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0Abstract

The first part of the thesis (Part I) is devoted to find methods to describe transient behav-
iour of traffic processes, where the main emphasis is put on the description and analysis of
excess periods and excess volumes of quite general stochastic processes. By assuming that
traffic changes on different time scales, the transient characteristics such as excess periods
could be important measures to describe periods of congestion on a communication link and
moreover, the corresponding excess volume will represent lost information during such peri-
ods. Although the results obtained are of rather general nature, they provide some rather
fundamental insight into transient characteristics of traffic processes. The distributions of
the length of excess periods may then be expressed it terms of some excess probabilities
that are related to the minimum of the process in the time interval considered. Similar rela-
tions for the excess volumes are harder to obtain and require the joint probability of the ar-
rived volume and the minimum of the process in the same time interval. 

We put particular emphasis on Gaussian traffic models and we propose an approximative
method to get the distributions of excess times and excess volumes. The main idea is to ap-
proximate the excess probabilities by multinormal integrals. We also consider the Ornstein-
Uhlenbeck (O-U) process mainly because the O-U process is a special case of a Gaussian
process and could therefore be used as a test case for the proposed approximations, but also
because the O-U process may be obtained as a limit of a large numbers of ON/OFF sourc-
es (with exponentially distributed ON- and OFF-times). For the O-U process we have giv-
en the Laplace transforms for the first passage times and the corresponding volumes. These
Laplace transforms are inverted by the locating the residues yielding infinite series. Asymp-
totic expansions for small arguments are also found.

We have also considered excess times and excess volumes for semi-Markov processes. The
main results obtained are general expressions for the Laplace transforms and distribution
functions of the excess times and the excess volumes in terms of the generator matrices. For
birth-death semi-Markov processes the generator matrices simplifiy and the transforms may
be found recursively. 

The second part (Part-II) deals with models to obtain end-to-end queueing delay for net-
works deploying statistical multiplexing. The first model is based on the assumption (ap-
proximation) that the end-to-end delay may be found by convolution, where the key as-
sumption is that the parts of the end-to-end delay stemming from the different nodes are in-
dependent stochastic variables. As model for each node we take the ordinary M/G/1 queue.
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If in addition the nodes are identical i.e. the convolution consists of the waiting times of a
fixed numbers of identical M/G/1 queues, the evaluation may be substantially simplified. It
turns out the convolutions may be found by taking some partial derivatives with respect to
the load parameter. The same technique may be generalised in various directions for in-
stance it is possible to extend the result to the case with two groups of queues where the
queues in each group are identical.

For M/D/1 queues with identical service times we find explicit closed form results for the
convolutions. We also generalize this result to consider two groups of M/D/1 queues hav-
ing different service times, and this is a particularly interesting case since it may be used as
model for end-to-end delay also including access links with low capacity. Similar results are
also found for end-to-end queueing models with priority. 

A different approach is obtained by assuming a slotted model. The main idea is to capture
the disturbance of a packet stream as it passes through a series of multiplexers. Even though
the output process from a multiplexer is non-renewal, we get the distribution between two
consecutive departures, and approximate the process with a renewal stream. This stream is
then feed into the next multiplexer (together with other crossing traffic). In this way we ob-
tain recursive relations for the jitter and the end-to-end delay.
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1
1Overall introduction to the thesis

1.1 Background and motivation
There is an increasing need to address and understand some fundamental teletraffic issues in
today’s and forthcoming communication network, where the current trend is a change-over
towards heterogeneous network types where the end-to-end communication may involve
more than one operator and the QoS (Quality of Service) provisioning is not currently satis-
factorily solved. New switching techniques emerge, capacity increases, and new services are
introduced, causing a steady growth in the traffic. The competition in the telecom market is
hard, the revenue is squeezed, so the slogan “throwing bandwidth at the problems”, will not
be a winning strategy for the operators. On the other hand too scarce network resources
could result in degradation in the quality of the services offered, leading to discontented
customers with the subsequent consequences that may cause. So there is a strong need for
network optimization and performance modelling.

By the emerging of IP (Internet Protocol) multiservice networks a lot of new teletraffic
challenges emerge. Among those we would particularly mention:

- traffic models for different services or flows and also models for aggregation of 
flows,

- differentiation between classes of services, i.e. scheduling and buffer management,
- traffic control, i.e. SLA (Service Level Agreement), CAC (Call Acceptance Control) 

and policing,
- QoS provisioning end-to-end,
- dimensioning models.

Thus, the need for performance and dimensioning modelling of today’s communication net-
works is sustained and is definitive not of less importance than for former types of net-
works.

1.2 Main achievements
In this thesis we have focused on a few of the issues mentioned above; namely models to
describe transient behaviour of rate processes and models to get the end-to-end delay in
packet networks. As such, we are confident that these are important models; providing in-
sight into important aspects of networking, as congestion periods and information loss and
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the delay and delay variation for a packet flow. The main objective have been to obtain an-
alytical results based on mathematical modelling, but where we always take the applied
viewpoint, where the goals have been to provide models that are numerical feasible and
provide numerical examples that are interesting from the perspective of network perform-
ance. In the analysis we have derived results on the basis of several applied mathematical
fields such as: probability theory and queueing analysis, asymptotic expansions of integrals,
differential equations and a few results from real analysis. We may summarise the main
achievements obtained as:

- Give some general results on level crossing and excess distribution for stationary rate 
processes.

- Suggest approximations of the excess times and excess volumes distributions for 
general stationary Gaussian process.

- Give expansions and asymptotic formulae for the PDF (Probability Density Func-
tion) and CDF (Complementary Distribution Function) of first passage times and 
corresponding volumes for the Orstein-Uhlenbeck (O-U) process.

- Give some general results for level crossing and excess distributions for semi-Mark-
ov processes where we for more specific models as birth-death process obtain the 
LST (Laplace-Stieltjes Transforms) recursively due to the special structure of corre-
sponding generator matrices.

- Give an effective method to obtain the PDF and DF (Distribution Function) of the 
convolution of a given number of waiting times of identical M/G/1 queues.

- Extend the result on convolutions to cover cases where not all the service times may 
be identically distributed, and also to cover HOL (Head Of Line) priority queueing.

- Provide a slotted queueing model and using generating function techniques to obtain 
the output distribution of particular packet stream and apply this model recursively to 
obtain both end-to-end delay and the evolution of the jitter for a deterministic pack-
et stream through a series of nodes.

All the numerical examples are obtained by Mathematica programming except for the ex-
amples in chapter 5 which is obtained by FORTRAN routines. Many of the numerical re-
sults are checked against similar (but different) models and also against asymptotic expan-
sions.

1.3 Overall organization of the thesis
This thesis is divided into two parts, Part I and Part II, but where each chapter more or less
is self-contained with an introductory chapter. A quite large number of more technical de-
tails are put in separate appendices. The use of symbols throughout the thesis is not strin-
gent, for instance is the symbol  used to denote a rate process in Part I while in Part II the
same symbol is used as a symbol of the number of packet arrivals from a background
stream during a slot. However, within each chapter the notation should be “consistent”.

Part I is devoted to find methods to describe transient behaviour of traffic processes, where
the main emphasis is placed on the description and analysis of excess periods and excess

B
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volumes of quite general stochastic processes, and the organisation is described in section
2.3.

Part II provides models to obtain traffic dependent end-to-end queueing delay and give
methods to calculate evolution of the jitter through out a network. The organisation of Part
II is given in section 6.4.
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PART-I
1Some results on level crossing, excess 
distributions and first passage times for 

stationary rate processes
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2
2Introduction

Traffic models are needed as an input for dimensioning and performance evaluation of tele-
communication systems. They will also be important in the process of designing and struc-
turing networks. In this context we consider “fresh” traffic, i.e. before it has entered some
network elements where it could be disturbed by other traffic streams. By “fresh” traffic we
here shall mean the raw bit rate generated from various traffic sources. However, we must
to some extent also include the effect from different protocol layers adding on overhead and
framing the bit stream into packets. We shall also consider traffic models that are a super-
posed or an “enveloped” traffic stream, formed as a collection of individual sources, where
the gross bit rate is taken as the sum the instantaneous bit rates from the sources as if there
where no other constraints or limitations, e.g. buffers, capacity etc.

2.1 Traffic modelling and scaling phenomena
The presence of scaling phenomena in some type of data traffic is well documented in the
literature. The area of analysis, modelling and characterization of traffic in communication
networks has quickly evolving since the seminal paper by Leland et al. [Lela93] in 1993.
This paper showed that network traffic in many cases has properties characterized by long-
range dependence and variability at a wide range of time scales, and it introduced the no-
tion of self-similarity to communication networks. Later on, these properties have been
shown to hold also for a much wider range of experimental environments [Paxs95],
[Crov96].

The evidence of traffic being long range dependent has certain implication on the behav-
iour of the autocorrelation function for large arguments, resulting in a power law behaviour
with exponent between zero and unity, where the exponent is expressed in terms of the
Hurst-parameter by . We therefore aim to look at models that have long-range de-
pendence. On the other hand the behaviour of the autocorrelation for small arguments will
determine the behaviour of the processes at micro-level (at least for processes that have
continuous sample paths) indicating that one possibly should use “different models” on the
micro level than on the “macro level”.

2.2 Transient characteristic of traffic processes
By assuming that traffic change on different time scales, the transient characteristics of the
traffic processes could be an important measure to describe periods of congestion on a com-

2H 2–
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munication link (by assuming that the relaxation time for the link buffer is of order less
than the typical length of an excess period). Moreover, the corresponding excess volume
will represent lost information during such periods. For traffic model acting on a (virtual)
link (of fixed capacity), it is of great interest to be able to answer to some of the following
questions:

- How often will the excess periods occur?
- What is the distribution of the length of the excess periods?
- What is the distribution of the corresponding excess volumes?

Although the results obtained are of rather general nature, they give some rather fundamen-
tal insight into transient characteristic of traffic processes. The aim has been to provide
some results concerning the duration of excess periods and the corresponding excess vol-
umes. It turns out that the up- and down-crossing rate is an important measure, and will an-
swer the first question above provided that the limit is finite. The distributions of the length
of an excess period may then be expressed it terms of some excess probabilities that is re-
lated to the minimum of the process in the time interval considered. Similar relations for the
excess volume is harder to obtain and requires the joint probability of the arrived volume
and the minimum of the process in the same time interval. Unless for some very special
models the exact excess probability is difficult to find expressions for and therefore some
approximations will be needed to get results that are numerical feasible.

2.3 The organisation of PART-I of the thesis
PART-I of the thesis is a collection of three chapters. The main focus through these chap-
ters is the use of level crossing to describe transient phenomena as excess times and excess
volumes for bit rate processes. As mentioned these periods may represent periods of con-
gestion for bufferless multiplexing.

Chapter 3 deals with fundamental questions concerning level crossings for stationary sto-
chastic processes where we discuss some of the basic properties. It is known that level
crossing is a rather tricky matter, and put strong limitations of the class of processes, espe-
cially for processes with continuous sample paths. The chapter is logically divided into two
parts where we in the first part give some fundamental results and the only assumption is
that the process is stationary, while we in the second part consider processes that are contin-
uous in time and space and we describe a method that makes it possible to also include the
excess volumes into the analysis.

In the first part we define the crossing rate and deduce that if this rate is finite it is given as
negative derivative of the excess probability. Then we discuss the relation between the ex-
cess probabilities and the distribution of the excess periods. In the second part we consider
processes that are continuous in time and space. The claim of having finite crossing rate for
such processes will put rather strong implications on the behaviour of the autocorrelation
near the origin. For processes with continuous sample paths we also give relations between
some joint excess probabilities and the joint distribution of the first passage times and cor-
responding volumes. Similar relations are also found for the joint distribution of the excess
times and corresponding excess volumes, but they are more tricky to obtain.
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In chapter 4 we consider Gaussian traffic models. In the first part we propose an approx-
imative method to obtain the distributions of excess times and excess volumes. The main
idea is to approximate the excess probabilities by multinormal integrals. Based on these ide-
as we express both first passage times and corresponding volumes and the excess times and
corresponding excess volumes in terms of multinormal integrals. In a separate appendix
(Appendix B) we have given many interesting properties of such type of integrals, among
them the result that makes it possible to calculate the multinormal integrals by calculating a
multiple integral with only half the dimension.

In the second part we consider the Ornstein-Uhlenbeck (O-U) process. The main motiva-
tion was firstly because the O-U process is a special case of Gaussian process and could
therefore be used as a test process for the proposed approximations. Secondly, since the O-
U process may be obtained as a limit of a large numbers of ON/OFF sources (with expo-
nential distributed ON- and OFF- times) the results is important in its own. For the O-U
process we have given the Laplace transforms for the first passage times and the corre-
sponding volumes. These Laplace transforms are inverted by locating the residues yielding
infinite series. Asymptotic expansions for small arguments are also found.

In a series of numerical examples we first tested the approximation by applying multinor-
mal integral of dimension five or six with the exact first passage time distributions for the
O-U process. Unfortunately the correspondence was not as good as we hoped, however, the
proposed approximation seems to yield an upper bound for the distribution functions. In a
second series of examples we chose a process with typical long rang dependence. We con-
clude that the corresponding (approximative) excess time seems to have long tails.

In chapter 5 we consider the case when the bit rate process is a semi-Markov process. This
type of process is not limited by the claim on the behaviour of autocorrelation function near
the origin as found for processes with continuous sample paths.

The main results obtained are general expressions for the Laplace transforms and distribu-
tion functions of the excess times and the excess volumes in terms of the generator matri-
ces. For birth-death semi-Markov processes the generator matrices simplify and the trans-
forms may be found recursively. For ordinary Markov processes the excess distributions
may be obtained by finding the eigenvalues to the corresponding rate matrices, and finally
for birth-death processes these eigenvalues may be effectively found by applying the meth-
od of bisection.
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3
3Some transient characteristics of traffic

analysed by methods of level crossing and
excess distributions

3.1 Introduction
If statistical multiplexing is allowed in broadband networks it may happen that the load
form the ongoing communications (or connections) may exceed the capacity of a particular
link. Due to statistical fluctuations this situations may occur even though the network is
well dimensioned. This may lead to periods with excessive information loss and thereby
possible degradation of the QoS. The time scale of such variations may typical be that of an
ON/OFF activity period of a frame duration for a video source. At this level the discrete na-
ture of the transmission e.g. packets (or cells) are negligible, and we consider a more or less
continuous bit stream with different characteristics. Thus rather than considering events
where arrivals of packets or cells occur we take the fluid approach where we observe a con-
tinuous bit stream representing the traffic under consideration.

In the literature statistical fluctuations and level crossing initially appeared in the field of
statistical communication theory and analog signal processing. The first result on level
crossing is due to Rice [Rice45], and goes actually back to 1936 where he gave the classic
formula on the average rate of level crossing for Gaussian processes. In his context the
main focus was the ability to detect levels of a signal that was influenced by random noise.
(See also [Rice48].) Along with other authors in the same field there exists a quite large
numbers of papers considering level crossings for Gausian processes, however the main fo-
cus has been the crossing of the zero level, whereas we are mainly interesting in crossing of
levels having small probabilities. In some quite early papers by McFadden [McFa56] and
[McFa58] some quite general results are given for axis crossing. Similar results where also
the distributions between successive zeros are discussed are found in the papers [Long58]
and [Long62] but with the assumption of a Gaussian process. In the book of Leadbetter et
al. [Lead83] a quite large number of results on level crossing are given mainly for Gaussi-
na processes, but also some basic results concerning the crossing intensity for general proc-
esses that have continuous sample paths are given. Also in several other textbooks as
[Lars79b], [Papo65] and [Midd60] the topic of axis crossing for Gaussian processes have
been treated.
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Our aim in this chapter is not to give a complete mathematical treatment of the different
topics, but rather take the perspective of an engineer and give some general results that are
important for performance measures characterising rate processes. A more thorough mathe-
matical treatment will require techniques that are beyond the scope of this thesis. 

The usual way of characterising dependencies in stochastic processes is to introduce the
second order statistics; that is the covariance or autocorrelation function. The level-crossing
description introduced below will be more appropriate to get the performance measures
needed for instance considering bufferless multiplexing. This fact will be evident when we
derive formulas for the second order moments of the excess volumes that may quite easily
be obtained by using the level-crossing description. Also the new achievements obtained by
using large deviations seem to fit well into this description.

3.2 Some general results concerning the excess times and excess volumes 
for stationary stochastic processes

By taking a general starting point we let  be a (non-negative) stochastic process repre-
senting the instantaneous bit rate (load) on communication link. The main assumption we
put on the bit rate process is that it is stationary (in the strict sense), which means that any
group  has the same distribution as  for all choices of .

It follows that the behaviour of the process is independent of the staring point of the obser-
vations (which we in most cases choose to be ). We shall also limit ourselves to con-
sider only time continuous processes. For discrete time processes a similar development is
possible but such models will not be discussed in this thesis.

In the following we let  denote the Mean bit rate and  be the

corresponding Variance and we let  denote the Autocorrelation func-

tion of the process. It turns out that the behaviour of the Autocorrelation function near the
origin will provide the necessary information to determine whether the up and down cross-
ing intensities are finite, and therefore determine when the description below is fruitful or
not. (See for instance the introductory textbooks of stochastic processes [Cinl75] [Cox70]
[Fell68a] [Fell68b].)

Assume that we for a given level (link capacity)  may identify up and down crossing in-
stants  and  such that  in the interval  and  in the

interval  (see figure 3.1). The possible up and down crossings intervals

 and  will describe periods of congestion and non-congestion for buff-

erless multiplexing, or period of buffer filling or buffer emptying in a fluid queue. 
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By assuming that it is possible to identify the random sequences  and  of the up
and down crossing instants, we define the excess times and excess volumes: 

 and (3.1)

and similar periods of normal load and corresponding volumes:

  and (3.2)

For a loss system  will describe the amount of information lost during a congestion peri-

od but for the fluid model  and  describe the net increase and decrease in buffer con-

tent during the intervals  and . We also define the total volume arriv-

ing during two consecutive down crossings as .

The main contribution in this chapter will be to describe a general framework to get the dis-
tributions (and moments) of the length of these intervals and the corresponding volumes. If
it is possible to obtain these distributions they will give interesting performance measures
such as the length of overload periods and the time between them. By considering the ex-
cess volumes it is possible to estimate the information loss for bufferless multiplexing and
especially the losses in the period of overload.

Figure 3.1:    Definition of up and down crossing instance.
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3.2.1 Some general remarks on level crossing
It turns out that one need to be some careful when considering up and down crossing for
stochastic processes. This is specially seen in processes having continuous sample paths
where the term up and down crossing can be defined slight different. For instance in the
book of M. R. Leadbetter et al. [Lead83] it is defined both the term up crossing and strict
up crossing where a so called non strict up crossing is allowing for infinite many up cross-
ings in a small interval. Since we consider processes that have both continuous and piece-
wise continuous sample paths we shall take the following definition:

A function  (which we assume to be piece-wise continuous) is said to have an up cross-
ing of the level  at a point  if for some  and every , then  for all

 in the interval  and  for some  in the interval . (In a simi-
lar way we also define down crossing.) 

In the following we shall derive some quite general expressions for the excess distribution
on the basis of the basic knowledge of the bit rate process . It turns out that the cross-
ing intensities may be expressed through the functions (excess probabilities):

 and (3.3)

(3.4)

The functions  (and ) are the probabilities that the process either is above

(or below) the level  (and does not crosses that level) in an interval of length . It

will be convenient to approximate the process  by a sequence  taking the val-

ue of  at points  ( ) and let  being linear between such

points. (With this type of partition we obtain the ‘th from the ‘th by halving each
interval and therefore doubling the number of points.) We may now approximate

 by the corresponding -point approximation  and

we define:

(3.5)

Similar we also define the -point approximation  for the maximum

 and we define

(3.6)
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By choosing the special form of partitioning the interval we secure that  is a decreas-

ing sequence and  is an increasing sequence, and it follows that both converge a.s.

(almost sure) to the limits  and  respectively, and furthermore the approxima-

tive excess probabilities  and  constitute decreasing sequences and will there-
fore converge (pointivise) to the (desired) excess probabilities:

 and (3.7)

 (3.8)

We shall define the following up and down crossing rates:

 and (3.9)

 (3.10)

These rates are simply the probabilities that there has been at least one up or down cross-
ing in an interval of length  divided by the length of the interval. For a stationary process
the up and down crossing rate must be equal: (The proof of this statement is given in Ap-
pendix A by theorem A.1)

(3.11)

where we define  as the crossing rate (either up or down crossing) intensity for an in-

terval of length . It turns out that the crossing rate has some nice properties that makes the
limit  easier to examine. In Appendix A by theorem A.1 it is also shown that the
crossing rate satisfies the nice inequality:

 for all  and (3.12)

It follows that  (by choosing ) for all  and by continuously sub-di-

viding the interval we get an increasing sequence . It follows

that  exists for every  and it is shown that if  then the in-

stantaneous crossing rate exists and is finite (and given by): 
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(3.13)

It turns out that the instantaneous crossing rate will play an important part in the effort to
find expressions for the different excess distributions. Before we go further to find the dif-
ferent moments and distributions of the different excess times we shall first show the fol-
lowing important results which relate crossing rate  to the derivative of the excess func-

tions  (and ) at :

(3.14)

To prove (3.14) we start with the obvious inequality
 implying that

. The last inequality shows that if  then

 when .

Next we assume that  is finite. Then we also have

 for  (with

equality for ) giving . By writing out the difference

 as follows we find:

Each term in the last sum is obviously bounded by

 (where the equality is due to the

assumption of stationarity of the stochastic process). We therefore have

 for  (with equality for ). Combining the two

inequalities above gives:
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 (with equality for ) (3.15)

If we now fix  and let  in (3.15) then we get:

 (3.16)

and the result (3.14) follows now by letting  in (3.15) and (3.16).

As a consequence of the inequality we get the following bounds on the function  and

 (for small ):

 and (3.17)

 (3.18)

The proof for  is similar and is therefore omitted, but the corresponding inequalities

(3.15) and (3.16) yield by replacing  with  and  with  and further
the bounds (3.17) and (3.18) will read:

 and (3.19)

 (3.20)

(We should mention here that when we derive (3.14) by (3.15) and (3.16) we only assume
that subintervals are of equal lengths, which means the results also yield for the case where

the we divide the interval into subinterval of equal lengths )

It is also of interest to find the probability of having more than one crossing (of the level
) in an interval of length  when  is finite. We let  denote this probability and

find the following result:

If the crossing intensity  is finite then  or  as .

To show this result we define the probability of having an even number of crossings in an
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. Similar we also define the probability of hav-

ing an odd number (greater than one) of crossings in an interval of length  by . To

have an odd number (greater than one) of crossings in an interval of length  we must have
an even number of crossing in the interval , a single crossing in  and no

crossing in . Therefore  will be bounded by the integral of , that

is we have  for some . Then by (3.15)

(where we have equality for ) and (3.16) we get

 for . If we let

 the result follows.

By applying the nice property above we may neglect the probability of having more than
one level crossing in a small interval (of say length  since we will have

) and this will heavily simplify the derivation of the different excess
distributions below where we always shall assume that the crossing intensity is finite.

3.2.2 Distribution and moments of the excess times

In this section we shall discuss a general framework to get the excess time distributions 

and  for a general stationary stochastic process. Sometimes we also want to get the time
to the first down crossing (first passage time) conditioning on the bit rate process (when we

are inside an excess period). We therefore also define  to be the time to the first down
crossing for the process  when we start the observation in an excess period with

.

It turns out that the first passage time may be expressed in terms of what we call envelope
probabilities (or excess probabilities) defined by:

 for ,  and (3.21)

 for , (3.22)

and where we also denote the corresponding densities  and
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The CDF (Complementary Distribution Function) of the first passage time  may be ob-
tained from (3.21) by setting , so we get

(3.23)

Below we will show that we, on the basis of the characteristics (3.21) and (3.22) and the
stationary distribution, are able to derive the excess time distribution above,  (or be-

low ), the level  for the bit rate process. Based on the definitions above we get the
following relations to the excess probabilities defined by (3.3) and (3.4):

 and (3.24)

 (3.25)

where  is the stationary CDF of  i.e. . (If the distribution func-

tion is differentiable we have  where  is

the PDF (Probability Density Function) of .)

The functions  (and ) are the probabilities that the process either is above (or

below) the level  and does not cross that level in an interval of length . Based on these
key probabilities we may proceed to obtain the distribution of the excess times . Now, to

have an up crossing in a small interval  we must have  and  (see fig-
ure 3.2).
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Figure 3.2:    The excess time distribution based on up and down crossing instanc-
es of the bit rate process.
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Conditioning on this event and observing that the event

 we may express
the excess time distribution as

; and by rewriting the event

above and using the assumption of having a stationary process the last expression may be
rewritten as:

(3.26)

provided that  is finite. Hence, these results state that the CDF of an excess period for a
general stationary stochastic process is given as the normalized derivative of the excess
probability (3.24). The result (3.26) requires that crossing intensity  (or the derivative at

time ) exists and is finite. Unfortunately this is not the case for some rather interest-
ing classes of continuous processes. For the Ornstein-Uhlenbeck (U-O) process the deriva-
tive  will become arbitrary large for small values of  so the limit (3.26) will be-

come zero for all . This is in accordance with the well known rapid oscillations for the
Wiener process and the O-U process described in many textbooks for stochastic processes
[Cox70], [Karl66]. (We shall discuss the O-U process in section 4.4.)

An alternative to consider the excess time distribution defined above (which does not al-
ways exists) we may consider a somewhat simpler variable taken to be the first passage
time  given that the bit rate process is above the level . The corresponding CDF may

be found by integrating (3.23) by the conditional distribution of  given that :

(3.27)

To obtain the CDF of the time distribution of the “normal load” period; that is the distribu-
tion of  we proceed as for the “overload” case, and we get:

(3.28)

On the basis of (3.26) and (3.28) it is straight forward to find the first two moments of the
excess times:

 and  and (3.29)
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 and . (3.30)

In words it is possible to express the mean excess times as the stationary probability that
the bit rate is above (or below) the capacity limit divided by the rate at which the process
cross that level. 

We may also obtain the expected time between two consecutive up or down crossings:

(3.31)

Thus, the mean excess times above (or below) a given capacity level could as well be de-
rived by direct arguments; as the portion of time the process is above (or below) a given
level decided by the up or down crossing rate. 

3.2.3 Moments of the excess volumes
By taking the expectation of the stochastic integrals (3.2) we may express the mean values
of the excess volumes as:

 and (3.32)

(3.33)

Based on the results above we may estimate the overall information loss  as the ratio
of the mean excess volume and the mean traffic volume in a cycle:

(3.34)

and the information loss in an overload period  as the ratio of the mean excess vol-
ume and the mean traffic volume in an excess period:
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(3.35)

We observe that the crossing rate is not included in the estimates (3.34) and (3.35) and they
may as well be used for processes where crossing rate does not exist. To justify this we
may consider a sampled version of the process (where we take the sampled version linear
between samples). If we choose a sample interval of length  the corresponding crossing
rate is  and by choosing  small (but not ) we will get the estimates (3.34)
and (3.35).

To obtain the second order moments of the excess volumes we define the conditional covar-
iances

(3.36)

(3.37)

First we calculate the conditional moment . After some manipulations we find:

(3.38)

By the theorem of double expectation (see for instance [Cinl75]) we get from (3.38):

(3.39)

By proceeding in the same way for  we finally obtain:

(3.40)
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3.3 Further results for bit rate processes that are continuous in time and 
space

The rest of this chapter will be devoted to processes that have continuous sample paths and
are absolute continuous (which means that the PDF for the process exists and is a continu-
ous function). In the literature there exists sufficient criteria for a stationary process having
continuous sample paths. We refer to the textbook of H. J. Larson and B. O. Shubert
[Lars79b] where it is stated that if it possible to find constants such that

 for (3.41)

where  and  then the process is sample path continuous. If the process is Gaus-
sian one can relax the demand on  to have . In the following we shall assume that
these criteria are fulfilled to be sure that the corresponding processes are sample path con-
tinuous.

3.3.1 Up and down crossing intensity
For absolute continuous processes it is possible to write the crossings intensity as an inte-

gral. To do this we define  which is the differential process scaled by 

(when  is small the scaled differential process will be close to the derivative of  provid-
ed that the derivative exists). 

By conditioning on  we may write the up and down crossing intensity as:

 and (3.42)

 (3.43)

where  is the PDF of . If the functions  and

 are uniform continuous with respect to  for all 

then one may take the limit  under the integral sign in (3.42) and (3.43) giving:

(3.44)
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In Appendix A we have given a more rigorous proof of (3.44) where we assume that
 and  satisfy the condition A:

 and  (for )

where  exists and further . 

In practice the hard part in this approach is to find the function  used in the condi-
tion A, and this task will often be as difficult as to find each of the limits in (3.44) direct. 

It would be nice to try to link the existence of the crossing intensity to the second order sta-
tistics for the process, that is the behaviour of the autocorrelation function for small . We

have  and by [Fell68b] (see page 155), we have that the mean

scaled drift is bounded by the inequality:

. (3.45)

Now it is clear that to have the limit  to exists for  we must have

 (3.46)

for small  where  is a positive constant.

If we integrate the crossing intensity  over all the crossing levels we get (by ap-
plying both (3.42) and (3.43)):

, and by

changing the integration we get:

(3.47)

We may now state the following result: If we assume  to be on the form (3.46) then we
have by (3.45) that  with  finite and
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 and furthermore by the monotone conver-

gence theorem [Royd68]  is finite a.s. and further

(3.48)

Of course (3.46) put a quite strict limitation on the class of autocorrelation functions for
which it is meaningful to use the notion of up and down crossing intervals even though the
processes may have continuous sample paths. Thus, the requirement of having continuous
sample paths combined by requirements of having finite up and down crossing intensities
will limit the class of processes to those having autocorrelation function of type (3.46). This
is in strict contrast to processes with jumps, for instance stationary Markov processes where
the up and down crossing intensities will exists even though the autocorrelation function is

on the form  for small  where  is a positive constant. (Processes
with jumps are discussed in detail in chapter 5 in this thesis.)

As a side results, by applying the inequality above, we find the integral over the up or down

crossing intensity is bounded by  that is:

(3.49)

Summarising the discussion above we have shown that sufficient condition that the up and
down crossing intensities exist and are finite a.s. is that the autocorrelation is on the form
(3.46). Whether this also is a necessary condition will not tried to be answered in this the-
sis, however, for a Gaussian processes this is the case. As a side result of the discussion we
obtain a bound on the integral of the crossing rates and provide a measure of the variability
in the process that is proportional with the standard deviation and the square root of the sec-
ond order derivative of the autocorrelation (at the origin) with negative sign.

3.3.2 Joint distribution of the first passage time and the corresponding volume
The general formulae above give a framework to find the first two moments of the excess
volumes. However, in many performance questions the interested part is the tail of the dis-
tributions, which generally is much harder to obtain. In the following the aim is also to in-
clude the volume in the analysis and to do so we must also include the volume in the distri-
bution (3.21). In the succeeding we shall assume that the bit rate process is continuous in
time and space, and we limit ourselves to consider the most interesting case, the excess vol-
umes when the process is above the capacity level . (A similar analysis is possible to per-
form for “the normal case” when the process is below the level .) We let
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 be the excess volume up to a certain time , and we assume that the fol-

lowing time dependant probability distribution is known:

 for ,  (3.50)

with the corresponding PDF:

(3.51)

Based on these time dependant functions we will first derive the joint PDF of the first pas-

sage time  and the corresponding excess volume . We let

 be the joint CDF and 

the corresponding joint PDF. The event “down crossing in the interval “, that is

, is equivalent with the event . This event

may be written as the difference  (see figure
3.3).
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Figure 3.3:    The excess time and excess volume and down crossing instances of the 
bit rate process.
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The first part of this expression is given by

. The second part is some

more difficult to obtain (expressed in terms of the function ) because it in-

volves the changes in the volume in the interval . Some informally we have
 which implies , so to have 

we must have . Conditioning on

 and integrating we then get:

By expanding for small  we finally get:

(3.52)

The main restrictions we put on the bit rate process  to make the derivation above cor-

rect are mainly that the sample paths of  must be continuous. With this assumption we

have  and due to the

continuity of the sample paths the last integral will of order  where  can be made arbi-
trarily small (depending on ). Unfortunately the method fails if the sample paths of the
process contain some kind of jumps. In this case the evolution of the volume (in time) will
depend on the bit rate both before and after the jumps. This is in contrast to the results de-
rived for the excess times in section 3.2.2 where no particular assumption is made about the
continuity of the sample paths. (In chapter 5  we consider the case where the bit rate proc-
ess is a semi-Markov process and therefore containing jumps.)

To find the time dependent CDF (3.50) and PDF (3.51) for specific models is of cause the
hard part to find explicit expressions of the joint excess distributions. However, these func-
tions must have some specific initial and boundary conditions to make the proposed de-
scription meaningful. Firstly, the initial conditions obtained by letting  in the defini-
tion of , imply that: 
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. (3.53)

where  denotes Diracs delta function. Secondly, this assumption and the claim that
 is a proper probability density function impose the following boundary condi-

tion on :

 for , , . (3.54)

We recognize that this is the appropriate boundary condition at  since the volume 
cannot be zero for positive time.

The joint CDF  can be expressed in terms of (3.50)

and (3.51) by using (3.52):

 (3.55)

The marginal PDF and CDF for the excess volume  is easily obtained from (3.52) and
(3.55): 

 and (3.56)

(3.57)

Due to the initial impuls of the joint density  (at the origin) one must be care-

ful with the limit of integration at  (and ).

The functional relation (3.52) with the initial and boundary condition deduced above will
become more apparent if we introduce the double Laplace transform

. From (3.52) we get the following functional rela-

tion:

 (3.58)

fC x y z 0, , ,( ) δ y x–( )δ z( )=

δ u( )
f
AxT

x x z t, ,( )

fC

fC x y 0 t, , ,( ) 0= t 0> x C> y C>

z 0= At

F
AxT

x x z t, ,( ) P Ax z T,>
x

t B0 x=>( )=

F
TxAx x z t, ,( ) FC x C z t, , ,( ) y C–( ) fC x y z τ, , ,( ) τd

τ t=

∞

∫ yd
y C=

∞

∫+=

Ax

f
Ax x z,( ) δ z( ) y C–( ) z∂

∂fC x y z t, , ,( ) td
t 0=

∞

∫ yd
y C=

∞

∫–=

F
Ax x z,( ) P Ax z> B0 x=( ) y C–( ) fC x y z t, , ,( ) td

t 0=

∞

∫ yd
y C=

∞

∫= =

fC x y z t, , ,( )

t 0= z 0=

f̂TxAx x s ζ, ,( ) E e sTx– ζAx– B0 x=[ ]=

f̂TxAx x ζ s, ,( ) 1 y C–( )ζ s+( ) f̂C x y ζ s, , ,( ) yd
y C=

∞

∫–=



- 29 -

where  is the double LST (Laplace-Stieltjes Transform) of  in the variable 

and  defined by:

(3.59)

3.3.3 Joint distribution of the excess times and excess volumes 
We shall now proceed with a quite similar analysis as above to get the joint PDF of the pair

, bearing in mind that this pair of variable is determined through a second order

limiting procedure, that is we both require up crossing in a small interval  and also

down crossing in a second small interval . Before entering the analysis we de-
fine the following joint density:

, then by (3.50)

and (3.51)

. (3.60)

We let  be the joint CDF of the pair  and

 the corresponding joint density function. Some informal we

have:

 (3.61)

provided that the limit exists. By using a similar approach as we applied for the conditional
excess times and excess volumes it is possible to expand the nominator to second order for
small  and . These rather technical details are placed in Appendix A where we find:
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 for small  and

. 

If is possible to expand the denominator in (3.61) to first order for small  the joint den-

sity function for  will be given by:

(3.62)

An alternative way of writing (3.62) is found by applying the conditional PDF 

given by (3.52) and then define:

. (3.63)

giving the following alternative way of writing :

(3.64)

Unfortunately the restriction we have put on the bit rate process will somehow limit the
usefulness of the last derived formula. As for the conditional down crossing the analysis is
limited by the assumption that the sample paths of the bit rate process have continuous sam-
ple paths. Secondly, and perhaps more restrictive, is the claim on behaviour of the excess
probability  for small . As stated in section 3.3.1 it is sufficient that the autocorrela-

tion function is on the form  for small  where  is a positive con-
stant.

The functional relation given by (3.63) and (3.64) is on the same form as (3.52) and there-
fore it is easy to write down the corresponding LST. Before doing this we must examine the
conditional PDF at the boundaries  and  since these specific val-

ues will be included in the transform. Some informally it is clear that if  lies in the inter-

val  for  the volume  must be positive and therefore we must have

 for . Then  lies in the interval  for small  the condition-

al density function of the volume  given  must have an “impulse” like shape. We
must therefore have  for some function . 
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If we let  denote the double LST for the stochastic variables

 we get from the equation (3.64): 

(3.65)

Since we claim  it follows that . Then by insert-

ing for  from (3.58) in (3.65) we finally end up with the following expres-

sion:

(3.66)

where  is the double LST of  defined in (3.59).

We are pleased to note that formula (3.66) contains all the previous formulae for the
first and second order moments of the excess times and excess volumes. By direct dif-
ferentiation it is easy to verify that the first and second order moments of the excess
time and excess volume coincide with the formulae, (3.30) and (3.32), (3.40). We may
also find the correlation between the excess time and excess volume by first evaluating:

(3.67)

(3.68)

We may also find the LSTs for the marginal distributions

 and  from the result
above. For the excess time we get:

(3.69)
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and for the excess volume the similar result is:

(3.70)

3.4 Some concluding remarks
In this chapter we have shown that it is possible to relate many important performance
characteristics to some basic fundamental properties which essential is described by the
joint probability (3.50). This function will therefore be a natural starting point when
studying specific models. The main hindrance in finding this probability is of cause the
claim that the process shall have no down crossing in the interval up to the given time

. Unless for some few specific type of processes it is extremely difficult to obtain closed
form expression for probabilities involving the minimum  and maxi-

mum . By relaxing on the assumption on the minimum could hope-

fully give reasonable accurate results for small  but will surely give inaccurate results
for larger values of . One possible way to improve such an approach is to divide the
interval  into say  points  and then calculate the

-dimensional probability:

 for , (3.71)

A natural choice will be to divide the interval by equally spacing; that is  (for

). We must, however, be aware that this partition (of the interval) not neces-

sary will lead to a decreasing sequence in  as the  partition in section 3.2.1 would have
given.

In principle, it could thereby be possible to obtain approximation to n’th order of the ex-
cess probabilities by using the corresponding approximative function for (3.50) defined by

(3.72)

as starting point for an approximative analysis. In the next chapter in section 4.3 we have
analysed the -point approximation for Gaussian processes and developed methods that en-
able obtaining the approximative distributions for the excess times for up to , and
where we also have compared with corresponding exact results for the O-U process. As dis-
cussed in chapter 4  the differences between the exact and approximations are pronounced,
also when the numbers of points are taken as high as . This example indicates that
the convergence by (3.71) and (3.72) may be quit slow.
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4
4Transient behaviour of Gaussian traffic models

through level crossing

4.1 Introduction
Gaussian modelling has been widely used as a powerful and successful tool in applied sci-
ence. The different application areas vary from statistical communication theory to differ-
ent areas in physics. Traditionally, in traffic theory, where the models usually have been of
discrete nature, the continuous state models have been devoted less attention. Quite recent-
ly however, different Gaussian models have turned out to constitute an important analytical
framework to describe newly observed phenomena in traffic streams. For example the self-
similar behaviour observed for some type of Internet traffic may be described and analysed
by applying fractional Brownian motion as arrival process. Many interesting new results for
self-similar traffic may be found in the book Self-similar Network Traffic and performance
Evaluation edited by K. Park and W. Willinger [Park00]. 

For Gaussian models level crossing have been studied for a rather long period. Best known
are perhaps the early works of O. C. Rice, [Rice45] and [Rice48], where the famous Rice’s
formula on the crossing rate for Gaussian processes is given. He also gives some prelimi-
nary results on the distribution between two successive zeros. These results have been ex-
tended by J. McFadden and M. S. Longuet-Higgens in later works [McFa56], [McFa58] and
[Long58], [Long62] where different approximations to get the distribution between succes-
sive zeros are discussed. These papers are all based on problems within the field of random
noise and are not direct applicable to traffic models where we are interested in deviations of
the processes having small probabilities rather than variations around the mean value.

There is one main concern when applying Gaussian models to describe network traffic. This
is due to the irregular sample paths for such models. It turns out that the autocorrelation
must have specific behaviour near the origin to have finite up and down crossing intensities
[Lead83]. This limitation fits rather badly with the possibility of having so called long-
range dependence where the autocorrelation behaves as 

 as  for  (4.1)

where as the requirement of having finite up and down crossing intensities requires
[Lead83]:

ρ t( ) ct2H-2∼ t ∞→ 1 2⁄ H 1< <
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 as (4.2)

If we for instance consider an autocorrelation function on the form ,

then (4.1) is fulfilled for  but to get (4.2) this requires  which gives a
process that is not long-range dependent. In a paper by A. Barbe [Barb92] a method is de-
scribed to relax condition (4.2). This can be done by considering a sampled version of the
process (and let the process be linear between samples) and only counting the crossings of
the sampled process. For the sampled process the crossing intensities will be finite. There is
however, a problem to choose the appropriate size of the sampling interval. We shall use
the first passage time and the corresponding volume as an alternative measure when the
crossing intensities are infinite since these distributions are possible to obtain independent
of the crossing rates.

4.2 Gaussian traffic models

In the following we shall consider a stationary Gaussian (normal) random process 

with Mean value  and Standard deviation , and with autocorrelation function . For

a given capacity level  we also let  be the excess volume. In the suc-

ceeding subsections we shall work with scaled variables defined by:  and

 where we also have introduced the scaled capacity by

. We let also  be the normalized arrived volume

of the process. (Below we shall omit the  but remember that through the rest of this
chapter we are working with normalized variables as defined above.)

For Gaussian (normal) processes it is possible to relax the requirements on the autocorrela-
tion function to secure that the process has continuous sample path [Lead83]. It is suffi-

cient that the autocorrelation is bounded by  for some  and . 

For a (standard) stationary Gaussian (normal) process it is well known that a necessary and
sufficient condition for the up and down crossing intensity 

 (4.3)

to exists and that the limit is finite, is that the autocorrelation takes the specific form:
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 as  (4.4)

and moreover the up and down crossing intensity  is given by the famous Rice’s formu-
la [Lead83]:

(4.5)

where  is the standard normal density function, and further we also de-

note  as the standard normal integral.

It is possible to obtain these results quite easily by applying some of the properties for
multinormal integrals given in Appendix B. By applying (B.63) we have that the partial de-
rivative of the probability  with respect to  is:

(4.6)

Integrating we find  so we get:

. Then for instance by applying l’Hopi-

tals rule for limit of a fraction this gives:

(4.7)

It is now obvious that to have the limit to exist we must have the autocorrelation on the
form (4.4) and in that case we get (4.5).

We may now write down the mean excess times and excess volumes as found in chapter 3
by the equations (3.29), (3.30), (3.32) and (3.33) for a stationary Gaussian process:
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 and  and (4.8)

 and (4.9)

where we also have used the following expressions for the integrals:

 and .

We may also find the overall information loss  given by (3.34) as:

(4.10)

and the information loss in an overload period  given by (3.35) as:

(4.11)

Note that the information losses do not depend on the parameter  but only on the capaci-
ty level . Asymptotics for large values of  are easily found by using asymptotic expan-
sion for the normal integral  for large , cf. [Abra70] page 932 formula 26.2.10, giv-
ing:

 and  and further (4.12)

 and (4.13)

Thus, even though the overall information losses may be well limited, the losses in an over-
load period will be significant as shown by the asymptotics (4.13). 
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In the figure 4.1 we have plotted the overall information loss probability based on equation
(4.10) (left and marked “exact”) and the loss probability in overload periods based on equa-
tion (4.11) (right and marked “exact”) together with the asymptotics given by (4.13). If we
for instance would like to keep the losses in the range 10-2-10-4 this gives the interesting
parameter value of the scaled capacity to be in the range 2.0-3.2. 

4.3 The n-point approximation for Gaussian processes
Unless for some few cases it is difficult to obtain exact expressions for the excess probabili-
ties involving the minimum  and maximum  of the

process. In chapter 3 we saw that the -point approximation (obtained by continuously bi-
secting each interval) lead to approximations that were monotone and therefore had nice
properties to secure convergence of the corresponding approximations to the “exact” proba-
bilities. However, due to the difficulties to calculate multinormal integrals we shall apply
the -point approximation by dividing the interval into sub-intervals of equal lengths,
(where we keep in mind that the -point approximation coincides with the bisecting meth-
od for .)

More generally, and due to the property of a stationary Gaussian random process, we
have that for every sequence of  succeeding points, say

, that the ensemble  is Multivariate

Gaussian distributed with zero mean and Covariance matrix  given by

(4.14)

Figure 4.1:    Logarithmic plot of the overall loss probability (left) and loss proba-
bility in overload periods (right) as function of the capacity.
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The joint distribution function for a Multivariate normal process is well known and is ex-

pressed in terms of the inverse  of the covariance matrix . (See (B.1) in
Appendix B.) With the notation introduced in Appendix B (see equation (B.2)) we may
express the -point approximation of the excess probability as:

 (4.15)

where  is given by (4.14) and the vector giving the integration limits  and
where  is the scaled capacity. We shall apply the results derived in Appendix B to get
more explicit expressions for the excess time distribution. By theorem B.3 in Appendix B
(equation (B.65)) this integral may be written as:

(4.16)

where  and  is given as  and  in theorem B.2 and corollary B.1 in Ap-

pendix B and are explicitly given below in (4.30) and (4.31) but with replacing  with

 for all , and further  is the standard normal integral. 

The main achievements by writing the integral (4.15) of the form (4.16) is the fact that the
dimension of the integral in the integrand is reduced to  which means that the num-
bers of possible numerical integrations is reduced by . Continuing this process we obtain
the remarkable result which shows that it is possible to calculate the -dimensional multi-
normal integral by only performing  (if  is even) or  (if  is odd) successive
numerical integrations. This very particular property of the multinormal integrals is widely
applied and enable us to calculate multinormal probabilities of dimension seven by perform-
ing only three numerical integrations.

In the following we shall apply the -point approximation for to find approximations of the
various excess distributions defined in chapter 3. A natural choice of the points  would be
to take them equally spaced, that is:

 for  (4.17)

which gives  for . (4.18)
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sage times for a stationary Gaussian process

We start by first finding the -point approximation for the distribution of the first passage

time  defined in (3.23). By applying the results for multinormal integrals (theorem B.1
and theorem B.2 in Appendix B) and conditional CDF (by conditioning on ) we
get:

(4.19)

where  and  is the (standard) normal density. By the-

orem B.2 ((B.57) and (B.58)) we also find the corresponding parameters for the conditional

normal integral of dimension  with limit vector  with elements:

 for (4.20)

and  is the conditional (symmetric)  correlation matrix with elements:

 for (4.21)

We have  implying that  when , so for  we have

 for all . Then by theorem B.8 (in section B.4 Appendix B) we get
the desired result 

(4.22)

The corresponding result when  is not that simple. We find  for all

. If the autocorrelation have the form (4.4) we find that all the  and we

get . If the autocorrelation function  does not have the form

(4.4), then the off diagonal elements of  are strictly smaller than unity and more-
over a large part of the off diagonal elements will become small as the number of

points increases. It is therefore reasonable to believe that  as
. This example clearly demonstrates the difference in behaviour of the normal proc-

esses depending on the actual form of the correlation function for small values.

The 2-points and 3-points approximation yield:
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(4.23)

(4.24)

The corresponding PDF may be found by differentiating the integral (4.19), giving:

(4.25)

By first differentiating with respect to the time, applying corollary B.4 and theorem B.6
(Appendix B) we find the following expression for the -point approximation of the PDF

of the first passage time :

(4.26)

where the  and  are integrals of type (B.50) and may be writ-
ten as products of bi- and tri-normal distributions and standard multinormal integrals of di-
mension  and  by applying conditional distributions as given in Appendix B by
equation (B.51).

To find the -point approximation of the excess time distribution we first examine the be-

haviour of  for small . By the general results in chapter 3 equation (3.18) we find

the following bounds for :

(4.27)

It follows now since  that . Then

by letting  in the last inequality we find that if  is finite

then . We therefore conclude that the -point approximation

will lead to the correct up crossing intensity for all values of  and we find the approxima-
tive distribution that may be defined as in chapter 3 by:
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(4.28)

We have . By applying theorem B.2 and corollary B.3 (in

Appendix B) we get:

 where (4.29)

and where the -vector is given by:

  for , (4.30)

and the correlation matrix  is given by:

(4.31)

for , 

The specific choice of the points  makes it possible to rewrite equation (4.29) by group-

ing factors for which  and this somehow simplifies the expression for :

(4.32)

(4.32) represents the limit of how far it is possible to analyse the -point approximation for
general correlation function. The main difficulty to get a proper excess distribution is the
behaviour of the approximation for small  due to the square root in the denominator. To
examine the behaviour for small  we shall examine the two lowest approximation separate-
ly; namely the case  and . We have:
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(4.34)

where  is the determinant of the  covariance matrix:

(4.35)

An alternative to consider the excess time distribution above we may consider the n-point
approximation of the CDF of the first passage time  given that the rate process is above

the level  (defined by (3.27)). By applying (4.19) we find:

(4.36)

where  is the n-point approximation of the excess probability given as

multinormal integral of dimension . This is fully in accordance with the corresponding
definition in chapter 3 (given by equation (3.27)). The corresponding density is then given
by

 (4.37)

where the derivative  is given by (4.32).

4.3.2 Joint n-point approximation of the distribution of excess times and ex-
cess volumes and first passage times and the corresponding volume for a 
stationary Gaussian process

Generally, it is not difficult to incorporate the volume in the analysis because adding the
volume will not alter the fact that we are dealing with multivariate normal distributions.
Therefore the volume will just add an extra dimension in the analysis, and

 (where ) also will be Multivariate normally distribut-

ed with zero mean. We denote the Covariance matrix  for this ensemble
and we find:

  and (4.38)
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  with 

 and (4.39)

 with  (4.40)

To find the covariance matrix on standard form we scale the volume by its standard devia-

tion  by defining . With this scaling we get  as

standard multinormal distributed of dimension  with correlation matrix 
given by:

,  (4.41)

, with   (4.42)

(and )

By integrating over all chosen points  we may write the -
point approximation of the excess probability

 suggested by (3.71) as a

standard normal integral of dimension :

 (4.43)

where the limit vector  is given by:

, ,  and  (4.44)

and the covariance matrix  is defined by (4.41) and (4.42). By (4.43) we have linked the
-point approximations for the excess probability to the standard normal integral of dimen-

sion  and we shall show below that it is possible to obtain an expression for the corre-
sponding joint excess distribution defined by (3.52) and (3.62). Some informally we then
have the corresponding PDF as:
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(4.45)

It is possible to write equation (4.45) as a product of tri-normal distribution and a standard
normal integral of dimension  by applying conditional distributions as given in Appen-
dix B by equation (B.51).

By applying (4.45) as a staring point we may now find the -point approximation for the
joint CDF of the first passage time and the corresponding volume by (3.52). By intro-
ducing the different types of integrals defined in Appendix B it is possible to write the inte-

grals  and .

By applying these expressions we may write the joint PDF in the following way: 

 where (4.46)

(4.47)

and where we have redefined the limit vector  by: ,  and

 and where the integral of type  is defined by (B.79) in (Ap-

pendix B). If we now let  then we readily get by integrat-

ing over -variable in (4.46):

(4.48)

To obtain more explicit expression of the -point approximations which are suitable for nu-
merical calculations we must perform the differentiations in (4.46) and (4.48). This may be
done by applying the “algebra of multi-normal integrals” developed in Appendix B through
the equations (B.79) to (B.88). We find:

(4.49)

By differentiating this expression with respect to  and  enable us to find explicit formu-
lae for the joint PDF in terms of multinormal integrals. We get:
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(4.50)

      

where we also have defined the auxiliary functions (defined by 3x3 determinants):

 and (4.51)

(4.52)

We may also get the corresponding expansion for the function  (which is not

as complex as the joint density function above):

(4.53)

Similar as for the -point approximation of the joint CDF of the first passage time and the
corresponding volume we get the -point approximation of the joint CDF of the excess
time and excess volume by (3.62). By applying the different types of integrals defined in
Appendix B it is possible to express joint PDF as follows:

 where (4.54)

(4.55)

and where the integrals of type  and  are defined by (B.79) and

(B.80) in (Appendix B), and where we have taken the limit vector  as: 
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, and . If we (as above) let 

then we readily get by integrating over -variable in (4.54):

(4.56)

By the results obtained in Appendix B we have found the rules that relate integrals of type
 and  to sums of integrals of the standard multinormal of type

 (given by the equations (B.81) and  (B.82)). By the general results found for the
derivative with respect to both elements in the limit vectors  (given by (B.86)) and with
respect to the elements in the correlation matrix  (given by (B.88)) enable relating all the
derivatives in the expressions above to integrals of type . Performing the differ-
entiation we can therefore write the -point approximation (4.54) and (4.56) as a sum
where only integrals of type  are included. (It is necessary to define

 for , and  for .)

4.3.3 Some numerical examples
One of the main intension by the developments in the previous subsections were to find ap-
proximative methods to obtain the transient characteristics (described in section 3) for a
general Gaussian process by applying the properties of multinormal integrals given in Ap-
pendix B. As the “test” case we have chosen the autocorrelation function to be on the form: 

(4.57)

for which it is well known that the corresponding process is the Ornstein-Uhlenbeck (O-U)
process which turns out to be the only stationary Gaussian process that is Markovian
[Fell68b]. For the O-U process the exact distribution functions are given by (4.89) (for the
first passage time given that the process is in an excess period) and (4.82) (for the condi-
tional first passage time). The corresponding -point approximations are calculated by
(4.36) and (4.19) respectively. For the conditional first passage time (4.36) the approxima-
tion is given as a multinormal integral of dimension  which gives us the possibility to
calculate the approximative distribution function for  by the method de-
scribed in Appendix B. For the first passage time given that the process is in an excess peri-
od (4.19), the approximation is a multinormal integral of dimension  allowing us to calcu-
late the approximative distribution function for . 
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In figure 4.2 we have given plots of the exact and approximative CDFs of the first passage
times given that the process is in an overload (excess) period. These CDFs will give an
overall impression of the length of a congestion period for the chosen (scaled) capacity lev-
el. The main observation is that the convergence of the approximative solution is quite slow
also for small values of the time where we had hoped that the accordance would have been
better, however, the actual form of the curves are similar. It seems that to get a tight ap-
proximation one will need a rather huge number of points that will lead to multinormal inte-
grals of dimension that are impossible to calculate by the methods described in Appendix B.
Another observation is that the relative difference seems to be independent of the (scaled)
capacity levels, however it is clear that larger capacities will lead to excess periods that are
significant smaller than for lower capacities.

The results for the conditional CDFs given in figures 4.3-4.5 are quite similar. We observe
however, that the accuracy will depend on the difference between the starting value of the
process and the capacity level. This difference is taken to be 0.1 in figure 4.3, 0.3 in figure
4.4 and 0.5 in figure 4.5, and it is clear that the approximations are more accurate as this
difference increases. For the difference equal to 0.1 (figure 4.3) the approximations must
say to perform rather badly. 

Figure 4.2:    Logarithmic plot of the CDF of the first passage time given that the 
process is in an excess period for exact and different approximations (n=2,3,4,5) and 

different scaled capacities as function of time.
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Figure 4.3:    Logarithmic plot of the CDF of the conditional first passage time for ex-
act and different approximations (n=2,3,4,5,6), different scaled capacities and differ-

ent starting values as function of time.
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Figure 4.4:    Logarithmic plot of the CDF of the conditional first passage time for ex-
act and different approximations (n=2,3,4,5,6), different scaled capacities and differ-

ent starting values as function of time.
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As a common remark on the discussion of the approximations and, despite the disappoint-
ment of the accuracy, we conclude that we have found approximations that will provide up-
per bounds for the exact CDFs and will have the same form, but will over-estimate the
lengths of the excess periods to some extent.

As a second example we have chosen a Gaussian process which exhibits long-rage depend-
ence with autocorrelation on the form:

 for (4.58)

where we scale the time and take  in the numerical examples below. We have

 with  as  for  where  is the Hurst-param-
eter describing the degree of self-similarity in the process.

In figure 4.6 we have plotted the curves for the conditional CDFs of the excess time (first
passage) for the different approximations ( =2, 3, 4, 5, 6) to view the “speed” of conver-
gence for the case with autocorrelation given by (4.58) (i.e. with long range dependence). In
the left figure we have chosen that scaled capacity to be  and the starting value quite
close to  with value =1.1, where as in the right figure the corresponding parameters are

 and =3.5. In both cases the Hurst parameter is set to =0.7. The rate of “conver-
gence” for this case looks very similar to what was observed for the O-U process, (figures

Figure 4.5:    Logarithmic plot of the CDF of the conditional first passage time for ex-
act and different approximations (n=2,3,4,5,6), different scaled capacities and differ-

ent starting values as function of time.
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4.3-4.5 above). It seems that the “convergence” gets worse when the process starts out very
close to the excess level . (And this is also what is expected from the way this type of ap-
proximation is constructed.) Nevertheless, we are quite confident that the given approxima-
tion will provide valuable insight to get the typical form of the CDFs, and it should be
worthwhile to conduct calculations using the largest -value (5 or 6) for a broader set of
parameter values.

In figure 4.7 we have given plots of the approximative CDFs of the first passage times by
using  intervals, given that the process starts in an overload (excess) period for some
different capacity levels and some different Hurst parameters. The striking evidence in fig-
ure 4.7 is that all the curves having equal  seems nearly to have the same form plotted in
a logarithmic scale (the only difference is the scaling of the y-axis.) Written out mathemati-
cally this seems to imply that for two capacity levels  and  the follow relation holds

. (This formula should not be thought of as yielding for all values of 

but only in the range from 1 to 4 which is observed in the figures.) If, for instance, the giv-

en distribution is decreasing as power law for large values of  that is, ,

for some positive constants  and , then the observed relations will make implications

on the relations between the exponents by . 

C

n

Figure 4.6:    Logarithmic plot of the CDF of the conditional first passage time based 
on different approximations (n=2,3,4,5,6), and scaled capacity C=1 and starting val-

ue x=1.1 (left), and scaled capacity C=3 and starting value x=3.5 (right) for a proc-
ess with long-range dependence with H=0.7 as function of time.
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In figures 4.8-4.10 we have given plots of the approximative CDFs of the conditional first
passage times with  intervals, for some different capacity levels with some different
chosen starting values for the process and some different Hurst parameters. Although the
curves look very similar to the case above there are some differences that should be men-
tioned:

- The scaling formulae found above are not so accurate especially for the case where 
the starting value  is close to the capacity level . This is seen in figure 4.8 where 

=0.1. 

- The curves for =0.9 and =0.1 =1, 2, 3, 4) are very flat.

- The intersection point which in figure 4.7 is located at  has move outwards to 
around  with some minor variations.

We may conclude these examples by mentioning that the obtained distributions seem to
have “heavy” tails at least for the range of time parameter up to , and we have dem-
onstrated that the form of the excess time distributions will heavily depend on the Hurst-pa-
rameter.

Figure 4.7:    Logarithmic plot of the CDF of the first passage time given that the 
process is in an excess period based on approximation with n=5 intervals and different 

scaled capacities as function of time for a process with long-range dependence.
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Figure 4.8:    Logarithmic plot of the CDF of the conditional first passage time based 
on approximation with n=6 intervals and different scaled capacities and different 
starting values as function of time for a process with long-range dependence. 
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Figure 4.9:    Logarithmic plot of the CDF of the conditional first passage time based 
on approximation with n=6 intervals and different scaled capacities and different 
starting values as function of time for a process with long-range dependence.
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4.4 Distribution of the first passage times and the corresponding vol-
umes for the Ornstein-Uhlenbeck process

In this section we shall consider the classical diffusion process known as the Ornstein-Uh-
lenbeck (O-U) process. It is well known [Fell68b] that this is the only stationary Gaussian
(normal) process that is Markovian. We shall consider the O-U process in more depth, not
only for the sake of its “famous” properties that are well known in the literature, but rather
to analyse this process as an example where it is possible to obtain exact results (for the
first passage times and the corresponding volumes) and use this particular process to test the
approximations proposed in the preceding sections. It is well known that the O-U process is
a diffusion process and that the free space properties may be found by from the solution of
the corresponding diffusion equation. Thus, the excess probabilities will satisfy the same
diffusion equation as the free space probabilities, but where the special requirements for the
excess probabilities are expressed through extra boundary conditions. Such methods have
been applied by Hagan et al. in the paper [Haga89].

Secondly, the studying of the O-U process may also be motivated by the fact that this proc-
ess may be obtained as the limiting behaviour of a large numbers of on/off sources (with
exponentially distributed on- and off-times) in the heavy traffic regime. As pointed out in
[Knes91] the asymptotics (leading to the O-U process) are obtained by assuming:

Figure 4.10:    Logarithmic plot of the CDF of the conditional first passage time 
based on approximation with n=6 intervals and different scaled capacities and differ-

ent starting values as function of time for a process with long-range dependence.
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 as (4.59)

where  is the offered traffic and  the number of sources;  and  are

the mean on- and off-times and  is capacity scaled by the peak bit rate for a source. As
the number of sources increases, then by (4.59) the load is:

 as (4.60)

The same asymptotic regime will also apply for an M/M/  queueing system as pointed out
in [Guill96] (  is then the total input rate to the system.)

In the succeeding we shall also work with scaled (normalized) variables defined in the in-
troductory part of this chapter, and we consider the pair  where the evaluation giv-

en  is described by the differential system

 and (4.61)

(4.62)

where  denotes the standard Wiener process. It is well known that the pair  giv-

en by (4.61) and (4.62) constitutes a pair of normal stochastic variables where  is an
Ornstein-Uhlenbeck process with correlation function:

(4.63)

Since  for small  (which is not on the form (4.4)) and it follows
that the up and down crossing intensities do not exist (are infinite). This is due to the irreg-
ular elapse of the sample paths of this process, which, in spite of being continuous every-
where, are not differentiable in any point, (see for instance [Cox70]). 

Due to the specific form of the autocorrelation function we shall also scale the time accord-
ing to  (and in the succeeding we drop the marks).

4.4.1 First passage time distribution for the Ornstein-Uhlenbeck process

We shall start by finding the first passage time for the Ornstein-Uhlenbeck process. The La-
place transform of the first passage time is known, but we shall develop along a line for
which it is quite easy to also include the excess volume in the analysis. The function of in-
terested to determine the first passage time is the conditional probability:

 (4.64)
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and we define the PDF  and also the excess function

 where we have . We

may now write the Fokker-Plank equation for the PDF  together with the appro-
priate initial and boundary conditions:

 for ,  and (4.65)

 for ,  and (4.66)

 for  and (4.67)

Given the govern equation (4.65), the task will then be to solve the diffusion equation
above with the given initial and boundary equations. To get rid of the initial condition it is
convenient to introduce the LST:

 giving (4.68)

 (4.69)

with the boundary condition . We shall sketch how it is possible to find the
solution of the (ordinary) differential equation (4.69). Two linear independent solutions of
the corresponding homogenous equation may be written in terms of parabolic cylinder func-
tions  [Grad94], (9.255 page 1095) as:

 and . (4.70)

Further the corresponding Wronski determinant is [Abra70], (page 687):

(4.71)

where  is the Gamma Function. It is now possible to obtain a particular solution of the
non-homogenous differential equation on the following form [Codd55] (page 87):
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 (4.72)

giving the general solution of (4.69) on the form

. The boundary condition is fulfilled if

. If we let  and set  then we have

. Now to have a

bounded solution as  we must have vanishing coefficient in front of the solution

 since this function is unlimited when . Thus  and the

solution of the boundary problem is found to be:

 (4.73)

To obtain the corresponding LST of the first passage time we have to integrate (4.73). If

 and  denote the corresponding LST, then

. Using the fact that both  and  satisfy the (non-homoge-

neous) differential equation gives  and then by integrating (4.73) we find:

(4.74)

the corresponding LST for the density function  is readily found:

(4.75)
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We find the LST of the excess probability  from (4.74) by multiplying with the

standard normal density  and integrate:

. By integrating and us-

ing the relation between parabolic cylinder functions [Grad94], (9.247 page 1094) gives:

(4.76)

If we let  be the first passage time given that the process is in an overload period (that is

), we may find the corresponding LST by integrating (4.75) with the conditional sta-

tionary PDF given . We let  and  the corresponding LST

then:

. (4.77)

The corresponding Laplace transform for the PDF yields:

. (4.78)

We shall also sketch how it is possible to invert the LST (4.74), (4.75) and (4.76), (4.77). It
turns out that the denominator  (in all these expressions) has oscillating behaviour

on the negative real axis as function of the variable . The corresponding zeros will there-
fore be poles for the Laplace transforms. Based on the asymptotics for the Parabolic Cylin-
der Function one has [Abra70], (19.9.4 page 689):

 when  (4.79)

and where . By (4.79) it is obvious that the number of zeros is infinite (but

countable) and further they will not be limited. If we denote the zeros by  in descend-
ing order, then these zeros will be poles of first order for the Laplace transforms above. For
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large values of  it is possible to obtain asymptotics for the roots by applying (4.79). We

find   where

(4.80)

as  (for moderate values of )

It fact (4.80) is a second order approximation and turns out to be very accurate also for
small and moderate values of .

If we denote  then we may invert the LST by applying the resi-

due theorem, and we find the following series expansion for the PDF of the first passage
time:

 where (4.81)

 is the corresponding residue. The corresponding series for the CDF

yields:

(4.82)

For large  it will be convenient to find asymptotics for the residue . This can be
done by applying (4.79) and the approximation  (4.80) for the corresponding root. We find:

(4.83)

By several numerical computations we have found that the asymptotic formula (4.83) is
very accurate for quite moderate values of  and we have used this formula for the residue
in the numerical computations for  mainly because of the fact that beyond this val-
ue the exact roots are difficult to find, and we observe that for small values of  the series
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(4.81) and (4.82) are slowly converging, and therefore by applying the asymptotic residue
we may perform the summation to quite large value of .

To complete the picture, we have also considered the asymptotics of the LST for large posi-
tive values of . It is well known that the behaviour of the LST for large  determine
course of the distribution for small . In Appendix E we find the following asymptotics for
small :

 and (4.84)

(4.85)

as . 

The asymptotics (4.84) and (4.85) act more or less like a boundary layer where the
course of the density function suddenly changes (for very small values of ) and forc-
ing the density to approach zero in a very short interval near zero.

Special cases occur for instance when we consider crossings across the median; that is
. In this case the poles are located at  and the residues may be

evaluated explicitly. We find that the PDF of the first passage time of the median may
be expressed as:

 (4.86)

with the corresponding CDF

(4.87)

By applying the same method as above we may find the residue series for the CDF of the
variable , the first passage time of the level  given that the process is in an overload
period as:
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and the PDF is

(4.89)

where the corresponding residue . Further the excess probability

 is found by (4.77) as the relation between the LST implying:

(4.90)

For large values of  we find the following asymptotic formula for the residue 

(4.91)

where we have defined  and  is given by (4.80).

In Appendix E we have found the following asymptotics for small :
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Generally the residue expansion will converge slowly for small  (and actually the se-
ries for  will be divergent for . This is seen from (4.92) showing that the

limit does not exist as , explaining the well known fact that the crossing intensi-

ty of the O-U process is infinite since  as . 

4.4.2 Joint distribution of the first passage time and the corresponding volume 
for the Ornstein-Uhlenbeck process

By also introducing the excess volume into the analysis we hope it will be quite easy to ob-
tain the corresponding results as above (in section 4.4.1). In the analysis of the joint distri-
bution we shall apply the general relations obtained in section 3.3.2. The function fully de-
scribing the state of both the excess time and volume is (given by (3.50)):

, and we define the joint densi-

ty . We also let  be the

corresponding density function without the condition on  (defined by (3.60)).

The density function (also including the volume)  will obey the following “ex-
tended” Fokker-Plank equation together with appropriate initial and boundary conditions:

 for , ,  and (4.96)

 for , ,  and (4.97)

 for ,  and  and (4.98)

 for , , (4.99)

Given the partial differential equation above, the main task will be to solve this diffusion
equation with the given initial and boundary equations. To get rid of the initial condition
and the last boundary condition it is convenient to introduce the double LST:

The transformed problem is reduced to the following non-homogenous ordinary differential
equation
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with the boundary condition . The corresponding homogenous differen-
tial equation is 

(4.101)

The substitution  in (4.101) gives  and

this is the differential equation for the Parabolic Cylinder Function with parameter

 and argument  [Grad94], (9.255 page 1095). Thus, two linear independ-
ent solution of (4.101) may be written in terms of Parabolic Cylinder Functions as:

 and . (4.102)

Further the corresponding Wronski determinant is [Abra70], (page 687):

(4.103)

where  is the Gamma Function. By knowing the Wronsky-determinant and two linear
independent solutions of the homogenous equation (4.101) we can write down the solution
of the boundary problem directly as (4.73):

 (4.104)

As a side result of the special form of the differential equation (4.101) we have

 for both  and . To find the (double) LST of joint distri-

bution of the first passage time and the corresponding volume, we start with evaluating the

integral . By dividing this integral into two parts depend-

ing on whether  or  and using the property above we find:

fC
ˆ x C ζ s, , ,( ) 0=

y2

2

∂
∂ f

y∂
∂f 1 s– y C–( )ζ–( )f+ + 0=

f e
y2

4
----–

h=
y2

2

∂
∂ h 1

2
--- ζ2 Cζ s– y 2ζ+( )2–+ + 
  h+ 0=

ζ2 Cζ s–+ y 2ζ+

f+ y ζ s, ,( ) e
y2

4
----–

D
ζ2 Cζ s–+

y 2ζ+( )= f- y ζ s, ,( ) e
y2

4
----–

D
ζ2 Cζ s–+

y 2ζ+( )–( )=

W y ζ s, ,( ) Wr f+ y ζ s, ,( ) f- y ζ s, ,( ),( )( )= e
y2

2
-----–

Wr D
ζ 2 Cζ s–+

y 2ζ+( ) D
ζ 2 Cζ s–+

y 2ζ+( )–( ),( )( ) 2π

Γ s ζ2 Cζ+( )–( )
-----------------------------------------e

y2

2
-----–

= =

Γ s( )

f̂C x y ζ s,, ,( ) Γ s ζ2 Cζ+( )–( )
2π

-----------------------------------------e
x2

2
-----

  
f- x ζ s, ,( )

f- C ζ s, ,( )
f+ C ζ s, ,( )
-------------------------f+ x ζ s, ,( )– f+ y ζ s, ,( )

f- y ζ s, ,( )
f- C ζ s, ,( )
f+ C ζ s, ,( )
-------------------------f+ y ζ s, ,( )– f+ x ζ s, ,( )









=
  y; x≥

  y; x≤

s ζ y C–( )+( )f y( ) yd∫ f′ yf+= f+ f-

s ζ y C–( )+( ) f̂C x y ζ s, , ,( ) yd
y C=

∞

∫

y x≤ y x≥



- 63 -

(4.105)

We let  be the joint CDF of the first passage time  and

the corresponding excess volume  and let

 denote the corresponding joint PDF, and further we let

 be the corresponding double LST. By the relation

(3.58) we have:

(4.106)

From (4.106) we find the LST of the density function for the excess volume  by:

(4.107)

and the LST for the corresponding distribution function

(4.108)

To compare with the general expressions of the LSTs found in chapter 3 (cf. (3.65) and
(3.66)) we would like to find the integral:
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1094) we find:
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(4.110)

To compare with the general expressions for the LSTs found in chapter 3 (cf. (3.65) and
(3.66)), we would also like to find the following integral:

. (4.111)

Then by (4.105) we get , and we

find:

(4.112)

The transforms (4.110) and (4.112) are in full accordance with the results found by (3.65)
and (3.66), however due to the behaviour of the corresponding inverse  (of

) for small values of  and , the corresponding crossing intensity  is infinite.
We may use (4.111) together with the transforms (4.110) and (4.112) to obtain the LST of
the excess probability by:

(4.113)

The corresponding result for the LST of the excess volume  is found similarly by

setting  in (4.110) and (4.112):

(4.114)

If we let  be the excess volume for the corresponding first passage time  given that

the process is in an overload period (that is ) (defined in section 4.4.1), and let

 and let  denote the corresponding LST, we may find this La-

place transform from the excess volume (4.114) by a simple scaling so that we get a proper
distribution:
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(4.115)

The LST of the corresponding PDF is then:

(4.116)

It turns out that the LST (4.115) also could have been obtained from (4.107) by per-

forming the integral  where  for 

and where we observe that ;  is the residual density for the shifted vari-

able  conditioned on  (having the density  for ).

Below we shall describe how it is possible to invert the LST (4.107), (4.108) and (4.115),
(4.116). It turns out that the key to find the inversion of the given Laplace transforms is the
behaviour of the denominator  in the negative half-plane. This

function will have infinite many zeros on the negative real axis, and we denote the zeros by
 in descending order and it follows that these zeros will be poles of first order for the

Laplace transforms above.

By the asymptotic formula (E.15) (and (E.9)) Appendix E we have:

 where (4.117)

when  (and ). (4.118)

and where we also have used the results [Abra70] (10.4.4 and 10.4.5 page 446) for the val-
ues of the Airy functions for . For large values of  it is possible to obtain asymptot-
ics for the roots by finding the zeros of (4.118). We find  where 

(4.119)
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as  (for moderate values of ). It fact (4.119) is a second order approximation and
turns out to be very accurate also for small and moderate values of . 

If we denote  we may invert the LSTs by applying

the residue theorem, and we get the following infinite series for the PDF of the excess vol-
ume of the first passage time:

 where (4.120)

 is the corresponding residue. The corresponding series for

the CDF yields:

(4.121)

Based on the asymptotics for parabolic cylinder functions in Appendix E we may find the
find asymptotic expressions for the residue  in terms of Airy functions. We get:

(4.122)

where 
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(4.124)
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We have experienced (by several numerical computations) that the asymptotic formula for
the residue is quite accurate also for moderate values of . Due to numerical difficulties to
calculate the parabolic cylinder functions for large arguments and large parameter, we are
not able to calculate the corresponding roots when  is larger than approximately 27.
Therefore, we have used the asymptotics (4.122)-(4.124) for the residue in the numerical
computations for , and we observe as for the first passage time distributions that the
series (4.120) and (4.121) are slowly converging for small values of , and therefore by us-
ing the asymptotic residue we may perform the summation to quite large -values. This is
mainly due to the fact that the Airy functions (in (4.123)) for negative values are oscillat-
ing and may easily be computed also for large arguments.

An efficient alternative to obtain the distributions for small  is to apply the asymptotics
obtained by considering the Laplace transforms for large (positive) arguments. In Appendix
E we find the following asymptotics for small :

 and (4.125)

(4.126)

as  and where  is the second Whittakers’s function ([Abra70] (9.22-9.23
page 1086).

As for the distribution of the first passage time the asymptotics (4.125) and (4.126) act
like boundary layer solutions where the density function suddenly changes (for very
small values of ) and forcing the density to approach zero in a very short interval near
zero.

The form of the asymptotics for the first passage time ((4.84) and (4.85)) and the corre-
sponding result for the volume ((4.125) and (4.126)) are quite similar, however, while
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we for the time distribution have  as the “local variable”, the corresponding

“boundary” variable for the volume is . This suggests that these variable

should be introduced in the differential equations to obtain the corresponding boundary
equations.

We shall also give the residue expansion for the CDF of the volume , as defined above,

on the basis of the first passage time of the level  given that the process is in an overload
period. We find:

 (4.127)

and the corresponding PDF

(4.128)

where the corresponding residue .

By applying the asymptotic formulas (E.15) and (E.16) in Appendix E we find the follow-
ing asymptotic formula for the residue  for large values of :

(4.129)

where and  is the asymptotics of the roots given by (4.119).

In Appendix E we have found the following asymptotics for small :

 and (4.130)

(4.131)

x C–( )2

4t
--------------------

x C–( )3

9z
--------------------

AC

C

FAC
z( ) ϕ C( )

ϕ C( ) C– φ C( )
---------------------------------

Vk C( )
u– k C( )

-----------------
k 1=

∞

∑ e
uk C( )z

=

fAC
z( ) ϕ C( )

ϕ C( ) C– φ C( )
--------------------------------- Vk C( )

k 1=

∞

∑ e
uk C( )z

=

Vk C( )
uk C( ) C+( )– D

uk C( )2 Cuk C( ) 1–+
C 2uk C( )+( )

Uk C( )
---------------------------------------------------------------------------------------------------------------=

Vk C( ) k

Vk C( )
3

5
6
---
Γ 2

3
--- 
 

4πΓ 1
3
--- 
  vk C( ) vk C( ) C

2
----– 

 
2
3
---

------------------------------------------------------------------- 1
3

1
3
---
Γ 2

3
--- 
 

Γ 1
3
--- 
 

------------------ 1
2
--- C2

4
------– 

  vk C( ) C
2
----– 

 
2
3
---–

+

 
 
 
 
 
 

∼

vk C( )

z

fAC
z( ) ϕ C( )

ϕ C( ) Cφ– C( )
--------------------------------- 3

1
3
---

Γ 1
3
--- 
 

------------z
1
3
---– C

2
----–

 
 
 
 
 

∼

FAC
z( ) 1 ϕ C( )

ϕ C( ) Cφ– C( )
---------------------------------– 3

4
3
---

2Γ 1
3
--- 
 

----------------z
2
3
--- Cz

2
------–

 
 
 
 
 

∼



- 69 -

We observe that the density function of the  grows by  for small  whereas the

corresponding density function for the time  behaves as . Thus it seems that the
time distribution is “less regular” than the corresponding volume, however, both densi-
ty functions are unlimited near the origin.

4.4.3 Some numerical examples
As mentioned above the numerical computations are based on the residue series both for the
distribution of the first passage times and for the distribution of the corresponding volume.
For the lowest residues the corresponding roots were calculated numerically and the corre-
sponding values of the residues were calculated by means of numerical derivation. Howev-
er, due to difficulties when calculating Cylinder Functions for large arguments we failed to
calculate the residues for larger than approximately:

- 100 for the excess time distributions and
- 27 for the excess volume distributions

and these numbers were far too small to obtain the residue expansion to converge for small
arguments. This is due to the fact that these expansions converge very slowly in this re-
gion. However, by means of the asymptotics derived for the residues, which turn out to be
very accurate also for relative small numbers (in the series), we were able to obtain accu-
rate numerical values also for small arguments. In the example below we therefore used the
asymptotic residues from:

- 100 to 8000 for the excess time distributions and
- 27 to 16000 for the excess volume distributions.

In addition the numerical calculations were compared with the asymptotic expansions for
small arguments, and we were pleased to observe that for both the excess times and excess
volume, calculated by using the residue series, give results that are very close to curves ob-
tained by the asymptotic expansion for small arguments. (See figures 4.11, 4.12, 4.13 and
4.15.)

AC z 1 3⁄– z

TC t 1 2⁄–
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In figure 4.11 we have given plots of the CDF of the first passage time given that the proc-
ess starts in an excess period for different values of the capacity level. As expected this dis-
tribution will depend on the actual level . As pointed out in section 4.2 the interesting
values of  will be in the range 2.0-3.2. It is obvious that these distributions will have ex-
ponential tail since we get nearly straight lines as the argument increases.

Figure 4.11:    Logarithmic plot of the CDF of the first passage time given that the 
process is in an excess period for the O-U process for different values of the scaled 

capacity (C=0,1,2,3,4) as function of time.
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Figure 4.12:    Logarithmic plot of the CDF of the excess volume during the first 
passage time given that the process is in an excess period for the O-U process for dif-

ferent values of the scaled capacity (C=0,1,2,3,4) as function of volume.
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Figure 4.13:    Logarithmic plot of the CDF of the conditional first passage time for 
the O-U process for different values of the scaled capacity (C=1,2,3,4) and differ-

ent starting values as function of time.
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Figure 4.14:    Logarithmic plot of the CDF of the conditional first passage time for 
the O-U process for different values of the scaled capacity (C=1,2,3,4) and differ-

ent starting values as function of time.
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Figure 4.15:    Logarithmic plot of the CDF of the conditional excess volume dur-
ing the first passage time for the O-U process for different values of the scaled ca-

pacity (C=1,2,3,4) and different starting values as function of volume.
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Figure 4.16:    Logarithmic plot of the CDF of the conditional excess volume dur-
ing the first passage time for the O-U process for different values of the scaled ca-

pacity (C=1,2,3,4) and different starting values as function of volume.
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When it comes to the corresponding excess volume (figure 4.12) the curves are similar but
we observe that the curves are not complete straight lines especially for higher values of the
capacity level as  and .

For the conditional excess (first passage) time (figures 4.13 and 4.14) and excess volume
(4.15 and 4.16) we see more variety in the curves. This is especially observed for small val-
ues of the argument where we see that the starting value of the process is an important pa-
rameter for the excess distributions. If the process starts close to the actual capacity level 
we see that the distributions will drop suddenly and this is due to the fact that with high
probability such an excess period will end very rapidly. On a longer scale however as seen
by figures 4.14 and 4.16 we end up with exponential tails since all the curves become
straight lines for large arguments. This fact will also be obvious from the obtained residue
expansion where the first term in the series will dominate for large value of the arguments.

In this section we have demonstrated that it is possible to obtain by analytical means
both the Laplace transforms for the first passage times and the time dependant excess
probabilities for the O-U process. The results for the distribution of the excess vol-
umes are of special interest since this can estimate the amount of information loss for
communication systems during congestion periods. It turns out that it is possible to in-
vert the Lapace transforms by finding the poles. These are all located on the negative
real axis and we obtain asymptotic formulas for the location of these poles correct to
second order. Furthermore we also obtain asymptotics for the corresponding residue
also correct to second order. By means of these asymptotics the residue series may be
calculated for large numbers terms and we obtain numerical results also near the origin
where the residue series is slowly converging. The numerical values for small argu-
ments are also found to be in accordance with the distribution functions obtained by the
asymptotics found for small arguments.

C 3= C 4=

C
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5
5Some results on excess times and excess

volume for semi-Markov processes

5.1 Introduction
In chapter 3 we discussed a general framework to determine the distribution of excess times
and excess volumes for a stationary stochastic process. In that chapter we focused on some
rather general considerations, although in section 3.3 where we consider the joint distribu-
tion of excess volumes and excess times we assumed that the processes are continuous (in
time and space). As pointed out processes with continuous sample paths do not fulfil the re-
quirements for level crossing unless the autocorrelation has quite specific behaviour near the
origin. Discrete processes, however, will not need these restrictions, and we know that such
processes have been widely used as models to describe traffic load on communication links.
Especially, some specific types of Markov processes have been analysed in light of investi-
gating transient phenomena as duration of excess periods and the corresponding excess vol-
umes. As mentioned the distribution of such periods may be viewed as periods with over-
load on a communication link and the excess volumes may represent the amount of infor-
mation loss in bufferless multiplexing.

For a Markov process the excess time distribution has been derived by Buzacott used in re-
liability analysis to find up and down times for repairable systems [Buza70]. Other authors
have used the classical M/M/  system as a model for bufferless multiplexing of large
number of data sources on a communication link, and explicit expressions and various as-
ymptotics are found for the different transient performance measures [Guill95], [Guill96],
[Dupu97].

In our analysis we have taken a more general approach by assuming that the rate process is
a general semi-Markov process. By applying semi-Markov processes we may also analyse
sources that have autocorrelations that are different from exponentially decaying ones ob-
tained from ordinary Markov modelling. In the following we shall start with a general semi-
Markov model, but we will also include a lot of results for processes that are particular cas-
es of the general model, such as ordinary Markov processes, or even the simpler birth-death
processes. There is, however, one main drawback with the general semi-Markov models
that need to be mentioned: the class of sami-Markov processes is not closed under “addi-
tion”.

∞
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5.2 Some general properties for semi-Markov processes

In this chapter we shall assume that the bit rate process  is a semi-Markov process,

where the bit rate takes the possible values  where  is the unit changes in the bit rate
and  where  is a countable set of numbers. We shall not go into any further discus-
sion on the theory of semi-Markov processes (or Markov Renewal processes), but we refer
to the textbook of Cinlar [Cinl75] for basic properties.

To describe the excess times and excess volume for a semi-Markov process we need to di-

vide the state space into two disjoint sets:  and  where  for  which we

call the “overload states” and  for  which we take as the “normal load states”,

and we let  be the limiting state. In the succeeding we will make the following

convention: 

For a vector  and a matrix ;  we use the notation ,  and

,  for the overload part and normal load part of  and ; i.e. , ,

,  and , , , . To complete the parti-

tioning of the matrix  we also define the sub-matrices , , ,

and ,  .

We let  be the sequence of jump instants for the bit rate process  and let

 be the bit rate at jump instants. The evolution of the process over time is de-

scribed by the generator  which we take to be:

(5.1)

Based on the generator matrix  it is possible to find the different characteristics for the
process. For example the conditional CDF between two succeeding jumps is found from the
generator by adding the states

(5.2)

The steady state distributions at jump instants  are given as the solution of the

equation  together with the relation . 

Also the steady state distribution  is known to be proportional to , where
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Eu El jb C> j Eu∈
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 (5.3)

is the conditional mean between two consecutive changes in the bit rate. Alternative the
steady state probabilities  can be determined from the equation  and the rela-

tion , where the matrix  is given by:

(5.4)

As we shall discuss later, the -matrix defined by (5.4) will give the corresponding genera-
tor matrix when the bit rate process is an ordinary Markov process.

To obtain the excess time distributions (defined in section 3.2) for the semi-Markov proc-
ess  we define the upper and lower (Markov) renewal kernels:

 and (5.5)

 (5.6)

where  denotes n-times convolutions of  and  is the (negative)

derivative of the generator matrix. We consider the process which is in equilibrium at time
, and we define the conditional the excess probabilities (the discrete version of (3.21)

and (3.22)) by:

 for ,  and

 for , .

It is possible to express these excess probabilities in terms of the upper and lower renewal
kernels (defined in equation (5.5) and equation (5.6)) in the following way:

; ,  and (5.7)

; , (5.8)

We shall briefly sketch the derivation of the excess probabilities (5.7) (and (5.8)), and we
refer to figure 5.1 below.
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Starting the observation at time  in state  when the process is in steady state,

the time to the first jump  and next state for the bit rate  is distributed according to
the residual time for semi-Markov processes (see Cinlar [Cinl75])

. (5.9)

The first part in formula (5.7) corresponds to the case where there is no state change in the
process up to time  and we obtain this part by summing over the possible states for  in
(5.9). The second part corresponds to the case where one or more jumps have occurred be-
fore the time , and in this case the joint density for the time to the first jump is the nega-

tive derivative of (5.9); i.e. . By convoluting these probabili-

ties by the matrix ; and adding for  and then convoluting
with the conditional distribution (5.2) we get (5.7).

On the basis of (5.7) and (5.8) we obtain the excess probabilities (3.24) and (3.25) for the
semi-Markov process:

 and (5.10)

(5.11)

Likewise we also obtain the conditional covariances defined in (3.36) and (3.37):

Figure 5.1:    Distribution of the excess times for a semi-Markov process.
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 and (5.12)

(5.13)

It is interesting to note that all the important characteristics to describe the excess behav-
iour of a semi-Markov process can be expressed in terms of the generator matrix  and
the steady state probability vector . To find the explicit expressions for different models,
the hard part is obviously to find the upper and lower renewal kernels defined through infi-
nite sums of convolutions. One possible way to simplify the expressions may be to take La-
place transforms, which will result in a power series and where the sum can be expressed as
the inverse of known matrices. We may therefore take advantage of the powerful tools of
matrix algebra. Before we enter into any further discussion concerning the actual distribu-
tion of the excess times and volumes, we shall first show that the two first moments for
both the excess times and excess volumes are quite straight forward to obtain from the ex-
pressions above by using the general formulae derived in chapter 3.

5.3 The first two moments for the excess times and excess volumes for 
semi-Markov processes

By differentiating and integrating the equation (5.7) (and (5.8)) we find:

;  and  where 

 and  are given as the following (form) factors:

 where  and (5.14)

 where (5.15)

The results for , that is for the “normal loaded” case, are similar to the expres-

sions above, and obtained by simply replacing  with . By using the
general formulae (3.29), (3.30), and (3.32), (3.33), together with (3.39), (3.40) derived in
chapter 3 we are now in the position to write down the two first moments for the excess
times and excess volumes. These moments will be given in terms of the up and down cross-
ing intensity given as the following sum:
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 (5.16)

where  denotes a column-vector with ones (with the desired dimension). In (5.16) we have
used the steady state equation  and the relation .

Further for the moments of the excess times we obtain:

 and  and further (5.17)

 and (5.18)

. (5.19)

The moments for the excess volumes may be written:

 and  and further (5.20)

 

and (5.21)

. (5.22)

The formulae (5.16)-(5.22) are expressions which yield for general semi-Markov processes.
For the first moments the results are identical (in form) with the corresponding results for
ordinary Markov process when we define the -matrix by (5.4) [Buza70]. To find the sec-
ond order moments we require the first and second order conditional moments of the time
between jumps in the semi-Markov process and also that the moment matrix  defined
above to be known. The demanding part in computing the moments (5.16)-(5.22) is of
cause to obtain the inverse of the upper- and lower- part of the -matrix.

As we mentioned in the introduction the class of semi-Markov processes is a quite broad
class of processes which contains a number of interesting subclasses. For some of these
subclasses the expressions above will be simplified. Below we shall briefly discuss some of
these cases.
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5.3.1 The case when the time spent in a state is independent of the next state

If the time spent in a state in independent of the next state, i.e. we have a generator
on a somewhat simpler form

 (5.23)

where  is the distribution of the time spent in state  and  are the transition proba-

bilities for the corresponding jump Markov-chain (with  and ).

In this case we may eliminate the matrix  since we have  and we

get  where we define 

(5.24)

The moments for this case are therefore given through (5.16)-(5.22) by replacing  by 

and  by  and  by .

5.3.2 Markov processes
For Markov processes the time spent in a state is negative exponentially distributed so this
is a special case covered in section 5.3.1 with  and the moments are given through

(5.16)-(5.22) by replacing  by  and  by  and 

by .

5.3.3 Birth-death semi-Markov processes
For a birth-death process we only allow jumps to the neighbouring states which means that
the generator is on the form

(5.25)
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where ,  and we obtain the -matrix on the well known form:

(5.26)

where  and , ,  and  

For birth-death processes, upper and lower -matrix may be inverted explicitly and the
second order moments greatly simplified. We obtain

 and (5.27)

, and (5.28)

 and (5.29)

. (5.30)

Also the up crossing intensity for this case reduces to:

. (5.31)

Finally we also mention that the steady state probability for this particular case is the prod-
uct solution: 
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excess times and excess volumes will have hyper-exponential characteristics. For example
by comparing the first and second moment of the excess time (above the capacity level) we
find:

. Similarly we

also get , and for the volume we have:  and

.

5.4 Distribution of the excess times and excess volumes
Although we have been able to obtain the two lowest moments for the excess distributions,
we are not quite satisfied with only these results. In many applications in communication
systems it is often the tail of the distributions that gives the best performance measure. As
we have pointed out above it seems that the excess distributions are quite “long tailed” (or
heavy tailed”). It is therefore of general interest to obtain the full distributions of the excess
periods and the volume of information that may be lost during excess periods. By the
framework described in chapter 3 and the results derived above, we may express these dis-
tributions in terms of the steady state probabilities, the -matrix and the upper (and lower)
renewal kernels for the semi-Markov process.

5.4.1 General formulae for semi-Markov processes

Differentiating equation (5.7) gives  and by multiply-

ing with the steady state probabilities and summing over the appropriate states we may
write the CDF of the excess time as:

 (5.33)

where  is a column-vector with elements  and  is a column-vector with ones.

The CDF of the length of the “normal load” periods is obtained by just substituting for the
lower part of the matrices:

(5.34)

We get the PDF for  and  by differentiating (5.33) and (5.34):
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 and (5.35)

 (5.36)

Sometimes it is desired to introduce the LST to obtain specific results. This may often be
effective to determine the tail of the distributions. Since the upper and lower renewal ker-
nels are a sum of convolutions, the LSTs are easy to get from the expressions (5.33), (5.34),
(5.35), and (5.36), and (5.5) and (5.6). We find:

, (5.37)

, (5.38)

 and (5.39)

, (5.40)

where  is the LST of  and  is the LST of . Since we have

 where  is the Laplace transform of the generator  we find:

(5.41)

When we consider the excess volume we use of the fact that the bit rate is constant be-
tween to consecutive jumps in the rate process, and therefore we may quite easily obtain the
distribution of the excess volume between two subsequent jumps. We let
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 when  in the interval , and

we define the following joint probabilities:

 for  and (5.42)

 for (5.43)

From the these relation we obtain the following joint probabilities:

 (5.44)

for  and 

(5.45)

for . (If  then (5.45) will give  so this case will be in-

cluded in the “below” states if we just skip that state in the matrices.) 

By considering the evolution of the  or  in either an excess period or a normal
load period we will obtain the desired distributions of the excess volume by consider a
parallel semi-Markov process with the generator  by:

(5.46)

Since  the two semi-Markov processes will have the same -matrix and the
steady state distributions. We are therefore in a position to write the CDFs and PDFs for the
excess volumes by using the corresponding results as for the excess times:

 (5.47)

 (5.48)
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 and (5.49)

 (5.50)

where  and  are the corresponding upper and lower renewal kernels:

 and (5.51)

 (5.52)

 and . From (5.44) and (5.45) get the following relation

between the between  and , and  and :
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Finally we may write the LSTs of the excess volumes on the following form:
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 and (5.59)

. (5.60)

By using the functional relation between  and , and  and  given above
by (5.53) and (5.55) we obtain:

 for , ,  for , 

, (5.61)

and  for  and (5.62)

 for ,  ,  for ,  (5.63)

and  for . (5.64)

The derived formulae for the excess times (5.33), (5.34), (5.35) and (5.36) and the formu-
lae (5.47), (5.48), (5.49) and (5.50) for the excess volumes together with the corresponding
LST (5.37), (5.38), (5.39), (5.40) and (5.57), (5.58), (5.59), (5.60) constitute to our knowl-
edge new development in the effort to describe transient phenomena for quite general traf-
fic models as semi-Markov processes. Knowing the increasing variety of new services ex-
pected in future networks, the modelling and understanding of transient behaviour will be
important especially in connection with congestion phenomena. To carry the analysis any
further one has to be more specific about the processes, this could for instance be done by
assuming the broad class of models where the time spent in the different states are a mix-
ture of exponential distributions (phase type) and then looking for possible poles in the ex-
pressions for the LSTs. (We will skip such an analysis here, it would be merely technical, -
although it logically would be straight forward to perform.) 

5.4.2 Spectral decomposition of the distributions
To perform a spectral decomposition of some of the distributions above we must assume
that it is possible to diagonalize the corresponding matrix. Below we shall just sketch the
possible analysis. We pick the excess time  as the distribution under consideration. (The
decomposition for the other variable will be entirely similar.) It is possible to rewrite the
Laplace transform (5.37) in the following way:
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 where (5.65)

the matrix  is given as: 

(5.66)

In the succeeding we assume that it is possible to diagonalize the matrix , which
means that we may write:

 where (5.67)

 are the eigenvalues of  and the matrices  and  constitute the left
and right eigenvectors:

 where the row-vectors  are the solution of the linear equations

, and  where the column-vectors

 are the solutions of . We also assumes the eigenvectors

are normalised so that . With these rather technical details we may ex-
press the brackets in the Laplace transform (5.65) as:

. (5.68)

It is possible to carry the analysis further if we assume that singularities of the Laplace
transform are simple poles. By (5.68) we have that the poles of the Laplace transform
(5.37) located as roots of the equations

 (5.69)
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and we denote ,  for these roots which we for simplicity assume to be
distinct. The inversion of the Laplace transform can therefore be carried out by the residue
theorem giving the following expression for the CDF for :

 where (5.70)

 is the residue of the transform taken at , and may be written (in terms of the
eigenvalues and eigenvectors) by:

(5.71)

In Appendix C we have shown that  for all the roots, which guarantees the prop-

er behaviour of the distribution for  is large.

One important outcome of the spectral decomposition is the asymptotic behaviour for large

. If we let  be the dominant root (largest real part) of (5.69). Then we get from
(5.70):

(5.72)

knowing that  and where  is the residue (5.71) taken at .

It may be worth to mention some of the problems that the spectral decomposition may
cause. If the number of states is infinite the diagonalization procedure may fail. This is
more or less caused by the fact that the number of eigenvalues also will be infinite and the
spacing of the roots is difficult to predict. In some cases this implies that the sum in (5.70)
will be an integral. Another problem that may occur is of cause numerical difficulties to
find the left and right eigenvectors and to find the derivative of all the eigenvalues. Even
more difficult is it to invert the corresponding LSTs if other forms of singularities occur for
instance branch cuts. For such cases one has to apply specific methods and will not be dis-
cussed in this thesis.

5.4.3 Birth-death semi-Markov processes
Birth-death semi-Markov processes impose some simplifying qualities which may be worth
to take into account when considering the excess distributions, and enable carrying the anal-
ysis some further. This is because of the special structure of the generator matrix which will
be tri-diagonal. Taking this special structure into account it is possible to invert the matri-
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ces in the Laplace transforms of the excess times (5.39) and (5.40). After some manipula-
tions we obtain:

 where (5.73)

 is the determinant obtained from the -th upper-sub matrix of :

 and (5.74)

 where (5.75)

 is the determinant obtained from the -th lower-sub matrix of :

 where (5.76)

 is the LST of the sojourn time PDFs  in state . The effectiveness of

the formulae above is due to the tri-diagonal form of the involved matices, which allows for

recursive evaluations. Expanding the determinants (after the last row for  and the first

row for ) we find the following iterative expressions:
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 for (5.77)

starting by defining  and  and taking  and

 for (5.78)

starting by defining  and  and taking .

The corresponding results for the excess volumes are: 

 where  is the determinant: (5.79)
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where ;  and

 where  is the determinant: (5.81)
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where ; 

The corresponding recursion formulae for the determinants in expressions (5.80) and (5.82)
for the excess volumes are:

 for  (5.83)

starting by defining  and  and taking  and

 for  (5.84)

starting by defining  and  and taking .

Based on the recursions above it is easy to calculate the LST for the excess times and ex-
cess volumes even for large dimensions. However, often forced by the difficult problems of
numerical inversion of LSTs, one will often try to invert the transforms analytically. This is
usually done by locating the singularity (poles) of the transforms. In this case we must eval-
uate the corresponding residue at the singular points. Let us for simplicity assume that the
singularity is a simple pole. To calculate the residue we need also to calculate the deriva-
tive of the nominator in the transforms. This can be done by taking the derivative of the re-

cursion formulae (5.77), (5.78), (5.83) or (5.84). If we choose  we find
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Together with (5.77), (5.85) will give the pair  for . 

It is possible to rewrite the formulae for the LSTs for birth-death semi-Markov processes
given above. This can be done by rewriting the determinants (5.74), (5.76), (5.80) and
(5.82), so that the matrices are symmetric. This can be done by pre- and post-multiplying
by a given diagonal matrix and its inverse. We have put the analysis in Appendix D where
we obtain the corresponding determinants as the product of all the eigenvalues and moreo-
ver the required eigenvalues may be found by the powerful method of bisection by apply-
ing the “so-called” Sturm sequence property of leading principal minor of the symmetric
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matrices. This gives an alternative method to find the LSTs to those described by the recur-
sion formulas (5.77), (5.78) and (5.83), (5.84). The latter is especially effective if we con-
sider birth-death processes with exponential distributed sojourn times. In this case we also
find the corresponding residue and we show that the excess distribution fully is determined
by the eigenvalues of the principal minor of order  and  for the excess

distributions and the principal minor of order  and  for the time and volume below

the capacity .

5.4.4 Markov processes
As mentioned earlier a Markov process is a special case of a semi-Markov process where
the time spent in a particular state is negative exponentially distributed. For this case it is
possible to carry out the analysis in section 5.4.1 further. Recall that for a Markov process
we have the generator (5.1) on the form:

 (5.86)

where  is the mean sojourn time in state  and  are the transition probabilities

for the corresponding jump Markov-chain, where we also assume that . (See Cinlar

for a discussion of related topics [Cinl75]). The -matrix for the Markov process will
therefore be on the form:

 and  for (5.87)

Working with the LSTs we obtain:  for  ( ) and

, Inserting these simplifications for example in (5.37) we get:

 (5.88)

which we recognize as the LST of the following matrix expression:

. (5.89)

(The result for  is completely similar we just change the -upper to the -lower matri-
ces.)

By the relations (5.61) and (5.63) we have:
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 and  for  and

 and  for . Inserting in (5.57) and

(5.58) we get:

 and (5.90)

(5.91)

where we have redefined the -matrices in the brackets by:

 for  and  for , and (5.92)

 is a row-vector with elements ,  and  as a row-vector with

elements , .

The similarity between the time distributions and the volume distributions are striking.
We shall, however, notice that the latter will give quite another type of generating
equation if one applies the method of generating functions to find the inverse of the

matrix  compared with .

For Markov processes the spectral decomposition of the distributions greatly simpli-
fies. We choose the excess time . (The decomposition for the other variable will be sim-

ilar.) Suppose that all the eigenvalues of  are distinct. By this assumption we may

write  as:  where  are the eigenvalues of  and the matri-

ces  and  constitute the left and right eigenvectors:  where the row-

vectors  are the solution of the linear equations , and 

where the column-vectors  are the solution of . We also assume that
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the eigenvectors are normalised, that is . With these rather technical details
we may express the brackets in the Laplace transform (5.88) as:

 which (5.93)

shows that the poles of the distribution are located at . By evaluating the correspond-
ing residues we obtain:

 where  is the residue: (5.94)

 (5.95)

and  by the result in Appendix C.

For Markov processes it is possible to find the moments in terms of the -matrices by
expanding the Laplace transforms. We obtain

(5.96)

For the excess volume the corresponding moments are:

 where (5.97)

(The results for  and  are on the same form as (5.96) and (5.97), we just sub-

stitute the  with .)

For birth-death processes the moments may be calculated recursively. This can be shown by

defining the row-vector , which implies  or

 for . From the last equation we may solve explicitly for

 in terms of , we find:

 for , (5.98)
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Then by starting with  for  and evaluating  recursively by
(5.98), the n-th moment of the excess time distribution is given by:

(5.99)

The corresponding result for the n-th moment of the excess volume is obtained by substitut-

ing for  and  in the evaluation above giving:

 where  is given recursively by: (5.100)

 for , , (5.101)

starting with  for 

The results for  and  are similar and we find:

 where  is given recursively by (5.102)

 for ,  (5.103)

starting with  for , and 

 where  is given recursively by (5.104)

 for ,  (5.105)

starting with  for .

5.5 Some numerical examples

As an example we shall consider bufferless multiplexing of a given number of  identical
ON/OFF sources on a communication link of capacity . The source model is as follows: 
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- the ON/OFF periods are mutually independent and exponentially distributed with 

mean on- and off-time given  and  respectively and 

- in ON state the source emits data at rate 

It is well known that superposing a fixed number of this type of sources constitutes a birth-
death process with rates:

 and (5.106)

The limiting state (for which information losses will occur) is . We shall apply

the framework described in Appendix D for general birth-death processes to find the CDFs
for both the excess times and corresponding volumes. All the results are described in terms
of the eigenvalues for symmetric tridiagonal matrices through the formulae (D.38)-(D.41).
The eigenvalues are computed by applying the method of bisection which turns out to be
very effective, and makes it feasible to study system of quite large dimension.

In the first examples given in figures 5.2-5.6 we have chosen  which give
the average rate from each source to 0.5.

In figure 5.2 we have tested the numbers of terms that are needed in the eigenvalue expan-
sion of the different CDFs. For systems with relative small number of sources we see that
the number of terms needed is small. Actually it seems to be sufficient with only the first
term in the expansion both for the time variable and for the volume. However, for larger
systems the number of terms to get an accurate approximation becomes quite large and for
the case with 800 sources it seems that one needs at least more than 100 terms to get accu-
rate approximations. Thus, it seems that the pure exponential approximation with only the
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Figure 5.2:    CDF of excess times and excess volumes with different numbers of 
terms in the expansion.
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first term (in the expansion) fails to give accurate approximations in the interested range of
the parameters.

In figure 5.3 and figure 5.4 we test how the CDF of the excess time depends on the differ-
ent parameters in the model. As the capacity increases while keeping the numbers of sourc-
es constant we observe the changes in the different curves. The change when going from

 (left) to  is not very pronounced but clearly visible. Another observa-
tion is that the CDFs for the excess volumes seem to be more curved then the correspond-
ing excess times which actually means the excess volumes are “less exponential” then the
corresponding time distributions. 

In figure 5.5 and figure 5.6 we demonstrate the convergence of the CDFs by keeping the
load constant and increasing the number of sources in both cases the convergence is reached
at approximately 400 sources.

Figure 5.3:    CDF of excess times for some different choice of the parameters as 
function of time.
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Figure 5.4:    CDF of excess volumes for some different choice of the parameters as 
function of volume.
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As a final example we consider sources with parameters as in [Dupu97] where the peak bit

rate =2 Mbps and =1 ms and =4.5 ms giving a mean bit rate of 364 Kbps. This
source could for instance be a typical ADSL user having access rate of 2 Mbps. The ques-
tion in mind will then be to try to find out how many sources of this type that can be multi-
plexed on a high capacity link, and find the typical values of the performance measures de-
scribed in this section. In the example we have chosen a link with capacity 600 Mbps, and
the typical values for number of sources will then be 1200. (We have also included a sec-
ond example where the link capacity is taken as large as 2.4 Gbps.) In figures 5.7-5.9 we
have depicted the excess time CDFs for this example. In the first two graphs we vary both
the number of sources and the capacity to see the effect on the different CDFs. 

Figure 5.5:    CDF of excess times for some different choice of the parameters as 
function of time.

10-10

10-8

10-6

10-4

10-2

1

0 20 40 60 80 100
P

(T
k
>

t/
N

)

time t

N=12,25,50,100
200,400,800,1600
from below

b=1, λ=1, µ=1

C=0.80N

10-10

10-8

10-6

10-4

10-2

1

0 20 40 60 80 100

P
(T

k
>

t/
N

)

time t

N=12,25,50,100
200,400,800,1600
from below

b=1, λ=1, µ=1

C=0.70N

Figure 5.6:    CDF of excess volumes for some different choice of the parameters as 
function of volume.
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Figure 5.7:    CDF of excess times for some different choice of the parameters as 
function of time.
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Figure 5.8:    CDF of “normal loaded” periods for some different choice of the pa-
rameters as function of time.
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Figure 5.9:    CDF of excess times for some different choice of the parameters as
function of time.
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Figure 5.10:    CDF of excess volumes for some different choice of the parameters 
as function of volume.
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Figure 5.11:    CDF of “normal loaded” volumes for some different choice of the 
parameters as function of volume.
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Figure 5.12:    CDF of excess volumes for some different choice of the parameters
as function of volume.
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In figure 5.8 we have also given the CDFs for the “normal loaded” periods and we observe
that these curves are extremely flat.

In figures 5.10-5.12 we have also depicted the CDF of the excess volume for this example.
In the first two graphs we vary both the number of source and the capacity and we see that
the curves for the volumes are curved and diverge more from a straight line than the corre-
sponding curves for the time distributions. Thus the volume is more likely to have “long
tails” than the corresponding excess time.

If we, as an example, look at the 10-4 quantile for the excess time, we find that with 1400
sources the corresponding time is approximately 0.75 ms, which is not a very long time.
For the excess volume the picture is somewhat different. If we consider the 10-2 quantile,
we find that with 1400 sources the excess volume is approximately 2.5 Mbit which is a
quite large loss (even on a 600 Mbps link) and represents a typical loss of approximately 2
Kbit per source if the total loss is equally spread.

We shall close this chapter by consider the Ornstein-Uhlenbeck process as an approxima-
tion for the given example above. We have the following parameters (mean bit rate and
standard deviation):

 and  (5.107)

and the autocorrelation:

(5.108)

With the appropriate scalings (see [Knes91]) we have the following asymptotics based on
the first passage times and corresponding volumes for the O-U process:

 and  (5.109)

where  and  are the CDFs of the first passage times and the corre-

sponding volumes for the O-U process with (scaled) capacity (found in section 4.4):
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is the corresponding dimensionless variable for the O-U process. As pointed out in
[Knes91] the asymptotic formula yields when the scaled capacity  remains constant as
the number of sources  increases that is:

 as (5.112)

In a couple of numerical examples (figure 5.13) we have tested the O-U approximation de-
scribed above for the CDF of the excess volume based on the ON/OFF source model. In the
right figure we have taken an example with a rather small number of sources ( ).
For so few sources the O-U approximation underestimates the CDF of the excess volume.
In the right figure we have depicted the corresponding cases by increasing both the number
of sources and the capacity by a decade. In this case the O-U approximation improves espe-
cially for the high load case (  and  Mbps), but also for those cases the
O-U model underestimates the CDF of the excess volume.

For birth-death models the method of bisection provides a very effective way of calculating
the eigenvalues also for systems of large dimensions. The corresponding PDFs (and CDFs)
of the excess times and volumes are calculated by (D.38) and (D.40) and it turns out to be
far more effective in terms of computer time than the rather slowly converging series of the
PDFs and (the CDFs) of the first passage times and the corresponding volumes for the O-U
process (given by (4.81) and (4.82), and (4.120) and (4.121)).
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Figure 5.13:    CDF of excess volumes based on the ON/OFF model and the 
corresponding O-U approximation for some different choice of the parameters 

as function of volume (scaled by peak bit rate).
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PART-II
5Models for calculating end-to-end delay and 

delay-jitter in packet networks
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6
6Introduction

It is reason to believe that real time services will be a significant part of the traffic offered
in future multi service networks. Real time services require a quite regular bit stream deliv-
ered at the receiver's site to maintain the necessary quality for the various applications. It is
well known that networks based on statistical multiplexing (like IP-networks) will intro-
duce certain disturbance (jitter) in the bit stream mainly due to queuing in routers (or
switches). These disturbances will add on along the path from the sender to the receiver, ex-
plaining the necessity of some kind of de-jitter buffer at the receiver site to compensate for
these variations. The end-to-end delay is therefore an important parameter not only for di-
mensioning the de-jitter buffers, but also for providing some upper bounds of the total net-
work delay for particular services and it is among the most important QoS (Quality of Serv-
ice) parameter in networks deploying statistical multiplexing.

The Internet has traditionally offered a service that is commonly characterised as a best-ef-
fort service. The network tries to deliver the IP packets at their destination but no guaran-
tees are given. Many applications (e.g. email) happily run using this traditional best-effort
service model. Some areas of the Internet may be heavily congested and, consequently, a
considerable fraction of packets is discarded by the network. Usually, additional higher lay-
er protocols (e.g. TCP for error detection, retransmission and flow control) compensate for
the lost packets. At the application level this is then noticed as a reduced throughput, which
is unacceptable for many type of real time services without destroying the quality.

By introducing high capacity Internet, with differentiated QoS, it will be possible to offer
services with highly variable characteristics in one common network and thereby reducing
the cost compared with operating a number of more or less specialized networks for each
type of services. The success of such a scenario will strongly depend on the ability to per-
form the necessary differentiation among services.

To provide IP transport with QoS guarantees for throughput critical and delay critical appli-
cations, the IP community has realised that in IP routers packets of delay critical flows need
to be forwarded differently from other packets, e.g. by applying some kind of priority
mechanisms. The specific details on how to realise the necessary difference in packet for-
warding, for example on how to recognise flow classes, has led to different service models:
the Integrated Services (IntServ) approach and the Differentiated Services (DiffServ) ap-
proach. The most relevant transport service descriptions for delay critical applications are
the IntServ inspired Guaranteed Service [RFC1633], the DiffServ inspired Expedited For-
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warding behaviour [RFC2475] and the more generic Dedicated Bandwidth IP transfer capa-
bility [ITU02b]. Though differing in approach and in detail, a common factor in all these
descriptions is that some kind of differentiation (in the packet handling) is introduced. 

6.1 Addressing the QoS 
The end-to-end QoS is realised through the contributions from the different domains and the
QoS guarantees end-to-end will be realised through different SLAs between the customer
and the access network and/or between different core network domains. For each domain it
will be important to estimate the contribution to the QoS parameters since each administra-
tive domain will be responsible for their own contribution through the SLA. The most im-
portant parameters will typically be delay, jitter and information losses due to buffer over-
flow. It will be important for a network operator to be able to estimate the QoS parameters
in his own domain to set the appropriate parameters in the SLAs. In addition it will be of
vital importance to implement the necessary control structures that make it possible to
maintain the guarantees especially in his own domain and thereby preventing degradation in
QoS which is often seen in best effort networks of today.

To realise many type of services the traffic flow will have to cross one or more administra-
tive domains with their own SLAs. Such domains could for instance typically be

- access networks with rather low capacity based on different wireless or DSL technol-
ogies 

- core networks with high capacity links but with large numbers of routers

The access network will encompass a variety of different access technologies that are cur-
rently available. These can be divided according to 

- fixed access, or 
- mobile access.

With the recent advances in access technology the fixed access may be a mixture of one or
more different types as Asymmetric Digital Subscriber Line (ADSL), Very high speed Dig-
ital Subscriber Line (VDSL), Coax and optical fibre, all having very different physical char-
acteristics. The logical structure of the access network may therefore be very different. Tra-
ditionally there has been quite a strict distinction between the access network and the core
(transit) network, where the access is defined to be the part of the network from the sub-
scribers to the local exchange. By increasing the line speed by introducing different active
components these definitions of where the access network ends and where the core (transit)
network starts are not direct valuable any more. In IP networks the definition seems to be
more flexible on the basis of more functional distinctions. Usually one will define the core
network as the part of the network where DiffServ and/or MPLS are deployed. By the in-
crease of the line speeds it is however an interesting question to find out how 'far ' out in
the 'old access network' the DiffServ model (and possible MPLS) is effective.



- 109 -

6.2 Performance issues

6.2.1 IP-multiplexing for low capacity links
When traffic of different types is multiplexed on the IP level this may cause delay and jit-
ter problems if these traffic types share a link with rather low capacity. The main cause for
this delay and jitter is the variation in the packet lengths for the different traffic types.
While typical real time traffic like voice will emit packets of a small fixed size, the typical
data application may generate packets that are quite long. Due to this mismatch in packet
size between different applications the queueing delay for typical real time traffic may in-
crease over the limit resulting in a degradation of the quality. This negative multiplexing ef-
fect will add for each router along the path from the sender to the receiver. However, for
high capacity links this queueing delay will be more or less negligible, leaving the main de-
lay contribution to low capacity links in the access network.

One could hope that deploying the DiffServ model with traffic classification and PHB prior-
ity scheduling would overcome this problem. This is however not the case unless there is
some kind of fragmentation of the long IP packets on lower layers. This means that al-
though most of the DiffServ implementations (in routers) have implemented priority among
different traffic classes these priority mechanisms are all non-preemptive. With this type of
priority mechanism a high priority packet cannot interrupt an ongoing transmission of a
packet of lower priority. This means that the packet length distribution of the lower priority
traffic classes will have an impact on the delay for the high priority traffic.

The only way to get around the multiplexing problem for low capacity links is to have
some kind of fragmentation of the long IP packet, making it possible to interleave small
real time IP packets. By this option the maximum waiting time due to lower priority traffic
classes will just be the transmission time for a single fragment. This fragmentation will be
possible if IP is transported over ATM, and in this case the maximum disturbance of the
high priority traffic due to lower priority is limited to one ATM cell.

6.2.2 Addressing the end-to-end queueing delay 
In PART-II of the thesis we focus on the delay and delay variation experienced in an IP do-
main for which some form of delay (variation) commitment is intended. The commitments
may vary in strictness, ranging from a strict guarantee to a more loosely defined objective.
In any case, it is relevant to have some kind of estimates, in particular before the design and
rollout of new services, of the expected delay and delay variation. 

The least known factor in the end-to-end delay of an IP packet is the delay contribution due
to queuing in the network elements. This contribution is also important because, in most
cases, the delay variation introduced by the network is to be removed by the receiving ap-
plication (de-jittering), thus introducing additional de-jitter delay which is necessarily at
least as large as the maximum (or suitable quantile) of the delay variation. Other factors,
such as the contribution of the propagation delay and the variation in router's routing look-
up latency are expected to either be much easier to assess or to be negligible in comparison
to the queueing delay due to statistical multiplexing in the routers. 
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We therefore address some methods to calculate, the queuing delay in a network where sev-
eral interactive IP flows are mixed with best-effort IP flows and where the interactive pack-
ets may have strict priority over best effort traffic. The objective is to provide both a suita-
ble model and suitable assessment techniques (e.g. calculation methods) to arrive at a suita-
ble estimate of the queuing delay in a given situation. With 'suitable' we mean a model
which is sufficiently close to the real world to have a practical meaning and, at the same
time, is sufficiently easy to allow the calculations to be carried out. The results are targeted
on network providers to allow them to assess the expected behaviour and the delay commit-
ments in their own network as well as on standardisation bodies to assess the expected be-
haviour over various different networks of loosely co-operating providers (e.g. network per-
formance objectives). 

6.3 Reference configuration
The reference configuration for the modelling of the queuing behaviour consists in an up-
stream access network part, a multi-hop core network and a downstream access network
part as illustrated in figure 6.1

.

The access network part is designated separately from the core network part because the pa-
rameters in these network parts (e.g. link rate, number of flows) may differ considerably. In
addition, it is expected that the users at the source and destination have much more control
over the traffic aggregate on 'their' access part (e.g. in case of a dedicated ADSL link) than
over the traffic aggregate in the core network. 

The reference configuration for the router in each network hop consists in an high priority
queue for the interactive flows and a low priority queue for the best-effort flows as shown
in figure 6.2. Each of these queues is served as FCFS (First Come First Serve) and the high
priority queue is served with non-preemptive priority over the best-effort queue. In this part
of the thesis we focus on the high priority traffic and neglecting the influence from the low
priority (best-effort) queue. 

Figure 6.1:    Overview of the reference configuration: upstream access network part, 
core network part (multi-hop) and downstream access part between the source and desti-

nation application.
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The relevant modelling parameters for each router hop are the following.
- The capacity of the outgoing links available for the transport of IP packets (e.g. 

149.76 Mbit/s on an 155 Mbit/s STM-1 link but where we may also include one or 
more relative low capacity access link with capacity typical that of an ADSL mo-
dem.

- The size (in byte) of the high priority best-effort IP packets. To keep the number of 
parameters at a manageable level, all best-effort IP packets are assumed to have the 
same size; for practical results a value of 1500 byte is used.

- The size of the low priority interactive IP packets (in byte or as a fraction of the 
best-effort size) and the load (as a percentage of the outgoing link rate) of the inter-
active flows. To keep the number of parameters at a manageable level, all interac-
tive IP packets are assumed to have the same size. For voice applications a size be-
tween 150 byte and 300 byte (i.e. 1/10th and 1/5th a 1500 byte best-effort packet) is 
expected to be common. The arrival process of the interactive IP packets is assumed 
to be Poisson. 

6.4 The organisation of PART-II of the thesis
PART-II of the thesis consists of three more or less self-contained chapters. The “red
thread” through these chapters is the modelling of end-to-end queueing delay for networks
deploying statistical multiplexing. 

In chapter 7 we have consider some models to calculate the end-to-end delay distributions
for packet networks based on the assumption that the end-to-end delay may be found by
convolutions, where the key assumption is that the parts of the end-to-end delay stemming
from the different nodes are independent stochastic variables. As the model for each node
we take the ordinary M/G/1 queue. If in addition the nodes are identical, i.e. the convolu-
tion consists of the waiting times of a fixed numbers of identically M/G/1 queues, the eval-
uation may be substantially simplified. In this case we show that the convolutions may be
found by taking some partial derivatives with respect to the load parameter. This result is
shown to yield for the Laplace-transforms and will therefore also yields for the correspond-

Figure 6.2:    The router output buffer for the reference configuration.
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ing distribution functions and the corresponding densities. The applied technique may be
generalised in various directions for instance it is possible to extend the result to the case
with two groups of queues where the queues in each group are identical.

For the M/D/1 model we give explicit closed form results for the convolutions of a given
number queues having identical waiting times distributions. We also generalize this result to
consider two groups of M/D/1 queues having different (but constant) service times, and this
is a particular interesting case since it may be used as model for end-to-end delay also in-
cluding access links with low capacity. Some approximations are also given based on large
deviation techniques. Part of the results will be presented at ITC-18 [Øste03c] and an ex-
tended version of the paper is found in [Øste03b].

In chapter 8 we have extended the results found in chapter 7 to also include queueing mod-
els with priority. This is an important extension since new service models of IP flows have
been introduced (DiffServ) where different treatment of flows in routers is assumed to pro-
vide QoS guarantees for the different QoS classes. As a model for the delay in such nodes
we take the M/G/1 non-preemptive priority model as the basis, where we primarily are in-
terested in the delay for the high priority class. By using the method described in chapter 7
we find a method to express the convolution in terms of the convolutions of waiting times
for the M/G/1 queue (without any priority). For the case with deterministic service times,
(M/D/1 model), we find explicit formula for the desired convolution. Numerical examples
show that end-to-end delays for rather large chains of nodes may be analysed without nu-
merical difficulties. Most of the material in this section is found in [Øste03a].

In chapter 9 we describe a different approach to obtain the end-to-end queueing delay in
packet networks. The main idea is to try to capture the disturbance of a packet stream as it
passes through a series of multiplexers. Even though the output process from a multiplexer
surely is non-renewal, we get the distribution between two consecutive departures, and ap-
proximate the process with a renewal stream. This stream is then fed into the next multi-
plexer (together with other crossing traffic). In this way we obtain recursive relations for the
jitter and the end-to-end delay. In the analyse we use a slotted model rather than a time
continuous one. The reason is that the slotted model is easier to analyse and we use generat-
ing function techniques and apply the theory of complex analysis rather than Laplace trans-
forms for the continuous time counterpart. Numerical examples show good accordance with
the convolution approach of chapter 7. The material in this chapter is yet unpublished.



7
7Convolution of a given number of waiting

times of M/G/1queues having identical service
time distributions

7.1 Some preliminary considerations
In the following we consider a model to calculate the end-to-end delays in a large scale IP-
network. The aim is to calculate the distribution of the end-to-end delay for a particular
path consisting of a series of routers. We assume that all the nodes in the end-to-end path
are statistically independent; this is a key assumption to obtain the end-to-end delay by con-
volution. The condition under which this independence assumption applies is not consid-
ered in this chapter. We shall therefore take the M/G/1 queue as the model to obtain the
waiting time distribution in each node and then apply the convolution to obtain the end-to-
end waiting time distribution. 

We consider a path consisting of a given number of nodes (say ). Each of the nodes is
taken to be a M/G/1 queue with load , and where we assume that each queue has serv-
ice times that are identically distributed given by a PDF (Probability Density Function)

, and LST (Laplace-Stieltjes Transform) denoted by ; . 

Further we let denote the waiting time in queue , and we denote the corresponding

PDF (Probability Density Function)  and the corresponding DF (Distribution Func-

tion) . (Where we have indicated that the waiting time will also depend upon the

parameter  and of course on the service time distribution.)

The LST of the waiting time for one particular queue is given by the well-known Pollaczek-
Khinchin (P-K) formula (see for instance Kleinrock [Klei76a]): 

(7.1)

where  is the LST of the remaining service time and is given by
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(7.2)

where   is the mean service time; .

We are interested in the sum of waiting times in a series of queues and we denote the
sum . If all the waiting times may be taken to be independent the PDF
of the sum yields the convolution of the waiting times in each queue. The LST of the con-
volution (of waiting times for all the  queues) yields the product:

(7.3)

Generally it is possible to obtain the end-to-end distributions above by inverting the trans-
form (7.3) numerically. Such methods are described in the literature. For instance the DF of
the end-to-end queueing times may be written by the inversion integral as:

(7.4)

where the integration line parallel with the imaginary axis  and where

is a constant and . Abate & Whitt have given a method to calculate the in-
version integral based on Poisson’s summation formula. The result yields an alternating se-
ries that may be difficult to use to determine the tail of the distribution and thereby obtain
the desired quantiles (see [Abat92]). 

7.2 Convolution of waiting times in M/G/1 queues all having identically 
distributed service times 

In the following we assume that all the nodes have identically distributed service times, that
is, we assume  also implying ; . In this case it is possible
to obtain substantial simplification of the convolution (7.3) (and also on the inversion inte-
gral (7.4)). If the loads of the different M/G/1 queues all are distinct, that is  for all

, then the LST of the convolution can be written as a weighted sum of the indi-
vidual LST for each queue as follows:

 where (7.5)

the coefficients  only depend on the loads in the different queues and are given by:

(7.6)
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The result (7.5) and (7.6) enables obtaining corresponding convolution of the waiting times
by inverting the LST above. We may express this result as follows: Let

(7.7)

be the convolution of waiting times, then we have: 

(7.8)

where is the PDF for the waiting time for the th queue. Similar for the DF of the
convolution we have the corresponding result

(7.9)

where is the DF for the th queue. All the results above follow from the identity

(7.10)

and we can find  by multiplying the identity by  and we find the following ex-

pression for :

. By taking the limit  we obtain

(7.6).

Often we are interested in the case where the loads on the different queues are equal. This
result is possible to obtain relatively easily from (7.5) and (7.6) by letting  for

all . It is possible to rewrite  as follows:

(7.11)

By taking the limits  for all  we obtain

(7.12)

and further in the time domain the corresponding results also yield:
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and (7.13)

(7.14)

In fact it is also easy to show (7.11) directly. Inserting for we have

We can now state the more general result where we consider the case where only some of
the queues may be equally loaded. In this case we have LST of the convolution on the fol-
lowing (general) form:

(7.15)

where we have  groups of queues of size  equally loaded and with distinct loads be-

tween the groups, that is  for all  and .

Then the LST given by (7.15) may be written: 

(7.16)

where the coefficients  only depend on the loads in the different queues and are given by:

(7.17)
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for  and . The PDF and DF of the convolution may be obtained by in-

verting (7.16):

(7.18)

(7.19)

where and  are given by (7.12) and (7.13) respectively. It is sufficient to

prove equation (7.16) since (7.18) and (7.19) follow directly by applying (7.12) and (7.13).
By partial expansion of the fraction (7.15) (by taking  as the free variable) it is possi-
ble to obtain the expansion (7.16). One way to obtain the coefficients is given as follows.
We pick a particular group, say the ’th one, and we get from (7.15) and (7.16):

where we have set  and . Considered as a

function of  we have that  is analytical at . By differentiating the relation

above  times and setting  we get:

 which can be written as (7.17) by

the translation .

As a side result we obtain for the interesting case with only two groups of queues, 
(with equal load in each group), that the coefficients in equation (7.17) may be found ex-
plicitly since the differentiation may be carried out. We get the following expansions:

 and (7.20)

(7.21)

where and  are given by (7.13) and (7.14) and
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 for (7.22)

and

 for (7.23)

As a comment to the results derived above we have shown that it is quite easy to obtain a
convolution of waiting times in a series of M/G/1 queues if the service times are identical-
ly distributed in all the queues. The main result follows by taking partial fractions expan-
sion of the LST of the convolution given by the product of the LSTs of the waiting time for
each queue, and thereby making it possible to write the LST of the convolution as a weight-
ed sum of the LST of the individual queues. Since the result is obtained for the LST of the
convolution, the same result will also apply for the DF and PDF. If all the queues in addi-
tion have equal load the result is obtained simply by taking partial derivatives with respect
to the load as given by (7.11) (and (7.12) and (7.13)).

7.3 Convolution of waiting times in M/G/1 queues having different serv-
ice times 

In the general case the results derived so far require that all the service times are identical-
ly distributed. This will impose a rather strong restriction on the scenarios where the previ-
ous results are applicative. For instance, a path that also includes rather slow access links
could not be modelled well with these results. An alternative could be to find the delay dis-
tributions for each part; the access and core, and then perform numerical convolution to find
the total end-to-end delay. It is however possible to extend some of the results to cover con-
volutions between equally loaded groups (with different service time distributions in each
group) if it is possible to find the convolution obtained by taking one single waiting time in
each group. For simplicity we consider the case with two groups (and use the same nota-
tion as above) and we let

(7.24)

be the convolution of PDFs of two waiting times distributions for M/G/1 queues, one from
each group, and let  denote the corresponding DF. Then we may get the PDF

and DF of the convolution of  waiting times from group  and  waiting times from
group  as:

 and (7.25)

(7.26)
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(7.25) and (7.26) follow directly from (7.12) and (7.13) and the fact that  is the
convolution (7.24). To apply the last result one needs first to find the convolution

 which may be difficult to find unless for specific models. Below we shall show
that for M/D/1 queues this convolution is possible to obtain in closed forms, and whence it
is possible to apply the result above to find the convolution where the service times are dif-
ferent. 

7.3.1 Convolution of the waiting time distribution for a given number of M/D/1 
queues all with equal service times

In the following we shall apply the results on specific models. Of main interested is the
case with constant service times since this often will be the case for many applications.

Without losing generality we scale the service time to unity. Then it is well known that the
DF for the waiting time of the M/D/1 queue is given by [Robe92](page 391):

(7.27)

Below we shall apply (7.13) to find explicit expression for the convolution of the waiting
time distributions for given numbers of equally loaded M/D/1 queues.

If all of the queues are equally loaded with equal service times we get the following expres-
sion for the convolution the DF of a series of  waiting times of identical M/D/1 queues:

(7.28)

It is quite easy to show (7.28) by applying (7.13). We have:

(7.29)

Differentiation gives 

. Inserting this result in (7.29) we get the ex-

pression (7.28).

It is also possible to find corresponding formula for the PDF of the convolution. We find
for one single M/D/1 queue
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(7.30)

where is given by (7.27) and is the unit step function. We find that the PDF of
the convolution of  waiting times from identical M/D/1 queues may be written as the dif-
ference:

 where (7.31)

(7.32)

We obtain (7.31) and (7.32) by applying (7.13) on (7.30) and we find
 where

(7.33)

Differentiation gives

. Inserting this result in (7.33) we obtain

expression (7.32).

As for  given by formula (7.27) (for the single M/D/1 queue) the formulae for

 and  given by (7.28) and (7.32) are not effective to calculate the DF and

the PDF of the convolution for large values of . In Appendix F we give an alternative
way of writing these formulae that provides stable numerical calculations of the convolu-
tions for quite large values of , and up to 20 queues. It is therefore possible to study end-
to-end delay in rather large networks by the convolution approach. 

7.3.2 Convolution of waiting times in M/D/1 queues having different service 
times 

For the M/D/1 model it is possible to find the convolution of two DF of waiting times with
different service times. Then by (7.25) and (7.26) more general convolutions may be ob-
tained by plain differentiations with respect to the different loads in the different groups. In
the following we consider two M/D/1 queues with load  and service time , , and

we denote  the DF of the waiting time, . Then the DF of the

convolution is given by the following sums: 
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(7.34)

where  and  and ;  where we have defined  and

;  and where we have . (By writing (7.34)) it is understood that 

for .) To show (7.34) we let

, then the

DF of the desired convolution is the time derivative of :

. (7.35)

By introducing some different scaling we may write  as:

where (7.36)

(7.37)

We have . Inserting in (7.37)

and interchange summation and integration give:

 where  is given in the Appendix

F by equation (F.18). Inserting in the expression above we find:
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In the last sum we change the summation by letting  so that

 and we find that the last sum may be rewritten as:

. Inserting in the expression

above we get:

By (7.36) we get  as:

where  and  and ; where we have defined  and

; and where we also have .

Then by direct differentiation of  and using (7.30) we get the desired convolution (7.34).

We now move to the interesting case with two groups of queues with different service times
in each group. Specifically we consider two groups of M/D/1 queues of size , each with

load  and service time , , and we denote  the DF of the

waiting time in each queue, . Then the DF of the convolution is given by the follow-
ing sums:

(7.38)
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(7.39)

and where we define  and ; with  and ; (and where we also have

).

To show (7.38) we use (7.26) on equation (7.34) and by using equation (F.23) in Appendix
F, we get the following expression for :

(7.40)

 where

we have

 and (7.41)

(7.42)

where we define

, (7.43)

and where we as above have taken  and ; with  and ; and where

we have . In Appendix F the actual form of  is found (see equation

(F.37)) and then by inserting for  and  we find  as given by (7.39).

With the result above we have a tool to analyse end-to-end delay for realistic scenarios in
large-scale IP networks, also allowing to include the access part of the network. A typical
(realistic) scenario would be to include two (or more) low capacity queues (links) together
with a number of rather high capacity queues (links) representing the core. This will pro-
vide a realistic estimate of this important QoS parameter for large networks. The basic
building blocks in the end-to-end delay distribution is given in terms of convolutions

, which are easily obtained by equation (7.28).
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7.3.3 Asymptotic approximations 
Below we shall consider the general case of convolution of M/G/1 queues where we consid-
er the convolution of a chain consisting of  groups of queues of size , where all the

queues in each group are identical, but allowing for having different service time distribu-
tions between the groups, ( ). In this case the convolution will have the following
LST: 

(7.44)

where we have a total of  groups of queues of size  and where and  are the

load and the LST of the remaining service time in group ( ). As before we let
 be the total number of queues in the chain.

To this end some different types of approximations exist for sums of independent random
variables in general. The first one is the normal approximation quoting that a sum of identi-
cally independent random variables approaches a normal distribution when the number of
variables increases. Since the normal distribution is characterized by its two first (lowest)
moments, this leads to the following approximation for the PDF and DF of the convolution:

 and (7.45)

 where (7.46)

and are the mean and the variance of the total end-to-end queueing delay for the chain
given by

 and (7.47)

where  and  is the mean and variance of the queueing delay
in the corresponding single server M/G/1 queue given in terms of the three first moments of
the service time distribution (and also the load) through:

 and (7.48)
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further  is the standard normal density and  is the

standard normal integral.

The second and quite different approximation (though also involving normal distributions)
is based on LD (Large Deviation) theory. This can for instance be reflected through the in-
version integral of the LST given by

(7.49)

Formally this approximation is obtained by considering the asymptotic behaviour of 
for large values of  while  is fixed. We also assume that  and  are bound-

ed away from zero as  increases. With these substitutions the inversion integral with ar-
gument  may be written 

 where (7.50)

(7.51)

Approximations of the contour integral above may be found by the method of Steepest De-
scent (or the Saddle Point method). (See for instance [Won89] for a thorough description of
the method.) This is done by choosing the contour so that it passes through real axis where
the maximum value for is attained, which may be found by setting the derivative

with respect to  equal zero. The corresponding value of , called the saddle point,
is then the solution of the equation:

(7.52)

The corresponding approximation is found by expanding the exponent (7.51) to second or-
der in  (remembering that first order contribution vanishing due to equation (7.52)), and
then factorising out the constant part, and transforming the contour integral to an exponen-
tial integral by neglecting higher order terms. One gets:
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The corresponding approximation yields  where 

(7.53)

where we find by differentiating (7.51): 

(7.54)

The corresponding expression for the DF as an inversion integral is:

(7.55)

If we apply the Saddle Point method directly on (7.55) we must make a distinction be-
tween two cases depending on the sign of the saddle point . It turns out that  is

positive for small values of  but becomes negative as  increases. In the latter case we
have to pick up the residue at  and we get the following approximation by combining
the two cases:

 where 

(7.56)

where  is the unit step function.

It turns out that the “ordinary” Saddle Point method given by (7.56) fails to approximate the
integral (7.55) when the root is close to the pole at . It is, however, possible to
extract that pole and obtain a Uniform Asymptotic Approximation (UAA) that is uniform
with respect to  and also yields in the area where is close to zero. The actual meth-
od is described in the book by Wong [Won89]. We find the following approximation:
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(7.57)

It is quite easy to see that the function defined by  does not have any singularities for
values of  giving saddle point close to zero. By expanding the brackets to third order in

we find:

 when is close zero

and where .

The main complexity in applying the Saddle Point methods described above is to locate the
saddle points , for which we have to solve equation (7.52) for each value of  and
this could limit the value of this type of approximations due to the computation time re-
quired to solve the equation numerically. When it comes to the accuracy it seems that the
UAA will give results very close to the exact convolutions for a very broad range of param-
eters also including cases where the asymptotic is not fulfilled, i.e. for chains of relatively
small sizes. The “classical” LD approximation, however, gives strict upper bound on the
convolution and can therefore be a desirable method to apply for this reason.

7.4 Some numerical examples
End-to-end delay is one of the most important QoS parameters for real time services like
voice and video. In an all IP-network the end-to-end delay for a particular stream will be
the sum of the delay obtained in a cascade of routers (from the sender to the receiver). The
total end-to-end delay will then consist of the waiting times in each node plus service times
(transmission times onto the links). In the examples below we shall consider a particular
chain of routers in a packet network and we assume that the routers have output buffers
with no extra internal delay due to processing of the packets. The network model is shown
in figure 7.1. 
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Figure 7.1:    The queueing model of a particular packet-stream traversing n-nodes. 
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We have made the following assumptions:
- The queueing discipline is FIFO for all the queues.
- The background traffic enters (and leaves) node  according to a Poisson process 

with rate .

- The streaming traffic enters node 1 according to a Poisson process with rate  and 

leaves node  .

- All packets (both background and streaming traffic) have constant (and equal) pack-
et lengths of  and all the links have capacity of .

The corresponding parameters used by the convolution approximation are the service times
per packets, which are constant and equal to , and the load on the different

nodes given by .

7.4.1 Cases with identical nodes that are equally loaded
Based on the simplicity of the way the convolutions are performed if all the nodes are iden-
tically makes it feasible to evaluate end-to-end convolutions for rather large numbers of
queues. The numerical algorithms derived for the cases with constant service times (M/D/1
model) make it possible to calculate the corresponding CDF (Complementary Distribution
Function) for quite large paths containing up to 20 queues in series and will therefore cov-
er paths that are of “real size” in networks of today. 

In figure 7.2-figure 7.4 we demonstrate how the PDF of the end-to-end queueing delay
“converges” when waiting time is scaled by the total service times (end-to-end). Typically
up to a series of 15 queues the distinction is pronounced but for larger number of queues
than that the difference between the curves seems to be small. Another important observa-
tion is that it seems that all the distributions have a common intersection point approximate-
ly around 0.1 and for that point on the distributions are bounded “from above” by the
curves for smaller chains. In practice this means that it is sufficient to calculate the distribu-
tions for chains up to say 15 queues and then use the scaled result (for 15 queues) as an ap-
proximation for larger chains.
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Figure 7.2:    Logarithmic plot of the CDF for end-to-end queueing delay for a se-
ries of equally loaded queues with load equal to 0.6 scaled by the total service 
times (end-to-end) for different size of the series n=1,2,3,4,5,7,10,15 and 20. 
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Figure 7.3:    Logarithmic plot of the CDF for end-to-end queueing delay for a se-
ries of equally loaded queues with load equal to 0.8 scaled by the total service 
times (end-to-end) for different size of the series n=1,2,3,4,5,7,10,15 and 20.
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Below we have made a comparison of the different approximations considered in section
7.3.3: NA (Normal Approximation), LD (Large Deviation) and UAA (Uniform Asymptotic
Approximation) with the convolution method. In figure 7.5-figure 7.7 we have plotted the
different approximations of the CDF (with the corresponding parameters as figure 7.2-fig-
ure 7.4). We find that the UAA gives an excellent approximation of the CDF that yields
uniformly for all values of the argument. If the size of the chain is greater than 5 we find
that the relative error is less than 0.25% and the difference is not visible in the graphs. Also
for the single queue case we find that the UAA gives quite accurate estimates especially in
the tail of the distribution. The maximum relative error in this case is 12% for a load of 0.6
and decreases to 2% for a load of 0.9. Although the UAA gives very accurate results it does
not bound the CDF obtained by convolution. 

For the LD approximation we observe:
- it always bounds the actual distribution
- it only applies in the tail of the distribution
- it is fairly good also for relatively small chains, typically from the size of 5.

On the contrary the Normal Approximation will typically have nearly opposite properties:
- it does not bound the actual distribution especially not in the tail
- it applies also near the origin
- from the chain size of 15 on it gives fairly good approximations except for the far 

tail (where this type of approximation fails).

Figure 7.4:    Logarithmic plot of the CDF for end-to-end queueing delay for a series 
of equally loaded queues with load equal to 0.9 scaled by the total service times (end-

to-end) for different size of the series n=1,2,3,4,5,7,10,15 and 20.
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Figure 7.5:    Logarithmic plot of different approximations of the CDF for end-to-
end queueing delay for a series of equally loaded queues with load equal to 0.6 

scaled by the total service times (end-to-end) for different sizes of the series n=1,5 
and 15. (NA-Normal Approximation, LD -Large Deviation, UAA -Uniform Asymp-

totic Approximation)
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Figure 7.6:    Logarithmic plot of different approximations of the CDF for end-to-
end queueing delay for a series of equally loaded queues with load equal to 0.8 

scaled by the total service times (end-to-end) for different sizes of the series n=1,5 
and 15. (NA-Normal Approximation, LD -Large Deviation, UAA -Uniform Asymp-

totic Approximation)
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In network engineering it is important to make some statement of the guarantee of the end-
to-end delay. This guarantee is often given in terms of probabilities, for instance that the de-
lay shall not exceed a particular target value by some small probability. So we would like to
find the  quantile for small values of . We therefore have to find the value

 that solves the equation

 where (7.58)

 is the DF of the convolution. In figure 7.8-figure 7.10 we have given a logarith-
mic plot of the quantiles as a function of the load for different values of size of the chains
ranging from 1- 20 queues, and for three guarantee levels 0.1, 0.01 and 0.01 respectively.
(In all the figures the quantiles are scaled in units of one queue service time.) As an exam-
ple suppose that the end-to-end QoS requirement says that only 1% of the packets shall
have an end-to-end delay longer than 50 packet transmission times. (For 2 Mbit/s links and
constant packet lengths of 200 bytes this corresponds to end-to-end delay of 40 ms.) Then
by figure 7.11 we find the following load limits (as a function of the size of the chains):

-  if the traffic traverses  nodes

-  if the traffic traverses  nodes 

-  if the traffic traverses  nodes and

-  if the traffic traverses  nodes

Figure 7.7:    Logarithmic plot of different approximations of the CDF for end-to-
end queueing delay for a series of equally loaded queues with load equal to 0.9 

scaled by the total service times (end-to-end) for different sizes of the series n=1,5 
and 15. (NA-Normal Approximation, LD -Large Deviation, UAA -Uniform Asymp-

totic Approximation) 
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This simple example shows that the load limits imposed on the routers in a network should
to some extent depend on the actual size of the network. A large network containing long
paths should operate at slightly lower load than a corresponding network with shorter paths. 

These load limits could also be found from equation (7.58) by solving for the load while
keeping the quantile fixed. In figure 7.11 we have plotted this load limit as a function of the
guarantee level  given in logarithmic scale for two chain sizes, 5 and 10, and for four
values of quantile of the end-to-end delay. (In this figure the quantiles are scaled by the to-
tal service time end-to-end.)

β

Figure 7.8:     Logarithmic plot of the 0.001 percentile of the end-to-end waiting time 
for chains of n=1,2,3,4,5,7,10,15 and 20 queues as a function of the load. The percen-

tile is scaled to one packet transmission time.
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Figure 7.9:     Logarithmic plot of the 0.01 percentile of the end-to-end waiting time 
for chains of n=1,2,3,4,5,7,10,15 and 20 queues as a function of the load. The percen-

tile is scaled to one packet transmission time.
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Figure 7.10:     Logarithmic plot of the 0.1 percentile of the end-to-end waiting time 
for chains of n=1,2,3,4,5,7,10,15 and 20 queues as a function of the load. The percen-

tile is scaled to one packet transmission time.
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Figure 7.11:     The maximal possible load for a chain of equally loaded queues as a 
function of the guarantee level (in logarithmic scale), where the corresponding percen-

tile for the end-to-end queueing delay, scaled by the total service times (end-to-end) 
equals 2,3,5 and 10, and the number of queues (in the chain) equals 5 and 10.
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7.4.2 Numerical examples including one or more low capacity access links
An end-to-end path in an IP-network will typically include one or more low capacity ac-
cess links that are well below the capacity deployed in the core networks. On the other hand
the core part of a path will typically consist of a rather large number of hops and the core
part could therefore contribute to the end-to-end delay by having a large number of hops.
Since the users observe their QoS on an end-to-end basis it is important to have models that
include both low capacity access parts as well as the high capacity core networks that may
have considerable diameter in terms of hops. In section 7.3 we have given the end-to-end
queueing delay for the convolution of two groups of M/D/1 queues where we may have dif-
ferent loads in each group, and more important, also allowing for having different capacity
(service times) in each groups.

As the final example we consider a typical example where we have a path consisting of an
upstream access part, a core network with multiple hops and eventually a downstream ac-
cess part. In the example below we have taken the following parameters:

- The access part consists of one ore two low capacity links (with the same capacity).
- The core part consists of five or ten links all with the same capacity. 
- The access link capacity is 1/10 of the corresponding core link capacity, giving for 

instance the access capacity of approximately 15 Mbit/s if the core links are STM-1 
link at approximately 150 Mbit/s. 

This example could for instance represent the case of a typical DSL (Digital Subscriber
Line) access line that is connected to a core network with minimum STM-1 links (or high-
er). The CDF of the end-to-end waiting times are plotted for some typical load levels in fig-
ure 7.12-figure 7.15 and some quantiles are given in table 7.1, all scaled by the packet
transmission time for the low capacity link. The main influence on the end-to-end perform-
ance for this particular example will come from the access part if the network elements are
more or less equally loaded. This is easily seen from the figures below. The difference be-
tween the case  (i.e. neglecting the influence from the core network) and  is
limited. In the example where we assume that the access is less loaded, as in figure 7.15,
the situation is different and the core will contribute to a significant part of the end-to-end
delay. 

In figure 7.16- figure 7.19 we have also given plots of some of the cases given in figure
7.12-figure 7.15 for the approximations described in section 7.3.3. For this example with
two groups of queues with only one or two queues in the first group we would not expect
that the asymptotic would be very accurate. This is indeed the case for the NA. For the LD
the curves are well above the corresponding obtained by the convolution approach. When it
comes to the UAA this approximation is surprisingly good for nearly all the cases consid-
ered. There is a small region close to point where the actual saddle point is close to zero,
where the UAA fails. These difficulties could however be ruled out by expanding the ex-
pression for assuming that the saddle point is close to zero. (See section 7.3.3 for closer ex-
planation.) The relative error is found to be less than 3% in the regions outside this region
for all the cases considered. Another observation is that the saddle points seem to be locat-

02 =n 102 =n
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ed at 0.5 quantile of the end-to-end queueing delay. By considering smaller quantiles we
will therefore be well away from the critical area giving saddle points close to zero.

Figure 7.12:     Logarithmic plot of the CDF for end-to-end queueing delay for a se-
ries of two groups of size n1=0,1,2 and n2=0,5,10 that are equally loaded. The capaci-
ty in the first group is 1/10 of that in the second group. The load in both groups is 0.6 
and the time unit is scaled to one packet transmission time for the low capacity group. 
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Figure 7.13:     Logarithmic plot of the CDF for end-to-end queueing delay for a se-
ries of two groups of size n1=0,1,2 and n2=0,5,10 that are equally loaded. The capaci-
ty in the first group is 1/10 of that in the second group. The load in both groups is 0.7 
and the time unit is scaled to one packet transmission time for the low capacity group. 
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Figure 7.14:     Logarithmic plot of the CDF for end-to-end queueing delay for a se-
ries of two groups of size n1=0,1,2 and n2=0,5,10 that are equally loaded. The capaci-
ty in the first group is 1/10 of that in the second group. The load in both groups is 0.8 
and the time unit is scaled to one packet transmission time for the low capacity group. 
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Figure 7.15:     Logarithmic plot of the CDF for end-to-end queueing delay for a se-
ries of two groups of size n1=0,1,2 and n2=0,5,10 that are equally loaded. The capaci-
ty in the first group is 1/10 of that in the second group. The load in the first group is 
0.6 while the load in the second group is 0.8 and the time unit is scaled to one packet 

transmission time for the low capacity group. 
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Figure 7.16:     Logarithmic plot of different approximations of the CDF for end-to-
end queueing delay for a series of two groups of size n1=1, n2 =5 and n1=2, n2=10 
that are equally loaded. The capacity in the first group is 1/10 of that in the second 

group. The load in both groups is 0.6 and the time unit is scaled to one packet trans-
mission time for the low capacity group. (NA-Normal Approximation, LD -Large Devia-

tion, UAA -Uniform Asymptotic Approximation). 
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Figure 7.17:     Logarithmic plot of different approximations of the CDF for end-to-
end queueing delay for a series of two groups of size n1=1, n2 =5 and n1=2, n2=10 
that are equally loaded. The capacity in the first group is 1/10 of that in the second 

group. The load in both groups is 0.7 and the time unit is scaled to one packet trans-
mission time for the low capacity group. (NA-Normal Approximation, LD -Large Devia-

tion, UAA -Uniform Asymptotic Approximation)
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Figure 7.18:     Logarithmic plot of different approximations of the CDF for end-to-
end queueing delay for a series of two groups of size n1=1, n2 =5 and n1=2, n2=10 
that are equally loaded. The capacity in the first group is 1/10 of that in the second 

group. The load in both groups is 0.7 and the time unit is scaled to one packet trans-
mission time for the low capacity group. (NA-Normal Approximation, LD -Large Devia-

tion, UAA -Uniform Asymptotic Approximation)
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Figure 7.19:    Logarithmic plot of different approximations of the CDF for end-to-end 
queueing delay for a series of two groups of size n1=1, n2 =5 and n1=2, n2=10 that 

are equally loaded. The capacity in the first group is 1/10 of that in the second group. 
The load in the first group is 0.6 while the load in the second group is 0.8 and the time 
unit is scaled to one packet transmission time for the low capacity group. (NA-Normal 

Approximation, LD -Large Deviation, UAA -Uniform Asymptotic Approximation)
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In table 7.1 we have given some quantiles for the example in the discussion on the basis of
the UAA model. The actual numerical values are checked against the graphs obtained by
the convolution approach in figure 7.13 and figure 7.14 and we conclude that the accuracy
is satisfactory. 

Table 7.1: The different quantiles for the end-to-end queueing delay for the example above 
with two groups of queues where the capacity in the first group is 1/10 of that in the second 

group and all the queues are equally loaded and the time unit is scaled to one packet 
transmission time for the low capacity group. 

One of the questions in mind for the given scenario is the following: What would be the
proper guarantee for the end-to-end queueing delay (not including other delay components
which must be added) for such a scenario? If we assume that the packet lengths are limited
to 1500 bytes the corresponding transmission times (service times in queueing terminology)
are approximately 0.8 ms for the access links and 0.08 ms for the high capacity links. By
the table above we have for instance the 0.999 quantile ( ) for a network loaded at
0.8 to be approximately 17.9 ms for the case with two access links and ten core links. The
corresponding result with the slightly “looser” 0.99-quantile ( ) is 13.5 ms. 

7.5 Concluding remarks
The end-to-end delay is an important QoS parameter for real time services. In IP networks
deploying statistical multiplexing this parameter will depend on several parameters like traf-
fic pattern, background traffic, number of hops, the network load, etc. The method pro-
posed gives an effective way of calculating the end-to-end delay distribution. It is shown
that load limit will depend on the size of the network indicating that a larger network
should be slightly less loaded than a small network provided that the links have the same
capacity.

The first method proposed in this chapter applies only for links with equal capacity, for in-
stance the core part of an IP network. We also give the corresponding results for a chain
containing two groups of links with different capacity in each group. This is a particularly
interesting case and makes it possible to model a path in an IP network that includes both
access and core links. The latter model is however far more complex and requires more
computing effort to obtain the desired results.

n1 n2

ρ=0.7 ρ=0.8

β=0.01 β=0.001 β=0.01 β=0.001
0 5 1.76 2.23 2.93 3.66
0 10 2.67 3.23 4.46 5.35
1 0 6.50 9.92 10.38 15.74
1 5 7.12 10.54 11.44 16.80
1 10 7.75 11.16 12.51 17.86
2 0 9.18 13.02 14.76 20.78
2 5 9.79 13.64 15.81 21.84
2 10 10.41 14.26 16.87 22.90

001.0=β

01.0=β



8
8Convolution of a given number of waiting

times of M/G/1 non-preemptive priority queues
having identical service time distributions

8.1 Some preliminary considerations
In the following chapter we shall consider a DiffServ scenario for the end-to-end delay for
typical RT (Real Time) traffic in a large scale IP-network. We consider a path in the net-
work consisting of a given number of (say)  nodes and the aim is to calculate the CDF
and the quantiles of the queueing delay for that particular path. We assume that each node
may be considered as a non-preemptive priority queueing system with two priority classes
where the RT traffic is scheduled as highest priority and the Best Effort (BE) type traffic is
scheduled as lower (second) priority.

To calculate the delay of a particular path we make the same assumption (approximation) as
in chapter 7: All nodes in the end-to-end path are statistically independent. This is the key
assumption for the model and makes it possible to obtain the end-to-end delay by convolu-
tion. Under which conditions the independent assumption applies is not quite clear, but it
seems to be reasonable for rather thin streams where the aggregate flows split at each node
and are mixed with traffic from different nodes. 

We take the M/G/1 non-preemptive queueing system as the model to obtain the waiting
time distribution (for the high priority RT packets) in each node and then apply convolu-

tion to get the end-to-end waiting time distribution. If we let  denote the waiting time in
the ’th node for the RT-packets, then the total delay may be written

, and the LST of the sum is found as the product of the LSTs of the
waiting times in the individual nodes: 

(8.1)
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Where  is the LST of the waiting time for the highest priority packets in an M/G/1

non-preemptive queueing model, and is given by the Pollaczek-Khinchin formula (with a
slight modification). (See for instance [Taka91] or [Klei76b]): 

(8.2)

where  and  are the loads and  and are the LSTs of the remaining serv-

ice times for high and low priority packets respectively and further . (The rela-

tion between the LST of the remaining service times and the “ordinary” service times is

given as  where  is the mean service time.) 

It may be convenient to relate the end-to-end waiting time distribution based on the LST
(8.1) to the corresponding model without any priority. We may write 

where  and  are independent and represents the end-to-end queueing delay for

the corresponding path without any priority and  is the extra delay due to the influence

from the lower priority packets. Consequently, the distribution of  may therefore be

found by convoluting the distributions of  and . We may therefore re-write the LST:

 with (8.3)

 and (8.4)

(8.5)

The expressions above will also apply for saturated system. In this case there will always be
low priority packets present in the low priority queue and this corresponds to the case with

 (or ).

The rest of this section will be devoted to find the DF of the end-to-end waiting time
, based on the LST (8.1) and (8.2) or (8.3), (8.4) and (8.5). Especially

we are interested in the tail of the CDF of end-to-end delay to get the desired quantiles.

As for the case without priority queueing (in chapter 7) it is possible to obtain the distribu-
tions above by inverting the transform numerically. For instance the DF of the end-to-end
queueing times may be written by the inversion integral as:
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(8.6)

where the integration line is parallel with the imaginary axis  and where

is a constant and . Some problems with such inversion are mentioned in
chapter 7.

8.2 Exact results when all the nodes are identical
For the case where all the nodes are identical it is possible to carry the analysis significant-
ly further without introducing any approximations by applying similar approach as used in
chapter 7. This is due to the fact that it is possible to obtain the LST of the convolution
through partial derivatives of the load for the LST of the waiting times in a single M/G/1
queue.

By (7.14) we have

(8.7)

 denotes the DF of the waiting time in an M/G/1 queue with load  and with LST

. (8.8)

The DF of the end-to-end queueing delay can therefore be written as the sum obtained by
inverting (8.3)-(8.5):

(8.9)

where  is the binomial probabilities with parameters

 and  and  is the -times convolution of the PDF of the remaining

service times for the low priority packets ( denotes convolution). The expression (8.9)
represents a general expression without any specific assumptions on the actual service time
distributions. To carry the analysis any further specific choices on the service time distribu-
tions therefore have to be made.

In the following we shall assume that both the high priority packets have constant service
times given by . In this case we have the DF on the form:
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(8.10)

where , given by (7.27), is the DF of the waiting time in an M/D/1 queue with serv-
ice times scaled to unity. The -fold convolution of is found in section 7.3.2:

(8.11)

where  is given by (7.28).

8.2.1 Deterministic service times for low priority packets
In the following we shall assume that the low priority packets have constant service times
given by . It follows that the remaining service times for the low priority packets are uni-

formly distributed over the interval , and we find the -time convolution on
the following form: 

(8.12)

where  is the unit step function. We find that the convolution 
may be written as:

 

where  are the following integrals:

 for . These integrals may be evaluated in

terms of some auxiliary functions defined in Appendix F by equations (F.33), (F.34) and
(F.35). Collecting the different terms we finally find the following expression for the DF of
the end-to-end queueing delay:

(8.13)

where the auxiliary functions ;  are found from (F.34) and (F.35): 
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(8.14)

For  we must add an extra term to get :

(8.15)

(In the expression above we define the binomial coefficient as 

also allowing for negative  and implying  for .) The expression (8.13) for

the DF of the end-to-end queueing delay gives stable numerical results for at least up to
 identical nodes. The numerical accuracy depends heavily on the fact that the auxil-

iary functions  may be calculated by introducing “local” variables (see Appendix
F section F.2) and thereby avoiding summation of alternating series.

Substantial simplification yields for special choices of the parameters. We shall mention
these cases below:

A. The service times for the low priority packets are exactly an integer times the service
times of the high priority packets, that is  with integer . 

In this case we can simplify the summation giving:

(8.16)

where (8.17)

B. The service times for low and high priority packets are equal, that is  (  in
the case above).

In this case we have and  for  giving:

(8.18)

C. The queueing system is saturated, that is  implying  in the expression
above giving:
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(8.19)

D. Saturated system and the fraction between high and low priority service times are an in-
teger.

We find:

(8.20)

E. Saturated system and equal service times for low and high priority packets.

We get:

(8.21)

8.2.2 Exponentially distributed service times for low priority packets
In this case we have that the remaining service times also are negative exponentially distrib-
uted and where  is the mean service times. Further it follows that

the -times convolution of the PDF of the remaining service times for the low priority
packets is Erlang-  distributed given as:

(8.22)

The convolution of the DF of the -folded waiting time for an M/D/1 queue (all with serv-
ice times scaled to unity) with the PDF of an Erlang-  distributed variable with parameter

 are given in Appendix F by equations (F.22). Applying these results we may write the
DF of the end-to-end queueing delay as:

(8.23)

where  is given by (F.22).

Special case:

A. The queueing system is saturated, that is  implying  in the expression
above giving
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(8.24)

8.3 Approximative methods
As for the case without priority it is possible to obtain approximations by assuming that the
corresponding stochastic variable converges to normal distributions. Since the normal distri-
bution is characterized by its two first (lowest) moments, this leads to the following approx-
imation for the PDF and CDF of the convolution:

 and (8.25)

 where (8.26)

 and . Further  and  are
the mean and variance of the queueing delay in the corresponding single server M/G/1
queue with only high priority traffic present, given in terms of the three first moments of
the service time distribution (and also the load) through:

 and (8.27)

The influence from the low priority traffic is given through the remaining service times for
a low priority packet by:

  and (8.28)

(Further  is the standard normal density and  is the

standard normal integral.)

The second and quite different approximation (though also involving normal distributions)
is based on LD (Large Deviation) theory. This can for instance be reflected through the in-
version of the LST of the end-to-end delay given by the inversion integral

(8.29)

As for the case without any priority (in chapter 7) we may find asymptotics by the Sad-
dle Point method. Formally this approximation is given as the asymptotic behaviour of
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 for large values of  and fixed . With this substitution the inversion integral
may be written 

 with (8.30)

(8.31)

We get ; where

(8.32)

and where  is the solution of the equation 

(8.33)

and 

(8.34)

The corresponding expression for the DF as an inversion integral is:

(8.35)

If we apply the Saddle Point method directly on (8.35) we must make distinction between
two cases depending on the sign of saddle point . It turns out that  is positive
for small values of  but becomes negative as  increases. In the latter case we have to
pick up the residue at  and we obtain the following approximation by combining the
two cases:

 where (8.36)
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where is the unit step function.

It turns out that the “ordinary” Saddle Point method given by (8.36) and (8.37) fails to ap-
proximate the integral (8.35) when the root is close to the pole at . It is, howev-
er, possible to extract that pole and obtain a Uniform Asymptotic Approximation (UAA)
that is uniform with respect to  and also yields in the area where is close to zero.
We find the following approximation:

where (8.38)

(8.39)

It is quite easy to see that the function defined by does not have any singularities for
values of  giving saddle point close to zero. By expanding the brackets to third order in

we find:

(8.40)

when is close to zero and where . The accuracy of the UAA
seems to be good and gives numerical values very close to the exact convolutions for a
broad range of parameters also including cases where the asymptotic is not fulfilled, i.e. for
chains of relatively small sizes. The “classical” LD approximation, however, gives strict up-
per bound on the convolution and can therefore be a desirable method to apply for this rea-
son.

8.4 Examples
In the following we shall give some numerical examples by applying the models described
in the previous section where we focus on some typical scenarios. We assume a network
with two priority classes and HOL scheduling and we focus on the end-to-end delay for the
high priority traffic. The high priority class will typically be real time traffic like voice and
video that will have constraints on the maximum end-to-end delay. Under the assumption
that the load from the high priority traffic is limited we would like to find out the effect the
low priority traffic will have on the performance of the high priority real time classes. This
is a typical situation in IP-networks deploying DiffServ. In an IP-network the end-to-end
delay for a particular stream will be the sum of the delay obtained in a cascade of routers
(from the sender to the receiver). The total end-to-end delay will then consist of the wait-
ing times in each node plus service times (transmission times onto the links). In the exam-
ples below we shall consider a particular chain of routers in a packet network and we as-
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sume that the routers have output buffers with two priority classes with no extra internal de-
lay due to processing of the packets. 

To apply the results in section 8.2 we must assume that all the nodes in the chain have
identical parameters:

- The link capacity is equal for all the routers.
- Packets for the two priority classes arrive according to Poisson processes with pa-

rameters that are equal in each router.
- The packet lengths for the high priority class is constant with mean . (All the nu-

merical results are scaled according to the transmission time for a high priority pack-
et.)

- The packet lengths for the low priority class are either constant or exponentially dis-
tributed with mean .

- The load from the high priority traffic class is and we shall assume that routers 
are saturated, this means that there will always be low priority packets to be trans-
mitted, implying that the low priority load .

By the last assumption we may use the somewhat simplified formula given by the equa-
tions (8.19) and (8.24) in section 8.2 to obtain the DF of the end-to-end delay distribution.

With these definitions above we find mean service times for packets ,

 where  is the link capacity. In the examples below we have chosen sce-

narios among the following parameter values:

- The ratio between low and high priority packets  is either 1,5 or 10.

- The load from high priority traffic  is either 0.4 or 0.6 .

- The number of hops  is either 5, 10 or 15 .
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Figure 8.1:    Logarithmic plot of the CDF for end-to-end queueing delay for high prior-
ity packets with load equal to 0.4 and 0.6 scaled by the service times for a high priority 

packet. The number of hops is 5 and the ratio between low and high priority packet 
lengths is 1, 5 and 10 and the low priority packets are constant.
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Figure 8.2:    Logarithmic plot of the CDF for end-to-end queueing delay for high prior-
ity packets with load equal to 0.4 and 0.6 scaled by the service times for a high priority 

packet. The number of hops is 10 and the ratio between low and high priority packet 
lengths is 1, 5 and 10 and the low priority packets are constant. 
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Figure 8.3:    Logarithmic plot of the CDF for end-to-end queueing delay for high prior-
ity packets with load equal to 0.4 and 0.6 scaled by the service times for a high priority 

packet. The number of hops is 15 and the ratio between low and high priority packet 
lengths is 1, 5 and 10 and the low priority packets are constant.
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Figure 8.4:    Logarithmic plot of the CDF for end-to-end queueing delay for high prior-
ity packets with load equal to 0.4 and 0.6 scaled by the service times for a high priority 

packet. The number of hops is 5 and the ratio between low and high priority packet 
lengths is 1, 5 and 10 and the low priority packets are exponentially distributed.
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In figure 8.1-figure 8.3 we have depicted some results for the case when the low priority
packet lengths are assumed to be constant. This case could represent the case when we have
the packet length more or less limited by an Ethernet frame of 1500 bytes and in addition
by assuming rather short real time packet lengths of around 200 bytes. We observe rather
strong impact from the ratio of the low and high priority packet lengths. The influence of
the load from the high priority traffic is not that strong and this is more or less expected
since we assume that the high priority load is limited to say less than 60%, which seems to
be reasonable keeping in mind the need to reserve some part of the capacity also for low
priority traffic. If we for instance take an example with STM-1 links of approximately 150
Mbit/s and assume that the real time packet lengths are 200 bytes, this will give packet
transmission time of around 10 µsec. By assuming a path of 15 hops and assuming packet
length ratio of 10, then figure 8.3 provide us with the appropriate quantile. If we take the 1-
10-3 quantile for the highest load we find the appropriate value to be around 125 (high pri-
ority packet transmission time), and this leaves us with a value of 1.25 ms for this particu-
lar case. This tells us that if a core network deploying DiffServ is properly engineered so
that the high priority load is limited to say 60% then the end-to-end queueing delay will be
limited to a few milliseconds. (One has to add the contributions from the access part of the
particular path to get the complete picture, and this contribution could be larger due to
slower links in the access network.) 

In figure 8.4 and figure 8.5 we have given corresponding results for the case with exponen-
tially distributed packet lengths for low priority packets. We see that the exponential distri-
bution of the packet lengths gives considerably worse performance. This is due to the tail in
the exponential distribution compared with a rectangularly distributed variable. In this case
we also observe a very small influence of the high priority load (as long as it is well limit-

Figure 8.5:    Logarithmic plot of the CDF for end-to-end queueing delay for high prior-
ity packets with load equal to 0.4 and 0.6 scaled by the service times for a high priority 

packet. The number of hops is 10 and the ratio between low and high priority packet 
lengths is 1, 5 and 10 and the low priority packets are exponentially distributed.
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ed to say 60%), and we conclude that the actual performance is determined by the number
of hops and the ratio between the mean packet lengths between low and high priority pack-
ets. The corresponding 1-10-3 quantile for 10 hops is found to be approximately 250, which
is twice that of the same quantile with 15 hops and constant packet lengths.

Figure 8.6:    Logarithmic plot of different approximations of the CDF for end-to-end 
queueing delay for high priority packets with load equal to 0.4 and 0.6 scaled by the 

service times for a high priority packet. The number of hops is 5 and the ratio between
low and high priority packet lengths is 1 and the low priority packets are constant. (NA
Normal Approximation, LD- Large Deviation, UAA- Uniform Asymptotic Approximation)
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Figure 8.7:    Logarithmic plot of different approximations of the CDF for end-to-end 
queueing delay for high priority packets with load equal to 0.4 and 0.6 scaled by the 

service times for a high priority packet. The number of hops is 15 and the ratio between 
low and high priority packet lengths is 10 and the low priority packets are constant. 

(NA-Normal Approximation, LD- Large Deviation, UAA- Uniform Asymptotic Approxi-
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Figure 8.8:    Logarithmic plot of different approximations of the CDF for end-to-end 
queueing delay for high priority packets with load equal to 0.4 scaled by the service 
times for a high priority packet. The number of hops is 10 and the ratio between low 

and high priority packet lengths is 5 and 10 and the low priority packets are exponen-
tially distributed. (NA-Normal Approximation, LD- Large Deviation, UAA- Uniform As-

ymptotic Approximation) 
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Figure 8.9:    Logarithmic plot of different approximations of the CDF for end-to-end 
queueing delay for high priority packets with load equal to 0.6 scaled by the service 

times for a high priority packet. The number of hops is 5 and the ratio between low and 
high priority packet lengths is 5 and 10 and the low priority packets are exponentially 

distributed. (NA-Normal Approximation, LD- Large Deviation, UAA- Uniform Asymptot-
ic Approximation) 
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In figure 8.6-figure 8.9 we have tested the different approximation described in section 8.3
by applying some different values of the parameters. We may draw the following conclu-
sions:

- The NA does not behave well in the tail of the distribution. And often it will under-
estimate the actual probabilities. On the other hand it is very simple and easy to ap-
ply.

- The LD approach gives quite reasonable results for a broad range of the distribution, 
especially in the tail. In addition it also provides us with an upper bound. To apply 
this method one has to locate the saddle point for each value one would calculate the 
distribution function of.

- The UAA is an excellent approximation and gives a uniform approximation of the 
distribution over the whole range of the distribution function. The relative error is 
very small in all the cases we have considered (less than 3%) and it is nearly impos-
sible to make the distinction in the graphs. It also seems to give accurate estimates 
for values where the asymptotic is not fulfilled, i.e. for chains consisting of only one 
or two queues.

8.5 Concluding remarks
In this chapter we have discussed and given some new methods to calculate the end-to-end
queueing delay in a packet network where real time traffic has strict priority over other
classes of traffic. The described method could for instance be applied to estimate typical
end-to-end delay in a core network deploying DiffServ. The proposed methods are tested
against known approximation such as the saddle point method. Especially the UAA (Uni-
form Asymptotic Approximation) gives very accurate results. Compared with the exact
methods proposed in this chapter the UAA requires that the corresponding saddle points
have to be located for each single value under consideration. 

We have also demonstrated by the numerical examples that by deploying DiffServ in a core
network with STM-1 links or links with higher bit-rate and by limiting the load from the
real time traffic to less than 60% it is possible to guarantee the corresponding end-to-end
queueing delay to just a few milliseconds with very high probability (e.g. 1-10-3 quantile).



9
9Discrete time queueing models

9.1 Introduction
In the previous chapters we have focused on models to analyse the traffic dependent end-to-
end waiting times for a path in a network deploying statistical multiplexing. The aim was to
obtain models with limited complexity so that they could be used for dimensioning purpos-
es. The “critical assumption” for those models is of cause the independent assumption need-
ed to obtain the corresponding Laplace transform on product form, and we did not try to
find the actual condition for which this approximation is applicable.

One approach would be to analyse a particular traffic stream (flow) as it traverses a multi-
plexer and try to capture the characteristics of that particular traffic process (flow) at the
output. This particular output process will then be mingled with other traffic streams and
will constitute the input to the next multiplexer in the chain under consideration. By this ap-
proach we are able to trace a particular stream (flow) describing the distortion as it passes
through a particular path through the network. Similar approach to study end-to-end behav-
iour is well documented in the literature. (See [Matr94a], [Matr94b].)

It turns out that the discrete time queueing model is easier to analyse than the correspond-
ing continuous time counterpart, and this is mainly due the discrete nature of the corre-
sponding models; where the corresponding analyse tool will be based on generating func-
tion techniques rather than Laplace transforms (often applied for continuous time models).
Nevertheless, it is well known that slotted queueing models could be regarded as approxi-
mations of continuous time models and in this perspective the discrete time models will be
of interest to analyse. In the following we shall consider a discrete (slotted) queueing mod-
el where we will put the main emphasis on the possibility of tracing a particular traffic
stream as it passes through a multiplexer where it will be disturbed by crossing packet
streams (background traffic). We are particularly interested in describing the output process
of that particular stream which then will be part of the input traffic to the next multiplexer.

9.2 A discrete time queueing model with a renewal foreground and a 
batch background stream as input

The queueing model taken as basis of the analysis is depicted in figure 9.1 below. It is a
single server, infinite capacity queue operating in discrete (or slotted) time with two classes
of customers. Any activity in the system, e.g. arrivals, departures, etc., is assumed to occur
at the slot boundaries.
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The arrival process is formed by superposing of a discrete time renewal process, fore-
ground stream (FS), and a (discrete) batch arrival process (e.g. Poisson or Bernoulli proc-
ess), background stream (BS). We let the slots be successively numbered  and
we assume that the batch size in slot , generated by the BS,  is independent and fol-

lows a general (discrete) distribution  with generating function . The
FS renewal process is characterized by the distribution of the numbers of slots between ar-
rivals  where  is the slot number for the ‘th arrival of the FS;

, and we assume that  is independent (of  and of BS) and follows a gener-

al (discrete) distribution  with generating function . 

The total load on the multiplexer is  where  is the load from

FS, and  is the load from BS, and we shall assume that  to secure stabili-
ty for the queueing system.

We observe the queue size at the end of each slot, and we define the following stochastic
variables: -the number of packets in the queue at the end of the slot just prior to the

‘th arrival of a packet from the FS, and conditioning on  we let -

the numbers of packets in the queue in the end of the slot  ( ). If we let

 denote the numbers of packets arriving from BS during slot , then we have the
following relation between the queue lengths in the different slots:

(9.1)

 for  (9.2)

We obviously also have:
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Figure 9.1:    The queueing model for the packet multiplexers.
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(9.3)

9.2.1 Transient queueing analysis
The equations (9.1)-(9.3) describe the evolution of the queue length when it is combined
with the arrival instants  of the FS. In the following we shall define a joint generating
function taking both the evolution of the queue content and the arrival of the FS into ac-
count by defining:

 and (9.4)

 for  (9.5)

By the relations (9.1) and (9.2) we find the following recursions:

 and (9.6)

 for  where (9.7)

 is the boundary transform, taking into ac-

count the probability of having an empty queue in slot  ( ). Solv-

ing (9.7) recursively we obtain  as function of :

 for (9.8)

For  we shall make the conditions that  and  implying that:

 and by (9.6) (9.9)

 for . (9.10)
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Since we have 

implying

(9.11)

By applying (9.11) on (9.9) and (9.10) we find:

 and (9.12)

 for (9.13)

where we also have defined the quantities . To com-

bine the equations (9.12) and (9.13) we introduce generating functions

 and  (9.14)

(where we have indicated that we have the condition ). By multiplying (9.13) by

 and summing and combining with (9.12) we may solve for  by the fraction:

(9.15)

It remains to determine the unknown coefficients  in (9.15). To do so we shall as-
sume that there is a maximum number  so that  for . (This restric-
tion we put on the discrete distribution is quite weak; since we always may approximate an
infinite (countable) discrete distribution by a finite one by simply choosing  large

enough.) This means that  is a polynomial of degree . With this as-

sumption we may apply the powerful method, often used to determine unknown coeffi-
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cients in generating functions given as a fraction, by locating the zeros of the dominator in-
side the unit disc and claiming analytical behaviour of the transforms in the same domain.

If we set  we find from the definition that  for

. Next by applying the famous Rouche’s theorem we have that for

 and  or  and  that the equation:

 (9.16)

will have exactly  distinct roots ;  inside the unit disc .

Moreover, by letting  we must have  or

 for (9.17)

The equations (9.17) are linear and determine the unknown coefficients  unique-
ly. By exploiting the specific form of this linear system we find by applying (G.5) in
Appendix G:

(9.18)

The transform (9.18) gives the transient behaviour of the queueing model seen at instants
just prior to the ‘th arrival of the FS and will be a good starting point to obtain the distor-
tion (or colouring) of the FS as it passes the multiplexer queue. For small values of the pa-
rameter  (9.18) will be well suited to obtain the desired transforms, however, for larger
values of  it will be more efficient to transform the expression into a contour integral. In
Appendix G (by (G.16) and (G.17)) we have found the product:

(9.19)

where  is the contour integral:

(9.20)
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and where  is the disc  where we can choose  and where  is
the root of (9.16) outside the unit disc with the smallest modulo. (For more informa-
tion see Appendix G)

From (9.19) we have . By taking the limit

 gives  where we have set

. Then by inserting for the products in (9.18) and simplifying,

the expression for  may be written as:

(9.21)

We recognize (9.21) as (the residue expansion of) the following contour integral:

(9.22)

where  is the disc  with  and where the radius  is chosen so large that

 and all the roots  (but not ) are inside the disc .

By the transforms (9.22) and (9.20) or (9.18) the transient course of the queueing model is
fully described in terms of both the queue length and the time between arrivals of the FS.
In the succeeding we shall use the integral form above, mainly because it is far more easy
to obtain the limit , needed to get the queuing behaviour between two succeeding ar-
rivals of the FS. That is  which is easily obtained from (9.22)

since  (from (9.20)). First, however, we need to find the stationary queue-

ing distribution.
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ary distribution exists and may for instance be found from the transforms above by apply-
ing Tauberian theorem [Fell68b]. We have

(9.23)

To find the limit we may use either (9.18) or (9.21). From (9.16) with  we see that
 is a root in the equation for  and therefore for one of the roots 

we have  when . We denote this root as  and we find

. By applying (9.18) we find the limit (9.23):

 with  (9.24)

If we use (9.21) then the corresponding stationary transform is found to be:

 with (9.25)

(9.26)

For numerically calculations of the transform above, used for finding the stationary distribu-
tion, it is obvious that for small value of  (9.24) will be preferable since a small numbers
of roots may be easily found numerically. However, for large values of  the product in
(9.24) will become numerically unstable and it is better to evaluate the integral  nu-
merically and apply (9.25). In (9.25) we also recognize the queue length transform with
only the BS present (without the FS)

, (9.27)

so the exponential term  represents the “add on” due the FS. It seems

also obvious that if the mean time between arrivals in the FS is large, that is 

is small, then  and  will be a reasonable approximation of
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9.3 Delay and delay jitter for the FS
Based on the transient transforms (9.18) or (9.22) and the corresponding stationary trans-
forms (9.24) or (9.25) we may find the characteristics of the output process for the FS when
the queueing system is in steady state. Although we consider an FCFS (First-Come First-
Serve) there still remain question in which order an FS packet is served when it arrives in a
slot with arrivals of (possible several) BS packets. Below we have analysed three possible
orderings of an FS packet when it arrives in a slot with (possible several) BS packets:

- F-The FS packet is always served first when it arrives together with BS packets
- R-The FS packet and possible BS packets is served at random
- L-The FS packet is always served last when it arrives together with BS packets

Among these three orderings the random will be the most important one since this requires
no special treatment of any packets (from any arrival streams). We let  denotes the de-

lay for the ‘arrival from the FS. Then we have 

 where (9.28)

 is the delay for a FS packet due to the possible arrivals of BS packets in the same slot.

We are interested in the joint distribution of  and  and we define the transforms:

 and (9.29)

(9.30)

Below we shall analyse the three cases described above separately to obtain the transform
 and we shall use (F-first, R-random and L-last) as superscript to indicate (and

distinguish) the different cases.

9.3.1 The FS packet is always served first when it arrives together with BS 
packets

In this case we have  so . By conditioning on 

and  we find:

 or 

Dn

n

Dn Qn Un+=

Un

Dn D0– Tn

Wn z x,( ) E z
Dn D0–

x
Tn[ ]=

W z x s, ,( ) sn 1– Wn z x,( )
n 1=

∞

∑=

W z x s, ,( )

Dn Qn 1+= Dn D0– Qn Q0–= Q0 k=

Q0
1 m=

E zDn D0– xTn[ ] E zQn Q0– xTn Q0 k Q0
1 m=,=[ ]

m 0=

∞

∑
k 0=

∞

∑ P Q0 k Q0
1 m=,=( )= =

z k– Qn

m 0=

∞

∑
k 0=

∞

∑ z x,( )P Q0 k Q0
1 m=,=( )



- 165 -

. Since  we find the

joint transform: 

(9.31)

By using (9.22) for  and applying (9.31) with  and  we get:

(9.32)

9.3.2 The FS packet and possible BS packets arriving in the same slot are 
served at random

In this case we have  where  is the number of BS packets arriving in
the same slot as an FS packet and is placed prior to the FS packet when the mutual
position among them is chosen at random. Then we have 

and by conditioning on  and  we find:

 or

. Since  and

 we find the joint transform: 

(9.33)

In Appendix G we have found the z-transform of the joint distribution of “extra” delay 

and the number of arrivals from the BS  as, (see (G.19)):
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where  is the integral of the z-transform of the BS.

By using (9.22) for  and applying (9.33) and (9.34) with  and 
we find:

(9.35)

9.3.3 The FS packet is always served last when it arrives together with BS 
packets

In this case we have  so . Conditioning on

 we obtain:

 or . Since

 we find the transform: 

(9.36)

By using (9.22) for  and applying (9.36) with  gives:

 (9.37)

9.3.4 Inter-departure time, jitter and queueing delay distributions
The joint transforms (9.32), (9.35) and (9.37), one for each of queueing discipline defined,
makes it easy to find the inter-departure time distribution, jitter and queueing delay.
We have that the jitter  is the difference of the delay for two succeeding packets
from the FS:
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 and (9.38)

the corresponding z-transform is simply:

(9.39)

Similarly the inter-departure time between succeeding packets  from the FS is simply
the difference between the departure times:

 and (9.40)

the z-trasform is found by:

(9.41)

We also denote  the z-tranform of the delay for a packet from the FS. 

It is now easy to find the transforms for the three different cases defined above by
using (9.32), (9.35) and (9.37):
a. F-The FS packet is always served first when it arrives together with BS packets
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 and (9.43)

(9.44)

b. R-The FS packet and possible BS packets are served at random
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c. L-The FS packet is always served last when it arrives together with BS packets

(9.48)

 and (9.49)

(9.50)

In all the cases above the steady state z-tranform of the queue length distribution  is
given by either (9.24) (the root representation) or (9.25) and (9.26) (the integral representa-
tion). Further the contour  is chosen as a circle  so that  is inside but not

, that is .

9.3.5 Some variants of the inter-departure time and jitter z-transforms
The representation of the z-transforms above in terms of complex integrals is quite benefi-
cial since it is possible to transform the contour by picking up the poles. This can be done
for the poles at  and . By letting the contour  be chosen so that both 

and  is outside we get by picking up the pole :
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 and (9.52)

b. R-The FS packet and possible BS packets are served at random
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c. L-The FS packet is always served last when it arrives together with BS packets

(9.55)

(9.56)

where, in all of the integrals (9.51)-(9.56), the contour  is chosen as the circle 

with .

By letting the contour  be chosen so that both  and  are inside we get by

including the pole :

a. F-The FS packet is always served first when it arrives together with BS packets

(9.57)

 and (9.58)

b. R-The FS packet and possible BS packets are served at random

(9.59)

 (9.60)

c. L-The FS packet is always served last when it arrives together with BS packets

(9.61)
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(9.62)

where ,  and  are the z-transforms of the delays given by (9.44), (9.47)

and (9.50) respectively, and ,  and  are the corresponding z-trans-
forms without the FS (when the load from the FS is set to zero, i.e. obtained by replacing

 with the simpler  given by (9.27)). Further, in all the integrals (9.57)-(9.62)

the contour  is chosen as the circle  with .

The first integrals (initial results) for the jitter and inter-departure time given by (9.42) and
(9.43), (9.45) and (9.46) and (9.48) and (9.49) have the main drawback that it we can not
take the limit  since we claim that  is inside a circle with radius less than unity. By
the results given in section 9.3.5 this limitation is removed and we observe that all the
transforms given by (9.51)-(9.62) have the limit unity when . Moreover, these results
are also suitable to obtain the moments by differentiation and taking the limit . We
shall omit such calculations here since we mainly are interested in the distributions. The
mean time between packets from the FS should however remain unchanged as the stream
passes the multiplexer (and this have of cause been checked by numerical examples).

9.4 Heavy and light traffic analysis
Another striking observation by considering the representation (9.51)-(9.62) is that “the non
integral part” of the expressions represents distributions which turns out to yields for heavy
and light traffic. This can be argued as follows: If the load is close to one i.e.

, the queueing system will never be empty and the boundary transforms

 will be zero, implying that  and

 are zero giving (9.22) on the form . By applying the

methods described in the previous sections to find the inter-departure time and jitter
distributions we obtain the following heavy traffic approximations (obtained simply by
setting the integrals in the expressions (9.51)-(9.56) equal to zero):
a. F-The FS packet is always served first when it arrives together with BS packets

(9.63)

 and (9.64)

b. R-The FS packet and possible BS packets are served at random
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(9.65)

 (9.66)

c. L-The FS packet is always served last when it arrives together with BS packets

(9.67)

(9.68)

To find the light traffic approximation i.e.  we may argue as follows: If we simul-
taneously consider the queueing process just prior to the arrival of an FS packet and the ar-
rival process of the FS packets, these two processes will not affect each other, and they
may therefore be analysed separately as if one of them was switched off. If we also may as-
sume that the relaxation time to reach the steady state for the reduced queueing model (with
only the BS present) is much shorter than the time interval to the arrival of the next FS
packet, then the two processes may be treated as independent and we may write

 where  is the z-transform for the reduced queueing sys-

tem (with the FS switched off) and is given by (9.27)). By applying the methods de-
scribed in the previous sections to find the inter-departure time and jitter distributions
we find the following light traffic approximations (obtained simply by setting the inte-
grals in the expressions (9.57)-(9.62) equal to zero):
a. F-The FS packet is always served first when it arrives together with BS packets

(9.69)

 and (9.70)

b. R-The FS packet and possible BS packets are served at random

(9.71)

 (9.72)

c. L-The FS packet is always served last when it arrives together with BS packets

(9.73)

(9.74)

JR z( ) z
B z( )
----------- BI z( )

z 1–
------------- 
  2

A B z( )
z

----------- 
 =

GR z( ) z
B z( )
----------- BI z( )

z 1–
------------- 
  2

A B z( )( )=

JL z( ) zA B z( )
z

----------- 
 =

GL z( ) zA B z( )( )=

ρBS 0→

Qm z x s, ,( ) QBS z( ) A x( )
1 sA x( )–
-----------------------= QBS z( )

JF z( ) DSB
F z( )DF 1

z
--- 
 =

GF z( ) DSB
F z( )DF 1

z
--- 
 A z( )=

JR z( ) DSB
R z( )DR 1

z
--- 
 =

GR z( ) DSB
R z( )DR 1

z
--- 
 A z( )=

JL z( ) DSB
L z( )DL 1

z
--- 
 =

GL z( ) DSB
L z( )DL 1

z
--- 
 A z( )=



- 172 -

The key assumption for this approximation is that the queueing system with only the BS
present shall reach steady state in the interval between two successive arrivals from the FS.
It is clear that when the mean time between two such arrivals is small, say just some few
slots, then the corresponding load  from the BS must be very small to reach the steady
state (in such a short interval). On the other hand, if the mean time between two successive
arrivals from the FS is large, then the load from the BS may be moderate (but not close to
one). So actually the requirements for the light traffic approximation are:

a.  is moderate and  or

b.  and  is moderate

In case b, we also may use the simpler  for  in (9.69)-(9.74) since we assume

.

9.5 End-to-end delay and jitter evaluation for a stream traversing a se-
ries of queueing nodes

The main objective in this chapter was to develop analytical models which were possible to
extend to also cover end-to-end analysis that goes beyond the traditional models based on
convolutions described in chapter 7 and chapter 8. With these models the distortion (colour-
ing) of a particular packet stream as it passes a multiplexer is neglected. A more exact ap-
proach will be to consider a particular packet stream as it passes through a network and try
to describe the change in the stream as it traverses the nodes where it will be disturb by
other (background) traffic.

By the slotted model described in the this chapter we may analyse in detail the output proc-
ess for a particular packet stream given that the same process at input is a renewal process.
In particular we have analysed the distribution of the time between two successive depar-
tures. If we approximate the output stream with a renewal stream (which is fully character-
ized by the distribution between two successive renewals), we may take this renewal stream
as the input to the next node and thereby apply the queueing model recursively to get an
end-to-end description. By this method we may “track” a given packet stream from source
to destination as it crosses a multiple of nodes. In figure 9.2 we have depicted the key idea
behind the end-to-end model. It is, however, well known that the output process of the
queueing model described in section 9.2 will not be exactly renewal. Nevertheless, simula-
tion studies [Matr94b] indicate that this type approximation indeed is very good if we only
consider the marginal distribution of the output processes. Especially the evolution of the
jitter, but also the end-to-end delay will therefore be analysed more accurately than the con-
volutions given in chapter 7. However, the resulting model will be much more complicated
and the results are given recursively in terms of the results found in section 9.3.

ρBS

ρFS ρBS 0→
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In the following we shall consider a chain of  queueing nodes. We shall make the follow-
ing assumptions (similar to the assumptions in section 7.4):

- The streaming traffic (FS) enters node 1 according to a discrete time renewal proc-
ess with distribution between arrivals given by  and generating function 

- The background traffic (BS) at node  enters (and leaves the node) according to a 
batch process with distribution  and generating function 

- The queueing discipline is FIFO for all the queues and the possible orderings when a 
streaming packet (FS) arrives in a slot with (possible several) background packets 
(BS) is described in section 9.3

If we let  denote distribution of the delay with generating function  and 

denote distribution of the jitter with generating function  at node  we may write the

functional relations (for ):

 (9.75)

 and (9.76)

(9.77)

where the functional entities  and  relate the delay distribution and inter-departure

distribution as “functions” of the arrival processes. The actual form of  is given by the z-

transform of the steady state queue length distribution  (as given by (9.24) or (9.25)
and (9.26)) and the relations (9.44), (9.47) or (9.50) depending on the scheduling models
chosen, and further  is either the representations (9.52) or (9.54), (9.56) or (9.58), (9.60)
or (9.62) depending on the scheduling models chosen and the integration path chosen in the
corresponding contour integrals. 

Figure 9.2:    The tandem queueing model for the end-to-end modelling.
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Finally, if we denote  the distribution of the end-to-end delay for a chain of  suc-

cessive nodes, then we find  by taking convolutions of the delay distributions at each
node. Written recursively we have:

 for (9.78)

The corresponding z-transform is the product of the z-transforms in (9.75):

(9.79)

9.6 Some comments on the numerical procedure to calculate the end-to-
end delay and jitter

Although the recursions given by (9.75)-(9.77) are analytical in nature, the corresponding
procedure is highly numerical and contains some key assumptions: In each iteration both

 and  are evaluated by calculating the corresponding distributions numerically,
and we truncate the distributions when the probabilities are less than some quoted accura-
cy. The distributions  and  are calculated by (Cauchys theorem):

 for  and (9.80)

 for  and (9.81)

then we take  and 

and we take  and since  is a polynomial we can apply the re-
sults in the previous sections (9.2 and 9.3) to calculate the next iteration in the chain. 

To calculate the integral  given by (9.26) the circle (contour)  has to be chosen so

that  but smaller than the first root of the function  outside the

unit circle. It is possible to shown that for a stable queue,  has exactly one real root

 outside the unit circle and that all other roots are outside a circle of radius equal
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to that particular root. Therefore we must choose . A possible choice is to take

the point where the function  attains its maximum i.e. choose  as the solution of the

equation .

Since  is calculated for  i.e. for  by (9.81) we must use the expres-
sion in section 9.3.5 in the calculations. If the expressions (9.52), (9.54) or (9.56) are used,
the circle (contour)  must be chosen so that  (and  seems to be a natural
choice). On the other hand, if we choose the expressions (9.58), (9.60) or (9.62) then we
must take  and we may choose  as above.

9.7 Some numerical examples
In the numerical examples below we have taken the following input streams:

- The FS is either deterministic or geometrically distributed with mean time between 

arrivals equal .

- The BS is a Poisson stream with parameter .

For most of the examples we have taken the R(random) queueing discipline where there is a
random selection of all packets arriving in the same slot, but we have also given a few ex-
amples with the other two disciplines F(first) and L(last), more ore less to check out the nu-
merical results and also see how sensitive the end-to-end delay and the evolution of the jit-
ter are to the particular scheduling choice. We also assume that the load from the FS is rel-
atively low, and we have taken the mean time between arrivals of the FS to be 10 or

 for most of the examples, but we also have a few examples with mean time be-

tween arrivals of the FS to be 5 or .

We have two main goals with the examples:
a. Firstly to compare this rather heavy numerical approach with the convolution approach 

(given in chapter 7) and
b. secondly to investigate the evolution of the jitter distribution as the FS traverses a 

chain of queues.
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Figure 9.3:    Logarithmic plot of the end-to-end delay for R(random)-queueing dis-
cipline and some different parameters as function of time (in slots).
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Figure 9.4:    Logarithmic plot of the end-to-end delay for R(random)-queueing dis-
cipline and some different parameters as function of time (in slots).
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9.7.1 End-to-end delay
In figures 9.3-9.8 we have depicted the CDF of the end-to-end delay for various parameter
choices and where we also have plotted the corresponding results obtained by the convolu-
tion approach. In the first graphs (figure 9.3) we have compared cases where the FS is de-
terministic with the case where FS is geometrically distributed, and where we have chosen
the R(andom) queueing discipline (with random selection of all packets arriving in the same
slot). We observe that for all these cases the deterministic FS gives the best performance
(when it comes to end-end-delay) but the difference is not very large, and it seems that the
actual difference is decreasing slightly as the load increases. We also observe that the con-
volution approach and the case with FS being geometrically distributed nearly coincide, and
this is expected since the “sum of” a thin geometrical stream and a Poisson stream will
more or less also be a Poisson stream. 

In figure 9.4 we have compared the cases where we halve the mean time between arrivals
of the FS (while not changing the total load). (In this example we have deterministic FS
and R(random) queueing discipline.) As expected the effect of increasing the load from a
deterministic stream while keeping the total load constant will lead to a stream with less
variance; and hence the queueing performance will improve.

Figure 9.5 shows how the end-to-end delay evolves as the FS passes through the series of
queues in the chain. The shape of the curves seems to be quite similar for different loads,
however, we must bear in mind that the axis is scaled differently in the four cases.

Figure 9.5:    Logarithmic plot of the end-to-end queuing delay for R(random)-
queueing discipline and some different parameters as function of time (in slots).
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Figure 9.6:    Logarithmic plot of the end-to-end queueing delay for different queue-
ing discipline and some different parameters as function of time (in slots).
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Figure 9.7:    Logarithmic plot of the end-to-end queueing delay for different queue-
ing discipline and some different parameters as function of time (in slots).
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ing discipline and some different parameters as function of time (in slots).
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In figures 9.6-9.8 we have studied the effects of having different scheduling of the packets
from the two streams arriving in the same slot. In figures 9.6 and 9.7 we have deterministic
FS while in 9.8 geometrical FS is used. It seems that for deterministic FS all the three
scheduling give end-to-end delay that are below that of the convolution. It seems also that
the difference between the three scheduling principle will decrease as the load increases,
while maintaining the other parameters.

From figure 9.8 we get the only case where the slotted model gives worse performance than
the convolution. This occurs when we have geometrical FS and choose the L(last) queue-
ing principles where the FS packet is placed behind all the BS packets arriving in the same
slot.

As a conclusion to the numerical examples for the end-to-end delay we have seen that the
convolution approach for all, but except on particular case, will give an upper bound the
end-to-end delay compared with the slotted model considered in this chapter. Whether this
is a result of general validity will not tried to be answered here.

9.7.2 Evolution of the jitter
The jitter a packet stream is inflicted will be an important measure for the QoS in a com-
munication network. For real time services the jitter will decide the dimension of the dejit-
ter buffer needed to obtain a regular bit stream at the receiver site. Generally the jitter is
difficult to analyse since it represents a difference between two variables that are not inde-
pendent.

In figures 9.9-9.16 we have depicted a series of examples for the evolution of the jitter for
the FS. We have put main emphasis in the node-to-node evolution as the stream passes
through a chain of nodes. It is of main interest to examine the disturbance of a regular
stream as it passes through a network and we therefore mainly consider cases where FS is
deterministic.

By figure 9.9 we have plotted the PDF of jitter where we look into the different scheduling
strategies R(random), F(first) and L(last) for a deterministic FS. In these examples the load
is set to 0.7 and the mean inter-arrival time for the FS is taken to be 10. As expected the
scheduling F(first) gives the most narrow jitter, and in between is curves for R(random)
scheduling, while the L(last) scheduling gives the broadest jitter (density function). This is
most evident at the first queues in the chain. As the number of passed queues increases the
jitter get broader and the difference becomes less visible. Even though the jitter seems to be
symmetrical for small numbers of queues, we observe that after passing the 10’th queue the
jitter is not completely symmetrical any more.

We have also considered a case where PDF of the jitter evolution for a geometric FS is
compared with that for a deterministic input stream, (see figure 9.10). The changes in the
jitter for the FS are very small and it looks as if this type of stream remains unchanged as it
passes through the multiplexers. The reason is that this type stream is very similar to a Pois-
son stream and will also be nearly Poisson at the output of a multiplexer.
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Figure 9.9:    PDF of the jitter as function of time for increasing number of nodes for 
the different queueing disciplines, F(first), R(random) and L(last).
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Figure 9.10:    PDF of the jitter as function of time for increasing number of nodes 
for geometric and deterministic distributed FS and R(random) queueing discipline.
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Figure 9.11:    PDF of the jitter as function of time for increasing number of nodes 
and deterministic distributed FS and R(random) queueing discipline.
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Figure 9.12:    Logarithmic plot of PDF of the jitter as function of time for increas-
ing number of nodes and deterministic distributed FS and R(random) queueing dis-

cipline.
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Figure 9.13:    PDF of the jitter as function of time for increasing number of nodes 
and deterministic distributed FS and R(random) queueing discipline.
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Figure 9.14:    Logarithmic plot of PDF of the jitter as function of time for increas-
ing number of nodes and deterministic distributed FS and R(random) queueing dis-

cipline.
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Figure 9.15:    PDF of the jitter as function of time for increasing number of nodes 
and deterministic distributed FS and F(first) queueing discipline.
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Figure 9.16:    PDF of the jitter as function of time for increasing number of nodes 
for deterministic distributed FS and L(last) queueing discipline.
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In figure 9.11 we have depicted all the PDFs of a deterministic FS with load 0.1, from node
1 up to the exit on node 10, using the R(random) queueing discipline. It is interesting to ob-
server the relative strong impact from the load. For low load the jitter is quite narrow for
just a few nodes but it gets broader as more nodes are passed. Another interesting observa-
tion is that it seems that the PDFs will converge to a limiting distribution as the numbers of
node increases. This is already well known for results for chains of saturated queues, (see
[Robe96] where such models are discussed). The convergence is especially visible in the
logarithmic plots of figure 9.12. 

If we increase the load from the FS, the mean inter-arrival time will decrease and the corre-
sponding jitter will be more asymmetrical. This effect is clearly seen in figure 9.13 and the
logarithmic counterpart figure 9.14. Also in this case the convergence seems to be quite rap-
id, say at around 10 nodes.

In figure 9.15 and figure 9.16 we have depicted the PDF of the jitter for the F(first) and the
L(last) queueing discipline for deterministic FS of load 0.1. For the F(first) queueing disci-
pline the jitter with low load is very narrow and it broadens slowly. In this case there will
be only minor disturbance from the BS and in this case the jitter is also quite narrow at the
first few nodes also for loads up to load 0.7. For the L(last) queueing discipline, however,
the jitter is quite broad also at 0.6 when the stream has passed two or more nodes.

9.8 Concluding remarks
The methods proposed in this chapter show that it is possible to obtain analytical results for
quite complicated models, even more important, to obtain numerical results from them. The
aim has been to go beyond the assumption of product form solutions that were proposed in
chapter 7. The proposed models have the advantage that it is recursive, the output from a
queueing node constitutes the input to the next one, and in this way the end-to-end view is
kept, and the changes of a stream from the input to the output are an important part of the
analysis.

Based on the numerical results we feel confident that the convolution approach of chapter 7
provides a real upper bound for the end-to-end delay for sources that emit a deterministic
packet stream. Secondly when it comes to the end-to-end delay the differences in the re-
sults between these two types of models seem to be minor.

By this model we have analysed the evolution of the jitter as a deterministic packet stream
passes through a series of queues. If all the nodes are identical we have also demonstrated
that the jitter will converge to a given probability distribution.
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Appendix A
ACrossing intensities and the joint probability
of the excess volume and the excess time that

starts in (0,dt1) and ends in (t,t+dt2)

A.1 Some general results on the level crossing intensity for stationary sto-
chastic processes

Theorem A.1. Let  be a stationary stochastic process and let

 and  be the up- and down cross-

ing rates:

Then  (A.1)

and the following inequality yields:

 for all  and (A.2)

Further if  then the up- and down-crossing intensity  ex-

ists and is finite.

Proof: We have the following relation between the events:

and similar

.

We must therefore have:

showing that , since  due to the stationary as-
sumption.
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Let . To show (A.2) we start with the obvious inequality:

 giving

; or by dividing

by  we get . 

To show the last part we set  and let . If  then

we shall show that . By choosing  it follows that  for all 

and by continuously sub-dividing the interval . By the mono-

tone convergence theorem  exists for every  and are all finite (by the as-

sumption). We shall assume  and show that this assumption will lead to a contra-

diction. We choose  and  so that  for  and a  so

that . Now we choose  so that , and we choose an inte-

ger  such that  and . Since  is an increasing sequence

(in ), we have  and . We now choose  so that  and

 or . Now by using the inequality
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 where (since )

 which is a contradiction.

QED.

Theorem A.2. We let  be a stationary stochastic process with continuous sample paths

and we assume that the distribution of  is absolute continuous (which means that the

probability density function exists and is a continuous function) and let  be

the differential process scaled by  where we consider crossings of a given level . Set
 and  where 

is the probability density function of . We shall make the following assumptions:

A. We assume that  and  satisfy the following conditions:

 and  (for )

where  exists and further 

If the limit  is finite, then the up and down crossing intensi-

ty is given as:

(A.3)

Proof: We have  where the up crossing intensity

 and down crossing intensity . By

conditioning on  we may write the up and down crossing intensities as:
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We also define the integrals  and  and

we have:

(A.6)

By applying (A.4), (A.5) and (A.6) we obtain

. Since by as-

sumption  it follows that . QED

A.2 Evaluating and expanding the joint probability of the excess volume 
and the excess time that starts in (0,dt1) and ends in (t,t+dt2)

In this section we derive an expression for the joint probability of the event that the ex-
cess volume that lies in the interval  and that the excess time starts in 

and ends in  for small  and . By decomposing this event into four parts
we may write this probability as:

.

We use a similar approach to evaluate each of these parts as we used for the conditional ex-
cess times and excess volume described in chapter 3. For  we find:
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 for small  so therefore the event

 gives . Then by condition-

ing on  and  and integrating, and applying the assumption that the rate

process  is stationary we find that  may be written:

(A.8)

Continuing by evaluating  we relate the

volume  to  for small

 and . Therefore the event  gives

. By

conditioning on  and  and integrating, and applying the assumption

that the rate process  is stationary we find that  may be written:

(A.9)

Finally to evaluate  we relate the volume

 by  for small . Therefore the event

 gives . By condi-

tioning on  and  and integrating, we find that  may be written:

(A.10)

Then by expanding the four integrals above to second order for small  and  and col-
lecting we get:
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Appendix B
BSome important properties for multinormal

integrals

This appendix is devoted to integrals over multinormal distributions. Such types of inte-
grals will show up during the study of normal stochastic processes, and will provide an im-
portant tool in the effort to gain knowledge of important properties of such processes. The
main findings are that multinormal integrals have some nice properties that reduce the com-
plexity in numerical computations. By applying these results we are able to obtain expres-
sions that reduce the number of numerical integrations to half the dimension of the inte-
grals. Thus by applying this method we are able to calculate a five dimension multinormal
integral by performing two numerical integrations. These simplifications are obtained by
taking various partial derivatives with respect to the parameters involved, especially the ele-
ments in the Covariance matrix.

Throughout this appendix we shall work with multinormal distributions and we take the fol-
lowing assumptions: We consider -dimensional multinormal distributed variables

 with zero mean, and covariance matrix  where we assume

that . (This means that the ‘s are all standard (normalized) normal variables with

zero mean and variance equal unity.) If we let  denote the inverse covari-

ance matrix , then the joint density function for  is given by:

(B.1)

In the succeeding we shall investigate different types of integral derived from (B.1) and see
that these integrals can be related by integrals of lower dimensions. When writing (B.1) we

should also be aware of the fact that  can be considered as a function of the  co-

variances .

n
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--------------------
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The main contributions throughout this appendix are on integrals based on the multinormal
distribution. The various types of integrals considered will be brought into variants of inte-
gral of the (standard) form:

 (B.2)

where  is given by (B.1), where we also indicate the dependencies of all the
parameters involved:

-the dimension of the integral

-is the vector consisting of the integration limits

-is the covariance matrix which is symmetric and with 

Before giving the main results (on multinormal integrals) we first need some preliminary re-
sults mainly on linear algebra and determinants. We put these results in a separate section
below.

B.1 Some preliminary results
We first start by giving some preliminary results that we shall apply later on in the analysis.

Lemma B.1. Let  be a symmetric nonsingular  matrix with  and let

 be the corresponding inverse matrix. Then  also is symmetric and the

partial derivative of the elements in  with respect to the elements in  is given by the
relation:

(B.3)

(If , (B.3) reduces to ).

Further if  are functions of  then

(B.4)

Proof: By taking partial derivatives of the relation  we find:
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 and solving for  gives

. In component form this gives .

The only non zero contribution to the last sum comes when  and
 for which the partial derivatives equal unity and this gives (B.3).

If  are functions of , then we obtain by applying (B.3):

. By using the fact

that  and that the matrix  is symmetric we get (B.4). QED

When working with multidimensional normal distributions and integrals it is often neces-
sary to change the integration variable, and this may lead to different transformations of the

matrices involved. One such transformation we use is to transform the inverse  so that
the diagonal elements are unity. We denote this transformation by the matrix 
where

 (B.5)

Lemma B.2. The transformation (B.5) is fully symmetric. That is:

 and (B.6)

Proof: In matrix notation (B.5) reads:

 which implies

 or in component form

. (B.7)
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The diagonal elements  give , and by pre and post multiplying with the

inverse of the diagonal matrices gives us  as:

(B.8)

which is the matrix form of (B.6). QED.

Lemma B.3. We have the following relation between the partial derivatives:

(B.9)

Proof: We have . By us-

ing (B.3) we get , and by applying

(B.6) and (B.7) we find . QED

Lemma B.4. We have

(B.10)

where  is obtained from  by deleting row  and column  and further

(B.11)

Proof: The proof relays on the assumption that  is symmetric. By expanding the determi-

nant of  of the -th row we obtain:  and further by
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expanding  by the ‘th row ( ) we have factored out the two variable ele-
ments  and :

, where  is obtained from 

by deleting row  and  and column  and . Differentiating the last equation with respect
to  we get a single contributions when  and  and  and  and a

square contribution when  and . Collecting the different parts we find:

. The first sum we recognize

as  expanded after the -th row, and second sum is  expanded after

the -th row. Since  is symmetric, it follows that  and this

gives . Equation (B.11) follows from the fact that the

inverse of a matrix may be expressed by its cofactors: .QED.

We shall end this introductory section by showing that the multinormal distribution has
some remarkable properties which will be important when we consider integrals like (B.2).

Lemma B.5. The multinormal distribution (B.1) has the following properties:

 and further (B.12)

(B.13)

Proof: The first part is obvious. To prove the second part, we find by differentiation of 

with respect to the parameter 
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. By

using (B.3) and (B.11) we have

 which also equals

. QED

B.2 Conditional distributions of multinormal variables
We shall make use of some results obtained from conditional distributions. It is well known
that conditional distribution derived from multinormal distributions also is multinormal,
though the conditional variable will now longer have zero mean. The proof of the general

statement on conditional distributions is done by rewriting the quadratic form 

in different ways. We include the general theorem because we shall apply the results with
different dimensions later on in the appendix. It is possible to find the following result in
the literature but we shall state the general case here for the sake of completeness.

Lemma B.6. The conditional distribution of
 given ,...,  (where

) is multinormal of dimension  and with parameters:

 , , (B.14)

and where the covariance matrix given by:

(B.15)

,  where  is the -rowed minor of the correlation cov-

ariance matrix  giving by the rows and columns , (that is 

,  and ) and  is a -dimensional (row-)vector
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with elements  ; that is  , and

 is the corresponding column-vector (transposed). The matrix  is

obtained from  by replacing column ,  by , that is

,

, , .

Further the inverse of the Covariance matrix may be found from  by deleting row
and column .

Proof: Without losing generality we choose ,..., , (since it is always possible

to re-arrange the rows and columns in the original correlation matrix  so that this will be

the case) and we denote  the -rowed minor of  given by the rows and columns
. The proof is greatly simplified by introducing matrix formulation. We have

 where (B.16)

 and  and . The rest of the proof is

now devoted to rewrite the quadratic form . We divide matrices  and  into the fol-

lowing sub matrices  and  where  and  are 

matrices,  and  are  matrices,  and  are  matrices, and

 and  are  matrices. (Since both  and  are symmetric matri-

ces, the same will apply for , ,  and , and the transposed of  and 

equals  and  respectively.) If we also let  where ,

the quadratic form  may be written as follows:

(B.17)

The exponent  will represent a multinormal distribution if and only if we can find a (cov-
ariance)-matrix  of dimension  and a matrix  of dimension

 so that  may be re-written as:

(B.18)
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Comparing (B.17) and (B.18), this can be done by choosing  giving

. Secondly we must have  which gives

. From the relation  we get four matrix equations

, ,  and

. From the second and third of these equations we deduce:

 and , giving

(B.19)

From the first matrix equation we find (by pre-multiplying by ):

. Then inserting for 

and  we get . Thus by

choosing  and , (B.17) and (B.18) are identically,

and represent an  dimensional multinormal distribution with covariance matrix

. Since (B.16) represents a joint probability density function (in the variable

, and the integral over these variables equals unity), it follows that the
relation between the determinants yields:

. (B.20)

(The relation (B.20) could as well be proved directly for instance by applying the so called
Jacobi’s theorem which relates the -rowed minors of an  matrix with the correspond-
ing -rowed minors of the corresponding matrix of co-factors, so by applying this the-

orem we also get: . See [Grad94] page 1142.)

By inserting for  in the fourth matrix equation above we find:

 and it follows that the conditional correlation matrix, equals

the inverse of , may be written:

(B.21)
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Collecting the results above and writing them component wise we get:

,  where (B.22)

, (B.23)

for ,  and

 

 for (B.24)

In (B.23) and (B.24) we have written the inverse of a matrix by using the corresponding co-

factors and the matrix  is obtained from  by deleting row  and column . Fur-

ther  since  is a symmetric matrix, and

, ,  where and  is a -

dimensional (row-)vector , , and  is the corre-

sponding column-vector (transposed). QED

From (B.15) we find the conditional standard deviations as:

 , . (B.25)

We may then find the conditional  correlation matrix

 as:

 (B.26)
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If we denote  the inverse of the correlation matrix , we

can write the joint conditional PDF (B.16) in a standard way:

(B.27)

where we have defined the coefficients:

 ,  (B.28)

and 

 

Below we apply the general lemma above and give the results for some specific cases
which we use later in the analysis.

Corollary B.1. The conditional distribution of  given  is

multinormal of dimension  and with parameters:

 ,  and covariance matrix given by: (B.29)

 , (B.30)

Further the inverse of the covariance matrix is obtained from  by deleting row and
column .

The conditional standard deviations are found from (B.30):

 ,  and (B.31)
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 , . (B.32)

Corollary B.2. The conditional distribution of  given ,...,  is normal distributed
with parameters:

(B.33)

and the variance is given by:

, and (B.34)

further the corresponding PDF is give as:

(B.35)

Obviously the conditional distribution may be taken as a (new) starting point when condi-
tioning on additional variable. This is clear since the normalised (conditional) variables

 ,  (B.36)

are standard multinormal distributed (of dimension ) given , , with cov-

ariance (correlation) matrix . This makes it possible to obtain relations between the
parameters of any sets of conditional multinormal variables. We shall use this property to
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 we obtain by applying corollary B.1 above that  is multinor-

mal distributed with dimension  and with parameters:

 for (B.37)

,  and covariance matrix given by:

(B.38)

, . 

Now the conditional normalised variables of the ‘s given ,  may

be obtained by using (B.37) and (B.38) and must equal (B.36), and this gives the following
important relations: 

 , . (B.39)
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tional correlation between  and  by applying (B.38):

 , . (B.40)
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–

1 ρisk

s1 … sk 1–, ,
( )

2
– 1 ρjsk

s1 … sk 1–, ,
( )

2
–

----------------------------------------------------------------------------------------= i j, 1 ... n, ,= i j, s1 … sk, ,≠

k k 1–
Bi Bsl

σi
s1 … sk, ,

σi
s1 … sk 1–, ,

1 ρisk

s1 … sk 1–, ,
( )

2
–= i 1 ... n, ,= i s1 … sk, ,≠

ail
s1 … sk, , ail

s1 … sk 1–, , ρisk

s1 … sk 1–, ,
σsk

s1 … sk 1–, ,

σi
s1 … sk 1–, ,

------------------------------------------------askl
s1 … sk 1–, ,

–=

l 1 ... k 1–, ,= i 1 ... n, ,= i s1 … sk, ,≠
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 for ,  (B.43)

The recursion formulae (B.40)-(B.43) may also be proved more directly by applying the de-
terminant expressions (B.25), (B.26) and (B.28) by applying Jacobi’s theorem [Grad94],
(14.16 page 1142) to obtain relations between determinants of different dimensions.

When considering multinormal integrals like (B.2) we will often use specific values of the
variable  (for instance as integration limits, and we denote the corresponding vec-

tor ). Recursively (by induction) we may define integrals of dimension

 based on the conditional distribution (B.27) (where the conditioning is done with re-
spect to the variables ). The corresponding multinormal integral of

dimension  will then be of type  where the corresponding

integration limit vector  (with elements  of dimension ) is found by

inserting  in the exponent of the conditional distribution (B.27):

 ,  (B.44)

This equation is identically with (B.36) and therefore the recursion (B.39) yields. We sum-
marise the results above in the following lemma:

Lemma B.7. Let ; (  ,..., ) be the corre-

lation matrix and further ; (  ,..., ) be the vec-

tor of the corresponding integration limits for the integral ; based

on the conditional multinormal distribution (B.27) of dimension  given the  variable
; ( ). Then these parameters are given by the determinant ex-

pressions (B.26) and (B.44) by (B.28) and (B.25), and satisfy the following recursion for-
mulae:

 (B.45)

for  and ,...,  and

aik
s1 … sk, , ρisk

s1 … sk 1–, ,
σsk

s1 … sk 1–, ,

σi
s1 … sk 1–, ,

------------------------------------------------= i 1 ... n, ,= i s1 … sk, ,≠

ξ i Ci=

C C1 … Cn, ,( )=

n s–
Bk1

Ck1
… Bks

Cks
=, ,=

n k– I n k C
s1 … sk, , Ms1 … sk, ,

, ,–( )

C
s1 … sk, , Ci

s1 … sk, , n s–

ξ i Ci=

Ci
s1 … sk, ,

Ci ail
s1 … sk, ,

l 1=

k

∑– Csl

σi
s1 … sk, ,

--------------------------------------------= i 1 ... n, ,= i s1 … sk, ,≠

Ms1 … sk, ,
ρij

s1 … sk, ,
( )= i j, 1 … n, ,= i j, s1≠ i j, sk≠

C
s1 … sk, ,

Ci
s1 … sk, ,

( )= i 1 … n, ,= i s1≠ i sk≠

I n s C
k1 ... ks, , Mk1 ... ks, ,

, ,–( )

n k– k
Bs1

Cs1
… Bsk

Csk
=,,= k n<

Ci
s1 … sk, , Ci

s1 … sk 1–, ,
ρisk

s1 … sk 1–, ,
Csk

s1 … sk 1–, ,
–

1 ρisk

s1 … sk 1–, ,
( )

2
–

----------------------------------------------------------------------------=

i 1 … n, ,= i s1≠ i sk≠
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 (B.46)

for  and ,..., 

The recursion may be started for  by calculating  and :

 for  and  and (B.47)

 for  and . (B.48)

B.3 Multinormal integrals
In the rest of this appendix we shall examine different types of integrals over the multinor-
mal distribution (e.g. given by (B.1)). The origin of these types of integrals comes from the

-point approximation of the excess time and volume distribution of a stationary Gaussian
process. We find that these type of integrals have some particular properties which we shall
take advantage of in numerical computations.

As a starting point we first consider the (standard) multinormal integral of the form:

 (B.49)

where  is given by (B.1), -is the vector consisting of the in-

tegration limits, -is the covariance matrix (which is symmetric and with )

and  is the dimension of the integral. Below we frequently also will have integrals of type

(B.50)

where the integral is of dimension  and does not involve the variables . By

applying the conditional distribution (B.27) we find that this type of integral may be writ-
ten as:

(B.51)

ρij
s1 … sk, , ρij

s1 … sk 1–, ,
ρisk

s1 … sk 1–, ,
ρjsk

s1 … sk 1–, ,
–

1 ρisk

s1 … sk 1–, ,
( )–

2
1 ρjsk

s1 … sk 1–, ,
( )

2
–

--------------------------------------------------------------------------------------=

i j, 1 … n, ,= i j, s1≠ i j, sk≠

k 1= C
s1 Ci

s1( )= Ms1 ρij
s1( )=

Ci
s1

Ci ρis1
Cs1

–

1 ρis1

2–
-------------------------= i 1 … n, ,= i s1≠

ρij
s1

ρij ρis1
ρjs1

–

1 ρis1

2– 1 ρjs1

2–
-----------------------------------------= i j, 1 … n, ,= i j, s1≠

n

I n C M, ,( )   ...  fn ξ1,...,ξn M;( ) ξn... ξ1dd
ξn Cn=

∞

∫
ξ1 C1=

∞

∫=

fn ξ1,...,ξn M;( ) C C1 ... Cn, ,( )=

M ρij( )= ρii 1=

n

I
s1 … sk, ,

n C M, ,( )   ...  fn ξ1,...,ξs1 1– Cs1
ξs1 1+ … ξsk 1– Csk

ξsk 1+ … ξn M;, , , , , , , ,( ) ξn... ξ1dd
ξn Cn=

∞

∫
ξ1 C1=

∞

∫=

n k– ξs1
… ξsk

, ,

Is1 … sk, , n C M, ,( ) fk Cs1
,...,Csk

Ms1 … sk, ,;( )I n k C
s1 … sk, , Ms1 … sk, ,

, ,–( )=
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where  is the  dimensional standard multinormal distribution with

correlation matrix  which is the -rowed minor of the correlation covariance ma-

trix  giving by the rows and columns , that is  ,

 and . (The corresponding integration limits  are given by

(B.44) and the correlation matrix  is give by (B.26).)

By using the conditional distribution (B.27) it is also possible to factor out some variables
in  and integrate first over these variables. By this approach it is possible to write
(B.39) as follows:

(B.52)

where we indicate that the limit vector  are functions of the variable

 and the elements are given by

 ,  (B.53)

Below we shall show that integrals of type  have some remarkable properties
mainly because of the results in lemma B.5. By applying these properties we may relate the
partial derivatives of the integral with respect to the parameters.

Theorem B.1. For the integral (B.49) we have:

 for  and further (B.54)

 for (B.55)

Proof: The first part of the theorem is obvious. The second part is a direct result of lemma

B.5 equation (B.13) giving . QED

By exploiting the properties of the conditional density by applying the results from lemma
B.6 and lemma B.7 we are able to relate differentiation with respect to the integration lim-

fk ξ1,...,ξk Ms1 … sk, ,;( ) k

Ms1 … sk, , k

M s1 … sk, , Ms1 … sk, , ρsisj
( )= i j, 1 … k, ,=

ρsisi
1= ρsisj

ρsjsi
= C

s1 … sk, ,

Ms1 … sk, ,

I n C M, ,( )

I n C M, ,( ) …

ξ1 Cs1
=

∞

∫ fk

ξ2 Csk
=

∞

∫ ξ1,...,ξk Ms1 … sk, ,;( )I n k C
s1 … sk, ,

ξ1,...,ξk( ) M
s1 … sk, ,

, ,–( ) ξk... ξ1dd=

C
s1 … sk, ,

ξ1,...,ξk( )

ξ1,...,ξk( )

Ci
s1 … sk, ,

ξ1,...,ξk( )

Ci ail
s1 … sk, ,

l 1=

k

∑– ξ l

σi
s1 … sk, ,

------------------------------------------= i 1 ... n, ,= i s1 … sk, ,≠

I n C M, ,( )

Ck∂
∂I Ik n C M, ,( )–= 1 k n≤ ≤

ρkl∂
∂I Ik l, n C M, ,( )= 1 k l n≤<≤

ρkl∂
∂I   ...  ξk ξ l∂

2

∂
∂ fn ξ1,...,ξn M;( ) ξn... ξ1dd

ξn Cn=

∞

∫
ξ1 C1=

∞

∫ Ik l, n C M, ,( )= =
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its  and differentiation with respect to the covariances  of -dimensional multinor-

mal integral by corresponding  and  dimensional normal integrals.

Theorem B.2. We have

(B.56)

where  is the standard normal density and the vector  is obtained from 

by deleting element . The other elements are given by (B.47):

 for , (B.57)

Further  is obtained from  by deleting row  and column  and having elements giv-
en by (B.48):

 for , (B.58)

Further

(B.59)

where

 (B.60)

is the standard bivariate normal density function with correlation , and further the vector

 may be obtained from  by deleting element  (keeping in mind that row  and is

already deleted from , ) and its elements may be found for instance from lemma
B.7 by using (B.45) with two iterations: 

 for , (B.61)

Ck ρkl n

n 1– n 2–

Ck∂
∂ I n C M, ,( ) f1– Ck( )I n 1– Ck Mk, ,( )=

f1 x( ) e x2 2⁄–

2π
--------------= Ck C

k

Ci
k Ci ρikCk–

1 ρik
2–

----------------------= i 1 ... n, ,= i k≠

Mk M k k

ρij
k ρij ρikρjk–

1 ρik
2– 1 ρjk

2–
----------------------------------------= i j, 1 ... n, ,= i j, k≠

ρkl∂
∂I n C M, ,( ) f2 Ck Cl ρkl, ,( )I n 2 Ck l, Mk l,, ,–( )=

f2 x1 x2 ρ, ,( ) 1

2π 1 ρ2–
------------------------- x1

2 x+ 2
2

2ρ– x1x2

2 1 ρ2–( )
-------------------------------------–exp=

ρ

Ck l, Ck l k

Ck k l<

Ci
k l, Ci

k ρil
k Cl

k–

1 ρil
k( )

2
–

---------------------------

Ci
ρki ρklρli–

1 ρkl
2–

---------------------------Ck–
ρli ρklρki–

1 ρkl
2–

---------------------------Cl–

1 ρkl
2– ρik

2– ρil
2– 2ρklρikρil+

1 ρkl
2–

-------------------------------------------------------------------------

--------------------------------------------------------------------------------= = i 1 ... n, ,= i k l,≠
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Further  may be obtained from  by deleting row  and column  (keeping in mind

that row  and column  are already deleted from , ) and with elements obtained
by using (B.46) with two iterations:

(B.62)

for , 

Proof: The theorem follows directly form theorem B.1 and equation (B.51). QED

Corollary B.3. For the special case where   we find:

 (B.63)

and where the -vector is given by:

 for , (B.64)

and the correlation matrix  is given by (B.62).

Since we know all the partial derivatives of the integral  as a function of the

 correlation  it possible to calculate it by applying standard contour integration. 

Theorem B.3. We have:

(B.65)

Mk l, Mk l l

k k Mk k l<

ρij
k l, ρij

k ρil
k ρjl

k–

1 ρil
k( )–

2
1 ρjl

k( )
2

–
----------------------------------------------------

ρij 1 ρkl
2–( ) ρ– ikρjk ρil– ρjl ρkl ρikρjl ρilρjk+( )+

1 ρkl
2– ρik

2– ρil
2– 2ρklρikρil+ 1 ρkl

2– ρjk
2– ρjl

2– 2ρklρjkρjl+
-----------------------------------------------------------------------------------------------------------------------------------------------------------= =

i j, 1 ... n, ,= i j, k l,≠

Ci C= i 1 ... n, ,=

ρkl∂
∂I e

C2

1 ρkl+
----------------–

2π 1 ρkl
2–

-----------------------------I n 2 Ck l, Mk l,, ,–( )=

Ck l,

Ci
k l, C

1 ρkl ρki– ρli–+( )

1 ρkl+( ) 1 ρkl
2– ρik

2– ρil
2– 2ρklρikρil+( )

1 ρkl–
----------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------= i 1 ... n, ,= i k l,≠

Mk l,

I n C M, ,( )
n n 1–( )

2
-------------------- ρij

I n C M, ,( ) φ Ci( ) ρkl ρkl∂
∂I n C ξM, ,( ) ξd

ξ 0=

1

∫
1 k≤ l n≤<
∑+

i 1=

n

∏=

φ Ci( ) ρkl f2 Ck Cl ξρkl, ,( )I n 2 Cξ
k l, Mξ

k l,, ,–( ) ξd
ξ 0=

1

∫
1 k≤ l n≤<
∑+

i 1=

n

∏=
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where the matrix  and  and  are given as in theorem B.2 but with re-

placing  with  for all , and further  is the normal inte-

gral.

Proof: This is application of the standard theorem of line integral of a gradient where we
also make use of the fact that for all , the variables are all independent, and the in-
tegral is the product of (standard) normal integrals. We therefore take the straight line
from  to  as the path of integration. In the last part of the theo-
rem we just apply theorem B.2. QED.

Theorem B.3 prescribes an effective way of calculating integrals of multinormal distribu-
tions of rather high dimensions. For instance an integral of dimension  and 
we only need one single (numerical) integration. By using the theorem recursively, integral
of dimension  and  only need two numerical integrations. We shall write
down the results for the two first cases (  and ) explicitly as a reference:

 and (B.66)

with: (B.67)

 and 

 and 

In the literature the main focus have been on multinormal integrals where the lower integra-
tion limits is zero. For this special case it is possible to obtain some more explicit expres-
sions. We shall mention some of these cases. First we observe that the integrals (B.66) and
(B.67) may be expressed in terms of Arcsin functions. We find:

ξM ξρij( )= Cξ
k l, Mξ

k l,

ρij ξρ ij i j, φ x( ) 1
2π

---------- e t2 2⁄–

t x=

∞

∫ dt=

ρij 0=

0 ... 0, ,( ) ρ12 ... ρn 1n–, ,( )

n 2= n 3=

n 4= n 5=
n 2= n 3=

I 2 C1 C2 ρ12, , ,( ) φ C1( )φ C2( ) ρ12 f2 C1 C2 ξρ12, ,( ) ξd
ξ 0=

1

∫+=

I 3 C1 C2 C3 ρ12 ρ13 ρ23, , , , , ,( ) φ C1( )φ C2( )φ C3( ) ρ12 f2 C1 C2 ξρ12, ,( )φ C3
1 2, ξρ12 ξρ13 ξρ23, ,( )( ) ξ+d

ξ 0=

1

∫+=

ρ13 f2 C1 C3 ξρ13, ,( )φ C2
1 3, ξρ12 ξρ13 ξρ23, ,( )( ) ξ+ρ23 f2 C2 C3 ξρ23, ,( )φ C1

2 3, ξρ12 ξρ13 ξρ23, ,( )( ) ξd
ξ 0=

1

∫d
ξ 0=

1

∫

C3
1 2, ρ12 ρ13 ρ23, ,( ) C3 C1

ρ13 ρ12ρ23–

1 ρ12
2–

-------------------------------– C2

ρ23 ρ12ρ13–

1 ρ12
2–

------------------------------–
 
 
  1 ρ12

2–

1 ρ12
2 ρ– 13

2
ρ23

2– 2ρ12ρ13ρ23+–
------------------------------------------------------------------------------=

C2
1 3, ρ12 ρ13 ρ23, ,( ) C2 C1

ρ12 ρ13ρ23–

1 ρ13
2–

-------------------------------– C3

ρ23 ρ12ρ13–

1 ρ13
2–

------------------------------–
 
 
  1 ρ13

2–

1 ρ12
2 ρ– 13

2
ρ23

2– 2ρ12ρ13ρ23+–
------------------------------------------------------------------------------=

C1
2 3, ρ12 ρ13 ρ23, ,( ) C1 C2

ρ12 ρ13ρ23–

1 ρ23
2–

-------------------------------– C3

ρ13 ρ12ρ23–

1 ρ23
2–

------------------------------–
 
 
  1 ρ23

2–

1 ρ12
2 ρ– 13

2
ρ23

2– 2ρ12ρ13ρ23+–
------------------------------------------------------------------------------=



- 215 -

 and (B.68)

(B.69)

In the general cases one could hope that (B.68) and (B.69) could be extended. This is possi-
ble only for some special case. By considering (B.59), (B.60) and (B.61) we have:

(B.70)

If for instance all the matrices  equal the identity matrix (this requires that ,

defined by (B.62), for each , ( ) and each ( ,  and ),

then  and we may perform the integration in (B.65) explicitly by

applying (B.70). We therefore have the following lemma:

Lemma B.8. If  and  conditions on each pair ,  are independent for each

 and , then , and we have:

(B.71)

It is possible to extend the result above by assuming that  has the property
of lemma B.8 (i.e. is on the form (B.71)) and thereby including the “next” contribution to
the integral above. We shall, however, not carry the analysis any further because the result
will include terms that are given as integrals that will be difficult to find explicit expres-
sions for in the general case.

We shall also consider multinormal integrals of type:

 and (B.72)

 for (B.73)

We shall show that these integrals may be written as an integral of type (B.49). 

Theorem B.4. We have

I 2 0 0 ρ12, , ,( ) 1
4
--- 1 2

π
---Arc ρ12( )sin+ 

 =

I 3 0 0 0 ρ12 ρ13 ρ23, , , , , ,( ) 1
8
--- 1 2

π
--- Arc ρ12( ) Arc ρ13( ) Arc ρ23( )sin+sin+sin[ ]+ 

 =

ρkl∂
∂I n 0 M, ,( ) 1

2π 1 ρkl
2–

---------------------------I n 2 0 Mk l,, ,–( )=

Mk l, ρij
k l, 0=

k l, 1 k l n≤<≤ i j, 1 i j n≤<≤ i j, k l,≠

I n 2 0 Mk l,, ,–( ) 1
2n 2–
------------=

Bi Bj Bk Bl,{ } k l≠

i k l,≠ j i k l, ,≠ Cov Bi Bj, Bk Bl,{ }[ ] 0=

I n 0 M, ,( ) 1
2n
----- 1 2

π
--- A

1 k l n≤<≤
∑ rc ρkl( )sin+

 
 
 

=

I n 2 0 Mk l,, ,–( )

Ii n C M, ,( )   ...  ξ ifn ξ1,...,ξn M;( ) ξn... ξ1dd
ξn Cn=

∞

∫
ξ1 C1=

∞

∫=

Ii j, n C M, ,( )   ...  ξ iξ jfn ξ1,...,ξn M;( ) ξn... ξ1dd
ξn Cn=

∞

∫
ξ1 C1=

∞

∫= i j<
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(B.74)

where  is the standard normal density and the vector  and the matrix 

is given in theorem B.2.

Proof: We have . Integrating this relation

gives: .

The last relation can be viewed as a linear system for . Then by post multiplying by 

and summing we get: . The result follows now by using

(B.51). QED.

The corresponding result for integrals of type (B.73) is more difficult to obtain. We shall
use the transformation (B.5) to obtain the result.

Theorem B.5. We have:

(B.75)

(B.76)

for , where  and , and  and  are defined in theorem B.2.

Proof: We use a different approach to prove theorem B.5 than we used for theorem B.4. We
shall prove the theorem by applying the transformation (B.5) for the integrals 

and . By changing the integration variable to  it is

possible to rewrite the integrals  and  in the following way:

Ii n C M, ,( ) ρikIk n C M, ,( )
k 1=

n

∑ ρikf1 Ck( )I n 1– Ck Mk, ,( )
k 1=

n

∑= =

f1 x( ) e x2 2⁄–

2π
--------------= Ck Mk

ξk∂
∂ fn ξ1,...,ξn M;( ) fn ξ1,...,ξn M;( ) ξ iMik

1–

i 1=

n

∑
 
 
 
 

–=

Ii

i 1=

n

∑ n C M, ,( )Mik
1–   ...  

ξk∂
∂ fn ξ1,...,ξn M;( ) ξn... ξ1dd

ξn Cn=

∞

∫
ξ1 C1=

∞

∫– Ik n C M, ,( )= =

Ii ρki

Ii n C M, ,( ) ρikIk n C M, ,( )
k 1=

n

∑=

Ii j, n C M, ,( ) ρik ρjl ρklρjk–( )[ ]
l 1=
l k≠

n

∑
k 1=

n

∑ Ik l, n C M, ,( ) CkρikρjkIk n C M, ,( ) ρijI n C M, ,( )+
k 1=

n

∑+=

ρik ρjl ρklρjk–( )[ ]
l 1=
l k≠

n

∑
k 1=

n

∑ f2 Ck Cl ρkl, ,( )I n 2 Ck l, Mk l,, ,–( ) Ck ρikρjkf1 Ck( )I n 1– Ck Mk, ,( ) ρijI n C M, ,( )+( )
k 1=

n

∑+=

i j< Ck Mk Ck l, Mk l,

I n C M, ,( )

Ii j, n C M, ,( ) ξ i∗ Mii
1– ξ i Θii

1– ξ i= =

I n C M, ,( ) Ii j, n C M, ,( )
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 and (B.77)

Differentiating  given as the integral (B.77) with respect to  gives us:

. Then solving

for  and simplifying gives:

 (B.78)

By using the results from lemma B.1 we have  and therefore

 by lemma B.2. Further by lemma B.4

 so  by (B.5). Further

 by lemma B.3. Inserting these results in

(B.78) yields:

The result follows now from theorem B.1 and theorem B.2 (where we also use the fact that

) QED.

We shall also consider multinormal integral of type:

I n C M, ,( ) Det Θ[ ]
2π( )n 2⁄

-----------------------   ...  1
2
--- ξk

2 2 ξkξ l
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 
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 
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ξn Cn Θnn
1–=

∞

∫
ξ1 C1 Θ11

1–=

∞
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1– Θjj

1–
-----------------------------------------------   ...  ξ iξ j

1
2
--- ξk
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 
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∞
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 and (B.79)

(B.80)

for .

These integrals may be given as a sum of multinormal integrals on standard form by apply-
ing theorem B.4 and theorem B.5. We find:

(B.81)

and

(B.82)

In many applications involving multinormal integrals the parameters will be functions of
different variables. In chapter 4 we frequently apply the following corollary which follows
directly from theorem B.1 and theorem B.2.

Corollary B.4. Suppose ,  are functions of  and  and

,  all are functions of , then the partial derivative of

 is found as:

 and (B.83)
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∞
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ξn Cn=

∞

∫
ξ1 C1=

∞
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(B.84)

(B.85)

It is possible to obtain similar results as theorem B.1 for higher order partial derivatives of
the parameters by applying theorem B.2 recursively. This leads to integrals of type (B.50)
(or (B.51)) and we may use Theorem B.2 to find the derivative. These results can therefore

be expressed in terms of partial derivatives of integrals of type  (given by
(B.50)) with respect to the parameters. Below we only give the general result for the partial
derivative with respect to the elements in the limit vector . 

Theorem B.6. If , then 

 and (B.86)

if  for , then 

(B.87)

Proof: The first part is obvious. We therefore take  (for ). By (B.51) we
have:

By lemma B.5 (equation (B.12)) we have

 and multiplying with

 and using (B.51) gives the first part of expression (B.87). By apply-
ing corollary B.2 (equation (B.83)) we have
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. Further

we have

where  is obtained from  by adding the row-vector

(and corresponding column-vector ), and where we also

apply (B.25). By (B.44) we also have . By inserting the different ex-

pressions and applying (B.44) we then obtain the second part of (B.87). QED.

The corresponding result for the partial derivative of the multinormal integral with respect
to the elements in the correlation matrix  is also possible to obtain by applying the fol-
lowing quite remarkable theorem for these types of integrals. The following theorem is
more or less a direct implication of the results in lemma B.5.

Theorem B.7. For integrals of type  (given in (B.50)) we have the follow-
ing result:

 for (B.88)

Proof: Differentiating (B.50) with respect to the correlations we have

 (B.89)

where the integral is of dimension  and does not involve the variable . Then

by applying lemma B.5 (equation (B.13)) we have depending on the values of  and , the
following cases: 

(i): Both  giving . Integrating twice gives the result for this

case since .
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(ii): If either  and  or  and  then

 or . Integrating once we get either

 or 

.

(iii): The last case occurs when  and . In this case  and

therefore . QED

B.4 Some limits for Multinormal integrals
In this section we shall prove some limits that we quite frequently have applied in chapter
4. We consider an integral  of dimension  where the limits ,

 and the covariances ,  all are functions of . 

Theorem B.8. If all the  when  for , then

(B.90)

Proof: This is obvious since the integral is over a multidimensional probability density func-
tion.

Theorem B.9. If there is one  for which the  when , then

(B.91)

Proof: By applying (B.52) we may write  on the form:

 (B.92)
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where the integration limits are given as  for , 

and the covariance matrix  is given by (B.58). Since  it fol-

lows that  where  is the standard nor-

mal integral. The result follows now by applying the asymptotic expansion of  for

large ;  as .

Theorem B.10. If all the ,  and ,  when

, then

(B.93)

Proof: Applying (B.92) we have: 

. 

If we for instance choose  sufficient small (and fixed), then we can write this difference
as:

, giving

For the integration limits  we have ,  so there-

fore  for all ,  when . By theo-

rem B.8 we have  when . We may therefore

choose a second  so that  for all  and 

sufficient small. Similar we may also choose a third  so that  for  sufficient
small. Then by collecting the results above we finally may derive the following inequality:
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. 

The result follows since all the three epsilons may be chosen arbitrary small (by also choos-
ing  sufficient close to ) QED.

The result will be quite different if some of the correlations  tend to . In chapter 4
we need the following result:

Theorem B.11. If we have two integer  and  such that  or

 and

,  and  and , , if further 

, ,  , ,   and

 and

,  ,  ,   and

  when , then

(B.94)

(See figure B.1 for the structure of the correlation matrix .)

Proof: We pick one  for which  (i.e.  or ), then by (B.92)
we have: 
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. If we for instance choose  sufficient small (and

fixed) we split the last integral into two parts

, bounding  by

. We now choose one  such that

 (By the structure of the limiting matrix this will always be possible, by choos-

ing , see figure B.1.) We then have  and for this particular integra-

tion limit  we have . Therefore

 when . By Theorem B.9 we have

 when . We may therefore choose a second 

so that  for all  and  sufficient small. Similar we

may also choose a third  so that  for  sufficient small. Then by collecting
the results above we finally may derive the following inequality:

. 

The result follows since all the three epsilons may be chosen arbitrary small (by also choos-
ing  sufficient close to ) QED.
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Appendix C
CThe sign of the real part of the poles of the

Laplace transforms in section 5.4

In this appendix we shall show that all the poles of the LST (5.37) for the excess times
must have negative real part.

Theorem C.1. If  is a pole of (5.37), then .

Proof: We take the form (5.65) of the Laplace transform as the starting point. If  is a
pole in (5.65), then by (5.66):

(C.1)

If  corresponds to a pole of , that is  then  since 

 for  which gives that

 for .

If  corresponds to a pole where , this means that  is an

eigenvalue of the matrix . Let , ( ) be the corre-

sponding left eigenvector; that is,

(C.2)

Suppose that ; then by (C.2) we have
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Ĥi s( ) e Re s( )t– Hi t( ) td
t 0=

∞

∫ Hi t( ) td
t 0=

∞

∫≤ mi= = Re s( ) 0≥

1
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(C.3)

From the definition of  and the assumption  we have:

(C.4)

We shall assume that there are at least one state  such that  for some

. By this assumption and (C.3) and (C.4) we find:

.

The assumption  therefore leads to the contradiction:

, which implies that if  is a pole where

, then . QED.

The same result will also apply for the poles of the LST of the excess volume (5.57). The
location of possible poles are given by the corresponding equation to (C.1):

(C.5)

Recall that the Matrix  is given by  for  and ,

and  for . We can therefore perform exactly the

same proof as above by observing that (C.4) also yields for .

We may also apply the same method on the LSTs (5.38) and (5.58) by considering the

matrices  and . 
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Appendix D
DAlternative expressions for the Laplace

transforms in section 5.4.3

It is possible to rewrite the formulae for the LSTs for birth-death semi-Markov processes
given in section 5.4.3. This can be done by rewriting the determinants (5.74), (5.76), (5.80)
and (5.82), where we also make the corresponding matrices symmetric by pre multiplying
by a given diagonal matrix and post multiplying by the corresponding inverse. We find:

 (D.1)

where  and the matrix  is the symmetric tri-diagonal matrix:

 and (D.2)

 (D.3)

where  and the matrix  is the symmetric tri-diagonal matrix:
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 (D.4)

where  and , ,  and .

We may also obtain corresponding recursion formulae by expanding the determinants as
(5.77) and (5.78):

The LSTs for the excess volumes may also be rewritten as follows:

 (D.5)

where  and the matrix  is the symmetric tri-diagonal matrix:

(D.6)

where ,  and ;  and

 (D.7)

where  and the matrix  is the symmetric tri-diagonal matrix:
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(D.8)

where ;  and ; 

The reason for dealing with symmetric tri-diagonal matrices is that this type of matrices has
very nice mathematical properties which make it easy to calculate the eigenvalues. We re-
fer to textbooks in linear algebra for a thorough treatment of the various topics, but we just
mention some of the properties which we shall exploit and apply to the matrices above.
(See for instance [Wilk65] for treatment of the topic.)

By using the results for tri-diagonal matrices we may write (D.1) as:

 (D.9)

where ,  are the eigenvalues of the matrix  and

,  are the eigenvalues of the matrix . Moreover, these

eigenvalues are strictly separated that is:

 (D.10)

The leading principal minor of order  of , that is

, (D.11)

satisfies the following recursion starting by defining  and 
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(D.12)

 for (D.13)

Similarly by applying corresponding results for the tri-diagonal matrices give

 (D.14)

where ,  are the eigenvalues of matrix  and ,

 are the eigenvalues of matrix . Moreover, these eigenvalues are strictly

separated that is:

, (D.15)

The leading principal minor of order  of , that is

(D.16)

satisfies the following recursion starting by defining  and then 

(D.17)

 for (D.18)

For sake of completeness we also write down the corresponding results for the excess vol-
umes. We find:
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 (D.19)

where ,  are the eigenvalues of the matrix  and

,  are the eigenvalues of the matrix . Moreover, these

eigenvalues are strictly separated, that is:

 (D.20)

The leading principal minor of order  of , that is

(D.21)

satisfies the following recursion starting by defining  and 

(D.22)

 for 

(D.23)

Similarly by applying corresponding results for the tri-diagonal matrices give

 (D.24)

where ,  are the eigenvalues of the matrix  and ,

 are the eigenvalues of the matrix . Moreover, these eigenvalues are

strictly separated, that is:
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 (D.25)

The leading principal minor of order  of , that is

(D.26)

satisfies the following recursion starting by defining  and then 

(D.27)

 for (D.28)

Numerically all the different eigenvalues may be calculating by using the method of bisec-
tion [Wilk65] by applying the Sturm sequence property of the sequences

,  and

,  for fixed  and .

Due to the continuity of the eigenvalues (as functions of  and ), the strict separation by
(D.10), (D.15), (D.20) and (D.25) yields for all values of  and . We may exploit these
results in various directions to make statements concerning the location of the zeros of the
eigenvalues.

One important implication is that we may find the dominating root in the various trans-
forms by looking at the largest root with the smallest eigenvalue. That is we must look for

the largest roots of , , and , .

D.1 Birth-death processes with exponential sojourn times
The main reason for rewriting the transforms on the specific form by the matrices (D.2),
(D.4), (D.6) and (D.8) is that it will greatly simplify the expressions for birth-death process
with exponentially distributed sojourn times in the different states. In this case we have
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 and  and . By these

substitutions in the various parts above we see that the  and  dependencies only
appear through the differences  and  and the corresponding eigenvalues will
therefore be constants. We find:

 (D.29)

where ,  are the eigenvalues of the tri-diagonal matrix

, (D.30)

 (D.31)

where ,  are the eigenvalues of the tri-diagonal matrix

(D.32)

The different eigenvalues may be obtained by the method of bisection applying the Sturm
sequence property of the sequences of leading minors [Wilk65]. The leading principal mi-
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recursion starting by defining  and 
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(D.35)

 for (D.36)

The corresponding results for the excess volume are:

 and  (D.37)

where ,  and ,  are eigenvalues of the matrices

 obtained from (D.30) by simply replacing  by  and  by  and  ob-

tained from (D.32) by replacing  by  and  by .

We end this appendix by writing down the final result obtained inverting the transforms
when we know all the eigenvalues, we find for the different PDFs for the different excess
variables (by taking partial fractions expansion of the LSTs):
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 where 

(D.40)

and 

 where (D.41)

and where the eigenvalues are ordered so that

,

and
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Appendix E
EAsymptotics of the excess distributions and

first passage times for the U-O process

E.1 Asymptotics for the Parabolic Cylinder Function  for 

large  in terms of Airy functions

We have [Abra70], (19.5.1 page 687) that  where the  may

be written by the following integral:

(E.1)

Where  is the so called Hankel contour (see figure E.1)

We shall find asymptotics for the functions
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Figure E.1:    The Hankel contour.
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 and (E.2)

 (E.3)

as . We shall follow the line in [Haga89] for the expansion.

By introducing  and  and  we obtain

(E.4)

Following [Haga89] we introduce the following substitutions:

 and  and  giving:
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where  is the Airy function. (This is seen by transforming the con-

tour into the imaginary axis giving  which is an integral repre-

sentation of the Airy function by [Abra70], (10.4.33 page 447). Further the integral

Then integrating by parts we find . Collecting the re-

sults above (and transforming back to the original parameters gives:

(E.7)

where . (E.8)

By applying the asymptotic formula for the Gamma Function we find that

 as (E.9)

By applying exactly the same asymptotic procedure for  we
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(E.10)
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 as (E.12)

It turns out that the asymptotic expansions (E.7) and (E.10) yield in the whole  excluding
the negative real axis. The reason for this is that it is not possible to express the asymptot-
ics by a single Airy-function as in (E.7) and (E.10). However this is a particular interesting
case since the poles of the LST are located along the negative real axis. We shall follow
along the course as described in the paper of Olver [Olve59], and find the desired asymptot-
ic expansion by applying the connection formulae for the Parabolic Cylinder functions
[Grad94] (9.248 page 1094) giving (where we also have used the formula [Grad94], (8.334

page 946) . By let-

ting  in (E.2) and (E.3) we are interested in the asymptotics of

 and (E.13)

 (E.14)
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 and its differentiated form, we obtain the following asymp-

totic expansion:

(E.15)

The corresponding result for the second function  is found

similarly and we get:

(E.16)

e.2 Asymptotics for the conditional excess volume for small arguments

We shall investigate the conditional density function  for small . Recall from

(4.107) that the LST is given as

(E.17)

Expanding to second order by using (E.7) for  we find:

(E.18)
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 and . (E.19)

We now make use of the following integral found in [Grad94], (7.629 page 872):

(E.20)

Substituting for ,  and  it follows that the inverse of the La-

place transform  is  where  is

the second Whittakers’s function ([Grad94] 9.22-9.23 page 1087). By using (E.19) and
the result above we may find the inverse of the functions;

 is  and (E.21)

 is (E.22)

By inverting (E.18) term by term and applying (E.21) and (E.22) we obtain for :

(E.23)

Based on (E.18) we also find the asymptotics for  as:
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ĝ s( ) snKr λ s( )= g t( ) t
n 1

2
---+ 

 –

e
λ2

8t
-----–

W
n 1

2
---+ r

2
---,

λ2

4t
----- 
 = Wκ µ, y( )
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 for (E.25)

The LST for the PDF for the variable  is found in (4.116):

(E.26)

By applying the asymptotics (E.7) and (E.10) we expand the transform to second order for
:

(E.27)

Inverting we find the following asymptotics for small :
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e.3 Asymptotics for the first passage time for small arguments

We shall also investigate the conditional PDF for the first passage time  for small

. Recall from (4.75) that the LST is given as:

(E.31)

For large values of  and moderate  and , we may apply the asymptotic formula
[Abra70] (19.9.1 page 689) and we find the following asymptotic expansion:

(E.32)

Inverting term by term yields for small :
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Based on (E.32) we find the following asymptotics for  as:
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(E.37)

Inverting term by term gives the following asymptotics for small :
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For  we then find for large :
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Appendix F
FSome technical details in chapter 7 and

chapter 8

F.1 Numerical algorithms for calculating the convolution of the waiting 
time distributions for a given number of M/D/1 queues

It is well known that a direct implementation of the DF of the waiting time in an M/D/1
queue given by (7.27) may cause numerical problems for large  due to the appearance of
large alternating nearly cancelling terms in the sum. The same problem will then also yield
for the convolutions (7.28) and (7.32). It is possible to avoid this problem by introducing
“local coordinates” by writing  as: ([Robe96], (page 391).

(F.1)

where the coefficients  may be calculated recursively by:

 and for  

(F.2)

for  (F.3)

By applying (7.14) and applying expression (F.1) we find  (defined in chapter 7 by
(7.28)) on the form:
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By differentiation and using the recursion (F.2) and (F.3) we find the following recursion
for :

for 

(F.6)

for   (F.7)

for      and  for (F.8)

The function  has similar recursions as . By applying (7.13) on (7.32) and

using expression (F.1) for  we may write  as follows: 

where (F.9)

(F.10)

By comparing (F.10) and (F.5) we see that  obeys the same recursion formulae as ,
but with  replaced with  in (F.6)-(F.8).

F.2 Numerical algorithms for calculating the auxiliary functions 

By applying expression (F.4) for  we may write  (defined in chapter 8 by
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 where  for ; (F.11)

By differentiation and using the recursion for we find the following recursion for 

for , :

(F.12)

for :   for :  (F.13)

and  for    (F.14)

F.3 Convolution of the waiting time of an M/D/1 queue with an exponen-
tially distribution

We shall use the expression  for the normalised wait-

ing time for the M/D/1 queue to find the convolution
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. Intro-

ducing the new summing variable  in the first (double) sum we have

and the corresponding expression may be written as:

. Then collecting

the results we finally get:

(F.16)

It follows that the integral

(F.17)

F.4 The convolution of the DF of the waiting time in an M/D/1 queue 
(with unit service times) and the PDF of an Erlang-  variable with 
parameter .

Differentiation of equation (F.17) -times with respect to the parameter  gives:

performing the differentiation gives:

(F.18)
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(F.19)

be the convolution of the DF of the waiting time in an M/D/1 queue (with unit service
times) and the PDF of an Erlang  variable with parameter , then we obtain from the rela-
tion (F.18):

(F.20)

F.5 The convolution of the DF of the -folded waiting time for an M/D/1 
queue (all with service times scaled to unity) with the PDF of an Er-
lang-  distributed variable with parameter .

If we further let 

(F.21)

be the convolution of the DF of the -folded waiting time for an M/D/1 queue (all with

service times scaled to unity) with the PDF of an Erlang-  distributed variable with parame-
ter  then we have by applying relation (7.14):

.

By performing the differentiation by using expressions (F.24) and (F.25) below we obtain
the following expression for the convolution (F.21):

(F.22)

and where  is given below by (F.26).
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 where  is some function of the 

parameter . Differentiation yields:

 where

 is given by (72). Inserting for  by (74), we find:

The sum in the brackets may be found to be:

Collecting these results we find:

(F.23)

Applying (F.23) on the expression
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we obtain

(F.25)

where
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is defined so that we have .
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F.7 Relation between the convolution and some auxiliary function
In various expressions we come up with the slightly modified versions of the convolution of
a given number of waiting times of identical M/D/1 queues. We have that the convolution
of the waiting time of  identical M/D/1 queues may be written in terms of the partial de-
rivative of the load parameter  as follows:

(F.27)

The auxiliary expressions occur when the power  is omitted in the brackets:

(F.28)

We have the following relations between  and :

(F.29)

and the inverse

(F.30)

The first part (F.29) is found by direct differentiation. The inverse (F.30) is easiest proven
by induction (on ). From (F.29) we have
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. Further it

is known that the sum  giving . In-

serting we obtain 

 which is in accordance with the induction as-

sumption.

It is also possible to express the auxiliary functions

 in terms of convolutions 

. Differentiating gives

. Then inserting for from (F.30) we

find:

Evaluating the bracket in the last expression we obtain:

 and collecting terms we find: 

F.8 The convolution of the DF of the -folded waiting time for an M/D/1 

queue with the PDF of an -folded rectangular variable over 

The form of an -folded rectangular variable  over  is given by (8.12) and

we find that the convolution  may be written as:
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where  are the following integrals:

 for . These integrals may be evaluated in

terms of some auxiliary functions given below by equations (F.33), (F.34) and (F.35).

By applying the relation (F.18) we shall find expressions for the integrals

 for . (F.31)

Taking the limit  in (F.18) we obtain: 

(F.32)

Multiplying the last relation by  and taking partial derivatives with respect to the pa-

rameter ,  times, and then multiplying with  gives

 for  (F.33)

where we define the auxiliary functions 

. (F.34)

For  we get an extra term from the second part when  in (F.33) and we find
that (F.34) also yields for  if we define:

(F.35)
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F.9 Evaluation of the function 

We shall derive an expression for the function

(F.36)

Introducing new variables by

 and  we find:

Expanding gives:

We find:

. Inserting gives: 

The last sum in the brackets is:  which gives:
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It is possible to rewrite the last bracket as follows:

To find the last sum we apply the following result on the sum of binomial coefficients
[Grad94] (0.156 page 5): 

 or letting  gives . Now by tak-

ing ,  and  we obtain:

Inserting we then finally obtain:

. (F.37)
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Appendix G
GSome technical details in chapter 9

G.1 Solution of the linear equations (9.17)
We shall find the solution of the linear equations

 for  where (G.1)

 and . If we let  be the -matrix with ele-

ments:  and let  be the corresponding inverse, then .

We define the generating functions: , then  will have roots  for

; . Thus,  and since

, we obtain  giving

(G.2)

The solution of (G.1) is

q̃k λ j( )k
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λ j
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------------= hj
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1 1
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------------ 
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 and further (G.3)

(G.4)

If we take  and insert for  and , we obtain:

(G.5)

G.2 Evaluation of the product (9.19)
We shall sketch the deduction of the product

(G.6)

where ;  are the roots of the equation:

(7.7)

inside the unit disc , and  is a polynomial of degree , (where

we assume that ). 

By introducing the new variable , we have

(G.8)

where  is the corresponding root of  where 

is the inverse of .
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We denote  (where we use the principal value of the logarithm). The 

contour-integral

(G.9)

where  is a contour containing all the roots , ,...,  of  and also contains  
(which is a pole of multiplicity K for ). Hence 

. (G.10)

Depending on the location of  we choose different contours. We let C be the circle  
containing all the roots , ,..., .

If , we choose the circle C as the contour  (see figure G.1)

Integrating by parts we find

(G.11)

When  is moving around C the argument of  returns to its initial value. Therefore
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Figure G.1:    The contour  when .Γ ζ r>
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. Collecting the results above gives:

(G.12)

If , we choose the contour  (see figure G.2)

On C by integrating by parts we obtain (G.11). However when  moves along C from , the 

argument of  is increased by , while the argument of  returns to its 
starting value so

  

On  we have 

. 

On  the argument of  has increased by  so that

 (G.13)
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On  we have  where  moves from  to 0. (We also assume that , 

.) When  we have

(G.14)

Collecting the results above when  we get:

(G.15)

By (G.12) and (G.15) we find (by inserting for  and changing the integration vari-

able ):

(G.16)

where  is the contour integral:

(G.17)

and where we may choose  as the disc  where , and  is the

root of  outside the unit circle with the smallest modulo.

Comment: The mapping of the circle C by changing the integration variable  will

be a closed contour  which contains all the roots ; . This contour may be
transformed to a circle as described above without changing the value of the integral.

G.3 The joint distribution of “extra” delay for an FS packet and the 
number of arrivals from the BS in a slot when the ordering of pack-
ets is chosen at random

When the ordering between the FS packet and possible arrivals of the BS packets are cho-
sen at random we have that the FS packet is placed among the BS packets with equal prob-
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ability. So we have:  for . Un-conditioning gives

the joint distribution:

 for  and (G.18)

The corresponding joint z-transform is found:

(G.19)

where  is the integral of the z-transform of the batch process of the BS, i.e.

(G.20)

The marginal z-transform is found from (G.19) (by taking ):

. (G.21)
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