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Abstract

How can one model, characterize and analyse systems consisting of a large
number of interacting units? This thesis addresses various related aspects of
this issue using dynamical systems theory. The thesis is constituted by four
papers presenting the main findings as well as an introductory part giving
the context of the work.

In Paper I, we use evolutionary game theory to study a social dilemma
where a group can obtain a collective benefit, but only if a threshold on
the number of members willing to cooperate at a personal cost is met.
The replicator dynamics of our model has interesting features, including
catastrophic events. We also generalize the analysis to other n-player games.

In Paper II, we introduce several new concepts and principles for describing
and studying hierarchical multilevel systems with interactions both between
groups and among individual units. We illustrate these concepts through
defining a class of systems called higher order cellular automata, and discuss
new phenomena and patterns of behaviour found in these systems.

In Paper III, we introduce a local information measure for one-dimensional
lattice systems in order to characterize the coherent structures emerging
from the dynamics of higher order cellular automata as well as ordinary
cellular automata. A further objective is to investigate to what extent
information can be viewed as a local quantity in such systems. We
demonstrate the applicability of our information measure to these problems.

Paper IV is a continuation of Paper III. We show that local information is
a locally conserved quantity in the important class of surjective cellular
automata and provide bounds on the information transport.

The novel concepts and findings of the thesis may lead to an improved
understanding of various phenomena found in systems of interacting units,
and in particular systems with a multilevel dynamics.
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Chapter 1

Introduction

Virtually all of the major unsolved problems in science today concerns
complex, self-organizing systems, where vast numbers of components
interact simultaneously, with each shift in one agent influencing the
other.

–Steven Strogatz, cited in Nature, Vol. 421, p. 782

1.1 Background

Current investigations in many parts of science, and in particular in biology, involve
systems which are composed of a large number of interacting parts. These parts are
often of different types, and both their internal dynamics and their coupling to other
parts can be highly complex and nonlinear. However, even when the parts themselves
are comparatively simple, their collective behaviour can be extremely complicated. A
classical example is the human brain [138].

Due to the complexity of these systems, even remotely realistic mathematical
models of them are not regarded as feasible. It should, however, be kept in mind that
constructing overly detailed models rarely is the purpose of mathematical modelling
[97]. Rather, the goal when modelling a physical system, process or phenomenon
is to find a model that is simple enough to be analysed, yet retains enough of the
essential mechanisms of the physical system to provide insights and predictions
about it. Furthermore, also “toy models” — illustrative models not originating from
any particular systems — can provide insight into physics and biology. For instance,
through such models one can show that a particular set of mechanisms is sufficient
to generate some given phenomenon [139], such as spiral waves in a homogenous
medium [169] or the evolution of cooperation in animal populations [3].
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2 Chapter 1. Introduction

There exist many useful mathematical models of systems with locally interacting
units. This includes spatial stochastic processes such as interacting particle systems
[96], statistical mechanics models such as the Ising model [74], as well as contin-
uous and discrete dynamical systems such as coupled oscillators [85] and cellular
automata [48, 167]. Often, these models are surprisingly simple, having only one
type of interaction, a regular interaction topology such as a lattice, and a single
type of unit having a few internal states. The reason for this simplicity is at least
twofold. Firstly, even such simple mathematical systems can exhibit exceedingly
complex behaviour, and generate complicated, global structures from random, non-
structured initial configurations [14, 31, 48, 158, 168]. Such phenomena are often
called self-organization [2, 43]. Secondly, the spatial aspect and possibly nonlinear
interactions often make even quite basic models hard to analyse, and their long-
term behaviour sometimes impossible to determine [168]. In order to improve the
understanding of systems with interacting units, both new classes of models and
techniques for their study are needed.

1.2 Overview

This thesis is concerned with dynamical systems of interacting units. A dynamical
system is a pair consisting of a state space, with each point representing a state of the
system, and a fixed rule governing the time evolution of these points. The time can
be continuous or proceed in discrete steps.

The thesis is constituted by four papers presenting the main results of the research
as well as an introductory part consisting of five chapters. The introductory part
provides background on method and related work, summarizes the main results
and contains discussions about implications, limitations and possibilities for further
work, see Sect. 1.3. Below, we provide a non-technical overview of the problems
addressed in the papers and a summary of our main results and contributions.

Paper I

A motivating question for the work presented in this paper is how one can model
and analyse situations where there is competition both between different groups
of individuals and within each group. This is a common situation in both human
societies and biological systems. Typically, the performance of a group depends on
the willingness of group members to cooperate. However, for each individual within
the group there is a temptation to “free-ride” — to have the rest of the group do the
work and still reap the benefits of the effort. Game theory is the natural framework in
which to formalize and study such social dilemmas.

In Paper I we study a simplified situation where there is no direct conflict between
groups. Rather, a similar effect is obtained by introducing a threshold on the number
of cooperators needed to earn the group a reward. Our basic objectives are:
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• Investigation of the prerequisites for cooperation in such situations, and the
dependence on two parameters: the magnitude of the reward and the personal
cost of cooperation.

• To establish general mathematical results facilitating the analysis of situations
where cooperative and competitive relations collide.

To model the situation, we construct a three-player game which is an instance
of a general class of games we call threshold games. We analyse the dynamics of
the game using standard concepts from evolutionary game theory. In particular, this
includes the replicator equation, which is a continuous dynamical system governing
the evolution of the fraction of cooperators in a large population. Our main findings
and results are summarized below.

(1) We show that threshold games feature bifurcations. This means that small
changes in the parameter values can lead to catastrophic events, such as a
sudden eradication of cooperation.

(2) In connection with population biology, we demonstrate that fragmentation of
habitats may facilitate cooperation.

(3) We prove a general result which provides a scheme for calculating the stable
states of a game with n players for any cost and reward structure.

(4) We illustrate that in contrast with two-player games, n-player games can have
rich structures of stable states and bifurcations. This has implications for
modelling.

A possible ecological implication of our findings is that minor environmental
changes might have particularly large effects on species dependent on individually
inaccessible and aggregated resources, such as large prey items.

Paper II

Consider again the question about how to analyse situations where there is compe-
tition both between groups and within each group. This is an example of a situation
where:

(A) There are two structural levels of units, such that each unit at the second level
is an aggregation of units at the level below.

(B) There are interactions at both levels.

Systems which fit these two criteria, possibly with more than two levels, are
ubiquitous at all scales in biology and in human societies as well as in technical
systems. In biology, this hierarchical organization principle leads to systems which
are stable, reliable, and adaptable, yet never in equilibrium. This provides a strong
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impetus for the investigation of hierarchical dynamics by general mathematical
models, in order to elicit the source of this advanced functionality. However, little
research has been conducted in this area.

In Paper II we introduce several new concepts and principles for describing
and studying hierarchical, multilevel dynamics. The concepts are based on Baas’s
general hyperstructure framework. We refer to systems constructed using these
principles as higher order dynamical systems. A working hypothesis is that our higher
order concepts enables the construction of dynamical systems with more advanced
functionality. The objectives of the paper are:

• To outline the principles behind higher order dynamical systems.

• To illustrate the concepts by providing a detailed formalism for a class of higher
order dynamical systems based on cellular automata (CA), which are discrete
systems consisting of a lattice of locally interacting “cells” with internal states.

• Investigation of the scope for interesting and novel behaviour found in these
systems.

The spatio-temporal phenomena we are interested in are hard to discover using
analytic tools, due to the nonlinearity and discreteness of the system. Hence, the
primary method used for investigation of higher order CA in Paper II is experiments
by computer simulations. In addition to the new conceptual framework, the main
contributions of the paper can be summarized as follows.

(1) We present several examples of interesting phenomena and patterns of behav-
iour found in higher order CA.

(2) We demonstrate the applicability of the principles to modelling.

(3) Based on our observations, we identify several fundamental issues pertaining
to the nature of higher order systems.

Paper III

A feature which we have observed widely in higher order CA, and which also is
commonly observed in ordinary CA, is the emergence of persistent particle-like
“objects” which can traverse the lattice and sometimes interact. The quintessential
example of such objects is the Gliders found in the well-known “Game of Life” CA. An
essential characteristic of these phenomena is the locality with respect to the lattice.
However, in dynamical systems theory the entire lattice configuration is treated as a
single point in state space. Consequently, traditional concepts from this discipline
are not suitable in order to characterize and analyse the emergence and dynamics of
particle-like objects. Rather, concepts that are genuinely local seems required. This is
one of the motivations for the work presented in Paper III.

In Paper III we introduce and study local information (LI), which is a function
associating an information quantity to each point of the one-dimensional lattice.
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Concepts such as information and entropy have been widely used to characterize
correlation and structure in lattice systems, but hitherto almost exclusively in a global
sense. An important property of information is that it provides a universal approach
to describing different systems. Additionally, it is a conserved quantity in important
cases.

Another motivation for the investigation of LI is to provide a more solid foun-
dation for the use of information based concepts in various physical systems. A
fundamental question is to what extent information can be considered as a local
quantity in physical systems. Cellular automata are relevant in this context, because
these systems embody many of the characteristics of microscopic physical systems,
and have been used to explore the the relation between the microscopic and the
macroscopic level of description.

The objectives of the paper are:

• To introduce an information quantity associated with each lattice point.

• To study the behaviour of this quantity under CA dynamics.

• To illustrate the applicability to characterizing self-organization, such as the
emergence of particle-like objects in CA.

In this paper we focus the formal investigations on reversible CA, which is an
important class for modelling, since microscopic physics is reversible. An important
question regarding the interpretation of information as a physical quantity is whether
local information is a locally conserved quantity under iteration by suitable CA. When
this is the case, information that disappears from one cell appears nearby in the next
time step.

The main contributions of the paper are:

(1) We introduce LI, and argue that LI is a valid and natural measure of the
information content of a single cell of the lattice.

(2) Through examples and numerical approximations we demonstrate the applica-
bility to characterizing and detecting particle-like phenomena in CA.

(3) We sketch a proof showing that LI is locally conserved for reversible CA.

A detailed proof and further results are found in Paper IV.

Paper IV

In Paper IV we further investigate the mathematical properties of local information
and transport of LI in cellular automata. We focus on the class of surjective one-
dimensional CA, which comprises exactly those CA for which the Shannon entropy
always is globally conserved. The class includes reversible CA as a special case. The
main objectives of the paper are:
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• To investigate whether LI is a locally conserved quantity for surjective CA.

• To establish rigourous results on the maximum speed of propagation of
information, as well as other properties of information flow for various classes
of CA.

The main results are:

(1) We prove that local information is locally conserved for any surjective CA, under
a condition on spatial homogeneity.

(2) We provide and argue for a definition of an information current. The current
gives the flow rate of LI between each pair of neighbouring cells.

(3) We find bounds on the maximum transport rate of information in the lattice,
both on average and locally.

Our results suggest that LI may be a useful and important concept for under-
standing the dynamical basis of the self-organization observed in higher order CA, as
well as in ordinary CA. This includes both detection of structure by numerical means
and rigourous quantification of this structure. There is also ample opportunity for
rigourous investigation of local information for further classes of CA and for other
dynamical systems of interacting units.

1.3 Outline

Chapter 2 gives an overview of relevant concepts from evolutionary game theory,
presents our threshold games, and provides a discussion of results, implications,
and spatial aspects. In Chapter 3, we define cellular automata and discuss their
mathematical properties as well as the variety of particle-like objects found in CA.
We also give an overview of important applications. Chapter 4 concerns higher order
dynamical systems, and in particular higher order cellular automata. We define this
class of dynamical systems and summarize the results of our investigations. The
first part of Chapter 5 is a review of the role of information in dynamical systems
theory and in physics. We then introduce our local information measure, state
our main results on information transport in CA, and discuss applications to the
characterization of spatio-temporal structure in lattice systems. Finally, Papers I to
IV are included after the bibliography.



Chapter 2

Threshold games

The theory of many person games may seem to stand to that of two-
person games in the relation of sea-sickness to a headache.

–William D. Hamilton [62, p. 151]

Outline

Section 2.1 introduces the basic concepts and results from evolutionary
game theory applied in Paper I. This includes previous work on multi-
player games. In Section 2.2, we first discuss Public Goods games and their
role in studying the evolution of cooperation. We then introduce one of
the main topics of Paper I, namely our three-player threshold game, and
consider its relation to Public Goods games. We discuss the novel behaviour
found in threshold games as well as generalizations and possible ecological
implications.

2.1 Game theoretical background

2.1.1 Classical game theory

Game theory can be defined as the study of mathematical models of conflict and
cooperation between intelligent rational decision-makers [114]. Modern game theory
is often said to originate with the seminal book of von Neumann and Morgenstern
[162]. The term game refers to any social situation involving two or more parties.
The parties involved in a game are called players. Each player has a set of possible
strategies and the utility, or payoff, of each player depends on the strategies

7



8 Chapter 2. Threshold games

implemented by all players. A game is most conveniently represented in the normal
form [162]:

Definition 2.1. A normal-form game Γ is a collection

Γ= (N , (Si )i∈N , (ui )i∈N ) ,

where N is a nonempty set, each Si is a nonempty set, and each ui is a function

ui :×
j∈N

S j →R.

The set N represents the players and Si is the collection of pure strategies player i
can select from. The function ui gives the resulting payoff to player i as a function of
the strategies selected by all players. In general, a player can employ a mixed strategy,
which is to play sk ∈ Si with probability pk . For a finite game, a strategy xi is then a
point in the standard n-simplex ∆n , with n = |Si |−1. A strategy is strictly mixed if at
least two pure strategies have positive probabilities.

The fundamental solution concept in classical game theory is that of a Nash
equilibrium [117]. A strategy profile

x ∈×
i∈N

∆|Si |−1

is a Nash equilibrium if no player can improve its payoff by altering its strategy, given
that the strategies of all other players remain fixed. Each finite game has at least
one Nash equilibrium, possibly involving mixed strategies [117]. As an example, the
unique Nash equilibrium of the game of rock-paper-scissors is for both players to
use each of the three options with equal probability. Note that the use of the Nash
equilibrium as a solution concept is based on the fundamental assumption that all
players are rational and have unlimited computational resources. The validity of
this assumption is questionable for many interactions among humans and certainly
inadequate for interaction among animals.

2.1.2 Evolutionary game theory

Evolutionary game theory came into existence with the work of Maynard-Smith and
Price [109]. Their goal was to explain why conflicts among animals from species
which possess lethal weapons often are settled by displays rather than all-out fighting.
In classical game theory players have strategy sets from which they choose. In
evolutionary game theory, however, species have strategy sets, and each individual
uses a fixed strategy in all interactions. This strategy, or trait, is assumed to be
imprinted in the genes of the individual, and the success of the strategy determines
the individual’s reproductive potential. Thus, rationality is irrelevant in evolutionary
game theory. The interaction between two individuals is described by a symmetric
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two-player normal-form game, called the stage game. See [72] and [164] for general
introductions to evolutionary game theory.

The are two central concepts in evolutionary game theory. The first is that of an
evolutionarily stable strategy (ESS), which is a strategy stable against invasion by any
mutation. Let the stage game have n strategies, and define u(x; y) as the expected
payoff to a player using the mixed strategy x ∈ ∆n−1 against a player using the mixed
strategy y ∈∆n−1.1 Then x is an ESS if [108, 109]:

u(x; x) ≥ u(y ; x) ∀y ∈∆n−1 (Nash equilibrium), (2.1a)

u(y ; x) = u(x; x) ⇒ u(x; y) > u(y ; y) ∀y �= x (stability condition). (2.1b)

Thus, x is a best reply against itself, and if y is an alternative best reply, then x is better
against y than y is against y . A game can have more than one ESS, but there is a strong
restriction. For a mixed strategy x ∈ ∆n , define the support supp(x) of x as the set
of pure strategies played with non-zero probability. The Bishop-Cannings theorem
states that if x and y both are ESSs for a two-player game, then supp(x) �⊆ supp(y)
[15].

The second central concept is the replicators dynamics, which yields a dynamical
system governing the evolution of the distribution of pure strategies in the popu-
lation. The basic mechanism is that pairs of individuals repeatedly are drawn at
random from a large population to play the stage game. Each individual reproduces
with a rate proportional to its average payoff resulting from these confrontations.
Let xi denote the fraction of the population playing the pure strategy i , and let
x(t ) = (x1(t ), . . . , xn (t )) be the state of the population. The state can be considered as
the mixed strategy employed by the population as a whole. The replicator equation
obtained from the above description is given by [153]:

ẋi = xi

(
ui (x)−

n∑
j=1

xj uj (x)

)
, i = 1, . . . , n, (2.2)

where ui (x) is the average payoff resulting from always playing strategy i . If x is an
ESS, then x is an asymptotically stable equilibrium point of the replicator equation
[71].

Evolutionary game theory has been widely applied in modelling the natural world.
In addition to the replicator dynamics, also other game dynamics, not necessarily
involving reproduction, have been constructed. For instance, in the imitation
dynamics described by Weibull [164] strategies are transmitted within the population
through imitation of more successful individuals. Such alternative dynamics facilitate
the use of evolutionary game theory in other areas, such as social science.

1Equivalently, u(x; y) is the expected payoff of a random individual drawn from a population in which
only pure strategies are played and with a distribution given by x, against a random individual from a
population with pure strategy distribution given by y .
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2.1.3 Multi-player evolutionary games

When an interaction involves more than two individuals, the stage game modelling
it can be chosen as a symmetric N-player game. However, such games have rarely
been used in the ecological context. Rather, interactions involving more than two
individuals are commonly either modelled as a set, or tournament, of two-player
games [3, 26] or as a “playing-the-field”-game such as the sex ratio game of Maynard-
Smith [108], where the entire population plays in the same game. Some notable
exceptions where proper multi-player games are constructed are [20], [60] and [113].

In an N-player evolutionary game a number N of individuals are repeatedly drawn
at random from the population to play the stage game. The notions of ESS and
replicator dynamics were first generalized to such N-player games by Palm [124].
However, only recently have systematic studies of N-player evolutionary games been
conducted [25, 27]. The notion of an ESS for a symmetric N-player game is a
straightforward extension of the two-player case. Denote by u(x; y) the expected
payoff to an individual playing the mixed strategy x ∈ ∆n−1 when the other N − 1
players play the mixed strategy y . Then x ∈∆n−1 is an ESS if

u(x;εy + (1−ε)x) > u(y ;εy + (1−ε)x) (2.3)

for all y ∈∆n−1 and sufficiently small ε= ε(y). This is equivalent to requiring u(x; y) >
u(y ; y) for all y in some neighbourhood of x, except at y = x [27]. The replicator
equation for an N-player game has a form identical to (2.2). Bukowski and Miȩkisz
[27] have proved the following useful result:

Theorem 2.1. In a symmetric N-player game with two strategies, x is an ESS if and
only if x is an asymptotically stable equilibrium point of the replicator dynamics.

Broom et al. [25] observed that for N-player games with N > 2, the Bishop-
Cannings theorem is no longer valid. For a three-player game, the support of an ESS
can be contained in the support of another ESS, and for four-player games two ESSs
can have identical supports.

2.2 Threshold-type games

2.2.1 Public Goods games

In both natural and social systems the actions of each single individual often affect the
benefits acquired by all individuals. There are numerous situations where so-called
free-riders take advantage of others cooperating for a common good [66]. A much
studied game theoretic model of this situation is the N-player Prisoner’s Dilemma
game, or Public Goods game [78]. In this game, each of the players has the option to
contribute some resource c to a common pool. The pool is then increased by some
factor p < N , and redistributed equally among all players. The outcome is tragic —
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the only ESS is to contribute nothing to the common pool. However, cooperation can
be promoted by introducing other mechanism such as punishment [21], the need to
maintain a good reputation [110], or optional participation [69].

Motro [113] has studied some extensions of the Public Goods game with reference
to biological situations. He considered a group of N players performing a common
task which involves cooperation, such as food foraging in a patchy environment. Each
player has two strategies: cooperate (C) or defect (D). All players achieve some benefit
f (m), which only depends on the number m of cooperators. However, cooperation
also inflicts an additional, personal, cost c , for instance due to increased risk of
predation in the food foraging scenario. Thus, the total payoffs are f (m) for defectors
and f (m)− c for cooperators. Motro analysed this game for three classes of benefit
functions f : linear, convex and concave. He found that an ESS consisting of a mix of
both strategies only can exist for a concave benefit function. These types of games are
called N-player Snowdrift games in [38]. Note that the standard Public Goods game
fits Motro’s framework with a linear f .

2.2.2 The three-player threshold game

One motivation for the work presented in Paper I is that in various natural situations
a benefit function with constant second (discrete) derivative may fail to capture the
nature of the interaction. Therefore, a more general analysis would be desirable. In
particular, one can consider situations where obtaining some advantage is an all-or-
nothing event. A natural situation exemplifying this is the group hunting of certain
predators, such as the African wild dog, where the prey is either caught or not. The
collective effort of individuals in the groups ensures that large prey can be caught
that no single individual could ever capture [50]. A minimum number of hunters
seems required in order to capture large prey items as the fatigue of the prey cannot
be provoked without a joint effort of a number of individuals [34]. Another situation
where obtaining the benefit is an all-or-nothing event is a competition among two or
more groups where only the winning group receives a reward.

In Paper I we introduce a three-player threshold game as a model of the situation
where obtaining the benefit is a binary event and where a minimum number of
cooperators is required for success. In the game, each player has the choice of
cooperating (C) or defecting (D). Cooperation incurs a cost c , and all three players
obtain a reward of r > c if a threshold of two cooperators is met. The payoff structure
is summarized in Table 2.1. The benefit function f is in this case given by f (0) =
f (1) = 0 and f (2) = f (3) = r . This game contrasts with the Public Goods game in one
important aspect: there is one situation where cooperation is preferable to defection,
namely if exactly one other player cooperates. As a consequence, a population with a
certain fraction of cooperators will be stable if the cost is not too high. We show this
by constructing the replicator dynamics.

Denote by x the fraction of cooperators in the population, and define the
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dimensionless variable α = c
r . The replicator equation for the system is, with a

suitable time scale, given by

ẋ = x(1− x)(2x(1− x)−α). (2.4)

It follows from Theorem 2.1 that the ESSs of the game are exactly the asymptotically
stable equilibrium points of the replicator dynamics. A bifurcation diagram showing
the location of all stable and unstable equilibrium points as a function ofα is shown in
Fig. 2.1. A striking feature of the system is the existence of a saddle-node bifurcation at
α=α∗ = 1

2 . For α<α∗, the game has two ESSs: a mixed strategy with a fraction x+ =
1
2 + 1

2

	
1−2α of cooperators, and the pure strategy with only defectors. Their basins

of attraction are separated by the unstable equilibrium point x− = 1
2 − 1

2

	
1−2α. For

α>α∗, always defecting is the only ESS.
Consider a situation where the cost and reward parameters are non-constant in

time. If the replicator dynamics has a significantly faster time scale than the changes
in c and r , we can assume that the state x(t ) of the system always is an ESS. This
means that if α is slightly less than α∗ and the system is in the mixed ESS, then
small changes in c or r can cause a catastrophic event as α increases beyond α∗
and cooperation vanishes entirely. A subsequent reduction of α will not suffice to
reestablish cooperation, since a population consisting of only defectors also is an ESS
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for the species. Even when α is returned to a value lower than α∗ before x(t ) reaches
0, the system will still end up in the basin of attraction of the defective state, and
cooperation will vanish.

2.2.3 Games with general cost and benefit structures

In Paper I we also generalize the analysis, and describe how to calculate the ESSs of
an N-player game with a general benefit function and a cost of cooperation possibly
depending on the number of cooperators.

Definition 2.2. Let the game Γ(N ,S,r,c), with c = (c1, . . . , cN ) ∈ [0,∞)N and r =
(r0, r1, . . . , rN ) ∈ [0,∞)N+1, have N players, each with the strategy set S = {C ,D}. The
payoff is defined as following: If k players play C, these will obtain rk − ck and the
remaining N −k players will obtain rk.

Let ∆ denote the forward difference operator. The mixed ESSs are found to be the
roots of the polynomial

gr,c(x) =
N−1∑
k=0

(
N −1

k

)
(∆rk − ck+1)xk (1− x)N−1−k , (2.5)

also satisfying d
dx gr,c(x) < 0. This allows the construction of evolutionary games with

rich structures of internal saddle-node bifurcations where pairs consisting of an ESS
and an unstable equilibrium point are created.

As an example, consider a six-player game with two thresholds, one at two
cooperators and one at five cooperators. Let r be given by r0 = r1 = 0, r2 = r3 = r4 = 1.4,
and r5 = r6 = 2.4, and let the cost be c for any number of cooperators. The function
gr,c (x) from (2.5), with c denoting the vector (c , c , . . . , c), is given by

gr,c (x) = 5x(1− x)
(
x3 +1.4(1− x)3)− c. (2.6)

Using the results of Paper I, it is straightforward to construct a diagram showing the
ESSs of the game for each value of the cost c , see Fig. 2.2. For costs in the approximate
interval 0.363 < c < 0.420 the system has two mixed ESSs, which we can denote by xH

and xL < xH . If the state of the system is xH and the cost increases beyond 0.420, the
degree of cooperation will decrease and the system will settle in xL. State xH will not
be reinstalled if the cost subsequently decreases below 0.420 — to obtain this the cost
has to be reduced below 0.363.

2.2.4 General conclusions

The three-player threshold game and games with more general benefit functions
and costs are natural generalizations of N-player Public Goods games obtained by
relaxing the requirement of a linear benefit function. An N-player Public Goods
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game only has one ESS, namely a pure population of defectors. In contrast, our
examples of threshold games have shown rich structures of mixed ESSs and ESS
bifurcations. If the parameters defining the game are allowed to vary at a slow
time scale, catastrophic events can occur. Here, the fraction of cooperators in the
population shows sudden transitions among discrete plateaus, see Figs. 2.1 and 2.2.

In natural ecological systems, fluctuations in environmental conditions makes
variations in the cost and benefits associated with cooperative behaviour common-
place. In light of our results for the threshold game and related games, species
depending on collaborative endeavours can be prone to sudden drastic events, such
as altered behavioural characteristics or even extinctions. This description will
for instance apply to group foragers that depend on individually inaccessible and
aggregated resources, such as large prey items.

Broom et al. [25] showed that the Bishop-Cannings theorem no longer is valid for
games with more than two players. Our analysis of the threshold game demonstrates
the practical importance of this result. For a two-player game with two strategies the
coexistence of two ESSs are possible, but both must be pure strategies. Games with
N players can however have several mixed ESSs for the same parameter values and
hence a much richer dynamics.

2.2.5 Comments on spatial structure

Our basic threshold game model is a mean field model which does not take spatial
aspects into account. In natural systems, however, there is often some spatial stability
resulting in local and repeated interactions. In such settings several mechanisms
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are known to facilitate cooperation, including direct reciprocity [3, 157], indirect
reciprocity due to reputation [94], punishment [21], and kin selection [61]. Therefore,
it would be interesting in the future to study versions of the threshold game where
spatial structure and repeated interactions are taken into account. There are several
ways in which the threshold game could be modified to obtain this. One option is to
use the replicator equation, but to introduce a probability w of the group persisting
from one interaction to the next, and augment the set of possible strategies to include
reactive strategies, see, e.g., [21]. A different approach is to consider spatial games
where individuals occupy the points of a lattice [101, 121, 122]. Each individual plays
repeatedly against its four neighbours, and successful strategies propagate either
through invasion, imitation, or learning. With deterministic updating, the model
is a two dimensional cellular automaton, which is a class of dynamical systems
considered in Chap. 3. Spatial Public Good games have been considered by Brandt
et al. [23]. We have conducted preliminary studies of a spatial version of the basic
threshold game, and obtained promising results. In particular, the system has
exhibited a wide range of behaviours for different parameter values.

Space may also be introduced indirectly by considering metapopulation models
[63, 95, 143]. These are applicable when there are several subpopulations in
discrete patches due to a fragmented habitat. The dynamics within each patch is
treated separately, but with occasional dispersal though extinctions and subsequent
invasions from other patches. In Paper I, we discuss how such dynamics can
facilitate the propagation of cooperative behaviour because subpopulations in which
cooperation is prominent have greater emigration potential.

2.2.6 Outlook

The basic threshold game is quite simple, yet embodies two fundamental principles,
namely simultaneous interaction among multiple players and a nonlinear relation-
ship between the degree of cooperation and the resulting benefit. Therefore, it may
serve as a prototypical model on which to base further investigations of the scope for
cooperation in various situations. Threshold games may, for instance, be a suitable
setting in which to explore the link between group size and cooperation [19, 134]. We
are currently investigating the connections between group size, threshold size and
average payoff in the population.

The work presented in Paper I grew out of discussions about game theoretical
modelling of situations with competition both within groups and between groups.
Such models would be natural instances of higher order dynamical systems, which is
the topic of Chap. 4. Investigation in this direction is left as a future problem, but we
give some further indications about the relation between threshold games and higher
order systems at the end of Chap. 4.
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Chapter 3

Cellular automata

Teknikken kan skabe
en verden som klapper,
når menskene bare
vil trykke på knapper.

Og nu er der endnu
en nyhed på trapperne:
en automat
som kan trykke på knapperne.

–Piet Hein

Outline

This chapter provides background material on the dynamical systems known
as cellular automata. These are central in Papers II, III and IV. In Section
3.1, we define cellular automata, introduce notation used in the subsequent
chapters, and review the main results relevant for our work. Section
3.2 focuses an a key aspect of cellular automata phenomenology, namely
coherent localized structures. In Section 3.3, we illustrate the relevance
of cellular automata to physics and biology through several examples of
applications.

17
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3.1 Definition and basic results

3.1.1 Definition

Let A be some finite alphabet, and let Zd be the d-dimensional lattice. A
configuration of the lattice is a map x : Zd →A assigning a state to each lattice point.
Denote the state at position v of Zd by xv . For A ⊂ Zd , let xA be the configuration

x restricted to A. Equip A with the discrete topology, and the space A Zd
of all

configurations of the lattice with the corresponding product topology. This makes

A Zd
is a compact metric space. A metric generating the topology is given by

d(x, y) = 2−n , where n = max{m ≥ 0 : ‖v‖∞ < m ⇒ xv = yv }.

The action of Zd on itself by translation induces a shift action on the configuration

space A Zd
. The shift by v is defined by σv (x)u = xv+u .

Definition 3.1. A d-dimensional cellular automaton (CA) is a continuous map

F : A Zd →A Zd
that commutes with all shifts.

That F commutes with all shifts means that F ◦σv = σv ◦F for all v ∈ Zd . One
can generalize the definition of a CA by allowing any monoid M in place of Zd [129]

or by allowing any subshift of finite type in place of A Zd
(as advocated by Boyle and

Kitchens [22]). The pair (F,A Zd
) is a topological dynamical system.

Write the cardinality of a set A as |A|. The following theorem is a simple yet
fundamental result about CA first proved by Hedlund [70].

Theorem 3.1. The map F : A Zd → A Zd
is a CA if and only if there exists a finite set

N ⊂Zd and a map f : A |N| →A such that F (x)v = f (σv (x)N ).

The theorem follows from the result that any continuous map on a compact space
is uniformly continuous. We will usually define the cellular automata we study by
stating the pair N and f . The map f is called the block map or rule of the CA, and N is
called the neighbourhood. The elements of the lattice Zd are traditionally called cells.
See Fig. 3.1 for an illustration.

In light of Theorem 3.1, the dynamics of a CA can be regarded as local interaction
among the cells. The interaction is defined by the rule f , and all cells update their
states synchronously. This property makes CA particularly suitable for describing
processes consisting of a large collection of simple, locally interacting units.

We now introduce some notation for one-dimensional CA. Since the lattice points
are the integers in this case, we denote them by the symbols i , j ∈ Z, rather than by
v and u. It is convenient to choose the neighbourhood N of a one-dimensional CA
as the smallest possible interval {−l, . . . , r } containing 0. The non-negative integers l
and r are called the right and left radii of the CA respectively. For I = {i , i +1, . . . , j }, we
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write xI = x
j
i , and for J = {i , i +1, . . . }, we write xJ = x∞

i . For any n ≥ 1, the block map

f can be extended in a natural way to a map fn : A l+r+n+1 →A n+1 by putting

fn (xr+n
−l )= (

f (xr
−l ), f (xr+1

−l+1), · · · , f (xr+n
n−l )

)
. (3.1)

We will omit the subscript n, and write f for the block map applied to a block of any
length. The inverse block map f −1 is defined by

f −1(y n
1 ) =

{
xn+r

1−l ∈A n+l+r : f (xn+r
1−l ) = y n

1

}
. (3.2)

We denote the set of all non-empty blocks of symbols from A by A +. For a ∈A , a∞
denotes the sequence x ∈A Z with xi = a for all i .

Wolfram [167] has introduced a convenient way of enumerating the set of all one-
dimensional CA with A = {0,1, . . . , k −1} and N = {−l, . . . , r }. For each 0 ≤ m < kl+r+1,
let ϕm ∈ A l+r+1 be the k-ary representation of m. For instance, with l = r = 1 and
k = 2, we have ϕ3 = 011. The rule number Rf of the rule f : A l+r+1 →A is

Rf =
kl+r+1−1∑

m=0
f (ϕm) ·km . (3.3)

We will use this rule numbering systems when referring to the 256 elementary CA
[167], which are the CA on {0,1}Z with neighbourhood N = {−1,0,1}.

3.1.2 Surjective and reversible CA

A cellular automaton F is surjective if for each y ∈ A Zd
there exists an x ∈ A Zd

such

that F (x) = y . In this case, x is called a preimage of y . A CA is injective if each y ∈A Zd

has at most one preimage, and bijective if each y ∈ A Zd
has exactly one preimage.

Surjective CA will be central in Papers III and IV, since these are the CA that preserve
information in a global sense. Reference [39] reviews the known relationships among
injectivity, surjectivity and bijectivity of a CA F and of F when restricted either to the
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set of all periodic configurations or all configurations that are finite with respect to
some quiescent state.1

The following fundamental result for one-dimensional CA was proved by Hedlund
[70].

Theorem 3.2. Let F be a one-dimensional CA with block map f : A l+r+1 → A . The
following are equivalent:

(1) F is surjective.

(2) For all xn
1 ∈A +, we have | f −1(xn

1 )| = |A |l+r .

(3) For all x ∈A Z, we have |F−1(x)| ≤ |A |l+r .

(4) For all x ∈A Z, the set F−1(x) is countable.

From the equivalence of (1) and (3) in the theorem, it follows that any injective
one-dimensional CA also is surjective, and hence bijective. This is true in any
dimension d [112, 115]. Moreover, the inverse map of any bijective CA is also a
CA. This was first noted by Richardson [132], and follows since the inverse of any
continuous map on a compact space is continuous. For this reason, bijective CA
are often called reversible. Deciding whether a given CA is surjective or reversible
is not straight-forward, nor is finding the inverse CA. An efficient algorithm for one-
dimensional CA which uses finite automata is described in [149]. In dimensions d ≥ 2,
surjectivity and reversibility are undecidable properties [80].

The seminal paper by Hedlund [70] contains many further useful results on
surjective and reversible CA. See [156] for a review of reversible CA.

3.1.3 Measure-theoretic and ergodic properties

The topology of A Z is generated by the the collection of all cylinder sets of the form
Cyl(ai+n

i ) = {x ∈A Z : xi+n
i = ai+n

i }, where i ∈Z, n ≥ 0, and all ak ∈A . The collection

of cylinder sets is also a sub-algebra that generates the Borel σ-algebra B of A Z. A
probability measure µ on (A Z,B) is defined by assigning a probability µ(Cyl(ai+n

i ))
to each cylinder set in a consistent way, see §27 in [126]. We will usually write this
probability µ(ai+n

i ), thus letting ai+n
i represent both the symbol block of length n+1

and the cylinder set. The measure µ is shift-invariant if it satisfies µ(σ−1(B)) = µ(B)
for all B ∈B, and ergodic if additionally all B ∈B satisfying σ−1(B) = B have measure
µ(B) = 0 or µ(B) = 1.

It is often convenient to consider the measure µ as defining a discrete stochastic

process (Xn )n∈Z, Xn ∈ A , with joint distributions given by Prob(X j
i = a j

i ) = µ(a j
i ). In

this case, µ is called the Kolmogorov measure of the process. A Bernoulli measure
is a measure for which the coordinate random variables Xi are all independent and
identically distributed. The uniform Bernoulli measure µ̄ gives equal probability to

1A state e ∈A is said to be quiescent with respect to F if f (e,e, . . . ,e) = e.
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each block, i.e. µ̄(an
1 ) = |A |−n for all an

1 ∈ A n . By a uniformly random configuration
of Z, we mean a configuration generated by the stochastic process associated with µ̄.
The conditional probability µ(a0|a−1−n) = µ(a0−n)/µ(a−1−n) is the probability that X0 = a0

given that X−1−n = a−1−n .
A cellular automaton F can be considered to act on measures. Let µ0 be a

probability measure on A Z, and let µ1 = F (µ0) be defined by µ1(B) = µ0(F−1(B)) for
each B ∈B. The block probabilities of µ1 can be calculated from the relation

µ1(y n
0 ) =

∑
xn+r
−l ∈ f −1(yn

0 )

µ0(xn+r
−l ). (3.4)

More generally, set µt = µ0 ◦F−t . A measure µ0 is called F -invariant if µ1 = µ0. It
follows from the Krylov-Bogolioubov Theorem [163, Cor. 6.9.1] that for every C A F
there exists an F -invariant measure. However, non-trivial measures of this kind are in
general hard to find. An invariant measure for surjective CA is given by the following
corollary to Theorem 3.2.

Corollary 3.1. The uniform Bernoulli measure is F -invariant if and only if F is
surjective.

For µ0 a shift-invariant measure on A Z, denote the metric entropy2 of the shift
σ on (A Z,B,µ0) by h(µ0). This quantity is often called the spatial entropy in the
context of CA [167]. The spatial entropy is invariant under iteration by a surjective
one-dimensional CA [99].

Theorem 3.3. Let µ0 be a shift-invariant probability measure, and F : A Z → A Z a
surjective CA. Then, h(µ1)= h(µ0).

For non-surjective CA, h(µ1) ≤ h(µ0) [99], so the entropy is always non-increasing.
When µ is F -invariant, also the metric entropy hµ(F ) of F is defined. In connection
with CA, this is sometimes called the temporal entropy, to separate it from the spatial
entropy. Directional entropies defined for arbitrary directions in the two-dimensional
space-time lattice have been considered by Milnor [111].

3.1.4 Conserved quantities

Cellular automata that satisfy various conservations laws are important in appli-
cations. Pomeau [130] and Hattori and Takesue [68] have investigated CA with
conserved quantities defined by a local density function E : A m →R. They defined E
to be conserved by a CA F if for each N ∈ N and periodic configuration x ∈ A Z with
period N , the function

ΦN (x) =
N−1∑
i=0

E
(
xi+m

i+1

)
2The metric entropy is also known as the Kolmogorov-Sinai entropy, as the measure theoretic entropy,

or merely as the entropy.
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satisfies ΦN (F x) = ΦN (x). Hattori and Takesue [68] constructed procedures to
find such conserved quantities, and found the expressions for a current and a
corresponding continuity equation the quantity will obey. Pivato [128] has proved
the following result for a CA F possessing a conserved quantity with m = 1: for any
r ∈ [mina∈A E(a),maxa∈A E(a)] there is an F -invariant and shift-invariant measure
µr satisfying

∫
E(x0)dµr = r .

An elegant way to construct reversible two-dimensional CA with conservation
laws is the space partitioning technique introduced by Margolus [105]. The lattice
is partitioned into 2× 2 squares in two different ways, such that a square from the
first partition intersects exactly four squares from the second partition. The local rule
is now a permutation f : A 4 → A 4, so that each square is updated independently.
The two partitions are used on alternate time steps. This scheme can be recast as an
ordinary CA, and makes is particularly easy to construct CA conserving the number
of each symbol. In particular, Margolus [105] used it to construct the billiard ball CA,
which is a computationally universal, reversible CA inspired by Fredkin and Toffoli’s
billiard ball model of reversible computation [52].

3.1.5 References to further aspects of CA theory

Much theoretical work has been done on one-dimensional CA, and less on CA in
dimensions d ≥ 2. One reason is that a wide array of the techniques used to analyse
one-dimensional CA are unavailable in higher dimensions. Here, we point out some
literature surveying the theory of one-dimensional CA.

An exposition of the topological dynamics of CA is provided by [88], while the
survey article by Blanchard et al. [16] also covers measure-theoretic aspects. Three
formal classification schemes of one-dimensional CA are discussed in [87]. See [118]
for applications of finite automata theory to analysing CA. Two recent reviews of CA
theory and history aimed at computer scientists are [81] and [137].

3.2 Coherent, propagating structures in CA

An important property of many CA is the ability to generate and support persistent,
localized structures that can traverse the lattice and sometimes interact. Many types
of such coherent structures exist, and different terms are used to describe them based
on the nature of the phenomenon. This includes particles [64], defects [58], gliders
[107], solitons [125] and waves [165].

3.2.1 Space-time diagrams

A wide range of stable, propagating structures were first found in the famous CA
known as the “Game of Life” [14]. These range from the simple Glider to large,
persistent structures with advanced functionalities[56, Chs. 20-22]. Berlekamp et al.
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[14] have proved that the Game of Life is computationally universal by using signals,
logic gates, and memory units constructed from structures stable in a quiescent
background of zeros.

The computational study of CA was initiated by Wolfram [167], who conducted an
extensive study of the elementary CA (ECA). In particular, he discovered the richness
of the behaviour of CA through constructing space-time diagrams. A space-time
diagram is a time series of the configuration of a finite part of the lattice, plotted
with states represented by suitable colours. Often, periodic configurations are used,
and a single period is plotted. An example of a space-time diagram is found in
Fig. 3.2. Based on the typical behaviour from random initial configurations, Wolfram
informally divided CA into four complexity classes [168]. Most interesting is his
class four, which consists of rules generating complex localized structures which
sometimes are long-lived. CA exhibiting behaviour of this type are epitomized by
ECA rule 110, which is the CA used to generate the diagram in Fig. 3.2. Wolfram’s work
demonstrated that particles and particle interactions are widespread phenomena in
CA dynamics, and his observations led to a major resurgence of interest in cellular
automata.
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3.2.2 Formal approaches

A formal approach to classifying and finding coherent structures in CA was conceived
by Hanson and Crutchfield [64]. They realized that the regular background pattern
seen in space-time diagrams formally can be described in terms of a regular language
invariant under the action of the CA. A regular language is a language that can be
recognized by a finite state automaton, and is equivalent to a sofic shift, see [9].
Intervals of the lattice whose configurations conform with the regular language are
called regular domains. The regular domains can be filtered out of the space-time
diagram using a finite state transducer, leaving only the deviations. These are called
domain boundaries or embedded particles. These particles can subsequently be
classified and their interactions investigated, see [65] and [73] for examples. The time
evolution of some CA may after an initial transient be described merely in terms of
the movements of the embedded particles.

The sofic shifts characterizing the regular domains can have zero or positive
topological entropy, and the embedded particles can traverse the lattice at constant
speed or perform random movements dependent on the local context. An example
of the latter case is elementary CA rule 18. This local map of this rule is defined by
f (1,0,0) and f (0,0,1) being 1, and f of the other six neighbourhood configurations
being 0. See the left panel of Fig. 3.3 for a space-time diagram generated by rule 18.
The regular domains are defined by the sofic shift having an odd number of zeros
between every pair of ones. The domain boundaries, or defects as they are often
called for this and similar rules, are blocks of the form 102n 1 for n ≥ 0. The defects
diffuse and annihilate pairwise upon collision. The right panel of Fig. 3.3 shows a
filtered space-time diagram. Grassberger [58] first discovered the defects in rule 18,
and Lind [98] conjectured that their movements constitute random walks. This was
later proved by Eloranta and Nummelina [45]. The source of the randomness is the
random initial configuration. Eloranta [44] has rigorously studied and constructed
cellular automata with particles exhibiting biased random walks with capabilities of
annihilation and coalescence.

3.3 Applications of CA

As pointed out by several authors [51, 106, 156, 159], cellular automata possess
by construction many of the characteristics of physical systems. This includes
space, time, locality of interaction, and a finite propagation speed of information
[106]. Furthermore, by a suitable choice of rule, a CA can be made microscopically
reversible and made to satisfy appropriate conservation laws. For these reasons, it is
not surprising that many physical systems and other systems where local interactions
are essential have been successfully modelled by CA. Moreover, as pointed out by
Vichniac [159], CA can also be studied as discrete dynamical systems that embodies
general physical ideas rather than simulating specific phenomena. Indeed, several
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dynamical phenomena found in CA have analogues in physics. In particular, this
includes the emergence of coherent structures at different scales. Cellular automata
also have several parallels to computation — they are digital and exact, and there exist
reversible CA which are computationally universal [106]. CA thus provide a useful
link between physics and computation [105]. The discreteness of cellular automata
enables exact simulations of models, rather than approximations which may be prone
to numerical errors.

The rest of this chapter provides an overview of some important applications of
cellular automata. Some of these models may be interesting as bases for higher order
cellular automata, see Chap. 4, or as systems in which to study information flow, see
Chap. 5.

3.3.1 Reversible CA with conserved quantities

The most well-known application of CA is the study of fluid flows by lattice gas
automata. The first lattice gas automaton was the HPP model introduced by Hardy
et al. [67]. This is a reversible CA with A = {0,1}4. Each component of A represents
the presence or absence of a particle moving in one of the four lattice directions.
The update rule first moves each particle one position, then resolves the effects of
collisions. For instance, if both a west-going and an east-going particle end up at
coordinate i , they collide. The result is a deflection of both particles, and the new
state at i is a north-going and a south-going particle. Both the number of particles
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and the momentum are conserved quantities in the HPP model. However, due to the
insufficient degree of rotational symmetry of the lattice, the dynamics is anisotropic
at all scales. This led Frisch et al. [53] to introduce the FHP model, which is a lattice
gas on a triangular lattice possessing hexagonal symmetry. The FHP model provides
in the macroscopic limit the Navier-Stokes equation, and allows for the simulation of
many hydrodynamical phenomena, such as the complicated interface between two
fluids in the Rayleigh-Taylor instability [135] and flows in porous media [30]. The
FHP model has some stochastic update rules used in resolving certain collisions. For
details on lattice gas automata, see [133]. Dab et al. [37] have extended lattice gas
models to include several types of particles and chemical reactions taking place at
the lattice points.

A further application of reversible CA with conserved quantities to physics is
simulation of Ising spin dynamics. The model introduced by Creutz [36] is a two-
dimensional CA with alphabet A = {↑,↓}× {0,1,2,3}, where the first term is the spin
(up or down), and the second term is called the momentum. A spin will flip if the
momentum at the site can compensate the energy change caused by the flip, such
that the total energy is conserved. An alternative CA model of Ising spin dynamics
is the Q2R model introduced by Vichniac [159]. When executed on finite lattices,
both the Q2R CA and Creutz’s CA are microcanonical models of Ising spin systems,
since the total amount of energy in the system is constant. The models have the
advantage over traditional Monte Carlo algorithms [120] of not needing access to
random numbers. They can also be used to study various aspects of the Ising model,
such as the thermal conductivity [136].

A more fundamental approach to using CA to investigate physics has been
pursued by Takesue [150, 151, 152], who studied several one-dimensional reversible
CA with locally conserved quantities. His goal was to find the characteristics of rules
which realize thermodynamic behaviour, and through this investigate under which
conditions statistical mechanics can be applied to a system. Takesue interpreted
one of the conserved quantities of the CA as energy, and examined how well the
behaviour of the CA complied with that predicted by thermodynamics. For some CA
he obtained good results for the canonical distribution [150], Fourier’s law of heat
conduction [152] and other characteristics of thermodynamical systems. He found
that thermodynamic behaviour is intimately related to the number and dynamical
features of locally conserved quantities.

3.3.2 Models of excitable media

Excitable media are spatial systems which have the ability to propagate waves without
damping, but where each unit after the passing of a wave needs a refractory time
before it again can become excited. An example is chemical reactions such as the
Belousov-Zhabotinskii reaction [169]. A classical CA model of excitable media is
the Greenberg-Hastings CA [59], which can be defined in an arbitrary dimension
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d with alphabet A = {0,1,2}. The lattice coordinates represent cells which can be
excited (1), tired (2) or rested (0). An excited cell is always tired at the next time
step, and a tired cell becomes rested. A rested cell becomes excited if a least one
the its 2d closest neighbours is excited. For this model there exist some rigourous
results on large time behaviour [40, 146]. Later, more sophisticated CA models have
been introduced, better reproducing the behaviour of real excitable media, such
as curvature dependence of propagation speeds and wavefront propagation into
partially rested cells, see for instance [165]. Reference [48] reviews CA models of
excitable and oscillatory media, as well several other biologically motivated CA which
arise in models of population biology, developmental biology and neurobiology.

3.3.3 Models of traffic flow

In recent years, modelling various aspect of traffic flow by cellular automata has
become increasingly popular. The simplest CA that can be used to model traffic is
elementary CA rule 184. The symbol 1 represents a car and the symbol 0 an empty
space. The dynamics can be described in terms of the following rule: each car moves
one space to the right if this space is empty, otherwise the car does not move. Even in
this exceedingly simple model one can observe some of the phenomena of real traffic,
such as traffic jams moving backwards.

The basic model for simulating traffic by CA was introduced by Nagel and
Schreckenberg [116]. It is based on ECA rule 184 but includes acceleration and sto-
chastic effects. The model can be analysed analytically in special cases. Later, more
sophisticated models have been introduced, such as the modified model by Knospe
et al. [82], which is able to reproduce the three phases (free-flow, synchronized, and
stop-and-go) observed in real single lane traffic. Purely deterministic CA models have
also been considered. For example, Boccara and Fukś [17] have investigated a family
of CA which generalize rule 184.

3.3.4 Applications in computer science

Cellular automata can be considered as abstract models of parallel computers.
The input data is represented by the initial configuration of the lattice, and the
CA transforms this to an output configuration representing the output of the
computation. CA are known to have strong computation capabilities. For example,
ECA rule 110 is capable of universal computation [33]. There also exist CA with the
ability to simulate all other CA of the same dimension, see [123] for details. The
computational capabilities of CA hinge on the existence of particles and interactions
among them. For instance, Steiglitz et al. [147] showed how computations can
be embedded in one-dimensional CA by using the soliton CA introduced by Park
et al. [125]. Gács [54, 55] has shown how to construct CA which reliably can
perform arbitrarily large computations when each cell can perform an error with
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a positive probability. Toffoli and Margolus [155] have investigated the possibility
of building microscopic, parallel hardware designed to implement CA, in order to
obtain exceptionally large computational power and efficient microscopic simulation
of systems that can be modelled by CA.

3.3.5 Artificial life

Many of the coherent structures observed in cellular automata seem to take on a “life
of their own”. Examples include many of the complex oscillating or traversing local
structures in the Game of Life. Indeed, Berlekamp et al. [14, p.849] speculated that
“it’s probable, given a large enough Life space, initially in a random state, that after a
long time, intelligent, self-reproducing animals will emerge and populate some parts
of the space.” Due to the capabilities of CA for self-organization, these system are
much used by researchers within the artificial life community [91, 131]. The goal of
this discipline is to unravel the profound organizational principles and rules allowing
the existence of living organisms. In the words of Langton [92], artificial life seeks to
“locate life-as-we-know-it within the larger picture of life-as-it-could-be”.

Of particular importance is the property of self-reproduction. In fact, cellular
automata were originally introduced by von Neumann [161] to serve as an idealized
structure in which to study the logical conditions for self-reproduction. He wanted
to abstract from natural biological self-reproduction the logical form of the process,
independent of its material representation in any physio-chemical form. Von
Neumann managed to construct a two-dimensional CA with |A | = 29 and |N | = 5
in which a particular initial configuration was self-replicating. Von Neumann’s CA
was also capable of universal computation. By not requiring universal computation,
Langton [90] was later able to construct a CA with |A | = 8 in which a certain sheathed
loop structure replicates itself in 151 iterations of the CA. In both these CA models,
the lattice must have a particular initial configuration for self-replication to occur.
In contrast, Chou and Reggia [31] have created a two-dimensional CA where self-
replicating loops emerge from a random initial configuration.
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Higher order dynamical systems

The history of life is a history of the emergence of new organizational
grades, and their subsequent diversification.

–Leo W. Buss [28]

Outline

In Section 4.1, we outline the motivation for introducing higher order
dynamical systems, and discuss background material such Baas’s hyper-
structure concept. Section 4.2 describes the principles of higher order
dynamical systems, and in Section 4.3, we present our work on higher order
cellular automata. The presentation includes an illustrative example, the
main results of our experiments, and an outlook.

4.1 Background and motivation

Evolution seems to favour systems that are build up by subunits on several levels,
such that each unit on level n is an aggregation of units on level n−1. This hierarchical
organizational principle is ubiquitous in biology, from the microscopic level to the
macroscopic level. For instance, atoms form molecules, molecules form macro-
molecules, then organelles, cells, tissues, organs, organisms and ecosystems. The
units on each level in the hierarchy obtain their properties by virtue of interactions
among units on lower levels. However, units of higher order often have new
properties, not found in lower level units. This phenomenon is known as emergence.
Emergence in a dynamical system can be regarded as the creation of a new and
higher level of organization, containing new types of units with new properties. The

29
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formalization and philosophical aspects of emergence remain a highly debated topic,
see e.g. [46].

Two mechanisms are vital in generating robust hierarchical structures with
advanced functionalities: evolution [144] and self-organization or self-assembly
[131]. The latter type of processes are essential in molecular biology and in bridging
living and non-living matter. Additionally, self-organization allows a limited amount
of heritable information to code for exceedingly complex processes, such as brain
functions. Furthermore, the construction of new materials by self-assembly is an
emerging technique in nano technology. It is a basic problem to give a framework
in which to study hierarchical structures with assembly of new levels, emergence of
new properties from collective dynamics, and interactions between and within levels.
A step toward this goal is Baas’s hyperstructure concept, which will be described in
Sect. 4.1.1.

It has been pointed out by several authors, e.g. [49, 131, 138], that classical
dynamical systems often not are quite suitable in order to construct models of how
to generate various kinds of organization, such as biological structures. However,
dynamical system models will still be useful in modelling systems with a hierarchical
organization, as long as this structure is properly taken into account. For this reason,
some general principles seem to be needed in order to facilitate the construction
of general, flexible classes of dynamical systems with a hierarchical interaction
structure. By studying such dynamical systems one can also hope to illuminate
questions such as what properties that are typical and possible for systems with
hierarchical organization, and why evolution favours such systems. The current
chapter concerns higher order dynamical systems, which is a concept that addresses
these issues. Higher order dynamical systems are related to hyperstructures, which
we discuss first.

4.1.1 Hyperstructures

The hyperstructure concept was introduced by Baas [4] in 1994 as a framework
in which to study structures with multiple levels, and in a fruitful way combine
hierarchies, self-organization, and emergence. Recently, Baas [5] has elaborated the
notion and introduced a new kind of structure, called Abstract Matter. We here give a
brief overview of the hyperstructure framework, using the notation from [4].

The framework has three fundamental components. The first is the primitive
objects or units, which can be of physical or abstract nature. The second component
is some kind of observational mechanism (Obs) that observes, describes and
evaluates the objects. The observational mechanisms can be internal in the system
or external. Thirdly, we have interactions (Int) among the objects. The interactions
use the properties detected by Obs.

A family Si of objects, with i in some index set, together with specified properties
and interactions defines a process or construction. The stable outcome or result of
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this process, in some cases the attractor for the system, is written as R(Si ,Obs(Si ), Int).
The process may generate a family of second order objects S2

j . In the reformulated

version of hyperstructures presented in [5], the interactions are bonds which directly
“bind” families of primitive objects to produce second order objects. The new family
of second order objects has itself a set of observations, called Obs2. The observations
Obs2 may equal, overlap, or be disjoint from Obs. Baas calls a property P of S2

j

emergent if P ∈ Obs2(S2
j ), but P �∈ Obs(S1

i1
). Thus, a property of S2

j is emergent if it

is not found in any of the constituents of S2
j . There are also interactions Int2 between

the second order objects. These second order interactions can either occur as a
consequence of first order interactions, or they can be introduced externally using
the new emergent properties.

The formalism can be iterated to define objects of third and higher orders. An Nth
order object is a result of interactions on all lower levels: SN = R(SN−1,SN−2, . . . ,S1).
The resulting structure, consisting of objects on different levels together with their
interactions and properties, is called a hyperstructure. It should be emphasized that
a hyperstructure not merely is the result of a recursive procedure. Objects at higher
levels obtain new properties, and the new interactions and observations at higher
levels may or may not be meaningful at lower levels. Overlapping objects are allowed,
and there may be interactions between objects at different levels. See the illustration
in Fig. 4.1. Furthermore, hyperstructures allow for both “upwards” and “downwards”
causation, in that interactions on higher levels may cause changes in interactions
on lower levels. Note also that the choice of observables dictates what higher order
objects that can be generated.

The formalism is a conceptual one, and more formal rigour and details are re-
quired in each specific case. One way to become more specific with the constructions
is to interpret them within category theory, see [5] and [7]. Baas [4] states that “it is
our conviction that complexity often takes the form of a hyperstructure”.

4.1.2 An ansatz for dynamical hierarchies

Rasmussen et al. [131] have studied self-assembly in a molecular dynamics model,
and interpreted the result of the construction within the framework of hyperstruc-
tures. The primitive objects in the model are monomers which are hydrophilic or
hydrophobic. The dynamics is given by a molecular dynamics lattice gas, which is
an extension of the lattice gas CA described in Sect. 3.3.1. All molecular interactions,
including force fields, are modelled by mediating particles.

When the monomers are equipped with enough structure, the model is able to
generate three levels of organization with emergent properties on each level. The
data structures of the monomers are internal observers. On the second level one has
polymers with elasticity, and on the third level micelles with an inside/outside as well
as permeability.

In the model, the second order interactions are generated from a composition of
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first order interactions, as only the monomers interact directly. Thus, the meaning
of an interaction will depend on the context in which it occurs. The model also
exhibits downward causation, since the dynamics of the monomers become more
restricted once they form a polymer. The authors state that “the local use — or
interpretation — of the different kinds of communicated information defines the
operational semantics of the information”, and further that “in general, new hyper-
structural levels support new means of communication, both within new levels and
between old and new. This is why the object complexity is bound to increase as
more hierarchical levels are to be generated.” The observation that higher object
complexity is needed to support different means of communication leads to the main
issue in the paper, which is a new ansatz1 for dynamical hierarchies [131]:

Given an appropriate simulation framework, an appropriate increase
of the object complexity of the primitives is necessary and sufficient
for generation of successively higher-order emergent properties through
aggregation.

1An ansatz is a hypothesis taken to be true but acknowledged to be unproven that is used to reach further
conclusions [131].
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This contradicts what the authors call the complex systems dogma, namely that a
common minimal simplicity underlies all emergent structures [131].

4.1.3 Other models

Related to Baas’s hyperstructure model is the work of Ehresmann and Vanbremeersch
[41, 42], who within the frame of category theory [103] have developed a model for
hierarchical autonomous systems, called memory evolutive systems. In their model a
system is, at each time, modelled by a category whose objects represent the objects of
the system and whose morphisms represent interactions. The hierarchical structure
is modelled by the colimit operation, such that an object on level N +1 is the colimit
of a pattern of objects at level N . A particularly important phenomenon occurs when
two different patterns have the same colimit. Then, due to the composition property
of categories, new complex links not induced by any interactions on the lower level
will be formed at level N + 1. In the language of [5], the colimit construction is a
particular type of bond structure. See [6] for a comparison between hyperstructures
and memory evolutive systems. A further general model of complex systems based
on category theory is the universal dynamics introduced by Mack [104].

Fontana and Buss [49] have developed an artificial chemistry model based on
λ-calculus for the formation of self-generating robust hierarchical systems. The
objects in the model are λ-expressions which can act on each other according to
the laws of the calculus, and hence form new expressions. With the model, Fontana
and Buss obtained three levels of organization, with coexistence of self-maintaining
organizations on the highest level. Eigen and Schuster [43] introduced the notion
of a hypercycle, which is an interrelated hierarchy of cyclic reaction networks.
They considered the emergence of hypercycles as a possible mechanism for the
creation of biological hierarchies. Also these systems can be viewed as instances of
hyperstructures [4, 5].

4.2 Higher order dynamical systems

By the term higher order system we mean in general a system where we lift attention
from a set X to the power set P (X ) of subsets of X , as well as higher power sets,
viz. P 2(X ),P 3(X ), and so on. The power set process is fundamental in mathematics.
For instance, fractals are objects in P (X ), and topologies and σ-algebras are elements
of P 2(X ). Power sets are also the fundamental building block for hyperstructures,
where collections and patterns of objects obtain new properties as a consequence of
interactions among them [5].

In Paper II, we outline the principles behind higher order dynamical systems
and illustrate the concept by defining a class of systems called higher order cellular
automata. The motivation behind introducing higher order dynamical systems
is the need for a framework in which to construct and study dynamical systems



34 Chapter 4. Higher order dynamical systems

of interacting units where the interactions in various ways are hyperstructured.
Furthermore, a basic tenet is that allowing for higher order effects in a system may
lead to new and interesting types of dynamical behaviour. For instance, in Paper
I we demonstrate that n-player evolutionary games with two strategies can have a
significantly richer dynamical behaviour than such games with only two players can.
Thus, looking at a collective interaction within a group can lead to new types of
behaviour compared to looking merely at a set of binary interactions.

We take as the basis a system of locally interacting units, and look at which higher
order extensions that can be introduced. A system of this type can be characterized
by the three parts of which it is composed:

(1) The units or agents themselves.

(2) An interaction structure defined through the neighbourhoods of each unit.

(3) A set of local interaction rules governing the dynamics.

A basic higher order extension is to let groups or aggregates of units become new
entities with their own dynamical behaviour and interactions. This corresponds
to the central mechanism of hyperstructures, namely emergence of second order
objects, see Sect. 4.1.1. The groups are called second order units, or 2-units for short.
Continuing the process one may consider 3-units, being groups of 2-units, and so on.
The introduction of higher order units gives the system a certain multilevel structure,
which we call a higher order morphology. A basic example of 2-units and 3-units is the
formation of molecules from atoms and macro-molecules from molecules. A further
example is the formation of families from individuals and communities from families.

It is important to note that the existence of second and higher order units is taken
as predefined, and is not supposed to follow from the properties of the primitive units.
This is also the case for internal states of higher order units and interactions among
the higher order units. These properties are thus emergent, but the mechanisms
leading to this emergence are typically beyond the scope of the dynamical system
model. Still, the properties must be taken into account, as they may have a significant
impact on the behaviour we wish to model.

The power set process can also be applied to the other components of the basic
system, i.e. to the local rules and the interaction neighbourhoods. This produces 2-
rules and 2-neighbourhoods which constitute a higher order dynamics — a dynamics
on the dynamics. A typical example of a 2-rule is a collection of k basic rules together
with a process that governs exactly which rule that is applied at each time step. This
can be interpreted as the units having different modes of operation. Allowing for 2-
rules and 2-neighbourhoods adds complexity to the primitive units in a natural way,
and corresponding to the ansatz for dynamical hierarchies this will lead to facilitation
of structures of higher morphological order. When a unit u is a component of a 2-unit
v, it is natural to let the 2-unit v affect u indirectly through in some way controlling u’s
2-rule. This corresponds to the downward causation discussed in connection with the
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molecular self-assembly model described in Sect. 4.1.2, where the existence of higher
order units led to restrictions in the dynamics of lower levels.

We say that a system has a higher order structure if it has a higher order
morphology and/or a higher order dynamics. It is then a higher order system. We
use the term higher order dynamical system when considering a higher order system
as a formal dynamical system respecting the higher order structure. The motivation
for introducing higher order dynamical systems comes from biological and social
networks where relations among the units depend on their positions within a larger
structure, and where groups of units obtain new properties and both influence and
are influenced by their constituents.

4.3 Higher order cellular automata

In Paper II, we introduce higher order cellular automata as a particular class of higher
order dynamical systems. The objectives are to illustrate the concept and to explore
how the existence and properties of various higher order structures influence the
dynamical behaviour of the system. There are many reasons for the choice of CA
as an underlying dynamical system. Firstly, as illustrated in Chap. 3, the behaviour
of CA is extremely rich, and CA provide good models of many physical phenomena.
Therefore, CA have been extensively studied in the context of self-organization and
complexity, see references in Chap. 3. Furthermore, the behaviour of CA is easy
to visualize through space-time diagrams, and CA can be exactly simulated on a
computer.

We only define second order cellular automata, which we call 2-CA for short, but
the formalism can readily be extended to CA of higher orders than two. A 2-CA can
have one or two morphological levels and one or two dynamical levels. We consider
first the case of a 2-CA with a 2-dynamics, and then a 2-CA with both a 2-dynamics
and a 2-morphology. The notation used in connection with CA is introduced in
Sect. 3.1.1.

4.3.1 2-Dynamics

Denote by 2-DCA a 2-CA that has no 2-morphology 2. The process of constructing
a 2-DCA is in some sense merging a collection ordinary CA into a single dynamical

system. Recall that a CA on A Zd
can be defined by a neighbourhood N and a rule

f : A |N| →A . For a 2-DCA, one has a collection M = {(N1, f1), . . . , (Nk , fk )} of pairs of
possible neighbourhoods and rules. The 2-dynamics consists of M together with a
2-transition rule φ that governs the local change of rule and neighbourhood for each
cell v ∈Zd . In the language of hyperstructures [5], the collection M is a bond of rules
and/or neighbourhoods.

2The term 2-DCA is not used in Paper II.
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Definition 4.1. Let Zd1 be the d1-dimensional lattice and A1 a finite alphabet. Let
M = {(N1, f1), . . . , (Nk , fk )}, where for each i :

• Ni is a finite subset of Zd1 containing the origin.

• fi is a map A
|Ni |

1 →A1.

Lastly, let φ = (φi )k
i=1 be a collection of maps φi : A

|Ni |
1 → M . The quadruple

〈d1,A1,M ,φ〉 defines a 2-DCA.

A 2-DCA is a dynamical system on the space (A1 ×M )Z
d1 . Each cell v ∈ Zd1 is

assigned a state in A1 as well as a pair in M consisting of an active neighbourhood
and an active rule. These values are updated synchronously for all cells, using the
following scheme:

(1) Denote the current pair in M assigned to v as (Nj , fj ).

(2) Define X = σv (x)Nj ∈ A
|Nj |

1 , so that X is the configuration of the current
neighbourhood.

(3) The new state of v becomes fj (X ).

(4) The new rule and neighbourhood of v become φ j (X ).

With the Tychonoff topology on (A1×M )Z
d1 , the 2-DCA is a compact and continuous

topological dynamical system. Definition 4.1 is a concise, but equivalent, reformula-
tion of the definition found in Paper II. In particular, the set M is used to indirectly
represent the 2-neighbourhood N = {Ni : 1 ≤ i ≤ k} and the 2-rule R = { fi : 1 ≤ i ≤ k}
used in Paper II. The following is an example of the construction of a 2-DCA.

Example 4.1. Let F be a one-dimensional 2-DCA defined by the dimension d1 = 1, the
alphabet A1 = {0,1}, the set M = {(N , f1), (N , f2)}, with N = {−1,0,1} ⊂Z and rules

f1(x−1, x0, x1) = min(x−1, x0, x1) and f2(x−1, x0, x1) = max(x−1, x0, x1),

and by the 2-transition rule

φ1(x−1, x0, x1) =
{

f2 if x−1 + x0 + x1 = 1,

f1 otherwise.
, φ2(x−1, x0, x1) =

{
f1 if x−1 + x0 + x1 = 2,

f2 otherwise.

Thus, there is only one possible neighbourhood, namely N = {−1,0,1}, and two possible
rules. These comprise a 2-rule { f1, f2}. The 2-DCA F is a dynamical system on the space
({0,1}× { f1, f2})Z. A space-time diagram generated by F is found in Fig. 4.2.

Let F1 be the CA with block map f1 and F2 the CA with block map f2. Then, for any
configuration x not being equal to 0∞ or 1∞ we have

lim
t→∞F t

1 (x) = 0∞, and lim
t→∞F t

2 (x) = 1∞.
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Thus, both F1 and F2 are rather simple CA. The 2-DCA, however, has an exceedingly
more complicated behaviour. From space-time diagrams we observe the emergence
of several types of domains, whose internal dynamics range from that of a shift map
to one generating apparently chaotic patterns. Each domain typically first expands,
then shrinks and disappears as neighbouring domains of other types take over.

In Paper II we prove that every 2-DCA is topologically conjugate to an ordinary
CA. Thus, the set of all non-trivial 2-DCA3 can be considered as a subset of the
collection of all CA. However, the above formalism is more natural for describing this
class of CA, in the same way that the formalism of partitioned CA is more natural for
describing CA such as Margolus’s billiard ball model, see Sect. 3.1.4. Moreover, we will
be interested in studying the relations between a basic CA rule f and various 2-DCA
based on it.

4.3.2 2-Morphology

We have seen that a 2-DCA is an aggregation of a collection of CA into a single
dynamical system through a 2-transition map φ. This is also the case for a 2-CA
with two morphological levels, but in this case the system additionally has a second
level which also behaves like a CA. The objects on this level are called 2-cells, and
are interpreted as aggregations of cells that have become new units with their own
properties.

The 2-cells are represented by a lattice Zd2 , and their constituent cells by a map
M : Zd2 → P (Zd1 ), where P (Zd1 ) denotes the set of all finite subsets of Zd1 . This
gives each 2-cell u an inner structure. Furthermore, each cell v has an outer structure
consisting of the 2-cells in which v is a component. The 2-cells have their own
internal states from a set A2, as well as their own neighbourhood N2 and update rule
f2. In the definition presented below we require that each 2-cell contains the same
number c of cells, and that each cell is a component of exactly e 2-cells. Although
this requirement limits the generality of the definition, it simplifies the notation
considerably.

Definition 4.2. Let d1, A1 and M be as in Definition 4.1. Furthermore, let Zd2 be a
d2-dimensional lattice, A2 a finite alphabet, N2 a finite subset of Zd2 containing the
origin, and M a map M :Zd2 →P (Zd1 ), such that for some c ∈N and e ∈N,

|M(u)| = c ∀u ∈Zd2 , and
∣∣∣{u ∈Zd2 |v ∈M(u)}

∣∣∣= e ∀v ∈Zd1 .

Lastly, let f2 be a map f2 : A |N2|
2 ×A c

1 → A2 and φ = (φi )k
i=1 be a collection of maps

φi : A |Ni |
1 ×A e

2 →M . The tuple 〈d1, d2,A1,A2,M,N2, f2,M ,φ〉 defines a 2-CA.

A 2-CA is a dynamical system on the space (A1×M )Z
d1 ×A Zd2

2 . Each lattice point
u ∈Zd2 represents a 2-cell, and is assigned a state in A2. The inner structure map M

3Non-trivial in the sense that |M | > 1.
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binds the lattices together. The values of each cell v are updated in the same way as
for a 2-DCA. However, now the 2-transition rule φ also takes into account the states
of the 2-cells v is a component of. The state of each 2-cell u is updated by f2, using
the neighbourhood N2 and the states of M(u).

4.3.3 Experiments and results

A guiding question to ask when exploring higher order dynamical systems is what
impacts various higher order extensions have on the behaviour of the underlying
systems. There are many subclasses of questions one can ask about 2-CA related to
this issue. Firstly, one can study particularly interesting instances of 2-CA and their
mathematical characteristics. Secondly, one can fix a CA F and look at various higher
order extensions of it, and how they relate to F and to each other. Similarly, one
can fix a collection M of CA and look at various 2-transition rules and, possibly, 2-
morphologies. Thirdly, one can look at the collection of all 2-CA and how this class
of dynamical systems compares to ordinary CA and other types of discrete dynamical
systems. When looking at a particular group of 2-CA, for instance those based on
a certain collection M , one can both consider what properties these 2-CA typically
have, in some appropriate statistical sense, or what properties that exist within the
group.

To obtain an impression of the impacts of various higher order structures, we have
looked at many 2-CA using computer simulations and space-time diagrams. Some
general principles we followed during the exploration were to limit the complexity of
the rules involved, to take as starting points CA rules known to produce interesting
behaviour, and to look at classes of 2-CA having, in a wide sense, plausible transition
rules from a physics perspective. Some of the interesting and illustrative 2-CA we
found are presented in Paper II. We summarize our observations here, and refer to
Paper II for examples.

Several of the 2-CA we discovered exhibit interesting and, to our knowledge,
novel phenomena and behaviour. We have observed many different types of
coherent structures, including both localized structures propagating at fixed speeds,
localized structures behaving in a more irregular way, as well as the emergence
of distinct domains with different internal behaviours. It appears that a 2-DCA is
most likely to exhibit such complex behaviour when at least one of the constituent
CA also supports coherent structures. Therefore, equipping CA known to have
interesting characteristics with various higher order extensions could be a viable way
to construct new interesting dynamical systems. Nevertheless, also when merging CA
which themselves produce no coherent structures, one can obtain 2-DCA with such
properties. The 2-DCA in Example 4.1 is an example of two trivial CA that merge into
a 2-DCA with a highly non-trivial behaviour. Overall, our investigations imply that it
in general is hard to predict whether a 2-DCA will produce interesting behaviour or
not, based merely on knowledge of M and φ.
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A novel phenomenon observed in several 2-DCA is the one called crystallization
in Paper II. Crystallization occurs when a system undergoes a transition from a
disordered apparently chaotic regime to an ordered regime with a much lower
temporal entropy through gradual expansion of regular areas. A regular area is a
part of the lattice where the configuration is more regular than on the surrounding
lattice. This regularity must be robust to influences from neighbouring cells, so that
it is retained during evolution.

Concerning the relations among 2-DCA based on the same collection M of
ordinary CA, we cannot draw any strong conclusions from the experiments. In
many cases, the range of behavioural characteristics found within a group of 2-DCA
with the same M is very wide. But as previously stated, if one of the rules in M

exhibit coherent structures, there is a propensity for the 2-DCA to have this property
too. However, the coherent structures which are produced are often of dissimilar
nature for different 2-transition rules. Overall, similarity of M does not seem to be
a universally good measure of proximity in the space of all 2-DCA of a certain size,
in the same way that similarity of block maps is a poor measure of proximity in CA-
spaces.

For 2-CA with a 2-morphologies there are more parameters involved than for 2-
DCA, and consequently we have conducted less exploration of this class of systems.
However, we have observed that the coupling geometry can have a fundamental
impact on the dynamical features of the higher order system.

4.3.4 Discussion and future directions

Our explorations of 2-CA have so far mainly been based on visual aspects of space-
time diagrams displaying evolution from uniformly random initial configurations.
We have made several interesting observations of novel types of complexities and
phenomena. Nevertheless, it can be argued that although such space-time diagrams
provide good qualitative information about the dynamical features of a given CA or
2-CA, potentially important quantitative aspects remain concealed. For instance,
conserved quantities as well as computational properties are not easily detectable
from space-time diagrams. Therefore, our observations should be seen as an impetus
for more quantitative or formal investigations of the questions raised in Sect. 4.3.3.

Cellular automata, as well as 2-CA, are in general difficult both to analyse and
classify, due to the discreteness of the construction. One viable approach to study
both the scope for self-organizing complex behaviour in the class of 2-CA, and the
behavioural characteristics of a given 2-CA, is investigation by various concepts
adapted from information theory. In particular, this includes the notion of local
information, which we introduce and use to study information transport in ordinary
CA in Papers III and IV. Since 2-DCA constitute a subclass of CA, local information can
be applied directly to this class of systems. A future challenge is to extend the concept
to 2-CA with 2-morphologies in a way which takes the higher order structure into
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account. For details on local information and its relevance to CA we refer to Chap. 5.
A specific task in the future is to undertake a closer study of crystallization and its

causes, including a formal definition of the phenomenon. We believe that also here
the concept of local information and information transport may be useful. There is
probably smaller and more regular flow of information within the regular areas than
in the rest of the lattice. Additionally, one can apply the theory of formal languages
to describe and classify the expanding regular areas created during crystallization.
This is an approach similar to that Hanson and Crutchfield [64] used to characterize
embedded particles in CA, see Sect. 3.2.2.

There are several extensions and variations of the 2-CA framework presented in
Paper II that would be interesting to study. Firstly, the framework can be extended to
accommodate additional morphological and dynamical levels, more than one type
of primitives, and more than one lattice at each level. A further variant inspired by
biological systems is to allow for a slower time scale on the second morphological
level. Furthermore, by introducing rules that create new 2-cells when the local
conditions are suitable, one can utilize the framework to investigate self-assembly.

The 2-CA model presented in Paper II is intended mainly as a conceptual
mathematical model, and is probably not directly suited for the mathematical
modelling of systems with a hierarchical structure. An exception is that certain 2-DCA
might be adequate models of systems of interacting units having different modes of
behaviour or an adaptable neighbourhood structure. Nevertheless, we believe the
underlying principle of constructing dynamical systems by using 2-units, 2-rules and
2-neighbourhoods are applicable in other settings. These “higher order principles”
are certainly also applicable to systems with stochastic dynamics and more general
agent based systems. Furthermore, the principles may be useful in connection
with the large recent interest in complex networks and systems whose interaction
topologies are complex networks [119, 148].

In connection with the work presented in Paper I, the higher order CA formalism
can be used to construct spatial, multilevel games based on our threshold game.
The basic objects will represent individuals and second order objects will represent
groups or packs. One might also include third order objects representing biotopes.
It is natural to let the threshold on the number of cooperators be implicitly given by
competition among neighbouring groups, rather than being fixed. The dynamics can,
for instance, be of imitation type [122]. We believe that such models might be relevant
and useful in many settings.
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Chapter 5

Local information and
information transport

Now, confusion, like the correlative term order, is not a property of
material things in themselves, but only in relation to the mind which
perceives them.

–James C. Maxwell, “Diffusion”, Encyclopædia Brittanica, 1878

Outline

Section 5.1 provides an extensive review of the concepts of entropy and
information, their role in dynamical systems theory and in physics, and
attempts to construct microscopic versions of the entropy. In Section 5.2, we
introduce our local information measure, and Section 5.3 presents the main
results of our work on the continuity of information transport in CA. Section
5.4 concerns the applicability of local information to the characterization
and detection of correlations and coherent structures in lattice dynamics.
Finally, in Section 5.5, we point out some future directions. Much of the
notation used in the chapter is presented in Sections 3.1.1 and 3.1.3.

43
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5.1 Background

5.1.1 Shannon entropy

The field of information theory originates in Shannon’s seminal 1948 paper [141].
He introduced the notion of the information of a message in order to analyse
transmission and compression of data. The Shannon information associated with an
event A with probability p is I(A) =− log p, where the logarithm is taken with base 2.
The information I(A) can be interpreted as the information gained when observing
A. The function I satisfies the basic requirements that the information gained by
observing a set of independent events should be additive, and that observing an event
with probability one should convey no information. The Shannon entropy H(X ) of a
discrete random variable X with n possible values is the expected information gained
by observing its outcome, that is

H(X ) =−
n∑

i=1
pi log pi . (5.1)

The convention that 0 · log 0 = 0 is used, so that events with zero probability can
be ignored. The entropy is often interpreted as the a priori uncertainty about the
outcome of X . Note that the entropy H(X ) only depends on the distribution of X .
Information and entropy are measured in bits. One bit is the information that can be
stored in a binary variable.

The entropy H(X1, . . . ,Xn ) of a collection X1,X2, . . . ,Xn of random variables is the
entropy of their joint distribution. Note that H(X ,Y ) ≤ H(X )+H(Y ), with equality only
if X and Y are independent random variables. Of particular interest is the case when
the variables constitute a discrete stationary stochastic process (Xi )i∈Z with values in
a finite set A . The Shannon entropy rate of the process is defined as

h(µ) = lim
n→∞

1

n
H(X1,X2, . . . ,Xn ). (5.2)

Here, µ denotes the Kolmogorov measure of the process, see Sect. 3.1.3.
If the random variables X and Y are statistically dependent, knowledge about the

outcome of Y will reduce the uncertainty about X . The residual uncertainty about X
is the conditional entropy H(X |Y ) = H(X ,Y )−H(Y ). The entropy rate can be written
as a limit of conditional entropies [35],

h(µ) = lim
n→∞H(X0|X−n , . . . ,X1) =− lim

n→∞
∑
xn

0

µ(x0
−n ) logµ(x0|x−1

−n). (5.3)

In light of this relation, a natural interpretation of h(µ) is as the average information
gained by reading a new symbol in a sequence generated by µ when remembering
all past symbols. In this way, all correlations in the stochastic process are taken into
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account. An upper bound for the entropy rate of a process on A is log |A |. This is
attained only for the uniform Bernoulli measure.

Information, entropy and related concepts have proved to be very useful also
outside the field of communication theory, and many applications and further
developments exist. The metric entropy is an extension of h(µ) to any measure-
preserving dynamical system [83]. The metric entropy of the measure-preserving
dynamical system (A Z,µ,σ) is equal to the Shannon entropy rate h(µ). A topological
analogue of h(µ) is the topological entropy introduced by Adler et al. [1]. Both
the topological entropy and the metric entropy are important conjugacy invariants
in ergodic theory. Positive entropies are commonly used to detect and quantify
chaotic behaviour in dynamical systems. Physically, positive metric entropy can be
interpreted as a transport of information from small length scales to larger length
scales, since finer and finer aspects of the initial condition become visible as the
system is iterated [142]. An example of a system exhibiting such behaviour is the
logistic map f (x) = 4x(1− x) on [0,1]. Other areas of mathematics where concepts
from information theory are important are the theory of fractals, large deviation
theory, statistical estimation, and coding theory. Also in physics these concepts play
a prominent role.

5.1.2 Entropy and information in physics

Thermodynamics deals with description of systems such as gases in terms of
macroscopic variables, such as temperature, volume and pressure. The macrostate
of the system is given by the values of these variables. There are a vast number
of microscopic configurations, or microstates, of the system corresponding to each
macrostate. The entropy concept was first introduced into thermodynamics by
Clausius [32]. He defined the change in entropy of a system as dSth = δQ/T , where δQ
is the amount of heat transferred to the system if the system follows a reversible path.
This leads to a state variable Sth, called the thermodynamic entropy, which is defined
for systems in thermal equilibrium1. The second law of thermodynamics states that
the entropy is non-decreasing in an isolated system.

Boltzmann [18] was the first to investigate entropy at the microscopic scale. He
suggested that the thermal equilibrium of a system is the most probable macrostate,
and found for the entropy the formula Sth = kB ln W [18], where W is the number
of microscopic configurations consistent with the macroscopic quantities and kB =
1.38 ·10−23 JK−1 is the Boltzmann constant.

Boltzmann’s works led to the development of statistical mechanics, which deals
with description of systems in terms of ensembles of microstates consistent with the
macrostate. An ensemble is mathematically a probability measure on the phase space
Γ, which is the space of all possible microstates. For instance, for an N particle gas
the phase space is the 6N-dimensional space where each point specifies the position

1A system is in thermal equilibrium when the macroscopic variables have ceased to change with time.
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and momentum of each particle. When the state space is continuous, the measure is
often represented by a probability density ρ. The trajectory of each point in phase
space is determined by Hamilton’s equations. The value of ρ is constant on each
trajectory, and volumes in phase space are conserved, see, e.g., [127]. The evolution
of ρ is governed at the microscopic scale by the deterministic and reversible Liouville
equation,

∂ρ

∂t
=−

N∑
j=1

(
∂H

∂p j

∂ρ

∂r j
− ∂H

∂r j

∂ρ

∂p j

)
. (5.4)

Here, r j and p j are respectively the position and momentum of the j -th particle and
H is the Hamiltonian.

Gibbs [57] introduced a new notion for entropy, namely the Gibbs H function,

HG =
∫
Γ
ρ(x) lnρ(x)dx.

Note that when the phase space is finite, this expression is equal to the expression
for Shannon entropy in (5.1), except for the sign and the base of the logarithm. The
quantity HG is invariant under evolution by the Liouville equation, due to volume
preservation [77]. Furthermore, HG has the property that for a system in thermal
equilibrium, −kBHG ≤ Sth for all measures on Γ consistent with the macroscopic
variables, with equality for the Gibbs distribution [77]. Von Neumann [160] later
extended the definition of entropy to quantum physics.

The expressions of Boltzmann and Gibbs inspired Shannon when he created
the theory of communication [8], but the analogue between Shannon’s entropy
and the H-function remained merely semantic until the concept of information
was introduced into statistical physics by Brillouin [24] and Jaynes [75, 76]. The
new insight was the interpretation of entropy as the lack of information about the
actual microscopic configuration of the system. This interpretation yields a direct
connection between information and entropy, namely that 1 bit = kB ln 2 units of
entropy.

The concept of information has also been pivotal in exploring the relation
between physics and computation [102]. In the 1950s it was believed that making
a measurement on a system increases the entropy of the system. As a consequence,
von Neumann [161] and others speculated that each logical operation performed in
a computer at temperature T must dissipate at least kBT ln2 joules of energy, and
thereby increase entropy by kB ln2. This was later proved to be wrong by Landauer
[89], who showed that only irreversible logical operations require energy dissipation.
In particular, memory erasure in a computer is irreversible, and therefore feeds
entropy to the environment of at least kB ln 2 for each bit of information erased.
Bennett [11] showed that all computations could be performed using only reversible
logical operations. Therefore, computation in itself does not require dissipation of
energy or entropy increase in the environment. More recently, quantum computation
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and quantum information have become major topics of investigation, see [13] for a
review.

The concept of information plays an increasingly important role in physics,
for instance in the thermodynamics of black holes [10]. Several researchers have
suggested that information should be viewed as a fundamental physical quantity.
Wheeler [166] introduced the slogan “It from Bit”, and maintained that “every it
— every particle, every force, even the spacetime continuum itself — derives its
function, its meaning, its very existence entirely — even if in some contexts indirectly
— from the apparatus-elicited answers to yes-or-no questions, binary choices, bits.”

5.1.3 Entropy conservation and reversibility

As stated in the previous section, it follows from the reversibility of Hamiltonian
dynamics and the Liouville equation that the Gibbs H function HG is an invariant
of the dynamics. However, when we start with a system out of equilibrium, the
evolution is irreversible at the macroscopic scale. Furthermore, Sth for the equilibrium
state the system will settle into will be larger than −kBHG (where HG is value of
the Gibbs H function associated with the initial state). This paradox that has led to
much confusion about the nature of irreversibility and its relation to different types
of entropy and the second law of thermodynamics [77].

Let us consider an example that illustrates the resolution of the paradox.
We have two separated volumes of different gases at the same pressure and
temperature. These are then mixed, and the system approaches the equilibrium
state consisting of a homogenous mixture. In this state one cannot detect that
the gases initially were separated. However, this is detectable at the microscopic
scale, since if one could observe all positions and momenta exactly, one could
calculate all previous configurations by applying the Hamiltonian equations. Thus,
information is not lost, but rather transferred from variables of the system that can
be observed macroscopically to subtle correlations among the particles, which are
macroscopically out of reach. The increase of the thermodynamic entropy is in a
sense not related to the system itself, but rather by the limited ability of the observer
to detect all microscopic variables. The Gibbs H function, however, takes correlations
into account, and is therefore invariant. By introducing suitable entropy measures
corresponding to which variables that can be observed, the dissipation of information
can be measured exactly, see, e.g., [8].

5.1.4 Microscopic entropy

A conceptual problem related to entropy is its definition in terms of the probability
distribution over all possible microstates, while a physical system at each time is
found in a single microstate. In the words of Bennett [12, p. 936], “the absence of
a microscopic quantity corresponding to entropy is a nuisance both practically and
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conceptually”.
For many models in statistical mechanics, such as the Ising model [74], the

microstates are configurations of a d-dimensional lattice, such that Γ = A {−n,...,n}d
.

In this case, it is convenient to consider the entropy per site in the limit of an infinitely
large system. In the one dimensional case, −HG per site is equal to the Shannon
entropy rate defined in (5.2). For such systems of symbol strings, Bennett [12]
suggested the use of algorithmic complexity [29, 84, 145] to construct a microstate
function with average almost equal to the entropy HG. The algorithmic complexity of
a symbol string is the length of the shortest binary computer program that prints the
string and then halts. The approach was later developed by Zurek [170], who showed
that the average algorithmic complexity of the microstates in a thermodynamical
ensemble µ is only negligible larger than h(µ) [170, Th. 4.1].

An alternative approach applicable to systems where each microstate can be
coded into a symbol sequence x ∈ A Z, is to use the internal statistics of x to
approximate the entropy rate [100]. For a shift-invariant measure µ, the empirical
measure νx is well defined µ-a.e. This is the measure with block probabilities given by

νx (an
1 ) = lim

N→∞
1

N

N−1∑
k=0

1Cyl(an
1 )(σ

−k x). (5.5)

The idea is to take H(νx ) as the entropy of x. For any ergodic measure µ, Birkhoff’s
ergodic theorem ensures that νx = µ, µ-a.e., so in this case almost all microstates
contain all information about the ensemble. Furthermore, it is then clear from
Theorem 3.3 that H(νx ) = H(νF x ) µ-a.e. for any surjective one-dimensional CA F ,
so the entropy of the sequence is preserved under evolution by the CA.

5.1.5 Localized information

There are many fundamental conserved quantities in physics, such as mass, charge,
and energy. The flows of these quantities obey local continuity equations. For
instance, in fluid dynamics the continuity equation for mass takes the form

∂ρ

∂t
=−∇(ρu),

where ρ is the density and u is the fluid velocity. The term continuity does not refer to
continuity in the topological sense, nor to continuity as the opposite of discreteness,
but rather to “continuity of existence”.

In the previous section we discussed how entropy can be assigned to microstates
that are coded as symbol sequences. An important question is whether we can
introduce a local version of the microscopic entropy that is locally conserved under
reversible dynamics, in the sense that it obeys a continuity equation involving an
information current. Since the entropy depends on the degree of correlation in the
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system, it is not obvious that this can be done. This approach was first proposed in
the context of CA by Toffoli [154]. He considered perturbations around uncorrelated
equilibria of particle conserving reversible CA, such as lattice gas automata. He
looked at the one-site entropy and proved that the surplus or deficit of this quantity
is transported as an additive conserved quantity.

5.2 Local information

One objective of the work presented in Papers III and IV is to explore to what extent
information can be considered as a local quantity in dynamical systems of interacting
units. In order to achieve this, we first define a local version of the Shannon
entropy, called local information. The local information quantity is based on the
interpretation of the Shannon entropy rate of a measure µ on A Z as the average
information gained by reading the next symbol in a sequence x when knowledge of all
previous symbols in some direction is assumed. The assumption of this knowledge
is necessary, because the correlations in a sequence can be arbitrary long, and all
correlations must be taken into account.

Definition 5.1. Let µ be a probability measure on A Z. The left local information with
respect to µ is given by

SL(x;µ) =− lim
n→∞ logµ(x0|x−1

−n). (5.6)

Furthermore, the left local information at coordinate i of x ∈ A Z is defined by
SL(x; i ;µ) = SL(σi x;µ).

The function SL(x; i ;µ) is local in the sense that it measures the gain of informa-
tion resulting from observing the symbol at a single position i of x. The following
theorem establishes that SL is well defined. For the proof, as well as the proofs of the
other theorems stated in the chapter, we refer to Paper IV.

Theorem 5.1. The sequence
(
logµ(x0|x−1−n)

)
n≥0 of functions in L1(µ) converges µ-

almost everywhere and in L1(µ). Consequently, SL(x;µ) ∈ L1(µ).

A basic requirement for a local information quantity is that its average should
equal the Shannon entropy rate. This is true for SL, since from (5.3) and L1

convergence it follows that
∫

SL(x;µ)dµ = h(µ), where the integral is taken over
A Z. The local information SL(x;µ) depends on the measure µ, thus knowledge of
µ is required to calculate SL. However, in the case of a shift-invariant measure, the
left local information can in principle be recovered with probability one from the
sequence x0−∞. This is achieved by considering the empirical measure νx defined in
(5.5).
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Theorem 5.2. Let µ be a shift-invariant measure on A Z and νx the empirical measure
generated by x. Then

SL(x;µ) = SL(x;νx ) µ-a.e.

Analogously to the left local information, we define the right local information as

SR(x;µ) =− lim
n→∞ logµ(x0|xn

1 ). (5.7)

The right local information obviously has the same convergence properties as the
left information, and for all results valid for the left information, there will be
corresponding results for the right information. Note, however, that while the left and
right information have the same expectation for all shift-invariant measures, they are
not equal, nor do they in general have the same probability distribution.

5.3 Information transport

For SL to be a reasonable measure of the information found at a single position, it
should be locally conserved under reversible dynamics. Papers III and IV investigate
this in the case where the dynamics is given by a cellular automaton. As illustrated
in Sect. 3.3, CA have many of the properties characterizing physical systems, such
as local interactions, and provide good models of many physical systems. Studies
of local information and information transport can also provide insight into the
behaviour of CA and quantitative measures of the structure which is built up. We
return to these aspects in Sect. 5.4.

5.3.1 The information current

The goal is to show that the local information SL satisfies a continuity equation
involving an information current JL(x; i ;µ):

∆t SL =−∆i JL. (5.8)

The operator ∆ is the forward difference operator, so explicitly the terms are

∆t SL(x; i ;µt ) = SL(F (x); i ;µt+1)−SL(x; i ;µt ),

∆i JL(x; i ;µt ) = JL(x; i +1;µt )− JL(x; i ;µt ).
(5.9)

Since we consider time steps of length one, JL(x; i ;µt ) can be interpreted as the
information flow from position i −1 to position i generated by applying the CA.

In order to define the expression for the current we need two new notions. For a
semi-infinite sequence xi−∞, define Z (xi−∞) as the set of all semi-infinite sequences
that have the same image and the same tail as xi−∞:
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Definition 5.2. For x ∈A Z and a surjective CA F , define the sets Z (xi−∞) as

Z (xi
−∞) =

{
zi
−∞ : f (zi

−∞) = f (xi
−∞) and ∃ j ≤ i such that z j

−∞ = x j
−∞

}
.

It follows from the results of [70] that |Z (xi−∞)| is bounded for any given surjective
CA F . Furthermore, define τ(xi−∞) as the largest index less than i − r for which all
sequences in Z (xi−∞) coincide (recall that r is the right radius of F ):

Definition 5.3. For x ∈A Z, define τ(xi−∞) ∈Z as

τ(xi
−∞) = max

j

{
j : j < i − r, and z j

−∞ = x j
−∞ ∀ zi

−∞ ∈ Z (xi
−∞)

}
.

We are now ready to define the information current. The integer τ and the set Z
used in the definition are illustrated in Fig. 5.1.

Definition 5.4. Let F be a surjective one-dimensional CA with right radius r , and µ

a measure on A Z. Put Z = Z (xi+r−1−∞ ) and τ = τ(xi+r−1−∞ ). Define the left information
current at coordinate i of x with respect to µ and F as

JL(x; i ;µ) =− logµ(xi−1
τ+1|xτ

−∞)+ log
∑
Z
µ(zi+r−1

τ+1 |xτ
−∞). (5.10)

As for SL, we write JL(x;µ) for JL(x;0;µ). Theorem 5 in Paper IV ensures that
JL ∈ L1(µ). In Paper IV we also describe a way of decomposing JL(x;µ) into

JL(x;µ) = J+L (x;µ)− J−L (x;µ), (5.11)

with J+L , J−L ≥ 0, such that J+L has a natural interpretation in terms of information
flowing to the right between coordinates −1 and 0, and J−L in terms of information
flowing to the left. The component J−L (x;µ) is the additional information gained about
the continuation x∞

1 when knowing x0−∞ and observing the configuration (F x)0−∞.
This gain is measured using a relative entropy, also known as a Kullback-Liebler
distance [86]. The component J+L (x;µ) is the information gained by observing x−1

τ+1
when xτ−∞ as well as y−1−∞ is known, compare with Fig. 5.1.
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5.3.2 Main results

The main results are two theorems that ascertain the correctness of the continuity
equation in two different cases. In the case of a reversible CA, no requirements on the
measure are necessary.

Theorem 5.3. Let F be a reversible one-dimensional CA, and µ a probability measure
on A Z. Then ∆t SL(x; i ;µ)+∆i JL(x; i ;µ) = 0 for all i ∈Z µ-a.e.

The second theorem states that the continuity equation also is valid for surjective
CA, under the assumption that the measure is shift-invariant.

Theorem 5.4. Let F be a surjective one-dimensional CA, and µ a shift-invariant
probability measure on A Z. Then ∆t SL(x; i ;µ)+∆i JL(x; i ;µ) = 0 for all i ∈Z µ-a.e.

Corresponding results are of course also true for right local information. The
proofs of both theorems are based on considering each sequence x as the outcome of
a discrete stochastic process, and using results from martingale theory and uniform
integrability.

A class of CA where the information flow has a particularly simple form is the
class of permutative CA [70]. A one-dimensional CA F is right permutative if the map
a �→ f (xr−1−m a) is a permutation of A for each xr−1−m ∈ A m+r . All right permutative CA
are surjective.

Corollary 5.1. Let µ be any shift-invariant measure on A Z and F : A Z → A Z a right
permutative CA with right radius r . Then, µ-almost everywhere,

SL(F x; i ;µ◦F−1) = SL(x; i + r ;µ). (5.12)

In particular, if r = 0, then SL(F t x; i ;µt ) = SL(x; i ;µ0) for all t ≥ 0, so that the local
information is locally constant.

5.3.3 Discussion

Our results show that the continuity equation is valid for reversible CA for all
measures. This is a clear indication that the function SL is an appropriate local
information measure in a spatially extended system. Furthermore, the continuity
equation is also valid for surjective CA, when the measure is shift-invariant.

There are although some limits to the locality of information when compared to
physical locally conserved quantities such as mass. Firstly, the quantity SL(x; i ;µ)
is not calculable from the local state xi only, rather it depends on the semi-infinite
context xi−1−∞ . This feature is however necessary to obtain a locally conserved
information measure, because the correlations that are build up in the sequence
during iteration can involve arbitrary many cells. However, there is a choice between
the left and the right context, and this results in the existence of two independently
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conserved local information quantities, SL and SR. These can behave quite differently.
For instance, for a right permutative but not left permutative CA with r = 0, SL(x; i ;µ)
is invariant under F for each i , while the dynamics of SR is unaffected by right
permutativity.

In Paper IV we also consider how far information can flow in a single iteration
of the CA. It is true that |JL(x; i ;µ)| ≤ ∑i+r−1

k=i SL(x; k ;µ), so there cannot flow more
information to the left than the amount of information in the length r interval
[i , i + r −1]. Regarding flow of information to the right, we prove that for invertible
CA, JL(x; i ;µ) < ∑i−1

k=i−r̃ SL(x; k ;µ), where r̃ is the right radius of the inverse CA. For
surjective CA, i − r̃ is replaced by τ+ 1, which is not bounded. Thus, for surjective
CA, local information can in one time step propagate farther than the radii of the CA,
but only to the right. However, in light of the interpretation of J−L and J+L , only flow of
left information to the left is relevant to communication across the lattice. We refer to
Paper IV for further discussion of this issue.

5.4 Correlation, structure and self-organization

In Sect. 5.1.3, we discussed how thermodynamical processes are macroscopically
irreversible, because information is transferred to correlations among a large number
of particles. The same phenomenon takes place in surjective CA when we consider
the individual cells as the analogue of the particles. As an example we can consider
evolution by the one-dimensional CA with neighbourhood and rule given by

N = {0,1}, and f (x0, x1) = x0 + x1 (mod 2). (5.13)

Let the initial measure be Bernoulli with µ0(1) = 1
4 , such that all coordinate random

variables initially are independent. Since this CA is right permutative, the left
local information is constant. But on the other hand, any initial Bernoulli-measure
converges in the weak∗ sense in Cesàro mean to the uniform Bernoulli measure [98].
That is, for all k ≥ 1 and all finite blocks ak

1 ∈A k , we have

lim
n→∞

1

n

n−1∑
t=0

µt (ak
1 ) = 1

|A |k . (5.14)

The reason that both these results can be valid is that the information in the system
is transferred to correlations over longer and longer distances as time progresses.
Define the left local information conditioned on a finite number n of cells as
Sn

L (x;µ) = − logµ(x0|x−1−n ). Figure 5.2 displays the exact values of Sn
L (x; i ;µt ) for 0 ≤

t < 20 and various values of n for a part of the lattice in an evolution by the CA. As can
be seen, the convergence of SL is slow due to long correlations even for small times t .
We also observe that the convergence is rather non-uniform with respect to position.

The details of the correlations in measures µt generated by CA have been studied
by Lindgren [99], who looked at the information found in correlations at different
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lengths, a concept introduced by Eriksson and Lindgren [47]. The information km in
correlations of length m can be written in terms of local information conditioned on
a finite number of cells as km =∫

(Sm
L −Sm−1

L )dx ≥ 0. With k0 = log |A |−H(X0), called
the density information, we obtain

log |A | = h(µ)+
∞∑

m=0
km .

Thus, the total information capacity of each lattice point is decomposed into entropy,
density information, and correlations at different lengths. This is a macroscopic
approach, in the sense that it only looks at expectancy values of SL. Through the use
of local information it could be possible to characterize and study the correlations
developing in the system at the microscopic scale. For instance, even though km ≥ 0
for each m, the quantity Sm

L (x,µ)−Sm−1
L (x;µ) can vary wildly with m within a single

sequence x, and take both signs. Also, one can investigate to what degree the
correlations are homogenous in the system, or vary with position i .

One can also use local information to study self-organization and the emergence
of coherent structures in the dynamics of CA and 2-CA. In Paper III we sketch how
numerical estimates of Sn

L can be used to detect such structures. In particular we do
this for ECA rule 18, described in Sect. 3.2.2. The defects in the lattice configuration
can be singled out, because they contain more local information than the background
pattern of the surrounding lattice. This will be the case for most localized coherent
structures in CA, provided that they do not appear in larger numbers. To detect the
structures, only a single sequence F t (x) from the evolution by F is necessary. A related
approach is the local statistical complexity recently introduced by Shalizi et al. [140].

5.5 Future developments

It would be interesting in the future to investigate both numerically and analytically
the flow of information in CA that have been studied in other contexts. This includes
both the elementary CA and some of the CA related to physics and biology described
in Sect. 3.3, such as the reversible CA with plausible thermodynamic behaviour
investigated by Takesue [150], CA for simulating Ising dynamics [36, 159], and, in
connection with computation, the billiard ball CA [105].

As pointed out at the end of Chap. 4, local information can be applied directly
to 2-DCA, since these 2-CA are conjugate to ordinary CA. This is also the case for
some basic instances of 2-CA with 2-morphologies. Nevertheless, it would be more
interesting to apply local information in a way that takes higher order structures into
account, and enables measurement of information transport both within each level
and between the levels. This is left at a future problem.

In Paper IV we establish the existence of a continuity equation for one-dimensional
surjective CA, and find a natural expression for the information current. We are
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currently investigating the possibility of extending these results to non-surjective and
probabilistic CA. For a non-surjective CA, h(µt ) is in general a decreasing function of
t . This involves a loss of local information, and a continuity equation would have to
take this loss into account. Probabilistic CA are CA where the block map is stochastic
[93], and can be regarded as a generalization of ordinary CA. The stochasticity may
lead to an increase in the average local information during iteration — a further
aspect which must be taken into account by a continuity equation. The continuity
equation may also be extended to reversible and surjective CA in dimension two and
higher.

One can also look at local information and transport of local information for other
types of spatially extended dynamical systems. In particular, this includes coupled
map lattices, which are similar to CA except that the local states are continuous
variables, see, e.g., [79]. Extensions of the formalism to other systems might bring
us closer to addressing fundamental issues relating to information transport and
conservation in physical systems and the dynamical basis of self-organization.



Bibliography

[1] ADLER, R., KONHEIM, A., AND MCANDREW, M. 1965. Topological entropy. Trans.
Amer. Math. Soc. 114, 61–85.

[2] ASHBY, W. R. 1962. Principles of the self-organizing system. In Principles of Self-
Organization, H. von Foerster and G. W. Zopf, Eds. Pergamon Press, 255–278.

[3] AXELROD, R. AND HAMILTON, W. D. 1981. The evolution of cooperation.
Science 211, 1390–1396.

[4] BAAS, N. A. 1994. Emergence, hierarchies and hyperstructures. In Artificial Life
III, Santa Fe Studies in the Sciences of Complexity, Proc. Volume XVII, C. G. Langton,
Ed. Addison-Wesley, Reading, MA, 515–537.

[5] BAAS, N. A. 2004. Abstract Matter. Preprint NTNU.

[6] BAAS, N. A., EHRESMANN, A., AND VANBREMEERSCH, J.-P. 2004. Hyperstructures
and memory evolutive systems. Int. J. Gen. Syst. 33, 5, 553–568.

[7] BAAS, N. A. AND EMMECHE, C. 1997. On emergence and explanation.
Intellectica 2, 25, 67–83.

[8] BALIAN, R. 2005. Information in statistical physics. Stud. Hist. Philos. Mod.
Phys. 36B, 2, 323–353.

[9] BÉAL, M.-P. AND PERRIN, D. 1997. Symbolic dynamics and finite automata. In
Handbook of formal languages, Vol. 2. Springer, Berlin, 463–505.

[10] BEKENSTEIN, J. 1973. Black holes and entropy. Phys. Rev. D 7, 2333–2346.

[11] BENNETT, C. H. 1973. Logical reversibility of computation. IBM J. Res.
Develop. 17, 6, 525–532.

[12] BENNETT, C. H. 1982. The thermodynamics of computation – a review. Int. J.
Theor. Phys. 21, 12, 905–940.

[13] BENNETT, C. H. AND SHOR, P. W. 1998. Quantum information theory. IEEE
Trans. Inform. Theory 44, 6, 2724–2742.

57



58 Bibliography

[14] BERLEKAMP, E. R., CONWAY, J. H., AND GUY, R. K. 1982. Winning Ways for your
Mathematical Plays. Vol. 2. Academic Press. Chapter 25.

[15] BISHOP, T. AND CANNINGS, C. 1976. Models of animal conflict. Adv. Appl. Prob. 8,
616–621.

[16] BLANCHARD, F., KURKA, P., AND MAASS, A. 1997. Topological and measure-
theoretic properties of one-dimensional cellular automata. Physica D 103, 86–99.
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Abstract

An evolutionary game of individuals cooperating to obtain a collective benefit
is here modelled as an n-player Prisoner’s Dilemma game. With reference to bio-
logical situations, such as group foraging, we introduce a threshold condition in
the number of cooperators required to obtain the collective benefit. In the sim-
plest version, a three-player game, complex behaviour appears as the replicator
dynamics exhibits a catastrophic event separating a parameter region allowing
for coexistence of cooperators and defectors and a region of pure defection. Co-
operation emerges through an ESS bifurcation, and cooperators only thrive be-
yond a critical point in cost-benefit space. Moreover, a repelling fixed point of the
dynamics acts as a barrier to the introduction of cooperation in defecting popula-
tions. The results illustrate the qualitative difference between two-player games
and multiple player games and thus the limitations to the generality of conclu-
sions from two-player games. We present a procedure to find the evolutionarily
stable strategies in any n-player game with cost and benefit depending on the
number of cooperators. This was previously done by Motro [1991. Co-operation
and defection: playing the field and the ESS. J. Theor. Biol. 151, 145–154] in the
special cases of convex and concave benefit functions and constant cost.

Keywords: n-Player game; Prisoner’s Dilemma; cooperation; bifurcation; hystere-
sis
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1 Introduction

Game theoretical analysis has been widely applied in evolutionary theory. The canon-
ical metaphor for the dilemma arising when cooperative and competitive relations
between individuals collide is the Prisoner’s Dilemma [16, 21, 24, 32]. The Prisoner’s
Dilemma game can either be represented as a two-player game or more generally as
an n-player game, sometimes termed the ‘public goods game’ [6]. The n-player game
describes a situation in which several individuals can cooperate to achieve a common
benefit, which in turn is shared among both the cooperators and the (free riding)
defectors in the group. An often used ‘tragic’ sociological metaphor — the tragedy
of the commons — describes the overexploitation of a grassland resource shared by
village farmers [18]. Indeed this metaphor represents the rational outcome of an n-
player game. The verbalized public goods game illustrates a situation where the so-
cial agents contribute some amount of resource (money) to a common pool, which is
then increased with some factor (interest rate). Subsequently the total quantity is dis-
tributed among all players regardless of their individual contribution [19]. In its pure
form the outcome is identical to the tragedy of the commons. However, cooperation
can be promoted by evoking further mechanisms such as e.g. punishment [7, 15], or
optional participation either in groups [19] or in iterated two-player games [4].

A crucial notion to analytically describe the properties and ultimate outcome of
a conflict or a game situation is the Evolutionarily Stable Strategy (ESS). Roughly, a
strategy is evolutionarily stable if no alternative strategy can invade it (see [1, 21, 24,
27]). In evolutionary theory, however, the ESS analysis is mainly applied in two-player
games only (but see e.g. [6, 19]).

As in the public goods game the per capita benefit is often implicitly assumed to
increase in a linear fashion with the number of cooperators, i.e. the effect of coopera-
tion is additive. In an n-player game, Motro [25] relaxed this assumption and investi-
gated two further classes of strictly increasing benefit functions describing the benefit
obtained by group members as a function of the number of cooperators. For linear
(additive) and convex (superadditive) benefit functions only the two trivial ESSs of
full defection or full cooperation appear, depending on whether the additional ben-
efit obtained by a single member switching to cooperative behaviour exceeds the in-
dividual cost of cooperation [25]. However, for concave (subadditive) benefit func-
tions there may exist a polymorphic ESS consisting of both strategies (or alternatively
a homogenous population of mixed strategies). Hence, under such condition some
degree of cooperation in the population can be expected [25].

In various natural situations the assumption of the benefit function having a mono-
tonic derivative, let alone being linear, sometimes fails to capture the nature of the in-
teraction. Animals that are dependent on very aggregated resources that require joint
effort to handle and process, may face a reality best represented by a threshold sce-
nario. In such case the benefit represents a single discrete all-or-nothing event, thus
the benefit function becomes a step function. In other words, the benefit function
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may be characterised by a discrete transition between a plateau of low or zero benefit
and a plateau of high benefit that is reached only if sufficiently many group mem-
bers cooperate. A conspicuous natural situation complying with this model is the
group hunting of certain predators, as for example the African wild dog (Lycaon pic-
tus) [5, 11–14]. The collective effort of individuals in the groups ensures that large prey
can be caught that no single individual could ever capture [14]. Moreover, the hunting
success seemingly depends on the propensity to cooperate among group members.
A minimum number of hunters seems required in order to capture large prey items
as the fatigue of the prey cannot be provoked without a joint effort of a number of
individuals [13]. As the prey is either captured or not, a game representation should
account for the binary outcome.

Territory defence is another example of a benefit function which should be rep-
resented by a threshold scenario since the result of the joint defence is of a binary
nature in the sense that the territory will either be lost or maintained. Game theo-
retical considerations has arisen from the observation that in female groups of lions
(Panthera leo) certain individuals seem to consistently refrain from contributing to
the common territory defence [20, 29].

In this paper we wish to investigate the simplest possible game allowing for a step-
wise or threshold relation between the proportion of cooperators in a group and the
benefit obtained. In a three-player game we introduce a threshold level of two coop-
erators that has to be exceeded in order to obtain the benefit. We describe this game
in Section 2, and show that even this simple case yields complex evolutionary behav-
iour as the system exhibits hysteresis around critical parameter values separating a
regime with stable coexistence of defectors and cooperators and a regime of pure de-
fection. In Section 3 we generalize Motro’s work and describe a procedure to find all
ESSs for any benefit function. We then proceed to find conditions for when the dy-
namics is similar to that of our three player threshold game. In Section 4 we discuss
the implications and biological relevance of our findings.

2 Single group and mean field models

Initially, assume we have a group of three players. Each player has the choice of co-
operating (C ) or defecting (D). If at least two players cooperate, all three players will
receive a benefit of r . Otherwise, all players will receive no benefit. Additionally, co-
operating bears some cost c , which is inflicted whether or not the benefit is achieved.
The payoff to ego is summarized by the table:

CC CD DD
C r − c r − c −c
D r 0 0

We see that the pure strategy of always defecting is a Nash equilibrium while the
pure strategy of cooperating never is. Let the mixed strategy x be to cooperate with
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probability x, and defect with probability 1− x. Assume that two of the players play
strategy x. If player A plays strategy y , its expected payoff is given by the function:

W (y ; x) = r x2 + y(2r x(1− x)− c)= r x2 + y · g (x). (1)

According to classical game theory, there is a mixed Nash equilibrium when this pay-
off is independent of y . In our case this is when g (x) = 0. This is the case only for the
two x values

x− = 1

2
− 1

2

√
1−2

c

r
, x+ = 1

2
+ 1

2

√
1−2

c

r
. (2)

Thus, there are only mixed Nash equilibria when r ≥ 2c .
The same game can also be regarded as an evolutionary game. Here, the setting is

a large population where triples of players are randomly selected and play the game.
A strategy x is said to be evolutionarily stable if it is resistant to all invading strategies.
That is, if any alternative strategy y is played by a sufficiently small fraction of the
population, x always does better than y . The notion of ESS was introduced in [23]
for two-player games. We use the natural extension to n-player games defined in [8],
namely the condition that

W (x;εy + (1−ε)x) > W (y ;εy + (1−ε)x) (3)

for all y ∈ [0,1], y �= x and ε smaller than some ε(y). By (1) and Taylor expansion we
have

W (x;εy + (1−ε)x)−W (y ;εy + (1−ε)x)

= (x − y)g (x +ε(y − x))

= (x − y)g (x)−ε(x − y)2g ′(x)+O(ε2).

(4)

Hence, for a mixed strategy x to be an ESS it must satisfy g (x) = 0 (Nash equilibrium)
and additionally g ′(x) < 0. Consequently, x+ in (2) is an ESS while x− is not. The Nash
equilibrium where players always defect is also an ESS, since always defecting in this
case is the unique best reply to itself. Note that while having a mixed ESS and a pure
strategy ESS coexisting for the same parameter values is impossible for a two-player
game, it is not in a three-player game [8].

The replicator equation for the system determines the dynamics of the game when
players reproduce proportionally to their achieved payoff. The equation is given by
[21]:

ẋ = x( f (x)− f̄ ). (5)

Here, f (x) is the fitness of cooperators and f̄ is the mean fitness of the total popula-
tion. In our case the exact form is given by

ẋ = x(1− x)g (x). (6)
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The fixed points of this dynamical system are the same as the Nash equilibria of
the group game, along with the point x = 1, since pure populations always will be
fixed points of the replicator system. It is easily checked that the stable fixed points are
those corresponding to ESSs for the group game. We can thus represent the dynamics
of the game by the bifurcation diagram in Fig. 1. The diagram shows that we have a
saddle-node bifurcation at α = c

r = 1
2 . Here, one stable and one unstable fixed point

are created as α decreases. Consequently, in the case that α< 1
2 the system will settle

in state x+ if the initial fraction of cooperators is higher than x− . Otherwise, the system
will settle in a state consisting entirely of defectors. The last outcome is always the
case when α> 1

2 . Note that this leads to a hysteresis effect. If the system initially is in

the cooperating state x+ andα is increased beyond 1
2 , the system will settle in the state

of pure defection. However, a subsequent decrease of α will not suffice to reestablish
the cooperative state due to the fact that x = 0 also is an ESS. This effect is discussed in
Section 4. The dynamics of threshold games with more than three players are similar,
see Example 6.

3 General conditions for threshold type dynamics

Considering the general case, we wish to find a general procedure to understand the
dynamics of an n-player evolutionary game as well as obtain conditions under which
the game will have dynamics equal to the dynamics of our three player threshold
model. Assume we have a group of N players (capital N is hereafter used to indicate
a fixed group size). Denote by rk the benefit to each group member if k players opt to
cooperate and N − k players defect. Furthermore, assume that cooperation bears an
additional cost of ck when k of the players cooperate, that is, the cost is specified by
the vector c = (c1, . . . , cN ). Define r = (r0, . . . , rN ) as the vector containing the benefits.
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It may be natural that rk is non-decreasing and ck is non-increasing in k , but we do
not require this. This game is formally defined as

Definition 1. Let the game Γ(N ,r,c), with c ∈ [0,∞)N and r ∈ [0,∞)N+1 , have N play-
ers, each with the strategy set S = {C ,D}. The payoff is defined as following: If k players
play C, these will obtain rk − ck and the remaining N −k players will obtain rk .

The game with constant cost considered by Motro [25] is referred to as Γc (N ,r) =
Γ
(
N ,r, (c , c , . . . , c)

)
. Before proceeding we introduce a useful terminology.

Definition 2. The forward difference operator ∆ is defined on the sequence r by

∆rk = rk+1 − rk

for 0 ≤ k ≤ N −1. Its higher iterates are defined recursively by

∆m rk =∆m−1rk+1 −∆m−1rk

for 0 ≤ k ≤ N −m.

Note that ∆rk −ck+1 is the additional payoff ego will obtain by switching from D to
C if exactly k other players cooperate. Denote by Wr,c(y ; x) the expected payoff to ego
playing strategy y while the remaining N −1 players are playing strategy x. Equiva-
lently, the remaining N−1 players might be drawn at random from a large population
of which a fraction x always plays C and the rest plays D. In both cases the number of
players in the group playing C will be binomially distributed. Consequently, Wr,c(y ; x)
is given by

Wr,c(y ; x) =
N−1∑
k=0

(
N −1

k

)
xk (1− x)N−1−k rk + y · gr,c(x), (7)

where

gr,c(x) =
N−1∑
k=0

(
N −1

k

)
xk (1− x)N−1−k (∆rk − ck+1). (8)

The function gr,c(x) is a polynomial defined on the interval [0,1]. It is called the gain
function because gr,c(x) is interpreted as the expected increase in payoff ego will gain
if playing C rather than D. As argued in the previous section, a strictly mixed strategy
x can only be a Nash equilibrium if gr,c(x) = 0.

For the constant-cost game Γc (N ,r) Motro [25] found the possible ESS for the spe-
cial case of all ∆2ri having the same sign. In this case, the gain function is strictly
monotonic, as implied by Eq. (17). We will refer to the gain function of Γc (N ,r) as
g̃r,c (x).

Example 3. Consider the game where the cooperators share a fixed cost c, that is, c = cσ
with c ∈ [0,∞) and σ=(

1, 1
2 , 1

3 , . . . , 1
N

)
. The function gr,c(x) is then given by

gr,cσ(x) = g̃r,c (x)+ c(1−γ(x)),

6
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where g̃r,c (x) corresponds to the game Γc (N ,r) and

γ(x)= 1− (1− x)N

N x
and γ(0)= 1.

In Γc (N ,r) with rk = r0 + kc, k = 1,2, . . . ,N, we have g̃r,c (x) ≡ 0 (i.e., all strategies are
Nash equilibria). With cost sharing and

rk = r0 + c
k∑

i=1

1

i
,

we again have gr,c(x) ≡ 0. A particular Nash equilibrium may thus exist with a quite
moderate increase in reward in the cost-sharing game, as compared the constant-cost
game.

We will now describe a general procedure to locate the Nash equilibria and ESS of
the game defined by r and c. These properties of the game are decided by the function
gr,c(x) alone. In the proposition below, Cases (1)–(3) are the common cases while (4)
contains special cases which occur if the derivative g ′

r,c(x) is zero or, for the endpoints,
gr,c(x) is zero.

Proposition 4. Consider the function gr,c(x) defined in (8). All symmetric Nash equi-
libria (NE) and all ESS to the game Γ(N ,r,c) in Definition 1 are given by the following
cases:

(1) If gr,c(0) < 0, then x = 0 is an ESS.

(2) If gr,c(1) > 0, then x = 1 is an ESS.

(3) If gr,c(x) = 0, then x is a NE. If additionally g ′
r,c(x) < 0, then x is also an ESS.

(4) x is an ESS in the special cases:

(a) 0 < x < 1, gr,c(x) = 0, g ′
r,c(x) = 0 and there is an m ∈N such that g (k)

r,c (x) = 0

for k ≤ 2m and g (2m+1)
r,c (x) < 0.

(b) x = 0, gr,c(0) = 0 and there is an m ∈N such that g (k)
r,c (0) = 0 for k < m and

g (m)
r,c (0) < 0.

(c) x = 1, gr,c(1) = 0 and there is an m ∈N such that g (k)
r,c (1) = 0 for k < m and

(−1)m+1g (m)
r,c (1) < 0.

The analysis is easily done graphically by plotting the function gr,c(x). Note that
gr,c(x) = 0 is satisfied at no more than N −1 values of x, since gr,c(x) is a polynomial
of degree N −1. Also note that gr,c(0) =∆r0 − c1 and gr,c(1) =∆rN−1 − cN . The proof of
Proposition 4 is found in the appendix, as are the proofs for the propositions stated
below.

7
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Example 5. Consider the five player game Γc (5,r) with r0 = 0, r1 = 0.15, r2 = 0.3, r3 =
0.7, r4 = 0.8, r5 = 1. The function gr,c (x) is plotted for c = 0.18 in Fig. 2. We have the
following ESS for various values of c:

Range of c ESS
c < 0.139 x = 1
0.139 < c < 0.15 one mixed ESS, x = 1
0.15 < c < 0.163 x = 0, x = 1
0.163 < c < 0.2 x = 0, one mixed ESS, x = 1
0.2 < c < 0.203 x = 0, one mixed ESS
0.203 < c x = 0

Hence this five-player case generates the following ESS-bifurcations: at c = 0.139,0.163
and 0.203 saddle-node bifurcations emerge, and at c = 0.15 and 0.2 transcritical bifur-
cations separate the regions of distinct evolutionary dynamics.

Example 6. Consider a threshold game Θr,c (N ,M) with N players, where a threshold
of M cooperators brings a reward of r per player and the cost of cooperating is constant
and equal to c. The benefit is thus rk = 0 for k < M and rk = r for k ≥ M. In this case,

g̃r,c (x) = r

(
N −1

M −1

)
xM−1(1− x)N−M − c. (9)

For 1 < M < N, this function has a single maximum in [0,1], located at x̃ = M−1
N−1 . Define

γN ,M =
(

N −1

M −1

)(
M −1

N −1

)M−1 (
N −M

N −1

)N−M

. (10)

8
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The bifurcation diagram for the system will look qualitatively similar to that in Fig. 1.
For c

r < γN ,M the system has a mixed ESS x+ and an unstable mixed NE x− < x+. For
c
r > γN ,M the pure strategy of defecting is the only ESS.

Finally, we state some general conditions under which the dynamic of a game
Γc (N ,r) is equal to that of our three player threshold game presented in Section 2.

Proposition 7. Consider the game Γc (N ,r). If

(1) ∆3ri ≤ 0 for 0 ≤ i ≤ N −3

(2) ∆2r0 > 0 and ∆2rN−2 < 0

then there exists a c∗ > max{∆r0,∆rN−1} such that

(1) For c <∆rN−1 and for c > c∗, there are no strictly mixed ESS

(2) For ∆rN−1 < c < c∗ there exists a single strictly mixed ESS x = x+.

(3) For ∆r0 < c < c∗ a there exist a NE x = x− with x− < x+.

(4) Additionally, x = 1 is an ESS for c <∆rN−1 and x = 0 is an ESS for c >∆r0.

Thus, when the conditions in the proposition are satisfied we have the same sit-
uation as in our three player threshold game. When the cost c is high the only ESS is
x = 0 and when the cost is low the only ESS is x = 1. The last case is not present in
Θr,c (3,2) of Section 2 since there ∆rN−1 = 0. In addition x = 0 is an ESS coexisting with
x+ in the interval ∆r0 < c < c∗.

Note that the while Proposition 7 gives a sufficient condition, it is not necessary.
For a three player game (N = 3), however, the second condition in Proposition 7 is
both necessary and sufficient. From the proof of Proposition 7 it follows that the first
condition in the proposition has an alternative formulation.

Proposition 8. The first condition in Proposition 7 can be replaced with:

(1) The polynomial
N−2∑
k=0

(
N −2

k

)
xk (1− x)N−2−k∆2rk

has at most one zero in (0,1).

Let this zero be x̃. Then the critical value c∗ is given by g̃r,0(x̃).

4 Discussion

Besides the interest in relaxing the assumptions of linear or strictly sub- or super-
linear relations in the theory of group games, there are biological observations sug-
gesting to go beyond such premises. The described extensions to threshold games

9
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allow a natural relation between the per capita costs and benefit and the number of
cooperators, and indeed this scenario turned out to exhibit a complex evolutionary
dynamics (Figs. 1 and 2). The multiplayer threshold game we have studied yields dy-
namics not possible for two player games, in particular the appearance of a catastrophic
event at a critical parameter value c∗ separating very different ESS profiles.

The three-player game is the simplest possible threshold game and yet sufficient
to yield complex dynamics. Above the critical cost c∗ is a parameter region where
only defection is stable, and below this point two alternative attracting states appear.
One of these is an ESS comprising both cooperators and defectors and the other is
a trivial ESS with pure defection. The cooperative state may disappear as a drastic
event when the cost increases above the critical cost (for α > 1

2 in Fig. 1). Moreover,
the system exhibits hysteresis behaviour. By this we mean that a system in the mixed
state will experience a sudden transition and settle in the defecting state for gradually
decreasing reward values or gradually increasing costs making the system traverse a
critical line in the cost–benefit space. However, a subsequent complete recovery of
parameter values allowing for cooperation will not recover the cooperative state. The
population is trapped in the attractive basin of the defecting state.

Such dynamics suggest the prediction that populations thriving near a critical
point in parameter space can show drastic transformations among polymorphic states
with cooperation or collapse into the trap of the fully defecting state. Subtle changes
in environmental conditions may therefore induce a regime shift as the cooperative
state suddenly collapse and disappear. A mere recovery of the original environmental
conditions will then be insufficient to reinstall cooperation and mechanisms external
to the game are required. Group foragers often depend on individually inaccessible
and aggregated resources, such as large prey items. Such feeding strategies require
a population density that make group behaviour feasible. The populations may ac-
cordingly be prone to complex evolutionary dynamics, as for instance rapid extinc-
tions, when exposed to minor environmental changes that affect the cost–benefit pa-
rameters and/or population density. Unless, of course, alternative and individually
accessible resources are available.

Initial evolution of cooperation from the defecting state needs alternative mech-
anisms as, for instance, kin selection or repeated interactions among individuals.
However, when the cost–benefit ratio is low the attracting region of defection is small
(Fig. 1), and this in turn facilitates the exit from the defection trap by stochastic fluc-
tuations. Indeed, cooperation can gain foothold when, due to local fluctuations, the
fraction of cooperators rises above a certain level (that is, above the repelling state x−
in the three-player game).

This scenario offers an alternative mechanism for the initial evolution of coop-
eration from the defecting state, in that stochastic fluctuations may originate in a
metapopulation structure of the species. Cooperative group behaviour increases the
productivity of the local population, because resources are increased beyond those
that are exploitable by the individual. A subpopulation with cooperative behaviour

10
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will thus have a higher probability of inoculating an empty environmental patch, as
compared to a defective population in a similar environment.

Consider an exceedingly simple model of this situation made in the tradition of
Slatkin [10, 28]. Three kinds of patches may exist: empty patches, patches with defec-
tors only, and patches with defectors and cooperators. The frequency of these are P0,
PD , and PCD , P0+PD +PCD = 1. Cooperators can only invade empty patches, and this
occurs at the rate mC PCD . After invasion defectors invade so rapidly that we can as-
sume it to occur immediately. Defectors can invade empty patches both from defect-
ing patches and from cooperating patches, and we model the rate as mDQD, where
QD = wD PD +wCD PCD and wD < 1. Extinction of all individuals in defecting and co-
operating patches occurs at the rates eD and eC , respectively, and in addition we allow
extinction of cooperators from cooperating patches at the rate eCD . The model may
be summarized as

described by the equations:

Ṗ0 =−(mC PCD +mDQD)P0 + eC PCD + eDPD , (11)

ṖD = mDQDP0 + eCD PCD − eDPD , (12)

ṖCD = mC PCD P0 − (eC + eCD )PCD . (13)

A trivial equilibrium with no cooperators always exists:

P̃0 = eD

mD wD + eD
and P̃D = mD wD

mD wD + eD
, (14)

and cooperators can invade this equilibrium when eC + eCD < mC P̃0. The invasion
condition then becomes

1+wD
mD

eD
< mC

eC + eCD
. (15)

The colonization rate of cooperators must thus be somewhat higher than their ex-
tinction rate for invasion to proceed. The extinction rate eCD therefore must be small,
which requires a polymorphic equilibrium in the patch and a defection trap, that is
not too large. The requirement is, however, moderate, because the addend to one on
the left side is expected to be small. The defecting patches are supposed to have a
comparatively low population size because of fewer available resources. This causes
their emigration potential (parameter wD) to be low, and their colonization ability
of empty patches (parameter mD) will be low because of fewer resources. Finally
their extinction rate (eD) is higher. In other words, such an ecological scenario il-
lustrates, in terms of the invasion condition (15), how increasing group facilitation
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makes it increasingly likely that a more extensive attractive basin of defection can be
surmounted and cooperation can gain foothold

Scenarios similar to the threshold model may apply to other levels of organisa-
tion of adaptive biological systems. Aggregates of cells sometimes produce generic
biochemical compounds, which are required in order to trigger a beneficial event.
A specific local concentration has to be reached in order to increase cell prolifera-
tion and hence fitness. The onset of aberrant neovascularisation in tumour growth
has been modelled as an evolutionary game process in which groups of cells com-
pete for attracting the budding of existing blood vessels [2, 30]. More precisely, cer-
tain threshold levels of vascular growth factor (VGF), a blood vessel stimulating com-
pound, are required in order to attract the extension of newly formed blood vessels
[9]. A model of neovascularisation occurring as a discrete event in the among-cell
competitive process with threshold conditions showed similarly complex patterns in
the evolutionary proliferation dynamics [2].

Previous models have shown that mechanisms such as kin selection and recip-
rocation may become important in small and/or spatially stable groups and could
hence facilitate cooperation [17, 31]. Small groups tend to accumulate high degrees
of local relatedness, which increase the potential for kin selection and thereby cooper-
ation (especially in polygynous species such as e.g. Lions). Repeated interaction with
neighbouring individuals may also favour cooperation due to reciprocation as for ex-
ample in cells situated in solid tissue, which interact repeatedly with neighbouring
cells [3]. However, mechanisms promoting cooperation have been most thoroughly
investigated in evolutionary games with only two players as in the well known re-
peated games [1], games with punishment and reputation [22], or spatially structured
games [26]. Such effects would most likely also promote cooperation in multiple
player games. Nevertheless, the purpose of our model was to investigate the scope
for cooperation and evolutionary dynamics in the multiple player threshold game
and related games without invoking additional mechanisms already known to pro-
mote cooperation. Due to the general definitions of the cost and benefit this analysis
may offer more suitable scenarios of the evolutionary dynamics of group interactions
compared to previous models. However, it should be noted that this type of analysis
is still based on certain assumptions that preclude additional realistic features poten-
tially affecting group behaviour, such as e.g. instantaneous information on the other
players’ strategies and a corresponding conditional decision making.

One should note that the type of behaviour we have found in the threshold game,
i.e. bifurcations and hysteresis, is only possible in games with at least three players.
In fact, in two-player games a mixed ESS cannot coexist with a pure ESS for the same
parameter values [8]. This suggest that modelling scenarios with a set of two player
games instead of an n-player game may cause the model to miss important aspects of
the dynamics. The exclusive use of two player games is however a common practice,
and should perhaps be exerted with caution.

Future work include plans to extend the threshold model to include a hierarchical
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structure with competitive relations among groups with repeated interactions.
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Note Added in Proof. The authors would like to clarify a statement made in the dis-
cussion. When stating that ESS bifurcations in two-strategy games only are possible
in games with at least three players, we refer to internal bifurcations of saddle node
type. Transcritical bifurcations altering the stability of monomorphic fixed points
of the replicator equation or continuously transforming monomorphic ESSs to poly-
morphic ESSs can occur in two-player games. Hence, the difference between two and
n-player games is specifically that only the latter permits the emergence of new in-
ternal ESSs, paired with new unstable fixed points. This property allows a rich variety
of distinct ESS profiles, as illustrated by Example 5. Inferentially, hysteresis behaviour
in cost-benefit parameter space involving polymorph states of the population is only
possible with games involving at least three players, whereas with two-player games
hysteresis is limited to the population shifting among the monomorphic states.

A Proofs

Proof of Proposition 4. A strategy x is an ESS if (3) is satisfied. Using the definition
of W from (7) and a Taylor expansion around x the requirement for an ESS can be
written as

N−1∑
k=0

εk

k !
g (k)

r,c (x)(y − x)k+1 < 0 (16)

for all y ∈ [0,1], y �= x and ε smaller than some ε(y). Since ε can be chosen arbitrarily
small, only the first term of the sum having g (k)

r,c (x) �= 0 has to be taken into account.
For the pure strategies, (16) shows that x = 0 is an ESS if gr,c(0) < 0 and that x = 1

is an ESS if gr,c(1) > 0. If gr,c(0) > 0, (7) shows that y = 1 is the unique best response to
x = 0, so in this case x = 0 is not a NE. Similarly, x = 1 is not a NE if gr,c(1) < 0.

For mixed strategies x, we see from (16) that if gr,c(x) �= 0 or if an even integer k

is the lowest such that g (k)
r,c (x) �= 0, then the inequality (16) cannot be satisfied for all

y because the term (y − x)k+1 can be both positive and negative. However, if an odd
integer k is the lowest such that g (k)

r,c (x) �= 0, then the left hand side is always negative

if g (k)
r,c (x) < 0 and always positive otherwise.
The special cases for x = 0 and x = 1 follows in the same way.
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A useful property of g̃r,c (x) that we will use in the next proof is:

Proposition 9.

g̃ ′
r,c (x) = (N −1)

N−2∑
k=0

(
N −2

k

)
xk (1− x)N−2−k∆2rk (17)

This is proved by Motro in [25].

Proof of Proposition 7. By Proposition 9 it follows that

d2

dx2 g̃r,c (x) = (N −2)(N −1)
N−3∑
k=0

(
N −3

k

)
xk (1− x)N−3−k∆3rk

Thus if ∆3ri ≤ 0 for all i then g̃r,c (x̃) is concave and has at most one critical point x̃.
When additionally ∆2r0 = g̃ ′

r,c (0) > 0 and ∆2rN−2 = g̃r,c (1) < 0, this x̃ will exist and be
a maximum. Let c∗ = g̃r,0(x). For a given value of c , the maximal value g̃r,c takes is
c∗ − c . Thus g̃r,c = 0 has no solutions when c > c∗.

When c ≤ c∗, there is a solution to g̃r,c (x) = 0 to the right of x̃ if and only if g̃r,c (1) =
∆rN−1−c ≤ 0. Due to the concavity of g̃r,c this solution is an ESS. A solution to the left
of x̃ will not be an ESS, and statements (1), (2) and (3) follows. Statement (3) follows
directly from Proposition 4.

Proof of Proposition 8. The statement is another way to express the condition that
g̃r,c has exactly one critical point. As in the proof of Proposition 7, c∗ is given by
g̃r,0(x̃).
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Abstract

We introduce a class of dynamical systems called Higher Order Cellular Au-
tomata (HOCA). These are based on ordinary CA, but have a hierarchical,or multi-
level, structure and/or dynamics. We present a detailed formalism for HOCA
and illustrate the concepts through four examples. Throughout the article we
emphasize the principles and ideas behind the construction of HOCA, such that
these easily can be applied to other types of dynamical systems. The article also
presents new concepts and ideas for describing and studying hierarchial dynam-
ics in general.

Keywords: Hierarchies; cellular automata; dynamical systems; hyperstructures.

1 Introduction

The study of systems of a large number of interacting agents is currently of foremost
importance in many parts of science. Of special interest is the relation between the
local interactions among agents and the resulting global behavior - the microlevel
versus the macrolevel dynamics. Frequently, even very simple microlevel dynamics
leads to highly complex macrolevel dynamics. This phenomenon, often referred to
by the term self-organization, is usually very hard to analyze mathematically. Some
classes of standard mathematical models of such complex systems have been much
studied in the past, among them cellular automata [12, 30], random boolean networks
[1], coupled map lattices [16], systems of interacting oscillators [18, 24] and stochastic
interacting particle systems [21].

An aspect that is missing in all these standard models is that of hierarchical or-
ganization. This is the background for the present paper. Indeed, complex systems
organized in a hierarchy of some kind are ubiquitous in science, and particularly in
biology. To cite Arthur Koestler [17]: “We do not know what forms of life exist, but we
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can safely assume that whenever there is life, it is hierarchically organized.” We feel
that the aspect of hierarchical organization ought to be addressed in general mathe-
matical models. The hope is that by studying such abstract models we can start to un-
ravel the capabilities and general consequences of the hierarchy as an organizational
principle for interacting systems. Advancement in this area would result in better un-
derstanding of the prominence of hierarchical organization in nature and also how
it can be utilized e.g. in engineering. The abstractness of mathematics is necessary
to ensure that a framework will accommodate different fields and enable us to draw
conclusions across fields.

In this paper we present several concepts towards a framework for interacting sys-
tems with any type of hierarchical organization. These include the notions of higher
order systems, morphologies and dynamics. However, we only give an informal dis-
cussion of the general notions. Rather, the main concern of the article is to illustrate
the higher order principles by applying the concepts to the class of dynamical sys-
tems known as cellular automata (CA). We explore all natural types of higher order
extensions in this setting, and give a detailed construction of a new class of dynami-
cal systems called higher order cellular automata (HOCA). This is an interesting class
of systems in its own regard. Through four detailed examples of HOCA we explore the
impact of various higher order dynamics and morphologies on the behavior of the
system.

The choice of cellular automata as an illustrative system has several reasons. Firstly,
CA has been extensively used as standard models of complexity and cooperative be-
havior [6, 30]. Secondly, CA exhibit a wealth of interesting behavior and complex
phenomena. Thirdly, their implementation on a computer is straightforward, thus
making their behavior easy to visualize. Lastly, their simplicity eliminates the risk
of implemental artifacts, such as round-off errors. The motivation for introducing
HOCA comes from networks where cells often aggregate into dynamical units, several
rules come into play and the neighborhood structure may vary. One may speculate
whether networks in the brain work this way [27]. Our treatment of HOCA gives clear
indications of how higher order dynamical systems should be introduced in other
contexts.

In the next section we present the general notions and principles related to higher
order systems. These will lay the foundations for the construction of HOCA. In Section
3 we briefly describe ordinary CA. We then extend the definition of CA to the case
where there are underlying second order structures, and we see how this influences
the dynamics through several examples. In the last example we sketch an application
where a second order majority vote CA is used. We also discuss possible extensions of
the HOCA formalism.

2



Paper II

2 Higher Order Systems

Mathematically speaking, going from a basic system to a higher order (HO) system is
lifting attention from a set X to the power set P (X ) of subsets of X . A spatial dynam-
ical system of interacting agents can be characterized by the three parts of which it
is composed: (1) the agents or entities, (2) an interaction structure defined through
the neighborhood of each agent and (3) a set of local interaction rules governing the
dynamics. We will take this as our basic system X and look at possible higher or-
der extensions. For instance, instead of single agents being the only units of inter-
action, also groups or aggregates of agents become natural units with their own dy-
namical behavior and interactions. We will call these groups second order agents, or
2-agents for short. Continuing the process one may consider 3-agents, being groups
of 2-agents and so on. This power set process applied to the agents gives the system
a certain multilevel structure, which we call a higher order morphology. A familiar
example of 2-agents and 3-agents are the formation of molecules from atoms and
macro-molecules from molecules. A similar example from a different field is the for-
mation of families from individuals and communities from families.

The power set process can also be applied to the other components of the basic
system, i.e., to the local rules and the interaction neighborhoods of the agents. This
produces 2-rules and 2-neighborhoods which constitute a higher order dynamics -
a dynamics on the dynamics. For instance, differentiation of biological cells can be
considered as a 2-rule coming into play. We say that a system has a higher order struc-
ture if it has a HO morphology and/or a HO dynamics. It is then a higher order system.
We use the term HO dynamical system when considering a HO system as a formal dy-
namical system respecting the HO structure. Higher order systems are instances of
hyperstructures, which is a concept introduced by Baas in [2], and further developed
in [3] and [4] where a general framework is presented (see also [5]). Hyperstructures
are often created through a dynamical process of interactions which stabilizes in a
multilevel structure. The present paper is more focused on state dynamics than pre-
vious work.

Relating to higher order systems there are several interesting approaches and classes
of questions:

(1) Given a system with a higher order structure, through which kind of dynamical
process did the HO structure come into existence? That is, how was it generated
from first principles? [25]

(2) How does the existence and properties of a HO structure influence the dynam-
ical behavior of the system?

(3) How can one design a HO system to perform a given task?

We will in this paper be concerned with (2). Thus, we assume that our system, which
is based on a CA, has an underlying second order morphology and/or a second order
dynamics which is predefined.

3
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3 Cellular Automata

A CA is a discrete dynamical system defined on a lattice L =Zd , for some dimension
d . The elements of the lattice L are traditionally called cells. Each cell takes a state in
a finite set A , called the alphabet. A configuration a of the lattice is the assignment of
a state to each cell. The configuration is formally a map a : L →A . The collection of
all possible configurations is written A L . The state of cell v ∈ L is denoted by a(v).
If S is a subset of L , a(S) denotes the configuration a restricted to S.

Let N = {v0, v1, . . . , v�−1} be a finite subset of L containing the origin. The set
N is called the neighborhood set, and defines the interaction-structure of the cellu-
lar automaton. The dynamics of the CA is governed by a map f : A � → A which
updates the state of each cell based on the configuration of its neighborhood. The
map f is often called the local rule of the CA. The quadruple (L ,N ,A , f ) defines a
d-dimensional CA [22].

An example is the CA with L = Z, N = {−1,0}, A = {0,1} and f : {0,1}2 → {0,1}
given by

f (a−1, a0) = a−1 +a0 (mod 2). (1)

This is a simple one dimensional CA. Figure 1 shows a time series of an evolution
of this CA. The lattice Z runs horizontally and the time steps run downwards. Such
diagrams are called space-time diagrams, and are the main tool for obtaining infor-
mation about the global qualitative behavior of a CA.

The local transition map f generates a global CA-map F : A L →A L , defined by

(F a)(u)= f (a(u+ v0),a(u+ v1), . . . ,a(u+ v�−1)). (2)

Here, u+vi means vi translated by the vector u (or vice versa). If we give the set A the
discrete topology and A L the corresponding product topology, then F : A L →A L

is a continuous map. Conversely, if G is an arbitrary continuous and shift-commuting
map from A L to A L , then there is some local transition map g that generates G in
the above sense [14, Thm. 3.1 and 3.4]. The dynamics is given by using the local tran-
sition map f to update the states of all cells synchronously. One may also consider
finite CA, where L is a circle graph or a cartesian graph product of circle graphs, as

���� �� ��� �������	 �
 ��� �
 ������ �� (1)� 
 ����� ����	� 	��	������ ��� ����� � ��� �
����� ����	� ��� ����� ��
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well as CA on other graph structures. The study of various CA and classes of CA has
generated much interest in the past.

A common classification of cellular automata is the one introduced by Wolfram
in [29]. This is an empirical classification based on the qualitative features of typical
evolutions from random initial configurations. Wolfram’s four classes are:

(1) Evolution leads to a homogenous state.

(2) Evolution leads to a set of separated simple stable or periodic structures.

(3) Evolution leads to a chaotic pattern.

(4) Evolution leads to complex localized structures, sometimes long-lived.

The CA defined in Eq. (1) is a typical member of class (3). Later, several formal classifi-
cation schemes have been proposed, see e.g. [8, 11, 19]. Some of these formalize Wol-
fram’s intuition while others are based on different mathematical or computational
concepts. We will refer to Wolfram’s classes later in the article.

4 Second Order Cellular Automata

We now introduce and define a second order CA, or 2-CA, step by step. We start by
describing the dynamical second order extensions, and then proceed to the morpho-
logical second order extension.

Let L1 be a lattice. The lattice points represent the cells of the 2-CA. Let A1 =
{0,1, . . . ,�1−1} be a finite set called the first level alphabet. Each cell has a state in A1.
This gives the first level state configuration a1:

a1 :L1 →A1. (3)

The subscript 1 generally denotes the first morphological level.

4.1 2-dynamics

In an ordinary CA, all cells have identical neighborhoods, given by the set N . In a
2-CA, however, each cell can have one of several possible neighborhoods. The set
of possible neighborhoods is the same for all cells, and is generated from a central
collection of neighborhoods in the following sense. Let N be a finite collection of
finite subsets of L1, all containing the origin. Neighborhoods are assigned to cells by
the map

n : L1 →N . (4)

We call n the first level neighborhood configuration. The neighborhood that is used
to update a cell v is n(v) translated by v, written (v +n(v)) ⊂ L1. The collection N

is called a 2-neighborhood. Later we will define a 2-transition map φ that governs the
local change of neighborhood.

5
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The possible neighborhoods N in the 2-neighborhood N may have different sizes.
In this case, we must define different local rules for differently sized neighborhoods.
In general, we will introduce one or more rules for each neighborhood size through
the notion of a 2-rule. Define the set M ⊂N as the set of cardinalities in N :

M = {Card(N) : N ∈N }. (5)

Then define the 2-rule R = { f1, f2, . . . , fk } as a set of maps such that

(1) Each map is of the form fi : A m
1 →A1 for some m ∈ M

(2) For each m ∈M there is at least one map fj ∈R with domain A m
1 .

The maps in R are the possible local rules of the cells. It is convenient to partition the
sets N and R according to M in the following way. Let

Nm = {N ∈N : Card(N) = m}, (6)

Rm = { f ∈R : f : A m
1 →A1}. (7)

Rules are assigned to the cells by a map

r : L1 →R. (8)

We call r the first level rule configuration. Obviously, the rule of a given cell has to be
compatible with the neighborhood of that cell. That is, we require that r(v) ∈ Rm if
and only if n(v)∈Nm .

Finally we define the local 2-transition map φ that alters the local neighborhood
and rule during system evolution. For each m ∈ M define a map

φm : A m
1 ×Nm ×Rm →N ×R (9)

that satisfies the obvious requirement that for each set of arguments the rule and
neighborhood components of the image are compatible. Define the 2-transition map
φ as the family (φm)m∈M . Through the 2-transition map the system is given a 2-
dynamics. The 2-dynamics is a process on the 2-neighborhoods and 2-rules. To com-
plete the picture it is also possible to introduce 2-states, being families of states from
A . However, we will not pursue this here. An example of a 2-CA with a 2-rule is given
in Sec. 5.1, and an example of a 2-CA with a 2-neighborhood in Sec. 5.2.

4.2 2-morphology

In the previous section we equipped the CA with a 2-dynamics. We will now concen-
trate on the higher order morphological extension obtained by grouping the cells into
2-cells. This is called a 2-morphology. A higher order CA will in general consist of a
number N of levels, each consisting of a collection of disjoint lattices. In this paper we

6
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only consider in detail second order CA with one lattice on each of two levels. More-
over, we will only allow a 2-dynamics on the first level. Nevertheless, the extension to
general HOCA of arbitrary order will be evident.

Let L2 be a lattice, where each lattice point represents a group of cells which we
consider as a functional unit. We call these 2-cells, but “organs” would also be an
appropriate moniker. A 2-cell should be considered as containing a number of cells.
This collection of cells is called the inner structure of the 2-cell, and is given by a map

M : L2 →P (L1), (10)

where P (L1) denotes the set of all finite subsets of L1. It is convenient to define

M∗ : L1 →P (L2) by M∗(v)= {u ∈L2|v ∈M(u)}. (11)

Thus, M∗(v) gives the collection of 2-cells in which cell v is a component. This col-
lection is called the outer structure of v.

Generally, the outer structure of a cell can consist of one, zero or more than one
2-cells. However, in this paper we will only consider the case where each cell resides
in exactly one 2-cell and all 2-cells contain the same number of cells, say �. Mathe-
matically, this is expressed as Card(M∗(v)) = 1 for all v ∈ L1 and Card(M(u)) = � for
all u ∈L2. This restriction makes the formulae more transparent.

Let A2 = {0,1, . . . ,�2−1} be a finite set called the second level alphabet. Each 2-cell
has a state in A2. This gives the second level state configuration a2 : L2 → A2. The
second level has no 2-dynamics, but has a CA dynamics defined by a neighborhood
N2 ⊂L2 containing the origin and a transition map

f2 : A Card(N2)
2 ×A �

1 →A2. (12)

The term A �

1 represents the states of the cells M(u) contained in the 2-cell u. How-
ever, a 2-cell will generally contain many cells, and f2 will only take some mean value
of their states as an input. See for instance Examples 3 and 4 in Secs. 5.3 and 5.4.

A final question to answer is how the dynamics of the second level should influ-
ence the cells. We have chosen to modify the maps φm to take also as an input the
value of the 2-cell the given cell belongs to. Thus, alter equation (9) to

φm : A m
1 ×A2 ×Nm ×Rm →N ×R. (13)

A change in 2-cell value will influence the rules and neighborhoods of the contained
cells in the next time step. The structure of a 2-CA with a 2-morphology is illustrated
in Fig. 2.

A brief note on terminology: we have opted to use the terms 2-rule and 2-neighborhood
to denote the families of rules and of neighborhoods the 2-dynamics are acting on.
Thus, it should be kept in mind that these terms do not refer the rule and neighbor-
hood set of the 2-cells.
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4.3 Global dynamics

Although we are mainly interested in studying the state dynamics of the cells, we have
to define the 2-CA as a dynamical system on a larger structure to keep track of rule and
neighborhood data. Denote by X the product set

X =A
L1

1 ×N L1 ×RL1 ×A
L2

2 . (14)

Analogously to ordinary CA, the local transition maps φ and f2 generate a global
transition map F . This map must be defined as a map on the product space X defined
above. Let πa1 , πn×r and πa2 be the projection maps from X to A

L1
1 , N L1 ×RL1 and

A
L2

2 respectively. Moreover, let nv ,rv and M∗
v be shorthand for n(v), r(v) and M∗(v).

Then, given a configuration 〈a1,n,r,a2〉 of the lattices, we define the global map

F : X → X (15)

componentwise by the three equations (16a) to (16c) below. The first equation says
that the state of each cell v is updated by its current rule applied to its current neigh-
borhood configuration:

(πa1 F 〈a1,n,r,a2〉)(v)= rv (a1(v +nv )). (16a)

The second equation states that the rule and neighborhood of each cell v are updated
by the 2-transition rule using the states of its current neighborhood and associated 2-
cell:

(πn×rF 〈a1,n,r,a2〉)(v)=φCard(nv )(a1(v +nv ),a2(M∗
v ),nv ,rv ). (16b)

Finally, the last equation says that the state of each 2-cell u is updated by f2 applied
to its current neighborhood configuration and the states of the cells contained in u:

(πa2 F 〈(a2,n,r,a2〉)(u)= f2(a2(u+N2),a1(Mu)). (16c)

8
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If we endow A1, A2, N and R with the discrete topologies and X with the cor-
responding product topology, then X will by Tychonoff’s theorem (see e.g. [23]) be a
compact topological space. It is not hard to show that F is a continuous map since
Ai ,R,N and all N ∈ N are finite sets. In formal terms, this makes the pair (X ,F ) a
compact, topological dynamical system.

4.4 Relation to ordinary CA

As the alert reader already will have realized, it is easy to prove that a 2-CA with a 2-
dynamics but no 2-morphology is conjugate to an ordinary CA. This is because the
rule and neighborhood information can be coded as a part of the state of each cell,
and the local rule f can be modified to act as the 2-transition rule. We state this as an
observation an give a constructive proof.

Observation. A 2-CA with a 2-dynamics, but no 2-morphology, is conjugate to an
ordinary CA.

Proof. Denote the 2-CA by D = (L1,N ,A1,R,φ). We construct a conjugate CA C =
(L ,N ,A , f ). Let L =L1 and A =A1×N ×R. Write N = {N1,N2, . . . ,Nl }, and let N =⋃

Ni be the neighborhood of the CA. The union is taken regarding the Ni as subsets of
L1. Note that 0 ∈ N since 0 ∈ Ni for all i , and write N = {0, v1, . . . , vn}. We now define
the local map f of the CA:

f : (A1 ×N ×R)n+1 →A1 ×N ×R. (17)

Denote the current state of cell vi as 〈avi ,nvi ,rvi 〉. Put

f
(〈a0,n0,r0〉,〈av1 ,nv1 ,rv1〉, . . . ,〈avn ,nvn ,rvn 〉

) = 〈r0 (a (n0)) ,φ(a (n0) ,n0,r0)〉. (18)

Note that f only uses the n and r values of cell 0 and only the a values of the cells
contained in n0 to calculate the next state (recall that n0 ⊆ N by construction). The
identity map on (A1 ×N ×R)L1 is a topological conjugacy between the 2-CA D and
the CA C .

This means that 2-CA with a 2-dynamics constitute a subclass of ordinary CA.
However, this fact does not make this class of 2-CA uninteresting to study using our
formalism. Firstly, our way of expressing the system is more natural for these types of
CA. Secondly, we are mainly interested in studying the differences between a basic CA
rule f and various HO extensions of it, to see what effects the extensions have on the
dynamics. Thirdly, the HO framework could also be useful in the modeling of various
systems. See for instance Example 4 in Sec. 5.4. Mathematically, CA with 2-dynamics
seems to be an interesting subclass of ordinary CA.

9
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In the case where the 2-CA has a 2-morphology it will in general not be conjugate
to any ordinary CA due to the lack of a homogenous structure in the system. Excep-
tions are cases with a very regular morphology map M, as, for instance, in the example
displayed in Fig. 2.

5 Examples

Although the definition of a 2-CA presented in Sec. 4 is rather general, we will keep
the examples fairly basic. In particular, we will only consider one-dimensional 2-CA
and mainly introduce only a single second order extension in each example. We base
the examples on the subclass of CA known as totalistic CA [29]. For these CA, the
value of the local transition map f only depends on the sum of the inputs and not the
exact neighborhood configuration. This property considerably reduces the number
of parameters involved. According to Wolfram, the subclass of totalistic CA seems to
exhibit behavioral characteristics of all types of CA [29].

5.1 Example 1 — Dynamic rule 2-CA

In this example the 2-CA has a 2-rule consisting of two different local rules. During
time evolution, the rule used to update each given cell will vary between these rules.
Which rule that is applied is governed by a 2-transition map φ.

Let L1 =Z and A1 = {0,1}. There is only one possible neighborhood - the standard
radius two neighborhood. That is,

N = {−2,1,0,1,2} (19)

and N = {N}. Furthermore, define R = { fa , fb }, where both fa and fb are maps A 5
1 →

A1. In this example we let both fi be totalistic CA rules. Thus, they are each defined
by six parameters in A1 in the following sense. Let a0, a1, . . . , a5 be elements of A1,
and let fa be given in terms of these parameters by

fa (x−2, x−1, x0, x1, x2) = aΣ(x), where Σ(x) =
2∑

i=−2
xi . (20)

Addition is performed regarding 0 and 1 as elements of Z. In the same way, let fb be
given by b0, b1, . . . , b5.

Finally, we have to define the 2-transition map φ : A 5
1 ×R → R. We do this in a

totalistic way too, by introducing two parameters ca and cb with 0 ≤ ci ≤ 5. Let

φ(x−2, x−1, x0, x1, x2, f ) =




fa if f = fb and Σ(x) = cb ,

fb if f = fa and Σ(x) = ca ,

f otherwise.

(21)

10
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Thus, the 2-transition map changes the local rule when the sum of the neighborhood
configuration is exactly ca or cb , depending on what the current rule is. To give a
specific example, let

a0a1 . . . a5 = 001100,

b0b1 . . . b5 = 010000,
(22)

and

ca = cb = 3. (23)

Figure 3 gives an example of an evolution of this system. The first line of the left
hand side shows the initial state configuration of an interval of the lattice, and the first
line of the right hand side shows the initial rule configuration of the same interval.
Subsequent lines show the states after one and two iterations. Only the states of the
central cells are shown in these lines since only these states can be computed from
the initial values that are given.

The first two panels of Fig. 4 show space time diagrams for the ordinary totalistic
CA with rules as in (22). Time runs downwards. Periodic boundary conditions are
applied, creating finite CA defined on circle graphs. The number of cells is 293 and
the evolution is cut off after 400 iterations. The initial configurations are uniformly
random both for states and rules. The four subsequent panels of Fig. 4 show space
time diagrams for the 2-CA introduced above with 2-rule given by ai and bi in (22)
and various values of ca and cb . Note that these diagrams only show the state con-
figurations and not the corresponding rule configurations. Generally, the space time
diagrams for the rule configurations look similar to those for the state configurations.
For instance, for the third and for the sixth panel the rule configuration locally settles
into a periodic pattern of low period when the state configuration does.

As can be seen, both rule 001100 and rule 010000 yield a chaotic time evolution,
and Wolfram placed them in class 3 [29]. However, by combining them into 2-rules
through various choices of ca and cb , one obtaines a broad spectrum of possible be-
haviors. Some of these 2-rules, such as the one in the last panel, have a ordered be-
havior (Wolfram class 2) while others, such as the one in the second last panel, have
a complex behavior (comparable to Wolfram class 4).
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5.2 Example 2 — Dynamic neighborhood 2-CA

In this example the 2-CA has a 2-neighborhood consisting of several connected neigh-
borhoods of distinct sizes. We will describe a special class of such 2-CA that is a nat-
ural extension of ordinary totalistic CA.

Let the 2-CA be one-dimensional (that is, L1 =Z). For m ∈N define the sets Nm ⊂
L1 as

Nm = {−m,−m+1, . . . , m}. (24)

We now define a class of 2-CA called equitotalistic dynamic-neighborhood 2-CA as
follows
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Definition 1. An equitotalistic dynamic-neighborhood 2-CA is given by the integer pa-
rameters k , r = (rmin, rmax), s = (smin, smax) and a = (ai ), for 0 ≤ i ≤ (k −1)(rmax +1),
representing:

(1) The alphabet A1 = {0, . . . , k −1}.

(2) The 2-neighborhood N = {Nrmin , . . . ,Nrmax }.

(3) The 2-rule R = { frmin , . . . , frmax } where fm : A 2m+1
1 →A1 is defined by

fm (x−m , . . . , xm ) = aΣm(x), with Σm(x) =
m∑

i=−m
xi . (25)

(4) The 2-transition map (φrmin , . . . ,φrmax ), where φm is defined by

φm(x−m , . . . , xm ,Nm , fm ) =




(Nm+1, fm+1) if Σm (x) < smin and m < rmax,

(Nm , fm ) if Σm (x) < smin and m = rmax,

(Nm , fm ) if smin ≤Σm (x) ≤ smax,

(Nm , fm ) if Σm (x) > smax and m = rmin,

(Nm−1, fm−1) if Σm (x) > smax and m > rmin.
(26)

Intuitively, the 2-transition map expands neighborhoods when their sum is be-
low smin and contracts neighborhoods when their sum is larger than smax. However,
the neighborhood radius is kept between rmin and rmax. The local rules used for each
neighborhood size are all totalistic and given by the same ai -parameters. Let us con-
sider a specific example. Put

k = 2, r = (2,4), s = (2,6),

a0a1 . . . a9 = 0101010101.
(27)

The three local rules f2, f3 and f4 are merely the sum modulo 2 rules for the appropri-
ately sized neighborhoods. Figure 5 gives an example of one time step of this system.

Looking at a large scale space time diagram of this 2-CA reveals an intriguing phe-
nomenon. An example of a space time diagram for the states along with the corre-
sponding diagram for the neighborhood configuration is shown in Fig. 6. An interval
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�� ��� 	�$��� )�	 ��� ���$���	���� ����$�	������ ����� 	��	������ N2� $	�& 	��	������ N3
��� ����� 	��	������ N4�

of 204 cells from a larger lattice is displayed. The initial radii of the cells are rmin. As
can be seen, the behavior is initially very disordered, but after some time an area in
the middle begins to stabilize into a more regular pattern. This area gradually expands
and if we continue the evolution it will, together with other such areas which may ap-
pear, eventually cover the entire lattice. We call this phenomenon crystallization. Also
note that the neighborhood configuration of the crystallized area becomes fixed. To
formalize the notion of crystallization would involve defining a crystallized area as a
group of cells whose configuration is more regular than that of the surrounding lat-
tice. Furthermore, this regularity must be robust to influences from neighboring cells
so that it is retained during evolution. Lastly, the regular area must have a tendency
to grow. Regularity can be formalized for instance by using regular languages or by
the notions of local information and information flow introduced in [15].

In computer experiments we have also observed crystallization in many other
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equitotalistic dynamic neighborhood 2-CA. One further example is shown in Fig. 7.
Here, the regular areas that appear are more ordered. The parameters of this 2-CA are

k = 2, r = (2,3), s = (1,6),

a0a1 . . . a7 = 01011011.
(28)

Crystallization even occurs in some of the 2-CA with dynamic rules described in Ex-
ample 1, for instance in the one in the third panel of Fig. 4.

We study one further example of an equitotalistic dynamic neighborhood 2-CA.
In this case, let k = 3 and let an ordinary totalistic CA with radius 3 be defined by the
parameters

a0a1 . . . a14 = 020201121221202. (29)

This CA has a disordered behavior, but the CA with radius 2 given by the first 11 para-
meters a0 to a10 exhibits several localized, periodic structures and interactions among
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Rule 02020112122 r=(1,2) and s=(2,6) r=(1,2) and s=(4,9)

r=(1,3) and s=(1,4) r=(1,3) and s=(1,6) r=(1,3) and s=(5,9)

���� 
� )�	�� �����% 
 ���������� �	����	& �
� !��������� ������% !���� ��"� ���$	�"� 
�	
�������������� �&��"������$���	���� �
 ���� 	��� ��	�"���	� �� (29) ��� �� $�����

these. See the space time diagram in the first panel of Fig. 8. In the other panels are
shown various equitotalistic dynamic neighborhood CA based on the rule in (29). The
state configurations are shown. As can be seen in Fig. 8 all these extensions have a
complex behavior, but of quite distinct flavors.

5.3 Example 3 — A two-level 2-CA

In this example the 2-CA has a 2-morphology. It has no 2-neighborhood, but must
necessarily have a 2-rule. To make the example as illustrative and specific as possible
we define it directly as a finite 2-CA with periodic boundary conditions. That is, the
lattices are circle graphs rather than the group Z. To be able to add elements of the
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level 2

level 1

���� �� ��� �������� "�	�����$���� ��	����	�� 
�	 �#�"��� *� +�
�% 
�� ����� �	� ��������� ��
� ��	$� 	��$ ,L1 =Z589-� .�$��% ���& ��� ����� ������ ���� ������ �	� ��������� ,L1 =∐

Z19-�

lattices we regard an n-cell lattice as the group Z/nZ, often written Zn .
Let L1 = Z589 and L2 = Z31, and note that 589 = 31 · 19. The 2-morphology is

defined through the map M in the following way

M(u) = {19u,19u +1, . . . ,19u +18}. (30)

Thus, each 2-cell contains 19 adjacent cells (i.e., � = 19). An illustration of this two
level structure is found in the left panel of Fig. 9.

Furthermore, let A1 = A2 = {0,1} be the alphabets of the two levels. Let N =
{{−2,−1,0,1,2}} be the first level neighborhood and N2 = {−1,0,1} be the second level
neighborhood. Let the 2-rule R = { fa , fb } of the system consist of two totalistic rules,
exactly as in Example 1. Consequently, fa is given by the parameters a0 . . . a5 and fb

by b0 . . . b5.
The rule f2 that updates the states of the 2-cells is of the form f2 : A 3

2 ×A 19
1 →A2.

We chose to let f2 only depend on the parity of sum of the 19 cell values and depend in
a totalistic way on the neighborhood. Consequently, f2 is defined by eight parameters
ci , j with 0 ≤ i ≤ 3 and j ∈ {0,1} , such that

f2((y−1, y0, y1), (x1, . . . , x19)) = ci , j , (31)

where i =∑
yi and j =∑

xi (mod 2).
Finally, we have to consider the 2-transition map φ, which now is of the form φ :

A 5
1 ×A2 ×R →R. We chose to let φ only depend on the value of the 2-cell, such that

φ : A2 →R, and simply put

φ(0) = fa and φ(1) = fb . (32)

As a specific example, put

c0,0 . . . c3,0 = 0010,

c0,1 . . . c3,1 = 1110,
(33)
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and
a0 . . . a5 = 010111, b0 . . . b5 = 001010. (34)

A space time diagram of this 2-CA is shown in the left panel of Fig. 10. Initially the
behavior is disordered, but gradually cells settle in a stable pattern. All 19 cells in a
given 2-cell settle at the same time. If the evolution is continued the cells of all 2-cells
will eventually settle. However, this will for most initial configurations take several
thousand iterations. In the situation displayed in Fig. 10 the cells contained in 2-cells
28 and 29, out of a total of 31, settle after 220 iterations and the cells contained in
2-cell 27 settle after an additional 250 iterations. Neither the rule 010111 nor the rule
001010 considered as ordinary totalistic CA yields chaotic behavior. Another example
is given by retaining the ci , j parameters and putting

a0 . . . a5 = 001100, b0 . . . b5 = 010000. (35)

A space-time diagram for this system is shown in the right panel of Fig. 10. Notice that
the 2-rule here is exactly the same as in Example 1 in Sec. 5.1.

It would be natural to allow each level in a multilevel HOCA to consist of a disjoint
union of lattices rather than merely a single lattice. We will exemplify this in the cur-
rent setting and assess the effect this structural change has on the dynamical behavior
of the system.

In our system we now let each 2-cell consist of a closed ring of cells. We still have
L2 =Z31, but the first level lattice is now expressed as

L1 =
31∐

i=1
Z19, (36)

where
∐

means disjoint union. The map M is the same. This morphological structure
is illustrated in the right panel of Fig. 9.
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Figure 11 shows space-time diagrams for the same systems as in Fig. 10 but now
with the first level interaction structure modified to one disjoint lattice per 2-cell. As
can be seen in the diagrams, the state configuration now rapidly settles into an almost
fixed configuration.

5.4 Example 4 — A higher order majority vote CA

While the previous examples were purely mathematical, we end this chapter by out-
lining an application of our HO-concept by developing a 2-CA inspired by a real situ-
ation. Here, 2-cells are aggregates of cells which play an important part in the dynam-
ics, and yet must be given a priori as their existence is not related to this dynamics.
The example is based on the popular majority vote CA (e.g., [9, 10]).

The majority vote CA is a simple model of the opinion on a certain issue spread-
ing in a population. The cells represent individuals. There are k alternative opinions,
represented by the CA alphabet A = {0, . . . , k −1}. The neighborhoods represent so-
cial connections (friends), and the CA rule is constructed such that each individual
adjusts her opinion to better match those of her friends. This rule may be determin-
istic or stochastic.

The simplest deterministic majority vote CA is given by a one-dimensional lattice
L =Z, two possible opinions, A = {0,1}, a neighborhood N = {−r, . . . , r }, a parameter
d satisfying 0 ≤ d ≤ 2r and the transition rule g : A 2r+1 →A given by

g (x−r , . . . , xr ) =
{

1 if Σ(x) > d ,

0 otherwise.
(37)

Here Σ(x) denotes the sum of the neighborhood configuration. A sensible choice is to
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put d = r , such that each individual changes opinion to the most common one in her
neighborhood.

Now, let us introduce a HO extension. It is natural to assume that in addition to
her friends each individual is influenced by the general opinion in some social orga-
nization she partakes in. Let us call this her workplace. Even though she does not
know everybody at work personally, she will perceive the general opinion and might
adjust to it. We assume that the influence from the workplace may lead to a possible
bias in her reactions to the opinions of her friends. In particular, if she is currently
in consensus with a significant majority at her workplace, it takes one more friend to
sway her.

This situation can be modeled in the following way using a HOCA. Take as a basis
the majority vote CA described above, and introduce a second morphological level
consisting of 2-cells representing workplaces. Let L2 = Z and let the inner structure
map M be of the same form as in Example 3, illustrated to the left in Fig. 9. That
is, each 2-cell consists of � adjacent cells. Thus, most individuals have friends with
whom they also work. If we wanted less individuals to have friends from work we
should make M more ’fuzzy’.

Let A2 = {0,U ,1} be the set of states a workplace can be in, where 0 and 1 means
a strong majority is of opinion 0 or 1 and U means no strong majority is present. In
the following, let � = 10 and r = 2 (radius of first level neighborhood). We assume
there is no direct communication between different workplaces, and model this by
simply putting N2 = {0} as the second level neighborhood set. Furthermore, define
f2 : A2 ×A 10 →A2 by

f2(a, x1 . . . x10) =




1 if Σ(x) > 6,

0 if Σ(x) < 4,

U otherwise.

(38)

We introduce a 2-rule R = {g0, gU , g1} simply by letting g0 be as in equation (37) with
d = 3, gU the same rule with d = 2 and g1 with d = 1. We let 2-transition rule φ depend
only on the value of the 2-cell such that φ : A2 →R and put

φ(i )= gi . (39)

Note that the influence from the workplace has small delay since rather than being
accessed directly by the cell the value of the 2-cell changes which local rule that is
used by the cell.

We have simulated this model with 200 cells. At the top of Fig. 12 is shown a space
time diagram of the ordinary radius 2 majority vote CA from (37) with d = 2. The ini-
tial configuration a is uniformly random. As can be seen, the dynamics very quickly
reaches a fixed point. The middle panel shows evolution from the same a when the
HO extension described above is applied. The initial rule configuration r and second
level state configuration a2 are calculated from a. In the bottom panel the regular
inner structure map M described above is replaced by a random assignation of cells
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Ordinary non-HO majority-vote CA

HO majority vote CA with regular morphology

HO majority vote CA with random morphology
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to 2-cells, so that an individual’s set of friends is unrelated to her workplace. For in-
stance, the members of the first 2-cell are cells 8, 41, 43, 49, 85, 115, 127, 142, 146 and
196. No other component of the rule is altered.

As can be seen from the figure, the introduction of a HO structure has a small but
noticeable effect on the dynamics. In the case of regular morphology some of the
small groups of people with opinion 1 disappear. This happens due to individuals in
these groups adjusting to their workplaces. The same effect can be seen in the case
with random morphology, but to a lesser extent. Thus, in the two level situation global
mixing through workplaces leads to a smaller degree of local consensus compared to
the case of local workplaces. The same trend is observed quite consistently also in
other runs.

A possible higher order extension that only consists of a 2-dynamics, would be to
let individuals modify their set of friends in reaction to some events. This will nat-
urally lead to a 2-neighborhood. For instance, an individual may stop caring about
the opinion of a friend if at some time all other friends and herself is of the opposite
opinion. Technically, this is modeled by introducing the following 2-transition map:
whenever only a single cell v in the neighborhood of cell u has a given value, the
neighborhood of u is changed not to include v anymore. This introduces a memory
into the system. A possible extension of the 2-morphology would be to let individuals
partake in more than one group. Moreover, the majority vote model generally yields
more interesting results in two dimensions or in a stochastic setting. Nevertheless,
we feel that the present example provides a good illustration of the applicability the
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HO-concept and more particulary HOCA to modeling.
We should remark that for more advanced and detailed spatial models more flex-

ible and less static structures than CA would probably be required. However, this
would involve sacrificing mathematical tractability.

6 Extensions and Generalizations

There are many natural extensions of 2-CA. Some are evident, and some not so evi-
dent. We do not give details here, but briefly summarize a number of generalizations
below.

• Allowing 2-cells to contain different numbers of cells, and modifying the second
level dynamics to accommodate this.

• Allowing cells to be in more than one 2-cell or no 2-cell and modifying the map
φ to accommodate this.

• Allowing a second order dynamics also on the second level. This involves defin-
ing sets N2 and R2 and a map φ2 in a way parallel to the approach described
for the first level.

• Allowing for any number of levels. Generally, an n-cell u ∈Ln will be a collec-
tion of n−1-cells in Ln−1 defined by a morphology map Mn . The dynamics are
extended to take this structure into account.

• Rather than having a single lattice on each level it is natural to allow for a dis-
joint union of sublattices, written Ln = ∐

k Ln,k . This was applied in Example
3 in Sec. 5.3.

• Exchanging the lattices with circle graphs to obtain finite HOCA, analogous to
finite CA. This will be necessary when performing computer simulations.

• Allowing for general interaction graphs Gn on each level instead of restricting
the focus to regular lattices. This will produce higher order graph CA.

• One can easily imagine synthesizing 2-CA in a dynamical way. This could in-
volve extending our scheme by adding maps that cluster cells into new organs
when the local conditions are suitable as well as maps that remove cells from 2-
cells and incorporate cells into existing 2-cells. This approach might be useful
for illuminating questions of type (1) in the list in Sec. 2.

Finally, as stated in the introduction the HO concept is applicable to general dy-
namical systems defined on spatial structures such as lattices or graphs, not only to
cellular automata. For example, one can construct higher order sequential dynami-
cal systems (HO-SDS), e.g. [7], and higher order dimer automata, see [26], along the
same lines as we have done for CA.
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7 Conclusions and Prospects

In this article we have introduced our higher order concept by equipping the class of
dynamical systems known as cellular automata with a higher order dynamics as well
as a higher order morphology. The first case gives the system a meta-dynamics where
the update rule and input domain varies locally and is governed by a 2-transition
function. The second case gives the system an additional level consisting of 2-cells,
which are families of cells. In [4] this is put into a more general framework of higher
order systems and structures. The present paper illustrates the meaning of dynamical
hierarchies in this context and how they might work.

We have studied four classes of 2-CA and made several interesting observations.
Firstly, it seems that the HO approach is a viable way to easily construct rule schemes
leading to complex behavior. An interesting question is whether complex behavior, in
a sensible definition of the term, is more common within the class of 2-CA than in or-
dinary CA. Our results indicate that new types of complexities are being created. Sec-
ondly, new phenomena like crystallization is commonly observed in 2-CA. One may
speculate whether 2-CA dynamics is more “regularizing” than ordinary CA dynamics
in some sense which has to be made precise. Thirdly, Example 3 shows that the cou-
pling geometry of the system has a fundamental impact on the resulting behavior. In
Example 4 we demonstrated the applicability of the HO concept in modeling.

There are many paths of research that would be interesting to pursue in future
work with 2-CA. Firstly, to study the relation between an ordinary CA and various HO
extensions of it. Which aspects of the extensions have the most significant impact on
the behavior of the system? Furthermore, to construct some reasonable formal clas-
sification of 2-CA, and relate the classes to rule parameters. Unfortunately, cellular
automata are generally hard to analyze and classify due to the extreme discreteness
of their construction, and 2-CA will be no easier to handle. One possible approach
to attack the above challenges and problems is comparison by suitable entropy con-
cepts and notions of complexity in dynamical systems. In particular, the notion of
local information, which was introduced and used to study information flow in ordi-
nary CA in [15], may be extended to HOCA. It could also be useful to study localized
structures, invariant subshifts and various notions of attractors [13, 20]. A computer
science oriented approach would be to consider computational complexities (e.g.,
[28]).

Initially, the motivation of the work is to gain insight into how the introduction
of various higher order structures into a system affects the dynamical behavior of the
system. Is there any rule of thumb on what typically happens? On a larger timescale,
the work may become useful for applications to distributed systems with a hierar-
chical structure, such as traffic and communications networks, social and population
dynamics and biological systems such as the brain. Furthermore, we believe that HO
dynamical systems may become very useful in the modeling and simulation of new
materials, for example, with a hierarchical structure. Such materials now seem to be
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constructible with modern nanotechnological methods.
We would like to end this article by encouraging the reader to take her favorite

system, put 2 in front of everything, and see what happens in the new 2-world!
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Abstract

A local information measure for a one-dimensional lattice system is intro-
duced, and applied to describe the dynamics of one-dimensional cellular au-
tomata.

1 Introduction

Cellular automata (CA) are spatially extended dynamical systems. They have been
widely used as models of spatial dynamical processes [31]. They have also been used
as simple systems in which to study the phenomenon of self-organization, i.e., the
ability of a system to build up structure from homogeneous initial conditions.

In this paper we use concepts from information theory to study the dynamics of
cellular automata. The field of information theory was founded by Shannon in his
1948 paper [23]. The Shannon entropy introduced in [23] is a global quantity that
measures the average information content per symbol in symbol sequences gener-
ated from a given distribution, when all correlations are taken into account.

�This work has been supported by PACE (Programmable Artificial Cell Evolution), a European Project in
the EU FP6-IST-FET Complex Systems Initiative.
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Since the work of Boltzmann and Gibbs, entropy has been used in physics as a
measure of the disorder in a system. The connections between physics and informa-
tion theory are strong. For instance, in the framework of Jaynes [13], the entropy of
a system with many degrees of freedom quantifies the uncertainty regarding the mi-
crostate of the system. A number of physicists, going back to Wheeler’s vision of “It
from Bit”, have argued that the concept of information should be used to describe
fundamental physical processes (e.g., [19, 29]). One area where information theory
has been particularly important is in the thermodynamics of black holes (e.g., [1]).

In numerical and mathematical studies of self-organizing spatially extended sys-
tems, the microstate of the system may often be known in great detail or exactly. In
this case, it is useful to define local versions of entropy or information to character-
ize the structure that arises in the time evolution [4, 5]. In [5], such local quantities
were utilized to describe structure arising at different length scales in continuous
spatiotemporal systems. Information flow in spatial dimensions and between length
scales was also discussed. A number of other authors have also investigated informa-
tion transport in spatially extended dynamical systems [14, 17, 21, 22, 25, 27].

If the time evolution is reversible, microscopic entropy is a conserved quantity.
This is the case both for classical systems viewed in terms of phase space distribu-
tions, and in quantum mechanics. An important question is whether we can intro-
duce a local version of the microscopic entropy that is locally conserved. In other
words, we would like to define a corresponding local information flow so that the sys-
tem obeys a local continuity equation. Since the information or entropy depends on
the degree of correlation in the system, it is not immediately obvious that this can be
done.

Several authors have however suggested that such an approach may be possible.
This was first proposed in the context of CA by Toffoli [25], who showed the local
continuity of information flow in a restricted setting of perturbations around uncor-
related equilibria of particle conserving reversible CA, such as lattice gas automata.
The continuity equation for information flow in 1D CA of this paper, which takes cor-
relations into account, was first formulated in [6].

The goal of this paper is to provide a mathematically rigourous foundation for
these statements in the case of one-dimensional reversible and surjective CA rules. In
Sect. 2 we introduce a local information measure for a 1D lattice system and discuss
its properties. In Sect. 3 we define the information flow and derive the local continuity
equation.

2 Local Information

The Shannon entropy measures the average information gained by observing a new
symbol from an infinite string being read in some direction, given knowledge of the
past. The intent of introducing a local information quantity is to measure exactly
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how much information is contained in each symbol. However, the correlations in a
symbol sequence can in general be arbitrarily long. Consequently, it is impossible for
information to be completely localized. That is, the local information at a particular
position i cannot always be correctly computed merely by looking at the configura-
tion in a finite neighbourhood of i . The natural approach is therefore to define the
local information as a limit which converges to a local analogue of the Shannon en-
tropy as more and more distant neighbours are taken into account, and which can be
computed locally when the correlations are finite in extent. The speed of convergence
depends on the typical length of correlations in the system, which could be quantified
as in [9].

In the following, A is a finite set and A Z is the space of all bi-infinite sequences of
symbols from A . For a sequence x ∈A Z, we use the notation xi+k

i for the length k+1

block (xi , xi+1, . . . , xi+k ). A probability measure µ on A Z is defined by a consistent set
of block probabilities µ(ai . . . ai+n) for all finite blocks ai . . . ai+n of symbols in A and
positions i ∈Z.

We define the local information in the following way. Let µ be a probability mea-
sure on A Z. Define the left local information at position i of x ∈A Z, conditioned on
n past symbols, as

Sn
L (x; i ) =− logµ(xi |xi−1

i−n ) . (1)

Then define the left local information at position i by SL(x; i ) = limn→∞ Sn
L (x; i ), and

define the quantities Sn
R and SR in the same way, but conditioned to the right instead,

using µ(xi |xi+n
i+1 ). Finally, define the local information S as 1

2 (SL +SR).
The quantity Sn

L (x; i ) is the information gained from the symbol at position i when
only knowledge of the n left symbols are assumed. If µ is Markov there is an n such
that Sn

L = SL. In other cases, correlations are not finite and no such n will exist. The
information SL(x; i ) depends on the measure µ. However, in an ergodic case, the cor-
rect probabilities of finite blocks can be recovered with probability one from x by esti-
mating the block frequencies. In a numerical simulation, this would normally be the
case.

A position i in a sequence has high local information if its symbol is unexpected
given knowledge of already observed symbols. We can illustrate this using two exam-
ples of CA dynamics. For some CA, the time evolution can after an initial transient
be described in terms of domains of some background pattern together with moving
domain boundaries. The background pattern typically consists of blocks from a reg-
ular language which is invariant under the CA (e.g., [10]). The domain boundaries are
local configurations which are often periodic and propagate with fixed velocity (often
called particles), or move at random depending on the local context. They may be de-
stroyed, transformed or created during collisions. In terms of local information, the
background pattern generated by the CA will have low information, common parti-
cles will haver higher information, rarer particles will have even higher and extremely
rare events will have very high information.
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An example is elementary CA rule 110, using Wolfram’s rule numbering system
[30], which generates a background pattern of large spatial and temporal periodicity
and a large diversity of particles. A space-time diagram and a numerical estimate of
the local information for rule 110 is shown in Fig. 1. As can be seen, local information
acts as a filter for the space-time diagram and quantifies the structure that is built up.

An example that shows a different type of spatial structure is elementary CA rule
18. Here, domain boundaries (kinks) perform random walks and annihilate pairwise
upon collision [3, 8]. The background pattern is in this case the regular language con-
sisting of all blocks without consecutive 1’s. The CA acts as the additive rule 90 on the
background pattern. A space-time diagram for rule 18 along with the corresponding
local information is found in Fig. 1. Notice that although the background in this case
has non-zero entropy it is still filtered out by the local information. For both rule 110
and rule 18, the probability measure at each time step was estimated from the block
frequencies for blocks of length 14 in a CA run with a sequence of length 107. The ini-
tial measures were iid product measures with the probability of a 1 being respectively
0.5 and 0.2.

For the definition of local information to make sense, we need to check that it
converges with n. The convergence of the local information Sn

L to SL follows imme-
diately from results by Khinchin (Lemma 7.2 and Lemma 7.7) given in connection
with a proof of the entropy theorem in [15]. When applied in our setting, these prove
the existence of the local information in the following sense: Fix i ∈ Z. For all n,
Sn

L (·; i ) ∈ L1(µ), and Sn
L (·; i ) → SL(·; i ) almost everywhere and in the L1-norm. By sym-

metry, the same is true for Sn
R (·; i ).

Another requirement of a local information measure is that in the case of a transla-
tion invariant measure µ the average of the local information should equal the Shan-
non entropy h. Write H(X |Y ) for the conditional entropy of the random variable X
given Y . We can then show that E[Sn

L ]= H(x0|x−1−n) and E[SL]= h. The same is true for
SR and S.

The first statement is proved by the calculation

∫
A Z

Sn
L dµ=− ∑

x0−n

µ(x0
−n)

(
log

µ(x0−n)

µ(x−1−n)

)
= H(x0|x−1

−n) . (2)

The second statement then follows from the L1 convergence of local information
and the fact that H(x0|x−1−n) → h [2, Ch. 4.2]. The equality for SR and S follows since
H(x0|x−1−n) = H(x0|xn

1 ).

3 Information Flow

We now consider the time evolution of the local information introduced in the previ-
ous section. In this paper, we primarily discuss reversible CA rules (e.g., [26]), where
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the global CA mapping on bi-infinite sequences has a unique inverse. Since micro-
scopic classical dynamics in physics is reversible, this is a very important class of CA
for modelling physical phenomena. Some well-known physical CA models are lat-
tice gas automata [7] and CA for simulating spin systems such as the Q2R rule [28].
Simple nearest-neighbour reversible CA have in particular been studied by Takesue
(e.g., [24]). The elementary reversible CA rule 26 in [24] can be considered as the sim-
plest known system with plausible thermodynamic behaviour when one interprets its
locally conserved quantity as energy.

We also consider the more general class of surjective cellular automata, where
the global mapping is onto. In this case, the number of preimages of any infinite

5



Paper III

sequence is bounded [11]. Since there are interesting examples of surjective rules
among the elementary CA (both additive rules, and more complicated examples such
as rule 30), but only trivial examples of reversible rules, simple illustrative examples of
CA behaviour are often from this class. For surjective CA, and thus also for reversible
CA, the global Shannon entropy (as well as all Rényi entropies) is preserved in the
time evolution [16, 18]. For non-surjective rules, where infinite sequences typically
have an infinite number of preimages, the entropy decreases in time reflecting the
shrinking phase space.

Our aim is to show that the local information introduced above obeys a local con-
tinuity equation under the time evolution of a CA, or in other words, that there is
an analogue of the continuity equations which apply to locally conserved physical
quantities such as charge or particle density. We show how a flow JL that satisfies a
continuity equation can be constructed. We consider the case of a reversible CA F ,
but the construction can also be carried out for surjective CA (see [12] for details).

Fix x ∈A Z, and let SL(t ; i ) = SL(F t (x); i ). We will show that there is a well-defined
function JL(t ; i ) = JL(F t (x); i ) such that

∆t SL +∆i JL = 0 . (3)

Here, ∆ is the forward difference operator, so that ∆t SL = SL(t + 1; i ) − SL(t ; i ) and
∆i JL = JL(t ; i +1)− JL(t ; i ). With these definitions, JL(t ; i ) is the information flow from
position i −1 to position i in iteration t +1 of the CA. Since the flow is associated with
a change between two time steps (just like other currents in physics which involve a
time derivative), it will naturally involve the state and measure of the CA at t +1 as
well as t , even though it can be expressed solely in terms of quantities defined at t ,

In the following, we consider a reversible CA F with left radius m, right radius r
and local map f : A m+r+1 → A . The inverse of a reversible CA is also a CA [20]. Let
the inverse CA F̃ of F have local map f̃ with left radius M and right radius R. Fix
x ∈A Z, and let y = F (x).

In general, the measure µ changes in time due to the cellular automaton time
evolution, unless we happen to start from an invariant measure for the CA. Let µ0 be
a measure on A Z and let µt = F t (µ0). The evolution of µt is given by the standard
relation (e.g., [18])

µt+1(y i
i−n ) = ∑

f −1(yi
i−n )

µt (xi+r
i−n−m ) (4)

where f −1(y i
i−n) is the set of all blocks xi+r

i−n−m that map to y i
i−n under f . For sim-

plicity of notation, we consider the information flow at spatial coordinate 0 in the
first iteration of F , but this can trivially be changed to an arbitrary position i and an
arbitrary time step t to t +1.

We also define the joint measure ν of two consecutive time steps as the measure
on (A ×A )Z defined by

ν(x0
−n , y0

−n) =µ0({zr
−n−m ∈A m+n+r+1|z0

−n = x0
−n and f (zr

−n−m) = y0
−n}) . (5)
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It is easy to show that ν actually is a measure, and furthermore that ν is translation
invariant if µ0 is translation invariant. Note that by summing over all possible y0−n or
x0−n we obtain from the definition ν(x0−n) =µ0(x0−n) and ν(y0−n) =µ1(y0−n).

From the definition of local information we have

∆t SL(0) = lim
n→∞

(− logµ1(y0|y−1
−n)+ logµ0(x0|x−1

−n )
)

. (6)

Adding and subtracting the same terms, we can express this change as

∆t SL(0) = lim
n→∞

(
log

ν(x0, y0|x−1
−n+M , y−1−n)

µ1(y0|y−1−n )
− log

ν(x0, y0|x−1−n , y−1−n+m )

µ0(x0|x−1−n )
+γn

)

= lim
n→∞

(
log

ν(x0
−n+M |y0−n )

ν(x−1
−n+M |y−1−n )

− log
ν(y0−n+m |x0−n )

ν(y−1−n+m |x−1−n )
+γn

) (7)

where

γn =− log
ν(x0, y0|x−1

−n+M , y−1−n )

ν(x0, y0|x−1−n , y−1−n+m)
(8)

converges to zero almost everywhere as n →∞. This can be proved using martingale
methods. See [12] for details.

We can now write

∆t SL(0) = lim
n→∞(− logν(y0

−n+m |x0
−n)+ logν(y−1

−n+m |x−1
−n )

+ logν(x0
−n+M |y0

−n)− logν(x−1
−n+M |y−1

−n )) . (9)

Let us show that two of these terms have well-defined limits. The other two can be
resolved in the same way. The first term can be written as

− lim
n→∞ logν(y0

−n+m |x0
−n) =− lim

n→∞ logµ0(xr
1 ∈ B|x0

−n ) (10)

where B ⊂A r is the set of extensions to the right of x0−∞ that are compatible with the
image sequence y0−∞. That is, B = {zr

1 ∈ A r | f (x0−m−r zr
1 ) = y0−r }. The right hand side

of (10) converges because µ0(xr
1 |x0−n) converges for each block xr

1 . This follows from
the convergence of local information. If r > 0 there is at least one block for which this
conditional probability is non-zero, otherwise x will have infinite local information at
some position. If r = 0 we define µ0(xr

1 ∈ B|x0−n ) to be 1. If we denote by Z0 the set of
all preimages zr−∞ of y0−∞ that satisfies z0−∞ = x0−∞, (10) becomes

− lim
n→∞ logν(y0

−n+m |x0
−n ) =− log

∑
Z0

µ0(zr
1 |x0

−∞) . (11)

Using the reversibility of the CA, we have analogously that

lim
n→∞ logν(x0

−n+M |y0
−n ) = lim

n→∞ logµ1(yR
1 ∈C |y0

−n) (12)

7
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where C ⊂A R is the set of extensions of y0−∞ to the right that are compatible with the
preimage x0−∞. By the same argument as above the right hand side converges. We can
also express limn→∞ logν(x0

−n+M |y0−n) purely in terms of x and µ0. In fact, one can
prove that

lim
n→∞ logµ1(yR

1 ∈C |y0
−n ) = log

∑
Z0 µ

0(zr
−R+1|x−R−∞)∑

Z µ0(zr
−R+1|x−R−∞)

(13)

where Z0 is as above and Z is the set of all preimages of y0−∞. Since F is reversible and
R is the right radius of the inverse, all preimages agree on z−R−∞, but might be different
to the right of coordinate −R.

Equations (9), (11) and (13) now enable us to define the locally conserved infor-
mation flow

JL(i ) = J+L (i )− J−L (i ) (14)

where

J−L (i ) =− log
∑
Z0

µ0(zi+r−1
i |xi−1

−∞) , (15)

J+L (i ) =− log

∑
Z0 µ

0(zi+r−1
i−R |xi−R−1−∞ )∑

Z µ0(zi+r−1
i−R |xi−R−1−∞ )

. (16)

Here, Z are the preimages of y i−1−∞ and Z0 are those preimages that satisfies zi−1−∞ = xi−1−∞ .
Both J+R (i ) and J−R (i ) are non-negative.

By using these definitions, (9) can be written as the continuity equation

∆t SL +∆i JL = 0 (17)

which is valid at every i and t and for all measures µ0, not necessarily translation
invariant.

The expressions J−L and J+L have natural information theoretic interpretations.
This is more readily apparent if the flow is written in terms of quantities defined both
at t and t +1:

JL(1) = J+L (1)− J−L (1) = lim
n→∞(− logν(x0

−n+M |y0
−n )+ logν(y0

−n+m |x0
−n )) . (18)

The quantity − logν(y0−n+m |x0−n ) is the additional information needed to uniquely
specify y0−n+m when knowing x0−n . The definitions above can be viewed as a choice of
boundary conditions in the definition of the flow. In the case of ∆SL(1), we only want
the contribution from information flow across the boundary between 0 and 1 and not
the boundary at −n. Due to the condition on the left boundary of the finite strings
(knowing m more symbols of x than of y , see Fig. 2) the left part of y0−n+m is uniquely
determined by x0−n , and we avoid the unwanted effect of an information flow across
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the left border. Therefore, the remaining information needed to determine the right
part of y0−n+m must come from the coordinates to the right of 0. Consequently, a flow
J−L (1) from coordinate 1 to 0 is induced. The limit n →∞ must be taken to ensure that
all information contained in x0−∞ about its left prolongation is taken into account.

The quantity − logν(x0
−n+M |y0−n) is the additional information needed to uniquely

specify x0
−n+M given knowledge of y0−n . Once again the left boundary conditions en-

sure that the left part of x0
−n+M is uniquely determined, see Fig. 2. However, not all

information about the right part of x0
−n+M is found in y0−n . This missing information

leaks out to the coordinates to the right of 0 inducing the flow J+L (1). Technically, the
boundary conditions are obtained by introducing a term γn which vanishes in the
limit, see (7).

By an argument similar to that used for reversible CA, the existence of a continu-
ity equation can also be extended to a larger class of CA than the reversible CA. The
crux of the argument used to find a continuity equation for reversible CA is that all
preimages of y0−n agree on a central block. This is also the case for those surjective CA
where almost all y ∈ A Z have exactly one preimage. These are the CA with M(F ) = 1
in the notation of Hedlund [11]. In this case J−L (i ) has the same expression, but in
J+L (i ) R will be changed to the stopping time τ, which is the smallest integer such that

all preimages of y i−1−∞ agree to the left of coordinate i −τ. We will present the details of
this and other cases as well as examples in [12].

4 Conclusions

We have studied local information quantities SL and SR that measure the local infor-
mation density of a one-dimensional lattice system. These are useful for detecting
and quantifying structure in a lattice configuration.

An information flow JL has been introduced such that a continuity equation∆t SL+
∆i JL = 0 holds under iteration of a one-dimensional reversible CA. We have discussed
how the CA generates two different types J+L and J−L of information flow satisfying
JL = J+L − J−L . Moreover, we have sketched how an expression for JL may be found in
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other cases by choosing boundary conditions in a suitable way.
The continuity equation is a fundamental property of information transport in re-

versible systems. But we expect local information in cellular automata to have further
interesting properties. In particular, a continuity equation in physics can be viewed
as a constraint, rather than an equation that determines the dynamics of the system.
In a similar way, one may expect information flow to have different dynamic charac-
teristics in different CA. We have seen examples of CA building up high information in
local configurations. Other CA might show diffusive behaviour and smear out initial
inhomogeneities in local information. Such properties would give much information
about the dynamical behaviour of the CA.
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Abstract

We introduce a local version of the Shannon entropy in order to describe infor-
mation transport in spatially extended dynamical systems, and to explore to what
extent information can be viewed as a local quantity. Using an appropriately de-
fined information current, this quantity is shown to obey a local conservation law
in the case of one-dimensional reversible cellular automata with arbitrary initial
measures. The result is also shown to apply to one-dimensional surjective cellu-
lar automata in the case of shift-invariant measures. Bounds on the information
flow are also shown.

1 Introduction

A number of authors have suggested that information should be viewed as a funda-
mental physical quantity, starting with the vision of “It from Bit” of Wheeler [28] and
the fundamental work on the thermodynamics of computation by Landauer [14] and
Bennett [1]. More recently, quantum computation and quantum information have
become major topics of investigation, and the issue of whether information is con-
served in black holes has been a topic of considerable debate.

Information theory also has a close relation to the foundations of statistical me-
chanics. One example of this is the information theoretic formulation of statistical
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mechanics introduced by Jaynes [11], where entropy is viewed as a measure of the
ignorance of the actual microstate of the system. Other authors have considered how
information theory and computation theory can be used to define an entropy for in-
dividual microstates in spatially extended systems [17, 30].

In a microscopic view, information or entropy quantified in terms of the Gibbs H-
function is a conserved quantity due to Liouville’s theorem. This statement is a global
conservation law. A natural question to consider is to what extent this statement has
a local analogue in spatially extended dynamical systems. This article explores this
question in the context of one-dimensional reversible or surjective cellular automata.
Precise statements of the notion of conservation of information, and possible exten-
sions of this formalism to other systems, could provide a more solid foundation for
the use of information based concepts in different physical systems.

To be able to consider information as a local quantity we first introduce a local
version of the Shannon entropy. In a one-dimensional system, the local informa-
tion is defined in terms of the conditional probability of a local state given its left or
right infinite context (in one dimension, these provide two separate locally conserved
quantities). Information can only be completely localized in a system without cor-
relations, and any measure of information needs to take correlations into account.
The measure we introduce is localized to the extent that correlations allow, and re-
duces to a completely local quantity when correlations vanish. However, even with
correlations present, this quantity does obey a local continuity equation with an ap-
propriately defined information current.

In the context of cellular automata, local conservation of information was first
proposed by Toffoli [24], who derived a continuity equation for information transport
in the case of small perturbations around the uncorrelated equlibrium states of parti-
cle conserving reversible cellular automata, such as lattice gases. Here we investigate
how these concepts can be applied to more general classes of dynamical systems and
to arbitrary measures, and how they can be given a rigorous formulation. In this arti-
cle we only consider one-dimensional systems; systems in higher dimensions will be
addressed in future work.

We first consider reversible cellular automata, i.e., cellular automata where the
cellular automaton mapping has an inverse, so that all infinite configurations have
exactly one preimage. Reversible cellular automata have been used as algorithms for
simulating physical systems, e.g, for microcanonical simulations of spin systems (e.g.,
[26]), simulations of fluid dynamics using lattice gas automata [4, 8], and simulations
of chemical reactions [2]. They have also been studied as simple dynamical systems in
their own right, in particular in order to provide illustrative examples of fundamental
issues in statistical mechanics [22, 23]. For one-dimensional reversible cellular au-
tomata, we show local conservation of information for any initial measure, including
measures without shift-invariance.

We also consider the more complicated case of surjective cellular automata, where
the global mapping is finite-to-one [9]. In this case, local conservation of information
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flow is shown for all shift-invariant measures. A particularly simple class of surjective
cellular automata are the permutative rules, and for these we show that the informa-
tion flow always has the simple form of information being shifted to the right or to the
left.

The aim of the article is to explore exactly to what extent information can be
viewed as a local quantity in spatially extended systems. The main results show that
important aspects of locality remain also in systems with correlations. We also give
examples which illustrate the limits of locality in the formalism.

The rest of this article is organized as follows. Section 2 contains background ma-
terial on shift spaces and cellular automata. In Sect. 3 we introduce a local measure
of information and show that it is well-defined. Section 4 contains the main results
of the paper. We first define the information current, and prove that information is
locally conserved for one-dimensional reversible cellular automata for arbitrary ini-
tial measures. We then extend this result to surjective cellular automata in the case of
shift-invariant measures. In Sect. 5, we give an information theoretic interpretation
of the current, and provide bounds on the information flow. We also characterize the
information flow in permutative cellular automata, and study some examples that
illustrate the limits of locality. Section 6 contains conclusions and a discussion.

2 Preliminaries

2.1 The shift space

In this paper we study dynamical systems on the space A Z of all bi-infinite symbol
sequences over a finite set A . For x ∈ A Z we write x = (xi )i∈Z. The length j − i +1

block (xi , xi+1, . . . , xj ) of symbols from A will be written compactly as x
j
i . Likewise,

xi−∞ = (. . . , xi−1, xi ). The shift map σ is defined on A Z by σ(x)i = xi+1.
The set A is equipped with the discrete topology and A Z with the corresponding

product topology, making A Z a compact metric space. The topology is generated by
the the collection of all cylinder sets of the form Cyl(ai+n

i ) = {x ∈ A Z : xi+n
i = ai+n

i },
where i ∈ Z, n ≥ 0 and all ak ∈ A . The collection of cylinder sets also forms a sub-
algebra that generates the Borel σ-algebra B of A Z.

A probability measureµon (A Z,B) is defined by assigning a probabilityµ(Cyl(ai+n
i ))

to each cylinder set in a consistent way, see [27, §0.2]. We will usually write this
probability µ(ai+n

i ), thus letting ai+n
i represent both the symbol block of length n+1

and the cylinder set. It is often convenient to consider the measure µ as defining
a discrete, stochastic process (Xn )∞n=−∞, Xn ∈ A , with joint distributions given by

Prob(X j
i = a j

i ) =µ(a j
i ). In this case, µ is called the Kolmogorov measure of the process.

A Bernoulli measure is a measure for which the coordinate random variables Xi are
all independent and identically distributed. The conditional probability µ(a0|a−1−n) =
µ(a0−n )

µ(a−1−n )
is the probability that X0 = a0 given that X−1−n = a−1−n . The measure µ is shift-
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invariant if it satisfies µ(σ−1(B)) = µ(B) for all measurable subsets B ⊆ A Z. Equiva-
lently, µ is shift-invariant if µ(ai+n

i ) only depends on the symbols ak and not on the
starting position i . When µ is shift-invariant, the expectation E[ f ] of any measurable
function f on A Z satisfies E[ f ]= E[ f ◦σ].

A shift-invariant measure µ is ergodic if for all measurable sets B ∈ B satsifying
σ−1B = B we have µ(B) = 0 or µ(B) = 1. For x ∈ A Z, define the empirical measure νx

generated by x as the measure having block probabilities

νx (an
1 ) = lim

N→∞
1

N

N−1∑
k=0

1Cyl(an
1 )(σ

−k x) , (1)

where 1B is the characteristic function of the set B. For any shift-invariant measure µ,
the limit exists µ-a.e. for each block an

1 and νx is ergodic µ-a.e. Every shift-invariant
measure µ can be decomposed into a generalized convex combination of ergodic
measures, in the sense that for any B ∈B,

µ(B) =
∫

νx (B) dµ(x) . (2)

2.2 Cellular automata

One-dimensional cellular automata (CA) are discrete dynamical systems on A Z that
commute with the shift σ.

Definition 1. A cellular automaton F : A Z → A Z is a dynamical system that can be
defined by non-negative integers l, r and a map f : A l+r+1 →A , such that

(F x)i = f (xi−l , xi−l+1, . . . , xi+r ) ∀ i ∈Z . (3)

By the left and right radii of F we mean the smallest such integers l and r for
which there is a block map f that generates F . The block map is often called the CA
rule. It is easy to see that F is continuous and shift-commuting (that is, σ◦F = F ◦σ).
Conversely, any continuous and shift-commuting map from A Z to A Z is a cellular
automaton [9, Thm. 3.1 and 3.4].

Example 1. Let A = {0,1}, and denote by F1 the simple CA on A Z defined by the radii
l = 0 and r = 1 and the block map f : A 2 →A given by f (x0, x1) = x0+x1 (mod 2). The
global map F1 can be written as F1(x) = x+σ(x), where addition is coordinate-wise and
modulo 2.

For any n ≥ 1 the block map f can be extended in a natural way to a map fn :
A l+r+n+1 →A n+1 by putting

fn (xr+n
−l ) = ( f (xr

−l ), f (xr+1
−l+1), · · · , f (xr+n

n−l )) . (4)
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We will omit the subscript n and write f for the block map applied to a block of any
length. We also write f (xi−∞) for f applied to the semi-infinite sequence xi−∞.

A particular class of CA are the reversible ones. These have the property that F has
an inverse map, so that each bi-infinite sequence y ∈ A Z has exactly one preimage
under F (that is, for each y ∈ A Z there is a unique x ∈ A Z that satisfies F (x) = y).
The inverse map of a reversible CA is always itself a CA, as was first pointed out by
Richardson [20]. The inverse CA does not necessarily have the same radii as F . See
[25] for a review of reversible CA.

Example 2. Denote by F2 the reversible CA on {0,1,2}Z having radii l = 0, r = 1 and
block map given by f (10) = f (11) = f (12) = 0, f (01) = f (20) = f (22) = 1 and f (00) =
f (02) = f (21) = 2. The preimage x of a given y ∈ A Z is found by the following proce-
dure. If yi = 0 we must have xi = 1. If yi = 1 then xi = 2 unless yi+1 = 0, in which case
xi = 0. Finally, if yi = 2 then xi = 0 unless yi+1 = 0, in which case xi = 2. The inverse CA
F̃2 also has l = 0 and r = 1, but a different block map f̃ .

A more general class of CA are the surjective ones. That is, CA F such that all
y ∈A Z have at least one preimage. There are interesting examples of surjective rules
among one-dimensional CA with |A | = 2 and radii 1, but only trivial examples of re-
versible rules. The class of surjective CA includes the much studied linear, or additive,
CA, which are CA that can be written as polynomials of shift maps with addition mod-
ulo |A |, e.g. [10]. The CA F1 from Example 1 is linear. Below we recall some special
properties of surjective CA. Call x ∈ A Z bi-transitive if all finite blocks occur an infi-
nite number of times in x on both sides of coordinate 0. The following result is well
known and was initially proved in [9].

Lemma 1. A CA F is surjective if and only if all finite blocks have the same number of
pre-images under f (that is, for all n ≥ 1 and y n

1 ∈ A n there are exactly |A |l+r blocks

zn+r
1−l ∈ A l+r+n that satisfy f (zn+r

1−l ) = y n
1 ). Furthermore, there is a constant M(F ) ≤

|A |l+r such that each bi-transitive x ∈A Z has exactly M(F ) preimages.

Notice that while each finite block always has |A |l+r preimages, bi-infinite se-
quences can have less. Having M(F ) = 1 is a necessary but not sufficient condition for
reversibility.

Example 3. Denote by F3 the surjective CA on {0,1}Z with radii l = 2, r = 0 and block
map f (x−2, x−1, x0) = x0+x−1x−2 (mod 2). It has M(F3) = 1 but is not reversible as, e.g.,
the sequence x with xi = 0 for all i has two preimages.

For surjective CA one can define some useful coefficients known as Welch coeffi-
cients. Let xn

1 ∈A n with n ≥ l + r . A compatible right extension of xn
1 of length m is a

collection B ⊂ A m such that for each zm
1 ∈ B, the (n+m−l−r )-block f (xn

1 zm
1 ) is the

same. Define the integer R(F ) as the maximal number of elements in any compati-
ble right extension of any length m and of any block xn

1 of length n ≥ l + r . Define
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compatible left extensions and L(F ) in the same way. The coefficients L(F ) and R(F )
are finite, and there is a simple relation between M(F ),R(F ) and L(F ), namely that
L(F )·M(F )·R(F )= |A |l+r [9, Th. 14.9]. For the CA from the examples, R(F1) = R(F3) = 1
while R(F2) = 3 and L(F1) = L(F2) = 1 while L(F3) = 4.

A surjective CA F is called right permutative if R(F ) = 1, left permutative if L(F )= 1
and bipermutative if both these coefficients are one. The name permutative was first
coined by Hedlund [9], and originates in the fact that F is right permutative if and
only if the map a 
→ f (xr−1

−l a) is a permutation of A for each xr−1
−l ∈ A l+r . The class

includes all linear CA over A Z when A has prime cardinality, as well as more complex
CA such as rule 30 (using Wolfram’s rule numbering system [29]).

3 Local Information

In this paper, we use the word information to mean information in the sense of Shan-
non [21]. The Shannon information gained by observing an event with probability p
is defined as log 1

p , where the logarithm is taken with base 2. The entropy of a discrete
random variable g with n possible values is the expected information gained by ob-
serving its outcome. We write H(g ) = −∑n

i=1 pi log pi . Information and entropy are
measured in bits. A bit is the amount of information that can be stored in a single bi-
nary variable. The entropy of a random variable is thus the average number of binary
variables needed to store its outcome, using an optimal code.

Associated to a shift-invariant measure µ on A Z are the block entropies Hn (µ),
n ∈ N, which are the entropies of the probability distributions µ(an

1 ) on A n . The

entropy of µ is defined by h(µ) = limn→∞
Hn (µ)

n . The natural interpretation of h is
as the average information per symbol when all correlations are taken into account.
That is, the average information gained by observing a new symbol when reading
the sequence in some direction and remembering all past symbols. Additionally, h
is also the Kolmogorov-Sinai entropy of the measure-preserving dynamical system
(A Z,B,µ,σ). It is well known that h also can be expressed as a limit of conditional
entropies. The conditional entropy H(g | f ) is the average information gained by ob-
serving the outcome of g when the outcome of f is known. The entropy h(µ) can be
written as

h(µ) = lim
n→∞H(X0|X−1

−n ) =− lim
n→∞

∑
a0−n∈A n+1

µ(a0
−n) logµ(a0|a−1

−n) . (5)

This forms the basis for our definition of local information.
The intent of introducing a local information quantity is to measure exactly how

much information that is located at each position of an infinite symbol sequence
generated by some stochastic process. However, the correlations in such symbol se-
quences can in general be arbitrarily long. Consequently, it is impossible for informa-
tion to be completely localized. That is, the local information at a particular position
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i cannot always be computed merely by looking at the symbol at i , nor at the con-
figuration in a finite neighbourhood of i . The natural approach is therefore to define
the local information as a limit which converges to a local analogue of the Shannon
entropy as more and more distant neighbours are taken into account, and which can
be computed locally when the correlations are finite in extent. While the Shannon
entropy is limited to shift-invariant measures, we can define left local information for
any measure.

Definition 2. Let µ be a measure on A Z. The left local information at coordinate i of
x ∈A Z with respect to µ is given by

SL(x; i ;µ) =− lim
n→∞ logµ(xi |xi−1

i−n ) . (6)

The following theorem ensures that the left local information with respect to µ is
a well-defined function on the probability space (A Z,B,µ).

Theorem 1. For each i ∈ Z, − logµ(xi |xi−1
i−n ) converges µ-almost everywhere and in

L1(µ). Consequently, for each fixed measure µ and i ∈Z,

SL(x; i ;µ) ∈ L1(µ) . (7)

We will often use the intuitive notation − logµ(xi |xi−1−∞) for SL(x; i ;µ). When dis-
cussing local information as a function on the probability space (A Z,B,µ) we always
mean local information with respect to µ. The theorem ensures that SL has finite ex-
pectation. Indeed, from L1 convergence and (5) it follows that E[SL(x; i ;µ)] = h(µ) for
all i in the shift-invariant case. Using local information we can also define local or
coordinate-wise left entropies for all measures as hi (µ) = E[SL(x; i ;µ)], i ∈Z.

The quantity − logµ(xi |xi−1
i−n ) is the information gained from the symbol at posi-

tion i when only knowledge of the n left symbols is assumed. If, and only if, µ is
Markov there is a fixed n such that SL(x; i ;µ) =− logµ(xi |xi−1

i−n ). In other cases, corre-
lations are not finite and no such n will exist. The speed of convergence depends on
the typical length of correlations in the system, which could be quantified as in [6].

The validity of Theorem 1 follows directly from a more general result in probability
theory. We first introduce the necessary background. This theory will also be used in
the proofs of our main results in Sect. 4. Let (X ,B,µ) be a probability space. The
function E[ f |F ], with F a sub-σ-algebra of B, is defined up to a set of measure zero
by being measurable with respect to F and having the same expectation as f over any
B ∈F . The function is called the conditional expectation of f given F . Of particular
interest to us is E[1A|F ], with A ∈ B. This function is commonly written as µ(A|F )
and called the conditional probability of A. If F is generated by the finite partition

β of X , then µ(A|F )(x) =∑
B∈β

µ(A∩B)
µ(B) 1B (x). The function µ(A|F ) satisfies µ(A|F ) > 0

µ-a.e. on A [12, Lemma 3.1.2]. For α a partition of X , the conditional information of
α given F is defined by

Iα|F (x) =− ∑
A∈α

log µ(A|F )(x) ·1A(x) . (8)
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For two partitions α and β of X , the conditional information satisfies Iα∨β|F = Iα|F +
Iβ|α∨F .

A filtration of a probability space is an increasing family of sub-σ-algebras F0 ⊂
F1 ⊂ ·· · ⊂ B. Let F∞ be the smallest σ-algebra containing all Fn , F∞ = σ(∪nFn).
A supermartingale relative to {Fn} is a stochastic process (gn : n ≥ 0) such that (1) gn

is Fn-measurable, (2) gn ∈ L1(µ) ∀n and (3) E[gn+1|Fn] ≤ gn . Condition (3) can be
checked by assuring that for each B ∈Fn ,∫

B
gn+1dµ≤

∫
B

gn dµ . (9)

The martingale convergence theorem states that any non-negative supermartingale
gn converges a.e. to a function g which is F∞-measurable and finite a.e. Based on
the martingale theorem, the following result is proved e.g. in [12].

Lemma 2. Let {Fn} be a filtration of (X ,B,µ). For any finite partition α

lim
n→∞ Iα|Fn = Iα|F∞ µ-a.e. and in L1(µ) . (10)

We now proceed to prove Theorem 1 using this lemma.

Proof of Theorem 1. Fix an i ∈Z. Define Fn as the σ-algebra generated by the coordi-
nate random variables from i −n to i −1: Fn = σ(X j : i −n ≤ j ≤ i −1), and define α

as the partition {Cyl(ai ) : ai ∈A }. Then

− logµ(xi |xi−1
i−n ) = Iα|Fn (x) . (11)

Convergence a.e. of − logµ(xi |xi−n
i−1 ) to Iα|F∞ follows directly from Lemma 2. Note that

F∞ =σ(Xi : i ≤ 0).

The local information SL(x; i ;µ) depends on the measure µ, thus knowledge of µ
is required to calculate SL. However, in the case of a shift-invariant measure µ the left
local information at position i of x can in principle be recovered with probability one
from xi−∞ only. This is achieved by considering the empirical measure νx obtained
from the frequencies of finite blocks in xi−∞. If µ is ergodic, then νx =µ a.e. However,
even when µ is only shift-invariant it suffices to look at the local information with
respect to νx .

Theorem 2. Let µ be a shift-invariant measure on A Z and νx the empirical measure
generated by xi−∞. Then

SL(x; i ;µ) = SL(x; i ;νx ) µ-a.e.

Proof. The result is true since the infinite history determines with probability one
which ergodic component of µ x is generated by. More precisely, Lemma 8.6.2. in [7]
states that for a B ∈σ(Xi : i ≥ 0),

µ((X0,X1, . . . ) ∈ B|σ(X−1
−∞)) = νx ((X0,X1, . . . ) ∈B|σ(X−1

−∞)) µ-a.e. (12)
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Recall that the local information at position 0 is a conditional information Iα|F on the
form (8) with α = {Cyl(a0) : a0 ∈A } and F = σ(X−1−∞). Therefore, the theorem follows
for the case i = 0 from (12). This generalizes directly to any arbitrary coordinate i .

The choice of conditioning on the left history of coordinate i when defining local
information is arbitrary. We can also define the right local information at coordinate
i of x with respect to µ as

SR(x; i ;µ) =− lim
n→∞ logµ(xi |xi+n

i+1 ) . (13)

The right local information obviously has the same convergence properties as the left
information, and all results we show for the left information will have corresponding
results for the right information. Note, however, that although the left and right infor-
mation have the same expectation for all shift-invariant measures, they are not equal
nor do they in general have the same probability distribution. This is exemplified by
the Markov measure on {0,1,2}Z defined by the automaton in Fig. 1. We will see in the
next section that both the left and the right information are fundamental locally con-
served quantities under iteration by a one-dimensional surjective CA. One could also
take the average of left and right information and the difference as the fundamental
conserved quantities.

4 Information Transport

In this section we investigate the transport of local information in a one-dimensional
system generated during the time-evolution of a surjective cellular automaton. We
show that the local information satisfies a continuity equation involving an infor-
mation current JL, and supply an expression for this current. Recall that a CA F is
a dynamical system on A Z that maps each x ∈A Z to a y ∈A Z by simultaneously up-
dating the symbol at each position by a local block map f . Additionally, F can be con-
sidered to act on measures. Let µ0 be a measure on A Z. The measure F (µ0) =µ0◦F−1

gives the joint distributions of the stochastic process (Yi )i∈Z with Yi = f (X i+r
i−l ) when

9
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(Xi )i∈Z has joint distributions given by µ0. Denote µ0 ◦F−1 by µ1 and, more generally,
set µt =µ0 ◦F−t . The block probabilities of µ1 can be calculated from

µ1(y n
0 ) =

∑
zn+r
−l ∈ f −1(yn

0 )

µ0(zn+r
−l ) . (14)

It is well known that h(µ1) = h(µ0) whenever F is surjective andµ0 is shift-invariant
(if F is non-surjective, this relation is replaced by h(µ1) ≤ h(µ0)). An elementary proof
is found in [16]. Our goal is to prove the much stronger result that the local informa-
tion in fact obeys a local continuity equation under the time evolution of the CA. This
equation is an analogue of the continuity equations which apply to locally conserved
physical quantities such as charge or particle density. The existence of a continuity
equation for information flow in reversible systems was first proposed by Toffoli [24],
though it was shown only in the case of of small perturbations around uncorrelated
equilibrium states of particle conserving reversible cellular automata, such as lattice
gas automata.

A continuity equation for the local information is an equation of the form

∆t SL +∆i JL = 0 , (15)

where JL(x; i ;µ) is the information current. The operator ∆ is the forward difference
operator, so that

∆t SL(x; i ;µt ) = SL(F (x); i ;µt+1)−SL(x; i ;µt ) ,

∆i JL(x; i ;µt ) = JL(x; i +1;µt )− JL(x; i ;µt ) .
(16)

With these definitions, JL(x; i ;µt ) can be interpreted as the information flow from po-
sition i −1 to position i generated by applying the CA. Note that the local information
of F (x) is taken with respect to a different measure than x, unless µt happens to be
invariant for the CA.

Before we present the formula for JL and the main results we need two definitions.
These are illustrated in Fig. 2. For a semi-infinite sequence xi−∞, define Z (xi−∞) as the
set of all semi-infinite sequences that have the same image and the same tail as xi−∞:

Definition 3. For x ∈A Z and a surjective CA F , define the sets Z (xi−∞) as

Z (xi
−∞) = {zi

−∞ : f (zi
−∞) = f (xi

−∞) and ∃ j ≤ i such that z j
−∞ = x j

−∞} .

Note that |Z (xi−∞)| ≤ R(F ) for all x by the definition of the Welch coefficient R(F ).
Define τ(xi−∞) as the largest index less than i − r for which all sequences in Z (xi−∞)
coincide (recall that r is the right radius of F ):

Definition 4. For x ∈A Z, define τ(xi−∞) ∈Z as

τ(xi
−∞) = max

j
{ j : j < i − r, and z

j
−∞ = x

j
−∞ ∀ zi

−∞ ∈Z (xi
−∞)} .
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We are now ready to define the information current.

Definition 5. Let F be a surjective one-dimensional CA with right radius r , and µ a
measure on A Z. Put Z = Z (xi+r−1−∞ ) and τ = τ(xi+r−1−∞ ). Define the left information
current at coordinate i of x with respect to µ and F as

JL(x; i ;µ) =− logµ(xi−1
τ+1|xτ

−∞)+ log
∑
Z
µ(zi+r−1

τ+1 |xτ
−∞) . (17)

The quantitiesµ(zi−1
τ+1 |xτ−∞) are defined as limn→∞µ(zi−1

τ+1|xτ
τ−n ), in agreement with

the definition of local information. Since JL is constructed entirely from conditional
probabilities of this type, an analogue to Theorem 2 yields

JL(x; i ;µ) = JL(x; i ;νx ) µ-a.e. (18)

Note that τ< i−1 by the requirement that τ(xi−∞) < i−r included in Definition 4. Also
note that in the case of a reversible CA, the existence of an inverse CA ensures that τ
is bounded. In particular, let r̃ be the right radius of the inverse CA. Then τ≥ i −1− r̃
unless r̃ = 0, in which case τ= i −2. For non-reversible CA, τ is in general unbounded
but always finite. Some information theoretic considerations elucidating why (17) is
a natural form for the information current is presented in Sect. 5.

It remains to show that JL(x; i ;µ) is well defined as a function on (X ,B,µ). Since τ

is finite by definition, this will follow from almost everywhere convergence of all con-
ditional probabilities involved in JL. Such convergence is ascertained by the following
lemma.

Lemma 3. For any measure µ on A Z,

µ({x : lim
n→∞µ(a−1

−k |x−k−1
−n ) exists for all k ≥ 0 and all a−1

−k ∈A k }) = 1 .

Proof. Fix k and a−1
−k . Define the measurable functions fn =µ(a−1

−k |x−k−1
−k−n). The process

( fn : n ≥ 0) is a martingale with respect to the natural filtration Fn =σ(Xi : −k−n ≤ i ≤

11
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−k −1). Furthermore, E[ fn ] is bounded, so by the martingale convergence theorem
fn converges a.e. By subadditivity of the measure, the set

Ak = {x : lim
n→∞µ(a−1

−k |x−k−1
−k−n) does not exist for some a−1

−k ∈A k } .

has measure 0. By countable subadditivity, µ(
⋃

k≥0 Ak )= 0, and the result follows.

It is also the case that JL(x; i ;µ) ∈ L1(µ). This is stated in Theorem 5 in Sect. 5.3.
We now proceed to present Theorems 3 and 4, which are the main results of the

paper. The conclusions of both theorems are identical, namely the validity of the con-
tinuity equation ∆t SL(x; i ;µ)+∆i JL(x; i ;µ) = 0, with components defined in (16). The
first theorem states that for reversible CA the equation is valid for all initial measures.

Theorem 3. Let F be a reversible one-dimensional CA, and µ a measure on A Z. Then
∆t SL(x; i ;µ)+∆i JL(x; i ;µ) = 0 for all i ∈Z µ-a.e.

In the more complex case of a general surjective CA, the requirement of µ being
shift-invariant is necessary to ensure the validity of the continuity equation.

Theorem 4. Let F be a surjective one-dimensional CA, and µ a shift-invariant measure
on A Z. Then ∆t SL(x; i ;µ)+∆i JL(x; i ;µ) = 0 for all i ∈Z µ-a.e.

The theorem is true for all shift-invariant measures, so it is not required that µ
gives positive probability to all finite blocks. Example 4 in Sect. 5 shows that the con-
tinuity equation as defined above can fail to be valid if µ is not shift-invariant and F
is surjective without being reversible.

Note that if one of the theorems is valid for a CA F together with an initial measure
µ0, then the continuity equation will be satisfied at all time steps of the iteration by F .

Proof of Theorem 3. We first show that it is sufficient to prove the theorem in the case
of r = 0. Here, and in the rest of the proof, we look at the initial measure µ0 and its
image µ1.

Assume that Theorem 3 is valid for CA with r = 0, and let F have right radius r .
There exist a CA G with r = 0 such that F = σr ◦G. We have SL(F x; i ;µ1) = SL(Gx; i +
r ;µ1), since F (µ0) =G(µ0) = µ1. Write τ1 = τ(xi+r−1−∞ ), τ2 = τ(xi+r−∞), Z1 = Z (xi+r−1−∞ ) and
Z2 = Z (xi+r−∞). Using the formula for JL we obtain

SL(Gx; i + r ;µ1) =− logµ0(xi+r |xi+r−1
−∞ )

− logµ0(xi+r−1
τ1+1 |xτ1−∞)+ log

∑
Z1

µ0(zi+r−1
τ1+1 |xτ1−∞)

+ logµ0(xi+r
τ2+1|xτ2−∞)− log

∑
Z2

µ0(zi+r
τ2+1|xτ2−∞) . (19)

Since τ1 ≤ i −2 and τ2 ≤ i −1 by definition, we can write

logµ0(xi+r
τ2+1|xτ2−∞) = logµ0(xi

τ2+1|xτ2−∞)+ logµ0(xi+r
i+1 |xi

−∞) (20)

12
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and

− logµ0(xi+r |xi+r−1
−∞ )− logµ0(xi+r−1

τ1+1 |xτ1−∞) =
− logµ0(xi−1

τ1+1|xτ1−∞)− logµ0(xi |xi−1
−∞)− logµ0(xi+r

i+1 |xi
−∞) . (21)

Substituting (20) and (21) into (19) gives the correct continuity equation for F .
For the rest of the proof we assume that F has right radius r = 0, and left radius

l ≥ 0. We look only at coordinate i = 0. This leads to no loss of generality. Call the
inverse CA F̃ and let F̃ have left radius l̃ and right radius r̃ . Sequences at time t = 0
are generally denoted by x or z and sequences at time t = 1 by y .

We first define the joint measure ν of two consecutive time steps (considering
the CA as a channel with memory, this usage of the term joint measure is the same
as in information theory). Let ν be the measure on (A ×A )Z defined by the block
probabilities

ν(x
j
i , y

j
i ) =µ0({z

j
i−l ∈A j−i+l+1|z j

i = x
j
i and f (z

j
i−l ) = y

j
i }) . (22)

It is easy to show that ν actually is a measure and that ν is shift-invariant if µ0 is shift-
invariant. We will need the following lemma.

Lemma 4. Let ν be a measure on A Z
1 ×A Z

2 , where each Ai is a finite set. Let (x, y) ∈
A Z

1 ×A Z
2 . Then there is a g ∈ L1(ν) such that for any k ∈Z

lim
n→∞ν(x0, y0|x−1

−n−k , y−1
−n ) = g ν-a.e. (23)

Proof. Let (Xi ,Yi )∞i=−∞ be the stochastic process corresponding to the measure ν. Fix
a k . We can write ν(x0, y0|x−1

−n−k , y−1−n ) = Iα|F k
n

with α= {Cyl(a0, b0) : a0, b0 ∈A } and

F k
n =σ(Xi ,Yj :−n−k ≤ i ≤−1 ,−n ≤ j ≤−1) . (24)

Almost everywhere convergence of Iα|F k
n

to Iα|F k∞ follows from Lemma 2. However,

F k∞ is the same for any k :

F k
∞ =σ(

⋃
n

F k
n )=σ(Xi ,Yj : i , j ≤−1) =F∞ . (25)

The result follows.

Let y = F (x). From the definition of local information we have

SL(x;0;µ0) =− lim
n→∞ logµ0(x0|x−1

−n )

= lim
n→∞

(
log

ν(x0, y0|x−1−n , y−1
−n+l )

µ0(x0|x−1−n )
− logν(x0, y0|x−1

−n , y−1
−n+l )

)

= lim
n→∞ log

ν(y0
−n+l |x0−n)

ν(y−1
−n+l |x−1−n)

− lim
n→∞ logν(x0, y0|x−1

−n , y−1
−n+l )

=− logν(x0, y0|x−1
−∞, y−1

−∞)

(26)

13
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by virtue of Lemma 4 and the fact that ν(y0
−n+l |x0−n ) = ν(y−1

−n+l |x−1−n ) = 1 for all n > l,

since y0
−n+l in this case is uniquely determined by x0−n through the local map f and

likewise for y−1
−n+l and x−1−n . A similar treatment of SL(y ;0;µ1) yields

SL(y ;0;µ1) = lim
n→∞

(
log

ν(x0, y0|x−1
−n+l̃

, y−1−n )

µ1(y0|y−1−n)
− logν(x0, y0|x−1

−n+l̃
, y−1

−n )

)

= lim
n→∞ log

ν(x0
−n+l̃

|y0−n)

ν(x−1
−n+l̃

|y−1−n)
− logν(x0, y0|x−1

−∞, y−1
−∞) .

(27)

When taking the difference ∆t SL the last term is canceled out, so

∆t SL(x;0;µ0) = lim
n→∞ logν(x0

−n+l̃
|y0

−n)− lim
n→∞ logν(x−1

−n+l̃
|y−1

−n) .

We claim that
− lim

n→∞ logν(x−1
−n+l̃

|y−1
−n) = JL(x;0;µ0) . (28)

A verification of this will conclude the proof. We show it through a sequence of trans-
formations. Firstly,

logν(x−1
−n+l̃

|y−1
−n ) = logν(x−r̃−1

−n+l̃
|y−1

−n )+ logν(x−1
−r̃ |x−r̃−1

−n+l̃
, y−1

−n) . (29)

The first term on the right hand side is zero, since x−r̃−1
−n+l̃

is uniquely determined by

y−1−n through the local map f̃ of the inverse CA. For the second term one can prove
that

lim
n→∞ logν(x−1

−r̃ |x−r̃−1
−n+l̃

, y−1
−n ) = lim

n→∞ logν(x−1
−r̃ |x−r̃−1

−n−l , y−1
−n) (30)

by the same technique used in the proof of Lemma 4. Furthermore, for any events
A,B and C in a probability space it is true that ν(A|BC ) = ν(C |AB)ν(A|B)

ν(C |B) . Let A = x−1
−r̃ ,

B = x−r̃−1
−n−l and C = y−1−n . Then ν(C |AB) = 1. Thus,

logν(x−1
−r̃ |x−r̃−1

−n−l , y−1
−n )= logµ0(x−1

−r̃ |x−r̃−1
−n−l )− logν(y−1

−n |x−r̃−1
−n−l ) . (31)

By the definition of ν, the last term can be written as

− logν(y−1
−n |x−r̃−1

−n−l ) =− log
∑

Z (x−1−∞)

µ0(z−1
−r̃ |x−r̃−1

−n−l ) . (32)

Substituting (32) into (31) and taking the limit n → ∞ we arrive at the equation for
JL(x;0;µ0) presented in Definition 5.

For general surjective CA, there is no inverse CA and in general several possible
preimages. As a consequence, the proof of Theorem 4 requires a different approach.

14
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Proof of Theorem 4. By the same argument as in the proof of Theorem 3 it suffices to
prove the theorem for CA with right radius r = 0. As before, we only look at coordinate
i = 0 and consider the initial measure µ0 and its image µ1.

Let y = F (x), and define

q(x)= SL(y ;0;µ1)−SL(x;0;µ0)+ JL(x;1;µ0)− JL(x;0;µ0) . (33)

Our goal is to prove that q(x) = 0 µ0-a.e. This is equivalent to E[|q|] = 0. To prove this
we will introduce a sequence qk of approximations of q which are measurable with
respect to finite parts of the history. To this end we make several definitions.

Define the following equivalence relation on A l+n+1 for n ≥ 0:

xn
−l ∼ zn

−l iff f (xn
−l ) = f (zn

−l) and x−1
−l = z−1

−l . (34)

That is, two blocks in A l+n+1 are equivalent if they have the same image under f and
agree on the first l coordinates. Denote the equivalence class containing zn

−l by [zn
−l ].

For an x ∈ A Z we will in particular look at the equivalence classes [x−1
−k−l ] for k ≥ 1.

There is a close relationship between [x−1
−k−l ] and Z (x−1−∞), namely that for each k ≥ 1

we have the inclusion

Z (x−1
−∞) ⊇ {x−l−k−1

−∞ z−1
−l−k : z−1

−l−k ∈ [x−1
−l−k ]} . (35)

Recall that τ(x−1−∞) is largest index such that all sequences in Z (x−1−∞) agrees on and to
the left of τ(x−1−∞). Therefore, for all k ≥−τ(x−1−∞)−1 equation (35) is an equality. This
will be essential. Define τk (x) for k ≥ 1 as the analogue of τ obtained when consider-
ing [x−1

−k−l ] rather than Z (x−1−∞):

τk (x) = max
j

{ j ≤−2, and z−1
−k−l ∈ [x−1

−k−l ] ⇒ z j
−k−l = x j

−k−l } . (36)

Note that τk (x) = τ(x−1−∞) iff k ≥ −τ(x−1−∞) − 1. We now define finite versions of the
current JL(x;0;µ0) and of q(x). Write τk for τk (x) and put for k ≥ 1

Jk
L (x) =− logµ0(x−1

τk+1
|xτk

−k−l )+ log
∑

z−1
−k−l∈[x−1

−k−l ]

µ0(z−1
τk+1

|xτk

−k−l ) (37)

and
qk (x) =− logµ1(y0|y−1

−k )+ logµ0(x0|x−1
−k−l )+ Jk+1

L (σx)− Jk
L (x) . (38)

It is straightforward to check that qk (x) → q(x) a.e. using the properties of [x−1
−k−l ]

and τk discussed above. Define K (x) = −τ(x−1−∞)− 1. Then K (x) is finite and for all
k ≥ K (x) we have τk (x) = τ(x−1−∞) and equality in (35). Consequently, the sum over
[x−1

−k−l ] in (37) is the same as the sum over Z in the the expression for JL. Thus, for

k ≥ K (x) the only difference between Jk
L (x) and JL(x;0;µ0) is the length of the history

that is conditioned on. Almost everywhere convergence follows from Lemma 3.
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We can write ∫
|q|dµ0 ≤

∫
|qk |dµ0 +

∫
|q −qk |dµ0 . (39)

The result will follow if we can prove that both integrals on the right hand side con-
verge to zero. In order to do this we investigate a particular random process (gn)n≥0

on A Z. The interest in this process is due to the relationship qk ◦σk = log gk−1−log gk

which will be established later. Define the measurable functions gn for n ≥ 0 by

gn(x) = µ1(y n
0 )

µ0([xn
−l ])

, where y n
0 = f (xn

−l ) . (40)

Here, µ0([xn
−l ]) means

∑
zn
−l∈[xn

−l ]µ
0(zn

−l ). We will prove that the process (gn)n≥0 is a
supermartingale with respect to a filtration that we now will describe.

Let P n be the partition of A Z defined by the equivalence relation (34) on A l+n+1.
That is, the elements of P n are the sets P[u] = {x : xn

−l ∈ [u]} for all equivalence classes

[u] of A l+n+1. Let Fn = σ(P n). From the definition of the equivalence relation it is
obvious that gn is measurable with respect to Fn (in fact, Fn is the σ-algebra gener-
ated by gn). We have to show that Fn ⊆ Fn+1 for all n. This follows if we can show
that the partition P n+1 is a refinement of P n . Consider a general element P[wn

−l ] of

P n . We claim that

P[wn
−l ] =

⋃
zn
−l∈[wn

−l ]

( ⋃
a∈A

P[zn
−l a]

)
. (41)

If x ∈P[wn
−l ], then P[xn+1

−l ] clearly is a member of the double union. Conversely, if x is in

some P[zn
−l a] in the union, then x−1

−l = z−1
−l = w−1

−l and f (xn
−l ) = f (zn

−l ) = f (wn
−l ). Thus,

x ∈ P[wn
−l ]. The claim follows, and (Fn : n ≥ 0) is a filtration.

To prove that gn is a supermartingale with respect to this filtration we show that
E[gn+1|Fn]≤ gn . Since each sub-σ-algebra Fn is finite it suffices to show

∫
gn+1dµ0 ≤∫

gn dµ0 over any P[u] ∈P n . We find that

∫
P[u]

gn dµ0 = ∑
xn
−l∈[u]

µ0(xn
−l )

µ1(y n
0 )

µ0([xn
−l ])

=µ1(y n
0 ) . (42)

For gn+1 we split the integral into cylinder sets where gn+1 is constant:∫
P[u]

gn+1 dµ0 = ∑
xn
−l∈[u]

∑
a∈A

∫
Cyl(xn

−l a)
gn+1(x)dµ0

= ∑
xn
−l∈[u]

∑
a∈A

µ0(xn
−l a)

µ1(y n
0 f (xn

n−l+1a))

µ0([xn
−l a])

= ∑
b∈A

ψb ·µ1(y n
0 b) ,

(43)
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where

ψb =
∑

xn
−l∈[u]

∑
a∈A

µ0(xn
−l a)

µ0([xn
−l a])

·1{ f (xn
n−l+1a)=b}(x) . (44)

We claim that for each b the quantity ψb is equal either to 0 or to 1. Fix a b. First
note that all blocks xn

−l a in the double sum in (44) that satisfy f (xn
n−l+1a) = b must

generate the same equivalence class [xn
−l a] = [v]. Conversely, each block zn+1

−l ∈ [v]
is an element of the double sum, since it will satisfy zn

−l ∈ [xn
−l ] = [u]. Consequently,

ψb = 1 by summation of the fractions and cancelation. The exception is the case
where no xn

−l ∈ [u] can be extended with one symbol to the right such that the new
block maps to y n

0 b under f . For such b, ψb = 0. We can conclude that∫
P[u]

gn+1 dµ0 ≤ ∑
b∈A

µ1(y n
0 b) =µ1(y n

0 ) =
∫

P[u]

gn dµ0 . (45)

It is easy to prove that E[|g0|] ≤ |A |l+1 <∞, and this finalizes the proof that gn is a
supermartingale. Furthermore, gn is non-negative, so by the martingale convergence
theorem gn converges a.e. to a g ∈ L1(µ0).

We claim that g ≥ 1 a.e. In fact, it follows from the formula for µ1(y n
0 ) in (14) that

gn ≥ 1 for all n. Since g is positive, log gn will converge a.e. to log g . In particular
(log gn − log gn−1) → 0 a.e. A careful examination of the expression log gn − log gn−1

reveals that
log gn−1(x)− log gn(x) = qn(σn x) . (46)

We sketch the transformations necessary to show this. Firstly,

log gn−1(x)− log gn(x) =− log
µ1(y n

0 )

µ1(y n−1
0 )

+ log
µ0([xn

0 ])

µ0([xn−1
0 ])

.

The first term is equal to − logµ1((σn y)0|(σn y)−1−n). The second term can be written as

log
µ0(xτ2

−l )

µ0(xτ1
−l )

+ log
∑

zn
−l∈[xn

0 ]

µ0(zn
τ2+1|xτ2

−l )− log
∑

zn−1
−l ∈[xn−1

0 ]

µ0(zn−1
τ1+1|xτ1

−l ) ,

where τ1 = τn(σn x)+ n ≤ n −2 and τ2 = τn+1(σn+1x)+ n +1 ≤ n −1. By adding and
subtracting logµ0(xn

−l ) to/from the first term, it is transformed to

log
µ0(xτ2

−l )

µ0(xτ1
−l )

= logµ0(xn |xn−1
−l )+ logµ0(xn−1

τ1+1|xτ1
−l )− logµ0(xn

τ2+1|xτ2
−l ) ,

which are the three remaining terms in qn(σn x).
We now proceed to show L1(µ0) convergence of log gn using uniform integrability.

A family ( fn)n≥0 of measurable functions is said to be uniformly integrable if

lim
M→∞

sup
n

∫
(| fn |−M)+dµ= 0 . (47)
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If ( fn)n≥0 is an uniformly integrable family and limn→∞ fn (x) = f (x) a.e., then ([5,
Sec. 1.14])

lim
n→∞

∫
| f − fn |dµ→ 0 .

We claim that (log gn)n≥0 is an uniformly integrable family. Note first that

log gn(x) > t ⇔ µ0([xn
−l ]) < 2−t ·µ1(y n

0 ) . (48)

Define An,t ⊂A l+n+1 as An,t = {xn
−l :µ0([xn

−l ]) < 2−t ·µ1( f (xn
−l ))}. We obtain

µ0({log gn > t }) =
∑

xn
−l∈An,t

µ0(xn
−l )

≤ ∑
xn
−l∈An,t

2−tµ1( f (xn
−l ))

≤ 2−t
∑

xn
−l∈A l+n+1

µ1( f (xn
−l ))= 2−t · |A |l

(49)

for all n. A simple application of Fubini’s theorem yields

sup
n

∫
(| log gn |−M)+dµ0 = sup

n

∫∞

M
µ0({log gn > t }) dt

≤ |A |l
∫∞

M
2−t dt = 2−M · |A |l .

(50)

Thus, uniform integrability is satisfied and limn→∞ E[| log g − log gn |] = 0. By shift-
invariance

lim
n→∞E[|qn |]= lim

n→∞E[|qn | ◦σn ] = lim
n→∞E[| log gn−1 − log gn|] = 0 . (51)

Hence, the first integral on the right hand side in (39) converges to zero. Regarding
the second integral on the right hand side, we know that limn→∞ qn = q a.e. Thus,
if we can prove that (qn)n≥0 is itself a uniformly integrable family then we are done.
From (46) and the fact that log gn ≥ 0 for all n it follows that

{|qn | ◦σn > M} ⊆ {log gn−1 > M}
⋃

{log gn > M} . (52)

We can conclude that

sup
n

∫
(|qn |−M)+dµ0 = sup

n

∫
(|qn ◦σn |−M)+dµ0 ≤ 2−M+1 · |A |l , (53)

and the result follows.
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A corresponding continuity equation can also be written for right local informa-
tion. The right variants of the set Z and variable τ are defined by

Z (x∞
i ) = {z∞

i : f (z∞
i ) = f (x∞

i ) and ∃ j ≥ i such that z∞
j = x∞

j } ,

τ(x∞
i ) = min

j
{ j : j > i − l, and z∞

j = x∞
j ∀ z∞

i ∈Z (x∞
i )} .

Put Z = Z (x∞
i−l ) and τ= τ(x∞

i−l ), and define the right information current at coordinate
i of x with respect to µ and F by

JR(x; i ;µ) = logµ(xτ−1
i |x∞

τ )− log
∑
Z
µ(zτ−1

i−l |x∞
τ ) . (54)

Then, JR(x; i ;µ) satisfies the continuity equation

∆t SR(x; i ;µ)+∆i JR(x; i ;µ) = 0 (55)

at all i ∈ Z µ-a.e. This is proved under the condition that F is reversible or the con-
ditions that F is surjective and µ is shift-invariant in the same way as Theorem 3 or
Theorem 4.

5 Further Aspects of Information Transport

5.1 Information theoretic interpretation

We now explain why the expression for JL presented in Definition 5 is natural from an
information theoretic perspective. We describe a way of decomposing JL(x; i ) into

JL(x; i ) = J+L (x; i )− J−L (x; i ) , (56)

with J+L , J−L ≥ 0 such that J+L has a natural interpretation in terms of information flow-
ing to the right between coordinates i−1 and i , and J−L in terms of information flowing
to the left. Here, and in the rest of the section, we omit µ from the notation in JL and
SL when considering an arbitrary, but fixed, measure µ.

First recall the definition of Z (xi−∞) and define

Z0(xi
−∞) =

{
zi
−∞ ∈ Z (xi

−∞) : zi−r
−∞ = xi−r

−∞
}

. (57)

We will consider the set Z0(xi+r−1−∞ ), which consists of the one sided infinite sequences
that have the same image as xi+r−1−∞ and coincide with xi+r−1−∞ up to index i−1. In Fig. 2,
Z0(xi+r−1−∞ ) consists of the two uppermost sequences. Define J+L and J−L at coordinate
i = 0, with τ= τ(xr−1−∞ ), Z = Z (xr−1−∞ ) and Z0 = Z0(xr−1−∞ ), as

J−L (x;0) =− log
∑
Z0

µ(zr−1
0 |x−1

−∞) , (58)

J+L (x;0) =− log

∑
Z0 µ(zr−1

τ+1 |xτ−∞)∑
Z µ(zr−1

τ+1 |xτ−∞)
. (59)
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It is straightforward to confirm that J−L (x;0) and J+L (x;0) are non-negative and satisfy
(56).

We first examine J−L . Using the joint measure ν defined in (22) we can write

J−L (x;0) =− lim
n→∞ log

ν(x−1−n , y−1−r )

ν(x−1−n)
=− logν(y−1

−r |x−1
−∞) . (60)

The equation states that J−L (x;0) is the information gained by observing y−1−r when
having knowledge of x−1−∞. This is what one should expect. Indeed, since x−1−∞ is known
the semi-infinite sequence y−r−1−∞ is uniquely determined by the CA map. Hence, all
uncertainty about y−1−∞ is with respect to y−1−r , and this uncertainty comes from lack
of knowledge about the continuation x∞

0 of x−1−∞. The quantity − logν(y−1−r |x−1−∞) is
thus the further information about the continuation x∞

0 found in y−1−∞ but not in x−1−∞.
This information has been transported from x∞

0 , and consequently a corresponding
contribution J−L to the information current is generated (note that since the time step
is one, the information flow per iteration is equal to the information current). The
contribution J−L consist of information flowing in the negative x-direction.

Considering J+L , we can write

J+L (x;0) =− lim
n→∞ log

∑
Z0 µ(zr−1−n )∑
Z µ(zr−1−n )

=− lim
n→∞ log

ν(x−1−n , y−1
−n+l )

ν(xτ−n , y−1
−n+l )

=− logν(x−1
τ+1|xτ

−∞, y−1
−∞) . (61)

Thus, J+L (x;0) is the information gained from observing x−1
τ+1 when xτ−∞ as well as y−1−∞

is known. Since y−1−∞ is known, the preimage xr−1∞ is determined up to the set Z (xr−1−∞ ).
This is illustrated by Fig. 2, where xr−1

τ+1 must be one of the “branches” to the right,
but it is not decidable from y−1−∞ which one. However, which member of Z (xr−1−∞ ) that
xr−1−∞ actually is will, with probability one, be determined by the continuation y∞

0 of
y−1−∞. Therefore, the information − logν(x−1

τ+1|xτ−∞, y−1−∞) flows to the right and is found
to the right of coordinate −1 in y . The contribution J+L thus consists of information
flowing in the positive x-direction. Note that for non-surjective CA the sets Z (xr−1−∞ )
will not be finite and which element of Z (xr−1−∞ ) that is the correct xr−1−∞ will not be
determined by y∞

0 . As a consequence, some information about the preimage will be
lost in this case.

5.2 Permutative cellular automata

For the class of right permutative CA the information dynamics has a particularly sim-
ple form. Recall that F is right permutative if R(F ) = 1. Equivalently, F is right permu-
tative if |Z (xi−∞)| = 1 for all pairs x and i . Therefore, for right permutative CA (58) gives
J−L (x; i ;µ) = − logµ(xi+r−1

i |xi−1−∞) and (59) gives J+L ≡ 0. This result and the continuity
equation yield the following corollary to Theorem 4.
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Corollary 1. Let µ be any shift-invariant measure on A Z and F : A Z → A Z a right
permutative CA with right radius r . Then, µ-almost everywhere,

SL(F x; i ;µ◦F−1) = SL(x; i + r ;µ) . (62)

In particular, if r = 0, then SL(F t x; i ;µt ) = SL(x; i ;µ0) for all t ≥ 0 so that the local
information is locally constant. As a result of Corollary 1, the distribution of local
information will also remain unchanged. Below we state this as a separate result.

Corollary 2. Let µ0 be any ergodic measure on A Z and F : A Z →A Z a right permuta-
tive CA. Then, for any measure ν being a linear combination of the measures µt , t ≥ 0,
the random variable SL(x; i ;ν) has the same distribution.

Proof. Write ν=∑∞
t=0αtµ

t , with
∑
αt = 1, and let B be an arbitrary measurable subset

of [0,∞). Since every CA conserves ergodicity, all µt are ergodic and satisfy µt = νx µt -
almost everywhere, where νx is the empirical measure. Hence, by decomposition

ν{x : SL(x; i ; µ̄n ) ∈B}) =
∞∑

t=0
αtµ

t ({x : SL(x; i ;ν) ∈ B})

=
∞∑

t=0
αtµ

t ({x : SL(x; i ;µt ) ∈ B}) .

The last equality follows by Theorem 2. To show that each term of the sum is the same,
let

T = {z : SL(F t (z); i − r t ;µt ) = SL(z; i ;µ0) ∀ t ≥ 0} .

Then µ0(T ) = 1 by Corollary 1 and the fact that F t is right permutative for all t > 1 if F
is right permutative [9]. Therefore, for any t ≥ 0,

µt ({x : SL(x; i ;µt ) ∈ B}) =µ0(G−t ({x : SL(x; i ;µt )∈ B}))

=µ0(G−t ({x : SL(x; i ;µt )∈ B})∩T )

=µ0({z : SL(z; i + r t ;µ0) ∈B}) .

The last equality follows by the definition of T .

Note that even though the behaviour of the local information is very simple in the
case of permutative CA, the sequence µt of measures generated by a linear CA under
iteration is quite complicated. Block probabilities and the structure of correlations
in the system varies widely with t [16]. On the other hand, for many bipermutative
CA large classes of initial measures weak∗ converge in Cesàro mean to the uniform
Bernoulli measure. That is,

lim
n→∞

1

n

n−1∑
t=0

µt (ak
1 ) = 1

|A |k (63)
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for all k ≥ 1 and finite blocks ak
1 ∈A k . This was first proved for the linear CA F = σ+

σ−1 on {0,1}Z with µ0 a Bernoulli measure by Lind [15]. It has later been extended to a
larger subclass of the permutative CA and classes of measures by Pivato and Yassawi
[18, 19], see also [3]. These include all Markov measures with full support.

For the uniform Bernoulli measure µ̄ the local information has a uniform distri-
bution: SL(x; i ; µ̄) = log |A | for all x and i . We can use the result on Cesàro conver-
gence to demonstrate that convergence of a sequence (µn )n≥0 of measures to a limit
measure µ in the weak∗-topology does not, in any sense, mean that SL(x; i ;µn ) con-
verges to SL(x; i ;µ). Indeed, let F and µ0 be any combination of a CA and an ergodic
measure that such that (63) is valid, and put µn = 1

n

∑n−1
t=0 µt . Then µn converges to

the uniform Bernoulli measure, but by Corollary 2 all SL(x;0;µn ) have the same non-
uniform probability distribution on R. The reason that the distribution of SL(x; i ;µn )
can remain unchanged even thoughµn → µ̄, with µ̄ uniform Bernoulli, is that local in-
formation takes all correlations in the system into account while the weak∗ topology
only considers finite blocks. In this sense local information yields a different, more
microscopic, view of the system than the weak∗ topology does.

We now use Corollary 1 to demonstrate the necessity of the condition on the mea-
sure in Theorem 4. The following example is a construction where the continuity
equation ∆t SL +∆i JL = 0 fails to be valid, due to a lack of shift-invariance.

Example 4. Let F be the CA σ−1 ◦F1, with F1 from Example 1. Note that F is right per-
mutative, has right radius 0 and local map f given by f (x−1, x0) = x−1 + x0 (mod 2).
Let µ0 be the uniform Bernoulli measure on {0,1}Z , except that x0 always is zero. For-
mally, each coordinate random variable Xi is independent and distributed according
to

µ0(Xi = 1) =
{

1
2 for i �= 0

0 for i = 0
. (64)

Therefore, for all x ∈A Z we have SL(x; i ,µ0) = 1 for i �= 0 and SL(x;0,µ0) = 0. However,
we claim that SL(y ; i ,µ1) = 1 for all i .

Each sequence y ∈ A Z has two preimages under f , call them z and w. These have
the property that zi and wi always are different, zi = 1− wi . Assume that z0 = 0. We
obtain

µ0(zk
j ) =

{
2 j−k if j ≤ 0 ≤ k

2 j−k−1 otherwise
, µ0(wk

j ) =
{

0 if j ≤ 0 ≤ k

2 j−k−1 otherwise
. (65)

The local information SL(y ; i ,µ0) is the limit n →∞ of

− logµ1(yi |y i−1
i−n ) =− log

µ0(zi
i−n−1)+µ0(wi

i−n−1)

µ0(zi−1
i−n−1)+µ0(wi−1

i−n−1)
. (66)
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In all the three cases i < 0, i = 0 and i > 0 inserting the probabilities from (65) gives
− logµ1(yi |y i−1

i−n ) = 1 for all n.

Now assume that ∆t SL +∆i JL = 0 at all i µ0-a.e. Since F is right permutative and
has r = 0, Corollary 1 states that JL = 0 µ0-a.e. However, this makes SL(y ;0,µ1) = 0,
which is not satisfied for the image of any x ∈A Z.

An alternative way to appreciate that SL(y ;0,µ1) = 1 for this system is to realize
that y−1−∞ does not give any information about x−1. Therefore, even though x0 = 0
with certainty, µ1(y0|y−1−∞) = 1

2 . Note that once y0 is observed, we will have perfect
knowledge of x−1−∞. Thus, information about the preimage that is not contained in the
tail of y is made available at some position in the sequence.

The information need not appear at a single position as it did in Example 4. A
case illustrating this would be to let µ(Xi = 1) = 1

4 for all i ≥ 0 and µ(Xi = 1) = 1
2 for

i ≤ 0. Then the correct preimage will be learnt gradually from observing y0, y1, y2, . . .
since the fraction of 1’s in the preimage block xn

−1 will converge either to 1
4 or 3

4 . In
this case, the continuity equation will in general not be satisfied at any i ≥ 0, but will
be an increasingly better approximation as i increases.

Recall that the conserved information quantities SL and SR were obtained by tak-
ing all correlations in the symbol sequences into account. This was achieved by con-
sidering respectively all symbols to the left of or to the right of the coordinate in ques-
tion as known. This choice of a frame of reference will influence how the informa-
tion is distributed in the system. Due to the simple behaviour of local information in
bipermutative CA these CA serve well to illustrate this phenomenon.

Consider, for instance, the CA on {0,1}Z defined by the radii l = r = 1 and local rule

f (x−1, x0, x1) = x−1 + x0 + x1 (mod 2) . (67)

This bipermutative CA is rule 150 in Wolfram’s numbering system [29]. Let the initial
measure µ0 be Bernoulli with a very small probability for a 1, say µ(1) = 2−10. Assume
that i = 0 is the only coordinate in the interval −100 ≤ i ≤ 100 initially having xi = 1.
Figure 3 shows the configurations of the interval −50 ≤ i ≤ 50 for all iteration up to
time t = 50. Coordinate i = 0 initially has 10 bits of left and right local information,
SL(x;0;µ0) = SR(x;0;µ0) = 10. Let y = F t (x). An observer which knows the left history
will by observing y−t = 1 learn that x0 = 1 and gain 10 bits of information. However,
from each of the subsequent symbols the observer will gain only − log(1−2−10) bits of
information. This is in agreement with Corollary 1. On the other hand, an observer
knowing the right history will gain the 10 bits of information by observing that yt = 1.

Thus, the question about where in the pattern the information generated by the
unlikely event {x0 = 1} is located at time t cannot be answered without also taking
into account which frame of reference an observer has. Knowledge of either the right
or left history must be assumed, and these two cases give different answers about the
location.
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5.3 Bounds on the current

In addition to providing intuition, the splitting of JL into J+L − J−L , with components
defined in (58) and (59), yields some additional information about the current. Firstly,
if the right radius r = 0 then J−L ≡ 0 and JL ≥ 0. Hence, left local information only flows
to the right in this case. On the contrary, having left radius l = 0 does not result in
JL ≤ 0. This is shown by the following example

Example 5. Consider the CA F2 from Example 2. Let µ be Bernoulli and x be any
sequence with x−2, x−1, x0 = 001. The formula for JL gives

JL(x;0;µ) = log

(
1+ µ(2)2 −µ(0)2

µ(0)

)
.

So JL has the same sign as µ(2)−µ(0).

For right local information the situation is opposite, if l = 0 then JR ≤ 0.
Secondly, we can obtain bounds for the information current. We first show that

the amount of information that flows from coordinate i − 1 to i is limited by the
amount of information available in the intervals [τ+ 1, i − 1] and [i , i + r − 1]. Let
τ= τ(xi+r−1−∞ ). Then

−
i+r−1∑

k=i
SL(x; k)≤ JL(x; i ) ≤

i−1∑
k=τ+1

SL(x; k) . (68)

The first inequality follows since from (56), (58) and monotonicity of log x, JL(x; i ) ≥
−J−L (x; i ) ≥ logµ(xi+r−1

i |xi−1−∞). The second inequality follows directly from the defini-
tion of JL.
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The second inequality may seem surprising because the sum starts at τ+1 rather
than at i−l. This suggests that left local information in a single iteration can be trans-
ported a distance farther to the right than the left radius l. However, a perturbation of
one symbol in the initial configuration can only propagate a distance l per time step
(often called the rightwards speed of light). The appearance of τ+1 as the lower limit
in the sum therefore warrants a closer examination.

For reversible CA the existence of an inverse CA ensures that τ+1 ≥ i − r̃ , where r̃
is the right radius of the inverse CA. Therefore, the distance over which information
can flow in a single iteration is uniformly bounded for a given reversible CA.

For surjective non-reversible CA τ is in general unbounded. In the following dis-
cussion, assume that r = 0, since this case gives the maximal flow of left local infor-
mation to the right. We look at coordinate i = 0. The appearance of τ+ 1 in (68)
is related to the interpretation of J+L as the information gained by observing x−1

τ+1
when the image y−1−∞ as well as the history xτ−∞ is known. The second inequality
in (68) is an equality if and only if the additional knowledge of y−1−∞ leads to no re-
duction in information gain compared to knowledge of only xτ−∞. From (59) this
is equivalent to having

∑
Z µ(z−1

τ+1|xτ−∞) = 1. However, since |Z | ≤ R(F ) the sum is
rarely close to this magnitude, particularly when |τ| is large. A further argument that
large information flows are unprobable is the observation that JL(x; i ;µ) > s requires
µ(x−1

τ+1|xτ−∞)/
∑

Z µ(z−1
τ+1|xτ−∞) < 2−s , so x−1

τ+1 must be a very unlikely continuation of
xτ−∞ to generate a large current s. We illustrate these considerations with the follow-
ing example.

Example 6. Let the surjective CA F on {0,1,2}Z be defined by the radii l = 1, r = 0
and local function f given by f (10) = f (11) = f (22) = 0, f (12) = f (20) = f (21) = 1
and f (00) = f (01) = f (02) = 2. We demonstrate how unlikely events in this system can
generate information flows over large distances in a single iteration.

Let µ be Bernoulli with a low probability p = µ(2) for the symbol 2 occurring and
q = µ(0) = µ(1) = 1−p

2 . Although p is small, long blocks of successive 2’s will occur
at some points. Assume that x−1−n = 22. . . 2 while x−n−2

−n−1 = 00 and x3
0 = 0000. The set

Z (x−1−∞) is illustrated to the left in Fig. 4 using the representation introduced in Fig. 2.
For p small, the quantity

∑
Z µ(z−1

τ+1|xτ−∞) is much larger than µ(x−1
τ+1|xτ−∞), since the

two other elements in Z (x−1−∞) consist only of 0’s and 1’s. If follows from (59) that J+L is
large and an increasing function of the number n of 2’s. Eq. (17) yields for 1 ≤ k ≤ n,

JL(x;−n +k ;µ)= log

(
1+2

(
q

p

)k
)
≈ 1+k log

(
q

p

)
. (69)

The current increases approximately linearly in k. The result is that only approximately
− log q bits of information remains at each coordinate −n ≤ i ≤ −1 while the surplus
information is transported to the right of i = −1. Figure 5 displays the values of SL at
t = 0 and t = 1 as well as the values of JL, all for the choice n = 7 and p = 0.1.

Most of the information is accumulated at position i = 1. The reason is found by
considering the set Z (x1−∞), which is illustrated to the right in Fig. 4. Observing the
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value y1 = 2 while knowing y0−∞ establishes that the actual preimage was the one con-
taining the large block of 2’s. This was highly improbable and a high local information
results.

Finally, note that since F is left permutative, the transport of right local information
always occurs at the rightwards speed of light, JR(x; i ;µ) = SL(x; i −1;µ).

The possibility that JL(x; i ) >− logµ(xi−1
i−l |xi−l−1−∞ ) can be better appreciated by re-

calling that local information SL is defined with respect to an infinite frame of refer-
ence, namely knowledge of the left history. Therefore, a permutation arbitrary far to
the left of i can in principle alter the conditional probability µ(xi |xi−1−∞) and hence the
local information here. Contrary to this, the propagation of a perturbation in the ini-
tial configuration is propagation of information in a different sense. In this case the
propagation consists of the symbols at an increasing number of coordinates deviating
from some reference symbols, and clearly no frame of reference is needed to detect
the deviation of a given symbol.

We can compare the results above to a situation that involves communication be-
tween two parts of the lattice. Consider an observer A who knows the initial con-
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figuration x0−∞ of the negative part of the lattice. How much information about the
continuation x∞

1 can A gain by observing the configurations (F k x)0−∞ for 0 < k ≤ t ?
This question can be answered by using the concept of relative entropy, or Kullback
Liebler distance [13]. The relative entropy of a posterior measure µ with respect to a
prior measure µ0 satisfying µ�µ0 is defined as

D(µ||µ0) =
∫

X
log

dµ

dµ0
dµ , (70)

where dµ
dµ0

is the Radon-Nikodym derivative. The quantity D(µ||µ0) is non-negative
and is interpreted as the Shannon information gained by going from the prior to the
posterior.

The posterior is in our case expressed in terms of the joint measure νt of all times
0 ≤ k ≤ t obtained as a straightforward generalization of ν defined in (22). For x ∈A Z

define the measure µt
x on σ(Xi : i > 0) through the block probabilities

µt
x (zn

1 ) = νt (zn
1 |x0

−∞, (F x)0
−∞, . . . , (F t x)0

−∞), n ≥ 1 . (71)

Thus, µt
x (zn

1 ) is the probability that xn
1 = zn

1 given knowledge of the symbols at all
coordinates i ≤ 0 up to time step t . The information A gains by time t is hence given
by the relative entropy D(µt

x ||µ0
x ). The following relations are valid

Proposition 1. The measures defined in Eq. (71) satisfies

D(µt
x ||µ0

x ) ≤
r t∑

i=1
SL(x; i ;µ) , (72)

D(µ1
x ||µ0

x ) = J−L (x;1;µ) . (73)

In particular this means that A during the first t iterations of F cannot gain more
information about x0−∞ than the left local information initially located within the in-
terval [1, r t ]. Conversely, if B is an observer knowing x∞

0 and observing the symbols
at i ≥ 0 for times 1 ≤ k ≤ t his information gain about x−1−∞ would be bounded by∑−1

i=−l t SR(x; i ;µ).

Proof. Define Bx ⊆ A r t as Bx = {zr t
1 : f k (x0

−kr zkr
1 ) = f (xkr

−kr ) for 1 ≤ k ≤ t }. Both re-
sults follow from

D(µt
x ||µ0

x ) = lim
n→∞

∑
zn

1

µt
x (zn

1 ) log
µt

x (zn
1 )

µ0
x (zn

1 )

= lim
n→∞

∑
zn

1

µ(zn
1 |x0

−∞, zr t
1 ∈ Bx ) log

µ(zn
1 |x0−∞, zr t

1 ∈ Bx )

µ(zn
1 |x0−∞)

=− logµ({zr t
1 ∈ Bx }|x0

−∞)

≤− logµ(xr t
1 |x0

−∞) .
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We now move on to determine bounds on the average information flow generated
by a surjective one-dimensional CA.

Theorem 5. Let JL(x; i ;µ) be the information current with respect to a surjective CA F
and a measure µ. Then, for each i ∈ Z, JL(x; i ;µ) ∈ L1(µ). Furthermore, if µ is shift-
invariant then E [JL] satisfies the relationship

−rh(µ)≤E[JL] ≤ logR(F )− rh(µ) (74)

The term logR(F ) on the right hand side in (74) is related to the interpretation of
J+L as the information about which member of Z (xr−1−∞ ) that xr−1−∞ is. Since |Z (xr−1−∞ )| ≤
R(F ), the average of this information cannot exceed logR(F ). The term −rh(µ) is re-
lated to J−L .

Proof. We look at coordinate i = 0. The current can be written as

JL(x;0;µ) =− log
µ(xr−1

τ+1 |xτ−∞)∑
Z µ(xr−1

τ+1 |xτ−∞)
+ logµ(xr−1

0 |x−1
−∞) (75)

where the first term is non-negative and the second term is non-positive. To bound
the integral of the first term we divide A Z into the sets Tk = {x : τ(xr−1−∞ ) = k} for k ≤−2.
Furthermore, we wish to subdivide each Tk though an equivalence relation similar to
that defined in (34). Define the following relation on A |k|+2r+l−1:

xr−1
k+1−l−r ∼ zr−1

k+1−l−r iff f (r−1
k+1−l−r ) = f (r−1

k+1−l−r ) and xk
k+1−l−r = zk

k+1−l−r . (76)

Then, transfer the equivalence relation to Tk through

x ∼ z iff xr−1
k+1−l−r ∼ zr−1

k+1−l−r (77)

We denote the equivalence classes of Tk by Pk, j with j in some finite index set. Fur-

thermore, for each Pk, j denote the corresponding equivalence class of A |k|+2r+l−1 by
P̄k, j . Each P̄k, j has at most R(F ) members.

For each j there is a set P−
k, j ∈σ(Xi : i ≤ k − l − r ) of histories xk−l−r−∞ such that

Pk, j = P−
k, j

⋂ ⋃
P̄k, j

Cyl(zk
k+1−l−r ) . (78)

If |P̄k, j | = R(F ) then P−
k, j =A Z, but otherwise P−

k, j can be a subset of A Z. For instance,

let F be the CA from Example 6 and let x have xi = 1 for all i . Then τ(x−1−∞) = −2 and
the set P−2, j containing x satisfies P−2, j = {z : zi �= 0 for i ≤−3} and |P̄−2, j | = 2.

Using the subdivision, we can write

−
∫
A Z

log
µ(xr−1

τ+1 |xτ−∞)∑
Z µ(xr−1

τ+1 |xτ−∞)
dµ=

−2∑
k=−∞

∑
Pk, j ∈Tn

∫
P−

k, j

Ψk, j (xτ−l−r
−∞ )


∑

P̄k, j

µ(zr−1
τ+1−l−r |xτ−l−r

−∞ )


dµ(xτ−l−r

−∞ ) , (79)
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where

Ψk, j (xτ−l−r
−∞ ) =−

∑
P̄k, j

µ(zr−1
τ+1 |xτ−∞)∑

P̄k, j
µ(zr−1

τ+1 |xτ−∞)
log

µ(zr−1
τ+1 |xτ−∞)∑

P̄k, j
µ(zr−1

τ+1 |xτ−∞)
. (80)

The function Ψk, j (xτ−l−r−∞ ) is for each xτ−l−r−∞ the entropy of a discrete random variable
with at most R(F ) different outcomes. Therefore,

Ψk, j (xτ−l−r
−∞ ) ≤ logR(F ) .

By using the inequality we obtain from (79) that

−
∫
A Z

log
µ(xr−1

τ+1 |xτ−∞)∑
Z µ(xr−1

τ+1 |xτ−∞)
dµ≤ logR(F )

−2∑
k=−∞

∑
Tk

µ(Pk, j ) = logR(F ) . (81)

Considering the second term in (75),∫
A Z

logµ(xr−1
0 |x−1

−∞)dµ≥−r log |A | .

Therefore,
E[|JL(x;0;µ)|] ≤ r log |A |+ log R(F ) <∞ ,

so JL(x;0;µ) ∈ L1(µ). The second statement follows since for µ shift-invariant,∫
A Z

logµ(xr−1
0 |x−1

−∞)dµ=−rh(µ) .

From Theorem 5 one can also construct a uniform bound on the average infor-
mation current. For any surjective CA and any measure µ, the following relation is
valid: |E[JL(x; i ;µ)]|

(l + r ) log |A | ≤ 1 (82)

It is worth noting that the higher the average value of the function Ψ from (80) is,
the larger the transport of left local information to the left. This average value is max-
imal when each element in almost all Z (xr−1−∞ ) have the same conditional probability
µ(zr−1

τ+1 |xτ−∞). This is in particular the case for the uniform Bernoulli measure µ̄, and
we close this section by looking at information transport for this measure.

It is well known that µ̄ is invariant for all surjective CA. This is a direct consequence
of the fact that all finite blocks have the same number of preimages. With µ̄ there are
no correlations in the system, and SL(x; i ; µ̄) ≡ SR(x; i ; µ̄) ≡ log |A |. The information
currents JL and JR are consequently also constant, but these depend on the radii and
the Welch coefficients L(F ), M(F ) and R(F ). Using (17) and (54) we obtain

JL(x; i ; µ̄) ≡ logR − r log |A | , (83)

JR(x; i ; µ̄) ≡− log L+ l log |A | . (84)
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By using the relation L ·M ·R = |A |l+r we obtain the interesting consequence

JR − JL ≡ logM . (85)

Thus, the right local information flows with a greater or equal velocity to the right
than left local information. Furthermore, the sum of the velocity of left information
to the left and right information to the right is constant, and only depends on M(F ),
the number of preimages that almost all bi-infinite sequences possess. The higher M
is, the higher the potential for information transport. The choice of radii decides how
the potential is allocated to transport of information to the right and to the left.

6 Conclusions and Discussion

We have studied the quantity SL(x; i ;µ), called left local information. SL measures
the information at each position of a bi-infinite symbol sequence with respect to
the probability measure µ. A position i has high left local information if the sym-
bol at i is unlikely given knowledge of its infinite context to the left. We have also
defined the corresponding right local information SR. In Theorem 1 we have shown
that the local information is well-defined and that SL(x; i ;µ) ∈ L1(µ) with E[SL] equal
to the entropy h(µ) of the measure. For shift-invariant measures we proved in Theo-
rem 2 that SL(x; i ;µ) in principle can be calculated from knowledge of x alone, since
SL(x; i ;µ) = SL(x; i ;νx ) µ-a.e. with νx denoting the empirical measure.

The main concern of the paper has been to investigate transport of local informa-
tion in the time evolution of a cellular automaton F . In Sect. 4, we have introduced an
information current JL(x; i ;µ) such that the continuity equation ∆t SL+∆i JL = 0 holds.
Theorem 3 showed this for the case of one-dimensional reversible cellular automata
with no restrictions on the measure. In Theorem 4 we extended this result to general
surjective rules, where the global CA mapping is finite-to-one, under the condition of
µ being shift-invariant. For a surjective but non-reversible rule and a measure which
is not shift-invariant, the continuity equation of the form above may fail to be valid,
as demonstrated in Example 4.

We have also given an information theoretic interpretation of the current, and
shown bounds for the information flow.

The fact that the local information is a locally conserved quantity for all measures
under iteration of any reversible CA is a clear indication that the function SL is an
appropriate local information measure in a spatially extended system. However, we
still need to consider the fact that information is not a strictly local quantity when
correlations are present, and that it depends on the choice of context. In one dimen-
sion, this is illustrated by the fact that both the left and right local information are
locally conserved, and in general different (as seen, e.g., for bipermutative CA). We
have also given other examples which illustrates the limits of locality when correla-
tions are present.
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We are currently investigating how the continuity equation can be extended to
other classes of cellular automata. In particular this includes non-surjective and prob-
abilistic CA in dimension one as well as CA in dimension two and higher. For non-
surjective or non-deterministic systems a continuity equation must take loss and
production of information into account. One can also look at local information and
transport of local information for other types of spatially extended dynamical sys-
tems, in particular coupled map lattices. Extensions of the formalism to other sys-
tems will also bring us closer to addressing fundamental issues relating to informa-
tion transport and conservation in physical systems.

Local information could also be used to detect and quantify structure in a lattice
configuration or to investigate the structural properties of a measure. For instance,
the variability of SL, such as the standard deviation of its distribution, says something
about how the information is distributed in the system. Furthermore, the conver-
gence properties of− logµ(xi |xi−1

i−n ) give information about correlations in the system.
The continuity equation is a fundamental property of information transport in

reversible systems. But we expect local information in cellular automata to have
further interesting properties. In particular, a continuity equation is a constraint,
rather than an equation that determines the dynamics of the system. One may ex-
pect information flow to have different dynamic characteristics in different cellular
automata. In particular it should be investigated whether some systems allow a de-
scription of the dynamics of information separate from the underlying dynamical
system, which would provide an additional argument for viewing information as a
fundamental physical quantity.
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