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SUMMARY 
 
 
 
I. Background and motivation 
 
Planning is what sustains an energy system. It is a process of analysis and ongoing decision 
making about what resources and energy technologies to use when supplying energy to 
society. This research focuses on integrated energy systems, i.e. systems that are comprised 
of several energy carriers – electricity, gas, hot water - and energy distribution networks. 
The planning of these kinds of systems is a complex process, influenced by many factors, 
among which the most important are the availability of energy resources and the 
competition between different energy carriers in satisfying energy demand. 
 
During the last 10-20 years significant changes have taken place on the world energy scene, 
which have important implications for energy planning. Two main factors have triggered 
these changes.  
 
The first factor is the immediate need to address environmental changes or more generally, 
to take measures that are sustainable in the long run. Sustainability can be defined in many 
ways and in relation to different issues such as economic and ecologic development, 
reduction of greenhouse gases, responsible use of natural resources, social equity, etc. In 
recent years, an increased awareness of these issues has been observed at all levels of the 
society. 
 
The second factor is the deregulation of national energy sectors in more than 50 countries. 
This process brought changes in the ownership of different parts of the formerly integrated 
energy systems. New business opportunities were created in power generation, wholesale 
power/gas trading and energy retailing, while the energy infrastructures remained state 
owned or/and under regulatory control. The newly created energy markets (many of them 
international) have attracted both new players (power, oil and gas companies and financial 
institutions) together with the old ones (integrated utilities). In parallel with this vertical 
separation of national energy sectors, recent studies have shown a tendency for horizontal 
integration at the regional/company level. For instance, in order to reduce their overall 
business risk, companies prefer to participate in several segments of the energy value chain 
(in both regulated and non-regulated activities), and often across more than one fuel 
commodity, such as gas and electricity or district heating.  
 
In this context, the competition between different energy carriers in satisfying the end-use 
energy demand became obvious in economic as well as in technological and environmental 
terms. Traditionally, in integrated planning, this competition did not play a big role, since 
the same state entity made decisions at both national and regional levels. However, in the 
post-deregulation era it is no longer obvious who the planner is. In many cases, planning 
decision at local levels involve at least three main interest groups: energy companies (and/or 
other investors), the state and the local community.   
 
This thesis is motivated by the need to help planners to cope with the changes in concepts 
and values concerning the planning of local energy supply systems.  
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II. Aims 
 
This thesis has two aims. The first aim is to improve the understanding of what planning of 
local systems implies and how such a process can be structured. The second aim is to 
contribute to the development of decision support methodologies and tools that can cope 
with the needs in planning. For this purpose, the use of energy modelling and Multi-
Criteria Decision Analysis has been studied. 
 
III. Earlier approaches 
 
Planning for single energy carrier systems such as electricity or gas systems is a subject that 
has always received attention from both the research community and practitioners from 
industry.  
 
By comparison, less research has been done in the field of integrated energy systems, and in 
particular local (or regional) systems. Most contributions to this field consist of models of 
the integrated energy systems, which vary in details and scope, or of more general analyses 
where the energy system is seen as a part of a whole national system.  
 
The process of decision making for planning has also received attention, and many energy 
related applications of MCDA (Multi-Criteria Decision Analysis) have been reported, but 
again, fewer applications of this approach have been used in the planning of integrated 
energy systems at local level. 
 
In this context two areas where research is needed have been identified: 1) planning 
problem structuring and 2) improving the use of existing energy models to explicitly take 
into account uncertainties and multiple criteria.  
 
IV. Contributions 
 
The figure below shows the main components of this research. The main objective has been 
to propose an improved framework for problem structuring and modelling in local energy 
systems planning. Three different research directions have been explored: energy 
modelling, MCDA (Multi-Criteria Decision Analysis) and software for decision support. 

 



v 

The contributions of this thesis can be summarized as follows: 
 
 The process of planning local energy systems has been described. The aim has been to 

unveil those aspects that add complexity to the planning process. MCDA concepts have 
been used to propose frameworks for problem structuring and analysis. This way of 
organising thinking is relatively new among energy planners. This thesis offers a basic 
conceptual framework that can be used by different decision-makers involved in the 
process of planning for local, integrated energy supply systems. These planners can be 
energy supply companies, local authorities or other entities. From another perspective, 
the type of problems proposed in this thesis offer new possibilities for application of 
MCDA.  

 
 The use of energy models in planning has been studied. This research has been carried 

out in parallel with the development of a new energy system model called 
eTRANSPORT. Energy modelling is essential when dealing with problems involving 
large amount of data and uncertainties, thus any thorough system planning process 
should employ an energy model that can supply the relevant background data (impact 
modelling) based on which planning decisions must be made. However, despite these 
features, energy modelling is not sufficient to handle decision situations when multiple, 
quantitative and qualitative criteria have to be considered.  

 
 A classification of methods for multiple criteria decision making and methods for 

decision making under uncertainty has been proposed. The purpose was to give an 
overview of the numerous methods and methodologies available, and to group them 
according to criteria that would matter to their selection in practical applications in 
energy planning.  

 
 Two strategies for extending the use of energy models in complex decision situations 

have been proposed. The investigation concerned a two-stage approach and an 
integrated approach for the combined use of eTRANSPORT and MCDA. The focus 
has been set on investment planning problems, characterized by a small number of 
alternatives that must be judged in presence of several criteria and uncertainty. This 
type of problems appears at tactical and strategic planning.  

 
 In the two-stage approach, the energy model is first used to generate quantitative 

information about how alternatives perform in terms of different criteria and scenarios, 
and then a MCDA method is used to help the decision-maker to analyse this 
information. The MAUT (Multi-Attribute Utility Theory) has been applied to a pilot 
case study, to test how this type of analysis can be conducted in the context of local 
planning. The participants in the experiment found this type of analysis useful and 
relevant to the type of problems applied. This application was valuable in terms of 
learning how to use of the method, i.e. how to design of the dialog with the decision-
makers and how to interpret the results. The advantage with this two-stage approach is 
that practically several methods can be applied in combination with eTRANSPORT. 
Following the MAUT experiment, an application of the AHP (Analytic Hierarchy 
Process) has been conducted in the same problem setting, and the results could be 
compared. 
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An integrated approach for combining eTRANSPORT and MCDA into one computer- 
based decision-support tool has been also proposed. The idea has been to create a tool 
that can be used in both problem structuring and preference elicitation. With this tool, 
decision makers would be required to define both the energy model and the issues they 
are most concerned with (for example criteria like costs, environmental impact, noise, 
aesthetical impact, company’s image), and then evaluate the alternatives accordingly. 
Moreover, the integrated tool would give its users full control over the simulations, thus 
contributing to the understanding of how different preferences influence the final 
recommendations. The proposal consists of guidelines for extending the eTRANSPORT 
model with an additional advanced DA module. Both the procedural steps for using the 
model and the mathematical background corresponding to these steps have been 
discussed. The model proposed has been inspired by earlier methods for preference 
programming, which support elicitation and decision procedures with incomplete 
preference information. Although the focus in this thesis has been the eTRANSPORT 
model, the concepts and the rationale presented can be used to extend other energy 
system models. The proposal for integration has not been yet implemented into the 
eTRANSPORT at the time this thesis was written. Accordingly no tests have yet been 
performed with real decision-makers to verify the approach’s validity. 

 
V. Thesis outline 
 
The thesis is organized as follows: 
 
Part A: Problem definition is comprised of one chapter (Chapter 1) in which the concepts 
and needs for planning local energy systems are stated. 
 
Part B: An overview of methods and tools for decision support is comprised of three 
chapters that treat energy modelling (Chapter 2), multi-criteria decision aid (Chapter 3) and 
decision making under uncertainty (Chapter 4). Different classifications schemes are 
presented here, with the purpose of contributing to the understanding of how methods can 
be applied and in which contexts.  
 
Part C: Approaches to problem solving, offers solutions for how the methods in Part B can 
be applied to problems in Part A. Two chapters form this last part of the thesis. The first 
chapter (Chapter 5) presents an investigation of different strategies for combining energy 
modelling and MCDA, while the second chapter (Chapter 6) proposes and approach to 
building an integrated decision-support tool for energy planning. 
 
The last part of this thesis is dedicated to Conclusions and suggestions for future research. 
 
In the appendices are added three conference papers that have been written during this 
research project (Appendices A, B and C) and additional material used in the applications 
reported in Chapter 5 (appendix D). 
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Summary 

 
This first part of this thesis presents the main issues concerning the planning of local 
energy supply systems. The section begins with a discussion about the fundamental 
changes in the thinking and approaches of energy planners over the last three decades. 
The present day energy landscape is characterized by deregulation, liberalization, 
increased competition on different energy markets and sustainability requirements. The 
future will be marked by the decreasing availability and the depletion of natural 
resources combined with the need to address environmental changes. Although many 
lessons can be learned from the past, planners will need to think differently in order to 
face the challenges predicted to come. New decision support tools and methodologies 
are needed, to ensure adequate planning of energy supply for the coming decades. 

An approach to problem definition and structuring is proposed here. The process of 
local energy planning is first defined, after which the planners and their decision 
problems are identified and at the end the need for decision support is emphasised. 

When addressing a planning problem, one very important issue is the definition of an 
energy system, i.e. its boundaries and respectively, its components. Three types of 
boundaries are proposed here: physical (geographical), impact and political 
boundaries.  Depending upon the issues of concern, planning problems can be of 
different types: operative, tactical or strategic. The challenge for the local planners is to 
understand decision situations and identify the factors that may affect their decisions at 
different planning levels. Some of these factors are deregulation/regulation, the 
competition in different energy and emissions markets or the competition between 
different energy carriers in satisfying the total energy demand. 

The problems identified here support the conclusion that there is a need to revisit the 
traditional methods and to look for new planning methodologies and tools, in order to 
propose solutions both for the short- and long-term. Traditional energy modelling 
procedures combined with multi criteria decision-analysis (MCDA) can be used in 
designing new decision-support frameworks. 
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Chapter 1 LOCAL ENERGY 
PLANNING 

 
 
 
 
1.1 ENERGY SUPPLY  
 
Energy and energy supplies have always played a central role in human society. The 
technological revolution of the last century, for example, would not have been possible 
without the invention and rapid spread of electricity distribution systems. In many parts of 
the world, as a result of this technological breakthrough, the standard of life improved 
dramatically - a direct consequence of the fact that the basic needs of heating, lighting and 
mobility became easily available to everybody. 
 
Up until the energy crises in the 1970-1980, meeting energy needs was a routine problem 
where the solution was principally a matter of availability of resources and technology. 
However, the last 20-30 years have been marked by fundamental changes in thinking about 
the concepts of energy availability and energy supply. 
 
The first, main factor that triggered this change was the dramatic increase in energy prices 
caused by the first oil crisis in the 1970s. At that point and at least in the Western world, the 
myth of plentiful, available and cheap energy was replaced by increasing concerns about the 
depletion of natural resources and the necessity for the efficient use of energy. At almost the 
same time, environmental considerations reflecting the need to cope with ongoing 
environmental degradation resulted in a reconsideration of values and a shift towards new, 
‘cleaner’ technological solutions.  
 
The 1990s added another dimension, that of decentralization and liberalization of the 
national energy sectors.  This process affected more than 50 countries with more expected 
to follow suit. Decentralization has brought significant changes to energy system 
ownership. While systems were once nationally owned and integrated, now markets have 
been created with the idea that market mechanisms will have a better chance of balancing 
economic and social benefits and inducing increased efficiency in energy supply. Recent 
evaluations of different electricity markets show, however, that these goals have not entirely 
been met. Inadequate design of market mechanisms and the lack of appropriate regulations 
might have triggered suboptimal development of different energy systems and even 
shortages in energy supply, although this is difficult to prove. This same period was also 
marked by social movements that advocated embracing a culture of sustainability. The 1992 
Rio de Janeiro Earth Summit ended with many industrialized countries signing an 
agreement, Agenda 21 in which they agreed ‘not to irresponsibly and irreversibly damage 
the ability of future generations to satisfy their own needs’. Sustainability can be defined in 
many ways and in relation to different issues such as economic and environmentally sound 
development, reduction of greenhouse gases, responsible use of natural resources, social 
equity, etc. In recent years there has been an increased awareness of these issues and a 
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recognition that necessary actions must be taken not only at the national, governmental 
levels but at the community level as well. 
 
Future energy supplies will be characterized by decreasing availability and depletion of 
natural resources combined with the need to cope with environmental changes. Thus failure 
by planners to ensure an adequate energy supply for the coming decades may have 
tremendous consequences for national economies and the environment. New, systematic 
and comprehensive planning frameworks will be needed in order to anticipate, analyse and 
prepare for the future.  
 
The focus of this thesis is planning the energy supply to communities. The local and 
regional energy supply systems analysed include several energy carriers and infrastructures. 
The rest of this chapter will introduce the main issues and needs in planning such systems. 
 
 
1.2 PLANNING ENERGY SYSTEMS 
 
1.2.1 General concepts 
There is no generally accepted definition for the notion of energy systems planning. An 
energy system can be defined as the physically connected energy production (generation), 
transmission, and distribution facilities operated as an integrated unit. Based on this, energy 
system planning is the process of choosing the sources and technologies needed for energy 
generation, transmission and distribution, to satisfy community needs.  
 
Depending upon the time horizon and the energy systems analyzed, variations of this 
definition are used to distinguish between different planning concepts. For instance, in a 
recent study [1] local energy systems planning is seen as the path towards an economic and 
ecological sustainable local energy system while also taking into account limited financial 
and human resources as well as incomplete insight into the future development of economic 
technical and social conditions. 
 
Often the process of planning is seen as a process of decision-making, the only difference 
being that in general, the ‘output’ of decision making is a choice, while the ‘output’ of 
planning is a plan – meaning a description of what is to be done, when, by whom and what 
to do if uncertainties occur [2]. In addition, while a decision can, in principle, be localized 
in time and space and identified as a choice of a particular alternative, planning can be an 
ongoing process.  
 
No matter which definition is used, a planning process essentially implies a planner and a 
specific planning problem. The next paragraph attempts to identify these two elements in 
the context of current energy systems planning.  
 
1.2.2 The planner 
Traditionally, the state (e.g. the state’s administrative structures) controlled the use of 
natural resources and assumed responsibility for planning the national energy supply. This 
situation remains unchanged in many countries, while in others the planners are not longer 
easy to identify. The deregulation and liberalization of the energy sector has made for new 
business opportunities in power generation, wholesale power/gas trading and energy 
retailing in more than 50 countries. These opportunities have attracted both new players, 



Local Energy Planning 

7 

such as oil and gas companies and financial institutions, as well as the existing integrated 
utilities. A direct consequence of these changes at the local or regional level has been that 
different companies took responsibility for different energy distribution infrastructures. 
Thus instead of one, major planner (the national integrated energy company), several 
players now have a hand in the local energy system planning, making their roles no longer 
easy to distinguish. 
 
Moreover, in each country, specific and differing rules, laws and institutional frameworks 
shape decision mechanisms and the roles different institutions may play in energy planning.  
In general, two types of players can be identified: 1) decision-makers - the ones that actually 
make planning (investment) decisions and 2) stakeholders – the ones that can be part of the 
initial decision making process and negotiations; they do not have power to make decisions 
but they may convince decision-makers to take into consideration issues that concern them. 
Stakeholders are in the end influenced by the final decision (decision-takers). 
 
The number of decision makers and stakeholders involved in the planning of local energy 
systems depends on the specifics of each planning situation. As also discussed in Paper 2 
(see Appendix B), the different interest groups that may play a role in local energy planning 
can be: 
 
1. Companies involved in the local energy supply; 
2. The municipal or regional administrative authorities; 
3. Regulatory authorities; 
4. Political groups active in the local arena; 
5. Industrial and private energy consumers; 
6. Environmental groups and NGOs; 
7. Other groups of interest such as technology vendors. 
 
The first group is comprised of: companies owning local generation units, companies in 
charge with different distribution networks, and companies supplying customers with 
energy and energy services (energy retailers). In general, network companies and 
companies interested in investing in generating units are the main decision-makers in local 
planning. Often, different energy businesses (generation, distribution, and supply) may 
belong to only one company. Recent studies [3] have shown that in some parts of the world 
many companies want to participate in several segments of the energy value chain, and 
often across more than one fuel commodity, such as gas and electricity. This is because in 
general, by being multi-segmented and multi-commodity, companies can reduce their 
overall business and regulatory risks. Moreover, some of these companies can act at 
national or even at international level. Therefore, sometimes their interests and influence in 
local energy infrastructure planning might not coincide with the local goals although having 
great influence on the final decisions. However these companies are not the only decision-
makers. 
 
Governmental authorities and municipalities play also an important role in local energy 
planning. They can sometimes be decision-makers or stakeholders. From all groups 
involved in infrastructure planning, these authorities may be the only players that have an 
overview and can influence the economic and social situation in a region. For example, 
governmental authorities provide the rules and legislation concerning all energy related 
businesses. Their activity is in concordance with a national energy policy and they can 
influence the local planning process by providing incentives for the local energy companies 
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to invest in new energy supply solutions (cleaner technologies, or making use of renewable 
energy resources). Municipalities can also influence the development of local energy 
systems because the construction plans of new houses and new infrastructures must be first 
approved by the local authorities. Moreover, in many countries it is common that local or 
regional authorities own the energy distribution companies (at least partly). Hence, these 
authorities can be in fact active decision-makers. 
 
The last four groups of players are in general stakeholders. The end-users are crucial 
stakeholders in the system, since they are the consumers of the services that the energy 
networks deliver. However, some energy intensive industries may have enough local power 
to influence the structure of the energy system. For instance, some large energy intensive 
industries may own local generation capacities that can cover their demand for electricity or 
heat, and may supply, marginally, other consumers. Additionally, these industries may have 
flexibility as to the type of resources (electricity from the grid, gas) to use, so that the 
variation in market prices of these energy resources will not affect their production costs. If 
these consumers decide to change their energy consumption pattern depending on which 
energy resource is cheaper, or to use an energy carrier (or source) that is completely new to 
the region, then the local energy supply infrastructure may be greatly influenced. For 
example existing electrical or district heating networks might function below their efficient 
capacity or might be overloaded. The other stakeholders groups (political and 
environmental groups, technology vendors or NGO’s) may have the chance to be present 
and make their opinions heard in the process of analysis and negotiations over the 
alternatives for energy supply, but usually they do not have decision power. 
 
To conclude this discussion, in highly deregulated systems, the local planners may be 
business-focused companies (network companies, generators, large industrial consumers) 
that can make investment decisions, being however highly constrained by social, regulatory 
and political issues. In the short-term, a big challenge for these local planners is to 
understand the complexity the restructuring of the energy sector and the development of 
different energy markets, is adding to the decision-making process. Then, in the medium- 
and long- term, planners must take sustainable measures and add other, difficult to monetize 
criteria to their economic considerations. This is because a planning approach that reflects 
only technical or economic aspects and neglects environmental, social and political 
concerns may not be adequate and may fail because of lack of consensus.  
 
1.2.3 The energy system planning problem 
This paragraph provides an overview of the kind of planning problems local decision-
makers may need to solve. As basis for discussion, some details of how an energy system 
can be defined (in terms of boundaries, components or energy flows) are first given. 
 
1.2.3.1 The energy system 
The energy systems analysed in this thesis consist of interconnected infrastructures for the 
generation (when needed), storage, transport and distribution of several energy carriers: 
electricity, heat, gas, biomass, etc. Such integrated energy systems can supply consumers 
with different types of end-use energy-based products and services. For instance households 
need electricity for lighting and electrical appliances, indoor heating and warm water (based 
on electricity, gas or wood), and energy for cooking (electricity or gas). Other types of 
energy consumers (industrial, commercial, administrative and office buildings) may have as 
well a diversified consumption pattern.  
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Energy planning cannot be successfully achieved if the system is not adequately defined. 
The planner(s) must have an overview of system’s boundaries and of all types of 
interactions and flows within the system or between the system and its environment. For 
this purpose, it is meaningful to identify: 
 The physical components and boundaries of an energy system. The system itself 

consists of different physical components (technologies) for energy conversion 
(generation) storage, transport and consumption. The physical boundaries usually 
coincide with the geographical borders of a region, town, community or locality. Within 
such boundaries, energy flows between different system components can be 
quantitatively measured, and the performances of the system (efficiency, reliability) can 
be estimated. 

 
 The impacts of a system and its impact boundaries. Descriptively these should be the 

direct result of the existence and the operation of the energy system; a good example is 
the ‘economic’ boundaries and ‘economic’ (cash) flows between energy companies, and 
consumers. Environmental boundaries may be defined as well. This would enable a 
clearer understanding of the environmental impact caused by the system being 
considered. Within such boundaries, the impact of different pollutants can be estimated 
in quantitative terms and, more importantly, in terms of their effects on the ecosystem, 
on the health of the local population, etc. When establishing environmental boundaries, 
other issues must be as well clarified, such has: how to treat the emissions associated 
with the energy imports in a region. For example, how to take into account the CO2 (or 
other pollutants) emissions for the electricity generated based on coal in Poland or 
Germany and consumed (or contracted) in a region in Norway? Such imports are 
primarily based on market agreements on quantities of energy a region in Norway 
would need, in certain conditions (weather dependent). The deficit of energy in Norway 
may or may not contribute to an increase of CO2 emissions in other countries; therefore 
a clarification of these issues in every planning problem instance must be carefully 
carried out.  
 
Additionally, the identification of impact boundaries can be useful in the case of other, 
more difficult to quantify impacts (noise, aesthetical impact, customers’ perception). 
Such impacts may be, in this way, easier to define and estimate. However, these issues 
have not received much attention; except the economic or environmental impacts, little 
guidance on how to define other impacts of an energy system or its impact boundaries 
can be found in the research literature. This is probably because their definition is 
highly dependent on the characteristics of each planning problem and on the decision 
maker (s) involved.  

 
 The political or administrative interactions and boundaries that stem from the laws, 

regulations and institutional frameworks that directly or indirectly affect planning 
decisions at the local level. These are difficult to identify and highly dependent on 
factors such as the national energy strategy, the social policy or the overall national 
economy. For instance, the national policy regarding the use of certain primary 
resources can considerably influence the energy supply options and consequently the 
planning at the local level. On the other hand, local actions (such as success stories 
about the implementation of new energy technologies, solutions for improving the 
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energy use, the efficiency and reliability of supply and so forth) may trigger reactions in 
other regions or at the national level.  

 
Figure 1.1 offers a representation of the energy system within these main types of 
boundaries. 

 
 

Figure 1.1 Energy system’s boundaries 
 
The physical system is represented in the centre and the impact and political layers build on 
it. For simplicity only the physical and measurable fluxes, between the system and its 
environment have been represented 
 
The existence of different boundary types shows how complex the decision environment 
may be when planning. Planning problems can be of different nature and may require 
actions at different decision levels. The next paragraph is focussed on what kind of 
decisions local planners need to make. 
 
1.2.3.2 Classification of planning problems 
Decision problems for local energy systems planning vary with the decision-makers 
involved in the process and their target system. Furthermore, planning can take place at 
three main decision levels: operative, tactical and strategic.  
 
Figure1.2 illustrates these planning levels in the case of building new energy infrastructure 
(for gas distribution in this case) in a region. This example is inspired by the situation in 
many towns and regions in Norway, country where most of the energy demand is covered 
by electricity (hydropower) as the main energy carrier. However, at local/regional level 
there is a great potential for using gas – an abundant energy resource in Norway- as an 
alternative to electrical based heating or cooking or for electricity generation. 
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Operational planning concerns the short-term operation of a given system. Operative 
decisions are decisions about how much energy to produce or to buy, and how to transport / 
distribute it in order to satisfy the needs of the end consumers. If there are different 
companies in charge with different infrastructures in a region, then each of them must make 
operative decisions.  
 

DECISION LEVELS

Main actions Main factors influencing the decision

STRATEGIC

TACTICAL

OPERATIONAL

Build new energy 
infrastructure for gas 
distribution and sypply

Create a gas market
- atract local consumers: households, 
   municipality, industry
- negotiate with other stakeholders 

Analyse system’s operation:
- simulate and analyse the operation of 
  the system in possible configurations
- identify uncertainties, construct 
  scenarios to predict the evolution of 
  prices and demands 

Political and social factors:
- national energy policy
- regulations

Economic, environmental and social factors :
- % of the estimated gas market 
   covered by an alternative
- expected consumers costs, and their 
   willigness to pay
- the number of new jobs created, etc.

Economic, environmental and technical 
performances :
- operational and investment costs
- emissions: CO2, NOx, etc.
- system’s efficiency 
-reliability and quality of service, etc.  

Figure 1.2 Decision levels at local energy planning 
 
The planners of a new gas infrastructure would be interested to know how the integrated 
energy system would ‘react’ to the introduction of a new energy carrier in the region. 
Different supply alternatives should be simulated and compared based on comprehensive 
scenarios of how the different energy carriers and production capacities can be dispatched 
in order to cover the total energy demand, forecasted for different periods of the day, week, 
season or year.  
 
Sometimes large industrial energy consumers may own local production capacities that can 
satisfy their own energy needs and marginally may supply other consumers. These 
companies may as well be interested in planning their operating activity in accordance with 
the rest of the system. These industries may influence heavily the operation of the integrated 
system because they have flexibility as to the type of end-use energy (electricity, gas, heat, 
etc.) to use so that the variation in prices for different end-use energies, in different markets 
will not affect their total costs. 
 
Alternative strategies for operating different business must be analysed in an uncertain 
environment (uncertain prices, demands) and in terms of economic benefits and other 
objectives (achieve high efficiency, maximise reliability, minimise emissions, etc.).  
 
Tactical decisions are mostly medium term decisions (intermediate decisions) that can 
prepare the system for strategic changes. For instance, suppose that the energy consumption 
in a region is expected to grow so that significant investments in the energy supply system 
will be needed. In these conditions local interest groups may identify a new, potential 
energy carrier – gas in this example - which can be used in the area. Building gas 
infrastructure is a significant decision with major implications in the region in the-long 
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term. Thus, those who are willing to support the idea (the planners) must seek for approval 
from all other local interest groups. 
 
Consumers are the major target for tactical planning. Obviously if this group does not 
accept the new solution, there will be no demand and without sufficient demand no 
infrastructure can be built. Of all consumers groups, the energy intensive industries in a 
region must be first attracted in order to ensure enough demand that could justify the 
construction of the new infrastructure (gas pipelines). Other groups of middle size energy 
consumers (office buildings, shopping malls, hospitals) may also count in this matter. The 
smallest consumers, households or residential buildings, may not have enough power to 
influence the building of new infrastructure. Moreover, depending on the population density 
in a region, the costs for extending the gas network to households can be significant. In 
Norway for example, such consumers are obliged to connect to district heating networks (if 
available) but no regulations in this respect exist for the case of gas distribution networks. 
To attract these smaller consumers in shifting appliances to those that use gas, temporary 
solutions may be proposed, before the actual gas infrastructure is built. For instance, a way 
to put the basis of a gas market in a region is to offer consumers the possibility to have 
access to gas storage tanks that can be refilled periodically.  
 
A tactical planning process should be based on an analysis of what implications each 
relevant alternative for building new infrastructure may have on the local energy system and 
on the local community. In general a planner would need to know: 
 
 how easy (or difficult) it would be to comply with relevant rules and regulations 
 how the new solution will influence the existing system in terms of: competition with 

other energy carriers, costs, efficiency, economy of scale, etc. 
 how consumers will accept the new solution in terms of costs or additional 

environmental impacts associated with the introduction of a new infrastructure.  
 
A careful consideration of these issues would give the planner(s) sufficient support in 
documenting proposals for consumers and other stakeholders. It is essential to mention here 
that any tactical analysis must have at its core extensive operative analyses of the various 
tactical alternatives which may be identified.  
 
Strategic decision problems target long-term technological and socio-economic 
development. For instance, the decision to build new gas infrastructure in a region is a 
strategic decision.  
 
Strategic planning is a complex decision-making process that is in general difficult to 
structure and model: the process may be highly influenced by the national policy objectives 
that involve more than just the energy sector. For instance, a wide range of policy issues 
may have direct influence on local planning, because national programs and incentives may 
dictate the energy resources and energy technologies to employ, in order to minimize the 
negative impact on the environment and the local community. 
 
Strategic planning implies massive investments, large uncertainties and long lead times. 
Decisions at this level must be supported by detailed analyses of all possible implications 
that may affect the future of society and the environment. In general, tactical analyses and 
operational scenarios are the main tools used in supporting strategic planning. 
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Many interest groups will affect and will be affected by strategic decisions. Strategic 
decisions are normally made after many sessions of discussions and negotiations with all 
parts involves. Discussions during these negotiations generally revolve around few main 
points: who (companies) will be allowed or charged with implementing the decision 
(carrying through the project), how new investments will be financed, and what will be the 
major implications for the local community. 
 
Major investments in infrastructures must be approved and supported by state authorities. 
Governments are directly involved in the energy sector through the provision of the 
infrastructure (which is usually state-owned) and through regulation of transport and 
distribution of energy. In Norway for instance, NVE (The Norwegian Water Resources and 
Energy Directorate) assigns local area licensees to prepare, annually update and make 
public an energy plan for each municipality in the licensees area [4]. The energy plan 
should describe the current energy system infrastructure in the municipality, the expected 
energy demand in the municipality, broken down by the various energy carriers and user 
groups and it should identify the most relevant new energy solutions which may sustain 
substantial changes in energy demand. 
 
 
1.3 DECISION SUPPORT FOR LOCAL ENERGY SYSTEMS PLANNING 
 
The discussion so far emphasised a variety of decision situations related to local energy 
systems planning and the different groups of interest that can be involved in planning. This 
section addresses the main challenges posed by offering decision support to local planners.  
 
The need for decision support in local planning varies with the decision level and the 
number of participants involved in the decision process.  
 
Operational planning decisions are decisions about how much energy to produce or to buy, 
and how to transport / distribute it in order to satisfy the needs of the end consumers. If 
there are different companies in charge with different infrastructures in a region, then each 
of them must make operative decisions. Due to the competition of different carriers in 
satisfying the end-use demand, each planner must have a good overview of the activity in 
other networks. In fact this also applies to situations when only one planner is in charge of 
operating the whole system. 
 
In mixed energy systems, the competition between different energy distribution networks is 
for the end-use energy demands that can be covered from different sources. Examples are 
where indoor heating can be provided by using gas, biomass, electricity or district heating.  
 
Integrated system models that can centralize large amounts of information regarding the 
energy demand and energy availability (quantities prices) are usually used for decision 
support in operative planning.  
 
Tactical and strategic planning are similar from the point of view of the complexity of the 
planning process because: 
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 several decision-makers and stakeholders (decision-receivers) may be involved in the 
decision-making process 

 the different interest groups may have multiple, conflicting criteria when analysing the 
available options 

 decisions must consider uncertainties over the medium and long term. 
 
In these conditions, the first and most important step in providing decision support is to 
identify and structure the decision problem. This mainly implies the identification of all 
parts involved and their role and interactions in a decision process, along with the main 
strategic options and the main uncertainties. 
 
The second step is to find tools that can offer decision support in the identified decision 
situations. Integrated system models can also be used to support tactical and strategic 
planning. For instance many energy models, that can be used in operative short term 
planning can also be  adjusted to function in a repetitive mode (for different time periods, 
scenarios, etc.), to allow for medium and long term quantitative analyses of different 
investment alternatives [5-11]. However, more advanced procedures for decision-support 
would be needed in order to address more of the complexity described previously. 
 
When several interest groups are involved in the decision process, they will most probably 
have different views and objectives regarding different strategic options (see also Papers 1 
and 2 in the Appendices 1 and 2). To help these groups to reach consensus, advanced 
decision-support tools are needed. One approach would be to allow each of the participants 
to use the same energy model as a common platform for analyzing different (investment) 
system alternatives. This idea is adopted also throughout this thesis.  
 
Then, because different decision-makers might have a set of objectives in mind when 
analysing the available options, the decision-support tool should be flexible in order to 
allow each decision-maker to define and model his own concerns. A problem in this respect 
is that energy system models can provide only quantitative measurements of different 
objectives (costs, emissions quantities, etc.), while the decision-makers would need 
additional information about other, qualitative impacts that are not-so-easy to quantify. 
Examples for such impacts that can also be found in Paper 2 (Appendix B) are: noise or 
aesthetical impact, the impact on the health of the local population (pollution, etc.), the 
public image of the companies in charge with planning. However, in general the criteria for 
measuring the impacts may depend on the problem analyzed and on the energy system.  
 
Assuming that all relevant criteria are identified, the tactical or strategic alternatives have to 
be judged accordingly by the planner(s). In problems with a small number of alternatives 
that must be judged against few, clearly defined criteria, a decision-maker may directly 
choose the alternative he or she considers the best. However, strategic energy planning 
problems are probably not so easily reduced to such size and thus, additional methodologies 
will be needed to help decision-makers to take explicitly into account different criteria.  
 
Multi-criteria decision analysis (MCDA) has proved a valuable contribution to the 
successful resolution of various types of energy planning problems [12-17]. Most research 
however seems to address a large number of types of problems related with the planning of 
electricity systems, or of national integrated systems. By comparison, it is rather difficult to 
find applications of MCDA to the specific problems of planning local, mixed energy 
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systems. The reason for this is perhaps that the basic local planning needs are still not very 
well recognized or expressed in many countries [1], and consequently the research 
community has not given enough attention to the process of local or regional planning of 
energy systems.  
 
Thus, this thesis contributes to an emerging field, by addressing the issues of problem 
identification and structuring and of improving the use of existing energy models to 
explicitly address complex planning problems involving uncertainties and multiple criteria.  
 
 
1.4 CONCLUDING REMARKS  
 
The issues raised in this chapter can be summarized as follows: 
1. The process of decision making for local energy systems planning is complex. 

Decentralization, the need to consider the interconnection between energy and emission 
markets, and the movement toward sustainability have changed the priorities of energy 
planners and policy makers. In many countries nowadays, instead of one major planner 
(the national integrated energy company), several players have a hand in the local 
energy system planning, making their roles no longer easy to distinguish. In order to 
adequately study the process of planning, an energy system can be defined within three 
types of boundaries: physical, impact and political. 

 
2. Within the local planning context, three main types of planning levels can be identified: 

the operative, tactical and strategic levels. 
 
3. The need for decision support in local planning varies with the decision level and the 

number of participants in the decision process. Operative planning decisions are 
supported by optimization and simulation models. Tactical and strategic planning 
problems are more complex because several decision makers with multiple, conflicting 
criteria are involved.  

 
4. New research and dedicated decision-support tools are needed to help planners in 

structuring their problems and coping with uncertainties and multiple criteria. 
 
5. This thesis contributes to an emerging field, by addressing the issues of problem 

identification and structuring and of improving the use of existing energy models to 
explicitly address complex planning problems involving uncertainties and multiple 
criteria.  

 
Subsequent chapters present an investigation and an assessment of appropriate 
methodologies for aiding decision-making for local energy systems planning.  
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Summary 
 
 
The purpose of this section is to give an overview of approaches that can be used for decision 
support in energy planning. This part of the thesis is comprised of three chapters (Chapters 2, 3 
and 4). The chapters focus on different facets of the decision-support process: energy modelling, 
multi-criteria decision making and uncertainty in decision-making. 
 
Energy modelling was and still remains the main approach in solving energy planning problems. 
Chapter 2 begins with a discussion of the purpose of and opportunities for modelling energy 
distribution systems. Some well- known energy system models are first reviewed. The remainder 
of the chapter consists of a presentation of a new energy model, eTRANSPORT, which occupies 
a central role in this research. 
 
Chapter 3 provides a study of Multiple Criteria Decision Aid (MCDA) as a discipline that can 
help decision makers make ‘better’ decisions when judging their alternatives with respect to 
different criteria. MCDA is a good candidate for solving complex energy planning problems. The 
approach has been proved useful in many energy-related decision problems, although there are 
few reports of the use of this approach in the field of concern for this thesis (planning mixed 
energy distribution systems).  
 
MCDA can improve problem solving when applied to the ‘correct’ decision situation. MCDA 
does not provide ‘the right answer’, as some mathematical or engineering methods would be 
expected to do, but instead provides recommendations or advice regarding which decision to 
make based on the information available in a given decision situation. An MCDA application is 
successful when the decision-maker gains a better understanding of the decision-problem and 
accepts the final recommendation. The basic concepts defining this discipline are first discussed, 
while the remainder - the largest part - of the chapter is dedicated to describing  methods under 
the MCDA umbrella. Before applying MCDA, a user must have a good understanding of how and 
in which situations different methods can be applied. This chapter offers and extensive evaluation 
and classification of methods from a practical perspective.   
 
The last chapter in this section, Chapter 4, treats decision-making under uncertainty and risk. 
Uncertainty is a basic, structural feature of the environment in which energy planners must make 
decisions. It affects a wide range of short- and medium- term decisions and it is critical in 
strategic planning problems. Recognizing the uncertainties in a decision context, accepting them, 
and making the effort to structure and understand these uncertainties, are the main steps in 
dealing with uncertainty and in making it part of the decision process. This chapter offers a 
review of the main approaches in dealing with these issues. An integrated view of on how 
uncertainty can be captured with both energy system (impact) and multi-criteria (preference) 
models is offered.   
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Chapter 2 MODELLING THE 
ENERGY SYSTEM 

 
 
 
 
2.1 ABOUT ENERGY MODELLING 
 
A major goal of energy modelling is to create tools for decision support in energy planning 
and policy making. Energy models are generalized descriptions of the physical energy 
systems. Depending upon the purpose for modelling, the level of detail needed and the 
assumptions made, the components of a system can be modelled by taking into 
consideration physical characteristics and phenomena as well as complex relations between 
system parameters. 
 
Energy modelling has been and still is the most basic approach in aiding energy planners. 
Energy models can be used to represent, simulate and reveal the issues that matter in a 
decision context. Such tools help by facilitating an understanding of the problem being 
analysed. For example, models can reveal new facets of the problem or courses of action 
which might not otherwise be evident, by allowing the initial conditions for the analysis to 
be varied. Complex analysis would be impossible without such models, because of the way 
they help in processing and modelling large amounts of data.  
 
The insights that are gained by decision-makers when using the model should be at least as 
important as the numbers the model produce. In fact a model can be successfully used for 
decision support only if decision-makers accept it as a relevant tool in a particular decision 
situation.  
 
The discussion in Chapter 1 showed that the decision making process in energy planning 
may be fairly complex, involving many decision levels where problems can be formulated 
in many ways. Integrated energy systems are complex structures where different energy 
carriers have to compete in satisfying the end-use energy demand. In essence there are two 
main dimensions of this ‘competition’: 
 
A technical dimension - which energy technologies and energy flow paths to use 
considering: 
 
 the energy resources available in a region 
 the evolution of demand for different end-use energy types: electricity, ambient heat, 

hot water, energy for cooking, etc. 
 the available technologies for energy conversion, transport or storage. 

 
A decision-making dimension - which energy supply solution to adopt, considering: 
 
 the economic impact on society: utilities, consumers etc. 
 the impact of the energy system on the environment 
 the political and social implications etc. 
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Theoretically, the physical (technical) systems can be modelled in many different ways, 
depending upon the needs for decision support. A model, once built, can be used in 
different planning situations (applied to different local systems) to support decisions at 
different levels (operative, tactical or strategic). Energy models can offer information about 
costs, emission quantities, losses etc. Although these are basic criteria in any analysis, in 
many real decision situations local planners weigh many other aspects when making 
decisions, as has been shown. These are, for example, the opinions of local interest groups, 
the national energy policy, social values, or other criteria that are not obvious or simple to 
measure. Thus, it is often true that the energy model provides only a part of the picture in a 
decision situation. For a better decision-support, in addition to energy modelling, 
supplementary time and effort must be dedicated to the process of bringing forward and 
modelling such issues, if possible. 
 
The reminder of this chapter is comprised two main parts. The first part is dedicated to a 
short review of existing models for integrated energy systems. The main characteristics and 
the use of these models for decision support will be discussed. The last part of the chapter is 
dedicated to the description of a new model called eTRANSPORT. This model plays an 
important role in the present research, as a large part of the investigation in this thesis is 
directed towards improving the model’s use in complex decision settings. 
 
 
2.2 A SHORT REVIEW OF ENERGY MODELS 
 
The development of energy models started 40 – 50 years ago [1] in response to severe 
energy problems. The scope for model development and application has shifted over the 
years to reflect the continuously changing environment for decision making. The energy 
models developed in the 1960s focused mainly on supply and demand for a single energy 
form or fuel, such as electricity, oil or natural gas. Then, these models became no longer 
useful at the beginning of the 1970s, during the first oil crisis, because they could not 
adequately describe inter-fuel substitutions related to changes in energy prices, 
technological development or environmental considerations related to energy use. Since 
then, integrated energy modelling was developed to solve national (even international) or 
regional energy problems.  
 
Network representations are usually used to calculate energy balance and flows from the 
primary energy resources through conversion processes to the end-use of various fuels and 
energy forms. There is no available information about on how many energy models have 
been developed so far, although different classifications exists [1, 2]. The following 
discussion aims to give an overview and a short classification of some of the most well 
known integrated energy system models, according to their scope and applicability.  
 
Energy system models can be distinguished by their level of aggregation/detail in modelling 
the system and its components, as well as by their spatial and time resolution.  
 
In highly aggregated macroeconomic models, or top-down models, the energy system is 
represented with very little detail - more or less as a black box. These models can be 
econometric or parametric and are used to describe the relationships and synergies between 
the energy sector and other sectors of the economy [2].  They are mainly used in energy 
policy making, technology assessment, predicting future market developments through 
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historical energy-economy interactions and customers behaviour in reaction to changes in 
prices. Scientific reports about this type of models abund in scientific journals oriented 
towards energy- policy making; see for instance [1], [2], [3], [4]. This study does not target 
such top-down models, but they are worth mentioning as possible alternatives in helping in 
decision making for local energy planning. 
 
Of interest to this research are the bottom-up models - usually called energy system models, 
engineering models, or even energy system optimization models. These models allow a 
fairly detailed representation of different technologies and components of the energy 
system. In general, large amounts of information are required to describe such systems. 
 
Bottom-up system models are in general large scale linear programs that provide solutions 
for optimal allocation of resources and energy carriers given a set of technical, economic or 
environmental constraints. Reviews and discussions about the available energy system 
models can be found for example in [1, 2, 5, 6]. In general, these models differ according 
to: 
 The size of the energy system modelled (geographical coverage):  

 
- Models describing an entire national energy system: MARKAL, MESSAGE, 

EFOM, TIMES, BESOM etc. 
- Models for local or regional energy systems: MODEST, PERSEUS, etc. plus other 

large scale models that can be adapted for local or regional systems modelling. 
 

 The way uncertainties are modelled:  
 

- Static, deterministic optimization models, which are especially suited to calculate 
least-cost strategies under certain boundary conditions 

- Dynamic, interactive models where uncertainties (future prices, loads and so forth) 
can be represented stochastically, or by using fuzzy logic, or through scenario 
simulations, etc. 

 
 The time horizon allowed for analysis:  

 
- Models describing the short-term operation of the system –usually describing, with 

sufficient details, a fixed technical system and a given socio-economic framework; 
- Long-term simulation models used in strategic planning – used in the analysis of 

long-term technological and socio-economic developments. 
 
The concept of integrated system modelling is continuously evolving; many of the existing 
models have been improved or new models have been created [7, 8]. Two main directions 
for improvement have been observed. The first is to develop models that can accommodate 
more details in the description of the energy system, as for instance in the representation of:  
 
 Different technologies for conversion, storage transport and distribution of energy - 

including models for new, emerging technologies 
 Energy demand and energy procurement at the level of hourly forecasts. 
 Market-related issues: spot prices, hourly purchased quantities etc. 
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Secondly, improvements have been observed in the usability of these models: the tendency 
nowadays is to create tools that can be used not only by their developers (experts) but by 
planners as well. This has been achieved by: 
 
 more transparent, comprehensive and easy-to-follow optimization procedures 
 and better representation of the results – through illustrative graphical-user interfaces. 

 
However, because a significant amount of time and effort must be spent to set up and use 
such tools, it is still realistic to assume that the real decision-makers may not be willing to 
use these models directly. Future generations of energy models should be built so as to 
diminish the gap between the decision-makers and the tools they use to support their 
decisions. If decision-makers were be able to at least partly use a model, decision-support 
through energy modelling could be significantly improved.  
 
The remainder of this chapter presents a new energy system model that has been developed 
in parallel with the research for this thesis. This model, named eTRANSPORT has been 
built in several steps, with each iteration of the prototype tested with different case studies. 
The research in this thesis has benefited from the experience gained with the model because 
its development process added progressively new insights into the actual needs for decision 
support. In turn, the model will also benefit from this research. The last part of this thesis is 
oriented towards proposing a framework for extending the model with an ‘advanced 
decision-support module’. 
 
 
2.3 eTRANSPORT - A NEW ENERGY SYSTEM MODEL 
 
2.3.1 General characteristics  
eTRANSPORT is an energy model developed to provide support for the planning of local 
or regional integrated energy distribution systems. It is a deterministic linear model, and 
describes in sufficient detail the various types of technical components of an energy system 
[9, 10]. The model determines the cheapest way - from a socio-economic point of view - to 
satisfy end-use energy demand. eTRANSPORT is flexible, in that it is applicable to 
relatively small systems (local/municipal regional), but it can be extended to large systems 
as well.  It can be used for short-term operation planning, but also for long-term 
(investment) analyses.  In analyses using this model, uncertainty can be taken into account 
by simulating scenarios using forecasted values of various important parameters (energy 
costs, prices, demand levels, etc.).  
 
The novelty of the eTRANSPORT model is that the component types for different energy 
infrastructures are included in one optimization model for the whole energy system in a 
region, and that geographic details and the competition between different energy types are 
accounted for [11]. The long-term goal is to develop a robust and flexible tool to be used by 
private and governmental energy planners on a regular basis. 
 
2.3.2 The structure of the model 
The model consists of two main parts, as shown in Figure 2.1: the operational and the 
investment modules. 
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Figure 2.1 Simplified flowchart of the eTRANSPORT model 
 
A. The operational module 
The operational module calculates the optimal energy flow for a fixed system configuration 
and for given loads and price profiles. Three different types of technologies are modelled 
within the operational module: 
 
 Conversion technologies: converting one energy carrier to another at a specific 
geographic location 

 Transport technologies: transporting a given energy carrier over a defined geographic 
distance 

 Storage technologies: storing a given energy carrier over time at a specific geographic 
location 

 
Structurally, eTRANSPORT includes three classes of components that are linearly 
modelled:  
 Energy sources, or input nodes; 
 Network components: conversion, transport and storage; 
 Sinks or end (output)-nodes: end-use loads and markets. 

 
The actual location of each physical component is accounted for. Each class of components 
comprises several sub-component types, as shown in the Table 2.1.  
 

NETWORK COMPONENTS 
SOURCES 

Conversion units Transport /storage units 
SINKS 

 Electricity 

 Gas 

 Oil 

 Waste 

 Biomass 

 AC/DC converter 

 Warm water tanks 

 Gas plants: (CHP, GE, CC) 

 Boilers 

 LNG station 

 LNG re-gasification 

 Electric net. 

 DH net 

 Gas pipe 

 Gas ship 

 LNG ship 

 Storage 

 Electricity 

 Heating 

 Warm water 

 Gas 

 

Table 2.1 The components of the operational sub-module 
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The table shows the sub-components currently implemented, although the model is 
continuously evolving.  
 
The time division in the operational model reflects the variation in time-dependent 
parameters of the energy system with sufficient accuracy. The estimation of time-dependent 
parameters in an integrated energy system depends on the ability to model each particular 
energy network. These parameters also depend on the ability to measure and forecast 
different end-use energy demands or prices. For example, electricity specific data are 
usually obtained hourly. Thus a time step of 1 hour is typically used when modelling the 
electrical network. This is the smallest time-step in the model. Because other network 
parameters may vary or may be measured in larger time periods – daily, weekly and so 
forth- the model can be used in making calculations for different time periods. 
 
The objective for the operational model is to minimize the total operational costs for the 
studied energy system. The overall cost function to be minimized sums up the cost 
objectives corresponding to each component/classes of components in a given configuration 
of the system. The connection between model components is made through variables 
defining energy flows.  
 
The restrictions in the model concern both these energy flows but also sub-model specific 
restrictions such as: technical and physical limitations for the studied components, 
(capacities and efficiencies), restrictions on the available quantities of primary resources, 
and, most important, the obligations of covering the end-use energy demand.  Parameters 
that need to be predefined are: loads, costs, prices, and different technical and economic 
efficiency specifications. 
 
B. The investment module 
The investment module consists of a sequential algorithm in which the operational module 
is used to evaluate the operation of the system in different configurations (expansion 
alternatives or plans) and time spans. The mathematical optimisation problem is modelled 
as a linear problem and has been successfully solved with linear programming. Recently, 
dynamic programming has been implemented as an alternative to the initial algorithm. 
However, the formal mathematical optimisation problem is independent of the technique 
used to solve it [11].  
 
The investment module identifies the expansion alternative with the least total cost (the sum 
of investment costs and operational costs) for the whole planning period for a predefined set 
of investments and a given evolution in demand. Each expansion alternative typically 
consists of many different physical components/investments. An expansion plan shows 
which investments should be selected, if any, and when investments should be made.  
 
The investment algorithm can be represented as shown in Figure 2.2. First the operational 
model is solved for a given configuration (state) of the system, in different time-segments 
within a year (typically 1-4 seasonal segments). These time-segments must be predefined 
and usually are directly correlated with the variation of different end-use energy demands 
and energy prices. For example, the number of days and weeks corresponding to different 
seasons/segments (summer and winter, as an example) can be derived by observing the 
variation in patterns of different energy demands. The annual operational cost is then 



Modelling the Energy System 

27 

calculated for all relevant configurations of the energy system being studied, and for all 
periods in the planning horizon.  
 

 

 

Figure 2.2. The investment sub-model [10] 

An investment analysis usually has a horizon that is a few decades in the future (20-30 
years or more). To simplify the effort needed for data estimation and forecasting, the 
investment algorithm in eTRANSPORT can be set up to run on different time periods 
during which it can be assumed that the energy demand will not change considerably. For 
example, a planning period of 20 years can be grouped into four sub-periods, each of which 
is 5 years long. For each sub-period, specific annual operational costs are calculated. 
 
A predefined set of relevant investments for a given energy system is assumed to be known. 
Each of these investments refers to different system components (power plants, networks, 
etc.). The investment algorithm searches combinations of different components that may 
lead to the optimal system configuration. Some of these system configurations are in fact 
the alternatives that may be relevant in a decision situation. The algorithm produces a 
ranking of all predefined investment alternatives. Because it can be time consuming to 
evaluate all possible optimal combinations and configurations, the model allows the user to 
specify additional information about which investments that are mutual exclusive from an 
economic and technical point of view.  
 
During the investment analysis some of the new investments will be made in replacing 
existing infrastructure. Within the model calculation, this replacement is a result of the 
specific lifetime of different components. Most of the restrictions in this model describe 

Mininize operating costs 

Start

First state

First year 

First segment 

YES 
More segments? 

Next 
Segment

NO

Calculate annual operating 
costs 

 NO

Send operational cost  
matrix to investment module 

Next year YES More years? 

NO

YES Next state More states? 



Chapter 2 

28 

how investments and scrapping of invested components affect the state of the energy system 
and therefore the operational costs for different years.  
 
2.3.3 Using the eTRANSPORT model 
eTRANSPORT has been developed in a project that linked research institutions and 
industries. This collaboration enabled the testing of the model, at different steps during its 
development period [9, 10, 12, 13]. Most of the case studies have analyzed how the 
construction of new local power plants could be optimised with respect to size and location 
and subject to economic, technical and environmental constraints. These first applications 
were conducted by researchers (or their collaborators) who were in charge of constructing 
the model. Recently, a ready-to use prototype of the model has been distributed for testing 
by all parties involved in the project.  
 
The following discussion shows the features of this prototype when used in practical 
applications. Figure 2.3 shows a snapshot from an application session with the model. The 
graphical user interface consists of three main parts: The Component Library to the left, the 
main Drawing Area and the Results Window at the lower part of the screen. 

 

 

Figure 2.3 Main screen with drawing area, component libraries and result window [11] 
 
eTRANSPORT as a decision-support tool is flexible and easy to use. There are three main 
steps to follow: 
 
Step 1: Draw the system, by dragging-dropping system components from the library. It is 
also possible to copy, open, modify and use an already existing model.  
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Step 2: Input specific data for each system component. Edit windows such the ones shown 
in Figure 2.4 make this possible. Some component-specific default parameters are already 
available 
 
Step3: Run the optimization by specifying the system components that should be included 
and the ones that are to be scrapped in each alternative during the time period set for 
analysis. Interest rates must also be specified to discount the future costs.  

 

  

Figure 2.4 Main screen with edit windows [11] 
 
eTRANSPORT provides suggestive representations of results The user has three modes of 
analysis to choose from: operational or investment analysis, and advanced decision aid. 
The first two modes correspond to the modules already described in the previous 
paragraphs. The advanced decision aid module has yet to be implemented.  
 
Figure 2.5 shows an example of using the model in the investment-analysis mode. Relevant 
alternatives (the list in the right column) are ranked from the lowest to the highest 
annualized sum of operational and investment costs. The values for total costs are shown to 
the right of each ranked alternative. By expanding the rank’s investment tree the user can 
see details about the components included in and alternative as well as the optimal time to 
invest in new components.  
 
The graph at the left of this window allows the user to compare the cost components (the 
middle column) for different alternatives that must first be selected from the right column. 
In this prototype emission results can be displayed as well.  
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Figure 2.5 The investment analysis mode [11] 
 
These are emissions (measured in tonnes) corresponding to the min cost for operation the 
system in a given configuration. The idea is to show, in a suggestive way, that emissions 
may count considerably, in some situations, to the ranking of alternatives. 
 
eTRANSPORT can be easily set to simulate if/how the ranking of alternatives changes 
when some of the relevant input data are modified: costs, prices, demands profiles, or the 
restrictions set on emissions (quantities / taxes). These simulations contribute significantly 
to the understanding of correlations and synergies between the many issues that matter in 
planning decisions. The model allows for uncertainty modelling in terms of scenarios. 
 
The current version of the model provides static results, however, in the sense that the 
results in different simulations cannot be displayed together, for a comparative analysis. 
Spreadsheets or other tools have been used in assembling all simulations and finalizing the 
decision aid process.  
 
The operational analysis mode allows for in-depth analyses of each of the alternatives 
considered. The decision-maker can check how the different components in a given system 
configuration (or investment alternative), can be operated optimally during different periods 
of analysis. When selecting a component, a graph will appear in the lower window, which 
shows the hourly operation of each component. An illustrative example is shown in the 
Figure 2.6. 
 

 

Figure 2.6 The operational analysis-mode 
 
In this way, changes in energy demands, prices and so forth can be tracked to the level of 
detail of every single system component, allowing planning at the most basic operational 
level.  
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The various possibilities for analysis and decision support, make the eTRANSPORT model 
a valuable tool in many decision situations: 
 
 The model can be used by different decision-makers such as companies in charge of 

different parts of the system, municipalities, large industrial consumers or even other 
types of small consumers. The operational mode allows each of these users to check 
how they can optimize and run their business in relation to the entire energy system. 
Moreover, the investment mode allows them to check how to expand their activity, or 
how to find new energy supply solutions, which can be integrated into a given system. 
For an optimal and relevant analysis, however, the main requirement is that each user 
has sufficient information about the whole target system.  This information might not be 
always available, because it might concern not only decision-maker’s own activity but 
the activity of other players as well.  

 
 The model can be used to support planning at both an operational and investment level, 

thus allowing for basic analysis and decision support in most of the decision situations 
described in Chapter 1. 

 
Gathering information about large energy systems is a difficult and time-consuming task. 
This is the reason why many energy models are not actually used by the final decision-
makers, but rather by analysts who report to these decision-makers. Sometimes, the 
practical relevance of such tools might be reduced because the tools are only useful in 
decision support if they are easy to use and trusted by the beneficiaries of their results. 
 
Because it is fairly easy to use, and because it provides results in a suggestive way the 
eTRANSPORT tool may be attractive for the ultimate decision-makers, especially once 
most of the information for the model has been assembled (by others). Future developments 
of the model (such as the advanced decision aid module) will be directed towards providing 
decision-makers with the ability to compare simulation results or to extend the analysis to 
additional qualitative issues, which so far cannot be done within the model. 
 
 
2.4 CONCLUDING REMARKS 
 
This chapter has focused on the subject of modelling energy systems. In short, the 
following issues where discussed: 
 
1. The purpose of energy modelling is to create tools for decision support in energy 

planning and policy making. Due to the large amount of information that must be 
studied and processed, an energy model should be the basis for any energy system 
planning decision.  

 
2. When modelling integrated energy systems, the competition between different energy 

carriers can be represented both in technological and in decision making 
dimensions. 

 
3. The challenge of modelling energy systems can be tackled using many different 

approaches and methodologies. The choice of an approach depends on the needs for 
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decision aid: long- or short-term analyses of local or national energy systems, where 
uncertainty may or may not be included. 

 
4. A new energy model, eTRANSPORT, has been developed to provide support in 

investment planning and operation of integrated energy distribution systems. This 
tool has been developed in parallel with the research for this thesis, thus 
contributing to a better understanding of the needs for supporting decision making 
in energy planning. 

 
5. eTRANSPORT is a user-oriented flexible and easy-to-use tool to support decision 

making. Energy systems can be easily modelled within the tool, and a variety of 
analyses can be performed. For instance, the model can be used by different kinds of 
decision-makers to support planning at both the operational and investment levels.  

 
6. eTRANSPORT can be used in providing  basic information about the impact 

decisions may have at any planning level. However, as discussed in Chapter 1, most 
decision situations concern many important issues that cannot be practically 
resolved with this tool in its current form. Future developments of the model (the 
advanced decision aid module) will be directed towards providing decision-makers 
with the ability to compare simulation results or to extend their analyses to 
additional qualitative issues, which so far cannot be done with the model. 

 
The discussion in the following chapters will be driven by the goal of finding good 
ways of extending the use of the eTRANSPORT model to complex planning situations. 
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Chapter 3 MULTI-CRITERIA 
DECISION AID 

 
 
 
 
3.1 THE SCIENCE OF DECISION AID 
 
For centuries philosophical or mathematic theories have been centred on different 
explanations about the thinking behind decision making and the acceptance of the 
consequences of the decision. For example, the science of calculating probabilities emerged 
as an attempt to define instruments through which the contingencies of life and human 
behaviour could be explained using mathematical concepts [1]. Scientists believed that 
through a scientific analysis the mystery behind human deliberation and decision making 
could be understood. Thus the field of social mathematics converged in a set of methods 
and techniques for making rational decisions. Social and political sciences are among the 
first domains where these techniques have been applied. Then, after the World War II the 
science behind reasoning decisions took shape under the name of Management Science 
with two main streams: Operations Research (OR) and Decision Aid (DA).  
 
The concepts of OR and DA have been extensively discussed by Roy [1] in his quest to 
establish the validly and viability of methods models and procedures related to this field, 
and to distinguish between ‘decision science’ and ‘decision-aid science’. Roy uses a 
definition from Miller and Starr who in 1969 defined OR as ‘applied decision theory… 
requires the use of scientific, mathematical or logical means to structure and resolve 
decision problems. Construction of an adequate decision model is crucial’. Then DA is 
consequently defined as ‘the activity of one who, in ways we call scientific, helps to obtain 
elements of answers to questions asked by actors involved in a decision-making process, 
elements helping to clarify this decision in order to provide actors with the most favourable 
conditions possible for that type of behaviour which will increase coherence between the 
evolution of the process on the one hand and the goals and/or systems of values within 
which these actors operate on the other’. 
 
Within Roy’s framework, DA relies on both OR as well as on other disciplines and other 
approaches. Roy also stresses that not every contribution from OR will necessarily be 
related to DA, insofar as certain purely mathematical studies that bear the OR label are not 
directly oriented towards decision aid.  
 
More than forty years ago a new discipline emerged as a result of the need for formalized 
methods to support decision making with multiple criteria. This discipline is called MCDM 
(Multiple Criteria Decision Making) or MCDA (Multiple Criteria Decision Analysis or 
Multiple Criteria Decision Aid). There is no clear distinction between the different terms 
scientists use when they refer to this discipline. During the years, a number of different 
(often called ‘divergent’ [2]) schools of thought have emerged, each of them using a 
different nomenclature.  
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The term MCDM is used commonly used in relation to the set of descriptive methods for 
building models of the behaviour of the decision maker. These methods and models are then 
assumed to be applicable to different types of problems.  
 
In a similar approach, the philosophy behind MCDA is to develop frameworks and methods 
for decision aid, to help the user to understand the problem and his own contribution to the 
decision making process [2]. Thus MCDA is more of a process that starts with the 
identification of the problem and the multi-criteria method that best fits the problem, and 
ends with the assessment, interpretation and validation of the results.  
 
The scope in this chapter is to offer an overview of the main concepts, methods and 
techniques belonging to this discipline. Thus, when referring to it throughout the chapter, 
the term MCDA will be used, as it somehow captures both the idea of identification of the 
problem and the methods used to solve it. 
 
 
3.2 HOW CAN MCDA HELP?  
 
Why and how can an analysis based on multiple criteria help in a decision making process? 
Wouldn’t the process of analysis and modelling in terms of different criteria complicate the 
actual decision making process? Why shouldn’t we use the traditional, well grounded 
economic theory that allows for monetary evaluations of almost any aspect and criterion? 
The following discussion is an attempt to answer to these questions. For a deeper 
understanding, the reader can consult the MCDA literature, which abounds with arguments 
related to these issues. 
 
Decision-making is a human managerial task which can never be totally automated with 
tools, techniques or algorithms [3]. The concepts, methods and procedures used for decision 
aid, unlike their counterparts in the physical and natural sciences, can scarcely claim to 
describe realities that would be independent of both the observer and other human actors 
[1].  
 
Thus, for a decision aid process to be successful, the description and the interpretation of 
reality in a decision situation should be compatible with the way the decision maker thinks. 
Naturally, people take decisions with more than one criterion in mind. Consequently, 
decision support procedures that can help decision-makers to explicitly account for all 
criteria that matter to them, may provide a better (or at least as good) description of reality 
than the ‘traditional’, single criterion methods. Few arguments will be given further to 
support this affirmation. 
 
Unlike many approaches that allow for modelling and finding solutions, when the problem 
is given, MCDA contributes to problem identification and structuring and provides the 
theoretical background for model building. Methods belonging to this discipline can help in 
organizing and synthesizing information that is complex and conflicting and that often 
reflects differing points of view and which additionally may change over time [2]. In fact, it 
is not only the ‘reality’ that is independent of the decision-maker(s) that is modelled by 
MCDA but also part of his subjective contribution to the decision making process. MCDA’s 
ultimate goal is to lead to more ‘qualified’ decisions in the sense that the decision-maker 
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involved would gain a better understanding of the problem and his own thinking 
(preferences) as these contribute to the decision making process.  
 
The MCDA process was described by Belton and Stewart [2] as in Figure 3.1. In theory, the 
decision aid process should start with the identification and structuring of the complexity 
that undoubtedly exists in a decision process. In other words, all important aspects of a 
decision should be identified and clarified: the main key issues, alternatives, uncertainties, 
divergent goals, values, constraints or issues related to the external environment and other 
stakeholders. In order to understand at this point how decision-makers might proceed, their 
main goals and values should be the main factors in the identification of the key issues and 
the available alternatives with respect to all constraints, uncertainties and other parts 
involved in the decision-making process.  
 
 

 
 

Figure 3.1 The MCDA process, as based on [2] 
 
Next, the model building phase must reflect a more convergent mode of thinking, a process 
of extracting the essence of the problem from the complex representation in a way which 
supports a more detailed and precise evaluation of possible ways to move forward. The 
model will then be used to synthesise the information and to inform the decision-maker 
about his options. Sensitivity and robustness analyses may challenge the decision-maker to 
identify or create new alternatives. The ultimate goal in the process is to help the decision-
maker in developing the action plan to be implemented. It is possible that the outcome of 
each of these phases would be a return to the previous phase or even a return to divergent 
thinking, as a result of the need to think creatively about other options or aspects of the 
decision situation.  
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From a practical point of view, it is necessary to reflect on the different situations in which 
MCDA may be applied. The ‘traditional’ methods have the advantage of being accepted, 
used and verified. This is not necessarily the case with multi-criteria methods. Since this 
discipline appeared, almost forty years ago, scientists are still debating to which established 
discipline these new concepts, methods and applications ought to belong [4-6]. Moreover 
the diversity in philosophies and models makes it difficult for both new researchers entering 
in the field and for practitioners or potential users of MCDA to get a clear understanding of 
which methodologies are appropriate to use in their particular context [2]. Additionally, 
although a large number of applications have been reported in the literature, little has been 
written about the empirical validation and testing of the various approaches [3].  
 
To summarise the above discussion, MCDA provides the theoretical background for 
advanced decision-aid which can contribute to: 
 
 a more detailed analysis of the decision problem by identifying and structuring both the 

reality independent of the decision-maker as well as his way of thinking (preferences); 
 ‘better’ and ‘justifiable’ decisions, in the sense that the decision-maker better 

understands his problem and his own contribution to the solution and is thus capable of 
justify and defend it to others. 

 
However MCDA methods might discourage some potential users due to the complexity of 
the procedures, as well as the time and resources these methods often require. Nevertheless 
MCDA can help in practical applications if decision-makers consider it necessary, and if 
they understand the methodology applied and accept the results. 
 
 
3.3 CONCEPTS AND DEFINITIONS FOR MCDA 
 
3.3.1 Multi-criteria problems 
A multi-criteria problem reflects a decision situation where the available options have to be 
judged against several criteria. Roy first defined [2] four types of multi-criteria problems: 
 
 choice problems: when a simple choice must be made from a set of possible actions (or 

decision alternatives) 
 
 sorting problems: when actions must be sorted into classes or categories such as 

‘definitely acceptable’, ‘possibly acceptable but needing more information’, and 
‘definitely unacceptable’ 

 
 ranking problems: when actions must be ranked according to some sort of preference 

order, which might not necessarily be complete 
 
 learning (descriptive) problems: when actions and their consequences must be 

described in a formalized manner so that decision-makers can evaluate them. These are 
essentially learning problems [2] in which the decision maker seeks simply to gain a 
greater understanding of what may or may not be achievable 

 
To these, Belton and Stewart [2] have added two more types: 
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 design problems: which imply searching, identifying or creating new decision 
alternatives to meet the goals and aspirations identified through the MCDA process. 
Keeney [7] also supportd this way of thinking which he calls ‘value focused thinking’ 
and which he claims is the most appropriate for real-life decision situations 

 
 portfolio problems: when a subset of alternatives must be chosen from a large set of 

possibilities, taking into account not only the characteristics of the individual 
alternatives but also the manner in which they interact and the positive or negative 
synergies between them. 

 
3.3.2 Criteria and alternatives 
The above definition of the problem makes use of two fundamental concepts: criteria and 
alternatives. 
 
What is a criterion? 
 
The dictionary defines ‘criterion’ as ‘a means or standard for judging’[8]. A criterion can 
also be seen as a tool constructed for evaluating and comparing potential actions according 
to a (as much as possible) well-defined point of view [9]. 
 
When referring to the same concept, different MCDA schools of thought often use different 
terms for the methodologies they develop. These terms are: goal, objective or attribute.  
 
Goals (or targets) are seen as priority values or levels of aspiration.  
 
In connection with a goal or a criterion, an objective is something (usually measurable) that 
should be pursued to its fullest.  
 
For example, if a criterion in an energy planning problem is environmental impact of NOx 
(which means that decision-makers care about this in the analysis) then a goal would be not 
to exceed a certain limit of pollution with NOx, within the general objective to minimize the 
emissions of NOx. Following this line of reasoning, the only way these actions can be 
possible is to define an attribute that provides the means of evaluating the levels of 
achievement of a criterion (or objective or goal).  
 
Attributes are often called performance (or achievement) levels for alternatives, according 
to the different criteria. Attributes can be performance parameters, characteristics or 
properties. Thus they need to be defined on a scale that fits with the issues of concern in the 
problem being analysed. One of the most important steps in a aiding in decision making is 
choosing, accepting and understanding the meaning of these measurement scales. Several 
types can be distinguished [9]: 
 
a) purely ordinal scales, often called qualitative scales: when the actual difference 

between two achievement levels does not have a relevant meaning. This is the case with 
verbal scales and numerical, ordinal scales 
 

b) quantitative scales, also called cardinal or ratio scales: numerical scales defined by 
referring to clearly defined and meaningful quantities for each achievement level. Such 
scales should be defined by an origin (absence of quantity, 0) and a unit of measurement 
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c) other types of scales which are described in [9] as intermediate scales, when any of the 

two types of scales discussed above is not suitable for use in a particular MCDA 
application. 

 
Since criteria are the main tools in making a decision, it is important to know that they are 
indeed the main concerns of the decision-maker involved in the process and that these 
criteria measure what they are supposed to measure, i.e. that the scales of measurement for 
these criteria are meaningful to the decision-maker.  
 
Careful consideration of these issues is necessary in most real-life applications because the 
criteria a decision-maker has are usually very general, abstract and often ambiguous. In fact, 
part of the art of solving a decision problem is choosing criteria and ways in which to 
measure them, and thus the attributes.  
 
There are several techniques to address the definition of criteria in a decision problem. First, 
when criteria are too general, the way to clarify it is to find families of sub-criteria that best 
describe the main criteria. In this way, a hierarchy of criteria can be constructed. A tree-
shape structure is usually used to represent the hierarchy of criteria. In complex problems 
with broad or fuzzy criteria, the hierarchy can spread to many levels.  
 
Second, if it is very difficult to find an attribute (measurement scale) for one criterion, a 
solution can be to choose one that captures most of the idea in that criterion and that best 
suits to the possibilities at hand: in other words, an attribute that is easy to obtain 
information about and to calculate. These attributes are usually called ‘proxy’ attributes. 
 
It is theoretically impossible to find exact representations of criteria, fact supported by the 
observation that it is impossible to model ‘all reality’. It is thus very important to know 
when to stop in developing new levels in the criteria hierarchy or in searching for ‘less-
proxy’ attributes [2]. It is also relevant here to mention the work by Kenney [7]. He offers 
suggestions about how to direct the search and the thinking about values as the main driving 
force in identifying the true ‘criteria’. 
 
What is an alternative? 
 
Alternatives or more generally, potential actions, designate the object of the decision or that 
which the decision aiding is directed towards [9]. An action is qualified as potential when it 
is possible to implement it or when it is relevant in a specific decision context. Usually the 
term alternative is used to denote actions that are mutually exclusive.  
 
Alternatives may be explicitly defined and discrete, or implicitly defined and continuous as 
described in mathematical programs.  
 
The alternatives in a decision problem must be compared using different criteria. In some 
decision situations, several alternatives may be obvious while others must be discovered. 
Thus the set of potential actions or alternatives at a given stage in a decision problem is not 
necessarily stable; it can evolve throughout the decision process. Again, according to 
Keeney [7], it is the fundamental criteria that usually lead to the discovery of new and 
possibly better alternatives. 
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3.3.3 The parties involved in the decision process and their role  
Virtually all decision aid theories were developed to help decision-makers. The term 
decision-maker designates the person (or persons) that is (are) confronted with a problem 
and is (are) in charge with solving it making a decision regarding it.  
 
Decision-maker (s) can be [2]: 
 
 a single individual with sole responsibility for a personal decision or for a decision that 

might affect others (companies, organizations, etc.) 
 a relatively small and homogeneous group of individuals sharing more-or-less common 

goals 
 a larger group representing different points views within the same organization 
 highly diverse interest groups with very different agendas. This group may share 

corporate responsibility for a decision, it may have the task of investigating an issue 
with the goal of making a recommendation to a decision making authority, or it may 
have been assembled for the explicit purpose of exploring alternative perspectives 
without any executive power. 

 
Individuals or small homogenous groups can carry out a multi-criteria analysis, providing 
that they have good knowledge and understanding of the method adopted. However, in 
complex decision situations, when large amounts of information must be processed and 
modelled, the multi-criteria analysis is usually conducted under the guidance of one or more 
expert facilitators (or decision analysts). 
 
Thus, while the decision-maker has responsibility for the decision, the analyst guides and 
assists the decision-maker in reaching a satisfactory decision [2]. 
 
An analyst must have a broad overview of the existing multi-criteria methods and 
experience with their practical implementation. Only then will the analyst be able to direct 
the decision making process and propose a framework and a method that suits the problem 
at hand. Since the analyst may have an important contribution throughout the decision 
process (structuring the information, formulating the decision-problem and supplying 
information about the alternatives, etc.) it is required that this person plays a neutral and 
objective role [10]. Otherwise he can easily ‘manipulate’ the decision making process by 
influencing the decision-maker’s final choice – consciously or not. 
 
3.3.4 The basic formulation of a multi-criteria problem 
A decision-maker needs to select from a set of feasible alternatives A, an alternative a, that 
complies best with his set of criteria C. The levels of achievement in all criteria considered, 
over the set of alternatives can be measured, and these are Ck, where k is the number of 
criteria considered, k∈[1,..n]. 
 
Then, the basic decision problem can be formulated as: 
 

1 2. .
[ ( ), ( ),... ( )]ns t a A

Max F C a C a C a
∈

      (3.1) 

 
where F is decision-maker’s unknown preference function [10]. 
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The assumption that a preference function can be estimated is central to a multi-criteria 
analysis.  
 
What this function actually does is to bring all criteria to a common measurement scale 
(‘sum up’) through the perception of a decision maker. Then, what remains is to analyse the 
different alternatives according to where they are situated on this scale. 
 
It is important to remember that such a function does not (necessary) exist in the mind of a 
decision-maker. Moreover it is not necessary to explicitly define the function in order for a 
decision-maker to make decisions which are consistent with his underlying values [10]. 
Such a function can represent part of the subconscious preferences a decision-maker has 
regarding different criteria in the problem analysed. It is, in a way, a measure of the 
awareness and understanding gained by the decision-maker during the decision making 
process. This preference function is what conceptually distinguishes multi-criteria methods 
from other methods because it explicitly introduces the decision-maker’s contribution into 
the analysis.  
 
 
3.4 A TAXONOMY OF METHODS FOR MULTI-CRITERIA DECISION MAKING 
 
So far, the basic concepts for multi-criteria decision making have been introduced. The 
remainder of this chapter presents an overview of the main methodologies and methods 
belonging to the MCDA discipline. The intention here is not to give detailed descriptions of 
different methodologies or mathematical formulations although some of the most important 
method concepts will be discussed. The purpose is rather to discuss and group methods   
according to characteristics that would matter to their selection for practical application. 
 
The following classification is based on a number of books and research papers dedicated to 
different MCDA methods. For an integrated and at the same time fairly detailed description 
of methods, the reader may wish consult for instance [6] which contains the latest published 
MCDA survey. 
 
Practitioners often claim that the problem of developing a classification scheme for MCDA 
is a multiple-criteria problem in itself [10]. Accordingly, in this thesis, the criteria used for 
classification have been derived from the author’s experience – as a newcomer in this field - 
in searching for methods. This search had been primarily directed towards finding methods 
to be used in addition to energy modelling, in solving the energy planning problem. In this 
view, two main factors have been considered in the grouping multi-criteria methods:  
 
 the possibilities for modelling alternatives in a decision situation, which relates more or 

less to the type of problem analysed 
 
 the interaction between the analyst and the decision-maker in each method. 

 
The success of decision-support in practice depends considerably on the method chosen. 
The method should conform to the opportunities for its application and the abilities of the 
individuals involved in the process, to use it. In general, the analyst is usually the person 
who has an overview and the practical experience with different methods while the 
decision-maker decides at the end of the process to apply and use the results produced by a 
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specific method. In a decision situation, the use of a method will probably depend on the 
degree of involvement of these two parties in the initial phase of problem structuring, but 
also in subsequent steps in the decision support process. These are the underlying 
assumptions and considerations that drive the following discussion.  
 
The chapter is further divided in two parts, as there are two main criteria for classification. 
The first part provides a short introduction to the most well known approaches to solving 
multi-criteria problems. This introduction includes: a general problem formulation, 
descriptions of various solution concepts and listings of the most commonly used methods 
in each approach.  
 
The second classification is focussed on the use of different methods and the interaction 
between the analyst and the decision-maker. No new method concepts will be presented 
here. The methods already mentioned in the first part will be re-grouped in classes dictated 
by the second factor for classification. 
 
 
 
Classification of methods according to the way in which alternatives are modelled 
 
The set of alternatives in a decision problem may be explicitly defined and discrete, or 
implicitly defined and continuous as described in mathematical programs. Accordingly, 
methods and methodologies for multi-criteria decision making can be divided in two 
groups:  
  
MADM (Multi-Attribute Decision Making) - methods dealing with problems in which the 

set of alternatives is discrete (and finite).  
 
MODM (Multi-Objective Decision Making) - methods dealing with problems in which the 

set of alternatives cannot be explicitly defined or given.  
 
 
3.4.1 MADM methods 
 
3.4.1.1 General formulation of a multi-attribute problem 
Methods for solving multi-attribute problems require the decision-maker needs to analyse a 
set of discrete, finite set of (predefined) alternatives A = {A1, A2,….Am}. The problem may 
be to choose, rank or sort alternatives according to a set of criteria C = {C1, C2,….Cn} that 
best reflects the decision-maker’s concerns.  
 
A multi-attribute problem can be easily represented in a matrix format, as illustrated in 
Figure 3.2. In this matrix, aij are attributes - levels of achievement in each criterion, 
corresponding to each alternative – which are supposed to be known (possible to estimate).  
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Figure 3.2 Matrix representation of a MADM problem 
 
In the case of small problems, this matrix can be also translated into a graphical 
representation. For example, consider a two-criterion problem, where four alternatives must 
be evaluated according to two measurable (minimizing in this case) criteria – for example, 
cost and emissions. This problem can be represented graphically as shown in Figure 3.3. 
 
 

 
 

Figure 3.3 Graphical representation of a MADM problem 
 
There are several steps in solving MADM problems. First, the idea is to reduce the set of 
alternatives to the efficient ones. This task consists in eliminating dominated alternatives by 
checking how alternatives perform simultaneously in different criteria. In the example 
presented above the objective is to minimize in both criteria. The point closest to the origin 
could represent the best, ideal alternative. In practical applications such alternatives do not 
exist but an ideal point may help in classifying the alternatives available.  
 
An alternative is dominated if another alternative exists (in the same set), which is at least 
as good in all criteria and strictly better in one. For example in Figure 3.3 alternative 2 is 
dominated by alternative 3.  
 
There might be still alternatives left to analyse after the dominated ones are identified. 
These are the efficient alternatives (called also non-inferior or Pareto-optimal) which are not 
dominated by any other feasible alternative. In this example, alternatives 1, 3 and 4 are 
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efficient. Note that at this point the differentiation of alternatives is independent of the 
decision-maker’s preferences.  
 
The second step in solving multi-attribute problems is when the decision maker has to 
evaluate and make further selections from the set of efficient alternatives. In large, complex 
decision problems, the selection can be facilitated by some sort of modelling or 
quantification of the decision-maker’s values and preferences regarding the criteria that are 
specific to the decision-problem. There are several methodological concepts for solving 
multi-attribute problems or modelling decision-maker’s contribution. Two methods, 
commonly used in practice, the trade-off analysis and the MAVT (multi-attribute value 
theory), will be discussed here. 
 
3.4.1.2 Different solution concepts for multi-attribute decision making 
 
a)  Trade-off analysis 
Trade-off analysis is a simple, straightforward method to help decision-makers to analyse 
the set of efficient alternatives.  
 
An efficient alternative is not better than other efficient alternatives: when choosing one of 
them the decision-maker will gain in one criterion but in the same time will lose in another 
one. For instance, alternative 3 is better than alternative 4 in criterion i but worse in 
criterion j and vice versa. If the decision maker is mostly concerned with alternatives that 
perform well in criterion i, then he will choose alternative 3 (or vice versa). 
 

 

 
 

 

Figure 3.4 Making trade-offs 
 

Figure 3.5 Representing trade-offs 
 

Making a trade-off means deciding which of the criteria is preferred and, in essence, how 
much the differences in attribute levels (when moving from one efficient solution to 
another) matter for the decision-maker. If the decision-maker’s preferences are constant in a 
given problem setting, then the trade-off can be represented linearly as shown in Figure 3.5 
or mathematically through a formula: f(Ci, Cj) = Ci + α Cj. 
 
Trade-off curves are also called indifference curves, meaning that the decision-maker would 
be indifferent to any alternative that performs accordingly. Such trade-off functions, once 
determined, can theoretically be used to select between any alternatives judged in the 

Criterion i

Alt. 3

Alt. 4

minimize
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decision space defined by the two criteria. For instance, if in a given problem context a 
decision-maker can specify a constant trade-off between two criteria (the red or the blue 
lines in Figure 3.5) then the preferred alternative(s) will be the ones that first meet the 
indifference curve, i.e. the horizontal translation of the trade-off indifference curve (in this 
example it is assumed that the marginal rate of substitution depends on criterion Cj and not 
on Ci). Thus, alternative 3 will be chosen given the ‘red’ trade-off, while alternative 4 will 
be chosen given the ‘blue’ trade-off. 
 
Trade-off functions are not necessarily linear, and this happens when the trade-offs between 
two criteria are not constant within specific intervals of variations of attributes. For 
instance, a decision-maker may be willing to trade less and less for an increase in a criterion 
as the value in that criterion increases.  
 
Trade-off curves have long been used to aid in the understanding of the environmental 
dimensions of energy choices. However, a typical multi-criteria problem in this field may 
have more than two attributes for which trade-offs may be difficult to establish in a relevant 
way. For example, assessing all pairwise comparisons in graphical form may be impossible 
when there are more than three or four attributes. Many applications look at costs versus 
other attributes [11]. 
 
Moreover, the tradeoffs can be applied (graphically) when criteria can be measured in 
quantitative terms, which is not necessarily the case in all energy system related decisions. 
Thus, the trade-off method may not be suitable for complex analyses characterized by more 
than two criteria, which may not be well defined and measured. 
 
b) Multi-attribute value theory - MAVT  
Compared to the trade-off analysis, multi-attribute value theory is a more advanced 
approach. This approach assumes that it is possible to construct a means of associating a 
real number with each alternative in order to produce a preference order for the alternatives, 
consistent with the decision maker’s value judgements [2]. In other words, each alternative 
A has value V(A) for the decision-maker, and this value can be expressed numerically.  
 
In principle, values measure preferences when taking all criteria into account. Then, based 
on these values alternatives can be differentiated. For example, if alternative A1 is preferred 
to A2 ( 1 2A Af ) then V(A1) > V(A2). Additionally, when the decision-maker is indifferent to 
the difference between alternative A1 and A2, (A1 ∼ A2) then V(A1) = V(A2). The existence of 
such values stems from the following assumptions regarding the decision maker’s 
preferences: 
 
 Preferences are complete: for any pair of alternatives either one is strictly preferred to 

the other or there is indifference to the choice of either of them 
 Preferences and indifferences are intransitive: for any three alternatives A1, A2, A3 if 

1 2A Af   (or A1 ∼  A2) and 2 3A Af (or A2 ∼  A3) then 1 3A Af  (or A1 ∼  A3). 
 
Value functions are in particular appealing for quantitatively oriented managers or 
management scientists because the functions give a feeling of objectivity to the decision-
making process and certainly help to focus the decision process on those aspects that matter. 
In principle, once determined, value functions automatically lead to the optimal alternative. 
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Important theoretical and practical issues for the assessment of value functions will be 
briefly outlined further. The discussion here is aimed to explaining and revealing common 
practices in constructing value functions/preference aggregation, without going too much 
into details. 
 
Constructing value-functions 
A value function can be constructed by using different procedures/methods. All these 
methods seek in one way or another, to synthesize preference information reflecting: 
 
 The values a decision-maker would assign to the performances of each alternative in 

each of the criteria considered, or intra-criterion evaluations. 
 The relative importance of criteria for the decision-maker, or inter-criteria evaluations. 

 
The first step in traditional value function methods is the assessment of the ‘marginal’ (or 
‘partial’) value functions, vk(a) or scores. A partial value function can be estimated for each 
criterion k and it measures, theoretically, the relative importance a decision-maker assigns 
to different performance levels (attributes) in that specific criterion (aik).  
 
The partial value function can be defined in the same way as a value function, i.e. in terms 
of preservation of preference ordering. Such a function ‘translates’ each of the criteria 
analysed, measured on its own scale, into value scales (usually normalized). A partial value 
function may be linear or not, as shown in Figure 3.6: 

 
Figure 3.6 Partial value functions 

 
The shape of the partial value function should reflect the way a decision-maker thinks in 
terms of an attribute. Theoretically, the accuracy of partial value functions estimations 
improves considerably if the decision problem is well structured, i.e. if the criteria are 
clearly represented and  measured to reflect, incite and trigger the right thinking strategy 
‘inside’ the decision-maker [2]. The usual procedure for estimating the shape of a partial 
value function is to first check if certain assumptions are valid in a given problem setting. 
This is done through a preliminary questionnaire that emphasises essential characteristics of 
the decision-maker’s values, such as: 
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 If the partial value function is monotonically increasing or decreasing against the ‘natural’ 
scale, i.e. if the highest value of the attribute is preferred against lower levels or vice-
versa 

 If the partial value function is non-monotonic, i.e. an intermediate point on the scale 
defines the most preferred or least preferred point.  

 
After verifying these properties, the analyst can assume a certain shape for the partial value 
function. A linear representation is commonly used in practical applications It has been 
demonstrated that the linearity assumption is usually valid in well-structured decision 
problems. However, experimental simulations cited in [2] warn against the over-
simplification of the problem by the inappropriate use of linear value functions. It has been 
shown that the results of a multi-criteria analysis may be very sensitive to such assumptions, 
thus leading to bad recommendations. 
 
Practices for deriving partial value functions differ in the way criteria are represented and 
measured. Belton and Stewart [2] give detailed methodological explanations of different 
approaches. They distinguish between direct assessment methods which first assume certain 
characteristics of the value function over a measurable criteria, as discussed above, and 
indirect methods that require construction of measurement scales when ‘natural’ 
measurement scales for criteria do not exist or can be given only qualitatively. 
 
The second step in building value models consists of the assessment of the relative 
importance of different criteria considered in the decision process. When multiple criteria 
are considered in decision making, not all of them are equally preferred, judged in the same 
way or have the same weights. As is true for partial value functions, theoretically, these 
weights wk, corresponding to each criterion, Ck (k∈[1..n]) can be estimated through a new 
questionnaire. The purpose with this questionnaire is establishing an order of criteria: in 
terms of importance or indifference (equal preference). Ideally, the decision-maker should 
be also able to characterise his preferences, i.e. how much more (and why) he prefers one 
criterion than another.  
 
Many methods for weight elicitation focus on swing weights, i.e. weights that ‘compensate’ 
values against criteria. Swing weights can be determined only when the scales for 
measurement in each criterion are clearly defined. On these scales, a worst and a best value 
in each criterion can be identified and the decision maker is asked to assess which swing 
(interval step) from the lowest levels (usually) gives the greatest increase in value. For 
instance, if a swing from worst to best on the highest rated criterion is assigned a value of 
100, what would be the value of a swing from worst to best in the second ranked criterion? 
In practical applications, swing values can be derived using any two reference points on a 
criterion scale. Thus, instead of the worst and the best levels, ‘neutral’ and ‘good’ reference 
points can be defined if the decision-maker consider that this helps in comparisons.  
 
In practical applications it is important to know that weights are dependent on the scales 
used for scoring as well as on the intrinsic importance of criteria (swing weights capture 
these issues very well). For instance, if an important criterion does not differentiate much 
between alternatives, i.e. if the minimum and maximum points on the value scale 
correspond to similar achievement levels, then that criterion might be ranked quite low [2].  
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Another issue to be emphasized is that in practical applications, where decision problems 
are defined over hierarchies of criteria, the determination of weights can become difficult 
[12, 13]. In these situations, the simplest way out would be to consider only the criteria in 
last level in the tree for the weights-revealing questionnaires. However many methods have 
been developed for dealing with hierarchical value tree analysis [13]. 
 
Preference aggregation in MAVT 
So far, the main steps in the construction of multi-attribute value functions have been 
discussed. The purpose in determining the scores (partial values) and weights is to 
contribute to good approximations of the overall value functions V(A), according to which 
the alternatives can be evaluated.  
 
Overall value functions can be constructed by some sort of aggregation of scores and 
weights.  In practical applications, the additive aggregation is mostly used. Thus, supposing 
that for any alternative Ai (i∈[1..m])and criterion Ck (k∈[1..n]), the scores vk(aik), and the 
weights wk  can be assessed, then the overall value function can be written as: 

1
( ) ( )

n

i k k ik
k

V A w v a
=

= ∑       (3.2) 

This additive aggregation form is widely used in practice because it is easily explained and 
understood by decision-makers from a wide variety of backgrounds [2]. The use of additive 
value functions is, however, restricted by several conditions which must be verified before 
every application.  
 
The first requirement is that criteria should be preferentially independent. This means that 
the decision-maker is able to compare alternatives in terms of a specific set of criteria, 
without thinking about how these alternatives would perform with respect to the rest of 
criteria. Moreover, theoretically, the existence of an additive representation is also implied 
by three main properties: the corresponding trade-offs, the interval scale property and the 
property that weights can be interpreted as scaling constants for values. For a detailed 
discussion and illustrative examples on these issues, the reader can consult [2] or [14]. 
 
In cases when the additivity conditions are not valid, the common advice is to first go back 
to the problem identification and structuring process [2]. The alternative would be to use 
other forms of aggregation of preferences [15], as for instance multiplicative value 
functions:  
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The details for using multiplicative aggregation are thoroughly described in [14], in 
connection however with utility theory. While value theory can be applied in conditions of 
certainty, utility theory is its equivalent in uncertainty conditions. This theory will be briefly 
discussed in the next chapter. 
 
To conclude this discussion, Figure 3.7 shows an illustration of the main procedural steps in 
modelling multi-attribute value functions. For instance, suppose that a decision-maker has 
to analyse and choose between a finite and clearly defined set of efficient alternatives that 
must be compared in terms of several, relevant criteria. This choice depends on the 
underlying values the decision maker has in this decision situation and in principle, the 
alternative with the highest value should be chosen.  
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The theory provides us with the means of constructing models for the decision-maker’s 
preference values. The main components in a value model are the scores and the weights. 
The scores reflect the preferences a decision-maker has for different achievement levels 
under each criterion considered (achievements in different alternatives), while the weights 
reflect the preferences for the different criteria. The scores result from comparisons of 
attribute levels in each criterion while weights result from inter-criteria comparisons. 
 
 

 
 

Figure 3.7 The steps in assessing value functions 
 
When aggregating the scores and the weights (additive, multiplicative or any other form 
of aggregation), overall values - for each of the alternatives considered - are obtained, 
and the alternative with the highest value is recommended.  
 
3.4.1.3 Methods for multi-attribute decision making 
The main concepts from the trade-off analysis and the multi-attribute value theory are used 
by the largest part of methods and techniques developed to help with solving multi-attribute 
problems.  These methods can be organized into three classes, according to the nature of 
information that can be obtained and analysed in a decision-making process.  
 
The first class contains those methods that assume that the decision maker is able to specify 
precise (complete) answers to a wide range of preference elicitation questions. Examples 
are: methods for direct trade-offs, value functions (SMART [16], SWING, etc.), utility 
functions and the AHP (Analytical Hierarchy Process) method.  
 
The AHP method is not usually included in the group of value function methods group. 
This issue has been openly debated, for example in [17], [18]. AHP differs procedurally 
from the basic value function method by the fact that it accepts linguistic labels (equally 
preferred, strongly preferred etc.) to express judgements about relative preferences. Then 
these linguistic scales are ‘translated’ into numerical ratio scales (and not interval-scales as 
is done in MAVT), which are used for the further ranking alternatives. In [2] the debate has 
been summarized around three main points of concern: the interpretation of criteria weights 
(the relationship between scores and criteria weighs – which is different than in MAVT); 
the properties of the ratio scale of preferences (for example the meaning of the pairwise 
comparisons and the numerical interpretation of the semantic scale); and the rank reversal 
problems (which may occur with the addition or deletion of alternatives). However, apart 
from this controversy, AHP seems to be widely applied in practice by itself and even in 
combination with many other decision support methodologies such as linear or integer 
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programming, data envelopment analysis, genetic algorithms or neural networks [19]. The 
method is appealing because it is transparent, intuitive and easy to use, provided that the 
decision-maker understands the relevance of the questions posed.  
 
The second class of methods is comprised of those that allow for more imprecise 
representations of criteria and the decision-maker’s preferences.  
 
Regarding the way criteria can be emphasized, decision problems can be: ill-structured 
problems (where criteria are represented both in qualitative and quantitative terms) and 
unstructured problems (where criteria are given only qualitative descriptions).  
 
Value function methods (and the AHP) [2] can be applied to ill-structured problems, with 
some modifications in the preference elicitation questions: the decision makers will be 
asked to compare alternatives on both qualitatively and quantitatively defined criteria. 
 
For dealing with unstructured problems, Verbal Decision Analysis was proposed [20]. This 
approach is based on valid mathematical principles, and takes into account peculiarities of 
the human information processing system. The problems of this type are unique in the sense 
that each problem is new to the decision-maker and have characteristics not previously 
experienced (such as problems for policy-making and strategy planning in different fields). 
In these problems, the evaluation of alternatives against qualitative criteria can be obtained 
only from experts (the final decision-makers) through their subjective preferences. 
 
In the second class are methods that deal with imprecise (incomplete) representation of 
decision-maker’s preferences. The reality is that in many decision situations, complete 
preference information is closely to impossible to obtain, and even if possible the costs to 
obtain it would be very high. Thus methods were developed to allow decision-makers to 
express preference specifications in which they feel most confident with.  
 
In principle, all MADM methods that incorporate interactive procedures actually deal with 
imprecise preferences (once the decision maker decide to revise his statements), even 
though these preferences are taken into consideration as numerical, fixed values.  
  
Another set of approaches that deal with incomplete preference information are those 
included under the umbrella of preference programming. These approaches were first 
developed to accommodate incomplete information in hierarchical weighting methods such 
as value tree or AHP [21]. The principle underlying preference programming is, again, to 
find a value function, or a family of value functions which is consistent with the incomplete 
preference information. Incomplete information can be expressed as: ordinal statements, 
semantic categorizations or interval statements. With preference programming, preferences 
can be synthesised in terms of value intervals for the alternatives, weight intervals for the 
attributes and dominance structures and decision rules for the comparison of alternatives (if 
the resulting intervals do not allow the determination of the best alternative). These results 
are obtained as solutions to LP problems where the relevant objective functions are solved 
subject to the constraints imposed by the decision-maker’s judgements.  
 
Principles derived from preference programming form the basis for implementation of a 
range of decision-support software such as: Web-HIPRE, RICH, Smart Swaps, WINPRE, 
PRIME-Decisions [22], etc. These decision support tools allow for interactive preference 
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elicitation procedures that usually provide more detailed results as the decision-maker 
gradually approaches a more specific preference description.  
 
Here the MACBETH approach (Measuring Attractiveness by a Categorical Based 
Evaluation Technique) must be also mentioned. The method requires only qualitative 
judgements about differences of values to help an individual or a group quantify the relative 
attractiveness of options. The MACBETH software which was developed using this 
approach, has been reported to be successful in many public and private multi-criteria 
applications [23]. 
 
The third class of methods is comprised of outranking methods (approaches). Unlike the 
methods listed above, outranking approaches are not based on an underlying value 
function. The output of an outranking analysis is not a value for each alternative but an 
outranking relation on the set of alternatives [2]. These methods are applicable to discrete 
choice problems; thus, they focus on pairwise comparisons of alternatives but require less 
precise inputs in terms of the description criteria or preferences. For instance, an alternative 
A is said to outrank another alternative B if, taking into account al available information 
regarding the problem and the decision-maker’s preferences, there is a strong enough 
argument to support a conclusion that A is at least as good as B, and no strong argument to 
prove the contrary. The comparisons are made in terms of indifference thresholds, weak 
preference, veto thresholds, incomparability situations and other complementary concepts 
(concordance and discordance).  
 
Outranking methods have been developed by scientists belonging to what is called the 
‘European/French school’. The following groups of outranging methods are mostly used in 
practical applications: the ELECTRE family (ELECTRE I, IS, II, III, IV, TRI, etc) and the 
PROMETHEE and GAIA methods, etc. Other outranking methods exist (some derived from 
these main groups), with a detailed description provided in [24].  
 
The implementation of ELECTRE and PROMETHEE methods in real world decision 
problems is achieved through different software packages: ELECTRE IS, ELECTRE III-IV, 
ELECTRE TRI, IRIS, SFR, and the DECISION LAB software (for PROMETHEE and 
GAIA) 
 
Because outranking methods are not based on restrictive assumptions as is true for the 
value-based approaches, they may capture more faithfully the way in which decision-
makers think. However, a major drawback seems to be due to the many non-intuitive inputs 
required, such as: concordance and discordance thresholds; indifference, preference and 
veto thresholds; and the preference functions of PROMETHEE. Also, the algorithms 
themselves tend to be complicated and time consuming for decision-makers who are 
inexperienced with the approach to fully understand and use. Thus, outranking methods 
seem to be more appropriate for ‘backroom’ analyses by analysts and/or by support staff for 
the final decision-makers [2]. 
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3.4.2 MODM methods  
 
3.4.2.1 General formulation of a multi-objective problem 
In multi-objective decision problems, alternatives are not explicitly known in advance. 
These problems reflect situations where practically a nearly infinite number of options are 
feasible. Mathematical programming is used to model this type of problems and solutions 
can be determined through a set of mathematically defined constraints. The scope for 
modelling here is to seek for solutions rather than extracting and interpreting the decision-
makers preferences [25]. 
 
A multi-objective problem can be formulated as following:(3.4) 

. :st
≤
≥

max F(x)

G(x) = 0
H(x) 0

x 0

 

 
 
The concept of solution in multi-objective problems will be illustrated through an example1. 
As in the MADM case, consider a simple problem with two objectives to minimize, F1 and 
F2 and five constraints, as defined and represented graphically in Figure 3.8. The coloured 
area in this figure represents the space (the set) of feasible solutions, i.e. solutions (pairs of 
decision variables) that satisfy all constraints in this problem.  
 
The problem can be further translated into the attribute (or criteria) space (Figure 3.9) to 
show how alternative solutions perform in terms of the two objectives chosen. In fact, the 
MODM problem representation in Figure 3.9 is equivalent with the MADM representation 
Figure 3.3.  
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1 This example was presented by Prof. Manuel Matos, from INESC-Porto in the ‘Tutorial on the 
application of risk analysis and multicriteria models in energy planning’, Trondheim, 6-9 October 2003  

where:
  x vector of decision variables 
 (may include integer or binary variables) 
F(x)  vector of objective functions 
G(x) set of equality constraints 
H(x) set of inequality constraints 
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One can clearly observe how the space of solutions is continuous (and infinite) in the 
MODM case, as compared to the MADM case. 
 
As with MADM, the next step is to select the efficient solutions (non-dominated solutions, 
Pareto-optimal solutions) belonging to this set. This set of efficient solutions for the 
MODM problem is found at the frontier of the feasible set (the red lines in Figures 3.8 and 
3.9), since both objectives must be maximised.  
 
There are different mathematical procedures for solving multi-objective problems [26]. 
Briefly, current practices can be divided into exact and heuristics. The Simplex algorithm is 
for example an exact procedure. Then, heuristic procedures are usually used in large 
combinatorial problems (large mix-integer problems), where the conventional (exact) 
solution algorithms do not lead to a final solution. In essence, a heuristic search procedure 
associates heuristics with a search algorithm for exploring the space of feasible solutions. 
Genetic Algorithms, Tabu Search, and Simulated Annealing are examples of heuristics 
procedures for solving large combinatorial problems. A large number of optimization 
packages and decision support software have been developed to allow for different practices 
[27]. 
 
Depending on the nature (and the size) of the problem analysed, different methods for multi-
objective decision making may require specific procedures for finding the efficient solution. 
The purpose of this chapter is not to go into the details of mathematical optimization but to 
give an idea of what kind of resources MODM requires in practical applications. 
MODM methods differ with the way in which objectives are assessed and when and how 
the intervention of a decision-maker is needed. The classification continues further with 
four main groups of MODM methods: aggregation methods, generation methods, 
interactive methods and goal programming.  
 
 
3.4.2.2 Different method concepts for multi-objective decision making 
 
a) Aggregation methods 
The basic idea in aggregation methods is to transform the multi-objective problem into a 
single-objective problem for which one has already good approaches for solving it. This 
‘transformation’ is equivalent to summing up (converting) all objectives into one.  
 
Value functions or weight parameters can be used for aggregation. These values or weights 
are inputs into the optimization problem. Thus, here, the value elicitation procedure and the 
optimization must be carried out separately. When searching for values to be employed in 
multi-objective applications it is preferable to have knowledge about possible intervals of 
variation in the different objective functions. This will guarantee that the preference values 
will refer to the actual problem analysed, although some theories suggest that general values 
can also be employed.  
 
The following figure summarizes the procedural steps in aggregation methods: 
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Figure 3.10 The steps in aggregation methods 

 
The single-objective optimization problems obtained though aggregation are solved and the 
resulting solution is ‘optimal’ in the sense that it complies with the decision-maker’s values 
(as expressed at the beginning of the process) and with the constraints in the optimization 
problem. 
 
b) Generation methods 
The idea with these methods is to first generate a list of efficient alternatives and then let the 
decision-maker to select among them. Such a list can be very large and a decision-maker 
might not be able to make a selection directly. In those situations, a value model may be 
constructed separately and then used to order the alternatives. The procedure here can be 
similar to the one described above, only that this time, the decision-maker analyses the 
consequences obtained through optimization. 
 

 

 
 

Figure 3.11 The steps in generation methods 
 
There are three main procedures for generating the efficient set of solutions: multi-objective 
Simplex algorithm, parametric variation and constrained optimization. 
 
Multi-objective Simplex can be used in a procedure described as in Figure 3.11. The other 
two generation methods are characterized by different procedural steps. 
 
Parametric variation is based on finding an optimal solution for an auxiliary problem that is 
at the same time the optimal solution for the original problem. The objective function of the 
auxiliary problem is constructed as a parametrical sum of the initial objective functions: 

 

( )k
1

max ( ) λ
n

k
k

F F
=

= ∑x x      (3.5) 

The parameters used are only instrumental and they are varied so that a set of possible 
solutions is generated. The decision maker must analyse and select solutions obtained in 
this way, which in fact are ‘optimal’ given the selected parameter values. Once a choice is 
made, the parameters that contribute to that particular solution can be validated as the ‘true’ 
decision-maker’s values.  
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Another approach for generating efficient alternatives is the constraint approach. Here the 
idea is to optimize in one criterion while constraining the remaining ones. Thus, in this 
approach, all objectives functions exept one, are transformed into constraints by imposing 
minimum requirements on their value. The problem becomes then to solve a set of ordinary, 
single criterion optimization problems of the form: 
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       (3.6) 

where ε2…εn are minimum requirements imposed on the n-1 criteria. The decision-maker 
then must analyse the alternative solutions obtained through repetitive optimizations (when 
varying the limits εi) and to choose one (or stop the search) that best reflects his 
requirements. 
 
This method is has been used long before MCDM was crystallized as discipline [10]. OR 
practitioners called it ‘soft’ optimization. The technique was usually used to relax the 
solution to a traditional ‘hard’ optimization problem, based on the principle that in order to 
be satisfactory an alternative does not need to be the best but to fulfil certain minimum 
requirements. This approach has been successfully used when ‘traditional’ mathematical 
tools or models are already available for decision support (such as in energy planning). 
However, an important observation is that although the procedure is intuitive and easy to 
use, it is very difficult to set limits on different attributes.  
 
c) Interactive methods 
Interactive methods allow the decision-maker to intervene at different stages in the process 
of searching for solutions. The idea is that if the decision-maker is not satisfied with the 
solution (s) presented to him, he will change some of the assumptions that lead to that 
solution, i.e. he will influence the process of generating solutions. 
 
For instance, in an interactive procedure with parametric variation, the decision-maker will 
be allowed to change the parameters by himself, and then check how the final solution (s) 
has changed (illustrated by the first dashed line in the Figure 3.12). 
 

 
 

Figure 3.12 The steps in interactive methods 
 
Similarly, when thinking in terms of constrained optimization, if a first initial efficient 
solution is not preferred by the decision-maker, then he should decide which criteria he 
wants to improve and which criteria he accepts to worsen and the direction of change (how 
much to improve or worsen). Alternatively, the decision-maker will also be allowed to 
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change his preferences (values), in a procedure that assumes analysis of consequences (the 
right dashed line in the Figure 3.12). 
 
Interactive approaches are natural ways to solve multiple criteria decision problems, 
because the decision-maker is always an essential part of the solution; he is learns step by 
step about the decisions he needs to address.  
 
In practical applications, attention should be given to the following factors, which can affect 
the success of the interactive methods [27]: 
 
 How preference information is gathered: if the information gathering process is 

complicated, the decision-maker might be unable to give reliable information and 
consequently, the algorithm will interpret this information erroneously. 

 How information is used to generate new alternatives for the decision-maker to 
evaluate: unrealistic interpretation of the decision-makers preferences will lead to 
solutions that are not consistent with his wishes. 

 How the system generates alternatives: the decision-maker should have the ability to 
evaluate all efficient alternatives, not just a part. 

 
There is anyway a risk with applying interactive methods:  the decision-maker may loose an 
overview of the problem particularly when more than two objectives have to be considered 
(‘one might not see the forest if one focuses on the trees!’).  
 
Many interactive methods have been proposed for solving multi-objective problems. 
Different classifications and evaluations of these methods have been published –see for 
example [28]. Some of the classic interactive methods are: STEM (STRANGE), Zionts-
Wallenius, Interval Criterion Weights, Pareto race, Trimap. 
 
d) Goal programming 
Goal programming is a popular method, well established within the OR discipline. This 
method can be described in terms of the target levels to be achieved rather than quantities to 
be maximized or minimized. 
 
Decision-makers may express goals ranging from idealistic attribute levels towards which 
to strive, to non-negotiable bottom lines that allow for no further concession. Obviously, in 
multi-objective problems ideals cannot be achieved. Goal programming models can help 
the users to achieve their goals as nearly as possible, by minimizing a weighted sum of 
deficiencies (or deviations from the goals). 
 
There are different procedures (or norms) for implementing goal programming [2]. The 
Archimedean goal programming is a procedure that is mathematically equivalent to the use 
of an additive value function built on decision-maker’s preferences regarding the levels of 
deviation in different objectives.  
 
For problems concerning a large number of goals, preemptive goal programming is 
normally used [29]. It is based on a classification of goals into priority classes, where each 
class may consist of one or more goals. Following this prioritization, the minimization of 
the weighted sum of deviations is restricted initially to the first priority class only. Once this 
solution is obtained, deviations from goals in the second priority class are minimized 
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subject to the additional constraint that the weighted sum of deviations from the first 
priority class should not exceed that obtained in the first step. The process is then continued 
with each priority class in turn. 
 
Although the Archimedean and preemptive goal programming are usually presented in most 
management science books, other forms of goal programming exist such as compromise 
programming, reference point methods and interactive methods. Initially, goal 
programming was formulated in the context of linear programming problems but the same 
principles can be applied in nonlinear, non-convex and discrete problems [2].  
 
Goal programming procedures have been proved to be valuable tools for individual 
decision-makers. However, these procedures (especially the interactive ones) might be 
difficult to use in complex decision problems, that involve several decision-makers. This is 
because in such situations it might be difficult to keep track of different goals and 
dissatisfaction levels for each of the participants, in order to be able to document and justify 
the final result.  
 
 
 
Classification of methods according to the interaction between the analyst and the 
decision-maker 
 
As discussed previously most multi-criteria applications involve one analyst (or more) and 
one decision maker (or more). The decision-maker (DM) is the one who is in charge of the 
decision and who needs support to solve it, while the analyst (AN) is the one who can help 
the decision-maker with his problem. When the analyst proposes a method to be used in the 
decision-making process, he should be aware of how and when in the decision-aid process 
the intervention of the decision-maker is needed. This intervention as well as the actual 
interaction between the decision-maker and the analyst, are crucial issues that may lead to 
the success or to the failure of the decision aid process. The following classification is based 
on when (and how) in the decision aid process the contribution of the decision-maker is 
allowed and prescribed with different methods.  
 
The basic design issues when organising the interaction between the analyst and the 
decision-maker are [10]: 
 
1) The timing in the decision aid process, when the set of alternatives and the preferences 

of the decision-makers are investigated. Two possibilities exist:  
 

a. a phased arrangement, when the investigation of alternatives and the investigation 
of preferences are performed in two different phases, or 

b. an iterative approach, consisting of a sequence of alternating investigations: 
constantly examine and modify the set of alternatives that are relevant for a given 
set of preferences or vice versa. 

 
2) Who directs the investigation, accumulates the information and makes the final choice: 
 

a. the decision-maker, or 
b. the analyst. 



Multi-Criteria Decision Aid  

59 

 
Based on these considerations, four overall organization modes of the DM-AN interaction 
in multiple criteria applications can be summarized as shown in figure 3.13. These 
organization modes will be used as criteria for a new classification scheme. No new 
methods will be introduced further, but the ones already discussed will be re-grouped based 
on the above mentioned principles. 

 

 
Figure 3.13 Organization of the interaction between  

AN and DM, based on [10] 
 
 
3.4.3 Methods allowing for prior articulation of alternatives 
Methods for prior articulation of alternatives are governed by the decision-maker and 
consist of two main steps: 
 
1. The set of efficient alternatives is first identified by the analyst and then submitted to 

the decision maker for analysis 
2. The decision-maker analyses the proposed alternatives, clarifies his preferences and 

makes a decision. 
 
These procedures have evolved from the traditional, single objective, economic (cost/profit) 
decision problems. In fact, this style of structuring of the decision support process is still 
encountered in hierarchical organizations, where routine tasks are handled by rules, 
programmes and traditions, or in the context of public planning where advisors 
(consultants) perform analyses for political decision-makers.  
 
Methods allowing for prior articulation of alternatives do not require explicit preference 
information from the decision maker. In fact, these methods do not describe precisely how 
the final selection of alternatives should be made. 
 
The analyst has an important role here in being the one who first validates and reduces the 
possible number of alternatives to a concrete, promising set. It is thus important that the 
analyst master the method used to produce this final set of solutions so that the decision-
maker will not miss important opportunities.  
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Methods in this group are mainly multi-objective methods such as: generation methods 
(constrained optimization, parametric variation, etc) and goal programming. 
 
3.4.4 Methods allowing prior articulation of preferences 
The application of these methods requires the following steps: 
 
1. First, the construction of a model of the decision-makers preferences by studying his 

behaviour in previous contexts, by interrogating him in relation to general choice 
contexts. This model should be based on a thorough investigation of the set of relevant 
criteria and alternatives in a specific problem context. 

2. The ‘application’ of the preference model to the set of feasible alternatives in an attempt 
to select the most preferred alternative or to at least reduce the set of alternatives from 
which the final selection will be made by the decision-maker. 

 
In these methods the preference model represents a surrogate decision-maker, the analyst is 
in charge with conducting the process, and the determination of a most preferred alternative 
is reduced to optimization. However, the methods entail demanding assumptions that must 
be met in practical applications: 
 
 The decision-maker’s preferences must be internally consistent and stable 
 Preferences must be completely represented by a series of criteria / objectives 
 The decision-maker must be able to perform a preference evaluation for any relevant set 

of criteria. 
 
Prior articulation of preferences requires considerable time and effort from both the analyst 
and the decision-maker in the assessment of decision-maker’s preferences. The process of 
preference investigation may be of greater value for the decision-maker (in terms of gaining 
insight and learning about his preferences) than its actual result i.e. the preference model. 
 
In these procedures the decision-maker is involved only at the beginning of the decision-
support process, while the final recommendation will depend only on the analyst and the 
optimization model used. For a successful application, both parties involved should be 
aware of this fact. 
 
In practical applications, careful consideration has to be given to the recommendations that 
result from such procedures. This is because the preferences of a decision-maker might not 
be stable: they may change over time while he learns more about his underlying values and 
preferences, or while the initial assumptions about the problem change. 
 
Methods belonging to this group are mostly multi-attribute value  methods: trade-offs, 
MAVT, MAUT  (which can be applied to both discrete or continuous sets of alternatives) 
and outranking methods [10].  
 
3.4.5 Methods allowing for progressive articulation of alternatives 
These methods prescribe several rounds of interaction between the decision-maker and 
the analyst. In each round, the decision-maker poses a question about the set of alternatives 
and the analyst provides an answer. Next, the decision-maker evaluates the answer and 
decides whether or not to stop the search. If the decision-maker feels comfortable with one 
of the alternatives identified so far he might choose to use that as a compromise solution. 
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Otherwise, he can either abandon this form of investigation or continue the search, in which 
case a new round of interaction is initiated. 
 
The decision-maker does not need to clarify his preferences beforehand since real 
alternatives become successively available. Thus, whatever is known about alternatives can 
be used to clarify and reduce what needs to be known about preferences. Also, the analyst 
does not need to investigate the alternatives without guidance, as interesting search 
directions may be derived from the decision-maker’s wishes. 
 
The iterative procedures are directed by the decision-maker. He has great freedom in 
making a choice since he can form and change his wishes in whichever manner he likes. 
However, the analyst has a difficult task: he must answer to the decision-maker’s questions 
and must be able to identify feasible and/or optimal alternatives. Depending upon the size of 
problem, this search for solutions may require innovation and creativity.  
 
In theory, the methods belonging to this group are the interactive versions of the prior 
articulation of alternatives approach discussed above: interactive generation methods (the 
constraint method, the parametric variation method) and interactive goal programming. 
 
3.4.6 Methods allowing for progressive articulation of preferences 
Methods in this group are also iterative and interactive. The analyst directs the search this 
time. In each round, he poses questions to the decision-maker about his preferences and the 
decision-maker answers. If the analyst has sufficient knowledge regarding the decision-
makers’ preferences, he makes a final recommendation in terms of which alternative(s) 
should be chosen. Otherwise, the questioning process continues until the preferences 
become clearer. 
 
This group of methods can be easily described in comparison with to the previous ones. 
 
First, as methods for progressive articulation of preferences, they are interactive and do not 
assume that the decision-maker has explicitly defined or unique preferences.  
 
Second, both methods for prior and progressive articulation of preferences are founded on 
the implicit assumption that the decision-maker has internally consistent preferences. 
However, these methods have quite distinct goals: the prior approach presumes that 
consistent preferences pre-exist and seeks to make these preferences explicit, while the 
progressive approach seeks to develop the preferences during the decision-aid process. It 
has been often argued [10] that the latter procedure more realistically reflects the decision-
maker’s preferences because all demands and assumptions that need to be verified for 
mathematical value functions might not be consistent with what the decision-maker thinks. 
 
In these procedures, the analyst has the easier task while the decision-maker has to do the 
difficult job of thinking and answering repeated preference elicitation rounds. There is a 
wide spectrum of procedures for organizing the interactive dialog for obtaining the 
decision-maker’s preferences. These procedures differ in the computational duties of the 
analyst and in the type of information requested from the decision-maker. Usually, two 
main groups of procedures can be distinguished:  
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 The decision-maker is asked about his substitution wishes (how much is he willing to 
give up in one objective in order to improve another one). 

 The decision-maker is asked to evaluate existing substitution possibilities (compare the 
relevant alternatives directly). 

 
The procedures for incorporating substitution wishes are usually used in a multi-objective 
context, i.e. when the set of relevant alternatives is not explicitly given, but must be found 
through an extensive search of the feasible space. Practically, the information obtained 
gradually from decision makers is used to define search directions for standard non-linear 
programming algorithms.  
 
The earliest progressive articulation of preferences procedure is the Geoffrion-Dyer-
Feinberg (GDF) procedure, described also in [10]. In this procedure, the decision-maker 
can successively express his substitution wishes when confronted with different feasible 
alternatives. First a feasible alternative is presented to the decision maker (with the 
corresponding achievement levels in all criteria considered). The decision-maker is then 
asked to analyse the alternative and to declare if he accepts it or not. If not, he would need 
to specify which achievement levels he would definitely like to improve (and how much) 
and which of the other achievement levels he would be willing to worsen. Based on the 
decision-maker’s answers, a new alternative will be identified in the feasible set and 
subsequently presented to the decision-maker for evaluation. The procedure stops when the 
decision-maker finally does not want to move away from a given proposal, either because it 
cannot be improved upon, or because he does not consider possible improvements worth the 
effort. 
 
Another procedure proposed by Zionts and Wallenius [3], [10] is used when the decision-
maker has to evaluate some existing substitution possibilities. Here the term ‘existing 
substitution possibilities’ generally means identifiable (but not optimal) trade-offs between 
objectives. The procedure aims at generalising the value-function concept in the sense that 
the components of the value model are not explicitly determined in advance (such as for 
prior articulation of preferences) but they are incorporated in a linear-optimization routine. 
The preference function is assumed to be linear such that the unknown aspects are the 
weights assigned to the different criteria. The decision-maker is required to evaluate 
substitution possibilities and the answers are used as constraints on the feasible set of 
weights. For example, the analyst presents a set of trade-offs to the decision-maker; asking 
him if he is willing to accept a combined changed in several criteria, with some criteria 
improving and some worsening. The answer can be in terms of yes, no or indifferent. 
Extensions to the Zionts – Wallenius procedure were later proposed by different researchers, 
among them Stewart and Korhonen et.al [3].  
 
Although these procedures appear to be simple and efficient to implement, there is 
relatively little practical implementation reported in the literature [3]. The main 
inconvenience with these methods, from a practical point of view, is that the decision-maker 
might not be willing to pursue such a time and effort consuming processes. He cannot be 
expected to have the patience – or the ability to remain consistent – that would be necessary 
to conduct the in sophisticated dialogues regarding substitution wishes and possibilities. 
However, these procedures are supported by well established and approved mathematical 
algorithms. 
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3.5 CONCLUDING REMARKS 
 
The scope of this chapter has been to offer an overview of the main concepts, methods and 
techniques in the MCDA discipline. The discussion can be summarised as follows: 
 
1. MCDA techniques can be used for aiding decision making, by providing a sound 

theoretical background for: 
 Conducting detailed analyses of complex multi-criteria decision problems;  
 Identifying and structuring both the reality independent of the decision-maker as well 
as his way of thinking (preferences); and in essence 

 Helping decision-makers to ‘justify’ their decisions, through a better understanding of 
decision problems and of their own contribution to the solution. 

 
3. MCDA methods can help in modelling decision-makers’ contribution to the decision. 

With the purpose of understanding the possibilities for preference modelling, a 
classification scheme for MCDA methods has been proposed. The main criteria for 
classification were how alternatives in a decision problem can be identified and how 
different methods prescribe the interaction between the analyst and the decision-maker. 

 
4. The classification presented in this chapter included a large variety of methods, 

procedure, methodologies or techniques for supporting multi-criteria decision-making. 
This review of methods has been undertaken with the purpose of showing how MCDA 
can be applied for aiding decision making. In particular, methods have been evaluated 
in the view of their integration with energy planning tools – in this case the 
eTRANSPORT model.  

 
 
 
 



Chapter 3 

64 

References 
 
[1] B. Roy, "Decision science or decision-aid science?" European Journal of Operational Research, 

vol. 66, pp. 184, 1993. 
 
[2] V. Belton and T. J. Stewart, Multiple criteria decision analysis - An integrated approach: 

Kluwer Academic Publishers, 2002. 
 
[3] T. J. Stewart, "A critical survey on the status of multiple criteria decision making theory and 

practice," Omega, vol. 20, pp. 569, 1992. 
 
[4] D. L. Keefer, C. W. Kirkwood, and J. L. Corner, "Perspective on Decision Analysis 

Applications, 1990-2001," Decision Analysis, vol. 1, 2004. 
 
[5] R. P. Hämäläinen, "Reversing the Perspective on the Applications of Decision Analysis 

(Comment on Keefer et al.2004)," Decision Analysis, vol. 1, 2004. 
 
[6] J. Figueira, S. Greco, and M. Ehrgott, Multiple Criteria Decision Analysis - State of the art, 

Surveys: Springer, 2005. 
 
[7] R. L. Keeney, Value-Focused Thinking. A path to Creative Decision Making: Harvard 

University Press, 1992. 
 
[8] V. Belton and T. J. Stewart, Multiple Criteria Decision Analysis. An integrated approach: 

Kluwer Academic Publishers, 2002. 
 
[9] B. Roy, "Paradigms and challenges," in Multiple Criteria Decision Analysis - State of the art, 

Surveys, International Series in Operations Research & Management Science, J. Figueira, S. 
Greco, and M. Ehrgott, Eds.: Springer, 2005, pp. 4-24. 

 
[10] P. Bogetoft and P. Pruzan, Planning with Multiple Criteria: Handelshøjskolens Forlag, 

Copenhagen Business School Press, 1997. 
 
[11] B. F. Hobbs and P. M. Meier, Energy decisions and the environment - A guide to the use of 

multicriteria methods: Kluver Academic Publishers, 2000. 
 
[12] M. Poyhonen, "On attribute weighting in value trees," in Systems Analysis Laboratory, Doctoral 

thesis: Helsinki University of Techology, 1998. 
 
[13] M. Poyhonen and R. P. Hamalainen, "On the convergence of multiattribute weighting methods," 

European Journal of Operational Research, vol. 129, pp. 569, 2001. 
 
[14] R. L. Keeney and H. Raiffa, Decisions with Multiple Objectives, Preferences and Value 

Tradeoffs: Cambridge University Press, 1993. 
 
[15] J. S. Dyer and R. K. Sarin, "Measurable Multiattribute Value Functions," Operations Research, 

vol. 27, pp. 810-822, 1979. 
 
[16] W. Edwards, "SMARTS and SMARTER: Improved Simple Methods for Multiattribute Utility 

Measurement," Organizational Behavior and Human Decision Processes, vol. 60, pp. 306-325, 
1994. 

 
[17] A. A. Salo and R. P. Hamalainen, "On the measurement of preferences in the Analytic Hierarchy 

Process," Journal of multi-criteria decision analysis, vol. 6, pp. 309-319, 1997. 
 



Multi-Criteria Decision Aid  

65 

[18] Discussion, "Remarks on the Paper 'On the measurement of preferences in the Analytic 
Hierarchy Process' by A.A.Salo and R.P. Hamalainen," Journal of multi-criteria decision 
analysis, vol. 6, pp. 320-339, 1997. 

 
[19] I. Millet and W. C. Wedley, "Modelling risk and uncertainty with the analytic hierarchy 

process," Journal of Multicriteria Decision Analysis, 2002. 
 
[20] H. Moshkovich, A. Mechitov, and D. Olson, "Verbal decision analysis," in Multiple Criteria 

Decision Analysis - State of the art, Surveys, International Series in Operations Research & 
Management Science, J. Figueira, S. Greco, and M. Ehrgott, Eds.: Springer, 2005, pp. 609-634. 

 
[21] A. Salo and R. P. Hamalainen, "Preference Programming," Working paper - Systems Analysis 

Laboratory, Helsinki University of Technology, September 2004. 
 
[22] R. P. Hämäläinen, "Decisionarium - Aiding Decisions, Negotiating and Collecting Opinions on 

the Web," Journal of multi-criteria decision analysis, vol. 12, pp. 101-110, 2003. 
 
[23] C. A. Bana E Costa, J.M. De Corte, and J.C. Vansnick, "On the mathematical foundation of 

MACBETH," in Multiple Criteria Decision Analysis - State of the art, Surveys, International 
Series in Operations Research & Management Science, J. Figueira, S. Greco, and M. Ehrgott, 
Eds.: Springer, 2005, pp. 409-438. 

 
[24] J. Figueira, V. Mousseau, and B. Roy, "ELECTRE Methods," in Multiple Criteria Decision 

Analysis - State of the art, Surveys, International Series in Operations Research & Management 
Science, J. Figueira, S. Greco, and M. Ehrgott, Eds.: Springer, 2005, pp. 133-153. 

 
[25] M. Ehrgott, "Multiobjective programming," in Multiple Criteria Decision Analysis - State of the 

art, Surveys, International Series in Operations Research & Management Science, J. Figueira, S. 
Greco, and M. Ehrgott, Eds.: Springer, 2005, pp. 667-708. 

 
[26] G. W. Evans, "An Overview of Techniques for Solving Multiobjective Mathematical Programs," 

Management Science, vol. 30, pp. 1268-1282, 1984. 
 
[27] P. Korhonen, "Multiobjective programming," in Multiple Criteria Decision Analysis - State of 

the art, Surveys, International Series in Operations Research & Management Science, J. 
Figueira, S. Greco, and M. Ehrgott, Eds.: Springer, 2005, pp. 641-662. 

 
[28] L. R. Gardiner and R. E. Steuer, "Unified Interactive Multiple Objective Programming: An Open 

Architecture for Accommodating New Procedures," Journal of the Operational Research 
Society, 1994. 

 
[29] R. R. Rardin, "Optimization in operations research," Prentice Hall, Inc., 1998. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 3 

66 

 



67 

Chapter 4 DEALING WITH 
UNCERTAINTY IN 
DECISION MAKING 

 
 
 
 
4.1 UNCERTAINTY AND RISK IN DECISION MAKING 
 
Uncertainty is a basic, structural feature of the environment in which energy planners must 
make decisions. The purpose of this chapter is to show how risk and uncertainty can be 
explicitly taken into account in decision making. The goal is to give an idea about which 
methods may be used in specific decision situations where uncertainty is an important 
factor. The discussion here covers more issues than the usual engineering approaches for 
dealing with uncertainty, because it is particularly focussed on the uncertainty that inherent 
in a decision making process.  
 
The first part of this chapter presents a brief discussion of the basic concepts of uncertainty 
and risk and lists the main sources of uncertainty in decision making. The last and largest 
part of the chapter is dedicated to an overview of the techniques that can be used in 
modelling uncertainty. 
 
4.1.1 Basic concepts  
Decision situations have been conventionally divided into three categories: certainty, 
uncertainty and risk [1].  
 
Certain is something that is unconditionally known. At the other extreme, uncertain is 
something that is not definitely known or decided, subject to doubt or question. At a 
fundamental level, uncertainty relates to a state of the human mind, i.e. the lack of complete 
knowledge about something [2].  
 
Strictly related to the concept of uncertainty is the concept of risk. Risk is usually defined in 
relation to the decision environment as ‘a chance of something bad happening’ or in 
relation to the decision-maker as ‘the degree of desirability of uncertain outcomes’ [2, 3]. In 
fact, this degree of desirability of uncertain outcomes measures the attitude of a decision-
maker in risky (uncertain) situations. Risk seeking, risk adverse or risk indifferent 
behaviours can greatly influence the decision making process and the final decision. Thus 
while uncertainty can be seen as a general feature of the decision environment, risk is in 
general something measurable, something that can explicate and model (part of) this 
uncertainty.  
 
Significant research has been dedicated to the study of uncertainty inherent in decision-
making. However, dealing with uncertainty is not an easy task: it first requires recognizing 
the various sources of uncertainty in a given decision context, to accept it, then to make the 
effort to structure and understand it and finally to model it and make it part of the decision-
support process.  
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4.1.2 The main sources of uncertainty in a decision making process  
Many techniques for modelling uncertainty and imprecision have been proposed but there 
are only few authors who are mainly preoccupied with identifying and structuring 
uncertainty. Among these, French [4], is concerned with the reasons for modelling 
uncertainty, if it can be modelled, how much of it can be modelled, where to stop in 
modelling, and how to treat the uncertainty introduced by the model used, etc. He identifies 
for instance, several sources of uncertainty in all the main steps of the decision aid process: 
the uncertainty in modelling, uncertainty expressed during the exploration of the model or 
uncertainty in the interpretation of results.  
 
Motivated by practical needs for modelling, other authors [2] have reduced the 
classification to two main types of uncertainty: 
 External uncertainty, related to the nature of the environment and the lack of knowledge 

about the consequences of a particular course of action, which may be outside of the 
control of the decision-maker  

 Internal uncertainty which is present in the process of identification, structuring and 
analysis of the decision problem – process depending on the decision-maker. 

 
The assumption further is that part of the external uncertainty can be modelled with impact 
models which were described in Chapter 2, while part of the internal uncertainty can be 
resolved with preference models, which were described in Chapter 3.  
 
 
4.2 MODELLING UNCERTAINTY 
 
4.2.1 Dealing with uncertainty in ‘impact models’ 
The energy system models discussed in Chapter 2 are deterministic. However, a great deal 
of the data used in energy modelling is uncertain by nature. It is generally possible to model 
part of this uncertainty, by extending these deterministic models (and their use). 
 
Many sources of external uncertainty can be identified when modelling an energy system. 
Various parameters in the model have a highly uncertain nature: electricity prices, the levels 
of hourly demand for different end-use energies, the reliability of the system, etc. Thus 
uncertainty can affect a wide range of short- and medium-term decisions and it might be 
critical in long-term, expansion planning decisions.  
 
There are a number of approaches in the literature about how to represent uncertainties in an 
impact model. The following discussion concerns only techniques for data representation 
and modelling since a separate sub-chapter will be devoted to data analysis (preference 
modelling). Two main groups of methods will be reviewed: probabilistic techniques and 
fuzzy methods. 
 
4.2.1.1 Probabilistic techniques 
These techniques can be described in three steps: the first is to find descriptions of possible 
future states of the world, next decision-makers need to assign probabilities to the 
likelihood that any one of these states my happen, and if the decision problem involves a 
large amount of information, finally to use a model (such as an energy system model) to 
simulate the set of probable outcomes.  
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There are different methods for estimating future states of the world, i.e. forecasting how 
different input parameters will vary over time. The most common types of forecasting are 
time series, regression methods and qualitative methods [5].  
Time series is a category of statistical techniques that uses historical data to predict future 
behaviour. Regression (or causal) methods attempt to develop a mathematical relationship 
between the item being forecasted and the factors that cause it to behave the way it does. 
Qualitative methods use management judgement, expertise and opinions to make forecasts. 
The qualitative methods are actually the most common type of forecasting, such as in 
strategic planning. 
 
After the possible evolutions of different parameters are determined, the next step is to 
estimate the probabilities with which any of these futures will happen. A distinction can be 
made between objective and the subjective probabilities [5]. Objective probabilities can be 
divided into classical or a priori (probabilities stated prior to the occurrence of an event) 
and relative frequencies (probabilities stated based on observations of past occurrences). 
Subjective probabilities are estimates based on personal beliefs, experience or knowledge of 
a situation [6]. 
 
Modelling techniques for solving problems under uncertainty differ in the way they allow 
the description of unknown parameters (‘forecasted’ values) and probabilities. For instance, 
when a finite set of possible evolutions of certain parameters in the future can be estimated, 
and if a probability can be assigned to each of these possible states, then scenario 
simulations can be used to evaluate the model outcomes. Then, if it is difficult to identify a 
discrete set of forecasts, random values can be assigned to the uncertain parameters. 
Continuous random values can be defined within intervals or ranges. Assigning a unique 
probability to every value of the random variable would require an infinite number of 
probabilities. Usually, continuous probability distributions are used to describe these 
random values. Stochastic programming stands for a set of modelling techniques that deal 
with random variables and continuous probability distributions. Several techniques can be 
used in solving stochastic problems, most of which are adjustments of methods known from 
deterministic programming, such as stochastic linear programming, stochastic integer 
programming and stochastic non-linear programming or stochastic dynamic programming.  
 
In the literature, scenario simulations are often presented together or as a basic form of 
stochastic analysis [7]. However these techniques lead to different solution concepts. For 
instance, scenario simulations are closer to deterministic situations, than stochastic analysis. 
This is because scenario simulations are in fact separate optimizations problems solved with 
the same model – but using as inputs the scenario-specific uncertain parameters. Thus in 
essence scenarios are extensions of the classical deterministic analysis, fact that made them 
very popular in practical applications. Decision-makers have here a more participative task, 
in that they must analyse how different alternatives would perform in different possible 
‘futures’ and choose one that conforms attitude towards risk. The different techniques for 
decision support under uncertainty will be discussed further, in paragraph 4.2.2. 
 
The use of stochastic programming is conceptually different than scenario simulations. 
Consider for example, a model in which the alternative (the solution) associated with a 
problem can be specified via a vector of decision variables. The objective function in such a 
model may be composed of two parts: one part corresponding to the ‘fixed’ parameters and 
another one that corresponds to the stochastic parameters (usually a recourse function). 
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Then the scope would be to maximize the overall expected value (of the objective function) 
subject to a set of probabilistic (chance) constraints.  Since the problem is solved for 
uncontrollable parameters - modelled using random variables, then the solution can also be 
viewed as random [8]. A stochastic programming model is not necessarily static. It can 
incorporate dynamic formulations to accommodate (sequential) decisions over time. In this 
context, the most important restriction imposed in a stochastic programming formulation 
arises from the assumption that randomness is exogenous and cannot be affected by 
(previous) decisions [8]. In certain design problems, such an assumption may not be valid, 
and in these cases, the models outlined above are inadequate. Nevertheless, there is a large 
class of applications where randomness is exogenous (e.g. weather, loads, prices of 
financial instruments, market demands etc.), and stochastic programming models provide a 
sound approach in this situation. 
 
A fundamental observation  made in [7] can be also used to distinguish between these two 
approaches: while a scenario solution may be valid after the fact (it will always be such that 
one of the scenario solutions turn out to be the best choice), the stochastic solution is 
normally never optimal after the fact, but nevertheless it is hardly a bad solution! In other 
words: ‘if you base your decisions on stochastic models, you will normally never do things 
really well, while if you base your decisions on scenario solutions, there is a certain chance 
that you will do well’. 
 
In practical energy system planning applications, scenario analysis is mostly used to support 
decisions for long-term (strategic planning) decisions while stochastic analysis is mostly 
used to support short term decisions (for instance bidding on the day-ahead electricity 
market, unit commitment, etc.). 
 
4.2.1.2 Fuzzy methods 
Fuzzy methods have been developed to overcome problems in representing the uncertainty 
in mathematical models – such as the ‘impact’ (energy system models) that are discussed in 
this thesis. All methods discussed so far have employed crisp numbers (real numbers, 
assumed to be known) in the definition of uncertainty. However, in real world problems, 
there are cases when expert knowledge is not sufficiently developed as to specify the 
parameters in the form of real numbers. Fuzzy methods are an alternative to the stochastic 
or probabilistic methods and have a particular application in those cases where it is difficult 
to rely on proper estimations of the probability distributions or parameters. Such cases may 
appear when: 
 Historical data for some parameters cannot be obtained easily, especially in the case of 

parameters never employed before, and 
 Subjective probabilities cannot be specified easily when many parameters exist. 

 
Fuzzy numbers (sets) capture the notion of possibility which is conceptually broader than 
the notion of probability: if something can happen (it is possible to happen) then it is also 
likely to happen with a certain probability. A fuzzy set is an estimation of an uncertain 
parameter that can vary between possible ranges, while a probabilistic estimation implies a 
forecasting of the probable values.  
 
The difference between crisp and fuzzy sets can be simply illustrated graphically. For 
instance, a crisp set (A) can be defined by saying if an object is or not an element in A. 
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Enumeration, analytical representation of the object, or a membership function (taking the 
value of 1 if the object is in the set, or 0 if not) are alternative ways to represent a crisp set.  
 
On the other hand, a fuzzy set is a set of pairs composed by the object and its degree of 
membership in the set- the possibility of belonging to the set, or the ‘true value’ of the 
statement ‘x is in A’ [9].  
 
Figures 4.1 and 4.2 show the differences between representing an uncertain parameter (an 
electrical load P of 800 kW) in a crisp or a fuzzy way [10]. 
 

 

Figure 4.1The representation of a crisp set 
 

Figure 4.2 The representation of a fuzzy set 

 
It is not certain how the load will evolve in the future: it is probable that it will reach a 
value of 800kW (crisp) but it is also possible that this value can be around 800kW (fuzzy). 
In the first case the probability that this value (of 800kW) will be reached must be estimated, 
while in the second case it is necessary to specify how much ‘around’ this value the load is 
expect to be (for example, between 770kW and 830kW). 
 
Issues concerning the distinction, the competition and the co-existence of fuzzy sets and 
probabilistic representations have been often raised by some authors [11]. While 
subjectivists manipulate fuzzy events as symbols, objectivists can benefit from the concept 
of fuzzy events (defined as measurable membership functions) to enlarge the calculus of 
probabilities [12]. Only the characteristics and the possibilities of obtaining the necessary 
information in a given problem context, can dictate which method should be chosen. 
 
In comparison with probabilistic analysis, fuzzy analysis may require increased effort in 
implementation from both the decision-maker and the analyst modelling the fuzzy 
procedure. There are several steps in modelling and solving problems in which uncertainty 
is described through fuzzy parameters: 
 
1. Find linguistic descriptions for all elements of the model which cannot be modelled 

other than through fuzzy descriptions. A conventional mathematical model, normally 
represented through crisp parameters, variables and constraints, can theoretically  
accommodate fuzzy representations for all these model components [3, 13]. For 
instance: 

  Crisp set: a set of elements A which can be defined:
     1. by enumeration of its elements 
      2. analytically: A = {x | x = 800} 
      3. by membership: 1 indicates membership 

         and 0 non-membership 

800 P (kW)

1

0

u(P)

A load of 800 kW

  Fuzzy set: a set of ordered pairs Ã, where: 
Ã = { (x, µÃ(x)) / x∈ X } 

µÃ(x) – the membership function, or the 
grade of membership of x to Ã 

 

u(P

800 P (kW

1

0
770 830 

A load of 
around 800 kW 
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 the constraints - equalities or inequalities - can be fuzzy, when represented through 
statements such as: ‘…approximately smaller than…RHS (the right-hand side of the 
constraint)’; ‘…approximately equal to…RHS’, etc. 

 the parameters can be fuzzy; both the coefficients in the objective function and in 
the constraints or the RHS (‘the load is around…’) 

 
2. Find models to represent these fuzzy descriptions (fuzzifications). As shown in figure 

4.2, a fuzzy parameter can be represented in general as a fuzzy set defined by two 
elements: the possible range of variation of the parameter and a membership function. 
These are the translations of the verbal, imprecise statements, and are essential in 
modelling with fuzzy parameters. In the example above, a triangular representation for 
the fuzzy set ‘a load around 800kW’ has been used. Other shapes of the membership 
function can also be considered, depending upon the type of information that is 
modelled. For instance a parameter expressed as ‘the load is at least 770kW but not 
larger than 830kW’ can be modelled through a trapezoidal membership function. Often 
in applications, the shape of the membership function appears to be chosen more or less 
arbitrarily rather than modelling decision maker’s preferences directly [9]. For 
convenience linear functions are usually used. 
 

3. Define the operations with fuzzy numbers - both conceptually and in terms of 
mathematical equations as well. Addition, subtraction, multiplication, division or 
inverse are operations that can be defined for fuzzy numbers. The crisp optimization 
algorithms must be modified to accommodate the interdependences and interactions 
among the fuzzy elements (operations with fuzzy numbers, fuzzy rules, fuzzy functions 
[14, 15]). 

 
4. Interpret the results of the fuzzy optimization (de-fuzzification) – obviously if fuzzy 

representations are used for the input parameters in a given problem context, then the 
result of the optimization will be fuzzy. A fuzzy decision may be viewed as an 
instruction whose fuzziness is a consequence of the imprecision in the given gaols and 
constraints. A maximizing decision can be defined, for instance, as a point in the space 
of alternatives at which the membership function of a fuzzy decision attains its 
maximum value [16].  

 
The primary difficulty in using fuzzy logic is that the analyst (the programmer) must first 
thoroughly understand the intricacies of and be able to precisely define a problem, and then 
he must be able to evaluate and fine-tune the results. If a model involves a large number of 
parameters and goals, it might be impossible for the decision-maker to have an active part 
in the process.  
 
However, fuzzy set theory is a better means for modelling imprecision arising from mental 
phenomena that are neither random nor stochastic. Since the 1960s, when the approach was 
first proposed, fuzzy logic has created a revolution in the thinking of scientists in many 
research areas: mathematics, engineering, economy, management sciences, medical science, 
to name just a few. This fact is reflected in the large number of journals and books having 
as central point fuzzy theory. The newest applications of this theory are in the field of soft 
computing. This discipline is a combination of fuzzy logic and other mathematical tools 
(such as neural networks, genetic algorithms or chaos theory). It can offer solutions for 
complex industrial management problems by providing a means for reproducing human-
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like intelligence towards creating automated, intelligent systems [17]. The human brain can 
reason with uncertainties, vagueness and judgements. Computers can only work with 
precise valuations. Fuzzy logic is an attempt to combine the two! 
 
In conclusion, this discussion has shown that many techniques can be theoretically be used 
to model uncertainty in an impact model. The choice of a method must primarily depend on 
the final scope of modelling, primarily the ‘target’ problems and the individuals involved in 
the decision process.  
 
The research for this thesis has been focussed on extending the use of an existing model 
whose applicability has been already established (see Chapter 2). From this perspective, 
probabilistic techniques are the first choice when dealing with uncertainty in the impact 
modelling for an energy system. Nevertheless, fuzzy techniques can be an alternative to 
probabilistic modelling of uncertainties in energy planning, if in the future additional 
research would be addressed to this issue. 
 
4.2.2 Dealing with uncertainty in ‘preference models’ 
So far, the main approaches for uncertainty representation in impact models - energy system 
models, have been discussed. In general, the outputs from such a model (assumed to be 
either certain or uncertain) are not ‘optimal’ from a decision making point of view. At the 
final stage of the decision-making process, a short list of the most relevant alternatives will 
be revealed. Most probably, one of these alternatives will be finally selected by the 
decision-maker; and this will be the optimal alternative in the given decision context. The 
process of choosing an alternative is not simple: all options must be judged in presence of 
uncertainty and against several criteria.  
 
Methods for multi-criteria decision making have been already reviewed in Chapter 3. In this 
chapter the discussion on this topic will be re-engaged, with the purpose of emphasising 
how uncertainty is dealt with in different MCDA methods. 
 
The main assumption when designing a decision aid process is that the decision maker is 
able to express judgements about different decisions alternatives. As mentioned previously, 
considerable uncertainty resides in the way the decision-maker states these judgements, i.e. 
in how well he understands the implications of different decisions and how well he manages 
to express his main concerns. For instance, when judging different courses of action 
(decision alternatives) in terms of several criteria a decision maker may have clear 
preferences (complete) for some attributes – i.e. high cost alternatives, above a certain limit, 
will be never preferred - while for others preferences may not be so easy to express 
(incomplete), - i.e. how much to pay to reduce environmental impacts. Moreover, situations 
when decisions must be made in uncertain outcomes (expressed probabilistically or fuzzy) 
induce additional ‘indecision’ in the process.  
 
Figure 4.3 emphasises the main groups of methods designed to deal with the uncertainty 
consistent with different frameworks for modelling decision-maker’s preferences:  
 
 Procedures for the complete assessment of certain outcomes - Area 1 
 Procedures for the complete assessment of risky situations - Area 2 
 Procedures for the incomplete assessment of certain outcomes - Area 3 
 Procedures for the incomplete assessment of risky situations - Area 4. 
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Area 1 corresponds to the deterministic case, when it is supposed that the decision-maker 
has clear preferences over certain outcomes. This assumption, rather unrealistic in decision-
making, has served well in developing basic mathematical, quantitative models of the 
reality. For instance, most of the methodologies and methods described previously in 
Chapters 2 and 3 can primarily address deterministic situations.  
 

Uncertainty
in outcomes

(impacts)

Uncertainty in 
preferences

Complete Incomplete

C
er

ta
in

ty
R

is
k

1

2

3

4

 
 

Figure 4.3 Uncertainty in preference models 
 
Nevertheless, significant research is dedicated to MCDA under uncertainty. Some 
techniques encompassed by Area 1, for instance, may also take into account risk as an 
additional criterion – provided that relevant risk assessment procedures are available. In 
general, many of the deterministic methods for preference elicitation have been extended to 
account for different types of uncertainty. In addition to these, other techniques have been 
developed to particularly address the imprecision in human judgements regarding both 
certain or risky situations. 
 
The discussion will further focus on different approaches for dealing with uncertainty in 
decision making, which can be classified according to the marked areas (2, 3 and 4) in 
Figure 4.3. The purpose here is to give an overview of the kind of techniques that can be 
used in different circumstances in modelling decision problems. 
 
4.2.2.1 Procedures for the complete assessment of risky situations 
Procedures described in this paragraph can be applied when the decision-maker(s) is able to 
completely specify judgements when analysing uncertain decision alternatives.  
 
Recall that in most MCDA methods described in Chapter 3, the decision-maker is required 
to assess how alternatives perform in each criterion and also to specify the importance of 
each criterion in a decision situation. The term complete is used here to characterize 
preferences that can be given in terms of fixed numerical values or yes or no declarations. 
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Risky situations are characterized by the lack of knowledge about the consequences of 
different courses of action, outside of the control of the decision-maker as described in 
paragraph 4.2.1.1. The discussion here will be limited to only those methods for assessing 
decision-maker’s values for probabilistic outcomes – scenario analysis- although some of 
these methods can deal with fuzzy representations in a similar way (fuzzy scenarios). 
 
Scenario analysis has been widely used to support decision making, especially in strategic 
planning. Scenarios are constructed independently and usually prior to the construction of 
alternatives. A scenario may describe the current and other, plausible future states of the 
world. In general at least two scenarios are required to reflect uncertainty, but more than 
four have been proved to be impractical [2]. Scenarios must be relevant to the decision-
maker’s concerns and must provide a useful, comprehensive and challenging framework 
against which the decision-maker can develop and test strategies and action plans.  
 
Scenario planning can contribute to a deeper understanding of the effects of external 
uncertainties in MCDA. Figure 4.4 shows a basic representation scheme for a multi-criteria 
problem when scenarios can be generated to capture uncertainty in attributes:  
 

 

 
Figure 4.4 Data representation in multi-criteria scenario analysis 

 
Each alternative (A) is described in terms of how it may perform in different futures, in 
terms of different criteria. When constructed, each scenario is usually assigned a probability 
of occurrence. Once all alternatives have been described in this way, the decision-maker 
must analyse them and make a decision as to which alternative to implement; in essence, 
the validity of a decision alternative depends on how well it will perform in the future.  
 
Although scenario analysis and MCDA have been widely applied in strategic decision 
making, it seems that little has been written about procedures that can integrate these two 
approaches [2]. A scenario-based approach to MCDA under uncertainty is sustained by the 
following observation: standard assumptions of MCDA imply that it should be possible to 
obtain preference orderings for any given set of achievement levels (attributes) for each 
individual criterion, whether or not these attributes refer to real (deterministic case) or 
hypothetical (uncertain) alternatives. Several authors [2], [10], [18] have proposed different 
approaches for integrating MCDA and scenario analysis.  
 
Figure 4.5, inspired by a similar figure presented in [10], summarizes some of the strategies 
often mentioned in research or practical papers for combining scenario analysis and MCDA. 
Thus, supposing that in a decision situation each alternative, A (from the set A1, A2..Am) 
must be judged in presence of several criteria C (from the set C1, C2…Cn) and several 
scenarios with associated probabilities p (p1, p2,…ps) then several possibilities (models) for 
further decision support can be adopted: 
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Model 1: 
This model is in fact an extension, to the multi-criteria case, of the classical scenario-based 
analysis. Thus, first the uncertain outcomes (attributes) in each criterion are aggregated 
based on a decision paradigm the decision-maker should specify. Examples of decision 
paradigms are: Expected Value, Minimax Regret, Maximax, Maximin, Minimax, etc. As in 
scenario analysis, such decision paradigms help in reducing the dimensions of the problem 
being analysed to something similar to the deterministic case: reducing the (sscenarios × 
ncrtieria) possible outcomes to n aggregated outcomes in each alternative. In principle, many 
of these decision paradigms also capture the attitude towards risk a decision maker may 
have [5]. For example, the Minimax Regret paradigm (often referred to as robust analysis) 
reflects a risk-adverse attitude, Expected Value reflects a risk-neutral attitude while the 
Maximax reflects a risk-seeking attitude. 

 
After the attributes have been aggregated, from mathematical and modelling (engineering) 
points of view there are no restrictions in applying any standard MCDA value measurement 
procedure to the problem of comparing the alternatives in terms of the aggregated attributes 
- given that the decision-maker always keeps in mind what these aggregated attributes stand 
for. However this approach may reduce the value of decision support under uncertainty, i.e. 
the calculation of scores and weights determined based on the aggregated attributes may 
disqualify relevant alternatives. Moreover decision-makers may encounter difficulties when 
comparing expected values, regrets, etc. in order to be able to answer to the scores and 
weights elicitation questions.  
 
A value model on the aggregated attributes would then transform the multi-criteria problem 
into a mono-criterion optimization problem that involves choosing the alternative with the 
highest value.  
 
 
 

 
 
 

Figure 4.5 Models for integrating MCDA and scenario analysis 
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Model 2: 
This model is based on utility theory for finding decision-maker’s preferences over all 
uncertain attributes corresponding to the C (C1, C2…Cn) criteria. Multi-attribute utility 
theory (MAUT) explicitly models risk preferences. As in MAVT (described in Chapter 3), 
MAUT seeks to construct a utility function that can be used in establishing a preference 
ordering of the alternatives. The procedures for building utility functions are similar to 
those used for finding value functions, in the sense that single and inter-criteria evaluations 
are needed. The main difference consists in the way individual utility functions (single 
criterion evaluations) are constructed: in MAUT the decision-maker’s risk attitude is 
captured through a series of lottery questions for each criterion analysed.  In essence, these 
lotteries aim at establishing the attribute level at which the decision-maker would be 
indifferent between to getting this value as certainty or getting a lottery with given chances 
(constructed probabilities) for obtaining the maximum or minimum possible values for that 
specific criterion. Several axioms and theoretical procedures support the use of MAUT. The 
reader can consult [3, 19], [20], [21] for qualified theoretical descriptions.  
 
The analytical hierarchy process (AHP) has been also proposed for solving multi-criteria 
problems under uncertainty based on an approach similar to utility aggregation. Recall that 
in AHP the decision-maker should be able to compare all pairs of criteria and decision 
alternatives using a ratio scale. The accuracy of such comparisons depends on the 
information available to the decision-maker as well as on how well he understands the 
problem under consideration. The presence of risky situations, i.e. alternatives whose 
outcomes can be defined in terms of scenarios with probabilities, affects the pairwise 
comparisons between alternatives, thus affecting the results. In [18] a risk adjustment 
procedure with AHP has been proposed. This procedure is an AHP of the certainty 
monetary equivalent, recognized also in utility theory. The idea is therefore similar: ask the 
decision-makers to compare risky projects with their risk-free versions. Based on these 
comparisons, decision-makers should either specify the attribute levels at which they are 
indifferent to the outcomes of risky and certain situations or say how much more the certain 
outcome is preferred. This procedure allows for variance, regret and risk aversion 
adjustments. 
 
Similar to the pervious model, utility aggregation would also transform the multi-criteria 
problem into a mono-criterion optimization problem of choosing the alternative with the 
highest value.  
 
Model 3: 
The strategy here is to construct a value model across all possible attributes values (for the 
given alternatives and scenarios). This value model can produce a numerical scoring 
(values) indicating the level of performance of each alternative under the conditions of each 
scenario. The problem can thus be solved either as a standard mono-criterion problem under 
uncertainty (solved through robust analysis for example) or as an MCDA problem with 
aggregate performances under each scenario (or decision paradigm) playing the role of 
‘criteria’. The final step would be then to recommend the solution that is either robust under 
uncertainty or that best satisfies these ‘criteria’. However, this second level MCDA problem 
poses many challenging questions for the MCDA community as described in [2]. 
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Model 4 
The last strategy would be to treat all criterion-scenario combinations as metacriteria and 
apply some form of MCDA to the problem of comparing m alternatives in terms of the n × s 
metacriteria, as discussed in [2]. Here each metacriterion represents the desire of the 
decision-maker to achieve a satisfactory target for each particular criterion under a 
particular scenario.  
 
An important observation, that distinguishes this procedure from the previous one, is that 
preference structures (weights and scores) may differ across scenarios, i.e. the relative 
trade-offs between criteria (weights) and intensities of preferences for different increments 
in the performance of any criterion may differ from scenario to scenario. When using such 
an approach, it is thus important to determine whether the same range of outcomes in one 
criterion would have the same impact on the final decision, in one scenario than another.  
 
4.2.2.2 Procedures for the incomplete assessment of certain outcomes 
Methods in this group deal with the uncertainty residing in the imprecision in human 
judgements in certainty conditions. This imprecision resides in the way decision-makers 
think or are able to express preferences regarding different aspects of a decision situation. 
For instance, in many real decision situations only incomplete, imprecise or approximate 
preferences can be stated, in the form of semantic categorizations (qualitative/verbal), 
ordinal statements, interval statements or numerical values that can be modified 
interactively. As examples, consider that a decision maker may reply when asked if 
‘alternative a is preferred to alternative b’ with: ‘yes and no’, ‘I do not know’, ‘I am not 
sure’, ‘maybe’, ‘yes, perhaps it is 2-3 times more preferred’, etc.  
 
Methods allowing for qualitative/verbal statements differ in the degree of freedom a 
decision-maker has in expressing judgements and in the way recommendations are derived. 
The AHP is one such method that allows decision-makers to express their preferences in 
qualitative terms such as: weakly preferred, equally preferred, etc. This verbal scale is 
‘predefined’ by the AHP method, which afterwards translates decision-makers’ answers 
into numerical values, using different numerical scales. Although the verbal scale in AHP 
covers many alternative answers that a decision-maker may possibly give, the method does 
not accept additional statements, other those that have been predefined. Moreover, it has 
been proven that the final recommendations with AHP may depend on the numerical 
scaling used to translate the verbal statements. Another approach, MACBETH (Measuring 
Attractiveness by a Categorical Based Evaluation Technique) is built on similar principles, 
although its developers have been more concerned with finding value scales that are 
meaningful in both qualitative and quantitative ways [22]. Outranking methods fall also in 
this category, although their underlying philosophy is to find an outranking relation (and not 
a value function) on the set of alternatives based on grades of preferences (strong, weak, 
high, low, etc) [9]. 
 
Incomplete preference information expressed in terms of ordinal or interval value 
statements can be addressed in with what is generally called preference programming. In 
essence methods for preference programming have been developed from the classical 
deterministic MCDA methods (starting with the AHP method and continuing with other 
value function elicitation methods [23]). These approaches allow the decision-maker to 
specify interval statements about all elements of a value model. In modelling terms, such 
interval statements correspond to linear constraints in a series of LP problems that serve in 
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the calculation of corresponding value intervals. Principles from preference programming 
are the basis for a variety of decision-support software: Web-HIPRE, RICH, Smart Swaps, 
WINPRE, PRIME-Decisions, etc (see for example [24]). Most of these decision support 
tools allow for interactive preference elicitation procedures which usually provide more 
detailed results as the decision-maker gradually enters a more specific preference 
description.  
 
Fuzzy numbers can be also used when translating verbal statements into numerical values, 
as explained in an earlier paragraph. The theoretical background and examples on how to 
use fuzzy measurements in relation to different multi-criteria methods are given in [26]. 
 
In general, if a decision maker decides to revise preference statements, then this means that 
the initial statements can be qualified as imprecise. In this respect, all methods 
incorporating interactive procedures (MADM or MODM) deal in fact with incomplete 
preferences, expressed in numerical terms.  
 
Although many decision situations may naturally trigger imprecision in judgements, it is 
important to be aware of the fact that more effort dedicated to problem structuring can 
contribute to a better clarification of preferences. 
 
4.2.2.3 Procedures for the incomplete assessment of risky situations 
In reality the process of decision-making, is often based on incomplete judgements 
regarding the uncertain outcomes that different decisions may have in the future. Some 
procedures attempt to come closer to modelling this reality by employing for instance: 
fuzzy preference models over fuzzy impacts, incomplete preference modelling over 
probabilistic scenarios, outranking methods, verbal decision analysis or other strategies [3].  
 
An alternative way to tackle decision problems that are highly affected by uncertainty is to 
reduce, if possible, this uncertainty through better problem structuring.  If problem 
structuring is refined, then those decision-support procedures (such as value or utility 
theory) which are based on more restrictive assumptions about reality (and uncertainty) can 
be used.  
 
Ultimately, the goal for decision-support is to help decision-makers in understanding 
decision situations and in making a choice according to their values. Since constructing a 
model from reality always requires abstractions, in principle any method can be applied if it 
has a good chance to successfully fulfil its purpose. 
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4.3 CONCLUDING REMARKS 
 
The purpose of this chapter was to discuss how uncertainty can be explicitly taken into 
account in decision making. Several important points should be emphasized: 
 
1. Recognizing the uncertainty in a decision context, accepting it, making the effort to 

structure, understand and model it, are the main steps in dealing with uncertainty 
and in making it part of the decision process. 

 
2. Several sources of uncertainty are inherent in the process of decision support. For 

instance, uncertainty can appear during modelling, during the exploration of the 
model and also during the interpretation of results. 

 
3. Two types of uncertainty are usually modelled. The first type is the external 

uncertainty, which is related to the nature of the environment and the lack of 
knowledge about the consequences of a particular course of action, which may be 
outside of the control of the decision-maker. The second is the internal uncertainty 
which is present in the process of identification, structuring and analysis of the 
decision problem – process depending on the decision-maker. 

 
4. Methods can be evaluated in terms of the way uncertainty is addressed. Part of the 

external uncertainty can be modelled through impact models as described in Chapter 
2, while part of the internal uncertainty can be resolved through preference 
modelling, described in Chapter 3. 

 
5. Uncertain parameters can be represented using an impact model, probabilistic or 

fuzzy. When using the energy system model eTRANSPORT for decision support, 
the simplest way to account for uncertainty, is to use probabilistic techniques.  

 
6. Three groups of procedures for dealing with the uncertainty consistent with different 

frameworks for modelling the decision-makers preferences have been discussed: 
procedures for the complete assessment of risky situations, procedures for the 
incomplete preference information over certain outcomes and procedures for the 
incomplete assessment of risky situations.  
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Summary 
 
 
This section of the thesis presents an investigation of possibilities and a proposal for 
combining energy modelling and MCDA in one, integrated tool. The idea is to solve the 
problems described in Part A by combining the approaches discussed in Part B. This 
section consists of two chapters: Chapters 5 and 6. 
 
Successful decision-support relies on effective facilitation by the analyst or on the ability of 
individual users to learn how to make effective use of a model. In many cases, impact 
energy models can be used directly, without explicit preference modelling - the decision-
maker simply analyses the information the model provides and makes a decision based on it 
- while preference models can be used as an additional decision-support when the impact 
data is difficult to assess.  
 
Chapter 5 presents an investigation of different strategies for combining the two main 
approaches to decision support discussed in the second part of the thesis: energy modelling 
and MCDA. The study is focussed on extending the use of the eTRANSPORT model towards 
offering advanced decision aid. So far, this model does not provide support in decision 
situations when multiple criteria have to be considered.  
 
Two strategies for combining impact and preference modelling have been studied. The first 
idea was to use the two models separately; to test the applicability of some MCDM methods 
on the type of data eTRANSPORT can provide. The second idea was to find a good way for 
integrating the two models, by adding a new module (advanced DA) to the eTRANSPORT 
model, to allow for preference elicitation and advanced decision aid. 
 
In a two-stage approach, Multi-Attribute Utility Theory (MAUT) and afterwards the 
Analytical Hierarchy Process (AHP) have been applied to a pilot case study, where the 
impact information has been provided by the eTRANSPORT model. The experience gained 
from these applications contributed to the evaluation of the possibilities to integrate impact 
and preference modelling in one stand-alone decision support tool. The search for a design 
scheme for the advanced DA module in the eTRANSPORT model has followed two main 
criteria: flexibility in defining the decision problem (i.e. decision criteria) and ability to 
deal with  incomplete preference information.  
 
The PRIME technique has been chosen as the model for building the advance DA module of 
the eTRANSPORT. This method allows imprecise preference statements to be modelled and 
is thus suitable for decision support in planning and negotiations, where the issues of 
concern are perhaps more difficult to assess.  Moreover, PRIME has a strong mathematical 
foundation and had already been successfully implemented in decision-support software, 
called PRIME Decisions. 
 
The approach proposed in Chapter 6 takes uncertainty into account. This is the uncertainty 
which stems from the incomplete preference information the decision maker is allowed to 
provide in the analysis of alternative decisions. If uncertainty in impacts is to be as well 
considered in terms of scenarios, some sort of aggregation of attributes has to be carried 
out before the advanced DA module is used. 
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Chapter 5 STRATEGIES FOR 
INTEGRATING ENERGY 
MODELLING AND MCDA 

 
 
 
 
5.1 BACKGROUND 
 
The process of decision making for local energy systems planning is complex. 
Decentralization, the interplay between different energy and emission markets, and the 
movement toward sustainability have changed the priorities of energy planners and policy 
makers. They may be confronted nowadays with new tasks and must make decisions in 
situations they may never before have encountered. Consequently, new planning tools must 
be developed to meet their needs for decision-support effectively.  
 
One goal of this research has been to study how the use of an existing energy model, 
eTRANSPORT can be extended in order to offer decision support in complex decision 
situations when multiple criteria and the uncertainty inherent in many decision situations 
have to be taken into account. This chapter presents an investigation of possible strategies 
for combining the two main approaches to decision-support discussed in the second part of 
the thesis; these are energy modelling and MCDA.  
 
5.1.1 eTRANSPORT: characteristics of the existing tool 
Before discussing its possibilities for extension it is important to provide a brief review, of 
the main features of the eTRANSPORT model.  
 
eTRANSPORT is currently composed of two sub-models (modules): the operational 
module and the investment module. The operational module can be used to find the optimal 
allocation (cost-based optimization) of resources and technologies to supply a certain 
energy demand, under a relevant system configuration (system alternative). The model is 
demand-driven; the energy demand can be for heat, electricity, gas, hot water or other end-
use energies and it can vary during a day, a week, a season or a year.   
 
Different events may result in considerable changes in the level and the structure of the total 
energy demand of a region: the construction of a residential area, the construction of a new 
industrial site, a change of the energy demand profile of an existing industrial customer, the 
possibility of using a new energy source (or energy carrier) in that region, and so forth. 
eTRANSPORT can be used to study and plan these changes. For example, the model can be 
used to compare and rank different relevant supply alternatives in terms of operation and 
investment-related performances. This comparison (which is cost-based at the moment) is 
made within the investment module: in each of the relevant alternatives, the operation of the 
system is first optimized (operational module) then the investment cost is added to the 
optimal operation cost, and in the end alternatives are ranked according to their total cost. 
Figure 6.1 shows a graphical representation of this algorithm. 
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Because of this structure, eTRANSPORT can be used for decision support at different 
decision levels: in operational, tactical or strategic planning. 
 

 
 

Figure 5.1 The structure of eTRANSPORT 
 
So far, eTRANSPORT has been used in facilitated (involving an analyst) cost-based 
analyses. However, the model is flexible and fairly easy to use (provided that all data 
necessary to set up the model is available), thus it is possible from a practical standpoint, for 
individual decision-makers to carry out independent analyses as well. 
 
5.1.2 Accounting for multiple criteria 
System planners may think in terms of different criteria when analysing their options and 
making decisions. In many situations the economic, environmental or social impacts of 
different decisions must be carefully estimated and evaluated. eTRANSPORT can offer 
basic impact information about the operational and investment costs, the quantity of 
pollutants emitted when operating the system as well the energy losses. The traditional 
analysis technique is to assign monetary values to all these criteria and to compare 
alternatives according to their economic performances. However, monetary values for 
important criteria (environmental or social impacts, for example) are difficult to estimate 
and in addition, their true impacts may be more important to decision-makers than their 
monetary equivalents. Thus, instead of adding up criteria using monetization, the decision-
maker may want to compare alternatives in terms of their ‘true’ impacts, i.e. compare costs 
to the tons of emissions, or to the number of new jobs created. 
 
MCDA offers a theoretical basis for making these comparisons possible through adequate 
decision-support. MCDA methodologies can help in structuring decision problems and in 
building models that can capture how decision-makers think when challenged to compare 
decision alternatives in terms of several criteria and when the outcomes of those alternatives 
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are uncertain. However, preference models can only be constructed when relevant impact 
information is already available. From this point of view, although the eTRANSPORT 
model can provide relevant quantitative information, this may not be sufficient to support 
complex, high-level (tactical or strategic) decisions. In these situations, additional impact 
information may be considered, such as: company’s image, aesthetical impact, or other such 
qualitative criteria.  
 
From the perspective of extending the use of the eTRANSPORT model in complex multi-
criteria energy planning, another observation must be made: the operation and the 
investment analyses have to be treated separately because the issues of concern at these two 
planning levels are not the same. The same is true for modelling possibilities.  
 
For example, the operational problem can be extended to a multi-objective optimization 
problem (MODM) while the investment problem can be seen as a multi-attribute problem. 
When solving only the multi-objective operational problem, it is necessary to have some 
kind of prior preference information (goals, value functions or other values that can be 
refined through interactive procedures) regarding the operation related criteria. The 
investment multi-attribute problem, on the other hand, requires the decision-maker’s input 
after obtaining the relevant impact information (including the operation-related data). 
 
In principle, many MCDA methods can be used in combination with eTRANSPORT. It has 
been shown in Chapter 3 that MCDA decision support frameworks differ with the way 
preferences can be articulated, i.e. the time in the process when the intervention of the 
decision-maker is accounted for. When choosing an MCDA method for extending the 
eTRANSPORT model it is therefore important to keep in mind the difference between the 
operational and investment problems, and to carefully design the algorithm that connects 
the two modules when multiple criteria are accounted for. For instance, if any form of 
multi-criteria aggregation is performed at the operational level, then the data that is 
forwarded to the investment analysis is already ‘optimal’ from the operational point of 
view. 
 
So far, eTRANSPORT has been used for decision support in investment (expansion) 
planning. Therefore, the research and the case studied for this thesis have also been focused 
on these types of problems. Nevertheless, further research would be useful in addressing the 
operation-planning problems, and the implications that a multi-criteria evaluation 
performed at this stage might have on decisions made at higher levels.  
 
5.1.3 Modelling uncertainty 
Uncertainty affects decisions and therefore should be considered at operative, tactical and 
strategic planning levels. As discussed in Chapter 4, in the process of decision aid it is 
important to differentiate and try to model both external 2and internal3 uncertainty  
 
The impact model eTRANSPORT in its current form can be used to account for external 
uncertainty at operational level. The operational module can be easily used to simulate the 
optimal system operation based on different sets of input data. Thus eTRANSPORT can be 
used to quantitatively simulate the performances of different energy system alternatives in 
different scenarios. 
                                                 
2 uncertainty regarding  the nature of the environment and the consequences of a particular course of action. 
3 uncertainty related to the process of problem structuring and analysis. 
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Several key issues can contribute to the definition of scenarios at the operational level. 
eTRANSPORT is demand-driven, which means that the energy system must operate such 
as to meet the demand for different end-use energies at all times. Demand variations may 
influence the way the system can be operated. In particular, variations of that part of 
demand that may be met by different energy carriers are critical. For example indoor heat in 
private houses may be provided either by electrical heaters, gas boilers, district heating or 
wood stoves. If at least two substitution possibilities exist, then the choice of the consumers 
(probably influenced by weather conditions or prices of different energy carriers) about 
which heating solution to use can considerably influence the demand for these end-use 
energies and respectively the operation of the different supply networks. Thus scenarios can 
be defined in terms possible evolutions of the energy demand and, accordingly the 
operation of the integrated system (in alternative configurations) can be studied. 
eTRANSPORT can then provide quantitative information about costs, emission levels or 
energy losses in each alternative and scenario. 
 
Another important factor that can influence the operation of an integrated system is the 
variation in prices of different energy resources or carriers. As discussed in Chapter 2, a 
local energy system is neither isolated nor self sufficient in terms of covering the energy 
needs. Electricity is usually a resource that is imported to the region. The variation of 
electricity prices may trigger important changes in the cost local energy suppliers would 
have during some periods. A simple example is when a CHP (combined heat and power 
plant) delivering both electricity and district heating (or cooling), is operated at full 
electrical capacity in order to export electricity in periods with high market prices. Because 
during some of these periods the demand for heat might not be high enough to absorb the 
output from the combined generation, this heat will be dumped with an effect on the 
environment. Thus scenarios can be also defined in connection with electricity prices. 
Depending on the system analysed, the prices of other energy resources (gas, wood, 
biomass, hydrogen) and energy carriers may affect as well the operation of the system. 
Furthermore, it can be possible to define combined scenarios (demand-prices) and also to 
assign probabilities of occurrence of each scenario. 
 
At tactical and strategic levels uncertainty has to be taken into consideration in a different 
way. Decisions at these levels are usually yes/no decisions about large investments in 
technologies with long life time. The uncertainty that might affect the selection of 
alternatives at these levels comes from the way the system (in each alternative) can be 
operated or from other reasons. Quantitative figures such as costs or emissions provided by 
eTRANSPORT can definitely give a picture of how different alternatives could perform in 
different futures, if built. However, it has been discussed that at higher decision levels 
alternatives can be judged in terms of other, qualitative criteria more difficult to define and 
measure. Scenarios can be emphasised in terms of these criteria as well. Consider for 
example the aesthetical (or noise) impact of a new plant (for instance a small scale 
cogeneration plant). Uncertainty in this case arises from spatial and time related factors. For 
example, in the moment when planners decide to build this plant outside a town there may 
be nobody really affected by it, but at some point in the future it might be possible that new 
houses will be built in the neighbourhood. If, in the moment of the decision the planners 
have information about this possible event, then they can consider different scenarios.  
An important observation is that it might not be possible to define uncertainty factors that 
can affect all alternatives. For instance, the factor described above (the construction of new 
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houses near the plant) might not have any influence on other investment alternative with 
which the first one is compared. 
 
In the applications presented further in this chapter, the external uncertainty was modelled 
through quantitative scenarios (uncertainty in prices, demands, etc.). Other external 
uncertainty issues can be explicated through more advanced problems structuring 
techniques, and this can be an interesting direction of further research. 
 
The internal uncertainty related to the process of problem structuring and analysis can also 
be taken into consideration when integrating eTRANSPORT and MCDA. However, this is 
as well a complicate issue. In complex decision situations the information provided by the 
eTRANSPORT model might not be enough to support thorough analyses. This model, in its 
current form does not give the user much freedom in structuring and modelling the decision 
problem. Although it has an important strength in processing the large amount of data 
necessary in calculating the impacts of the different alternatives, additional decision-support 
procedures (MCDA) or impact models have to be used, in complex situations because 
eTRANSPORT does not offer enough information about alternatives.  
  
Thus, when extending the use of eTRANSPORT it is important to identify what type of 
decision-aid ‘needs’ the new tool (or procedure) can resolve: how the multi-criteria analysis 
can be carried out and how much of the uncertainty can be modelled. The strategies for 
integrated eTRANPORT and multi-criteria analysis proposed in this chapter will address 
these isssues. 
 
 
5.2 A TWO-STAGE APPROACH FOR COMBINING eTRANSPORT AND MCDA 
 
5.2.1 The decision support procedure 
In this paragraph a two-stage decision support procedure is proposed to solve multi-
attribute investment problems, specific in tactical and strategic planning. The setting is 
as following: the eTRANSPORT model is used first to generate information (costs, 
emissions, losses) about possible alternatives and then an MCDA procedure is applied to 
help decision-makers to compare alternatives in terms of all these quantitative criteria. 
 
The advantage when adopting this strategy is that practically several MCDA methods can 
be applied in combination with eTRANSPORT. This would give the opportunity to test and 
compare how different MCDA procedures can be used for decision support when decision-
makers have to analyse the information obtained with this energy model. Moreover, the 
testing of MCDA methods on energy planning problems, either in laboratory settings or in 
real life applications would increase their acceptability among planners and energy experts.  
 
In this approach, the decision aid process is facilitated by an analyst who will have the 
following main roles: 
- gather information about possible system alternatives 
- set up and use the eTRANSPORT model 
- choose the information (and the format) to present to the decision maker during the 

decision support process 
- choose a method for multi-criteria decision making and designing the dialog with the 

decision-maker, i.e. the preference elicitation procedure, and 
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- present the final recommendations to the decision-maker, in an comprehensive way. 
 
This two-stage procedure can be summarised by the algorithm described in Figure 5.2. The 
first step consists of collecting all necessary data and setting up the eTRANSPORT model 
for each relevant system alternative. The operation related attributes (costs, emissions, 
losses) are calculated within the operational module. Then investment related attributes are 
added to the investment matrix. The research in this thesis captures an incipient stage of 
application of both the eTRANSPORT energy model and MCDA. Therefore in the first 
applications, only the investment cost has been considered as an additional criterion to the 
operation-related criteria. Moreover, in the first round of applications, a traditional, 
rationalistic (engineering) approach to uncertainty modelling has been adopted: scenarios 
(with probabilities) analysis. 
 
  

 

 
Figure 5.2 The algorithm used for generating impact data  

 
In this setting, decision-maker’s main contribution comes in the last part of the decision 
support process, when the multi-criteria method is used for building the preference model.  
 
MCDA theory also prescribes that decision-makers should be involved as much as possible 
in the problem structuring process i.e. in identifying relevant decision alternatives and 
criteria and establishing important assumptions for analysis (such as how to take into 
account the uncertainty).  
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5.2.2 Applications 
Two applications have been developed (see Paper 3 in Appendix C and [1]) to test the use 
of two multi-criteria methods (the Multi-Attribute Utility Theory (MAUT) and the 
Analytical Hierarchy Process (AHP)) for decision aid where the impact information has 
been provided by the eTRANSPORT model. 
 
These applications have been carried out in laboratory settings. Five people (decision-
makers A, B, C, D and E) with a background in energy economics have participated in these 
applications. They were asked to imagine themselves to be the decision makers in charge of 
making important investment decisions in a local energy distribution system. 
 
The energy system expansion planning problem presented to the five respondents has been 
set up based on a previous case-study in which eTRANSPORT has been used for cost-based 
analysis [2]. Thus, the input data used in simulations with eTRANSPORT has been derived 
from this initial case study.  The constructed decision problem posed in these applications 
differed from the initial case, such that it required decision-makers to analyse alternatives in 
terms of several criteria and not only in terms of cost. Moreover, uncertainty has been 
considered in this new setting, i.e. scenarios of variation in electricity prices and emissions 
have been simulated and eTRANSPORT has been used to derive impact information in 
each alternative and scenario. 
 
In these applications, the author of this thesis contributed with the formulation of the 
decision problem and the design of interview session with MAUT. The author has also been 
involved in conducting the MAUT application (playing the analyst’s role) and in the 
interpretation of results. 
 
The AHP experiment has followed the MAUT experiment. The same respondents have 
been asked to consider the same decision problem only that at this time the method for 
multi-criteria analysis was different. The author of this thesis has not been involved directly 
in this second experiment. The AHP application is discussed in this thesis because this 
method can be an alternative to using MAUT on the information eTRANSPORT provides. 
For a more detailed description of the AHP application and the initial comparison of results 
obtained with the two methods the reader can consult [1]. 
 
5.2.2.1 The decision problem 
The participants in the two-stage application have been asked to imagine themselves as the 
top managers of an integrated energy company that supplies electricity, gas and heat to both 
residential and industrial energy consumers in a region (or town). A potential lack of supply 
capacity in this region has been forecasted once a new residential area is built in the town. 
This situation obliges the local energy company, as the only supplier in this town, to find 
new energy supply solutions. In addition to the new residential consumers, a possibility 
existed that a large industrial customer would want to be supplied with heat. This industrial 
consumer had previously been able to generate itself the heat needed in its industrial 
processes. However the managers of this company could consider replacing this solution 
because the generating unit (a diesel boiler) was economically and environmentally inferior 
to other alternatives.  
 
This increase in energy demand in the region can be considered an opportunity for the local 
energy company to gain more customers and expand its business. However, this increase 
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may affect significantly the local energy supply infrastructure and may trigger high 
investments, especially because this demand is concentrated partly inside the town and 
partly outside.  
 
Several investment alternatives for covering the possible increase in energy demand have 
been identified. These alternatives vary with the energy resources and energy technologies 
used. Figure 5.3 illustrates the issues discussed above and emphasises the possible 
investment alternatives. 

Figure 5.3 Possible alternatives for extending a local energy supply infrastructure 
 
The first alternative (‘The base case’) consists of reinforcing the electricity grid with a new 
supply line to the area, so that one can continue to rely on electricity to supply the local 
stationary energy demand. A district heating network and a CHP (Combined Heat and 
Power) plant is built in the other three alternatives, to serve the heat demand for the 
customers in the residential area. In addition, a gas boiler is built to meet the peak demand 
for district heating.  
 
In the second alternative (‘3,6MW near the industrial site’), the district heating network 
also covers the industrial demand outside the residential area. The CHP plant (with a 
capacity of 3,6MW) is placed at the industrial site, and can also meet the heat demand there, 
currently supplied with the diesel boiler. In alternatives three (‘3,6MW near the town’) and 
four (‘5MW near the town’) the CHP plant is placed nearby the residential area. The only 
difference between these alternatives is the size of the CHP plant. The CHP plant has a 
larger capacity (5MW) in alternative four, facilitating the generation of more electricity, 
which can be sold to the electricity market when it is profitable. A consequence of higher 
electricity generation might be excess heat from the CHP plant, which is dumped to the 
local surroundings, thus causing possible environmental damage.  
 
The details regarding the four alternatives are summarised in Table 5.1. 
 

Alternative 
New el 

line 
DH  

network 
CHP 
plant 

Gas 
boiler 

1. The base case yes no no no 
2. 3,6MW near the industrial site no large 3.6 MW 5.0 MW 
3. 3,6MW near the town no small 3.6 MW 5.0 MW 
4. 5MW near the town no small 5.0 MW 5.0 MW 
Table 5.1 Possible alternatives for extending a local energy supply infrastructure 
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To generate impact data regarding each system alternative, eTRANSPORT has been used. 
The operational module has been set up to calculate four operational attributes: operating 
cost, CO2 emissions, NOx emissions and heat dump from CHP plants to the environment.  
 
The main uncertainty considered in the analysis was the price of electricity. Low, medium 
and high price scenarios have been simulated. Variations in electricity prices may affect the 
total CO2 emissions in different alternatives: it has been assumed that low price electricity 
imports have been generated by more efficient and clean technologies while imports with 
high prices came from more expensive coal based generation (in Poland or Germany). 
Subjective probabilities were assigned to the scenarios, using 0.25 for the high and low 
scenarios and 0.5 for the medium price scenario. Other prices, such as the price for gas 
supply to CHP plants and gas boilers, and the price paid for heating at the industrial site 
were assumed constant in the analysis 
 
The investment cost for each alternative has been considered in analysis, as the fifth 
attribute, in addition to the operation-related attributes. Then the following table was 
presented to the decision-makers: 
 

Total Total Annual Annual CO2 NOx Heat
annual cost inv. cost inv. cost operating cost emissions emissions dump

Alt. Scen. Prob. [MNOK] [MNOK] [MNOK] [MNOK] [tons] [tons] [MWh]
1 1 0.25 17.7 35.6 2.87 14.9 41060 0.0 0

2 0.50 24.1 35.6 2.87 21.2 51325 0.0 0
3 0.25 30.5 35.6 2.87 27.6 61590 0.0 0

2 1 0.25 19.7 85.0 6.85 12.9 32902 44.7 0
2 0.50 22.6 85.0 6.85 15.8 37440 45.4 377
3 0.25 25.5 85.0 6.85 18.6 41974 45.5 468

3 1 0.25 19.3 67.7 5.46 13.8 36188 36.8 0
2 0.50 22.5 67.7 5.46 17.0 40170 46.2 4547
3 0.25 25.3 67.7 5.46 19.9 44665 47.0 5082

4 1 0.25 20.1 78.3 6.31 13.7 35662 42.6 821
2 0.50 22.8 78.3 6.31 16.5 38701 60.8 11319
3 0.25 24.9 78.3 6.31 18.6 41917 62.7 12604  

Table 5.2 Multi-attribute achievement matrix for the pilot case study  
 
At this step each decision-maker was asked if he could make a decision right away based on 
the data presented. Although the case-study analysed was small, most of the respondents 
declared that they would need some time to compare the data and perhaps write down some 
figures and make some calculations in order to be able to make a choice. In general 
however, it has been observed that the larger the problem, the less reliable holistic 
judgements may be [3]. 
 
Instead of providing holistic judgements, decision-makers have been asked to participate in 
a more extensive decision-support procedure which would help them further with the 
analysis. Each participant was informed that the aim of this additional procedure was to 
explicitly take into account his preferences (way of thinking) regarding all aspects that 
mattered in the given decision-situation.  
 
Slides 1-9 in Appendix D have been used for this initial step of problem setting.  
Then each application continued with a presentation of the method used for preference 
elicitation and followed by the specific preference elicitation questionnaires. 
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5.2.2.2 The MAUT application 
MAUT (Multi-attribute Utility Theory) was chosen in the first place because it allows for 
preference modelling in presence of multiple criteria and uncertainty. First, the steps of the 
preference elicitation procedure have been briefly explained to the decision-makers (slides 
10, 11 and 20 in Appendix D). Figures 5.4 and 5.5 illustrate the two sets of single-utility and 
trade-off elicitation questionnaires. 
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Figure 5.4 Example of lottery question for 
single attribute risk preference elicitation 
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Figure 5.5 Example of question 
    for trade-off preference elicitation 

Then the actual preference elicitation procedure took place. First decision-makers have been 
asked to think in terms of each individual criterion and to answer to a series of lottery 
questions (slides 12-18 in Appendix D). To obtain single attribute utility functions each 
person has been offered a choice between receiving a certain outcome and a hypothetical 
lottery which would result in either the best outcome (with 50% chance) or the worst (also 
with 50% chance). Then the certain value has been varied until the decision-maker was 
indifferent between the certain or uncertain outcomes. 
 
The second type of questions was the trade-off questions. The decision-maker was first 
asked which of the attributes (criteria) analysed was the most important. This was used as 
reference attribute for the trade-off comparisons. The trade-off questions consisted in asking 
the decision-maker to compare two hypothetical alternatives A and B, measured along the 
reference attribute and one of the other attributes, as illustrated in Figure 5.4. The 
indifference point was found by changing the reference attribute level of alternative B, 
keeping the level of attribute i at its best (minimum), until the respondent was indifferent 
between the two alternatives. This type of questions has been repeated for all criteria except 
the reference one. The trade-off questions have not been represented in the slides, being 
carried out simply by drawing Figure 5.5 on a blackboard for each pairwise comparison. 
 
5.2.2.3 The AHP application 
The AHP application is described in details in [1]. In this experiment, decision-makers 
could ‘see’ the values for each attribute and in all three scenarios. Hence, they could to take 
somehow directly into account the uncertainty in attributes when comparing alternatives. 
Decision-makers’ answers in the AHP application have been studied with both the 
fundamental scale and the balanced scale. The software Super Decisions 1.4.1 has been 
used for processing data from the AHP experiment. 
 
5.2.2.4 Results 
The results from these two experiments can be found in Paper 3 (Appendix C) and [1]. In 
[1] a comparison of results is also made. Base on this paper, table 5.3 that sums up the 
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calculated rankings with the two methods is reproduced here. This data will be used to 
support the discussion at the end of this paragraph. 
 
To make the results from the MAUT and AHP methods comparable, all scores have been 
normalized, so that the highest ranked alternative in each method for each decision-maker is 
given a score of 1.00. Results are calculated in the AHP method for both the fundamental 
and the balanced scale.  
 

  
Decision 
maker A 

Decision 
maker B 

Decision 
maker C 

Decision 
maker D 

Decision 
maker E 

Decision 
maker F 

Alt. 1 0.93 (4) 0.83 (4) 1.00 (1) 0.94 (4) 0.93 (4) 0.91 (3)
Alt. 2 0.99 (2) 1.00 (2) 0.91 (3) 0.96 (2) 0.99 (2) 1.00 (1)
Alt. 3 1.00 (1) 1.00 (1) 0.96 (2) 1.00 (1) 1.00 (1) 0.94 (2)MAUT 

Alt. 4 0.97 (3) 0.99 (3) 0.73 (4) 0.96 (3) 0.95 (3) 0.89 (4)
Alt. 1 0.74 (3) 0.64 (3) 1.00 (1) 1.00 (1) 0.54 (2) 1.00 (1)
Alt. 2 1.00 (1) 1.00 (1) 0.63 (2) 0.67 (2) 1.00 (1) 0.93 (2)
Alt. 3 0.55 (4) 0.50 (4) 0.41 (3) 0.37 (3) 0.27 (4) 0.52 (4)

AHP 
Fundamental 

scale 
Alt. 4 0.76 (2) 0.66 (2) 0.33 (4) 0.37 (4) 0.38 (3) 0.57 (3)
Alt. 1 0.98 (2) 0.94 (2) 1.00 (1) 1.00 (1) 0.49 (2) 1.00 (1)
Alt. 2 1.00 (1) 1.00 (1) 0.75 (2) 0.57 (2) 1.00 (1) 0.76 (2)
Alt. 3 0.84 (4) 0.78 (4) 0.65 (3) 0.39 (3) 0.28 (4) 0.58 (3)

AHP 
Balanced 

scale 
Alt. 4 0.90 (3) 0.85 (3) 0.52 (4) 0.38 (4) 0.40 (3) 0.55 (4)

Table 5.3 Ranking alternatives using MAUT and AHP  

For a better illustration, the results for two of the participants in these applications 
(decision-makers A and C) are showed in Figures 5.6 and 5.7. In both MAUT and AHP, the 
total values are built up as additive functions. Consequently, the total score for each 
alternative can be split into sub-components for each of the five criteria, as in the two 
following figures. 
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Figure 5.6 Detailed results for decision-makers A and C in the MAUT application [1] 

The results from the MAUT experiment represent the total expected utilities for each of the 
four alternatives. The expected utilities have been calculated based on decision-makers’ 
answers and based on the assumptions regarding the probabilities of occurrence of each 
scenario. 
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In the charts representing the results from AHP application, the numeric scores (y axis) do 
not have any special meaning. They are only instrumental and allow a simple comparison 
between alternatives. This is because of the normalization process that is used in the AHP 
method [1]. 
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AHP Balanced scale
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Figure 5.7 Detailed results for decision-makers A and C in the AHP application 

 
5.2.3 Discussion  
Applications like the ones described above have shown that the eTRANSPORT model can 
be used in complex decision settings where decisions must be based on more than cost-
based analyses. Relevant insights into the integration of the model with advanced decision 
support MCDA procedures have been obtained with these applications. 
 
The following discussion will focus on how the results from the decision-support part (the 
recommendations) may depend on the method used, the information presented to the 
decision-maker for analysis or on the actual setting in which the preference elicitation is 
performed. These issues can be further taken into consideration when combining energy 
modelling and preference modelling into one integrated tool. 
 
 The method used for preference elicitation and modelling 
The process of preference elicitation and modelling may have a major influence on the 
decision. Although only two multi-criteria methods have been applied to a relatively small 
problem, it has been observed that it is possible to end up with different recommendations 
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when applying different elicitation methods to the same decision problem, and involving the 
same decision-maker  (see table 5.3, Figures 5.6. and 5.7 and [1]).  
 
The field of MCDA does not offer any clear guidelines for comparing the results obtained 
through different methods. Factors that can influence these differences are for instance: the 
way decision-makers understand and accept the procedure for preference elicitation and the 
underlying assumptions when modelling preferences with each method, but other factors 
may also have an effect. 
 
The calculations in these experiments showed that the main differences in results come 
from differences in scores (inter-criteria evaluations) and values (intra-criterion evaluations) 
obtained with the two methods. The elicitation of values in MAUT is based on the decision-
maker’s evaluations of attributes described within intervals – thus no specific reference was 
given about where in the interval each alternative lies. Alternatively, in the application with 
AHP, decision-makers had a clear view of how the different options are positioned in 
relation to the others in each criterion. Each method thus offers different conditions 
(circumstances) in which decision-makers must express their preferences. This observation 
is important when comparing the results obtained with the two methods, because even 
though both methods are designed for the same purpose, they may not measure the same 
thing.  
 
This also applies when comparing the way that uncertainties have been taken into 
consideration with the two methods. MAUT captures the general features of the decision-
maker’s attitudes toward risk: in the preference elicitation procedure, decision-makers have 
been asked to compare certain outcomes with lotteries of obtaining the most extreme values 
in a criterion. Again, no specification about where each alternative lies in the interval 
between extreme values was given. After all, the utility model based on each decision-
maker’s answers could have been applied to any set of alternatives contained in that 
interval. Some authors have argued that because the lotteries are only imaginary, the 
decision-maker’s judgements about the relative attractiveness of the lotteries might not 
actually reflect what he would really do [3].  
 
AHP has been applied after MAUT on the same set of data, but in this case uncertainties 
have been presented in terms of probabilistic scenarios. When asked to compare between 
alternatives, decision-makers could evaluate both expected values and all other probable 
attributes. Thus in this last experiment, decision-makers had the ability to ‘see’ directly how 
uncertainty affects the outcomes in each alternatives. From a practical standpoint, they 
validated these alternatives in terms of all possible outcomes. Of course, this validation took 
place in their mind, independently of any other risk elicitation procedure.  
 
As an observation it is important to add that differences in recommendations may also 
appear even when applying the same method to the same problem but in different 
circumstances. The MAUT application does not allow such affirmation because each 
participant has been involved only in one interview with each method. However, this 
observation is in general important and it has been reported in many studies before – for 
instance in [4-7] – and has been intensely debated by theoreticians and practitioners in the 
MCDA field. Preference judgements have a labile nature, which has been studied and 
demonstrated in behavioural research. Small changes in the problem structure, question 
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format, response mode, individual perspective or other aspects in the assessment process 
can sometimes dramatically change the preferences of an individual decision maker.  
 
Theoretically, a MCDA procedure can be applied in a decision situation if certain 
requirements are fulfilled. In many decision making situations, the methods at hand may 
require or dictate assumptions that are difficult to validate. For example, it has been 
documented that decision-makers may have problems in deriving utility functions (in the 
Von Newman and Morgenstern sense) consistent with underlying axioms [8]. Thus people 
in decision making situations might not be good in making the judgements that the expected 
utility model requires of them. 
 
From this point of view, the application using MAUT might have overlooked some 
characteristics of the decision environment. For instance, for simplicity, we used an additive 
model for the representation of utilities. Such an assumption is made in many applications 
[9, 10]. However, an additive preference model can be applied when criteria are 
preferentially independent, i.e. the decision-maker is able (willing) to analyse the 
alternatives in terms of one criterion, without considering how they perform in any other 
criteria. In planning decisions, this assumption might not be valid because of the way 
energy planners still think today. This remark doesn’t apply to all energy experts, of course, 
but it is important to consider this possibility for future applications. For instance, when 
asked to analyse the environmental impact of the system in terms of annual quantities of 
NOx or CO2 emitted, decision-makers would have liked to know if there was a tax to pay or 
any other economic sanction imposed on these pollutants. Obviously the preference 
independence condition is not met in this situation, although during the preference 
elicitation process, decision-makers can be asked to not think in terms of monetary values 
but only in terms of environmental impacts. 
 
These situations impose additional assessments of the validity of the assumptions used and, 
if necessary, modifications of the theoretical procedures to adapt to the type of information 
available. This is one way to eliminate potential sources of biases in utility assessment [10, 
11]. Another alternative would be to provide better representations of attributes that might 
encourage decision-makers to think in real terms when evaluating environmental impacts. 
This issue will be discussed in the next section. 
 
In general, thorough applications with MAUT require much more time than it has been used 
– each interview lasted approximately 100 minutes. However in real situations the time 
available for a decision-support procedure might not be longer than what we allocated. Real 
decision-makers might not be willing to go through a long and cumbersome decision 
processes. 
 
To summarise this discussion, it is possible that different handling of assumptions in 
assessing utilities could lead to different results. With AHP, this aspect is more evident. 
Here, differences in results appeared when using different scales for translating the 
decision-makers verbal answers into numerical values – information that is detailed in table 
5.3, Figure 5.7 and [1]. 
 
Some studies [12] have also described how the decision analyst might unavoidable shape 
the assessment process, because he is in general the one who formulates the decision 
problem (identifying alternatives, choosing the measurement scales for criteria etc), controls 
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the preference elicitation procedure, and even calculates the final value structure which may 
be based on restrictive assumptions. This aspect has also been observed in our exercises.  
 
Many sources of bias in different methods can be found and all reside in the simple fact that 
the human decision process is very hard to capture in mathematical models. A general 
recommendation from behavioural studies is to use more than one method (or assessment 
procedure). From a theoretical point of view this advice makes sense. However, following it 
and applying different methods in the real word, with real problems and real decision 
makers may not be possible. And even in cases when it is possible, one might find that it is 
difficult to compare results. 
 
The type of information used 
Previously it has been briefly mentioned that the way criteria are represented can influence 
the results in a decision support procedure.  
 
eTRANSPORT can be used for quantitative simulations of how alternatives perform under 
different criteria. Measurement scales such as tonnes of CO2 or NOx emerged directly from 
the set of equations describing the operation of the energy system. Quantities of CO2 or 
NOx can definitely give a clear indication about the impact different alternatives may have 
on the environment. However, from the decision making point of view, these quantities are 
only proxy measurements for what is generically called environmental impact (air quality, 
health impact, etc.). When asked about their preferences regarding quantities of pollutants 
emitted, decision-makers felt the need to ask back for more information about what exactly 
these quantities mean (both in terms of money or other impacts). Although all respondents 
agreed that environmental impacts must be taken into consideration, they found it difficult 
to express their opinions and preferences for alternative attributes measured in terms of 
quantities emitted. Thus, additional representations (more relevant measurement scales) 
should be provided for some of these criteria. The more relevant the decision maker finds 
an attribute and the more accustomed he is to thinking in terms of an attribute, the more 
easily he will be able to express preferences. Thus it will be more likely that he will 
understand the relationship between the attribute, the alternatives and the basic criteria [10]. 
 
Better measurements for some criteria are difficult to assess [13]. Decision-makers should 
preferably be directly involved in the process of problem identification and structuring. 
However, in energy planning which is still a kind of routine activity, people are used to 
think in certain ways without giving much consideration to new issues, although the 
planning context is changing. In many cases (real) decision-makers have not yet started to 
think seriously in terms of the environmental consequences of their business. And, perhaps 
one of the reasons for this is precisely this lack of direct and relevant measurement of 
consequences. Thus, when choosing and applying different preference quantification 
methods it is very important to reflect about how much the reality of the situation- the way 
decisions are taken nowadays –‘ matches’ the research assumptions! 
 
It might be easier and perhaps more relevant to consider qualitative (verbal) descriptions for 
some of the attributes, such as: ‘most of the NOx emissions in this alternative (e.g. 
x…tonnes/year) are due to the new power plant which will be built near the neighbourhood 
Y which is situated in the vicinity of the highway’. NOx has a local impact and thus, more 
specifications can be given, for example: the estimated area affected, or the number of 
persons living in that area, etc. In this way, the decision-maker will be able to be aware and 
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compare, intuitively, the impact of different alternatives. However, in order to deal with 
qualitative attributes, other elicitation procedures have to be used instead of MAUT.  
 
The validity of results in laboratory settings. 
Experiments run under laboratory conditions are needed in order to gain useful practical 
knowledge regarding how to apply the theory in designing and conducting such decision aid 
procedures. When applying the theory, one might not be aware of a multitude of factors that 
can affect the results, despite the fact that many types of experiments and elicitation 
procedures have been reported in literature [10, 14, 15]. Each decision problem is unique 
and therefore the method used to solve it must be carefully chosen. Repeated exercises with 
different methods would be of great help for researchers and practitioners in preparing for 
real-life applications.  
 
One should note, however, that laboratory experiments are not the same as real applications. 
People think differently when they are in a real decision situation and they have to make 
real choices that may affect directly themselves or others greatly, as opposed to when they 
are asked to play this role. In these experiments the respondents had no real commitment 
towards the final results, although they were asked at the beginning to imagine themselves 
in a real decision situation. Future experiments may be more relevant if the decision-makers 
were to be involved in the earlier stages of (real) problem identification and structuring, or 
in using eTRANSPORT for simulations and optimization.  
 
As an overall conclusion, an important result with these applications has been that: the 
respondents involved in the applications considered the multi-criteria approach to problem 
solving both interesting and relevant. This is probably because the participants in our 
experiments were familiar with the type of problems proposed, i.e. they were aware and 
concerned, regarding the fact that energy decisions should be judged against several criteria. 
Furthermore all participants had sufficient knowledge about the methods used for 
preference elicitation - in special utility theory, although none of them had ever been 
involved in practical applications of these methods.  
 
After both the AHP and MAUT interviews were performed, some of the participants were 
asked their opinion about the two methods. [1] presents a discussion on this issues, which is 
summarised in short here. Participants were asked general questions such as: which of the 
two methods is easier to understand, which is easier to apply or which method they think it 
captures better their way of thinking.  
 
Most of the participants in these experiments gave the impression that they preferred the 
AHP method because they found the questions in this method easier to relate to. For 
instance, one of the participants declared that he felt it is easier to answers the AHP 
questions. In the MAUT interviews, he felt that his numerical answers were more or less 
random, and he would have found it more difficult to give his MAUT answers than his AHP 
answers. In addition, some of the participants mentioned that they think it is easier to avoid 
inconsistencies in the AHP questions because they very easily can adjust their already given 
answers to make them consistent to the others. However, some participants considered this 
as a drawback of the AHP method because they felt that after such adjustments, the answers 
were not the decision-maker’s real preferences anymore. 
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Some of the decision-makers found the weighting process of the AHP method difficult to 
understand. When asked to weight the average score on the criteria, some of the participants 
in the experiment had problems understanding this concept. How can one compare the 
importance of one cost number (MNOK/yr) to one emission number (tonnes/yr)? This is in 
accordance with the opinion [9] that it is more difficult to conceptualize this way of 
thinking than the more common weighting of swings from minimum to maximum values, 
as used in MAUT and many other MCDA methods.  
 
From a practical standpoint it is no doubt that the interview process is easier in the AHP 
method. The AHP preferences can basically be captured from a questionnaire with little 
participation by the analyst. In contrast, the MAUT procedure requires that the decision-
makers are interviewed by the analyst, procedure which also requires much more prepara-
tions.  
 
 
5.3 INTEGRATING MCDA IN eTRANSPORT 
 
The integration of ‘impact’ and ‘preference’ modelling should result in one stand-alone 
decision support tool. The idea here is that the eTRANSPORT model which has been 
studied so far as impact model, should be extended with an additional module that will 
facilitate multi-criteria and uncertainty analysis of energy planning problems. Thus, in this 
setting, the existing operational and investment modules will be parts of the impact model, 
while the advanced DA (advanced decision analysis) module will facilitate preference 
modelling. 
 
5.3.1 The role of the advanced DA module 
The advanced DA module will replace, in principle, the facilitated dialog necessary in the 
previous applications. Thus the model will undertake most of the tasks the analyst had in 
the applications just described: it will directly display the information relevant for analysis, 
provide the dialog for preference elicitation, carry through the value calculations and 
display recommendations. 
 
The advanced DA module should be seen as an additional decision-support option if the 
alternatives in a given problem context have to be judged in terms of several criteria. This 
additional module should not restrict or influence the use of the other modules. In other 
words, if the user does not consider it necessary to go through a more advanced analysis of 
his problem, then he should not be forced to do so. Flexibility is a characteristic that may 
contribute greatly to the success of a decision-support tool. 
 
Because of these considerations, the person who will use the advanced DA module should 
be the person in charge of the final decision. As shown in Chapter 2 the other (impact) 
modules require very detailed information about the energy system analysed. Although the 
same decision-maker can setup and use these modules, it is probably more realistic to 
assume that this task will be performed by somebody else, who will be called ‘the analyst’ 
in this context as well. It will be further assumed that this analyst has a broad overview of 
the possibilities for analysis offered by the model and that he can offer support to the 
decision-maker in using the advanced DA module. 
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From a theoretical point of view, the advanced DA module transforms the impact 
information into value information. Recall that multi-criteria decision support procedures 
seek to extract and model information about the values (preferences, etc.) or the way a 
decision-maker thinks in a decision situation. Then, this value information is used to derive 
recommendations, if possible. 
 
5.3.2 An evaluation of possibilities for constructing the advanced DA module 
The assumption regarding who will be the user of the advanced DA module has important 
implications when designing the extension of the eTRANSPORT model. The new tool will 
facilitate relevant multi-criteria analysis if the user is allowed to: 
 
 learn and explore facets of the problem that might not be easy to observe in an incipient 

analysis 
 interactively use the tool, both in terms of analysing different impacts (uncertainty) and 

changing preferences 
 freely answer the preference elicitation questions which should encourage (and not 

discourage) him to use it, and 
 easily analyse the final recommendations – which must be displayed in an 

comprehensive way. 
 
The experience gained with previous applications can also contribute to the design of the 
new module. It has been observed that: 
 
 the representation of the problem, i.e. the range of impacts that can be integrated in the 

multi-criteria evaluation procedure is limited by modelling possibilities  
 the process of choosing the criteria for analysis should be flexible; decision-makers 

should be involved in the selection and definition of criteria, since their problems may 
range from simple cost-based analyses to complex multi-criteria (quantitative or 
qualitative) analyses, and 

 complete preference statements, as in MAUT or AHP may be difficult to obtain, thus 
more freedom in expressing judgements may increase the relevance (and usability) of 
multi-criteria analysis.  

 
In the view of the above considerations, the search for a design scheme for the advanced 
DA module has been guided by the following criteria: 
 
 the procedure should allow the user to define his decision criteria no matter if these 

criteria result from the impact calculations with eTRANSPORT or not, and 
 the method should allow for incomplete preference elicitation procedures. 

 
The structure, the assumed use of the existing model and the need for decision-support as 
identified above, limited the search for methods in the MCDA field to methods for multi-
attribute decision-making which allow for incomplete preference information and 
interactive use.  
 
Analysing the classifications in Part B of this thesis, preference programming is the first 
candidate procedure and probably the easiest to implement. This approach solves part of the 
internal uncertainty related to the imprecision inherent in judgements. The external 
uncertainty - explicitly modelled in the previous experiments – can be as well accounted for 
with the new tool. From a theoretical/modelling point of view, there is no problem with 
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generating alternative scenarios and displaying the attribute table (something similar to 
Table 5.1) within the eTRANSPORT model. Then a strategy similar to Model 1, for 
example, (as proposed in paragraph 4.2.2.1, Figure 4.5), can be applied to aggregate the 
uncertain outcomes before the actual multi-criteria evaluation is conducted. 
 
When extending the eTRANSPORT model it is relevant to observe how other decision 
support software is built. Many tools have been specifically developed to support multiple 
criteria decision making by assisting decision-makers at various stages of structuring and 
solving decision problems [16]. The majority of available software (developed by 
academics or as commercial packages) is applicable in any decision situation, i.e. with any 
impact data. A step further is to use the principle upon which decision support software is 
built in the extension of the eTRANSPORT model.  
 
A proposal for extending the eTRANSPORT model will be discussed in the next chapter. 
This proposal has been inspired by the set of decision support tools provided by the 
Decisionarium site [17]. The site provides an open source of testing tools for multi-criteria 
decision-making that are also well documented. The software relevant for this research is 
Web-HIPRE, RICH Decisions, WINPRE and PRIME Decisions. 
 
Web-HIPRE [18] is designed to support different phases of a multi-attribute decision 
analysis process: modelling the problem, weighting attributes, evaluating alternatives and 
analysing results. The graphical user interface facilitates relevant visual representations of 
all these phases. Five methods are incorporated into this tool: SMART, SWING, SMARTER 
and AHP, and classical value functions. The software is very valuable for practitioners since 
it allows testing and the comparison of results from different methods.  
 
RICH Decisions  (Rank Inclusion in Criteria Hierarchies) [19] allows decision makers to 
supply incomplete, ordinal preference information about the relative importance of 
attributes (value trees).  
 
WINPRE (Workbench for Interactive Preference Programming) [20] and PRIME Decisions 
(Preference Ratios in Multiattribute Evaluation) [21, 22] also support multi-criteria analysis 
with incomplete information. Both software packages allow for interval evaluations with 
different methods. WINPRE supports the AHP with interval judgements as well as PAIRS 
and interval SMART/SWING methods. PRIME Decisions [23] is an implementation of the 
PRIME method which allows for preference elicitation and analysis based on: a) the 
conversion of possibly imprecise ration judgements into an imprecisely specified preference 
model, b) the use of dominance structures and decision rules in deriving decision 
recommendations and c) the sequencing of the elicitation process into a series of elicitation 
tasks.  
 
The proposal in Chapter 6 consists of guidelines for designing the new advanced DA 
module of eTRANSPORT and the mathematical background supporting this proposal.  
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5.4 CONCLUDING REMARKS 
 
This chapter has presented an investigation of strategies for combining energy modelling 
and MCDA techniques. In particular it has examined ways to extend the use of the 
eTRANSPORT model in supporting complex decision analyses involving multiple criteria 
and uncertainties. The discussion can be summarized with the following issues: 

 
1. The eTRANSPORT model can provide impact information useful in analyses at 

different decision levels: in operational as well as in tactical or strategic planning. 
However, the issues of concern at different decision levels are not the same, thus the 
requirements for problem representation and modelling also differ.  

 
2. From the perspective of extending the use of the eTRANSPORT model in multi-criteria 

settings, an important observation is that the operation and the investment analyses 
have to be treated separately because the issues of concern at these two planning levels 
are not the same, nor are the possibilities for modelling. For example, the operational 
problem can be extended to become a multi-objective optimization problem (MODM) 
while the investment problem can be seen as a multi-attribute problem. A careful 
analysis is required when extending the model, because MCDA decision support 
frameworks differ with the way preferences can be articulated, i.e. the moment in the 
process the intervention of the decision-maker is accounted for, as has been shown in 
Chapter 3. 

 
3. Two strategies for combining impact and preference modelling have been studied. The 

first idea was to use the two models separately to test the applicability of some MCDM 
methods on the type of data the eTRANSPORT can provide. The second idea was to 
find a good way for integrating the two models, by adding to eTRANSPORT a new 
module to allow for preference elicitation, and advanced decision aid. 

 
4. The target problems in this discussion have been system planning problems, in which 

the main concern is to choose between alternative system configurations for supplying a 
given energy load. These problems involve a limited number of discrete alternatives for 
which MADM techniques are adequate. 

 
5. Multi-Attribute Utility Theory (MAUT) and the Analytical Hierarchy Process (AHP) 

have been applied to a pilot case study, where the impact information has been provided 
by the eTRANSPORT model. Relevant insights into the integration of the model with 
advanced decision-support MCDA procedures have been obtained with these 
applications. It has been found that the results of such decision support procedures may 
depend on the method used, the information presented for analysis to the decision-
maker, or on the actual setting in which the preference elicitation is performed. 

 
6. The experience gained with these applications contributed to the evaluation of the 

possibilities of integrating ‘impact’ and ‘preference’ modelling in one stand-alone 
decision support tool. The search for a design scheme for the advanced DA module in 
the eTRANSPORT model has followed two main criteria: flexibility in defining the 
decision problem (i.e. decision criteria) and the ability to assess incomplete preference 
elicitation. Preference programming has been identified as the method to be 
implemented.  
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7. The set of decision support tools provided by the Decisionarium site have been 
proposed as models for extending the eTRANSPORT model. 

 
The next chapter consists of a proposal for designing a new, advanced DA module to be part 
of the eTRANSPORT model. Guidelines for designing the preference elicitation procedure 
and the mathematical background supporting this proposal will be presented. 
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Chapter 6 EXTENDING eTRANSPORT  
An approach to designing the advanced 
DA module 

 
 
 
 

6.1 ASSUMPTIONS 
 
This chapter continues the discussion about integrating MCDA into eTRANSPORT. The 
focus here is to present a proposal for extending this model with a new module for 
advanced DA (decision analysis). 
 
This proposal has not yet been implemented into the eTRANSPORT model, thus no 
conclusive results will be offered.  
 
6.1.1 Problems addressed 
The reason for extending eTRANSPORT is to create a tool that can be used to support 
complex analyses for energy planning. It has been previously established that the new tool 
will be used for decision aid in planning at both a tactical and strategic level. Thus, the 
advanced DA module, which will be proposed in this chapter, will address the multi-
attribute type of decision problems, which are characterized by few relevant alternatives but 
a fairly complex set of criteria. Recall that an alternative refers to a specific energy system 
configuration; it may integrate several supply networks for different energy carriers, 
relevant in satisfying a given demand for different end-use energies (electricity, heat, gas, 
etc). 
 
In terms of the criteria, it has been shown that these may vary depending upon the 
complexity of the decision situation; in other words the planning level (operational, tactical 
or strategic) at which a decision-maker acts. Basic information about each alternative (costs, 
emission levels, etc.) can be provided by the first two modules (the operational and the 
investment modules) of eTRANSPORT. Depending on the needs for decision support, the 
user may need to study additional criteria that can not be modelled with eTRANSPORT 
such as aesthetical impact, noise or other similar criteria, all of which may be difficult to 
measure or express, but which can be extremely relevant in some decision situations.  
 
Uncertainty regarding the different impacts that alternatives may have is also a very 
important issue that must be taken into consideration when planning.  
 
6.1.2 Possibilities for decision support 
The new advanced DA module should be designed to allow an analysis that accommodates 
both relevant multi-criteria and uncertainty. Chapter 5 has been dedicated to an evaluation 
of possible strategies for extending the use of the eTRANSPORT model to allow more 
complex analyses than the cost-based optimization it allows at the moment.  
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A two-stage approach has first been adopted: the MAUT and the AHP methods have been 
applied to a pilot case-study where eTRANSPORT has been used to generate the impact 
data for analysis. During these applications - facilitated by researchers - important insights 
have been gained. First, we gained knowledge about possible ways to obtain and model 
preference information in the context of energy system planning, as emphasised in this 
thesis. Second, the participants in these experiments - potential users of the new, integrated 
tool – were supportive of this type of analysis and found it meaningful in the context of 
energy planning. These applications showed that eTRANSPORT can be used in complex 
decision settings when planners must take into consideration multiple criteria and 
uncertainties. 
 
Chapter 5 also ends with a proposal on how MCDA can be integrated into the 
eTRANSPORT model. As examples of how to built the new advanced DA module, the 
software belonging to the Decisionarium site [1] has been proposed. 
 
6.1.3 Features the integrated tool should have 
Before discussing the new advanced DA module, it is relevant to recall what 
eTRANSPORT currently looks like. Figure 6.1 shows a snapshot from an application 
session with this model. As one can see, the tool allows the user to choose from two types 
of analyses: operational and investments analysis. The proposal in this chapter refers to a 
new type of analysis, the advanced DA4. 

Figure 6.1 Main screen with drawing area, component libraries and result window 
 
The advanced DA module will be useful only when the problem is sufficiently complex, i.e. 
when the decision-maker considers it necessary to take into consideration several criteria 

                                                 
4 Advanced DM as it appears in this version of the model, depicted in figure 6.1. 
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when making a decision. Because not all problems that can be studied with  eTRANSPORT 
are necessarily complex, the multi-criteria analysis (advanced decision analysis) should not 
be integrated into the two existing modules, thus allowing thus the user to choose between 
cost-based operational/investment analyses or advanced DA. Such a feature would probably 
increase the acceptability of the eTRANSPORT tool, encouraging users to carry out 
different types of analyses and interactively discover new facets of the problem, without 
entering into complicated multi-criteria analyses to early. 
 
Theoretically, the advanced DA module replaces most of the dialog between the analyst and 
the decision-maker that is needed in the two-stage approach. In this proposal it will be thus 
assumed that the integrated tool, or at least the advanced DA module, would be used by the 
persons in charge with taking decisions. Nevertheless decision-makers would probably need 
guidance from an expert analyst in setting up the model (defining the relevant system 
alternatives), identifying and organizing criteria relevant in a decision situation, or in 
assessing the recommendations obtained with the model. 
 
The advanced DA module cannot be used without relevant impact information. The existing 
operational and investment modules can provide part of this impact information (costs, 
emission levels, losses) while others (the aesthetical impact for example) may imply the use 
of other sources or impact models. 
 
As a component of eTRANSPORT, the advanced DA module should be similar, in terms of 
use5, to the rest of the tool, i.e. the operational and the investment modules. This 
observation combined with the experience gained with the facilitated decision-support 
procedures (MAUT and AHP) led to the identification of several relevant characteristics the 
integrated tool should ideally have. These are: 
 
1) Facilitating problem structuring in terms of alternatives, multiple criteria and several 

scenarios 
2) Facilitating interactive procedures, and  
3) Providing means for incomplete preference elicitation. 
 
It is important to emphasise that with such features, the new decision support tool will 
address several sources of uncertainty. For example, part of the external uncertainty 
(uncertainty in impacts) will be modelled through scenario simulations, while part of the 
internal uncertainty (uncertainty inherent in human judgements) will be addressed through 
incomplete preference elicitation. 
 
 
6.2 THE ADVANCED DA MODULE 
 
The following proposal for extending the eTRANSPORT model takes into consideration the 
assumptions reviewed previously. The general guidelines for designing the structure of this 
new module and the preference elicitation procedure will be first proposed. The 
mathematical model that can sustain such decision-support tool will be also discussed.  
 

                                                 
5 Recall that when using eTRANSPORT, the decision-maker can draw and define system configurations 
by dragging-dropping system components from an available library of components 
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This proposal is based on the PRIME (Preference Ratios In Multiattribute Evaluation) 
technique developed by Ahti A. Salo and Raimo P. Hämäläinen at the Helsinki University 
of Technology [2]. This technique can handle imprecise preference statements such as: 
holistic comparisons between alternatives, ordinal preference judgements or ratio 
comparisons about preference differences. From a practical point of view, the method can 
be used for decision support in planning or in negotiations, because such situations are 
usually characterized by novel and difficult-to-express concerns. Thus PRIME can be 
relevant when building an advanced DA module to support tactical or strategic planning of 
energy systems. Moreover, PRIME has a strong mathematical foundation, as it has already 
been successfully implemented in the decision-support software called PRIME Decisions, 
by Tommi Gustafsson [3]. 
 
6.2.1 Structure 
The advanced DA module will have the role of: 1) facilitating problem structuring and 
display the information relevant in a decision situation, 2) facilitating preference elicitation 
and 3) facilitating the analysis of results (recommendations). Correspondingly, there will be 
three procedural steps the decision-maker should undertake: defining the decision problem 
by choosing and structuring criteria, answering preference elicitation questions and 
analysing the recommendations. Figure 6.2  shows the details of this procedure. 
 
Step1: Problem structuring  
 
Decision-maker’s tasks: 
 
Identifying criteria 
The first step in using the advanced DA module consists of identifying the criteria relevant 
in a decision situation. Similarly to defining the energy system, in the eTRANSPORT, this 
task also implies the use of a library of criteria components. This library may include three 
types of criteria: 
 
 Criteria of type 1: criteria (attributes) that can be calculated using the eTRANSPORT 

model: operation cost, emissions (CO2, NOx, etc.) and losses 
 
 Criteria of type 2: criteria that may be of interest to the decision-makers in some 

situations but that cannot be calculated with the eTRANSPORT model. A list of this 
type of criteria can be suggested by the model, for example: noise, aesthetical impact, 
the company’s image, or other criteria that may generally concern energy planners 
(model developers can conduct a survey among different energy planners for finding 
good candidates for this criteria list). The model should also suggest measurement 
scales for these criteria, although decision-makers should be allowed to change these 
scales if they do not entirely reflect their concerns. 

 
 Criteria of type 3: additional criteria that a decision-maker may want to consider in an 

analysis. These criteria are not defined in the tool itself, and thus they must be defined 
by the user, who should be able to provide relevant measurements scales and 
descriptions of the impact each alternative may have.  

 
Note that the more complex a decision problem is (tactical or strategic level) the more 
need to consider and define new criteria (criteria of type 2 and 3) exist. 
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Figure 6.2 Steps in using the ‘advanced DA’ sub-module 
 
Identifying and structuring criteria is an essential step in the success of the advanced DA 
process, as it provides the decision-makers with more opportunities to identify and 
understanding decision options, and may even lead to the discovery of new alternatives. 
Within this first step of problem structuring, the user should also be allowed to organize and 
structure criteria in a hierarchy6, if necessary. This is however not an easy task; it may 
require the assistance of an analyst or preliminary training on the part of the decision-maker 
in the field of MCDA.  
 
When defining criteria, it is important to distinguish between: 
 Quantitative criteria, measurable on quantitative scales such as: costs (measured in 

monetary values - $, NOK), or emissions (measured in tonnes of CO2, NOx), etc. 
 Qualitative criteria, for which verbal, subjective descriptions are more relevant, such 

as: aesthetic impact (description of a new power producing facility), noise , etc.  
 

                                                 
6 However, the procedure proposed in this chapter considers only criteria at the lowest level of the 
hierarchy, as a basis for preference elicitation (and for building the underlying mathematical model). 
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Previous experience has shown that it might be difficult for a decision-maker to compare 
alternatives in terms of some quantitatively measured criteria, such as emissions (CO2 or 
NOx). The reason for this is that it is difficult to understand the impact and to put values on 
differences (which may sometimes not be too large) in emissions levels. This inconvenience 
can be solved either by changing the measurement scales for these criteria (proposing for 
example to count the number of people who get sick because of emissions) or, perhaps by 
treating them as a ‘qualitative’ criterion and describing it verbally.  
 
Other criteria for which quantitative measurements might not be relevant are noise or the 
aesthetic impact criterion. Noise can be measured numerically (db) but qualitative 
definitions may be more appropriate in some analyses since various sources of noise may 
exist in a region and not all are due to the energy system under consideration. For the 
aesthetic impact one can also find numerical scales as for instance the number of persons 
affected in a negative way by the aesthetical aspect of a part of the energy system. The 
aesthetical impact of a solution might depend on its the degree of novelty and acceptability. 
However relevant measurements in this respect might be difficult to obtain.  
 
It is important to emphasise that if the user is interested in considering different criteria in 
a decision process, then he must be able to supply measurements and descriptions (that he 
finds relevant) of how alternatives perform in these criteria.  
 
Taking uncertainty into account 
Apart from defining and structuring criteria, another task a decision-maker can undertake at 
this step is to identify the external factors that induce uncertainty in impacts different 
alternatives can have. As discussed previously, uncertainty in electricity prices or in energy 
demands can be easily taken into consideration with eTRANSPORT through scenario 
simulations. In the two-stage applications described in Chapter 5 probabilities have been 
assigned to each scenario considered, and the methods used allowed us to take into account 
uncertainty in this way.  
 
The PRIME method proposed here for the construction of the preference model is basically 
a multi-attribute value method. Value theory cannot be used for decision support when 
attributes are uncertain (defined in terms of scenarios). Thus, comparing with the pervious 
applications the approach proposed in this chapter brings conceptual limitations in 
modelling the external uncertainty through quantitative scenarios.  
 
From a mathematical point of view there are however no limitations to continue to model 
uncertainty though scenario simulations in this proposal. A possibility is to use the approach 
of Model 1 described in Chapter 4 (paragraph 4.2.2.1). This approach prescribes the 
aggregation of attributes over different scenarios to which probabilities are assigned. This 
aggregation should take place probably in an additional module inside eTRANSPORT since 
so far this model does not integrate scenario analysis. This new module should collect all 
quantitative data from the simulations with the operational or investment modules of 
eTRANSPORT and should allow the aggregation of attributes over scenarios based on a 
decision paradigm the user would specify (Expected Values, Minimax Regret, Maximax, 
Maximin, etc.). Then once the attributes are aggregated the approach based on PRIME 
method can be used.  
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Conceptually however, this approach has an important disadvantage. This is because the 
value model (based on PRIME) will be constructed over attributes that have been already 
‘evaluated’ and that already incorporate some sort of risk attitude (induced by the decision 
paradigm the user should choose). Thus, during the multi-criteria evaluations, these 
attributes will be considered again, but now in a different ‘context’ (as it will be described 
further). An idea to overcome this double evaluation is to ‘automatically’ transfer to the 
multi-criteria procedure the expected values of the attributes (only informing the user about 
what these values represent and not asking him to do no anything at that point).  
 
An advantage of scenario aggregation is that, in general, potential users (engineers) of the 
extended eTRANSPORT are quite used to this type of analysis. However it is important that 
the tool will allow the definition of scenarios and the procedure to aggregate them as an 
option (similar to the option of performing the multi-criteria analysis). Being flexible in this 
respect, the tool would also allow the analysis of one scenario at the time. Furthermore, this 
can facilitate the analysis of complex scenarios (defined through combinations of factors 
that can influence attributes at both operational and investment level). As discussed in the 
previous chapter, the uncertainty in investment-related attributes (qualitative) is in general 
difficult to model but nevertheless there may be situations when decision-makers would like 
to consider it, at which time the model should allow them to do so. Otherwise there is a risk 
that some expansion planning alternatives may be excluded from evaluations, no matter 
how well they may perform in terms of operation. However, it is important to observe here 
that the final analysis of scenarios will be carried out separately (not ‘inside’ 
eTRANSPORT). An approach suggested in [7] would be to consider each scenario as such, 
without allocating probabilities.  
 
However, there is no single or easy way to deal with uncertainty. To summarise this 
discussion, it is important to recall that the PRIME method deals with incomplete 
preference information. This means that the uncertainty which is related to problem analysis 
(how well decision-makers can compare and evaluate different attributes) is taken into 
account with this method. This type of analysis can be sufficient when planning. In cases 
when the external uncertainty is and important issue, then this can be modelled through 
scenarios.  
 
The proposal in this chapter is to create a flexible tool that can allow the user to choose to 
model the external uncertainty through scenarios (in a separate ‘uncertainty module), and 
analyse these scenarios if this would be an issue in a given problem context. If for instance, 
the scenarios would not induce great differences in attributes, then the user can choose to go 
further to the step of multi-criteria analysis with one set of impact data. If on the other hand, 
there will be a significant difference in the impacts alternatives would have in different 
scenarios, then the user can either choose to analyse and aggregate attributes (and then go 
further to the multi-criteria analysis) or to analyse each scenario at a time. 
 
Information display: 
 
Assuming that all relevant criteria have been chosen, the tool should display a matrix table 
that will collect all information about the impacts of potential alternatives in different 
criteria: the rows of the matrix will correspond to the available (relevant) alternatives, while 
the columns will correspond to the criteria/attributes chosen. Thus, if it is possible to 
characterize the decision problem through a set of criteria, denoted by C = {C1, C2, …Cn} 
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and a set of alternatives, A = {A1, A2, …Am}, then the achievement matrix can be 
constructed in the following way: 
 

  
Criteria 

  C1 C2  Cm 

A1 a11 a12 … a1n 
A2 a21 a22 … a2n 

…
 

…
 

…
 

…
 

…
 

A
lte

rn
at

iv
es

 

Am am1 am2 … amn 
 

where aik is the level of achievement (possibly an aggregated attribute) of alternative i in 
criteria k. 
 
If, at this point the DM is able to select one alternative, the decision aid process should be 
terminated. If not, then the next step will be to help him in analysing the matrix and 
expressing his values, through a preference elicitation procedure (which replaces the 
questionnaires from the previous, facilitated applications). It is important to observe here 
that the multi-criteria achievement matrix, in the advanced DA mode is practically an 
extended version of the investment matrix which makes the connection between the 
operational and the investment sub-modules (see also Figure 2.1 in Chapter 2). 
 
Step 2: Preference elicitation  
 
Once all information available is structured as described previously, the decision-maker has 
to analyse it and choose an alternative that best suits his purposes. Preference elicitation 
consists of a series of evaluation questions that seek to reveal the decision-makers values in 
a specific decision situation.  
 
In PRIME, a user is allowed to specify incomplete preference information such as: ordinal 
preference judgements, value intervals or holistic comparison. A decision-maker can start 
with those comparisons that are easier to make and move towards more difficult 
judgements. After each new statement, the judgements are synthesized into a value model 
that determines the dominance relationships among alternatives by solving a series of linear 
programming problems [2, 4]. 
 
As explained in Chapter 3, value function models can be built based on scores (evaluations 
of alternatives in each of the criteria considered) and weights (comparisons between 
criteria). The elicitation of the relative magnitudes of scores can be based on ratio 
comparisons of differences in consequences (attributes). Trade-off information about the 
relative importance of attributes can be elicited through ratio judgements where the 
achievement levels of the consequences differ on at least two attributes. Because a large 
number of comparisons can be performed, the elicitation process must be carefully 
structured. This proposal emphasises the necessity of addressing both quantitative and 
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qualitative criteria at the lower level in a value tree (twig-level). Thus, the following types 
of questions can be adopted:  
 
 
 Single criterion evaluations (scoring) in both quantitative and qualitative criteria: 

 
 Ordinal ranking of attributes, and 
 Comparisons of differences between pairs of attributes, such as:  

- asking the decision-maker to compare value differences defined by adjacent 
achievement levels, proceeding from the least preferred to the more preferred 
ones, or 

- defining all value differences in reference to the least preferred attributes and 
asking the decision-maker to compare them. 

 
 Comparisons between criteria (weighting): 

 
 Order criteria in terms of their importance 
 Express the relative importance of criteria – ratio estimates regarding weights. The 

elicitation process must be structured in terms of 1) the attributes with regard to 
which the comparisons are made and (choose an reference attribute) 2) the 
alternatives that are included in the comparisons. In [2] several possibilities for the 
design of questions are proposed: 
- formulate ratios in terms of value differences between the most and the least 

preferred alternatives (interval SMARTS), or 
- select any two alternatives and formulate ratios in terms of value differences 

between these. 
 
The design of questionnaires - the user interface – that may be relevant for the advanced DA 
module has not been studied in this thesis. However, an illustrative example of how the 
evaluation procedure looks like in PRIME Decisions will be offered at the end of this 
chapter.  
 
Step 3: Issuing a recommendation    
 
Preference elicitation will practically translate the problem of choosing the alternative with 
the ‘best’ impact into a problem of choosing the alternative with the highest overall value. 
These overall values are calculated based on the answers a decision-maker provides to the 
preference elicitation questionnaires. The result of advanced DA will be a recommendation 
about which alternative to choose. 
 
The mathematical model that can sustain such an advanced multi-criteria analysis will 
subsequently be described, but for the moment it is relevant to emphasise that these overall 
values for each of the alternatives considered, are obtained in terms of intervals. These 
intervals result from the imprecision in preference statements (inputs are given in terms of 
intervals), thus they represent the uncertainty in human judgements: the larger the intervals, 
the more ambiguous were the answers that led to it. To illustrate the type of results one can 
obtain in a simple example, suppose that in a decision problem with six relevant decision 
alternatives, the decision-maker’s answers lead to the calculation of overall values for each 
alternative, as in the Figure 6.3. 
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Figure 6.3 Displaying the overall values of alternatives 

 
One can observe that these kinds of results may not lead to a clear recommendation, 
because the intervals of variation do not offer enough information to clearly show which 
alternative is best (non-dominated): for instance it is easy to eliminate alternative 1 (having 
the lowest values) but it is difficult to choose between alternatives 2 and 6 since their values 
are comparable towards their maximum.  
In a problem, the set of dominated alternatives can be determined based on dominance 
structure. In PRIME, two dominance structures are used: absolute dominance and the 
pairwise dominance. 
 
If there are several non-dominated alternatives, it is not possible to conclude which 
alternative is the best without having additional information from the decision-maker. This 
additional information can be obtained either when the decision-maker goes through the 
preference elicitation process again, or when he is able to specify a decision rule that may 
further distinguish between alternatives. Some of the decision rules proposed in [2] are:  
 
 the Maximax rule: choose the alternative for which the largest possible value is greatest 
 the Maximin rule: choose the alternative for which the smallest possible value is the 

largest 
 the Minimax Regret rule: choose the alternative for which the largest possible loss of 

value (in the case of the selection of any other alternative) is smallest, or 
 the Central values rule: choose the alternative for which the midpoint of the value 

interval is the greatest. 
 
Based on a thorough evaluation of decision rules with PRIME, it has been observed that the 
Minimax Regret and the Central Values rules outperform the other decision rules in terms of 
loss of value (associated with the possibility that a rule leads to the choice of a nonoptimal 
alternative).  
 
Thus, in practice, an analysis can be terminated by dominance structures or by decision 
rules. The clearer the decision-makers are in expressing preferences, the more chances exist 
that the model will converge directly to a recommendation. The more imprecise and 

 

Alt 1

Alt 2

Alt 3

Alt 4

Alt 5

Alt 6
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incomplete the preferences are, the more likely it becomes that decision rules will be 
needed.  

6.2.2 The mathematical model  
The first part of this chapter presented a proposal for how the advanced DA module in 
eTRANSPORT should be designed. This proposal suggested the succession of the 
procedural steps for this module, i.e. problem structuring, preference elicitation and issuing 
the final recommendation. This paragraph presents the mathematical model that can sustain 
such a decision support procedure.  

6.2.2.1 The basics of the preference model 
The preference model is the mathematical representation that sustains the advanced DA 
module. Structurally, this model will be independent of the existing mathematical algorithm 
that supports the operational and investment analyses in eTRANSPORT. This separation is 
necessary because conceptually these two mathematical models represent different things.  
The existing eTRANSPORT models the physical characteristics of an energy system 
(conversion, transport, storage components and energy, costs and other quantitative flows 
within a system) and is used to estimate the impact that different system alternatives may 
have in different circumstances (in operation or expansion planning).  
 
The preference model, on the other hand, models the decision-maker’s values or 
preferences when confronted with the problem of choosing among different relevant system 
alternatives. The scope of a preference model is to provide supplementary information that 
can help planners in making a decision, i.e. in selecting an alternative.  A preference model 
can be also used to provide data for comparing the alternatives but this time in terms of 
decision-maker’s values and not in terms of impacts. The main assumption when 
constructing such model is that the decision-maker is able express these preferences or 
values.  
 
The preference model is based on the preference elicitation step described previously. Thus 
preferences can be modelled after the problem is structured, i.e. after the decision-maker 
identifies the relevant set of alternatives, A = {A1, A2, …Am} and the set of criteria, C = 
{C1, C2, …Cn} upon which these alternatives should be judged. As has already been shown, 
this proposal addresses multi-attribute problems, which can simply be described through a 
multi-attribute matrix: 
 

1 1 1

1

n

m m n

a a

a a

 
 
 
 
 

K

M O M

L
      (6.1) 

 
Each element in this matrix, i.e. each attribute aik describes the level of achievement of an 
alternative i, (i∈[1,..m]) in a criterion, k (k∈[1,..n]). Depending upon how criteria are 
chosen, some of the aik are calculated directly with the eTRANSPORT model (costs, 
emission levels or losses) while others must be specified in addition, as described in the 
previous paragraph. 
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The decision-maker has to analyse this multi-attribute matrix and choose an alternative that 
best suits his purposes. It is assumed further that the user has some preferences (values) in 
mind when analysing the different options. These values are considered here as being 
implicit in the sense that the decision-maker might not be able to explicitly specify them (as 
required, for example with MAUT or AHP). The main idea with preference modelling is to 
try to approximate, as best as is possible, these implicit values and then compare 
alternatives accordingly.  
 
Another assumption when building the preference model is that an additive value function 
can be used for finding the overall value for each alternative Ai, i.e. 

1

( ) ( )
n

i k ik
i

V A v a
=

=∑      (6.2) 

where ( )k ikv a is the implicit preference (value) a decision-maker has for an attribute aik 
(i∈[1,..m], k∈[1,..n]). Illustratively, the multi-attribute matrix describing impacts (6.1) can 
be translated into a value matrix in the preference model:  
 

1 1 1 1 1

1 1

( ) ( ) ( )

( ) ( ) ( )

n n

m m n m n

V A v a v a

V A v a v a

   
   =   
   
   

K

M M O M

L
   (6.3) 

 
The variables in the preference model are the implicit values ( )k ikv a , the objective(s) is to 
find the overall value ( )iV A  while the constraints can be modelled based on the answers to 
a series of preference elicitation questions.  
 
Because preference elicitation questions would allow decision-makers to specify answers in 
terms of intervals the actual mathematical problem underlying the preference model will be 
composed of a series of smaller linear optimization problems. In principle, two optimization 
problems can be defined for each alternative Ai: one to maximize the alternative’s overall 
value ( )iV A and the other to minimize this value. In the end, alternatives will be compared 
in terms of their overall values, obtained within intervals:  

[Max
1

( ) ( )
n

i k ik
k

V A v a
=

=∑ , Min
1

( ) ( )
n

i k ik
k

V A v a
=

=∑ ]    (6.4) 

One can observe at this point that preference elicitation is in fact the key in building 
preference models. The preference elicitation procedure can be designed in different ways 
in order to encourage the user to think and compare attribute levels.  
 
As explained previously in Chapter 3, the main ingredients when building multi-attribute 
value functions are the scores (comparisons within each criterion) and the weights 
(comparisons between criteria). The overall values in formula 6.4 can be thus further 
written such as: 

* 0
* 0

1 1 1

( )( ) ( ) ( ) ( ) ( )
( ) ( )

n n n
Nk ik

i k ik k k k k k k ik
k k kk k k k

v aV A v a v a v a w v a
v a v a= = =

 = = − =   − 
∑ ∑ ∑   (6.5) 
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where [ ] [ ]* 0( ) ( ) / ( ) ( ) 0,1N
k ik k ik k k k kv a v a v a v a = − ∈   is the normalized score for attribute k 

in view of alternative i,  and the difference * 0( ) ( )k k k k kw v a v a= −  can be interpreted as the 
weight of the k-th attribute. In order to derive such equivalence, it is assumed that: 
1) the least preferred ( 0

ka ) and the most preferred ( *
ka ) achievement levels for each 

criterion k, can be identified and 0( ) 0k kv a =  
2) by convention, an ideal alternative can be defined as the alternative that would reach the 

most preferred achievement levels ( *
1a , *

2a , … *
na ). To this alternative, an overall value 

of 1 is assigned, such that * *

1

( ) ( ) 1
n

k k
k

V A v a
=

= =∑  

It is important to observe that the value function model will have as its main variables the 
partial values ( )k ikv a , which will be constrained by the answers about scores and weights 
that a decision-maker would supply. Thus the scores and the weights will not be included in 
the model as such, because they would introduce non-linearity (the objective functions 

( )iV A would be non-linear if expressed as in the last part of equation 6.5). 
 
6.2.2.2 Modelling incomplete preference information 
This paragraph will present examples of how the answers to the preference elicitation 
questions can be modelled mathematically.  
 
The preference model described in paragraph 6.2.1 implies that the user can specify 
different types of preference information either ordinal or cardinal in terms of intervals. All 
preference statements can be modelled as linear constraints and as new statements are 
introduced, more constraints will restrict the feasible space for each ( )k ikv a . Different 
mathematical formulations can model different answers, as will be emphasised further: 
 
1) The least and the most preferred achievement levels and ordinal ranking 
Information about the least and the most preferred achievement levels and ordinal ranking 
can be modelled as following: 
 
If for each criterion k, the least preferred ( 0

ka ) and the most preferred ( *
ka ) achievement 

levels can be identified, then: 
   0( ) 0k kv a =  and 0 *( ) ( ) 1

kk k kv a v a≤ ≤     (6.6) 
 
Sometimes, when judging in terms of quantitatively measured criteria, the least preferred 
achievement level (available for analysis, thus corresponding to an alternative analysed) 
might not the be ‘worst’ on the list. For instance, when comparing alternatives in terms of 
costs, the least preferred achievement level might not always be the higher cost 
(corresponding to the ‘worst’ alternative) but a cost level well under the maximum level, a 
limit up to which the decision-maker would agree to pay. Thus, if for any criterion k, there 
is and alternative Ai so that its corresponding attribute level is under the least preferred one, 

0
ik ka a≤  then 

 0( ) ( ) 0k ik k kv a v a= =        (6.7) 
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Once the least and the most preferred levels are identified for quantitative criteria it is 
assumed that all other achievement levels (corresponding to the remainder of the 
alternatives) can be automatically ordered. This assumption is also sustained by the additive 
value model adopted.  
 
Ordinal preference information should be specified, if possible for the qualitative criteria as 
well. However, the task of comparing alternatives in terms of qualitatively measured criteria 
(such as the aesthetic impact) may be quite difficult and sometimes may be impossible. 
PRIME for example permits the decision-maker to leave an assessment undefined, if he 
cannot assess it. 
 
Then, if attributes can be ordered, for any criterion k such as: 0 *

k ik jk ka a a a≤p p  (where 

ik jka ap  means that jka is preferred to ika ) then the following set of inequality constraints 
would result on values:  

*0 ( ) ( ) ( )
kk ik k jk kv a v a v a≤ ≤ ≤       (6.8) 

 
2) Cardinal ranking 
Cardinal ranking supplies additional information regarding the strength of preferences, 
which were left undefined by ordinal ranking. A cardinal preference can be specified as a 
ratio with an upper and lower bounds. The PRIME method offers several possibilities for 
expressing cardinal information in terms of scores and weights, as defined as in equation 
6.5. 
 
The general format of ratio comparisons that reflects the relative magnitudes of scores is:  

   *

*

( ) ( )
( ) ( )

k ik k i k

k jk k j k

v a v a
v a v a

−
−

       (6.9) 

where ia and *ia , ja and *ja are pairs of alternative achievement levels corresponding to the 
k-th criteria. If the decision-maker can specify bounds on these ratio estimates [Lk, Uk], then 
additional linear constraints can be added to the model: 
 

* *( ) ( ) [ ( ) ( )]k ik k i k k k jk k j kv a v a L v a v a− ≥ −  and 
 

* *( ) ( ) [ ( ) ( )]k ik k i k k k jk k j kv a v a U v a v a− ≤ −     (6.10) 
 
The challenge, however, is to formulate the questions that will lead to the assessment of 
such bounds. One way would be to ask the decision-maker to provide estimates for all 
differences with reference to the least preferred achievement level ( 0

ka ) such as: 

    
0

0

( ) ( )
( ) ( )

k ik k k

k jk k k

v a v a
v a v a

−
−

      (6.11) 

which preferably starts from the most preferred achievement level (at the top of the 
fraction) and continues with less preferred levels.   
 
The way to design the questions is dependent on whether the attribute is an increasing or 
decreasing one (the attribute expresses ‘costs’ or ‘gains’). For instance, if the decision 
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maker has specified that 0 *
1 2 3 4k k k k k ka a a a a a= =p p p  then he is requested to provide 

estimated for ratios  

   4 1

2 1

( ) ( )
( ) ( )

k k k k

k k k k

v a v a
v a v a

−
−

 and 4 1

3 1

( ) ( )
( ) ( )

k k k k

k k k k

v a v a
v a v a

−
−

     (6.12)  

The formulation of such questions is: ‘which difference (loss or grain) has a greater 
importance (and how much larger is the importance – in terms of intervals) to you: moving 
from the best alternative to the worst or from the second best to the worst…etc’ 
 
The assessment of preference information regarding the relative importance of criteria (the 
weights) will add more constraints to the optimization problem. According to the 
representation (6.5), the weights can reflect the range of the attribute being weighted, as 
well as its importance.  
 
A large number of preference elicitation questions are required in order to restrict the values 
of the weights. Several guidelines for structuring such a long elicitation process are given in 
[2]. In PRIME, the weight of an attribute is defined as the gain in overall value obtained by 
a change from that attribute’s worst consequence to its best one. PRIME Decisions uses 
SWING with intervals as its weighting method, which means that the most important 
criterion is assigned 100 points and the weights of the other criteria are compared to this 
value and are given in intervals [L,U] with bounds ranging from 0 to 100. Then, for each 
attribute, this leads to a new set of inequalities:  

* 0

* 0

( ) ( )
100 100 100 ( ) ( ) 100

k k k k k

ref ref ref ref ref

w v a v aL U L U
w v a v a

−
≤ ≤ ⇔ ≤ ≤

−
  (6.13) 

6.2.2.3 Preference synthesis 
After preferences have been expressed, the value model has been built and the overall 
values for each alternative have been obtained, preferences must be derived. In order to 
reach a recommendation, it is important at this step to further select non-dominated 
alternatives from the list. Dominance structures and decision rules may help the decision-
maker to further compare the alternatives.  
 
For instance, in an absolute dominance sense, an alternative A1 is preferred to A2 if the least 
possible value of A1 is greater than the largest possible value of A2 (i.e., the value intervals 
of the two alternatives do not overlap). Mathematically this means the following: 

1 2 1 1 2 2
1 1

( ) min ( ) max ( ) ( )
n n

k k k k
k k

A A V A v a v a V A
−

−
= =

⇔ = =∑ ∑f f   (6.14) 

 
The set of alternatives can be also be determined using the pairwise dominance criterion. 
According to this criterion and alternative A1 is preferred to A2 if and only if the value of A1 
exceeds the value of A2 for all feasible scores, i.e.:  

1 2 1 1 2 1 2
1

( ) min[ ( ) ( )] min [ ( ) ( )] 0
n

k k k k
k

A A v a V A V A v a v a
−

=

⇔ = − = −∑f f  (6.15) 

In situations where dominance relations are not sufficient to drawing a conclusion, and the 
possibilities of obtaining further preference information (i.e. going back to preference 
elicitation) are limited, decision rules can be applied. Such decision rules are in fact ways of 
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organising the final results. The following mathematical formulas can be used for 
expressing the results according to different rules [2]: 
 

1) Maximax: determine the alternative with the largest possible value): 

i.e. an alternative A such that ( ) ( ')V A V A
− −

≥ , for any A’ in the set of alternatives. 

2) Maximin: determine the alternative for which the least possible value is greatest): 

i.e. an alternative A such that ( ) ( ')V A V A
− −

≥ , for any A’ in the set of alternatives. 

 
3) Minimax Regret: determine the alternative for which the greatest possible loss of 

value, measured as the largest difference between ( )V A and the value of all other 

alternatives, is smallest 

i.e. '' '' 'max [ ( '') ( )] max [ ( '') ( ')]A À A ÀV A V A V A V A≠ ≠− −
− ≤ − , for any A’ in the set of  

alternatives. 
 

4) Central Values: determine the alternative for which the midpoint of the value 
interval is greatest: 

i.e. an alternative A such that [ ( ) ( )] [ ( ) ( ')]V A V A V A V A
− −

− −
+ ≥ + , for any A’ in the set  

of alternatives. 
 
 
6.3 AN ILLUSTRATIVE EXAMPLE  
 
The proposal discussed in this chapter is about how to extend the energy model 
eTRANSPORT such that it will allow for analysis of options in terms of multiple 
criteria and uncertainty. The structure and the mathematical model behind a new 
module of eTRANSPORT (the advanced DA module) have been emphasised. This new 
module will be practically an addition to the existing model, and it will give the user a 
possibility to perform a more advanced analysis of a problem, in addition to the cost-
based analysis (which is already implemented). 
 
This proposal has not been implemented at the time this thesis was written. However, in 
order to show how such a module will work and look like, the software PRIME 
Decisions (built on the same method proposed for the advanced DA module) is used. 
The same case study used to test MAUT and AHP will be resolved now with this 
software. The difference between this application and the previous ones is that a 
computer tool is used now to find decision-maker’s preferences, as the advanced DA 
module would do. However, because the integrated tool is not developed yet, this 
example is again a two-stage procedure: eTRANSPORT is used to generate impact data 
and PRIME Decisions is used for preference elicitation and displaying the (results) 
recommendations.   
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Recall that the problem was to analyse and make a decision regarding four possible 
alternatives for expanding a local energy system. In order to compare among 
alternatives, five criteria have been taken into consideration: operation and investment 
costs, CO2 and NOx emissions and heat dump.  
 
Step1. Problem structuring  
PRIME Decisions allows for problem structuring in terms of criteria and alternatives. 
First, criteria have to be defined. The problem studied (named Expansion in this 
example) involved the five twin-level criteria. The data used in this example is the same 
as in the applications presented in Chapter 5.  
 

 
Figure 6.4 Structuring criteria with PRIME Decisions 

 
PRIME Decisions can also be used in more complex problems where criteria must be 
structured in value trees, for example. After the value tree has been created (or the 
criteria have been defined), the alternatives should next be identified.  
 
The Alternatives window of PRIME Decisions is designed for this task. The problem 
analysed concerned four alternatives: 1) The base case, 2) Build a 3,6MW capacity CHP 
near the industrial site, 3) Build a 3,6MW capacity CHP near the town and 4) Build a 
3,6MW capacity CHP near an industrial site. For all these alternatives, attributes have 
been specified, as in Figure 6.5.  
 

 
Figure 6.5 Structuring alternatives with PRIME Decisions 
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In the initial problem, uncertainties have been considered in terms of three scenarios 
(see Table 5.1). Because PRIME does not provide means for uncertainty analysis, in 
this example only the middle scenario has been considered. 
 
Step 2: Preference elicitation  
The second step proposed is the preference elicitation step. In PRIME decisions three 
types of preference information items are available: score assessments, holistic 
comparisons and weight assessments. An Elicitation Tour can be chosen from the 
Model menu, to guide the user through all elicitation steps. Alternatively the 
questionnaires can be selected manually. Figure 6.6 shows all types of preference 
information a user can specify. 
 

 
Figure 6.6 Preference information window in PRIME Decisions 

 
Score assessment consists of ordinal ranking (defining the preference order of 
consequences) and cardinal ranking. Figure 6.7 shows an example on how the ordinal 
ranking (in this case in terms of operational cost) of alternatives can be done.  

 
Figure 6.7 Ordinal ranking of attributes in PRIME Decisions 
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Cardinal ranking supplies information about the strength of decision-maker’s preferences, 
which was left aside in ordinal ranking. A cardinal preference can be specified as a ratio 
with an upper and lower bound. A bound can be a nonnegative number, or it may be left 
undefined. PRIME Decisions provides different types of elicitation styles: Comparison of 
Successive Differences, Comparison of Two Differences from Lowest Level, Comparison of 
Difference from Lowest and to Highest Level, and Direct Rating in [0, 1]-scale. A cardinal 
ranking window for this example is shown in Figure 6.9.  
 

 
 

Figure 6.8 Cardinal ranking of attributes in PRIME Decisions 
 

 
 

Figure 6.9 Example of questions for cardinal ranking  
      of attributes (CO2) in PRIME Decisions 

 
For instance, for the CO2 emissions criterion, one can choose to compare successive 
differences. Thus, an increase between 1 and 1,2 times in values is specified here, when 
moving from alternative (3) to alternative (2) than when moving from alternative (4) to (5). 
That means that a decrease in emissions at higher levels is slightly more important than a 
decrease in emissions at lower levels.  
 
The second phase in preference elicitation is the assessment of weights. PRIME defines the 
weight of an attribute as the gain in overall value obtained by a change from that attribute’s 
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worst consequence to its best one. PRIME Decisions uses SWING with intervals as its 
weighting method, which means that the greatest value is represented as an interval of [100, 
100]. The weights of the other attributes are compared to this value and are given an 
interval with bounds ranging from 0 to 100. 
 

 
 

Figure 6.10 Top-down weight assessment in PRIME Decisions 
 
PRIME Decisions has two styles for making weight assessments: bottom-up and top-down. 
In bottom-up weight assessment the decision maker needs to weight the attributes with 
respect to each other. In top-down weight assessment, the decision maker compares the 
weights of different criteria with respect with a reference criterion. In this example (see 
Figure 6.10) a top-down assessment has been chosen, with the reference criterion chosen as 
the Operation Cost – with all other criteria being compared to it. 
 
Step 3: Issuing a recommendation    
In PRIME Decisions results can be displayed in different windows: value intervals, weights 
intervals, decision rules or dominance results, as shown in Figure 6.11. 
 
The Value Intervals window shows the calculated value intervals. The graph shows that 
both alternatives that implied the construction of the power plant near the town i.e. 
alternative 3 (3.6MW near town) and alternative 4 (5MW near town) are absolutely 
dominated. Moreover, the values for alternatives 1 and 2 do not offer enough information to 
choose one of them.  
 
The dominance results show the same thing. PRIME offers additional information about 
weights. A weight is the value of an attribute’s (or a goal’s) best consequence. It represents 
the importance of an attribute with respect to other attributes. In this example, the decision-
maker cares more about costs (operation and investment costs) then about local emissions 
(NOx) and less about global emissions (CO2) and heat dump.   
 
To reach a final conclusion, decision rules must be applied. PRIME Decisions provides four 
decision rules that can be applied simultaneously: Maximax, Maximin, Central Values, and 
Minimax Regret. 
 
In the example presented here, three of the four decision-rules recommend alternative 1 as 
the one complying most with the decision-maker’s values. A more optimistic decision rule 
(the Maximax rule) indicates however alternative 2. So far the problem is not ‘solved’ 
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because the decision-maker still needs to make a choice of which decision-rule’s 
recommendation to follow.  

 
 

Figure 6.11 Displaying results in PRIME Decisions 
 
6.5 DISCUSSION 
 
This chapter presented a proposal for designing a new module for the eTRANSPORT 
model. While the basic mathematical formulations that can support the new module have 
been illustrated, substantial work remains to be done to implement this approach. This work 
can be briefly summarized, and comprised two main areas: 
 
1) Designing the user interface and in particular, the dialog with the decision maker, i.e. 

the types of preference elicitation questions. This should be based on additional surveys 
about how users may perceive such model, understand its rationale and accepts the 
solutions. PRIME Decisions can be used in a first phase to test if different energy 
planners would be interested in carrying out their analyses. For a relevant testing, real 
decision problems and real decision makers should be involved. As a recommendation, 
future developers of the model can benefit from earlier experiences with developing 
decision support software reported for example in [5-7]. 

 
2) The proposal in this chapter has been mainly focused on describing a multi-criteria 

procedure that can be integrated into eTRANSPORT. This procedure takes into 
consideration the uncertainty residing in decision-makers’ way to specify his judgments 
(deals with incomplete preferences). The proposal include a discussion on how the 
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uncertainty in impact attributes (external uncertainty) can be considered with this new 
integrated tool, however no mathematical formulation of this part of the model have 
been given. Practically, the multi-criteria procedure (based on the PRIME method) 
would not depend on how the scenarios will be taken into consideration (one by one, or 
using some form of aggregation of attributes). In fact the scenario analysis (or 
aggregation) should take place after attributes are calculated (within the operational and 
investment modules) and before the multi-criteria analysis starts (within the advanced 
DA module). Further research is necessary if scenario aggregation is to be included in 
the model. 

 
3) Once the dialog (i.e. the preference elicitation questions) is decided, the value model 

needs to be built. A series of biases may appear with preference modeling. For instance, 
cardinal rankings may create biases, because numeric bounds may be difficult to 
establish. One bias type described in [8] appears when in comparison of differences not 
all differences are of about the same size, or at least in the same order of magnitude. For 
instance, if a difference in the comparison is remarkably greater (or smaller) than the 
reference difference, one cannot reliably determine the order of magnitude of the 
bounds. Research is still going on in this direction, and new methods are developed for 
dealing with incomplete preference information  [4]. 

 
 
6.4 CONCLUDING REMARKS 
 
This chapter has presented a proposal for extending the eTRANSPORT model with a new 
module, i.e, the advanced DA module. Several issues have been discussed: 
 
8. The proposal is based on the PRIME (Preference Ratios In Multiattribute Evaluation) 

technique developed by Ahti A. Salo and Raimo P. Hämäläinen at the Helsinki 
University of Technology. This method can be used for decision support in planning or 
in negotiations because such situations are usually characterised by novel and difficult –
to-express concerns. Since such situations can occur in tactical or strategic planning of 
energy systems, the method can be adopted when building the advanced DA module. 
Moreover, PRIME has a strong mathematical foundation and has already been 
successfully implemented in the decision-support software, PRIME Decisions. 

 
9. The advanced DA should include three procedural steps: problem structuring, 

preference elicitation and issuing a recommendation. 
 
10. The idea behind the design of the new module for eTRANSPORT was that is should be 

similar, in terms of use, with the rest of the tool. Accordingly, this module should allow 
the decision-maker to define decision problems in terms of several criteria, as the 
energy system has been previously defined in terms of its components. 

 
11. Although important impact information such as costs or emission levels can be provided 

in eTRANSPORT, in some situations decision-makers might need to add additional 
issues of concern to the analysis. Thus the tool should be flexible in terms of allowing 
the user to define additional criteria. 
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12. An important concept when building value models is that the preference elicitation 
procedures translate the problem of choosing the alternative with the ‘best’ impact into 
a problem of choosing the alternative with the highest value. When building such 
models it is assumed that decision-makers have some implicit preferences (values) for 
any achievement level of any alternative and any criterion. These values are revealed 
through the preference elicitation procedure.  

 
13. The basic mathematical background for modelling preference information, calculating 

values and deriving recommendations has been presented. The approach is similar to the 
one used by the PRIME method. If this approach is going to be implemented, more 
work needs to be done with the most important direction for research being the 
establishment of the final structure for the preference model, and based on this the 
development of the user interface and the dialog with the decision maker. 

 
14. PRIME Decisions have been used to solve the same problem addressed previously in 

the two-stage approach. The example illustrates how a procedure such as the one 
proposed in this chapter for extending the use of the eTRANSPORT model, could work. 

 
15. Uncertainty is also taken into consideration in this approach. The method proposed as a 

basis for the preference model (PRIME) takes into consideration the internal 
uncertainty that stems from the incomplete preference information. This method is 
based on a value function model and cannot deal, as such, with the uncertainty in 
impacts (external uncertainty). However, if this type of uncertainty is to be considered 
in terms of scenarios (as in the two-stage approach), some sort of aggregation of 
attributes has to be carried out before the advanced DA module is used. Although no 
technical limitation exists in this respect, from a conceptual point of view this approach 
practically implies a repeated evaluation of attributes. The proposal in this chapter is to 
create a flexible tool that can allow the user to choose to model the external uncertainty 
through scenarios (probably in a separate ‘uncertainty’ module), and analyse these 
scenarios if this would be an issue in a given problem context. If for instance, the 
scenarios would not induce great differences in attributes, then the user can choose to go 
further to the step of multi-criteria analysis with one set of impact data. If on the other 
hand, there will be a significant difference in the impacts alternatives would have in 
different scenarios, then the user can either choose to analyse and aggregate attributes 
(and then go further to the multi-criteria analysis) or to analyse the problem in each 
scenario at a time. 
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CONCLUSIONS  
 
 
 
I. Planning of local energy systems: Challenges 

 
The research in this thesis has addressed important issues regarding the activity of planning 
energy systems. Decentralization, the interconnection of different energy and emission 
markets and a trend toward sustainability are changing the priorities of energy planners and 
policy makers. Therefore the process of local energy system’s planning nowadays is or 
should be based on new values and that new decision support tools are needed to address 
this change. 
 
Within the local planning context, the need for decision support varies with the decision 
level and the number of participants in the decision process. Operative planning decisions 
can be supported by optimization and simulation models. Planning at tactical or strategic 
levels is more difficult to address with traditional energy models because several conflicting 
and complex issues have to be taken into consideration when making decisions.  
 
Within this framework, the use of energy models and multi-criteria decision analysis 
(MCDA) in decision support has been discussed.  
 
II. Impact and preference modelling 
 
Due to the large amount of information that must be studied and processed, an energy 
system model should always be the basis for planning decisions. Such a model can be used 
to estimate the impact different decision alternatives may have on the economy and the 
environment in a region. The research in this thesis has been developed in parallel with a 
new impact model, eTRANSPORT. This model has been applied, at different stages in its 
development, to several case studies, contributing gradually to better understanding of the 
needs for decision support in energy planning. 
 
eTRANSPORT can be used to calculate basic impact information about how relevant 
system alternatives may differ in terms of costs (operational and investment costs) 
quantities of pollutants emitted (NOx, CO2 or other pollutants) or energy losses. At the local 
planning level, many other criteria may be important when making a decision about the 
energy sources, energy carries and energy technologies to be used in supplying an 
increasing energy demand. These criteria can include the local impact on the environment 
(not only in terms of pollution but in terms of noise or aesthetic impact), the social impact 
or the need to comply with political and regulatory norms. 
 
eTRANSPORT has allowed for a cost-based analysis of the operational and investment 
alternatives. Although monetization of all these criteria has been (and still is) useful, in the 
new planning environment an approach based on an explicit analysis in terms of multiple 
criteria might in fact be more relevant for planners since it is difficult to find monetary 
values for a number of important factors in planning, such as emissions or for other criteria 
given such rapid changes in climate, social situations and economics. Therefore new 
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techniques for analysis are needed in order to allow planners to evaluate their options in 
terms of their real impacts.  
 
The field of MCDA (Multi-Criteria Decision Analysis) provides methods for helping 
decision makers in dealing with complicated problems in which many issues of concern 
must be revealed and taken into consideration for decision. These methods can help in 
identifying and structuring both the reality independent of the decision-maker and his way 
of thinking (preferences) as well.  
 
Methods for multi-criteria analysis can help planners to make ‘justifiable’ decisions, in the 
sense that they will better understand the problem and their own contribution to the decision 
and thus they would be able to justify their choices. The application of multi-criteria 
techniques depends very much on the ability to model the impacts in a specific 
circumstance or problem. The use -in a relevant way- of such methods can increase the 
chances that real decision makers will adopt the solutions provided by energy models.  
 
This thesis has provided different classification schemes that can contribute to the 
understanding of how MCDA methods can be applied in practice.  
 
III. Dealing with uncertainty  
 
The issue of dealing with uncertainties in decision-making has also been discussed. The 
notion of uncertainty in decision-making is broader than defined by practical engineering 
approaches. Uncertainty results from both the fact that it is difficult to forecast the future 
(external uncertainty) and also from the ambiguity inherent in human judgements (internal 
uncertainty). Recognizing the uncertainty in a decision context, accepting it, making an 
effort to structure, understand and model it, are the main steps in dealing with uncertainty 
and in making it part of the decision process. 
 
IV. Combining energy modelling and MCDA 
 
The last part of this thesis proposes different approaches for decision support in local 
energy planning. An investigation of strategies for combining energy modelling and MCDA 
techniques is first presented. In particular this thesis examines how to extend the use of the 
eTRANSPORT model in supporting complex decision analyses involving multiple criteria 
and uncertainties.  
 
Two strategies for combining impact and preference modelling have been studied. The first 
idea was to use the two models separately; to test the applicability of some MCDM methods 
using the type of data the eTRANSPORT can provide. The second idea was to find a good 
way for integrating the two models, by adding a new module to the eTRANSPORT model, 
to allow for preference elicitation and advanced decision aid. 
 
A two-stage approach 
The target problems in this discussion have been system planning problems, in which the 
main concern is to choose between alternative system configurations for supplying a given 
energy load. These problems involve a limited number of discrete alternatives for which 
MADM techniques are adequate. eTRANSPORT can be easily used to simulate the impacts 
different future evolutions of important system parameters (energy prices, end-used 
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demands) may have on the performances of different alternatives, thus allowing 
uncertainties to be studied in terms of scenarios.  
 
Multi-Attribute Utility Theory (MAUT) and the Analytical Hierarchy Process (AHP) have 
been applied to a pilot case study, where the impact information has been provided by the 
eTRANSPORT model. Relevant insights into the integration of the model with advanced 
decision support MCDA procedures have been obtained with these applications. It has been 
observed that the results of such decision support procedures may depend on the method 
used, the information presented for analysis to the decision-maker, or on the actual setting 
in which the preference elicitation is performed. An important result obtained was that the 
participants in these applications found these methods relevant to the types of problems 
studied. 
 
Integration of energy modelling and decision aid 
The experience obtained with the first application eased the way towards proposing a 
scheme for integrating multi-criteria analysis in the eTRANSPORT model. Chapter 6 of this 
thesis proposes an approach to designing a new module for eTRANSPORT, the advanced 
DA module. This approach assumes that the model can be used in problem structuring, 
preference elicitation and issuing a recommendation. 
 
The proposal is based on the PRIME (Preference Ratios In Multiattribute Evaluation) 
technique developed by Ahti A. Salo and Raimo P. Hämäläinen at the Helsinki University 
of Technology . This technique has been chosen because it can be used for decision support 
in planning or in negotiations, when novel and difficult to express concerns must be 
considered. PRIME allows its users to specify imprecise preference statements such as: 
holistic comparisons between alternatives, ordinal preference judgements or ratio 
comparisons about preference differences. Moreover, PRIME has a strong mathematical 
foundation, and has already been successfully implemented in the decision-support 
software, PRIME Decisions. 
 
Guidelines for building the preference elicitation procedure in the advanced DA module 
have been given. Practically, the elicitation of preferences helps in translating the problem 
of choosing the alternative with the ‘best’ impact into a problem of choosing the alternative 
with the highest value.  
 
The results in the advanced DA module are in fact recommendations. In practice, an 
analysis can be terminated by dominance structures or by decision rules. The clearer the 
decision-makers are in expressing preferences, the more chances exist that the model will 
converge directly to a recommendation. The more imprecise and incomplete the preferences 
are, the more likely it becomes that decision rules will be needed.  
 
To illustrate how such a procedure as the one proposed for building the advanced DA 
module may work, PRIME Decisions has been used to solve the same problem addressed 
previously in the two-stage approach.  
 
Dealing with uncertainties 
The approaches proposed for extending the use of the eTRANSPORT model, account for 
uncertainty in different ways. In the applications with MAUT and AHP, the uncertainty in 
the impact (external uncertainty) that different alternatives may have, has been modelled in 
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terms of scenarios with probabilities. The preference elicitation procedure in MAUT seeks 
to explicitly take into account the decision-makers risk attitudes regarding uncertain impacts 
that alternatives may have. The preference model is based on complete statements decision-
makers would need to make when asked various lottery and trade-offs questions.  
 
The approach proposed for building the new advanced DA module in eTRANSPORT can 
also model uncertainty. The method proposed will primarily address the uncertainty that 
stems from the incomplete preference information (internal uncertainty). The proposal is 
based on a value function model and cannot deal, as such, with the uncertainty in impacts 
(external uncertainty). Nevertheless, if uncertainty in impacts is to be considered in terms of 
scenarios, some sort of aggregation of attributes has to be carried out before the advanced 
DA module is used. Although no technical limitation exists in this respect (scenario 
aggregation can be easily modelled), from a conceptual point of view this approach 
practically implies a double evaluation of attributes.  
 
The proposal in this thesis is to create a flexible tool that can allow the user to choose to 
model the external uncertainty through scenarios (probably in a separate ‘uncertainty’ 
module), and analyse these scenarios if this would be an issue in a given problem context. If 
for instance, the scenarios would not induce great differences in attributes, then the user can 
choose to go further to the step of multi-criteria analysis with one set of impact data. If on 
the other hand, there will be a significant difference in the impacts alternatives would have 
in different scenarios, then the user can either choose to analyse and aggregate attributes 
(and then go further to the multi-criteria analysis) or to analyse the problem in each scenario 
at a time. 
 
V. Suggestions for future research 
 
This thesis can be a basis for future research in several areas. 
 
The first is to go further into the details of understanding the planning process and 
explaining the planning needs. This can only be done by involvement in real-life 
applications, with real problems and real decision-makers. 
 
Further research can be also dedicated to the testing of the applicability of other MCDA 
methods in real life planning. A comparison of how different methods can be used for 
decision-support should preferably be based on the feedback real-life decision-makers 
provide when using these methods in real situations.  
 
So far, eTRANSPORT has been used for investment (expansion) planning. Further research 
would be useful in addressing the operation-planning problems, and the implications that a 
multi-criteria evaluation performed at this stage might have on decisions made at higher 
levels.  
 
Uncertainty is a very important issue in planning. Further research can be directed towards 
problem structuring (for example, identifying the factors that induce uncertainty in the 
impacts at operational, tactical and strategic levels) or towards the integration of MCDA 
and scenario planning. 
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Moreover, important work remains in extending eTRANSPORT based on the approach 
proposed in Chapter 6. The implementation of this approach requires additional effort in:  
 
4) Designing the user interface and the dialog with the decision maker, i.e. the types of 

preference elicitation questions. This should be based on additional surveys about how 
users may perceive such a model, understand its rationale and accept the solutions. 
PRIME Decisions can be used in a first phase to test if different energy planners would 
be interested in carrying out such analyses. For relevant testing, real-life decision 
problems and real-life decision makers should be involved.  

 
5) Programming (modeling) the additional value model, once the dialog (i.e. the 

preference elicitation questions) is decided. 
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Abstract 
 
The planning of local energy systems must deal with a wide range of options and 

conflicting objectives. It is also subject to a large degree of uncertainty due, for example, to 
demand growth for different types of energy, price (or price elasticity) for different energy 
carriers, behaviour of different players in the energy or financial markets, cost and 
availability of fuels and technologies, economic growth, environmental regulation, inflation 
and interest rates and public opinion. The modelling approach presented in this paper is used 
in the construction of a planning tool that will allow different types of decision-makers, with 
different interests to use it in an equally efficient manner.  
 
Keywords: Local energy systems, Planning, Multicriteria and risk analysis 

 
 

1. Introduction  
 
The development of energy systems planning models all over the world was 

more or less related to the first oil crisis in 1973 [1]. Many of these models involved 
one energy carrier -electrical systems [2, 3, 4, 5]- and specific energy conversion and 
transport technologies [2,6]. The optimisation performed was mainly related to 
quantifiable objectives like minimising costs (or maximising profit) and minimising 
environmental emissions [6] while less attention was given to non-quantitative 
aspects or uncertainty and risks associated with the planning problem. Significant 
research worldwide was carried out in the field of energy planning [1, 6, 8, 9, 13] and 
some methods and models will be mentioned further, but a review of it is outside the 
scope of this paper.  

However, the complexity of this field and the multitude of ways to handle 
related problems allow us to propose a different modelling approach. The focus will 
be set on understanding the steps in the energy system planning process and the 
challenges modelling. The basic assumptions related with multicriteria and 
uncertainty modelling are the keys to social-economic profitable and sustainable 
energy solutions. At this point, the focus is set less on the mathematical details of the 
problem, but based on an optimisation model under development the general 
modelling framework will be outlined. The discussion will consider the problem, the 
system model that basically specifies the components of the energy system, a 
network flow operation model that convert the previous one into the computer code, 
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and finally an optimisation model that includes multicriteria and uncertainties. Thus, 
the first part of this paper will focus on the general settings regarding the problem of 
energy systems planning and then the modelling approach is presented. The last part 
concludes the present work and outlines further research. 
  
2. Energy Systems Planning: Problem Formulation 

 
Generally, the planning problem for an energy system can be formulated as 

follows: Decide the best operation plan and the new investments (in different 
conversion technologies, transport networks, etc) in order to meet the future energy 
service demands, at minimum possible cost while taking into consideration all types 
of technical and resource constraints, the environmental and social requirements and 
an uncertain planning environment.  

In this problem the system definition, including its boundaries, can be very 
complex. It might involve several energy resources (hydro, oil, gas, coal, sun, 
biomass, wind, wave, etc) and energy carriers (electricity, gas, hydrogen, oil, etc) 
together with different conversion, storage and transport technologies. It also 
involves a changing energy consumption pattern and new technologies to improve 
end user flexibility in choosing the type(s) of energy to be supplied with (electricity, 
gas, heat, hot water, etc). Thus, some of the resources (hydro, wind, wave) must be 
converted to other forms of energy while others can also be energy carriers (gas, 
coal, biomass). Consequently, a key element in the planning is to decide where in the 
system the necessary conversions should take place and which are the system 
boundaries.  

Another key element in the planning process is the decision-maker(s) 
involved. The problem will be different if the decision-maker is representing the 
local administration, an industrial customer, a utility company or association of 
residential users. Each of these potential decision-makers might have different 
interests and different points of view regarding the criteria of analysis. Moreover the 
uncertainty related to the planning will be characterised and included in the problem 
in a different way by different decision-makers. 
 
3. Modelling local energy systems 
 
3.1 Description of the current model 
 

As an illustration of the above discussion, a municipal energy system model 
with alternative solutions for distributed energy (electricity and heat) from biomass 
and waste can be represented as in Figure1. Available energy resources are shown on 
the left in the figure: Waste from municipal and business offices, institutions and 
companies, gas from old land fill and biomass and waste from forestry and farming 
[11]. These energy resources have to be transported, processed and stored in different 
locations and forms before converted to end user energy like electricity and heat. 
Often a choice has to be made between large centralised CHP units feeding local 
electricity and district heating networks, or remote mini-CHP installations in single 
buildings like offices, schools, health care centres etc.). The actual electricity and 
district heating networks are omitted from the figure for simplicity. 
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Fig.1. System model with alternative solutions for distributed energy from biomass and waste [11] 

 
From mathematical point of view the planning problem is a non-linear integer 

programming problem that, with certain simplifications, can be solved by linear 
programming, non-linear programming, dynamic programming or integer 
programming techniques or various emerging techniques such as expert systems, 
fuzzy logic, neural networks, analytic hierarchy process and genetic algorithms. 
However, because the planning problem must deal with a great number of variables, 
objectives and parameters, we use a linear optimisation model. The advantages of 
linear programming applied to energy systems are considerable in terms of 
sensitivity analysis and the possibility to include it in a system dynamics or a fuzzy 
logic approach [9, 10]. Many existing models are using it as well [1, 9]. 

Starting from the system model in Figure 1, its components are modelled with 
sufficient detail in order to ‘translate’ the three types of technologies in the system:  

 
• conversion technologies: convert one energy carrier into another at a specific 

geographic location; 
• transport technologies: transport a given energy carrier over a defined geographic 

distance; 
• storage technologies: storing one energy carrier at a given time. 

 
The result is a graphical network flow model that can be represented as in Figure 2. 

The components are linearly modelled which allows flexibility when including 
multiple criteria and uncertainties into the optimisation. The optimisation deals with 
a generic flow of energy that will ‘carry’ trough the model information related to the 
attributes associated to different criteria like costs, environmental impact (emissions) 
etc.  

At present, the structure of the linear model, represented in computer code, 
includes an operation sub-model and an investment sub-model that run in parallel. 
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Fig.2 Network model for distributed energy from biomass and waste [11] 
 

The operation model includes separate modules (files) describing available 
energy sources (electricity, gas, waste, etc), load points (for heat, electricity, hot 
water, etc.) and transport networks for different energy carriers (district heating 
network, electrical network, thermal power plant, discrete transport of gas and 
storage points). Each of these modules includes objective functions that are added up 
when the whole model is run. The model contains fixed technical parameters, which 
are not dependent on the problem analysed, and parameters that differ with each 
application. The constraints are either specific technical restrictions or related to load 
requirements, transport capacities and availability of primary resources used.  

 
3.2 Including multicriteria and uncertainties  

 
The linear model described above is able to handle multiple energy carriers in a 
geographically distributed network with energy transmission, conversion and storage 
technologies. Additionally, the planning of local energy systems must deal with a 
wide range of options, conflicting objectives and uncertainty.  
This modelling approach allows a robust analysis of the system planning process, 
regardless of the decision-maker and specified uncertain decision situations. The 
planning tool gives the possibility to the user to ‘build’ his energy system model by 
using a library of available components. For each decision-maker it is very probable 
that the system will look different, at least regarding its boundaries, the selection of 
criteria and characterisation of uncertainty.  
 
3.2.1 Multicriteria analysis 
 

Models considering multiple criteria are of increasing importance in decision 
support. Understanding and identifying fundamental criteria and the essential 
reasoning that matter in any given decision context is a very important part of the 
decision process. Often decisions are based on an insufficient problem analysis 
because inadequate consideration is given to the fundamental decision criteria in the 
first place, or because certain initial assumptions are easy to make or are made out of 
habit, or the experts making it are not actually the ones that will make the decision. 
In complex decision situations there may be several objectives that must be 
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considered and there may be others that can be used in evaluating potential 
consequences of the decision. 

In order to measure the accomplishment of the fundamental objectives, 
attribute scales can be used. Some attribute scales are easy to define (cost) while for 
others there are no obvious ways of measure (environmental impact, aesthetics, etc.). 
Thus, as a classification, the criteria can be related to: 
• cost: Minimise operation and/or investment costs; 
• direct economic and technical benefits: Maximise (profit, utility finances), 

Maximise (reliability, stability, flexibility); 
• environmental and health risks: Minimise (air and water pollution, flora and 

fauna influences, history, culture and aesthetics), Minimise (no. of accidents, 
diseases caused by pollution); 

• socio-economic impact: Maximise employment, Maximise business growth;  
• political impact: Minimise residents’ concerns, Maximise the acceptability of 

different technologies.  
On the other hand, the decision-maker must be aware of the fact that when 

looking at more that three or four criteria in the same time, he might lose track of his 
assumptions and the efficiency of the final result might be debatable. 
 
3.2.2 Uncertainty issues 
 

In planning complex systems usually uncertainty and risks are either 
neglected all together or they are dealt with by making rigid distribution 
assumptions. In the first case, risk factors are introduced by the decision maker 
through the definition of criteria that are somehow intended to control the risk 
inherent in the decision problem [12]. This is the case for example when the decision 
is made from a political point of view. In the second case it is simply assumed that a 
probability distribution is available which is then used as input for the multicriteria 
decision analysis.  

The whole source of uncertainty in planning resides in the necessity to 
establish energy system boundaries. In theory, all systems should be seen as open 
since they are all influencing the ‘environment’ and in the same time they are 
influenced by it [9], but a practical and useful decision cannot be made outside a very 
well defined system problem. Thus, in establishing system boundaries, the decision-
maker must be aware about a series of feedback loops that connect the markets for 
different energy sources and carriers, regulatory and political changes related to 
environmental issues, developments of new energy technologies etc.  

 
The decomposition of uncertainty is often the subject of research in decision 

theory, and related to our purpose, the following structure can be useful [12]: 
 

• uncertainty about the data used to build the model: future demand levels, 
forecasted value for the prices of future energy carriers, the cost of developing 
new equipment, etc; 

 
• uncertainty about the ‘external’ factors: the behaviour of other decision makers, 

regulators, etc.; 
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• uncertainty about the model: the human decision making process can hardly be 
captured in mathematical models. For example, from a human point of view it 
does not make sense that a solution changes from being entirely feasible to 
infeasible within very small variations of parameters; 

 
• uncertainty about the outcome of a decision. 

 
This decomposition is very general but it is necessary to have it in mind when trying 
to capture uncertainty, as much as possible, in modelling details. Many modelling 
approaches presented in the field of energy systems planning are not considering the 
whole uncertainty. The reason is probably that in the ‘traditional’ planning, decisions 
were not always taken after a thorough analysis of the optimisation results, but from 
socio-political reasons. Moreover, only recently the decision problems became 
obviously extremely complex because of the development of different markets for 
energy. On the other hand, in the conventional representation of decision making 
under uncertainty, the decision-maker is assumed to have sufficient information to be 
able to specify the complete probability distributions over the outcomes of each 
alternative. This is often not a realistic assumption.  
 
3.3 Modelling multiple criteria and uncertainties 
 

The approach we propose here is to create a tool that will allow different 
types of decision-makers, with different interests to use it in an equally efficient 
manner. At the moment only a cost optimisation is implemented, but future 
developments of the linear model will allow addition of multiple criteria and 
uncertainties, as shown in Figure 3. The optimisation process will be interactive and, 
depending on the size of the problem, will probably necessitate the presence of an 
analyst to supervise it.  
 First the decision-maker will ‘build’ his own system model by selecting, from 
an available library, the components of the energy system that he wants to analyse. A 
drawing as in Figure 1 will result. Then he will have to specify which types of 
uncertain situations to include into the analysis, from several available types 
provided by the planning tool. The optimisation model will need also as input, the 
specification of a decision paradigm that will capture the attitude of the decision-
maker towards risk. This decision paradigm can be related to expected value, regret, 
etc. The next step is selection of criteria. Depending on the number of it and on the 
size of the problem, the intervention of an analyst might be needed to assist the 
decision process. Within an interactive dialog the analyst will capture the preferences 
of the decision-maker regarding different criteria. These steps until now belong to the 
pre-optimisation phase when the decision-maker contributes in problem formulation.  
 There are several decision-aid methodologies in order to assess the 
preferences of the decision-maker regarding different criteria. The most common one 
is to ask directly the decision-maker to specify weights regarding criteria as an input 
to the optimisation routine. It is well known that this might complicate the decision 
process simply because the decision-maker might not be able, or might not want to 
specify these weights especially when many criteria are considered. 
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Figure 3. Optimisation including multicriteria and risk 

 
 A better option is to involve the analyst in building a value function of the 
decision-makers preferences. An interactive dialog will take place after the 
optimisation routine generates a list of possible solutions, in order to find out the 
indifference limits of the decision-maker regarding pairs of criteria. This will also 
allow the decision-maker to better understand the decision process and the 
consequences related to his choices. 
 Once the decision-maker ends his contribution to the optimisation process, a 
preferred solution will be obtained and implemented. As discussed earlier there are 
different types of uncertainties associated to this decision process. Even the 
uncertainty regarding the model and input data can be carefully included and 
analysed, in the end the results will still contain the uncertainty associated with the 
decision maker involved, or other actors in the planning scenery. 
 
4. Conclusion and future work 

 
We have discussed a modelling framework for energy planning. The basic 

issues were related with the premises and expectations of introducing multicriteria 
and uncertainty analysis into a robust and reliable decision process. A planning tool, 
based on a linear optimisation model under development was described. This tool 
will allow different types of decision-makers, with different interests to use it in an 
equally efficient manner. 
Further research will focus on defining and modelling a coherent family of criteria, 
relevant uncertainty situations and investigating possible ways to include these into 
the planning tool. 
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Summary: This paper recalls the problem of planning local energy systems as an interesting and 
challenging application for MCDA methods and methodologies. The main contribution in this 
paper consists of defining, structuring and understanding the complex decision process and of 
proposing a consistent framework for introducing multiple criteria and uncertainties into the 
problem formulation. The main ideas presented in the paper will serve as a basis for the 
development of a new planning tool for local energy systems. This decision support tool is the 
scope of an ongoing research project that aims at offering to the local energy planners a 
consistent methodology for analysing expansion problems. 

 
1. Introduction 
 
A large number of energy planning models and methods have been developed all over 
the world, since the first oil crisis in the seventies, with various applications at regional, 
national and even international scale. The scope of these models varies from 
engineering models focused on specific energy conversion technologies and single fuels 
or energy carriers, to more complex models describing the energy system as an 
integrated part of the overall economy [Rath-Nagel and Voss 81, Hobbs and Meier, 94, 
Borges and Antunes, 03]. There are also several multicriteria models and applications 
for the energy system’s planning problem, many of them considering multiple actors as 
well [Psarras et. all, 90, Becalli et. all, 98, 03]. Overviews, discussions and comparisons 
of these methods can often be found in the literature [Psarras and Capros, 90, Hobbs and 
Horn, 97, Greening and Bernow, 04]. In this paper we will restate the decision making 
process and the main challenges in modelling the energy system. We propose a 
framework for dealing with the complex decision problem, by stating the basic ideas for 
a new planning tool for local or regional energy systems. By including multiple criteria 
and uncertainties into the decision making process, this tool should enable different 
types of decision-makers, with different priorities, to use it in an equally efficient 
manner. For example public decision-makers will be able to run scenario studies of the 
energy systems with respect to environmental impacts and consequences of different 
regulatory regimes. Public or corporate decision makers will also be able to analyse the 
mutual interdependence between different energy carriers and infrastructures. 
 
The paper is organized as follows. We first introduce a general definition of the local 
energy system and the main aspects that have to be considered in the planning process. 
Then the focus will be set on the decision makers and stakeholders that are typically 
involved in the planning of such systems, how their objectives can be classified and 
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measured, the number of possible and available alternatives and which are the main 
sources of uncertainty. At the end, we propose a consistent framework for how multiple 
criteria and uncertainties should be incorporated within a computer-based decision 
support tool that can be used by different decision makers in the planning of local 
energy systems.  
 
2. Local energy systems planning 
 
A local energy system can be very complex from several points of view: technical, 
economic and organisational. Such a system can include several energy resources, 
several energy carriers (electricity, district heating, gas, and in the future possibly also 
hydrogen) and a diversified energy demand (Figure 1). The supply side of the system 
can consist of both local and imported energy resources. Some of the energy resources, 
such as gas or firewood, can be utilized directly at the end-user location. The 
development of new technologies for distributed generation has transformed some of 
the traditional end-users in the system (mainly industrial customers) into suppliers of 
electricity or heat. At the demand side of the system, the energy meets a number of 
important services in society, such as heating, lighting, mechanical work etc., both in 
the industrial and residential sectors. 
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Figure 1: A local energy distribution system. 
 
The local planners, in many countries, are currently confronted with new challenges. In 
the short term, the biggest challenge is to understand the complexity that the 
restructuring of the energy sector and the development of different energy markets, are 
adding to the decision making process. In addition, the widely discussed environmental 
problems and the continuous depletion of primary resources are giving new dimensions 
to the planning problem in the medium and long run. Consequently, there is a need for 
new planning methodologies and tools, in order to propose solutions both for the short 
and long run. 
 
The next sections will give some guidelines for the process of understanding and 
structuring the energy system planning problem. The focus will be set on four key 
elements: 1) decision makers and other stakeholders involved in the local planning; 2) 
the multitude of criteria and conflicting objectives; 3) the main uncertainties associated 
to the planning problem and 4) possible alternatives. 
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1.1.  Decision makers and stakeholders in the local energy system 
 

The number of decision makers involved in the planning of local energy distribution 
networks will depend on the actual situation at the specific location. However, in 
general we identify three important groups of decision makers: energy distribution 
companies, regulatory bodies and authorities. The most visible group in the system is 
formed by the distribution companies for different energy carriers, as these companies 
make the investment decisions. Since energy distribution through networks is a natural 
monopoly, the distribution companies do not need to worry about competition from 
other investors. However, if different distribution companies are in charge of the 
different energy networks, there will be competition between the energy carriers about 
meeting the energy needs of the end-users. Co-ordinated planning is therefore difficult 
in this situation, as each company is only concerned with optimising operation and 
investments in its own distribution network. Investments in other distribution networks 
will be an uncertain variable not a decision variable, for each decentralized decision 
maker. In some situations the distribution company will make a combined analysis of 
investments in both production and distribution facilities. For electricity, the ongoing 
industry restructuring tend to separate production and distribution, while for district 
heating vertically integration is typically still the case.  
 
Since distribution of energy is a natural monopoly, the system regulators will play a 
crucial role in deciding a regulatory framework, through which the distribution 
companies are given the correct incentives to invest in new infrastructure. So-called 
incentive-based regulation is frequently used to achieve cost efficient distribution 
systems for energy. Other objectives can also be achieved through incentive mecha-
nisms. However, more direct regulations, for instance in terms of specification of 
requirements for system reliability or limitations of harmful emissions, are sometimes 
also needed. When several energy carriers are involved, there is a challenge for the 
regulators to design a consistent set of rules, which takes into account the interplay 
between the energy carriers. A common regulatory body for all energy carriers would be 
an advantage in such situations, in order to achieve well-coordinated regulations for 
operation and expansion of local energy systems. 
 
At an even higher level of aggregation in the system, the authorities will have an 
important role as a decision maker in the local energy system. In many countries it is 
common that local or regional authorities own the energy distribution companies (at 
least partly). Hence, these authorities can also exert direct control on the investment 
decisions. 
 
There are many stakeholders involved in local energy system planning. Some of them 
can also be decision makers, while others are mainly affected by the final outcome 
without directly taking part in the decision process. For instance, from the last group, 
the independent power generation companies will obviously be affected by the 
distribution system planning, since the infrastructure investments will have an effect on 
the demand for electricity. Similarly, independent suppliers of oil, gas and district 
heating to the distribution networks will also be affected. The end-users are crucial 
stakeholders in the system, since they are the consumers of the services that the energy 
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networks deliver. Different end-user groups will not necessarily have the same interests 
or the same power to influence major decisions. For instance, it is likely that residential 
customers have different objectives than industrial consumers. In fact, large-scale 
consumers can sometimes also be considered as decision makers, since they in certain 
situations can decide which energy distribution networks to connect to and make the 
necessary infrastructure investments themselves accordingly. 
 
1.2. Criteria in energy systems planning 

 
The process of decision making and planning of local energy systems is subject to a 
multitude of conflicting objectives. One of the most important steps in defining and 
solving the planning problem consists of identifying, structuring and providing 
guidelines for measuring the achievements in different planning criteria. This section 
will include a general discussion about different objectives that can be included in 
energy planning, but it is by no means a list of all possible ones. Specific measurement 
issues will be highlighted as well. 
 
Energy ‘products and services’ play a very important role in the society. Consequently, 
the overall scope of any planning process should be to maximize the ‘well-being of the 
society’. This approach is also adopted in other energy-specific multicriteria problems 
[Keeney, 80]. However it might be argued that this is the case when the decision maker 
is representing the state or different authorities but not when the decision maker is a 
profit-focused company that provides different energy services to its clients. We 
consider that this aspect will be captured in the next level of the hierarchy of criteria. At 
this level the decision maker is more or less free to choose which criteria to include and 
then what preferences to give to each of them. The overall objective can be broken 
down, naturally, in four main major objectives, as shown in Figure 2.  
 

 

Figure 2: Objective hierarchy [based on Keeney, 80] 
  
2.2.1    Economics 
 
The ‘economics’ criterion is and will probably be the most important one for the 
majority of decision makers. To assess this criterion, there are several objectives that 
can be considered separately, depending on whom the decision maker is and how 
competitive is his decision environment. For example, if the decision maker is 
representing a distribution company, the main interest will be maximizing the 
company’s profit. An alternative is to minimize the total cost, especially for electricity 
distribution business where special regulations concerning the maximum income must 
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be followed. The cost objective is also the most critical one when the decision maker is 
a large customer. 
 
In general, when looking at the cost objective, it is also necessary to make a distinction 
between operation costs and investment costs for the different, expansion alternatives. 
This distinction is relevant when assigning decision maker’s preferences or when 
exemplifying and including uncertainties in the analysis.  
 
1.2.2. Technical impact 

 
The technical criteria can be further detailed in at least two specific objectives 
concerning reliability of the system and energy quality.  
 
In technological contexts, reliability is often defined as a component’s or a system’s 
ability to perform a required function, under specified environmental and operational 
conditions for a specified period of time [Høyland and Rausand, 94]. In energy systems, 
reliability will be the system’s ability to meet the diversified energy demand. To assess 
reliability an objective may be to minimize the Expected Energy Not Supplied (EENS). 
EENS is the amount of energy (in kWh) not delivered because of a failure. The scale 
includes information about the Loss Of Load Probability (LOLP), the failure length, and 
the size of the failure, i.e. how many and how big are the customers influenced by it. 
Another possible objective is to minimize the socio-economic costs caused by the 
failure. A failure is much more serious for an industrial customer or a hospital than for a 
household or a farm. Consequently, it is useful to split between different end-user 
groups when looking into reliability. Socio-economic costs caused by the failure are 
given by: G G

G

VOLL EENS⋅∑ where VOLL is Value Of Lost Load (monetary value, usually 

specified), and G is different end-user groups.  
 
Energy quality is the relative usefulness per kWh of different energy carriers. Electricity 
is a very applicable type of energy that can be used for many purposes where alternative 
energy carriers are useless, like lighting or computers. This means that electricity has 
very high energy quality. Consequently, to use electricity for heating (and cooling) 
purposes can be regarded as abuse of high-quality energy. For heating purposes, it will 
be more suitable (from an energy quality point-of-view) to produce hot water directly 
from different energy sources (oil/biomass/natural gas/sun etc.), either at the customers 
location or in a common district heating central. Energy quality can be measured in 
kWh of exergy (availability). A possible objective can be to minimize the destruction 
and losses of exergy. 
 
1.2.3. Environmental impact  

 
Another major objective is to minimize the environmental impact associated with 
different system alternatives. Different kinds of energy projects have different impact on 
the environment. Ideally, all impacts on nature, i.e. the whole life-cycle impact 
(construction, operation and disposal) of the various alternatives, should be included in 
the analysis. This includes for example emissions, noise aesthetic impact, etc.  
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The decision maker must decide which emissions to take into consideration, according 
to the information about possible technical alternatives. Generally it is theoretically 
possible to estimate the levels of different types of emissions: CO2, NOX, SOX, particles, 
etc. When looking at emissions, the geographical position of different technological 
solutions and the boundary of the system analysed are especially important. For some 
decision makers it might be important to distinguish between the local emissions, 
directly related to the local energy system, and the global emissions indirectly caused by 
the energy consumed locally but produced somewhere else (for example in the case of 
electricity imports). It can also be useful to distinguish between emissions in the 
construction phase, the normal operation phase and the ones caused by accidents. 
 
As mentioned above, in some cases it will be necessary to minimize other 
environmental impacts like noise and aesthetics. Noise is theoretically measurable, and 
there are standards available for assessing the equivalent noise level (LA,den). [Solberg, 
01]. In addition, for measuring noise nuisance, the information about noise levels must 
be combined with information about who is affected by the noise sources. It must also 
be taken into account that it is very difficult to assess if people are annoyed by noise 
from the energy system or from other sources.  
 
While for most of the criteria discussed above we can assume quantifiable measures, it 
is hard to measure the aesthetic impact associated with an energy project in an objective 
way. A possibility is to use a qualitative objective for this impact and let a 
representative group of affected people make priorities about which of the alternative 
solutions are more or less aesthetic. This will give an ordinal ranking of the aesthetic 
impact of the different alternatives.  
 
 
2.2.4.   Social impact 
 
The main reason for building energy facilities and infrastructure is to serve the society 
with energy services. Therefore, it is useful to understand the social impact of different 
changes in the energy system’s infrastructure by taking into consideration social values 
and public attitudes in the planning process. This will imply an open dialog that will 
give the opportunity to the public and concerned groups to express their opinions 
regarding specific energy projects. Such an involvement may result in “improved 
psychological well-being” in the local population. In turn, this might improve their 
understanding of and their trust in the involved companies [Keeney, 80]. However it is 
not easy to measure public attitudes. The public is not a homogenous group, and 
different persons will probably have different opinions about what is a good solution. 
Moreover it is difficult to decide what kind of attributes to use when measuring public 
attitudes. The main approaches are to use either a binary attribute (yes/no) or 
ordinal/cardinal rankings [Keeney, 80]. In addition quantifiable objectives can be 
included to capture the social aspect, e.g. in terms of maximizing the local employment 
caused by a specific project.  
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2.3. Possible alternatives 
 
When thinking about energy system planning one probably has in mind a finite number 
of possible, expansion alternatives. This is logical considering the limitation in the 
number of local energy resources, and also the limited number of available technical 
solutions for conversion, storage and transportation of these energy resources. However, 
when looking at these discrete investment alternatives, a decision maker will want to 
know how the system will operate and how well the energy demand will be covered on 
a daily basis. From this point of view the set of ‘alternatives’ is often an infinite one 
since in reality various operational dimensions of energy infrastructure can be imagined 
[Capros, P et.al, 88].  
Consequently we propose to separate the expansion problem into an operation problem 
and an investment problem. The operational problem can be seen as a multiobjective 
problem which can be formulated and solved trough a various number of optimization 
techniques. The investment problem is a multi attribute problem that can be solved for 
instance using interactive techniques. The main challenge then is to design a realistic 
and sound process to assess decision makers’ preferences regarding the criteria 
corresponding to these two different parts of the problem. 
 
1.3. The main uncertainties  

 
While the main aspects of the planning problem are already discussed (decision makers 
and their possible objectives), it is also necessary to take into account the large degree 
of uncertainty inherent to the planning environment. The decomposition of uncertainty 
is often a subject of research in decision theory [Hallerbach and Spronk, 98]. A detailed 
discussion about risk and uncertainty associated with the decision making process in 
energy planning is not the scope of this paper. However we would like to briefly 
mention the main sources of uncertainty. These are: 1) uncertainty about the data 
available in the decision process; 2) uncertainty about the external factors and 3) 
uncertainty about the methodology or the model one chooses to represent the decision 
making problem. In the first category we have uncertainty due to: demand growth for 
different types of energy end-use, costs and availability of primary resources and 
technologies, market prices for different energy carriers, etc. When including 
uncertainty in the input data, it is again relevant to think about possible alternatives on 
short (daily operation), medium or long term. For example the uncertainty related to the 
spot price and the short-term demand forecast in the electricity market can strongly 
influence the electricity generation in a new local combined heat and power plant and 
probably the local heat production. This will cause disturbances in the short term local 
energy supply and probably a non-optimal operation of the entire local energy system. 
The second category includes uncertainty due to the behaviour of different decision 
makers within the energy or financial markets, economic growth, environmental 
regulation, inflation and interest rates or public opinion. The third source of uncertainty 
is mainly concerning the design of the model, the methods used and how well the 
decision maker understands the solutions obtained from an optimization model.  
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3. A framework for including MCDM and uncertainty in  
the decision making process 

 
3.1. The basics of a new decision support tool 
 
In the second chapter we listed the main aspects related to the process of decision 
making in the local energy systems planning. In Figure 3 [based on Matos and Pinho de 
Sousa, 03] we schematically represent a proposal on how to incorporate multiple criteria 
and uncertainties within traditional optimization procedures in order to solve the 
planning problem. 
 
In the pre-optimization phase, the decision-maker will contribute in problem 
formulation and uncertainty characterization. This can be done in several steps: 
 

Problem under 
uncertainty

Optim ization 
process Preferred solution Implem entation Outcom e

Decision 
m aker

Build 
the model

Choose 
criteria

Include 
uncertainty

Uncertainty

Choose 
components

Decision 
paradigm

Decision-a id 
methodology

Analyst

Other decision 
m akers  

Figure 3: Framework for including multiple criteria and risk 
 into the decision process 

 
1) At the beginning, the decision maker should be able to specify the system he wants to 

analyse and several potential investment alternatives. The easiest way to do that is 
by simply ‘drawing’ the system as a network with all energy sources and demand 
points included. The graphical user-interface of the decision support tool will 
provide the user with an entire library of components to choose from. The network 
representation of the energy system is very often used in energy planning problems 
[Rath-Nagel and Voss, 81]. To exemplify this, a municipal energy system model 
with alternative solutions to meet a diversified energy demand can be represented as 
in Figure 4. Several available energy resources (that can be gas, biomass, waste, 
etc.) are drawn on the left in the figure. 

 

 x  %
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Resource 3
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Figure 4: Example of a simplified local energy system model. 
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All these resources have to be transported, processed and sometimes also stored in 
different locations and forms before converted to end user energy like electricity and 
heat. Consequently we consider three different types of system components:  
 Conversion: for conversion of one energy carrier into another at a specific 

geographic location; 
 Transport: for transportation of a given energy carrier over a defined geographic 

distance; 
 Storage: for storage of one energy carrier at a given time. 

 
On the left side of the drawing, the consumers are represented by their total demand for 
different types of end-use energy: for instance from the total energy need, x % can be 
for gas, y % is for electricity, z % is for heat and hot water. Hence, the decision maker 
should also be able to have access to reliable data regarding the structure of the total 
energy demand which will be taken into consideration when planning the system. 
 
2)  In the second step, the decision maker should be able to specify which kind of 

uncertainties he wants to include into the analysis. Most decision makers would 
probably like to consider different price forecasts for different energy resources and 
carriers in different markets (spot prices for electricity, market price for gas and oil, 
etc). In addition, in most analyses it will also be relevant to consider the uncertainty 
in energy demand. Different decision paradigms (expected value, minimax, etc.) can 
be also provided inside the decision support tool, so that each user will be able to 
express his attitude towards risk.  

 
3)  The last step, according to Figure 3, is the selection of criteria. We assume that our 

decision making tool will be used by different decision makers, with different 
preferences regarding the criteria. Since the decision problem will be different for 
different decision makers, we aim at providing a consistent set of criteria that the 
decision maker can choose from when using the tool. A good decision making 
process should help the decision maker to understand his criteria and sometimes to 
add or eliminate some of them during the analysis [Henig and Buchanan, 96]. The 
decision maker should also be the one that specifies the necessary data and 
consequently influence the calculation of the attributes corresponding to different 
criteria.  

 
Depending on the number of criteria selected by the decision maker and on the size of 
the expansion planning problem, the intervention of an analyst will probably be needed 
to assist the decision making process. At the end, once the decision-maker ends his 
contribution, the rest will mainly be optimization routine. A preferred solution will 
finally be obtained and recommended for implementation. 
 
The decision support tool should be easy to use. Hence, the decision maker should be 
able to understand and trust the solutions obtained and also to perform different 
sensitivity analyses that will lead to a better understanding of his decision-making 
process. As discussed in one of the first chapters, we aim at developing a tool that will 
be used by one decision maker at a time. Consequently, the final outcome of the 
decision will incorporate the uncertainty associated with the decision maker’s input, the 
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uncertainty inherent to the mathematical methods chosen and modelling simplifications, 
and in addition, the actions of other decision makers. At the same time, the decision 
taken will also influence other actors’ future decisions, as represented in the Figure 3.  
 
3.2 The status of research  
 
Based on the framework described above, we have started building an optimization 
algorithm using a linear description for the energy system. In the network representation 
of the energy system (Figure.4.) we suppose that all these system components can be 
linearly modeled with sufficient detail [Bakken et all, 99, Bakken and Holen, 04]. 
Hence the optimization will deal with a generic flow of energy. This energy flow is 
‘carrying’ through the model information related to the attributes associated to different 
criteria like costs, environmental impact (emissions quantities) etc. At present, the 
structure of the linear model includes an operation sub-model and an investment sub-
model that run in parallel, as discussed previously in section 2.4. The operation model 
includes separate modules (files) describing available energy sources (electricity, gas, 
waste, etc), load points (for heat, electricity, hot water, etc.) and distribution networks 
for different energy carriers (district heating network, electrical network, discrete 
transport of gas and storage points). Each of these modules includes objective functions 
that are added up to an aggregate objective. The model contains a large number of 
technical parameters, describing for example a list of standard technologies, which are 
not dependent on the problem analysed, and parameters that differ with each application 
(demands, prices, etc.). The constraints are either specific technical restrictions or 
related to load requirements, transport capacities and availability of primary resources. 
Until now, only a cost optimization is implemented, where different criteria are 
‘monetized’. Several case studies have been performed in order to verify the 
applicability of this incipient version of the optimization model. Future developments of 
the model will allow addition of multiple criteria and uncertainties. The future work 
concerns a thorough assessment of different ways to include multiple criteria analysis 
and consequently decision-maker’s preferences.  
 
Since we will deal with a large optimization model the simplest way to include data 
uncertainties will be trough scenarios (with probabilities or fuzzy scenarios). Then 
different decision paradigms (expected value, regret, etc) will be made available within 
the model so that the decision maker will be able to express and analyse his attitude 
towards risk. 
 
4. Conclusion and future work 
 
The scope of this paper was to restate the problem of complex energy systems planning. 
First the characteristics of the planning problem were discussed: the decision-makers 
involved their specific objectives and alternatives, and the main sources of uncertainty. 
We also proposed a framework for including multiple criteria and uncertainty in the 
decision making process characteristic for energy systems planning.  
 
These ideas are the basis for the development of a new decision support tool that is the 
scope of an on-going research at NTNU and SINTEF Energy Research. This tool will 
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have important practical applications in the context of decision making and planning of 
local or regional energy systems which are at the intersection of different energy 
markets and regulatory regimes. 
 
In the next step of the research the focus will be set on the evaluation of different 
decision-aid methodologies for dealing with multiple criteria, uncertainties and risk 
preferences.  
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Abstract – This paper presents a decision 
support framework for expansion of local energy 
distribution systems. We focus on a complex 
decision environment, where the planners of the 
local electricity distribution system take into 
consideration the competition between different 
energy carriers in covering the total energy 
demand. At the same time, a number of criteria 
must be taken into account in the assessment of 
investment alternatives. By combining a linear 
optimisation model for the operation of the energy 
system with a preference model based on multi-
attribute utility theory, we develop an integrated 
planning framework. In a pilot case study we test 
the framework on a problem with realistic data 
from a suburb in Norway. We interview five 
persons with background from energy research 
and industry. Their preferences are used to rank 
the potential expansion alternatives. The results 
and experiences from the case study are duly 
discussed. 

Keywords: expansion planning, integrated 
energy distribution networks, multi-attribute 
utility theory, uncertainty. 

 
1. Introduction 

Electricity distribution companies are 
operating nowadays in an increasingly complex 
environment.  With the ongoing industry 
restructuring the traditional vertically integrated 
utility companies are forced to unbundle their 
activities. However, at the same time there is 
often more horizontal integration at the 
distribution level. The distribution companies are 
not only distributing electricity, but also 
supplying, or competing with, alternative energy 
carriers, such as district heating and gas. 
Integrated analysis of the interaction between 
multiple energy carriers therefore represents an 
important challenge for the distribution 
companies. 

We also see an increasing concern about the 
environmental impact of energy use, both at the 
local and global arena. A multitude of decision 
makers and stakeholders are usually involved in 
the planning process, and very often they have 
conflicting opinions and objectives. The planning 
process is further complicated by uncertainties 
about future development of load, fuel prices etc. 
At the same time, investment costs are high and 
expansion decisions irreversible. The complexity 

in the planning of local energy systems is 
discussed in more detail in [1]. 
In this paper we investigate how decision 
analysis and multi-attribute utility theory can be 
used to provide decision aid in this complex 
planning environment. We develop a planning 
framework, which can contribute to structure the 
problem, quantify the decision makers’ 
preferences, and assess potential investment 
alternatives. An important advantage of using 
such an approach is that the decision process can 
be formalised and documented. 
The paper is organised as follows. First, we give 
a presentation of the integrated planning 
framework. Then, we apply it on a pilot case 
study, which illustrates potential use of the 
methodology. The results from the study are 
discussed along with suggestions for future 
work, before concluding in the end. 
 
2. An integrated planning framework 

2.1. The impact model 
In order to meet energy planners’ need for 

quantitative simulation a linear optimisation 
model has been developed during the last 6 
years, see e.g. [2]. A brief description of the 
model is included here. It minimises the socio-
economic costs of meeting different types of 
energy demand in a defined area over a given 
planning horizon. The major advantages of the 
model are:  

• Several energy carriers can be included 
(electricity, gas, district heating etc.) 

• It includes energy sources, transmission, 
conversion, storage, demand as well as 
energy markets 

• The components in the model have a physical 
description  

• The geographical location of demand and 
infrastructure is taken into account 

 
The model minimises the cost of meeting the 

stationary energy demand within an area, taking 
all the existing energy sources and transportation 
networks into consideration. In addition, energy 
can be sold in defined markets at given prices 
and quantities. The model provides a general set 
of system components, from which the analyst 
can design an energy system with the desired 
level of detail.  
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An hourly profile can be specified for each 
load type (e.g. electricity and heat) at several 
defined load points. The time resolution and 
planning horizon is typically 1 and 24 hours 
respectively in the operational analysis. Annual 
results can then be obtained by aggregating the 
results from several 24 hour periods with 
different demand levels. In an investment 
analysis the operational results are calculated for 
all relevant designs of the energy system, given a 
set of possible investment components. An 
investment algorithm is already implemented for 
cost-based expansion planning, as explained in 
[2]. In this paper we use the model to calculate 
not only costs, but also other impacts from the 
operations of the energy systems. Hence, it 
serves as an impact model, whose results are 
used as input to the preference model, as outlined 
below. 

 
2.2 The preference model 

Decision making for energy planners is a 
very complex process, highly exposed to 
uncertainties. In order to assist this process, we 
need, besides the impact model that gives an 
approximation of the system’s performances 
regarding different criteria, a model that captures 
the preferences of the decision maker. This can 
be formally called the preference model. One 
way to build it is to use the multi-attribute utility 
theory (MAUT). 

A decision maker has, practically, a set of 
relevant objectives in mind X1, X2….Xm when 
analysing the available alternatives, A1, A2,…An 
for his energy system’s planning problem. Each 
of these alternatives can be characterised by a set 
of achievement levels (attributes) of the 
objectives considered. Moreover, uncertainty can 
be included in the analysis by assigning 
probability distributions to these achievement 
levels. The MAUT theory offers the possibility 
of quantifying decision makers’ preferences 
regarding the set of objectives (X) when the 
values of the attributes (x) are uncertain. If an 
appropriate utility is assigned to each possible 
consequence and the expected utility of each 
alternative is calculated, then the best course of 
action is the alternative with the highest expected 
utility. The theoretical background regarding 
MAUT is thoroughly described in several books 
[3] [4], and the theory has relevant applications 
in energy system problems [5] [6] [7] [8]. 
However, building utility functions is not an easy 
task and in order to obtain a better approximation 
of the reality, the theory offers us several 
frameworks. We use the additive form for the 

total utility function so that the total utility equals 
the weighted sum of the single utilities: 

1

( x ) ( )
m

i i i
i

u k u x
=

= ⋅∑                                    (1) 

where 
u(x)  total utility for attribute set x = x1, x2, ..., 
xn 
ui(xi)  utility for single attribute, i = 1,2, ..., m 
ki scaling constant, attribute i 
 

There are two main steps in determining 
such a multi-attribute total utility function. First, 
individual utility functions, ui(xi), must be 
determined, for each of the objectives 
considered. This can be done by asking the 
decision-maker a set of lottery questions with 
respect to different achievement levels. The 
analyst can estimate, based on these answers, a 
set of qualitative and quantitative parameters that 
characterise the decision-maker’s risk attitude. 
These estimations will be used to approximate 
the shape of the individual utility function related 
to each of the objectives considered. There are 
several functional forms that can be adopted, and 
for this preference model we chose the following 
exponential function, based on the description in 
[9]:  

( )1 1 1 ( ) /( )( ) / i i i i ii x x x x
i iu x e eββ − − = − ⋅ −         (2) 

Where 
 
ui(xi)  utility for single attribute, i = 1,2, ..., m 
βi  risk parameter, attribute i  

ix  upper limit (worst outcome), attribute i 

ix  lower limit (best outcome), attribute i 
 

At this point a consistency check is 
necessary, to assure that the chosen form for the 
single utility functions is representing the true 
preferences of the decision maker involved. This 
implies additional sessions of questions that the 
analyst must design. The second step is to 
determine the scaling constants, ki, using 
questionnaires of the trade-off type. In both types 
of questionnaires we use attribute values 
calculated within the impact model, prior to the 
preference elicitation process. 

After this two-step process of quantification 
of decision-maker’s preferences, the expected 
utility for the different investment alternatives 
can be calculated. Uncertainties are described in 
terms of scenarios with probabilities, and the 
expected utility for an alternative j can be 
expressed as: 



Appendix C 

167 

( )
1

, ,( x ) ( x )
n

j j k j k j k
k

E u p u
=

= ⋅∑                       (3) 

where: 
E(uj(xj)) total expected utility, investment 

alternative j 
uj,k(xj,k)     total utility, alternative j, scenario k 
pk     probability for scenario k 
 

The ranking of the alternatives can now be 
done based on the calculated expected utility.  

 
2.3 The integrated framework 

A flowchart of the proposed integrated 
expansion planning framework is shown in 
Figure 5. First, input data for the analysis will 
have to be specified. It is important that th e 
decision makers are involved already at this 
stage, especially when it comes to deciding on 
which attributes and uncertainties to consider.  

 

 
Figure 5: Flowchart of integrated planning 

model 
 
A number of technical specifications, such 

as investment and operating costs, capacities, and 
emission and loss factors, also have to be 
determined for the components in the energy 
system. 

Most of the input data are fed into the 
operations part of the analysis, where the impact 
model is used to calculate operational attributes 
(e.g. operational cost, local and global 
emissions). An algorithm is developed, which 
does this for all alternatives over all scenarios. 
The results from the operational analysis are 
collected in a multi-attribute (MA) achievement 
matrix together with attributes which are 
independent of the operation of the system (e.g. 
investment cost and visual impact) 
 

The MA achievement matrix has to be 
calculated before the elicitation of decision 
maker preferences can be carried out. This is 
because the risk parameters and scaling constants 
are linked to the upper and lower limits of the 
attributes. These limits are a direct result of the 
operational analysis (impact model). The 
preference parameters are only valid for the 
calculated set of attribute limits. 

After interviewing the decision makers, the 
derived preference parameters can be combined 
with the MA achievement table to calculate 
expected total utilities for the investment 
alternatives, using equations (1)-(3). Afterwards, 
it is straightforward to rank the alternatives based 
on expected utility. Note that although the 
expected value criterion is used in the MAUT 
approach, the MA table that we calculate can 
also be used as input for alternative paradigms 
for decision making under uncertainty, such as 
minimax and minimax regret.  
 
3. Pilot case study 

In order to test and improve the proposed 
decision support framework we developed a pilot 
case study. We used realistic data from an 
existing planning problem in Norway to analyse 
the future energy supply infrastructure for a 
suburb with ca. 2000 households and possible 
additional industrial demand. Based on results 
from the impact model we carried out preference 
elicitation interviews with five persons with 
background from energy research and industry. 
All persons participating in the test were asked to 
imagine themselves in the position of the top 
manager of an energy company that is the main 
supplier of energy for the residential and 
industrial customers in the region. The same 
problem was proposed to all of them, i.e. to 
decide on an expansion plan for the existing 
energy system in order to satisfy the future 
increase in local demand.  
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3.1 Assumptions for the operational analysis 
In order to simplify the analysis we only 

consider the operations of the system for one 
time stage (year) in the future. Hence, in this 
analysis we do not consider the long-term 
changes in demand, and the timing of investment 
decisions. Total investment costs were therefore 
converted to annualised costs and could therefore 
be compared to the operating costs. An interest 
rate of 7 % was used for investment costs. 

Hourly data for electricity and heat demand 
were specified for 8 different days in the year. 
The load days represented four seasons and two 
days within the week (weekday and weekend 
day). A 122 bus network was used for the 
electricity grid, with hourly electricity load 
specified in 55 of them. DC load flow equations 
were used to calculate the load flow and 
corresponding losses in the impact model. 
Potential district heating networks were 
represented with either 14 or 16 heat demand 
points, all of them with hourly demand data for 
the 8 load days. Note that while the electricity 
load can only be met by electricity, any 
connected energy carrier can meet the heat load. 
In this case that is electricity or district heating. 
The impact model finds the minimum cost 
solution for meeting both electricity and heat 
load for each of the days considered. 

The main uncertainty considered in the 
analysis is the price of electricity. The electricity 
price is very important for the total cost of 
meeting the load, since there can be substantial 
exchange of electricity from the area, both 
imports and exports. Three scenarios are used for 
hourly prices of electricity, as shown in Figure 6. 
For simplicity we used the same price data for all 
the 8 load days. 
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Figure 6: Price scenarios. 

Currency rate: € 1 ≈ NOK 8. 
 
In addition to the price uncertainty, we also 

assumed that the marginal change in global CO2 
emissions from exchange of electricity was 
uncertain. This factor affects the total CO2 

emissions from different investment alternatives. 
The marginal CO2 factors for electricity 
exchange were set to 400, 500 and 600 g/kWh 
respectively, for the low, medium and high price 
scenarios, assuming that more efficient 
technologies are used in the low price scenario. 
Subjective probabilities were assigned to the 
scenarios, using 0.25 for the high and low 
scenarios and 0.5 for the medium price scenario. 
These probabilities were used when calculating 
the expected utilities, as expressed in equation 
(3). 

Other prices, such as the price for gas supply 
to CHP plants and gas boilers, and the price paid 
for heating at the industrial site were assumed 
constant in the analysis.  
 
3.2 Objectives 

The impact model was set up to calculate 
four operational attributes: operating cost, CO2 
emissions, NOx emissions and heat dump from 
CHP plants to the environment. In addition, 
investment cost is also an important attribute, 
which is not dependent on the system operation. 
Other criteria could of course also be considered 
in the analysis, either by extending the current 
impact model or by using additional models to 
estimate other impacts from the investment 
decisions. However, in this case study we limit 
the scope to the five attributes summarised in 
Table 1. 
 

No. Attribute Unit 
1 Operating cost [MNOK/year] 
2 Investment cost [MNOK/year] 
3 CO2 emissions [tons/year] 
4 NOx emissions [tons/year] 
5 Heat dump [MWh/year] 

Table 1: Summary of attributes considered in the 
pilot case study. MNOK is million NOK. 

 
3.3 Investment alternatives 

Four investment alternatives were analysed 
with the impact model prior to the interviews 
with the decision makers. The first alternative 
consists of reinforcing the electricity grid with a 
new supply line to the area, so that one can 
continue to rely on electricity to supply the local 
stationary energy demand. This is the alternative 
with the lowest investment cost. A district 
heating network and a CHP plant is built in the 
other three alternatives, to serve the heat demand 
for the customers in the residential area. In 
addition, a gas boiler is built to meet the peak 
demand for district heating. In the second 
alternative, the district heating network also 
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covers an industrial site outside the residential 
area. The CHP plant is placed at the industrial 
site, and can also meet the heat demand there, 
which is currently supplied with a diesel boiler. 
In scenarios 3 and 4 the CHP plant is placed 
nearby the residential area. The only difference 
between these alternatives is the size of the CHP 
plant. The bigger CHP plant in alternative 4 
facilitates generation of more electricity, which 
can be sold to the electricity market when it is 
profitable. A consequence of higher electricity 
generation might be excess heat from the CHP 
plant, which must be dumped to the local 
surroundings. Table 2 summarises the four 
alternatives. 
 

 
Alt. 

New 
el line 

DH  
network 

CHP  
plant 

Gas  
boiler 

1 yes no no no 
2 no large 3.6 MW 5.0 MW 
3 no small 3.6 MW 5.0 MW 
4 no small 5.0 MW 5.0 MW 

Table 2: Description of alternatives. 
 
The impact model’s results for the four 

alternatives over all scenarios are shown in the 
MA table in the appendix (Table 6). We can see 
from the table that alternative 1 has higher 
operating cost and CO2 emissions than the three 
other alternatives. On the other hand, the 
investment cost and the local emissions of NOx 
and heat are lower in scenario 1. The differences 
between the last three scenarios are smaller, but 
still significant, especially for NOx emissions 
and heat dump. There are also differences in the 
level of uncertainty for the attributes in the four 
alternatives, as can be seen when studying the 
results from the three price scenarios in Table 6. 

The decision makers could of course base 
their decision on direct assessment of the 
information in Table 6, or on the corresponding 
expected values in Table 7. However, even with 
the simple example presented here it becomes 
difficult to judge the trade-offs and risks 
involved directly from the table. The advantages 
of using a formal approach based on decision 
analysis and MAUT are illustrated below. 
 
3.4 Preference elicitation 

The preference model was used further in 
order to formally incorporate the main values of 
the decision makers involved in the analysis. As 
mentioned in section 0, two types of 
questionnaires were designed. It is important to 
add here that the results following this type of 
dialogue are relevant only if the decision maker 

pays great attention and if he is willing to think 
hard about the consequences in the problem 
analysed. Consequently, the decision maker had 
to think if the results presented to him were 
relevant for his analysis: if he would like to 
consider more criteria or eliminate the ones with 
little relevance. The first type of questions where 
lottery questions for each of the objectives 
considered: the decision-maker was asked 
whether he would prefer an alternative with an 
uncertain outcome (A) or one with a certain 
outcome (B). The value of the certain outcome in 
B was repeatedly modified until the decision-
maker became indifferent to these two options 
(Figure 7).  
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Figure 3: Example of lottery question for single 

attribute risk preference elicitation 
 
Note that the range of attribute values 

discussed was obtained using the impact model. 
The answers to these questions were collected by 
the analyst and used to estimate individual utility 
functions. An exponential form for the single 
utilities was used, as explained in section 0. 
Table 3 shows the decision makers single utility 
risk parameters for all attributes. A negative β 
implies a risk averse attitude, whereas a positive 
β expresses risk proneness. It turns out that all 
decision makers are risk averse when it comes to 
investment and operating costs. In contrast, the 
decision maker’s risk attitude varies more widely 
for the environmental attributes 3-5. For 
instance, when it comes to NOx-emissions 
respondents A, B and D are risk averse, E is risk 
neutral, whereas C is risk prone (fig.3).  
 
 A B C D E 
β1 -1.12 -0.70 -0.99 -0.99 -0.70 
β2 -1.65 -0.70 -2.24 -1.65 -0.70 
β3 -0.79 1.26 1.61 NA 0.00 
β4 4.24 1.95 -2.02 1.59 0.00 
β5 -0.45 NA -2.48 NA NA 
Table 3: Single utility risk parameters (βi) for all 
attributes and respondents (A, B, C, D, E). NA 

means that the decision maker considers the 
objective irrelevant. 
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Figure 7: Individual utility functions for 

attribute 4, i.e. NOx-emissions, for all 
respondents (A, B, C, D, and E). 

 
The second type of questions was the trade-

off questions. The decision maker was first asked 
which of the criteria analysed was the most 
important. This criterion was used as reference 
attribute for the trade-off comparisons. The 
decision maker was then asked to compare two 
hypothetical alternatives A and B, measured 
along the reference attribute and one of the other 
attributes, as illustrated in Table 4. The 
indifference point was found by changing the 
reference attribute level of alternative B, keeping 
the level of attribute i at its best (minimum), until 
the respondent was indifferent between the two 
alternatives. This was repeated for all criteria 
except from the reference one. 

The resulting trade-off parameters, ki, are 
shown in Table 4. Note that these parameters can 
not be directly compared for the five decision 
makers, since they have different individual 
utility functions. However, from the preference 
parameters in Table 3 and Table 4 it appears as if 
the decision makers tend to be more risk prone 
about criteria they care less about. In general, 
we had the impression that decision makers had 
problems expressing their risk preferences for 
attributes they were less concerned about. 
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Figure 8: Example of question for trade-off 

preference elicitation. 
 
 

 A B C D E 
k1 0.60 0.71 0.46 0.73 0.66 
k2 0.10 0.14 0.14 0.13 0.13 
k3 0.14 0.09 0.04 0.00 0.07 
k4 0.14 0.05 0.23 0.14 0.14 
k5 0.03 0.00 0.14 0.00 0.00 
Table 4: Trade-off parameters (ki) for attributes 

1-5. A, B, C, D, E are the five respondents. 
 
3.5 Ranking of alternatives 

Having derived the decision makers’ 
preference parameters we can now calculate total 
expected utilities based on equations (1), (2) and 
(3). We have only calculated expected utility for 
four alternatives. However, other alternatives 
could also be evaluated with the same preference 
parameters, given that their attributes for all 
uncertainty scenarios are within the attribute 
limits in Table 6. The results for the five 
respondents are shown in Table 5. Decision 
makers A, C, D and E end up with the same 
ranking of the four alternatives. Alternative 3, 
which is ranked first for these decision makers, is 
also the alternative with the least expected cost, 
as can be seen from Table 7.  Respondent C puts 
more weight on the local pollution (NOx and heat 
dump), and therefore ranks alternative 1 first.  
 
Alt. A B C D E 

1 0.631 
(4) 

0.565 
(4) 

0.743 
(1) 

0.639 
(4) 

0.617 
(4) 

2 0.675 
(2) 

0.682 
(2) 

0.676 
(3) 

0.655 
(2) 

0.657 
(2) 

3 0.679 
(1) 

0.685 
(1) 

0.716 
(2) 

0.683 
(1) 

0.666 
(1) 

4 0.660 
(3) 

0.676 
(3) 

0.541 
(4) 

0.654 
(3) 

0.632 
(3) 

Table 5: Expected utility and ranking of the four 
alternatives for the five respondents. 

 
In Figure 9 we show more detailed results 

for respondents C and E.  The bars represent the 
total expected utilities for each of the four 
alternatives analysed. Since we use an additive 
utility function, the expected total utility can be 
split into sub-components for each of the five 
attributes. We clearly see that decision maker C’s 
concern about the local pollution makes 
alternative 1 the one with the highest expected 
utility. We also see that respondent E is mainly 
concerned with the cost figures, and do not 
consider heat dump at all. The graphs give a 
good visualisation of how two decision makers 
in the same position analysing a problem, can 
have different preferences resulting in different 
decisions. It might also be that the resulting 
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ranking of alternatives based on the total 
expected utilities is the same, even if the 
respondents’ preferences are different. This is the 
case for respondents A, B, D, and E in our study.  
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Figure 9: Expected utility for  

respondents C and E. 
 
In the end, the pilot case study also 

demonstrates the importance of integrating the 
planning of the electricity distribution system 
with the planning of other energy distribution 
networks. In this example the preferences of four 
of the decision makers indicate that a district 
heating network should be build instead of 
reinforcing the electricity grid. Separate planning 
of the electricity and district heating networks 
could easily result in sub-optimal solutions. 
 
4. Discussion 

We believe that the major advantages of 
using multi-criteria decision methods lie in the 
structuring of information and preferences. 
Through the formalisation of the decision 
process, it also becomes easier to document the 
reasoning behind decisions. Another important 
strength of the MAUT applied in our integrated 
planning framework lies in its ability to cope 
with uncertainty and risk preferences in a 
consistent manner.  

In our case study we looked at the planning 
problem from the viewpoint of the local energy 
distribution company only. However, the 
decision aiding methodology described here can 
also be useful when different interest groups are 
involved in the decision making process (end-

users, regulators, NGOs etc.). It might be easier 
to reach consensus and agree on a solution when 
preferences are formalised and visualised. 
Extensions of the framework could also be 
implemented to further facilitate group decision 
making. 

In the case study we only made one 
interview with each of the respondents. 
Important assumptions concerning input data, 
uncertainties, and choice of criteria were made in 
advance by the analysts. In a real planning 
process it is important that the decision makers 
are involved also in this part of the analysis. 
Earlier involvement of the decision maker will 
also reduce the analyst’s impact on the results. 
Furthermore, more time should be devoted to 
perform consistency checks in the preference 
elicitation process, in order to obtain more 
reliable preference parameters. Each of our 
interviews lasted approximately 1 ½ hours, 
which was not sufficient for thorough 
consistency analysis. 

A number of other extensions could also be 
done to the integrated planning framework, such 
as: 
- Include additional impact models, which can 

calculate environmental consequences in units 
that are more relevant and easier to relate to 
for the decision makers. 

- Incorporate the decision makers’ preferences in 
the operations of the system, by using multi-
objective optimisation in the operational 
analysis in the impact model. 

- Introduce several time periods, in order to 
analyse optimal timing of investments. 

- Implement alternative descriptions of 
uncertainty, and the possibility of applying 
other decision paradigms than the expected 
value for decisions under uncertainty. 

 
5. Conclusion 

New planning tools are needed to address 
the increasing complexity involved in the 
planning of local energy distribution systems. In 
this paper we have developed an integrated 
planning framework where a detailed impact 
model of the local energy system is combined 
with a preference model built on multi-attribute 
utility theory. In the pilot case study we show 
that the methodology can be used to quantify 
decision makers’ preferences, both in terms of 
risk and trade-offs between conflicting planning 
criteria. The derived preferences were used to 
evaluate and rank a set of investment 
alternatives. Differences in the five respondents’ 
preferences were clearly reflected in the results.  
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We believe that the most important 
advantage of using the proposed decision aiding 
framework is that the decision process can be 
structured, formalised and documented. This can 
clearly contribute to better informed decision 
making. However, for successful implementation 
it is important that decision makers are   
sufficiently involved and devoted, also in setting 
out the assumption in the early stages of the 
analysis.  
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APPENDIX 
 

Total Total Annual Annual CO2 NOx Heat
annual cost inv. cost inv. cost operating cost emissions emissions dump

Alt. Scen. Prob. [MNOK] [MNOK] [MNOK] [MNOK] [tons] [tons] [MWh]
1 1 0.25 17.7 35.6 2.87 14.9 41060 0.0 0

2 0.50 24.1 35.6 2.87 21.2 51325 0.0 0
3 0.25 30.5 35.6 2.87 27.6 61590 0.0 0

2 1 0.25 19.7 85.0 6.85 12.9 32902 44.7 0
2 0.50 22.6 85.0 6.85 15.8 37440 45.4 377
3 0.25 25.5 85.0 6.85 18.6 41974 45.5 468

3 1 0.25 19.3 67.7 5.46 13.8 36188 36.8 0
2 0.50 22.5 67.7 5.46 17.0 40170 46.2 4547
3 0.25 25.3 67.7 5.46 19.9 44665 47.0 5082

4 1 0.25 20.1 78.3 6.31 13.7 35662 42.6 821
2 0.50 22.8 78.3 6.31 16.5 38701 60.8 11319
3 0.25 24.9 78.3 6.31 18.6 41917 62.7 12604  

Table 6: Multi-attribute achievement matrix in pilot case study. All results are per year. 
 

Total Total Annual Annual CO2 NOx Heat
annual cost inv. cost inv. cost operating cost emissions emissions dump

Alt. [MNOK] [MNOK] [MNOK] [MNOK] [tons] [tons] [MWh]
1 24,1 35,6 2,9 21,2 51325 0,0 0
2 22,6 85,0 6,8 15,8 37439 45,2 306
3 22,4 67,7 5,5 16,9 40298 44,0 3544
4 22,6 78,3 6,3 16,3 38745 56,7 9016  

Table 7: Expected values of multiple attributes in pilot case study. All results are per year. 
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APPENDIX D 
 
 
 
 
 
 
 
 

Material used in the application of MAUT  
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