 0.02 14.62 931.2 11.25 2.0 600 

 

 

𝑡∗ =
𝑡

𝜎
(

𝜀

𝑚1
)

½

 

Figure 2. Generation of transient states by suddenly 
increasing the temperature in the hot layers. 
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The local kinetic temperature was computed as 

𝑇 =
1

3𝑁𝑘𝐵
∑ 𝑚𝑖(𝐯𝑖 − 𝐯cm)2

𝑖ϵCV

 (11) 

Here, 𝐯𝑖 is the instantaneous velocity of particle 𝑖 and 𝑘𝐵 is Boltzmann’s constant. The centre-of-mass 

velocity 𝐯cm was averaged over the local control volume (layer) CV∗ = ∆𝑥∗𝐿𝑦
∗ 𝐿𝑧

∗, where ∆𝑥∗ is the 

thickness of each layer as listed in Table I, and the interval ∆𝑡∗. 

The local mass flux of component k was computed as  

𝐽𝑘 =
1

𝑉
∑ 𝑚𝑖(𝐯𝑖 − 𝐯mm)

𝑖ϵCV

 (12) 

where 𝐯mm is the mean molar velocity. 

The consequence of the time averaging over ∆𝑡∗ was that the shock wave that passed by the 

observation “window” at a given position (a given value of 𝑥∗) was smoothed. In particular, the shock 

front appears less steep than the instantaneous value.  

4. Results 

The sudden increase in the hot-layer temperature generated a pressure wave in the system. As an 

example, Figure 3 shows the pressure profile in the supercritical mixture shortly after the heat is 

turned on, at 𝑡∗ = 52. The pressure wave travels faster than the speed of sound and resembles a 

shock wave through the system except that the front is smoothed as described in Section 3. Due to 

the symmetry of the system, a mirror of the wave travels from the other end of the MD cell. The two 

waves meet, are reflected, and travel back and forth until they eventually die out, giving a stationary 

state with uniform pressure. The length of each production run was chosen so that the shock wave 

just reached the centre of the MD cell. 

The temperature profile shown in Figure 4 also shows a shock wave behaviour in addition to the 

expected diffusion of heat near the hot layer. The shock wave behaviour and the heat diffusion will 

be further analysed in a forthcoming paper, but the conclusion is that the thermal diffusivity of the 
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mixture may be determined from the temporal evolution of the temperature profile near the hot 

layer. 

Here, we shall analyse how the composition profile develops in the transient phase. The mole fraction 

of (the lighter) component 1 at the same condition and time as for the shown pressure and 

temperature profiles is shown in Figure 5. In the bulk of the system, the equilibrium composition 𝑥1 =

0.5 is retained at this time, 𝑡∗ = 52. Near the heat source, the two components have to some extent 

Figure 3. Pressure profile in the binary isotope mixture at overall number density 

𝑛∗ = 0.4 and at time 𝑡∗ = 52 after the heat is turned on with 𝑇𝐻
∗ = 10 while 𝑇𝐿

∗ is 
kept at 𝑇𝐿

∗ = 2. The distance from the hot end of the MD cell is 𝑥∗ (in LJ units). The 
uncertainties, reported as three standard deviations of the mean, are smaller than 
the symbol size, except in the shock front. 

Figure 4. Temperature profile at the same condition as shown in Figure 3. 
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separated as shown by the distinct profile in the range 0 < 𝑥∗ ≲ 30. This behaviour is accentuated at 

later times, but within the time frame of this simulation it is restricted to the region near the heat 

source. Eventually, the composition will show a more linear profile over the whole range of 𝑥∗ when 

the system has reached stationary state. 

One might think that acceleration of the lighter component 1 due to the sudden temperature increase 

would deplete this component in the region near the heat source. The results show that the opposite 

happens, the heavier component is depleted in the hot region. This means that the Soret effect is 

dominant immediately after the heat is turned on. 

Similar results were obtained for the liquid and dense gas states. 

Figures 3 – 5 show the expected behaviour that (1) the pressure wave travels fast and the pressure 

becomes quite uniform in the wake of the shock, (2) the heat diffuses out from the heat source, 

presumably at a rate governed essentially by the thermal diffusivity of the system, and (3) the overall 

composition profile develops slowly. The small peak in the mole fraction near the position of the shock 

wave will not be further analysed here as the statistics do not allow for conclusive results at this time. 

Figure 5. Mole fraction of component 1 as function of distance from the hot layer at the 
same condition as shown in Figure 3. A distinct composition profile has developed for  
0 < 𝑥∗ ≲ 30. There is also a small peak in the composition profile at 𝑥∗~110, the 
position of the shock wave at this time.  
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One way to present the relation between mole fraction and temperature profiles is to consider the 

ratio between the gradients, inspired by Eq. (7). The ratio between the gradients may be expressed as  

∇𝑥1

∇𝑇
= (

∂𝑥1

∂𝑇
)

𝑡∗
 (13) 

so by plotting x1 as function of 𝑇∗, we can determine the first term on the rhs of Eq. (7). The plot is 

shown for selected times in Figure 6. These data were obtained from the layers close to the hot layer, 

in the region where the mole-fraction in Figure 5 shows a distinct declining profile. The point at the 

highest temperature for each time represents the hot layer. This point and the one at the second 

highest temperature were not included in the analysis to avoid possible artefacts of the thermostat. 

The temperature and mole fraction in the following three layers down the temperature profile (the 

encircled points in Figure 6) were then used to estimate the ratio needed to compute the Soret 

coefficient from Eq. (7). 

 In the transient phase, we also need the mass flux and the mass diffusion coefficient to complete the 

analysis based on Eq. (7). The mass flux was readily obtained in the NEMD simulation from Eq. (12). 

An example is shown in Figure 7, representing the same condition and time as shown in Figures 3 – 5. 

Figure 6. Local mole fraction of component 1 as function of local 
temperature near the hot layer. The data points used to compute 
the gradients (Eq. (16)) are encircled (see text).  
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At this time, there is still a small negative mass flux near the heat source, although not significantly 

different from zero. The mass flux has essentially vanished at this time. The diffusion constant was 

determined from two independent NEMD simulations with the MEX algorithm [29]. The MEX 

algorithm generates a concentration gradient in the binary system by imposing a mass flux and is in 

practice similar to the HEX algorithm. The ratio between the mass flux and the concentration gradient 

enables a determination of the product 𝑛𝐷 that is needed in Eq. (7). Two simulations were made with 

4000 particles with independent and local thermostatting to a fixed temperature in all layers to ensure 

isothermal conditions. The density and temperature in the two cases were chosen so as to represent 

the regions used for analysis (the encircled points in Figure 6). It turned out that the product of density 

and mutual diffusion coefficient was quite independent of the conditions; for the state points  (𝑇∗ =

6.4, 𝑛∗ = 0.204) and (𝑇∗ = 7.0, 𝑛∗ = 0.350), the values were 𝑛∗𝐷∗ = 0.399 and 0.378, respectively. 

Moreover, 𝐽1 quickly fluctuated around zero mean value, so that an uncertainty in the product  𝑛∗𝐷∗ 

was found to have little effect on the determination of 𝑆𝑇.  

5. A note on local equilibrium and the use of linear irreversible thermodynamics. 

Eq. (7) is based on the formalism of linear irreversible thermodynamics, which assumes local 

equilibrium in the system. Before proceeding with the analysis of the data in terms of Eq. (7), we 

Figure 7. Mean molar mass flux at the same condition as shown in Figure 3. 



15 

must therefore determine whether or not the system in fact fulfils local equilibrium in the transient 

phase. Based on our previous work [29], we have chosen to consider two indicators: (1) isotropy of 

the kinetic temperature and (2) the values of local thermodynamic properties in relation to the 

equilibrium equation-of-state values. The idea is that if one or both of these conditions are 

violated,local equilibrium is not fulfilled. The opposite case is a strong indication that local 

equilibrium is fulfilled. 

The kinetic temperature determined by Eq. (11) is a tensor. If the components of the tensor are 

equal, the temperature may be considered to be isotropic. Figure 8 shows that the diagonal 

elements 𝑇𝑥𝑥, 𝑇𝑦𝑦, and 𝑇𝑧𝑧, are equal to within combined errors, except in the shock front. In the 

present context, the region near the hot source is of greatest interest. In this region, there is no 

indication that the local-equilibrium assumption is violated. 

The components of the pressure tensor show a similarly good agreement (not included here). The 

case shown in Figure 8 is for the same state as shown in Figure 4, i.e. overall density approximately 

critical (𝑛∗ ≈ 0.4). The same isotropic behavior was also found in the liquid case, whereas in the dense 

Figure 8. Comparison between the three diagonal components of the pressure tensor. All 
three components are equal to within combined random errors, except in the shock front. 
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gas case, 𝑛∗ ≈ 0.02, the 𝑇𝑥𝑥 was slightly more different from 𝑇𝑦𝑦 and 𝑇𝑧𝑧 than in the supercritical case 

in the region of the shock front. 

 The other check on local equilibrium was based on comparing the local equation of state in the 

transient case with results from equilibrium simulations. Four state point were chosen from the non-

equilibrium simulation. As an example, the supercritical case at 𝑡∗ = 52 is included here. Equilibrium 

NVT-simulations were done with 𝑁 = 4000 and the selected densities and temperatures as input, and 

the corresponding pressure and enthalpy were computed. The comparison is shown in Figure 9 for 

the pressure and Figure 10 for the enthalpy. These comparisons also show that the local equilibrium 

condition is not violated. Equally close similarity between non-equilibrium and equilibrium results 

were found also in the liquid and dense gas cases, see Table II for comparison of the pressures. 

  

Figure 9. Comparison between the local pressure from a nonequilibrium 
simulations transient at 𝑡∗ = 52  and four equilibrium values at the densites and 
temperatures taken from the nonequilibrium results. The four nonequilibrium 
states used for comparison are specified in Table II.  
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Table II. Comparison between local pressures from the non-equilibrium simulation with equilibrium 

values at the same temperature and number density. The mole-fraction values are included, but 

have no importance for the thermodynamic properties of this isotope mixture. Note that the dense 

gas is close to ideal, 𝑝∗ = 𝑛∗𝑇∗. 

 

Case 𝑥∗ 𝑇∗ 𝑛∗ 𝑥1
∗ 𝑝NEMD

∗  𝑝eq
∗  

Liquid 

15.0 3.44 0.710 0.46 8.03 ± 0.15 8.08 ± 0.04 

49.2 2.24 0.829 0.50 8.70 ± 0.12 8.72 ± 0.05 

100 2.52 0.883 0.50 12.5 ± 0.2 12.58 ± 0.06 

113 2.17 0.829 0.51 8.5 ± 0.2 8.43 ± 0.04 

Supercritical 

18.9 5.08 0.238 0.50 1.60 ± 0.05 1.605 ± 0.008 

51.2 2.48 0.452 0.49 1.74 ± 0.04 1.80 ± 0.01 

105 2.74 0.497 0.50 2.49 ± 0.06 2.50 ± 0.01 

143 2.25 0.432 0.51 1.45 ± 0.03 1.43 ± 0.01 

Dense gas 

51.2 7.52 0.0087 0.52 0.066 ± 0.002 0.0662 ± 0.0006 

212 3.74 0.0177 0.48 0.067 ± 0.001 0.0671 ± 0.0005 

344 2.70 0.0269 0.49 0.073 ± 0.001 0.0735 ± 0.0006 

402 2.66 0.0283 0.50 0.076 ± 0.001 0.0761 ± 0.0006 

519 2.38 0.0239 0.52 0.057 ± 0.001 0.0572 ± 0.0005 

 

  

Figure 10. Comparison between the nonequilibrium and equilibrium 
enthalpy per particle. Otherwise the same case as shown in Figure 9. 



18 

 The conclusion is a strong indication that local equilibrium is fulfilled and that the data may be 

analysed in terms of the formalism of irreversible thermodynamics. 

We can now complete the analysis in terms of Eq. (7). The two terms on the rhs of Eq. (7) and their 

sum were computed as function of time as described above for the liquid, supercritical, and dense gas 

states. The results are shown in Figure 11. The data show that the second term in Eq. (7) decays quickly 

to zero and that the first term then gives the steady-state value for the Soret coefficient. 

  

Figure 11. Development of the Soret coefficient and its two contributions with time (Eq. (6)). The 
three diagrams show a liquid state (top), supercritical state (middle), and dense gas (bottom). The 
states are specified in Table I. The horizontal black line represent stationary state values obtained 
from independent, NEMD simulations with N=4000 particles. Please note that the sign of 𝑆𝑇 is just a 
chosen way to represent that data since component 2 is the heavier component in this work. 
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6. Discussion 

In a recent paper, Ferrario et al. [27] studied the onset of a temperature-, density-, and composition 

gradient in a binary Lennard-Jones mixture representing Ar and Kr at equimolar composition. They 

used the D-NEMD method [30] and computed the Soret coefficient when the system had reached a 

stationary state. The present paper is similar in the sense that the initial phase of the system’s 

response to a thermal perturbation is studied, but we focus on the transient phase and show that it is 

possible to use such data to determine the Soret coefficient, thus avoiding the need for stationary 

state. Although analyses of transient experimental data have been made, we are not aware of any 

other NEMD simulation in which the Soret effect has been analysed in this way. 

The complete data sets of 𝑇(𝑥, 𝑡), 𝑥1(𝑥, 𝑡), and 𝐽1(𝑥, 𝑡) contain in principle information about the 

diffusion coefficient and the Soret coefficient. A complete analysis would require a theoretical 

framework for the time evolution of 𝑆𝑇 along the lines shown by Van Vaerenbergh and Legros [31], 

Costesèque et. al. [32], and Mialdun and Shevtsova [17] 

The analysis shown here is based on measuring the composition and temperature as function of 

distance from the heat source for fixed time. In an experimental setup, it may be more convenient to 

measure the composition as function of time for a fixed distance from the heat source. The NEMD 

simulation provides data as function of both space and time and the question is how such data can be 

used in analysis of experimental data. Figure 12 shows the time evolution of 𝑇∗ and 𝑥1 for three fixed  

distances from the heat source. The distances were selected in the region where the concentration 

gradient developed, which requires some prior knowledge about the evolution of the Soret 

coefficient. If we approximate 

∇𝑥1

∇𝑇
≈ (

∆𝑥1

∆𝑇
)

𝑡∗
 (16) 

where “Δ” denotes a difference between two of the curves in Figure 12 indicated by the arrows, and 

plot                    as function of time, we get graphs like the two shown in Figure 13.  
∆𝑥1

𝑥1𝑥2∆𝑇
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Compared with the results shown in Figure 11, this rough method gives a pretty good estimate for the 

Soret coefficient. The three choices for the distance from the heat source give different results for the 

shortest times, but they quickly converge to the stationary-state value. The results appear not to be 

very sensitive to how the distances from the heat source are selected as long as they are in the region 

where the concentration gradient is quickly established. 

If it is not possible to distinguish between the effects of temperature and composition in a 

measurement, a possible route to the temperature profile may be to solve the transient heat 

equation. This will, however, not be further discussed here, but it would be interesting to compare 

Figure 12. Temperature (top) and mole fraction of component 1 
(bottom) as function of time for three different distances from the hot 
layer, 𝑥∗ = 13.5, 24.2, and 35.0, for the supercritical state. The arrows 
indicate differences in T and x1 that may be used to determine the 
Soret coefficient (see text). 

∆𝑇 

∆𝑥1 



21 

results from simulations and experiments designed for transient measurements of both 𝐷𝑇 and D [32-

34]. 

7. Conclusions 

The main conclusion from the present work is that the Soret effect in a binary fluid mixture may be 

observed immediately after the heat has been switched on and in the vicinity of the hot layer. The 

local temperature gradient immediately gives a local component separation, whereas separation in 

the bulk is slow. Local equilibrium is fulfilled in the cases studied here. Assuming local equilibrium, the 

Soret coefficient can be determined during the transient period. Using the transient is not an efficient 

way to compute the Soret coefficient, but may give a useful route to experimental techniques in the 

presence of gravity. 

  

Figure 13. Estimates of the Soret coefficient. The blue dots are based on the difference 
between the blue and the black curves in Figure 12 and the red dots are from the difference 
between the red and the black curves. The black line is the result from a stationary-state 
simulation as described in Section 5. 

∆𝑥1

𝑥1𝑥2∆𝑇
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