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Figure 4.13: Fourier spectrum analyses of the pad (a) and block 7 (b) positions. v =
0.12

a frequency which is not observed in the even region. However, since the friction acts as a

damper, the actual frequency could be lower. This would anyway not be present in any stick–slip

region.

Plain Burridge-Knopoff Oscillation Drop

The oscillation drop unique to the plain Burridge-Knopoff model as shown in Figure 4.10 (b)

occurs between disc speeds v = 0.16 and 0.17.

The Fourier spectrum analysis of the “pad” friction in the plain Burridge-Knopoff model

is shown in Figure 4.14. Disregarding the peak close to zero frequency (zero frequency itself

has been removed), the frequency with the biggest amplitude is 0.3. However, we see other

harmonics of 0.15 in the plot. This is also far away from the block natural frequency.
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Figure 4.14: Fourier spectrum analysis of pad friction in the plain Burridge-Knopoff
model, v = 0.17
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Special Speed

In the early phases of testing the simulation, a “special speed” was derived. A system of equally

spaced springs (equal to a system of one spring, given the proportionality of the parameters)

was pulled backwards until it slipped. Then, time was recorded as the block was allowed to

oscillate until the friction had dissipated all energy. This time tdeath is then used along with the

maximum static friction force, and the spring constant, thus:

vspecial =
F0

kp

1

tdeath
. (4.8)

tdeath = 3.589 gives vspecial ≈ 0.28.

Figure 4.15 shows a portion of Figure 4.6 around the special speed. In the vicinity of the

speed, we can note several observations.

The plain Burridge-Knopoff simulation exhibits the previously explained oscillation drop.

Later, along the speed axis, the BK oscillations have recovered, and its amplitude is showing

tendencies to be departing from the BK–Pad friction amplitude, but at the same time, the BK–

Pad mean friction departs from that of the BK simulation. Finally, a section where the (scaled)

pad position amplitude becomes greater than the BK and BKP friction amplitudes.

At this point, we do not know whether these observations are related to this special speed,

and so this is a good example of something in need of further study.
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4.4 Model Differences

Judging by Figure 4.6, there are differences between the behavior of the Burridge-Knopoff–Pad

and the plain Burridge-Knopoff models. However, for greater disc speeds, the friction amplitude

and mean values generally follow the same development. On the other hand, the difference

between the mentioned models and the two one degree-of-freedom simulations is vast.

The most noticeable difference between the Burridge-Knopoff–Pad and plain Burridge-Knopoff

models is the second drop in friction exhibited by the plain BK model, in the disc speed range

v = 0.17 through 0.19. However, the Fourier analysis did not provide any hints as to why this is

the case, and so the real cause of this drop is not clear at this point. Perhaps, what’s most impor-

tant is to find out why the Burridge-Knopoff–Pad model doesn’t show the same drop. Another

difference can be seen around v = 0.5, where the mean friction value of the plain Burridge-

Knopoff model shows an increase. The time-domain result is relatively chaotic, resulting in the

bigger error bars that are clearly visible in Figure 4.6.

The one degree-of-freedom model showed amplitudes that were strictly increasing, at least

for the range studied in this Thesis. There could be a drop at even higher speeds, similar to

what the BKP and BK models show at disc speed v = 0.9. The question is whether to use this

1 DOF model in further study of brake squeal. The answer is most likely no, as has also been

concluded in literature. What is interesting, though, is the fact that at disc speed v = 0.2, the 1

DOF model with the normal friction law surpasses the special friction 1 DOF model with respect

to amplitudes. Nevertheless, it did not provide results near the BKP model.



Chapter 5

Summary and Recommendations for

Further Work

5.1 Summary and Conclusions

In this Thesis, I have presented a new model, which, to the best of my knowledge, has never

been studied before. Along with an account of the background, including an overview of rele-

vant models and literature on brake squeal, as well as the application of the Burridge-Knopoff

model to the study of earthquakes, the new Burridge-Knopoff–Pad model was developed, im-

plemented, and simulated.

The model is not necessarily complete. However, it represents the first step toward a model

where the previously studied small-scale friction dynamics are combined with an unstable res-

onator. As a result, we have a model which can be used to describe the interaction between

these two aspects, and its application is not limited to brake systems. Rather, other systems that

need to consider the interaction between friction and structural resonance, such as kinetic art,

could make use of this model. Although only a model that will never be a hundred percent real-

istic, I think the enhancement of the Burridge-Knopoff model, in which we allow a larger mass

in the model to oscillate, is a step in the right direction regarding realisticness, although further

study is needed.

The Burridge-Knopoff–Pad model shows a couple of interesting characteristics that either

differ from, or are unable to occur in, the plain Burridge-Knopoff model. The most obvious
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example is of course how the pad itself is allowed to move, thereby having its own properties

such as a natural frequency. Furthermore, the addition of the pad introduces a new degree-of-

freedom, giving rise to new vibration modes.

By and large, I have based my results on parts of the response simulated with segments of

constant disc speed. This was due to the fact that the model is new and unstudied, and in or-

der to understand the basic behavior, the simulations must be kept basic. Hence the idealized

friction law, equal masses and springs, and so on.

5.2 Discussion

The Burridge-Knopoff–Pad model has in many ways provided insight into situations where struc-

tural oscillation is combined with friction. Differences in pad friction, both in mean value and

amplitude, can be seen, with an acceptable error. The error may be reduced by using a longer

disc speed interval, but it shall also be noted that the error will be greater, the noisier the signal.

The one degree-of-freedom model is probably not suitable, as has been stated by several pa-

pers. However, it’s a hard model to compare to the multi-degree-of-freedom models, as there

is only a block, making it hard to define which part of the brake assembly it represents. Addi-

tionally, if one generally needs to take the entire brake assembly into consideration if one is to

perform a realistic simulation, maybe the Burridge-Knopoff–Pad is insufficient, too. However,

the BKP model might provide new insight, although it will need further study under different

conditions and parameters.

5.3 Recommendations for Further Work

As this model is new and unstudied, this introductory study leaves many areas which can be

recommended for future study. The model was kept completely basic in order to understand

the basic characteristics and behavior. Therefore, later studies should aim to eliminate such

simplifications; however, in a slow and careful manner, so as to not miss out on anything.

One of the first things to be done is to allow the continuous change of disc speed in the

simulation. It is not a given fact that the model will behave the same. Furthermore, Figure 4.5
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showed an interesting region indicated in the text, which should be investigated.

The introduction of the pad adds another degree of freedom to the system. Therefore, one

should perform analyses of the different modes of vibration in the system, preferably also inves-

tigate what parameter values are needed in order to trigger the different modes of vibration.

Further into the future, steps should be taken to implement a more realistic friction law. Em-

pirical data for the friction would naturally be the most realistic option, however the model itself

is only an approximation, so this might not be of great importance unless the model is further

expanded to reflect a realistic brake assembly. Use of variable friction based on random figures

could be sufficient, and it could be interesting to see how this affects the oscillation properties.
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