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Abstract

The first part of the thesis (Part 1) is devoted to find methods to describe transient behav-
iour of traffic processes, where the main emphasis is put on the description and analysis of
excess periods and excess volumes of quite general stochastic processes. By assuming that
traffic changes on different time scales, the transient characteristics such as excess periods
could be important measures to describe periods of congestion on a communication link and
moreover, the corresponding excess volume will represent lost information during such peri-
ods. Although the results obtained are of rather general nature, they provide some rather
fundamental insight into transient characteristics of traffic processes. The distributions of
the length of excess periods may then be expressed it terms of some excess probabilities
that are related to the minimum of the process in the time interval considered. Similar rela-
tions for the excess volumes are harder to obtain and require the joint probability of the ar-
rived volume and the minimum of the process in the same time interval.

We put particular emphasis on Gaussian traffic models and we propose an approximative
method to get the distributions of excess times and excess volumes. The main idea is to ap-
proximate the excess probabilities by multinormal integrals. We aso consider the Ornstein-
Uhlenbeck (O-U) process mainly because the O-U process is a specia case of a Gaussian
process and could therefore be used as a test case for the proposed approximations, but also
because the O-U process may be obtained as a limit of a large numbers of ON/OFF sourc-
es (with exponentially distributed ON- and OFF-times). For the O-U process we have giv-
en the Laplace transforms for the first passage times and the corresponding volumes. These
Laplace transforms are inverted by the locating the residues yielding infinite series. Asymp-
totic expansions for small arguments are also found.

We have also considered excess times and excess volumes for semi-Markov processes. The
main results obtained are general expressions for the Laplace transforms and distribution
functions of the excess times and the excess volumes in terms of the generator matrices. For
birth-death semi-Markov processes the generator matrices simplifiy and the transforms may
be found recursively.

The second part (Part-11) deals with models to obtain end-to-end queueing delay for net-
works deploying statistical multiplexing. The first model is based on the assumption (ap-
proximation) that the end-to-end delay may be found by convolution, where the key as-
sumption is that the parts of the end-to-end delay stemming from the different nodes are in-
dependent stochastic variables. As model for each node we take the ordinary M/G/1 queue.



If in addition the nodes are identical i.e. the convolution consists of the waiting times of a
fixed numbers of identical M/G/1 queues, the evaluation may be substantially simplified. It
turns out the convolutions may be found by taking some partial derivatives with respect to
the load parameter. The same technique may be generalised in various directions for in-
stance it is possible to extend the result to the case with two groups of queues where the
queues in each group are identical.

For M/D/1 queues with identical service times we find explicit closed form results for the
convolutions. We also generalize this result to consider two groups of M/D/1 queues hav-
ing different service times, and this is a particularly interesting case since it may be used as
model for end-to-end delay also including access links with low capacity. Similar results are
aso found for end-to-end queueing models with priority.

A different approach is obtained by assuming a slotted model. The main idea is to capture
the disturbance of a packet stream as it passes through a series of multiplexers. Even though
the output process from a multiplexer is non-renewal, we get the distribution between two
consecutive departures, and approximate the process with a renewa stream. This stream is
then feed into the next multiplexer (together with other crossing traffic). In this way we ob-
tain recursive relations for the jitter and the end-to-end delay.
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1

Overdll introduction to the thesis

1.1 Background and motivation

There is an increasing need to address and understand some fundamental teletraffic issues in
today’s and forthcoming communication network, where the current trend is a change-over
towards heterogeneous network types where the end-to-end communication may involve
more than one operator and the QoS (Quality of Service) provisioning is not currently satis-
factorily solved. New switching techniques emerge, capacity increases, and new services are
introduced, causing a steady growth in the traffic. The competition in the telecom market is
hard, the revenue is squeezed, so the slogan “throwing bandwidth at the problems’, will not
be a winning strategy for the operators. On the other hand too scarce network resources
could result in degradation in the quality of the services offered, leading to discontented
customers with the subsequent consequences that may cause. So there is a strong need for
network optimization and performance modelling.

By the emerging of IP (Internet Protocol) multiservice networks a lot of new teletraffic
challenges emerge. Among those we would particularly mention:

- traffic models for different services or flows and aso models for aggregation of
flows,

- differentiation between classes of services, i.e. scheduling and buffer management,

- traffic contral, i.e. SLA (Service Level Agreement), CAC (Call Acceptance Control)
and policing,

- QoS provisioning end-to-end,

- dimensioning models.

Thus, the need for performance and dimensioning modelling of today’s communication net-
works is sustained and is definitive not of less importance than for former types of net-
works.

1.2 Main achievements

In this thesis we have focused on a few of the issues mentioned above; namely models to
describe transient behaviour of rate processes and models to get the end-to-end delay in
packet networks. As such, we are confident that these are important models; providing in-
sight into important aspects of networking, as congestion periods and information loss and



the delay and delay variation for a packet flow. The main objective have been to obtain an-
alytical results based on mathematical modelling, but where we always take the applied
viewpoint, where the goals have been to provide models that are numerical feasible and
provide numerical examples that are interesting from the perspective of network perform-
ance. In the analysis we have derived results on the basis of several applied mathematical
fields such as: probability theory and queueing anaysis, asymptotic expansions of integrals,
differential equations and a few results from real analysis. We may summarise the main
achievements obtained as:

- Give some general results on level crossing and excess distribution for stationary rate
processes.

- Suggest approximations of the excess times and excess volumes distributions for
general stationary Gaussian process.

- Give expansions and asymptotic formulae for the PDF (Probability Density Func-
tion) and CDF (Complementary Distribution Function) of first passage times and
corresponding volumes for the Orstein-Uhlenbeck (O-U) process.

- Give some general results for level crossing and excess distributions for semi-Mark-
ov processes where we for more specific models as birth-death process obtain the
LST (Laplace-Stieltjes Transforms) recursively due to the special structure of corre-
sponding generator matrices.

- Give an effective method to obtain the PDF and DF (Distribution Function) of the
convolution of a given number of waiting times of identical M/G/1 queues.

- Extend the result on convolutions to cover cases where not al the service times may
be identically distributed, and also to cover HOL (Head Of Line) priority queueing.

- Provide a slotted queueing model and using generating function techniques to obtain
the output distribution of particular packet stream and apply this model recursively to
obtain both end-to-end delay and the evolution of the jitter for a deterministic pack-
et stream through a series of nodes.

All the numerical examples are obtained by Mathematica programming except for the ex-
amples in chapter 5 which is obtained by FORTRAN routines. Many of the numerical re-
sults are checked against similar (but different) models and also against asymptotic expan-
sions.

1.3 Overall organization of the thesis

This thesis is divided into two parts, Part | and Part 11, but where each chapter more or less
is self-contained with an introductory chapter. A quite large number of more technical de-
tails are put in separate appendices. The use of symbols throughout the thesis is not strin-
gent, for instance is the symbol B used to denote a rate process in Part | while in Part Il the
same symbol is used as a symbol of the number of packet arrivals from a background
stream during a slot. However, within each chapter the notation should be “consistent”.

Part | is devoted to find methods to describe transient behaviour of traffic processes, where
the main emphasis is placed on the description and analysis of excess periods and excess



volumes of quite general stochastic processes, and the organisation is described in section
2.3.

Part Il provides models to obtain traffic dependent end-to-end queueing delay and give

methods to calculate evolution of the jitter through out a network. The organisation of Part
[l is given in section 6.4.
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Some results on level crossing, excess
distributions and first passage times for
stationary rate processes
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| ntroduction

Traffic models are needed as an input for dimensioning and performance evaluation of tele-
communication systems. They will also be important in the process of designing and struc-
turing networks. In this context we consider “fresh” traffic, i.e. before it has entered some
network elements where it could be disturbed by other traffic streams. By “fresh” traffic we
here shall mean the raw bit rate generated from various traffic sources. However, we must
to some extent also include the effect from different protocol layers adding on overhead and
framing the bit stream into packets. We shall also consider traffic models that are a super-
posed or an “enveloped” traffic stream, formed as a collection of individual sources, where
the gross hit rate is taken as the sum the instantaneous bit rates from the sources as if there
where no other constraints or limitations, e.g. buffers, capacity etc.

2.1 Traffic modelling and scaling phenomena

The presence of scaling phenomena in some type of data traffic is well documented in the
literature. The area of analysis, modelling and characterization of traffic in communication
networks has quickly evolving since the semina paper by Leland et a. [Lela93] in 1993.
This paper showed that network traffic in many cases has properties characterized by long-
range dependence and variability at a wide range of time scales, and it introduced the no-
tion of self-amilarity to communication networks. Later on, these properties have been
shown to hold also for a much wider range of experimental environments [Paxs95],
[Crov9e].

The evidence of traffic being long range dependent has certain implication on the behav-
iour of the autocorrelation function for large arguments, resulting in a power law behaviour
with exponent between zero and unity, where the exponent is expressed in terms of the
Hurst-parameter by 2H —2. We therefore aim to look at models that have long-range de-
pendence. On the other hand the behaviour of the autocorrelation for small arguments will
determine the behaviour of the processes at micro-level (at least for processes that have
continuous sample paths) indicating that one possibly should use “different models’ on the
micro level than on the “macro level”.

2.2 Transient characteristic of traffic processes

By assuming that traffic change on different time scales, the transient characteristics of the
traffic processes could be an important measure to describe periods of congestion on a com-



munication link (by assuming that the relaxation time for the link buffer is of order less
than the typical length of an excess period). Moreover, the corresponding excess volume
will represent lost information during such periods. For traffic model acting on a (virtual)
link (of fixed capacity), it is of great interest to be able to answer to some of the following
guestions:

- How often will the excess periods occur?
- What is the distribution of the length of the excess periods?
- What is the distribution of the corresponding excess volumes?

Although the results obtained are of rather general nature, they give some rather fundamen-
tal insight into transient characteristic of traffic processes. The aim has been to provide
some results concerning the duration of excess periods and the corresponding excess vol-
umes. It turns out that the up- and down-crossing rate is an important measure, and will an-
swer the first question above provided that the limit is finite. The distributions of the length
of an excess period may then be expressed it terms of some excess probabilities that is re-
lated to the minimum of the process in the time interval considered. Similar relations for the
excess volume is harder to obtain and requires the joint probability of the arrived volume
and the minimum of the process in the same time interval. Unless for some very special
models the exact excess probability is difficult to find expressions for and therefore some
approximations will be needed to get results that are numerical feasible.

2.3 Theorganisation of PART-I of the thesis

PART-I of the thesis is a collection of three chapters. The main focus through these chap-
tersis the use of level crossing to describe transient phenomena as excess times and excess
volumes for bit rate processes. As mentioned these periods may represent periods of con-
gestion for bufferless multiplexing.

Chapter 3 deals with fundamental questions concerning level crossings for stationary sto-
chastic processes where we discuss some of the basic properties. It is known that level
crossing is a rather tricky matter, and put strong limitations of the class of processes, espe-
cially for processes with continuous sample paths. The chapter is logicaly divided into two
parts where we in the first part give some fundamenta results and the only assumption is
that the process is stationary, while we in the second part consider processes that are contin-
uous in time and space and we describe a method that makes it possible to aso include the
excess volumes into the analysis.

In the first part we define the crossing rate and deduce that if this rate is finite it is given as
negative derivative of the excess probability. Then we discuss the relation between the ex-
cess probabilities and the distribution of the excess periods. In the second part we consider
processes that are continuous in time and space. The claim of having finite crossing rate for
such processes will put rather strong implications on the behaviour of the autocorrelation
near the origin. For processes with continuous sample paths we also give relations between
some joint excess probabilities and the joint distribution of the first passage times and cor-
responding volumes. Similar relations are aso found for the joint distribution of the excess
times and corresponding excess volumes, but they are more tricky to obtain.



In chapter 4 we consider Gaussian traffic models. In the first part we propose an approx-
imative method to obtain the distributions of excess times and excess volumes. The main
idea is to approximate the excess probabilities by multinormal integrals. Based on these ide-
as we express both first passage times and corresponding volumes and the excess times and
corresponding excess volumes in terms of multinormal integrals. In a separate appendix
(Appendix B) we have given many interesting properties of such type of integrals, among
them the result that makes it possible to calculate the multinormal integrals by calculating a
multiple integral with only half the dimension.

In the second part we consider the Ornstein-Uhlenbeck (O-U) process. The main motiva-
tion was firstly because the O-U process is a special case of Gaussian process and could
therefore be used as a test process for the proposed approximations. Secondly, since the O-
U process may be obtained as a limit of a large numbers of ON/OFF sources (with expo-
nential distributed ON- and OFF- times) the results is important in its own. For the O-U
process we have given the Laplace transforms for the first passage times and the corre-
sponding volumes. These Laplace transforms are inverted by locating the residues yielding
infinite series. Asymptotic expansions for small arguments are also found.

In a series of numerical examples we first tested the approximation by applying multinor-
mal integral of dimension five or six with the exact first passage time distributions for the
O-U process. Unfortunately the correspondence was not as good as we hoped, however, the
proposed approximation seems to yield an upper bound for the distribution functions. In a
second series of examples we chose a process with typical long rang dependence. We con-
clude that the corresponding (approximative) excess time seems to have long tails.

In chapter 5 we consider the case when the bit rate process is a semi-Markov process. This
type of process is not limited by the claim on the behaviour of autocorrelation function near
the origin as found for processes with continuous sample paths.

The main results obtained are general expressions for the Laplace transforms and distribu-
tion functions of the excess times and the excess volumes in terms of the generator matri-
ces. For birth-death semi-Markov processes the generator matrices simplify and the trans-
forms may be found recursively. For ordinary Markov processes the excess distributions
may be obtained by finding the eigenvalues to the corresponding rate matrices, and finally
for birth-death processes these eigenvalues may be effectively found by applying the meth-
od of bisection.
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3

Some transient characteristics of traffic
analysed by methods of level crossing and
excess distributions

3.1 Introduction

If statistica multiplexing is alowed in broadband networks it may happen that the load
form the ongoing communications (or connections) may exceed the capacity of a particular
link. Due to statistical fluctuations this situations may occur even though the network is
well dimensioned. This may lead to periods with excessive information loss and thereby
possible degradation of the QoS. The time scale of such variations may typical be that of an
ON/OFF activity period of a frame duration for a video source. At this level the discrete na-
ture of the transmission e.g. packets (or cells) are negligible, and we consider a more or less
continuous bit stream with different characteristics. Thus rather than considering events
where arrivals of packets or cells occur we take the fluid approach where we observe a con-
tinuous bit stream representing the traffic under consideration.

In the literature statistical fluctuations and level crossing initially appeared in the field of
statistical communication theory and analog signal processing. The first result on level
crossing is due to Rice [Rice45], and goes actually back to 1936 where he gave the classic
formula on the average rate of level crossing for Gaussian processes. In his context the
main focus was the ability to detect levels of a signal that was influenced by random noise.
(See dso [Rice48].) Along with other authors in the same field there exists a quite large
numbers of papers considering level crossings for Gausian processes, however the main fo-
cus has been the crossing of the zero level, whereas we are mainly interesting in crossing of
levels having small probabilities. In some quite early papers by McFadden [McFa56] and
[McFa58] some quite general results are given for axis crossing. Similar results where also
the distributions between successive zeros are discussed are found in the papers [Long58]
and [Long62] but with the assumption of a Gaussian process. In the book of Leadbetter et
a. [Lead83] a quite large number of results on level crossing are given mainly for Gaussi-
na processes, but also some basic results concerning the crossing intensity for general proc-
esses that have continuous sample paths are given. Also in several other textbooks as
[Lars79b], [Papo65] and [Midd60] the topic of axis crossing for Gaussian processes have
been treated.



Our am in this chapter is not to give a complete mathematical treatment of the different
topics, but rather take the perspective of an engineer and give some genera results that are
important for performance measures characterising rate processes. A more thorough mathe-
matical treatment will require techniques that are beyond the scope of this thesis.

The usual way of characterising dependencies in stochastic processes is to introduce the
second order statistics; that is the covariance or autocorrelation function. The level-crossing
description introduced below will be more appropriate to get the performance measures
needed for instance considering bufferless multiplexing. This fact will be evident when we
derive formulas for the second order moments of the excess volumes that may quite easily
be obtained by using the level-crossing description. Also the new achievements obtained by
using large deviations seem to fit well into this description.

3.2 Some general results concerning the excess times and excess volumes
for stationary stochastic processes

By taking a general starting point we let { B} be a (non-negative) stochastic process repre-
senting the instantaneous bit rate (load) on communication link. The main assumption we
put on the bit rate process is that it is stationary (in the strict sense), which means that any
group { By, ...,B,} has the same distribution as {B B4y} forall choices of T .

T+t
It follows that the behaviour of the process is independent of the staring point of the obser-
vations (which we in most cases choose to be t = 0). We shall aso limit ourselves to con-

sider only time continuous processes. For discrete time processes a similar development is
possible but such models will not be discussed in this thesis.

In the following we let m = E[B,] denote the Mean bit rate and o’ = E[BS] —m® be the

E[B,B] —m’

corresponding Variance and we let p(t) = denote the Autocorrelation func-

o
tion of the process. It turns out that the behaviour of the Autocorrelation function near the
origin will provide the necessary information to determine whether the up and down cross-
ing intensities are finite, and therefore determine when the description below is fruitful or
not. (See for instance the introductory textbooks of stochastic processes [Cinl75] [Cox70]
[Fell68a] [Fell68b].)

Assume that we for a given level (link capacity) C may identify up and down crossing in-
stants {U,} and {Dy} such that B,—C>0 in theinterval (U,,D,) and B,—C<0 inthe
interval (D, U, ;) (see figure 3.1). The possible up and down crossings intervals
(U, Dy) and (Dy, U, , ;) will describe periods of congestion and non-congestion for buff-
erless multiplexing, or period of buffer filling or buffer emptying in a fluid queue.
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Capacity level C

Uy Dy U, D, Us

timet >
Figure 3.1:  Definition of up and down crossing instance.

By assuming that it is possible to identify the random sequences {U;} and {D,} of the up
and down crossing instants, we define the excess times and excess volumes:

Di
Ty =Dy—Uy and A = [ (B, —C)dt (3.2)
Ui

and similar periods of normal load and corresponding volumes:

Uk+1
S=U,,;-Dyand V, = [ (C-B)drt (3.2)
D

For aloss system A, will describe the amount of information lost during a congestion peri-
od but for the fluid model A, and V, describe the net increase and decrease in buffer con-

tent during the intervals (U,, D,) and (D,, U, . ,). We aso define the total volume arriv-

k+1
Dk+1

ing during two consecutive down crossings as W, = I B dt.

Dy

The main contribution in this chapter will be to describe a general framework to get the dis-
tributions (and moments) of the length of these intervals and the corresponding volumes. If
it is possible to obtain these distributions they will give interesting performance measures
such as the length of overload periods and the time between them. By considering the ex-
cess volumes it is possible to estimate the information loss for bufferless multiplexing and
especially the losses in the period of overload.
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3.2.1 Some general remarks on level crossing

It turns out that one need to be some careful when considering up and down crossing for
stochastic processes. This is specialy seen in processes having continuous sample paths
where the term up and down crossing can be defined dight different. For instance in the
book of M. R. Leadbetter et al. [Lead83] it is defined both the term up crossing and strict
up crossing where a so called non strict up crossing is alowing for infinite many up cross-
ings in a small interval. Since we consider processes that have both continuous and piece-
wise continuous sample paths we shall take the following definition:

A function f(t) (which we assume to be piece-wise continuous) is said to have an up cross-
ing of the level C at a point t = t if for some £ >0 and every n >0, then f(t) < C for all

t in the interval (ty—¢,t;) and f(t) > C for some t in the interval (ty, ty+n). (In a simi-
lar way we also define down crossing.)

In the following we shall derive some quite general expressions for the excess distribution
on the basis of the basic knowledge of the bit rate process { B} . It turns out that the cross-

ing intensities may be expressed through the functions (excess probabilities):

We(t) = P{Inf 5 pB;>C and (3.3)

oc(t) = P{Sup, L G (3.9

The functions Y(t) (and @.(t)) are the probabilities that the process either is above
(or below) the level C (and does not crosses that level) in an interval of length t. It

will be convenient to approximate the process { B} by a sequence { B?} taking the val-

ue of {B} a points t = Lnt (i=01,..,2" and let {B{} being linear between such
2

points. (With this type of partition we obtain the (n+ 1) ‘th from the n‘th by halving each
interval and therefore doubling the number of points) We may now approximate

m, = Inf, 5 o 1B, by the corresponding 2" -point approximation m; = Ming_._ B, ad

we define:

n _ . —
Pe(t) = P{ManSisantln>C} = P{ Bt3>C' BIT>C, ...,BIE>C} (3.5

Similar we also define the 2"-point approximation M, = Maxq ¢ < B, for the maximum

M; = Sup; ;o 1yB; and we define

n _ _
9e(t) = P{Max_,_,B,<C = P{B,<C.B;<C, ...B,<q (3.6)
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By choosing the special form of partitioning the interval we secure that {m[} is a decreas-

ing sequence and {Mtr} is an increasing sequence, and it follows that both converge as.
(amost sure) to the limits {m} and {M} respectively, and furthermore the approximar

tive excess probabilities Lpg(t) and (pg(t) congtitute decreasing sequences and will there-
fore converge (pointivise) to the (desired) excess probabilities:

lim E(t) = we(t) and (3.7)

nlimw(p?:(t) = @c(t) (3.8)
We shall define the following up and down crossing rates:

A% () = %P{ B,<C<Bj and (3.9)

2% ) = %P{ By>C2By (3.10)

These rates are simply the probabilities that there has been at least one up or down cross-
ing in an interval of length t divided by the length of the interval. For a stationary process

the up and down crossing rate must be equal: (The proof of this statement is given in Ap-
pendix A by theorem A.1)

Bc(t) = AZ() = AT(D) (3.11)

where we define A(t) as the crossing rate (either up or down crossing) intensity for an in-

terval of length t. It turns out that the crossing rate has some nice properties that makes the

limit t » O easier to examine. In Appendix A by theorem A.l it is aso shown that the
crossing rate satisfies the nice inequality:

Ac(t) S YA(yt) + (1-y)A((1-y)t) foral t and O<sy<1 (3.12)
It follows that A(t) sAc(g (by choosing y = %) for al t and by continuously sub-di-

viding the interval we get an increasing sequence Ax(t) < ACG) < Ac(lz) < .... It follows
2

that lim AC(L) exists for every t and it is shown that if lim supAs(t) <c then thein-
t-0

n- o "

stantaneous crossing rate exists and is finite (and given by):
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A = limAg(t) = lim ag(L) (3.13)
t-0 noo "

It turns out that the instantaneous crossing rate will play an important part in the effort to
find expressions for the different excess distributions. Before we go further to find the dif-
ferent moments and distributions of the different excess times we shall first show the fol-

lowing important results which relate crossing rate A to the derivative of the excess func-
tions P (t) (and@.(t)) att = O:

Ac = ~Wc'(0) =~9c'(0) = ~c'(0) =~ (0) (3.14)
To prove (3.19) we start with the obvious inequality
Yc(t)<sP{By>C,B,>C = P{B,>C -P{B;>C=B} implying that

_llJc(t) -c(0)
t

W) -ye(0)
t

2Ac(t). The last inequality shows that if Ag(t) - then

-~ o whent - 0.

Next we assume that A = limAg(t) is finite. Then we dso have
t-0

We(t)<P{B,>C,B,>C} = P{B,>C} —P{B,>C=B} for n=01,2,.. (with

Ye(t) — we(0)
t

equality for n = 0) giving — > A(t). By writing out the difference

We(0)—we(t) as follows we find:

We(0)—wa(t) = P{B,>C —P{ B,>CB,>C,...B,>C =

2"

o
Z[P{BRC,BRC,...,BH >c}—P{Bn>C,Bn>c,...,Bn>cH: Z[P{BRC,BRC,...,BH >C,anCH
to 1 o, t t t t t

i=1

i 0 1 tO l1 i-1
i=1
Each term in the last sum is obviously bounded by
P{B, >CB,<G = P{BO>CZBt} = Lag(L) (where the equality is due to the
i-1 i o 2 2
2
assumption of stationarity of the stochastic process). We therefore have

We(0)—e(t)
t

sAC(j) forn =0,1,2,... (with equality for n = 0). Combining the two

inequalities above gives:
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a4z _e® —tllJc(O)

2 A(t) (with equality for n = 0) (3.15)
2

If we now fix t and let n - o in (3.15) then we get:

_Wc(® -wc(0)
t

Az > A (t) (3.16)

and the result (3.14) follows now by letting t — 0 in (3.15) and (3.16).
As a consequence of the inequality we get the following bounds on the function y(t) and

We(t) (for small t):

P{By>C} —tA.<Wu(t) < P{By>C} —tAc(t) and (3.17)
P(By >0} —thg(L) <wl(t) <P{By>C —tac(t) (3.18)
2

The proof for @c(t) is similar and is therefore omitted, but the corresponding inequalities
(3.15) and (3.16) yield by replacing W (t) with @-(t) and Pi(t) with @i(t) and further
the bounds (3.17) and (3.18) will read:

P{By<C} —tAc< @u(t) < P{By<C} —tAL(t) and (3.19)
P(By< Q) —thg(L) < 0l(t) < P{By< G ~tac(t) (3.20)
2

(We should mention here that when we derive (3.14) by (3.15) and (3.16) we only assume
that subintervals are of equal lengths, which means the results also yield for the case where

the we divide the interval into subinterval of equal lengths %])

It is aso of interest to find the probability of having more than one crossing (of the level
C) in an interval of length t when A. is finite. We let A(t) denote this probability and

find the following result:

Ae(t
If the crossing intensity A isfinite then lim Ct()

= 0 or Ag(t) = o(t) ast - 0.

To show this result we define the probability of having an even number of crossings in an
interval of length t by A (t). Since in this case either both the starting point and the end

point are above or below the level C we must have
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A1) = P2(t) —We(t) + 9a(t) —oc(t) . Similar we also define the probability of hav-

ing an odd number (greater than one) of crossings in an interval of length t by /\?:dd(t) . To

have an odd number (greater than one) of crossings in an interval of length t we must have
an even number of crossing in the interval (0, T), a single crossing in (1,7 +dt) and no
odd even

crossing in (T +dr, t). Therefore A (t) will be bounded by the integral of AZ ™ (t), that

odd even

t
is we have Ag (1) < j A (T)dt = tAL®(t;) for some O<t,<t. Then by (3.15)
=0

(where we have equality for n=0) and (3.16) we get

even odd

OS/\C(t) _ Ao () + A (1)
t t
t — O the result follows.

< 2(De—Ag(t)) + 2t(Ac—Do(ty)) for Ot <t. If we let

By applying the nice property above we may neglect the probability of having more than
one level crossing in a smal interval (of say length dt since we will have
Ac(dt) = dt[b(dt)) and this will heavily simplify the derivation of the different excess
distributions below where we always shall assume that the crossing intensity is finite.

3.2.2 Distribution and moments of the excess times

In this section we shall discuss a general framework to get the excess time distributions T,

and S for a general stationary stochastic process. Sometimes we also want to get the time
to the first down crossing (first passage time) conditioning on the bit rate process (when we

are inside an excess period). We therefore also define T" to be the time to the first down
crossing for the process {B} when we start the observation in an excess period with

By= Xx.

It turns out that the first passage time may be expressed in terms of what we call envelope
probabilities (or excess probabilities) defined by:

Fco(x, y,t) = P{B,;>y, lnfTD(O,t)BT>C|BO: X for x=C, y=C and (3.21)

Ge(x, y, t) = P{B;<y, Sup; 1 (0,1Br = C|Bo= ¥ for x<C,y<C (3.22)
and where we aso denote the corresponding densities f-(x,y,t) :g_yFC(x, y,t) and

_0
gC(Xv y! t) - WGC(X! yv t) .
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The CDF (Complementary Distribution Function) of the first passage time 1l may be ob-
tained from (3.21) by setting y = C, so we get

P(T*>1t) = P{Inf, 0 yB; >ClBo= ¥ = Fc(x C,1) (3.23)

Below we will show that we, on the basis of the characteristics (3.21) and (3.22) and the
stationary distribution, are able to derive the excess time distribution above, Y(t) (or be-
low @c(t)), the level C for the hit rate process. Based on the definitions above we get the
following relations to the excess probabilities defined by (3.3) and (3.4):

Y]

We(t) = j Fo(x, C,t)d®d(x) and (3.24)
x=C
C

oc(t) = j Ge(x, C, t)dd(x) (3.25)
x=0

where ®(x) is the stationary CDF of B, i.e. ®(x) = P{By<x . (If the distribution func-
tion is differentisble we have d®(x) = ¢ (x)dx where ¢(x)dx = P{By O (x,x+dx)} is
the PDF (Probability Density Function) of B, .)

The functions Y(t) (and @(t)) are the probabilities that the process either is above (or

below) the level C and does not cross that level in an interval of length t. Based on these
key probabilities we may proceed to obtain the distribution of the excess times T, . Now, to

have an up crossing in a small interval (O, dt) we must have By< C and By, > C (seefig-
ure 3.2).

B 4 /\

level C

\

0| i
Uy

Figure 3.2:  The excess time distribution based on up and down crossing instanc-
es of the bit rate process.

time
Dy
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Conditioning on this event and observing that the event

{Bo<C InfigqyB:>C = {Infg(g nB:>C —{Infi 5B >C we may express

the excess time distribution as

P(T,>t) = dIim P(Bo<C, Inf 4t 1Br > C|By< C, By >C); and by rewriting the event
t- 0 :

above and using the assumption of having a stationary process the last expression may be

rewritten as:

lim Po(t—dt) —Pe(t)_ —Wc'(1)

dt-0 We(0)—We(dt) — Ag

Fr(t) =P(T>1)= (3.26)
provided that A is finite. Hence, these results state that the CDF of an excess period for a
genera stationary stochastic process is given as the normalized derivative of the excess
probability (3.24). The result (3.26) requires that crossing intensity A~ (or the derivative at

time t = 0) exists and is finite. Unfortunately this is not the case for some rather interest-
ing classes of continuous processes. For the Ornstein-Uhlenbeck (U-O) process the deriva-
tive ' (t) will become arbitrary large for small values of t so the limit (3.26) will be-
come zero for al t. This is in accordance with the well known rapid oscillations for the

Wiener process and the O-U process described in many textbooks for stochastic processes
[Cox70Q], [Karl66]. (We shall discuss the O-U process in section 4.4.)

An alternative to consider the excess time distribution defined above (which does not al-
ways exists) we may consider a somewhat simpler variable taken to be the first passage

time T given that the bit rate process is above the level C. The corresponding CDF may
be found by integrating (3.23) by the conditional distribution of B, given that B;>C:

P(Tc>t)= | Fe(xC1)
x=C

do()  _ _We®
P(By>C) P(By>C)

(3.27)

To obtain the CDF of the time distribution of the “normal load” period; that is the distribu-
tion of S we proceed as for the “overload” case, and we get:

Fo(®)= PS> 1) = lim LL=d0 =9 0 ()

_ 3.28
dt - 0 @c(0) —pc(dt) Ac 320

On the basis of (3.26) and (3.28) it is straight forward to find the first two moments of the
excess times:

P(Bo>C) _ | £ls)= P(Bo<O)

E[T]=
[Ty - A

d (3.29)
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[«

2[we(tydt 2[ gc(t)dt
E[T]]= JT and E[S]]= JT. (3.30)

In words it is possible to express the mean excess times as the stationary probability that
the bit rate is above (or below) the capacity limit divided by the rate at which the process
cross that level.

We may also obtain the expected time between two consecutive up or down crossings:

E[Uc.1-Ud = E[S] +E[TJ = A—lc (3.31)

Thus, the mean excess times above (or below) a given capacity level could as well be de-
rived by direct arguments; as the portion of time the process is above (or below) a given
level decided by the up or down crossing rate.

3.2.3 Moments of the excess volumes

By taking the expectation of the stochastic integrals (3.2) we may express the mean values
of the excess volumes as:

(o)

jP(BO>x)dx
E[AJ = E[TJE[B,-C|B,>C] = CA— and (3.32)
C
C
jP(BOsx)dx
E[Vi] = E[SJE[C-By|B,<C] = OA— (3.33)
C

Based on the results above we may estimate the overall information loss p,,., as the ratio
of the mean excess volume and the mean traffic volume in a cycle:

jP(BO>x)dx

Ploss = CT (3.34)

and the information loss in an overload period g, as the ratio of the mean excess vol-
ume and the mean traffic volume in an excess period:
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_[P(BO > x)dx
~c
Uoss mP(BO > C) (335)

We observe that the crossing rate is not included in the estimates (3.34) and (3.35) and they
may as well be used for processes where crossing rate does not exist. To justify this we
may consider a sampled version of the process (where we take the sampled version linear

between samples). If we choose a sample interva of length 6 the corresponding crossing
rate is A-(8) and by choosing 6 small (but not 8 = 0) we will get the estimates (3.34)
and (3.35).

To obtain the second order moments of the excess volumes we define the conditional covar-
iances

0 )

Ye() = E[(B=C)Bo~C)Lyiny o p>q] = [ [ (x=C)y-C)o(fc(x v, yxdy (3.36)
x=Cy=C
C C

Bo(t) = ELC-B)(C-B)lisp o5 sa] = | [ (C=X)(C-y)o(x)gc(x v, ydxdy (3.37)
x=0y=0

First we caculate the conditional moment E[AﬂTk] . After some manipulations we find:

T
E[ATd =2 [ (T,-9)
£=0

Ye(€)
We(€)

de (3.38)

By the theorem of double expectation (see for instance [Cinl75]) we get from (3.38):

oY)

2 [ ye(tyat
E[Ad = EIEIA(TY] = +=0— (3.39)

By proceeding in the same way for V, we finally obtain:

2 j B(t)dt

E[V] = 420 3.40
M) = =0 (3.40)
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3.3 Further resultsfor bit rate processes that are continuous in time and
Space

The rest of this chapter will be devoted to processes that have continuous sample paths and
are absolute continuous (which means that the PDF for the process exists and is a continu-
ous function). In the literature there exists sufficient criteria for a stationary process having
continuous sample paths. We refer to the textbook of H. J Larson and B. O. Shubert
[Lars79b] where it is stated that if it possible to find constants such that

1-p(t) <at’ for 0<t<l| (3.41)

where a>0 and y>1 then the process is sample path continuous. If the process is Gaus-

sian one can relax the demand on y to have y>0. In the following we shall assume that
these criteria are fulfilled to be sure that the corresponding processes are sample path con-
tinuous.

3.3.1 Up and down crossing intensity

For absolute continuous processes it is possible to write the crossings intensity as an inte-
B,—-B
gral. To do this we define dB, = ITO which is the differential process scaled by 1/t

(when t is small the scaled differential process will be close to the derivative of B, provid-
ed that the derivative exists).

By conditioning on B, we may write the up and down crossing intensity as:

| P(dB>y|By=C—ty)¢(C—ty)dy and  (3.42)
y=0

1
AS(t) = tP{By=C<B}

Y]

j P(=dB,>Yy|By = C+1ty)$(C +ty)dy (3.43)
y=0

d 1
AC(Y) = tP{Bo>C2B}

where ¢(2) is the PDF of B,. If the functions F (y,2) = P(dBt>y|B0 =2)¢(2) and
Foly, 2) = P(—dBt>y|B0 =2)$(z) are uniform continuous with respect to z for al y
then one may take the limit t — O under the integral sign in (3.42) and (3.43) giving:

1 g ).
Be = Flim (AE() +8Z0) = ﬂz—)tnmo [ (P(dB,>y|By = C) + P(~dB, >Y|B, = C)ly)
y=0

- MglimoEHdBtHBo -] (3.44)
to
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In Appendix A we have given a more rigorous proof of (3.44) where we assume that
F1(y, 2) and F,(y, 2) satisfy the condition A:

[F1,(¥: ©) = F, (¥, | <M((V)IC—x and |F,(y, C) = F,(y, )| < M(Y)IC x| (for y=0)

00

where M, = I yM,(y)dy exists and further tIimOtMt = 0.
y=0

In practice the hard part in this approach is to find the function M,(y) used in the condi-
tion A, and this task will often be as difficult as to find each of the limits in (3.44) direct.

It would be nice to try to link the existence of the crossing intensity to the second order sta-
tistics for the process, that is the behaviour of the autocorrelation function for small t. We

2
have E[dBtZ] = 2¥;(l—p(t)) and by [Fell68b] (see page 155), we have that the mean
t

scaled drift is bounded by the inequality:

/ 2 o]
E[|dBt|] < JE[dB,] = YA/Z(l—p(t)). (3.45)
Now it is clear that to have the limit E[dBtz] to exists for t - 0 we must have

p(t) = 1—at®+ o(t?) (3.46)
for small t where a is a positive constant.

If we integrate the crossing intensity A-(t) over all the crossing levels we get (by ap-
plying both (3.42) and (3.43)):

) ) )

j Ag(t)de = % j j [P(dB,>y|By = C—ty)d(C—ty) + P(-dB, >y|By = C+ty)$(C +ty)] dy|dC, and by

C=-—» C=—w\y=0

changing the integration we get:
_1 _1
j Ac(t)dC = 3 j P(|dB,| >y)dy = SE[[dBy] (3.47)
C=-w y=0
We may now state the following result: If we assume p(t) to be on the form (3.46) then we
have by (3.45) that IimOE[|dBt|] =y with % finite and
t o
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y = lim E[|dBt|] < IimA/E[dBtz] = 042a and furthermore by the monotone conver-
t-0 t-0
gence theorem [Royd68] lim Ac(in) = limAx(t) = Ac isfinite as. and further
n- o 2 t-0

limE[|dB|] = 2 A-dC 3.48
limE[dB]] =2 [ Ac (3.48)
C=-o

Of course (3.46) put a quite strict limitation on the class of autocorrelation functions for
which it is meaningful to use the notion of up and down crossing intervals even though the
processes may have continuous sample paths. Thus, the requirement of having continuous
sample paths combined by requirements of having finite up and down crossing intensities
will limit the class of processes to those having autocorrelation function of type (3.46). This
isin strict contrast to processes with jumps, for instance stationary Markov processes where
the up and down crossing intensities will exists even though the autocorrelation function is

on the form p(t) = 1-at+ o(tz) for small t where a is a positive constant. (Processes
with jumps are discussed in detail in chapter 5 in this thesis.)

As a side results, by applying the inequality above, we find the integral over the up or down

crossing intensity is bounded by o @ that is:

j AcdC<o fé‘ = g./=p"(0) (3.49)

C=-x

Summarising the discussion above we have shown that sufficient condition that the up and
down crossing intensities exist and are finite as. is that the autocorrelation is on the form
(3.46). Whether this also is a necessary condition will not tried to be answered in this the-
sis, however, for a Gaussian processes this is the case. As a side result of the discussion we
obtain a bound on the integral of the crossing rates and provide a measure of the variability
in the process that is proportiona with the standard deviation and the square root of the sec-
ond order derivative of the autocorrelation (at the origin) with negative sign.

3.3.2 Joint distribution of the first passage time and the corresponding volume

The general formulae above give a framework to find the first two moments of the excess
volumes. However, in many performance questions the interested part is the tail of the dis-
tributions, which generally is much harder to obtain. In the following the aim is aso to in-
clude the volume in the analysis and to do so we must also include the volume in the distri-
bution (3.21). In the succeeding we shall assume that the bit rate process is continuous in
time and space, and we limit ourselves to consider the most interesting case, the excess vol-
umes when the process is above the capacity level C. (A similar analysis is possible to per-

form for “the normal case” when the process is below the level C.) We let
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T
A = J‘(BT —C)dt be the excess volume up to a certain time t, and we assume that the fol-

0
lowing time dependant probability distribution is known:

Fcxy, zt) = P{B;>y,A >z Inf 5B >C|By= % for x=C, y=C (3.50)

with the corresponding PDF:

_ 0
fC(Xr yv Z, t) - WFC(XI y! Z, t) (351)
Based on these time dependant functions we will first derive the joint PDF of the first pas-
TX
sage time T* and the corresponding excess volume A* = A; = _[ (B,—C)dt. We let

0

a2

atazFA*TX(X' z1)
the corresponding joint PDF. The event “down crossing in the interval (t,t +dt)*, that is

F (X 2.1) = P(A*>z T >t) be the joint CDF and fop(x21) =

TO(t, t+dt), is equivalent with the event {Inf 50 yB:>C, By g<C . This event

may be written as the difference {Inf, ;o B, >C —{Inf; ;g (4B >Ct (see figure
3.3).

By .
AX
level C
TX
- -
» time
t=0 t  t+dt

Figure 3.3:  The excess time and excess volume and down crossing instances of the
bit rate process.

From the definition of T and A* we have

P(A*O(z z+ dz),TXD(t,t+dt)) = P(A[D(z,z+dz),|nfTD(O’t)BT>C, B,,4t<C) =
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P(A U (z z+d2), Inf ;g yB>C) —P(A U (z z+d2), Inf (g {4 4)B: > C)

The first part of this expression is given by

P(ALO(z z+ dz),InfTD(O’t)BT>C) = j fo(x,y,z t)dydz. The second part is some
y=C

more difficult to obtain (expressed in terms of the function f-(x,y,zt)) because it in-

volves the changes in the volume in the interval (t,t+dt). Some informally we have
dA, = (B;—C)dt which implies A, 4 = A+ (B, 4—C)dt, so to have A, (z z+dz)
we must have A, 4 0(z+(B;,q—C)dt,z+(B,,4—C)dt+dz). Conditioning on
B,.q4 = Y and integrating we then get:

(o)

P(A/O(z z+d2), Inf ;g 1+ 4B >C) = I fo(X,y, z+ (y—C)dt, t + dt)dydz

y=C
By expanding for small dt we finaly get:
_q ofc ofc
e 20) = = [ ((y=C)55+ 56y (352)
y=C

The main restrictions we put on the bit rate process B, to make the derivation above cor-

rect are mainly that the sample paths of B, must be continuous. With this assumption we
t+dt t+dt

have A q—A = | (By—C)dt = (B, q—C)dt+ [ (B, gq—By)dt and due to the
T=t T=t

continuity of the sample paths the last integral will of order 6dt where & can be made arbi-

trarily small (depending on dt). Unfortunately the method fails if the sample paths of the

process contain some kind of jumps. In this case the evolution of the volume (in time) will

depend on the hit rate both before and after the jumps. This is in contrast to the results de-

rived for the excess times in section 3.2.2 where no particular assumption is made about the

continuity of the sample paths. (In chapter 5 we consider the case where the hit rate proc-
ess is a semi-Markov process and therefore containing jumps.)

To find the time dependent CDF (3.50) and PDF (3.51) for specific models is of cause the
hard part to find explicit expressions of the joint excess distributions. However, these func-
tions must have some specific initial and boundary conditions to make the proposed de-

scription meaningful. Firstly, the initial conditions obtained by letting t — O in the defini-
tion of f., imply that:
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fo(x,y,2,0) = 3(y—x)d(2) . (3.53)

where d(u) denotes Diracs delta function. Secondly, this assumption and the claim that
foTx(x, z,t) is a proper probability density function impose the following boundary condi-

tionon fs:
fo(x,y,0,t) = 0 for t>0,x>C,y>C. (3.54)

We recognize that this is the appropriate boundary condition at z = 0 since the volume A,
cannot be zero for positive time.

The joint CDF FAXTX(X, zt) = P(AX> z, > t|By = X) can be expressed in terms of (3.50)
and (3.51) by using (3.52):

Frp(2) = Fex Czt)+ [ (y-C) [ fe(x v,z 1)dudy (3.55)

y=C T=t

The margina PDF and CDF for the excess volume A* is easily obtained from (3.52) and
(3.55):

fu(x2) = 8(2)- j (y=C) j 35 (% ¥,z t)dtdy and (3.56)

y=C t=0

(o)

(y=C) [ fe(x v,z t)dtdy (3.57)
C t=0

FAx(x, 2) = P(AX > z| By=x) =

y

I e— g

Due to the initial impuls of the joint density f~(x,y, z,t) (at the origin) one must be care-
ful with the limit of integrationat t = 0 (and z = 0).

The functional relation (3.52) with the initial and boundary condition deduced above will
become more apparent if we introduce the double Laplace transform

fopx(x8,Q) = E[e_STX_ZAX‘BO: X] . From (3.52) we get the following functional rela-
tion:

00

fra(x 3,8 = 1= [ ((y-C)Z+9)fe(x y. L, 9)dy (3.58)
y=C
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where %c(x, Yy, (,s) isthe double LST (Laplace-Stieltjes Transform) of f. in the variable z
and t defined by:
—st—(z
e fo(x, y, z, t)dzdt (3.59)
0

%C(X’ Y, Z: S) =

Il &~ 8
I e—, g

z=0 t

3.3.3 Joint distribution of the excess times and excess volumes

We shall now proceed with a quite similar analysis as above to get the joint PDF of the pair
(T A, bearing in mind that this pair of variable is determined through a second order

limiting procedure, that is we both require up crossing in a small interval (0, dt;) and also
down crossing in a second small interval (t,t+ dt,). Before entering the analysis we de-

fine the following joint density:

ge(x Y, z,t)dxdydz =

P(Bo O (% x+dx), B, 0 (y,y+dy), A 0(z z+d2), Inf 5 yB; >C) ., then by (3.50)
and (3.51)

gC(X! yv Zr t) = ¢(X)fc(x’ y’ Zr t) . (360)

We let FAka(z, t) = P(A,>z T,>t) be the joint CDF of the pair (T, A,) and

2
fAka(z, t) = at(%FAka(z, t) the corresponding joint density function. Some informal we

have:
P(A 0O (z z+dz), T, O (t,t +dt,)and upcrossing in(0, dt
for (z t)dzdt, = lim (AH( ) Ty O (4 8+ dig)and up gin(d, dt)) _
Kk dt, - 0 P(upcrossing in(0, dt,))
P(A.O(z z+dz),B,<C, Inf B.>C,B <C
lim ( t ( ) 0 TO0(dt, )1 t+dt, ) (3.61)
dt, - 0 P(By=<C,By,>C)

provided that the limit exists. By using a similar approach as we applied for the conditional
excess times and excess volumes it is possible to expand the nominator to second order for

small dt; and dt,. These rather technical details are placed in Appendix A where we find:

P(A O (z z+d2), By<C,Inf (g By >C By, q,<C) =
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2 2 2

9 9

(=) x=0) 2L 4 (x+y—20)23¢ 1+ 2 9] ety (ttoct o, for small d, and
622 0z0t atz

Il e—, 38

00
y=C X

dt2 .

C

If is possible to expand the denominator in (3.61) to first order for small dt; the joint den-

sity function for (T,, A,) will be given by:

2

o0 ) 2 2

_ 1 0 dc 09c 09

fAka(Zy t) = A J. I ((y—c)(X—C)g +(x+y—20)m+—
y=Cx=C

v C] dxdy (3.62)

An alternative way of writing (3.62) is found by applying the conditional PDF fo T*(X' z,t)
given by (3.52) and then define:

he(x,z,t) = q)(x)fAXTX(X’ zt). (3.63)

giving the following alternative way of writing fAka(z, t):

1 dhe oh
@0 = 5 ] (0005, 5o (3:64

x=C

Unfortunately the restriction we have put on the bit rate process will somehow limit the
usefulness of the last derived formula. As for the conditional down crossing the anaysis is
limited by the assumption that the sample paths of the bit rate process have continuous sam-
ple paths. Secondly, and perhaps more restrictive, is the claim on behaviour of the excess

probability P-(t) for small t. As stated in section 3.3.1 it is sufficient that the autocorrela-

tion function is on the form p(t) = 1—at’+ o(tz) for smal t where a is a positive con-
stant.

The functional relation given by (3.63) and (3.64) is on the same form as (3.52) and there-
fore it is easy to write down the corresponding LST. Before doing this we must examine the

conditional PDF at the boundaries fAXTX(X’ 0,t) and fAXTX(X’ z,0) since these specific val-

ues will be included in the transform. Some informally it is clear that if T* lies in the inter-
va (t,t+dt) for t>0 the volume A" must be positive and therefore we must have

fA*T*(X’ 0,t) = 0 for t>0. Then T" liesin the interval (0, dt) for small dt the condition-

al density function of the volume A* given T must have an “impulse’ like shape. We
must therefore have fAXTX(X' z,0) = h(x)d(2) for some function h(x).
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e— ST, —

If we let %TkAk(s, Q) = E[ ZAk] denote the double LST for the stochastic variables

(T, A we get from the equation (3.64):

fralls) = Aic [ 90N — (= C)T + ) pipe(x, 5, )] x (3.65)
x=C

Since we claim %TkAk(O, 0) = 1 it follows that j d(x)h(x)dx = As. Then by insert-
- x=C

ing for fx,«(x ¢, s) from (3.58) in (3.65) we finally end up with the following expres-

sion:

) ) )

fralls) = A—lcac—s [ 0002 [ (x=C)o(ax+ [ [ (x=O)Z+9)((y-C)Z+99(N)fe(x,y, 5,)dydx
x=C

x=C x=Cy=C

(3.66)

where fc(x, y,{,s) isthe double LST of f-(x,y,zt) defined in (3.59).

We are pleased to note that formula (3.66) contains all the previous formulae for the
first and second order moments of the excess times and excess volumes. By direct dif-
ferentiation it is easy to verify that the first and second order moments of the excess
time and excess volume coincide with the formulae, (3.30) and (3.32), (3.40). We may
also find the correlation between the excess time and excess volume by first evaluating:

(o)

2] ac(tdt
0% : _
E[TA] = fra(0,0) = =0 3.67
[TA] 5735 T..(0, 0) Ao (3.67)
ac(t) = j j j (x+y—2C)d(X)fc(x Y, z,t)dxdydt (3.68)
x=Cx=Cz=0

We may aso find the LSTs for the margina distributions

fr.(s) = E[€ "] = fra(0.5) and fa(Q) = E[€ "] = fra(L,0) from the resuit

above. For the excess time we get:

o o 0

fr(9) = 2| Acs [ oeodx+s® [ [ d(X)fe(x, v, 0, s)dydx (3.69)
k AC
x=C x=Cy=C
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and for the excess volume the similar result is:

,(2) =A—chc—z [ x=C)oax+2® [ [ (x=C)y-C)o(0fc(x, v, L, 0)dydx (3.70)
x=C

- x=Cy=C

3.4 Some concluding remarks

In this chapter we have shown that it is possible to relate many important performance
characteristics to some basic fundamental properties which essential is described by the
joint probability (3.50). This function will therefore be a natural starting point when
studying specific models. The main hindrance in finding this probability is of cause the
claim that the process shall have no down crossing in the interval up to the given time

t. Unless for some few specific type of processes it is extremely difficult to obtain closed
form expression for probabilities involving the minimum m, = Inf B, and maxi-
mum M; = Sup;  (o,yB - BY relaxing on the assumption on the minimum could hope-
fully give reasonable accurate results for small t but will surely give inaccurate results
for larger values of t. One possible way to improve such an approach is to divide the
interval (O, t) into say m points t, = 0<t; <... <t,_; <t,, = t and then calculate the

(m+ 1) -dimensional probability:

GC(xy,zt) = P{By>x B, >C,..,B, >C,B>y,A>3 for x=C, y>C (3.71)

A natural choice will be to divide the interval by equally spacing; that is t; = #t (for

i =0,1,...,m). We must, however, be aware that this partition (of the interval) not neces-

sary will lead to a decreasing sequence in m as the 2" partition in section 3.2.1 would have
given.

In principle, it could thereby be possible to obtain approximation to n'th order of the ex-
cess probabilities by using the corresponding approximative function for (3.50) defined by

Fe06y 2.0 = =2 (GLx Y, 1)/ () (372)

as starting point for an approximative analysis. In the next chapter in section 4.3 we have
analysed the m-point approximation for Gaussian processes and devel oped methods that en-
able obtaining the approximative distributions for the excess times for up to m = 6, and

where we aso have compared with corresponding exact results for the O-U process. As dis-
cussed in chapter 4 the differences between the exact and approximations are pronounced,

also when the numbers of points are taken as high as m = 6. This example indicates that
the convergence by (3.71) and (3.72) may be quit slow.
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A4

Transient behaviour of Gaussian traffic models
through level crossing

4.1 Introduction

Gaussian modelling has been widely used as a powerful and successful tool in applied sci-
ence. The different application areas vary from statistical communication theory to differ-
ent areas in physics. Traditionally, in traffic theory, where the models usualy have been of
discrete nature, the continuous state models have been devoted less attention. Quite recent-
ly however, different Gaussian models have turned out to constitute an important analytical
framework to describe newly observed phenomena in traffic streams. For example the self-
similar behaviour observed for some type of Internet traffic may be described and analysed
by applying fractional Brownian motion as arrival process. Many interesting new results for
self-similar traffic may be found in the book Self-similar Network Traffic and performance
Evaluation edited by K. Park and W. Willinger [ParkQ0].

For Gaussian models level crossing have been studied for a rather long period. Best known
are perhaps the early works of O. C. Rice, [Riced5] and [Rice48], where the famous Rice's
formula on the crossing rate for Gaussian processes is given. He also gives some prelimi-
nary results on the distribution between two successive zeros. These results have been ex-
tended by J. McFadden and M. S. Longuet-Higgens in later works [McFa56], [McFa58] and
[Long58], [Long62] where different approximations to get the distribution between succes-
sive zeros are discussed. These papers are all based on problems within the field of random
noise and are not direct applicable to traffic models where we are interested in deviations of
the processes having small probabilities rather than variations around the mean value.

There is one main concern when applying Gaussian models to describe network traffic. This
is due to the irregular sample paths for such models. It turns out that the autocorrelation
must have specific behaviour near the origin to have finite up and down crossing intensities
[Lead83]. This limitation fits rather badly with the possibility of having so called long-
range dependence where the autocorrelation behaves as

2

p(t) Dct?" ast — oo for 1/2<H <1 (4.1)

where as the requirement of having finite up and down crossing intensities requires
[Lead83]:



p(t)Ol-at’ ast - O (4.2)

1
1+at®”
then (4.1) is fulfilled for 1/2<H <1 but to get (4.2) this requires H = 0 which gives a
process that is not long-range dependent. In a paper by A. Barbe [Barb92] a method is de-
scribed to relax condition (4.2). This can be done by considering a sampled version of the
process (and let the process be linear between samples) and only counting the crossings of
the sampled process. For the sampled process the crossing intensities will be finite. There is
however, a problem to choose the appropriate size of the sampling interval. We shall use
the first passage time and the corresponding volume as an alternative measure when the
crossing intensities are infinite since these distributions are possible to obtain independent
of the crossing rates.

If we for instance consider an autocorrelation function on the form p(t) = >

4.2 Gaussian traffic models

In the following we shall consider a stationary Gaussian (normal) random process { B}

with Mean value m and Standard deviation o, and with autocorrelation function p(t) . For
t

a given capacity level C we also let A, = f(BT—C)dT be the excess volume. In the suc-

0
B,—m
ceeding subsections we shall work with scaled variables defined by: B,J = tT and
t
Al = %‘ = f(BTD—CEDdT where we aso have introduced the scaled capacity by

0
T

cO= C%m. We let also ,&[ = IBTEUT = A+ CLt  be the normalized arrived volume
0

of the process. (Below we shall omit the 0 but remember that through the rest of this
chapter we are working with normalized variables as defined above.)

For Gaussian (normal) processes it is possible to relax the requirements on the autocorrela-
tion function to secure that the process has continuous sample path [Lead83]. It is suffi-

cient that the autocorrelation is bounded by 1—p(t) < at’ for some a>0 and y>0.

For a (standard) stationary Gaussian (normal) process it is well known that a necessary and
sufficient condition for the up and down crossing intensity

P{B,<C<B
Ac = lImAZ(t) = lim tBo<C<By (4.3)
t-0 t-0 t

to exists and that the limit is finite, is that the autocorrelation takes the specific form:
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p(t) = 1-at’+o(t?) ast - 0 (4.4)

and moreover the up and down crossing intensity A is given by the famous Rice's formu-
la[Lead83]:

CZ
_d2a;2 _ [a
Ac = 58" = 79O (4.5)
e
where ¢(C) = %e % is the standard normal density function, and further we also de-
I
_ 1 %2 .
note @(C) = I ——e " “dt asthe standard normal integral.
t= cﬁ

It is possible to obtain these results quite easily by applying some of the properties for
multinormal integrals given in Appendix B. By applying (B.63) we have that the partial de-

rivative of the probability 1(2, C,C,p) = P{By>C, B,>C} with respect to p is:

al 1+p
352 C.CP) = S — (4.6)

2T 1 — p2

_c
1+¢

T e
£2 2mf1-8°

Integrating we find P{B,>C,B,>C} =¢(C) + d¢ so we get:

CZ
PR
P{B,<C<B 1+8
AC () = {Bo n d 2:1L'rt I € —dE . Then for instance by applying I"Hopi-
=1 Vl_E
tals rule for limit of a fraction this gives:
e
2 I
Ac = limAS(t) = e—{nm—‘P—QL} (4.7)
t-0 2T [t 0./2(1-p(1)

It is now obvious that to have the limit to exist we must have the autocorrelation on the
form (4.4) and in that case we get (4.5).

We may now write down the mean excess times and excess volumes as found in chapter 3
by the equations (3.29), (3.30), (3.32) and (3.33) for a stationary Gaussian process.
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E[T,]= [1‘5‘59 and E[S]= f-ﬂ—“ﬁg and 4.8)

ad(C) a ¢(C)
E[A] = @(1-(:%(%1 and E[V,] = @(ﬁ—(l—c%(%)) (4.9)

where we also have used the following expressions for the integrals:

) C

[eegdx = $(C)-Ca(C) and [ (1-9(x))dx = C—($(C)-Cq(C)).
C —00

We may also find the overall information loss ;.. given by (3.34) as:

Pioss = $(C) -Co(C) (4.10)

and the information loss in an overload period g, given by (3.35) as.

Aioss = %(8—0 (4.11)

Note that the information losses do not depend on the parameter a but only on the capaci-
ty level C. Asymptotics for large values of C are easily found by using asymptotic expan-

sion for the normal integral @(C) for large C, cf. [Abra70] page 932 formula 26.2.10, giv-
ing:

ml ml

E[TJ O ac and E[A] D«/;C_Z and further (4.12)
C 1

plOSSDM?) and qlosslj—é (4.13)
C

Thus, even though the overall information losses may be well limited, the losses in an over-
load period will be significant as shown by the asymptotics (4.13).
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Figure 4.1: Logarithmic plot of the overall loss probability (left) and loss proba-
bility in overload periods (right) as function of the capacity.

In the figure 4.1 we have plotted the overall information loss probability based on equation
(4.10) (left and marked “exact”) and the loss probability in overload periods based on equa
tion (4.11) (right and marked “exact”) together with the asymptotics given by (4.13). If we

for instance would like to keep the losses in the range 102-10" this gives the interesting
parameter value of the scaled capacity to be in the range 2.0-3.2.

4.3 The n-point approximation for Gaussian processes

Unless for some few cases it is difficult to obtain exact expressions for the excess probabili-
ties involving the minimum m; = Inf; ¢ B, and maximum M; = Sup, ;o 1B, of the

process. In chapter 3 we saw that the 2"—poi nt approximation (obtained by continuously bi-
secting each interval) lead to approximations that were monotone and therefore had nice
properties to secure convergence of the corresponding approximations to the “exact” proba
bilities. However, due to the difficulties to calculate multinormal integrals we shall apply

the n-point approximation by dividing the interval into sub-intervals of equal lengths,
(where we keep in mind that the n-point approximation coincides with the bisecting meth-
odforn = 24,8))

More generally, and due to the property of a stationary Gaussian random process, we
have that for every sequence  of n succeeding  points, say
t, = 0<ty<..<t,_;<t, =t, that the ensemble {B,,B;,...,B;} is Multivariate

Gaussian distributed with zero mean and Covariance matrix M = (pij) given by

Pij = E[BtiBtj] = p(lti_tjl) (4.14)
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The joint distribution function for a Multivariate normal process is well known and is ex-

pressed in terms of the inverse Mt = (Mi_jl) of the covariance matrix M. (See (B.1) in

Appendix B.) With the notation introduced in Appendix B (see equation (B.2)) we may
express the n-point approximation of the excess probability as:

We(t) = I(n, C, M) (4.15)

where M is given by (4.14) and the vector giving the integration limits C = (C, ...,C) and
where C is the scaled capacity. We shall apply the results derived in Appendix B to get

more explicit expressions for the excess time distribution. By theorem B.3 in Appendix B
(equation (B.65)) this integral may be written as:

2

1 “1+Epy

W = 0"+ Y py 2|(n—2,c'g*',M'§')dz (4.16)

&
l1<k<lsn g{ozndl—(épm)

where CE" and Mlg" is given as c! and M*' in theorem B.2 and corollary B.1 in Ap-
pendix B and are explicitly given below in (4.30) and (4.31) but with replacing Pij with
Epij for al i, j, and further @(x) is the standard normal integral.

The main achievements by writing the integral (4.15) of the form (4.16) is the fact that the
dimension of the integral in the integrand is reduced to n—2 which means that the num-
bers of possible numerical integrations is reduced by 1. Continuing this process we obtain
the remarkable result which shows that it is possible to calculate the n-dimensional multi-

normal integral by only performing n/2 (if n iseven) or n/2-1 (if n is odd) successive
numerical integrations. This very particular property of the multinormal integrals is widely
applied and enable us to calculate multinormal probabilities of dimension seven by perform-
ing only three numerical integrations.

In the following we shall apply the n-point approximation for to find approximations of the
various excess distributions defined in chapter 3. A natural choice of the points t, would be
to take them equally spaced, that is:

_ k=1 -
t, = n—lt fork =1,...,n (4.17)

which gives py = p(t —t,) = p(r']—:kit) for k<l (4.18)

4.3.1 n-point approximation of the distribution of excess times and first pas-
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sage times for a stationary Gaussian process
We start by first finding the n-point approximation for the distribution of the first passage

time T* defined in (3.23). By applying the results for multinormal integrals (theorem B.1
and theorem B.2 in Appendix B) and conditional CDF (by conditioning on B, = x) we
get:

1 0 1 1 14,1
Fo () = ——21(n,C,,M) = =—I1"(n,C,,M) = I(n—1,C,, M 4.19
MO = 5 (1 Ca M) = 1 (0. CoM) = 1(n=1,C MY (4.19)
2
where C, = (x,C, ...,C) and f;(x) = %e_x 2 is the (standard) normal density. By the-
i

orem B.2 ((B.57) and (B.58)) we aso find the corresponding parameters for the conditional

normal integral of dimension n—1 with limit vector C)l( with elements:

cl= S fori =2 ..,n (4.20)
1-py°

and M* is the conditional (symmetric) (n—1)x(n—1) correlation matrix with elements:

o= —RiPuPL_ for 2<i<j<n (4.21)

Ji-piff1-py’
We have py; = p(t;) implying that p(t) -~ 1 when t -~ 0, so for x>C we have
Cil - —oo fordl i = 2,..,n. Then by theorem B.8 (in section B.4 Appendix B) we get

the desired result

limF(t) = limI(n-1,C;, M%) = 1 (4.22)
t-0 T t-0

The corresponding result when x = C is not that simple. We find Ci1 - 0 for all

i = 2,..,n. If the autocorrelation have the form (4.4) we find that all the pilj - 1 and we

get lim F?x(t) = @) = % If the autocorrelation function p(t) does not have the form
t-0

(4.4), then the off diagonal elements of Ml(O) are strictly smaller than unity and more-
over a large part of the off diagonal elements will become small as the number of

points increases. It is therefore reasonable to believe that 1(n—1, 0, Ml(O)) -0 as

n - o. This example clearly demonstrates the difference in behaviour of the normal proc-
esses depending on the actual form of the correlation function for small values.

The 2-points and 3-points approximation yield:
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FA() = q,[ung (4.23)
! J1-pt)®

FL0 = |[2 Coxp(t/2) Coxp(t) \/p 1-p(0 ) (4.24)

-p2)? J1-p? (1+p(0)(1-p(t/2)%)

The corresponding PDF may be found by differentiating the integral (4.19), giving:

Ny _ 1 97 _ 1 aja
0 = Fgatax (M Ce M) = fl(x)&{ﬁ(n’ CX,M)} (4.25)

By first differentiating with respect to the time, applying corollary B.4 and theorem B.6
(Appendix B) we find the following expression for the n-point approximation of the PDF

of the first passage time T

n
dpyX—Cpyy 1.k dpy dPyPy —P1kPiy P3P —PuPu ] 1.k 1
() = —— 3 =Lk ¢ My + =KWl =1 1*n,c, M)
T f109 E:z a1-pf, 2skz<:|sn aodapl, M 1-pf
(4.26)

where the 1™ k(n, C, M) and bk

ten as products of bi- and tri-normal distributions and standard multinormal integrals of di-
mension n—2 and n—3 by applying conditional distributions as given in Appendix B by
equation (B.51).

(n, C,, M) are integrals of type (B.50) and may be writ-

To find the n-point approximation of the excess time distribution we first examine the be-

haviour of qJ?:(t) for small t. By the general results in chapter 3 equation (3.18) we find

the following bounds for Lpg(t) :

(n-)wE( =) - (1-2)0(C) < WLV < W) (4.27)

2( 1) 420
‘“c(n_% c(0) _YED-UO)_WED-YEO) e

It follows now since Y¢(0) = @(C) that t :

n-1

by letting t — O in the last inequality we find that if A; = IimOAgc(t) = —g2(0) is finite
t o

then A = —LIJ(Z:'(O) = —LIJE'(O). We therefore conclude that the n-point approximation

will lead to the correct up crossing intensity for all values of n and we find the approxima:
tive distribution that may be defined as in chapter 3 by:
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1 (= jim VSO0 UE()

- - (4.28)
dt-0 ye(0)—ye(d)  Ae

We have yg(t) = 3 gIT(n. c,M)%pkl(t). By applying theorem B.2 and corollary B.3 (in
l1<k<l<n ki
Appendix B) we get:

CZ

n d Eﬁl+_pm
we'(t) = Z _tpkl(t)

d /
1<k<ls<n 21 1—Pk|2

and where the C*' -vector is given by:

I(n—2,c*" M"Yy where (4.29)

cl-c 2B fori =1,..n,i%kl (4.30)
J(1+pkl)(l_pkl_pik_pil+2pklpikpi|)
1-py
and the correlation matrix M is given by:
2
Ph’l - Pij (L= Pia) = PikPik—PiiPy1 + PrPiPy + PitPy) (4.31)

Jl—pﬁl—p?k—pﬁ +Zpk|pikpi,jl—p§|—pj2k—pﬁ + 20 PPy,

fori,j =1,..,n,i,j#k|

The specific choice of the points t, makes it possible to rewrite equation (4.29) by group-
ing factors for which | —k = s and this somehow simplifies the expression for ng'(t):

CZ

-t Teelt) |
WEM) = 3 =Sop(ty, ) —S=———= 3 1(n-2,C" """ M ") (4.32)
5:1n ! 2nl\/l_p(t5+1)2 k=1

(4.32) represents the limit of how far it is possible to analyse the n-point approximation for
general correlation function. The main difficulty to get a proper excess distribution is the
behaviour of the approximation for small t due to the square root in the denominator. To
examine the behaviour for small t we shall examine the two lowest approximation separate-
ly; namely thecase n = 2 and n = 3. We have:

__¢
1+p(t)

Y2 = p)———= and (4.33)

Zm/l—p(t)2
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CZ

C
3 e PO 1+p(t)—2p(t/2) e TPV 1-p()
wa(t) = p'(t) @cC +p'(t/2) C (4.34)
2mf1-p(t)® /—E(-)l p(t)D (t) 21— p(t/2)? J—Q(—)t/z D7(t)

1-p(t/2)

2

where D3(t) is the determinant of the 3x3 covariance matrix:

3 2

D7(t) = (1-p(1)(1+p(t) —2p(t/2)") (4.35)
An alternative to consider the excess time distribution above we may consider the n-point
approximation of the CDF of the first passage time T given that the rate process is above
the level C (defined by (3.27)). By applying (4.19) we find:

we(t)
®(C)

F7 () = -% j 91(n, €, M)dx = (4.36)

where qJ?:(t) = I(n, C, M) is the n-point approximation of the excess probability given as
multinormal integral of dimension n. This is fully in accordance with the corresponding
definition in chapter 3 (given by equation (3.27)). The corresponding density is then given
by

P! (t)
®(C)

fT.(t) = - (4.37)

where the derivative LIJ?:'('[) is given by (4.32).

4.3.2 Joint n-point approximation of the distribution of excess times and ex-
cess volumes and first passage times and the corresponding volume for a
stationary Gaussian process

Generdly, it is not difficult to incorporate the volume in the analysis because adding the

volume will not alter the fact that we are dealing with multivariate normal distributions.

Therefore the volume will just add an extra dimenson in the anadysis, and
t

{B,,By, ....B_,A} (where A = [B dr) aso will be Multivariate normally distribut-
0

ed with zero mean. We denote the Covariance matrix M = (f)ij) for this ensemble
and we find:

oij = E[B,B,] = p(|t—t]) i,j = 1,...,n and (4.38)
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Pn+1j = Mins1 = E[BtJA[] =a(t-t)+a(t) j=1,...n with
t
a(t) = j p(t)dt and (4.39)
=0
t

Prr1n+1 = E[A] = B(D) with B(t) = 2 [ (t-1)p(T)ckr (4.40)
=0

To find the covariance matrix on standard form we scale the volume by its standard devia-

Ct
tion ./B(t) by defining A; = A‘;(t) . With this scaling we get {Btl, By, s Btn,Af} as

standard multinormal distributed of dimension n+ 1 with correlation matrix M” = (pﬁ)
given by:

ol = Pt —t)). i.j = L...n (4.41)

a(t,—t) +a(t) -

1,..,n (4.42)
NEI0)

DA 1 = Piner = Vit), with yi(t) =

(@d pjy a1 = 1)

By integrating over al chosen points t; = 0<t,<... <t _; <t, = t we may write the n-
point approximation of the excess probability
Ge(xy,z,t) = P{By>x B, >C,..,B, >C,B>y,A >3 suggested by (3.71) as a

standard normal integral of dimension n+ 1:
Ga(x Y, zt) = I(n+1,Cp, , n M™) (4.43)

where the limit vector CQ vzt Isgiven by:

A

c) A

=x,Ch=.=ct =c, l=yadc’,, =&

n+1_m

and the covariance matrix M” is defined by (4.41) and (4.42). By (4.43) we have linked the
n-point approximations for the excess probability to the standard normal integral of dimen-

sion n+ 1 and we shall show below that it is possible to obtain an expression for the corre-
sponding joint excess distribution defined by (3.52) and (3.62). Some informally we then
have the corresponding PDF as:

(4.44)



dexy.z) = -axgyf,zl(n+1, Chy oMY = ﬁll’ "N cl oMY (4.45)
It is possible to write equation (4.45) as a product of tri-normal distribution and a standard
normal integral of dimension n—2 by applying conditional distributions as given in Appen-
dix B by equation (B.51).

By applying (4.45) as a staring point we may now find the n-point approximation for the
joint CDF of the first passage time and the corresponding volume by (3.52). By intro-
ducing the different types of integrals defined in Appendix B it is possible to write the inte-

) )

A A

2 2

grals | gi(xy.zt)dy = a)%uml, ch, oMY and | (y-Odlxy.ztdy = ‘?)%Jn(nu, ch oMY,

y=C y=C
By applying these expressions we may write the joint PDF in the following way:

o zt) = — LZ(H(M 1,c* M) where (4.46)

A S d(x))0x0z PTxzt

H(n+1,Ch,  M™) = (%Jn(n +1,C8, MY +%| (n+1,C, , MY (4.47)
and where we have redefined the limit vector CQH by: C’f = X, C/; = .= Cﬁ =Cand
c,, = Z2E and where the integral of type J,(n,C, M) is defined by (B.79) in (Ap-

JB(t)

pendix B). If we now let fru(x, 2,t) =
14

f; (% 4, 1)dC then we readily get by integrat-

1| —— 8

z
ing over z-variable in (4.46):

1 0 A
5007+ L Czu M

To obtain more explicit expression of the n-point approximations which are suitable for nu-
merical calculations we must perform the differentiations in (4.46) and (4.48). This may be

done by applying the “agebra of multi-normal integrals’ developed in Appendix B through
the equations (B.79) to (B.88). We find:

A

?-T—XAX(X, Z, t) = )) (448)

n
dp
A A k| A A ki
wzeM) = LG, M)E T
k=2

l<k<l<n

kn+1 A MA)plk_pnk

H(n+1,C X, Z, 1! «/B ty

(n+1,C ' (4.49)

By differentiating this expression with respect to x and z enable us to find explicit formu-
lae for the joint PDF in terms of multinormal integrals. We get:



n
d —
f:.xAx(Xv 21) = 1 < Y {Di, k,n+1(x’ C’z+CEt)ﬂ<+ D%‘ k,n+1(x’ c.Z* CEt)Pm pnktk,}ll, kn+l g ch

fl(X)A/B k=2 JB dt ﬁ ﬁ X, Z, t!
dpy Lkn+1 dpyy 1,1,n+1 dpy,
Z {a -Dy (pll'ka'VI)T_Dl (P Pk|:Vk)T (450)
2<k<l<n
.k, P1k— R, , o, Py =P . I,
_Dé n+1(pll'pkl'V|) 1‘1/[_3 nktk —Dé n+1(p1k‘ Piir Vi) 11/[_3 nlt| }ll n+1(n+l, CQ,z,t'MA)}

where we also have defined the auxiliary functions (defined by 3x3 determinants):

2
a(1-yg) +b(yyY, = Py) + C(PrYk—Va)
Di,k,n+1(a‘ b,C) _ 1 - 1|2< 21k 1k Yk 1 and (451)
l—Plk—Vl—Vk“’ZPlleVk
2
a(PyYk—Yo) + b(Y1P1—Y,) + c(1—pgy)
D;’ k,n+1(a‘ b, C) - 1k Yk 1 1M1k Kk 1k (452)

2 2 2
1-p—Y1i—Yt 291kV1Vk

We may also get the corresponding expansion for the function ?2 (%, Z,t) (which is not
as complex as the joint density function above):

n
5 dpyx—Chp P1k—P, -
n _ 1 P1kX 1k, 1,k A A 1k " Pnk, , Y1 PV | L kn+1 A A
fopx(X 2, t) = fl(x)( > @ T2 T+ LG M)+ Y [—tk -l (n+1,C; M)
k=2

2
Pk k=2 JB 1-py
dpy dpyyPyy — PPy 9P Pak— PP | 1. k.1 A LA
+ Z [ dt - dt 1- 2 dt 1 2 I (n+1| Cz,tvM ) (453)
2<k<lsn P1k Py

Similar as for the n-point approximation of the joint CDF of the first passage time and the

corresponding volume we get the n-point approximation of the joint CDF of the excess
time and excess volume by (3.62). By applying the different types of integrals defined in
Appendix B it is possible to express joint PDF as follows:

A
zZt

fngk(z, t) = g—(l:a%(e(n+ 1,C2 M%) where (4.54)

2 2 2
Gn+1,Ch MY = ZTIZ(I’\+ 1,¢h MY +03W(J1(n+ 1,CE MY +3,(n+1,Ch M) +aa?J1‘ A(n+1,C0 MY

(4.55)
and where the integrals of type J,(n,C,M) and Ji’j(n, C,M) are defined by (B.79) and

(B.80) in (Appendix B), and where we have taken the limit vector Cit as. CiA =C
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i =1,..,n adCh,, = ZEC i we (as above) let Tra(x 2 t) = [ 140620
(=z
then we readily get by integrating over z-variable in (4.54):
- 1
faxzt) = A (G(n+1 ;oMY (4.56)

By the results obtained in Appendix B we have found the rules that relate integrals of type
Ji(n,C,M) and Ji'j(n, C,M) to sums of integrals of the standard multinormal of type

I(n, C, M) (given by the equations (B.81) and (B.82)). By the general results found for the
derivative with respect to both elements in the limit vectors C (given by (B.86)) and with
respect to the elements in the correlation matrix M (given by (B.88)) enable relating al the
derivatives in the expressions above to integrals of type I(n, C, M). Performing the differ-
entiation we can therefore write the n-point approximation (4.54) and (4.56) as a sum
where only integrals of type I(n,C,M) are included. (It is necessary to define
I(n,C,M) =1forn=0,and I(n,C,M) =0 forn=-1,-2,.., .)

4.3.3 Some numerical examples

One of the main intension by the developments in the previous subsections were to find ap-
proximative methods to obtain the transient characteristics (described in section 3) for a
general Gaussian process by applying the properties of multinormal integrals given in Ap-
pendix B. Asthe “test” case we have chosen the autocorrelation function to be on the form:

p(t) = " (4.57)

for which it is well known that the corresponding process is the Ornstein-Uhlenbeck (O-U)
process which turns out to be the only stationary Gaussian process that is Markovian
[Fell68b]. For the O-U process the exact distribution functions are given by (4.89) (for the
first passage time given that the process is in an excess period) and (4.82) (for the condi-

tional first passage time). The corresponding n-point approximations are calculated by
(4.36) and (4.19) respectively. For the conditiona first passage time (4.36) the approxima-
tion is given as a multinormal integral of dimension n—1 which gives us the possibility to
calculate the approximative distribution function for n = 2, 3,4,5,6 by the method de-
scribed in Appendix B. For the first passage time given that the process is in an excess peri-
od (4.19), the approximation is a multinormal integral of dimension n alowing us to calcu-
late the approximative distribution function for n = 2, 3,4,5.
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Figure 4.2:  Logarithmic plot of the CDF of the first passage time given that the
process is in an excess period for exact and different approximations (n=2,3,4,5) and
different scaled capacities as function of time.

In figure 4.2 we have given plots of the exact and approximative CDFs of the first passage
times given that the process is in an overload (excess) period. These CDFs will give an
overal impression of the length of a congestion period for the chosen (scaled) capacity lev-
el. The main observation is that the convergence of the approximative solution is quite slow
aso for small vaues of the time where we had hoped that the accordance would have been
better, however, the actual form of the curves are similar. It seems that to get a tight ap-
proximation one will need a rather huge number of points that will lead to multinormal inte-
grals of dimension that are impossible to calculate by the methods described in Appendix B.
Another observation is that the relative difference seems to be independent of the (scaled)
capacity levels, however it is clear that larger capacities will lead to excess periods that are
significant smaller than for lower capacities.

The results for the conditional CDFs given in figures 4.3-4.5 are quite similar. We observe
however, that the accuracy will depend on the difference between the starting value of the
process and the capacity level. This difference is taken to be 0.1 in figure 4.3, 0.3 in figure
4.4 and 0.5 in figure 4.5, and it is clear that the approximations are more accurate as this
difference increases. For the difference equal to 0.1 (figure 4.3) the approximations must
say to perform rather badly.
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Figure 4.3:  Logarithmic plot of the CDF of the conditional first passage time for ex-

act and different approximations (n=2,3,4,5,6), different scaled capacities and differ-

ent starting values as function of time.
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Figure 4.4: Logarithmic plot of the CDF of the conditional first passage time for ex-

act and different approximations (n=2,3,4,5,6), different scaled capacities and differ-

ent starting values as function of time.
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Figure 4.5: Logarithmic plot of the CDF of the conditional first passage time for ex-
act and different approximations (n=2,3,4,5,6), different scaled capacities and differ-
ent starting values as function of time.

As a common remark on the discussion of the approximations and, despite the disappoint-
ment of the accuracy, we conclude that we have found approximations that will provide up-
per bounds for the exact CDFs and will have the same form, but will over-estimate the
lengths of the excess periods to some extent.

As a second example we have chosen a Gaussian process which exhibits long-rage depend-
ence with autocorrelation on the form:

1
1+ (at)

p(t) = for 1/2<H<1 (4.58)

2-2H

where we scale the time and take a = 1 in the numerical examples below. We have

p(t) Oct?™? with ¢ = a> %" ast - o for 1/2<H <1 where H is the Hurst-param-

eter describing the degree of self-similarity in the process.

In figure 4.6 we have plotted the curves for the conditional CDFs of the excess time (first
passage) for the different approximations (n=2, 3, 4, 5, 6) to view the “speed” of conver-
gence for the case with autocorrelation given by (4.58) (i.e. with long range dependence). In
the left figure we have chosen that scaled capacity to be C = 1 and the starting value quite
close to C with value x=1.1, where as in the right figure the corresponding parameters are
C = 3 and x=3.5. In both cases the Hurst parameter is set to H=0.7. The rate of “conver-
gence” for this case looks very similar to what was observed for the O-U process, (figures
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4.3-4.5 above). It seems that the “convergence” gets worse when the process starts out very
close to the excess level C. (And thisis also what is expected from the way this type of ap-
proximation is constructed.) Nevertheless, we are quite confident that the given approxima
tion will provide valuable insight to get the typical form of the CDFs, and it should be
worthwhile to conduct calculations using the largest n-value (5 or 6) for a broader set of
parameter values.

0 T T
i C=1,x=1.1,H=0.7 C=3,x=35,H=0.7
L-025 =1,x=11, H=0. %_
© _05¥ )
07
-1
15
0 p2sgss 1=2,3456
.175  fromabove -5 fromabove
! ? 3 4 5 1 2 3 4 5
timet timet

Figure 4.6: Logarithmic plot of the CDF of the conditional first passage time based

on different approximations (n=2,3,4,5,6), and scaled capacity C=1 and starting val-

ue x=1.1 (left), and scaled capacity C=3 and starting value x=3.5 (right) for a proc-
ess with long-range dependence with H=0.7 as function of time.

In figure 4.7 we have given plots of the approximative CDFs of the first passage times by
using n = 5 intervals, given that the process starts in an overload (excess) period for some
different capacity levels and some different Hurst parameters. The striking evidence in fig-
ure 4.7 is that all the curves having equal H seems nearly to have the same form plotted in
a logarithmic scale (the only difference is the scaling of the y-axis.) Written out mathemati-
cally this seems to imply that for two capacity levels C; and C, the follow relation holds
logP(Te,>) G, -
—— .~C. (This formula should not be thought of as yielding for al values of C
log P(TC1 >t) 1

but only in the range from 1 to 4 which is observed in the figures.) If, for instance, the giv-

C

en distribution is decreasing as power law for large values of t that is, P(Tg>t) Oct ,
for some positive constants ¢ and o, then the observed relations will make implications

a C
on the relations between the exponents by G—CZ = C—z .
c, *1
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Figure 4.7:  Logarithmic plot of the CDF of the first passage time given that the
process is in an excess period based on approximation with n=5 intervals and different
scaled capacities as function of time for a process with long-range dependence.

In figures 4.8-4.10 we have given plots of the approximative CDFs of the conditional first
passage times with n = 6 intervals, for some different capacity levels with some different
chosen starting values for the process and some different Hurst parameters. Although the
curves look very similar to the case above there are some differences that should be men-
tioned:

- The scaling formulae found above are not so accurate especially for the case where
the starting value x is close to the capacity level C. Thisis seen in figure 4.8 where
x—C=0.1

- Thecurvesfor H=0.9 and x—C=0.1 C=1, 2, 3, 4) are very flat.

- Theintersection point which in figure 4.7 is located at t = 2.3 has move outwards to
around t = 3 with some minor variations.

We may conclude these examples by mentioning that the obtained distributions seem to
have “heavy” tails at least for the range of time parameter upto t = 5, and we have dem-
onstrated that the form of the excess time distributions will heavily depend on the Hurst-pa-
rameter.
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Figure 4.10:  Logarithmic plot of the CDF of the conditional first passage time
based on approximation with n=6 intervals and different scaled capacities and differ-
ent starting values as function of time for a process with long-range dependence.

4.4 Distribution of the first passage times and the corresponding vol-
umes for the Ornstein-Uhlenbeck process

In this section we shall consider the classical diffusion process known as the Ornstein-Uh-
lenbeck (O-U) process. It is well known [Fell68b] that this is the only stationary Gaussian
(normal) process that is Markovian. We shall consider the O-U process in more depth, not
only for the sake of its “famous’ properties that are well known in the literature, but rather
to analyse this process as an example where it is possible to obtain exact results (for the
first passage times and the corresponding volumes) and use this particular process to test the
approximations proposed in the preceding sections. It is well known that the O-U process is
a diffusion process and that the free space properties may be found by from the solution of
the corresponding diffusion equation. Thus, the excess probabilities will satisfy the same
diffusion equation as the free space probabilities, but where the special requirements for the
excess probabilities are expressed through extra boundary conditions. Such methods have
been applied by Hagan et al. in the paper [Haga39].

Secondly, the studying of the O-U process may also be motivated by the fact that this proc-
ess may be obtained as the limiting behaviour of a large numbers of on/off sources (with
exponentially distributed on- and off-times) in the heavy traffic regime. As pointed out in
[Knes91] the asymptotics (leading to the O-U process) are obtained by assuming:
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jc—A = O(/N) asN - (4.59)
where A = Nﬁ is the offered traffic and N the number of sources; u_l and A" are
the mean on- and off-times and j is capacity scaled by the pesk bit rate for a source. As
the number of sources increases, then by (4.59) the load is:

A 1
r:.—Dl—O—’-\l>asN_>oo (4.60)
Ile (J_

The same asymptotic regime will also apply for an M/M/c queueing system as pointed out
in [Guill96] (A isthen the total input rate to the system.)

In the succeeding we shall aso work with scaled (normalized) variables defined in the in-
troductory part of this chapter, and we consider the pair { B,, A} where the evaluation giv-

en{B,, A} is described by the differential system

dB, = —aB,dt +W, and (4.61)

dA,

(B{—C)dt (4.62)

where W, denotes the standard Wiener process. It is well known that the pair { B, A} giv-

en by (4.61) and (4.62) constitutes a pair of normal stochastic variables where {B} is an
Ornstein-Uhlenbeck process with correlation function:

p(t) = " (4.63)

Since p(t) = 1-alt| +o(t)) for small t (which is not on the form (4.4)) and it follows
that the up and down crossing intensities do not exist (are infinite). This is due to the irreg-
ular elapse of the sample paths of this process, which, in spite of being continuous every-
where, are not differentiable in any point, (see for instance [Cox70]).

Due to the specific form of the autocorrelation function we shall also scale the time accord-
ingto t' = at (and in the succeeding we drop the marks).
4.4.1 First passage time distribution for the Ornstein-Uhlenbeck process

We shall start by finding the first passage time for the Ornstein-Uhlenbeck process. The La
place transform of the first passage time is known, but we shall develop along a line for
which it is quite easy to aso include the excess volume in the analysis. The function of in-
terested to determine the first passage time is the conditional probability:

Fc(xy,t) = P{B;>y,Inf ;o yB>C[By= % (4.64)



and we define the PDF f-(x,y,t) = —%FC(X, y,t) and aso the excess function

We(t) = P{Inf o B, >C where we have (t) = j j O (X)fe(x y, t)dydx. We
x=Cy=C

may now write the Fokker-Plank equation for the PDF f~(x,y,t) together with the appro-

priate initial and boundary conditions:

2
of of
_C+i[yfc] =_Cforx>C,y>C and t>0 (4.65)
ayz ay ot
fo(x,y,0) = 3(y—x) for x>C, y>C and (4.66)
fo(x,C,t) = 0 for x>C and t>0 (4.67)

Given the govern equation (4.65), the task will then be to solve the diffusion equation
above with the given initial and boundary equations. To get rid of the initial condition it is
convenient to introduce the LST:

oY)

foxy.8) = [ €fc(x y, t)ct giving (4.68)
t=0
02 ~ a ~ ~
—fet g fe (1-9)fc = B(y-x) (4.69)
ay y

with the boundary condition f;(x, C,s) = 0. We shal sketch how it is possible to find the
solution of the (ordinary) differential equation (4.69). Two linear independent solutions of
the corresponding homogenous equation may be written in terms of parabolic cylinder func-
tions D_(y) [Grad94], (9.255 page 1095) as:.

2 2

A A
f(y,9) = e ‘D (y) and f(y,s) = e “D_(-y). (4.70)

Further the corresponding Wronski determinant is [Abra70], (page 687):

Y Y
W(y, $) = Wr (T, (%, 9. T, 9)) = & 2WH(D_y(y). D_(y) = %e 2 @.11)

where I'(s) is the Gamma Function. It is now possible to obtain a particular solution of the
non-homogenous differential equation on the following form [Codd55] (page 87):
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f.(x ).y, ), (x 9)f.(y,8) S
S(E—x)dE = W(x.s) j §<§ (4.72)
o ;

. Y LE LY. 9EE LY. S)
fu(xy.9) =~ | WE S

§=—

giving the general solution of (4.69) on the form

f;(x, y,8) = a;f, (v, s) +a)f.(y, s)+%H(x, y,S). The boundary condition is fulfilled if

f.(C,
a, = _alf_((C, SS)) If we let y>x and set b= f_(zl,s) then we have
~ f.(x s) f. (X S)
fo(x,y,8) = {bf_(C, s)+m}f+(y, s)—{bf+(C, s)+W(x S)}f_(y, s). Now to have a

bounded solution as y » « we must have vanishing coefficient in front of the solution

f.(x s
f (y,s) since this function is unlimited when y - c. Thus b = — +(%9)

XS dth
WX 9f.(C,5 ¢ Me

solution of the boundary problem is found to be:

A ¢ |[tx9-Fragte9]ums : yax
fexy,s) = {82 f*(c’s) (4.73)
L0~ F gl 9]lles) 5 ysx

To obtain the corresponding LST of the first passage time we have to integrate (4.73). If

FTX(x, t) = P(TX>t) and IETx(x, s) denote the corresponding LST, then

IETX(X, S) = I f;(x, y,s)dy. Using the fact that both f, and f. satisfy the (non-homoge-
y=C

neous) differential equation gives [f(y)dy = f—zﬂ and then by integrating (4.73) we find:

{91, x s)]

. . 1
Fr(xs) = s{l e .(C9) s

X _cf
[1 _ e( 4 4 I;)_—S((é))J (474)

the corresponding LST for the density function fo(x, s) isreadily found:

(£-S)p_(x)

fa(xs) = e 50 (4.75)
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We find the LST of the excess probability q;c(s) from (4.74) by multiplying with the

2
X

standard normal density ¢(x) = ie and integrate:

J21

q;c(s) = _[ ¢(X)|ET><(X, s)dx = %} ¢(C) — fﬂic_g) _[ f.(x, s)dx|. By integrating and us-
x=C x=C

ing the relation between parabolic cylinder functions [Grad94], (9.247 page 1094) gives:

be(®) = Haor-0(0) = (1é) BesaiB) (4.76)

If we let T be the first passage time given that the process is in an overload period (that is
02 C), we may find the corresponding LST by integrating (4.75) with the conditional sta-

tionary PDF given By = C. We let FT (t) = P(Tg>t) and FT (s) the corresponding LST
then:

Wels) _ 1(, $(C)P-s_1(O)
Fr.(s) = j (p(c) F(x s)dx = = g(l—%r(lc)). 4.77)

The corresponding Laplace transform for the PDF yields:

g - QD i(O)
® = Q) O (4.78)

We shall also sketch how it is possible to invert the LST (4.74), (4.75) and (4.76), (4.77). It
turns out that the denominator D_(C) (in @l these expressions) has oscillating behaviour

on the negative real axis as function of the variable s. The corresponding zeros will there-
fore be poles for the Laplace transforms. Based on the asymptotics for the Parabolic Cylin-
der Function one has [Abra70], (19.9.4 page 689):

1-5) ¢
= 3

2
P cos(Es+ pC— %{) when s - — (4.79)

D_(C) O

s/2_1/2 2
27

and where p = /%—s. By (4.79) it is obvious that the number of zeros is infinite (but

countable) and further they will not be limited. If we denote the zeros by r | (C) in descend-
ing order, then these zeros will be poles of first order for the Laplace transforms above. For

- 57 -



large values of k it is possible to obtain asymptotics for the roots by applying (4.79). We
find r,(C) D%—pk(C)z where

P(C) = %+J(2k—%) +n922+%[ (Zk—%) +%2_%2](2k—%)71 (4.80)

Tt T

as k — o (for moderate values of C)

It fact (4.80) is a second order approximation and turns out to be very accurate aso for
small and moderate values of k.

then we may invert the LST by applying the resi-
s=r1,(C)
due theorem, and we find the following series expansion for the PDF of the first passage
time:

If we denote S,(C) = dESD_S(C)

X' _CY o
fuxt) = e(4 4 > R, C)erk(c)t where (4.81)
k=1
Do) . . ' .
R(x,C) = %— is the corresponding residue. The corresponding series for the CDF
yields:

F_(x 1) = e(xzz_%ﬁ oo Merk(C)t
™ 2 5,0

k=1

(4.82)

For large k it will be convenient to find asymptotics for the residue R (x, C). This can be
done by applying (4.79) and the approximation (4.80) for the corresponding root. We find:

><2—C2
16p,(C)°
e

T 2 X
COS[Z—Epk(C) + P (C)x— Wk(c)j

R(x C) O(-1)*"* - (4.83)
I[_ L[l + C—]
2 2p(C) 24Pk(C)2

By several numerica computations we have found that the asymptotic formula (4.83) is
very accurate for quite moderate values of k and we have used this formula for the residue
in the numerical computations for k=100 mainly because of the fact that beyond this val-
ue the exact roots are difficult to find, and we observe that for small values of t the series
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(4.81) and (4.82) are slowly converging, and therefore by applying the asymptotic residue
we may perform the summation to quite large value of k.

To complete the picture, we have also considered the asymptotics of the LST for large posi-
tive values of s. It is well known that the behaviour of the LST for large s determine
course of the distribution for small t. In Appendix E we find the following asymptotics for
small t:

f X CZ)X C _letcz X% + xC + C?
(00 {(1 +(1-X2XCC ) } and (4.84)

2«/_3 12

_x—C2

(£-S) 2 L 2
Fx ) Dl-e 44 [Erfc[szf}(1+%(X—C)(XH(TM)—%)/% (%ﬁ] (4.85)

ast- 0.

The asymptotics (4.84) and (4.85) act more or less like a boundary layer where the
course of the density function suddenly changes (for very small values of t) and forc-
ing the density to approach zero in a very short interval near zero.

Special cases occur for instance when we consider crossings across the median; that is
C = 0. In this case the poles are located at s = —(2k+ 1) and the residues may be
evaluated explicitly. We find that the PDF of the first passage time of the median may
be expressed as:

(-1)" D2k+ 1(%) {2k 1t
2 k'

fux 1) = Z Z (4.86)

with the corresponding CDF

2
X

|: (X t) - e Z( 1) D2k+1(x) —(2k+1)t

C (2k+1)2'%

(4.87)

By applying the same method as above we may find the residue series for the CDF of the
variable T, the first passage time of the level C given that the process is in an overload

period as:

R«(C) G

4.88
_rk(C) (4.88)

Fr.(t) = %(6% Z
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and the PDF is

(Gt

fr(t) = Z R(C)e (4.89)

<p(C)

—rk(C 1( )
S(C)
W (t) isfound by (4.77) as the relation between the LST implying:

where the corresponding residue R, (C) = . Further the excess probability

We(t) = o(C)F (1) (4.90)

For large values of k we find the following asymptotic formula for the residue R, (C)

C2

61— 2 3
(—l)kfle 16— (1-2p(C)) cos[g_qu(c)z+ch(c)_ﬁk(c))
R(C) D > (4.91)
bl C C
( /pk(C) 2)[2 2pk(C)[1+ 2—4pk(C)2)]
where we have defined ¢, (C) = ,/pk(C)2—1 and p,(C) is given by (4.80).
In Appendix E we have found the following asymptotics for small t:
t. () QL _C) ang 4.92
t
t) 01-2C) (> 4.93
0 (C)( -9 (499
As above the cases C = 0 simplify the residues and we find for this case:
_ 2]t 10B0..(2k=1) ~A(2k+ 1)
= = + .
=08+ X omn. and (4.94)
— 1BO..(2k=1) _—~(2k+1)t
E- (t) = 4.95
(V) Z 2T 22K+ n° (4.95)
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Generally the residue expansion will converge slowly for small t (and actually the se-
ries for fTC(t) will be divergent for t = 0. This is seen from (4.92) showing that the

limit does not exist as t — 0, explaining the well known fact that the crossing intensi-

o , 1 C
ty of the O-U process is infinite since Y'(t) Dq)(c)(ﬁ_i) ast- 0.

4.4.2 Joint distribution of the first passage time and the corresponding volume
for the Ornstein-Uhlenbeck process

By aso introducing the excess volume into the analysis we hope it will be quite easy to ob-
tain the corresponding results as above (in section 4.4.1). In the analysis of the joint distri-
bution we shall apply the general relations obtained in section 3.3.2. The function fully de-
scribing the state of both the excess time and volume is (given by (3.50)):

Fcxy,y.t) = P{B;>y,A>zInf 5 1B >C|By= % , and we define the joint densi-

2

ty fo(xy,zt) = ﬁ':c()@ y,z,t) . We aso let go(x,y,z,t) = ¢(X)fe(X Y,z t) be the
corresponding density function without the condition on B, (defined by (3.60)).

The density function (also including the volume) f-(x,y, z,t) will obey the following “ex-
tended” Fokker-Plank equation together with appropriate initial and boundary conditions:

2

Z_;3+aiy[yfc] —(y—C)g—];C = ;C for x>C,y>C, z>0 and t>0 (4.96)
fo(x,y,2,0) = d(y—x)d(z) for x>C, y>C, z>0 and (4.97)
fo(x,C,z,t) = 0 for x>C, z>0 and t>0 and (4.98)
fo(x,y,0,t) = 0 for x>C, y>C, t>0 (4.99)

Given the partial differential equation above, the main task will be to solve this diffusion

equation with the given initial and boundary equations. To get rid of the initia condition

and the last boundary condition it is convenient to introduce the double LST:
o —st—{(z

%C(X, y,(,s) = I I e fo(x Y, z,t)dzdt
z=0 t=0

The transformed problem is reduced to the following non-homogenous ordinary differential
equation

o
6y2

f;+(%f;+(l—s—(y—C)Z)f; = —3(y—x) (4.100)
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with the boundary condition fAC(x, C,,s) = 0. The corresponding homogenous differen-
tial equation is

2
of
32

+ L (1os—(y-0)0)F = 0 (4.102)
ay> 9y

2

A 2
The substitution f = e “h in (4.101) gives 9.1+
oy
this is the differentia eguation for the Parabolic Cylinder Function with parameter
Z2 + C{—s and argument y + 2¢ [Grad94], (9.255 page 1095). Thus, two linear independ-

ent solution of (4.101) may be written in terms of Parabolic Cylinder Functions as.

(%+ZZ+CZ—S—(y+ 2z)2)h = 0 and

2 2

Y Yy

f.(y,(,s) = e ‘D y+20) andf(y,{,s) = e ‘D [(Hy+20)). (4.102)

C+ cz—s( ¢+ Cl-~

Further the corresponding Wronski determinant is [Abra70], (page 687):

2 2

A JZ— A
W(Y.2,9) = Wr(f, (5 4, 9), £.0,3,9)) = & WD, ((y+20),Dz, ., (-(y+20))) = —5——e

r(s-(@?+cQ))

7%+ C~ ?+Cl-s

(4.103)

where I'(s) is the Gamma Function. By knowing the Wronsky-determinant and two linear
independent solutions of the homogenous equation (4.101) we can write down the solution
of the boundary problem directly as (4.73):

ooty [f_(x,z,s)—ff'(((é’i'ss))n(x,z,s)}n(y,z,s)  yax

2 _ [(s—( ) 2 +H& 6

fe(xy.s) = on o © H(C.2.9 (4.104)
(089 -Fe g0 L9l i ysx

As a dde result of the specia form of the differential equation (4.101) we have
_[(s+ Uy—-C))f(y)dy = ' +yf for both f, and f_. To find the (double) LST of joint distri-
bution of the first passage time and the corresponding volume, we start with evaluating the

integral _[ (s+ Z(y—C))]zC(x, Yy, (,S)dy. By dividing this integral into two parts depend-
y=C
ing on whether y < x or y = x and using the property above we find:
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(f——)f £,062,9)

fC19 (4.105)

j (s+2y=0)fe(x Y, L, 8)dy = 1~

y=C

We let FA*T*(X’ z,t) = P(A*>z > t) be the joint CDF of the first passage time T* and
TX
the corresponding excess volume A = ATX = j (B,—-C)dt and let

0

a2

fAXTX(X’ zt) = o0tdz AT

«(X, z,t) denote the corresponding joint PDF, and further we let

?TxAx(x, s () = E[e_ST _ZAX‘BO: X] be the corresponding double LST. By the relation
(3.58) we have:

) (xzz_gz) (x+20)
_ ( + C(-s
fra(x(,8) = e D2, (C+20)

(4.106)

From (4.106) we find the LST of the density function for the excess volume A by:

(X-S)D s, o (x+20)
fu(%,0) = fropu(x, 2,0) = ﬁm (4.107)

and the LST for the corresponding distribution function

) X Sp, 2
Fu(x Q) = 2 1—e(4 Z)JJw (4.108)

¢ D, ,(C+20)

To compare with the general expressions of the LSTs found in chapter 3 (cf. (3.65) and
(3.66)) we would like to find the integral:

I:|c(Z,s) = I (s+Z(x—C))q)(x)%TxAx(x,Z,s)dx. (4.109)
x=C

By (4.106) we get He(Z,s) = %%)?) [ (s+2x-ONf.(x L, s)dx. Integrating and

x=C
using the relation between derivatives of parabolic cylinder functions [Grad94], (9.247 page
1094) we find:
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. D, C+27
He(Z, s) = ¢(C)|Z~(Z%+ Cl-s)— scgs-a )} (4.110)

Dy, o CF )

To compare with the general expressions for the LSTs found in chapter 3 (cf. (3.65) and
(3.66)), we would also like to find the following integral:

00 00

G 9) = [ [ (s+2(x-C)(s+Uy-CNOMfc(x v, ¢, S)dydx.  (4111)

x=C y=C
- T £,(x2,9)
Then by (4.105) we get Ge(L,9) = | (s+Z(x—C))(¢(x)—¢(C)m)dx, and we
x=C
find:
Ge(Z, ) = SO(C) +Z((C) —CP(C)) + He(Z, 9) (4.112)

The transforms (4.110) and (4.112) are in full accordance with the results found by (3.65)
and (3.66), however due to the behaviour of the corresponding inverse H(zt) (of

HC(Z, s)) for small values of z and t, the corresponding crossing intensity A is infinite.

We may use (4.111) together with the transforms (4.110) and (4.112) to obtain the LST of
the excess probability by:

0 )

Gc(0,9) _ - 1 D__4(C)
=2 =1 000fc(x.y,0. 9y = H(0(C)~4(0) "5 cr”) (4.113)

x=C y=C

We(s) =

The corresponding result for the LST of the excess volume kIJC(Z) is found similarly by
setting s = 0 in (4.110) and (4.112):

0 )

vy = e o [T o)y - o (ice .2, 0)dya =
Z x=C y=C
(C+2Q)
JJ—
[¢<C) Co(C) - ¢(C)[1 R T D (4.114)

et
If we let A- be the excess volume for the corresponding first passage time T given that
the process is in an overload period (that is B> C) (defined in section 4.4.1), and let

FAC(z) = P(Ac>2) and let IEAC(Z) denote the corresponding LST, we may find this La-

place transform from the excess volume (4.114) by a simple scaling so that we get a proper
distribution:



- 1,6 Diescioa (C+2Z)j]
Fa.(0) Z[l ¢(C)_C(p(c)(1 (C+C) z+cz(c+20 (4.115)

The LST of the corresponding PDF is then:

~ ~ (C) <+cz [(C+20)
fa.(Q) = ¢(C)_C(p(C)[1 ((+C) (€7 20) (4.116)

It turns out that the LST (4.115) also could have been obtained from (4.107) by per-

00

forming the integral X;[C ¢EKX)IEAX(X,Z)dx where ¢L(x) = ﬁ%% for x=C

and where we observe that ¢I{y+ C); y=0 is the residual density for the shifted vari-

able B;—C conditioned on By = C (having the density % for y=0).

Below we shall describe how it is possible to invert the LST (4.107), (4.108) and (4.115),
(4.116). It turns out that the key to find the inversion of the given Laplace transforms is the

behaviour of the denominator f~({) = DZ2+CZ(C+2Z) in the negative half-plane. This

function will have infinite many zeros on the negative real axis, and we denote the zeros by
U, (C) in descending order and it follows that these zeros will be poles of first order for the

Laplace transforms above.

By the asymptotic formula (E.15) (and (E.9)) Appendix E we have:
3 20-9 @+ ct-niog(n-S)

fe(-n) O 7(3ﬁ)2/—3)(n 2) gc(n) where (4.117)

~ 2 3 r/3)1 2 3 3"3r/3)1 A o @
getn) = cos(n(r-cn)| 1+ EEEAL (0 -G | Ban(r(ri-cmy)| 1- 2 TE(1-C ) (n -G

when n - o (and Re(n) =0). (4.118)

and where we also have used the results [Abra70] (10.4.4 and 10.4.5 page 446) for the val-
ues of the Airy functions for z = 0. For large values of k it is possible to obtain asymptot-
ics for the roots by finding the zeros of (4.118). We find u,(C) O-v,(C) where

1
0= 5D EHRE D) 1 (a9
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as k - o (for moderate values of C). It fact (4.119) is a second order approximation and

turns out to be very accurate also for small and moderate values of k.

If we denote U, (C) = Z(C+ 20) we may invert the LSTs by applying
¢ =u(C)

the residue theorem, and we get the following infinite series for the PDF of the excess vol-

ume of the first passage time:

d
At e

(xz CH o
474 u(C)z
fax2) = e > Vi(x Ce 7" where (4.120)
k=1
V,(x, C) = P uc " 2HEN is the corresponding residue. The corresponding series for
K U (©) '
the CDF yields:
2 o
F (x2) = e(XZ_ZZ) Vi (X, C)euk(C)z (4.121)
w6 2 200 |
k=1

Based on the asymptotics for parabolic cylinder functions in Appendix E we may find the
find asymptotic expressions for the residue V| (x, C) in terms of Airy functions. We get:

T(x, v (C), C)

Vk(X, C) a W (4. 122)
where
om0 = A{_(q G- c>] (-9 _g)%'[(n ] gf(x_q] (4.123)

g i @B{_(q_g)%<x-c>]—si'[{n —%)év—@]

Wik

L Bi[{n—g) <x—C>]+(%-%2)(”‘§)

and

2
3-(2)? 4
NN, ©) = <2 (n-9) Rl (2-S -9 ° (4.124)



We have experienced (by several numerical computations) that the asymptotic formula for
the residue is quite accurate also for moderate values of k. Due to numerical difficulties to
calculate the parabolic cylinder functions for large arguments and large parameter, we are
not able to caculate the corresponding roots when k is larger than approximately 27.
Therefore, we have used the asymptotics (4.122)-(4.124) for the residue in the numerical
computations for k=27, and we observe as for the first passage time distributions that the
series (4.120) and (4.121) are slowly converging for small values of z, and therefore by us-
ing the asymptotic residue we may perform the summation to quite large k-values. This is

mainly due to the fact that the Airy functions (in (4.123)) for negative values are oscillat-
ing and may easily be computed also for large arguments.

An efficient alternative to obtain the distributions for small z is to apply the asymptotics
obtained by considering the Laplace transforms for large (positive) arguments. In Appendix
E we find the following asymptotics for small z:

7

fu Z’Dser@ - [(xz o v (0525 5o A %G%i)+
. 32
48] 58 T 58 w129
62
o )@()u[( o (-0 S, (g_f)+
5 32
e . e (4120

as z - 0 and where W, |, (y) is the second Whittakers's function ([Abra70] (9.22-9.23
page 1086).

As for the distribution of the first passage time the asymptotics (4.125) and (4.126) act
like boundary layer solutions where the density function suddenly changes (for very

small values of z) and forcing the density to approach zero in a very short interval near
zero.

The form of the asymptotics for the first passage time ((4.84) and (4.85)) and the corre-
sponding result for the volume ((4.125) and (4.126)) are quite similar, however, while
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2
we for the time distribution have K%L as the “local variable”, the corresponding

3
“boundary” variable for the volume is %)— This suggests that these variable

should be introduced in the differential equations to obtain the corresponding boundary
equations.

We shall also give the residue expansion for the CDF of the volume A, as defined above,

on the basis of the first passage time of the level C given that the process is in an overload
period. We find:

®(C) ° V,(C) O

Fa(2) = ¢(C)_C(p(c)k:1_UK(C) (4.127)
and the corresponding PDF
_ Q(C) i u(C)z
fa(2) = q)(C)_C(p(c)E:lvk(C)e (4.128)

—(u (C)+C)D [(C+2u Q)

u(C)*+Cu(C) -

where the corresponding residue v,(c) = WS
k

By applying the asymptotic formulas (E.15) and (E.16) in Appendix E we find the follow-
ing asymptotic formula for the residue V, (C) for large values of k:

3
6

(3 RICE

V,(C) O 51 r@ G- T) (Vk(C) - 9) (4.129)
4m r@ YO () - g) :

where and v, (C) is the asymptotics of the roots given by (4.119).

In Appendix E we have found the following asymptotics for small z:

1 1
(C) 3?3 c
fAC(z)D¢(C)_C(p(C)[r(l z —2] and (4.130)
J
4 2
Q) 3 3 cz
FAc(Z) 01 ®(C)-Co(C) z ] (4.131)

ag ?
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We observe that the density function of the A~ grows by z for small z whereas the

corresponding density function for the time T behaves as t? Thus it seems that the

time distribution is “less regular” than the corresponding volume, however, both densi-
ty functions are unlimited near the origin.

4.4.3 Some numerical examples

As mentioned above the numerical computations are based on the residue series both for the
distribution of the first passage times and for the distribution of the corresponding volume.
For the lowest residues the corresponding roots were calculated numerically and the corre-
sponding values of the residues were calculated by means of numerical derivation. Howev-
er, due to difficulties when calculating Cylinder Functions for large arguments we failed to
calculate the residues for larger than approximately:

- 100 for the excess time distributions and
- 27 for the excess volume distributions

and these numbers were far too small to obtain the residue expansion to converge for small
arguments. This is due to the fact that these expansions converge very slowly in this re-
gion. However, by means of the asymptotics derived for the residues, which turn out to be
very accurate also for relative small numbers (in the series), we were able to obtain accu-
rate numerical values also for small arguments. In the example below we therefore used the
asymptotic residues from:

- 100 to 8000 for the excess time distributions and

- 27 to 16000 for the excess volume distributions.
In addition the numerical calculations were compared with the asymptotic expansions for
small arguments, and we were pleased to observe that for both the excess times and excess
volume, calculated by using the residue series, give results that are very close to curves ob-

tained by the asymptotic expansion for small arguments. (See figures 4.11, 4.12, 4.13 and
4.15)
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Figure 4.11: Logarithmic plot of the CDF of the first passage time given that the
process is in an excess period for the O-U process for different values of the scaled
capacity (C=0,1,2,3,4) as function of time.
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Figure 4.12:  Logarithmic plot of the CDF of the excess volume during the first
passage time given that the process is in an excess period for the O-U process for dif-
ferent values of the scaled capacity (C=0,1,2,3,4) as function of volume.

In figure 4.11 we have given plots of the CDF of the first passage time given that the proc-
ess starts in an excess period for different values of the capacity level. As expected this dis-

tribution will depend on the actual level C. As pointed out in section 4.2 the interesting
values of C will be in the range 2.0-3.2. It is obvious that these distributions will have ex-
ponential tail since we get nearly straight lines as the argument increases.
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Figure 4.13: Logarithmic plot of the CDF of the conditional first passage time for
the O-U process for different values of the scaled capacity (C=1,2,3,4) and differ-
ent starting values as function of time.
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Figure 4.14:  Logarithmic plot of the CDF of the conditional first passage time for
the O-U process for different values of the scaled capacity (C=1,2,3,4) and differ-
ent starting values as function of time.
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Figure 4.15:  Logarithmic plot of the CDF of the conditional excess volume dur-
ing the first passage time for the O-U process for different values of the scaled ca-
pacity (C=1,2,3,4) and different starting values as function of volume.
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Figure 4.16: Logarithmic plot of the CDF of the conditional excess volume dur-

ing the first passage time for the O-U process for different values of the scaled ca-
pacity (C=1,2,3,4) and different starting values as function of volume.
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When it comes to the corresponding excess volume (figure 4.12) the curves are similar but
we observe that the curves are not complete straight lines especialy for higher values of the

capacity level asC = 3 and C = 4.

For the conditional excess (first passage) time (figures 4.13 and 4.14) and excess volume
(4.15 and 4.16) we see more variety in the curves. This is especially observed for small val-
ues of the argument where we see that the starting value of the process is an important pa-
rameter for the excess distributions. If the process starts close to the actual capacity level C
we see that the distributions will drop suddenly and this is due to the fact that with high
probability such an excess period will end very rapidly. On a longer scale however as seen
by figures 4.14 and 4.16 we end up with exponential tails since al the curves become
straight lines for large arguments. This fact will also be obvious from the obtained residue
expansion where the first term in the series will dominate for large value of the arguments.

In this section we have demonstrated that it is possible to obtain by analytical means
both the Laplace transforms for the first passage times and the time dependant excess
probabilities for the O-U process. The results for the distribution of the excess vol-
umes are of special interest since this can estimate the amount of information loss for
communication systems during congestion periods. It turns out that it is possible to in-
vert the Lapace transforms by finding the poles. These are all located on the negative
real axis and we obtain asymptotic formulas for the location of these poles correct to
second order. Furthermore we also obtain asymptotics for the corresponding residue
also correct to second order. By means of these asymptotics the residue series may be
calculated for large numbers terms and we obtain numerical results also near the origin
where the residue series is slowly converging. The numerical values for small argu-
ments are also found to be in accordance with the distribution functions obtained by the
asymptotics found for small arguments.
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5

Some results on excess times and excess
volume for semi-Markov processes

5.1 Introduction

In chapter 3 we discussed a general framework to determine the distribution of excess times
and excess volumes for a stationary stochastic process. In that chapter we focused on some
rather general considerations, athough in section 3.3 where we consider the joint distribu-
tion of excess volumes and excess times we assumed that the processes are continuous (in
time and space). As pointed out processes with continuous sample paths do not fulfil the re-
quirements for level crossing unless the autocorrelation has quite specific behaviour near the
origin. Discrete processes, however, will not need these restrictions, and we know that such
processes have been widely used as models to describe traffic load on communication links.
Especialy, some specific types of Markov processes have been analysed in light of investi-
gating transient phenomena as duration of excess periods and the corresponding excess vol-
umes. As mentioned the distribution of such periods may be viewed as periods with over-
load on a communication link and the excess volumes may represent the amount of infor-
mation loss in bufferless multiplexing.

For a Markov process the excess time distribution has been derived by Buzacott used in re-
liability analysis to find up and down times for repairable systems [Buza70]. Other authors
have used the classical M/M/c system as a model for bufferless multiplexing of large
number of data sources on a communication link, and explicit expressions and various as-
ymptotics are found for the different transient performance measures [Guill95], [Guill96],
[Dupu97].

In our analysis we have taken a more general approach by assuming that the rate process is
a general semi-Markov process. By applying semi-Markov processes we may aso analyse
sources that have autocorrelations that are different from exponentially decaying ones ob-
tained from ordinary Markov modelling. In the following we shall start with a general semi-
Markov model, but we will aso include a lot of results for processes that are particular cas-
es of the general model, such as ordinary Markov processes, or even the simpler birth-death
processes. There is, however, one main drawback with the genera semi-Markov models
that need to be mentioned: the class of sami-Markov processes is hot closed under “addi-
tion”.



5.2 Some general properties for semi-Markov processes

In this chapter we shall assume that the bit rate process { B} is a semi-Markov process,

where the bit rate takes the possible values jb where b is the unit changes in the bit rate

and j O E where E is a countable set of numbers. We shall not go into any further discus-
sion on the theory of semi-Markov processes (or Markov Renewal processes), but we refer
to the textbook of Cinlar [Cinl75] for basic properties.

To describe the excess times and excess volume for a semi-Markov process we need to di-
vide the sate space into two digoint sets E” and E' where jb>C for j O E" which we
call the “overload states” and jb< C for j O E' which we take as the “normal load states’,
and we let j- = L%J be the limiting state. In the succeeding we will make the following

convention:

For a vector a = () and a matrix A = (A); i,j OE we use the notation a“, A" and
a', A' for the overload part and normal load part of a and A; i.e a' = (aj), jd E",
A" = (A),i,j0E and @ = (a), jOE, A' = (A)), i,j OE'. To complete the parti-
tioning of the matrix A we also define the sub-matrices A"" = (A)), i0 E,jOE",
and A" = (A)), iDE" jOE.

We let {T,} be the sequence of jump instants for the bit rate process {B} and let

B, = By, be the bit rate at jump instants. The evolution of the process over time is de-

scribed by the generator P(t) = (Pj;(t)) which we take to be:

Pi(t) = P{By.1 =jb, T =T, >t|B, = ib} ®D

n+1

Based on the generator matrix P(t) it is possible to find the different characteristics for the
process. For example the conditional CDF between two succeeding jumps is found from the
generator by adding the states

H;(t) = P{T,,,—-T,>t|B,=ib} = ZPij(t) (5.2)
joOE
The steady state distributions at jump instants 1t = (1) are given as the solution of the

equation TTP(0) = 1t together with the relation Z m=1.
iOE

Also the steady state distribution p = (p;) is known to be proportional to m; g, where
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m = E[T,,,;—T,|B,=ib] = j H. (t)dt (5.3)
t=0
is the conditional mean between two consecutive changes in the bit rate. Alternative the
steady state probabilities p can be determined from the equation p[Q = 0 and the rela
tion Z p; = 1, where the matrix Q is given by:

inE
P..(0) - o,
Qj = l(n)1. I (5-4)

As we shall discuss later, the Q-matrix defined by (5.4) will give the corresponding genera-
tor matrix when the bit rate process is an ordinary Markov process.

To obtain the excess time distributions (defined in section 3.2) for the semi-Markov proc-
ess { B} we define the upper and lower (Markov) renewal kernels:

u u u u UZ)
RU(t) = 1Y5(t) + NY(t) + {NY(t} = +.... and (5.5)
R(t) = 1'5()+ n'@) + (' B2+ (5.6)

where { }Efn) denotes n-times convolutions of { } and (t) = —g—tp (t) is the (negative)

derivative of the generator matrix. We consider the process which is in equilibrium at time
t = 0, and we define the conditional the excess probabilities (the discrete version of (3.21)
and (3.22)) by:

Fc(ivjt) = P{B;=jbjInf ;g By >C|By= ib} fori>jc,j>jc and
Ge(ivj,t) = P{B= jb;Sup; (g nB; < C|By= ik} fori<jc,j<jc.
It is possible to express these excess probabilities in terms of the upper and lower renewal
kernels (defined in equation (5.5) and equation (5.6)) in the following way:
. 1 S
Fc(iyj, t) = a[E‘)ij I Hj(T)dr+{[PU(t)ERU(t)]ij} *{Hj(t)}]; i>jc,j>jc and (5.7)
1
=t

foe]

Geivjit) = ﬁ[éij [ H,-(r)dr+{[P'(t)ER'(t)]u}*{Hj(t)}]: i<jc.i<ic (59
=1

We shall briefly sketch the derivation of the excess probabilities (5.7) (and (5.8)), and we
refer to figure 5.1 below.

- 77 -



Capacity C

v

t=0 first second timet

Figure 5.1:  Distribution of the excess times for a semi-Markov process.

Starting the observation at time t = 0 in state By = ib when the process is in steady state,
the time to the first jump T, and next state for the bit rate B, is distributed according to
the residual time for semi-Markov processes (see Cinlar [Cinl75])

Isij(t): P{B; =jb, T1>tBy = i} = % J' Pj(T)dr. (5.9)

=t

The first part in formula (5.7) corresponds to the case where there is no state change in the
process up to time t and we obtain this part by summing over the possible states for B; in
(5.9). The second part corresponds to the case where one or more jumps have occurred be-
fore the time t, and in this case the joint density for the time to the first jump is the nega-

tive derivative of (5.9); i.e. ﬁij(t) = —%Isij(t) = miPij(t). By convoluting these probabili-
i

-1
ties by the matrix {I'I”(t)} o ); and adding for n = 1, 2,3, ,.... and then convoluting
with the conditional distribution (5.2) we get (5.7).

On the basis of (5.7) and (5.8) we obtain the excess probabilities (3.24) and (3.25) for the
semi-Markov process:

We() = > > piFc(ini ) and (5.10)
i>jc i>jc

@M= Y ¥ PGl Y (5.10)
i<jc j<ic

Likewise we aso obtain the conditional covariances defined in (3.36) and (3.37):
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Ye® = ¥ (ib-C)(ib-C)pFe(i.j 1) and (5.12)

i>jc j>ic

Be(h) = 3 Y (C-ib)(C—jb)p;Gc(i,, 1) (5.13)
i<jc i<ic

It is interesting to note that all the important characteristics to describe the excess behav-
iour of a semi-Markov process can be expressed in terms of the generator matrix P(t) and
the steady state probability vector p. To find the explicit expressions for different models,
the hard part is obviously to find the upper and lower renewa kernels defined through infi-
nite sums of convolutions. One possible way to smplify the expressions may be to take La
place transforms, which will result in a power series and where the sum can be expressed as
the inverse of known matrices. We may therefore take advantage of the powerful tools of
matrix algebra. Before we enter into any further discussion concerning the actual distribu-
tion of the excess times and volumes, we shall first show that the two first moments for
both the excess times and excess volumes are quite straight forward to obtain from the ex-
pressions above by using the general formulae derived in chapter 3.

5.3 Thefirst two moments for the excess times and excess volumes for
semi-Markov processes

By differentiating and integrating the equation (5.7) (and (5.8)) we find:

. - .. 1 -1
Felii, 0) = &; %Fc(l,J,O) = Qyand [ Fe(i,j,dt = 2,8, ~[M*(Q") 1 where
t=0

X =(x)adM = (Mij) are given as the following (form) factors:

@ ©

_m (2) _ 2ln —ihl —
Xi = —— where m{® = E[(T,,-T,) B, =ib] =2 [ tHi(Hdt and (5.14)
i
t=0
m; .
My = EU where my; = E[(T,, ;=T )Lz, =iy [B, = ib] = j P, (t)dt (5.15)

|
t=0

The results for Gg(i, j,t), that is for the “normal loaded” case, are similar to the expres-

sions above, and obtained by simply replacing M“(Q”)_l with M'(Q')_l. By using the
general formulae (3.29), (3.30), and (3.32), (3.33), together with (3.39), (3.40) derived in
chapter 3 we are now in the position to write down the two first moments for the excess
times and excess volumes. These moments will be given in terms of the up and down cross-
ing intensity given as the following sum:
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Az -y(0) = 'R E'=pWE=3 T pQ (5.16)

I>jc isje
where e denotes a column-vector with ones (with the desired dimension). In (5.16) we have
used the steady state equation p [(Q = 0 and the relation Q& = 0.

Further for the moments of the excess times we obtain:

E[T = iz b and E[S]= iz p; and further (5.17)
i>jc i<ic
E[T]= i{z px-2Y 3 pi[M”(Q”)‘ﬁu} and (5.18)
i>ic i>jc j>jc
E[S]= i{z px, -2 Y pi[M'(Q')‘lli,}. (5.19)
i<ic i<jc j<ic

The moments for the excess volumes may be written:

E[A]= iz (ib—C)p; and E[V,]= iz (C—jb)p; and further (5.20)

i>ic i<ic

E[A= i{ S (b-Opx -2y ¥ (jb—C)(ib—C)piw“(Q“)‘ll”}
i>ic i>jc j>ic

and (5.21)

E[V, )= i{z (C-ib)Ypxi-23 ¥ (C-ib)(C-ib)p[M'(Q) 1]n}. (5.22)
I=)c Is)c I=lc

The formulae (5.16)-(5.22) are expressions which yield for general semi-Markov processes.
For the first moments the results are identical (in form) with the corresponding results for
ordinary Markov process when we define the Q -matrix by (5.4) [Buza70]. To find the sec-
ond order moments we require the first and second order conditional moments of the time
between jumps in the semi-Markov process and also that the moment matrix M defined
above to be known. The demanding part in computing the moments (5.16)-(5.22) is of
cause to obtain the inverse of the upper- and lower- part of the Q-matrix.

As we mentioned in the introduction the class of semi-Markov processes is a quite broad
class of processes which contains a number of interesting subclasses. For some of these
subclasses the expressions above will be simplified. Below we shall briefly discuss some of
these cases.
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5.3.1 The case when the time spent in a state is independent of the next state
If the time spent in a state in independent of the next state, i.e. we have a generator
on a somewhat simpler form

Pi(t) = PyH;(1) (5.23)

where H;(t) is the distribution of the time spent in state i and P;; are the transition proba-
bilities for the corresponding jump Markov-chain (with H,(0) = 1 and Z Py = 1).
iDE
In this case we may eliminate the matrix M since we have M;; = P;; = mQ;; +9;; and we
. 1 uy-1 .
get _[ Fc(i,j, t)dt = §Ki5ij_[(Q ) 1lij where we define
t=0
Var[T,,,—-T,B,=ib
K = Xi—2mi - [ n+1 n| n__ ]
E[Th+1—Th|By=ib]

_E[Tn+1_Tn|Bn =ib] (5.24)

The moments for this case are therefore given through (5.16)-(5.22) by replacing x; by ;
— -1 — -1

and [M“(Q") Ty by [(Q") Ty and [M'(Q) Ty by [(Q) T

5.3.2 Markov processes

For Markov processes the time spent in a state is negative exponentially distributed so this
is a special case covered in section 5.3.1 with k; = 0 and the moments are given through

(5.16)-(5.22) by replacing x; by k; = 0 and [M(Q") "1 by [(Q") 1;; and [M'(Q) I,
by [(Q) ;.

5.3.3 Birth-death semi-Markov processes

For a birth-death process we only allow jumps to the neighbouring states which means that
the generator is on the form

0  Hyt) 0 0
d;Hi () 0 bH(H) O
py=| O GHAD 0 bpHyD) .. 0 0 0 (5.25)
0 ..dy_Hy_(() 0 by_Hy_4(1)
I 0 Hy(t) 0
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where b;+d, =1,i = 1,..,N-1 and we obtain the Q-matrix on the well known form:

BV 0 0. 0 0 0
My —(Ap+Hy) A 0.. 0
Q-= 0 Ky —(Ay+pHy) A, O 0 0 (526)
0 [ N e USR8 N ATV
L 0.0 Hn _HN_
d. b.
where A\, = L and M= —=,A=—=,i=1.,N-1and py = L
My m; m My

For birth-death processes, upper and lower Q-matrix may be inverted explicitly and the
second order moments greatly simplified. We obtain

E[T1= {Zp,, 2% 5 [ij} (5.27)
J>lc i>jc J=21

E[S]= —{Zp, it22 5 (ij } (5.28)
I<]c i<jc 1=

E[A]]= {Z(Jb C) pIK]+ZZ (Z(jb C)p]z} and (5.29)
i>ic i>jc |J>|

E[V,1= {Z(C—Jb) PKI+2 Y = (z(c Jb)p]z} (5.30)
i<ic i<ic M j<i

Also the up crossing intensity for this case reduces to:

A= IJ'J-c"'lpjc“'l = )\lcplc (5.31)

Finally we aso mention that the steady state probability for this particular case is the prod-
uct solution:

oy = po [ (=) and p, = ! (5.32)

As aremark we observe that for birth-death processes with negative exponentially distribut-
ed sojourn times in the different states; that is Kj =0 in formulae (5.27)-(5.30), then the

- 82 -



excess times and excess volumes will have hyper-exponential characteristics. For example
by comparing the first and second moment of the excess time (above the capacity level) we
find:

2
a3l A ) e e -

i>jc |z j2jc+1
dso get E[S]]>2(E[S])°, and for the volume we have: E[A] >2(E[A])° and

E[V,] > 2(E[Vi))®.

5.4 Distribution of the excess times and excess volumes

Although we have been able to obtain the two lowest moments for the excess distributions,
we are not quite satisfied with only these results. In many applications in communication
systems it is often the tail of the distributions that gives the best performance measure. As
we have pointed out above it seems that the excess distributions are quite “long tailed” (or
heavy tailed”). It is therefore of general interest to obtain the full distributions of the excess
periods and the volume of information that may be lost during excess periods. By the
framework described in chapter 3 and the results derived above, we may express these dis-
tributions in terms of the steady state probabilities, the Q-matrix and the upper (and lower)
renewal kernels for the semi-Markov process.

5.4.1 General formulae for semi-Markov processes

Differentiating equation (5.7) gives %:C(i,j,t) = {[Q”R”(t)]ij} *{ Hj(t)} and by multiply-

ing with the steady state probabilities and summing over the appropriate states we may
write the CDF of the excess time as:

Fr(0) = P(T,>t) = R R () (533)
p! " &

where H (t) is a column-vector with elements H ]-(t) and e is a column-vector with ones.

The CDF of the length of the “normal load” periods is obtained by just substituting for the
lower part of the matrices:

Fs() = P(S>1) = P o ESQ(téem 0 (5.34)

We get the PDF for T, and S, by differentiating (5.33) and (5.34):
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dF u u u u, | |
ka(t) = — Tk(t) - p @ DUQ[((;LDELU (t) & and
p

dF [N l,u u
_ sy PR IRMUT (1) e
fSK(t) Tde (t) p| KCI ®

s > o < PRI =) o
k )

'ETk(S) = u u—.u
0 p' Q'

I e—, 8

t

I PN
ep(g>ya = PR UG HS),
0 p R

Fe(s) =
t

Il — 38

00

u u Au -1 IJ,I |
() = [ %= LR A-NO] TG
t=0 p Q [k

foe]

| I A| -1 ’l\,u u
fs(s) = [ &g (Dt p [Q ‘r: (5)|] IEl'l (5 "
t=0 p Q&

(5.35)

(5.36)

Sometimes it is desired to introduce the LST to obtain specific results. This may often be
effective to determine the tail of the distributions. Since the upper and lower renewal ker-
nels are a sum of convolutions, the LSTs are easy to get from the expressions (5.33), (5.34),
(5.35), and (5.36), and (5.5) and (5.6). We find:

(5.37)

(5.38)

and (5.39)

(5.40)

where T(s) is the LST of M(t) and I:I(s) is the LST of H(t). Since we have

H(s) = P(s) (& = i(l—l:l(s) )

Tn+1

T

n

M(s) = P(O)—sls(s) where I5(s) is the Laplace transform of the generator P(t) we find:

(5.41)

When we consider the excess volume we use of the fact that the bit rate is constant be-
tween to consecutive jumps in the rate process, and therefore we may quite easily obtain the
distribution of the excess volume between two subsequent jumps. We let

Uy = [ [B=Cldt = (B,~C)(T,,,—T,) when B,>C intheinterval (T, T,.,,) ad



Tn+1
j [C-B{dt = (C-B)(T,+1—T,) when B,<C in the interva (T, T,,,), and

T,
we define the following joint probabilities:

Ui(x) = P{U;y>x B, =jb|B, =i} fori>jc and (5.42)

Ui (%) = P{U;>x By, =b|B, =ib} forisjc (5.43)

From the these relation we obtain the following joint probabilities:

Uj(x) = P{(Ib=C)(T,,1~Tp) >% By,y = jbjB, =it = Py~ (549
for i >j. and
X
(X) = P{(C-ib) (T4 1—-Tp) >%, B, =jb[B, =ik} = P'J(C Ib) (5.45)

for i<j.. (If C—jcb = 0 then (5.45) will give U:jc(x) = 0 so this case will be in-
cluded in the “below” states if we just skip that state in the matrices.)

By considering the evolution of the UE or U'k in either an excess period or a normal
load period we will obtain the desired distributions of the excess volume by consider a
parallel semi-Markov process with the generator U(x) by:

Ui(x)  for i>jc
U;(x) = :’ (5.46)
Uij(x) for i<j¢

Since U(0) = P(0) the two semi-Markov processes will have the same Q-matrix and the
steady state distributions. We are therefore in a position to write the CDFs and PDFs for the
excess volumes by using the corresponding results as for the excess times:

Fa(X) = P(A>x) = ER B (G() (5.47)
p" Q" "
|
Fu(0 = P(V,>x) = BB ( (5.48)
o'
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u,l
() = A = R IE O E o (5.49)
p" Q" e’

l,u
fy, (%) = & Vk(X) - pm [S(X)D_ () e (5.50)
o' =

where Su(x) and S'(x) are the corresponding upper and lower renewal kernels:
u u —u —u E[Z)
S(x) = 1'3(x) +="(x) +{="(x)} +.... and (5.51)
g = 1500 + 20 + {20 B2+ (5.52)

=(x) = —g—l;(x) and G(x) = U(x) Ce. From (5.44) and (5.45) get the following relation

between the between =(x) and M(t), and G(x) and H(t):

—u _ 1 X e . —u,l _
=ij(x) = ib—Cnii(ib—C) fori>jc, 1>jc: = (x) = |b C ( c) for

>, i <ic, (5.53)

and G(x) = Hy( C) for i >j. and (5.54)

I 1 X P _ 1 X ..

5ii(x) = C_—ibn”(C_—ib) fori<jc,js<ic, 5 (x) = C_—ibn”(c_—ib) fori<jc,

i>ic (5.55)
| 3 X ..

and Gl(x) = Hi(m) for i <j. (5.56)

Finally we may write the LSTs of the excess volumes on the following form:

oe]

pU Q" 1 =) ()

'EAk(Z) = I e P(A > X)dx = — , (5.57)
x=0 P EQ e
© _|

IA:vk(Z) _ I & P(V, > X)dx = p ' OI-='Q)] ' (Z) (5.58)
x=0 p KQ I:E
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00

-2y E Q)

fa(Q) = [ &V, 00dx = T and (5.59)
t=0 Qe

- 2 i ' 1 _£| -1 |:ElA U7y e

(@ = [ eV, = 220 . ([ZQ)'] - Q. (5.60)
t=0

By using the functional relation between =(x) and M(t), and G(x) and H(t) given above
by (5.53) and (5.55) we obtain:

=(0) = Nij((ib=C)2) for i>jc. j>jc. =i (2) = Mij((ib-C)2) for i >jc.,
i<ic, (5.61)

and G{'(2) = (ib—C)H;((ib—C)) for i >j. and (5.62)

E!j(Z) = Mij((C—ib){) fori <je,j st,E!ju(Z) = Mij((Cib))fori <je,j > (5.63)

and Gi(2) = (C-ib)H;((C-ib)2) for i<jc. (5.64)

The derived formulae for the excess times (5.33), (5.34), (5.35) and (5.36) and the formu-
lae (5.47), (5.48), (5.49) and (5.50) for the excess volumes together with the corresponding
LST (5.37), (5.38), (5.39), (5.40) and (5.57), (5.58), (5.59), (5.60) constitute to our knowl-
edge new development in the effort to describe transient phenomena for quite general traf-
fic models as semi-Markov processes. Knowing the increasing variety of new services ex-
pected in future networks, the modelling and understanding of transient behaviour will be
important especialy in connection with congestion phenomena. To carry the anaysis any
further one has to be more specific about the processes, this could for instance be done by
assuming the broad class of models where the time spent in the different states are a mix-
ture of exponential distributions (phase type) and then looking for possible poles in the ex-
pressions for the LSTs. (We will skip such an analysis here, it would be merely technical, -
athough it logically would be straight forward to perform.)

5.4.2 Spectral decomposition of the distributions

To perform a spectral decomposition of some of the distributions above we must assume
that it is possible to diagonalize the corresponding matrix. Below we shall just sketch the
possible analysis. We pick the excess time T, as the distribution under consideration. (The

decomposition for the other variable will be entirely similar.) It is possible to rewrite the
Laplace transform (5.37) in the following way:
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u u Au -1 u
) r e
&¥p(T, >yt = P2 AT )] where (5.65)
o pu [QU I:eu

Fr(s) =

Il e—, 8

t

the matrix "(s) is given as:

L

Hi(s)] 1 -nY%s)) (5.66)

l:”(s) = Diag[

In the succeeding we assume that it is possible to diagonaize the matrix I'u(s), which
means that we may write:

r(s) = Y'(s) (iag[y;(s)] X"(s) where (5.67)

y/'(s) are the eigenvalues of T"(s) and the matrices X"(s) and Y"(s) constitute the left
and right eigenvectors:

X1(S)

X"(s) = x;(s) where the row-vectors x;'(s) are the solution of the linear equations

yi'(s) are the solutions of I'u(s) Eyi”(s) = yiu(s)yui(s). We also assumes the eigenvectors

are normalised so that x;(s) 0/ (s) = 1. With these rather technical details we may ex-
press the brackets in the Laplace transform (5.65) as.

1
u

ﬁ@ﬁzwwmm[
y; (8)

}m%y (5.68)

It is possible to carry the analysis further if we assume that singularities of the Laplace
transform are simple poles. By (5.68) we have that the poles of the Laplace transform
(5.37) located as roots of the equations

Y/(s) =0 (5.69)
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and we denote s = )\!, I = 1,2,... for these roots which we for simplicity assume to be
distinct. The inversion of the Laplace transform can therefore be carried out by the residue
theorem giving the following expression for the CDF for T,:

|
Fr(0) = P(Te>) = 3 3 R(ADE™ where (5.70)
il=1
Ri()\!) is the residue of the transform taken at s = )\! , and may be written (in terms of the
eigenvalues and eigenvectors) by:
xi(s) &' p' "G (s)

R(s) = — ——— (5.71)
yi'(s) pREIE

In Appendix C we have shown that Re()\:) <0 for al the roots, which guarantees the prop-

er behaviour of the distribution for t islarge.

One important outcome of the spectral decomposition is the asymptotic behaviour for large

t. If welet s = )\i be the dominant root (largest real part) of (5.69). Then we get from
(5.70):

1

Fr.() = P(T>) OR(ADe™ for to o (5.72)

knowing that Re(A}) <0 and where R;(\}) isthe residue (5.71) taken at s = A1

It may be worth to mention some of the problems that the spectral decomposition may
cause. If the number of states is infinite the diagonalization procedure may fail. This is
more or less caused by the fact that the number of eigenvalues also will be infinite and the
spacing of the roots is difficult to predict. In some cases this implies that the sum in (5.70)
will be an integral. Another problem that may occur is of cause numerical difficulties to
find the left and right eigenvectors and to find the derivative of all the eigenvalues. Even
more difficult is it to invert the corresponding LSTs if other forms of singularities occur for
instance branch cuts. For such cases one has to apply specific methods and will not be dis-
cussed in this thesis.

5.4.3 Birth-death semi-Markov processes

Birth-death semi-Markov processes impose some simplifying qualities which may be worth
to take into account when considering the excess distributions, and enable carrying the anal-
ysis some further. This is because of the special structure of the generator matrix which will
be tri-diagonal. Taking this special structure into account it is possible to invert the matri-
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ces in the Laplace transforms of the excess times (5.39) and (5.40). After some manipula

tions we obtain:

u
D, (9
i+l _u

jc+1 S)

%Tk(s) =d where

D]-”(s) is the determinant obtained from the j -th upper-sub matrix of 1-T1(s):

e 0 0 0
fi(s)
1
—d - — 0 0 0
J+1fj+1(S) j+1
Dj”(s) = Det| . and
o 0o 0 ..-d !
N_lfN—l(S) N-1
0o 0 o0 o a1 =
L fN(S)_
|
. D}__4(s)
-1
fs(s) = b, =<—— where
lc |
Dj.(s)

D]!(s) is the determinant obtained from the j -th lower-sub matrix of 1-T1(s):

2L 1 0.0 o0 o0
fo(s)
—d, = )
| fi(s)
Dj(s) = Det| .. .. . .. i | where
1
0 0 0 .od ,— b,
i P i
0 0 0. 0 -4 =
i fi(s) |

(5.73)

(5.74)

(5.75)

(5.76)

R dH.
fj(s) is the LST of the sojourn time PDFs fj(t) = =5 I(t) in state j. The effectiveness of

the formulae above is due to the tri-diagonal form of the involved matices, which allows for

recursive evaluations. Expanding the determinants (after the last row for Dj”(s) and the first

row for D]! (s)) we find the following iterative expressions:
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u _ 1 _u u . .
Dj(s) = %Dj”(s)—bjdj”th(s) forj =N-1,..jc+1

J

starting by defining Dy, () = 1 and Dy(s) = L and taking dy = 1 and

1

| _ u | .
Di(s) = 1%Dj_l(s)—bj_ldeJ._z(s) forj =1,..,jc

j

starting by defining D' ,(s) = 1 and Dy(s) = ~=— and taking b, = 1.

fn(s)

1

olS

The corresponding results for the excess volumes are:

AL 5(0)
fa ) = d 41 Ju°+2 where A}J(s) is the determinant:
jc+1
ul —bj 0 0 0 0
/@)
1
by =Dy O 0 0
el
A(2) = Det
0 0 0 b — b _
N-1 ¢l,i‘_1(z) N-1
0 0 0 0o - ul
ON(Q)

where ¢/'(2) = f,((1b-C)2): | >jc and

. A -1(9) oy .
fv (Q) = bic|_ where A;(s) is the determinant:
B,
|1 -1 0 0 0 0
$o(0)
1
-d, —— 0 0 0
G
A(Q) = Det I
0 0 0 .-g_,—— b
0j_1(0)
0o 0 o0 0o +
i 4,(0))
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(5.77)

(5.78)

(5.79)

(5.80)

(5.81)

(5.82)



where §{(2) = f{((C-ib)2): j <ic

The corresponding recursion formulae for the determinants in expressions (5.80) and (5.82)
for the excess volumes are:

1 . .
N'(Q) = Q—Z;Ajqul(Z)—bjdHlAfn(Z) forj = N=1,..,jc+1 (5.83)
J
starting by defining Ay, () = 1 and Ay(Q) = ul and taking dy, = 1 and
N
1 . .
K@) = =0"-1(D)by 1 _,(Q) for j = 1, ¢ (5.84)
i
starting by defining A';(s) = 1 and AY(Q) = |1 and taking b, = 1.
do(Q)

Based on the recursions above it is easy to calculate the LST for the excess times and ex-
cess volumes even for large dimensions. However, often forced by the difficult problems of
numerical inversion of LSTs, one will often try to invert the transforms analytically. This is
usually done by locating the singularity (poles) of the transforms. In this case we must eval-
uate the corresponding residue at the singular points. Let us for simplicity assume that the
singularity is a simple pole. To calculate the residue we need aso to calculate the deriva
tive of the nominator in the transforms. This can be done by taking the derivative of the re-

cursion formulae (5.77), (5.78), (5.83) or (5.84). If we choose DJ-”(s) we find

. () . .
DJ(s) = —-—2D/', 1(s) + =D}, /(8)-bd; . 1D, ;(8) (5.85)
fi(s) fi(s)
o : U TN (Y ©)
forj = N-1,..,jc+ 1 starting with Dy, ;'(s) = 0 and Dy/(s) = —= >
fn(s)
Together with (5.77), (5.85) will give the pair (Dj'(s), D;'(s)) for j = N,..,jc+1

It is possible to rewrite the formulae for the LSTs for birth-death semi-Markov processes
given above. This can be done by rewriting the determinants (5.74), (5.76), (5.80) and
(5.82), so that the matrices are symmetric. This can be done by pre- and post-multiplying
by a given diagonal matrix and its inverse. We have put the analysis in Appendix D where
we obtain the corresponding determinants as the product of al the eigenvalues and moreo-
ver the required eigenvalues may be found by the powerful method of bisection by apply-
ing the “so-caled” Sturm sequence property of leading principal minor of the symmetric

- 92 -



matrices. This gives an aternative method to find the LSTs to those described by the recur-
sion formulas (5.77), (5.78) and (5.83), (5.84). The latter is especially effective if we con-
sider birth-death processes with exponential distributed sojourn times. In this case we also
find the corresponding residue and we show that the excess distribution fully is determined

by the eigenvalues of the principal minor of order N—j-—1 and N—j-—2 for the excess
distributions and the principal minor of order j- and j.—1 for the time and volume below

the capacity C.

5.4.4 Markov processes

As mentioned earlier a Markov process is a specia case of a semi-Markov process where
the time spent in a particular state is negative exponentially distributed. For this case it is
possible to carry out the analysis in section 5.4.1 further. Recall that for a Markov process
we have the generator (5.1) on the form:

_y|t
P;(t) = Pje (5.86)
where m = \% is the mean sojourn time in state i and P;; are the transition probabilities
i

for the corresponding jump Markov-chain, where we also assume that P,; = 0. (See Cinlar
for a discussion of related topics [Cinl75]). The Q-matrix for the Markov process will
therefore be on the form:

Qi = -y; and Q;; = yP; for j#i (5.87)

Working with the LSTs we obtain: Mij(s) = s_?”\? for j#zi (MMi(s) = 0) and

Hi(s) = ﬁ Inserting these simplifications for example in (5.37) we get:
I

A ® U U w1 _u
Fr(s) = [ e¥P(T>tdt = LR HSI-Q1 e (5.88)
p' Q"
which we recognize as the LST of the following matrix expression:
u u u ]
Fr () = P(T>t) = B LR EXRQ U e (5.89)

pu [Qu [éu
(The result for S, is completely similar we just change the u-upper to the | -lower matri-
ces.)

By the relations (5.61) and (5.63) we have:
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(ib—C)C +y, (ib-C)C +y,
| . ~ —i .. . .
Zij(Q) = r?m]m and G:(Z) = (€—C|b_)lzb)+_y, for i<j.. Inserting in (5.57) and

(5.58) we get:

. 2 -1 _y

Fa) = | e@P(acd = BLRIOU-O [ oy (590)
x=0 P EQ (e

~ 2 -1

Fu@ = [ 7PV >x)dx = pdd ot ||:[Z||—Q|Ij] e (5.91)
x=0 P Qe

where we have redefined the Q -matrices in the brackets by:

Q
C-ib

QL = Ib—Q_'JE for i >jc and QU; for i <j¢, and (5.92)

pErJ is a row-vector with elements pE]" (jb—C)pj, j>jc and pd as a row-vector with
dements pi| = (C-jb)p,. j <ic.

The similarity between the time distributions and the volume distributions are striking.
We shall, however, notice that the latter will give quite another type of generating
equation if one applies the method of generating functions to find the inverse of the

matrix [Z| —QEP]_l compared with [sI-Q% .

For Markov processes the spectral decomposition of the distributions greatly simpli-
fies. We choose the excess time T, . (The decomposition for the other variable will be sim-

ilar.) Suppose that all the eigenvalues of Q" are distinct. By this assumption we may
write Q" as: Q" = Y'Diag[y]] X" where ' are the eigenvalues of Q" and the matri-
u
X3

ces X" and Y" constitute the left and right eigenvectors; X" = x| where the row-

vectors x;' are the solution of the linear equations x;' Q" = yi'x;', and Y" = [y}, y5.....]

where the column-vectors y; are the solution of Q" ¥ = y;'yl'. We also assume that



the eigenvectors are normalised, that is x;' (/' = 1. With these rather technical details
we may express the brackets in the Laplace transform (5.88) as:

u

Qsl—QY " = YUEDiag{ % }D(” which (5.93)

u
SV
shows that the poles of the distribution are located at s = yiu. By evauating the correspond-
ing residues we obtain:

Fr(t) = P(Ty>t) = ZRie't where R, is the residue: (5.94)
[

_ o),

R y (5.95)
_ pu [Qu |:éu [

and Re(y) <0 by the result in Appendix C.

For Markov processes it is possible to find the moments in terms of the Q-matrices by
expanding the Laplace transforms. We obtain

u u;—~("=1) _u
E[Ty = MR 0=Q] e (5.96)

_pu EQU Eéu

For the excess volume the corresponding moments are:

—(n-1)

npd Q] " "

N _
E[Ak] - _pU EQU I:Eu

where (5.97)

(The results for E[S]] and E[V,] are on the same form as (5.96) and (5.97), we just sub-
dtitute the u with I )

For birth-death processes the moments may be calculated recursively. This can be shown by
defining the row-vector &Y = p"[-Q"] ", which implies &% = & . 1-Q"]  or
g [-Ql =& _, for m=1,2,,.... From the last equation we may solve explicitly for
&, intermsof &, we find:

1 . .
Em=0 3 ™ 3 &mo1 fori =jc+Llijc+2 .., m=12,.. (5.98)

I=je+1 s>
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Then by starting with & = p, for i = jo+1,jc+2, ... and evaluating & recursively by
(5.98), the n-th moment of the excess time distribution is given by:

E[T] 5.99
[ k] ulc+1pjc+1 I>Z] E»m 1 ( )

The corresponding result for the n-th moment of the excess volume is obtained by substitut-

ing for pETJ and QETJ in the evaluation above giving:

n!

E[A] = ———— 3 G,_, Where ¢, is given recursively by: (5.100)
Hjo+1Pj +1 y
. Ib-C
Cium = p, Z ™ ngm Lfori=jo+1jo+2. =12,,.., (5101)
I=jc+1 szl

starting with ¢ = (ib—C)p; for i = je+1,jc+2, ...

The results for E[S;] and E[V,] are similar and we find:

E[S] =

in.1  Where E'm is given recursively by (5.102)

Ic Jc i<ic

lc

Eim = p'zuno ZEsm Qfori=0,1,..,jc, m=12,,. (5.103)

s<|

starting with E:o =p fori =jecjc—1, ..., and

E[VE] Z Zm 1 Where E'm is given recursively by (5.104)
lc lc i<ic
Z U||0| Zzsm gfori =01,...,jc, m=1,2,.. (5.105)

| =i s<I
starting with Z)y = (C—ib)p; for i = jejc—1, ...

5.5 Some numerical examples

As an example we shall consider bufferless multiplexing of a given number of N identical
ON/OFF sources on a communication link of capacity C. The source model is as follows:
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- the ON/OFF periods are mutually independent and exponentially distributed with
mean on- and off-time given p_l and A" respectively and
- in ON state the source emits data at rate b

It is well known that superposing a fixed number of this type of sources constitutes a birth-
death process with rates:

A = (N=i)A and p; = ip (5.106)

The limiting state (for which information losses will occur) is j- = L%J We shall apply

the framework described in Appendix D for general birth-death processes to find the CDFs
for both the excess times and corresponding volumes. All the results are described in terms
of the eigenvalues for symmetric tridiagonal matrices through the formulae (D.38)-(D.41).
The eigenvalues are computed by applying the method of bisection which turns out to be
very effective, and makes it feasible to study system of quite large dimension.

C=0.80N, b=1, A=1, p=1 — exact C=0.80N, b=1, A=1, p=1 — exact
W — approx. K ——— approx.
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goprox. terms=1, 5 (from below) N=800, number of
102 (from below) approx. terms=1, 20|
= N=800, number of = 100 (from below)
g , approx. terms=1, 20, R e
é 1 100 (from below) % o
T T
10
10%°
10° N=20, number of "~ ';‘ap:pzrg;ﬂ"énnl%esr:(lﬁ
approx. terms=1
10° 102
0o 5 10 0 % W B N B 0 0 200 400 600 80 1000
timet volume x
Figure 5.2. CDF of excess times and excess volumes with different numbers of

terms in the expansion.

In the first examples given in figures 5.2-5.6 we have chosen b = A = p = 1 which give
the average rate from each source to 0.5.

In figure 5.2 we have tested the numbers of terms that are needed in the eigenvalue expan-
sion of the different CDFs. For systems with relative small number of sources we see that
the number of terms needed is small. Actualy it seems to be sufficient with only the first
term in the expansion both for the time variable and for the volume. However, for larger
systems the number of terms to get an accurate approximation becomes quite large and for
the case with 800 sources it seems that one needs at least more than 100 terms to get accu-
rate approximations. Thus, it seems that the pure exponential approximation with only the
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first term (in the expansion) fails to give accurate approximations in the interested range of
the parameters.
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Figure 5.3: CDF of excess times for some different choice of the parameters as
function of time.
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Figure 5.4: CDF of excess volumes for some different choice of the parameters as
function of volume.

In figure 5.3 and figure 5.4 we test how the CDF of the excess time depends on the differ-
ent parameters in the model. As the capacity increases while keeping the numbers of sourc-
es constant we observe the changes in the different curves. The change when going from
N = 100 (left) to N = 1600 is not very pronounced but clearly visible. Another observa-
tion is that the CDFs for the excess volumes seem to be more curved then the correspond-
ing excess times which actually means the excess volumes are “less exponentia” then the
corresponding time distributions.

In figure 5.5 and figure 5.6 we demonstrate the convergence of the CDFs by keeping the
load constant and increasing the number of sources in both cases the convergence is reached
at approximately 400 sources.
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Figure5.5: CDF of excess times for some different choice of the parameters as
function of time.
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Figure 5.6: CDF of excess volumes for some different choice of the parameters as
function of volume.

As afinal example we consider sources with parameters as in [Dupu97] where the peak bit

rate b=2 Mbps and u_lzl ms and A" =4.5 ms giving a mean bit rate of 364 Kbps. This
source could for instance be a typical ADSL user having access rate of 2 Mbps. The ques
tion in mind will then be to try to find out how many sources of this type that can be multi-
plexed on a high capacity link, and find the typical vaues of the performance measures de-
scribed in this section. In the example we have chosen a link with capacity 600 Mbps, and
the typical values for number of sources will then be 1200. (We have also included a sec-
ond example where the link capacity is taken as large as 2.4 Gbps.) In figures 5.7-5.9 we
have depicted the excess time CDFs for this example. In the first two graphs we vary both
the number of sources and the capacity to see the effect on the different CDFs.
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Figure 5.7: CDF of excess times for some different choice of the parameters as
function of time.
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Figure 5.8: CDF of “normal loaded” periods for some different choice of the pa-
rameters as function of time.
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Figure 5.9: CDF of excess times for some different choice of the parameters as
function of time.
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Figure 5.10: CDF of excess volumes for some different choice of the parameters
as function of volume.
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Figure 5.11: CDF of “normal loaded” volumes for some different choice of the
parameters as function of volume.
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Figure 5.12:  CDF of excess volumes for some different choice of the parameter
as function of volume.
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In figure 5.8 we have aso given the CDFs for the “normal loaded” periods and we observe
that these curves are extremely flat.

In figures 5.10-5.12 we have aso depicted the CDF of the excess volume for this example.
In the first two graphs we vary both the number of source and the capacity and we see that
the curves for the volumes are curved and diverge more from a straight line than the corre-
sponding curves for the time distributions. Thus the volume is more likely to have “long
tails’ than the corresponding excess time.

If we, as an example, look at the 10 quantile for the excess time, we find that with 1400
sources the corresponding time is approximately 0.75 ms, which is not a very long time.

For the excess volume the picture is somewhat different. If we consider the 102 quantile,
we find that with 1400 sources the excess volume is approximately 2.5 Mbit which is a
quite large loss (even on a 600 Mbps link) and represents a typical loss of approximately 2
Kbit per source if the total loss is equally spread.

We shall close this chapter by consider the Ornstein-Uhlenbeck process as an approxima-
tion for the given example above. We have the following parameters (mean bit rate and
standard deviation):

m= 2Ny and o = LN, (5.107)
A+l A+

and the autocorrel ation:

p(t) = e ATt (5.108)

With the appropriate scalings (see [Knes91]) we have the following asymptotics based on
the first passage times and corresponding volumes for the O-U process:

P(T > 1) =F_(X,t) and P(A,>2)=F .(X,2) (5.109)

where FTx(x', t') and FAX(x', Z) are the CDFs of the first passage times and the corre-
sponding volumes for the O-U process with (scaled) capacity (found in section 4.4):

AN ; AN
C- b Jc-
c=_Atu o Ay (5.110)
A/N)\lgb ~NApU
A+ A+

(where we for smplicity assumes that j- = % is an integer) and

. AN 2
jo+1-
g= A gz A+pytandz = AEH)LZ (5.111)
+H
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is the corresponding dimensionless variable for the O-U process. As pointed out in
[Knes91] the asymptotic formula yields when the scaled capacity C' remains constant as
the number of sources N increases that is;

AN
A+

jic— = O(J/N) asN - o (5.112)
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Figure 5.13: CDF of excess volumes based on the ON/OFF model and the
corresponding O-U approximation for some different choice of the parameters
as function of volume (scaled by peak bit rate).

In a couple of numerical examples (figure 5.13) we have tested the O-U approximation de-
scribed above for the CDF of the excess volume based on the ON/OFF source model. In the
right figure we have taken an example with a rather small number of sources (N = 36).
For so few sources the O-U approximation underestimates the CDF of the excess volume.
In the right figure we have depicted the corresponding cases by increasing both the number
of sources and the capacity by a decade. In this case the O-U approximation improves espe-
cialy for the high load case (N = 360 and C = 160 Mbps), but aso for those cases the
O-U model underestimates the CDF of the excess volume.

For birth-death models the method of bisection provides a very effective way of calculating
the eigenvalues also for systems of large dimensions. The corresponding PDFs (and CDFs)
of the excess times and volumes are calculated by (D.38) and (D.40) and it turns out to be
far more effective in terms of computer time than the rather slowly converging series of the
PDFs and (the CDFs) of the first passage times and the corresponding volumes for the O-U
process (given by (4.81) and (4.82), and (4.120) and (4.121)).
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PART-||

Models for calculating end-to-end delay and
delay-jitter in packet networks
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6

| ntroduction

It is reason to believe that real time services will be a significant part of the traffic offered
in future multi service networks. Real time services require a quite regular bit stream deliv-
ered at the receiver's site to maintain the necessary quality for the various applications. It is
well known that networks based on statistica multiplexing (like IP-networks) will intro-
duce certain disturbance (jitter) in the bit stream mainly due to queuing in routers (or
switches). These disturbances will add on along the path from the sender to the receiver, ex-
plaining the necessity of some kind of de-jitter buffer at the receiver site to compensate for
these variations. The end-to-end delay is therefore an important parameter not only for di-
mensioning the de-jitter buffers, but also for providing some upper bounds of the total net-
work delay for particular services and it is among the most important QoS (Quality of Serv-
ice) parameter in networks deploying statistical multiplexing.

The Internet has traditionally offered a service that is commonly characterised as a best-ef-
fort service. The network tries to deliver the IP packets at their destination but no guaran-
tees are given. Many applications (e.g. email) happily run using this traditional best-effort
service model. Some areas of the Internet may be heavily congested and, consequently, a
considerable fraction of packets is discarded by the network. Usually, additional higher lay-
er protocols (e.g. TCP for error detection, retransmission and flow control) compensate for
the lost packets. At the application level this is then noticed as a reduced throughput, which
is unacceptable for many type of real time services without destroying the quality.

By introducing high capacity Internet, with differentiated QoS, it will be possible to offer
services with highly variable characteristics in one common network and thereby reducing
the cost compared with operating a number of more or less specialized networks for each
type of services. The success of such a scenario will strongly depend on the ability to per-
form the necessary differentiation among services.

To provide IP transport with QoS guarantees for throughput critical and delay critical appli-
cations, the IP community has realised that in IP routers packets of delay critical flows need
to be forwarded differently from other packets, e.g. by applying some kind of priority
mechanisms. The specific details on how to realise the necessary difference in packet for-
warding, for example on how to recognise flow classes, has led to different service models:
the Integrated Services (IntServ) approach and the Differentiated Services (DiffServ) ap-
proach. The most relevant transport service descriptions for delay critical applications are
the IntServ inspired Guaranteed Service [RFC1633], the DiffServ inspired Expedited For-



warding behaviour [RFC2475] and the more generic Dedicated Bandwidth IP transfer capa-
bility [ITUO2b]. Though differing in approach and in detail, a common factor in all these
descriptions is that some kind of differentiation (in the packet handling) is introduced.

6.1 Addressing the QoS

The end-to-end QoS is realised through the contributions from the different domains and the
QoS guarantees end-to-end will be realised through different SLAs between the customer
and the access network and/or between different core network domains. For each domain it
will be important to estimate the contribution to the QoS parameters since each administra-
tive domain will be responsible for their own contribution through the SLA. The most im-
portant parameters will typicaly be delay, jitter and information losses due to buffer over-
flow. It will be important for a network operator to be able to estimate the QoS parameters
in his own domain to set the appropriate parameters in the SLAs. In addition it will be of
vital importance to implement the necessary control structures that make it possible to
maintain the guarantees especialy in his own domain and thereby preventing degradation in
QoS which is often seen in best effort networks of today.

To realise many type of services the traffic flow will have to cross one or more administra
tive domains with their own SLAs. Such domains could for instance typicaly be

- access networks with rather low capacity based on different wireless or DSL technol-
ogies
- core networks with high capacity links but with large numbers of routers

The access network will encompass a variety of different access technologies that are cur-
rently available. These can be divided according to

- fixed access, or
- mobile access.

With the recent advances in access technology the fixed access may be a mixture of one or
more different types as Asymmetric Digital Subscriber Line (ADSL), Very high speed Dig-
ital Subscriber Line (VDSL), Coax and optical fibre, al having very different physical char-
acteristics. The logical structure of the access network may therefore be very different. Tra
ditionally there has been quite a strict distinction between the access network and the core
(transit) network, where the access is defined to be the part of the network from the sub-
scribers to the local exchange. By increasing the line speed by introducing different active
components these definitions of where the access network ends and where the core (transit)
network starts are not direct valuable any more. In IP networks the definition seems to be
more flexible on the basis of more functiona distinctions. Usually one will define the core
network as the part of the network where DiffServ and/or MPLS are deployed. By the in-
crease of the line speeds it is however an interesting question to find out how ‘far ' out in
the 'old access network' the DiffServ model (and possible MPLYS) is effective.
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6.2 Performance issues

6.2.1 IP-multiplexing for low capacity links

When traffic of different types is multiplexed on the IP level this may cause delay and jit-
ter problems if these traffic types share a link with rather low capacity. The main cause for
this delay and jitter is the variation in the packet lengths for the different traffic types.
While typical real time traffic like voice will emit packets of a small fixed size, the typical
data application may generate packets that are quite long. Due to this mismatch in packet
size between different applications the queueing delay for typica rea time traffic may in-
crease over the limit resulting in a degradation of the quality. This negative multiplexing ef-
fect will add for each router along the path from the sender to the receiver. However, for
high capacity links this queueing delay will be more or less negligible, leaving the main de-
lay contribution to low capacity links in the access network.

One could hope that deploying the DiffServ model with traffic classification and PHB prior-
ity scheduling would overcome this problem. This is however not the case unless there is
some kind of fragmentation of the long IP packets on lower layers. This means that al-
though most of the DiffServ implementations (in routers) have implemented priority among
different traffic classes these priority mechanisms are all non-preemptive. With this type of
priority mechanism a high priority packet cannot interrupt an ongoing transmission of a
packet of lower priority. This means that the packet length distribution of the lower priority
traffic classes will have an impact on the delay for the high priority traffic.

The only way to get around the multiplexing problem for low capacity links is to have
some kind of fragmentation of the long IP packet, making it possible to interleave small
real time IP packets. By this option the maximum waiting time due to lower priority traffic
classes will just be the transmission time for a single fragment. This fragmentation will be
possible if IP is transported over ATM, and in this case the maximum disturbance of the
high priority traffic due to lower priority is limited to one ATM cell.

6.2.2 Addressing the end-to-end queueing delay

In PART-II of the thesis we focus on the delay and delay variation experienced in an IP do-
main for which some form of delay (variation) commitment is intended. The commitments
may vary in strictness, ranging from a strict guarantee to a more loosely defined objective.
In any case, it is relevant to have some kind of estimates, in particular before the design and
rollout of new services, of the expected delay and delay variation.

The least known factor in the end-to-end delay of an IP packet is the delay contribution due
to queuing in the network elements. This contribution is also important because, in most
cases, the delay variation introduced by the network is to be removed by the receiving ap-
plication (de-jittering), thus introducing additional de-jitter delay which is necessarily at
least as large as the maximum (or suitable quantile) of the delay variation. Other factors,
such as the contribution of the propagation delay and the variation in router's routing look-
up latency are expected to either be much easier to assess or to be negligible in comparison
to the queueing delay due to statistical multiplexing in the routers.
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We therefore address some methods to calculate, the queuing delay in a network where sev-
eral interactive IP flows are mixed with best-effort IP flows and where the interactive pack-
ets may have strict priority over best effort traffic. The objective is to provide both a suita-
ble model and suitable assessment techniques (e.g. calculation methods) to arrive at a suita
ble estimate of the queuing delay in a given situation. With 'suitable’ we mean a model
which is sufficiently close to the real world to have a practica meaning and, at the same
time, is sufficiently easy to allow the calculations to be carried out. The results are targeted
on network providers to allow them to assess the expected behaviour and the delay commit-
ments in their own network as well as on standardisation bodies to assess the expected be-
haviour over various different networks of loosely co-operating providers (e.g. network per-
formance objectives).

6.3 Reference configuration

The reference configuration for the modelling of the queuing behaviour consists in an up-
stream access network part, a multi-hop core network and a downstream access network
part as illustrated in figure 6.1

Squrcg Destination
application gpplication
AL?O&:;;? Core network Access part
(pstream) with multiple (downstream)
hops

Figure 6.1:  Overview of the reference configuration: upstream access network part,
core network part (multi-hop) and downstream access part between the source and desti-
nation application.

The access network part is designated separately from the core network part because the pa-
rameters in these network parts (e.g. link rate, number of flows) may differ considerably. In
addition, it is expected that the users at the source and destination have much more control
over the traffic aggregate on 'their' access part (e.g. in case of a dedicated ADSL link) than
over the traffic aggregate in the core network.

The reference configuration for the router in each network hop consists in an high priority
gueue for the interactive flows and a low priority queue for the best-effort flows as shown
in figure 6.2. Each of these queues is served as FCFS (First Come First Serve) and the high
priority queue is served with non-preemptive priority over the best-effort queue. In this part
of the thesis we focus on the high priority traffic and neglecting the influence from the low
priority (best-effort) queue.
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Figure 6.2 The router output buffer for the reference configuration.

The relevant modelling parameters for each router hop are the following.

- The capacity of the outgoing links available for the transport of IP packets (e.g.
149.76 Mbit/s on an 155 Mbit/s STM-1 link but where we may also include one or
more relative low capacity access link with capacity typical that of an ADSL mo-
dem.

- Thesize (in byte) of the high priority best-effort |P packets. To keep the number of
parameters at a manageable level, al best-effort 1P packets are assumed to have the
same size; for practical results a value of 1500 byte is used.

- The size of the low priority interactive IP packets (in byte or as a fraction of the
best-effort size) and the load (as a percentage of the outgoing link rate) of the inter-
active flows. To keep the number of parameters at a manageable level, all interac-
tive | P packets are assumed to have the same size. For voice applications a size be-
tween 150 byte and 300 byte (i.e. 1/10th and 1/5th a 1500 byte best-effort packet) is
expected to be common. The arrival process of the interactive IP packets is assumed
to be Poisson.

6.4 Theorganisation of PART-II of the thesis

PART-Il of the thesis consists of three more or less self-contained chapters. The “red
thread” through these chapters is the modelling of end-to-end queueing delay for networks
deploying statistical multiplexing.

In chapter 7 we have consider some models to calculate the end-to-end delay distributions
for packet networks based on the assumption that the end-to-end delay may be found by
convolutions, where the key assumption is that the parts of the end-to-end delay stemming
from the different nodes are independent stochastic variables. As the model for each node
we take the ordinary M/G/1 queue. If in addition the nodes are identical, i.e. the convolu-
tion consists of the waiting times of a fixed numbers of identically M/G/1 queues, the eval-
uation may be substantially simplified. In this case we show that the convolutions may be
found by taking some partial derivatives with respect to the load parameter. This result is
shown to yield for the Laplace-transforms and will therefore also yields for the correspond-

-111-



ing distribution functions and the corresponding densities. The applied technique may be
generalised in various directions for instance it is possible to extend the result to the case
with two groups of queues where the queues in each group are identical.

For the M/D/1 model we give explicit closed form results for the convolutions of a given
number queues having identical waiting times distributions. We also generalize this result to
consider two groups of M/D/1 queues having different (but constant) service times, and this
is a particular interesting case since it may be used as model for end-to-end delay aso in-
cluding access links with low capacity. Some approximations are also given based on large
deviation techniques. Part of the results will be presented at 1TC-18 [@ste03c] and an ex-
tended version of the paper is found in [@ste03b].

In chapter 8 we have extended the results found in chapter 7 to also include queueing mod-
els with priority. This is an important extension since new service models of 1P flows have
been introduced (DiffServ) where different treatment of flows in routers is assumed to pro-
vide QoS guarantees for the different QoS classes. As a model for the delay in such nodes
we take the M/G/1 non-preemptive priority model as the basis, where we primarily are in-
terested in the delay for the high priority class. By using the method described in chapter 7
we find a method to express the convolution in terms of the convolutions of waiting times
for the M/G/1 queue (without any priority). For the case with deterministic service times,
(M/D/1 modél), we find explicit formula for the desired convolution. Numerical examples
show that end-to-end delays for rather large chains of nodes may be analysed without nu-
merical difficulties. Most of the material in this section is found in [@ste03a].

In chapter 9 we describe a different approach to obtain the end-to-end queueing delay in
packet networks. The main idea is to try to capture the disturbance of a packet stream as it
passes through a series of multiplexers. Even though the output process from a multiplexer
surely is non-renewal, we get the distribution between two consecutive departures, and ap-
proximate the process with a renewal stream. This stream is then fed into the next multi-
plexer (together with other crossing traffic). In this way we obtain recursive relations for the
jitter and the end-to-end delay. In the analyse we use a slotted model rather than a time
continuous one. The reason is that the slotted model is easier to analyse and we use generat-
ing function techniques and apply the theory of complex analysis rather than Laplace trans-
forms for the continuous time counterpart. Numerical examples show good accordance with
the convolution approach of chapter 7. The material in this chapter is yet unpublished.
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7

Convolution of a given number of waiting
times of M/G/1queues having identical service
time distributions

7.1 Some preliminary considerations

In the following we consider a model to calculate the end-to-end delays in a large scale IP-
network. The aim is to calculate the distribution of the end-to-end delay for a particular
path consisting of a series of routers. We assume that al the nodes in the end-to-end path
are statistically independent; this is a key assumption to obtain the end-to-end delay by con-
volution. The condition under which this independence assumption applies is not consid-
ered in this chapter. We shall therefore take the M/G/1 queue as the model to obtain the
waiting time distribution in each node and then apply the convolution to obtain the end-to-
end waiting time distribution.

We consider a path consisting of a given number of nodes (say K ). Each of the nodes is
taken to be a M/G/1 queue with load p,, and where we assume that each queue has serv-
ice times that are identicaly distributed given by a PDF (Probability Density Function)

b (1), and LST (Laplace-Stieltjes Transform) denoted by B, (s); k =1...,K .

Further we let W, denote the waiting time in queue k, and we denote the corresponding
PDF (Probability Density Function) W(X, o, ) and the corresponding DF (Distribution Func-
tion) W(x, p,) . (Where we have indicated that the waiting time will also depend upon the
parameter p, and of course on the service time distribution.)

The LST of the waiting time for one particular queue is given by the well-known Pollaczek-
Khinchin (P-K) formula (see for instance Kleinrock [Klei76a]):

1-p,

Iy

(7.1)

where Bk(s) isthe LST of the remaining service time and is given by



1-B,(9)
=y

k

B(s) =

(7.2)

where by, = E[B,] isthe mean service time; k =1,...,K .

We are interested in the sum of waiting times in a series of K queues and we denote the
sum W = W, + ... + W, If al the waiting times may be taken to be independent the PDF

of the sum yields the convolution of the waiting times in each queue. The LST of the con-
volution (of waiting times for all the K queues) yields the product:

K1
(s 0 = [IWes 00 =[] 2 (73)

Generaly it is possible to obtain the end-to-end distributions above by inverting the trans-
form (7.3) numerically. Such methods are described in the literature. For instance the DF of
the end-to-end queueing times may be written by the inversion integral as.

W(t, p,.... p) = PfW < = 2;,r{e;tW(s, Do P, ) (7.4)

where the integration line paralledl with the imaginary axis y:iﬁs:aﬂw‘ and where

a>0isaconstant and yU(—,). Abate & Whitt have given a method to calculate the in-

version integral based on Poisson’s summation formula. The result yields an alternating se-
ries that may be difficult to use to determine the tail of the distribution and thereby obtain
the desired quantiles (see [Abat92]).

7.2 Convolution of waiting timesin M/G/1 queues all having identically
distributed service times

In the following we assume that all the nodes have identically distributed service times, that
is, we assume b (t) =b(t) aso implying Bk(s) =B(s):k=1..,K . In this case it is possible
to obtain substantial simplification of the convolution (7.3) (and also on the inversion inte-
gral (7.4)). If the loads of the different M/G/1 queues all are distinct, that is o, # p; for all
i,j=1..,K, then the LST of the convolution can be written as a weighted sum of the indi-
vidual LST for each queue as follows:

W(s, Oy P ) = 2CKVV(S, P,) where (7.5)
k=1
the coefficients c, only depend on the loads in the different queues and are given by:

K 1_pl

T 7.6
|:1,|¢k1_p|/pk (7.6)

C =
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The result (7.5) and (7.6) enables obtaining corresponding convolution of the waiting times
by inverting the LST above. We may express this result as follows: Let

WX, 0,501 Py ) = WX, ;) .. OW(X, 0, ) (7.7)

be the convolution of waiting times, then we have:
W(X, 0,11 0y ) :ickw(x,pk) (7.8)
k=1

where W(X, 0, )is the PDF for the waiting time for the k'th queue. Similar for the DF of the
convolution we have the corresponding result

WX, £y ) = 2 W (X, 0,) (7.9

where W(x, p, ) is the DF for the k'th queue. All the results above follow from the identity

d-p)--A=-p) _ ic 1-p,

LN 7.10
@-p,B)..0-p,B) o “1-p,B (7.10)

TF
1-p

and we can find ¢, by multiplying the identity by and we find the following ex-
i

pression for c;:

K 1-[0 i 1—p jl—pé ~ 1
c = g c K . By taking the limit B~ — we obtain
! |:|1,_||¢11_,0|B [kﬂ,kzj kl_pkB 1_'01' Y o j

(7.6).
Often we are interested in the case where the loads on the different queues are equal. This
result is possible to obtain relatively easily from (7.5) and (7.6) by lettingp, — o for

dlk=1..,K . Itis possible to rewrite W(s, p, ..., p, ) as follows:

W(s, o, --n pK)=(|j(1—p.)ji{ﬁ ! J{fj;lw(snpk)} (7.12)

k=1 =112k Py ~ P, K

By taking the limits p, - o for al k=1...,K we obtain

W (s, ) = Wi(s, p)) = ((1K- fi)! a‘; _ { f_;ovT/(s, p)} (7.12)

and further in the time domain the corresponding results also yield:
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WE(x, p) = (W(x, p)) ™) = (1-p) aKii {p“ w(x,p)}and (7.13)

(K -1y 00" |1-p
oK ~ (1_p)K 9Kt pKfl
W (X! ,0) - (K _1)‘ apKfl 1_pW(X! p) (714)

In fact it is also easy to show (7.11) directly. Inserting for W(s, p) we have

(-p)< 0 {p Wit p)} 1-p) il { Pt }:

(K -1} 00" |1-p (K -1) 00" |1- pB(s)
Q- < k-1 d'(__ 1 ak-1-1 (K1), o ki1
(K-1)! (" )0p (1 pB(ng{p kN 1- pB(s)) z"(K -1 (PBEN (L-pBE) =

1=0

(1 - s )] (B9 +1- B9 " = (s )

We can now state the more general result where we consider the case where only some of
the queues may be equally loaded. In this case we have LST of the convolution on the fol-
lowing (general) form:

- v 1-p )"
W(S, £, 1:s Py s Ny eees nN):H[#] (7.15)

where we haveN groups of queues of size n, equally loaded and with distinct loads be-
tween the groups, that is g %P, foral i,j=1..,N and K=n_+...+n

N

Then the LST given by (7.15) may be written:

VT/(S,,o1 ..... Py Ny Ny) = iz ”[ B(s)] (7.16)

j=1i=1

where the coefficients ¢; only depend on the loads in the different queues and are given by:

( n| 1- ,0] n i dn]fi N 1—,0| n
( ) a7 |4 L 1= % . (7.17)
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for i :J,...,nj and j =1..,N. The PDF and DF of the convolution may be obtained by in-
verting (7.16):

W(X, 0,100y P 1Ny N ) = iicijwi (X, pj) (7.18)
W(X, D0 Py D)) = _ﬁnzciJWi (0, (7.19)

where wi(x, p) and Wi(x, p) are given by (7.12) and (7.13) respectively. It is sufficient to
prove equation (7.16) since (7.18) and (7.19) follow directly by applying (7.12) and (7.13).
By partial expansion of the fraction (7.15) (by taking B(s) as the free variable) it is possi-

ble to obtain the expansion (7.16). One way to obtain the coefficients is given as follows.
We pick a particular group, say the ] 'th one, and we get from (7.15) and (7.16):

N

n - n; - 1- | n
ERRA ST AR NE reyn= ] {1—,0g17WJ e

2 . — A 4+ 14
I=11#j TJ ?;

|=1,|¢ji=l l_ A +u

P P

. 2 1- I
where we have set y =79 and F(y) = i Z%{—%—WJ . Considered as a

function of y we have that F(y) is analytical at y=0. By differentiating the relation
above n, i times and setting y=0 we Qget:

1 d"t | 1- p, | : _
c = N _ which can be written as (7.17) by
J (nj—lidyl |_|;|¢j[1—;’]+”"1 Py

Pj
y=0

the translation x=_1 - ®*)y,
oA

As a side result we obtain for the interesting case with only two groups of queues, N =2

(with equal load in each group), that the coefficients in equation (7.17) may be found ex-
plicitly since the differentiation may be carried out. We get the following expansions.

n ) L )

W(X, Oy, 05, N5,1,) = D CaW (X, 0,) + D c,W (x, p,) AN (7.20)
i=1 i=1
nooo n, .

W(X, 0y, 0,,1,1,) = D C W' (X, 02,) + D C W' (X, p,) (7.21)
i=1 i=1

where w' (x, p) and W' (x, p) are given by (7.13) and (7.14) and
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—(_ S n1+n2—i—l (1_p2)p1 " (1_p1)p2 " ;
Cil_( 1)nl ( nz_l J( P~ P, J ( P~ P, J for '=hn (722

and

(o, —i=-1) (- p)p, (W p,)p )"
c.= (-1)”2 { 1 2 J( )P, )P, o
'2 n -1 0, - P, 0, P, for i=1..n, (7.23)

As a comment to the results derived above we have shown that it is quite easy to obtain a
convolution of waiting times in a series of M/G/1 queues if the service times are identical-
ly distributed in all the queues. The main result follows by taking partial fractions expan-
sion of the LST of the convolution given by the product of the LSTs of the waiting time for
each queue, and thereby making it possible to write the LST of the convolution as a weight-
ed sum of the LST of the individual queues. Since the result is obtained for the LST of the
convolution, the same result will also apply for the DF and PDF. If al the queues in addi-
tion have equal load the result is obtained simply by taking partial derivatives with respect
to the load as given by (7.11) (and (7.12) and (7.13)).

7.3 Convolution of waiting times in M/G/1 queues having different serv-
ice times

In the general case the results derived so far require that all the service times are identical-
ly digtributed. This will impose a rather strong restriction on the scenarios where the previ-
ous results are applicative. For instance, a path that also includes rather slow access links
could not be modelled well with these results. An aternative could be to find the delay dis-
tributions for each part; the access and core, and then perform numerical convolution to find
the total end-to-end delay. It is however possible to extend some of the results to cover con-
volutions between equally loaded groups (with different service time distributions in each
group) if it is possible to find the convolution obtained by taking one single waiting time in
each group. For simplicity we consider the case with two groups (and use the same nota-
tion as above) and we let

wW(x, p,, p,) = W(X, p,) DW(X, p,) (7.24)

be the convolution of PDFs of two waiting times distributions for M/G/1 queues, one from
each group, and let W(x, P,.P,) denote the corresponding DF. Then we may get the PDF

and DF of the convolution of n waiting times from group 1 and n, waiting times from

group 2 as.
_@-p) Q-p) o [ pt p and (7.25)
MO ) =Y (- 1) 000, |1 1, O PP
(:I-_:01)nl (1_:02)'12 A " P (7.26)
W(X, 0y, 0,1, 1) = =P W(x, o1, :
(X P P2: Ty nz) (n1 _1)! (n2 _1) aplnl 1apzn2 1 1‘/’1 1_/)2 (X Py /02)
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(7.25) and (7.26) follow directly from (7.12) and (7.13) and the fact that w(x, o, p,) is the

convolution (7.24). To apply the last result one needs first to find the convolution
w(x, p,, p,) Which may be difficult to find unless for specific models. Below we shall show

that for M/D/1 queues this convolution is possible to obtain in closed forms, and whence it
is possible to apply the result above to find the convolution where the service times are dif-
ferent.

7.3.1 Convolution of the waiting time distribution for a given number of M/D/1
queues all with equal service times

In the following we shall apply the results on specific models. Of main interested is the
case with constant service times since this often will be the case for many applications.

Without losing generality we scale the service time to unity. Then it is well known that the
DF for the waiting time of the M/D/1 queue is given by [Robe92](page 391):

q(x ,0) (1 p)z[p(k X)] e Pk=x) (7.27)

Below we shall apply (7.13) to find explicit expression for the convolution of the waiting
time distributions for given numbers of equally loaded M/D/1 queues.

If al of the queues are equally loaded with equal service times we get the following expres-
sion for the convolution the DF of a series of K waiting times of identical M/D/1 queues:

[ x] K-1/_1y! K+k-
0 (x.p) = (1= p)* (1)( *

k! k+l

o1 I'K!

1J(p(k—x))k*' CR (7.28)
It is quite easy to show (7.28) by applying (7.13). We have:

1- p)* & (k X) PLE! {pK+kflefp(kfx)} (7.29)

0|K(><.p)=WK(><.p)—(K T D T

Differentiation gives

107 kmengotenl 5 1 (K1Y 0' pue) 077 1 v}
(K—l)!apK'l{p ¢ }_.;(K—l)! | ap'{e }apK-'-l{p }=

St(—l)' G +(|I)<||J|r(kK ot l)" o (k = x)' e P& | Inserting this result in (7.29) we get the ex-
1=0 s

pression (7.28).

It is also possible to find corresponding formula for the PDF of the convolution. We find
for one single M/D/1 queue
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w(x,0) = L W(x,0) = plax, p) ~H (x-Da(x-1,p)) (7.30)

whered(X, p)is given by (7.27) and H(X)is the unit step function. We find that the PDF of
the convolution of Kk waiting times from identical M/D/1 queues may be written as the dif-
ference:

WX (%, 0) = pla (. o) - H (x- D) (x -1, p)) Where (7:31)
S K+k k+ _—p(k-x
% (%0 =1-p) ZZ T (k+|+1J(p(k—x)) gk (7.32)

We obtan (7.31) and (7.32) by applying (7.13) on (7.30) and we find
WX (x, 0) = pla (x o) - H(x-Daf (x-1, p)) Where

_1-p) Kk~ x) aK‘1 { pereeretin) (7.33)

A (%, P) = K-DZ& K e

Differentiation gives

1 aK -1 a| aKflfl
K+|<e p(k- X)} E(K 1)'( | Japlép(kx)} apK_|_1 {pK+I< =

(K-Dlop*™

- !
E(—l)' = +(1|)<| IT(':<) =k P (k = x)' ek |nserting this result in (7.33) we obtain
1=0 -l

expression (7.32).

As for q(x,0) given by formula (7.27) (for the single M/D/1 queue) the formulae for
g« (x, p) and as (x, p) given by (7.28) and (7.32) are not effective to calculate the DF and

the PDF of the convolution for large values of x. In Appendix F we give an aternative

way of writing these formulae that provides stable numerical calculations of the convolu-
tions for quite large values of x, and up to 20 queues. It is therefore possible to study end-

to-end delay in rather large networks by the convolution approach.
7.3.2 Convolution of waiting times in M/D/1 queues having different service
times

For the M/D/1 modd it is possible to find the convolution of two DF of waiting times with
different service times. Then by (7.25) and (7.26) more general convolutions may be ob-
tained by plain differentiations with respect to the different loads in the different groups. In

the following we consider two M/D/1 queues with load o, and service time b ,i =12, and
we denote W(t, p,,b) = q(t/bi ,p,) the DF of the waiting time, i =12 Then the DF of the
convolution is given by the following sums:
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el
W0, 0,00) =@ p)Y, 24 k,(irz){ —O: p)-q A lpz)}

2 2

Koy

s |15
@)Y, Y., n){q(t kb;)l L kbgl b, m)} (7.34)

where pkvj((,q)z[k;jjnkzl and Z=% and n:rxy; where we have defined x=2 and

y=2; and where we have ¢ +77=1. (By writing (7.34)) it is understood that q(x, p) = 0
for x<0.) To show (7.34) we let

X
W, (6,0, 0,00,0,) = WO oG- x,p,0,)0¢= | a(X.p, JoX, then the
x=0 x=0 1
DF of the desired convolution is the time derivative of w,:
_d
W(t! p]_’ pz ’ b]_’ bz)) - awz (ti pl’ pz ' b]_’ bz)) . (735)
By introducing some different scaling we may write w, as:
W, (t, 0, 0,.b,, 2)) b, I(i, ,,01 p,) where (7.36)
(68,0, 0,) = [ G048, p,)at - X, 2,)x (7.37)

x=0

We have 9065, 5) = @- p) 3 HOx8 -1 ) 2L (xp—)e ) ingerting in (7:37)

k=0
and interchange summation and integration give:

(1),0

I(t, B, p,, p,) = (L— pliH(tﬁ k) T(xﬁ)kepﬁ‘q(t—kﬂ‘l—X-pz)dx

=(1- /01)%( D" (,01,8) | t—kB*~p.B.p,) where | (t,u, p) is given in the Appendix

F by equatlon (F.18). Inserting in the expression above we find:

- Ltﬁjt kg j .
- — 0. W lens] « _ s i .
‘“ﬁ)z 2 2 5 Hi (/Eiﬁ;lﬁ)%“ (k-
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In the last sum we change the summation by letting j =k —i so that

Le-nB] k Lenalle-DBI-i . .
" and we find that the last sum may be rewritten as:

k=0 =0 =0 i=0

- (=) SUSE Ly GXD!_(08) t—1Y—i o). Inserting in the expression
,02‘,01,3; Jz ( ) i (o,-pB)" q(Bt-N-i.p)
above we get:

LtEJt kot Koo
I(t, 5, 0, 0,) = (1 pl Z (- )k (k+))! (B P, qlt- | —kﬁfl,pz)

= Kjl (o~ 2B

_0p) $ G R o
pZ_plﬁjZO k=0 ( ki j! (pz_plﬁ)j+kq('3( N-k.p)

By (7.36) we get w, as:

]

-

S

; Ms\

S

pk (m)q(%,pl)

_| Kt kK71 =Y =_* . i =A
where pm(Z,/y)-[ j j/;( and ¢ V=X and 77 =y where we have defined x=2 and

la I h
W, (t, 0, pzblb)—(l )5S . (@ mat—E 1 )+ £ "2

k=0 j=0 bz k=0 ]

y=4£; and where we also have { +77=1.

Then by direct differentiation of W, and using (7.30) we get the desired convolution (7.34).

We now move to the interesting case with two groups of queues with different service times
in each group. Specifically we consider two groups of M/D/1 queues of size n, each with
load p and service time b ,i =12, and we denote W(t, p,,b) = q(t/bi ,0,) the DF of the

waiting time in each queue, i =12. Then the DF of the convolution is given by the follow-
ing sums:

Wi(t, p,,p0,,b,b,,n,n)= (7.38)
JEJT@ S Aok b . t-kb - jb,
a-p) ZZ(l—pz)e Posnen () A2 p) A~ 1) |+
n [EH 7:172J”1’1 I kb o t—kbl _ Jbz
@=2)" > > > A= p)" Py cn, i (C21)| @ .l LR . el L
k=0 j=0 s=0 b1 b1

where we have
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- k+j Ky KQmm[KZJk” il Ko +i) Kotk k-1 7.39
pK,,KZ,k,J(Z,U)—[ ‘. j[ ]Z ZalD N [ Ikﬂ._ljm (7.39)

I=max[0, j-K;]

and where we define¢ =_Y_ and n=_"
y—-X X=

¢ +n=1).

=2 and y=£; (and where we also have

To show (7.38) we use (7.26) on equation (7.34) and by using equation (F.23) in Appendix
F, we get the following expression for W(t, p,, p,.b,,b,,n,,n,):

Wi(t, p,,p0,,b,b,,n,n) = (7.40)
r\,LTlJ Tm np-1 n2 iz o1 t- kb o1 Jb2
a-p) Z (=2, G iy (1 2)] (bi o) - b ~1p,)
]l e kb= ib -
HL-p)" Y Y S p) TG L, (B pz)[ B e m)} where
we have
dk d*e {p
AR P ) |
zd K dpoke 1 72 K, j and 741
Gi;xz‘m(plypz) = pl pZ KTK 1 :ZFKJ'KZ'M(X' y):ZpKJ'KZ'K‘J(Z!”) ( )
da de
oo O Ao pp, (Cn
1dok dpofe © t 2 K. 7.42
Gisz‘k-l (plypz) = pl pz KIK I :”Fm‘mm (X' y) :nij.Kz.k.J (('/7) ( )

where we define

K+ j (y_x)dK1 dKe | xkrKiyiek,
) =F Y)=(-D | _
P .. @m=F_ (xy=( )( | ]Kl!KZ! R {W (7.43)

and where we as above have taken Z—ﬁ and n= =2 and y=£; and where

we have ¢ +n7=1. In Appendix F the actual form of F _ (xy) is found (see equation

(F.37)) and then by inserting for ¢ and , wefind p__ ({.7) asgiven by (7.39).

Ky Kz k]

With the result above we have a tool to analyse end-to-end delay for realistic scenarios in
large-scale IP networks, also allowing to include the access part of the network. A typical
(redlistic) scenario would be to include two (or more) low capacity queues (links) together
with a number of rather high capacity queues (links) representing the core. This will pro-
vide a redlistic estimate of this important QoS parameter for large networks. The basic
building blocks in the end-to-end delay distribution is given in terms of convolutions
g“(x, p) , which are easily obtained by equation (7.28).
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7.3.3 Asymptotic approximations

Below we shall consider the general case of convolution of M/G/1 queues where we consid-
er the convolution of a chain consisting of N groups of queues of size n;, where all the

queues in each group are identical, but allowing for having different service time distribu-
tions between the groups, (j =1...,N). In this case the convolution will have the following
LST:

1-p. K

W(s) = ) (7.44)
u(l p,B, (S)]

where we have a total of N groups of queues of size n, and where o, and Bj (s) arethe

load and the LST of the remaining service time in group | (=1..,N). As before we let
K =n +...+n_ be the total number of queues in the chain.

To this end some different types of approximations exist for sums of independent random
variables in general. The first one is the normal approximation quoting that a sum of identi-
cally independent random variables approaches a normal distribution when the number of

variables increases. Since the normal distribution is characterized by its two first (lowest)
moments, this leads to the following approximation for the PDF and DF of the convolution:

W (1) :;gb(t_?m) and (7.45)
W) =1- gt ™ )where (7.46)

mand g2are the mean and the variance of the total end-to-end queueing delay for the chain
given by

m=i:n,-mj and Uzzinjaf (7.47)

j=1 j=1
where m = E[V\/j] and crjz = E[sz] —mj2 is the mean and variance of the queueing delay
in the corresponding single server M/G/1 queue given in terms of the three first moments of

the service time distribution (and also the load) through:

ELB]] ,_ EB] p .
m = E[W] = ﬁljs_]l_?, and o] = E[W] -’ = ﬁﬁl_—?fmi (7.48)

- 124 -



2
00
X2 t

1 X . 1 2, .
further @(X)=___e€ 2 js the standard norma density and ¢(x) = ——|[e “dt is the
N y and 009 = =]

X
standard normal integral.

The second and quite different approximation (though also involving normal distributions)
is based on LD (Large Deviation) theory. This can for instance be reflected through the in-
version integral of the LST given by

1 W
o= [e=W(s)ds (7.49)

Formally this approximation is obtained by considering the asymptotic behaviour of W(KXx)
for large values of Kk while x is fixed. We also assume that n, :yjK and y, ae bound-

ed away from zero as K increases. With these substitutions the inversion integral with ar-
gument Kx may be written

W(Kx) = %Ie‘Kg(S’ Yds where (7.50)
Y
65,9 = >y, [oalt- p,8, () ~logt- p,)| - ¢ (751)

Approximations of the contour integral above may be found by the method of Steepest De-
scent (or the Saddle Point method). (See for instance [Won89] for a thorough description of
the method.) This is done by choosing the contour so that it passes through real axis where
the maximum value for g(s,X)is attained, which may be found by setting the derivative
with respect to 5 equal zero. The corresponding value of s=s"(x), called the saddle point,
is then the solution of the equation:

B
3, PBO oo (7.52)
j=1 Jl_pJBJ(S)

The corresponding approximation is found by expanding the exponent (7.51) to second or-
der in s (remembering that first order contribution vanishing due to equation (7.52)), and
then factorising out the constant part, and transforming the contour integral to an exponen-
tia integra by neglecting higher order terms. One gets:

. y?
ife-Kg(s,x)ds = ie‘KQ(SJ(X)VX) Te_Kg (SE(X)’X)Tdy - 1 e-Kg(s7(x).%)
271

2n el =~ 27Kg"(s7(x), X)
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The corresponding approximation yields w'P (t) = f(%) where

1 —-Kg(s™(x),x
f(x) = e © Ko(e 09 (7.53)

where we find by differentiating (7.51):

~ 2 ~
B! (sP(X B (sP(X
h(9 = g0, = Sy || LD Ty ABIE) (750
j=1 1- /0]‘ Bj (SD(X)) 1- /0]‘ Bj (SD(X))

The corresponding expression for the DF as an inversion integra is:

W(K) = o [ (7.55)

T 2m S '
y

If we apply the Saddle Point method directly on (7.55) we must make a distinction be-
tween two cases depending on the sign of the saddle points”(X) . It turns out that s™(X) is
positive for small values of x but becomes negative as x increases. In the latter case we
have to pick up the residue at s=0 and we get the following approximation by combining
the two cases:

W (t) =1- F(%) where

F(¥) = H(s"() - g ol 0x (7.56)

1
sP(X).[27Kh(X)
where H(t) isthe unit step function.

It turns out that the “ordinary” Saddle Point method given by (7.56) fails to approximate the
integral (7.55) when the root s”(X)is close to the pole at s=0. It is, however, possible to
extract that pole and obtain a Uniform Asymptotic Approximation (UAA) that is uniform
with respect to x and also yields in the area where s”(X)is close to zero. The actual meth-
od is described in the book by Wong [Won89]. We find the following approximation:

WUA (1) =1 - G(%) where

(s 1 sgn(s”(x))
G — (— 0 2K 5] , — @~Kg(s"(x),x) -
(0 = g-son(s°()[2Kg(T(. 1) e {SD(X)W 5 g(sm(x),x)}
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(7.57)

It is quite easy to see that the function defined by G(x) does not have any singularities for
values of x giving saddle point close to zero. By expanding the brackets to third order in
sP(x) we find:

— {u
ha(x) e Kg(s(x),x)

6h() [27KA()

G(x) = ¢(=sgn(s”(x)),/2Kg(s"(x). X)) +

and where h_(x) = -g"(s"(x), X) -

when s"(X)is close zero

The main complexity in applying the Saddle Point methods described above is to locate the
saddle points s”(x), for which we have to solve equation (7.52) for each value of x and

this could limit the value of this type of approximations due to the computation time re-
quired to solve the equation numerically. When it comes to the accuracy it seems that the
UAA will give results very close to the exact convolutions for a very broad range of param-
eters also including cases where the asymptotic is not fulfilled, i.e. for chains of relatively
small sizes. The “classical” LD approximation, however, gives strict upper bound on the
convolution and can therefore be a desirable method to apply for this reason.

7.4 Some numerical examples

End-to-end delay is one of the most important QoS parameters for real time services like
voice and video. In an dl IP-network the end-to-end delay for a particular stream will be
the sum of the delay obtained in a cascade of routers (from the sender to the receiver). The
total end-to-end delay will then consist of the waiting times in each node plus service times
(transmission times onto the links). In the examples below we shall consider a particular
chain of routers in a packet network and we assume that the routers have output buffers
with no extra internal delay due to processing of the packets. The network model is shown
in figure 7.1.

BACKGROUND TRAFFIC IN

A1 A2 An
STREAMING
TRarFiC | —— 3| TO— e —p —

BACKGROUND TRAFFIC OUT

Figure 7.1:  The queueing model of a particular packet-stream traversing n-nodes.
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We have made the following assumptions:
- The queueing discipline is FIFO for all the queues.
- The background traffic enters (and leaves) node | according to a Poisson process
with rate A .

- The streaming traffic enters node 1 according to a Poisson process with rate A, and
leaves node ; .

- All packets (both background and streaming traffic) have constant (and equal) pack-
et lengths of p _and all the links have capacity of C,.

The corresponding parameters used by the convolution approximation are the service times
per packets, which are constant and equal to b = p, /Ci , and the load on the different

nodes given by p, = (A, +A)b.

7.4.1 Cases with identical nodes that are equally loaded

Based on the simplicity of the way the convolutions are performed if al the nodes are iden-
tically makes it feasible to evaluate end-to-end convolutions for rather large numbers of
gueues. The numerical algorithms derived for the cases with constant service times (M/D/1
model) make it possible to calculate the corresponding CDF (Complementary Distribution
Function) for quite large paths containing up to 20 queues in series and will therefore cov-
er paths that are of “real size” in networks of today.

In figure 7.2-figure 7.4 we demonstrate how the PDF of the end-to-end queueing delay
“converges’ when waiting time is scaled by the total service times (end-to-end). Typically
up to a series of 15 queues the distinction is pronounced but for larger number of queues
than that the difference between the curves seems to be small. Another important observa-
tion is that it seems that al the distributions have a common intersection point approximate-
ly around 0.1 and for that point on the distributions are bounded “from above’ by the
curves for smaller chains. In practice this means that it is sufficient to calculate the distribu-
tions for chains up to say 15 queues and then use the scaled result (for 15 queues) as an ap-
proximation for larger chains.
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Figure 7.2:  Logarithmic plot of the CDF for end-to-end queueing delay for a se-
ries of equally loaded queues with load equal to 0.6 scaled by the total service
times (end-to-end) for different size of the series n=1,2,3,4,5,7,10,15 and 20.
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Figure 7.3:  Logarithmic plot of the CDF for end-to-end queueing delay for a se-
ries of equally loaded queues with load equal to 0.8 scaled by the total service
times (end-to-end) for different size of the series n=1,2,3,4,5,7,10,15 and 20.
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Figure 7.4:  Logarithmic plot of the CDF for end-to-end queueing delay for a series
of equally loaded queues with load equal to 0.9 scaled by the total service times (end-
to-end) for different size of the series n=1,2,3,4,5,7,10,15 and 20.

Below we have made a comparison of the different approximations considered in section
7.3.3: NA (Norma Approximation), LD (Large Deviation) and UAA (Uniform Asymptotic
Approximation) with the convolution method. In figure 7.5-figure 7.7 we have plotted the
different approximations of the CDF (with the corresponding parameters as figure 7.2-fig-
ure 7.4). We find that the UAA gives an excellent approximation of the CDF that yields
uniformly for all values of the argument. If the size of the chain is greater than 5 we find
that the relative error is less than 0.25% and the difference is not visible in the graphs. Also
for the single queue case we find that the UAA gives quite accurate estimates especialy in
the tail of the distribution. The maximum relative error in this case is 12% for aload of 0.6
and decreases to 2% for aload of 0.9. Although the UAA gives very accurate results it does
not bound the CDF obtained by convolution.

For the LD approximation we observe:
- it aways bounds the actual distribution
- it only appliesin the tail of the distribution
- itisfairly good aso for relatively small chains, typically from the size of 5.

On the contrary the Normal Approximation will typically have nearly opposite properties:
- it does not bound the actual distribution especially not in the tail
- it applies also near the origin

- from the chain size of 15 on it gives fairly good approximations except for the far
tail (where this type of approximation fails).
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Figure 7.5:  Logarithmic plot of different approximations of the CDF for end-to-
end queueing delay for a series of equally loaded queues with load equal to 0.6
scaled by the total service times (end-to-end) for different sizes of the series n=1,5
and 15. (NA-Normal Approximation, LD -Large Deviation, UAA -Uniform Asymp-
totic Approximation)

=08

Convolution

2 4 6 t/n 8 10
Figure 7.6:  Logarithmic plot of different approximations of the CDF for end-to-
end queueing delay for a series of equally loaded gueues with load equal to 0.8
scaled by the total service times (end-to-end) for different sizes of the series n=1,5
and 15. (NA-Normal Approximation, LD -Large Deviation, UAA -Uniform Asymp-
totic Approximation)
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Figure 7.7:  Logarithmic plot of different approximations of the CDF for end-to-
end queueing delay for a series of equally loaded queues with load equal to 0.9
scaled by the total service times (end-to-end) for different sizes of the series n=1,5
and 15. (NA-Normal Approximation, LD -Large Deviation, UAA -Uniform Asymp-
totic Approximation)

In network engineering it is important to make some statement of the guarantee of the end-
to-end delay. This guarantee is often given in terms of probabilities, for instance that the de-
lay shall not exceed a particular target value by some small probability. So we would like to
find the a =1- quantile for small values of . We therefore have to find the value

t=t#(p) that solves the equation
g"(t, p) =1- B8 where (7.58)

g"(t, p) is the DF of the convolution. In figure 7.8-figure 7.10 we have given a logarith-

mic plot of the quantiles as a function of the load for different values of size of the chains
ranging from 1- 20 queues, and for three guarantee levels 0.1, 0.01 and 0.01 respectively.
(In &l the figures the quantiles are scaled in units of one queue service time.) As an exam-
ple suppose that the end-to-end QoS requirement says that only 1% of the packets shall
have an end-to-end delay longer than 50 packet transmission times. (For 2 Mbit/s links and
constant packet lengths of 200 bytes this corresponds to end-to-end delay of 40 ms.) Then
by figure 7.11 we find the following load limits (as a function of the size of the chains):

- P = 0.74 if the traffic traverses n = 20 nodes
- P = 0.79 if the traffic traverses n =15 nodes
- P =085 if the traffic traverses n =10 nodes and

- P =089 if the traffic traverses n =5 nodes
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This simple example shows that the load limits imposed on the routers in a network should
to some extent depend on the actual size of the network. A large network containing long
paths should operate at dightly lower load than a corresponding network with shorter paths.

These load limits could also be found from equation (7.58) by solving for the load while
keeping the quantile fixed. In figure 7.11 we have plotted this load limit as a function of the
guarantee level [ given in logarithmic scale for two chain sizes, 5 and 10, and for four
values of quantile of the end-to-end delay. (In this figure the quantiles are scaled by the to-
tal service time end-to-end.)

2.5

guarantee level a=0.001

percentile
N

1.5¢

n=1,2,357,10,1520
0.5} frombelow

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
load

Figure 7.8: Logarithmic plot of the 0.001 percentile of the end-to-end waiting time
for chains of n=1,2,3,4,5,7,10,15 and 20 queues as a function of the load. The percen-
tile is scaled to one packet transmission time.

2.5

guarantee level a=0.01

percentile

n=1,2,35,7,10,15,20
frombelow

0.5

‘ 055 B ‘0.6‘ B ‘0.65; B ‘0.7‘ - 075 ‘ ‘0.8‘ - 085 - ‘0.9
load
Figure 7.9: Logarithmic plot of the 0.01 percentile of the end-to-end waiting time
for chains of n=1,2,3,4,5,7,10,15 and 20 queues as a function of the load. The percen-
tile is scaled to one packet transmission time.
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n=1,2,35,7,10,15,20
frombelow

0.55 0.6 0. 65 0.7 0.75 0.8 0.85 0.9
load
Figure 7.10: Logarithmic plot of the 0.1 percentile of the end-to-end waiting time

for chains of n=1,2,3,4,5,7,10,15 and 20 queues as a function of the load. The percen-
tile is scaled to one packet transmission time.

possible load

0.2 ty"/nb=10 tgnb=5  t,"nb=3 t,"/nb=2

n=>5 for upper curves
n=10 for lower curves

-4 -3 -2 -1 0

Figure 7.11:  The maximal possible load for a chain of equally loaded queues as a
function of the guarantee level (in logarithmic scale), where the corresponding percen-
tile for the end-to-end queueing delay, scaled by the total service times (end-to-end)
equals 2,3,5 and 10, and the number of queues (in the chain) equals 5 and 10.
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7.4.2 Numerical examplesincluding one or more low capacity access links

An end-to-end path in an IP-network will typically include one or more low capacity ac-
cess links that are well below the capacity deployed in the core networks. On the other hand
the core part of a path will typically consist of a rather large number of hops and the core
part could therefore contribute to the end-to-end delay by having a large number of hops.
Since the users observe their QoS on an end-to-end basis it is important to have models that
include both low capacity access parts as well as the high capacity core networks that may
have considerable diameter in terms of hops. In section 7.3 we have given the end-to-end
gueueing delay for the convolution of two groups of M/D/1 queues where we may have dif-
ferent loads in each group, and more important, also alowing for having different capacity
(service times) in each groups.

As the final example we consider a typica example where we have a path consisting of an
upstream access part, a core network with multiple hops and eventually a downstream ac-
cess part. In the example below we have taken the following parameters:

- The access part consists of one ore two low capacity links (with the same capacity).
- The core part consists of five or ten links all with the same capacity.

- The access link capacity is 1/10 of the corresponding core link capacity, giving for
instance the access capacity of approximately 15 Mbit/s if the core links are STM-1
link at approximately 150 Mbit/s.

This example could for instance represent the case of a typica DSL (Digital Subscriber
Line) access line that is connected to a core network with minimum STM-1 links (or high-
er). The CDF of the end-to-end waiting times are plotted for some typical load levels in fig-
ure 7.12-figure 7.15 and some quantiles are given in table 7.1, al scaled by the packet
transmission time for the low capacity link. The main influence on the end-to-end perform-
ance for this particular example will come from the access part if the network elements are
more or less equally loaded. This is easily seen from the figures below. The difference be-
tween the case n, =0 (i.e. neglecting the influence from the core network) and n, =10 is

limited. In the example where we assume that the access is less loaded, as in figure 7.15,
the situation is different and the core will contribute to a significant part of the end-to-end
delay.

In figure 7.16- figure 7.19 we have also given plots of some of the cases given in figure
7.12-figure 7.15 for the approximations described in section 7.3.3. For this example with
two groups of queues with only one or two queues in the first group we would not expect
that the asymptotic would be very accurate. This is indeed the case for the NA. For the LD
the curves are well above the corresponding obtained by the convolution approach. When it
comes to the UAA this approximation is surprisingly good for nearly all the cases consid-
ered. There is a small region close to point where the actual saddle point is close to zero,
where the UAA fails. These difficulties could however be ruled out by expanding the ex-
pression for assuming that the saddle point is close to zero. (See section 7.3.3 for closer ex-
planation.) The relative error is found to be less than 3% in the regions outside this region
for al the cases considered. Another observation is that the saddle points seem to be locat-
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ed a 0.5 quantile of the end-to-end queueing delay. By considering smaller quantiles we
will therefore be well away from the critical area giving saddle points close to zero.

n,=0 Pr=pP=0.6
w -0.5
[a) =
8 1) 5
-1 n2:10
-15
-2
n=1
2.5 =0 1 ny=
2 4 6 8 10
timet

Figure 7.12: Logarithmic plot of the CDF for end-to-end queueing delay for a se-
ries of two groups of size n;=0,1,2 and ny,=0,5,10 that are equally loaded. The capaci-
ty in the first group is /10 of that in the second group. The load in both groups is 0.6
and the time unit is scaled to one packet transmission time for the low capacity group.

CDF |,

Figure 7.13: Logarithmic plot of the CDF for end-to-end queueing delay for a se-
ries of two groups of size n;=0,1,2 and n,=0,5,10 that are equally loaded. The capaci-

ty in the first group is 1/10 of that in the second group. The load in both groups is 0.7
and the time unit is scaled to one packet transmission time for the low capacity group.
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Figure 7.14: Logarithmic plot of the CDF for end-to-end queueing delay for a se-
ries of two groups of size n;=0,1,2 and n,=0,5,10 that are equally loaded. The capaci-
ty in the first group is /10 of that in the second group. The load in both groups is 0.8
and the time unit is scaled to one packet transmission time for the low capacity group.

CDF
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Figure 7.15: Logarithmic plot of the CDF for end-to-end queueing delay for a se-
ries of two groups of size n;=0,1,2 and n,=0,5,10 that are equally loaded. The capaci-
ty in the first group is /10 of that in the second group. The load in the first group is
0.6 while the load in the second group is 0.8 and the time unit is scaled to one packet
transmission time for the low capacity group.
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Figure 7.16: Logarithmic plot of different approximations of the CDF for end-to-
end queueing delay for a series of two groups of size ny=1, n, =5 and n;=2, n,=10
that are equally loaded. The capacity in the first group is 1/10 of that in the second
group. The load in both groups is 0.6 and the time unit is scaled to one packet trans-
mission time for the low capacity group. (NA-Normal Approximation, LD -Large Devia-
tion, UAA -Uniform Asymptotic Approximation).

Figure 7.17: Logarithmic plot of different approximations of the CDF for end-to-
end queueing delay for a series of two groups of size n;=1, n, =5 and n;=2, n,=10
that are equally loaded. The capacity in the first group is /10 of that in the second
group. The load in both groups is 0.7 and the time unit is scaled to one packet trans-
mission time for the low capacity group. (NA-Normal Approximation, LD -Large Devia-
tion, UAA -Uniform Asymptotic Approximation)
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Figure 7.18: Logarithmic plot of different approximations of the CDF for end-to-
end queueing delay for a series of two groups of size n;=1, n, =5 and n;=2, n,=10
that are equally loaded. The capacity in the first group is 1/10 of that in the second
group. The load in both groups is 0.7 and the time unit is scaled to one packet trans-
mission time for the low capacity group. (NA-Normal Approximation, LD -Large Devia-
tion, UAA -Uniform Asymptotic Approximation)
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Figure 7.19: Logarithmic plot of different approximations of the CDF for end-to-end
queueing delay for a series of two groups of size n;=1, n, =5 and n;=2, n,=10 that
are equally loaded. The capacity in the first group is /10 of that in the second group.
The load in the first group is 0.6 while the load in the second group is 0.8 and the time
unit is scaled to one packet transmission time for the low capacity group. (NA-Normal
Approximation, LD -Large Deviation, UAA -Uniform Asymptotic Approximation)
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In table 7.1 we have given some quantiles for the example in the discussion on the basis of
the UAA model. The actual numerical values are checked against the graphs obtained by
the convolution approach in figure 7.13 and figure 7.14 and we conclude that the accuracy
is satisfactory.

Table 7.1: The different quantiles for the end-to-end queueing delay for the example above
with two groups of queues where the capacity in the first group is 1/10 of that in the second
group and all the queues are equally loaded and the time unit is scaled to one packet
transmission time for the low capacity group.

p=0.7 p=0.8

n 1)

(3=0.01 | 3=0.001 | 3=0.01 | 3=0.001
0 5 1.76 2.23 2.93 3.66
0 10 | 267 3.23 4.46 5.35
1 0 6.50 9.92 | 10.38 | 15.74
1 5 7.12 1054 | 1144 | 16.80
1 10 7.75 1116 | 1251 | 17.86
2 0 9.18 13.02 | 14.76 | 20.78
2 5 979 | 1364 | 1581 | 21.84
2 10 | 1041 | 14.26 | 16.87 | 22.90

One of the questions in mind for the given scenario is the following: What would be the
proper guarantee for the end-to-end queueing delay (not including other delay components
which must be added) for such a scenario? If we assume that the packet lengths are limited
to 1500 bytes the corresponding transmission times (service times in queueing terminology)
are approximately 0.8 ms for the access links and 0.08 ms for the high capacity links. By
the table above we have for instance the 0.999 quantile (8 = 0.001) for a network loaded at

0.8 to be approximately 17.9 ms for the case with two access links and ten core links. The
corresponding result with the dightly “looser” 0.99-quantile (8 =0.01) is 13.5 ms.

7.5 Concluding remarks

The end-to-end delay is an important QoS parameter for real time services. In IP networks
deploying statistical multiplexing this parameter will depend on several parameters like traf-
fic pattern, background traffic, number of hops, the network load, etc. The method pro-
posed gives an effective way of calculating the end-to-end delay distribution. It is shown
that load limit will depend on the size of the network indicating that a larger network
should be dlightly less loaded than a small network provided that the links have the same

capacity.

The first method proposed in this chapter applies only for links with equal capacity, for in-
stance the core part of an IP network. We aso give the corresponding results for a chain
containing two groups of links with different capacity in each group. This is a particularly
interesting case and makes it possible to model a path in an IP network that includes both
access and core links. The latter model is however far more complex and requires more
computing effort to obtain the desired results.
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38

Convolution of a given number of waiting
times of M/G/1 non-preemptive priority queues
having identical service time distributions

8.1 Some preliminary considerations

In the following chapter we shall consider a DiffServ scenario for the end-to-end delay for
typical RT (Real Time) traffic in a large scale IP-network. We consider a path in the net-
work consisting of a given number of (say) K nodes and the aim is to caculate the CDF
and the quantiles of the queueing delay for that particular path. We assume that each node
may be considered as a non-preemptive priority queueing system with two priority classes
where the RT traffic is scheduled as highest priority and the Best Effort (BE) type traffic is
scheduled as lower (second) priority.

To calculate the delay of a particular path we make the same assumption (approximation) as
in chapter 7: All nodes in the end-to-end path are statistically independent. This is the key
assumption for the model and makes it possible to obtain the end-to-end delay by convolu-
tion. Under which conditions the independent assumption applies is not quite clear, but it
seems to be reasonable for rather thin streams where the aggregate flows split at each node
and are mixed with traffic from different nodes.

We take the M/G/1 non-preemptive queueing system as the model to obtain the waiting
time distribution (for the high priority RT packets) in each node and then apply convolu-

tion to get the end-to-end waiting time distribution. If we let VV'; denote the waiting time in
the k’th node for the RT-packets, then the total delay may be written

\N',jp = V\/'f + .. +vv{2, and the LST of the sum is found as the product of the LSTs of the
waiting times in the individual nodes:

W (9 = [TV, (9 8.1)



Where W, (s) is the LST of the waiting time for the highest priority packets in an M/G/1

non-preemptive queueing model, and is given by the Pollaczek-Khinchin formula (with a
dlight modification). (See for instance [Taka9l] or [Klei76h]):

=~ _ o 1- pkH _ SL
o= 0 R B ®2)

where pi' and p; are the loads and B/ (s) and B! (s)are the LSTs of the remaining serv-
L

ice times for high and low priority packets respectively and further p = I Py - (The rela
P

tion between the LST of the remaining service times and the “ordinary” service times is

given as (g = 1-B(S) where b = E[B] is the mean service time.)
sb

It may be convenient to relate the end-to-end waiting time distribution based on the LST
(8.1) to the corresponding model without any priority. We may write W =WT + B[,

where WT and B[, are independent and WT represents the end-to-end queueing delay for
the corresponding path without any priority and B, is the extra delay due to the influence
from the lower priority packets. Consequently, the distribution of W\ may therefore be
found by convoluting the distributions of W™ and B[ . We may therefore re-write the LST:

WH (s) =WT(9)B],(s) with (8.3)

WS =[] and (8.4)

Br.(9) = []@-p, + p,B(9) (8.5)

The expressions above will aso apply for saturated system. In this case there will aways be
low priority packets present in the low priority queue and this corresponds to the case with

p, =1 (or p! +p- =1).

The rest of this section will be devoted to find the DF of the end-to-end waiting time
WL () = p{W*:) st}v based on the LST (8.1) and (8.2) or (8.3), (8.4) and (8.5). Especidly

N

we are interested in the tail of the CDF of end-to-end delay to get the desired quantiles.

As for the case without priority queueing (in chapter 7) it is possible to obtain the distribu-
tions above by inverting the transform numericaly. For instance the DF of the end-to-end
gueueing times may be written by the inversion integral as:
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Wi = P <d = S (o 9

where the integration line is parallel with the imaginary axis y:{qsza+iy} and where

a>0is aconstant and yL(—,%). Some problems with such inversion are mentioned in
chapter 7.

8.2 Exact results when all the nodes are identical

For the case where all the nodes are identical it is possible to carry the analysis significant-
ly further without introducing any approximations by applying similar approach as used in
chapter 7. This is due to the fact that it is possible to obtain the LST of the convolution
through partial derivatives of the load for the LST of the waiting times in a single M/G/1
queue.

By (7.14) we have

T o (Lmp) 0t [P 8.7
W' (t,p) = (<=1} 55 1_pW(t,p) (8.7)

W(t, o) denotes the DF of the waiting time in an M/G/1 queue with load p and with LST
~ 1-[0
W(s, p) = .
0= v (8:8)
The DF of the end-to-end queueing delay can therefore be written as the sum obtained by

inverting (8.3)-(8.5):

WL (D) = (- YWt p%) + Db, (p, KW (4, p" ) (OB () (89)

K
where br(p,K)=( r]p'(l— p)“" is the binomia probabilities with parameters

pL

1-p"
service times for the low priority packets ((0) denotes convolution). The expression (8.9)
represents a general expression without any specific assumptions on the actual service time

distributions. To carry the analysis any further specific choices on the service time distribu-
tions therefore have to be made.

p= and K and E)L(t)im is the 1 -times convolution of the PDF of the remaining

In the following we shall assume that both the high priority packets have constant service
times given by b" . In this case we have the DF on the form:
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W(t, p") = q(biH,pH) (8.10)

where q(x, p), given by (7.27), is the DF of the waiting time in an M/D/1 queue with serv-
ice times scaled to unity. The K -fold convolution of W(t, o) is found in section 7.3.2:

Wr(t,p") = q“(bLH.p“) (8.11)

where g(x, p) is given by (7.29).

8.2.1 Deterministic service times for low priority packets

In the following we shall assume that the low priority packets have constant service times
given by bt. It follows that the remaining service times for the low priority packets are uni-
formly distributed over the interval (O,b"), and we find the | -time convolution b (t)" on
the following form:

bt (1) = (b[) Z m((_rl_)n;n)' H (t - mb“)(t - mb“)"™ (8.12)

where H(X) is the unit step function. We find that the convolution WT (t, o™ )(Db" (t)™"
may be written as:

P")

W (t, ot )(DbL(t)m)—r( szgrl)mmyH(t mbt)1 <

where | Ki(t, p) are the following integrals:

Ki(t, p) = j(t—x)qu(X,p)dX for i =01..,K -1, These integrals may be evaluated in

x=0
terms of some auxiliary functions defined in Appendix F by equations (F.33), (F.34) and
(F.35). Collecting the different terms we finally find the following expression for the DF of
the end-to-end queueing delay:

Wi () = (- p)KqK(th P+
t 1kaJ
VRS k+r-1 —kb" - mb* 8.13
L D

where the auxiliary functions qi(x p); i =12..,K-2 &€ found from (F.34) and (F.35):
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K,i _(1_p)K MKil(_l)l K+k-i-2 o \KH o mp(k-x) 8.14
9% (%) =55 ZZ ”k![ Kol o1 ](p(k x)"'e (8.14)

K,K-1

For i = K —1 we must add an extra term to get q (% p):

kg - @=p) (JGE (D [ k-1 ) e (g} 8.15
g ) = [ZZ o (K_l_lj(p(k X)) et +(-1) (8.15)

(In the expression above we define the binomia coefficient as (
m ml

n] _n(n-1..(n-m+1)

n
also allowing for negative |, and implying (m} =0 for n>n.) The expression (8.13) for
the DF of the end-to-end queueing delay gives stable numerical results for at least up to
K =20 identical nodes. The numerical accuracy depends heavily on the fact that the auxil-

iary functions q*' (X, p) may be calculated by introducing “local” variables (see Appendix
F section F.2) and thereby avoiding summation of alternating series.

Substantial simplification yields for special choices of the parameters. We shall mention
these cases below:

A. The service times for the low priority packets are exactly an integer times the service
times of the high priority packets, that is bt =|bH with integer |.

In this case we can simplify the summation giving:

W0 == P 0 (o) + b, (p. ) e (ks —ko o) (8.16)
where ¢ (k,1)=1" %IJ}(— 1)"[:“](r " kr__T_l] (8.17)

B. The service times for low and high priority packets are equal, that is bt =b" (I =1 in
the case above).

In this case we have ¢, (0,1) =1and c, (k,)) =0 for k =12,.. giving:

WL =0 P*a (o) +3b.(p, K9 ") (8.18)

r=1

C. The queueing system is saturated, that is p" + 0" =1 implying p=1 in the expression
above giving:
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wo-(2) £

m=0
D. Saturated system and the fraction between high and low priority service times are an in-
teger.

We find:

S(KYK+K=1) o t-koH —mbt
1) [mj[ ‘1 Jq (") (8.19)

&
WH (1) = ch (k,l)qw-l(bLH—k,pH) (8.20)

E. Saturated system and equal service times for low and high priority packets.
We get:

W) = 4 oM (8.21)

8.2.2 Exponentially distributed service times for low priority packets

In this case we have that the remaining service times also are negative exponentialy distrib-
uted and BL(t) = ute " where pt :1/,uL is the mean service times. Further it follows that
the 1 -times convolution of the PDF of the remaining service times for the low priority
packets b* ()™ is Erlang-: distributed given as:

B ()™ = p ()™ o (8.22)
(r=-n!

The convolution of the DF of the K -folded waiting time for an M/D/1 queue (all with serv-
ice times scaled to unity) with the PDF of an Erlang-1 distributed variable with parameter
M are given in Appendix F by equations (F.22). Applying these results we may write the
DF of the end-to-end queueing delay as:

t

t
A br

W (1) = (L- |0)KqK(b

10", o) (8.23)

2"+ b, (p,K)F, (

where Fy ((t, 11, p) isgiven by (F.22).
Specia case:

A. The queueing system is saturated, that is p™ + p* =1 implying p=1 in the expression
above giving
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t
W) = Fy (4D 1) (8.24)

8.3 Approximative methods

As for the case without priority it is possible to obtain approximations by assuming that the
corresponding stochastic variable converges to normal distributions. Since the normal distri-
bution is characterized by its two first (lowest) moments, this leads to the following approx-
imation for the PDF and CDF of the convolution:

magy = L t—Km
wiph (1) WMW) and (8.25)

t—Km

WHNA (1) = 1- g = ) where (8.26)

2 2 2 2 2
m=m" +m- and o° = "+ 6" Further m" = E[V\/H] and 0" = E[WH ]—mH are
the mean and variance of the queueing delay in the corresponding single server M/G/1

gueue with only high priority traffic present, given in terms of the three first moments of
the service time distribution (and aso the load) through:

H2 H H3 H
m' = E(WT] = E[LH]—p—H and o = E[LH]—P—H+mH2 (8.27)
2E[B"]1-p 3E[B"1-p

The influence from the low priority traffic is given through the remaining service times for
alow priority packet by:

L2 L3
E[B 2 E[B 2
mL:p[ ] o2z pEB L L

8.28
2E[B"] 3E[B] (8:26)

w0 {2

1 X . 1 ¢ 2., .
Further AX)=___€ 2 s the standard normal density and ¢(x) = ——|e “dt is the
( N y and 90 = —=|

X
standard normal integral.)

The second and quite different approximation (though also involving normal distributions)
is based on LD (Large Deviation) theory. This can for instance be reflected through the in-
version of the LST of the end-to-end delay given by the inversion integral

1

H St ~L K
Wip(t) = 5= [€[W(s p)(1-p-pB(s))] ds (8.29)
Y

As for the case without any priority (in chapter 7) we may find asymptotics by the Sad-
dle Point method. Formally this approximation is given as the asymptotic behaviour of
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wi, (Kx, p) for large values of K and fixed x. With this substitution the inversion integral
may be written

1 — S,X .
Wi (Kx, 0) :Tﬂfe KeeNds with (8.30)
v

g(s,x) =log(1- p" B" (s)) ~log(l~ p+ pB"(s)) - sx~log(1 - p") (8:31)

We get wHLP(t) = f(%); where

NP

1 —-Kg(s7(x),x
f(X):ix e (0 (8.32)

and where S=S"(X) is the solution of the equation

PUBY (9, PBL(Y

+x=0
1- p"BH(s) 1-p+ pB-(9) (8.33)

and

h(x)=-g"(s.x):[ p B (9 } _[ pB (9 } L PBN (9, B (9

1-p"BH(s) 1- p+ pBt(s) 1-p"BH(s) 1-p+pB-(s)
(8.34)
The corresponding expression for the DF as an inversion integral is:
—Ka(s x)
_1ce
Wp(KX) = 5 | ——ds (8.35)
y

If we apply the Saddle Point method directly on (8.35) we must make distinction between
two cases depending on the sign of saddle point s7(X). It turns out that s"(X) is positive
for small values of x but becomes negative as x increases. In the latter case we have to

pick up the residue at s=0 and we obtain the following approximation by combining the
two cases:

WH P (1) =1- F(%) where (8.36)

F(¥) = H(s"() - CR (8.37)

1
ORI
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where H(t)isthe unit step function.

It turns out that the “ordinary” Saddle Point method given by (8.36) and (8.37) fails to ap-
proximate the integral (8.35) when the root s”(X)is close to the pole at s=0. It is, howev-
er, possible to extract that pole and obtain a Uniform Asymptotic Approximation (UAA)
that is uniform with respect to x and also yields in the area where S”(X)is close to zero.
We find the following approximation:

t
WHP () =1- Gl) where (8.38)

(s 1 sgn(s”(x))
G = o — 0 2K 0 , — @~Kg(s"(x),x) -
(%) = g-son(s°(x)),[2Kg(E7(x), X)) - e {SD(X)W . g(sm(x),x)}

(8.39)

It is quite easy to see that the function defined by G(x) does not have any singularities for
values of x giving saddle point close to zero. By expanding the brackets to third order in
sP(x) we find:

e~Kg(s"(x),x)

when s”(X)is close to zero and where h,(x) = -g"(s”(x),X). The accuracy of the UAA

G(X) = gl-sn(s° (X)), 2KG (00, ) + th; (8.40)

seems to be good and gives numerical values very close to the exact convolutions for a
broad range of parameters also including cases where the asymptotic is not fulfilled, i.e. for
chains of relatively small sizes. The “classical” LD approximation, however, gives strict up-
per bound on the convolution and can therefore be a desirable method to apply for this rea
son.

8.4 Examples

In the following we shall give some numerical examples by applying the models described
in the previous section where we focus on some typical scenarios. We assume a network
with two priority classes and HOL scheduling and we focus on the end-to-end delay for the
high priority traffic. The high priority class will typically be real time traffic like voice and
video that will have constraints on the maximum end-to-end delay. Under the assumption
that the load from the high priority traffic is limited we would like to find out the effect the
low priority traffic will have on the performance of the high priority real time classes. This
is a typical situation in IP-networks deploying DiffServ. In an IP-network the end-to-end
delay for a particular stream will be the sum of the delay obtained in a cascade of routers
(from the sender to the receiver). The total end-to-end delay will then consist of the wait-
ing times in each node plus service times (transmission times onto the links). In the exam-
ples below we shall consider a particular chain of routers in a packet network and we as-
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sume that the routers have output buffers with two priority classes with no extra interna de-
lay due to processing of the packets.

To apply the results in section 8.2 we must assume that all the nodes in the chain have
identical parameters:

The link capacity is equa for all the routers.

Packets for the two priority classes arrive according to Poisson processes with pa-
rameters that are equal in each router.

The packet lengths for the high priority class is constant with mean P, (All the nu-

merical results are scaled according to the transmission time for a high priority pack-
et.)

The packet lengths for the low priority class are either constant or exponentially dis-
tributed with meanp, .

The load from the high priority traffic class is p,, and we shall assume that routers
are saturated, this means that there will always be low priority packets to be trans-
mitted, implying that the low priority load p, 21—p .

By the last assumption we may use the somewhat simplified formula given by the equa-
tions (8.19) and (8.24) in section 8.2 to obtain the DF of the end-to-end delay distribution.

With these definitions above we find mean service times for packets b, = P%,

b =u

o= P% where C is the link capacity. In the examples below we have chosen sce-

narios among the following parameter values:

The ratio between low and high priority packets % is either 1,5 or 10.
H

The load from high priority traffic p,, is either 0.4 or 0.6 .

- The number of hops K iseither 5, 10 or 15.
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timet

Figure 8.1:  Logarithmic plot of the CDF for end-to-end queueing delay for high prior-
ity packets with load equal to 0.4 and 0.6 scaled by the service times for a high priority
packet. The number of hops is 5 and the ratio between low and high priority packet
lengthsis 1, 5 and 10 and the low priority packets are constant.

0 ;
K=10 hops

w -1 1
a
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-5 P,=10 ]

100 120

timet
Figure 8.2: Logarithmic plot of the CDF for end-to-end queueing delay for high prior-
ity packets with load equal to 0.4 and 0.6 scaled by the service times for a high priority
packet. The number of hops is 10 and the ratio between low and high priority packet
lengthsis 1, 5 and 10 and the low priority packets are constant.
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CDF

Figure 8.3: Logarithmic plot of the CDF for end-to-end queueing delay for high prior-
ity packets with load equal to 0.4 and 0.6 scaled by the service times for a high priority
packet. The number of hops is 15 and the ratio between low and high priority packet
lengthsis 1, 5 and 10 and the low priority packets are constant.

K=5 hops

pL=0.4 for lower curves
pL=0.6 for upper curves

CDF
AN

25 56 7‘5 160 1é5 tiléo t 17‘5 200
Figure 8.4: Logarithmic plot of the CDF for end-to—elqaequeuei ng delay for high prior-
ity packets with load equal to 0.4 and 0.6 scaled by the service times for a high priority
packet. The number of hops is 5 and the ratio between low and high priority packet
lengthsis 1, 5 and 10 and the low priority packets are exponentially distributed.
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K=10 hops
pL=0.4 for lower curves
pL=0.6 for higher curves

CDF

50 100 150 200 250 300
timet

Figure 8.5: Logarithmic plot of the CDF for end-to-end queueing delay for high prior-
ity packets with load equal to 0.4 and 0.6 scaled by the service times for a high priority
packet. The number of hops is 10 and the ratio between low and high priority packet
lengthsis 1, 5 and 10 and the low priority packets are exponentially distributed.

In figure 8.1-figure 8.3 we have depicted some results for the case when the low priority
packet lengths are assumed to be constant. This case could represent the case when we have
the packet length more or less limited by an Ethernet frame of 1500 bytes and in addition
by assuming rather short real time packet lengths of around 200 bytes. We observe rather
strong impact from the ratio of the low and high priority packet lengths. The influence of
the load from the high priority traffic is not that strong and this is more or less expected
since we assume that the high priority load is limited to say less than 60%, which seems to
be reasonable keeping in mind the need to reserve some part of the capacity also for low
priority traffic. If we for instance take an example with STM-1 links of approximately 150
Mbit/s and assume that the real time packet lengths are 200 bytes, this will give packet
transmission time of around 10 psec. By assuming a path of 15 hops and assuming packet
length ratio of 10, then figure 8.3 provide us with the appropriate quantile. If we take the 1-

10°3 quantile for the highest load we find the appropriate value to be around 125 (high pri-
ority packet transmission time), and this leaves us with a value of 1.25 ms for this particu-
lar case. This tells us that if a core network deploying DiffServ is properly engineered so
that the high priority load is limited to say 60% then the end-to-end queueing delay will be
limited to a few milliseconds. (One has to add the contributions from the access part of the
particular path to get the complete picture, and this contribution could be larger due to
slower links in the access network.)

In figure 8.4 and figure 8.5 we have given corresponding results for the case with exponen-
tially distributed packet lengths for low priority packets. We see that the exponential distri-
bution of the packet lengths gives considerably worse performance. This is due to the tail in
the exponential distribution compared with a rectangularly distributed variable. In this case
we also observe a very small influence of the high priority load (as long as it is well limit-
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ed to say 60%), and we conclude that the actual performance is determined by the number
of hops and the ratio between the mean packet lengths between low and high priority pack-

ets. The corresponding 1-10°3 quantile for 10 hops is found to be approximately 250, which
is twice that of the same quantile with 15 hops and constant packet lengths.

K=5 hops

CDF

PL/PH:]'

Convolution
UAA

5 10 15 25 30

20,
timet

Figure 8.6:  Logarithmic plot of different approximations of the CDF for end-to-end
queueing delay for high priority packets with load equal to 0.4 and 0.6 scaled by the
service times for a high priority packet. The number of hopsis 5 and the ratio betweer
low and high priority packet lengthsis 1 and the low priority packets are constant. (NA
Normal Approximation, LD- Large Deviation, UAA- Uniform Asymptotic Approximation

K=15 hops

CDF

-2y pr=0.6 ]

Convolution

UAA \
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timet

Figure 8.7:  Logarithmic plot of different approximations of the CDF for end-to-end
queueing delay for high priority packets with load equal to 0.4 and 0.6 scaled by the
service times for a high priority packet. The number of hops is 15 and the ratio between
low and high priority packet lengths is 10 and the low priority packets are constant.
(NA-Normal Approximation, LD- Large Deviation, UAA- Uniform Asymptotic Approxi-
mation)
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Figure 8.8: Logarithmic plot of different approximations of the CDF for end-to-end

queueing delay for high priority packets with load equal to 0.4 scaled by the service

times for a high priority packet. The number of hops is 10 and the ratio between low
and high priority packet lengths is 5 and 10 and the low priority packets are exponen-
tially distributed. (NA-Normal Approximation, LD- Large Deviation, UAA- Uniform As-

ymptotic Approximation)
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Figure 8.9: Logarithmic plot of different approximations of the CDF for end-to-end
queueing delay for high priority packets with load equal to 0.6 scaled by the service
times for a high priority packet. The number of hopsis 5 and the ratio between low and
high priority packet lengths is 5 and 10 and the low priority packets are exponentially
distributed. (NA-Normal Approximation, LD- Large Deviation, UAA- Uniform Asymptot-
ic Approximation)
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In figure 8.6-figure 8.9 we have tested the different approximation described in section 8.3
by applying some different values of the parameters. We may draw the following conclu-
sions:

- The NA does not behave well in the tail of the distribution. And often it will under-
estimate the actual probabilities. On the other hand it is very simple and easy to ap-
ply.

- The LD approach gives quite reasonable results for a broad range of the distribution,
especiadly in the tail. In addition it also provides us with an upper bound. To apply
this method one has to locate the saddle point for each value one would calculate the
distribution function of.

- The UAA is an excellent approximation and gives a uniform approximation of the
distribution over the whole range of the distribution function. The relative error is
very small in al the cases we have considered (less than 3%) and it is nearly impos-
sible to make the distinction in the graphs. It also seems to give accurate estimates
for values where the asymptotic is not fulfilled, i.e. for chains consisting of only one
or two queues.

8.5 Concluding remarks

In this chapter we have discussed and given some new methods to calculate the end-to-end
queueing delay in a packet network where rea time traffic has strict priority over other
classes of traffic. The described method could for instance be applied to estimate typical
end-to-end delay in a core network deploying DiffServ. The proposed methods are tested
against known approximation such as the saddle point method. Especialy the UAA (Uni-
form Asymptotic Approximation) gives very accurate results. Compared with the exact
methods proposed in this chapter the UAA requires that the corresponding saddle points
have to be located for each single value under consideration.

We have also demonstrated by the numerical examples that by deploying DiffServ in a core
network with STM-1 links or links with higher bit-rate and by limiting the load from the
real time traffic to less than 60% it is possible to guarantee the corresponding end-to-end

queueing delay to just a few milliseconds with very high probability (e.g. 1-10° quantile).
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9

Discrete time queueing models

9.1 Introduction

In the previous chapters we have focused on models to analyse the traffic dependent end-to-
end waiting times for a path in a network deploying statistical multiplexing. The aim was to
obtain models with limited complexity so that they could be used for dimensioning purpos-
es. The “critical assumption” for those models is of cause the independent assumption need-
ed to obtain the corresponding Laplace transform on product form, and we did not try to
find the actual condition for which this approximation is applicable.

One approach would be to analyse a particular traffic stream (flow) as it traverses a multi-
plexer and try to capture the characteristics of that particular traffic process (flow) at the
output. This particular output process will then be mingled with other traffic streams and
will congtitute the input to the next multiplexer in the chain under consideration. By this ap-
proach we are able to trace a particular stream (flow) describing the distortion as it passes
through a particular path through the network. Similar approach to study end-to-end behav-
iour is well documented in the literature. (See [Matr94a], [Matr94b].)

It turns out that the discrete time queueing model is easier to analyse than the correspond-
ing continuous time counterpart, and this is mainly due the discrete nature of the corre-
sponding models; where the corresponding analyse tool will be based on generating func-
tion techniques rather than Laplace transforms (often applied for continuous time models).
Nevertheless, it is well known that dotted queueing models could be regarded as approxi-
mations of continuous time models and in this perspective the discrete time models will be
of interest to analyse. In the following we shall consider a discrete (dotted) queueing mod-
el where we will put the main emphasis on the possibility of tracing a particular traffic
stream as it passes through a multiplexer where it will be disturbed by crossing packet
streams (background traffic). We are particularly interested in describing the output process
of that particular stream which then will be part of the input traffic to the next multiplexer.

9.2 A discrete time queueing model with a renewal foreground and a
batch background stream as input

The queueing model taken as basis of the analysis is depicted in figure 9.1 below. It is a
single server, infinite capacity queue operating in discrete (or dotted) time with two classes
of customers. Any activity in the system, e.g. arrivals, departures, etc., is assumed to occur
at the dot boundaries.



The arrival process is formed by superposing of a discrete time renewa process, fore-
ground stream (FS), and a (discrete) batch arrival process (e.g. Poisson or Bernoulli proc-

ess), background stream (BS). We let the dots be successively numbered k = 0,1, ... and
we assume that the batch size in dot k, generated by the BS, B, is independent and fol-

lows a general (discrete) distribution b(i) = P(B, = i) with generating function B(z). The
FS renewal process is characterized by the distribution of the numbers of dots between ar-
rivals A, = T,,,—T, where T, is the slot number for the n‘th arrivd of the FS;

n=01,..,andweassume that A, isindependent (of n and of BS) and follows a gener-
al (discrete) distribution a(i) = P(A, = i) with generating function A(z).

Foreground process: Discretetime renewal process

NE BEE BEEE NTe
Background process. Batch arrival process m m

I EEEEEEE .

Figure 9.1:  The queueing model for the packet multiplexers.

The total load on the multiplexer is p = pgg+ Pgg Where prg = is the load from

1
A(1)
FS, and pgg = B'(1) istheload from BS, and we shall assume that p <1 to secure stabili-
ty for the queueing system.

We observe the queue size at the end of each dlot, and we define the following stochastic
variables. Q,-the number of packets in the queue at the end of the slot just prior to the

n‘th arrival of a packet from the FS, and conditioningon A, = T,,,—T, = k welet Qin—
the numbers of packets in the queue in the end of the slot T, +i (i = 1, ...,k). If we let

Bin denote the numbers of packets arriving from BS during slot T, +i, then we have the
following relation between the queue lengths in the different dots:

Q= v} @
Q =[Q *+B -1 © fori=23 ..k (9.2
We obvioudly also have:
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Qn+1 = Qﬁ (9.3)

9.2.1 Transient queueing analysis

The equations (9.1)-(9.3) describe the evolution of the queue length when it is combined
with the arrival instants T, of the FS. In the following we shall define a joint generating

function taking both the evolution of the queue content and the arrival of the FS into ac-
count by defining:

Q,(z.x) = E[z¥X"" and (9.4)

Q\(zx) = E[zQ”xT” Ti i —T, = k] fori =23, ..,k (9.5)

By the relations (9.1) and (9.2) we find the following recursions:

QNzx) = Q,(z X)B(2) and (9.6)
Qdzx =z X)E(Zz) +(1—%)qin_l(x) fori = 2,3, ...,k where 9.7)

qin(x) = E[xT”l

(Q.+B =g The1—Th= k} is the boundary transform, taking into ac-

count the probability of having an empty queue in dlot T +i+1 (i = 1,...,k—1). Solv-

ing (9.7) recursively we obtain Ql;(z, x) as function of Qﬁ(z, X):

k-1

QA% = Q(z x)(g(zg)k_l+(1_§) 303D fork=12.. (99

=1
For n = 0 we shall make the conditions that T, = 0 and Qé = m implying that:

Az x) = zm(ﬁ(zﬁ)k_l+(1_§) kgq{)(x)(g(zﬁ)k_'_l and by (9.6) 9.9)

=1

Kzx = 2Q,(z x)(ﬂzﬁ)ﬁ@i) kgq'n(x)(@z@)k_'_l forn=12 .. (910

=1
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k
Since we have E[z>"'x " The1—To=K = xkE[zQ"xTn The1—Th= k} = XkQE(Z, X)
implying
Kk -k
Qn+1(zx) = > a(k)x'Qn(z x) (9.12)

k=1
By applying (9.11) on (9.9) and (9.10) we find:

Qzx) = z’“A(xﬁ(ZZ))ﬁ +(1_§) éoag(x)(ﬂzﬁ)k and (9.12)

Q. 1(zx) = 2Q,(z x)A(ngZ)) +(1—9 ki af\(x)(%z))k forn=12. (913
=0

w

k+1+1

where we aso have defined the quantities aﬁ(x) = Z a(k+1+1)x qln(x). To com-

=1
bine the equations (9.12) and (9.13) we introduce generating functions

Qzxs) = ¥ s7'Q (zx) and 9 (x s) = 3 54 (x) (9.14)

n=1 n=1
(where we have indicated that we have the condition Qé = m). By multiplying (9.13) by
s" and summing and combining with (9.12) we may solve for Q(z x, s) by the fraction:

o) 5+ (- ¥ o2

Q(zx9) =
o R

(9.15)

It remains to determine the unknown coefficients ak(x, s) in (9.15). To do so we shall as-
sume that there is a maximum number k., so that a(i) = 0 for i >k (This restric-
tion we put on the discrete distribution is quite weak; since we always may approximate an
infinite (countable) discrete distribution by a finite one by simply choosing k.., large

X max *

kmax

enough.) This means that A(z) = Z a(i)zi is a polynomial of degree K,, . With this as-
i=1

sumption we may apply the powerful method, often used to determine unknown coeffi-
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cients in generating functions given as a fraction, by locating the zeros of the dominator in-
side the unit disc and claiming analytical behaviour of the transforms in the same domain.

If we st K=Kk,,—1 we find from the definition that ak(x, s) =0 for
k>K-1 = k,,—2. Next by applying the famous Rouche's theorem we have that for
|[§<land|x<1or|d<1and|x <1 that the equation:

1—szA(ngE)) =0 (9.16)
will have exactly K distinct roots r; = r(x,s); j = 1,...,K inside the unit disc |14 <1.
Moreover, by letting z - r; we must have r, A XA)) 50 (1—r—1j)Kzlak(x, s)(B—(r:J—))k =oor

k=0

K-1 m

3 a9 —L’) Tl ﬁB(r) forj=1,..,K (9.17)

k=0

The equations (9.17) are linear and determine the unknown coefficients ak(x, S) unique-
ly. By exploiting the specific form of this linear system we find by applying (G.5) in
Appendix G:

< oalo « B@ B
ma(B(2) m__z,( BN T z_ N
7 )Bm Z J _;A(X n))B“i)l ll_ll B _B()
r SR LE A
Q"zxs) = : I (9.18)

1- szA(xﬂzz))

The transform (9.18) gives the transient behaviour of the queueing model seen at instants
just prior to the n‘th arrival of the FS and will be a good starting point to obtain the distor-
tion (or colouring) of the FS as it passes the multiplexer queue. For small values of the pa
rameter K (9.18) will be well suited to obtain the desired transforms, however, for larger
values of K it will be more efficient to transform the expression into a contour integral. In
Appendix G (by (G.16) and (G.17)) we have found the product:

K

M (ﬁ_ﬁ) = (ﬁ) [1 szA( J—lﬂexp[l(zx s)] (9.19)

where 1(z, X, S) is the contour integral:

Iog[l—sZA(xwﬂ

_ 4 4 r 1 _BQ

Iz x9) = 5= 55 J) iz (9.20)
< B@ BO B()
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and where C, is the disc |{| <r where we can choose 1<r<r,,, and where r,, is

the root of (9.16) outside the unit disc with the smallest modulo. (For more informa-
tion see Appendix G)

K

From (9.19) we have | (L—L) = (i)K—h@—expu(z, x9)] . By taking the limit
Y4

\B(z2) B(r) B(2) z N
I=11%]j B(Z) B_(JTB
K
o1 Qi ooy oy ) .
z-r1; gives | ﬂz,(B(fJ) B(r,)) (B(rj L_r_B.(r_)exp[l(rJ,x,s)] where we have set
=L1#]

B B(r)?
h(z) = 1—szA(xﬁZ§). Then by inserting for the products in (9.18) and simplifying,

the expression for Qm(z, X, S) may be written as:

RIS DG il ar

Qm(z, X,S) = Z + m exp[l(z x,s)—I(r;, x,s)]
B(2) B(Z YLy z hi(r;) !
l—SZA(XJZ_)) j= (1 rj)(B(rj)_B(z)) !
(9.21)
We recognize (9.21) as (the residue expansion of) the following contour integral:
ma((BQY(_1 _IB(Q)
i L, (19 A (5 B(Oz)
Q"(z x,s) = E—J exp[1(z %, 5) - 1(Z, x, 5)] & (9.22)

"9 (13 (5t s (1-2A0EE)

where C,, is the disc |{| <u with u<1 and where the radius u is chosen so large that

z and all the roots r (but not z = 1) are inside the disc C,,.

By the transforms (9.22) and (9.20) or (9.18) the transient course of the queueing model is
fully described in terms of both the queue length and the time between arrivals of the FS.
In the succeeding we shall use the integral form above, mainly because it is far more easy

to obtain the limit s - 0, needed to get the queuing behaviour between two succeeding ar-
rivals of the FS. That is Q,(z x) = limQ(z x,s) which is easily obtained from (9.22)
s-0

since IimOI(z, X,8) = 0 (from (9.20)). First, however, we need to find the stationary queue-
S -

ing distribution.

9.2.2 Stationary queue length distribution

Since we have expressions for the transient transforms, it is quite easy to get the corre-
sponding steady state transforms. Under the assumption that p = ppg+ pgg<1 the station-
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ary distribution exists and may for instance be found from the transforms above by apply-
ing Tauberian theorem [Fell68b]. We have

Qy(2) = E[ZQO] = limQ,(z1) = Iiml(l—s)Qm(z, 1,9) (9.23)

To find the limit we may use either (9.18) or (9.21). From (9.16) with x = 1 we see that
z = 1 isaroot in the equation for s = 1 and therefore for one of the roots r = r]-(l, S)

we have r]-(l,s)ql when s- 1. We denote this root as r; and we find

drl _ 1 . . _— .
T = XD By applying (9.18) we find the limit (9.23):
B(r®
awa-p1-3 « B-=
Q2 = with r,d=r/(1,s) (9.24)

AT

If we use (9.21) then the corresponding stationary transform is found to be:

Q(2) :(1-B(1»§§§%%a@[wla-4Q1n with (9.25)
log[ 1—zA(BQ)
I0z) = 1(z1,1) = ﬁ! og[i (Lz n(ﬁ_i;)@ﬂ (9.26)

B2 B()

For numerically calculations of the transform above, used for finding the stationary distribu-
tion, it is obvious that for small value of K (9.24) will be preferable since a small numbers
of roots may be easily found numerically. However, for large values of K the product in
(9.24) will become numerically unstable and it is better to evaluate the integral 1L{(z) nu-

mericaly and apply (9.25). In (9.25) we aso recognize the queue length transform with
only the BS present (without the FS)

- (1_R (z=1)
Qgs(2) = (1 B(D)Z—B@)’ (9.27)
S0 the exponential term exp[1T(z) —IL{1)] represents the “add on” due the FS. It seems
also obvious that if the mean time between arrivals in the FS is large, that is ppg = 'ﬁ

is small, then exp[IL(z)—1L{1)] =1 and Qgg(2) will be a reasonable approximation of
Qo(z)-
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9.3 Delay and delay jitter for the FS

Based on the transient transforms (9.18) or (9.22) and the corresponding stationary trans-
forms (9.24) or (9.25) we may find the characteristics of the output process for the FS when
the queueing system is in steady state. Although we consider an FCFS (First-Come First-
Serve) there still remain question in which order an FS packet is served when it arrivesin a
dot with arrivals of (possible several) BS packets. Below we have analysed three possible
orderings of an FS packet when it arrives in a slot with (possible several) BS packets:

- F-The FS packet is dways served first when it arrives together with BS packets
- R-The FS packet and possible BS packets is served at random
- L-The FS packet is always served last when it arrives together with BS packets

Among these three orderings the random will be the most important one since this requires
no specia treatment of any packets (from any arrival streams). We let D,, denotes the de-

lay for the n*arrival from the FS. Then we have
D, = Q,+ U, where (9.28)

U, isthe delay for a FS packet due to the possible arrivals of BS packets in the same dot.

We are interested in the joint distribution of D,,—D, and T,, and we define the transforms:

Th

W, (%) = E[2" """ and (9.29)

W(zxs) = 3 "W, (zX) (9.30)
n=1

Below we shall analyse the three cases described above separately to obtain the transform
W(z x,s) and we shall use (F-first, R-random and L-last) as superscript to indicate (and
distinguish) the different cases.

9.3.1 TheFS packet is always served first when it arrives together with BS
packets

In this case we have D,, = Q,+1 so D,,—D, = Q,—Q,. By conditioning on Q, = k

and Qé = m wefind:

E[ZD,,— DOXT,,] _

Qo =k Qg =MP(Q,=k Qz=m) =

z Z E[ZQn_QOXTn
k=0m=0

w w

z Z Z_an(Z- X)P(Qo =k, Q(l) = m) or

k=0m=0
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w w

We(zx8) = > > z_ka(z, X, S)P(Q, =k, Qé =m). Since Qé = B(l)+Q0 we find the

o k=0m=0
joint transform:

E[Z?OZSO] = E[(lez)QOJE[ZzBé] = B(2,)Qu(z,2) (9.31)

By using (9.22) for Q™(z x, s) and applying (9.31) with z, = 7! and z, = { we get:

We(zx,5) = i_I( )B(Z)A( )QOGXB(Z) Bﬂ(‘()@)

THOU-Y (s (1-2AbE)

9.3.2 The FS packet and possible BS packets arriving in the same slot are
served at random

exp[1(z x, s) = 1(Z, X, s)] dC (9.32)

In this case we have D, = Q,+ U, where U, is the number of BS packets arriving in

the same dot as an FS packet and is placed prior to the FS packet when the mutual
position among them is chosen at random. Then we have D,—-Dy = U, +Q_ -Dj

and by conditioning on D, = k and Q(l) = m we find:

Pn=Do T

E[2 "]—E[Z]Z ZE[ "|Dg =k Q= mP(Dy =k Q=m) =

k=0m=0

w

E[Z1S T 24Qu(z 9)P(Dy = k Q= m) or
k=0m=0

w w

Wg(z x,8) = E[zU"] Z Z z_ka(z, X, S)P(Dy = K, Qé =m). Since Qé = Bé+Q0 and
k=0m=0
Do = Uy +Q, we find the joint transform:

E[zl"zg‘)] = E[zllJOZZBo]E[(leZ)QO] = U(z3,2,)Qp(212,) (9.33)

In Appendix G we have found the z-transform of the joint distribution of “extra’ delay U,

and the number of arrivals from the BS Bﬁ as, (see (G.19)):

U(z,,2,) = E[zgnzan} ﬁ[Bl(zz) Bl (2,2,)] (9.34)
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z

where Bl(2) = J'B(x)dx is the integral of the z-transform of the BS.
1

By using (9.22) for Q™(z x,s) and applying (9.33) and (9.34) with 7, = z* and z,=(
we find:

(ercr-si( D)l (5T -2

-1 _2zBl(z B(Z) _
Wi(z %, 9) zm(z—l)B(z)(:!. (Z_l)(L_L)) (1_31A(X%Q)) exp[l1(z %, 8) = 1(Z, %, 8)] &
! B({) B(z

(9.35)

9.3.3 TheFS packet is always served last when it arrives together with BS
packets

In this case we have D, = Qn+Bi+1 0 D,-Dj = Bﬁ+Qn—Qé. Conditioning on

Qé = m we obtain:

E[zD"_DOXT"] = E[zBi]g g: E[ Q° = m]P(Q0 =m) =

k=0m=0

B(2) Y Z"Qu(zxP(Q=m) o Wzxs) = 3 7"Q(zx9)P(Qy=m). Since
m=0 m=0

Q = Bé +Q, we find the transform:

E[ Q°] = E[(2) °]E[22 ] = B(2)Qy(2) (9.36)
By using (9.22) for Q"(z x, s) and applying (9.36) with z — g gives:

(z-1)8(%)A (5)(L--2EQ)
Wiz x9) = 5 [ —— Z( *la BQ) 5(251) )exp[l(z, %, 9) 12, X 9)] & (9.37)
Cu (1_2)(%_5(2))(1 SZA( Z D

9.34 Inter-departuretime, jitter and queueing delay distributions

The joint transforms (9.32), (9.35) and (9.37), one for each of queueing discipline defined,
makes it easy to find the inter-departure time distribution, jitter and queueing delay.
We have that the jitter J is the difference of the delay for two succeeding packets
from the FS:
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J=D,;-D, and (9.38)

the corresponding z-transform is smply:

@) = E[27 = W(z 1,0) (9.39)

Similarly the inter-departure time between succeeding packets G from the FS is simply
the difference between the departure times:

G=T,+D;-Ty—Dy = D;—Dy+T; and (9.40)
the z-trasform is found by:

Do+ T,

G(2) = E[Z 1 = W(z 2 0) (9.41)

We also denote D(2) = E[ZDO] the z-tranform of the delay for a packet from the FS.

It is now easy to find the transforms for the three different cases defined above by
using (9.32), (9.35) and (9.37):

a F-TheFS packet is always served first when it arrives together with BS packets

(1-Pe@AZ)el)(5H -2

BQ) )2

Fo = ﬁ@g (1-3)(5% - z)) S (9.42)
‘ B() B(z

g B(Q

Fo - ——J( )B(Z)A( )Qo(z)(s(z) B(@) )dz and (9.43)
Ly |
Z

D" (2) = 2Q,(2) (9.44)

b. R-The FS packet and possible BS packets are served at random

4 4 BQ)
R = = -2 (0o ) e B(o) (9.45)
21'[|(z—l)B(z)C @- )( 14 )

g RN

_gif¢ B(Q) Z _{B@Q
e (B -ei(§)aZ)od ) (505 = )) . 0.46
¢ @ = 35z-1B@ (L) d an (946)
Cu (C-1) 50 B@

DR(2) = - )BI(Z)QO(Z) (9.47)
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c. L-The FS packet is always served last when it arrives together with BS packets

RS SR Crion)

Mo = ] B (9.48)
21'[|Cu (1_1)($_B(z))
(z-1)B ¢ Al zB ¢ (4=109)
G2) = = Q ( ¢ ) Q(B(Z) B(Q)® ) ¢ and (9.49)
2n|j

« (Y sy

D"(2) = zB(2)Qy(2) (9.50)

In &l the cases above the steady state z-tranform of the queue length distribution Qy(2) is

given by either (9.24) (the root representation) or (9.25) and (9.26) (the integral representa-
tion). Further the contour C, is chosen as acircle {[¢| = U} sothat { = z isinside but not

( =1,thatis|gd<u<1.

9.3.5 Some variants of the inter-departure time and jitter z-transforms

The representation of the z-transforms above in terms of complex integrals is quite benefi-
cia since it is possible to transform the contour by picking up the poles. This can be done

for the polesat { = z and { = 1. By letting the contour C, be chosen so that both { = z
and ¢ = 1 isoutside we get by picking up the pole { = z:
a F-The FS packet is always served first when it arrives together with BS packets

Y B o §)(1L; - L
(1 Z)B(Z)A( Z )QO(Z)(B(Z) B(Z)Z)dz (9.51)

o =238 s e
u ¢ \B(Q) B(z

1.1 B\ o (4)(_1_ _iB(
2 B()I( Z)B(Z)A(Z z )QO(z)(B(Z) B(Z)Z)dz and (952)
il V4
e

G'(2) = 2A(B(2) +

7\B) B

b. R-The FS packet and possible BS packets are served at random

(ercr-ei(D)A Yl (5~

P - g (B) (B0 , LB 0 sy (95
, (z—l)(ﬁ—@)
(B'(Z) Bl 9 QO 9(3(( ﬁ(@)

@ = 55 (1) aE) + 2 j

B(Q)
B(2)\z 2 (z-DB(D)] d  (9.54)

<z—1>(%—@)
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c. L-The FS packet is always served last when it arrives together with BS packets

(z-1)B 9 ) (z)(B(( 58 Zz)

YA B~ ¢ (9.55)
(1—2)(@—@)

(05 kg2

Y B 4 (9.56)
(1_—)(ﬁ_5(z))

where, in al of the integrals (9.51)-(9.56), the contour C, is chosen as the circle {[{| = U}
with u<|7.

6'(2) = 2AB@) + 5= |
CLI

By letting the contour C,, be chosen so that both ( = z and { = 1 are inside we get by
including the pole { = z:
a F-The FS packet is always served first when it arrives together with BS packets

(1-Ze@AC )5 -4

F) = Dga(z)DF(l B | 5O 8@ e (9.57)
G e —
e o 29
G (2) = D@D (Z)A(z) 2TnB(z)J. z (l 1;( ZO ZB(Z) B()? @ and (9.58)
Va5

b. R-The FS packet and possible BS packets are served at random

Z Z B(Z
(100019208 - 29
R\ _ R RILY, 1 7BI(2) B() B()®
J(2) = Dgg(2)D (z) o (z-1)B(2) -1 a (9.59)
C -1 B(Z)_B(Z))

(Brc0r-si )= ol (5 -2

5O 80"y (9.60)
oLz
@555

c. L-The FS packet is always served last when it arrives together with BS packets

(z-8(3) A(%Q) o) (ﬁ _ %)%) o« (9.61)

zBI(2)
2T[I(Z 1)B(z)

GR(2 = DR (Z)A( 2)+

o) = D;B(z)DL@) |

« (-Yeien)
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<z—1>B© A=)l el o)

B ¢ (9.62)
( __)(W_B(Z))

where DF(z), DR(z) and DL(z) are the z-transforms of the delays given by (9.44), (9.47)

G (2) = DSB(z z)A(z

and (9.50) respectively, and DgB(z), DgB(z) and DgB(z) are the corresponding z-trans-
forms without the FS (when the load from the FS is set to zero, i.e. obtained by replacing
Qp(2) with the simpler Qgz(2) given by (9.27)). Further, in al the integrals (9.57)-(9.62)

the contour C,, is chosen as the circle {|{| = u} with u>1.

The first integrals (initial results) for the jitter and inter-departure time given by (9.42) and
(9.43), (9.45) and (9.46) and (9.48) and (9.49) have the main drawback that it we can not
take the limit z — 1 since we claim that z is inside a circle with radius less than unity. By
the results given in section 9.3.5 this limitation is removed and we observe that all the
transforms given by (9.51)-(9.62) have the limit unity when z - 1. Moreover, these results
are also suitable to obtain the moments by differentiation and taking the limit z -~ 1. We
shall omit such calculations here since we mainly are interested in the distributions. The
mean time between packets from the FS should however remain unchanged as the stream
passes the multiplexer (and this have of cause been checked by numerical examples).

9.4 Heavy and light traffic analysis

Another striking observation by considering the representation (9.51)-(9.62) is that “the non
integral part” of the expressions represents distributions which turns out to yields for heavy
and light traffic. This can be argued as follows If the load is close to one i.e

Pes —» 1—Pgs. the queueing system will never be empty and the boundary transforms

i _ T
qn(x) - E|:X 1 Q +B|+1 0}

Tn+1—Tn=k] will be zero, implying that G(x) and
zmA(xﬂZ))
l—szA(xﬂZZ))

methods described in the previous sections to find the inter-departure time and jitter
distributions we obtain the following heavy traffic approximations (obtained simply by
setting the integrals in the expressions (9.51)-(9.56) equal to zero):

q (x S) are zero giving (9.22) on the form Q™(z x,s) = B(Z)

]. By applying the

a F-The FS packet is always served first when it arrives together with BS packets

T = (32 (9.63)
G (2) = zA(B(»)) and (9.64)

b. R-The FS packet and possible BS packets are served at random
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P = 55(212) (32 (9.65)

2
GR@) = %@A_zl)) A(B(2) (9.66)

c. L-The FS packet is always served last when it arrives together with BS packets

I = (22 (9.67)
G (2) = zA(B(2)) (9.68)

To find the light traffic approximation i.e. pgg — 0 we may argue as follows: If we simul-

taneoudy consider the queueing process just prior to the arrival of an FS packet and the ar-
rival process of the FS packets, these two processes will not affect each other, and they
may therefore be analysed separately as if one of them was switched off. If we also may as-
sume that the relaxation time to reach the steady state for the reduced queueing model (with
only the BS present) is much shorter than the time interval to the arrival of the next FS
packet, then the two processes may be treated as independent and we may write

A"z xs) = QBS(Z)% where Qgg(2) is the z-transform for the reduced queueing sys-

tem (with the FS switched off) and is given by (9.27)). By applying the methods de-
scribed in the previous sections to find the inter-departure time and jitter distributions
we find the following light traffic approximations (obtained simply by setting the inte-
grals in the expressions (9.57)-(9.62) equal to zero):

a. F-TheFS packet is always served first when it arrives together with BS packets

F) = DEB(z)DF@ (9.69)

F) = DEB(z)DF@A(z) and (9.70)
b. R-The FS packet and possible BS packets are served at random

R = DEB(z)DR@ (9.71)

R = D§B(z)DR@A(z) (9.72)
c. L-The FS packet is always served last when it arrives together with BS packets

o) = D;B(z)DL@) (9.73)

GY(2) = DgB(z)DL@A(z) (9.74)
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The key assumption for this approximation is that the queueing system with only the BS
present shall reach steady state in the interval between two successive arrivals from the FS.
It is clear that when the mean time between two such arrivals is small, say just some few

slots, then the corresponding load pgg from the BS must be very small to reach the steady

state (in such a short interval). On the other hand, if the mean time between two successive
arrivals from the FS is large, then the load from the BS may be moderate (but not close to
one). So actually the requirements for the light traffic approximation are:

a Pgg is moderate and pgg — O or

b. pps— 0 and pgg is moderate

In case b, we aso may use the simpler Dgz(2) for D(2z) in (9.69)-(9.74) since we assume

Pes — 0.

9.5 End-to-end delay and jitter evaluation for a stream traversing a se-
ries of queueing nodes

The main objective in this chapter was to develop analytical models which were possible to
extend to also cover end-to-end analysis that goes beyond the traditional models based on
convolutions described in chapter 7 and chapter 8. With these models the distortion (colour-
ing) of a particular packet stream as it passes a multiplexer is neglected. A more exact ap-
proach will be to consider a particular packet stream as it passes through a network and try
to describe the change in the stream as it traverses the nodes where it will be disturb by
other (background) traffic.

By the dotted model described in the this chapter we may analyse in detail the output proc-
ess for a particular packet stream given that the same process at input is a renewal process.
In particular we have analysed the distribution of the time between two successive depar-
tures. If we approximate the output stream with a renewal stream (which is fully character-
ized by the distribution between two successive renewals), we may take this renewa stream
as the input to the next node and thereby apply the queueing model recursively to get an
end-to-end description. By this method we may “track” a given packet stream from source
to destination as it crosses a multiple of nodes. In figure 9.2 we have depicted the key idea
behind the end-to-end model. It is, however, well known that the output process of the
queueing model described in section 9.2 will not be exactly renewal. Nevertheless, smula
tion studies [Matr94b] indicate that this type approximation indeed is very good if we only
consider the marginal distribution of the output processes. Especially the evolution of the
jitter, but aso the end-to-end delay will therefore be analysed more accurately than the con-
volutions given in chapter 7. However, the resulting model will be much more complicated
and the results are given recursively in terms of the results found in section 9.3.
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A(2) node i G(2) = At nodei+1 Gtz
[ FS-out
FSin

— > > >
BSin B'(2) BS-out BS-in B (2 BS-out

Figure 9.2:  The tandem queueing model for the end-to-end modelling.

In the following we shall consider a chain of n queueing nodes. We shall make the follow-
ing assumptions (similar to the assumptions in section 7.4):
- The streaming traffic (FS) enters node 1 according to a discrete time renewal proc-
ess with distribution between arrivals given by a;(m) and generating function A,(z)

- The background traffic (BS) at node i enters (and leaves the node) according to a
batch process with distribution b;(m) and generating function B;(z)

- The queueing discipline is FIFO for all the queues and the possible orderings when a
streaming packet (FS) arrives in a slot with (possible severa) background packets
(BS) is described in section 9.3
If we let d,(m) denote distribution of the delay with generating function D;(z) and g;(m)
denote distribution of the jitter with generating function G;(z) at node i we may write the

functional relations (for i = 1, ...,n):

Di(2) = F\(A(2). B,(2) (9.75)
Gi(2) = F;1(A(2).Bi(2) and (9.76)
A (2 = G (9.77)

where the functional entities F;, and F,, relate the delay distribution and inter-departure
distribution as “functions” of the arrival processes. The actual form of F, is given by the z-

transform of the steady state queue length distribution Q(z) (as given by (9.24) or (9.25)

and (9.26)) and the relations (9.44), (9.47) or (9.50) depending on the scheduling models
chosen, and further F,, is either the representations (9.52) or (9.54), (9.56) or (9.58), (9.60)

or (9.62) depending on the scheduling models chosen and the integration path chosen in the
corresponding contour integrals.
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Finally, if we denote d"(m) the distribution of the end-to-end delay for a chain of n suc-
cessive nodes, then we find d"(m) by taking convolutions of the delay distributions at each
node. Written recursively we have:
d(m) = 3 d " ()d(m=1) fori =2 ..,n (9.78)
1=0
The corresponding z-transform is the product of the z-transforms in (9.75):
D"(2) = 0@ (9.79)
i=1
9.6 Some comments on the numerical procedure to calculate the end-to-
end delay and jitter

Although the recursions given by (9.75)-(9.77) are analytical in nature, the corresponding
procedure is highly numerical and contains some key assumptions. In each iteration both
D;(z) and G;(z) are evaluated by calculating the corresponding distributions numerically,
and we truncate the distributions when the probabilities are less than some quoted accura-
cy. The distributions d;(m) and g;(m) are calculated by (Cauchys theorem):

ZT0

d.(m) = %1 [ Di(e%)e™do for m = 1,2,...,NJ> and (9.80)
6=0
2T
g.(m) = %1 [ Gi(e%e™do for m = 1,2,..., N3 and (9.81)
6=0
N'[')'lw N'é'lw
then we take D;(z) = D;""(2) = 3 d(m)z" and Gi(z) = G (2) = 3 g (m)z"
m=1 m=1

and we take A, , ,(2) = G""(z) and since G""(2) is a polynomia we can apply the re-

sults in the previous sections (9.2 and 9.3) to calculate the next iteration in the chain.
To caculate the integral 1L(z) given by (9.26) the circle (contour) C, has to be chosen so
Bi(0)

that r >1 but smaller than the first root of the function f,({) = 1_ZAi(T) outside the

unit circle. It is possible to shown that for a stable queue, f;({) has exactly one real root

(= riOUt outside the unit circle and that all other roots are outside a circle of radius equal
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out

to that particular root. Therefore we must choose 1 <r <r; . A possible choice is to take

the point where the function f;(x) attains its maximum i.e. choose r as the solution of the

equation f'(x) = 0.

Since G;(z) is calculated for z = e? ie for |z = 1 by (9.81) we must use the expres-
sion in section 9.3.5 in the calculations. If the expressions (9.52), (9.54) or (9.56) are used,
the circle (contour) C, must be chosen so that u<1 (and u = 1/2 seems to be a natural

choice). On the other hand, if we choose the expressions (9.58), (9.60) or (9.62) then we
must take u>1 and we may choose u = r as above.

9.7 Some numerical examples
In the numerical examples below we have taken the following input streams:
- The FSis either deterministic or geometricaly distributed with mean time between

arrivals equal i.
Prs

- The BS s a Poisson stream with parameter pgs.

For most of the examples we have taken the R(random) queueing discipline where there is a
random selection of all packets arriving in the same dot, but we have also given a few ex-
amples with the other two disciplines F(first) and L (last), more ore less to check out the nu-
merical results and also see how sensitive the end-to-end delay and the evolution of the jit-
ter are to the particular scheduling choice. We also assume that the load from the FSiis rel-
atively low, and we have taken the mean time between arrivals of the FS to be 10 or

Pes = 0.1 for most of the examples, but we aso have a few examples with mean time be-
tween arrivals of the FSto be 5 or pgg = 0.2.

We have two main goals with the examples:

a. Firgtly to compare this rather heavy numerical approach with the convolution approach
(given in chapter 7) and

b. secondly to investigate the evolution of the jitter distribution as the FS traverses a
chain of queues.
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Figure 9.5: Logarithmic plot of the end-to-end queuing delay for R(random)-
queueing discipline and some different parameters as function of time (in slots).

9.7.1 End-to-end delay

In figures 9.3-9.8 we have depicted the CDF of the end-to-end delay for various parameter
choices and where we aso have plotted the corresponding results obtained by the convolu-
tion approach. In the first graphs (figure 9.3) we have compared cases where the FS is de-
terministic with the case where FS is geometrically distributed, and where we have chosen
the R(andom) queueing discipline (with random selection of all packets arriving in the same
slot). We observe that for al these cases the deterministic FS gives the best performance
(when it comes to end-end-delay) but the difference is not very large, and it seems that the
actual difference is decreasing dlightly as the load increases. We aso observe that the con-
volution approach and the case with FS being geometrically distributed nearly coincide, and
this is expected since the “sum of” a thin geometrical stream and a Poisson stream will
more or less also be a Poisson stream.

In figure 9.4 we have compared the cases where we halve the mean time between arrivals
of the FS (while not changing the total load). (In this example we have deterministic FS
and R(random) queueing discipline.) As expected the effect of increasing the load from a
deterministic stream while keeping the total load constant will lead to a stream with less
variance; and hence the queueing performance will improve.

Figure 9.5 shows how the end-to-end delay evolves as the FS passes through the series of
gueues in the chain. The shape of the curves seems to be quite similar for different loads,
however, we must bear in mind that the axis is scaled differently in the four cases.
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In figures 9.6-9.8 we have studied the effects of having different scheduling of the packets
from the two streams arriving in the same dot. In figures 9.6 and 9.7 we have deterministic
FS while in 9.8 geometrical FS is used. It seems that for deterministic FS all the three
scheduling give end-to-end delay that are below that of the convolution. It seems also that
the difference between the three scheduling principle will decrease as the load increases,
while maintaining the other parameters.

From figure 9.8 we get the only case where the dotted model gives worse performance than
the convolution. This occurs when we have geometrical FS and choose the L (last) queue-
ing principles where the FS packet is placed behind &l the BS packets arriving in the same
dot.

As a conclusion to the numerical examples for the end-to-end delay we have seen that the
convolution approach for all, but except on particular case, will give an upper bound the
end-to-end delay compared with the dotted model considered in this chapter. Whether this
is aresult of general validity will not tried to be answered here.

9.7.2 Evolution of the jitter

The jitter a packet stream is inflicted will be an important measure for the QoS in a com-
munication network. For real time services the jitter will decide the dimension of the dejit-
ter buffer needed to obtain a regular bit stream at the receiver site. Generdly the jitter is
difficult to analyse since it represents a difference between two variables that are not inde-
pendent.

In figures 9.9-9.16 we have depicted a series of examples for the evolution of the jitter for
the FS. We have put main emphasis in the node-to-node evolution as the stream passes
through a chain of nodes. It is of main interest to examine the disturbance of a regular
stream as it passes through a network and we therefore mainly consider cases where FS is
deterministic.

By figure 9.9 we have plotted the PDF of jitter where we look into the different scheduling
strategies R(random), F(first) and L (last) for a deterministic FS. In these examples the load
is set to 0.7 and the mean inter-arrival time for the FS is taken to be 10. As expected the
scheduling F(first) gives the most narrow jitter, and in between is curves for R(random)
scheduling, while the L (last) scheduling gives the broadest jitter (density function). This is
most evident at the first queues in the chain. As the number of passed queues increases the
jitter get broader and the difference becomes less visible. Even though the jitter seems to be
symmetrical for small numbers of queues, we observe that after passing the 10'th queue the
jitter is not completely symmetrical any more.

We have also considered a case where PDF of the jitter evolution for a geometric FS is
compared with that for a deterministic input stream, (see figure 9.10). The changes in the
jitter for the FS are very small and it looks as if this type of stream remains unchanged as it
passes through the multiplexers. The reason is that this type stream is very similar to a Pois-
son stream and will aso be nearly Poisson at the output of a multiplexer.
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In figure 9.11 we have depicted all the PDFs of a deterministic FS with load 0.1, from node
1 up to the exit on node 10, using the R(random) queueing discipline. It is interesting to ob-
server the relative strong impact from the load. For low load the jitter is quite narrow for
just a few nodes but it gets broader as more nodes are passed. Another interesting observa-
tion is that it seems that the PDFs will converge to a limiting distribution as the numbers of
node increases. This is already well known for results for chains of saturated queues, (see
[Robed6] where such models are discussed). The convergence is especially visible in the
logarithmic plots of figure 9.12.

If we increase the load from the FS, the mean inter-arrival time will decrease and the corre-
sponding jitter will be more asymmetrical. This effect is clearly seen in figure 9.13 and the
logarithmic counterpart figure 9.14. Also in this case the convergence seems to be quite rap-
id, say at around 10 nodes.

In figure 9.15 and figure 9.16 we have depicted the PDF of the jitter for the F(first) and the
L (last) queueing discipline for deterministic FS of load 0.1. For the F(first) queueing disci-
pline the jitter with low load is very narrow and it broadens slowly. In this case there will
be only minor disturbance from the BS and in this case the jitter is also quite narrow at the
first few nodes also for loads up to load 0.7. For the L (last) queueing discipline, however,
the jitter is quite broad also at 0.6 when the stream has passed two or more nodes.

9.8 Concluding remarks

The methods proposed in this chapter show that it is possible to obtain analytical results for
quite complicated models, even more important, to obtain numerical results from them. The
aim has been to go beyond the assumption of product form solutions that were proposed in
chapter 7. The proposed models have the advantage that it is recursive, the output from a
gueueing node congtitutes the input to the next one, and in this way the end-to-end view is
kept, and the changes of a stream from the input to the output are an important part of the
analysis.

Based on the numerical results we feel confident that the convolution approach of chapter 7
provides a real upper bound for the end-to-end delay for sources that emit a deterministic
packet stream. Secondly when it comes to the end-to-end delay the differences in the re-
sults between these two types of models seem to be minor.

By this model we have analysed the evolution of the jitter as a deterministic packet stream
passes through a series of queues. If al the nodes are identical we have also demonstrated
that the jitter will converge to a given probability distribution.
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Appendix A

Crossing intensities and the joint probability
of the excess volume and the excess time that
starts in (0,dt;) and ends in (t,t+dt,)

A.1 Some general results on the level crossing intensity for stationary sto-
chastic processes

Theorem Al Let {B} be a dationary dsochastic process and et
A%t = %P{ B,<C<B} and AX(t) = %P{ B,>C=2B} be the up- and down cross
ing rates:

Then Ag(t) = AL(t) = A% (1) (A.1)
and the following inequality yields:

A (1) S yA(Yt) + (1-y)Ac((1-y)t) foral t and O<y<1 (A.2)
Further if tI i poprC(t) <o then the up- and down-crossing intensity A. = tI [ InoAC(t) ex-
ists and is finite.

Proof: We have the following relation between the events:

{BysC<B} ={By<C -{By<C,B,sCG ={B,>C —{B,>C,B,>C
and similar

{By>C=2B} ={B,>C —{B,>C,B,>C = {B,sCG —{By<C,B,<C} .
We must therefore have:

P{B,<C<B} = P(By<C)-P(B,<C,B,<C) = P(B,<C)-P(B,<C,B,<C) = P{B,>C2B}

showing that AL(t) = AX(t), since P(B,<C) = P(B,<C) due to the stationary as-
sumption.



Let 0<sy<1. To show (A.2) we start with the obvious inequality:

P{BO>C,BW>C,Bt>C} <P{By,>C,B,>C} giving
tAC(t)sP{BO>C}—P{BO>C,BW>C,Bt>C} =
P{By>C -P{B,>C,B,>C +P{B,>C,B,>C -P{B,>C,B,,>C,B;>C} =

>(B,>C2B,} +P{By>C,B,>C,B<C} <P{B,>C2B} +P{B,,>C,B,<C}

P{By>C2B,} +P{By>C2B ,,} = (tyAc(yt) + (1-y)tAc((1-y)t)); or by dividing
by t we get Ac(t) < YAc(vt) + (1-y)Ac((1-y)t).

To show the last part we set M = IimosupAC(t) and let m = IimoianC(t). If M<co then
t- t-
we shall show that m = M. By choosing y = % it follows that A(t) SAC(%) for al t
. A . t t
and by continuously sub-dividing the interval A(t) SAC(E) SAC(—Z) < .... By the mono-
2

tone convergence theorem lim AC(L”) exists for every t and are al finite (by the as-

n- o 2
sumption). We shall assume m<M and show that this assumption will lead to a contra-
diction. We choose O<e<M1_n and t so that A (t)<M+¢ for t<t and a t'<t so

that Ac(t') <M —¢g. Now we choose t <t§ so that A.(t) <m+ ¢, and we choose an inte-

ger n such that ——<t<— and t = —'. Since Ac(t—) is an increasing sequence
+1 2n 2n—1 2n

(in n), we have s <t<z and Ac(t)<M—&. We now choose y so that yt = t and

N+ N:
N I—+

t t 1 1 . . .
4<yts2 or 4<ys2. Now by using the inequality

A(t) < YAC(YE) + (1-Y)Ag((1-y)t) , we have

M—e<y(m+e) + (1-y)Ac((1-y)t) or
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M—eg—-y(m+eg) _ , o1 1
AC((l—y)t)z—ﬂ—)l_y - M+v) where (since 7 <y < )

v = y(M—n)_1+V£2 M_n—35>s which is a contradiction.
1-vy 1-vy 3

QED.

Theorem A.2. We let { B} be a stationary stochastic process with continuous sample paths

and we assume that the distribution of B, is absolute continuous (which means that the

B,-B
probability density function exists and is a continuous function) and let dB, = ‘TO be

the differential process scaled by 1/t where we consider crossings of a given level C. Set
Fi(y,2) = P(dB;>Y|By = 2)¢(2) and F,(y,2) = P(-dB;>Y|B, = 2)¢(2) where ¢(2)
is the probability density function of B,. We shall make the following assumptions:

A. We assume that Fy,(y, z) and F,(y, z) satisfy the following conditions:

F1(y, C©) =F 1, (¥, | s M(IC =X and |Fy(y, C) —F5(y, )| <M(Y)IC—X| (for y=0)

00

where M, = j yM,(y)dy exists and further limtM, = 0
t-0
y=0

If the limit Ac = limAL(t) = limAX(t) is finite, then the up and down crossing intensi-
t-0 t-0

ty is given as:
Ao = limA%(E) = limA(t) = MZE)“m E[|dB{|B, = C] (A.3)
t-0 t-0 t-0

Proof: We have AR(t) = AY(t) = %(Ag"(t)mdc"(t)) where the up crossing intensity

A () = %P(B0 <C<B,) and down crossing intensity AS(t) = %‘P(B0 >C>B,). By
conditioning on B, we may write the up and down crossing intensities as:

[

A = [ Fyly, C—ty)dy and (A.4)
y=0

AT(M) = | Fyly, CHiy)dy. (A5)
y=0
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We aso define the integrals Js (t) = I Fa,(y, C)dy and Wy = I F,(y, C)dy and
y=0

y=0
we have:

IEM+ITM = 6(C) [ P(|dB|>y|Bo = C)dy = $(C)E[|dB|[B,=C]  (A.6)
y=0
By applying (A.4), (A.5) and (A.6) we obtain

BE) - 30(C)ELdB( [Bo = | = F|aE®-3E W) + @) <

j |F1,(y, C—ty) —Fy(y, C)|dy + j |F2(¥; C+1ty) —Fy,(y, C)|dy| < tM,. Since by as-
y=0 y=0

sumption limtM, = 0 it follows that limAY(t) = Mzgnm E[[dB{|B, = C] . QED
t-0 t-0 t-0

1
2

A.2 Evaluating and expanding the joint probability of the excess volume
and the excess time that startsin (0,dt;) and endsin (t,t+dt,)

In this section we derive an expression for the joint probability of the event that the ex-
cess volume that lies in the interva (y, y+ dy) and that the excess time starts in (0, dt,)

and ends in (t,t+dt,) for small dt; and dt,. By decomposing this event into four parts
we may write this probability as:

P(A 0 (z z+dz), B,<C,Inf ), B, >C By, gy, <C) =

P(A 0 (z z+d2), Inf (4 B >C)-P(A 0(z z+dz), Inf (o yB, > C)

—P(AO(z 2+ d2), Inf, g1, 1+ a1,)Bc > C) + P(A L (z 2+ d2), Inf g ¢4 4B > C)

= Iy —ly=lg+l,.

We use a similar approach to evaluate each of these parts as we used for the conditional ex-
cess times and excess volume described in chapter 3. For |, we find:

[ee] [ee]

I, = P(A 0 (z z+d2), Inf 5 4B, >C) = j j ge(x, Y,z t)dxdy [z~ (A.7)
y=Cx=C

Toevauate |, = P(A U (z z+d2), Inf, (4, B >C) we relates the volume A to
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1

A?tl = J' (B,—C)dt = A —(By, —C)dt; for small dt, so therefore the event

T=dt,
A 0(z z+dz) gives A?tl O (z—(Bdtl—C)dtl, z—(Bdtl—C)dt1 +dz). Then by condition-
ing on By, = X and B, = y and integrating, and applying the assumption that the rate
process { B} is stationary we find that 1, may be written:

j 9c(X, Y, Z— (x=C)dt,, t —dt, )dxdy [tz (A.8)

Continuing by evaluating 13 = P(A 0 (z z+d2), Inf g 4+q1,)B>C) we relate the

t+at,

volume A, to Agildtz = I (B,—C)dt = A —(By —C)dt; +(By,—C)dt, for small
T=dt,

dt, and dt,. Therefore the event A 0(z z+dz) gives

dt
At g, 0 (2= (Bg, — C)dty + (By, i, — C)dty, z(By, — C)dt; + (By, g, —C)dt, +dz). By

conditioning on By, = X and Biva, =Y and integrating, and applying the assumption

that the rate process { B} is stationary we find that | may be written:
I gc(X, Yy, z—(x=C)dt,; + (y—C)dt,, t —dt, + dt,)dxdy [tz (A.9)

Finally to evaluate 1, = P(A U (z z+d2),Inf g 4 q4,B>C) we relate the volume
1+at,

A, by A?+dt2 = J' (B,—C)dt = A +(By,—C)dt, for small dt,. Therefore the event
=0

A 0(z z+dz) gives A?+ at, 3 (2+ (Byy g, — C)dty, 2+ (By, 4, — C)dt, + dz). By condi-

tioningon By = x and Biva, =Y and integrating, we find that 1, may be written:

[ [

Iy = j _[gC(x,y,z+(y—C)dt2,t+dt2)dxdyEdz (A.10)
y=Cx=C

Then by expanding the four integrals above to second order for small dt; and dt, and col-
lecting we get:

P(A 0 (z z+d2), By<C,Inf (g 4B >C By, g, <C) =
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0 0 2 2 2
] 0
j j (y=C)(x— C)—gc +(X+y— 2C)ﬂ +90c dxdy Cdzdt,dt, (A.11)
622 0z0t atz
y=C x=C
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Appendix B

Some important properties for multinormal
integrals

This appendix is devoted to integrals over multinormal distributions. Such types of inte-
grals will show up during the study of normal stochastic processes, and will provide an im-
portant tool in the effort to gain knowledge of important properties of such processes. The
main findings are that multinormal integrals have some nice properties that reduce the com-
plexity in numerical computations. By applying these results we are able to obtain expres-
sions that reduce the number of numerica integrations to half the dimension of the inte-
grals. Thus by applying this method we are able to calculate a five dimension multinormal
integral by performing two numerical integrations. These simplifications are obtained by
taking various partia derivatives with respect to the parameters involved, especialy the ele-
ments in the Covariance matrix.

Throughout this appendix we shall work with multinormal distributions and we take the fol-
lowing assumptions: We consider n-dimensional multinormal distributed variables
{B1, By, ..., B} with zero mean, and covariance matrix M = (p;;) where we assume

that p;; = 1. (This means that the Bj'sare al standard (normalized) normal variables with

zero mean and variance equal unity.) If we let Mt = (Mi_jl) denote the inverse covari-

ance matrix M, then the joint density function for {B, B,, ..., B,} is given by:

) n
(&g, EpM) = AREUM ] eXp[—% > EiajMf] (B.1)

n/2
(2m) o1

In the succeeding we shall investigate different types of integral derived from (B.1) and see
that these integrals can be related by integrals of lower dimensions. When writing (B.1) we

should also be aware of the fact that f, can be considered as a function of the mnz;l) co-

variances p;; .



The main contributions throughout this appendix are on integrals based on the multinormal
distribution. The various types of integrals considered will be brought into variants of inte-
gral of the (standard) form:

0 00

| = 1(n,C,M) = j jfn(al ..... & M)dE,....dE (B.2)
§,=C; & =G,

where f,(€,....§,;M) is given by (B.1), where we aso indicate the dependencies of all the
parameters involved:

n-the dimension of the integral

C = (Cy, ..., C,)-is the vector consisting of the integration limits
M = (pij) -is the covariance matrix which is symmetric and with p;; = 1

Before giving the main results (on multinormal integrals) we first need some preliminary re-
sults mainly on linear algebra and determinants. We put these results in a separate section
below.

B.1 Some preliminary results
We first start by giving some preliminary results that we shall apply later on in the analysis.

LemmaB.1. Let M = (pij) be a symmetric nonsingular nxn matrix with p;; = 1 and let
Mt = (Mi_jl) be the corresponding inverse matrix. Then M dso is symmetric and the

partial derivative of the elementsin M~ with respect to the dlementsin M is given by the
relation:;

-1
oM. -1, ,-1 -1, ,-1

U= (M Mjs + Mj, M) (B.3)
aprs

. M
(If i =j, (B.3) reducesto o = 2M;/M;).

rs

Further if Pij = pij(t) are functions of t then

_ n
M 1, 100

- ij = Z Miersa (B.4)

r.s=1

Proof: By taking partia derivatives of the relation M ™M™ = | wefind:
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-1
0 -1, _ oM
(MM )—ap

aprs;

-1 0 ,\,-1 . oM .
(M~ +M Ja—(M ) = 0 and solving for gives
pTS

aprs

rs

-1 -1 plm
=M E% M. In component form this glV% Z z M; .. J-

l=1m=1
The only non zero contribution to the last sum comes when | =r,m=s and
| = s,m = r for which the partial derivatives equal unity and this gives (B.3).

oM™
aprs

If Pij = pij(t) are functions of t, then we obtain by applying (B.3):

-1
dM> a

[ pm —
aj— Z p(u) - Z (erM

1<r<ss<n 1<r<s<n

1 Mt dp; s

Mls) . By using the fact

d
that d_f ™ = 0 and that the matrix M is symmetric we get (B.4). QED

When working with multidimensional normal distributions and integrals it is often neces-
sary to change the integration variable, and this may lead to different transformations of the

matrices involved. One such transformation we use is to transform the inverse M so that
the diagonal elements are unity. We denote this transformation by the matrix © = (@ij)
where

-1

9 = —J— ihj =
i

Lemma B.2. The transformation (B.5) is fully symmetric. That is:

.., N (B.5)

_ _ o
O = My and Pij = __1”—_1 (B.6)
NOii VO

Proof: In matrix notation (B.5) reads:

L ] Mt EDiag[ L ] which implies
M M

o= Diag[

o'= Diag(,/Mﬁl) M EDiag(./Mﬁl) or in component form

t= A/W_ilEpij El/W_Jl (B.7)
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The diagonal elements i = | give Oﬁl = Mﬁl, and by pre and post multiplying with the

inverse of the diagonal matrices givesus M as:

L j o [Diag(

which is the matrix form of (B.6). QED.

M = Diag{

J'\%J - D'agu(%”lj o EDlag(JelTJ (B.8)

Lemma B.3. We have the following relation between the partial derivatives:

Ziekl'J = Wﬁ[(pikpwp”pn)pm—(pikpn +PjPin)] (B.9)
ap 9 o 1 %ﬁ gieﬁl Z%-E-ll
Proof: We have aekl'] = a@u[ﬁil/a} =-3 e;'i + el_l'i P+ @Ijeﬁl. By us-
ng (B:3) we get a%kl - (@E;fﬁﬂ@Z?ﬁljpkl_@;il@;jh@;jl@ﬁl, and by applying
kk 1]

op = =
<= '\/Miilf\/ijl[(pikpjk+ PitP;1) P — (PP + PjPy)] - QED

(B.6) and (B.7) we find —— 36.

ij

Lemma B.4. We have

0 i+j (i.1)
aTDet[e] = 2(-1)' "'Det[0""] (B.10)

where ©"! is obtained from © by deleting row i and column j and further

ag Det[] 1
= n
—l—Det[ 5 = %9 (B.11)

Proof: The proof relays on the assumption that © is symmetric. By expanding the determi-

nant of © of the j-th row we obtain: Det[6] = 3" ©,,(~1) " “Det[©"""] and further by
k=1
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expanding Det[G)(j‘ k)] by the i‘th row (i <j) we have factored out the two variable ele-

ments ©;; and ©;; = Oj;:

n

Det[6] = 3 ©,,0;(-1)

i+j+k+1-1

Det[G)(”’k')], where @) is obtained from ©

kl=1
1k

by deleting row i and j and column k and | . Differentiating the last equation with respect

to ©;; we get a single contributions when k =i and 1#j and | = and k#i and a

square contribution when k = i and | = j. Collecting the different parts we find:

n n
O petfe] = (-1)'"] T o))" pete M+ T 0,1 Detfo ) +20,(-1) ' 'Detfe" 1)
30, j j
=1 k=1
1#0,1 %] K#j, k#i
n n
= (0" ¥ 0,-1) ' tpet(e™ ) + 3 @, (-1) " pete" Wy | . The first sum we recognize
=1 k=1
1#i K#j

as Det[G)(j‘ i)] expanded after the i-th row, and second sum is Det[e(i‘”] expanded after

the j-th row. Since © is symmetric, it follows that Det[e(j’i)] = Det[e(i’j)] and this

gives O%Det[e] = 2(-1) "1Det[@" ] . Equation (B.11) follows from the fact that the
ij
i+] (D)
inverse of a matrix may be expressed by its cofactors: @ﬁl = (1) Dgt[eg]e ] .QED.

We shall end this introductory section by showing that the multinorma distribution has
some remarkable properties which will be important when we consider integrals like (B.2).

Lemma B.5. The multinormal distribution (B.1) has the following properties:

n
of )
3 - 2% Mjrlan and further (B.12)
r i1
of, _of " "
= — -1 -1 -1
a;:rs - azrnaas - [[Z E,-M,-r][z EiMir]—Mrs]fn (B.13)
j=1 i=1

Proof: The first part is obvious. To prove the second part, we find by differentiation of f,

with respect to the parameter Prs
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0

- n Det[M] n

of, _ d = 1 1apr5 1

= Det[M]l/zaprS(Det[M] YH-3 3§ Jap So—(M;; )} {Z—Dm - 3 Jap 55— (M;; )] By
L ij=1 =1

using (B.3) and (B.11) we have

o, | A R :

Wnrs = rs 2 Z E E (er js + M M ):|f = i+[z EiMir1]:|[Z EJ'MJsljfn WhICh aISO equals
L ij=1 i=1 j=1

af

SEE . QED

B.2 Conditional distributions of multinormal variables

We shall make use of some results obtained from conditiona distributions. It is well known

that conditiona distribution derived from multinormal distributions also is multinormal,

though the conditional variable will now longer have zero mean. The proof of the general
n

statement on conditional distributions is done by rewriting the quadratic form Z EiEjMﬁl
hj=1
in different ways. We include the general theorem because we shall apply the results with

different dimensions later on in the appendix. It is possible to find the following result in
the literature but we shall state the genera case here for the sake of completeness.

Lemma B.6. The conditional distribution of
{By....Bg _1.Bg 410 By _1,Bg 41, B} given Bg,»Bs, (where

1<s,<s,...<s <n)ismultinormal of dimension n—k and with parameters:

k
z Det[Msl, ...,sk,;li] Bs|

E[B.|B....,B.] = L=L i=1..,n,i%s,...,S, B.14
[Bi|Bs, s Det[M, -] 15 eer S (B.14)

and where the covariance matrix given by:

Det| Msi s Pou s

e N (819

Cov[B;, Bj|Bg,.... B

Li=1..n,ij#s;,...,5 Where Mg isthe k-rowed minor of the correlation cov-

ariance matrix M giving by the rows and columns s, ..., s, (that is Mg s = (psisj)

hj =1 ..k pss =1 and Pss = p%) and pg . isak-dimensiona (row-)vector
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with elements pg; r = 1,...,K; that is pg ¢ = (P Psis -1 Psi) 1 = 1,...n, and

Ps, .. IS the corresponding column-vector (transposed). The matrix Mg is

obtained from Mg

v Sl
that is

s Dy replacing column I, pg <. BY Pg s

M, sati = [Ps, o isisy -0 Psy o sis =10 Psy, i Py sas #1000 Ps, L sas ]

I=1..,k i=1.,ni#s,..,5s.

Further the inverse of the Covariance matrix may be found from Mt by deleting row
and column s, s,..., S,.

Proof: Without losing generality we choose s; = 1,...,5, = k, (since it is always possible
to re-arrange the rows and columns in the origina correlation matrix M so that this will be

the case) and we denote M* the k-rowed minor of M given by the rows and columns
1, ...,k. The proof is greatly simplified by introducing matrix formulation. We have

—1
A Det[M
(€ps prnn|Errmdid) = etiM ] exp[—%E] where (B.16)
2r) "9, IDet{M< ]
E = EM_lE—ELMk_lE_L and € = (§4,...,&,) and & = (&;,...&) . The rest of the proof is
now devoted to rewrite the quadratic form E. We divide matrices M and M~ into the fol-

lowing sub matrices m =
M21 M22 A21 A22

My, Mlz} and Mt = {AH A12:| where M, (= Mk) and A;; are kxk

matrices, M, and A;, are kx (n—k) matrices, M,; and A,, are (n—Kk) x k matrices, and

M., and A,, are (n—Kk) x (n—Kk) matrices. (Since both M and M are symmetric matri-
ces, the same will apply for M,;, M,,, Aj; and A,,, and the transposed of M, and A,,
equals My, and Ay respectively.) If we also let & = (§,&) where &, = (&, 1,.&,)

the quadratic form E may be written as follows:

E = &A%E0 + & Apg + EpAng + & (A - Mwl)E_L (B.17)

The exponent E will represent a multinormal distribution if and only if we can find a (cov-
ariance)-matrix MnIk of dimenson (n—k)x(n—k) and a matrix B of dimension

kx (n—Kk) sothat E may be re-written as:

E = (&4 —& B)My(E5-BE) = E4My &8 BM B8 M, BE +& BM [ BE (B.18)
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Comparing (B.17) and (B.18), this can be done by choosing M;llk = A,, giving

My = AE;. Secondy we must have BM;llk = -Ap which  gives

B =AMy = —Alez. From the relation MM ™" = | we get four matrix equations
MyAu +Mphy =1, M21A1 +Mpphy = 0, Mi1A + MpAy, = 0 and
My A+ MyAy, = 1. From the second and third of these equations we deduce:

-1 -1 - - L.
AxnAir = ~MxMy; and Alezé = —MliMlz, giving
_ -1 _ a1
B = —ApAy = MMy, (B.19)

From the first matrix equation we find (by premultiplying by Mﬁ):

Ay -M = AL M = SMMpA, = ALASA,, . Then inserting for Ay, = —BM
and Ay = Ay = -MB we get Ay-M" = BM, I AM LB = BMB. Thus by
choosing My, = Ay, and B = —ApM,, = —A,Az, (B.17) and (B.18) are identically,
and represent an n—k dimensional multinormal distribution with covariance matrix
Mnlk = AE;. Since (B.16) represents a joint probability density function (in the variable
&y = (&yq0em8,), and the integral over these variables equals unity), it follows that the
relation between the determinants yields:

Det[M;] = Det[M~] | (B.20)
Det[M*]

(The relation (B.20) could as well be proved directly for instance by applying the so called
Jacobi’ s theorem which relates the r -rowed minors of an n x n matrix with the correspond-
ing (n—r)-rowed minors of the corresponding matrix of co-factors, so by applying this the-

k
orem we also get: Det[A,,] = DD_eett[[Mﬁ]l' See [Grad94] page 1142.)

By inserting for A, = —MHM 12A5, in the fourth matrix equation above we find:

(—MZlMﬁM12 +M,,)A,, = | and it follows that the conditional correlation matrix, equals

the inverse of A,,, may be written:

_ a1 _ -1
Ivln|k - A22 - M22_M21M11M12 (B'21)
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Collecting the results above and writing them component wise we get:

K

E[B;|By=&;,...B =& = Y B§, I = k+1,...,n where (B.22)
=1
k l+r
) s (1) pem )y )
B, = 3 M by = =2 k Sy (B:23)
fo1 Det[M] Det[M']

fori = k+1,..,n,1 =1, ..,k and

k k
Cov[B, By[By = &1, B = & = [Myl = = X 3 Ml pu
I=1r=1
k k K ;(
+r r,l i
Det[Mk]pij_Z Z(—l)' petM )]p”psj Det § !
= l=1r=1 - - Pi El for |1J = k+ 1, .y n (824)
Det[M] Det[M"]

In (B.23) and (B.24) we have written the inverse of a matrix by using the corresponding co-

). . .
factors and the matrix Mk(r ) is obtained from M* by deleting row s and column |. Fur-

N I, . . : :
ther Det[Mk(r )]:Det[Mk( r)] snce M is a symmetric  matrix, and

Mﬁ = [pi, ...,pr_l,p:(,p:(+1,...,pt], I =1,...,k, i =k+1, ..n where and pik isa k-

dimensional (row-)vector pik = (Pgj) Pojr 1 P) » 1 =1,..,n, and pik is the corre-
sponding column-vector (transposed). QED

From (B.15) we find the conditional standard deviations as:

o ¥ = (Var[B|Bg...B])? = i=1,.,n,i#S,...,S. (B.25)

We may then find the conditiond (n—k)x(n—k) corrdation matrix

Su oS¢ Su Sy
M~ =(p; ) &

M o k k
Sy, s S Sy e Sl -1
o P 1 k lp.. Pij— Z Z [Msl,,,,,sk]”pis,pgj
Sy S _ Sy e Sl 1] _ l=1r=1
i " Def[M TDe[M 1 Sir S St S (826
J et[ Sl,...,Sk,I] et[ Sl,...,Sk,J] o; o]

fori,j=1,..,n,i,j#s;,...,5
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sl e 5L . . .
If we denote M™ " = (Misj1 Sk ) the inverse of the correlation matrix M™ Sk, we

can write the joint conditional PDF (B.16) in a standard way:

k k
. CTRETEN Spy e Sk
Det[MSl‘ S 1} D I T DI TR .
n epl Y i el (B.27)
(zn)(n*k)/z 0_51: eS¢ =1 G; gj
[ o LiESy s
i=1
125, ..., 5

where we have defined the coefficients:

k
Det[M 1il _
Sp s Sc _ s onselid 1 P ;
= s = Z [Msl,...,sk]lrpsri b=1..ni#s,...,5 (B.28)
r=1

a:
il Det[Mg ]
and | =1,...,k
kK k
Ms,..,,s ps,...,sk;j -1
De{ e Pij= 20 2 Mg, ]y PisPs)
pr ¥ = Pou s P = l=1r=1
i f\/DEt[Msl,.-v,Sk,i]DEt[MSy---y%j] cisl_..,skcjslw-usk

Below we apply the general lemma above and give the results for some specific cases
which we use later in the analysis.

Corollary B.1. The conditiona distribution of {B;, ..., B, _4,By.1,..., B} given B, is

multinormal of dimension n—1 and with parameters:
E[Bi|Bk] =piBr i = 1 ...,n, izk and covariance matrix given by: (B.29)

Cov[Bi,Bj|Bk] =Pij—PikPy 1] =1 ...n, izkjZk (B.30)

Further the inverse of the covariance matrix is obtained from M~ by deleting row and
column k.

The conditional standard deviations are found from (B.30):
of = (Var[B|B )" = J1-pf i = 1,...n, i#k and (B.31)

the conditional (n—1) x (n—1) correlation matrix M¥ = (pikj) is found to be:
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ok = —Jﬂlk—uj_l n,ij#k. (B.32)
/\/1 plk'\ll p]k

Corollary B.2. The conditional distribution of B, given B,,.., B
with parameters:

is normal distributed

n

E[B,|B,.... B] “Z (B.33)
j=1 11

and the variance is given by:

1
-1’
11

Var[Bl|BZ..., B, = and (B.34)

further the corresponding PDF is give as.

f(€q[ €0 - ”)_(n)l/z [ [El Z H (B.35)

]—1 11

Obviously the conditional distribution may be taken as a (new) starting point when condi-
tioning on additional variable. Thisis clear since the normalised (conditional) variables

k
Bi—z aisll’ g
Sy, s S¢ — . .
B = bend =1 .. :
i — i=1..,n,i#s,...,8 (B.36)
0
are standard multinormal distributed (of dimension n—k) given B I =1,..,k, with cov-

ariance (correlation) matrix M™% This makes it possible to obtain relations between the
parameters of any sets of conditional multinormal variables. We shall use this property to
find recursion formula for the parameters based on the number of variables that we are con-
ditioning on; k. We start with the result for k—1. By the observation above we have

k-1
By e s,
Bisl’”"sk‘1 = ':131‘””%1 i=1,..,n, i%#s,..,s_, ae standard multinormal
O;
distributed (with dimension n—(k—1)) given B | = 1,..,k=1. Thus, since condition-
ing on an extra variable B, is the same as conditioning on Bzi""’sk‘l given Bs .
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| =1,.., k=1 we obtain by applying corollary B.1 above that {Bisl' S“} is multinor-
mal distributed with dimension n—(k—1) =1 = n—k and with parameters:

E[B "By, ....By Bl = pin ¥ BT ¥ for (B.37)
i =1,.,n,i#sy...,5 and covariance matrix given by:

COV[B-SL ey Skt B-Sl' vy S
| L

I Sd

S S Spy eesSke1 Sty eer Sk
By, - Bg Bg] =p; tpr T Sip SR 3g)

= 1.0, LjZS, .S,

Now the conditional normalised variables of the {Bf’l""’sk'l}‘s given B . | =1,..,k may

be obtained by using (B.37) and (B.38) and must equal (B.36), and this gives the following
important relations:

Sprever S S Skc1y Sw o Sk
B; -p; o
B ¥ = is, S i =1,..,n,i%s,...,5. (B.39)

3oy _12
1-(pra %)

Since the correlation does not ater by trandations like (B.36), we may express the condi-
tional correlation between B; and B; by applying (B.38):

.Sk vy Se_1_S1y s Skt

Sy Se1 Sy
o Pij —Pis, Pis,
. Sty oo Sy 2 Sty e See1y 2
:I'_(pisk ) 1_(pJSk )

Finally, by applying equation (B.39) and inserting expression (B.36) (on the left hand side
with counting parameter k and on the left hand side with k—1) we obtain an identity in the
variable B; and B which requires the following relations to be fulfilled:

2
ois“""sk = crisl""'sk‘1 /1—(pis;’k""sk‘1) fori =1,..,n,i#s, .., ad (B.41)

iy =1,..,n,0,j#s;, ..., s. (B.40)

pslv"'vsk—lo_slv"'vsk—l

S Sy, .oy Se_ i Sy, v S

ay = ay o x asi| S (B.42)
Spy eer Skt
O.

forl =1,.,k=1andi =1,..,n,izs, .., and
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Sy Sk Sps Sk

Sy S _ Mis, Os P= i
ay = - fori =1,..,n,i#s,...,5 (B.43)

Oj

The recursion formulae (B.40)-(B.43) may also be proved more directly by applying the de-
terminant expressions (B.25), (B.26) and (B.28) by applying Jacobi’s theorem [Grad94],
(14.16 page 1142) to obtain relations between determinants of different dimensions.

When considering multinormal integrals like (B.2) we will often use specific values of the
variable &; = C; (for instance as integration limits, and we denote the corresponding vec-

tor C = (Cy, ..., C,)). Recursively (by induction) we may define integrals of dimension

n—s based on the conditiona distribution (B.27) (where the conditioning is done with re-
spect to the variables By, = Ckl, By = Cks). The corresponding multinormal integral of

Sy ey

dimension n—k will then be of type I(n—Kk, cr ¥ M Sk) where the corresponding

integration limit vector C™ "> (with elements Cisl' % of dimension n—s) is found by

inserting &; = C; in the exponent of the conditional distribution (B.27):

k
Sy s S
Cr = =l i=1.,n,i#s,..,5 (B.44)

|
Oisl, S

This equation is identically with (B.36) and therefore the recursion (B.39) yields. We sum-
marise the results above in the following lemma:

Lemma B.7. Let M™ "% = (pil"”'sk); (i,j =1 ..,nij#s},.,ij#s) bethe core

lation matrix and further C™ "% = (C™ "™ (i = 1,...,n i #s,,.., i #5,) be the vec-

ks, T ks) : based

on the conditional multinormal distribution (B.27) of dimension n—k given the k variable
B, = Cs, ... Bs = Cg (k<n). Then these parameters are given by the determinant ex-

pressions (B.26) and (B.44) by (B.28) and (B.25), and satisfy the following recursion for-
mulae;

tor of the corresponding integration limits for the integral 1(n—s, Ckl’

St oosSkc1 St ey Sko St o Skt
C 0 C
oS o Pis, Sk (B.45)

s Se_1n 2
1-(pe %)

fori=1..,nadi#s,., i#s ad
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Sy eeer S Spoe S-St Sk
plsjlsk _ _Pij S Skp|52k J: — (B.46)
Jiem 5y 1=t 5
fori,j=1,...,nand i, j#s,.., i %S

The recursion may be started for k = 1 by calculating c™ = (CiS‘) and M™ = (pisf):

C—p..C
= S0 for i = 1,..,nand i#s; and (B.47)
[ 2
:I-_pis;1
oo = U PisBin for =1, ,nandij%s,. (B.48)

A 1_pi251/\l 1- pjzs;1

B.3 Multinormal integrals

In the rest of this appendix we shall examine different types of integrals over the multinor-
mal distribution (e.g. given by (B.1)). The origin of these types of integrals comes from the

n-point approximation of the excess time and volume distribution of a stationary Gaussian

process. We find that these type of integrals have some particular properties which we shall
take advantage of in numerical computations.

As a starting point we first consider the (standard) multinormal integral of the form:

[ee] 00

I(n,C,M) = j j fo(Egn €M) CE,,...E (B.49)
Elzcl En:Cn

where f (&;,...§,;M) isgiven by (B.1), C = (Cy, ..., C,) -is the vector consisting of the in-

tegration limits, M = (pij)-isthe covariance matrix (which is symmetric and with p; = 1)

and n isthe dimension of the integral. Below we frequently also will have integrals of type
1M oM = [ [ fEgees 1 Cop B n o Bs 10Cs Eg s 1o M) Ey  (B.50)

where the integral is of dimension n—k and does not involve the variables Esl, Esk. By

applying the conditional distribution (B.27) we find that this type of integral may be writ-
ten as:

ISlr ,Sk(n, C, M) - fk(081,.”,CSk;M81’ ’Sk)l(n—k, Csl, ...,Sk’ Mslr ,Sk) (B.Sl)
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where f(§1,...& Mg ) is the k dimensional standard multinormal distribution with

correlation matrix Mg o which is the k-rowed minor of the correlation covariance mar

Sk
trix M giving by the rows and columns s, ..., 5, that is Msl‘ s = (pS.S]) i,j =1,..k,

Pss = 1 and Pss = Pss - (The corresponding integration limits cr ¥ are given by

(B.44) and the correlation matrix Mg give by (B.26).)

By using the conditional distribution (B.27) it is also possible to factor out some variables
in 1(n, C, M) and integrate first over these variables. By this approach it is possible to write
(B.39) as follows:

nemy = [ [ e Ek;MSl_‘_'Sk)I(n—k,Csl’""Sk(El ..... £, M NV dE, . dE (B.52)
Elzcsl EZZCS‘(

where we indicate that the limit vector C™ ""Sk(El,...,Ek) are functions of the variable

(&41..-,&,) and the elements are given by

k
Sy, o Sk
C—> & &
M E ) = —E————— i = 1,0, %5, ...,5, (B.53)
Sty ooy Sk

O
Below we shall show that integrals of type I(n, C, M) have some remarkable properties
mainly because of the results in lemma B.5. By applying these properties we may relate the
partial derivatives of the integral with respect to the parameters.

Theorem B.1. For the integral (B.49) we have:

SIT =l k(n, C,M) for 1<k<n and further (B.54)
k
9~ *'(nc,M) for 1<k<l<n (B.55)
opy

Proof: The first part of the theorem is obvious. The second part is a direct result of lemma

B.5 equation (B.13) giving ng = [ .
ki

§=C & =Cy

2
af,

N . _ okl
aakaal(il ..... g M)E,,...de, = 1°'(n,c,m). QED

By exploiting the properties of the conditional density by applying the results from lemma
B.6 and lemma B.7 we are able to relate differentiation with respect to the integration lim-
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its C, and differentiation with respect to the covariances p,, of n-dimensional multinor-
mal integral by corresponding n—1 and n—2 dimensional normal integrals.

Theorem B.2. We have

9 I(n,c,M) = -£,(C)I(n—-1,C" M) (B.56)
ac,

/2

where f;(x) = € is the standard normal density and the vector C* is obtained from C

21
by deleting element k. The other elements are given by (B.47):

C
fori =1,..,n,i#zk (B.57)

Further M is obtained from M by deleting row k and column k and having elements giv-
en by (B.48):

ok = PP forij=1,.n,0,j2k (B.58)

N1- pizkf\] 1- pjzk

Further
dl -t K1 okl
m(n- C.M) = f5(C. G, p)I(n=2,C™,M™) (B.59)
where
x2+x2 2P X, X
fZ(Xl! X21 p) = € |: . 2 p2 : 2i| (860)
2m1-p° 2(1-p%)

is the standard bivariate normal density function with correlation p, and further the vector
ck! may be obtained from c by deleting element | (keeping in mind that row k and is

already deleted from Ck, k<) and its elements may be found for instance from lemma
B.7 by using (B.45) with two iterations:

Pki PPy . Pii — PPy
kK k A~k i~ G G

2 2
okt o SiPaG 1-py 1-py

T 2 2 2 2
Jl—(Ph) Jl_pkl_pik_pil+Zpklpikpi|

2

1-py

fori =1,..,n,i#k|l (B.61)

-212 -



Further M®' may be obtained from M" by deleting row | and column | (keeping in mind

that row k and column k are aready deleted from Mk, k<1) and with elements obtained
by using (B.46) with two iterations:

Kk K 2
pk_,l _ Pij — PilPji _ pij(l—pk|)—pikpjk—pi|pj|+P|<|(Pikpj|+Pi|ij) (B 62)
I 2 2 2 2 2 2 2 2 )
«/1—(0:1) «/1—(ij|) A/l_pkl_pik_pil+2pklpikpi|A/1_pkl_pjk_pjl+2pklpjkpj|

fori,j = 1,..,n,i,j#k1
Proof: The theorem follows directly form theorem B.1 and equation (B.51). QED

Corollary B.3. For the special casewhere C;, = C i = 1, ..., n wefind:

c?
T14py

d - _€ __ _(n-2c M (B.63)

apkl 2T[Jl—pk|2

and where the C*' -vector is given by:

l-c 100 ) fori=1,..n,i#%kl (B.64)
J<1+Pk|)(1—9k|—9ik—9i|+29k|9ikpi|)
1-py

and the correlation matrix M is given by (B.62).

Since we know all the partia derivatives of the integra 1(n, C, M) as a function of the

n(n—1) . . . . . . .
> correlation p;; it possible to calculate it by applying standard contour integration.

Theorem B.3. We have:

n

1
(CM) = [eC)+ [ pugs-(n C.EME

i=1 l<k<lsng =g
n 1
=19+ Y pu | faCe G &Pl (N2, Mg )l (B.65)
i=1 l<k<lsn g=9
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where the matrix EM = (Ep”) and Cig" and ME" are given as in theorem B.2 but with re-

placing p;; with Ep;; for al i, ], and further @(x) = _[ e /%4t is the normal inte-

1
J2n
t=x

gral.

Proof: This is application of the standard theorem of line integral of a gradient where we
also make use of the fact that for all p;; = 0, the variables are all independent, and the in-
tegral is the product of (standard) normal integrals. We therefore take the straight line
from (0, ...,0) to (Pqp ..., Pr_1n) &S the path of integration. In the last part of the theo-

rem we just apply theorem B.2. QED.
Theorem B.3 prescribes an effective way of calculating integrals of multinormal distribu-
tions of rather high dimensions. For instance an integral of dimension n =2 and n = 3
we only need one single (humerical) integration. By using the theorem recursively, integral
of dimension n = 4 and n = 5 only need two numerical integrations. We shall write
down the results for the two first cases (n = 2 and n = 3) explicitly as a reference:
1
1(2,Cy, Cpp10) = O(CP(Cy) + Py I f5(Cy, Cy, Epyp)dE and (B.66)
£€=0

1
(8, Cy, Cp, Ca,P1z.P13:P28) = HCHACINCo) +p1y [ F5(Cry Cor EP1)NCT “(EP 15, EP 15, EP2) )+
£=0

1 1
, 2,3
P13 J. f,(Cy, Cy, Eplg)(p(cé 3(2912, &P 13, EP23))E+Pog _[ f2(Co C31 &P2g) A(Cy (8P 12 &P 131 EP23)) E
£=0 £=0
with: (B.67)
2
1,2 P13 =P12Py3 P23~ P12Py3 1-py
C3 (P12 P13 P23) = [03_01 2 —C 2 2 2 o : and
1-pp 1-pp 1-P1=P13P2 * 2P12P 3P
2
13 P12=P13Py5 P23~ PPy 1-p
C5 (P12 P13 P23) = [CZ_Cl > —C 2 2 2 o = and
1-p13 1-pi 1-P12=P13P23 * 2P12P 3P
2
2.3 P12~ P13Py5 P13~ P12P,3 1-p3g
Cy (P12 P13 P23) = [Cl_CZ 7 —Cs 2 2 2 2
1-po 1-p 1-p1p=P13P23 + 2P12P13P23

In the literature the main focus have been on multinormal integrals where the lower integra-
tion limits is zero. For this special case it is possible to obtain some more explicit expres-
sions. We shall mention some of these cases. First we observe that the integrals (B.66) and
(B.67) may be expressed in terms of Arcsin functions. We find:
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1(2,0,0,py,) = %1(1+%Arcsin(p12)) and (B.68)

1(3,0,0,0,P15,P13:Pp3) = %(1 + ﬁ[Arcsin(plz) +Arcsin(pgg) + Arcsin(p23)]) (B.69)

In the general cases one could hope that (B.68) and (B.69) could be extended. This is possi-
ble only for some special case. By considering (B.59), (B.60) and (B.61) we have:

o
0py

1
2m1-pj

If for instance all the matrices M*"' equal the identity matrix (this requires that pikj‘I =0,
defined by (B.62), for each k, I, (1<sk<l<n) and each (i,j, 1<i<j<n and i,j#k, 1),

Lz and we may perform the integration in (B.65) explicitly by

2
applying (B.70). We therefore have the following lemma:

(n,0,M) = I(n—2,0,M*" (B.70)

then 1(n—2,0,M*"y =

Lemma B.8. If B; and B; conditions on each pair {B,, B} , k#| are independent for each
i#zk | and j#i, k1, then Cov[B;, Bj|{Bk, B}] = 0, and we have:

I(n,0, M) = 2_1{1*%[{ > Arcsin(pk|)D (B.71)

1<k<l<n

It is possible to extend the result above by assuming that 1(n—2, 0, M® I) has the property

of lemma B.8 (i.e. is on the form (B.71)) and thereby including the “next” contribution to
the integral above. We shall, however, not carry the analysis any further because the result
will include terms that are given as integrals that will be difficult to find explicit expres-
sions for in the genera case.

We shall also consider multinormal integrals of type:

[ee]

iincM) = [ [ &f (& EgM)dE,..dE; and (B.72)
§=C; & =C,

[

li;(n.C,M) = j jzizjfn(zl,...,zn;M)dzn...dzlfori<j (B.73)
& =C & =Cy

We shall show that these integrals may be written as an integral of type (B.49).
Theorem B.4. We have
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1" 1"

L(CM) = 3 ol “(n.C,M) = 3 pyfy (G (n—1, C M) (B.74)

k=1 k=1
&*/2 k k
where f;(X) = is the standard normal density and the vector C* and the matrix M
21

is given in theorem B.2.

n

Proof: We have %fn(él ..... M) = —f (§y,..s En;M)[z EiMi_kl] . Integrating this relation
“ i=1
n =] oo
A -1 _ 0 ) _ k
gves S (MM = [ .. ﬁfn(z1,...,zn,lvl)ouzn...olle = 1(n,C, M).
i=1 El = Cl En = Cn K
The last relation can be viewed as a linear system for |;. Then by post multiplying by p,;

n
and summing we get: 1,(n, C,M) = Z piklk(n, C, M). The result follows now by using
k=1
(B.51). QED.

The corresponding result for integrals of type (B.73) is more difficult to obtain. We shall
use the transformation (B.5) to obtain the result.

Theorem B.5. We have:

L CM) = 373 [0 PPl 1€ (0, C M) + S Cypyyppid “(n, C, M) + pyi(n, C, M) (B.75)
k=11 =1 k=1
12k

= 33 100 PuP ] o Co ) (=2, €, M) + 3 C (1401 (CIN (=1, C M) + ;1 (n, €, M))
k=1l =1 k=1
I 2k

(B.76)

for i <j, where c* and Mk, and C*' and M*' are defined in theorem B.2.

Proof: We use a different approach to prove theorem B.5 than we used for theorem B.4. We
shall prove the theorem by applying the transformation (B.5) for the integrals I(n, C, M)

. . . . -1 —1 -
and I; ;(n, C,M). By changing the integration variable to & = /Mg = JO;¢; itis
possible to rewrite the integrals 1(n, C, M) and Ii,j(n, C, M) in the following way:
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(2T[)n/2

ncmy =8l exp{—%[22§+2 3 Ekileklﬂdin...dél and (B.77)
21:C1«/;ﬁ Eﬁ%ﬁ

k=1 1<k<l<n

oo o n
- ) 1
I j(n,C,M) = n/lzjeti - j j EiEjap{—;[z g +2 3 EkEIGkIHdEn...dzl
(2m) " 7,jO; ejji :CJE : :C’\/E K=1 1<k<l<n

Differentiating 1(n, C, M) given as the integral (B.77) with respect to 9; gives us.

02) Det[O] n F
WI(nCM)— —Jm( CM)—ZCk_J_.I (n,C, M) — j(?l @J .j(n.c,M). Then solving

for Ii‘j(n, C, M) and simplifying gives:

k=1 kk

n 0e;k a?a Det[©]
Ii(n,C.M) = 2 1(n,C,M)- ¥ Cl kin,c, M)—L —J—-I(n C, M) (B.78)
i FF ae,J = 1" 2Det[0]
~1
By using the results from lemma B.1 we have g%k = 20,9, and therefore
i
00,
1 W 1 @kl ek]
o = Pk by lemma B.2. Further by lemma B.4
o fopzod foifel od
] ]
—Det[O] —Det[O] 1
00, =) 0@ S
—i = o so = i =p; by (B.5). Further
2Det[©] i [ 2Det[ 0] ] = i
e ey
2 I(n,c,M) = Z I(n C,M)—2— P

s ot 7

= ¥ aiun, C M)[(Py;1 * PyPi)-Pu Py + PPyl Dy lemma B.3. Inserting these results in

1sk<lsn M

(B.78) yields:

Ii,j(nv C,M) = . kzl [pikpjl+pjkpil_pkl(pikpjk+pilpjl)]%kll(nv C,M)+ z Ckpikpjklk(n, C,M)+pij|(n, C,M)
<k<ls<n k=1
The rault follows now from theorem B.1 and theorem B.2 (where we aso use the fact that
1! =1"%) QED.

We shall aso consider multinormal integral of type:
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0

J(n,C,M) = j j(zi—ci)fn(zl,...,zn;M)dan...dal and (B.79)
§,=C; & =G,

[

JineM = [ [ (E-C)E—C)f(Ey EniM)DE .. (B.80)
§,=C; & =G,

fori<j.

These integrals may be given as a sum of multinormal integrals on standard form by apply-
ing theorem B.4 and theorem B.5. We find:

n n

Jnem =y Pl (n, C,M)=C/I(n,C, M) = 3 P (CI(N-1, cf MY —ci(n,c, M) (B.81)
k=1 k=1
and
3,0.CM) = 3 Y [(oypip 1 (0. C M) = 37 (€, + €0, ~Ci, 051 (0, €. M)
k=11 =1 k=1
12k
+(py + C,C)I(n,C, M) (B.82)

n n n
= Z Z [Pik(Pj|—Pk|pjk)] f,(C. Clo P (N=2, Ck' ly Mk’ l) - Z (Cipjk+ ijik_ckpikpjk)fl(ck)l(n_ 1, Cky Mk)

k=11 =1 k=1
1k

+ (pij + CiCj)I(n, C,M)
In many applications involving multinormal integrals the parameters will be functions of

different variables. In chapter 4 we frequently apply the following corollary which follows
directly from theorem B.1 and theorem B.2.

Corollary B.4. Suppose C; = Ci(t,2z), i = 1,..,n are functions of z and t and
pij = Pj(t), 1l<i<jsn adl ae functions of t, then the partial derivative of
f(t,z) = I(n,C, M) isfound as:

n n

g_fz =-3 0, c,M)aizck(t, 2) = -3 f(CI(n-1,C", Mk)(%Ck(t, 2) and (B.83)
k=1 k=1
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F--yrnemlcaa+s ¥ 1“memiem
k=1 1<k<l<n
_ k 0 1 k| d
= -3 1n, C, M)ZCilt, +3y S, C, M) () (B.84)
k=1 k=1l =1
£k
1 0k
== (-1, Ck,Mk)%Ck(t, 9+33 Y f(C Cup)l(n-2,C*' ¥ I)%p,d(t) (B.85)
k=1 k=1l =1

I#£k

It is possible to obtain similar results as theorem B.1 for higher order partial derivatives of
the parameters by applying theorem B.2 recursively. This leads to integrals of type (B.50)
(or (B.51)) and we may use Theorem B.2 to find the derivative. These results can therefore

be expressed in terms of partia derivatives of integrals of type I ""Sk(n, C, M) (given by
(B.50)) with respect to the parameters. Below we only give the general result for the partial
derivative with respect to the elements in the limit vector C.

Theorem B.6. If | sy, ..., 5, then
9% n M) = 4% > My and (B.86)

if | =g for 1<i<Kk, then

k n
0 %S e M) = _[z C%[M;._”sk]jijlsl'”"SK(n, cM+ Y AN e My (B.87)
i=1 j=1

J#ESy

Proof: The first part is obvious. We therefore take | = s, (for 1<i<k). By (B.51) we
have:

0 (Sv-oS _ Sp i Sk p S0 Sy 0 . 0 Str e Sy 1S Sk
ﬁl (n,C,M) = I(n—k C M )@fk(csl ..... CoiMg o) +Ti(Cq Gy Mg _Y%)@l(n—k c M )
By lemma B.5 (equation (B.12)) we have

k
a%gfk(csl ..... CoMg, ) =Y c%[MSjwsk]ji]fk(cSl ..... CoiMg, s) and multiplying with

j=1
I(n-k c™ % M™% and using (B.51) gives the first part of expression (B.87). By apply-
ing corollary B.2 (equation (B.83)) we have
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n

7} St Sy St Sy St o0 S CITRRTE X R TR | 0 ~Su-S
ﬁ|(n—k ¥ M )=— Y (G MIn-k-1,C M )(ch ) Further
i=1 ‘
J# Sy s S
we have
. Sy i Sy _ _ Suen S .

i(CornCsiMs, (G ) = cersed) T 0 Miea (GG GiM
M . . .

where M, ;= { S8 Pousil is obtained from Mg, s by adding the row-vector
p51v | 1 T

Ps, ..si = (psﬂ-, pskj) (and corresponding column-vector Ps,, ...,sk;i)’ and where we also

ORI

apply (B.25). By (B.44) we also have %cfl"“'sk = _E‘J;_S By inserting the different ex-
s 0_j1v--vv k

pressions and applying (B.44) we then obtain the second part of (B.87). QED.

The corresponding result for the partial derivative of the multinormal integral with respect
to the elements in the correlation matrix M is also possible to obtain by applying the fol-
lowing quite remarkable theorem for these types of integrals. The following theorem is
more or less a direct implication of the results in lemma B.5.

Theorem B.7. For integrals of type 1 S‘(n, C, M) (given in (B.50)) we have the follow-

ing result:
d 1% %(n, C, M) = 0° 1 %(n,C,M) for1<l<ms<n (B.88)

Proof: Differentiating (B.50) with respect to the correlations we have

(&g, 1 Cop B v 1r i B 1 Co B o 1or EnM)
m
(B.89)

where the integral is of dimension n—k and does not involve the variable Esl, Esk. Then

by applying lemma B.5 (equation (B.13)) we have depending on the values of | and m, the
following cases:

f f
(i): Both I, m#s, ..., s, giving aL = 9y . Integrating twice gives the result for this
aplm aEIaEm
casesince 1% ¥, c, M) = 1% %" (0, C, M) = ifl’“"s‘(n C, M)
3o , G, G, 3C,oC, G, M).
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(i): If ether | =s and m#s,...,5 or m=s and j#s,..,5 then

2 2
o _0h or O _ 9 Integrating once we get  either
0pgm  08,0C, W'% W'
0 (Su-o 9 SvooSem 0% su.as
| CM) = ——1 CM)=_"__1I C,M
30am (n.C.M) ac, (n.C.M) ac.oc,, (n.C. M) or
0 ,Su-- S 0 Sy, v S| 02 ST
—1 ,C,M) = —1 ,CM) = —— 1| ,C,M).
opis (n.C.M) ac, (n.C.M) ac,0C, (n.C.M)
2
, of, df,
(iii): The last case occurs when | ='s; and m = s In this case =_"__ and
Pss  9C50C
0 ,Su-S 62 S, oees S¢
therefore I (n,CM) = —— 1| (n,C,M). QED
Pss 9C0Cy

B.4 Some limits for Multinormal integrals

In this section we shall prove some limits that we quite frequently have applied in chapter
4. We consider an integral 1(n,C,M) of dimension n where the limits C; = C(t),

i = 1,..,n and the covariances p;; = p;;(t), 1<i<j<n dl arefunctions of t.

Theorem B.8. If @l the C,(t) - —~ whent - O fori = 1,...,n, then
liml(n,C,M) =1 (B.90)
t-0

Proof: This is obvious since the integra is over a multidimensional probability density func-
tion.

Theorem B.9. If thereis one k for which the C,(t) - « whent - 0, then

liml(n,C,M) = 0 (B.91)
t-0

Proof: By applying (B.52) we may write |(n, C, M) on the form:

[

InCM) = [ f(EJI(n-1,CE&), M &, (B.92)
&= Cy(1)
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Mmri:l...n i

All_pik(t)z

and the covariance matrix M¥ is given by (B.58). Since |I(n—1, Ck(Ek), Mk)| <1 it fol-

[

lows that |I(n, C,M)| < J' f(§)dE, = @(Cy(t)) where ¢(x) is the standard nor-

& = Cu(t)
mal integral. The result follows now by applying the asymptotic expansion of @(x) for

where the integration limits are given as Cik(Ek) = #k

1 X2
large x; @(x) D——e as X —» .
X

J2m
Theorem B.10. If dl the Ci(t) - C, i =1..,n and p;(t) - 1, 1<i<js<n when
t - 0, then
liml(n, C,M) = ¢(C) (B.93)
t-0

Proof: Applying (B.92) we have:

I, C,M)-9(C) = [ f(E)(1(n-1,C (€, M) - 1)dE, + B(C) - ®(C, (D)) -
&= C()
If we for instance choose €, sufficient small (and fixed), then we can write this difference
as:
o CHey

[ fEI00M-1,CEMI-Ddg+ [ f(EII(-1,CE), MIdE, + ®(C) —9(C +¢) , giving
E=C+g, & = Cy(t)

)

I CM-@Ols [ HEN|I(N-1 C &Y M ) 1t + 9(C (1)) ~@(C + ;) + (®(C) ~x(C +Ey))

§=C+g
For the integration limits Cik(Ek) we have ¢, = Ci(t)_pik(t)ik<Ci(t)_pik(t)(czsl), so there-
/\ll_pik(t) /\ll_pik(t)
fore tlimoc:((zk)<—sltlim; = forali=1,..,n,izk when g >(C+¢g;). By theo-

~0 1_pik(t)2

rem B.8 we have liml(n-1, Ck(Ek),Mk) =1 when &, =(C+g;). We may therefore
t-0

choose a second €, so that |(I(n—1, Ck(Ek),Mk)—l)‘ <g, foral § =2(C+¢g;) and t
sufficient small. Similar we may also choose athird €5 so that |c,(1)-C|<e, for t sufficient
small. Then by collecting the results above we finally may derive the following inequality:
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0

[I(n, C,M)-(C)| <&, j f1(E )€, + @(Cy (1)) —P(C +&7) +(P(C) —P(C +ey)) s g, + %(83 +2¢g) .
21

&=C+e

The result follows since all the three epsilons may be chosen arbitrary small (by also choos-
ing t sufficient close to 0) QED.

The result will be quite different if some of the correlations pij(t) tend to —1. In chapter 4
we need the following result:

Theorem B.11. If we have two integer n; and n, such that 1<n;<n,<n or

1<n;<n,<n and
Ci(t)-C,1<isngandn,<i<nand C(t) - —C, n;<is<n,, if further

pij(t) - 1, 1<i,jsny, 1<isn; ny<isn, n<ijjsn,, mp<isn 1<j<n; and

n,<i,j<n and

pij(t) - -1, 1l<isng ny<jsny, ny<isn, 1<js<n, , n<is<n, 1<js<n; and

n,<isn n;<j<n, whent - 0, then
Iimol(n, C,M) =0 (B.94)
t o
(See figure B.1 for the structure of the correlation matrix M = Iimopij(t) )
t -

ny ny

ny L — — 1 - —

np - t_ _

Figure B.1:  The structure of the correlation matrix M = |im pij(t) in theorem
t-0

Proof: We pick one k for which C,(t) - C (i.e. 1<i<n; or n,<i<n), then by (B.92)
we have:
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0

I(n,C,M) = j f,(E)I(n—1, C*(&,), Mde, . If we for instance choose €, sufficient small (and
&= Cy(t)
fixed) we split the last integral into two parts
I Ctey
[ fEN0-1,c €)M+ [ f(EII(n-1,C (&), MdE, , bounding I(n, C, M) by
E=C+g, & = Cy(t)
[I(n, C, M)| < j fl(Ek)’I(n—l, Ck(Ek),Mk)‘dik+(p(Ck(t))—(p(C+El). We now choose one i such that
E=C+eg,

Pik(t) — =1 (By the structure of the limiting matrix this will dways be possible, by choos-

ing n, <i<n,, see figure B.1.) We then have C,(t) -~ —C and for this particular integra-

CiM-pi(D& GO-Pi((C*Ey)
Ji-o®® J1-p

1

Lk . —®
tleOCi(Ek))sj.tquoTk(t)z_ when §&,=(C+¢g;). By Theorem B.9 we have

tion  limit Cik(Ek) we have cle = Therefore

liml(n-1, Ck(Ek), Mk) = 0 when &, >(C+¢;). We may therefore choose a second ¢,
t-0

so that [I(n—1, C¥(§,),M¥)| <, for all &= (C+e;) and t sufficient small. Similar we
may also choose a third €5 so that |c(t)-c|<e; for t sufficient small. Then by collecting

the results above we finally may derive the following inequdlity:

o

I CMI<e, | fEIEH KOO -UC+e) <ept —=(etey).

E=C+gy

The result follows since all the three epsilons may be chosen arbitrary small (by also choos-
ing t sufficient close to 0) QED.
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Appendix C

The sign of the real part of the poles of the
L aplace transforms in section 5.4

In this appendix we shall show that al the poles of the LST (5.37) for the excess times
must have negative real part.

Theorem C.1. If s = k isapole of (5.37), then Re(k) <0.

Proof: We take the form (5.65) of the Laplace transform as the starting point. If s = K isa
pole in (5.65), then by (5.66):

A 1 “u
Det[ (k)] = ~——— |Det[l —M%(k)] = 0 (C.1)
iL_J.L[Hi( 1
If s = K corresponds to a pole of H;(t), that is ;I% = 0 then Re(k) <0 since
i(K

[

IHi(s)| = [ e (t)at < | Hi(t)t = m, for Re(s) 20 which gives that

t=0 t=0
1 1
~—| 2= for Re(s) 2 0.
Hi(s)) M

If s = k corresponds to a pole where Det[l —M"(k)] = 0, this means that y=1isan

eigenvalue of the matrix M"(k). Let X, = (Xgj_+ 1, Xyjo+2-) » (X #0) be the corre-

sponding left eigenvector; that is,

x! = x,. T1Y(k) (C.2)

Suppose that Re(k) = 0; then by (C.2) we have



< X |Xlkji| > |r|Aiju(K)‘ (C.3)

izja+1 j2je+1

> X ()

izje+1l

) ‘X:i‘ = 2

izje+1l jzje+l

From the definition of ﬁi ju(K) and the assumption Re(k) =0 we have:

< | M, (et < [ my(dt = Py(0) (C.4)

t=0 t=0

| My(te™dt

t=0

ﬁij“(K)\ =

We shall assume that there are at least one state jU<j. such that Pi[jD(O) >0 for some
il=j. + 1. By this assumption and (C.3) and (C.4) we find:
u u u _ u

z |XKj| < z ‘XKi‘ z Pij(o)< Z |XKi|ZPij(O) - z ‘XKj"
jzje+1 izje+l  j2je+1 izje+1 20 izje+1
The assumption Re(k) = 0 therefore leads to the contradiction:

> |xﬁj| <y ‘xﬁj‘, which implies tha if s=k is a pole where
izjiet+1 izjetl
Det[l —M"(k)] = 0, then Re(k) <0. QED.

The same result will aso apply for the poles of the LST of the excess volume (5.57). The
location of possible poles are given by the corresponding equation to (C.1):

M [—L}Det[l =] = 0 (C.5)
Giu(K)

i2jc

Recall that the Matrix =%(2) is given by Zij(Z) = Mij((ib—C)2) for i>jc and j>jc,

and G{(7) = (ib—C)Hi((ib—C)7) for i>j.. We can therefore perform exactly the

same proof as above by observing that (C.4) aso yields for EU(Z) .
We may also apply the same method on the LSTs (5.38) and (5.58) by considering the

matrices M'(s) and é‘(z).
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Appendix D

Alternative expressions for the Laplace
transforms in section 5.4.3

It is possible to rewrite the formulae for the LSTs for birth-death semi-Markov processes
given in section 5.4.3. This can be done by rewriting the determinants (5.74), (5.76), (5.80)
and (5.82), where we also make the corresponding matrices symmetric by pre multiplying
by a given diagonal matrix and post multiplying by the corresponding inverse. We find:

- E;. 2(9)
fr (s) = M.+ 1JUC+—
ch+1(s)

(D.1)

where Ej'(s) = Det[E;'(s)] and the matrix E;'(s) is the symmetric tri-diagonal matrix:

= —JA 0 0 0 0
mfi(s) W
—/)\jujﬂ%—/)\“lujﬂ... 0 0 0
mj+1fj +1(S)
E{(s) = and (D.2)
0 0 0 o~ AN2MN -1 e RN
My_1fn-1(8)
0 0 0 0 Py ——
myfn(s) |
|
~ E _ (5)
fs(s) = A, —e=t (D.3)
S jc
ch(s)

where E}(s) = Det[EJ!(s)] and the matrix

EJ!(S) is the symmetric tri-diagonal matrix:



Aoy 0 . 0 0 0
myfols) ¥ O
1
~ Aoy —— iy .. O 0 0
miys V2
BO=| o e e e . (D.4)
0 0 0 o =JAj ol m - 1H
j-1'j-1
1
0 0 0 . 0 oy v —
RS
d b.
where A, = 1 and ; = _")\i =2 i=1.,N-1and T i_
Mo m m my,

We may also obtain corresponding recursion formulae by expanding the determinants as
(5.77) and (5.78):

The LSTs for the excess volumes may also be rewritten as follows:

- +2(0)
fa(Q) = u. ‘° - (D.5)
A = M (@

where I'(s) = Det[I(s)] and the matrix I';'(s) is the symmetric tri-diagonal matrix:

L g, 0 0 0 0

@'
~A Ly ﬁ T P 0 0
ri'@ = Jl (D.6)
0 0 0 .-, (pnl(z) ~ Atk
0 0 0 0 —m ul
Q)
u . )\
where @'(¢) = (jb—C)m ((Jb 0)0), A" = and pj” = T i>ic and
_1(C
f, () = A, ‘° (9 (D.7)
(Z)

where I']!(s) = Det[l']!(s)] and the matrix I']!(s) is the symmetric tri-diagonal matrix:
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_ = -pdd 0 L 0 0 0
@(0)
—Aged - Ao . 0 0 0

| 6@
no=| . (D.8)
0 0 NG SN . 1(() — ATy}
N -1
0 0 o . 0 NG Y e T

4

: : : A P
where 6}(2) = (Cb)mf(C-0)2); AT = hp and ' = o <

The reason for dealing with symmetric tri-diagonal matrices is that this type of matrices has
very nice mathematical properties which make it easy to calculate the eigenvalues. We re-
fer to textbooks in linear algebra for a thorough treatment of the various topics, but we just
mention some of the properties which we shall exploit and apply to the matrices above.
(See for instance [Wilk65] for treatment of the topic.)

By using the results for tri-diagonal matrices we may write (D.1) as:

N
i+2
M X ©
- _ L
fr(S) = Moy (D.9)
i1
M Xa* ©
i=jc+1
where lefi+2(s), i =jct+2 ...N ae the eigenvalues of the matrix Ejuc+2(s) and
x{fi”(s), i =jc+1 .., N are the eigenvaues of the matrix EJ-”C+l(s). Moreover, these

eigenvalues are strictly separated that is:

1 o 1 . 4o 1
Xun (8 <Xun-1(8) < Xu—1(8) < <XJquC+2(5) < XJquC+2(5) < X]quC+ 1(8) (D.10)
The leading principal minor of order N—j of Ejuc+1(s)—xl , that is
E/(s X) = Det[E[(s)-xI], (D.12)

satisfies the following recursion starting by defining EL 1(sx) =1 and
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EN(SX) = —F— X (D.12)
myfn(s)

E/(s.X) = L—l—— jE}tl(s X)AjH; 416, o8 X) for j = N=1,...jc +1(D.13)
mjfj(s)

Similarly by applying corresponding results for the tri-diagonal matrices give

je-1
jo—1
X
P — ) i=0
fa(9) = A S (D.14)
[
i=0
where x{f_l(s), i =0,..jc-1 ae the eigenvalues of matrix E]!C_l(s) and x{ic(s),

i =0,..jc are the eigenvalues of matrix E]!C(s). Moreover, these eigenvalues are strictly
separated that is:

i i1 i i i1 i
XI6(S) <Xl5 (8) <X13(S) < o <X15.—2(S) < Xi5_2(8) < Xi5u(9). (D.15)
The leading principal minor of order j of E}C(s)—xl , that is
Ei(s. X) = Det[E|(s) —x]] (D.16)

satisfies the following recursion starting by defining E'_l(s, X) = 1 and then

Eg(s X) = —F——X (D.17)
mMyfo(S)

I _ 1 | u . .

El(s %) = mef(s)—xj E (50 ME (X forj =1 .jc (D19

1)

For sake of completeness we aso write down the corresponding results for the excess vol-
umes. We find:
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N
jct2

M e @
fa Q) = uf et ——— (D.19)
M < @
i=jc+1
where u)jUCisz(Z), i =jc+2..,N ae the eigenvalues of the matrix Fjuc+2(Z) and
m{ﬁ+1(l), i =jc+1 ..,N are the eigenvalues of the matrix F]-UC+1(Z). Moreover, these

eigenvalues are strictly separated, that is:

jc+l jc+2 jc+l jc+l jc+2

Wiy () <y Q) <@ Q) < < Q) <0l 2 <)

+1(Q) (D.20)

C C

The leading principal minor of order N—j of F]-UC+1(Z)—Q)I , that is
', w) = Det[}'(2) - wl] (D.21)
satisfies the following recursion starting by defining FL 1(Gw) = 1and

Mo = —1——o (D.22)
o (Q)

(g w) = [%—w} r, (4 @)-AG s 1 2(C, ) For
@ Q)

j = N=1,..,jc+1 (D.23)

Similarly by applying corresponding results for the tri-diagonal matrices give

je-1
o @)
fy(Q) = AQ = —— (D.-24)
¢
i=0
where m{f_l(l), i =0,..jc—1 are the eigenvalues of the matrix F]!C_l(s) and (oif(l),

i =0,..jc are the eigenvalues of the matrix F]!C(s). Moreover, these eigenvalues are
strictly separated, that is:
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W50 <5 Q) <WHQ) <o < 1) <) < (Q) (D.25)

The leading principal minor of order j of I']!C(Z)—col , that is
M2 w) = Det[r|(s) - wl] (D.26)
satisfies the following recursion starting by defining F'_l(Z, w) = 1 and then

M) = ———o (D.27)

@o(Q)

Mg w) = [%—m]r}_l(z,m)—)\E]_lpE}r}’_z(z,w) for j = 1, ..je (D.29)
@

Numerically all the different eigenvalues may be calculating by using the method of bisec-
tion [Wilk65] by applying the Sturm sequence property of the sequences

{E&(s X), EN_1(S X), s EjL (s x)}, {rh(z, @), TN-1(8 @), o T 44 (C, w)} and

{EIO(S, X). E3(S.X), - Ej (5 x)}, {r'o(z, ), ML @), ... T} (&, w)} for fixed s and .

Due to the continuity of the eigenvalues (as functions of s and (), the strict separation by

(D.10), (D.15), (D.20) and (D.25) yields for al values of s and . We may exploit these
results in various directions to make statements concerning the location of the zeros of the
eigenvalues.

One important implication is that we may find the dominating root in the various trans-
forms by looking at the largest root with the smallest eigenvalue. That is we must look for

jctl

jct+l ic ic
the largest roots of X, (S), W,y (), and X;o(s), wg(L).

D.1 Birth-death processes with exponential sojourn times

The main reason for rewriting the transforms on the specific form by the matrices (D.2),
(D.4), (D.6) and (D.8) is that it will greatly simplify the expressions for birth-death process
with exponentially distributed sojourn times in the different states. In this case we have

~ A+ U
m = 1 and fi(s) = 2TH e obtain:
A+ S+ A+ U

J ] J J
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1 1 u 1 I
—=— = A+ +s and — = A4 +p|:]J+Z and—:)\q+pq+Z.Byth&ee
mis) ') 90

substitutions in the various parts above we see that the (s, x) and ({, w) dependencies only

appear through the differences X —S and w— ¢ and the corresponding eigenvalues will
therefore be constants. We find:

jc+1 _ Jctl
X (s) =5 +s (D.29)
¢C+1 L . - .
wherey, ~,i = jc+1, ..,N aethe eigenvalues of the tri-diagonal matrix
Nor1tHen —Nosileo 0 0 0 0
, “WMNerihierz Ner2 P Higr2 A atigrz 0 0 0
Filsg = , (D.30)
0 0 0 e =N ANt Hno g AN
0 0 0 0 —MAN_iMn Ayt Hy
jC — .C
Xi(s) = yi+s (D.31)
where yi{, i = 0, ....jc are the eigenvalues of the tri-diagonal matrix
Ao+ Hg = JAghy O .. 0 0 0
—JAoky Apt iy — /Ay - 0 0 0
Fo=| . (D.32)

0 0 0 Ty )\jc_zujc_l )\jc_1+ujc_1_'\/)\jc_1ujc
0 0 0 0 N )\jcflujc )\jc+ujc

The different eigenvalues may be obtained by the method of bisection applying the Sturm
sequence property of the sequences of leading minors [Wilk65]. The leading principal mi-

nor of order N—j of Fj,,—xI given by Fj(x) = Det[F;'~xI] satisfies the following

recursion starting by defining Fﬁ”(x) =1 and
P00 = A+t =X (039
FOO = O+ 1 =X)F] 100N 1 Ff 00 for j = N=1, ., jc+1 (D.34)
Further the leading principal minor of order j of F}C—xl given by F}(x) = Det[F]! —xI]

satisfies the following recursion starting by defining F'_l(x) =1 and
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Fo(X) = Ao+ Ho—X (D.35)

FI(0 = O+ 15 =XF_100-A _1iF_,(0 forj = 1 .jg (D.36)

The corresponding results for the excess volume are;
i1 1 i .
Wt Q) = v+ and @)°(2) = v + ¢ (D.37)

where ydj”, i =jc+1..,N and yq,C i =0,..jc are eigenvalues of the matrices
FL. . 1 obtained from (D.30) by simply replacing A; by A§" and p; by p and FE}C ob-
teined from (D.32) by replacing A, by AL]' and p by .

We end this appendix by writing down the final result obtained inverting the transforms
when we know all the eigenvalues, we find for the different PDFs for the different excess
variables (by taking partial fractions expansion of the LSTs):

N
jo+2 c*l
N |_| (¢uc| _yuj )
jor1 st jo+1 i=j.+2
ka(t) = Hj+1 Z a, e where a, = N (D.38)
- jc+1 et
JZlerl |_| (Vucl —VYyi )
i=je+1i%]
and
jc—-1 j
jc—1 Jc
i ,. |_|(\/Iic _yli)
. c .
f<() = A S a‘e wherea® =dizo (D.39)
s =A% a i = ‘ :
i=0 j Ic
[ (\/lic—yu)
i=0,i %]

and further for the excess volume:
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N . VELC+1
(W00 = weer Y i e ¥ where
j=jc*1
N

)
s
M (vl gval 1)

i=jc+1l,i#]j

and

jc—1

(vdc i )

fy, (0 = AQ, ZaE1° dewhereaq = i= ]2

(vl

i=0,i#]
and where the eigenvalues are ordered so that
+1 jo+2 +1 o+l je+2  je+1
0< <\/uN <\)uN 1 < <\/ujc+2 VYuic+2 Yuje+1-
C 'C_l C C _1 j
0<Vio<Vio <W1<- V-1 Vij.-1 Vij.

and

0<y[tcN+l<decN VELN 1< VELIC+2 VELIC+2 <V[LJC+1
o<y <ydls " <yls <. <vdE Ly <y <k
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Appendix E

Asymptotics of the excess distributions and
first passage times for the U-O process

E.1 Asymptotics for the Parabolic Cylinder Function D CZ(X+ 2Q) for

¢+

large C in terms of Airy functions

We have [AbrarQ], (19.5.1 page 687) that D,(z) = U(—%—a, z) where the U(a, z) may

be written by the following integral:

U(a,2) = —e Ie s 2ds (E.1)

Where H isthe so called Hankel contour (see figure E.1)

AIms

Res

Figure E.1: The Hankel contour.

We shall find asymptotics for the functions



(%) = Dyr, o (x+20) = u(—%—cz—zz,xuz) and (E.2)

(6%, C) = D, o, (x+20) = U(3-CT-2 x+2¢) E3)
as { - o, We shadl follow the line in [Haga89] for the expansion.

By introducing z = x—C and A = Z+C§: and f,({, x,C) = gl(Z +C§:,X—C, C) we obtain

C

9;(\,y,C) = T ds (E.9)

b
Following [Haga89] we introduce the following substitutions:

1 1 1
z=Nyands=A+A% and g,(\,y,C) = hl[)\,)\sy, c] giving:

2

r()\2+ 1—(%)2) ! —%(A%NZA)

(A, 2,0) = ——————7% Je"™*Yat with the exponent (E.5)
o
1 1 1.2 2
FAz1) = {)\ 34 2)\]{)\+)\3t] —%[M)Ft] —[Iog)\+log[l+)\ 3t)]()\2+1—(%)2) , (and where H' also is
2

a Hankel contour). Expanding the exponent to order A 3 for large A gives:

2 2 2
FAz1) = z)\3+g)\2—()\2+l—(%)z)log()\)+zt—§+(t£—(l—%2)t))\ 3+0[)\ 3}. Collecting terms we
find:
(zt—i)+)\% gf_z_ - 1—9-1 +0 )\75
gl()\,y,C)zgz)‘T’n—.C)'[e : {(4 ‘D ( ! } [ Z]ds (E.6)
5
152 (3241-(§) )10

where G(, ©) = r(>\2+1_((—2:)2)x3e2A pres-(9) . Expanding further gives

Gnc _G(ALC (zt9[1+)\§ (t4 24> (1 Cz)t . [)‘%Dd = G(A, C)J Ai +)\7§(| +(1 CZ)A-- )+ [}Cg]
0:;(,A,C) = 27 _[e 24"\ 9 s = G(A, C){ Ai(2) @ vy "z))*o

H
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where Ai(z) = ZL _[ ds is the Airy function. (This is seen by transforming the con-
H

tour into the imaginary axis giving Ai(z) = jcos(zt + ;)ds which is an integral repre-
0
sentation of the Airy function by [Abra70], (10.4.33 page 447). Further the integral
+3 (a- (
4 zt—— zt——
= 1t_z =1 2 3 _ 3
\(2) = me(4 :)e ds = — = jl(z(z t)e " ds mj(t (z-t))e ds

Then integrating by parts we find 1(2) = _[t = %Ai'(z). Collecting the re-

|

sults above (and transforming back to the origi nal parameters gives:

o X *+20) = H, (4, C)

ol

O R - R (R P (3

(E.7)
7+ @+ cr+1log(7+E
where H,(Z,©) = 6(¢+S.¢) = r( +cz+1)(<+°) sjed ( 2). (E.8)
2’
By applying the asymptotic formula for the Gamma Function we find that
1 l_lz+92+(12+CZ)logZ+9
Hy2,©) D(em(1+ )’ 9 3 asy - (E.9)
By applying exactly the same asymptotic procedure for f,(x, ) = DZZ+CZ—1(X+ 20) we
find:
1 2 1 2
3 3 3
s 7 c>(~[< S e-0](1+)er g {0+ o0 0+ ]
(E.10)
1+ &) @+ cylog(z+ €
where H,(¢,C) = r(z +cz)(z+C) e 3 (E.11)

and with the following asymptotics:
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1 1-—1‘Z+92+(Z2+CZ—1)|OQZ+9
Hy(2, ©) D2+ S)’e 9 3 asy - (E.12)

It turns out that the asymptotic expansions (E.7) and (E.10) yield in the whole ¢ excluding
the negative real axis. The reason for this is that it is not possible to express the asymptot-
ics by a single Airy-function asin (E.7) and (E.10). However this is a particular interesting
case since the poles of the LST are located along the negative rea axis. We shall follow
along the course as described in the paper of Olver [Olve59], and find the desired asymptot-
ic expansion by applying the connection formulae for the Parabolic Cylinder functions
[Grad94] (9.248 page 1094) giving (where we also have used the formula [Grad94], (8.334

-5+ i2(p+1)
page 946) D,() = cos(np)Dp(—z)—sin(Trp)u%m[e 2 1D_p_1(iz)+e2p 1D_p_1(—iz)) . By let-
T

ting n = —C in (E.2) and (E.3) we are interested in the asymptotics of
u; (N, x,C) = f3(-n, %, C) = Dnz_Cn(x—Zn) and (E.13)

u,(n,x,C) = f,(—n,x C) =D (x=2n) (E.14)

n’-cn-1

for In| - « and arg(n) < g Using the connection formula above gives:

u(1,x,C) = cos(n(n’~Cn))D, .  (~x+2n)

2 H2(m*-cn +1) iT(n*-cn +1)
. 2 fn-Cn+1 2 . . 2 . . :
—sin(T(n —Cr]))—(nTz_:l_[—)[e D_n2+Cn_1(|x—2|r|)+e D_n2+Cn_1(—|x+2|r])J . Writ-

ten in terms of complex arguments this may be given as:

uy(n, %, C) = cos(m(n’~Cn))f,(n, -x, -C)

2 -iZ(n*cn+1) iZ(n*-cn +1) . .
—an(n(nz—cn))ﬂﬂ%ﬂ[elzn N Enixic) el f2(ir],—ix,—iC)J. By direct substitu-

tion in the given asymptotic formulae (E.7) and (E.10) and then expanding gives:

2 -iZtn®<cn+1)
r_(g—_Cr[+_1)e 2 f,(~in, ix,iC) =

J2m

1
3

”{[U w0« 53-S9 3Av[-e-‘%“<n_gf<x_c>] m[@,_gﬁﬂ

Similar for ﬂﬂz;—gl"—l)eizm _Cn+1)f2(ir],—ix, -ic) yields the complex conjugate. Then by apply-
Tt
ing the following relation between the Airy functions [Abra70], (10.4.6 page 446)
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T .21

T[ —|2—T[ | |
Bi(z) = e AI[ 8 ]+e6Ai[e 32] and its differentiated form, we obtain the following asymp-
totic expansion:

_2

w-0]--Sa-§ | o-Ge-o]

Wik

u(n,%,C) = Hy(n, —C)<cos<n< nz—cm)Al[ (n-9)

1
3

1 2
_Sin(T[(nz_Cr]))[ [ (r]——) (x— C)] (———)(n——) Bi' [{n __)3(x c]] [(q—%) gﬂ (E.15)
The corresponding result for the second function u,(n, x,C) = DnZ—Cn— 1(x—2r]) is found
similarly and we get:

1
3

cos(n(nz—Cn—l))[ [(n——) (x- C)] +(3+ 42)0]_%),2 [(n——)%(x C)D

uz(r], X, C) = Hz(rlv _C)

1
3

_sn(atrcn-1) [B[ 1-SP- C)] ((1+Q) -9 B.[ - c>]] [(n——)j}(E 16)

e.2 Asymptotics for the conditional excess volume for small arguments
We shadll investigate the conditional density function fAX(x, z) for small t. Recall from

(4.107) that the LST is given as

x C D2 2

Dyr, o (C*20)

Expanding to second order by using (E.7) for Re({) » 1 we find:

2 1
-9 1 2 1 () 2 1y 2 1
Ai[fy}%tz 3Ai'[z3y]—(l—c—) —= 3Ai[z3yj+z Al [13] (E.18)

e

where we have set y = x—C. By [Abra70], (10.4.14 and 10.4.16 page 447) the Airy func-
tions may be written in terms of modified Bessel functions of third kind through:

(%, 2) D3§ @
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2

1 11 31 1 31
.| 53 2.6 2,2 2
A'[Z YJ 31/2 —YC K1/3(3y C ] and Ai’ [Z YJ = _31/2 yZ 2/3(3)/ C ] (E.19)

We now make use of the following integral found in [Grad94], (7.629 page 872):

[

_[{t ‘e 2th u( )}e dt

0

!
s Kpy(24/as) (E.20)

Substituting for A = 2./a, n k—% and r = 2u it follows that the inverse of the La

2
n+d) A7 2

place transform g(s) = s'K,(A/s) is g(t) =t VY Cﬁ) where W, ,(y) is

+ 1r
the second Whittakers's function ([Grad94] 9.22-9.23 page 1087). By using (E.19) and
the result above we may find the inverse of the functions;

5l<.

_k 1 1/2 k=2 _
]‘ S 1,360 (9 and (E.21)

él(Z!yr k) = Z 3A|[Z3y IS gl(z’ Y, k) = Ey z e ZW_k;
P

DI

_k 1 1 2k=5 _

12
A (AANIER 3Ai'[z3y] is gy(z y,K) = e

Ly %2 ® e Wy ;(Q (E.22)
6 '3

By inverting (E.18) term by term and applying (E.21) and (E.22) we obtain for z« 1:

3;'_ é) 2 : C c
X(X ) i—2 182 [(XZ 5 2 é gx_)_:&) = —(x C) z W% %(ﬁ%i) +
1
1 3_(2
2 6 _ 3 r(:_i) —
(%_%) (XZ_C)%W{ %((X 9? - F(%) (xic)wo, %((X 920) (E23)

. 1
2 %-% 5 ) 33r§) 5 5 1

Pt 0)03-31(3)e z*lAi[z%y]+%Y17§Ai'[<%y)—(§—%) 0 <3Au[z%y]+z A [ZE‘E) )

Inverting this transform term by term by applying (E.21) and (E.22) we find:
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I~

36|— 3) 18 z x c %g (x=C)
Fox2)0l— e ’ [(x 15) ;%g—)—s)——(x ©) W51( 9z 3>+
: (3
R ey e (29

(x-c)?

The LST for the PDF for the variable A is found in (4.116):

~ _ $(C) Z e (C+20)
fa.(Q) = ¢(C)_C(p(c)(1 —({+C) (C ) (E.26)

By applying the asymptotics (E.7) and (E.10) we expand the transform to second order for
Re(¢) » 1:

1
3

G

$(C)-Ce(0) r—@)z T (E.27)

fa(Q) 0

Inverting we find the following asymptotics for small z:

1 1
(C) 3? 3¢
fa(2) D¢(C)—C<p(0)[r®z 2] and (E.28)

The asymptotics for #AC(Z) is then found as:
1
3

$(C) ° r@) 3 c

Z¢(c) Co(C) r@ 22| (E.29)

Fa(0) D

Inverting term by term yields for small z:

__0(©)
$(C)-Ce(C)

Fa(2) 01—

Sé'1 :
F-C2 (E.30)

ag ?
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e.3 Asymptotics for the first passage time for small arguments
We shall also investigate the conditional PDF for the first passage time fo(x, z) for small
t. Recall from (4.75) that the LST is given as.

(£-)b. (v

fa(xs) = e 5O (E.31)

For large values of s and moderate x and C, we may apply the asymptotic formula
[Abra70] (19.9.1 page 689) and we find the following asymptotic expansion:
X Cc?

°_c? 1
f.(x ) De(4 3 e‘<X‘C)JS’(1 + {%(x —C)- 214(x3 - C3)}s 2) (E.32)

Inverting term by term yields for small t:

X C x—C)*
(0 De(Z_Z ﬂe_gT)_{(:H %(1_)(2*‘XTC:*'C:ZD} (E.33)
2’
Based on (E.32) we find the following asymptatics for IETx(x, S) as.
(x_z c
Fr(x9) Di-e o e—<x—c>ﬁ>[§+{}1(x_c:)—214(x3_c3)}s_g] (E.34)

Inverting term by term yields for small t:

2 2 x702

x_C _
Ry -C -0%, K+xc+Ch) (x-0) i, # 24 xC+C
Fax0i-e” * [Erfc[xzj}(l (x - ) (1_X +X6 + D (><2 )[ﬁe (1_%)}535)
The LST for the PDF for the variable T is found in (4.78)
A D C
fr(s) = Y& Bs-a(©) (E.36)

®(C) D_(C)

By applying the asymptotic formula [Abra70], (19.9.1 page 689) we find the following as-
ymptotic expansion for large s:
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¢(C)
fTC(S) O (C)( 25]

Inverting term by term gives the following asymptotics for small t:

O 0gg (=3

oO\ /m 2

For #Tc(s) we then find for large s:

3
. 1, ¢(©)f.,2_C
FTC(S)DS+ cp(C){S Zszj

and by inverting term by term we find for small t:

Fr (1) O1- M(E%( ﬁ{ 2)
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(E.39)

(E.40)
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Appendix F

Some technical details in chapter 7 and
chapter 8

F.1 Numerical algorithms for calculating the convolution of the waiting
time distributions for a given number of M/D/1 queues

It is well known that a direct implementation of the DF of the waiting time in an M/D/1
queue given by (7.27) may cause numerical problems for large x due to the appearance of

large aternating nearly cancelling terms in the sum. The same problem will then also yield
for the convolutions (7.28) and (7.32). It is possible to avoid this problem by introducing

“local coordinates’” by writing q(x, p) as: ([Robe96], (page 391).

L] ,
a(x p) = @- pe™ > al*l (x| x)) (F-1)
i=0
where the coefficients a" may be calculated recursively by:

a) =1 and for n=12,...
ag :Za1n—l (FZ)
fori=1..,n a :—Tlﬂe"’a.”_? (F.3)

By applying (7.14) and applying expression (F.1) we find qK(x, p) (defined in chapter 7 by
(7.28)) on the form:

K K bl K+iol-1
9 (x, p) = (1-p) epxz 3 mu—l_xj) "7 where (F.4)
1=0i=0
qn _efpn Ll{em n Kfl} (F5)
= a'p

ap'



By differentiation and using the recursion (F.2) and (F.3) we find the following recursion
for bb:

for 1 =0,...,.K -1

b, = (K -1)(K -2)..(K-)p*'* o
for n=12..... ”zz( jbn,il o

1
for i=12,...,n by = e ’byciy and B} =- e”(ﬂb|".1 +I0"5,) for 121 (F.8)

The function qf(x, p) has similar recursions as qK(x, p). By applying (7.13) on (7.32) and

using expression (F.1) for q(x, 0) we may write qu(x, p) asfollows:

K—-11]x] [x] -
pay (x p) = (1-p)e™ 3" zl,(K'—'l),(x LxJ)"' 7 where (F9)
| =0i=
om0 [om F.10
i = 2 _{emarp¥] (F.10)

By comparing (F.10) and (F.5) we see that d) obeys the same recursion formulae as a7/,
but with K replaced with K +1 in (F.6)-(F.8).

F.2 Numerical algorithms for calculating the auxiliary functions

9! (%, 0)

By applying expression (F.4) for g (x, p) we may write g% (x, p) (defined in chapter 8 by
(8.14) and (8.15)) on a similar form: (The expression also yields for q*(x, o) since we

have 9 7*(x, p) =" (x,0).)

; K=1 x| ilx] _
g“i(x, 0) = (1- p)<e” %Z(;“(Kh 1)[( _L jK+|—|—1 ] =-10...., K -2 and

-1 [ x] K-1[x]
=0

K.K-1 1 S _ K+i-1-1 , [_1\K 1_7,0 ‘
9P = A=) D g T 1)(/)}

1=0 i
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where pin = gm a—ll{e"‘ainp"""z} for 1=0,..,K-1; j=-10,.,K-1 (F.11)
| ap
By differentiation and using the recursion for al” we find the following recursion for b|j,{"

for 1=0,.,K-1, j=-10,..,K-1;

b|J;60 = (K - J _2)(K - J _3)(K - J _I _l)pK—l—j—Z (F12)
— . n1 | | . s _bj,n__l pbjr‘ll

for n=12.... :Z;(Sjbsjjn—l for i=12,..,n: 0" = i7,0(9 i (F.13)

and " = T (Al + 1B for 121 (14

F.3 Convolution of the waiting time of an M/D/1 queue with an exponen-
tially distribution

We shall use the expression ¢y ) =(1- p)% [tk =) e for the normalised wait-

kl
ing time for the M/D/1 queue to find the convol ution

Ft.u,p)=u Ie‘““”q(x, p)dX (F.15)

x=0

To get this convolution we write F(t, i, p) = e “G(t, i, p) where

640 = [ea o= (1 p) | 3 e H(c-tg LUK g omcngy

x=0 x=0 k=0

=(@- p)ZH(t —k)'[ e lotk=x]* (k X)] e (PN gy = (1 - p)z I " [ok-x]* e (PHOK) gy

x=k k=0 x=k K!
Lt | k (wp)(k—t) k
. Z[ ] [ ¢ etae
/u to0i\HUT P a0 K

Integrating (and collecting) we obtain:

- [t k [t] k K Y
G(t,,u,p):—lp(Z(pJ e/lk_Z(pJ eﬂkzwe—(puj)(k—t) . The

Hr Pplic)\ L+ p keo\ M+ P i i!
corresponding result for F(t, 1, p) is then:
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F(t,u, p) = HA-p) [LZU:( 1% jkzk: ((,0+,U)(k —'[))i e P(k0) _%(kaey(k—t)]_ Intro-

HF P (i\H*TP) i i ko\ M+ P
ducing the new summing variagble j=Kk-i in the first (double) sum we have
[t] Kk [t][t]] ) . .
Z = and the corresponding expression may be written as:
k=0 i=0 j=0 i=0
[t] & k —1) [t) [th ] i—(t—=i)))
P\ [0+ )K=Y) o) p ) (ermi-t=1)) pi-cn
@-p) [ ] ; eV =(1-p) . e 7
N % & o i

[t] Weki( pfi = (f = 1)) [t] I .

- P (ol =t=1) oty - 1% : Then collectin

=(1-p) [ J : e ) = at-j.p)- 9
g H+p ; I ; u+p

the results we finally get:

[t] k
Fup) = pé(ﬂfﬂ} (ot -k ) - @- ) (F16)
It follows that the integral
j‘e‘/!(l‘x)q(xy 0)dx = delpik(q(t —K, p) - (1- p)e“““‘)) (F.17)
o = (p+p)

F.4 The convolution of the DF of the waiting time in an M/D/1 queue
(with unit service times) and the PDF of an Erlang-i variable with
parameter .

Differentiation of equation (F.17) i-times with respect to the parameter u gives:

k

t ) ) i [t]
Lt 0) = [(t=X) e q(x, p)ax = (~1) 0 {Z z

i — _—lg(t -k, —(1- H(k=t)
X=0 a'ul e (p+,U)k+l (q( ,0) ( ,0)e )}

performing the differentiation gives:

| (G0 = (= eengx p)ix = (F.18)

x=0

[t] i k e - PN
(KD A" ik oY= (1= o) o U(kﬂ ! (t-K) eﬂ(k_t)}_
;{ k! (p+lu)k+|+1 q( ’p) ( p)p IZ(; | KI (p+/«1)k+|7|+1

If we let
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Fit.up)=p J u(t- X_))” g K=Y

G- a(x, p)dx (F.19)

be the convolution of the DF of the waiting time in an M/D/1 queue (with unit service
times) and the PDF of an Erlang i variable with parameter p, then we obtain from the rela-
tion (F.18):

F (tup)= (F.20)
Lt k+j—1j w1 p* Hl(k*'j—'—lj 1 p | (k—t)}
e qt-k,p) - (1-p)Y = e (k) e
;){( kJ(o+u)" .;l! k Jlp+u)

F.5 The convolution of the DF of the K-folded waiting time for an M/D/1
queue (all with service times scaled to unity) with the PDF of an Er-
lang-i distributed variable with parameter .

If we further let

FK,J‘ (t,u,p)=u j. (,U(t - X))J’ @ H(t-x)

) ey 4 A (F21)

be the convolution of the DF of the K -folded waiting time for an M/D/1 queue (all with

service times scaled to unity) with the PDF of an Erlang-i distributed variable with parame-
ter u then we have by applying relation (7.14):

(l—p)K 9K pK—l
(K-1) 9p"** |1-p

FK,j(t'lu'p): Fj(t,,u,p)}-

By performing the differentiation by using expressions (F.24) and (F.25) below we obtain
the following expression for the convolution (F.21):

[t] ik K+ j -1\
_ H P J K-s-1 P s+l
F -(t,,u,p)— 7 \k+j ( J (1_p) ffsf +k-s— +(7)q (t_k,p)_
* 2o+ uy J{ <)% e o
S1(k+j-1-1 o -
“"”Kéu( ’ ]f S2p ) e ”} =2

and where f _ (X) is given below by (F.26).

I,m,n

F.6 Some frequently used expressions
We shall also frequently apply expressions of the type:
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(1-p)< o< K1t () a(%.P) | where t () is some function of the
(K -1y 9" 1-p

parameter p. Differentiation yields:

R . L s

a,"(x, p) isgiven by (72). Inserting for a;*(x, o) by (74), we find:

s-1

1=0

(- o) 0“{ Klf(p)q(xp)} Kzlp( ) o

g™t (K Gesiy 0 K-1
(k-1 95" = (X~P)[ 2 [ | ](S+l) (s+Dp 1 b f(p)}:‘

(1_p)K 9" K-1 q(x, 0) Klp(l p) s+l SYK-s-1 (1 +s+1) AR K-1
TR T G B v e Yo v 1) D Y N G R &)

The sum in the brackets may be found to be:

[]—KZSTK N lj e O b ap to 2t (o)

= | apl apK*S*l*I
Collecting these results we find:

(1_p)K o R Q(X p) & s+ _ yK-s1 AR P F.23
oy P SZ(K UG a,,K—s—l{” t(p))(F-23)

Applying (F.23) on the expression

_ (1_,0)K o P (% p) E.24
GO = (Y 30 | (o 1T 1-p (24
we obtain
- k s+l K-s-1 P
Gy (X P, 1- fros ~1,K+k-s-2.k+ (F.25)
o) = )kﬂZq (AL~ p) vy
where
-1
f (X =Z(—1)S[I r_nSJ(rHSS ]xs (F.26)

1 al m m-I
isdefinedsothatwehavell( P HJ‘ p — Fma Py,
Mop'\ (o +p) (o+p) p+u
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F.7 Relation between the convolution and some auxiliary function

In various expressions we come up with the slightly modified versions of the convolution of
a given number of waiting times of identical M/D/1 queues. We have that the convolution
of the waiting time of K identical M/D/1 queues may be written in terms of the partial de-

rivative of the load parameter v as follows:

q° (%, p) = (1_p)K 0 {pk—l acx, p)} (F.27)

(K -1) 0p** 1-p

The auxiliary expressions occur when the power 0 is omitted in the brackets:

« _[1-p)" 9" [a(x.p) F.28
a, (x,0) = (K-1) 357 | 1-p (F.28)

We have the following relations between g (x, p) and q* (X, o) :

o) = 3 (7Yl a-p " (x ) (F.29)
=0
and the inverse
i p) = - 12( ) -0 Mk p) (F30)

The first part (F.29) is found by direct differentiation. The inverse (F.30) is easiest proven
by induction (on K). From (F.29) we have

K2(K -1
qK(x.p)=Z( | }0'(1—/9)“1 (%, 0) + Pl (%, p) OF

o (% p) = pi.l (qK(x,p>—§(Kl_1]p' -9 "o (x, p)] Inserting for ¢, (. o) for

I =0,..,K =2 (by the induction assumption) we find:

o (X, p)‘

s=0

(]
( (x,p) - Z( ](1—,0)“‘12(5]( D"(1-p)'"q S”(x,p)]

K-2 | -
= pi_l (qK(x,p)—Z(l—p)K T (x, p)Z( n" ( ]{K| 1]] row weave

S
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S g ) e

I=s

is known that the sum Kil(_l)'(K _5_1] =0 giving Ksz(_l)'(K —s—1J: (-D%s. In-

1=0 | 1=0 I

serting we obtain g (x, p) =

1 K _Kiz_ ks K1 _ \K-s1_s+l
p“(q (X, P) ZO( i) [ . j(l p) g (x.p)]

= g(—l)K“(Ks_lj(l— p)< 1> (x, p) Which is in accordance with the induction as-
s=0

sumption.
It is aso possible to express the auxiliary functions
a5 (x,p) = (1-p)* 9" P2 axP) | in terms of convolutions gs(x,p)
(k-1 0p 1-p
s=01,..,K -1, Differentiating gives
) 1_p)K KAMK =1 aK—S—l L as q(X’p)
K.i X, :( K-i-2¢ Y i
" p) (K -1) ZO s apK*“{p }aps 1-p

:H((l—,O)KS; . {pK‘i‘z}qfﬂ(x p)- Then inserting for 4. (x.p) from (F.30) we
(K -s-1) gp*—? '
find:

K-

0! (4.0) = 3 - p) " a (x p)rz'l(—l)“ e {p“ﬂ

Evaluating the bracket in the last expression we obtain:

[]= P aKK_r_ll {pK-r-i-3} and collecting terms we find:
(K-t -1)! 9p" "

9 (x.p) = p"'lZ(—l)K'f'{K o

i 1 K-r=1_r+1
" ](1-,0) 9" (x, p)

F.8 The convolution of the DF of the K-folded waiting time for an M/D/1
queue with the PDF of an r-folded rectangular variable over (O, bL)

The form of an | -folded rectangular variable b-(t)X” over (0,b") is given by (8.12) and
we find that the convolution W7 (t, o™ )(Db*(t)"" may be written as:
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T Ly = [ B ) < (-1 K-l mbL H
W (t, o™ )(Ob* (t) r(bLszzorri(r—) (t-mb")l ( o)

where 1/ (t, p) are the following integrals:
Ki(t, p) = j(t—x)qu(X,,O)dX for i =01..,K —1. These integrals may be evaluated in
x=0

terms of some auxiliary functions given below by equations (F.33), (F.34) and (F.35).

By applying the relation (F.18) we shall find expressions for the integrals
i, p) = j(t -x)'g*(x, p)dx for i =01...,K -1, (F.31)

x=0

Taking the limit ¢ - 0 in (F.18) we obtain:
[t -xraex oy = (F32)
x=0

[t

Z{(k b etk o) -3 (- )m('”' ) "'%t—k)'}

k=0 ki
K-1
Multiplying the last relation by i and taking partial derivatives with respect to the pa-
L o (=)

rameter ¢, K —1 times, and then multiplying with =01 gives

i, p) = LZ”:(k D gt (¢ =k, py for 1 =01, K =2 (F.33)
where we define the auxiliary functions

Ki(x, p) = a-p) o pri2 A O) L (F.34)
(K -1} 00" 1-p

For j = K -1 we get an extra term from the second part when | =0 in (F.33) and we find
that (F.34) also yields for | = K -1 if we define:

KK—l (1_,0)K 0 ™ 4 9(%,0) k(1-p - F.35
o p)_(K—l)! 0 1P T1-p +() o (39
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F.9 Evaluation of the function FKl,Kz,k,j(X’ y)

We shall derive an expression for the function

(y X) dk: gk Xk+K1yj+K2
F X, -1
Kukaki (6 y) =D ( j ]Kll KT dx®: dy* (y—xf7™=

(F.36)

Introducing new variables by

¢=Y-Xand 77 = x we find:

k+ i d d . dK2 + Ky z—(k+j+1)
K1K2k|(x y) GKle,k,l({lﬂ) = (_1)k( J Jj K IEK |(d/7_d<fj dg{Kz {,7k K1(£+/7)l 2{ el )}
12

Expanding gives:

§ A ks K[ Kot ) d® f i) d797° e
0, e = LSS | e S e
We find:

s 1+Ko—s —1)KatKz—s Karker=s . .
d e d e G (K, +K,) Ki+k+ry'n . Inserting gives:
d”S d{K1+K2_S <( Kl + K2 <(

KK, K2+J K2+j K1+k+r Q k+r K, Kl Q Ki-s
S O BN vl Gl S

The last sum in the brackets is: []= z( J( ] e :(4‘+/7JK1 which gives:
0 '3

e [Kir K k+Y E4) K (Ko + YK rk+rY )
SR I W - B N g o )
giving

v () BT
Kl Kak K, j Y=X)  r=max(K,-k,0] r Ki+K;, Ly—x

By changing the summation and expanding we
find

K, +K, Y k+j yK1XK2+k+J min[K,+j k+j] I [ min[K,+j k+]] Ky+ YK +K,+k+j-r
F OE _1k+K2 1 2 _yx 1) 1) 1 2
o, (=D [ . J[ i ](y—x)K”K”k” Z( )" 2] KK,
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It is possible to rewrite the last bracket as follows:

Ko+ ) Mgkl - (K + =1 K+ Ky +k+j-r LK) [ Ko+ =l (K +Ky+r
[]:[ zl j z (_1) [K2+. 1 2 =(_1)k| 2 Z (_1) 2. 1 2
p=] il it K, +K, | r=max[Ok-K,] k+j-l-r K +K,

To find the last sum we apply the following result on the sum of binomial coefficients
[Grad94] (0.156 page 5):

Zp:[zj[ m jz[m”‘j or letting n — —n gives Zp:(—l)k[ka][n;:kj{m_nj- Now by tak-

k=0 p-k p k=0 p
ing P=k+j-I m=K,+j-1 and n=K, +K,+1 we obtain;

— (—1)\k+] Ko+ Y i-K=1-1)_ _1)! K, +JY K +k
S ey T e len

Inserting we then finally obtain:

K, +K K+ i Ky Kz min[K,+j K+l K+ K. +k v
F k(x,y):(—l)k*K{l ][ ’JL > [ ’][ g Jyx (F.37)
e K, i) y=%)"™ et k+j-l
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Appendix G

Some technical details in chapter 9

G.1 Solution of the linear equations (9.17)
We shall find the solution of the linear equations

K-1
D §0p“=n forj = 1,...,K where (G.1)

k=0

B(r; m N T
A = 20 and = 1 AGBD) it we let A = (ay) be the K x K -matrix with e

J r bV g /B’
"
k 1 1 .
ments: a; = ()\j) and let A~ = (a,) be the corresponding inverse, then 3 ai_kl()\j)k =3
k=0
K-1
We define the generating functions. G;(x) = Z ai_kl xk, then G;(x) will have roots )\j for
k=0
K
=1 ..,K; j#i. Thus, G(x) = C |‘| (x=A) and since
I=1,1#i
K
G(\) = C ] (-A) = 1, weobtan C; = L giving
I=1,1#i
“ A
X_
G. = I G.2
0= 5 (G2)
I=1,1#i

The solution of (G.1) is



K

= 3 hya and further (G.3)
j=1
K-1 K-1 K K K )\
~k K —1|_k -
2 ax = Z[Zhjajk]x = Z |'| (G4)
k=0 k=0Lj=1 j= =11
If wetake x = ﬂzg and insert for hj and )\j , We obtain:
K-1 K K @ w
~k/B(zZN\ K rm B\ 1 r
> (B8 = -y —ga(x TL) By Il B ( 3 B(lr (G.5)
k=0 jzll_[ L 11z —
j T r
G.2 Evaluation of the product (9.19)
We shall sketch the deduction of the product
K
— G.6
gl (B(z) &) (€0
where r = rj(x, s);j = 1,...,K aretheroots of the equation:
h(z) = 1—szA(x%9) -0 7.7)

K+1

inside the unit disc |7 <1, and A(2) = z a(i)zi is a polynomial of degree K+ 1, (where
i=1

we assume that a(K + 1) # 0).

By introducing the new variable { = {(2) = m we have
K
P= (-2 (G8)

=1

where {; is the corresponding root of g(Z) = 1—sZA()Z() B(z(2)) = 0 where Z = z(()

istheinverseof 7 = {(2) = —=—

B(2)’
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K

Wedenote S = Z log(C —¢,) (wherewe usethe principal value of the logarithm). The

k=1
contour-integral

2T[I

K
9 4. = _7)—
log(g— Z)g(c)dc gllog(i ¢,) —Klogq (G.9)

where I isacontour containing all the roots (4 ,{5,....{x of g(¢) and also contains ¢ = 0
(which isapole of multiplicity K for g(¢) ). Hence

j og(c- Z)g%)dc+ KlogZ . (G.10)

2T[I

Depending on the location of ¢ we choose different contours. We let C bethecircle || = r
containing all the roots ¢, ,Z5,...,{k -

If || >r, we choose the circle C as the contour " (see figure G.1)

Im@) A

Re(Q) -

Figure G.1:  Thecontour ' when [{| >r.

Integrating by parts we find

jlog(c $ac = S rlog(c- loga(@)l - j—ggudc (6.1

2mi 9(Q) 2m

2m

When ¢ ismoving around C the argument of logg(g) returnsto itsinitial value. Therefore
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[log(¢—Q)logg(g)] c = 0. Collecting the results above gives:

_ K, 1 rlogg(g)
= logg +2T[i£ Z

If ] <r,wechoosethecontour ' = CO L[ I C, (seefigureG.2)

(G.12)

On C by integrating by parts we obtain (G.11). However when ¢ moves along C from ¢, the
argument of log(¢—x) isincreased by 271, while the argument of logg(g) returnsto its

starting value so

—[log(c 0)logg(Q)l ¢ = logg(lp)

C
Re(Q)
Figure G.2:  The contour I when || <r.
OnlL, 0L, wehave

Co Z+8

_ 1 _n9© g(Qyq

o | (o= 5z [ togc-0 TS der 55 [ iog(e-0Tiac.
L, OL, {+¢ %

On L, the argument of log(¢—¢) hasincreased by 2t so that

[ (e = —gﬁ: j g(c) d¢ = —logg(y) + logg(Z +e)
LOL, {+e
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On C, wehave¢ = Z+seie where 8 moves from 27t to 0. (We also assumethat {# ¢,
i =1,..,K)Whene - 0 wehave

9(Q 4o 2@ 8 l®
2”'! 0g(q— Z)g(c) cDg(Z)an'log(se )(e€*)do - 0 (G.14)

€

Collecting the results above when € - 0 we get:

1l
= log(Z) +logg(Q) + ﬁj%c’%%)dc (G.15)
C
By (G.12) and (G.15) we find (by inserting for z = ﬁ and changing the integration vari-
able ¢ = -
B
. K ( , f ) . (B—(ZZ—))K@(p[I(z, X, 8)] for zoutside C, (G 16)
= I_I %_m , K M o .
=1 (—(25) [1—szA(x 7 )}@(p[l(z, x,8)] for zinside C,

where 1(z, X, S) is the contour integral:

Iog[l - sr]A(xanmﬂ

_Z __n
S B(@ BM)

(L nB@)q, (G.17)

2
#x9 = m ] B ()2

2mi

and where we may choose C, as the disc [n|<r where 1<r<ry ,, and r ,, isthe

root of h(z) = 1—szA(ng§) outside the unit circle with the smallest modulo.

Comment: The mapping of the circle C by changing the integration variable ¢ = —?—) will

be a closed contour I which contains al the roots r| ;] =1, ...,K. This contour may be
transformed to a circle as described above without chang| ng the value of the integral.
G.3 Thejoint distribution of “extra” delay for an FS packet and the

number of arrivals from the BS in a slot when the ordering of pack-
etsis chosen at random

When the ordering between the FS packet and possible arrivals of the BS packets are cho-
sen at random we have that the FS packet is placed among the BS packets with equal prob-
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ability. So we have:P(U,, = i|Bi:j) = j+]. for i = 1,...,j+1. Un-conditioning gives

the joint distribution:
u(i,j) = P(U, = i,Bi:j) = jw%lb(j) fori =1,...,j+1landj=0,1,... (G.18)

The corresponding joint z-transform is found:
U,_B; SR b(j Z
U@ 2) = E[4'%'] = 3 3 4270 = B -BEn] (619
j=0i=1
where BI(2) isthe integral of the z-transform of the batch process of the BS, i.e.

Bl(2) = _[B(x)dx (G.20)
1

The marginal z-transform is found from (G.19) (by taking z, = 1):

U2 = E[z2] = U(z 1) = —Z-BI(). (G.21)
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