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Preface

The quantum mechanics of an electron moving in a solid is the starting point for this
work. The Bloch theory for electrons in a perfect crystal is generalized to include random
deviations, such as impurities. This extension may give a better theoretical understanding
of the electronic properties of solids.

The mathematical models which arise are also of interest for workers in the field of pure
mathematics. The physical observables are represented by selfadjoint, linear operators act-
ing in a Hilbert space. The operators in question are differential operators with coefficients
which in some sense contain too much information to be tractable. A fruitful approach—in
analogy with the moral in statistical mechanics—is to turn to a statistical description of
the coefficients. The result is a linear random operator. The general study of linear random
operators is still in its infancy.

The main content in this monograph is on foundational questions, on the level of giving
an appropriate definition of what we mean by the term “linear random operator”. This is
a delicate question when we allow unbounded operators. A minimum demand seems to be
a definition such that the spectrum of a random operator is a random set, in a measure
theoretic sense. Guided by these questions we are lead to a study of topologies in spaces
of closed sets. The presented work suggests that both the definition of random spectra
and random operators are made in terms of the lower topology in the set of closed sets. In
making this choice we have also been guided by one of the main questions about transitive
random operators: Which of the quantities derived from a transitive random operator are
nonrandom? We have found a seemingly optimal answer to this question— in terms of
very general sufficient conditions which ensure nonrandomness. Still, this monograph gives
more questions, than answers. A good starting point for further research. The summary
gives a more specific description of the contents.

The organization and further content in this monograph are seen from a glance at the table
of contents, but we will nonetheless be explicit on a few points. The text is divided into
chapters. Each chapter is meant to be reasonably self contained. A separate introduction
is given to each chapter. References to the literature and additional remarks have all been
collected in a “Notes” section at the end of each chapter. In particular I have acknowledged
valuable suggestions from various people at the proper points. The articles and books
referred to are collected in a separate “Bibliography” found at the end. This “Bibliography”
does not pretend to be complete, but is rather a reflection of the books and articles I
have found to be useful, a subjective judgement. The references [79], [31], and [107] are
recommended as general introductions to this field of research, and they contain extensive
references to the literature.

I have tried to use standard notation whenever possible, modeled after [136], [115], and [43].
These references should also provide (more than) the necessary mathematical prerequisites.
The reader is advised to glance through the list of symbols, which is found after the table
of contents. The word “iff” is used as a short form of the more cumbersome “if and only
if”. I apologize for other possible abuses of the English language.

I like to express my appreciation of the constant support and encouragement from my su-



pervisor Helge Holden. Without his guidance I would not have entered into this important
and most interesting field of research. I am grateful for the support from the staff at The
Department of Mathematical Sciences during this work. In particular I would like to thank
Harald Hanche-Olsen for many helpful comments. Ola Bratteli and Henrik Martens have
also been most helpful. The scholarship received from The Norwegian Institute of Tech-
nology for the period January 1990 to January 1993 is acknowledged. My sincere thanks
go to my wife Svanhild, who supported me during this work, even when I worked at very
irregular hours. Finally, I wish to thank my parents for their help and encouragement, and
for always believing in what I have been doing.

The Norwegian Institute of Technology Gunnar Taraldsen

December, 1992

Mechanics is the paradise of mathematicians, where they can see (and harvest)
the fruits of mathematics.
Leonardo da Vinci, 1452-1519.
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Summary

This thesis consists of seven chapters. Chapter 1 is more informal than the rest, and is
meant partly as an introduction. It demonstrates that models with periodic potentials and
simple impurities can be exactly solved. Chapters 2,3,4, and 5 give general theory, which
are relevant for the study of the Schrodinger operator defined from a random potential.
In chapters 6 and 7 we consider respectively the random multiplication operator and the
random Schrédinger operator, both in the discrete case.

Chapter 1 We consider the discrete Schrédinger operator. The Hilbert space 12(Z%) is
decomposed into a direct integral of Bloch Hilbert spaces. This construction is used to
compute the explicit band structure for the chessboard Schrédinger operator. We present
a method which determines all possible new eigenvalues in the gaps of the spectrum of an
unperturbed Schrodinger operator, when the potential is perturbed on a finite number of
sites.

Chapter 2 We consider abstract valued random variables. This abstract setting is moti-
vated from the study of ergodic random Schrodinger operators. We prove nonrandomness
of a random variable, invariant with respect to a metrically transitive system. This is a
generalization from real valued variables to variables with a o-separated range.

Chapter 3 Some properties of topologies and o-algebras on spaces of closed sets are stud-
ied. Upper and lower topologies are introduced and corresponding convergence concepts
are discussed. We prove that the lower topology in the set of closed sets in a second count-
able space gives a second countable Tj-space. Our discussion is motivated by the spectral
theory of linear operators, but the topologies and g-algebras introduced are most general.

Chapter 4 We consider random measures, motivated by the spectral theory of random
Schrédinger operators. The randomness of the Lebesgue-Hammer parts of a random mea-
sure is proven. Several topologies in a set of measures are considered, including in particular
the pointwise topology and the weak topology. Finally we consider how decompositions
behave under perturbations.

Chapter 5 The lower operator topology is introduced. It gives a proper generalization
of strong resolvent convergence of selfadjoint operators. We prove that the set of finite
matrix operators is dense. The lower topology is applied for the definition of unbounded,
closed random operators. We prove nonrandomness of the spectrum of a transitive random
operator, given that the spectrum is random in the sense defined by the lower topology.
We prove lower semicontinuity of the spectrum of normal operators. A general formula for
the spectrum of a normal, transitive random operator is given. We give conditions which
imply presence of continuous spectrum or pure point spectrum.

Chapter 6 A random sequence is interpreted as a random multiplication operator. We
investigate the properties of this random operator. The motivation for the study is the elec-
tron theory of disordered solids, and more generally the theory of linear random operators.
We gain insight into general concepts from this elementary model.

Chapter 7 The lower topology is applied to define random Schridinger operators on a
random graph, defined by generalized potentials. We prove that the spectrum is a lower
semicontinuous function of the generalized real potential. This gives an explicit formula

vil



for the spectrum, when the potential is a metrically transitive, random process. The sig-
nificance of the Lebesgue decompositions of a selfadjoint Hamiltonian is discussed in terms
of the time dependent wave function. Local spectral measures are defined and applied.
Firstly for the proof of randomness of the Lebesgue decomposition of the spectrum, and
secondly in an explicit formula for the integrated density of states measure. We determine
the spectrum and the pure point spectrum of the percolation Schrodinger operator. The
determination of the absolutely continuous and the singular continuous spectrum are left
as open problems, but possibly solvable by methods indicated.
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Chapter 1

Discrete Schrodinger Operators and
Bloch Theory

We consider the discrete Schrodinger operator. The Hilbert space [2(Z%) is
decomposed into a direct integral of Bloch Hilbert spaces. This construction
is used to compute the explicit band structure for the chessboard Schrédinger
operator. We present a method which determines all possible new eigenvalues
in the gaps of the spectrum of an unperturbed Schrédinger operator, when the
potential is perturbed on a finite number of sites.

1.1 Introduction

Partial difference operators are simpler than partial differential operators in some respects.
Problems which seems untractable for the continuous Schrodinger operator have been
solved for the corresponding discrete Schrodinger operator. Partial difference operators
are also a subject which deserves attention without reference to partial differential oper-
ators. The purpose here is to give the necessary frame for a discussion of the discrete
Schrédinger operator, and in particular the parts which are relevant for solid state physics.

The Fourier transformation gives a convenient tool for the analysis of the continuous

Laplace operator. This is also so for the discrete Laplace operator.We define a convenient

Fourier transformation as a Hilbert space isomorphism from H :=12(Z%) to H := L*([—, x4, dt / (27)%).
A finite linear combination of shift operators on # is transformed to a multiplication op-

erator on 7, and we give the explicit formula.

Discrete derivation operators from positive and negative unit shifts are defined.These
derivation operators are not derivations in the algebraic sense, since they do not obey
the product rule. This makes “analysis” for functions defined on Z¢ more complicated in
some respects, compared to the continuous case. The Laplace operator is defined from
the derivation operators. From the Fourier transformation we obtain the multiplication
operator corresponding to the Laplace operator. We refer to this multiplication operator
as the band function or dispersion relation—inspired by the language of solid state physics.
Formulas for the density of states, the resolvent, and the spectral family follow readily from
the band function.

The Dirichlet Laplacian for an arbitrary subset in Z? is defined.The spectrum of this



Dirichlet Laplacian is not easy to characterize for general unbounded domains. The Laplace
operator may be obtained as a strong limit of Dirichlet Laplacians on finite domains. We
prove that the corresponding spectra converges in the Vietoris sense towards the spectrum
of the Laplace operator. Lower convergence of the spectra follows from general theory, and
the upper convergence follows from bounds on the involved spectra. The density of states
is obtained likewise from similar limits.

We turn next to the discrete Schrédinger operator with a periodic potential. A proper gen-
eralization of the Fourier transformation for this operator is given by the Bloch transfor-
mation. This is a Hilbert space isomorphism from % to the direct integral H = | ;e Hrdu(k)
of Bloch spaces Hy. The transformation of the Schrodinger operator is a direct integral
S ;e Hydu(k). This makes a complete analysis of the periodic Schrédinger operator possible,
since each operator Hy may be represented by a finite matrix.

We apply the Bloch theory to explicit models in two dimensions.The models are given by
potentials which are periodic corresponding to a 2 X 2 fundamental domain. One model
is given by a Dirichlet condition, or more explicitly by the removement of one of the four
members in each lattice translation of the fundamental domain. This is a three band model,
where one band has collapsed to a constant value. The result is an eigenvalue with infinite
multiplicity, with corresponding localized solutions of the Schrédinger equation. This gives
in particular a counterexample to the arguments found in (most) physics textbooks, when
the Bloch theory is explained. The chessboard model is defined by a potential with zero or
« strength on positions in Z? in a chessboard pattern. The four band functions are found
explicitly for the chessboard model.

We consider finite rank perturbations of selfadjoint operators in /. The possible eigenval-
ues in the gaps of the spectrum are found to be determined completely by a polynomial
equation given by the resolvent of the unperturbed operator. The eigenvectors are also
found.

1.2 Difference Operators and Fourier Series

Let X be the additive group 7%, with an integer d. We represent the dual group by the
torus X = [—m, 7]¢, where opposite sides in the cube are identified. For each z in X we
define the exponential function d, on X from

bz (k) :=e ™2, (1.1)
Equip X with the conventional Haar measure given by Lebesgue measure divided by (2m)<.
The family {0, } is then an orthonormal basis for H := L*(X). The family {6,} of Kronecker

delta functions is an orthonormal basis for #:=1*(X). The Fourier transformation F is
the Hilbert space isomorphism determined by 6, — d;, so

f=Ff=FQ @)= f@)bs, f(k) =) flz)e ™ (1.2)

The Parseval formula reads

(a) = (£.5) = o [ TR, (1.3



and the inversion formula follows

F(@) = {6 ) = (32, F) = (2;)0! | =i, (1.4)

X

The unitary shift operator U, is defined by
D(U,):=H, Usf(y) = f(y + 2). (1.5)

The corresponding operator on H is easily found

~

Usf (k) =(Ua )" (k) = 6_a(k) f(K), Ur = M(3_s), (1.6)

a multiplication operator. This generalizes directly to
(Z c;Up)" = M(Z Co0—g) (1.7)

for a general shift operator given by a finite linear combination of unitary shifts.

1.3 The Discrete Laplace Operator

Let e, ..., eq be the standard unit vectors in R?%. To simplify notation we define unit shift
operators

St:=U, and S;:=U_, = (897! = (§9)*. (1.8)
Two analogs to the usual derivation operators are given by

0':=S5"—Tand 9;:=1-S; = (—8)". (1.9)
We refer to these operators as discrete derivation operators. The product rules are

0'(fg) =0'f g+ S'f &g, 0:(fg) =0if g+ Sif big, (1.10)

so the operators are not proper derivations. A consequence is that analysis for functions
on Z% is more complicated in some respects, compared to analysis for functions on R.

The Laplace operator is defined from
A=) 00, =) (S'+8;—2I). (1.11)
We notice the mean value property of harmonic functions

Af=0=fl@)= )  f(y)/(2d). (1.12)

lly—=(l,=1
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Figure 1.1: The dispersion relation Hy(k) for the lattice Laplace operator in two dimen-
sions. The horizontal axis give the components of the Bloch momentum k and the vertical
axis gives the energy.

The multiplication operator corresponding to the Laplace operator is given by the function

AR = 3B+ 5ey = 2)(R) =23 (cos(ks) — 1). (1.13)

)

The function Hy(k) = —A(k) is the dispersion relation for the free lattice electron. Figure
1.11s a plot of the dispersion relation in the two dimensional case. Immediate consequences
are

0(—A) = 04(—A) =[0,4d], 0pp(—A) = 05c(—A) =0 and ||—A| = 4d. (1.14)

The resolvent of —A follows from the Parseval equation

G.(z,y) == {6, (z + A)'6,) = (2m) / de ey (1.15)
AT v % 72— 25,1 cos(k)) |
The spectral resolution likewise
Elf)w,y) = (2m)* [ dee e f(-A(k), (1.16)
b'e
which also gives the density of states measure
NIf] = lim 3 Blf)(e o)/ #A = (m) [ def(=AW). (1.17)

€A



1.4 The Discrete Dirichlet Laplace Operator

Let A be a subset of X and define the projection IIy = M(1,), from multiplication with
the indicator function 1. The Dirichlet Laplace operator is

AAIZHAAHA. (118)

The matrix for this operator is

—2d x=ye€A
Ap(z,y) = (05, Apdy) =< 1 lz—y|l, =1, z,y e A, (1.19)
0 otherwise

where ||z||, :=|z1]| + -+ + |za|- The space [?(A) is a reducing subspace for Ay, and Ay
equals zero on [?(A°). The Dirichlet Laplacian on [*(A) is the restriction of Ay.

Let A, be such that given any z in X there is an N such that z is in Ay, Ayyq, ..., and
abuse notation with A, :=A,,. This assumption gives lim A6, = Ad, and ||A,| < 4d.
We conclude that A is a strong limit (so also a strong resolvent limit) of the sequence {A,}.
On the other hand ||A,, — A|| > 2d, so norm convergence (or norm resolvent convergence)
is impossible. From this we can only conclude o(—A) = [—lim o(—A4A,). We will also
prove o(—A) = u—lim o(—A,), from explicit computation for cubes A, = {1,...,n—1}4.

Consider the (n — 1)¢ functions

D) = { o [T, sin(kiz;) z € Ay, (1.20)
with constants ¢, such that {¢;} is an orthonormal set for
ke X,:={1,...,n—1}n/n. (1.21)

Direct verification gives
—Andy, = Ho(k) gy (1.22)

The spectrum of —A,, is pure point with (n — 1)? eigenvalues, counting multiplicities,
given by Hy(k) = 23,(1—cos(k;)), k € Xy, and the eigenvalue 0 with infinite multiplicity.
We have o(—A,) C o(—A), which in particular implies o0(—A) = u—lim o(—A,). This
conclusion does also follow from 4d > ||A,|| = sup{|z| | z € o¢(A,)}, combined with the
positivity of —A,,. The formula for the norm holds since A, is selfadjoint, and so also
normal.

The distribution function for the density of states approximant is
1 N
Nu(B) = —— #{k € Xa | Ho(k) < E}. (1.23)

This agrees with the previously found density of states, because

lim N, (E) = N(E) = (217)d (ke X | Byk) < B}, (1.24)

where |-| denotes Lebesgue measure. Each £ in X, corresponds to a volume (7/n)?, and
X, contains only positive values.



1.5 Periodic Potentials and Bloch Waves

Let X = Z¢ and X = [—n,7]? as before. Let L be a lattice in X, so

d
L={> knLn | kn € Z}, (1.25)

n=1
for some set {Ly,...,Ly} of independent elements in X. We will analyze the periodic

Schrédinger operator H

H=-A+YV, (1.26)
obtained from an L-periodic potential V : X - R on X ,

V(z)=V(z+1), Vl € L. (1.27)

This condition forces V' to be bounded, and H is then a bounded selfadjoint operator with
domain D(H) = H. The symmetry from L makes it possible to give a complete treatment
of H.

First we will establish a Hilbert space isomorphism B from H onto a direct integral sum
S ;e Hrdu(k).
The dual lattice K is the set of £ € R? such that

X3z e ™ e, (1.28)

is L-periodic. Let B be a measurable subset of R which represents R? /K, so the mapping
Bokw [kl ={k+k |k € K} € R*/K is bijective. Fix a quasi momentum k € B. The
Bloch space Hy, is the set of complex valued functions ¥ on X with the property

Y(z +1) = e*p(x),Vl € L. (1.29)
Any v in Hj, has a unique representation

¥(z) = e*ou(), (1.30)
for some L periodic function w. It is straightforward to verify that H; is a vector space.
Let F' be a subset of X representing X/L,so FF >z +— {x+1|l € L} € X/L is bijective.
A function in H;, is determined by its values on F', and since F is finite it follows that H;

is finite dimensional. Each #; has dimension N given by the number of points in F'. An
inner product is defined on H; by

(W, )= _v(@)d(z). (1.31)

zeF
Notice that this inner product is independent of the choice of F.
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Define the Bloch projection By for each k£ in B by

Byf(z):=) e ™ f(z+1), (1.32)

leL

so By maps H into Hy. The Bloch transformation B : H — [, Hydu(k) is defined from
Bf(k) := By f. We will verify that B is a Hilbert space isomorphism—from the action of B
on the Kronecker delta basis {d,} in H. Define

Oy := By, (1.33)

and note

— —ikl . e it Yy €
- ZEZL e olotl) = { 0 otherwise. (1.34)

Let the measure p be given by Lebesgue measure on R? divided by the Lebesgue measure
of B, so y is a probability measure on B. It follows that {d,} is an orthonormal system in
S ;e Hidu(k). Observe that each element in | ;e Hydu(k) may be identified with an element
in @, 5 L*(B,du). This gives that {6,} is also complete, from the completeness of the
functions

Bosk—eéefeC, leL, (1.35)

in L?(B, du). The mapping B is then a Hilbert space isomorphism, since it gives a bijective
correspondence between two orthonormal basises.

A consequence of this is the Parseval formula

(f.0) = {7.9) / S Bef () Beg()du(k). (1.36)

zeF

In particular we find the inversion formula
F(@) = (8 £ = (82 ) = / ZBk ¥)Bef (y)du(k) = /B e* ) B f(y)du(k), (1.37)

where y is the unique element in F' such that x — y € L.

The unitary operator U; given by U, f(z) = f(z+1) commutes with the Schrédinger operator
H for all [ in L. This has the consequence

By(Hf)(z) =Y e ™ MUHf(z) =) e HUf(z) = (HpBif)(z), (1.38)

leL leL

where Hj, is defined by

Hy: Hy — Hy, Hif = (A +V)f. (1.39)



The operator H is unitarily equivalent with the operator H := [ Hydu(k) on H = [ Hydu(k).

Now observe that each Hy is given by a selfadjoint N X N matrix, since H; has dimension
N. This makes a complete analysis of H possible. We could continue this general outline
to obtain explicit formulas for the spectral family, the resolvent, and the density of states,
but prefer to consider some explicit examples. The key to the general case is given by the
formula,

[ " Heda()) = / " FH) (), (1.40)

which is valid for any bounded measurable function f on the spectrum of H.

1.6 A Periodic Potential in Two Dimensions

In this section we will consider an explicit model in two dimensions, d = 2. The Hilbert
space is H = I2(X), with X = Z*. The sublattice is L = (2Z)2. We choose a fundamental
cell

F={F,...,F}, F1=(0,0),F, = (1,0),Fs = (1,0), F, = (1,1). (1.41)
The potential is L-periodic and determined by
V(F)=w4 1=1,2,3,4. (1.42)

where ¢; are parameters—coupling constants.

The dual lattice is L' = (7Z)? and we represent R*/L’' with
B=[--,-] (1.43)

For each k in B we have the Hilbert space H;, of functions 1 : Z? — C restricted by the
boundary conditions

Y(x +1) = e*p(x), VI € L. (1.44)

Any ¢ € Hy, is determined by the values z; = ¢(F;),i=1,...,4. Ind =2

2

Hyp(z) = (4+V(z))(z) — 2(1/1(:16 +e) + vz —e)). (1.45)

i=1

We will first consider the special case o = a9 = a3 = 0,4 = o0, defined by Dirichlet
conditions at the places where the potential is infinite. The component z, = 0 drops out.
Then

Hk'(/J(Fl) = 42:1 — 23— 29 — e—i2k1z2 _ €_i2k2z3,
Hyp(Fy) = 420 — 21 — €M7z, and (1.46)
Hk¢(F3) =425 — 2z — ei%?zl,
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and Hj, is represented by the matrix

4 —1—= €_i2k1 -1 = €_i2k2
A= —1-¢€hm 4 0 : (1.47)
—1 — ¢i%k2 0 4

The eigenvalues are

Ei(k)=4- 2i(1 + cos 2k;), Ea(k) =4, Es(k) =4+ 2i(1 + cos 2k;). (1.48)

i=1 i=1
This gives the spectrum of the Schrédinger operator H
OaC(H) = [4 - 2\/574 + 2\/5]7 OPP(H) = {4}7 OSC(H) = @ (149)

This case, cy = 00, is special. Let X[V] be the subset of X where V is finite. The operator
H is selfadjoint as an operator in [?(X[V]). If we regard H as an operator in [?(X), then
o(H) = C, but the core of the spectrum is 6(H) = [4 — 21/2,4 + 2/2]. Regarded as
a spectral operator, that is as an operator given by a spectral family, we find the above
decomposition of the spectrum. This is independent of the choice of I?(X) or I2(X[V]) as
the Hilbert space.

The eigenvalue 4 has infinite multiplicity. A corresponding eigenvector for Ay is given by
Y = [0, =1 — e7¥k2 1 4 ¢72R1]T, (1.50)
The inversion formula (1.37) gives the corresponding eigenfunction for H
W(1,0) = =1, (0,1) =1, (2,1) = 1, ¢(1,2) = —1, and o = 0 otherwise. (1.51)

From figure 1.2 and equation (1.45) it is easy to verify that ¢ is an eigenvector with
eigenvalue 4. From the given eigenfunction ) one may obtain new eigenfunctions U;3) from
shifts given by [ € L. Superposition increases the possibilities further.

Now return to the general case with four real coupling constants. The operator Hy is then
represented by the matrix

440 —1—e 0 _1_ g-i2k 0
-1 = ez’2k1 4 + ay 0 —-1— e—z’2k2
Ak = —1 — ¢i2k2 0 4+ —1 — 2k . (1-52)
0 —1 — 2k 1 — g2k 4+ oy

For convenience we introduce new variables

/Bi =; + 4 and K] = 2(1 + COS(2]€]')). (153)
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0/ 0|0]0|0|0]|O0
0 0 0 0
0/0|{0|-1/]010]|O0
0 1 1 0
0/0|{0|-1{]0|0]|O0
0 0 0 0
0/]0|0]0|0|0]|O0

Figure 1.2: The shaded squares represents positions in Z? where a potential V is infinite.
The potential is zero elsewhere. The numbers are the values of an eigenfunction 1 € 12(Z?)
corresponding to the discrete Schrédinger equation (—A + V)1 = 41). The mean value is
zero around each allowed coordinate. This verifies that 1 is an eigenfunction.

The eigenvalues E,, (k) of Ay are determined by

0=det(4y — E) = (E — B)(E — B2)(E — B3)(E — By)
—K\[(E = B1)(E = f2) + (E — B3)(E — B4)] (1.54)
—K[(E = Bi)(E = B3) + (B — B2)(E — Bu)] + (K1 — K2)*.
We will not discuss this general case further, but specialize to the chessboard case

V(0,0) =V(1,1) = a, V(1,0) = V(0,1) = 0. (1.55)

We refer to the corresponding Schrodinger operator as the chessboard Schrédinger operator.
Equation (1.54) can then be explicitly solved. The band functions are

Ei(k) =

{8+ a— \/042 +8 (\/1 + cos(2k1) + /1 +cos(2k2))2} )

[N

E2(k)=§{8+a—\/a2+8(\/m—\/WY},

(1.56)

Es(k) =1 {8 +a+ \/a2 +8 (\/1 + cos(2k1) — /1 + cos(2k2))2} ,and

Ey(k) =1 {8 +a+ \/a2 +8 (\/1 + cos(2k1) + +/1 +cos(2k2))2} :

A plot of these four dispersion relations in the case « = —4 is given in figure 1.3.
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Figure 1.3: The four dispersion relations for the chessboard Schridinger equation with
coupling constant equal to —4. The vertical axis gives the energy, but with different scales
for each band. The two horizontal axis give the two components of the Bloch momentum.

The dispersion relations give four allowed energy bands
B =[8+a— Va2 +64)/2, (8+a—Va?)/2,
By =[(8+a—Va?+16)/2, (8+a—Va?)/2],
Bs=[(8+a++Va?)/2, (8+a++a?+16)/2], and 0
By =[B8+a+Va?)/2, (8+a++Vo?+64)/2),

see figure 1.4.

The spectrum for the chessboard model is finally found to be

Oae(H) = [(84+a— Va2 +64)/2, (8+a—+e2)/2U (1.58)
(84 a+Ve?)/2, (8+a+va?+64)/2], '
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Figure 1.4: The four allowed energy bands for the chessboard Schrodinger equation as a
function of the coupling constant. The vertical axis gives the energy. The horizontal axis
gives the coupling constant. The spectrum is given from the two leftmost figures, which
correspond to band one and four.

compare figure 1.5.

1.7 Impurities in a Discrete Model

Let
H()\) = H(0) + \W, D(H()\)) = D(H(0)) = D Cc H = I*(Z%). (1.59)

where H(0) is selfadjoint, A is a real coupling constant, and W is a potential supported on
a finite set F in Z% We will find conditions which give all possible eigenvalues of H()) in
the spectral gaps of H(0).

The model we have in mind is where H(0) is a periodic Schrodinger operator and AW
represents an impurity in the lattice.
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Figure 1.5: The spectrum of the chessboard Schrédinger operator as a function of the
coupling constant. The vertical axis gives the energy. The horizontal axis gives the coupling
constant.
Fix a real number E in a spectral gap of H(0). The resolvent

G=(E-H(0)™, (1.60)
is then a bounded selfadjoint operator with integral kernel

G(z,y) = (01, G4,) . (1.61)

An element ¢ # 0 in D is an eigenvector for H()\) with eigenvalue FE if and only if

H(M\)y = Evy, or equivalently iff (1.62)

(E — H(0))y = AW4), or equivalently iff (1.63)

P(z) = A 2; Gz, Y)W (y)¥(y)- (1.64)
ye

Let yq,...,ys be an enumeration of the M points in F'. Define the matrix B by

Bij = G(yi, y5) W (y5), (1.65)
which is an M x M matrix. Let

M(E), A(E),..., \u(E) (1.66)

15



be the solutions of the M’th order polynomial equation
D()):=det(AB—-1I) =0. (1.67)

Equation (1.64) gives that the possible eigenvalues of H()\) in spectral gaps of H(0) are
determined by A = \;(E). The corresponding eigenfunction 1 is determined from the null
space of AB — I and equation (1.64). This method determines the spectrum of H(\). We
note that the point spectrum of H(\) is not determined completely from our discussion.
The possibility of embedded eigenvalues has to be considered.

The above method works equally well for complex values of the coupling constant and W
may be replaced by a nondiagonal matrix. It is however possible to make some simpli-
fications in special cases. In our diagonal case we may choose an enumeration such that
W(y1),...,W(yn) are negative and W(yn41),..., W(yar) are positive. Observe that the
determinant of the diagonal matrix W is nonzero. Let U,V be matrices such that W = UV,
and observe that both U and V' are then invertible. A consequence is that we can replace
the matrix B in the above discussion with the matrix S = VGU. If the perturbation W is
positive, so N = 0, then we may choose U = V = +/W. The result is that S is selfadjoint
and the roots of 0 = det(AS — I) are all real, which is a simplification. If the perturbation
W changes sign, so 0 < N < M, then it is not possible to decompose W into two diagonal
matrices as above. We will not discuss this general case further, but instead turn to a
simple example.

A Kronig-Penney impurity is given by

W(z) = d(). (1.68)
In this case

D()) = AG(0,0) — 1, (1.69)

so the possible eigenvalues are determined by G(0,0). Consider H(0) = —A and E ¢ [0, 4d).
Then

1 1
G(0,0) = ——— / o 1.70
OO = @ s B2, (1 — o) w70
In the one dimensional case, d = 1, the integral is computable and D()) = 0 gives
A==+2(E/2—12—1, E=2 (1:|: 1+(/\/2)2), (1.71)

which is the eigenvalue E as a function of the impurity strength .
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1.8 Notes

The theory of ordinary difference equations is developed in for instance [11], but see also
[131], [1]. Some elements of the theory of partial difference operators may be found in [20],
but see also [73], [121], [39], and [101]. The theory is perhaps most completely treated
in texts on the numerical solution of partial differential equations, but there the focus is
on subjects differing from ours. Some of this theory may be found in [74, p.172-182] and
references cited there.

Rudin [116] and Katznelson [76] give excellent accounts of the theory of Fourier analysis.
The properties of the discrete Laplace operator are consequences of the elementary part of
this theory.

The Bloch theory for the difference operator is modeled after the corresponding theory for
the differential operator [124, p.279-315, p.358-360, vol.IV], [21, p.198-222]. A treatment
of the physics of an electron in a periodic potential is found in [10, p.131-311], which in
particular considers band structure of real world solids.

Our discussion is only preliminary and could easily be extended. The sections on analytic
perturbation theory of finite matrices found in [75] are a good starting point for a more
extensive treatment.

The results for the explicit models may be a novelty.

The discussion of perturbation by a finitely supported potential may be seen as a special
case of parts of the material found in [5, p.360-364]. The material is strongly related to the
similar continuous case as discussed in [42],[60],[61], but with simplifications. We observe
that it seems possible to recover the general spectral theory associated with relatively
compact perturbations [136, p.273-282] by consideration of norm limits of the case we have
considered.
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Chapter 2

Randomness and Ergodicity

We consider abstract valued random variables. This abstract setting is mo-
tivated from the study of ergodic random Schrédinger operators. We prove
nonrandomness of a random variable, invariant with respect to a metrically
transitive system. This is a generalization from real valued variables to vari-
ables with a o-separated range.

2.1 Introduction

The Schrodinger operator with an ergodic random potential is a formally ergodic random
operator. Any quantity defined from the operator is also formally random. The purpose
of this chapter is to provide some of the necessary background from probability theory,
sufficient for a rigorous treatment of ergodic random operators.

The concept of abstract random variables is introduced.This definition is sufficient for any
random quantity derived from a random operator. In particular, the definition is general
enough to allow random numbers, random measures, random vectors, random operators,
and random sets.

We next deal with some measure theoretic - fundamental - technicalities. For a separable
normed vector space the norm Borel g-algebra is equal to the initial o-algebra from the
topological dual space. This is of importance for linear random operators. Measurability
of a limit of a sequence of metric space valued functions is proved. In particular this gives
measurability of a strongly measurable function, which - by definition - is a pointwise limit
of measurable simple functions. We do also prove sequential completeness for strongly
measurable functions, defined on a probability space. A strongly measurable function
has essentially separable range. Separable range turns out to be sufficient for the strong
measurability of a random element in a metric space. Pettis’ theorem is a corollary of
the above. A function from a probability space into a normed vector space is strongly
measurable iff it is weakly measurable and almost separably valued.

We give a standard construction of a sequence of i.i.d. variables. A class of random
Schrédinger operators is obtained from i.i.d. coupling constants, and the given construction
is sufficient to give highly non trivial random operators. We prove the strong law of large
numbers, as a corollary of Birkhoft’s ergodic theorem.

We give some examples of ergodic systems, and give the link to dynamical systems. This
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section is more informal and contains no proofs.

The term metrical transitive is often used synonymously with the term ergodic. We will use
the term ergodic system to denote a system which is stationary and metrically transitive.
We consider metrical transitivity as an isolated property. The main theorem - possibly
also in this chapter - gives non randomness of a random variable, invariant with respect
to a metrically transitive system. A o-separated range for the variable is sufficient. The
theorem in this generality is possibly new. At least, the theorem seems to be unknown in
the context of ergodic random operators.

Measure preserving transformations are treated next. The weak and strong ergodic theo-
rems are beautiful consequences. We have included J. von Neumann’s proof of the weak
ergodic theorem.

2.2 Random Variables

The following definitions are necessary for the definition of random variables.

Definition 2.2.1 (o-algebra) A nonempty family F of subsets from a set X is a o-
algebra mn X if it is closed under complements and countable unions:

AeF=A€Fand AicF=|JAerF. (2.1)

i=1

A set A is F-measurable if A € F. A measurable space is a set equipped with a o-algebra.
The Borel field in a topological space is the smallest o-algebra containing all the open sets.

Remarks. (i) A trivial consequence is that X and () are members of F. Likewise the fact
that F is also closed under countable intersections. The case X = () is not excluded in the
above.

(ii) A Borel field is a o-algebra generated by a topology. If we are given a family G of
subsets then o(G) is the o-algebra generated by G. It is hard to characterize ¢(G), in
contrast with the situation for the topology 7(G) generated by G. Equip R with the Borel
field from the usual topology in R. It is easy to find non open sets in R, but non measurable
sets are harder to point out.

Definition 2.2.2 (Measurable Functions) Let X andY be measurable spaces. A func-
tion f: X =Y is measurable if f~'(A) is measurable for every measurable set A inY.

Remarks. (i) Let G be the o-algebra in Y. The family f~'G is a o-algebra, and a sub
o-algebra of the o-algebra in X if f is measurable.

(i) If X and Y are topological spaces, it follows that any continuous function is Borel. A
Borel function is a function which is measurable with respect to the Borel fields.

(iii) Let A be a subset of X. Define 14(z) =1 for z in A and 14(z) = 0 for z in A°. The
characteristic function 14 : X — R is a measurable function iff A is measurable.
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Definition 2.2.3 (Measure) Let F be a o-algebra in X. A function p: F — [0,00] is a
measure if p(B) =0 and if

,u(U A) = Z,u(Ai) (countable additive), (2.2)

for all disjoint measurable A, As,.... A measure space is a set equipped with a o-algebra
and a measure. The measure u is finite if p(X) < oo, and o-finite if X is a countable
unton of sets with finite measure.

Remarks. (i) It is convenient to refer to a measure space as a triple (X, F, u).

(ii) A measure algebra is a Boolean o-algebra with a countably additive, positive definite,
R, -valued function. Let A A B be the symmetric difference between two sets A and B. If
one identifies sets A, B when u(A A B) =0, then (F, ) is a measure algebra. A measure
algebra has a natural metric given by d(A, B) = u(A A B). (F,d) is a complete metric
space.

(iii) The p-integral of the characteristic function 14 is defined by p[l4]:=u(A), for a
measurable A. The notation u[f] will be used for the y integral of a function f.

We are not at all aiming at a complete presentation of general elementary measure theory.
None the less we will present some typical results. We now turn to an elementary result.
In the previous definition it is prudent to ask why one demands countable additivity in
place of just finite additivity. One answer to this question is given by:

Theorem 2.2.4 (Continuity of Finite Measures) Let p be a finite measure and let
Ay, Ag, ... be measurable sets. Then

p(lim A;) <lim p(4;) <Tm p(4;) < p(lim 4;), (2.3)

where lim A;:={J, N>, Ax and lim 4;:=, Ussn Ak The sequence {A;} is said to be
convergent if lim A; = im A;, and then lim p(A4;) = p(lim A;).

Proof. By considering complements, it is sufficient to prove the first inequality. We define
B;i:=();5; 4j, so that lim 4; = J B; and B; C Bjy,. lim u(B;) = (U B;) is a consequence
of countable additivity if we consider the disjoint family C; of sets given by: C; = B; and
Cni1 = Bpy1 \ C,. This is so because B; = U].<Z. C;. B; C A; gives pu(B;) < p(A4;) and
finally p(lim A;) = lim p(B;) < lim p(A;). =

Remarks. (i) The first inequality is a special case of Fatou’s Lemma. In fact, the theorem
may be used as a starting point for a proof of Fatou’s Lemma, which gives Lebesgue’s
monotone and dominated convergence theorems.

(ii) It should be clear that this continuity property is equivalent with the countable addi-
tivity. The continuity property is essential when one constructs a measure by extension of
an additive set function defined on an algebra.

The previous theorem gives that countable additivity is equivalent with a continuity prop-
erty of the measure. The continuity property is one essential reason for the usefulness
of measures in analysis. This continuity gives rise to similar continuity properties of the
integral. We provide a simple example to show that the integral is not a continuous map-
ping in general. Let (2, F, P) be given by Q:=[0, 1] equipped with Lebesgue measure P.
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Consider the functions g,(z) = (n+1)(n+2)z™(1 —z). The pointwise limit is g = 0, so we
have P[g] = 0. On the other hand we have P[g,] = 1, and therefore lim P[g,] = 1 # P][g].
This example is a reminder that interchange of limits and integration is a possible error,
even in simple cases.

Definition 2.2.5 (Probability) A probability space is a measure space (Q, F, P), with
P(Q) =1. An event A is a measurable set, and has a probability P(A). A realization is a
point in 2.

Definition 2.2.6 (Random Variables) Let (Q, F, P) be a probability space and let (E, G)
be a measurable space. An E random variable X is a measurable function X : Q — F,

and X 1is then a random element in E. The distribution of X is the tmage measure
Px:=Po X1

Remarks. (i) A more general definition of a random variable would be as a homomor-
phism, compare X !, from a Boolean o-algebra G to a probability algebra (F, P).

(i) An indicator function 14 of a measurable set A is a simple example of a real random
variable. A simple function is a function that takes a finite number of values. A fundamen-
tal result is that any Borel random variable with values in a separable metric space is a
pointwise a.e. limit of measurable simple functions. It is even a uniform limit of functions
which take a countable number of values.

(iii) Let P be a probability measure and X a complex random variable. The expectation
of X, if it exists, is the integral E[X]:= P[X].

(iv) A formally random variable is a function X : Q — E, without measurability demands.

The distribution Px is a key point in the previous definition. We have the fundamental
result

Ex[f]:=Px[f] = P[f o X] = E[f o X], f € L'(Px). (2.4)

In applications it is usually the distribution of the random variable that is given. Equa-
tion (2.4) gives results independent of the mathematical realization of a random variable.
The short notation {X € A,Y € B}:={w | X(w) € A,Y(w) € B}, with obvious gener-
alizations, together with the above integral formula, makes it possible to do calculations
without reference to the probability space (2, F, P).

2.3 Pettis’ Theorem and Measurability

Measurability of an abstract valued function may often be reduced to measurability of a
family of real valued functions. The following is elementary, but useful.

Theorem 2.3.1 (Measurability and Initial o-algebras) Fquip a set E with the ini-
tial o-algebra from a family F of functions with domain E and values in possibly distinct
measurable spaces. A map g : X — E is measurable iff the function fog: X =Y} is
measurable for each f € F.
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Proof. Assume g to be measurable. Let A be a measurable set in Y;. By definition f~(A)
is measurable and (f o g)7'(4) = g7 '(f~!(A)) is measurable, so f o g is measurable.

Assume f o g to be measurable for all f € F. Let N be the set of A C E such that
g '(A) is measurable, so A is the final o-algebra for g. We must show that 7 C N. By
assumption G = {f~'(By) | B measurable, f € F'} C N and G generates F. Therefore
F C N, so g is measurable. O

Remarks. (i) This is an exact analog of the corresponding theorem for continuous func-
tions.

The most common application of this theorem is when all the measurable spaces Y} are
equal to the set of complex numbers. Consider the case when E is a normed vector space.
A variable X is a weak E valued random variable iff (y, X) is a random variable for all
y in the topological dual E* of E. The above theorem states that this is equivalent with
X being measurable with respect to the initial g-algebra F,, from E*. There are many
other possible g-algebras on a normed space. We note in particular that any topology on
E generates a corresponding Borel g-algebra. The following theorem reduces the number
of possibilities.

Theorem 2.3.2 (o-algebras on a Separable Normed Space) Let E be a separable,
normed vector space. Let F,, be the initial o-algebra from the topological dual of E, let B,
be the Borel o-algebra from the weak topology, and let B,, be the Borel o-algebra from the
norm topology. We have F,, = By, = B,.

Proof. F,, C B, C B, is clear. We prove F,, D B,. Because FE is separable it is sufficient
to show that every closed ball B is in F,,. Assume C to be norm closed and convex. Let
{Bi} be a countable family of norm open balls such that C® = |J, B;. Choose, by the
Hahn-Banach separation theorem, a ¢; € E* and ¢; such that Re ¢;(z) < t; < Re ¢;(y) for
all z € B,y € C. F; ={y | t; < Reg;(y)} belongs to F,, and C C F;. We have in fact
C =), Fi € Fy. It remains to prove C' D (), F;. Take an x € C*. We have an i such that
x € By, s0x & F;. O

Remarks. (i) A particular consequence is that X is a norm random variable iff (y, X) is
a complex random variable for all y in the topological dual of E.

An additional possibility is given by the Baire o-algebra, which is the smallest o-algebra
such that real valued continuous functions are measurable. The Baire g-algebra is always
contained in the Borel o-algebra, but they are equal on a metric space. The proof follows
from the continuity of z — d(z, F') for a closed set F'.

A vital property of measurable functions is that the class is closed under the operation of
pointwise limits.

Theorem 2.3.3 (Sequential Completeness of Borel Measurable Functions) A point-
wise limit of a sequence of Borel functions from a measurable space into a metric space s
a Borel function.

Proof. Let f =1lim f,, and let U be open. We will prove that:

Fo=UU N R

k>1N>1n>N
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for suitably chosen measurable Cj, which proves Borel measurability.

D: Assume that each Cj, is closed and contained in U. Let w be such that there is a k and
a N such that f,(w) € C for all n > N. We have f(w) = lim f,(w) € Cy C U, because
C}, is closed.

C: Assume that every point in U has at least one C} as a neighborhood. Let w be such
that y = f(w) € U and let Cy be a neighborhood to y. The convergence gives an N such
that f,(w) € Cy for all n > N.

The construction of Cj, in a metric space is standard. Let (Cy)° be given by the union of
all open balls with center in U¢ and radius 1/k. O

Remarks. (i) We did not assume the metric space to be separable, nor complete.
(ii) One important application is the construction of random variables.

Weak measurability, combined with the Hahn-Banach theorem, may be used to define
integration of Banach space valued functions. A stronger type of integral, the Bochner
integral, may be defined for functions with a stronger measurability property. A function
which is the pointwise a.e. limit of a sequence of measurable simple functions is said to be
strongly measurable. A simple function is a function taking a finite number of values.

Theorem 2.3.4 (Sequential Completeness of Strongly Measurable Functions) A
pointwise limit of a sequence of strongly measurable functions from a probability space into
a metric space s a strongly measurable function.

Proof. Let each f,, be the pointwise a.e. limit of simple functions g, ;. We may assume that
we have pointwise convergence everywhere on (2, obtained after subtraction of a null set.
Let A, and K, be such that P((A4,)¢) < 27" and d(gn x(w), fu(w)) < 27" when k > K,, and
w € A,,. The existence of A,, and K, follows from the pointwise convergence of g, ;, towards
fn, and is one version of Egoroft’s theorem. We prove that g, x, converges pointwise a.e.
towards f. The set A =J, (>, Ar has measure one, compare the Borel-Cantelli Lemma.
Let w € A. Choose N; so that w € A, when n > N;. Let € > 0 be arbitrary. Choose N,
so that d(f(w), fn(w)) < €/2 when n > N,. Let N3 be such that 27" < €/2 when n > Nj,
which implies d(gn k, (w), fo(w)) < €/2 when n > N = max(N, No, N3). The triangle
inequality gives d(f(w), gn k,(w)) < € for all n > N.

For completeness we prove existence of A,, K,, as above. Let g, — ¢ pointwise. Fix y > 0.
We prove existence of K and B, P(B¢) < p, and d(g,(w),g(w)) < pfor all n > K,w € B.
Define B, = (\ys,{w | d(gr(w),9(w)) < p} and notice Bpy1 O Bp. The assumption
gives that Q = |J,, By is the entire space. Because P(() is finite we have a K so that
P((Bk)®) < u, and we are done with B = Bg. O

The (essential) range of a strongly measurable function is separable. This follows from

F(Q) c U, fn(Q), when f, — f pointwise. This observation suggests the following.

Theorem 2.3.5 (Measurability and Strong Measurability) Borel measurability and
strong measurability are equivalent properties for a function defined on a finite measure
space having separable range in a metric space.

Proof. A strongly measurable function is a Borel measurable function, since it is a pointwise
limit of Borel measurable functions.

Let X be the range of the Borel measurable function f. Pick a dense set {1, s,...} in X.
Let B, (i) = {z | d(z,z;) < 1/n}, M, (1) = B,(1), and M, (i+1) = Bn(i—i—l)\(U;.:1 B,.(5))-
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Now we have, for each n, a disjoint cover of X of measurable sets M, (j) with d(m, z;) < 1/n
for m in M, (j). Define f, = z; on f~'(M,(7)). We have lim f,, = f uniformly, because
d(fn(w), f(w)) < 1/n. Strong measurability is preserved under pointwise limits, so we
are done if f, is strongly measurable. gnj(w) = fo(w) when f,(w) € {z1,...,2;} and
gn j(w) = 1 otherwise proves strong measurability. O

Remarks. (i) It is clearly sufficient in the above to assume that f is almost separably
valued.

(i) It is tempting to conclude as in the theorem without finiteness conditions on the
measure space, since the approximants f,, converge uniformly. The difficulty with this is
that the simple functions does not converge uniformly towards the approximants.

We have obtained conditions which give equivalence of strong measurability and Borel
measurability. Equivalence of norm Borel measurability and weak measurability for a
function with separable range in a normed space follows from the equality of the weak
and norm o-algebras. Pettis’ theorem is the conclusion: Weak and strong measurability
are equivalent for functions from a probability space into a normed space, if they have
separable range.

2.4 Independence

A stochastic process or a stochastic field is by definition a family { X, } of random variables.
By considering the direct product space one may also view a stochastic process as a single
random variable. The interest in stochastic processes comes when there are some relations
between the variables in the process. Independence, stationarity, and ergodicity are typical
examples of such relations.

The idea of independent events is a source to many of the beautiful results and directions
in probability theory. It makes probability theory to more than a special case of general
measure theory.

Definition 2.4.1 (Independence) A family M of random variables is a family of inde-
pendent variables if P(X, € Ay,..., X, € A,) = P(X; € Ay)---P(X,, € A,) for every
finite collection of variables X; € M and measurable sets A;. A family € of events is a fam-
ily of independent events if P(A;N---NA,) = P(4;)---P(4,) for every finite collection
of events A; from &.

Remarks. (i) The variables in M may take values in distinct spaces, but they must be
defined on the same probability space.

(ii) The term i.i.d. is short for independent, identically distributed. X and Y are identically
distributed if Px = Py.

We will now provide an example of how a sequence of i.i.d. variables can be constructed.
Let (2, F,P) be [0,1) equipped with Lebesgue measure P. Any w € ) has a binary
representation given by a sequence B; of random variables. To be concrete, choose B, =
15,1y, B2 = 1j0.25,5)u).75,1) etc. We have

w= Z 2_iBi(w). (2_5)

i>1
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The B; are i.i.d. random variables corresponding to the tossing of a coin. In each tossing,
each 4, there is equal probability (= .5) for head (B; = 1) and tail (B; = 0). Let {b;,},4,5 >
1, be a renumbering of the variables B;. Now define the pointwise limits

Xi=D 27bi. (2.6)

i>1

The resulting X; are i.i.d. , random variables with distributions equal to Lebesgue measure
on [0,1). Starting with this family it is easy to obtain other families of i.i.d. random
variables given by ¥; = Y 0 X;, where Y is any random variable on [0,1]. For p in [0, 1] and
Y = 1o the resulting sequence is a Bernoulli sequence. The variables Y; are independent
and P(Y;=1)=p, P(Y;=0)=¢=1-p.

A fundamental result for i.i.d. , real, random variables is the strong law of large numbers.

Theorem 2.4.2 (The Strong Law of Large Numbers) Let Xy, Xo,... be i.i.d. , real,
random variables. Assume that E[X;] = E[X,] exists. The expectation is also given by

B[X\] = lim Xyt 'J'\}JFXN. (2.7)
The convergence on the right is pointwise convergence almost everywhere.
Proof. The process {X;} is stationary, since

P(X;, € Ay,...,X;, € A,) =P(X;, € A)---P(X;, € A,) = (2.8)

P(Xi1k € A1)+ P(Xipqk € Ap) = P(Xij1n € Ar, .o, Xy € A),

so the limit exists a.e., according to Birkhoff’s ergodic theorem. Consider an event B such
that

B={X; € A,...,X;, € A} =T 'B:={X;, ;1 € A,..., X;, 41 € 4.} (2.9)

Since B is independent of T"B for large n, it follows that P(B) = P(B()B) = P(B)?,
and P(B) equals zero or one. The o-algebra of invariant events is generated by sets like
B, so any invariant set has probability zero or one, so the process {X;} is ergodic. The
claim follows from Birkhoft’s ergodic theorem. O

Remarks. (i) If the X; takes values in a more general space E, then the same statement is
true with f(X;) replacing X;, where f : E — R is any measurable function so that E[f(Xy)]
exists.

2.5 Abstract Dynamical Systems and Ergodicity

We will now take a detour to explain some general ideas related to ergodicity. Assume a
system to be described by a state w in the set € of all possible states. The dynamics of
the system is governed by a mapping T', which takes a state w to a new state Tw. T"w

28



is the state at time n, given an initial state w. If we define U(n) = T™, then we see that
U represents the semigroup Ny from the relation U(n + m) = U(n)U(m). We may also
consider a continuous time parameter, in which case we obtain a flow, if we insist on the
group property. (2,7 is an abstract dynamical system.

Depending on the structure on (2, it is natural to divide the subject into three major cases:
(i) Differentiable dynamics, (ii) Topological dynamics, or (iii) Ergodic theory (measurable
dynamics ?!). In any case it is most rewarding to consider the case when 7' is an automor-
phism ((i) diffeomorphism, (ii) homeomorphism, (iii) measure preserving transformation)
on Q. We will consider case (iii), with a given probability space (2, F, P) as the state
space.

A physical system is studied through a set of observables. A real observable X is a real
valued, measurable function on ). In an actual measurement of the value of X it is
reasonable to assume that we only can decide if the variable is in a given interval (a, b).
If our theory for the system is to predict outcomes of measurements, it should be able to
assign probabilities to any event of the form {& < X < b}. This suggests a probabilistic
model.

The observable changes in time according to X,w:= X (T™w). A basic problem in ergodic
theory is the study of the time average

_ X, 4ot X
X := lim Lt + N

2.10
N—o0 N ( )

It is not trivial to prove existence of this limit, from scratch. T is ergodic if this time
average is equal to the mean E[X], which in our context will be a theorem. The defini-
tion of ergodicity will be made in terms of two other concepts; metrical transitivity and
stationarity. Before we proceed further with these definitions, we describe some concrete
examples.

The classical example is from statistical mechanics. The space €2 is then a constant energy
surface in phase space given by H(p,q) = E. The mapping T'(t) is given from Newton’s
laws of mechanics. Liouville’s theorem states that the flow T'(¢) is measure preserving
with respect to the measure dug:=dS/||VH]||, where dS is the element of surface area.
Ergodicity is a more difficult question. Sinai proved ergodicity of a simplified version of a
hard sphere gas in 1963.

The word ‘ergodic’ comes from the Greek for ‘energy path’. Historically the idea of er-
godicity came from Boltzmann’s ergodic hypothesis. He assumed that each orbit filled out
all of the phase space, but this is impossible on topological grounds. The assumption was
soon replaced by the quasi-ergodic hypothesis; each orbit is dense in phase space. This
weaker hypothesis does not imply ergodicity.

A simpler example is given by the unit interval equipped with Lebesgue measure. The
transformation Tx = x+« (mod 1) is then clearly measure preserving. If « is irrational,
then 7' is ergodic. The nice conclusion of the ergodic theorem is in this case

1 L
f()d&e = lim — Zf(:v + na), (pointwise a.e. and in L'[0,1)). (2.11)
0 N—oo N 1

This example can be generalized to a compact, topological group with Haar measure.
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Another example is given by the transformation Tz = 2z (mod 1), which is measure
preserving, but not invertible, nor ergodic.

A real valued, stationary process gives another example. The state space is then chosen
as the space of paths, and the shifts T'(z) defined by T(z)X (y) := X (x + y), are measure
preserving. We have the representation X (z) = T'(z)X(0). If one insists on keeping the
original probability space, then the solution is given by considering mappings of measur-
able sets into measurable sets. A mapping is induced on the o-algebra generated by the
cylinder sets by the formula 7(z){w | X(y1) € A1,..., X(yn) € Ay} i={w | X(y1 +2) €
Ay, ..., X (yn+z) € A,}. Stationarity gives that 7 is well defined and that P(TA) = P(A).
T may also be considered as an operator acting on random variables by consideration of
indicator functions. Define 7(2)14 = 1;(;)4 and extend by linearity and continuity. We
have again the representation X (z) = 7(z)X(0).

2.6 Metrical Transitivity

A strong property of an abstract dynamical system is metrical transitivity. We choose the
following definition.

Definition 2.6.1 (Metrical Transitivity) Let (X,F,u) be a measure space, and let T
be a family of o-algebra homomorphism 7 : F — F. A measurable set A is I'-invariant if
A =71A for all T in T'. A measurable set A is p-trivial if u(A) = 0 or u(A°) = 0. The
quadruple (X, F, u,T) is a metrically transitive system if all T'-invariant sets are p-trivial.

Remarks. (i) Let T(y) : X — X be measurable for all v in I. It is convenient to de-
fine {T'(y) | v € I} to be a family of metrically transitive mappings if (X, F, u, '), with
[':={T(y)7'}, is a metrically transitive system.

(i) If f : X — X is measurable, then f~! : F— F is a c-algebra homomorphism;
f7LAC = (f1A) and fU A = U f A

(iii) It is natural to define a slightly stronger concept of metrical transitivity. A metric may
be defined by d(A, B) :=u(A A B). One may demand every measurable set A such that
d(t(y)A, A) = 0 for all y to be trivial, which explains the term “metrical transitivity”.
(iv) Another approach is to replace the measure space with a measure algebra. The intro-
duction of a measure algebra is a coherent way to ignore sets of measure zero.

(v) Metrical transitivity of a single mapping 7' : X — X is understood in the sense given
by considering the family {7} consisting of one element. This is equivalent with metrical
transitivity of the family {T'(n):=T" | n = 0,1,...}. The set I is often a semigroup in
applications, with a representation 7T

(vi) The sets Fr and F; of respectively invariant and trivial sets are o-algebras. Metrical
transitivity is the relation F; C JF;.

Weak coupling of points far apart implies metrical transitivity.

Theorem 2.6.2 (Mixing and Metrical Transitivity) Let (2, F, P) be a probability space,
let T be a countable infinite set, and let 7(vy) : F — F be a o-algebra homomorphism for
all v in T'. The quadruple (0, F, P,T) is a metrically transitive system if there exists an
increasing sequence {I'y} of finite sets, with | JT'y, =T, so that

i > ver, P(ANT(7)B)

lim 2T = P(A)P(B), ¥A,B € F. (2.12)
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This holds in particular if lim, oo P(AN 7(7v,)B) = P(A)P(B) for all sequences {v;}.

Proof. Consider an invariant set B = 7(v)B and set A = B. Then P(B) = P(B)?, and B
is P trivial. The last claim follows from an enumeration of the elements in I' corresponding
to the sequence I',,. O

Remarks. (i) This theorem has a more interesting converse. Application of the Birkhoff
ergodic theorem to the ergodic process X,, = 1g o T™, integration over A, and use of the
dominated convergence theorem, implies (2.12) in the case {7(y)} = {T™" | n € Ny}.

(ii) Strong mixing is the property lim P(AN T "B) = P(A)P(B). Independence implies
strong mixing implies ergodicity.

Metrical transitivity is usually hard to prove for a given system, and has correspondingly
strong consequences. A main consequence of metrical transitivity is the characterization
of the corresponding invariant functions as being the constants. This is not true without
some restrictions on the functions under consideration, in particular on the range of the
function.

Definition 2.6.3 (Invariant Measurable Functions) Let (X,F) and (Y,G) be mea-
surable spaces, and let M be a family of o-algebra homomorphisms on F. A measurable
function f: X =Y is said to be M-invariant if f~' =710 f~! for all 7 in M.

Remarks. (i) If T : X — X is measurable, and f = foT, then f is invariant with respect
to T~! in the above sense. We will say that f is invariant with respect to 7" in this case.
(ii) If X is a measure space, then it is reasonable to interpret the equality as a.e. equality.
(iii) An invariant f is measurable with respect to F7.

(iv) The comment in (i) has a converse if the o-algebra G separates points. If g7'A = f~1 A
for all A in G, then f = g. This holds in particular for g = foT.

(v) Observe the case where f = 14. It follows that f is invariant iff A is invariant.

Let (Q,F, P,{T,}) be a metrically transitive system. It is well known that a measurable
function f : 2 — R is a constant iff it is invariant, that is, iff f = f o T, for all v. For the
proof one first notices that f~'(A) becomes an invariant set for any given A C R. Next
one defines the function ¢(t) = P{w | f(w) < t}. The invariance and measurability of
f imply that g(t) € {0,1}. Because g(t) clearly is monotone increasing, it must be the
characteristic function of some interval (y,o0). The conclusion is that f = y P-a.s.. We
will need this theorem for more general invariant functions. The following gives a sufficient
structure on the image space.

Definition 2.6.4 (Countable Ty-separation) A set X is countably Ty-separated iff there
is a countable Ty-separating family {F,} of subsets of X: Given any two different points
z,y € X, there is an F,, such that x € F,,y € F,,° ory € Fp,,x € F,,°. A measurable space
18 o-separated iff there exists a countable, Ty-separating family of measurable sets.

We are now able to prove a generalization of the theorem concerning real valued, invariant
functions.

Theorem 2.6.5 (Invariant Functions) Let (X, F, u,I') be a metrically transitive sys-
tem and let Y be a o-separated measure space. A I'-invariant, measurable function f :
X =Y s equal to a constant p-a.e..
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Proof. Define the image measure uy = po f~'. Let {F;} be a countable family of Tp-
separating, measurable sets in Y. The invariance and metrical transitivity implies that
the sets f~'(F;) are p-trivial. Define Y; = F; or Y; = F*, such that uf(Y;°) = 0 and set
Yoo :=();Yi. Yo is not empty, because p1¢(Yoo®) = 0. Yo contains exactly one point z: Let
y # x € Y. We have two possibilities from the Tj-separation. Assume that z € Fj,y € F;°
for some 4. Then we have F; = Y,. This implies that y € Y;° C Y,°. The other possibility
is similar. The conclusion is that Y, = {z}, and f =z p-a.e.. O

Remarks. (i) If Y is a second countable, Ty-separated, topological space and f a measur-
able, ergodically invariant function, then the theorem applies. We choose F' = {F;} to be
a basis for Y given by second countability. This family is separating. Let x # y and pick
an open U 5 z,y ¢ U. U is a union of sets from F' and we have x € F; C U for a suitable
iand y € U° C F}“.

(ii) If X = RU {£oc} we may take F' to be the intervals (—oo,r) with r € Q together
with {oo}.

(iii) The measure p need not be o-finite.

2.7 Measure Preserving Transformations and Ergodic
Theorems

Now we turn to the concept of stationarity. A stochastic process is stationary if the finite
dimensional distributions are independent of shifts. In statistical mechanics stationarity
is Liouville’s theorem. A stochastic process indexed by space variables is more properly
denoted a stochastic field. The term homogeneous is then used in stead of stationary.

Definition 2.7.1 (Measure Preserving Transformations) Let (X, F, i) be a measure
space. A o-algebra homomorphism T : F — F 1is measure preserving if pot = i, and mea-
sure reducing if po v < u, pointwise. A measurable mapping T : X — X is measure
preserving or measure reducing if T~' is measure preserving or measure reducing. An er-
godic system is a metrically transitive system in which all the o-algebra homomorphisms
are Mmeasure Preserving.

Remarks. (i) We use the term “transformation” if T is bijective.

If we consider measurable functions, then we can generalize even further. Let T be a mea-
surable mapping on X. T defines a linear transformation, also called T', on the function
space by the formula T'f(z):= f(Tz). Let 7 be a measure reducing o-algebra homomor-
phism, and set 714 :=1,4. Extension by linearity and continuity gives a linear contraction
T on the Banach space E = LP(X), p > 1. A generalization of a measure reducing trans-
formation is therefore a linear contraction on a Banach space E. In the function space
case we may get back to our original concept by consideration of indicator functions, if
indicator functions are mapped to indicator functions.

Any (strictly) stationary process on Ny may be represented in the form X,, = T" X, with a
measure preserving transformation 7" on a probability space ). If we only have an isometry
T on L*(Q), then we get the concept of a weakly stationary process. This corresponds to
the property E[(X; — E[Xo])(Xis; — E[Xo])] = El(Xo — E[Xo])(X; — E[Xo])].
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The weak ergodic theorem is credited to J. von Neumann. It was published in 1932, but
known prior to the Birkhoff ergodic theorem. The following is a more general theorem
formulated in a Hilbert space.

Theorem 2.7.2 (The Weak Ergodic Theorem) Let T be a linear contraction on a
Hilbert space H. Then

M:=N(I-T)=N({I-T*)=R(I-T)", (2.13)

and the projection P on M s given by the strong limit
1 n
P=s—lim T,, T, ::E;T’“. (2.14)

Proof. First we prove that N(I—T) = N(I-T*). Assume that f € N(I-T*). ||Tf|| < ||/l
gives

ITf = fII” <2(fI* = (TS, )= (f, Tf) =0. (2.15)

This proves N(I —T*) C N(I —T). The other inclusion follows from 7" = T** and the fact
that 7™ is also a contraction,

IT*FII* =TT £, /) < 1T FILI A1 (2.16)

Now we have established M :=N(I —T) = N(I — T*). R(I —T)* = N(I —T*) follows
from

(f,(I-T)g) ={I-=T")f,9). (2.17)

Any z € H can be decomposed uniquely as = y+2z withy € M and 2 € M+ = R(I —T).
We prove that lim 7,z = y. Because T,y = y we are left with the proof of lim 7,z = 0.
We have T,,(I — T) = (T — T"")/n, so limT,,(I — T)w = 0. This proves the claim, since
IT.] < 1. O

Remarks. (i) The theorem may be looked upon as a solution to the equation T'f = f.
Such an equation may also be solved by the Banach fixed point theorem, with solution
f =1lm7T™g, but there the assumption is that T is a (possibly nonlinear) strict contraction.

The probably most famous ergodic theorem is due to Birkhoff and dates back to 1931.

Theorem 2.7.3 (The Birkhoff Ergodic Theorem) LetT be a measure preserving trans-
formation on a probability space Q. For any X € L'(Q)

X(w):=lim n™" )~ X(T*w) = E[X|F/|(w), (2.18)

n—00
k=1

where Fr is the o-algebra of oll T invariant sets /_1 =T~ (A). The limit holds both pointwise
a.e. and in L' sense. If T is ergodic, we have X = E[X].
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Proof. See the Notes section. O

Remarks. (i) The first part says that the a.e. pointwise limit that defines X exists under
the assumption of stationarity of { X oT*}. The second part identifies X with a conditional
expectation.

2.8 Notes

Section 2.2 Definition 2.2.1 of a o-algebra is equivalent with the definition in Rudin [115,
p.8], and I follow his conventions whenever possible.

After my “discovery” of theorem 2.2.4, I found this theorem also in Dunford [46, vol.
[,p.128-129]. Dunford is possibly my favorite reference on abstract measure theory, not
because of readability, but because of completeness. Convergence of sets is also considered
in Feller [57, p.105, volume II]. T have included this theorem because convergence of sets
is of interest for random operators in other settings.

Lamperti [93, chap.1], Feller [57, chap.IV] [56], and Doob [43, chap.I] give excellent in-
troductions to the theory of probability. Definitions 2.2.5 and 2.2.6 are standard. The
definition of a measure algebra, in the remarks to Definition 2.2.6 , is as in Petersen [112,
p.15].

Section 2.3 Measurability with respect to an initial o-algebra, Theorem 2.3.1, is standard.

The proof of Theorem 2.3.2 , equality of weak and norm o-algebras, is almost identical
to the proof of the fact that every norm closed convex set is also weakly closed, compare
Pedersen [110, p.66]. I acknowledge suggestions from O. Bratteli concerning the proof of
this theorem. A related fact is that the Baire o-algebra Fp is equal to the Borel o-algebra
when X is a metric space, see Yamasaki [139, p.42-43].

The term “sequential completeness”, used in Theorem 2.3.3, is taken from Pedersen [110,
p.228]. The first part of the theorem followed by addition of some details in the proof of
a similar proposition found in [124, p.116, vol.I]. It may be possible to construct the Cy’s
in a more general setting than for a metric space. A minimum demand is that the space
is regular. For each x € U we must have disjoint open sets A > z, B D ~U. It is worth
noting that if a space is regular and second countable, then it is also metrizable Kelley [77,
p.113,p.127]. A similar construction of closed Cy’s that approximate an open U from the
inside is found in Kuratowski [92, vol. II, p.8, Corollary 4], and is relevant for set valued
semicontinuous functions [92, vol. II, p.70, Theorem 1].

Yosida [140, p.131-132] has a different version of Pettis’ theorem. It is weaker in the sense
that the range space is assumed to be complete, but this extension is trivial. It is stronger
since the measure is not assumed to be finite. Yosida [140, p.132, line 2-3] uses sequential
completeness of strongly measurable functions without any assumption on the measure
space, and without any proof. I needed some finiteness conditions on the measure for this,
compare Theorem 2.3.4 , to obtain approximate uniform convergence. Dunford [46, p.147-
149, vol.I] has also finiteness conditions on the measure in order to prove an analogues
theorem.

Section 2.4 An elementary, but not easy, proof of the strong law of large numbers, The-
orem 2.4.2, is found in Lamperti [93, p.28-]. Lamperti also discusses many instructive
variations of this theorem, in a most readable manner.
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The construction of i.i.d. variables on [0,1) is well known.

Section 2.5 Lamperti [94], Feller [57], and Doob [43] consider ergodic processes. Ergodic
theory from a more general point of view is treated by Petersen [112] and Sinai [37], but
mostly (only?) the one parameter case. See [112, p.5-, p.49-] for more examples of ergodic
systems. Our source for comments on the ergodic hypothesis is [112, p.42]. A short
introduction to ergodic theory is also found in [124, vol. I: p.54-60, p.62-63].

Section 2.6 Definition 2.6.1 of metrical transitivity is more general than the one found in
[109, p.3-], in [31, p.247], and in any of the other quoted sources. I choose this definition
since it gives a sufficient assumption in (the possibly new) Theorem 2.6.5. I invented
Theorem 2.6.5, [130], in a successful (!) attempt at a direct proof of the non-randomness of
the spectrum of ergodic, linear, closed, random operators. I acknowledge useful discussions
with H. Hanche-Olsen concerning the assumptions in the theorem. The theorem is obvious
when all the assumptions are given. The problem was to determine suitable assumptions.
The theorem is a generalization of Proposition 9.1 in Cycon [39, p.167] for the case X = R.
See also Sinai [37, p.14], Billingsley [24, p.13], Petersen [112, p.42], and Yamasaki [139,
p.144] for this less general case.

Another approach to the problem is possible, with less general assumptions. One observes
that an invariant function is measurable with respect to the o-algebra of invariant sets,
and invariance gives measurability with respect to the trivial o-algebra. If f takes values
in a separable, metric space, then it is the pointwise limit of simple functions. Because
simple functions, measurable with respect to trivial sets, must be multiples of indicator
functions, we conclude as in the theorem.

A proof of Theorem 2.6.2 (mixing and ergodicity) is found in Lamperti [94, p.95-], for the
one parameter case.

Definition 2.6.4 is similar to the definition in Averna [12, p.142]. This concept is also used
to define a basis for a measure space, compare Sinai [37, p.449]. Christensen [36, p.6]
defines countably separated to mean Ti-separation, but this is equivalent in a measurable
space. T,-separation is defined as in Kelley [77, p.56, p.67, p.112].

Section 2.7 Stationarity in the sense of point and set transformations is discussed in Doob
[43, p.452-464], and is recommended. Definition 2.7.1 of a measure preserving mapping is
as in Lamperti [94, p.87], but he uses the term measure preserving transformation, and
invertible transformation if it is invertible.

A proof of the weak ergodic theorem, Theorem 2.7.2, may be found in Petersen [112, p.24].
A Banach space version is found in Yosida [140, p.213]. It is tempting to define an operator
U that satisfies the conclusion of the theorem to be a weak ergodic operator. An operator U
such that lim U™ exists may likewise be called a strongly ergodic operator, see for instance
reference 90e47005 in Mathematical Reviews. We will not follow these conventions. Since
the theorem solves an eigenvalue problem, it has many rewarding corollaries. We mention
one. Let H be a selfadjoint operator and consider the semigroup U(s) = exp(i(t — H)s).
The strong limit as T — oo of ( fOT U)/T is the projection on N(t — H). The eigenvalue
problem H f = tf is solved and the theorem provides therefore a complete characterization
of the point spectrum. A direct proof of this is found in Kato [75, p.517]. Wiener’s theorem
on time means of Fourier transforms and the RAGE theorem, Cycon [39, p.98-101], are
strongly related to this. A state corresponding to the continuous spectrum of —A +V will,
according to Cycon, “infinitely often leave” a ball with radius R.
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A proof of the Birkhoff ergodic theorem is found in Petersen [112, p.30]. Many general-
izations exist. Ergodic theorems for multidimensional subadditive processes are found in
Akcoglu [3] . The proof is instructive, so I was tempted to include it.
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Chapter 3

Topologies and o-algebras on
Hyperspaces

Some properties of topologies and o-algebras on spaces of closed sets are stud-
ied. Upper and lower topologies are introduced and corresponding convergence
concepts are discussed. We prove that the lower topology in the set of closed
sets in a second countable space gives a second countable Ty-space. Our discus-
sion is motivated by the spectral theory of linear operators, but the topologies
and o-algebras introduced are most general.

3.1 Introduction

A formally random operator T'(w) gives the following set valued function:
Q3w X(w):=0(T(w)) € Pr(C). (3.1)

2 is a probability space, o(T') is the spectrum of the operator T, and Pr(C) is the family
of closed sets in the complex plane. Motivated by this we study topologies and o-algebras
on power sets in a more general situation. Topologies and o-algebras on sets of unbounded
linear operators may also be defined naturally in this more general setting. The concepts
have many other applications.

We define pointwise convergence of a net of sets. This concept of convergence is derived
from the corresponding pointwise convergence of indicator functions, and as such indicates
several other possible definitions of convergence of sets.

We introduce the lower topology, the upper topology, and the compact upper topology.
We obtain formulas for a set larger than any lower limit and for a set smaller than any
upper limit. These sets are respectively also lower and upper compact limits. An explicit
formula for the smallest upper limit is missing, and we do not even know if there exists a
smallest upper limit. The Vietoris topologies, which are combinations of upper and lower
topologies, are also defined.

Separation properties are discussed next, in particular countable Ty-separation. We give
formulas for a nonrandom random set in the case where the random set is either a lower
or an upper (compact) semicontinuous function.
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3.2 Pointwise Convergence

For completeness, we recall the basic definitions for point set topology and convergence.

Definition 3.2.1 (Topological Space) A topology T in a set X is a collection of subsets
of X such that

{0, X} cr,
{A,B} C 7= A B € 7 (closed under finite intersections), and (3.2)
F C 1= Uyep A €7 (closed under arbitrary unions).

A set A is T-open if A isin 7. A set is T-closed if the complement is T open. A topological
space s a set equipped with a topology.

Remarks. (i) It is sometimes convenient to refer to a topological space as an ordered pair
(X, 7).

Definition 3.2.2 (Net) A net in a set X is a family {x,} of elements from X with an
upward-filtering preordered index set A

u,v € A= Jw €A, u,v <w (upward-filtering),
A< AVA €A (areflezive relation), and (3.3)
u<v,v<w=u<w (atransitive relation).

Remarks. (i) It is sometimes convenient to refer to a preordered set as an ordered pair
(A,<). The preorder is an order if the relation is also antisymmetric, v < v and v < u
imply u = v.

(ii) If the index set is the set of natural numbers with the usual order, then the net is a
sequence. Nets are also known as generalized sequences.

Definition 3.2.3 (Convergent Net) A net {z,} in a topological space has a limit x if
giwen any open set U > x, there is a Ay such that xx € U when A > \y. We write
x =limxy, if ¢ is a limit of the net {z,}. A net is convergent if it has a limit.

Remarks. (i) We will use a prefix, as for instance in z = 7 —lim z,, if we want to emphasis
the topology.
(ii) A net may have many limits.

A set may be considered as a point in the space of all subsets of a given larger set. A
possible convergence concept for a net of sets is given by pointwise convergence.

Definition 3.2.4 (Pointwise Convergence of Sets) Let {Ax} be a net of sets. The
pointwise upper and lower limit of this net is then

lim A,\::ﬂ U Ay, and lim A,\:=U ﬂ Aj. (3.4)

N A>N N A>N
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If the upper and lower limits are equal, then the net of sets is pointwise convergent. Any
subset of the pointwise lower limit is by definition again a pointwise lower limit. Any
superset of the pointwise upper limit is likewise a pointwise upper limit.

Remarks. (i) Pointwise convergence of a net of sets is equivalent with the pointwise con-
vergence of the corresponding indicator functions. This proves that pointwise convergence
corresponds to a topology.

(ii) The definition does not depend on any underlying structure on the set where the
subsets are taken from. In particular the convergence definition does not depend on any
topological structure.

(iii) Note the identity lim A, = (lim (4,)¢)°.

(iv) If pointwise lower convergence comes from a topology, then the limits are non unique,
and every net is pointwise lower convergent.

Any pointwise lower limit is contained in any pointwise upper limit of a given net of sets—a
support of the naming conventions.

Theorem 3.2.5 (Upper and Lower Pointwise Limits) If {A\} is a net of sets, then
lim A, C lim A,. (3.5)

Proof. Let x € lim A,. Then we have a Ay such that z € A, for all A > )\;. Chose an
arbitrary A;. Because the index set filtrates upwards, we can pick a A2 which dominates
both A¢ and A;. In particular we have z € A), and so also z € lim A,. O

Other concepts of convergence of sets may be defined in a natural way from convergence
of the indicator functions. One example of this is to go from pointwise convergence to
pointwise convergence almost everywhere, with respect to some given measure. The set
definition should then correspond to convergence if the symmetric difference of the upper
and lower limits has measure zero. In this case we are dealing with convergence in a
space of equivalence classes of measurable sets. Two sets are equivalent if their symmetric
difference has measure zero.

3.3 Convergence of Closed Sets

Definition 3.3.1 (The Lower Topology) Let (X,T) be a topological space, and let Y
be the closed sets in X. The lower topology 7, in 'Y 1is the coarsest topology such that

Up={AeY |ANU # 0} (3.6)

is open when U is open. We write A =1—1lim A, if the net {Ax} converges towards A in
the lower topology.

Remarks. (i) The lower topology is defined likewise in any set Y of subsets of a topological
space. We will consider mostly Y :=Pr(X).

Theorem 3.3.2 ( Closure of a Union of Lower Limits) The closure of an arbitrary
unton of lower limits of a given net of closed sets, is itself a lower limit for the net.
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Proof. The net {F\} of closed sets converges towards F' iff we can find a Ay such that
F), intersects U when A > Ay, for any open set U which intersects the closed set F'. This
is sufficient because any finite subset of the index set has a majorant, and a preorder is
transitive. Let F' be the closure of a union of limits of the net {F)}. If the closure of a set
intersects an open set U, then the set itself intersects U, since the closure is the smallest
closed set containing the set. We conclude that U also intersects the union of lower limits,
so in particular it intersects one of the lower limits, and this gives the claim. O

Remarks. (i) The first part of the proof is true for convergence in any given topology. It
is sufficient to consider sets from a generator of the topology, to decide if a point is a limit
of a net.

(ii) The closure of a set equals the intersection of the complements of open sets, disjoint
from the set, and this gives the second part in the proof.

Definition 3.3.3 (Three Lower Limits) Let {F)\} be a net of closed sets. We define

L.—lim Fy:=lim F) (the closure of the lower limit), (3.7)

L;—lim Fy:={z |V, 3z € F)\, x =limx,} (the individual limit) and, (3.8)

L,—lim F):= U F ( the mazimal lower limit), (3.9)
FeM

where M 1is the set of F' such that F' = [—1im F).

Theorem 3.3.4 (Convergence in the Lower Topology) A net of closed sets converges
towards a closed set in the lower topology iff the closed set is a subset of the mazimal lower
limit. The empty set is a lower limit of any net of closed sets. The closure of the lower
limit is contained in the individual lower limit, and

L,~lim Fy C L;—lim F) C L,,—lim Fy. (3.10)

The closure of the lower limit may be a strict subset of the individual lower limit. The
individual lower limit is the maximal lower limit for a sequence of closed sets in a first
countable space, and the closure in the definition of the individual lower limit is superficial.

Proof. The maximal lower limit is a lower limit, since it is the closure of the union of all
lower limits, and it is clearly maximal. The empty set is a closed subset of the maximal
lower limit, so it is a lower limit. Let x € lim F}, so there exist a Ay such that z € F, for
all A > Ag. Define ), = z if A > )¢ and pick z, € F) otherwise. This gives x = limx)
and L.,—lim F\, C L;,—lim F) - after closure. Now we prove that F;, = L;,—lim F) is a
limit. Let U be open and intersecting Fy. Pick x € U, with z) € F), and z = limux,.
This implies existence of a Ay such that z) € U, and so also F\(U # 0, for all A > Ay,
and the individual lower limit is a lower limit. Let x € F' and let U; be a countable basis
of decreasing open sets around x. We prove that x = limz,, for some z, € F,, when
F = [-lim F,. Because F' is a lower limit we have an increasing infinite sequence of
integers NV;, such that F,, intersects U; when n > N;. Select z, € F,,(\U; when N; < n <
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Nii1, and z, € F, when n < N;. This give z, € U; for all n > N;, so z,, — x, and
%n, € F,. This proves that L, —lim F, = L;—lim F, = {z | VYn, 3z, € F,, z = limz,},
in particular also that the last set is closed, when the space is first countable. Let z; = 1/3,
so x; converges towards 0 in the usual topology on the real line. Define F; = {z;}, so
L.—lim F; =0, and L,,—lim F; = {0}. O

Remarks. (i) In view of the proof of the possibility of L;—lim F,, # L.—lim F,, it is
tempting to consider only closed sets without isolated points.

Definition 3.3.5 (The Upper Topology) Let (X,7) be a topological space, and let Y
be the closed sets in X. The upper topology T, in Y s the coarsest topology such that

U,={AeY | ACU} (3.11)

is open when U is open. We write A = u—1lim A,, if the net {A)\} converges towards A in
the upper topology.

Theorem 3.3.6 (Intersection of Upper Limits) A finite intersection of upper limits
of a net of closed sets in a normal topological space is an upper limait.

Proof. We prove that the intersection F'()G is an upper limit if F' = u—lim F) and
G = u—lim F). Let W be an open set containing F'(|G. The normality gives two
disjoint open sets U and V, which separates the two disjoint closed sets F'(YW*¢ (D U) and
GOWe (DV). Thisgives FCUUW,GCcVUW,and W = (UUW)N(VUW). The
convergence gives a Ay such that Fy C U{JW when A > Ay, a Ay such that F\ C VW
when A > Ay, and finally a Ay (> Ay, Ay) such that F\, C W when A > Ap. O

Remarks. (i) A metric space is normal.

Definition 3.3.7 (Upper Limits?) Let {F\} be a net of closed sets. We define

U,~lim Fy:=1lim F) (the closure of the pointwise upper limit), and (3.12)
Up—lim F\ := ﬂ U F,, ( the modified upper limit). (3.13)
A pu>A

Theorem 3.3.8 (Upper and Lower Limits) If {F\} is a net of closed sets, then
L.—lim F) C L;—lim F)\ C L,,—lim F) C U.—lim F) C U,,—lim F). (3.14)

Proof. The first two inclusions are proved in Theorem 3.3.4. The last inclusion follows from
N Uasi € NuUss,» and closure. We assume F' = [—lim F) and prove F' C U.—lim F).
Let U be an open set which intersects F. It is sufficient to prove that U intersects lim Fy.
Let p;, be arbitrary, and let Ay be such that F) intersects U when A > A\y. Let u be a
majorant for {u1, Av}, so F, intersects U. Then there is an z € U () F},, and this z is also
in lim Fy. m

Remarks. (i) The closure of the upper limit contains any lower limit.
(ii) The set J,, Fx contains any lower limit and is also an upper limit.
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Theorem 3.3.9 (Convergence in the Upper Topology) Assume that F' = u—lim F)
for a net {F\} of closed sets in a topological space X. Any closed set containing F is also
an upper limit, and X 1is in particular an upper limit. If F' is given by the intersection of
the closures of open sets containing F', then Uy, —lim Fy C F. The modified upper limit is
contained wn any limit in the upper topology, if the space X is a metric space.

Proof. The only open set containing X is X, so X = u—lim F). Any open set containing
a superset of the limit contains the limit, and this gives the first claim. Let U be an open
set containing F'. Then there exists a Ay such that F)\ C U for all A > A\y. So we have
U)\>)\U Fy C U. The second assumption implies U,, —lim F\ C F, by taking intersections.
Let F' be a closed set in a metric space. For any x € F° chose an open ball U, containing
x and so that U, does not intersect F. Then F C V,:=(U,)¢, V, is open, and F equals

nwEFC Vw = nweFC(Uw)c- O

Remarks. (i) We do not claim that the modified upper limit is a limit in the upper
topology.

(ii) It is not clear from the above if there exists a unique minimal upper limit.

(iii) If F' = u—lim F) is a closed set in a metric space, then F' D (), F).

Definition 3.3.10 (The Upper Compact Topology) Let (X, ) be a topological space,
and let Y be the closed sets in X. The upper compact topology T, in'Y is the coarsest
topology such that

U, ={A€eY | ACU} (3.15)

is open when U is open and U® is compact. We write A = G4—lim A,, if the net {Ax}
converges towards A in the upper compact topology.

Remarks. (i) If X is a Hausdorff space, then U is open if U® is compact.

Theorem 3.3.11 (Convergence in the Upper Compact Topology) Let {F)} be a
net of closed sets in a topological space X. If F is an upper limit of {F\}, then F is
also an upper compact limit, in particular X = t—lim Fy. Any closed superset of a limit
in the upper compact topology s itself an upper compact limit. The modified upper limit
is an upper compact limit. Assume F = a—1lim F) to be the intersection of the closure of
open sets containing F', with the restriction that each of these open sets have compact com-
plement. Then U,—lim F\ C F. The modified upper limit is the minimal upper compact
limit, if the space X is a locally compact metric space.

Proof. The proof is almost identical with the proof of Theorem 3.3.9. We prove that
F:=Uyp~lim F) is an upper compact limit. Set G(A) :=J,» Fi:- Let U be compact and
so that U D F = (1, G(}), and so also U¢ C |J, G(A\). The compactness gives Aq,..., A,
such that (_, G(A;) C U. Chose a Ay > Ay,..., Ay, so G(Ay) C U. Finally we conclude
that F), C U for all A > A(U). O

Remarks. (i) This gives an essential difference between the upper and the upper compact
topology. The upper compact topology is weaker than the upper topology, and this gives
that the modified upper limit is an upper compact limit, but possibly not an upper limit.
(i) A closed set is an upper compact limit iff it contains the modified upper limit, when
X is a locally compact metric space.

(iii) If F' = 4—lim F) is a closed set in a locally compact metric space, then F' O [, F).

42



Definition 3.3.12 (The Vietoris Topology) Let Y be the set of closed sets in a topo-
logical space. The Vietoris topology 7, in 'Y s the coarsest topology containing the lower
topology and the upper topology. The weak Vietoris topology T3 is the coarsest topology
containing the lower topology and the upper compact topology. Corresponding limits will be
denoted by v—1lim F) and 7 —lim F}.

Theorem 3.3.13 (The Vietoris Topology is Hausdorff) Let Y be the set of closed
sets in a reqular topological space X. The Vietoris topology in Y is a Hausdorff topology.
If X s also locally compact, then the weak Vietoris topology in'Y is a Hausdorff topology.

Proof. Let F,G be two closed sets in X, with a point z € F(G*®. Since X is regular,
there exists an open set U containing z, and with U C G°. If X is locally compact, we

may ensure that U is compact. The two open sets U, ((U)¢),, are disjoint and separates
FG. 0

Remarks. (i) A metric space is regular.

3.4 Countable Tj-Separation

Theorem 3.4.1 (Ty-separation) Let Y be the set of closed sets in a topological space X .
The lower topology in'Y is a Ty-topology. If X s a Ti-space, then the upper topology and
the upper compact topology are Ty-topologies. The lower, the upper compact, and the upper
topologies are not Ty -topologies, if X contains a nonempty closed proper subset.

Proof. Let F,G be two closed sets in the topological space, with an « € F () G°. The
set (G°); is open in the lower topology, contains F' but not G. This proves that the lower
topology is a Ty-topology. Assume now that the space X is a 77 space, so that the set {z}
is a closed set. The set ({z}¢), is open both in the upper compact topology and the upper
topology, contains GG, but not F', so we have Ty-separation. The closed set X is an element
in any nonempty lower open set. A closed nonempty proper subset of X can then not be
separated from X with a set in the lower topology. The set of closed sets is the only upper
open set which contains X, so X can not be separated from any other closed set in the
upper topology. O

Remarks. (i) The empty set is an element in any nonempty upper open set.
(ii) The set of closed sets is the only lower open set which has the empty set as an element.

The result for the lower topology motivates a look on a trivial example. Let X = {0,1},7 =
{X, 0}, so X is not a Ty-space. We get Y = Pp =7 and 7; = {V, 0, {X}}. In essence the
procedure suggests the topology 7o = {{0,1},0,{0}} for X, which is a Ty-topology, but
not a Ti-topology.

Theorem 3.4.2 (The Lower Topology is Second Countable) The set of closed sets
n a second countable space is second countable in the lower topology.

Proof. Let B be a basis for the topology in X. Let Pr be the set of closed sets in X. Let
By be the set of lower open sets in Pr given by

[Uh,...,Un] = {F € Pp | Vi F(\U; # 0}, (3.16)
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for finite subsets {Uy,...,U,} C B. The set B; is a countable basis for the lower topology,
since U = |J; U; implies

(FIFO\U#0}=UtF | FO\U: 0}, (3.17)
O

Theorem 3.4.3 (Separating Lower Open Sets) IfY is the set of closed sets in a sec-
ond countable topological space, then'Y is a second countable Ty-separated space. The Borel
field in'Y gives Y as a o-separated measurable space.

Proof. Second countability is inherited and the lower topology is always Ty-separating.
The Borel field of a second countable Tj-space gives a o-separated measurable space. O

Theorem 3.4.4 (Separating Upper Compact Open Sets) If Y is the set of closed
sets in a o-compact, separable, metric space, then Y is Ty-separated by a countable family
of open sets from the upper compact topology in Y .

Proof. Let K, Ks,... be compact increasing sets, whose union is the metric space. Let
Dy, D,, ... be the sets given by the union of one K;° and a finite union of open balls with
rational radius and center in a countable dense set. If U;:={F € Y | F C D;}, then {U;}
is a countable Ty-separating family in Y. Countability of {D;} follows from countability
of {J C N | J is finite}. Let F' # G be closed sets with an z € F N G°. Set e:=d(z,G).
Chose a positive rational 7 < ¢, and a K; containing B:={y | d(z,y) < €}. Let D be the
countable dense set. Cover K := K;\ B with open balls with center in DN K and radius 7.
Compactness gives a finite subcover. Let D; be the union of this finite subcover together
with K;°. We have G C D; and F ¢ Dy, because z & D;. We conclude that G € U; and
F ¢ U;, and Ty-separation is demonstrated. O

The last theorem can be simplified in a more general setting if we consider the space
Y = P.(X), consisting of closed sets equal to the closure of their interior. The subscript e
indicates the word essential. Assume that the space X is a T} space with a countable dense
set D. {({z})y}, with € D, is a countable family of sets from 7,. that Ty separates Y.

3.5 Random and Nonrandom Random Sets

Definition 3.5.1 (Random Set) A closed, formally random set is a mapping from a
probability space into the set of closed sets in a topological space. A closed, formally random
set 3 is random if {w | L(w) U # 0} is measurable for any open set U.

Remarks. (1) {Z(U # 0} is an event if ¥ is a closed random set.
(i) A closed random set is a Borel measurable mapping from a probability space into the
set of closed sets, equipped with the lower topology.

Theorem 3.5.2 (Events from Closed Random Sets) If ¥ is a compact, random set
in a metric space, then {¥ C U} is an event when U is open. If ¥ is a closed, random set
in a metric space, then {3 C U} is an event when U® is compact. If the metric space is
o-compact, then {¥ C U} is an event when U is open.
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Proof. Let U be open and set U; = {z | d(z,U¢) > 1/i}, so U; C U4y and U = |J, U;. If
Y is a set of closed sets, then

U, ={FeY|FcU}={FeY|FcU,U} (3.18)

DUAFeY |FcU} =Ud{F eY | FN(U)* # 0} .
If we consider only compact sets, then the first claim follows because the D can be reversed.
This claim comes from F' C Ufi LU C U, which follows from the compactness of F. The
second claim follows likewise because d(F,U¢) > 0, when U* is compact. If the space X
is o-compact, then the upper open sets are o-algebra generated by the lower open sets,
compare:

)

=U{FeY |FNE#0}=U{FeY |FcC(F)}

=UiNA{F eY | FN(Uy)® # 0}.

{FeY|FcU} ={FeY |FNU*#£0}={FeY |FN;E) # 0}
¢ (3.19)

We used that any closed set U° can be written as a union of compact sets Fj, and the
previous construction. O

Remarks. (i) The generators of the upper compact topology are F, sets, relative to the
lower topology in the set of closed sets in a metric space.

(ii) The generators of the upper topology are G,s sets, relative to the lower topology in
the set of closed sets in a o-compact, metric space.

(iil) Possibility of the representation U = |J,U; = |J; U; can possibly give generalizations
beyond metric spaces.

(iv) It is easy to construct two closed (noncompact !) sets in the plane which are disjoint,
but not separated by a finite distance.

Theorem 3.5.3 (Upper Measurability Implies Lower Measurability) LetY be the
set of closed sets in a topological space, where every open set is a countable union of closed
sets. Let ¥ be a function from a probability space into Y. If {¥ C U} is an event when U
is open, then X is a closed, random set. If the topological space is o-compact and {¥ C U}
15 an event when U° is compact, then X is a closed, random set.

Proof. With the representation U = | J, F; we find:
U:={F |F((JF) #0} = U{F | F()F; #0} = U{F | F' C Fi“}° (3.20)

The second part in the claim holds because we can chose compact F;’s. O

Remarks. (i) The generators of the lower topology are F, sets relative to the upper
topology, if every open set is a F, set.

Definition 3.5.4 (Continuous Set Valued Mappings) A mapping from a topological
space into the set of closed sets in a topological space is said to be lower semicontinuous,
upper semicontinuous, upper compact semicontinuous, (Vietoris) compact continuous, or
(Vietoris) continuous if it is continuous with respect to respectively the lower topology T,
the upper topology 1., the upper compact topology T,., the modified Vietoris topology Ty,
or the Vietoris topology 7,.
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The following result are motivated by the study of ergodic Schrodinger operators. One of
the main features of these operators is that the spectrum and some of its components are
nonrandom, despite the randomness of the operator. We are addressing the question that
naturally comes up: Can we determine the nonrandom set? The following theorem gives
explicit formulas.

Definition 3.5.5 (Nonrandom Set) A closed random set ¥ is nonrandom if there exists
a fized closed set g such that P(X = Xg) = 1.

Theorem 3.5.6 (Locating a Nonrandom Random Set) Let X be a function from a
Borel probability space into the set of closed sets in a topological space. Assume that the
probability measure has a topological support supp P with P(suppP) > 0. Let D be a
subset of supp P such that P(D) > 0. Assume that % is nonrandom. If w — Y(w) is lower
semicontinuous, then

v= U 3w=] W), (3.21)

weSUPp P weD

with probability one. If w— Y(w) is upper semicontinuous into the closed sets in a metric
space, then

= ] 2w =[)ZW), (3.22)

wESUPP P weD
with probability one.

Proof. Set Qp = {w | X(w) = X} for the closed set ¥y which gives P(£y) = 1.

Assume lower semicontinuity. Let wy € supp P. Chose wy € U Ny for all open U > wy,
50 wo = limwy. Lower semicontinuity gives X(wp) = {—lim X(wy) and Xy = Uy E(wy) D
S(wo), 50 Uyesupp p Z(w) € Zo. The reverse inclusion follows from supp P (1 # 0.
Upper semicontinuity gives X(wp) = u—lim X(wy), so X(we) D [y Blwy) = Xy, and
Nuesupp » Z(w) D Bo. The reverse inclusion follows from supp P (0 # 0.

Let w bein D. Since D is dense in D there is wy in D with w = limw,. Lower semicontinuity

gives X(w) C U, X(w») and upper compact semicontinuity gives ¥(w) O (), X(wy). Both
cases imply the claims. O

Remarks. (i) The proof did only rely on the relations {—lim F) C |J, F, and 4—lim F) D
U, F&, so the continuity assumptions in the theorem are too strong. The last formula holds
for closed sets in a o-compact, metric space, if 3 is upper compact semicontinuous.

(ii) The set supp P may be complicated, and a strengthening of this theorem is often needed
in concrete applications.

(iii) The set D may be nonmeasurable or it may have zero measure.

(iv) The mapping > may be the identity mapping.

In the above theorem we have the assumption P(supp P) > 0, which may seem strange.
supp P is a closed set: Let ) — x, with z, € supp P. Let U be open and containing x.
The convergence gives a z,, € U, so P(U) > 0, so z € supp P, so supp P is closed. supp P
is contained in the intersection of all closed sets F' with P(F) = 1: F* is open and contains
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any point from F*. Since P(F¢) = 0, we have F¢ C (supp P)¢ and supp P C F. So far
we may be in a situation where supp P = (). To prove that P(supp P) = 1, we seem to
need some additional requirement. Assume that each union of open sets has a countable
refinement. Then we have P(supp P) = 1: Around each point z in (supp P)¢ we have
an open set Uy, contained in (supp P)¢ and with P(U,) = 0. Since we have a countable
refinement we have (supp P)¢ = J,U; with P(U;) = 0, so we have P(supp P) = 1. The
above assumption is satisfied in a second countable topological space and therefore also in
a separable metric space. First countability and separability do not seem to be sufficient.

A natural question is the characterization of supp P. If we let (X;),7 € N, be a real valued
stochastic process, then we get a natural measure P on the direct product 2 = RN, If the
variables are i.i.d., then we get supp P = (supp PO)N. P, is the common distribution of
the variables X;. Can we get a similar formula in a more general situation, say with the
i.i.d. assumption replaced by ergodicity?

3.6 Concluding Remarks

We have discussed some properties of topologies and o-algebras on power sets. Our dis-
cussion is motivated by corresponding natural questions in the spectral theory for random
operators. There are many other natural questions that comes up from a more general
point of view. We have not attempted to give a general systematic introduction to the
subject. It is nontheless our hope that the reader can recognize that the subject is of some
interest in its own right.

The separate study of the upper compact and lower topologies is motivated by continuity
properties of the spectrum of an operator. Let Ty — T. Let Fy:=0(T)) and F:=0(T).
If the convergence is in the gap topology, then our results give F' O U,,—lim F), and F' =
U,,—lim F) is possible. If we restrict the gap topology to bounded operators we obtain the
more common norm topology. If the convergence is for a sequence of selfadjoint operators
in the strong resolvent topology, then we have obtained F' C L;—lim F,, C U,,—lim F,.

The results for the topologies and the separation properties resolve similar problems for the
spectrum of random operators. Of particular interest are the formulas for the nonrandom
sets. The case of lower semicontinuity has been applied for the determination of the
spectrum of an ergodic selfadjoint operator. The case of upper semicontinuity has not yet
found an application, but it suggests a way to attack the corresponding problem for parts
of the spectrum that are believed to shrink when supp P increases. An example is the
absolutely continuous spectrum.

A first course in point set topology includes generic methods of constructing new topological
spaces from old ones, the prototype being the initial or final topology of a given set of
functions. The construction of topologies on power sets provides another generic method.

3.7 Notes

The concept of topologies for spaces of sets, also called power sets or hyperspaces, is
certainly not a new one. The first steps in this direction was perhaps taken by F. Hausdorft
[67, §28] and L. Vietoris [135], which give rise to corresponding names on these topologies.
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More recently the concepts have found applications in connection with image processing
[15].

A standard reference for topologies on power sets is [103], which is hereby recommended
for further reading. Books on general topology has little about the subject, but there are
two notable exceptions: Kuratowski [92] and Bourbaki [29]. In Bourbaki the subject is
covered in the following exercises: 1:2.7 3.10 3.16 5.7 8.12 8.29 9.13 9.14 10.20 11.18 11.24;
IT: 1.5 2.6 3.7 4.11 4.15; IX: 2.6 2.21; X: 1.7. In the above 1:2.7 means exercise 7 in § 2 and
chapter I and so on.

In [32] the Hausdorff topology, which is Hausdorff, is treated, starting from the concept of
uniform or metric topologies.

The treatment of the upper and lower topologies separately does not seem to be a standard
approach, maybe because they so explicitly give non-Hausdorff spaces. The topologies we
have described are related to the concept of order topologies [77, p.57, ex.I], [62]. Upper and
lower limits of sequences of sets are also mentioned briefly in [71, p.100-103], in connection
with connected sets.

Set valued functions are also called multifunctions by some authors. Semicontinuity and
measurability of multifunctions are the subject in [98]. Measurability properties of spectra
of bounded operators are discussed in [95]. [12] treats separation properties for hyperspaces.
[36] contains material on topologies and o-algebras on power sets.

The general notions of topological spaces and nets are used (almost) as defined in Pedersen
[110].

Any topological space may be defined entirely from the concept of converging nets in the
space. The idea is that a closure operation is defined from the limits of nets. There are
restrictions on what sets of converging nets are to satisfy. A constant net must for instance
always converge to the constant. The other three sufficient and necessary conditions are
found in Willard [138, p.77, ex. 11D].

In Definition 3.2.4, pointwise convergence of sets, it seems reasonable that the lower and
the upper pointwise convergence concepts come from two topologies. I have just not found
time to check this out.

The naming conventions are my own, by necessity, since I have not found a separate
treatment of the lower topology elsewhere. I do not know if the individual lower limit
always is the maximal lower limit, or if the closure is needed in the definition of the
individual lower limit.

Convergence of closed sets, in the sense given by the individual lower limit, is used in
Weidmann [136, p.272] to describe a perturbation result for the spectrum, and the es-
sential spectrum, of selfadjoint operators. Related problems caused my interest in the
consideration of convergence of closed sets.

Theorem 3.3.6 gives that the intersection of two upper limits is an upper limit, if the space
is normal. More on normal spaces is found in Kelley [77, p.112, 120, 127,132-134], in
particular the claim on normality of a pseudo-metric space.

The upper compact topology, with the corresponding modified Vietoris topology, is perhaps
introduced here for the first time. Kato [75, p.209, line 3-4] refers to the corresponding
continuity of set valued functions by “...%(T) is upper semicontinuous in a slightly weaker
sense.” The continuity of the mapping which maps a closed operator to its spectrum
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motivated a closer look at the upper compact topology.

[75, p.208, Theorem 3.1] can be consulted to verify the claims about the spectrum of closed
operators equipped with the gap topology. The spectrum is an upper compact mapping,
and this is why we considered the upper compact topology in the first place. It turned out
that this topology has nice properties.

The proof for the nonrandom set, in the case of lower semicontinuity, is abstracted from
[79, p.305].
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Chapter 4

Lebesgue-Hammer Decomposition of
Random Measures

We consider random measures, motivated by the spectral theory of random
Schrédinger operators. The randomness of the Lebesgue-Hammer parts of a
random measure is proven. Several topologies in a set of measures are con-
sidered, including in particular the pointwise topology and the weak topology.
Finally we consider how decompositions behave under perturbations.

4.1 Introduction

Let H be a random selfadjoint operator. Any vector f in the Hilbert space gives a random
measure py,

p(A) = (f,1a(H)f). (4.1)

Let {e1,€9,...} be an orthonormal basis in the Hilbert space. A spectral measure for H is
then given by

pA) = pe(A)/27, (42)

again a random measure. We mention also the density of states measure, also a random
measure given from a random Schrédinger operator. There has been considerable interest
in the spectral decomposition of random Schrédinger operators H, given by the Lebesgue-
Hammer decomposition of the spectral measure. Motivated by this we consider Lebesgue-
Hammer decomposition of random measures.

We define the concept of random measures, and give a slightly simpler condition for the
randomness of a finite measure on a countably generated o-algebra.

The Hammer and the Lebesgue decompositions of a measure are defined. The Hammer
decomposition represents a o-finite measure as an orthogonal sum of an atomic measure
and a continuous measure. We prove that the atomic and the continuous part of a finite
random measure on a countably generated o-algebra are random measures. Let m be a
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reference measure. Any measure p is then the unique sum of an m-continuous part pi,.
and an m-singular part . This is the Lebesgue m-decomposition of . We prove that A,
and A, are random measures, if A is a finite measure on a countably generated o-algebra.
We prove that an atom may be represented by a single point in a o-separated space. The
section closes with an example of a family of singular continuous measure with topological
support equal to [0,1].

Several topologies for sets of measures are defined.We state and prove the Vitali-Hahn-
Saks theorem for the pointwise convergence of a sequence of complex measures. Weak and
vague convergence are compared. We recall some necessary and sufficient conditions for
weak convergence of a sequence of finite Radon measures on a metric space.

The behavior of the spectral decomposition of a measure under perturbation is best de-
scribed as “wild”. First we prove denseness of the pure point measures M, in the product
topology. This means that a pure point measure may easily appear if any measure is per-
turbed slightly. On the other hand M, is closed in the norm topology and also sequentially
closed in the product topology. Given a continuous reference measure we prove that the
set of absolutely continuous measures is a closed set with empty interior in the product
topology. Then the spectrum of a measure is defined to be the topological support of the
measure. We prove that the Lebesgue-Hammer parts of the spectrum only depend on the
measure class of the measure. Finally we give conditions which ensure the randomness of
the Lebesgue-Hammer parts of the spectrum of a random measure.

4.2 Random Measures

Definition 4.2.1 (Random Measures) A random measure u is a mapping from a prob-
ability space into the set of measures on a given o-algebra, so that u(A) is a random number
in [0, 00] for all measurable sets A.

Remarks. (i) Complex random measures, finite random measures, and random probability
measures are defined likewise.

Let E denote a suitable set of abstract measures, e.g. the space of complex measures on
a given o-algebra F. A c-algebra G may be defined on E as the initial o-algebra of the
family of mappings given by E 5 pu +— u(A), A € F. The E is then a measurable space
of measures. The definition of a random measure coincide with the definition of E valued
random variables, as given by G. We note that the image measure of a random measure
realizes the space of measures as a probability space.

It is sufficient to consider measurability on a generating algebra.

Theorem 4.2.2 (Finite Random Measures) A finite formally random measure u is a
random measure iff p(A) is a random number for all A in an algebra of sets which generate
the o-algebra.

Proof. Let F be the o-algebra generated by the algebra A. Define G to be the set
of measurable A, such that u(A) is a Borel random variable. The assumption is that
A C G. Let A, be a monotonely decreasing sequence from G. Because p is finite, we get
(N, An) = lim, u(Ay), which is a Borel random variable, so (), A, € G. Let A, be a
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monotonely increasing sequence from G. We get p(lJ,, An) = lim, u(A,), which is a Borel
random variable, so | J,, A, € G. The conclusion is that G is a monotone class and G D F,
which gives the claim. O

4.3 Decomposition of Measures

In this section we will study decomposition of measures associated with the names Hammer
and Lebesgue. We will in particular give explicit formulas which determine the decompo-
sitions.

Definition 4.3.1 (Atom) A measurable set is an atom if it is not empty and the empty
set is the only measurable subset. Let i be a measure. A measurable set A is a p-atom if
u(A) # 0 and if F C A implies u(F) = 0 or u(F) = u(A). A measure p is continuous,
or equivalently it is nonatomic, if there are no p-atoms. A measure p is atomic if any
measurable set F with u(F) > 0 contains a p-atom.

The Dirac measure 6, is defined by §,(A) = 14(z). If {z} is measurable, then it is a
d,-atom and also an atom. The usual Lebesgue measure on [0, 1] is continuous.

Assume that u(F) < oo and that F' does not contain any p-atom. Then, given any € > 0,
there is a set A C F such that 0 < u(A) < e. Furthermore, given any 0 < ¢ < u(F), there
is a set A C F' with u(A) = ¢, which follows from an application of Zorn’s lemma. These
properties justify the definition of a continuous measure as being a nonatomic measure.

If F is the discrete o-algebra of an uncountable set and we consider the measure given by
w(0) = 0 and p(A) = oo otherwise, then we have an uncountable number of p-atoms with
measure co. This is in some sense the worst possible case, as indicated by the following
theorem.

Theorem 4.3.2 (Number of Atoms) Let u be a o-finite measure. Any family of dis-
joint sets with positive p-mass is countable. Any family of disjoint p-atoms is countable.
A p-atom has finite mass.

Proof. Let E be a set with finite measure and let A be a family of disjoint subsets of E
with positive measure. We prove that A is countable. The set {A € A | u(A) > €} is
finite for any given € > 0, since otherwise we would get p(E) = oo. This implies that
A=, {4 € A| u(A) > 1/n} is countable.

Now let A be a family of disjoint sets with positive measure. We will prove that A is
countable. Since u is o-finite, the space is a countable union of disjoint sets K; with finite
measure. The previous result gives that A; = {A € A | u(ANK;) > 0} is countable.
The relation A = [J,(A( K;) and the countable additivity proves A = |J; A;, which is
countable. In particular we also have that any family of distinct p-atoms is countable,
since we may assume that the atoms are disjoint, after a modification with zero sets.

We finally prove that a u-atom has finite mass. Assume that A is a set with infinite mass.
The o-finiteness implies that we can find disjoint sets K;, K5, ... with finite mass such that
A =UJ; K;. The countable additivity gives a j such that 0 < pu(Kj) < oo, which implies
that A is not a p-atom. O
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We will abuse the language slightly and speak of “the” family of atoms. It is only unique
when we consider the family of equivalence classes [A] of atoms, two atoms A and B being
equivalent when u(AA B) = 0. If A and B are p-atoms, then we have either u(AA B) =0
or p(A(B) = 0. In the last case [A] and [B] may be represented by A = A and B = B\ 4,
two disjoint p-atoms.

Definition 4.3.3 (Hammer Decomposition) Let (2, F, u) be a o-finite measure space
with p-atoms Ay, Ag, . ... The set Q, = J; A; is the p-atomic part of Q and the set 0, = Q,°
18 the u-continuous part of (1. We define the continuous part . and the atomic part p, of

p by pe(E) = p(EN Q) and po(E) = p(E Q).

Remarks. (i) Clearly p = uq + pte, and the decomposition is unique.

(ii) ©, and 2. are not unique.

(iii) Two projections 7, and 7, are defined on the set of o-finite measures on a given o-
algebra, from 7, (p) 1= pg and w.(p) := pe.

(iv) Note m,(cu) = emy(p) and 7o (p + X) = mo (1) + 74 (A), and similar for ...

The following characterization is more constructive.

Theorem 4.3.4 (Continuous Part of a Finite Measure) Let u be a finite measure.
The continuous part of 1 is given by

pelA) = m e (4), [41,(4) =sup S p(4), (4.3)

where the supremum is taken over all finite families of disjoint measurable subsets A; of
A, each subset satisfying p(4;) < 1/n.

Proof. Set fn(A):=|p|,(A). We have p(A) > fi(A) and fr(A) > fat1(A) > 0, so the limit
f(A) = lim,, f,,(A) exists. This means that f is a well defined function from the o-algebra
into [0,00). Each f, is finitely additive, since p is finitely additive, so f is also finitely
additive. We also get f(#) = 0 and f is continuous at ), so f is a finite measure. Each
|1/, is also a finite measure.

Let A be a subset of the continuous part €2, of the measure space, so A contains no u-
atoms. We may partition A into N sets, each with measure p(A)/N, with an arbitrary N.
This follows, because we may select one subset of A with measure p(A)/N, and continue
this process on the relative complement. The conclusion is that u(A) = f,(4) = f(4).
Let A be a subset of the atomic part Q, of the measure space. If u(A) > 0, A is a
countable union of p-atoms A4; and we get f(A) =37, (4,)<1/n #(Ai). In any case we get
f(A) =lim f,(A) = 0, since the tail in a converging series converges to zero.

Finally we get £(4) = f(ANQ) + F(AN W) = u(AD), 50 f = e .
This theorem does also give a formula for the atomic part of the measure, from p, = p— pe.
The formula is not valid for o-finite measures, as can be seen from the measure on the

integers given by p({n}) = 1/n. In the above notation we get lim f,({k}) = 0 for all
integers k, but f,(N) = oo, so the limit of f,, can not define a measure.

Theorem 4.3.5 (Atomic and Continuous Part of a Finite Random Measure) The
atomic and the continuous part of a finite random measure on a countably generated o-
algebra, are random measures.
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Proof. This follows from Theorem 4.3.4, when we observe that the supremum can be taken
over a countable set, given by the countable algebra which generates the o-algebra. O

Definition 4.3.6 (Singular Measures) A set A is p-thick if all disjoint measurable sets
have zero p-mass. A measure is concentrated on a set if this set is measurable and thick.
Two measures p and v are mutually singular , written p L v, if they are concentrated on
two disjoint sets. A measure v is u-singular if v is concentrated on a set A, with u(A) = 0.

If A is p-thick, then A can be realized as a measure space by u(A() B):=u(B). We note
that the continuous and atomic parts of a o-finite measure are mutually singular. The
Hahn decomposition of a measure space into two measurable sets states that the positive
and negative variations of a real measure are mutually singular. We have that v is pu-
singular iff p L v. If given any € > 0, we can find a set F with u(F) < € and v(F*¢) < ¢,
then we have 1 | v. This result makes sense to the term “uniform singularity” of a family
of measures with respect to a given measure.

Definition 4.3.7 (Absolute Continuity) Let u and v be measures. The measure v is
absolutely continuous with respect to p, written v < p, if u(F) = 0 implies v(F) = 0 for
all measurable sets F'. A measure v is p-continuous if for any given € > 0 there exists a
d > 0 such that v(A) < € for all measurable A such that pu(A) < 6.

If v is p-continuous, then v < u, because v(A) is bounded by all positive numbers when
p(A) = 0. The reverse implication holds if v is a complex measure. Let p be a measure.
The set of u-singular complex measures and the set of y-continuous complex measures are
vector spaces. The Lebesgue decomposition of a finite measure A gives the measure as a
unique sum of a p-continuous part A,. and a p-singular part A,. If f is a p-integrable
function, we denote the integral by u[f]. This notation emphasis that a measure u gives a
linear functional on the vector space of u-integrable functions. In this notation we have in
particular u(A) = p[l4]. If u is o-finite, then any p-continuous complex measure A is given
by A(A) = p[f14], which is the Radon-Nikodym theorem. The function f is integrable and
uniquely (u-a.e.) given by A. The Lebesgue decomposition is also given by the following
formula.

Theorem 4.3.8 (Singular Part of a Finite Measure) Let u be a measure and let A
be a finite measure. The p-singular part of A is given by

As(4) = lim fo(4), fa(4):=sup{A(A[)B) | u(B) < 1/n}. (4.4)

Proof. We have A\(A) > fi(A) and f,(A) > fri1(A) > 0, so the limit f(A) = lim, f,,(A)
exists, so f is a well defined function from the o-algebra into [0,00). The f,’s and f are
monotone in the sense that F' C G implies f(F) < f(G). We prove f = A,.

Let A = A; + Ay be the Lebesgue p-decomposition of A\. This gives the inequality
MANB) < As(A) + Aae(B). Let € > 0 and chose n so that A\,.(B) < € for all B such that
w(B) < 1/n. This gives f(A) < fo(A) < As(A) + €, which implies f < ).

Let F' be such that p(F) = 0, which implies f(F) = f,(F) = A(F) = A\;(F). Chose S
such that p(S) = 0 and A,(S¢) = 0. We have A\,(4) = A,(ANS) = f(ANS) < f(A), so
As < f. The conclusion is f = A,. O
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Remarks. (i) Fix a reference measure on a o-algebra F and consider the family F' of
finite measures on F. Two projections 7, and 7, are defined on F' by 7m,(A) = A, and
Toe = 3d —T5.

(ii) Note ms(cA) = cms(A), ms(A + ) = 75(A) + 75(p), and likewise for mg,.

Theorem 4.3.9 (Random Singular and Absolutely Continuous Part) Fiz a refer-
ence measure [ on a countably generated o-algebra. The u-singular and the p-continuous
part of a finite random measure are random measures.

Proof. This follows from Theorem 4.3.4, when we observe that the supremum can be taken
over a countable set, given by the countable algebra which generates the o-algebra. O

Remarks. (i) The above holds also with a random reference measure.

Let u be a measure and ) a finite measure. If we combine the Hammer decomposition and
the Lebesgue decomposition we have a decomposition of A into four parts, concentrated
on four disjoint sets. Atoms may be complex sets. To arrive at a simpler description of
atoms we need less general o-algebras.

Theorem 4.3.10 (Atoms are Points) Let ) be a o-separated measurable space. If x €
Q, then {z} is a measurable set. If A C Q is a p-atom, then there is a unique pointa € A
such that {a} is a p-atom.

Proof. Let F; be separating measurable sets. Define X; = F; or X; = F;° so that z € X;.
We have {z} =", X;, which is measurable.

We may assume that A = €2, by consideration of the restriction to A. Define A; = F; or
A; = Fi® so that u(A;) = p(A). There is then at most one element a in (), A;, and there
is one element because p(((); 4:)¢) = 0. O

Let u be a continuous measure on a o-separated measurable space. We note that a u-
continuous measure is continuous. Any finite measure A may be uniquely decomposed in a
p-continuous part A, a p-singular and continuous part A, and a p-singular and atomic
part Ap. In light of the previous formulas for A, and A, we note that A\, = A\, = A = A,
Aae = A= Agy and Ao = Ay — Ay = A+ Ac — A = (). If a measure is equal to one of
its components, then we say that it is a pure absolutely continuous measure, a pure point
measure or a pure singular continuous measure, depending on the component in question.

Pure point measures are trivial to construct. The Radon-Nikodym theorem gives pure
absolutely continuous measures. Pure singular continuous measures are more exotic and we
will therefore give two examples. We consider the interval [0, 1] with Lebesgue measure m
on the Borel sets. Let F' be a right continuous nondecreasing real valued function on [0, 1].
This F is the distribution function of a unique Borel measure A on [0, 1], A([0,z]) = F(z).
A point a is a M-atom iff F'(a) — F(a—) # 0, and A is continuous iff F' is continuous. The
A is relatively singular to Lebesgue measure iff F/ = 0 Lebesgue almost everywhere, and
then F' is also said to be singular.

Let F' be the Cantor function which is continuous, is constant on a set of Lebesgue measure
0, and increases from 0 to 1 on the Cantor middle third set E. The corresponding measure
is singular continuous and concentrated on E. We note that E is closed, and in particular
it is not dense in [0, 1].

Let F be the set of numbers y in [0, 1] in which the frequency of the number 1 in the dyadic
expansion y = ., z;/2" tends to p € (0,1) \ {1/2}. The set E has Lebesgue measure 0,
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is uncountable, and is dense in [0,1]. We will construct a singular continuous measure A
concentrated on E from Bernoulli trials. Let X5, X5, ..., be i.i.d. random variables, which
take the value 1 with probability p and the value 0 with probability ¢ = 1 — p. Define A
to be the distribution of Y = Y, X;/2". The claim follows from the law of large numbers,
where we note that we have excluded the case p = 1/2, because this gives the Lebesgue
measure. We will also describe the distribution function of A. Define fo(z) = z. Let f,
be piecewise linear between points @ = k27" and 8 = (k + 1)27™. Let fo1(z) = fo(2)
at these points, whereas at the midpoint of these segments, that is, at the new points of
division, let fri1((a+8)/2) = pfa(c)+qfn(B). Define F, as the pointwise limit of f,. This
F, is continuous, strictly increasing, and F}, is the distribution function of A. We finally
note that any h € L'([0,1],)\) gives a singular continuous measure from A — \[14A].
The conclusion is that singular continuous measures are quite typical. A plot of some of
the singular continuous Bernoulli distributions F), is given in Figure 4.1. This example
does also give A, a singular continuous measure, as a weak limit of absolutely continuous
measures \,, corresponding to f,.

4.4 Convergence of Measures

Let M be the set of complex measures on a given o-algebra F. We observe that M is a
subset of the direct product C”. The product topology on M is defined by demanding
continuity of the mapping pu — p(A) for any A € F. Convergence of measures in the
product topology is pointwise convergence.

Theorem 4.4.1 (Vitali-Hahn-Saks) Let v, be a pointwise convergent sequence of com-
plex measures on a o-algebra F. The limit lim, v,(A) defines a complex measure. Let
be a measure on F. If all the v, are p-continuous, then they are uniformly p-continuous
and the limit is p-continuous.

Proof. Assume first p-continuity of all v,. The measure u defines a complete metric space
X (p) consisting of equivalence classes of measurable sets. The distance is given by the
measure of the symmetric difference, and two sets are equivalent if this distance is zero. A
measure is p-continuous if and only if it gives a well defined continuous function on X (u).
The convergence and continuity give X as a countable increasing union of closed sets

X = NAex |- <e, (4.5

n ij>n

for any given € > 0. The Baire category theorem gives that one of these closed sets
contains an open ball. Therefore there exist an r > 0, a measurable set A, and an n
so that u(AAC) < r implies that |(v; — v;)(C)| < € for all 4,5 > n. The identity B =
[AUB]\ [A\ B] gives the identity

vi(B) = va(B) + [1:(B) — va(B)

= v(B) + (v — va)(AUB) — (i — 1) (A \ B). (4.6)

Choose ¢ < r such that v;(B) < efori=1,...,n for all B fulfilling u(B) < . The identity
implies that we have v;(B) < 3¢ for all 7 and such B, so the v; are uniformly p-continuous.
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Bernoulli Distributions
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Figure 4.1: Bernoulli distributions are mutually singular, continuous, and strictly increas-
ing. The graph located in the upper left corner corresponds to p = 1/100 and the graph
located in the lower right corner corresponds to p = 99/100.

The first statement in the theorem follows from the trick p(A):=3",27%y;|(A4)/|u](Q).
This defines a finite measure p and all v, are u-continuous. Let v denote the complex
valued additive set function defined by v(A) = limy;(A). The claimed o-additivity follows
from continuity at . Let A, converge monotonically towards ). We will prove that
limv(A,) = 0. Let € > 0 be given. Because y is finite we have lim p(A;) = 0. This and
the uniform p-continuity give an n such that v;(A;) < € for all 4,5 > n. The convergence
implies v(A;) < e for all j > n, so v is a measure.

The p-continuity of v is equivalent with absolute continuity of v with respect to u, because
v is finite. That v < p follows from the implications: p(A) = 0 implies v,,(A) = 0 for all
n which implies v(A) = limy,(A) = 0. O

The Vitali-Hahn-Saks theorem is powerful, but it does not imply that M is closed in
C7, since it only involves sequences. The product topology on C” contains many open
sets, because F typically is uncountable, and then it is not first countable. In particular
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this implies that sequences is unsufficient for the description of convergence. The product
topology on M is also typically not first countable. This is not a self evident fact, but
follows from facts below.

Measures on topological spaces are important and deserve special names.

Definition 4.4.2 (Baire, Borel, and Radon Measures) A Borel o-algebra is the small-
est o-algebra containing a specified topology. A Baire o-algebra is the smallest o-algebra
on a topological space, such that the real valued continuous functions are measurable. A
Borel space is a topological space equipped with the Borel o-algebra. A Baire space is a
topological space equipped with the Baire o-algebra. A Borel measure p is a measure on a
Borel o-algebra, and is inner reqular iff p(A) = sup{u(K) | K compact subset of A}. A
finite Radon measure is a finite, inner reqular, Borel measure.

Remarks. (i) The Baire o-algebra is contained in the Borel o-algebra, but in a metric
space there is no difference.

Convergence of measures is a fundamental concept. We single out the following possibilities
for convergence of measures.

Definition 4.4.3 (Convergence of Measures)

(a) Norm Convergence. Let A be a complex measure and define ||A|| :=sup |A(4)|, with

supremum taken over all measurable sets A. We write A = n—1lim A, iflim ||A, — A|| =
0.

(b) Pointwise Convergence. Consider measures or compler measures. We write A =
p—lim A, if im A\, (A) = A(A) for all measurable A.

(c¢) Pointwise Convergence on a Generating Algebra. Consider measures or complex
measures on a o-algebra generated by the algebra A. We write A = pg—lim A, if

lim A, (A) = A(A) for all A € A.

(d) Weak Convergence. Consider complex measures on a Baire or a Borel o-algebra. We
write A = w—lm A\, if im A, [f] = A[f] for all bounded continuous functions f.

(e) Vague Convergence. Consider measures or complex measures on a Baire or a Borel
o-algebra. We write A = v—lm A, if im A, [f] = A[f] for all continuous functions
f with compact support.

Weak convergence is sometimes referred to as weak* convergence, which is natural when
the complex measures are viewed as linear continuous functionals on Cj equipped with
supremum norm. The same view also leads to the norm topology, from the norm on the
functionals.

Let M be the set of complex measures on a given o-algebra. The above ||-|| makes M into
a Banach space. Let 2 be the measurable space. The finiteness of |u|(§2) proves that the
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norm is well defined, and the total variation may in fact be used to define an equivalent
norm on M. That ||-]| actually is a norm follows from the injection of M into [*°(F).
The completeness may be proven directly, but follows easily from the Vitali-Hahn-Saks
theorem, since norm convergent or norm Cauchy sequences have corresponding pointwise
properties.

Any norm convergent net of complex measures is also pointwise convergent, so the norm
topology is stronger than the pointwise topology. Evidently pointwise convergence implies
pointwise convergence on any generating family. Pointwise convergence on a generating
family A does not imply pointwise convergence on the algebra generated by .A. This is seen
from the example given by the sequence of Dirac measures d,,, which converges pointwise
to zero on A = {{n} | n € N}, but §,({m}¢) — 1 for all m € N. Clearly weak convergence
implies vague convergence. This implication can be reversed with additional assumption.

Theorem 4.4.4 (Weak and Vague Convergence) Let p, ji1, o, - . . be finite Radon mea-
sures on a locally compact Hausdorff space. If p = v—lim p, and p[l] = lim pu,[1], then
p=w-lim p,.

Proof. Let f € Cy and € > 0. Chose u € C,, 0 < u < 1, such that u[l — u] < e. We get

il f1 = )] = alf] = ] + (1 = w)f] = (L = w) ) (@)

= |un[fu] — p
< |pnlfu] = plfu]| +2¢[|fll, 7 > Ne.

This proves the claim, because fu € C.. We used |p[f(1 —u)]| < ||flln[l — u], and
similarly for p,. Existence of N, follows from p,[1 — u] = pn[l] — pn[u] = p[1 — u] and
the assumption on u. Existence of a proper u follows from inner regularity and Urysohn’s
Lemma. Inner regularity gives a compact K such that u[1 —1x| < € and Urysohn’s Lemma
givesau € C,withu=1on Kand 0 <u<1. O

In a metric space we can give a explicit formula for a suitable u as required above. Define
g by g(z) =1for x =0, g(x) =0 for z > 1, and connect linearly between (0,1) and (1,0).
Let d be the metric and set u(x):=g(d(z, K)/t), with any positive number ¢. This u is
supported in any given neighborhood of K if we select a small ¢.

Regularity of a finite Borel measure on a locally compact Hausdorff space follows from the
Riesz representation theorem, if we assume that every open set is o-compact. Any finite
Borel measure on a separable, complete metric space is a Radon measure.

Let the real sequence z, converge towards z. The sequence ¢,, of Dirac measures con-
verges weakly towards d,, but d,, does not in general converge pointwise. That pointwise
convergence implies weak convergence is a consequence of the following.

Theorem 4.4.5 (Weak Convergence) Let u, iy, pio, - .. be finite Radon measures on a
metric space. Let A be a family of measurable sets which is closed under finite intersections
and is such that any open set is a countable union of sets from A. If lim p,[1] = p[l] and
lim p,, (A) = p(A) for all A in A, then w—lim p, = p. Convergence p = w—lim p, is
equivalent with any of the following:

(i) im pi,[1] = p[1] and im p,(F) < u(F) for all closed sets F'.
(1) lim py, [1] = p[l] and lim p,(U) > p(U) for all open sets U.
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(i11) lim p, (A) = u(A) for all measurable A with u(0A) = 0.

If given € > 0 there exists a compact K such that sup,, u,(K¢) < € and sup,, uy[1] < oo,
then there exists a weakly convergent subsequence.

Proof. See the references in the notes. The last part is known as Prokhorov’s theorem. O

Remarks. (i) The first part in the theorem describes a convergence determining class of
sets.
(ii) The sequence in Prokhorov’s theorem is said to be uniformly Radon, or tight. The

converse does also hold: Any weakly convergent series of finite Radon measures is uniformly
Radon.

Consider now the set M of complex measures on a o-algebra generated by a countable
algebra A. A complex formally random measure p is a random measure iff ;(A) is a Borel
random variable for all A € A. We equip M with a topology given by the metric

d,v) = 3 27 min(L, | (u — )(A,))), A= {41, As,...}. (18)

That d(u,v) = 0 implies o = v follows because a complex measure is determined from its
values on a generating algebra. Convergence p 4—lim p,, = p is equivalent with convergence
in the above metric. The metric makes M into a separable metric vector space, and the
corresponding Borel g-algebra defines the set of random measures. If pq, o, . . . are complex
random measures and u = p4—lim y, for almost all realizations, then p is a random
measure.

4.5 Decompositions and Perturbations

Theorem 4.5.1 (Denseness of Pure Point Measures) Let M be the set of complex
measures on a o-separated space. In the product topology, the set M, of complex pure
point measures is dense in M, but sequentially closed. M, is closed in M in the norm
topology. M 1s separable in the product topology, and therefore also in any weaker topology.

Proof. Let A be a finite family of measurable sets. Then there exists a finite family B
of disjoint measurable sets, such that any member in A is a union of some members in
B. The neighborhood of a complex measure p is completely described by open sets of
the form Uy = {v | [v(E) — u(E)| < ¢, YE € A}, where € is a positive number. This
follows directly from the definition of the product topology. Choose B as above and define
v:=3) pep WE)de, where different e’s in different E’s are picked for each nonempty E in
B. Given F in A, we have Ey,...,E, from B, with E = |J, E;, so u(E) = ), u(E;) =
> V(E;) = v(E), and v is in Uy. This proves that the set of pure point measures is dense.
Since we only needed a finite number of atoms, it follows also that the set of complex
measures is separable in the product topology.

Let p1, 2, - . . be complex pure point measures, concentrated respectively on countable sets
My, My, .... Let M =J, M;, which is countable, and observe that lim y;(M¢) = 0, so any
possible pointwise limit is concentrated on a countable set, and is therefore a pure point
measure. Since norm convergence implies pointwise convergence, this also implies that the
set of complex pure point measures is closed in the norm topology. O
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Remarks. (i) If there exists a complex measure on the given o-algebra, that is not
pure point, then it follows that the product topology on the corresponding set of complex
measures cannot be first countable.

(ii) If the family A above has n members, then B may be chosen with 2" — 1 members,
some of which may be the empty set.

(iii) The approximating pure point measures above have a finite number of atoms, and may
be chosen with total mass equal to the mass of the measure being approximated, which in
particular is relevant for probability measures.

(iv) Any finite measure may be perturbed into a pure point measure, arbitrary close in the
product topology.

Theorem 4.5.2 (The Space of Absolutely Continuous Measures) Let M be the set
of complex measures on a o-separated measurable space. Fix a reference measure m. In
the product topology, the set M. of absolutely continuous complex measures and the set
M. of continuous complex measures are closed vector spaces in M. If m is continuous,
then M,. C M_, and the interiors of both are empty.

Proof. Let m be the measure with respect to which absolute continuity is defined. Let
{p.} be a net of complex measures, which converges towards u. Let m(E) = 0, and let A
be any measurable subset of E. Then p(A) = lim p,(A) = 0, if p, < m, so |p|(E) =0, and
p < m. This proves closedness of M, in the product topology. Now assume p,({a}) =0
for all ¢ and a given point a. Then u({a}) = limy,({a}) = 0, so M, is closed, where we
have used that the underlying measurable space is o-separated. The vector space claim is
clear.

When m is continuous and p < m, then m({a}) = 0 = u({a}), so p is continuous, and
My € M. Let U be an open subset of the set of continuous measures. Since the pure
point measures are dense and not absolutely continuous, U is empty. O

Remarks. (i) If we restrict the product topology to M., then M, will still be a closed
subspace. It is not clear from the above whether the interior of M, in M, is empty or
not.

Definition 4.5.3 (Spectrum of a Measure) Let A be a finite measure on a o-separated
Borel space X. The spectrum o()\) and the resolvent set p(\) of A is defined by

o(A) :=supp(A) :={z € X | A(U) >0, for any open U > z} and (4.9)
p(A) :={z € X | there ezists an open U > z, \(U) = 0}. (4.10)

Fiz a continuous reference measure. The point spectrum, the pure point spectrum, the ab-
solutely continuous spectrum, and the singular continuous spectrum are defined respectively

by

op(A):={z € X | A({z}) # 0}, (4.11)
opp(A) =0 (App), (4.12)
Oac(N) i=0(Aee) , and (4.13)
T5e(A) 1= 0(Asc)- (4.14)
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Remarks. (i) All the spectra above are closed sets, except for the set 0,()) of eigenvalues.
(i) Note a,,(A) = 0, (N).

(iii) If the topological space is second countable, it follows that A((c()))¢) = 0.

(iv) Equality 0,.(A) = 04.(A) = g,p(A) is possible.

Definition 4.5.4 (Measure Class of a Measure) Let F' be the set of finite measures
on a given o-algebra. The finite measures A and v are equivalent, written A ~ v, iff A\ K v
and v € A. The measure class [\ of A € F is defined by

A={veF|v~A} (4.15)
The set [F] of measure classes is defined by
[F]:={[\] | A € F}. (4.16)

Remarks. (i) The relation ~ is an equivalence relation and [F] = F/ ~.
(ii) The [A] obeys u,v € [A] = au + bv € [\ for positive scalars a,b, so [A] is a positive
cone.

Theorem 4.5.5 (Spectrum of a Measure Class) Let F' be the set of finite measures
on a o-separated Borel space. The spectra 0,0y, Opp, Oac, Osc give well defined functions on
[F], the set of measure classes in F.

Proof. We prove that o([A]):=0()) is well defined. Let A < p. If z € p(u), then there
is an open U 3 z such that u(U) = 0, so z € p(}), since A(U) =0, so o(X) C o(u). Now
o([A]) is well defined, since A ~ u = o(A) = o(p).

Let A < p. If A({z}) > 0, then p({z}) > 0, so 0,(X) C 0,(p), and oy, (A) C opp(pe). We
conclude also that A ~ p implies Ay ~ pp.

Let m be the measure with respect to which singularity and absolute continuity are defined.
We can find a measurable A such that m(A¢) = 0, Ae(U) = MU A), and pe(U) =
w(UNA). This gives A K p = 04c(A) C 04c(pt), and o,4.([p4]) := 0ac(pe) is well defined.

Let A ~ pu. Define C:=0,(u)¢, and S = S\JS,, where ), is concentrated on S, u, is
concentrated on Sy, and m(S) = 0. The formulas A\;.(U) = AU (SN C) and ps(U) =
p(UNSNC) give the claim. O

Theorem 4.5.6 (Random Spectra) Fiz a continuous reference measure y on a o-separated

Borel o-algebra B on a second countable space. Let A be a finite random measure on B.
The spectra o(A), opp(A), 0ac(A), and o,(X) are closed random sets.

Proof. We need only prove that E = {U (o (\) # 0} is an event for any open U, since the
components are random measures. The measurability of E follows from

U()o(X) #0 < AU) > 0. (4.17)

The only if part follows from the definition. The if part follows because A(g(A)¢) =0 in a
second countable space. O

A strengthening of this theorem is given by the lower semicontinuity of the spectrum.
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Theorem 4.5.7 (Lower Semicontinuity of the Spectrum) Let R be the set of finite
Radon measures on a separable metric space. Equip R with the weak topology. The mapping
R > X\ —o()) is lower semicontinuous.

Proof. Assume A = w—lim A,. We prove [—lim o(),) = o(A), which is sufficient since R
can be realized as a metric space. Let U)o (A) # 0 for an open set U. Then lim A, (U) >
A(U) > 0, and A\, (U) > 0 for all n larger than some Ny. This implies o(\,) (U # 0 for
n > Ny, which proves the claim. O

Remarks. (i) The mapping A — o(\) is then lower semicontinuous in any stronger
topology in R.

Let m be Lebesgue measure on [0, 1]. Set A\, (A4):=n-m([0,1/n](A). Then w—lim A, =
A =8y, 80 0pp(A) C U, 0pp(An) is false. This means in particular that F' 3 X — 0,,(A) can
not be lower semicontinuous when F' is equipped with the weak topology. If F' is equipped
with the pointwise topology, then oy, is lower semicontinuous.

Theorem 4.5.8 (Lower Semicontinuity of the Point Spectrum) If A is the point-
wise limit a net {\,} of measures, then o,,(A) = 1—lim op,(A,).

Proof. Let U be open with p € U and A({p}) > 0. Since limA,({p}) = A({p}) > 0, it
follows that A, ({p}) > 0 for all ¢ greater than some Ny, which proves the claim. O

4.6 Notes

A general comment on the references is that they have unequivalent definitions of common
concepts, so one must compare with care.

I have defined random measures as by Kirsch in [79, p.284] and by Carmona in [31, p.245,
p.262-264]. I have not found any literature on Lebesgue-Hammer decomposition of random
measures. In my mind, the associated problems are fundamental for an understanding of
Lebesgue-Hammer decomposition of selfadjoint, random operators.

Atomic sets and measures are defined as in Rao [23, p.141-], but compare also Dunford [46,
part I, p.308] and Halmos [65, p.168,p.169 ex.10]. The Hammer decomposition is defined
as in Rao [23, p.146,p.149]. Feller [57, p.138,142] refers to the Hammer decomposition as
the Jordan decomposition, but I denote the decomposition of a real measure into a positive
and a negative part as the Jordan decomposition, compare Rudin [115, p.119], Pedersen
[110, p.241], or Reed [124, vol.I,p.22].

The formula for the continuous part of a finite measure is a generalization of a similar
formula in Carmona [31, p.246]. A related formula for the atomic part is found in Pastur
[107, p.44).

Concentration on a set and singularity of measures are defined as in Rudin [115, p.120],
but see also Reed [124, p.24], Rao [23, p.164], Halmos [65, p.126], or Dunford [46, p.131].
The definition of a thick set is taken from Yamasaki [139, p.18].

For the Lebesgue decomposition of a measure I refer to [65, p.97,p.124], [23, p.159], [46, part
I,p.131], [115, p.120]. These references have unequivalent definitions of absolute continuity
of a measure. My choice is as in Rudin [115] and Dunford [46].
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A unique Lebesgue decomposition of any finite measure with respect to a measure u follows
from Zorn’s Lemma, Dunford [46, p.132,vol.I], and p need not be o-finite.

The formula for the singular part of a finite measure is abstracted from Cycon [39, p.170].
The presented proof seems to be a simplification. The formula is also found in Pastur [107,
p.44] and Carmona [31, p.245], but without a proof.

A probabilistic interpretation of the Cantor measure on [0, 1] is found in Feller [57, p.35-36].
I recommend a reading of [57, p.141-142], which clarifies the nature of singular continuous
measures, and their unavoidability. They arise naturally from consideration of Bernoulli
trials, as indicated in the text. A nonprobabilistic view of the same distribution is found in
Nagy [114, p.48-49]. I was initially interested in singular continuous measures because they
arise in the spectral theory of Sturm-Liouville operators [34],[17],[39, p.199-]. Castillo [34,
p-3] uses the distribution function Fj 5 to construct a spectral function with pure singular
continuous spectrum in [0, 1].

The Vitali-Hahn-Saks theorem, including its proof, is in my opinion, one of the most
beautiful results in measure theory. The proof of the Vitali-Hahn-Saks theorem is similar
to the ones found in Dunford [46, part I,p.158], and Halmos [65, p.169, ex. 12-14]. The
first reference assumes p to be finite and the second reference assumes u to be o-finite. I do
not see the need for these assumptions in the presented proof, which is a rearrangement of
the proof in [46, part I, p.158]. The Vitali-Hahn-Sax theorem is also found in the context
of finitely additive set functions (charges) and weak convergence in Rao [23, p.204]. The
product topology is not treated any further in any of the given sources.

The norm topology and corresponding completeness is found in Dunford [46, part I,p.160].
The space of regular complex measures on a locally compact abelian group is a commutative
Banach algebra, from the convolution product, see Rudin [116, p.14].

I have defined vague convergence as in Bauer [16, p.226]. The literature on convergence of
measures is large, as it should be, see Billingsley [25], but also [26, p.335-], [96], [22], [93,
p.50-], [57, p.247-], [43, p.8-9, p.128-], [106, p.178-189]. The literature on weak convergence
dominates. Weak convergence of a different kind is defined in Rao [23, p.218-] and they
refer to weak* convergence to cover our choice.

A probability measure is tight iff measurable sets can be approximated in measure by
compact subsets, Billingsley [25, p.9].

The quoted regularity of a finite measure as a consequence of o-compactness of open sets
in a locally compact Hausdorff space is a consequence of [115, p.48, 2.18 Theorem]. The
characterization of finite Borel measures on a separable, complete metric space as being the
Radon measures is found in Linde [96, p.12]. The characterizations of weak convergence
and Prokhorov’s theorem is abstracted from Linde [96, p.14-15], and Bilingsley [25, p.11-
14].

The quotation: “Thus we learn from the Krein-Milman theorem that every probability
measure on X can be approximated pointwise on C(X) by measures with finite support
on X.”, taken from Pedersen [110, p.73, 2.5.8. Remark], is relevant for the denseness of
pure point measures. The presented proof is elementary, and gives a more general result,
since the product topology is stronger than the weak topology. For the denseness of pure
point measures, see also Reed [124, vol.I, p.114, p.118-119, p.123 ex.41].

Equivalent measures are defined as in Halmos [65, p.126-127]. The measure class, or the
spectral measure, of a selfadjoint operator was my motivation for the study of this concept,
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see Simon [122, p.501-], but also [113, p.400], [137, p.126-], [31, p.80].

The lower semicontinuity of the spectrum of a measure given in Theorem 4.5.7 is perhaps
a new observation.
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Chapter 5

Unbounded Random Operators

The lower operator topology is introduced. It gives a proper generalization of
strong resolvent convergence of selfadjoint operators. We prove that the set of
finite matrix operators is dense. The lower topology is applied for the defini-
tion of unbounded, closed random operators. We prove nonrandomness of the
spectrum of a transitive random operator, given that the spectrum is random
in the sense defined by the lower topology. We prove lower semicontinuity of
the spectrum of normal operators. A general formula for the spectrum of a
normal, transitive random operator is given. We give conditions which imply
presence of continuous spectrum or pure point spectrum.

5.1 Introduction

Classical mechanics gives a description of a one particle system by means of a Hamilton
function as a function of the position and the velocity of the particle. If the environment of
the particle is complex or not exactly known, then it may be reasonable to model this by
a random Hamilton function. The result is a real valued stochastic process H indexed by
position and velocity variables. The general theory of stochastic processes is then available.
In quantum mechanics one may use similar arguments to arrive at a random Hamilton
operator, but one meets a fundamental obstacle. It is not at all clear how one should
define a random operator, in particular since the involved operators are unbounded. The
purpose here is to discuss the notion of unbounded random operators in a general context.

For this purpose we introduce the lower operator topology in a general set of closed opera-
tors. The definition avoids domain problems completely by consideration of the graphs of
the involved operators. This is not a new idea and has been used previously to define the
gap topology, which gives a proper extension of the operator norm topology. We consider
closed operators defined in a separable normed space, and observe that the set of finite
matrix operators is dense. More generally we prove that the lower operator topology is
second countable and Tj-separating, if the underlying topological vector space is second
countable. This follows without any separation demands on the underlying vector space.
It is shown that convergence on a core implies convergence in the lower topology. This
means in particular that the strong topology for bounded operators is stronger than the
lower topology for bounded operators. If we restrict to norm bounded sets, then the two
topologies coincide. We prove equality of the strong resolvent topology and the lower op-
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erator topology in the set of selfadjoint operators, so we have given a proper extension of
the topology from strong resolvent convergence.

We give a brief discussion of the concept of Skorohod random operators, and conclude that
this is an essentially different concept compared to our concept. A general definition of
the concept of closed, random operators is given. The definition is in terms of the Borel
field from the lower operator topology. We compare our definition with the concepts of
Pastur random operators, bounded random operators, and selfadjoint random operators,
and conclude that our definition is a suitable generalization in all these cases. The sum of
unbounded operators is difficult to define in a good sense, because of domain problems. One
solution is given by consideration of the limit of the sum of two approximating bounded
operators. The Lie sum is another, but related possibility. One advantage with a definition
of the sum by means of a limit is that the sum of two random operators is again a random
operator.

Spectral theory is considered next. We prove that the spectrum of a transitive random
operator is nonrandom, if the spectrum is random in the sense given by the lower topology.
Upper semicontinuity of the spectrum, considered as a set valued mapping, is proven
when closed operators are equipped with the gap topology. The main theorem is that
the spectrum of normal operators is a lower semicontinuous mapping, when the normal
operators are equipped with the lower topology. We do also observe that the core spectrum
seems to be more interesting than the usual spectrum, when we consider general closed
operators, without conditions on dense domains.

An elementary proof of the randomness of the Lebesgue-Hammer components of the spec-
trum of a selfadjoint, random operator is given. We give a general formula for the spectrum
of a normal transitive random operator. Finally we give theorems which imply existence
of absolute continuous spectrum or pure point spectrum.

5.2 Perturbation of Unbounded Operators

Let G(T') denote the graph of a linear operator T : D(T) — Y, with domain D(T) in X.
The operator T is closed if and only if G(T') is closed in X X Y. A graph G is a subspace
in X x Y, with the additional property that (0,y) € G = y = 0. In the following we will
only consider the case X =Y.

Definition 5.2.1 (The Lower Operator Topology) Let C be a set of closed, linear op-
erators T : D(T) — X defined in a topological vector space X. The lower operator topology
7; 1n C is the weakest topology where

U, V]:={T € C|3f € D(T)( U such that Tf € V'} (5.1)

is open when U and V are open in X. If the net {T)\} in C converges towards T in the
lower operator topology, we write T = [—1im T).

Remarks. (i) The lower operator topology is the relative topology in the set of operator
graphs from the lower topology in the set of closed sets in X x X.
(ii) The operators in C are not required to have equal domain, nor dense domain. The
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domain of a linear operator is a linear subspace.

(iii) The lower operator topology is typically not a Hausdorff topology, but this depends
on C.

(iv) The maximal mappings D, 3 T+ 2z — T and D; 3 T+ T~! are continuous.

The lower operator topology is defined from the lower topology for the set of graphs, so
T = 1—1lim T) is equivalent with G(T') = [—1lim G(T)). If { E)} is a net of closed subspaces,
then the closure of the lower limit and the individual lower limit are closed subspaces. The
closure of the lower limit of a net {G,} of closed graphs is a graph, but typically equal
to the trivial graph {(0,0)}, since the intersection of two graphs typically is the trivial
graph. The individual lower limit L;—lim G, may not be a graph. It is not clear from
these comments whether there exists a unique maximal limit graph.

The gap topology for closed operators is given by the Hausdorff distance between the
unit spheres of the operator graphs. This topology is equal to the norm topology if it is
restricted to bounded operators. The lower topology is weaker, and this is reflected in the
following theorems.

Theorem 5.2.2 (The Lower Operator Topology is Separable) IfC is the set of closed
operators defined in a separable normed vector space, then C is separable in the lower op-
erator topology.

Proof. Let X be an infinite dimensional normed space, with a dense countable subset D.
Let Uy, Vi, ..., Uy, V,, be nonempty open balls in X. Let Mp be the set of matrix operators
M, each M defined by a choice of a finite independent set {z1,...,zx} and a finite set
{y1,...,yx} from D, by setting M (>, c;z;) = Y, ¢;yi. The set Mp is countable. We will
construct a closed operator M in (,[U;, V;] which also lies in Mp. Select z; from D U;
and y; from D(V;. Assume that {z,...,zx} and {y1,...,yx} is given. Let Lj be the
linear span of {1, ...,z;}, which is a closed set. The set U4y = Ugy1 \ Ly is open and
nonempty, since X is an infinite dimensional normed space. Select zx; from D) ﬁk+1
and yg4+1 from D () Viy1. This procedure gives the required M as above. O

Remarks. (i) This theorem will also follow more generally from second countability.

Theorem 5.2.3 (The Lower Operator Topology is Second Countable) IfC is a set
of closed operators defined in a second countable topological vector space, then C is a second
countable Ty-space in the lower operator topology.

Proof. The relative topology in any subset of a second countable topological space is second
countable, and the lower topology in the set of closed sets in a second countable space is
second countable. The separation property is also inherited generally. O

Remarks. (i) If B is a subbasis for the topology in the vector space, then a subbasis for
the lower operator topology is given by sets [U, V] for U,V in B.

The infinitesimal generator of a strongly continuous semigroup is defined from a conver-
gence concept which is related to the concept of strong convergence of bounded operators.
The connection with lower convergence of closed operators is given in the following theo-
rems.

Theorem 5.2.4 (Convergence on a Core) Let D be an operator core for the closed
linear operator T. If Tf = limTyf for all f in D C lim D(T)), then the net {T)\} of closed
linear operators converges towards T in the lower operator topology.
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Proof. Let U and V be open with f € U(D(T) and Tf € V. Since D is an operator core,
we may assume f € D, because the restricted graph G(Tp) is dense in the graph G(T).
The assumption D C lim D(T)) gives an N; such that f € D(T)) for all A > N;. The
assumed convergence gives an N > Nj such that T f € V for all A > N, which proves the
claim. O

Remarks. (i) A set D is a core if T = Tp.

(ii) A special case is given by letting T be the trivial operator with graph {(0,0)}. This
T is a lower limit of any net of closed linear operators, but it may not belong to the set of
closed operators under consideration.

Theorem 5.2.5 (The Lower Operator Topology for Bounded Operators) Let B be
the set of bounded, closed, linear operators defined on a normed space. The lower opera-
tor topology in B is weaker than the strong operator topology. The restriction of the two
topologies to a norm bounded set in B are identical.

Proof. The lower operator topology is weaker than the strong operator topology, from
Theorem 5.2.4. Assume T = [—lim 7T in B with sup [|T)|| < K. For any z and z, we
have

| Tax — Tz|| < ||Tazx —Tz|| + K ||z — x| - (5.2)

Let € > 0. Set U:={y | |ly—z|| < ¢/(2K)} and V:={y | ||y — Tz|| < ¢/2}. The conver-
gence gives a A, such that Ty € [U,V] for all A > A, which assures existence of z,’s such
that the above estimate proves the claim. O

Remarks. (i) It is not clear from the above whether the lower topology in B is Hausdorff.

The concept of strong resolvent convergence gives a well defined topology for selfadjoint
operators. The lower operator topology is a proper generalization of this convergence
concept, as stated in the following theorem.

Theorem 5.2.6 (The Lower Operator Topology for Selfadjoint Operators) The strong
resolvent topology for selfadjoint operators in a Hilbert space is identical with the lower op-
erator topology.

Proof. Let {T)} be a net of selfadjoint operators. Assume (i —T)~' = s—lim (¢ —T)) ™! for
some selfadjoint T. Then (i — T)~' = [—lim (: — T))™', so G((i — T)™') = [-lim G((i —
7)), so G(T) = I-lim G(T»), and T = [-lim T). Assume T = [—lim T) for some
selfadjoint T'. Let z be any complex number with nonzero imaginary part Im(z). Theorem
5.2.5 gives (z —T)~' = s—lim (2 — T) 7, since ||(z — S)7!|| < 1/Im(z) for any selfadjoint
S. O

Remarks. (i) The lower topology for selfadjoint operators is Hausdorff.

(ii) If the Hilbert space is separable, then there is a metric which gives the strong resolvent
topology.

(iii) The formula ||(z — S)7!|| = 1/d(z,0(S)) holds for any normal operator S with spec-
trum o(S).
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One might suspect equivalence between strong convergence and lower convergence for
bounded selfadjoint operators, but this is wrong as the following example demonstrates.
Let {e1,e2,...} be an orthonormal basis in a Hilbert space. Define the closed operator
T.f = Me;i (e, f), which is selfadjoint if A; is real. Let D be the set of finite linear combi-
nations from {e;}. This D is an operator core for the bounded, selfadjoint operator T' = 0.
We conclude T' = [—lim T, since Tf = imT,f for all f in D. The sequence {7} is
strongly convergent if and only if sup, |\;| < oo.

The following is relevant for spectral theory.

Theorem 5.2.7 (Bounded Invertibility of Lower Limits) Assume thatT =1—1lim T)
for closed operators T, Ty. If HT{IH < K, then T is invertible and ||T || < K. Further-
more T~ f = imTy\~'f for any f € D(T~")Nlim D(Ty™ ).

Proof. Assume Tx = 0 and let € > 0 be arbitrary. The convergence gives an x, such
that [|zy — || < € and ||Thzs|| < e Then |lz,|| < ||T57"| |Thaa|l and ||z < ||z +
|za — z|| < (1 + K)e. Since € was arbitrary we conclude that 7! exists. Let y = Tz
and let € > 0 be arbitrary. The convergence gives an z, such that ||z, —z|| < € and
IThzx — yl| <€ From ||z,|| < K[| Taza|| < K(e+ [ly]]) we get |7~ y|| = |lo]| < e+ K(e+
ly[), and [|[T~'y[| < K ||y||. The last claim follows from the estimate ||Tx~'f — T~'f|| <
K|f = All+ | =T, O

Remarks. (i) None of the above inverse operators need be defined on the whole space.

Theorem 5.2.8 (Continuity of The Sum) If T =[—lim T) for closed operators T, T)
defined i a normed space X and B = [—lim B, for closed, uniformly bounded operators
B, B, defined on X ,then T + B = [—lim (T + B)).

Proof. Assume ||B,|| < K < co. Let € > 0 and h € D(T) be given. The lower convergence
gives fy € D(Ty), g» € X = D(B,), and A, such that ||fx —h|| < € |lgr—h| < €,
ITafx — Th|| <€, and ||Bygy — Bh|| < € for all A > A.. The estimate

|(Ta + Ba)fa— (T + B)h|| < ||Tafa — Th|| + ||Baga — Bh|| + || Ball [| £ — 9all

(5.3)

< 2(1 + K)e,
proves the claim. O
Remarks. (i) Observe the case where the bounded operators are given by complex

numbers.
(ii) The mapping (¢,T) — (¢ +ie — T)~! is jointly continuous for real ¢ and selfadjoint T

5.3 Unbounded Random Operators

We begin with a digression on Skorohod random operators. The following is abstracted
from Skorohod’s book “Random Linear Operators”, including the notation. We will not
use any of this notation, nor the concepts, in the reminder of this text. We include this
material to make clear that there is an essential distinction between the two concepts.
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Let f € L?[0,1] = H, let B; be Brownian motion, and define a mapping A on the Hilbert
space H by the Ito integral

Af () = /0 ' #(s) B, (5.4)

The function Af is continuous with probability 1. The mapping A depends on Bi(w) and
is formally a random variable A(w). The properties

(S1) P(A(af + Bg) = cAf + BAg) =1 and

(52) Jim P(IAf - Afll > 9 =0,

may be verified The above should hold for all f,g € H, all complex «, 3, and all real
e > 0. Let H(Q) denote the set of H valued random variables based on the probability
space (2, P). A mapping f — A(w)f of H into H () satisfying (S1) and (S2) defines a
strong random operator in the sense of Skorohod. The set of strong random operators is
denoted by L,(Q, 7). (S1) says that A is linear with probability one, in the given sense.
This does not imply that A(w) is a linear operator on # for all w in a set of measure one.
A(w)f is defined for almost all w for any fixed f, but not the other way around with a
fixed w. (S2) says that A(w)z is continuous in z in probability. Let L(€2, ) denote the
set of mappings w — A(w) from 2 into the set of bounded linear operators on H, such
that (f, Ag) is a random variable. The set L,,(2, H) of weak random operators is given by
mappings (f,g) = (f, A(w)g) of H x H into C(Q) satisfying

(W1) P((arfi + o fz, A(Brgr + Bage)) = Z@ﬂi(fi,Agi)) =1 and

Y]

(W2)  lim  P(|(fa, Aga) — (f; Ag)| > €) = 0.
(fr,gn)—(f,9)

The above should hold for all f;, g;, f, g € H, all complex «;, 5;, and all real ¢ > 0. One
may verify that L(Q, ) C Ly(Q, %) C L, (2, H), in a natural sense.

We will not use the concept of Skorohod strong or weak random operators in the following.
Our definition will ensure that A(w) is a linear, possibly unbounded, operator with prob-
ability one. In short one may say that Skorohod random operators are well suited for the
analysis of random differential equations, typically equations involving white noise. Our
concept, which keeps the old definition of a linear operator, is well suited for the familiar
concepts from operator theory. It is e g not clear how to define the spectrum of a Skorohod
random operator.

Let C(X) be the set of closed, linear operators defined in a Banach space X. The bounded
operators in C(X) are characterized by the property of having a closed domain. Let w +—
A(w) be a mapping from a probability space into C(X). The mapping A is a Pastur random
operator if D =" D(A(w)) is a core for all A(w) and if (f, Ag) is a random variable when
f € X*and g € D. We recall that D is a core for A if the closure of A restricted to D is
A. The set D must be dense in the domain, but this is not sufficient. If A~! is bounded,
then D is a core iff A(D) is dense in the range A(D(A)).
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The Pastur definition is not completely satisfactory, because of the artificial assumption
on existence of a common core. We will define random operators with the aid of a suitably
chosen o-algebra of operators, namely the Borel field from the lower operator topology.

Definition 5.3.1 (Closed Random Operators) A closed, linear, random operator is a
Borel measurable mapping from a probability space into a set of closed, linear operators
equipped with the lower operator topology.

Remarks. (i) If T is a random operator, then the image measure Pr realizes a set of closed
operators as a probability space. On the other hand, given a probability space (M, B;, P)
of closed operators, we get a random operator from the identity mapping.

(ii) The domain D,, = D(T'(w)) is in general a formally random subspace. D,, is not closed
when T'(w) is unbounded.

(iii) A closed, linear, formally random operator T in a separable Banach space X is a
random operator iff {w € Q | 3f € D(T(w)) U, T(w)f € V} is a measurable set for
any selection of open sets U and V from a family of open sets which generates the Banach
space topology in X. This follows because the lower operator topology is second countable,
when the underlying vector space is second countable.

Theorem 5.3.2 (Pastur Random Operators) Let T be a mapping from a probability
space into the set of closed operators defined in a separable normed space X. If there exists
a countable set D such that T is the closure of its restriction to D and (f,Tg) is a random
number for all f in the dual space X* and all g € D, then T is a random operator.

Proof. The Hahn-Banach separation theorem gives that 7'¢g is a norm random variable
for all ¢ € D. Let M be the set of realizations of 7. Equip M with the lower operator
topology. The mapping w — T(w) > M is a Borel mapping since

{w|3f e DT W)U, Tw)feVy= |J {w|TW)feV} (5.5)

feDNU

is measurable for any open U and V' and the lower operator topology is second countable. O

Remarks. (i) It is necessary that the set D is dense in [, D(T'(w)), but this is not
sufficient.

(ii) Let D be a core for a closed operator T. Let D; be a dense subset of D. We can not
conclude that T is the closure of its restriction to D, since T may be unbounded.

(iii) Let D be a core for a closed operator T in a separable normed space. Then there
exists a countable subset D in D such that T is the closure of its restriction to D;. This
follows from second countability.

(iv) Assume C to be a common core for almost all T'(w). If there exists an wys such that
almost all restrictions T (w) are T¢(wpr) bounded, then there exists a countable set D as
required in the theorem. The assumption is ||T(w) f|| < a(w) || f]] + b(w) || T(war) f]| for all
fin C.

Theorem 5.3.3 (Random Matrix Operators) Let {e,es,...} and {f1, fo,...} be ran-
dom orthonormal systems in a separable Hilbert space. Let {a;;} be random numbers such
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that ), |ai;|* and > |ai;|” are finite with probability one. Let A be the closed formally ran-
dom operator determined by Ae; = Zj aijf;. Let Q) be a countable set of finite sequences
of numbers and let D = {>_, gie; | (¢;) € Q} be the corresponding formally random set. If
A is equal to the closure of A restricted to D, then A is a random operator.

Proof. The assumption gives

{w[3f e D(AW))NU, Alw)f € V} 66)
5.6
= Ugeelw | 2ona(n)en(w) € U, 32, x 4(n)ank(w) fi(w) € V1,

which is measurable for any open U, V. This is sufficient, since the Hilbert space is sepa-
rable. O

Remarks. (i) Any unbounded closed operator in a Hilbert space may be represented by a
matrix operator.

(ii) The set  may for instance be the set of finite sequences with rational components.
The assumption A = Ap is nontrivial.

(iii) This is a generalization of the notion of Pastur random operators, since we allow
random orthonormal systems. If the systems are nonrandom and complete, then we are
essentially back to Pastur random operators.

(iv) This theorem has a converse for selfadjoint random operators.

Theorem 5.3.4 (Bounded Random Operators) LetT : Q) — B(H) be a mapping from
a probability space into the set of closed, bounded operators defined on a Hilbert space with
an orthonormal basis {ey, eq,...}. T is a random operator if any of the following equivalent
conditions are satisfied

(i) (es, Tej) is a random number for all i, .
(ii) T is a random variable with respect to the weak operator topology.
(iii) Te; is a random variable for all i with respect to the norm topology.

(iv) T is a random variable with respect to the strong operator topology.

If sup,, ||T(w)|| is finite, then the above conditions are also necessary. If the range T(Q) is
separable in the uniform topology, then the above are equivalent with

(v) T is a random variable with respect to the uniform operator topology.

Proof. Assume first T to be a closed random operator with uniformly bounded norm. Since
the lower operator topology is identical with the strong operator topology, we conclude that
T is also a random variable with respect to the strong operator topology. This proves the
last claim in the theorem.

Note that e; and e; in (i) and (iii) can be replaced by general f, g € H from a simple limiting
argument. Set B, :={T | ||T|| < n} and A,:=A(B,,so A=, A, and A, C B,. Note
that B, is weakly compact, in particular weakly closed. Let {f;} be a countable dense set
in {g | |lgll < n}.
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(i) = (iv): Assume A to be open in the strong operator topology. A, is then a countable
union of open sets like {T | 3>, 27%||(T — 9) fx|| < €}. Therefore it is sufficient to prove
measurability of w — ||T(w)g — h||. The assumption in (i) gives that Tg is a random
variable with respect to the o-algebra F,, generated by the mappings h — (f,h). The
Borel o-algebra B,, from the inner product topology is equal to F,,, because the Hilbert
space is separable. The conclusion is that {w | T(w) € A} is measurable.

(i) = (ii): Assume A to be open in the weak operator topology. A, is then a countable
union of open sets like {7 | >=, 27%|(fx, (T — S) fx)| < €}. Therefore it is sufficient to prove
measurability of w — (fx, T(w)fx), but this follows from (i).

(iv) = (v): Let A be open in the uniform operator topology. AN T(S2) is a countable
union of sets like {S | ||S — S;|| < €}, since T(2) is separable. Measurability of w +—
1T (w) = Sill = supy s, <1 [(T(w) — Si) f&l| follows from the assumption.

In the above we used the fact that both the strong and the weak operator topologies
restricted to B, comes from separable metric spaces when H is separable. The remaining
part does not depend on the separability of the Hilbert space.

(v) = (iv) = (ii): The uniform operator topology is stronger than the strong operator
topology which is stronger than the weak operator topology.

(iv) = (iii): The mapping S — Sg is continuous from the definition of the strong operator
topology and the mapping w — T'(w)g is measurable as the composition of two measurable
mappings.

(iii) = (i): The mapping h — (f, h) is continuous.

(ii) = (i): The mapping S — (f, Sg) is continuous. O

Remarks. (i) Consider the identity mapping on B(H). It follows that the weak operator
topology and the strong operator topology have equal Borel field, when # is separable.
This holds also if the Hilbert space is replaced by a separable normed space.

(ii) Let T be a closed random operator and assume f € () D(T(w)). The vector T'f is a
random vector if sup,, ||7(w)f]| is finite. It would be nice to remove this last condition.

A selfadjoint random operator is a measurable mapping w — T'(w) from a probability
space into the set Cy,(#) of selfadjoint operators defined in a Hilbert space. The operator
T'(w) has a domain D(w), which is a linear dense subspace in the Hilbert space. It seems
reasonable that the mapping w — D(w) should be measurable if the operator is measurable.
This is in fact true with our definitions, since {w | D(T(w))NU # 0} = {w | Jg €
D(T(w))NU, T(w)g € H} is measurable when U is open. The mappingw — (f, T(w)g(w))
should also be measurable for any f € H and any measurable w — g(w), with g(w) € D(w).
This would give a definition of random operators which extends Pastur’s definition. Our
approach has been to realize C,,(7) as a measurable space with the introduction of a
o-algebra. The choice is in accordance with the general notion of a random variable.
Selfadjoint random operators may be characterized in many other equivalent ways.

Theorem 5.3.5 (Selfadjoint Random Operators) A mapping T from a probability
space into the set of selfadjoint operators defined in o Hilbert space H is a random op-
erator if and only if one of the following conditions is satisfied

(i) (z0 —T)7 "' is a random operator for one zy, Im(zy) # 0.

(ii) (z — T)~! is a random operator for all complez z, Im(z) # 0.

Proof. This is obvious, since the randomness is defined in terms of the randomness of the
graph. O
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Remarks. (i) If the Hilbert space has an orthonormal basis {e, 9, . ..}, then measurability
of w s (e;, (1 — T(w)) 'e;) is sufficient for the randomness of T
(i) The inequality ||(z — T'(w))~!|| < 1 gives the connection to the strong operator topology.

Let g € H and set f(w) = (¢ — T(w))"'g. This f is a random vector and f(w) € D(T (w)).
Any f(w) € D(T(w)) may be obtained like this. We have T'(w) f(w) = (i—(i—T (w))) f(w) =
if(w) — g, which is a random vector. Let {g;} be an orthonormal basis in # and set f; =
(¢ —T)~'g;. The family {f;} is linearly independent, is total in #, and consists of random
vectors in D(T"). We apply the Gram-Schmidt orthogonalization process on { f;} and obtain
a random orthogonal system {e;}: v, = fi,e1 = vi/|jvi|| and v, = for — Sob— ex(er, fu),
en = Upn/ ||vn||- Each e; is a random vector in D(T') since it is a random linear combination
of vectors in {f;} and Te; is therefore also a random vector. If we define a;; = (e;, T'e;) we
obtain the representation T'f = >, e;(>_; aii(e;, f)) with f € D(T) if the sums involved
converge. The matrix operator will in general be an extension of the given closed operator.
We note that a closed symmetric extension of a selfadjoint operator is nothing but the
operator itself. The conclusion is that a random selfadjoint operator may be represented
by a random orthonormal system and a random matrix. It seems impossible to revert this
implication, so it seems to give a more general concept of a selfadjoint random operator.

The Trotter-Kato theorem has an immediate generalization for strong resolvent conver-
gence of selfadjoint random operators.

Theorem 5.3.6 (Limits of Selfadjoint Random Operators) Let T,, be a sequence of
selfadjoint random operators. Let Q. be a fized set with measure one. Assume that (i +
T, (W)™ and (=i + T,,(w))~! converges strongly for all w € Q. and that one of the two
limiting operators has a dense range. Then there exists a selfadjoint random operator T
such that T;(w) converges towards T'(w) in the strong resolvent sense for all w € Q..

Proof. The Trotter-Kato theorem gives the claim for each w € €2.. The measurability
of T(w) follows from the measurability of (: — T'(w))~!, which is the strong limit of (i —
T (w)) ™t O

Remarks. (i) We repeat that existence of T is a part of the conclusion in the theorem, so
it gives a way to define random operators.

Consider the formula
exp(it(S +T)) = s — lim (exp(itS/n) exp(itT/n))"* = U(t). (5.7)

If S and T are finite dimensional matrices this formula is known as the Lie product formula.
If S and T are selfadjoint operators and S + T is essentially selfadjoint on D(S) () D(T),
then the formula is known as the Trotter product formula. If the limit U(¢) exists, we
define the Lie sum S & T as the infinitesimal generator of U(t). The right hand side is
a unitary operator since it is the strong limit of unitary operators. The group property
follows from the functional equation U(nt) = U(t)", valid for integer n. Strong continuity
in £ does also follow, but this is harder to prove, see the references at the end. Strong
continuity of ¢t — U(t) follows from weak measurability, if the underlying Hilbert space is
separable. If S @ T exists, then it is a selfadjoint extension of S + T.

Theorem 5.3.7 (The Lie Sum of Two Selfadjoint Random Operators) The Lie sum
of two selfadjoint random operators, if it exists, is a selfadjoint random operator.
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Proof. The measurability follows because the Lie sum is defined from a strong limit. O

Remarks. (i) The Feynman-Kac path integral formula gives a useful specialization for
random Schrédinger operators.

5.4 Spectral Theory for Random Operators

Definition 5.4.1 (Transitive Random Operator) A closed random operator T in a
Hilbert space is a transitive random operator if

T(O,w) =U,T(w)U, ™, (5.8)

for a metrically transitive system {©,},ecr of transformations of the probability space and
a corresponding family {U,},er of unitary operators. T is an ergodic random operator if
the system {O,},cr is an ergodic system.

Remarks. (i) The equation above means in particular that D(T(0O,w)) = U, D(T (w)).
(ii) The main point in this definition is that functions of operators that are invariant
under unitary equivalence results in corresponding transitively invariant functions. In
particular, unitary equivalence preserves norm, selfadjointness, normality, unitarity and
spectrum. The corresponding measurability, needed to conclude that the invariant function
is a constant, may however be nontrivial.

(iii) The mapping T + U,TU, " corresponds to a dynamical system where the “phase-
space” consists of operators. One might also consider more general flows on operator
spaces.

Theorem 5.4.2 (Nonrandom Spectrum) Let T be a transitive random operator. If
the spectrum o(T) is a random set, then there exists a closed set ¥ such that o(T) = %
with probability one.

Proof. The function w — o(T'(w)) is invariant with respect to a metrically transitive system
of transformations of the probability space, and it is measurable by assumption. Since this
function takes values in a o-separated space, the conclusion follows. O

Remarks. (i) The spectrum of a random operator should be a random set, but this seems
difficult to prove in this generality.

The previous theorem requires randomness of the spectrum o(7") of a random operator
T. This means measurability of the set {w | o(T(w)) (U # 0} for any given open set U.
This is equivalent with measurability of {w | o(T'(w)) (K = 0} for any compact set K.
Continuity of T+ o(T) is sufficient.

Theorem 5.4.3 (Upper Semicontinuity of Spectrum I) Let A be a complex unital
Banach algebra. The spectral mapping A 3 a — o(a) is upper semicontinuous with respect
to the norm topology in A.

Proof. Assume o(a) C U for an open set U and an element a € A. We will find an open
set containing a such that any element in this open set has spectrum contained in U. Since

7



the spectrum is a compact set we may assume U to be contained in a compact set.
Choose an open B > @ and a compact K D U such that b € B = o(b) C K. This is
possible because of the bound 7(b) < ||b|| for the spectral radius 7(b).

Let B be the Banach algebra C(K (U A) with ||f||,, = sup, [|f(z)]]. A = A —a and
A+ (A —a)~! are members of B, since K (U* is a compact subset of a’s resolvent set.
Choose an open D 3 a such that d € D = A —d is invertible in B. This is possible because
the group GL(B) of invertible elements is open in B and ||(A — d) — (A — a)|| . = ||d — ||
For d € D we have K(\U® C p(d), so o(d) C K°UU.

Finally we have o(c¢) C (K*UU)N K C U, when ¢ € BN D, which concludes the proof. O

lso

Remarks. (i) The Banach algebra B is introduced to get an open set D which does the
purpose for all A in K (U*.

(i) The set B forces the spectrum to be away from the exterior of K and the set D forces
the spectrum to be away from the annulus K [ U¢, so the spectrum is forced to be in U.

Definition 5.4.4 (The Spectrum of a Closed Operator) Let T be a closed operator
in a Banach space X. The resolvent set p(T') is

p(T):={z € C|N(z-T)={0}, (: —T)"' € B(X)}. (5.9)
The spectrum o(T) is

o(T):=C\ p(T). (5.10)
Remarks. (i) The resolvent set is open and p(T) 3 z — (2 — T)™' € B(X) is analytic.

Theorem 5.4.5 (Upper Semicontinuity of Spectrum II) Let C(X) be the closed op-
erators in the Banach space X equipped with the gap topology. The spectral mapping
C(X)>Tw o(T) is upper compact semicontinuous.

Proof. Let o(T)( K = 0 for a compact K and T) — T.

Let z € K, so (z —T)™' € B(X). There exist a A, and an open U, 3 z such that
(w—Ty)"! € B(X) when w € U, and A > ),, which we will prove shortly. The compactness
gives K C UY_ U, and a Ay > ), solves our problem. We have o(Ty)( K = 0 for
A> Ay

The general case z € K is reduced to the case z = 0, by the introduction of shifted
operators. Assume 7! € B(X). The convergence gives a Ay and an M such that T\~! €
B(X) and ||T)~"|| < M for all A > Ay. The relations o(T)) = {1/z | z € o(1/T3)} and
z€o(l/T)) = |z| <M give o(T)) (= | |2 <1/M} =0 for all A > A,. O
Remarks. (i) The gap convergence gives (z — T)~! equal to the norm limit of (z — 7))}
for all z in the resolvent of T. The proof above depends only on a uniform bound on
|(z = T») Y| for large M.

(ii) The proof of Theorem 5.4.3 can be simplified with the use of this theorem.

The previous results are not sufficient for the proof of randomness of the spectrum of a
random operator, because the gap topology is too strong. The core spectrum seems to be
more interesting than the spectrum, when we consider general closed operators.
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Definition 5.4.6 (The Core Spectrum) Let T be a closed operator defined in a Banach
space X. The reqularity domain is

I(T):={z € C|(2—T)"" is a bounded operator}, (5.11)
and the core spectrum is 6(T):=C\ I'(T).

Remarks. (i) The core spectrum is a closed set.

(i) The core spectrum consists of the point spectrum, the continuous spectrum, and parts
of the residual spectrum.

(iii) A normal operator has empty residual spectrum, so the core spectrum is equal to the
spectrum in this case.

Theorem 5.4.7 (The Core Spectrum and Approximate Eigenvectors) A A € C
is in the core spectrum of the closed linear operator T if and only if there exist f, € D(T),
I full = 1, such that lim(A — T)f, = 0.

Proof. Let S be the core spectrum and let Sy be the set of A such that there exist
approximate eigenvectors as in the theorem. We prove S C Sy by proving Sp¢ C S¢. Let
z € Sp. It is sufficient to consider z = 0. This assumption gives a K > 0 such that
ITf|| > K ||f]| for all f € D(T). The first conclusion is then that 7' exists. The second

conclusion is that ||T'g|| = ||f]] < K~'|g]|, so 0 is in the regularity domain. Assume next
0 € Sy. If we assume 0 € S¢, we get the contradiction [T (T f,.)/ T fullll = 1/ | Tfull —
00,50 0 € S. O

Remarks. (i) The essential spectrum of a selfadjoint operator is given by the set of A such
that there exists an orthonormal system of approximate eigenvectors as in the theorem.

Theorem 5.4.8 (Monotonicity of The Core Spectrum) IfS is a closed operator con
tained in the closed operator T, S C T, then the core spectrum of S is a subset of the core
spectrum of T, 6(S) C 6(T). Similar results for the point spectrum and the residual spec-
trum are that S C T implies 0,(S) C 0,(T) and 0,(S) D o,(T).

Proof. Assume that 0 is in the regularity domain of T, so T~! is defined and bounded.
The relation S C T gives N(S) C N(T) = {0}, so S~! is defined. For g € D(S™!) we have
1S~ gl = 1T gl < IT7H llgll, so |IS7H| < IT7Y|. This verifies the claim for the core
spectrum. If g € D(S) and Sg = Ag, then S C T gives Tg = Sg = Ag, so 0,(S) C 0,(T).
Assume that T~! exists, but is not densely defined, so 0 is in the residual spectrum of 7.
Then S C T gives that S~! exists, but is not densely defined. This proves the reverse
monotonicity for the residual spectrum. O

Remarks. (i) The spectrum itself is not monotone in the sense given by this theorem.
(ii) A lower semicontinuous set valued mapping T — %(7') has to be monotone.

For selfadjoint or more generally for normal random operators the situation is satisfactory,
because the spectrum is lower semicontinuous with respect to the lower operator topology.
The following well known formula is the key point.
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Theorem 5.4.9 (Norm of Resolvent and Spectrum) Let T be a normal operator in
a Hilbert space. When z € p(T) we have

[(z = T)7|| = 1/d(z,0(T)). (5.12)

Proof. If R = (z —T)™', then

IRl € r(R) =sup{lz| | 2 € o(R)} Esup{jz| | = = 1, t € o(T)}
(5.13)

=1/inf{|z —t| |t € o(T)} = 1/d(z,0(T))

(1) follows because R is normal.(2) is true because T is a closed operator. It is a special
case of the spectral mapping theorem, o(f(T)) = f(o(T)). O

Remarks. (i) (5.12) follows as an <-inequality if we only know that the operator is closed.
It would be nice to have an inequality the other way in more general cases.

Lower semicontinuity for the selfadjoint case follows from the above.

Theorem 5.4.10 (Lower Semicontinuity of the Spectrum I) Let Cy,(H) be the self-
adjoint operators in the Hilbert space H equipped with the lower operator topology. The
spectral mapping Cso(H) 3 T — o(T) is lower semicontinuous.

Proof. The key point is the formula,
18(z, T)|| = 1/d(z,0(T)), (5.14)

which is valid when 7' is normal. Let z € o(T) and Ty, — T. Let € > 0 and choose an
f € H,||fl| =1, such that ||R(z +ic,T)f|| > 1/(2¢). Then there exists a A such that
|R(x + i€, Tx) f]| > 1/(3¢) for A > A.. For A > A we have 1/(3¢) < ||R(z +i¢,Th)|| <
1/d(z + i€, 0(T))), so d(z +ie,0(Ty)) < 3¢, s0 o(Th) ({z | |z — z| < 4€} # (. This proves
the claim, since 4¢ can be chosen arbitrary small. O

Remarks. (i) The gap topology equals the norm resolvent topology in Cs,(#). Theorem
5.4.5 implies that T'— o(T) is weak Vietoris continuous, when we use the norm resolvent
topology for selfadjoint operators.

(ii) The above proof depends on the fact that all selfadjoint operators have real spectrum.
(iii) The above proof depends on lim |R(z,Tx) f|| = ||R(z,T)f||. This is weaker than the
assumption lim R(z, 7)) f = R(z,T)f.

The following observation makes it possible to extend the previous result from selfadjoint
operators to include all normal operators.

Theorem 5.4.11 (Spectrum and Norm) If T is a normal operator, then

d(z,0(T)) < |(z = T)f], ¥z € C, ¥f € D(T) |If]| = 1. (5.15)
Proof. 1t is sufficient to consider the case z = 0. In the case 0 € ¢(T) there is nothing1 to
prove so we assume 0 € p(T). Now ||f||/ I Tf|| =TT/ TfI| < T, s0 |T7Y|7 <

IT£II/1If]l- The normality gives d(0,0(T)) < |77~ < |ITf||/|If|| which proves the
claim. O
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Theorem 5.4.12 (Lower Semicontinuity of the Spectrum II) If the closed operator
T is a lower limit of the net {T\} of normal operators in a Hilbert space, then 6(T) =
[—lim o(T)).

Proof. Let ¢ € o(T), let r > 0, and set U:={z € C | |z — q| < r}. To simplify notation
we assume ¢ = 0. Let 0 < € < 1/2. Since 0 is in the core spectrum of T', there exists an
f € D(T) such that ||f|| = 1 and ||Tf|| < e. The operator convergence gives a A, such
that there exists a f € D(T)) with ||fx — f|| < e and ||Tafx — Tf|| < e for all A > A.. The
normality gives d(0,0(T))) < [|Tafall /1Al < 2¢/(1 —€) < 7 for all A > A, for a proper
choice of e. We conclude that U (o (T)) # 0 for all A > A.. O

Remarks. (i) If T is a normal operator, then 6(7T") = o(T).

5.5 Decompositions of the Spectrum

The spectrum of a general closed operator is naturally divided into parts depending on the
properties of the resolvent operator.

Definition 5.5.1 (Point- , Continuous-, and Residual Spectrum) Let T be a closed
operator in a Banach space X. The point spectrum o,(T), the continuous spectrum o.(T'),
and the residual spectrum o,.(T) are

op(T):={A € C| N(z = T) # {0}}, (5.16)
0.(T):={\ € C| (z—T)" is densely defined and unbounded}, and (5.17)
0 (T):={A € C| (2 = T)" exists, but is not densely defined}. (5.18)

The numbers in 0,(T) are the eigenvalues of T. A vector f in D(T) is an eigenvector of
T iff f # 0 and there exists a number \ such that Tf = Af.

Remarks. (i) The spectrum is the disjoint union of the point spectrum, the continuous
spectrum, and the residual spectrum.

Definition 5.5.2 (Discrete- and Essential Spectrum) Let T be a closed operator in
a Banach space X. The discrete spectrum o4(T) is the set of isolated eigenvalues with
finite multiplicity. The essential spectrum is o.(T) :=0(T) \ 04(T).

It seems difficult to say anything in general about the randomness of the previous parts of
the spectrum, given a random operator. Because of this we restrict attention to the case
where the operator is given by a spectral family.

Definition 5.5.3 (Spectral Family) Let a Hilbert space H and a o-algebra F be given.
A spectral family E is a projection valued function E such that F 5 A~ (f,E(A)g) is a
complex measure for all f,qg in H.

81



Remarks. (i) This definition is more general than usual, since we do not require E(()¢) = I.

Definition 5.5.4 (Spectral Measure) Let E be a spectral resolution of a projection in
a Hilbert space and let the operator T be given by

T = Elid] = / 2dB(2). (5.19)

The measure A — (f, E(A)f) is the spectral measure for the vector f. A measure p is a
spectral measure for T if it 1s equivalent with E; p < E and E <K p.

Remarks. (i) The integral E[u] = u(T) is defined from the spectral measures of the vectors
in the Hilbert space.

(ii) If {e,} is an orthonormal basis, then a spectral measure is given by

p(A) = 372 (en, B(A)er) /2"

(iii) p <« E means that E(A) = 0= p(A) = 0 for all measurable sets A.

(iv) If T is a selfadjoint operator, then the characteristic function F(t):=(f, €T f) deter-
mines the spectral measure of the vector f and so also the spectral family of T.

(v) The spectral measure p of f is determined by

—7p((—00,t]) = lims_o4 lime oy [T Im (f, (s + i — T)~' ) ds.

Definition 5.5.5 (Lebesgue Decomposition of The Hilbert Space) If T is a self-
adjoint operator in a Hilbert space H, and ps denotes the spectral measure of an vector f €
N, then Hoe = {f | py is absolutely continuous}, Hs. = {f | ps is singular continuous},
M, = {f | ps is atomic}, H, = {f | ps is continuous}, and H, = {f | ps is singular},
where absolute continuity and singularity is defined relative to Lebesgue measure.

Remarks. (i) All of the above subspaces are reducing subspaces for 7.

Definition 5.5.6 (The Lebesgue-Hammer Decomposition of the Spectrum) Let p
be a Borel spectral measure for T. The pure point spectrum and the Hammer continuous

spectrum of T are given by opp(T) :=0(p,) and on.(T) :=0(p.), where p = p, + p is the

Haommer decomposition. Let psc, ps, and ps. be the absolutely continuous component, the

singular component, and the singular continuous component of p relatively to a continuous

reference measure. This defines the absolutely continuous spectrum c,.(T) :=0(pqc), the

singular spectrum o4(T) :=0(ps), and the singular continuous spectrum os.(T) :=0(pse) of

T.

Remarks. (i) The notation oy, is not standard, but used here to avoid confusion with the
continuous spectrum o, of a closed operator.

(ii) It is possible to have 0,y (T) = 04c(T) = 04c(T).

(iii) The equalities 0,y (T") = 0,(T), Ope(T) = O5e(T) U Ouc(T), and 6(T) = 0pp|J 0uc | 05 (T')
hold, but none of the unions need be disjoint unions.

(iii) The definition gives in particular the above decompositions for a selfadjoint operator,
in which case the decomposition is with respect to Lebesgue measure on the real line.

(iv) The decomposition of the spectrum is independent of the chosen spectral measure.

(v) o(p) :==supp p:={z | p(U) > 0 for all open U > z}.
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Theorem 5.5.7 (Spectral Family) Let T be a selfadjoint random operator in o Hilbert
space. The measure given by A — (f,14(T)g) is a random Borel measure on R for any
vectors f,q.

Proof. Fix f,g € H. Set G(2) :=(f,(z —T)"'g). Now

T S L . .
(F Len(Ta) = Jim tim o [ 16 i) - Ole +ie)er (5.20)

for real numbers a < b. Observe that (2,7) — G(z) is continuous and that |G(z)| <
£l lg]l lTm 2| ~*. Observe furthermore that the distribution Pr of T and Lebesgue measure
on R both are o-finite measures. Fubini’s theorem may then be applied to conclude that
the above integral gives a random variable, which implies the claimed weak measurability
of the spectral family. O

Theorem 5.5.8 (Random Spectrum) The spectrum of a normal, random operator is
a random set. The Lebesgue-Hammer components of the spectrum of a selfadjoint, random
operator in a separable Hilbert space are random sets.

Proof. The first statement follows from the lower semicontinuity of the spectrum. Let E
be the spectral family of the selfadjoint random operator. The spectral measure given by

p(A) =) (en, E(A)en) /2, (5.21)

n=1

for an orthonormal basis {e,}, is a random measure, from the randomness of E. The
Lebesgue-Hammer components of a random measure are random measures. O

For selfadjoint, transitive random operators it is possible to give a direct proof of the
nonrandomness of the spectrum.

Theorem 5.5.9 (Pastur) If T is a selfadjoint, transitive random operator in a separable
Hilbert space, then there is a closed set ¥ C R such that o(T) = ¥ with probability one.

Proof. Define the function f(r,w) = d(i + r,0(T(w))). The value of this function for
rational 7 determines the spectrum of 7T'(w). This is so because z — d(z, F') is continuous
when F' is closed, and because z € o(T) < d(i + z,0(T)) = 1 for a selfadjoint T and a
real . We will prove existence of an A such that P(A) =1 and f(r,w) = g(r) for w € A.
The formula ||R(z,T)|| = d(z,0(T)) ™" implies that f(r,w) is a transitively invariant mea-
surable function for each r € Q. This gives an A, and a g(r) such that f(r,w) = g(r) for
weA, P(A)=1. A= mrEQAT gives the required A.

The invariance follows from the unitary equivalence of the resolvents R(w) and R(O,w),
which follows from the unitary equivalence of T'(w) and T(O,w).

The measurability of w > ||R,|| follows directly from

||Rw|| = sup{||Ruf|| | fis in a countable dense subset of the unit ball }, and
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IRuFII* =) (Rufrei) (e R f) .

i=1

Here we used the separability of the Hilbert space and preservation of measurability in
limits. O

A more general proof is also possible.

Theorem 5.5.10 (Nonrandom Spectrum) If T is a normal, transitive random opera-
tor in a separable Hilbert space, then

o(T) = U o(S) with probability one, (5.22)
SeD

for any set D C supp Pr with P(T € D) > 0. The Lebesque-Hammer components of the
spectrum of T', are given by nonrandom sets, if T in addition is selfadjoint.

Proof. The spectrum and its Lebesgue-Hammer components are given by nonrandom sets,
since they all are transitively invariant measurable functions into a o-separated measurable
space. The lower operator topology is second countable, so the topological support of T’s
distribution has measure one, so there exists a set D € supp Pr with P(T € D) > 0. This
and the lower semicontinuity of the mapping T' — o(T) give the explicit formula for the
spectrum. O

Remarks. (i) The spectrum of a normal, transitive random operator is nonrandom, even
if the Hilbert space is nonseparable.

(ii) The nonrandom spectrum increase when the topological support of T’s distribution
increase.

The localization of the Lebesgue-Hammer components of the spectrum is a delicate matter.
Existence or absence of Lebesgue-Hammer components in the spectrum may be determined
by the following theorems.

Theorem 5.5.11 (The Continuous Subspace) IfT is a selfadjoint operator, then f is
in the continuous subspace of T if and only if

lim — \(f, —“Tf>\ dt = 0. (5.23)

Proof. Let p be the Borel measure determined by p(A) = (f,14(T)f). The vector f is in
the continuous subspace of T iff i is a continuous measure. Observe

=<f, e_itTf> = /e‘itwd,u(:v), (5.24)

which is the characteristic function of u. A theorem of Wiener gives

> (=) = Jim / (1) 2, (5.25)

zeR
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which implies the theorem. O

Remarks. (i) If limy o { f, €77 f) = 0, then f is in the continuous subspace of T.
(ii) The characteristic function of a finite measure determines the measure completely.

Theorem 5.5.12 (The Atomic Subspace) If T is a selfadjoint operator, and f is in
the atomic subspace of T, then

t— F@):=(f, e ) (5.26)
18 almost periodic.

Proof. Let u be the Borel measure determined by u(A) = (f,14(T)f). The vector f is in
the atomic subspace of T' iff 4 is an atomic measure. Now

Fuy:/}4mm4@, (5.27)

which is the Fourier transform of p. If y is an atomic measure with weights puq, o, - . .,
then F(t) = Y7, pje™, which is an almost periodic function. O

Remarks. (i) A more direct proof follows from an expansion of f in the eigenvectors of T'.
(ii) If F(t) = >, pje™, then f is in the atomic subspace of T. The frequencies A; of F
are eigenvalues of 7.

Theorem 5.5.13 (The Absolutely Continuous Subspace) If T is a selfadjoint oper-
ator, and if

t Ft):=(f,e""f) (5.28)

15 integrable, then the spectral measure of f is absolutely continuous with a bounded con-
tinuous density given by

1 o0 )
- F —its . .
tH%[w@kds (5.29)

If F(t) > 0, then F is integrable if and only if the spectral measure of f has a bounded
density.

Proof. This is a corollary of theorems concerning the characteristic function of a finite
measure. O
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5.6 Notes

Topologies for closed unbounded operators are introduced in [104], [75, p.197-], [124,
vol.I,p.283-]. The strong resolvent topology in the set of selfadjoint operators is not actu-
ally defined in any of these sources, but rather the notion of strong resolvent convergence
of sequences. It is necessary to generalize from sequences to nets to get a topology. Strong
convergence of (z — T)~! from strong convergence of (zg — 7))~ for a sequence of selfad-
joint operators is proven in [136, p.283, Theorem 9.15], but the same proof does also work
for nets. We have not found any references on o-algebras in sets of (selfadjoint) closed op-
erators, and only a few on topologies. The lower operator topology is perhaps introduced
here for the first time, and it seems to give some simplifications.

We have used the fact that a bounded set in the space of bonded operators on a separable
Hilbert space is a separable metric space in both the weak and the strong operator topology.
Proof of this may be found in [110, p.172].

The definitions of random operators in the sense of Skorohod are adapted from [125, p.1-3].
See also [49].

Pastur random operators are defined almost as in [107, p.13],[109, p.9]. See [107, Remark on
p.35] for a short discussion on the choice of definition. Pastur does not assume existence of a
common countable core in his definition, but this is an additional assumption in important
theorems [107, p.37-, (2.4) Theorem|. A weak Skorohod random operator is also a Pastur
random operator, if it obeys an additional requirement [125, p.33].

The representation of closed operators by matrix operators is found in [136, p.149-]. Closed
random operators from random matrices and random orthonormal systems, are not con-
sidered in any of the given sources. It gives a proper view of the difference between Pastur
random operators and the more general definition we have introduced. A class of random

matrix operators which are essentially selfadjoint on the set of finite sequences is given in
[107, p.67-71].

Measurability of selfadjoint operators is also relevant for direct integral decompositions of
operators, [124, p.283, vol.IV]. A random selfadjoint operator may be used to define a new
operator, the direct integral product of the realizations.

Randomness of (z —T) ™! from randomness of (zg— T') ™! is claimed in [79, p.286], but they
refer to [80] for the proof. We can not find this claim in [80, p.146]. Another reference for
this claim is [5, p.334], but the proof is missing.

Limits of selfadjoint random operators are treated in [31, p.244], [80, p.146]. The result
follows directly from the Trotter-Kato theorem [124, vol.I,p.288]. The sum of two selfad-
joint random operators is also considered in [80, p.146]. The Trotter product formula is
proved in [124, vol.I,p.295-,p.308], [30, p.192-,p.304]. The idea of using the Trotter product
formula for the definition of the sum of unbounded operators is not new [35], and the same
idea applies also to the Schrédinger operator and the Feynmann-Kac formula [102].

The core spectrum is defined in [27, p.83], but compare also [136, p.229-230]. Continuity
properties of the spectrum as a set valued mapping is considered in [105], [75, p.208,
p.431], [136, p.217-218,p.272-273,p.286-287]. The result for normal operators in Theorem
5.4.12 seems to be new. The lower semicontinuity of the spectrum for selfadjoint operators
and the upper compact semicontinuity for closed operators is well known, compare [105],
[75, p.208, p.431]. The presented proof of upper compact semicontinuity seems to be a
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simplification.

The definition of a transitive random operator is similar to the one found in [79, p.287],
[39, p.167], [31, p.252] in the same context. The definition goes back to L.A. Pastur. See
[109, p.9] [107] and the literature cited there. The term metrically transitive operator
(mto ) is used in [109] for closed operators in a Hilbert space. Our term ergodic operator
corresponds to Pastur’s definition of a mto .

Halmos [66, p.58] uses the term spectral measure to denote what we have defined to be a
spectral family. We follow closely the conventions in [136, p.180-228].

Theorem 5.5.9 is essentially due to Pastur [108]. Measurability of the components of the
spectrum is treated nicely in [31, p.245]. Alternative approaches are found in [80, p.148-],
[107, p.44],[39, p.170].

The idea of the proof of Theorem 5.5.10 is as in [79, p.305, Theorem 2|, but our result is
more general. Less general results are found in [107, p.85-86] and [31, p.264-267].

The stated Wiener theorem used in the proof of Theorem 5.5.11 is found in [39, p.98],
and is related to the RAGE theorem [124, p.340-344, vol.ITI] known in scattering theory.
H. Martens suggested to use the theory of almost periodic functions, when I asked him
a question strongly related to Theorem 5.5.12. T acknowledge his helpful hint. Theorem
5.5.13 follows from the results in [57, p.509-510].
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Chapter 6

Discrete Random Multiplication
Operators

A random sequence is interpreted as a random multiplication operator. We
investigate the properties of this random operator. The motivation for the
study is the electron theory of disordered solids, and more generally the theory
of linear random operators. We gain insight into general concepts from this
elementary model.

6.1 Introduction

The discrete Schrédinger operator
H=-A+V, (6.1)

is central in the electron theory for solids. When the potential V is neither short range,
nor periodic, the analysis is difficult. The seemingly best approach, both from a practical
and a fundamental point of view, is given by a statistical description of V.

The discrete Laplacian A is a bounded operator, and some of the properties of H are
given directly from properties of the multiplication operator. On the other hand the
random Schrodinger operator is so complicated that it is an invitation to a study of the
general concept of a linear random operator. The general theory is to a large extent
still missing, and one approach is to learn from the simplest possible examples. Most of
the questions posed for the random Schrodinger operator are completely solvable for the
random multiplication operator.

Convergence of unbounded operators is more delicate than convergence of bounded opera-
tors. This is because unbounded closed operators can never act on the whole space, which
in turn makes it impossible in general to compare two operators by means of their differ-
ence. The intersection of the operator domains may easily be {0}. This domain problem is
even worse for random operators. A solution to these problems is given by the introduction
of a proper topology for unbounded closed operators. The gap topology, which is a proper
generalization of the norm topology, is studied in some detail in the literature, but it is
not well suited for the definition of linear random operators. A weaker topology is needed.
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The lower topology seems to be a good choice, but a thorough study of this topology is
missing. For the multiplication operator we prove continuity of the mapping which maps
the potential to the multiplication operator, continuity in the sense given by the pointwise
convergence topology and the lower topology. We do also prove continuity of the mapping
of the multiplication operator to its spectrum. A corollary of these two results is that the
spectrum of the random multiplication operator is a random set. We identify operator
topologies with more elementary topologies for the potentials. An example is given by the
strong resolvent topology which is shown to be equivalent with the pointwise convergence
topology, when we consider real valued potentials.

Our discussion includes generalized random potentials, which simply means that the poten-
tial may take the value oco. The multiplication operator is defined by a Dirichlet boundary
condition at the points where the potential equals co. The corresponding multiplication
operators can still be compared, since we have avoided the domain problem by the intro-
duction of a proper topology. We consider random potentials given by random coupling
constants. In particular we demonstrate that a singular continuous distribution for V(z)
may result from reasonable distributions for the coupling constants. The possibility of
a singular continuous single site distribution seems to have attracted no attention in the
literature yet. It is in fact usual to assume the single site distribution to be absolutely
continuous.

The density of states is important in solid state physics. For the ergodic multiplication
operator it is shown to be equal to the single site distribution, so it may in particular be
singular continuous. The spectrum of the ergodic multiplication operator is equal to the
union of the supports of the single site distributions.

6.2 The Hilbert Space

To avoid possible confusion we start with an elementary definition.

Definition 6.2.1 (Countable Sets) A set is countable iff it is finite or is in one-one
correspondence with the set of natural numbers.

Let X be a countable set. The Hilbert sequence space H = [?(X) will be used in the
following. The elements in H are complex valued functions f with domain X and finite
norm, ||f|| = +/(f, f) < co. The inner product is given by

(f,9) =) f(z)g(x). (6.2)

zeX

Any sum over a countable set is to be interpreted as given by the counting measure #, if
not explicitly stated otherwise. In particular this implies that the series is assumed to be
absolutely convergent.

Let the Kronecker delta function be defined by d, = 1(5}. A natural orthonormal basis for
H is given by {d,},z € X. The Kronecker delta vector does also give a reproducing kernel
for H, as expressed by

(62, f) = f(z). (6.3)
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We define the subspace Ho = {f | #(f # 0) < co}. The subspace H, of finitely supported
functions is dense in ‘H, and the Kronecker delta functions give an algebraic basis for H,.
For any subset Y of X, we will identify [2(Y) with 2(Y) @ {f € 2(Y®) | f(z) = 0}, a
subspace of [*(X).

6.3 Perturbation of Discrete Multiplication Opera-
tors

When considering convergence of unbounded potentials, it is natural to extend the class
of potentials, and allow the potential to take the value oo.

Definition 6.3.1 (Generalized Potentials) Let X be a countable set. A potential on X
is a real valued function defined on X. A complex potential on X is a complex valued func-
tion defined on X. A generalized potential V on X is a function, V : X — C :=CJ{oo}.
The set of potentials on X, the set of complex potentials on X, and the set of generalized
potentials on X are denoted by respectively G,(X), G.(X), and G(X). The proper domain
of Vin G(X) is the set X(V):={z € X | V(z) # oo}.

Remarks. (i) The sets Gp(X) and G.(X) are vector spaces in a natural way, but G(X) is
not a vector space.

(ii) The inclusions G,(X) C G.(X) C G(X) hold, with obvious (necessary) identifications.
(iii) The natural topology in C is given from the natural topology in C with one addition:
The complements of compact sets in C give the neighborhood basis for the point co.

Definition 6.3.2 (Discrete Multiplication Operators) Let V be a generalized poten-
tial on a countable set X. The discrete multiplication operator M = M(V) is defined

by

D(M):={f € P(X) | f(z) =0, whenz & X(V), Y |f(@)V(z)]" < oo}

zeX (V) (6 4)
Mf(z) = V(z)f(z) ze€ X(V)
0 otherwise.
Remarks. (i) The multiplication operator is closed, but not densely defined when

X(V) # X. The subspace Ho(V):={f € Ho | supp f C X(V)} is an operator core.

(i) The space H (V) :=12(X(V)), viewed as a subspace of [?(X), satisfies M(H(V) (| D(M))
H(V) and M(H(V) N D(M)) C H(V)", so H(V) is a reducing subspace for M. The M,
defined by restricting M to [?(X(V)), is a normal operator, and M = M, @ 0;, where
0; = 0;(V) is the trivial operator given by D(0;) :={f € I*(X(V)¢) | f = 0}, 0;0 = 0.

The mapping V' — M(V') gives a one-one correspondence between generalized potentials
V' and multiplication operators M. The set of multiplication operators inherits operator
topologies, as a subset of the linear operators on the Hilbert space H. Likewise, the set of
potentials, has many natural topologies, as a set of functions.
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Definition 6.3.3 (Bounded and Decaying Potentials on a Countable Set) A com-
plex potential V' on a countable set is bounded iff |V ||, :=sup, |V ()| < co. The complex
potential equals z at infinity, written V(oo) = z, iff {z | [V(z) — 2| > €} is finite for any
given positive €. The complex potential is decaying iff V (oc0) = 0.

Remarks. (i) The notation V(co) = z may be misleading, since oo is not a point in the
domain of V.
(ii) If {z | |V(z)| < K} is finite for any given positive K, we write V(o0) = oo.

Theorem 6.3.4 (Multiplication Operators from Bounded Potentials) Thel® norm
of a complex potential on a countable set is equal to the operator norm of the corresponding
multiplication operator. A complex potential is decaying iff the multiplication operator is
compact. The BP norm of M(V), from the trace, is equal to the I’ norm of V.

Proof. The operator M is bounded iff V' is bounded, because

IMAP = V@) @) < (VI IF1D)?, s0 1M < IV - (6.5)

Equality of the norms follows from ||Md,|| = |V ().

The operator M is the strong limit of finite range operators M(V'1,4), and it is the norm
limit of such finite range operators if the potential is decaying. In the last case M is
compact. If we assume that M is compact, then it follows that the eigenvalues can only
accumulate at 0, which means that the potential is decaying. The BP norm is given by

(1M, = e ((MMP?) =Y (8, |V 0,) ZIV (V11,07 (6.6)

x

so we have one-one correspondence between the [P spaces and the set of multiplication
operators in BP. O

Remarks. (i) The space B'(H) is the set of trace class operators, the space B?(H) is the
set of Hilbert-Schmidt operators, and the space B®°(H) is the set of compact operators.
The inclusions B' C B? C B*® C B, the triangle (or Minkowski) inequality [|S + T[], <
IS, + [IT']],,, and the Hélder (Schwarz when p = 2) inequality | ST||, < [IS]|, [|Tl, hold
forp>1= 1/p+ 1/q.

Now we turn to a weaker convergence concept, valid for all generalized potentials. The
notation 7' = [—lim 7, means that the net {T)} converges towards the closed operator
T, in the lower topology for closed operators. This topology is the restriction of the lower
topology for closed sets to the set of graphs of closed operators in a given Banach space.
This topology gets an easier description when it is restricted to the set of multiplication
operators.

Theorem 6.3.5 (Lower Graph Convergence of Multiplication Operators) FEquip the
set of generalized potentials on a countable set with the direct product topology and equip the
corresponding set of multiplication operators with the lower topology for closed operators.
The mapping V — M = M(V), which maps a generalized potential V' to the multiplica-
tion operator M, is a continuous mapping. Conversely, if M(V) = l—lim M(V)), then
V(z) = limVy(z) for all x in the proper domain of V.
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Proof. Let {V)} be a convergent net of generalized potentials, with limit V' in the product
topology, V = p—1lim V). The claim is that M := M (V) = [—lim M,, with M, :=M(V,).
Let € > 0 and f € D(M) be given. Choose a finite K C X (V) such that ||f1x<|| < € and
IV flke|| < €/2. Choose N such that ||(V\ — V) flk|| < €/2 for all A\ > N. The conclusions
are that g = flx € D(M,), |lg — fl| <€, and ||[Vag — V f|| < ¢, for all A > N. This proves
that for a given open U which intersects the graph G(M), there exists an Ny such that
U intersects the graph G(M)) when A > Ny, so G(M) = [—lim G(M,), which proves the
first claim.

Fix an z such that V(z) # oo and let § be an arbitrary positive number. The pair
(0z,0.V (x)) belongs to the graph of M. The function ¢(a,b):=a/b is continuous at
(V(z),1). Choose € > 0 such that |¢(a,b) — ¢#(V(x),1)| < & when |a — V(z)],|b—1| < e.
The set U of pairs (f,h) with f,h € 2(X), |f(z) = 1], |h(z) — V(z)| < € intersects
the graph of M. This U is open, because g — g¢g(z) is continuous. The assumption
M =1[-lim M, gives a A\s such that the graph G, intersects U when A\ > A\;. Let A > ).
Then we have an f) in D(M,) such that both |f\(z) — 1| and |V\(z) fa(z) — V(x)]| are less
than e. Now |Vy(z) — V()| equals |¢p(Vy(z) fr(z), falz)) — ¢(V(z),1)], which is less than
d. This proves the claim V(z) = lim V) (z). O

Remarks. (i) In the last part we assumed convergence G(M) = [—lim G(M,) as given
by the norm topology on [I2(X)]?. The proof shows that the conclusion also holds if we
define graph convergence from the restriction of the product topology to I?(X).

(ii) The lower topology is not a Hausdorft topology on the set of closed operators, so the
statement M = [—lim M), may be true for many multiplication operators. Note that the
trivial multiplication operator M (co), with graph G(M(co)) = {(0,0)}, is a limit of any
net of multiplication operators. The operator M (p—lim V,) is a unique operator, because
the set of generalized potentials may be identified with a compact, complete metric space.
(iii) The restriction of the lower topology to the set of selfadjoint operators, is equal
to the strong resolvent topology, and is in particular a Hausdorff topology. The set of
potentials with the product topology is therefore homeomorphic with the corresponding
set of selfadjoint multiplication operators equipped with the strong resolvent topology.

The lower operator topology restricted to B(#), the bounded operators on H, is slightly
weaker than the strong operator topology on B(#). Now we turn to the gap topology for
closed multiplication operators, which is equal to the norm topology, when restricted to
bounded operators. First we consider only complex potentials.

Definition 6.3.6 (The V-bound of a Complex Potential) Let V and W be complex
potentials on a countable set X. The potential W is V-bounded if there exist numbers
a,b > 0 such that

W(z)| <a+0b|V(z)|, Vz € X. (6.7)
The infimum of all such b’s is the V-bound of W.

Remarks. (i) One may consider also generalized potentials, but then it seems natural
only to consider the case X (V') = X (W), since this concept is tailored for consideration of
V 4+ W, regarding W as a perturbation of V.

Theorem 6.3.7 (Relatively Bounded Multiplication Operators) Let V and W be
complez potentials on a countable set. The multiplication operator M (W) has M (V')-bound
a iff W has V-bound «.
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Proof. Assume first that M (W) has M (V)-bound «, so
IMW) Il <allfll + b IMMV)fI, Ve D(M(V)) C D(M(W)), (6.8)

for an arbitrary b > « and a suitable a, depending on b. Let x € X and consider f = §,.
It follows that

W (z)| < a+b|V(z), Yo € X, (6.9)

so W has V-bound c.
Now assume that W has V-bound « and let a, b be as in the previous equation. We prove

1MW)l < Va? + ab/t]| f]| + Vb* + abt [M(V)f]|, t > 0,Yf € D(M(V)), (6.10)

which proves the claim, in particular also D(M(V')) C D(M(W)), since t is arbitrary. The
above estimate follows from

|\Wf||<A+Bif |[Wf||?<A*+B? A,B>0 (6.11)
WP < IfIP+ 0 IVFI+ R (6.12)
R=2abY_|f(@)|([V(z)f(x)]) < ab(|[|*/t + |V f|I*¢), from (6.13)
gr < (¢t +7°/1)/2, ¢, >0, > 0. (6.14)

O

The convergence concept corresponding to relative boundedness is given by the following.

Definition 6.3.8 (V-convergence) The sequence Vi, Va,... of complex potentials on a
countable set V-converges towards the complex potential V if

Vi(z) = V(z)| < a; + 4|V (z)|, Ve € X (6.15)
for positive numbers a;, b;, converging towards 0.

Remarks. (i) If we consider a bounded potential V', then V-convergence is equivalent
with [ convergence. If V; —V is bounded, then uniform convergence can be defined. The
V-convergence can take place even when V; — V is unbounded.

(ii) Gap convergence seems to be the natural extension of norm convergence, when dealing
with generalized potentials. Gap convergence is defined from the Hausdorff distance be-
tween the unit spheres of the multiplication operator graphs. Norm resolvent convergence
is defined in the case where o(M(V')) # C, and is then equivalent with gap convergence.
Norm resolvent convergence or V-convergence implies gap convergence.
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Gap convergence does not imply V-convergence, as can be seen from the following example.
Let X =N, V(z) = z and V;(z) = = + o;z?, with positive numbers «; converging towards
0. We find

[MV) ™ = M(V)7| =@/l + ) =0, (6.16)

so M(V;) converges towards M (V') in norm resolvent sense and therefore also in the gap
topology. On the other hand we have |V;(z) — V(z)| = az?, so |Vi(z) = V(z)] < a; +
b;|V (z)| is impossible to satisfy. If we consider the involved spectra we conclude that
upper semicontinuity fails, but upper compact semicontinuity holds.

6.4 Discrete Ergodic Multiplication Operators

Armed with the previous topological notions we are ready to deal with random multipli-
cation operators, given by generalized random potentials.

Definition 6.4.1 (Generalized Random Potentials) Let X be a countable set, and
equip the sets G(X), G.(X), and G,(X) with the Borel o-algebra from the direct product
topologies. A generalized random potential on X, a complex random potential on X, or a

random potential on X is a measurable mapping from a probability space into respectively
G(X), G.(X), or Gp(X).

Remarks. (i) A random potential on X is, from the above, nothing but a real valued
stochastic process, indexed by X.

The prototype for a linear random operator is given by a random potential, which is the
content of the following.

Theorem 6.4.2 (Random Multiplication Operators) Let V be a generalized random
potential on a countable set. The multiplication operator M (V) is then a linear random
operator, selfadjoint iff V is a random potential.

Proof. Let U be a lower open set of closed operators defined on [?(X). The set {V |
M(V) € U} is open in the product topology, since V' +— M(V) is continuous. The
assumed measurability of w +— V,, implies then that {w | M(V,) € U} is measurable,
so M is a random operator. The operator M (V) is selfadjoint iff V' is real valued, so M (V)
is selfadjoint iff V is a potential. O

The applications in solid state physics give an effective potential as a result of an infinity
of individual atomic potentials. Randomness in the effective potential is obtained, in the
simplest cases, by introducing random coupling constants. From a mathematical point of
view the procedure gives a construction of a more interesting process from an elementary
one. The following theorem is a starting point.

Theorem 6.4.3 (Potentials from Random Coupling Constants) Let X be a count-
able set and T' a family of mappings v : X — X such that T' 5 v — ~(z) € X is injec-
twe for each v € X. Let Q,, for v in ', be a real valued stochastic variable, such that
sup,, E[|Q,|"] < oo for somer > 1. Let a potential v € I'(X) be given. The pointwise limit

V(z) = 3 @Q(r(x) (6.17)

verl
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exists with probability one, and defines a selfadjoint, random multiplication operator M (V).

Proof. For r > 1

EllQ,[] = El(Lig,1<1 + Ligy>0) @] < 1+ E[|Q4[]; (6.18)

so sup, E[|Q,]] < oco.

Fix z. The injectivity of v — «y(z) implies that I is countable, in fact in one-one corre-
spondence with a subset of X. Let 71, 72,... be an enumeration of the elements in I' and
set Q; = Qn,, vi :=v(vi(x)). We prove existence of

oo

> 1Qivil (6.19)

i=1

with probability one, so that the sum in equation (6.17) is absolutely convergent for all z
with probability one. It follows then that V is a random potential, since it is a pointwise
limit of a sequence of random potentials and M (V') is then a selfadjoint random operator.
The monotone convergence theorem gives

o0 N
E[; Qivil] = 1%H;E[|Qi|]|vi| < sup B[[Qs[} ol < oo (6.20)
This proves the claim, since otherwise we get a contradiction. O

Remarks. (i) The Q. represents, in applications, a coupling constant and v an effective
atomic potential. The potential V' is then the resulting potential from charges distributed
according to a lattice I'.

(ii) The nonrandom case is included in the above and the assumption becomes sup, |Q,| <
0o, so the coupling constants must be uniformly bounded. The random case gives a
generalization which includes possibly unbounded coupling constants. All of the Q,’s
may be Gaussian variables with a common finite variance securing the assumption in the
theorem.

(iii) If the coupling constants decay at infinity, then v need not decay so fast as when in
I'. Assume that (E[|Q;]"]'/") is in ¢ and v is in [? for some 7,p > 1, 1/g+1/p = 1. The
Minkowski inequality may then be applied to prove L"(P) convergence of the stochastic
variables, which is sufficient for the definition of the random potential. The above theorem
corresponds to ¢ = oo and p = 1, so we may add L"(P) convergence in the conclusion of
the theorem.

Consider the example given by X =Ny, I' = N, y(z) = v + z,

v(z) =271 and (6.21)
V(z) =) Qu(z+7), (6.22)
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with Q1,Q2,...1id.,, P(Q1=1)=p€(0,1), P(Q1 =0)=¢,and p+¢g=1,s0 {Q,} is a
Bernoulli sequence. The resulting potential is

V(z) = V(0)v(z), (6.23)

and the single random parameter V' (0) has a distribution function F(z) = P(V(0) < z). A
nice application of the ergodic theorem gives that the distribution of V'(0) is a continuous
measure with support supp dF' = [0, 1], and singular with respect to Lebesgue measure iff
p # 1/2. The references contains a proof of this statement.

Consider next the potential

W(z) = %an(w +n), (6.24)

with a doubly infinite Bernoulli sequence {@,}. The potential W is ergodic, in particular
stationary, but more exotic than the Bernoulli sequence. The single site distribution is,
with notation as in the previous example,

P(W(0) <t) = qG(t) + pG(t — 1)
(6.25)
G(t) = [I_, F(t — z)dF (x).

The distribution of W(0) is concentrated at [0, 2], is continuous, and singular with respect
to Lebesgue measure iff p # 1/2, which follows from the properties of F'.

A sketch of the proof of equation (6.25) is given by

W(0)=Qo+ > Qn/2"+ > Qn/2"

n>1 n>1
POW(0) £ 8) = Shy PQo = KP(Yi + Yo S 1= 1) 626
PY14+Y, <t)= [F(t—z)dF ()
F(z) = P(Y; < =),
where independence is the main point.
Definition 6.4.4 (Induced Transformations) Let G be the set of generalized potentials
on a countable set X. A mapping v: X — X defines the composition T, the composition
operator U,, and the count N,:
T,: GG, T,V(2):=V(y(x))
Uy : D(Uy) = 12(X), D(Uy):={f € B(X) | foy € B(X)}, Uyf:=For (6.27)
Ny: X = C, Ny(y):i=#{z € X [ () = y}.

A transformation on X is an invertible mapping from X onto X.
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Remarks. (i) It is sometimes convenient to use the same symbol, say 7, to denote all of
the three different mappings U,, T, and 7. Then vV =TV, vf = U, f, and v(z) = ().
(ii) The count N, is a generalized potential on X.

The following definition is used in the next theorem, and also when we consider functions
of multiplication operators.

Definition 6.4.5 (Functions of a Generalized Potential.) Let V be a generalized po-

tential on a countable set X. Let f be a complex valued function with a domain containing
V(X(V)). The generalized potential f(V) is defined by

00 V(z) =0

| = 6.28

1000 ={ Sy v 2 (629)

Remarks. (i) If V is a generalized random potential, and f : C — C is measurable, then
f(V) is a generalized random potential.

The unitarity of U, for a transformation < is elementary, and is all we will need in the
following. It is however possible to treat the general case also, without too much effort.
The following theorem does this, with the aid of the generalized potential given by the
count N,.

Theorem 6.4.6 (The Composition Operator) Let v : X — X, where X is a count-
able set. The composition operator U, is a linear, closed operator with domain D(U,) =
D(M(+/N,)). The range R(U,) equals {f € I*(X) | v(z) = v(y) = f(z) = f(y)}. The
formula U, f|| = |M(\/N,)f|| holds for all f in I?, where the value oo is allowed for
the > norm. The U, is bounded iff M(N,) is bounded, and then ||U,|| = /|| M(N,)|.
The inverse U,™" emists iff v(X) = X, or equivalently, iff N,(z) # 0 for all z in X. If
Ufl is densely defined, then v is a transformation of X. The U, is unitary iff v is a
transformation of X, and then U,* = Ufl =U,-1.

Proof. 'The linearity of U, follows from (af) oy = a(f o) € ?if foy € [ and
(f+g)oy=foy+goyel?if foy,goyel®

The norm equalities follow from A,:={z | a(z) = y} and ||U,f|* = 3, 1f(v(x))* =
>y Dozea, If () = >, NWIf (y)|>. This also gives the domain and boundedness claim.
If v(z) = ~v(y), then f(z) = g(v(z)) = f(y). Given f we can define g on v(X) so
f(z) = g(v(z)), and set g = 0 elsewhere. This gives the range claim.

Let 0 = lim f;, with f; € D(U,) and so that imU, f; exists. Since M(y/N,) is closed it
follows that lim ||U, f;|| = lim || M (y/N,) fi|| = 0, so U, is closed.

Assume that v(X) = X. If f(v(z)) = 0 for all z, then clearly f =0, so U, ™" exists.

If y is in X \ v(X), then U,6, = 0, so U, " does not exist.

If U, " is densely defined, then R(U,) = [?(X), from the formula for R(U,), so v is injective.
Since Ufl exists, 7y is also surjective.

Let v be a transformation. The formula U{l = U,-1 follows from f = foyoy~!. Unitarity
of U, follows from rearrangement of an absolutely convergent sum.

Set e, = U,d,. Unitarity of U, gives that {e,} is an orthonormal basis. Then 1 = ||e,|| =
#{y | v(y) = z}, so vy is injective and surjective, which proves that «y is a transformation. O

Given a measure preserving transformation 7" on a probability space, a stationary process
is given by n — Y (T"w) for any stochastic variable Y. If T is also metrically transitive,
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the process is an ergodic process. In the applications in solid state physics, the notion
needs to be generalized in two respects. Firstly we need more than one generator 7" to deal
with more than one direction in space. Secondly we need to consider measure preserving
transformations given by subgroups of the index group. In the above example the index
group is Z and the subgroup is also Z, but an application may give measure preserving
transformations corresponding to the proper subgroup 27Z.

Definition 6.4.7 (Ergodic Generalized Potentials) Let I' be a subgroup of the trans-
formation group of a countable set X, such that T' 3 v — «(z) € X is injective for each
x € X. A generalized potential V on X s I'-invariant if V. =T,V for all y inI'. A
generalized random potential V on X is I'-stationary if the distribution Py equals Pr.y for
all v in T'. A generalized random potential on X is metrically transitive, with respect to T,
if TyA = A for all v in T, implies Py(A) € {0,1}. AV is ['-transitive if it is metrically
transitive with respect to I'. A generalized random potential on X is I'-ergodic if it is both
[-stationary and I'-transitive.

Remarks. (i) If X is a group we may consider the transformation group I' given by the
left action of a subgroup of X. A model is given by X = Z% and a lattice T in X.

(i) A measurable set is trivial if it or the complement has measure 0.

(iii) All the statements involving “for all v in I'”, may be replaced by “for all v in a
generator for ['”, without a change in the definition. This is why I' is assumed to be a
group.

(iv) The random potential T,V = V o+ is given by the random coordinates V (gamma(zx))
for z in X.

The abstract example of a I'-invariant complex potential is given by the pointwise limit

V=> Tw, (6.29)

ver

where v is in ['(X). This V may also be considered to be ergodic. Any generalized
potential may be identified with a metrically transitive potential, from the corresponding
Dirac measure, so metrical transitivity and stationarity are independent properties. The
following observation is the motivation for the extension of the ergodicity notions from
stochastic processes to linear random operators.

Theorem 6.4.8 (Ergodic Multiplication Operators) Let V' be a generalized potential
on a countable set X, and let v be a transformation of X. Then

M(T,V)=U,M(V)U,™". (6.30)

If a generalized random potential is stationary, metrically transitive, or ergodic, then the
multiplication operator has the same property.

Proof. We need only prove M(T,V)U, = U,M(V), since the rest is obvious from the
definitions. The domain of U,M (V') equals the domain of M(V'), because U, is unitary.
The proper domain X (T, V) is given by 7' X (V), and since f in [? is equivalent with fo~y
in {2, the domain of M(T,V)U, equals the domain of M (V). Let f in D(M(V)). Then
(TM)N)E) = Vo)), ad TV () = VOE)0), which proves
the claim. O
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6.5 The Spectrum

The spectrum of a linear operator 7 is given by a characterization of the invertibility of the
operator z — T' for complex z. The inverse of a multiplication operator is easily described.

Theorem 6.5.1 (The Inverse of a Multiplication Operator) Let M (V) be a discrete
multiplication operator. The inverse M~ exists iff V(z) # 0 for all z, in which case
M= = M(1/V).

Proof. The inverse exists iff M f = 0 implies f = 0 for all f in D(M). This reduces to
V(z)f(z) =0 for all z in X (V), so the claim follows. O

Remarks. (i) The inverse M !, if it exists, is unbounded if 0 is an accumulation point for
V(X).

Since z — M(V') is a multiplication operator, the spectrum of M (V) may be completely
characterized. The following theorem gives the spectrum, the point spectrum, the con-
tinuous spectrum, the residual spectrum, the discrete spectrum, the core of the essential
spectrum, the core of the spectrum, and the pure point spectrum.

Theorem 6.5.2 (The Spectrum of a Multiplication Operator) Let M = M(V) be
a discrete multiplication operator. The spectrum is characterized by

V(X) X(V)=X
(M) = { C( ) ng§ X (6.31)
o,(M) = V(X), (6.32)
oe(M) = { W\V(X) ﬁg“;; ;§ : (6.33)
0 X(V)=X
UT(M) :{ V(X)c XEV; 7& X (634)
og(M)={A e C |3z, =V(z), T open U 3 A, #(UﬂV(X)) < oo}, (6.35)
Ge(M)={A€C|V open U3\, #U[ V(X)) =00}, and (6.36)
G(M) = oapp(M) = V(X). (6.37)

Proof. Let z be a complex number. The range R(z — M) is a subspace of I2(X (V)), the
later regarded as a subspace of [2(X). We conclude that the resolvent set p(M) is empty
if X(V) # X, since the inverse never is defined for all f in [?(X). Assume X(V) = X. In
this case the range R(z — M) is a dense subset of [?({z | z # V(z)}). The operator z — M
has an inverse iff z is not in V/(X). This inverse is bounded iff z is not in V(X), and so
the first equation is established.

The z is an eigenvalue of M iff there exist an z with z = V (), and then ¢, is a corresponding
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eigenvector. This gives the point spectrum.

Then consider the residual spectrum. The range R(z — M) is dense in *(X) if X = X (V),
in which case the residual spectrum is empty. Consider X (V') # X. The range R(z — M)
is then not dense in [2(X) for any 2, and z — M is injective for any 2z not in V(X), so the
residual spectrum is given by V(X)e.

The number 2 is in the continuous spectrum iff 2 — M is injective, with a densely defined,
unbounded inverse. The range R(z — T') is not dense if X (V) # X, so in this case the
continuous spectrum is empty. The continuous spectrum in the case X (V) = X follows by
elimination.

The operator z — M has a bounded inverse iff 2z is not in V(X), and this is then the core
of the spectrum. The pure point spectrum is the closure of the point spectrum.

The rest of the proof is also elementary verification of the definitions. O

Remarks. (i) The multiplicity of a given eigenvalue z is the cardinality of {z | z = V(z)}.
This cardinality is either the cardinality of the integers or represented by an integer.

(ii) For any given subset of the complex plane there are many multiplication operators
with dense point spectrum in this set. This follows because the set of complex numbers
has a dense, countable subset D and it is trivial to construct V' such that V(X) = D.

The multiplication operator is a spectral operator, in the sense that it is given uniquely
by a spectral resolution of a projection. The spectral family, a spectral measure, and the
Lebesgue-Hammer decomposition of the spectrum are found in the following.

Theorem 6.5.3 (The Spectral Family) Let M (V) be a discrete multiplication opera-
tor. The operator E(A):=M(14(V)) defines a spectral family E. The multiplication
operator is given by M = Elid]. More generally M(u(V)) = E[u] holds for any Borel
measurable function u: D(u) —» C, D(u) D V(X(V)). A spectral measure for M is given
by

222—i1,4(v(xi)), (6.38)

where X = {x1,%9,...} is the countable set. The Lebesque-Hammer decomposition of the
spectrum is given by opp(M) = V(X) and 04.(M) = 05.(M) = 0.

Proof. Direct verification gives that E(A) is the orthogonal projection on I*({z | V(z) €
A}). Furthermore

pi(A):=(f,E =) A If(@)P1m (V) (6.39)

2eC zeX

so E is an atomic projection valued measure. A z is an atom iff #({z | z=V(z)}) > 0.
Next we verify that Efu] is the multiplication operator M (u(V')). A vector f is in D(E[u])
iff f is in R(E(C)) and w is in L?(py) that is, iff

0o > Z|u Z DPVE)) = D |[uV(@)f (@), (6.40)



so D(E[u]) = D(M(u(V))). Equality E[f] = M (u(V)) follows from a similar verification.
The given spectral measure is obtained from

p(4) = Z 27" (0z,, E(A)dg,,) , (6.41)

and this does also give the characterization of the spectrum. O

The starting point for perturbation theory for linear operators is to analyze properties
of the operator T+ 6T from knowledge about the operator T, when 07 is “small”. In
applications the “small” term may very well be an unbounded operator, and even the
definition of the sum may give fundamental problems. This motivates the introduction of
topologies for unbounded operators. A typical problem is to determine if the spectra of
two closed operators are close if the two operators are close. This question motivates the
introduction of topologies for sets of closed sets, since the spectrum is a closed set. A study
of the multiplication operator indicates the kind of results one may obtain.

Theorem 6.5.4 (Perturbation of The Spectrum) Fquip the set of discrete multipli-
cation operators with the lower topology for closed operators. The core of the spectrum,
M — 6(M), is lower semicontinuous, but not upper compact semicontinuous. Equip the
set of generalized potentials with the direct product topology. The mapping V — 6(M(V))
18 lower semicontinuous, but not upper compact semicontinuous.

Proof. Let M = [-1lim M), ¥:=6(M) = V(X (V)), and X :=6(M,). Let U be an open
set which intersects . Then there is an = with V(z) € U. Fix this 2. The last part
of Theorem 6.3.5 gives lim V) (z) = V(z), so there is a Ay such that V)(z) is in U when
A > Ay. The conclusion is that X intersects U for A > Ay.

Upper compact semicontinuity is impossible from the last part of the theorem.

The lower semicontinuity of V — (M (V)) follows from the first part of Theorem 6.3.5
and the claim just proven.

Let V,,(m) :=1{k>ny (m) for natural numbers n,m, so 0 = p—lim V,, = V. The compact
set {1} is disjoint from 6(M(V)) = {0}, but 1 € 6(M(V},)) for all n, so V — 6(M(V)) is
not upper compact semicontinuous. O

Remarks. (i) The first claim may be written 6(I—lim M,) = [—lim 6(M,), but read
with care since the involved topologies are not Hausdorff topologies.
(i) Lower semicontinuity of V — (M (V')) may also be verified directly.

The crudest measure of the degree of disorder in a random potential V is given by the
set R(V) = {v | Jw € Q,V,, = v} of possible realizations. If R(V) C R(W), then it is
reasonable to consider W to be more disordered than V. The set of realizations has little
importance, mainly because the distribution of the potential is not properly reflected. A
better choice is to measure the degree of disorder by the topological support supp Py, so
V is less disordered than W iff supp Py C supp Pw. This measure of disorder is perhaps
the crudest that has any significance, but the definition has a serious drawback. It may
be practically impossible to verify, for a nontrivial distribution, if a given potential v is in
supp Py. This motivates the definition of the set of admissible potentials.
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Definition 6.5.5 (Admissible Generalized Potentials) Let V' be a generalized ran-
dom potential on a countable set X. The set of V-admissible generalized potentials is

Ay = H supp Py, (6.42)

zeX

where P, is the distribution of V(x). The spectrum of V at z is
Y.:={z€C|P(|V(z) — 2| <€) >0, Ve > 0}. (6.43)

Remarks. (i) The difference between ¥, and supp P, is that oo may be in supp FP,.
(ii) The spectrum ¥, at z is a closed set.
(iii) The set Ay of V-admissible potentials is closed and contains supp Py .

Nonrandom spectrum is a basic property of ergodic Schrédinger operators. In good cases
the spectrum is even computable. The multiplication operator represents a good case, and
allows for an explicit formula.

Theorem 6.5.6 (The Random Spectrum) LetV be a generalized random potential on
a countable set, with distribution Py. The core ¥.:=6(M(V')) of the spectrum is a random
set. If the generalized random potential has a metrically transitive distribution, then

= |J @)= s) =, (6.44)

veESUPP Py vEAyY T

with probability one. If V 1is I'-ergodic, with an infinite I', then
S=6MV)= J =, (6.45)

with probability one.

Proof. Let (2, F, P) be the probability space. By assumption 2 3 w — V|, is measurable.
The measurability of w — ¥ = 6(M(V,,)) follows from the continuity of V' — M (V) and
the continuity of M +— &(M). This proves that ¥ is a random set.

Let G be the set of generalized potentials equipped with the product topology. The dis-
tribution Py (A):= P(V € A) is a Borel measure on G. The sets 3, C C and supp P, € C
are supports of Borel measures and are therefore closed. The measures Py and P, are
Borel probability measures, and second countability gives that the supports have measure
one. From Ay = () {v | v(z) € supp P,} it follows that Ay is closed and has measure one.
The inclusion supp Py C Ay holds because supp Py is contained in any closed set of full
measure.

The single point set {¥,} is Borel measurable in the set of closed sets of complex numbers,
since Pr(C) is o-separated in the natural o-algebra. The set {v | 6(v) = Xy} is measurable
from continuity of v — &(v), and Qg :={v | 6(v) = £y, v € supp Py} is measurable since
supp Py is measurable. Set

Yo = U & (v). (6.46)

vesSupp Py
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The metrical transitivity of V, the second countability of G, and the lower semicontinuity
of v — &(v) implies that the set {2 has measure one.

Let z = v(z) € C for an = and a v € supp Py. Let U in C be open, with z € U.
From v € supp Py it follows that P(|V(z) — 2| <€) > 0,s0 z € ¥, and £y C U, Z,.
Now assume z € 3, and set Cp:={v | |v(z) — 2| < 1/n}, so P(V € C,) > 0. Choose
vy, € UGy forn=1,2,..., 50 limv,(z) =2 € J, vn(X), and U, X, C .

Finally we prove J, 2z = U,c4, (M (v)). From the above supp Py C Ay, so C is clear.
The opposite inclusion D follows because z = v(z) € C for an V-admissible v gives z € ¥,
by definition.

Fix z and let U be open with U N X, # 0, so p:=P(V(z) € U) > 0. The function
v = t(v) = >, ly(v(z)) is [ invariant, t(v 0 b) = ¢(v) for all b in I'. From this, with
probability one, #{z | V(z) € U} equals E[t(V)] > >, .rp =00, since I' 3 b+ b(z) € X
is injective and I is infinite, so the spectrum can not be discrete. O

Remarks. (i) It may be hard to verify if a given potential is in the support of a random
potential.

(ii) That V(X (V)) equals |J, ¥, with probability one, may be proven directly. The set
v(X(v)) is clearly a subset of |J, X, for any admissible potential v. Let z be in ¥, so
P(|V(z) — 2| < €) > 0 for any positive e. The set A, = {v | €T, |v(b(z)) — 2| < 1/n}
is I" invariant, so the metrical transitivity gives Py (), An) = 1. Let v in (), A,. For each
n there is a b with |v(b(z)) — 2| < 1/n, and we set z,:=v(b(z)). Now z, is in v(X (v)),
and z = lim z,, gives z € v(X (v)).

The previous theorem gives in particular two properties of generic nature. Firstly the
spectrum increases with increasing disorder, and secondly the discrete spectrum is empty,
if the potential is stationary.

6.6 The Density of States

Let T = El[id], where E is a resolution of the identity. A spectral measure for T is given
by

oo

p(A) =) 27" (en, E(A)en), (6.47)

n=1

where {e,} is an arbitrary orthonormal basis. The density of states measure may be
considered as an analogue to spectral measures, but each dimension is to get equal weight.
Let P be a finite dimensional orthogonal projection. A probability measure is then defined
by

Np(A) = Te(PE(A)P)/ Tx(P). (6.48)

Finite dimensional projections have a natural order, so {Np} is a net of probability mea-
sures. A weak limit N = w—lim Np is the density of states measure, but the limit may
not exist. A related approach is to look for a normalized trace 7 with domain so that
N(A):=7(E(A)) is possible. The absolute continuity N < E would be a consequence.

It seems that none of the above approaches is sufficient for the applications in solid state
physics. We will define a density of states which will be sufficient for discrete multiplication
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operators and discrete Schrodinger operators. In particular we will find examples where
the density of states measure is not absolutely continuous with respect to the resolution of
the identity.

Definition 6.6.1 (The Discrete Density of States Measure) Let E be a spectral res-
olution of a projection on 12(X), where X 1is an infinite countable set. An approzimate
density of states measure Ny s defined by

Na(A):= (8, E(A)S) | #A, (6.49)
TEA
for any finite subset A of X. Let x1,%o,... be an enumeration of the elements in X. The
weak limait
N =w—lim N, 2.1} (6.50)

if it exists for a subsequence {ny} C N, is a density of states measure for the operator
Elid).

Remarks. (i) The existence of N and N itself depends on the chosen sequence in X, so
N is not uniquely given from FE.

(ii) A density of states measure exists iff the countable set {Nx} of approximate density
of states measures is relatively compact. There seems to be no gain by consideration of
convergent nets or subnets, because the weak topology for the measures is given by a
metric. Sequential compactness is equivalent with compactness for a metric space.

The density of states measure is connected to the spectrum. In applications the spectrum
is given by the support of the density of states measure. This is not true in general, not
even for the multiplication operator.

Theorem 6.6.2 (The Density of States Measure) The density of states approzimants
for the discrete multiplication operator M(V') are given by

NAlf1 =) F(V(w)/ #4, (6.51)

€A

where f(V(x)):=0 for V(z) = oco. The approzimant Ny is a pure point measure with
NA(C) < 1. The inclusion

supp N C .(M(V)) (6.52)
holds if N exists.

Proof. The formula for N, follows from the spectral family, E[f] = M(f(V)).
Abuse notation by N, = Ny, .., }- The assumption N = w—1lim N, implies lim N, (U) >
N(U) for any open U. Let U be an open neighborhood of z € supp N, so N(U) > 0, and

0 < lim ki S 1y (V(2). (6.53)

" oi=1
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This implies #{z | V(z) € U} = o0, s0 z is in G.(M(V)). O

The density of states is a nontrivial quantity, and even so for the existence. The following
proof depends on Prokhorov’s tightness theorem for compactness of a set of finite Radon
measures. It is also noteworthy to single out potentials where the density of states measure
is approximated in a stronger topology.

Theorem 6.6.3 (Existence of The Density of States) A discrete multiplication op-
erator M(V') has a density of states measure iff given any € > 0 there is a compact set K
with

sup{Zch z))/ #Y | #Y < oo} < e (6.54)

z€eY

If V equals z at infinity, then N = 0, is a unique density of states. If V takes only the
values zy, ..., 2m, 00 and

w; =1im Y 0 6,,(V(z;))/n (6.55)
j=1
exists, then

N =p-lim Ny =Y wi, (6.56)

is a density of states measure. A density of states exists if V(X) ([ C is bounded.

Proof. The first part follows from Prokhorov’s theorem.

We prove lim N,,[f] = f(z) for all functions f, continuous at z, given V(cc) = 2. Let € > 0
and choose ¢ > 0 so |f(w) — f(2)| < € when |w — 2| < 8. Pick M so |V (z;) — 2| < § when
i > M and V(z;) # co. This gives

limNn(f)_hm Z+Z ) =0+ f(2) + R, |R| < ¢, (6.57)

i=1 i>M

which proves the second claim.

We have N,({z}) = > i Lz (V(ws))/n, so lim N, ({z}) = wg. This gives the third
claim, lim N,,(A) = N(A), from a finite decomposition of a general measurable set A.

If V(X)) Cis bounded, chose a compact K O V(X)[)C, and the first part of the theorem
is fulfilled. O

Remarks. (i) The weights w;, and their existence, depend on the enumeration.

(ii) The case V(00) = z shows that the product topology for measures is unsufficient, since
Nn({z}) = 0 is a possible case. This also shows that N < FE is wrong in general, even
when N is a unique pure point measure.

(iii) In the case where V' takes a finite number of values the product topology was sufficient,
and in particular N < E is true. It may seem that it is sufficient to assume that V' (X) is
without complex limit points, but the tempting interchange of limit and summation is not
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correct.
(iv) Consider the example V(z) = z on the integers. There is no density of states measure,
because supy Ny (K¢) = 1 for any compact K.

The final theorem depends on the Birkhoff ergodic theorem, and is perhaps a proper place
to end the list of explicitly computable quantities for the ergodic multiplication operator.

Theorem 6.6.4 (Nonrandom Density of States) Let d be a natural number. Let V
be a generalized L ergodic potential on Z¢ for a d-dimensional lattice L in Z%, with a
fundamental cell of points x1,...,%y. Let P; be the distribution of V(x;) restricted to C.
A density of states measure is given by

N3 rm 639

Proof. Consider first L = Z% so m = 1. Let f : C — C be bounded and measurable, so in
particular f(V(z,)) € L'(P). For boxes A the Birkhoff ergodic theorem gives

P[f(V(21))] = E(f(V(z1))) hm—Zf NIf], (6.59)

wEA

with probability one. Consideration of f = 14, for all dyadic boxes A, gives the claim,
since the family of dyadic boxes is countable and convergence determining. In the general
case X is the disjoint union of the sets X; = {z; +1|! € L}. Equation (6.58) follows from

|A|Zf Z||A| |A|Zf (6.60)

TEA

where A; = A X. O

Remarks. (i) The expression for the approximate density of states measures is a good
reason by itself for consideration of ergodic potentials.

(ii) The measures P, may not be probability measures, but they are defective probability
measures in the sense used by Feller.

(iii) The convergence in equation (6.59) is both pointwise and in LP(P) sense, for f(V (z1))
in LP(P).

6.7 Notes

There is apparently no literature in which the random multiplication operator is discussed,
possibly because it is truly elementary. The aim in the previous discussion is not to get
an understanding of the multiplication operator, but rather to use the simplicity to get an
understanding of the (missing!) general theory. It is surprisingly many of the results for
this model which can be generalized. On the other hand, many “reasonable” assumptions
regarding the general theory find counterexamples.
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Countability is defined in Definition 6.2.1 in accordance with Kreyszig [88, p.612]. Ebbing-
haus [47, p.11] excludes the finite case in the definition of countable, and uses the term “at
most countable” to include also the finite case.

Consideration of generalized potentials, see Definitions 6.3.1, is maybe a new twist. It
allows for instance random Dirichlet boundary conditions.

The classification of the compact multiplication operators in Theorem 6.3.4 may be seen
as a special case of more general theorems on compact operators, see [88, p.405-458], [136,
p.129-141, p.166-179], [110, p.105-125].

I introduced the lower topology for closed operators in [129], and it seems to be a natural
generalization of the notion of generalized strong convergence found in Kato’s book [75,
p.426-462], in the context of asymptotic perturbation theory for closed operators. It does
also generalize the concept of strong graph convergence, see [124, vol.I p.293-294, vol.II
p.268-274], [30, p.186-188, p.281]. The example given by convergence of unbounded multi-
plication operators in Theorem 6.3.5 does also indicate that the lower topology for closed
operators deserves further study.

The V-bound of a complex potential in Definition 6.3.6 is perhaps not a standard notion,
and Theorem 6.3.7 may be a new observation. Definition 6.3.8 of V-convergence is moti-
vated by for instance [75, p.206], [136, p.272]. Gap convergence is defined in the context
of analytic perturbation theory in [75, p.197-208, p.364-426).

The random multiplication operator in Theorem 6.4.2 is more general than the usual
random multiplication operators, since we allow the value oo for the potential.

Theorem 6.4.3, which gives a random potential from random coupling constants, should be
compared with the corresponding continuous case [79, p.302]. I constructed the potential
W in the second example after Theorem 6.4.3, to demonstrate that singular continuous
single site distributions may easily occur. Just how typical singular distributions are, in
the context of applications in solid state physics, seems to be an interesting question. The
singular continuous distribution function F' in the first example is found in [57, p.35-36],
[114, p.48-49], [128], where the last reference also gives a plot of F'.

The composition operator U, in Definition 6.4.4, or at least special cases of it, is used in
a variety of problems in mathematical physics. The count N, is maybe not so commonly
used.

Definition 6.4.5 of functions of generalized potentials seems to be a natural choice, and is
what is needed in following theorems.

Theorem 6.4.6 for the composition operator U, may be “new”, and the proof gives a nice
application of the concept of generalized potentials with the use of the count NV,.

Definition 6.4.7 of ergodic generalized potentials is modeled after similar definitions found
in [94, p.87, p.95]. Sometimes the term metrically transitive is used synonymously with
the term ergodicity [37, p.14], but I see no reason for this.

Theorem 6.4.8 is elementary, but fundamental. It leads to the complete analysis of the
Schrédinger operator with a periodic potential, and it is the motivation for the generaliza-
tion of ergodicity concepts to include linear random operators.

Theorem 6.5.2 gives in particular examples of operators with nonempty residual spectrum,
bounded operators in finite dimensional spaces with spectrum equal to C, and it indicates
that the core of the spectrum is of special interest for the spectral theory of general closed

110



operators. The definitions used for the components of the spectrum are found in [136, p.99,
p.202-203] and [110, p.134, p.207]. There is a conflict in the definition of the continuous
spectrum. One definition holds for general closed operators, which is my choice also, and
another is based on the continuous part of a spectral operator. Sinai [37, p.453] defines
the discrete part of the spectrum to be the closure of the set of eigenvalues, which is far
from the definition I have chosen.

It is perhaps nonstandard to consider spectral families for operators which are not densely
defined, as in Theorem 6.5.3.

I do not know about any references where lower topologies for both operators and spectra
are used, so Theorem 6.5.4 may be new.

The set Ay of admissible potentials in Definition 6.5.5 is used also in [5, p.343] , [81, p.334],
but in the context of continuous Schrédinger operators as functions of random coupling
constants. In the i.i.d. case, as in [81, p.330], there is no difference between Ay and the
support {2y of the potential.

Theorem 6.5.6 determines the spectrum of an ergodic operator. For this special case it
may be “new”, in particular if the set of admissible potentials is strictly larger than the
support of the random potential. Empty discrete spectrum is the generic case, as shown
in [79, p.295].

The density of states measure is of vital importance in solid state physics, by which for
instance the difference between metals and insulators can be understood [10, p.562, Figure
28.1]. Kirsch [79, p.307-334, p.338, p.343-344, p.363| considers several equivalent defi-
nitions for the density of states for the continuous, random Schriodinger operator. The
original definition of the density of states uses finite cubes and approximate density of
states measures for these cubes. Definition 6.6.1 is more general than usual, and allows for
subsequences of increasing cubes.

Theorem 6.6.2 gives the approximate density of states measure directly as a space average,
and may be a new observation. It suggests strongly to consider ergodic potentials.

Prokhorov’s theorem, as used in the proof of Theorem 6.6.3, is found in [96, p.15].

Theorem 6.6.4 gives the density of states explicitly, and it may be possible to use this as
a starting point for the Schrodinger operator case.

The problem of existence of the density of states is similar to the existence of the thermo-
dynamic limit in statistical mechanics [117, p.13-28].
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Chapter 7

Random Schrodinger Operators on
Random Graphs

The lower topology is applied to define random Schrédinger operators on a
random graph, defined by generalized potentials. We prove that the spectrum
is a lower semicontinuous function of the generalized real potential. This gives
an explicit formula for the spectrum, when the potential is a metrically tran-
sitive, random process. The significance of the Lebesgue decompositions of a
selfadjoint Hamiltonian is discussed in terms of the time dependent wave func-
tion. Local spectral measures are defined and applied. Firstly for the proof
of randomness of the Lebesgue decomposition of the spectrum, and secondly
in an explicit formula for the integrated density of states measure. We deter-
mine the spectrum and the pure point spectrum of the percolation Schrédinger
operator. The determination of the absolutely continuous and the singular con-
tinuous spectrum are left as open problems, but possibly solvable by methods
indicated.

7.1 Introduction

The general theory of closed random operators would be of little interest if there were no
concrete models available. The first aim here is to present and extend the model which
has been most extensively studied. The model is known as the tight binding model or the
Anderson model. We will call it the discrete Schrédinger operator model.

The discrete Schrédinger operator is defined from a finite difference Laplace operator and
a potential. We allow the potential to take the value oo, and uses the term generalized
potential when we allow this possibility. This gives a natural way to model a random
graph by random removal of points. By means of the lower operator topology we prove
that the Schrodinger operator from a generalized random potential is a random operator
in a proper sense. We prove also that the mapping of a generalized real potential to the
core spectrum of the Schrédinger operator is lower semicontinuous. The general theory
for metrically transitive closed random operators may then be applied. The result is an
explicit formula for the nonrandom spectrum of the Schrédinger operator from a metrically
transitive generalized real random potential.

In the Anderson model it is known that large disorder implies absence of diffusion. We
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discuss how the time behavior of the wave function is related to the Lebesgue decomposition
of the Hilbert space into an absolutely continuous part, a singular continuous part, and
a pure point part. This gives a most beautiful and rigorous interpretation of some deep
mathematical results. The point is that any quantum state gives an associated measure,
and the Fourier transformation of this measure is directly related to the time development
of the state given by Schrédingers time dependent equation.

The Green’s function has been the most important tool in the existing proofs of pure
point spectrum. We prove that the Green’s function is a jointly continuous function of
the generalized real potential and the resolvent set parameter. A consequence is that the
spectral family of the Schrodinger operator is random in a proper sense. General theory
does then imply nonrandomness of the Lebesgue decomposition of the spectrum when the
generalized real random potential is metrically transitive. We give an explicit formula for
the integrated density of states measure in terms of mean values of local spectral measures,
which is valid for a general ergodic potential. We need the stationarity assumption on the
potential to ensure existence of the integrated density of states measure.

We determine the spectrum and the pure point spectrum of the percolation Schrodinger
operator. The existence of continuous spectrum remains as an open challenging problem,
but is determined completely by a corresponding knowledge about the nearest neighbor
operator on an infinite connected domain. We find explicit formulas for operators defined
from functions of the nearest neighbor operator.

7.2 The Lower Operator Topology

The discrete Schrédinger operator is possibly the most fundamental second order partial
difference operator. We will need a slightly more general definition than the usual one.
We include the possibility of a complex valued potential, which is quite natural. The most
important extension is that we allow the potential to take the value oo. This is not so
interesting when we only consider one fixed potential. The main point is that it will allow
random operators which is defined on a random graph given by random removal of points.

Definition 7.2.1 (The Discrete Schrodinger Operator) Let V be a generalized po-
tential on X :=7%, with a proper domain X[V]:={z € X | V(z) # oo}. We define the
Laplace operator Ay in I>(X) by

Ay B(X[V]) = BXIV), Avf):= Y (fly) - f(@)), (7.1)

yen(z)

where n(z) :={y € X[V]||ly — z||, = 1}. The discrete Schridinger operator H = H[V| in
I?(X) is defined by

D(H)={f e M(X[V]) | Vf € (X[V])}, H : D(H) = I*(X[V]), 72)
2
Hf(z):=-Ay f(z) + V(2)f(z).

Remarks. (i) We identify H[V]:=1?(X[V]) with a subspace in H :=[?(X).

(ii) The restriction H,, of H[V] to [?(X[V]) is a normal operator, if the imaginary part of
V is zero. This means in particular that H is given by a spectral family, so H = E[id).
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It is not clear a priory how to compare two operators which may be defined in orthogonal
subspaces. The lower operator topology gives one possibility. The following theorem
gives partly the correspondence between pointwise convergence of potentials and lower
convergence of Schrodinger operators.

Theorem 7.2.2 (Continuity of the Generalized Schrédinger Operator) The map-
ping V — H[V] of a generalized potential V to the Schridinger operator H[V] is continu-
ous, when the set of generalized potentials s equipped with the product topology and the set
of generalized Schriodinger operators is equipped with the lower operator topology.

Proof. We prove that H[V] = [-1lim H[V,], when V = p—lim V). Set H = H[V] and
Hy, = H[V)]. Let f € D(H) and € > 0 be arbitrary. Let X = Z% and X[V] be the subset

in X where V is finite. From the definition of D(H) we can find a finite Ky C X[V] such
that

||1K00 . f“ <€, and ||1Koc . Hf“ < €. (73)

Set K:=K,(X[V], where Ky:={z € X | Jy € Ky, ||z —y||, < 1}. The convergence
Vi — V gives a A such that K C X[V}] for A > A1, a Ap > Ay such that

Il - (Va— V) f]] <€, when A > A, (7.4)
and a A3 > Ay such that

12d + Va(z)| > ||f]] /e, when A > A3, = € fﬂX[V]C. (7.5)

Consider a A > 3. Set Z:=K (N X[VA]X[V]¢ and Y, :={y € K | ||y — z||, = 1}. Define
fr€ D(H)\) by

0 ze(KU2Z)
Hz):=¢ f(z) z €K : (7.6)
Yoy, W)/ 2d+Va(z)) z€Z

Note that each point in K has at most 2d neighbors which belong to Z. This and (7.5)
give the estimate

ke - fall < ev2d, (7.7)
which implies

1fr — £l < e(1 + V2d). (7.8)
Next consider

\Hxfa— Hf|| < |1x - (Hxfo — Hf)|| + |[1xe - (Hxfa — Hf)|| (7.9)
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The inequality (7.4), equality of f and f) on K, and the estimate (7.8) give

x - (Hafa = HA)I <[ - (Vi = V)fIl + 11k - (A fr = Av f]]

(7.10)
< (1 +v2d(1 + v/2d)).
Split K* into a disjoint union of sets by
K =K |J(®\K). (7.11)

Observe furthermore that

X E\NE) =z [ JIxVI [ XVl () K () K], (7.12)
again a disjoint union, which follows from the splitting

Ke=X[VI |J xX[V] () k9. (7.13)
Inequality (7.3), the previous splitting of X [V,]() K¢, and the above estimates give

1ge - (Hafa = Hf)|| < |1xe - Hf|| + ||[1xe - HxfA|

(7.14)
< €(1 4+ v2d 4 2d + 1/2d(2d + 1)).
The estimates (7.10) and (7.14) give finally
|Hyfx — Hf|| < €(2 + 4d + 2v2d + /2d(2d + 1)). (7.15)

Let G and G, be the graphs of H and H,. Let U be open in [2(X) x [2(X) and such that
UG # 0. The above estimates give a Ay such that U () Gy # 0 for A > Ay, which proves
the theorem. O

Remarks. (i) The set of generalized Schrodinger operators is then compact, as the image
of a compact set.

(ii) The corresponding theorem for the multiplication operator M[V] does not depend on
that V) (z) goes to oo for z in X[V]°.

(iii) It is tempting to consider the possibility of the reverse conclusion: What does H[V] =
[—lim H[V,] imply about V,V,?

A random generalized potential gives a random multiplication operator. It is more inter-
esting that it also gives a random Schrodinger operator.

Theorem 7.2.3 (The Random Schrédinger Operator) If V is a generalized random
potential on Z°, then H = H[V] is a closed random operator.
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Proof. Randomness of H follows from continuity of V +— H[V]. O

Remarks. (i) Observe the case where the potential takes only the values 0 and oco. The
result is a Dirichlet Laplace operator defined on a random graph.

Now we have established a nontrivial example of a closed random operator. If we restrict
attention to real valued potentials, then we would have the results from the general theory
available. The first task now is to study the spectrum of our random operator. A fun-
damental question is: Is the spectrum a random set? This, and more, follows from the
following theorem.

Theorem 7.2.4 (Continuity of H — 6(H)) If {Vi} is a net of generalized real poten-
tials on Z°, then

(I-lim H[V)]) =1-lim 6(H[V,]) (7.16)
holds for the lower convergence of the core spectra of the Schréodinger operators.

Proof. Let H = 1-lim Hy, ¢ € 6(H),let 7 > 0, and set U:={z € C | |z —¢| < r}. To
simplify notation we assume ¢ = 0. Let 0 < € < 1/2. Since 0 is in the core spectrum of
H, there exists an f € D(H) such that ||f|| =1 and ||H f|| < e. The operator convergence
gives a A such that there exists a fy € D(H)) with ||fx — f|| < e and ||Hxfx — Hf|| < € for
all A > A.. Consider an H) such that 0 is in its regularity domain. Then ||f,|| / ||Hafol| =
| EZ Hafaf [ HAA|| < [[HATY|s so HH)\_IH_I < €/(1 —€). The normality of the natural
restriction of H) gives d(0,6(H,)) < ¢€/(1 —¢€) < r for all A > A, for a proper choice of e.
We conclude that U (G(Hy) # 0 for all A > A.. m

Remarks. (i) The trivial operator H(oo) with graph {(0,0)} has empty core spectrum
and is a limit of any net of discrete, generalized Schrodinger operators .

(ii) The proof is valid for general normal operators.

(iii) Let A, be finite boxes increasing towards X and let H, be the Dirichlet restrictions
of H= H[V] to A,. The result here gives 6(H) = [—lim &(H,,), or equivalently 6(H) C
{A| 3\, € 6(H,), A =limA,}. Note that the H,’s are represented by finite selfadjoint
matrices.

Theorem 7.2.5 (Random Spectrum) If V is a generalized real random potential on
7, then the core spectrum ¥ :=&(H(V)) is a closed random set.

Proof. Randomness of ¥ follows from continuity of V +— H[V] and H — & (H). O

The mathematical theory associated with Schrédinger operators defined from periodic or
almost periodic potentials is very rich. This theory is also of fundamental importance in
solid state physics. The following observation is the starting point for the deep knowledge
obtained in this theory.

Theorem 7.2.6 (Shift Transformations) Let vy € Z% and let U, be the unitary operator
on 12(Z%) determined by U, f(z):=f(z + ). If T, is the shift transformation defined by
T,V(z):=V(x +v) and TyH(z,y) = H(x + v,y + 7), then

H[T,V]=U,H[VIU,”" ,and

(7.17)
H[T,V] = T,H[V].
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Proof. 1t is straightforward to verify U,(=Ay + M(V)) = (=Agv + M(T,V))U,, which
proves the first claim. If B and A are two matrix operators, such that B = U, AU, ™", then

B(z,y) = <5w7 UVAU7_15y> = (O, Ady1y) = (T, 4) (2, y), (7.18)

which implies the second claim. O

Remarks. (i) An essential part of this theorem is the implicit relation between the domains
of the involved operators.

(ii) Similar properties follows for the Green’s function G.

(iii) Observe that z — G(z, ) is periodic if V' is periodic. Likewise; metrical transitivity,
stationarity, or ergodicity of V gives similar properties for derived operators.

(iv) The matrix H(z,y) = (0, Hd,) is defined only for y in the proper domain of V.

A generalization of the case given by a periodic potential is given by a random poten-
tial which is ergodic. Nonrandomness of the spectrum follows even when we remove the
stationarity assumption. The following explicit formula for the spectrum is possibly the
highlight of the general theory.

Theorem 7.2.7 (Metrically Transitive Random Potentials) Let V' be a generalized
real random potential, which is metrically transitive with respect to a sublattice in Z°.
If D is a subset of the topological support of the probability distribution of V such that
P(V € D) > 0, then

s:=6(H[V]) = | 6(H(v)), (7.19)

with probability one.

Proof. The metrical transitivity gives that the event {3 (U # (0} has probability zero or
one for any given open set U, so 3 is given by a nonrandom set. The lower semicontinuity
of V — X gives the explicit formula for X.. O

Remarks. (i) The theorem does not require the potential to be stationary, so it is
impossible to prove absence of discrete spectrum.

(i) It would be nice to have a strengthening of this theorem, given by a replacement of
supp Py by the set of admissible potentials.

(iii) A consequence is that 6(H (v)) C X with probability one for any v € supp Py, from
the case D = supp Py.

The second task in a study of spectral properties of our random Schrédinger operator is to
consider the Lebesgue decompositions of the spectrum. These questions are not at all only
of mathematical interest. In the following section we will consider the relevance in physics
of the Lebesgue decompositions.

7.3 Large Time Behavior of Wave Functions

In this section we will give a description of some of the physical effects associated with the
Lebesgue decomposition of a selfadjoint operator.
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The state of a quantum electron at a given time, say ¢ = 0, is given by a vector 1y in the
Hilbert space #, with ||¢)s]] = 1. The vector vy is also referred to as the wave function of
the electron. Let H be the selfadjoint Hamilton operator which is given from the energy
of the electron. The dynamics of the electron is then given by a time dependent state

the = € Py, (7.20)

This is equivalent with the time dependent Schrédinger equation, and A = 1.054589 -
10~34Js is Planck’s constant.

Consider the function defined by

£ F(E) = (o, ) , (7.21)

for positive times ¢. This function F' is continuous and takes complex values in {z € C |
|z] < 1}. It is continuous, because ¢ — 1); is continuous. The selfadjointness of H gives
that ||¢;|| = 1, and the Schwarz inequality gives the claim on the range of F'. Observe that
if F'(t) is close to one, then 1 is close to 1. More precisely is

s — wo|| = /2 — 2Re F(t) < v/2|F(t) — 1]. (7.22)

Furthermore F(t) is close to zero if and only if ¢, is close to the orthogonal complement
space of 1y, since F'(t) equals the ¢y component of ;.

The Hamilton operator H has a set of eigenvectors, and the closure of the linear span
of these vectors defines the atomic subspace H,. Assume now that 1 is in the atomic
subspace of H. It follows that

F(t) = e /M (yy, d)|7, (7.23)

n>1

where {¢,} is a chosen orthonormal set of eigenvectors with associated eigenvalues {E,}.
For simplicity we have assumed that the Hilbert space is separable. The function F' in
equation (7.23) is a uniform limit of trigonometric polynomials and is then an almost
periodic function. A consequence is that 1, returns arbitrary close to ¢y for arbitrary large
times. The proof of this is far from obvious, if the theory of almost periodic functions is
unknown.

The continuous subspace H, is the orthogonal complement of the atomic subspace of H.
Now we want to know what happens if 1) is in the continuous subspace. The vector 1) is
associated with a measure p determined by its Fourier transformation

t) = (4o, e /ey = /eitwdp(w). (7.24)

It turns out that v, is in the continuous subspace if and only if the measure p is continuous.
Another nontrivial fact is that

N O
L::A}Tooﬂ/o (#)*dt = %V) {wh? (7.25)
we
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where existence of the limit is part of the claim. We conclude that L = 0 if and only if v
is in the continuous subspace of H. In particular it follows that if the 1)y component of
goes to zero as time increases, then ) is in the continuous subspace of H.

Any nonzero vector in the Hilbert space gives an associated measure as in equation (7.24).
A vector is in the absolutely continuous subspace H,. of H if and only if the associated
measure is absolutely continuous with respect to Lebesgue measure. It turns out that the
absolutely continuous subspace is a closed subspace of the continuous subspace. Now we
observe that if F' is integrable, then the vector 1) is in the absolutely continuous subspace.
In particular it follows that if the 1y component of ; goes to zero fast enough as time
increases, then 1, is in the absolutely continuous subspace of H.

The singular continuous subspace H,. of H is defined as the orthogonal complement of
the absolutely continuous subspace relatively to the continuous subspace. The vector
is in the singular continuous subspace if and only if the associated measure p is singular
continuous with respect to Lebesgue measure. This case is implicitly described in the above
by elimination. The time mean L must be zero, but the 1y component of v, can not go
too fast to zero, if at all. It seems possible that 1, can return closely to 1y for arbitrary
large times, but not too frequently. It seems that this case is the most interesting one.

7.4 Lebesgue Decomposition of the Random Schrodinger
Operator

The first aim in this section is to prove randomness of the spectral family of the Schrodinger
operator defined from a generalized real, random potential. The spectral family is given
explicitly from Cauchy’s integral formula and the Green’s function. We will therefor first
consider properties of the Green’s function.

Definition 7.4.1 (The Green’s Function) Let V be a generalized potential on X :=Z°
and set H:=1?(X). The projection operator Il = I1[V] is defined by

M:H—=H, Of(z) :=1xp(z) f(z), X[V]:={z € X | V(z) # oo}. (7.26)

Let z be in the regularity domain of the Schrédinger operator H = H[V]. The Green’s
function G, = G,[V] is defined by

X x X 5 (z,y) = G,(z,y) :=(8,, (z — H)"'115,), (7.27)
and the diagonal Green’s function g, = g,[V] is defined by
X oz g,(x):=G,(z,z). (7.28)

Remarks. (i) We will sometimes write G instead of G,, when the value of z is irrelevant,
and likewise for g.

(i) Let A be any matrix operator defined in I*(X[V]). We extend A(z,y) to be defined
for all z,y in X by setting it equal to zero where it is initially undefined. The operator
defined from a proper extension like this will get zero as an eigenvalue.
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Theorem 7.4.2 (Continuity of the Green’s Function) Let z = limz, in C\ R, and
let V = p—1im Vy for generalized real potentials on Z°. Let G,|V] be the Green’s function,
and let g,[V] be the diagonal Green’s function. Consider nets given by the product order,
50 (v, A1) < (v, Aa) iff i < AL and vy < Ao, If z € X[V], then

|G, VA ( 2) = GV 2)ll, = 0, (|G, [Val(z, ) = GL[V](z,-)|l, = 0 ,and 729
G.[V] =p-lim G, V)], ¢.[V] =p-lim g, [V)]. .

Proof. Fix z in X and set K :=|Im(z)|. Let v; be such that [Im(z,)| > K/2 when v > v.
Note that ||(2, — H[VA]) Y| < 2/K for v > v;. Consider first V(z) # oo. It follows that
6 € D((z— H[V])) Y Nlim D((z, — H(V,))™"). The continuity of (2,V) — z — H(V) and
the bound on the resolvents give convergence of G, [V)](+, z) in [? towards G,[V](:,z). The
identity (0., (z — H(V))'II(V)4,) = ((z* — H(V))'II(V)d,, 6,) gives similarly the second
claim on [? convergence. Next consider V (z) = oo, so g(z) = 0 = G(z,y1) = G(ys, ). Set
h(,,y)\) = Gzy [V)\] ,S0

TI(V3)dy(z) = (2 — 2d — VA@)hepy(@,9) + D how(@ +a,9), (7.30)

llall; =1

s0 Vi(z) — oo gives kg, (z,y) — 0, since |k, (z,y)| < 2/K when p > . This, together
with the previous /2 convergence, proves the required pointwise convergence. O

Remarks. (i) It is actually sufficient to consider just one index set.

The joint continuity of the Green’s function makes it possible to establish the randomness
of the spectral family.

Theorem 7.4.3 (The Spectral Family) If V is a generalized real, random potential,
then

E(a,b) = Lgu(H[V])[V] (7.31)
1 @ random orthogonal projection for any real numbers a,b with a < b.

Proof. Since <6y, Liapy(H )H6w> equals

1 b—4
] im — . — . .32
51_1)%1_1_ 61_1)%}'_ Dy /a+5 (Gt—ze(y7 IE) Gt+ze(y7 :E))dt, (7 3 )

the randomness follows from the joint continuity of (¢£,V) — Giwi(y, ), the estimate
|Gixie(y, )| < 1/€, and Fubini’s theorem. 0

Remarks. (i) Any operator f(H) = E[f] from the spectral family E of H is by definition
only defined in 2(X[V]) = E(R)I*(X).

It is noteworthy that the Schriodinger operator gives a natural assignment of a spectral
measure at each lattice point.
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Definition 7.4.4 (The Local Spectral Measure) Let V be a generalized real potential
on Z°. The local spectral measure py at « is defined by

pa(A) = E(A)(z, ) = (0a, La(H[VII[V]Sz) . (7.33)

Remarks. (i) The definition is valid for any selfadjoint, or normal, operator defined in
1?(Z%), and more generally in any Hilbert space after a choice of basis.

The Fourier transformation of a probability measure gives a one-one correspondence be-
tween finite measures and characteristic functions. This means that the we can associate
a characteristic function to each lattice site.

Theorem 7.4.5 (The Local Characteristic Function) The characteristic function of
the spectral measure at x s given by

pz(t) = e (z, 2). (7.34)
Proof. From p,(t) := [ e™dp,(w) = ¢ (z, z). 0
Remarks. (i) The large time behavior of the characteristic function at x for each z

determines the Lebesgue decomposition of the spectrum completely.

The previous section gives an interpretation of the characteristic function p, at a given site
x. We have

ﬁw(t) = '(/}t(x)7 '(/}0 = 607 (735)

where ), is the time dependent wave function of an electron which initially where sitting
in position z.

Theorem 7.4.6 (Nonrandom Lebesgue Components) LetV be a generalized real ran-
dom potential on Z2. The Schridinger operator H = H[V] has a random spectral measure.
The pure point spectrum, the absolutely continuous spectrum, and the singular continuous
spectrum of H are closed random sets in R, and they are nonrandom if the potential is
metrically transitive with respect to a sublattice in Z°.

Proof. Let z1, s, ... be some enumeration of the points in Z%. A spectral measure for H
is given by

p(A):=>" 21—npwn (A). (7.36)

n

The measure p is a random measure if V' is a generalized real random potential, from
the randomness of p,. Since the Lebesgue-Hammer components of a random measure are
random measures, it follows that the pure point spectrum, the absolutely continuous spec-
trum, and the singular continuous spectrum are closed random sets. Metrical transitivity
gives that the event {X,,(\U # 0} has probability zero or one for any given open set U,
so Y, is then given by a nonrandom set. The same applies to the absolutely continuous
spectrum and the singular continuous spectrum. O

122



Remarks. (i) Observe that the measure class of the given spectral measure is transitively
invariant, but it is not given by a nonrandom measure, since this would imply a nonrandom
point spectrum. The set of measure classes is not o-separated in a proper sense.

(ii) The spectral measure above is independent of the enumeration, since the series is
absolutely convergent.

The periodic table of the elements can be explained to a surprisingly large extend from
consideration of the energy levels given from the Hydrogen atom model. The given number
of available electrons is filled into a corresponding number of levels, starting from the lowest
energy level. This procedure is also adapted to solids, but there is a complication due to
a continuum of available energy states. The integrated density of states is introduced to
resolve this counting problem. We have defined a slightly more general concept of a density
of states measure than usual, but the following consequence remains valid.

Theorem 7.4.7 (The Essential Spectrum) Let V be a generalized potential on Z°. If

N is a density of states measure for the Schrédinger operator H = H[V], then supp N C
Ge(H).

Proof. Let z € supp N and let U be an open set in C which contains z. The assumption

gives an enumeration &, s, ... of the elements in X = Z? and a subsequence {n;} C N
such that
1 &
ko TR

where the last inequality follows from the assumed weak convergence. In particular we con-
clude that 15 (H[V])II[V] has infinite trace, so it is a projection onto an infinite dimensional
subspace, which proves that z is in the essential spectrum. O

The spectral measure class of an ergodic Schrodinger operator is not nonrandom. The
integrated density of states measure is fortunately nonrandom.

Theorem 7.4.8 (A Nonrandom Density of States Measure) Let V be a generalized
real L-ergodic potential on Z® for a d-dimensional lattice L in Z¢, with a fundamental cell
of points x,...,xy. Let P; be the Borel measure on R defined by the expectation

P(A) = Elp, (4)] (7.38)

of the local spectral measure. A density of states measure is given by
1 m
N:==—)"P. (7.39)
Furthermore
6(H[V]) =G.(H[V]) = supp N, (7.40)

with probability one.
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Proof. Let A, be an increasing sequence of cubes in X = Z? such that X = U, An. Let
A = (k2™ 12=M) for integers k < [ and a natural number M. Observe that the set of such
dyadic intervals is countable and furthermore determines weak convergence of measures.
Consider density of states approximants given by

N,(A):=

S h(z), h(z) = p.(A). (7.41)

1
| z€A,

[An

Observe that 0 < h(z) < 1 and that h is an L-ergodic process. Set X;:={z; +1 |l € L}
and Ap;:=A, () X;. The Birkhoff ergodic theorem gives

N(A) = lim N, (A) :limz ||1>\":| | Aii > h(z) :Z%E[h(zi)] (7.42)

’ (BEAn,i i=1

with probability one, which proves the formula for the density of states measure. The
relations supp N C G.(H) C &(H) hold in general, so we only need to prove 6(H) C
supp N. Let z ¢ supp N, so there exists an open set U 3 z with N(U) = 0. The formula
for N, and the stationarity, imply (4., 1g(H)IIé,) = 0 for all z with probability one, so
1y(H) =0, and =z ¢ 6(H). O

Remarks. (i) If the above density of states measure has a nonzero singular component,
then the Schrodinger operator has a nonzero singular component with probability one.
(ii) If the Schrédinger operator has purely absolutely continuous spectrum with probability
one, then the density of states measure is purely absolutely continuous.

A particular consequence of the previous theorem is noteworthy. Assume that the potential
is periodic and let pq, ..., p,, be the local spectral measures associated to each point in a
fundamental cell for the potential. The density of states measure is then given by

1 m
j=1

and this is also a spectral measure for the periodic Schrédinger operator.

7.5 The Percolation Model

One good reason for the consideration of generalized random potentials is given by the
possibility of the following model.

Definition 7.5.1 (The Percolation Model) Let {V(z)}, 2 € Z%, be an i.i.d. stochastic
process defined by P(V(0) =0) =p € (0,1) and P(V(0) = o0) = g = 1—p. The percolation
model is given by the generalized random Schridinger operator H = H[V| defined in I?(X).

Remarks. (i) This is possibly the simplest nontrivial model representing an ergodic closed
operator.

The pure point spectrum and the spectrum of the percolation model are easily found.
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Theorem 7.5.2 (Pure Point Spectrum) The pure point spectrum and the spectrum of
the d-dimenstonal percolation model are

Ypp =2 = [0,4d], (7.44)
with probability one.

Proof. The event A = {V(z;) = v;,4 = 1,..., N} has positive probability for any given
finite sequence {v;} C {0,00} and {z;} C Z? The event B = |JT,A is then {T,}-
invariant, so P(B) = 1. Now the pure point spectrum follows from the spectra of the
Dirichlet Laplace operator for arbitrary large cubes. Because the norm of the percolation
Schrédinger operator is bounded by 4d, it follows that ¥ C [0,4d] for all realizations, and
the opposite inclusion follows from the point spectrum. O

Remarks. (i) The absolutely continuous spectrum ¥,. and the singular continuous spec-
trum X, are nonrandom and contained in [0, 4d), but this is essentially all we know.

(i) If p is so small that there exists no infinite connected graph, then 3 . = ¥,. = (). This
is always the case in the one dimensional case.

(iii) We conjecture that the absolutely continuous spectrum is empty.

(iv) We conjecture that the continuous spectrum increases with increasing p.

The nontrivial part of the spectral theory of the percolation model is given by the possibility
of an infinite connected graph. It seems reasonable that the Dirichlet Laplace operator for
an infinite connected graph must contain some continuous spectrum, but a proof of this is
missing. In the following we present some material which might be useful for a study of
this problem.

The essential part of the Dirichlet operator is given by the nearest neighbor operator.

Definition 7.5.3 (The nearest neighbor Operator) Fiz a subset A in Z%. The neigh-
bors of z € A is the points in n(x) :={y € A | ||y — z||, = 1}. The nearest neighbor operator
J = J[A] is defined by

T P(A) = P, Jf(@) =Y f). (7.45)
)

yen(x

Definition 7.5.4 (Paths) Fiz a subset A in Z°. Let z,y € A. A path c from z to y,
written ¢ : x — y, is a function ¢ : {0,1,..., N} = A such that c¢(0) = z, ¢(N) =y,
and c(k + 1) € n(c(k)) for all k € {0,...,N — 1}. A discontinuous path from z to y
s a function ¢ as above without the nearest neighbor restriction. The number N is the
length |c| of c. The number n,(c) is the number of times the path c¢ visits the point z,

nz(c):=|{k € D(c) | c(k) = z}|.

Theorem 7.5.5 (Powers of The nearest neighbor Operator) IfJ is the nearest neigh-
bor operator for a set A C Z%, then

IN(@z,y)= > 1, Ne{0,1,...}.

c:x—y

jel=N

(7.46)

125



Proof. This is clear for N = 0, in which case J¥ = I. Observe J*™(z,y) = J*(z, 2)J (2, 1),
which proves the claim by induction. The number of paths from z to y of length £ + 1
equals the number of paths from z to the possible neighbors z of y of length £. O

Remarks. (i) The matrix element JV (z,y) equals the number of paths of length N from
z to y.

A consequence of the previous theorem is that the characteristic function of the spectral
measure at = for the nearest neighbor operator is given by

ps(t) =) (1) (;;")!t%, (7.47)

n>0

where J,,, equals the number of paths ¢ : £ — z of length m. We repeat that the large
time behavior of the characteristic function determines existence of continuous spectrum.

The characteristic function at z is given by the (z,z) element of the matrix of the unitary
semigroup. In the free case this semigroup can be explicitly computed from Fourier theory.

Theorem 7.5.6 (The Unitary Free Semigroup) If J is the nearest neighbor operator
for Z%, then

a,) = 3 O n(ay) =[]0 2,00, 20, t e €, (7.48)

n>0 j=1
where z — J,(z) is the Bessel function of integer order n of the first kind.

Proof. The first part is obvious since J is bounded. Fourier transformation and an integral
representation of the Bessel function give

eitJ(IE,y) = <Sw7 j5y> = W fdk [eik(w—y)—l—%tzj coskj]
(7.49)

=I5 £ Jo €0 cos(6(z; — y;))d8 = TT5, ()% Ty, (20).

O

Expansions by means of the J operator is also valuable when we consider the full Schrédinger
operator. As an example we consider the Green’s function.

Theorem 7.5.7 (Path Expansion for The Green’s Function) Let V be a general-
ized complez potential on Z2. The Green’s function is determined by

G.[V] Z H D)™ where (7.50)

cC:T—Y tEX

D(t):=(V(t)+2d — 2)7, (7.51)
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c:x — Yy is a path in the set X[V]| where V is finite, and ni(c) equals the number of times
c visits t. The convergence is absolute and valid for z such that

I <'inf |V (z) + 2d — 2|, (7.52)

where J is the nearest neighbor operator corresponding to the set X[V]. If the potential V
is constant on X[V, then

oo

G(z,y) = —ZJk(x,y)Dk+1. (7.53)

Proof. Fix the Hilbert space # = [*(X[V]). Let D denote the multiplication operator
defined from the function also denoted by D above. The assumption in inequality (7.52)
ensures that D is a bounded operator on H, with a possibly unbounded inverse D~!.
Observe the identity H[V] — 2 = D™' — J = (1 — JD)D™!, which holds for the involved
unbounded operators. Inequality (7.52) gives ||JD|| < ||J||[|D] < 1, so (z — H[V])™' =
—D(1—JD) ' = =3 D(JD)™, with absolute convergence in norm. Now

D(JID)"(z,y) =>4, 4 D@)J(,91)D(y1) - -+ I (yn-1,9)D(y)

(7.54)
= e Tiexy DO,

and |D(JD)"(z,y)| < ||D(JD)"|| proves the absolute convergence and the first formula.
When the potential is constant, the second formula for G follows from the first formula,
> ni(c) = |c| + 1, and the fact that J*(z,y) equals the number of paths from z to y of
length k. O

Remarks. (i) Recall that ||J|| < 2d.

(ii) The formula is correct for all z,y € Z%, but trivial when V(z) = oo or V(y) = co.

(iii) Formula (7.53) may also be proven directly without application of (7.50) and the
known property of J*.

7.6 Notes

The term “Anderson model” is related to the famous publication [7] by P.W.Anderson in
1958. We quote the abstract of this paper

This paper presents a simple model for such processes as spin diffusion or
conduction in the “impurity band”. These processes involve transport in a
lattice which is in some sense random, and in them diffusion is expected to
take place via quantum jumps between localized sites. In this simple model the
essential randomness is introduced by requiring the energy to vary randomly
from site to site. It is shown that at low enough densities no diffusion at all
can take place, and the criteria for transport to occur are given.
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The term “tight binding model” comes from the tight binding approximation in solid state
physics. This approximation explains the band structure of the energy spectrum of the
electron by consideration of the atomic energy states [10, p.175-190].

The theory of almost periodic functions was founded by Harald Bohr [28]. We note that
he is the brother of Niels Bohr, the founder of quantum mechanics. The discussion of
the significance of the Lebesgue decomposition of the Schrodinger operator does not seem
to be contained in [31] or [107]. It gives a physical interpretation to some rather deep
mathematical results, compare the theory of almost periodic functions. I seems to me
that the significance of singular continuous spectrum is very important. It is tempting to
claim that presence of singular continuous spectrum can give models with rigorously finite
conductivity, but this is so far nothing but a qualified guess.

It makes sense to speak about local spectral measures also for continuous Schriodinger
operators. A local spectral density is defined in [122, p.117-119] and it is used to define
the integrated density of states measure in [122, p.120-127].

The conjecture about absence of absolutely continuous spectrum may possibly be attacked
by application of the formulas found in [31, p.38-39,p.424].

The formula for the free semigroup of the nearest neighbor operator is adapted from [90,
p.294].
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Appendix A

What Next?

The following is a list of questions and suggestions which came to mind as a result of a
quick reading of the previous chapters in reverse order. Some of the suggestions are very
general. As a consequence there is no hope for a “solution” to these suggestions. On the
other hand some of the questions are quite specific, and a definite answer seems possible.
The answer may also already exist somewhere in the huge amount of literature available
on related subjects.

10.
11.

12.

. Investigate the nature of the spectrum of the nearest neighbor operator.

Study the connection between the characteristic function and the Lebesgue decom-
position of a measure. Similar for other transformations of the measure, and in
particular the Stieltjes transformation.

. Does an increase of the graph increase the continuous subspace of the nearest neighbor

operator? Does the continuous spectrum increase?

Does the absolutely continuous spectrum decrease with increasing disorder?

. Is singular continuous spectrum typical in some sense?

. Is the spectrum of the discrete Schrodinger operator a lower semicontinuous function

of the generalized complex potential?

Consider the relevance of the methods in [2] for the nearest neighbor operator.

. Is it possible to use acceptor/donor levels of an impure Hamiltonian to prove existence

of pure point spectrum of corresponding random Hamilton operators? Absence of
absolutely continuous spectrum?

. To what extent can results for the discrete multiplication operator be used to obtain

results for the corresponding Schrodinger operator?
Investigate further into the properties of the lower operator topology.

Is the lower operator topology Hausdorff when restricted to the set of bounded op-
erators defined on a Banach space?

Is the essential spectrum of a closed operator a lower semicontinuous function? A
measurable function? What about the various other decompositions of the spectrum?
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13.

14.

15.

16.
17.
18.

19.

20.

21.
22.
23.

24.

25.
26.

27.

28.

29.

The case of random matrix operators from a random orthonormal system should be
investigated further.

The possibility of defining the sum of two unbounded operators from approximating
bounded operators should be investigated further.

What is the class of obtainable continuous Schrédinger operators from limits of
discrete Schrédinger operators? What kind of convergence is possible?

Is “the” lower limit of closed random operators again a closed random operator?
Consider further the Lebesgue decomposition of random measures.
Is the weak limit of random measures again a random measure?

Find suitable convergence concepts for random measures. Convergence in probabil-
ity?

Does the absolutely continuous spectrum of an ergodic measure valued process de-
crease with increasing disorder? What does disorder mean in this setting?

Investigate further into the properties of lower and upper topologies in hyperspaces.
Existence of a minimal upper (compact) limit of a net of closed sets?
Study further the concept of random sets.

Is the pointwise limit of a sequence of Borel random variables with values in a second
countable Tj-space again a random variable?

Other convergence concepts for abstract valued random variables?

Are there interesting examples of metrically transitive systems that are not station-
ary?

What are the relevance of other concepts from ergodic theory for ergodic random
operators? What about entropy?

Study partial difference operators in general. Analogues and extensions of the results
from the continuous case?

Further results for Bloch theory in the discrete case? Impurities?
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Appendix B

Notes on Related Literature

The list of references below are divided into different sections depending on the category.
This division is sometimes quite artificial and should not be taken too literally.

B.1 Physics

[7] In this paper the author observes that absence of diffusion is a possible in certain random
lattices. The Anderson model was introduced here.

[40] Strong and weak localization is discussed briefly from a physicists point of view. An

experiment with microwave localization caused by two-dimensional random scattering is
described.

97, 111] The possibility of Anderson localization of light is considered.
64] A review of quantum chaos is given.

[

[

[48] The authors consider the effective-mass Hamiltonian for abrupt heterostructures.
[119] Unitary operator bases are considered for quantum systems. Weyl pairs are central.
[

118] Operators with continuous spectra are realized as limits of operators with a finite
number of states. The approximants are given by Weyl pairs at each stage.

[120] A brief review of some features of quasicrystals is given.

B.2 Mathematics From Other Fields

[3] The authors prove a maximal ergodic lemma for superadditive processes. The proof of
the multidimensional ergodic theorem is a corollary of the results obtained. The proof is
most instructive.

[12] The author considers separation properties in hyperspaces.

[35] Addition of unbounded operators is defined from consideration of the Lie product
formula.

[63] The author gives a variant of the Feynman-Kac formula. The main result is that
approximation by integral operators are replaced by approximation directly by finite dif-
ference operators. This is deduced as a variant of the Chernoff product formula.
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[72] The author gives a version of the Trotter product formula where the perturbation is
given merely as a sesquilinear form by means of a regularization procedure.

[53] The author considers the Lie product formula for semigroups defined by Friedrichs
extensions.

[85] A Trotter product formula for the form sum of selfadjoint operators that may be
unbounded from below is proven.

[102] A Schrédinger operator is defined by means of the Feynman-Kac formula.

[126] Nonstandard analysis is used to define nonlinear functions of distributions. A gener-
alized Trotter product formula is obtained as an application.

[132] Trotter proves the Trotter product formula.

[141] It is shown that the Trotter-Lie product formula holds in the Hilbert-Schmidt norm
for certain Gibbs semigroups by means of Griimm’s convergence theorem.

[95] Borel measurability of the spectrum in topological algebras is studied. In particular it
is proven that the mapping of a Banach algebra element to its spectrum is continuous on
a dense Gj.

[105] Continuity properties of the spectra of operators are investigated.
[104] A topology for closed operators is defined.

[98] Measurability of multifunctions is considered.

[103] This is a standard reference for topologies on spaces of subsets.

[113] The spectrum and its relation to generalized eigenfunctions is studied. The results
are applied to Schrédinger operators.

B.3 (*-algebras

The following references do all rely on results from the theory related to C*-algebras.

[9, 8] The author considers the possibility of computing the spectrum of a bounded selfad-
joint operator from the spectra of approximating finite matrices.

[19] Continuity properties of the electronic spectrum of 1D quasicrystals are investigated.

[17] K-theory is applied to prove gap labeling theorems for the spectrum of some 1D tight
binding Hamiltonians.

[18] The trace map for the transfer matrix is used to investigate the spectrum of a 1D
Hamiltonian with period doubling potential.

[50, 51] The author uses C*-algebra technics to investigate the spectrum and the density
of states for an almost periodic 1D Schrodinger operator. The almost Mathieu operator is
in particular considered.

B.4 Mathematical Physics

[2] The authors present a new and simplified proof of localization in the Anderson model
for large disoreder or extreme energies. The multiscale analysis in previous known proofs is
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avoided. The results are general enough to handle some models with off-diagonal disorder.

[54] The main result is that at sufficiently high frequency the waves in a discrete random
medium with off-diagonal coupling are localized.

[44, 45] The probabilistic part of the multiscale proof of localization in the Anderson model
is simplified. The methods are general enough to handle some models with correlated
potentials. Nelson’s best possible hypercontractive estimate is applied.

[58] This paper contains the possibly first rigorous proof of localization in the multidimen-
sional Anderson model.

[59] This paper contains the possibly first rigorous proof of absence of diffusion in the
multidimensional Anderson model. The main result is a multiscale proof of exponential
decay of the Green’s function.

[42, 4] The authors study the eigenvalue branches of a perturbed Schrédinger operator in
the spectral gaps of the unperturbed operator. This corresponds to a study of donor or
acceptor levels resulting from impurities in a crystal. They do in particular address the
following gap completeness problem: Is every energy value in a spectral gap a possible
eigenvalue for a suitable coupling constant?

[61] An alternative solution to the gap completeness problem is given.

[68] The author applies the Birman-Schwinger principle for the consideration of eigenvalues
in gaps of an unperturbed Schrodinger operator as a result of a local perturbation.

[55] The author proves existence of eigenvalues in gaps of the Kronig-Penney Hamiltonian
as a result of a definite sign perturbation. The Gelfand expansion is used to get a convenient
expression for the Birman-Schwinger kernel.

[60] The authors study the eigenvalue branches of a perturbed Schrédinger operator in the
spectral gaps of the unperturbed operator in the limit of an infinite coupling constant.
A cascade phenomenon for the eigenvalues is observed. This is related to the Zel’dovich
phenomenon known in the physics literature.

[69] The relation between the distance between an eigenvalue and the essential spectrum
and the decay of the corresponding eigenfunction is explored.

[70] The authors give explicit formulas for the spectrum of certain Schrédinger operators
obtainable by consideration of generalized eigenvectors. Quite general conditions which
ensure essential self-adjointness are given.

[6] The authors prove almost periodicity of random Jacobi matrices which have purely
absolutely continuous spectrum and a finite number of bands.

[14] The authors consider the analytic properties of band functions. It is in particular
proven that the lowest band of the periodic attractive screened Coulomb potential has a
nondegenerate lowest band.

[13] The authors consider the Lyaponov index and the integrated density of states measure
for almost periodic Schrédinger operators. Examples of operators with purely singular
continuous spectrum are given.

[38] The trace formula for Schrodinger operators on the line is used to discuss inverse
spectral problems. The results are generalizations of similar results for the Hill’s equation.

[41] This is a review of some of the relations between the KdV equation and the one
dimensional Schrodinger equation. The discrete analogue is also discussed.
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[52] The nonrandomness of the spectrum of ergodic Schrédinger operators is proven by
means of the notion of infinite representability of one selfadjoint operator in another. The
authors do also comment on the Saxon-Hiitner conjecture.

[80] It is proven that the Lebesgue components of the spectrum of an ergodic random
selfadjoint operator are nonrandom sets. This general result is then applied to a class of
Schrédinger operators defined in L2(R%).

[81] The nonrandom spectrum of certain ergodic selfadjoint operators is studied. A formula
for the nonrandom spectrum is given by the union of the spectra of deterministic admissible
operators. Conditions which imply essential selfadjointness with probability one are also
given.

[78] The asymptotic behavior of the density of states near band edges is investigated for a
class of ergodic Schrodinger operators.

[84] The authors prove absolute continuity of the spectrum of a large class of almost periodic
1D Schrodinger operators defined in L?(R) given by certain random potentials.

[82] It is shown that the Ljapunov indices determine the absolutely continuous spectrum
of a stationary random 1D Schrodinger operator.

[83] It is shown that the topological support of the potential for an ergodic Schrédinger
operator in L?(R?) determines the nonrandom spectrum. In one dimension the absolutely
continuous spectrum is also determined by the topological support of the potential.

[86] The asymptotics of the density of states for a general elliptic self-adjoint operator in
L?(R%) with ergodic coefficients is studied. The main tool is given by a formula for the
density of states given as an appropriate trace of the spectral family.

[87] Nonlinear random equations with operators of monotone type is studied. A main
tool is given by the existence theorem of measurable selections for multivalued measurable
mappings.

[89] A general scheme for construction of periodic and almost periodic solutions of certain
nonlinear partial differential equations is presented. Methods from algebraic geometry is
central. The methods are related to Lax’s method of determining periodic solutions of the
KdV equations.

[91] Tt is shown that a class of Schrédinger operators in [?(Z%) with d > 4 have some
absolutely continuous spectrum. The class is given by certain sparsely supported potentials.

[90] It is shown that certain Anderson models with decaying potential has absolutely con-
tinuous spectrum.

[100] The authors prove absence of absolutely continuous spectrum given that the Green’s
function decay exponentially.

[99] Absence of diffusion for certain Schrédinger operators in L?(R?) is proven.

[108] Spectral properties of ergodic Schrédinger operators are considered. Nonrandomness
of the spectrum is proven. Absence of absolutely continuous spectrum in certain 1D models
is proven. The conductivity is also considered.

[33] The behavior of embedded eigenvalues under local perturbations of the Sturm Liou-
ville operator is studied. It is shown that a local perturbation can add infinitely many
eigenvalues.

[34] The author considers stability of singular continuous spectrum under local perturba-

136



tions of the Sturm Liouville operator.

[123] The author reviews regularity properties of the density of states for stochastic Jacobi
matrices. In particular it is proven that the density of states measure is continuous. It is
noted that this is not yet proven for the continuous ergodic Schrédinger operator.

[127] The author reviews some results on localization for random and almost periodic
Schrédinger operators.

[133] A solution of the inverse problem for the Hill’s equation is given.

[134] The author reviews ideas behind quantization and deformation. The role of unitary
representations in quantum mechanics is pointed out.
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