
Rate-Distortion Optimal
Vector Selection in

Frame Based Compression

by

Tom Ryen

Submitted in partial fulfillment
of the requirements for the degree of

DOKTOR INGENIØR

Norway

2005

“Now I know in part; then I shall know fully,
even as I am fully known.”

(1 Corinthians 13, 12b)

Abstract

In signal compression we distinguish between lossless and lossy compression.
In lossless compression, the encoded signal is more bit efficient than the orig-
inal signal and is exactly the same as the original one when decoded. In lossy
compression, the encoded signal represents an approximation of the original
signal, but it has less number of bits. In the latter situation, the major issue
is to find the best possible rate-distortion (RD) tradeoff. The rate-distortion
function (RDF) represents the theoretical lower bound of the distortion be-
tween the original and the reconstructed signal, subject to a given total bit rate
for the compressed signal. This is with respect to any compression scheme. If
the compression scheme is given, we can find its operational RDF (ORDF).

The main contribution of this dissertation is the presentation of a method
that finds the operational rate-distortion optimal solution for an overcomplete
signal decomposition. The idea of using overcomplete dictionaries, or frames,
is to get a sparse representation of the signal. Traditionally, suboptimal al-
gorithms, such as Matching Pursuit (MP), are used for this purpose. Given
the frame and the Variable Length Codeword (VLC) table embedded in the
entropy coder, the solution of the problem of establishing the best RD trade-
off has a very high complexity. The proposed method reduces this complexity
significantly by structuring the solution approach such that the dependent
quantizer allocation problem reduces into an independent one. In addition,
the use of a solution tree further reduces the complexity. It is important to
note that this large reduction in complexity is achieved without sacrificing op-
timality. The optimal rate-distortion solution depends on the frame selection
and the VLC table embedded in the entropy coder. Thus, frame design and
VLC optimization is part of this work.

Extensive coding experiments are presented, where Gaussian AR(1) processes
and various electrocardiogram (ECG) signals are used as input signals. The
experiments demonstrate that the new approach outperforms Rate-Distortion
Optimized (RDO) Matching Pursuit, previously proposed in [17], in the rate-
distortion sense.

i

ii ABSTRACT

Preface

This dissertation is submitted in partial fulfilment of the requirements for the
degree of doktor ingeniør at the Norwegian University of Science and Tech-
nology (NTNU), Trondheim, Norway. Professor Sven Ole Aase and professor
John H̊akon Husøy at University of Stavanger (UiS), Norway, and associate
professor Dag Haugland at University of Bergen, Norway, have been my su-
pervisors.

The work has been carried out at the Department of Electrical and Computer
Engineering of UiS from August 1999 to March 2005. Included in the work are
compulsory courses corresponding to one year full time studies. Five months
were spent as a visiting scholar at the Image and Video Processing Lab, De-
partment of Electrical and Computer Engineering, Northwestern University,
Evanston, USA. Three weeks were spent at HSR Hochschule für Technik Rap-
perswil, Rapperswil, Switzerland. The last three years have included graduate
and undergraduate lecture duties at UiS. The work has been funded by UiS.
The abroad stays were funded by a scholarship from the Norwegian Research
Council.

Parts of the work leading to this dissertation have been published in [47, 46,
45, 44].

iii

iv PREFACE

Acknowledgments

First of all, I would like to thank my three supervisors Professor Sven Ole
Aase, Professor John H̊akon Husøy and Associate Professor Dag Haugland.
Thank you, Prof. Aase, for giving me insight into linear algebra, particularly,
and for arranging my work situation, generally. Thank you, Prof. Husøy, for
your encouraging guidance and for giving me advices through your knowledge
in signal processing. Thank you, Dr. Haugland for sharing your enthusiasm
and your insight into optimization theory with me.

I am very grateful to all my colleagues at the Department of Electrical and
Computer Engineering at University of Stavanger for contributing to a highly
appreciated job atmosphere. Particularly I would like to thank Dr. Karl
Skretting for valuable help and useful discussions.

Some of the most important moments of bringing results to this work has taken
place at the Northwestern University in Evanston, USA. Thanks to Professor
Aggelos K. Katsaggelos for giving me a pleasant stay and valuable advices.
Thanks to Professor Guido M. Schuster for creative suggestions and inspiring
guidance, and for inviting me to Switzerland.

Thanks to my parents Gudrun and John for giving me the best start and for
supporting me all my life. Thanks to my daughter Hanna for bringing joy and
hope. Last but not least I would like to thank my wife Turid for love, patience
and support in all ups and downs connected to this work, and in my life in
general.

v

vi ACKNOWLEDGMENTS

Contents

Abstract i

Preface iii

Acknowledgments v

Nomenclature xi

List of Abbreviations xvii

1 Introduction 1

1.1 Lossy signal compression . 2

1.1.1 Transform coding . 3

1.1.2 Frame based coding . 5

1.2 Rate-distortion optimization . 7

1.3 Contributions of this work . 9

2 Frame based compression and Matching Pursuit 11

2.1 The minimization problem and its complexity 11

2.2 Matching Pursuit . 13

2.2.1 Basic Matching Pursuit 13

2.2.2 Orthogonal Matching Pursuit 14

2.2.3 Order Recursive Matching Pursuit 15

2.3 Previous work on frame based coding 16

2.3.1 Vector selection . 17

2.3.2 Frame improvement . 19

vii

viii CONTENTS

3 Rate-distortion optimal (RDO) compression 21

3.1 Definitions . 21

3.2 The minimization problem . 22

3.3 Problem size considerations . 24

3.4 RDO Matching Pursuit . 25

3.5 Other work in RDO compression 28

4 The operational rate-distortion encoder (ORDE) 31

4.1 Orthonormalization of selected frame vectors 32

4.2 Reformulation of the optimization problem 34

4.3 Time complexity reduction using a solution tree 36

4.3.1 Time complexity reduction by depth-first-search 38

4.3.2 Further time reduction by pruning and lower bounds . . 41

4.4 Ordered vector selection and run-length coding 45

4.5 ORDE and complexity . 46

5 Frame design and variable length coder (VLC) optimization 49

5.1 The MOD algorithm . 49

5.2 The training scheme . 51

5.2.1 Loop 1: Coarse frame design in an RDO coding scheme 51

5.2.2 Loop 2: Convergent frame design and VLC optimization 55

6 Compression of AR(1) signals 59

6.1 The theoretical Rate-Distortion Function 59

6.2 Experiments on AR(1) signals 61

6.2.1 Experiment no. 1 . 61

6.2.2 Experiment no. 2 . 71

6.2.3 Experiment no. 3 . 72

6.2.4 Experiment no. 4 . 78

6.2.5 Experiment no. 5 . 80

6.3 Summary . 83

CONTENTS ix

7 Compression of ECG signals 87

7.1 Quantization step size optimization 87

7.2 ECG signal preprocessing . 89

7.2.1 Preprocessor A . 92

7.2.2 Preprocessor B . 94

7.3 Experimental results . 94

7.3.1 Experiment no. 6 . 97

7.3.2 Experiment no. 7 . 99

7.3.3 Experiment no. 8 . 110

7.4 Summary . 110

8 Conclusions and Summary 115

8.1 Directions for future research 116

A Mathematical details 119

A.1 QR-decomposition by Gram-Schmidt 119

A.2 Best Approximation Theorem 120

B ECG compression test signals 123

Bibliography 125

x CONTENTS

Nomenclature

‖ · ‖ l2-norm
〈a, b〉 the inner product of a and b
a vector of constants symmetric distributed around zero
αl,M for signal block l, the product of λ and the sum of bit rates of

M indices and EOB symbol
B number of nodes to be selected at each solution tree level in a

partial search algorithm
Bm number of nodes to be selected at solution tree level m in a

partial search algorithm
βl,M for signal block l, sum of M minimum rate-distortion solution

of added quantized coefficient values
C total cost, which is D + λR
Cl cost of signal block l, which is Dl + λRl

C∗
l so far minimum cost of signal block l

Cl,m cost of signal block l at iteration m in the RDO MP algorithm
Cl,M for signal block l, the cost at a solution tree node at level M
Ci total cost at training procedure iteration no. i
C+ total cost when F+ is frame
D total distortion
Dl distortion of signal block l
Dvs total distortion introduced by vector selection
Dvs,l for signal block l, distortion introduced by vector selection
DRDF (R) distortion of the rate-distortion function as a function of rate R
D+ total distortion when F+ is frame
δ small constant used to update the frame elements in the con-

vergent frame design loop

xi

xii NOMENCLATURE

δm rate at iteration m of RDO BMP or RDO ORMP algorithms
∆ quantization step size
∆C difference in total cost from one training procedure iteration to

the next
el,M difference between the original signal vector l and reconstructed

signal vector l of unquantized coefficients, when M frame vec-
tors are selected

E difference between the original signal, X, and the reconstructed
preprocessor signal, X̆

Ẽ reconstruction of E
ε small constant used as a stop constraint in an iterative algorithm
fnk element n in column k in the frame matrix F
fk column k in the frame matrix F
f+
k column k in the frame matrix F+

fkm selected frame vector in iteration m

f̂km orthogonalization of selected frame vector in iteration m with
respect to previously selected frame vectors

F frame matrix with dimensions N ×K
F′ in coarse frame design, the frame matrix where a not chosen

column vector is removed from the matrix
F+ in fine frame design, the frame matrix where a small real valued

constant, δ, is added to one of the frame elements
F∗ frame after the last training iteration
Fi frame after training iteration no. i
g(n) low-pass filter impulse response
h(n) anti-aliasing filter impulse response
il,m index of the mth selected frame vector for signal block l
inew lowest index of the so far not selected frame vectors
il vector containing the indices of the selected frame vectors for

signal block l
(il)∗ vector containing the indices of the final selected frame vectors

for signal block l
(I)∗ matrix where the column l is (il)∗

indices table containing frame indices and their corresponding binary
codewords

j values codeword table index

NOMENCLATURE xiii

jm index of the element of the values table to be the coefficient of
the mth selected vector

J number of values codewords
k frame vector index
K number of frame vectors in F
κ number of quantization steps in the DPCM encoder of the pre-

processor
l signal block index
L number of signal blocks
LB lower bound of cost when the set of selected vectors is known
λ the Lagrangian multiplier
λ vector of different Lagrangian multipliers
m frame vector selection index
M number of selected frame vectors
Mmax upper bound on the number of selected frame vectors per signal

block
µl mean value of the samples in signal block l
µ̆l reconstructed mean value of the samples in signal block l
µ vector of mean values of all signal blocks
µ̆ vector of reconstructed mean values of all signal blocks
n signal sample index
N number of samples per signal block
ξ index used as needed
P down- and up-sampling factor
ql,m column vector m of matrix Ql

Q[·] scalar quantizer
Ql matrix with orthonormal column vectors, QR-decomposition of

Φl

Ql,M matrix with M orthonormal column vectors
Q+

l matrix with orthonormal column vectors, QR-decomposition of
a subset of F+

rm residual vector at iteration m
R total bit rate
Rbudget total bit budget
Rl bit rate of signal block l
R+ total bit rate when F+ is frame

xiv NOMENCLATURE

REOB number of bits for EOB symbol
Rind

l,m number of bits for the index codeword of mth coefficient of signal
block l

Rind
min minimum index codeword bit length

Rrun
l,m number of bits for the run codeword of mth coefficient of signal

block l
Rrun

min minimum run codeword bit length
Rval

l,m number of bits for the value codeword of mth coefficient of signal
block l

Rval
min minimum value codeword bit length

Rl the upper triangular matrix in the QR-decomposition of Φl

R+ space of all real and non-negative numbers
RN N-dimensional real Hilbert space
runs table containing run symbols and their corresponding binary

codewords
runs∗ runs codeword table after the last training iteration
runsi runs codeword table after training iteration no. i
ρ adjacent-sample correlation coefficient in an AR(1) process
S number of nonzero coefficients in the representation of the input

signal
Sbudget upper bound on the total number of nonzero coefficients
Sbudget,l upper bound on the number of nonzero coefficients of signal

block l
Sl number of nonzero coefficients of signal block l
Sxx(ejω) power density spectrum of the signal x
SNRRDF signal-to-noise ratio for the rate-distortion function
σ2

x the variance of the signal x
T transform matrix
TT transpose of T
T−1 inverse of T
Θl binary (0,1)-matrix with dimensions M × J
x input signal vector of length NL
xl input signal vector no. l, of length N
xs input signal vector of length N , with corresponding coefficient

vector with the highest number of nonzero coefficients

NOMENCLATURE xv

x̂l reconstruction of xl using not quantized coefficients
x̃l reconstruction of xl using quantized coefficients
X source signal
X̃ reconstructed signal
X input signal matrix with dimension N × L, where column l is

signal vector xl

X̃ reconstructed signal matrix
X̆ reconstructed preprocessor signal matrix
Xtest test signal matrix
Xtr training signal matrix
Y source coding output signal
Ỹ channel coding output signal
Y opt optimal source coding output signal
vl,m unquantized coefficient corresponding to the mth selected frame

vector for signal block l
ṽl,m quantized coefficient corresponding to the mth selected frame

vector for signal block l
vo
l,m unquantized coefficient corresponding to the orthogonalization

of the mth selected frame vector for signal block l
ṽo
l,m quantized coefficient corresponding to the orthogonalization of

the mth selected frame vector for signal block l
vl vector of unquantized coefficients corresponding to the selected

frame vectors for signal block l
vo

l vector of unquantized coefficients corresponding to the orthog-
onalization of the selected frame vectors for signal block l

ṽl vector of quantized coefficients corresponding to the selected
frame vectors for signal block l

ṽo
l vector of quantized coefficients corresponding to the orthogo-

nalization of the selected frame vectors for signal block l
(ṽo

l)
∗ optimal vector of quantized coefficients corresponding to the

orthogonalization of the selected frame vectors for signal block
l

(Ṽo)∗ matrix of L column vectors, where column no. l is (ṽo
l)
∗

val vector containing J coefficient representation values
values table containing coefficient representation values and their cor-

responding binary codewords

xvi NOMENCLATURE

values∗ values codeword table after the last training iteration
valuesi values codeword table after training iteration no. i
φ parametric variable
φl,M for signal block l, the M th selected frame vector
Φl matrix where the columns are the selected frame vectors for

signal block l
Φl,M matrix where the columns are M selected frame vectors for sig-

nal block l
w̃l,k the kth element in w̃l

w̃o
l,k the kth element in w̃o

l

wl unquantized coefficient vector for signal block l
w̃l quantized coefficient vector for signal block l
w̃o

l unquantized coefficient vector for signal block l, where the
nonzero elements correspond to the orthogonalization of the se-
lected frame vectors

w̃s coefficient vector corresponding to xs

W matrix with dimensions K ×L, where the columns are unquan-
tized coefficient vectors

W̃ matrix with dimensions K×L, where the columns are quantized
coefficient vectors

W̃′ in coarse frame design, the matrix with dimensions (K−1)×L,
where row k in W̃ is removed

z objective function in quantization step size optimization
∅ empty set

List of Abbreviations

AR(1) Autoregressive process, first order Markov
BMP Basic Matching Pursuit, a greedy vector selection algorithm
dB decibel
DCT Discrete Cosine Transform
DFS Depth-First-Search
DPCM Differential Pulse Code Modulation
ECG Electrocardiogram
EOB End Of Block
FOCUSS FOCal Underdetermined System Solver
FOLS Fast Orthogonal Least Squares
FOMP Fast Orthogonal Matching Pursuit, a greedy vector selection

algorithm
GHz Giga Hertz
GMP Global Matching Pursuit, a greedy vector selection algorithm
GS Gram-Schmidt, an orthogonalization algorithm
IDCT Inverse Discrete Cosine Transform
JPEG Joint Photographic Experts Group
KLT Karhunen-Loeve Transform
LB Lower bound
MIT Massachusetts Institute of Technology
MIT100 Signal 100 from the MIT arrhythmia database of ECG signals
MIT103 Signal 103 from the MIT arrhythmia database of ECG signals
MIT113 Signal 113 from the MIT arrhythmia database of ECG signals
MIT207 Signal 207 from the MIT arrhythmia database of ECG signals
MIT217 Signal 217 from the MIT arrhythmia database of ECG signals
MMP Modified Matching Pursuit, a greedy vector selection algorithm
MOD Method of Optimal Directions, a frame design algorithm
MP Matching Pursuit, a group of greedy vector selection algorithms
MP3 Moving Picture Experts Group Audio Layer 3
MPEG Moving Picture Experts Group

xvii

xviii LIST OF ABBREVIATIONS

OLS Orthogonal Least Squares
OMP Orthogonal Matching Pursuit, a greedy vector selection

algorithm
ORD Operational Rate-Distortion
ORDE Operational Rate-Distortion Encoding/ Encoder
ORDF Operational Rate-Distortion Function
ORMP Order Recursive Matching Pursuit, a greedy vector selection

algorithm
QMP Quantized Matching Pursuit, a greedy vector selection

algorithm
RD Rate-Distortion
RDF Rate-Distortion Function
RDO Rate-Distortion Optimal/ Rate-Distortion Optimized
RDO MP Rate-Distortion Optimized Basic Matching Pursuit
RDO BMP Rate-Distortion Optimized Matching Pursuit
RDO ORMP Rate-Distortion Optimized Order Recursive Matching

Pursuit
RDT Rate-Distortion Theory
RLC Run-Length Coding
SNR Signal to Noise Ratio
SSQ Simultaneous Selection and Quantization
VLC Variable Length Codeword

Chapter 1

Introduction

Signal compression is an important subject in digital communication and data
storage systems today. By signals, we mean all kind of digitalized data. The
signals can be one-dimensional such as digitalized waveforms of speech and
music, two-dimensional like digital images and contours, or multi-dimensional
like video and seismic data. The purpose of signal compression is to generate
a more bit efficient representation of the presented information. Shannon
called it source coding in his fundamental work in information theory [51,
52]. In the illustration in Figure 1.1, the source encoder generates the bit
stream Y , which is a more bit efficient representation of the source signal,
X, before it is transmitted through the channel. The channel could be the
Internet, e.g., and would normally include error control coding, or in other
words, channel coding. In this work the focus is on source coding, and we
expect the channel to be free of error. In other words, the channel output
signal, Ỹ , is expected to be identical to the channel input signal, Y . In lossless
source coding, the reconstructed signal, X̃, is identical to the original signal,
X. The goal is to reduce the number of bits required for the coded data [16], i.e.
to remove redundant information. In lossy source coding, the reconstructed
signal, X̃, is an approximation to the source signal, X. By allowing lack
of perfect reconstruction, the compression potential is much higher than in
lossless coding. In order to get a more bit efficient representation, we allow
some loss of information, or some distortion between X and X̃. If we can
accept a high distortion, the bit rate can be small, and the compression gain
is large. If not, the compression gain will be smaller. This tradeoff between a
lowest possible bit rate and lowest possible distortion is an essential issue in
lossy coding. Whether the distortion is at an acceptable level or not, depends
on the application. For example, a digital photograph used in a slide show

1

2 Introduction

requires a much higher quality than the same photograph as a thumbnail image
at a web site. In the latter case most of the detail information is irrelevant,
due to the fact that the human eye is not capable of perceiving details in a
small image, and the image can be represented by a much smaller number of
bits.

Source

Sink

Channel

Source

encoder

Source

decoder

X
~

Y
~

X Y

Figure 1.1: Communication system.

The focus of this thesis is on finding the optimal rate-distortion (RD) tradeoff
in a frame based coding scheme. Frame based coding is a generalization of
transform coding. These coding schemes are explained in Section 1.1. Sec-
tion 1.2 includes a brief introduction to rate-distortion theory. Section 1.3
summarizes the contribution of this thesis.

1.1 Lossy signal compression

There are many different lossy compression techniques available today, and
still considerable research is put into this field. Most of these techniques
involve three steps at the encoding side: 1) A transforming step, where blocks
of signal samples are mapped into blocks of coefficients, 2) a quantization
step, where the coefficients are quantized to discrete values, and 3) an entropy
encoding step, where the discrete coefficients are converted to a sequence of
bits, by a lossless encoder. The lack of perfect reconstruction is caused by the
two first steps, and for some lossy encoders, only by the quantizer. The latter
is the situation in transform coding [16], which is one of the most popular
techniques known today. The famous still image compression standard, JPEG
(Joint Photographic Experts Group), is based on transform coding. So is also
the video compression standard MPEG (Moving Picture Experts Group), and
the audio compression standard, MP3 (MPEG Audio Layer 3).

1.1 Lossy signal compression 3

Our work focuses on frame based coding [12]. This is a technique in closely
related to transform coding. For this reason, we will have a closer look at both
of these techniques.

1.1.1 Transform coding

Transform coding is a popular compression technique. This is due to its sim-
plicity and efficiency [20]. Many variants exist. Irrespective of particulars,
basic transform encoders consist of three steps: The first step is the forward
transform, denoted T−1 for notational convenience. The transform produces
coefficients, that in step two are quantized by a scalar quantizer. Each quan-
tized value corresponds to a discrete symbol. In step three these symbols
are translated to a string of bits, Y . A schematic view of a transform cod-
ing system is shown in Figure 1.2. We expect the channel to be error free,
thus Y = Ỹ . As the figure shows, the transform decoder consists of three
steps, as well. First, an entropy decoder, converting the bit string to symbols.
Second, an inverse quantizer, generating discrete valued coefficients of these
symbols. And, third, an inverse transform, or a reconstruction transform,
T = (T−1)−1, making an approximation of the original signal by using the
quantized coefficients as input.

Quantizer
Entropy

encoder

Inverse

quantizer

Entropy

decoderX
~

X

Y

Y

~

1−
T

T

Figure 1.2: Transform coding.

Let a one-dimensional signal, x, represented by an NL× 1 vector, be divided
into L blocks, each consisting of N samples. The lth signal block, xl, is a col-
umn vector of length N . The reconstruction transform, T, can be represented

4 Introduction

as a matrix of dimensions N ×N . The idea in transform coding is to decor-
relate the data and to represent the signal energy in few coefficients. This is
done by the forward transform, T−1, if its row vectors are chosen properly.
Let the coefficient set {wj}, j = 1, 2, . . . , N , constitute the N -dimensional
vector wl. The analysis and synthesis equations are

wl = T−1xl (1.1)

and

xl = Twl (1.2)
x̃l = Tw̃l, (1.3)

respectively. x̃l is the reconstructed version of xl, and w̃l is the quantized ver-
sion of wl. If T is orthogonal, that is, all column vectors of T are orthonormal
and real, the inverse transform is the transposed transform matrix: T−1 = TT .
The transform is energy preserving, which implies that ‖wl‖2 = ‖xl‖2. Since
most of the signal energy is collected in a small number of coefficients, most
of the coefficients will have a small value, and consequently will be put to zero
by the quantizer. This is what we call energy packing. It is easy to show that
the squared error between the original and the reconstructed signal vectors is
equal to the squared error between the original and the quantized coefficient
vectors [16]:

∥∥xl − x̃l

∥∥2 =
∥∥wl − w̃l

∥∥2 =
K∑

k=1

(wl,k − w̃l,k)2. (1.4)

The minimum squared error can be found by minimizing coefficient errors in-
dependently. The discrete Karhunen-Loeve Transform (KLT) is an orthogonal
transform, consisting of the eigenvectors of the autocorrelation matrix of the
input signal. If the input signal is a statistically stationary Gaussian pro-
cess [27], KLT is optimal in the energy packing sense [48]. Unfortunately, the
KLT is signal dependent, thus it has to be computed for each class of input
signals. In addition, practical signals are not always stationary, resulting in
frequent recalculations of the KLT, in order to keep it optimal. The Discrete
Cosine Transform (DCT) [16] is a fixed orthogonal transform. DCT achieves
performance very close to KLT, and yet it has the advantage of being signal
independent. The DCT is easy to implement in both software and hardware.

1.1 Lossy signal compression 5

It is part of the JPEG standard [48], where image blocks of 8 × 8 pixels are
transformed by an 8× 8 forward DCT. At low bit rate coding, very few of the
coefficients are nonzero when quantized. We say that the representation of
the signal is sparse. This sparsity is utilized in the entropy encoder, in order
to get a bit efficient representation.

1.1.2 Frame based coding

Consider that we have more than N column vectors in the reconstruction
part of the transform coding scheme of the previous section. The transform
matrix, T, is replaced by a frame1 matrix [22], F, with dimensions N × K,
where K > N . The signal expansion [53], represented by the coefficient vector,
wl, will now have K terms.

Given that the set of column vectors, {fk}, k = 1, . . . ,K, span the space to
which xl belongs, xl can be written as a combination of these vectors, and the
synthesis equation is now

xl = Fwl (1.5)

x̃l = Fw̃l =
K∑

k=1

w̃l,kfk, (1.6)

where w̃l,k is the kth element in w̃l. The column vectors constituting the frame
are all assumed to be of unit length.

The rationale for replacing the transform by a frame is to get a more bit ef-
ficient representation without further loss of information. Having more than
N column vectors to choose from increases the flexibility: There is a better
chance of finding a sparse representation with a good approximation of the
signal. A sparse representation is the same as having just a few nonzero coef-
ficients in the coefficient vector. An effective entropy coding scheme would in
this case use the quantized values of the nonzero coefficients and their corre-
sponding indices as input symbols. According to the symbol probabilities, the
number of bits for each of the symbol codewords will vary. These codewords
are stored in a variable length codeword (VLC) table. A symbol with a high
probability will have a binary codeword with few bits, while a symbol with
low probability will have a large number of bits. All in all, the total number

1A frame is also called an overcomplete dictionary.

6 Introduction

of bits in the final binary string will be smaller when using variable length
codewords than by using fixed length codewords.

A price we have to pay when introducing an overcomplete dictionary, is the
loss of an analysis equation in the encoding part of the compression scheme.
The analysis equation for transforms, (1.1), is not valid for frames, simply
because there can not exist any inverse of the non-quadratic matrix F. In
Figure 1.3 there is no F−1, but instead a “frame vector selection” block. The
easily solved problem of finding a set of unique coefficients using a transform
is replaced by an NP-hard problem [11], when dealing with frames. This is
the reason why fast suboptimal vector selection algorithms are used in order
to find a sparse w̃l that generates a good approximation to the original signal,
xl. Some of the most important vector selection algorithms are discussed in
Chapter 2.

Quantizer
Entropy

encoder

Inverse

quantizer

Entropy

decoderX
~

X

Y

Y

~

F

Vector

selection

from F

Figure 1.3: Frame based coding.

Another disadvantage with frame based coding, compared to transform coding,
is the loss of energy preservation in the signal block coefficients. In fact, the
energy in the coefficient vector can be larger than the energy in the signal
vector.

The main focus in frame based coding research has been in the first phase,
to find a sparse representation that minimize the distortion, and in the next
phase, to quantize and to entropy encode this representation. In this work,
we focus on finding a sparse representation that minimize the rate-distortion
tradeoff. Rate-distortion optimization is discussed in the following section.

1.2 Rate-distortion optimization 7

1.2 Rate-distortion optimization

The major issue in rate-distortion optimization is to find the representation
of a signal with the fewest number of bits possible for a given reconstruc-
tion quality. Rate-Distortion Theory (RDT) [4] has been essential in many
applications, such as in Video compression [49, 38, 35], Shape Coding [32]
and Compression of electrocardiogram (ECG) data [37]. The central entity
in RDT is the Rate-Distortion Function (RDF), which given a signal source,
is the lower bound of the distortion that is obtainable with a given bit rate.
When the bit lengths of the codewords are known, we can find the Operational
Rate-Distortion Function (ORDF) [49]. When using frame based coding, all
possible ways of quantizing each combination of coefficients will result in a
rate R and a distortion D, which can be shown as an (R, D)-point in a rate-
distortion diagram. An (R, D)-point is a part of the ORDF if there is no other
(R, D)-points with a smaller distortion using the same or a smaller rate. A
simple example of a rate-distortion diagram is shown in Figure 1.4. All (R, D)-
points are indicated as plus signs. The circled ones are the members of the
ORDF, while the solid line represents the ORDF’s convex envelope. Note that
these (R, D)-points are operational in that they are directly achievable with
the chosen coding scheme and for the given set of test data. While the bound
given by Shannon’s theoretical RDF [51, 52] gives no constructive procedure
for attaining that optimal performance, in the operational RD case we always
deal with achievable points.

A much used method to find members of the operational (R,D)-points’ convex
envelope is the Lagrangian Multiplier Method [49, 38]. This method is essential
in the way we formulate and solve our problem in Chapters 3 and 4. The basic
idea of this technique is as follows: We introduce a Lagrangian multiplier,
λ, which is a non-negative real number. The Lagrangian cost is C(λ) =
D + λR, where D and R are the distortion and the rate for a particular set
of quantized coefficients, respectively. Minimizing C(λ) for a given value of λ,
results in finding one of the (R, D)-points on the convex envelope. For a set
of different λ-values, where λ ≥ 0, we find a set of (R, D)-points constituting
the convex envelope when minimizing C(λ). When λ = 0, minimization of the
Lagrangian cost is equivalent to minimizing the distortion only, i.e., it selects
the point closest to the y-axis in Figure 1.4. Conversely, minimizing C(λ)
when λ becomes arbitrary large is equivalent to minimizing the rate only, and
thus we find the point closest to the x-axis. Intermediate values of λ determine
intermediate points on the convex envelope.

8 Introduction

D

R

Figure 1.4: Operational rate-distortion function (ORDF). All (R, D)-points
are indicated as plus signs. Members of ORDF are circled. The solid line is
the convex envelope for the ORDF.

1.3 Contributions of this work 9

1.3 Contributions of this work

The focus of this work is on the development of an operational rate-distortion
optimal frame based encoder. In traditional frame based compression the
suboptimal vector selection, the quantization, and the entropy encoding is
performed in a sequential order. Previously [43], we have developed the Si-
multaneous Selection and Quantization (SSQ) algorithm. As the name of the
algorithm indicates, the vector selection and the quantization are performed
in the same operation. The entropy encoding is made subsequently. The SSQ
algorithm finds the minimum distortion representation, subject to a sparsity
constraint2. This work presents a method for finding the binary representa-
tion of a one-dimensional input signal in one operation. Since the entropy
encoding is made in the same step, we can change the optimization problem
to be bit rate constrained instead of being sparsity constrained. In a lossy
compression approach, distortion and rate are two of three important entities,
thus finding the optimal solution of the distortion-rate problem is highly rel-
evant. The third important entity in lossy compression is the time consumed
by the encoder and decoder. In frame based coding, the time needed to de-
code the binary representation is negligible, as long as the encoder parameters
are known. The time needed to find the optimal binary representation of the
signal can be large, due to the fact that it increases exponentially with respect
to increasing frame and signal block dimensions. Nevertheless, the problem
is not unsolvable. As this work shows, the optimal solution can be found, by
setting the right parameter values and by using search techniques that saves
time.
The major contributions of this thesis are:

• Development of a theoretical framework for rate-distortion optimal frame
based compression.

• Development of an operational rate-distortion encoding (ORDE) algo-
rithm. The optimality depends on the given frame, the given codeword
tables for allowable coefficient values and indices, and the Lagrangian
multiplier constant. In addition, it depends on an upper bound on the
number of selected vectors per signal block, in order to keep the com-
plexity at an acceptable level.

• Development of an iterative training scheme that designs a well fitted
frame and optimizes the variable codeword tables with respect to the
presented class of signal.

2The distortion in [43] was the l1-norm of the error signal, and not the l2-norm as in this
work.

10 Introduction

• Demonstration of capabilities by presenting experiments on AR(1) pro-
cesses and ECG waveforms.

• Comparisons to Rate-Distortion Optimized Matching Pursuit.

A major part of the listed contributions are published in [47, 46, 45, 44].

Chapter 2

Frame based compression and
Matching Pursuit

In this chapter we present frame based coding in more detail. In Section 2.1
we start by considering the minimization problem for a traditional block ori-
ented frame based coding scheme. We also examine the complexity involved in
finding the optimal solution to the introduced minimization problem, which is
an NP-hard problem. Due to the complexity, a class of suboptimal algorithms,
Matching Pursuit (MP), is used in the vector selection process. MP is intro-
duced in Section 2.2. Three MP algorithms are presented: Basic Matching
Pursuit (BMP), Orthogonal Matching Pursuit (OMP) and Order-Recursive
Matching Pursuit (ORMP). In Section 2.3, previous work on frame based
coding is presented.

2.1 The minimization problem and its complexity

In most publications dealing with frame based coding, the attention has been
fixed on finding the sparse representation that minimizes the overall signal
distortion, D. We have a sparse representation when the number of nonzero
coefficients is much smaller than the number of zero valued coefficients. A
sparse coefficient vector can be found by using a vector selection procedure,
where the nonzero coefficients belong to the selected frame column vectors.
Let Dvs be the distortion introduced by the vector selection, and let S be the
number of nonzero coefficients in the representation of the input signal. The
optimization problem can be formulated as

11

12 Frame based compression and Matching Pursuit

min Dvs

s.t. S = Sbudget, (2.1)

where Sbudget is an upper bound on the total number of nonzero coefficients.
Dvs is the sum of the distortions for all signal blocks considered. There are no
quantization error included to the distortion in the objective function, since
quantization is not taken into consideration in this chapter. For the same
reason, bit rate is not included in (2.1). Let the input signal consist of L
blocks. The distortion of block l, Dvs,l is defined by

Dvs,l(wl) =
∥∥xl − x̂l

∥∥2 =
∥∥xl − Fwl

∥∥2
. (2.2)

The approximation signal, x̂l, is the reconstruction of the original signal using
not quantized coefficients. Now, the problem in 2.1 can be written as

min
w1,...,wL

L∑

l=1

∥∥xl − Fwl

∥∥2

s.t.
L∑

l=1

Sl(wl) = Sbudget, (2.3)

where Sl(wl) denotes the number of nonzero coefficients in wl. This problem
is extremely hard to solve, due to the nonlinearity in the objective function
of (2.3) and the dependency between the signal blocks in the constraint. We
“relax” the problem, which means that we replace it by a simpler problem,
by introducing a coefficient budget for each signal block, Sbudget,l, such that∑L

l=1 Sbudget,l = Sbudget.1 The relaxation will make the signal blocks inde-
pendent, and the problem of (2.3) can be decomposed into L independent
subproblems, where subproblem l can be written as

min
wl

‖xl − Fwl‖2

s.t. Sl(wl) = Sbudget,l. (2.4)

1Whether the number of coefficients per signal block is the same for all blocks or not, is
not discussed here.

2.2 Matching Pursuit 13

The problem in (2.4) is still hard to solve. An optimal solution could be
found by doing a full search among all

(
K
Sl

)
solutions per signal block. K

is the number of frame column vectors. Assume that K = 32 and Sl =
{1, 2, 3, 4}. The number of solutions to be computed per signal block would
be {32, 496, 4960, 35960}, respectively. In most practical situations, the com-
putational effort associated with the full search for the optimal solution is too
high. Thus, fast heuristic algorithms are introduced.

2.2 Matching Pursuit

Some of the most important vector selection heuristics is the family of Match-
ing Pursuit (MP) algorithms. Originally, MP was the algorithm that in this
work is presented as Basic Matching Pursuit (BMP). All MP algorithms are
greedy algorithms, where frame vectors are selected one by one, iteratively.
Here, we will examine Orthogonal Matching Pursuit (OMP) and Order Re-
cursive matching Pursuit (ORMP), but first a brief introduction to the Basic
MP algorithm.

2.2.1 Basic Matching Pursuit

Basic Matching Pursuit (BMP), introduced in a digital signal processing con-
text in [29], works as follows: First, the input signal vector is noted as the
initial residual vector, r0 , xl. At the first iteration, the frame column vector
that best fits the input signal vector, fk1 , is selected: k1 ∈ {1, . . . , K} is chosen
such that |xT fk1 | is maximum. All frame vectors are of unit length. The coef-
ficient, vl,1, is found by taking the inner product between the initial residual,
r0, and the selected vector, fk1 . The new residual, r1 = r0 − 〈r0, fk1〉fk1 , is
the input vector for the next iteration. 〈r0, fk1〉 = rT

0 fk1 is the inner prod-
uct of r0 and fk1 . For each iteration, the coefficient and the frame vector
index is stored. After m iterations, the nonzero coefficient vector is defined as
vl = [vl,1 vl,2 · · · vl,m]T , and the index vector is il = [il,1 il,2 · · · il,m]T =
[k1 k2 · · · km]T . The relation between vl and wl is simply that vl holds
the nonzero values of wl. il indicates where these values are placed in wl. In
Figure 2.1, a pseudo code of the BMP algorithm is presented. The condition
in line 9 is a consequence of the sparsity constraint of (2.4). In many cases
the condition is replaced by ‖rm‖ < ε, where ε is a small, positive scalar. In
these cases, the optimization problem is changed: To minimize the number of
selected vectors, Sl, subject to a distortion constraint, ε.

14 Frame based compression and Matching Pursuit

Basic Matching Pursuit

input : xl, F, Sl

output: vl, il

r0 ← xl1

m ← 12

while m ≤ Sl do3

km ← arg maxk∈{1,...,K} |〈rm−1, fk〉|4

il,m ← km5

vl,m ← 〈rm−1, fkm〉6

rm ← rm−1 − vl,mfkm7

m ← m + 18

end9

Figure 2.1: A pseudo code of the Basic Matching Pursuit algorithm.

In a compression scheme, the index vector, il, and a quantized version, ṽl, of
the coefficient vector vl, is entropy encoded. The reconstruction of the signal
vector is simple and consists of a very few steps, as shown in the pseudo code
in Figure 2.2.

2.2.2 Orthogonal Matching Pursuit

Basic MP has a drawback. It repeatedly optimizes over all frame vectors,
which can result in reselecting a vector already selected in the past iterations.
Orthogonal Matching Pursuit (OMP) [11, 39] is an improvement of BMP
avoiding this problem. The difference lays in the way the residual is computed:
In each iteration the residual is made orthogonal to all previously selected
frame vectors, and not only to the last one added. The principle of vector
selection in each iteration is the same, where the frame vector that reduces the
residual the most is selected. But, due to the residual orthogonalization, only
the so far non-selected frame vectors are of interest. In addition, OMP always
converges after a finite number of iterations in finite dimensional spaces [11],
which is not necessarily the case for BMP. In the literature, OMP is sometimes
called Modified Matching Pursuit (MMP) [2].

2.2 Matching Pursuit 15

BMP Reconstruction

input : ṽl, il, F
output: x̃l

w̃l ← 01

Sl ← length of il2

for m = 1 to Sl do3

w̃l,il,m ← ṽl,m4

end5

x̃l ← Fw̃l6

Figure 2.2: The reconstruction procedure when BMP is used as the vector
selection algorithm.

2.2.3 Order Recursive Matching Pursuit

Order Recursive Matching Pursuit (ORMP) was introduced in [18] as Fast
Orthogonal Matching Pursuit (FOMP). Even though ORMP includes orthog-
onalization, it is not a fast implementation of OMP, but rather a fast version of
the “orthogonal least squares method” in [6]. Fully Orthogonal MP is another
name of ORMP. While OMP orthogonalize the residual with respect to the
space spanned by the selected vectors, ORMP orthogonalize the remaining set
of frame vectors with respect to the set of previously selected vectors. In each
iteration this is done prior to the selection, and the coefficient connected to the
orthogonalized frame vector, vo

l,m, is kept: At iteration m, vo
l,m = 〈rm−1, f̂km〉,

where f̂km is the orthogonalized frame vector. In Figure 2.3 the ORMP al-
gorithm is shown. The first vector selected is, as in BMP, the frame vector
that best fits the input signal, xl. In each of the following iterations, the
Gram-Schmidt (GS) Process [3] is used to find the orthonormalization of a so
far not selected frame vector, fk, with respect to the selected set of vectors.
The algorithm terminates after Sl iterations. Note that the coefficient vector
to be quantized and entropy encoded, vo

l = [vo
l,1 vo

l,2 · · · vo
l,Sl

]T , is the
one connected to the orthogonalized set of selected vectors. This involves an
orthonormalization procedure to be implemented in the decoder, resulting in
an increase of computational effort in the reconstruction scheme. Figure 2.4
shows the steps needed to find the reconstructed signal vector, x̃l, when il and
ṽo

l are the representation data transmitted. If the increase in the decoding
computational time is unacceptable, we could move the computational effort
to the encoding side, and let the original frame vector coefficients, vl, be quan-

16 Frame based compression and Matching Pursuit

tized and entropy encoded. The reconstruction procedure would then be equal
to the one in Figure 2.2. As for BMP, this would involve a major disadvantage:
The coefficients of the original frame vector can become arbitrarily large and
cause problem for the quantizer and the entropy encoder.
In general, the ORMP gives better results than OMP, and especially, the BMP
algorithm [2, 9].

Order Recursive Matching Pursuit

input : xl, F, Sl

output: vo
l , il

r0 ← xl1

m ← 12

while m ≤ Sl do3

km ← arg maxk∈{1,...,K}\k∈il |〈rm−1, f̂k〉|4

where f̂k =
fk−

∑m−1
ξ=1 〈fk ,̂fkξ

〉f̂kξ

‖fk−
∑m−1

ξ=1 〈fk ,̂fkξ
〉f̂kξ

‖

il,m ← km5

vo
l,m ← 〈rm−1, f̂km〉6

rm ← rm−1 − vo
l,mf̂km7

m ← m + 18

end9

Figure 2.3: A pseudo code of the Order Recursive Matching Pursuit algo-
rithm.

2.3 Previous work on frame based coding

Considerable research has been performed in the area of frame based coding.
The most important papers, and the papers most relevant to this work, will be
reviewed in the following. First, we should repeat for ourselves the motivation
of using frames, or overcomplete dictionaries: To get a sparse representation
of the input signal, that when decoded results in a good approximation of the
signal. Using an overcomplete dictionary increases the likelihood of finding
a sparse representation resulting in a lower distortion, compared to using a
transform. Thus, the focus of the research has mainly been: 1) Vector selec-
tion: Given a frame F, how to get a good sparse representation in a reasonable

2.3 Previous work on frame based coding 17

ORMP Reconstruction

input : ṽo
l , il, F

output: x̃l

Sl ← length of il1

if Sl = 0 then2

x̃l ← 03

else4

ql,1 ← f̂il,1 ← fil,15

for m = 2 to Sl do6

ql,m ← f̂il,m ← fil,m−
∑m−1

ξ=1 〈fil,m ,̂fil,ξ 〉f̂il,ξ
‖fil,m−

∑m−1
ξ=1 〈fil,m ,̂fil,ξ 〉f̂il,ξ‖7

end8

x̃l ← Qlṽo
l where Ql = [ql,1 ql,2 · · · ql,Sl

]9

end10

Figure 2.4: The reconstruction procedure when ORMP is used as the vector
selection algorithm.

amount of time, and 2) Frame improvement: How to find a frame F, that best
fits a given class of signals.

2.3.1 Vector selection

BMP was developed by Mallat and Zhang [29] in 1993. After this, many MP
variants has been developed. We have already mentioned Orthogonal MP by
Davis [11] and in parallel by Pati et al. [39]. ORMP was proposed in different
journals with different names: In 1989, Chen et al. [6] presented the Orthog-
onal Least Squares (OLS) method, and a fast implementation of this (FOLS)
in 1995 [7]. In the same year, Natarajan [34] proposed a greedy algorithm
in an applied mathematics journal. Gharavi-Alkhansari and Huang presented
ORMP as Fast Orthogonal Matching Pursuit (FOMP) in 1998. The subject
of finding the least computational complex version of the MP algorithms has
resulted in several papers. Cotter et al. [9, 8] presents fast versions of BMP,
OMP, and ORMP, and compare the performance of these algorithms. OMP
and ORMP are more complex than BMP, but they have a better sparsity
performance subject to a distortion constraint.
In addition to obtaining a well selected set of vectors, it is important to look at
the coefficient quantization, since both selection and quantization introduce

18 Frame based compression and Matching Pursuit

distortion to the signal. This is more important when using coarse quanti-
zation. Quantized Matching Pursuit (QMP) was proposed by Vetterli and
Kalker [57]. The difference between BMP and QMP is: In each iteration of
QMP, the coefficient of the selected vector is quantized. The computation of
the residual (to be the input vector of next iteration) involves the quantized
coefficient, and not the continuous valued one. In Figure 2.1, this would be
the same as replacing line 5 by rm ← rm−1 − Q[〈rm−1, fkm〉]fkm , where Q[·]
represents a scalar quantization. The motivation for using QMP is to reduce
the propagation of the quantization error to subsequent iterations. Goyal et
al. [22] focus on the consistency of the reconstruction algorithm. Let w̃ex be
the quantized coefficient vector of signal vector xex, for an arbitrary frame
based encoder. The reconstruction of xex is x̃ex. A reconstruction algorithm
is called a consistent reconstruction algorithm if w̃ex would be the quantized
coefficient vector, both with xex and x̃ex as inputs. This is not always the
situation when quantizing coefficients of nonorthogonal frame vectors.2 By
making a consistent reconstruction algorithm for QMP, Goyal and Vetterli [21]
shows experimentally a rate-distortion improvement. Frossard et al. [15] look
at quantization of coefficients in another way. They use a posteriori quantiza-
tion, which implies that the quantization does not influence the MP expansion.
The new idea in this work is on how the coefficients are quantized with respect
to their placement in the coefficient vector; The quantization region decreases
exponentially, according to the decay of coefficient value range in each itera-
tion of MP. The quantization steps are made smaller for each iteration, and
the quantization noise is reduced. Another method on MP quantization is
proposed by Caetano et al. [5]. In this work, there are no coefficients to be
quantized. They use generalized bit-plane decomposition, where the repre-
sentation of the signal vector is pairs of selected vector indices and bit-plane
integers. The selection and quantization are made simultaneously. The algo-
rithm has a slightly better rate-distortion performance than BMP, and a much
better rate control.

The Matching Pursuit procedure can be viewed as a greedy Depth-First-Search
(DFS) [30] in a solution tree. How this tree is organized is described in Sec-
tion 4.3. You start in the root node. At each iteration of MP, you go one
step down in the tree, to the node that represent the best fitting frame vector
according to the current residual. When the stop criterion of MP is met, the
search is terminated. The sequential and greedy nature of MP prevents the
possibility of getting a better solution when using the second best solution
in first iteration, that in the next phase is a better selection when two or

2Not a problem when using ORMP, when the coefficients connected to the orthogonalized
frame vectors are used.

2.3 Previous work on frame based coding 19

more frame vectors are selected. Both Cotter and Rao [10], and Skretting and
Husøy [55] propose tree-based partial search algorithms based on MP. But,
instead of keeping only the best solution at each iteration, a small set of the
better solutions is kept. When the stop criterion is met, the best combination
of frame vector is returned. The time complexity increases, but the perfor-
mance is better than MP, especially for the algorithms based on OMP and
ORMP.

Skretting et al also introduced Global Matching Pursuit (GMP) [54] in an
image compression scheme. Images are largely non-stationary, and parts with
many details should be allocated more representation vectors than relatively
smooth parts, in order to put the total distortion to a minimum. In GMP, the
first iteration of MP is done for all L signal block, before starting the second
iteration, and so on. The inner products between the residual and all frame
vectors are found. The inner products with the largest absolute values, but
maximum one per signal block, are stored in a priority queue of length Sbudget.
For each iteration, the new inner products are compared to the queue, and
replaced by inner products with a smaller absolute values. GMP requires more
memory space than BMP. Without a large increase in computation time, GMP
provides a better sparsity performance through its well defined distribution of
selected vectors among the L signal blocks.

Up to now, only MP or similar sequential selection algorithms are mentioned.
Another heuristic, based on a parallel selection principle, is the FOCal Un-
derdetermined System Solver (FOCUSS) algorithm [19]. Intuitively, the al-
gorithm can be explained by noting that there is a competition between the
columns of F to represent xl. In each iteration, certain columns get em-
phasized while others are deemphasized. In the end a few columns survive
to represent xl providing a sparse solution. FOCUSS is computational more
expensive than BMP, OMP and ORMP, but has a better performance. A
comparison between the MP algorithms and FOCUSS is presented by Adler
et al. [2]. Extensive experiments on speech signals, ECG signals, and images
where these four selection algorithms are used, are performed by Engan [12].

2.3.2 Frame improvement

In order to get a well fitted sparse representation, it is important to design a
frame that is well suited to the current class of signals. Engan et al. [13, 14]
developed the Method of Optimal Directions (MOD). Let X be an input signal
matrix consisting of L column vectors, X = [x1 x2 · · · xL], and let
W = [w1 w2 · · · wL] be the corresponding set of unquantized coefficient

20 Frame based compression and Matching Pursuit

vectors. MOD is an iterative procedure consisting of two steps: 1) F and X
are known. Find W by using a vector selection algorithm. 2) W and X are
known. Find the new frame by F = XWT (WWT)−1. MOD is described in
more detail in Section 5.2.2. A more general view and use of MOD is given
by Aase et al. [1].

Through experiments, finding the most suitable frame depends on the number
of vectors selected per signal block. Thus, Multi Frame Compression [14] is
developed. Consider a set of S frames; F1, . . . ,FS . There are S entropy
coders, one corresponding to each frame. For a particular class of signals,
the frames and the entropy coders are designed to fit the selection of 1, . . . , S
frame vectors, respectively. In the designed scheme there is not only selection
of vectors, but a selection of frame, as well. This implies an increase in the
side information, due to the need of frame number information at the decoder,
but the rate-distortion performance is better.

So far, we have talked about block oriented frames. Skretting et al. [56, 53]
have introduced the concept of Overlapping Frames. An Overlapping Frame
is actually a generalization of critical sampled filter banks and wavelets. The
size of F is now NO×K, where O is a positive integer, or actually the number
of signal vectors covered at each time.

Chapter 3

Rate-distortion optimal
(RDO) compression

The main idea behind rate-distortion optimized compression is to find the
minimum distortion representation of a signal, subject to a given bit budget.
Or, the inverse problem; Finding the minimum number of bits required, sub-
ject to an upper bound of the distortion. The definitions of distortion and
rate are given in Section 3.1. In Section 3.2, the rate-distortion optimization
problem for a frame based coding system is presented. Due to the complexity
of finding the optimal solution, the hard problem is replaced by a simpler one
by using the Lagrangian Multiplier method. Section 3.3 shows the number
of solutions for an example of a specific coding scheme, and it demonstrates
the combinatorial explosion when increasing the number of selected vectors
for every signal block. In Section 3.4 the RDO Matching Pursuit is presented,
as it was introduced in [17]. Examples of other work in RDO compression are
given in Section 3.5.

3.1 Definitions

We define the bit rate and the distortion for each block to be independent
of the other blocks, i.e., the total bit rate, R, and the total distortion, D,
is the sum of the rates and the distortions for each block, respectively. The
distortion, Dl, for block l is defined by

Dl(w̃l) =
∥∥xl − x̃l

∥∥2 =
∥∥xl − Fw̃l

∥∥2
, (3.1)

21

22 Rate-distortion optimal (RDO) compression

where w̃l is the quantized coefficient vector of block l. Since a large number of
the K elements in w̃l is expected to be equal to zero, only the quantized values
of the nonzero coefficients and their corresponding indices are encoded. An
End Of Block (EOB) symbol is introduced. After the last nonzero coefficient
in each block, the EOB symbol indicates the start of the next block. We use
two distinct Variable Length Codeword (VLC) tables of finite length, one with
value symbols and one with index symbols. A VLC table contains the sym-
bols and the bit patterns, or codewords, used to represent the corresponding
symbols. The EOB symbol is added as the last term in the index codeword
table, thus the EOB codeword should not be confused with any of the index
codewords. The rate, Rl, for block l is defined by

Rl(w̃l) =
∑

k∈il

(Rval
l,k + Rind

l,k) + REOB, (3.2)

where il is a vector of indices of the nonzero coefficients, Rval
l,k and Rind

l,k are the
number of bits used to encode the value and the index for the kth coefficient,
respectively, and REOB is the number of bits needed to represent the EOB
symbol. If there are no vectors selected to represent signal block l, only the
EOB symbol needs to be transmitted and Rl(w̃l) = REOB.

3.2 The minimization problem

Our goal is, for a given set of signal blocks, X = [x1 x2 · · · xL], to find the
appropriate set of coefficient vectors, W̃ = [w̃1 w̃2 · · · w̃L], so that the
distortion of the reconstruction is minimized subject to a given bit budget,
Rbudget. We can formulate our initial optimization problem as

min
w̃1,...,w̃L

L∑

l=1

Dl(w̃l)

s.t.
L∑

l=1

Rl(w̃l) ≤ Rbudget. (3.3)

This problem looks similar to the one in (2.3), but it is quite different. Both
problems are nonlinear, due to the norm sign in the definition of the distortion
in the objective function. But, while (2.3) is constrained by a sparsity budget,
(3.3) is constrained by a bit rate budget. (3.3) is harder to solve than (2.3).

3.2 The minimization problem 23

Due to the quantized valued w̃l, (3.3) is an integer problem [59]. In order
to make the problem solvable, we relax it by using the Lagrangian Multiplier
Method : The constraint is added to the objective function, weighted by the
Lagrangian Multiplier, λ. The following unconstrained optimization problem
is formulated as

min
w̃1,...,w̃L

(L∑

l=1

Dl(w̃l) + λ
(L∑

l=1

(
Rl(w̃l)

)−Rbudget

))
, (3.4)

for λ ∈ R+. After (3.4) is solved to optimality for a chosen λ-value, the
appropriate λ needs to be iteratively adjusted down to a value where further
reduction of λ would cause an overrun of the bit budget, Rbudget. When this
λ-value is found, we have the optimal solution of (3.3).

From now on, we focus on finding the rate-distortion convex envelope. The
convex envelope will tell us the quality of the coding scheme, where the min-
imum distortion is a function of a given bit rate. We leave the focus on the
bit budget, and Rbudget can be removed from the problem formulation, since
it represents a constant term in the objective function. The problem can now
be formulated as

min
w̃1,...,w̃L

(L∑

l=1

Dl(w̃l) + λ
L∑

l=1

Rl(w̃l)
)

=
L∑

l=1

[
min
w̃l

(
Dl(w̃l) + λRl(w̃l)

)]
. (3.5)

The signal blocks are independent and hence the minimization can be moved
inside the summation operator. By using the formulation in (3.5) with several
different λ-values, we can find segments of the rate-distortion convex envelope.
λ is the “turning knob” used to change between low and high bit rate coding.

Figure 3.1 illustrates our new focus. Contrary to traditionally frame based
coding, illustrated in Figure 1.3, we will find the operational rate-distortion
optimal representation, Y opt, of an input, X, given the frame F, the La-
grangian multiplier λ, and the bit rate of coefficient values and indices. Y opt

is a bit stream which is put into the channel in a communication system. (See
Figure 1.1.) The next section discusses the complexity of the rate-distortion
optimal procedure.

24 Rate-distortion optimal (RDO) compression

values

F indicesλ

Rate-distortion

optimizer
Y
opt

X

Figure 3.1: An operational rate-distortion optimizer finds the best possible set
of representation symbols, Y opt, for an input signal, X, given the frame F, the
Lagrangian multiplier λ, and the bit rate of coefficient values and indices.

3.3 Problem size considerations

In (3.5), the signal blocks are independent. It would be preferable to have
a similar situation within each block, that is, for the rate and distortion to
be minimized with respect to each of the coefficients of w̃l, independently.
Unfortunately, the distortion is dependent on all coefficients of w̃l, due to
the nonorthogonal decomposition, and this dependency can not be decoupled.
Hence the minimization can not be carried out coefficient by coefficient, but
needs to be carried out for every combination of coefficient values. The com-
plexity of the minimization in (3.5) is high, since for every block we need to
search among all possible ways to place M nonzero elements in a coefficient
vector of length K. M = 1, 2, . . . , Mmax, where Mmax is the largest number
of nonzero coefficients we choose to use for a single signal block. The num-
ber of combinations with M nonzero coefficients is

(
K
M

)
. In addition, each

nonzero coefficient can take on a given number of different value symbols, J .
For each combination, the number of solutions is JM . Thus, the total number
of different solutions is

∑Mmax
M=0

(
K
M

)
JM . In all practical cases, Mmax << K,

due to the sparse representation idea. In this work, frames with dimensions
16 × 32 are used, thus K = 32. Assume that all nonzero coefficient can take
on J = 32 different values. For M = {1, 2, 3, 4}, (

K
M

)
= {32, 496, 4960, 35960}

and JM = {32, 1024, 32768, 1048576}. A way to avoid the latter combinatorial
explosion is presented in Chapter 4, where we introduce a computationally ef-
ficient algorithm that allows us to find the optimal solution. This is achieved
by first moving to an orthogonal space, where the distortion becomes the sum
of the coefficient distortions, and then reformulating the optimization problem
in that space. These two steps allow us to reduce the JM complexity above to
an JMM ! complexity. By choosing the right search strategy, the problem size
can be further reduced from JMM ! to JM ! for each combination of vectors.

3.4 RDO Matching Pursuit 25

Together this is a tremendous reduction, keeping in mind that M << J in all
practical cases. For example, in the above case with M = 4, this reduction in
problem size is a factor of 324/(32 · 4!) = 1365.

3.4 RDO Matching Pursuit

Rate-distortion optimized Matching Pursuit was first mentioned by Vetterli
and Kalker [57]. But, elaboration and experimental work was first made by
Gharavi-Alkhansari [17], thus this section is based on his work. First, it should
be pointed out that RDO MP is not the RD optimal solution to the problem
in (3.5). RDO MP is a greedy algorithm where the focus is to get a minimum
rate-distortion solution rather than a minimum distortion subject to a sparsity
constraint. RDO MP finds a suboptimal solution to the problem in (3.5).
For signal block l, the cost is defined by Cl , Dl + λRl, and Cl,m is the cost
at iteration m in the RDO MP algorithm. When selecting a frame vector,
the bit rate associated with representing the frame index is known, when the
VLC tables are set. By finding a corresponding quantized coefficient among
the set of predefined values, we know the total rate of adding the current
vector to the selected set. We can find the resulting distortion reduction, due
to the distortion definition in (3.1). Both the selection criterion and the stop
criterion are different in RDO MP compared to MP. The frame vector selected
at iteration m is the one that, together with the quantized coefficient, generates
the largest cost reduction. Or in other words, the vector that maximizes
∆C = Cl,m−1 − Cl,m. The algorithm stops when ∆C is negative. The last
selected vector, resulting in ∆C < 0, is not added to the set of selected vectors.
Gharavi-Alkhansari presents two algorithms, the RDO Basic Matching Pur-
suit (RDO BMP) and the RDO Ordered Recursive Matching Pursuit (RDO
ORMP1). The RDO BMP algorithm is presented in Figure 3.2. Compared
to BMP, the sparsity constraint in the input is exchanged by a VLC table of
values, a VLC table of frame vector indices, and a Lagrangian multiplier, λ.
The tables of values and indices has J and K codewords, respectively. The
output is now the quantized coefficient vector, ṽl, and the corresponding vec-
tor of the selected set of indices, il. The RDO ORMP algorithm is shown in
Figure 3.3. It is similar to RDO BMP, except from the orthogonalization of
the frame vectors in line 6. This follows the principles of ORMP. The output is
now the quantized coefficients connected to the orthogonalized set of selected
frame vectors, ṽo

l , together with il. In [17] the numbers of selected vectors for
each signal block are encoded and sent to the decoder. In this work, the EOB
symbol is used to separate the signal blocks from each other.

1ORMP is denoted as Fully-Orthogonal Matching Pursuit in [17].

26 Rate-distortion optimal (RDO) compression

RDO Basic Matching Pursuit

input : xl, F, values, indices, λ
output: ṽl, il

Cl,0 ← ‖xl‖2 + λREOB1

r0 ← xl2

δ0 ← REOB3

m ← 14

do5

[km, jm] ← arg mink∈{1,...,K},j∈{1,...,J}
{
‖rm−1 − values(j)fk‖2 +6

λ(δm−1 + Rvalues(j) + Rindices(k))
}

Cl,m ←7

‖rm−1 − values(jm)fkm‖2 + λ(δm−1 + Rvalues(jm) + Rindices(km))
if Cl,m ≤ Cl,m−1 then8

il,m ← km9

ṽl,m ← values(jm)10

rm ← rm−1 − ṽl,mfil,m11

Rval
l,m ← Rvalues(jm)12

Rind
l,m ← Rindices(km)13

δm ← δm−1 + Rval
l,m + Rind

l,m14

m ← m + 115

end16

while Cl,m ≤ Cl,m−117

Figure 3.2: A pseudo code of the Rate-Distortion Optimized Basic Match-
ing Pursuit (RDO BMP) algorithm.

3.4 RDO Matching Pursuit 27

RDO Ordered Recursive Matching Pursuit

input : xl, F, values, indices, λ
output: ṽo

l , il

Cl,0 ← ‖xl‖2 + λREOB1

r0 ← xl2

δ0 ← REOB3

m ← 14

do5

[km, jm] ← arg mink∈{1,...,K}\k∈il,j∈{1,...,J}
{
‖rm−1 − values(j)f̂k‖2

6

+ λ(δm−1 + Rvalues(j) + Rindices(k))
}

where f̂k =
fk−

∑m−1
ξ=1 〈fk ,̂fkξ

〉f̂kξ

‖fk−
∑m−1

ξ=1 〈fk ,̂fkξ
〉f̂kξ

‖

Cl,m ←7

‖rm−1 − values(jm)f̂km‖2 + λ(δm−1 + Rvalues(jm) + Rindices(km))
if Cl,m ≤ Cl,m−1 then8

il,m ← km9

ṽo
l,m ← values(jm)10

rm ← rm−1 − ṽo
l,mf̂il,m11

Rval
l,m ← Rvalues(jm)12

Rind
l,m ← Rindices(km)13

δm ← δm−1 + Rval
l,m + Rind

l,m14

m ← m + 115

end16

while Cl,m ≤ Cl,m−117

Figure 3.3: A pseudo code of the Rate-Distortion Optimized Ordered Re-
cursive Matching Pursuit (RDO ORMP) algorithm.

28 Rate-distortion optimal (RDO) compression

The RDO MP algorithms follow the principle of best RD performance. How
the quantizer is defined, plays an important role for the results. In [17], a
uniform quantizer is proposed. Under mild conditions it is proven that uniform
quantizers are optimal in a rate-distortion sense, when the quantized values
are entropy encoded [16]. The entropy encoding used in [17] is arithmetic
coding, where only estimates of the bit rate is used to find the RDO MP
solutions. In our work, Huffman coding [24, 16] is used. The reason for this is
that we focus on operational RDO coding, i.e., practical optimal coding where
all parameters are known before coding.

3.5 Other work in RDO compression

In all compression schemes the rate-distortion behavior is a central entity. In
image and video coding the volume of information is large, and the use of lossy
compression of digital images and video is very important. A nice overview of
rate-distortion methods for image and video compression is given by Ortega
and Ramchandran [38]. They start by looking at the fundamentals of RD
theory, and illustrate the concept of designing operational RD coders. The
rate-distortion techniques used in the image compression standard JPEG [40]
and the video standard MPEG [33] are presented. Both JPEG and MPEG are
based on the DCT transform, where blocks of 8×8 pixels are transformed. The
transformed coefficients are quantized, and a zigzag scan is performed to get
the two-dimensional set of coefficients into a one-dimensional vector. Most of
the coefficients are quantized to zero, and the nonzero coefficients are mostly
present in the beginning of this vector. This is the low pass coefficients, stating
the fact that most digital images mainly contain low pass information. But,
there may be “outliers” of nonzero coefficients representing higher frequencies.
Entropy encoding of these “outliers” is more expensive than of the low pass
coefficients, from a bit rate point of view. In a rate-distortion setting, one may
get better results by quantizing these coefficients to zero. Ramchandran and
Vetterli [42] presents an RDO Fast Thresholding algorithm that thresholds
(or put to zero) all “outliers” that generate a worse RD performance without
thresholding. The algorithm is completely compatible to standard JPEG and
MPEG decoders. An in-depth study of RD based video compression is made by
Schuster and Katsaggelos [50], which includes exhaustive research in optimal
video frame compression and object boundary encoding [49].

In our work, we compress electrocardiograms (ECG) using an operational rate-
distortion optimal method. This is also done by Nygaard [36, 37] by a time
domain algorithm. She uses shortest path dynamic programming in order to

3.5 Other work in RDO compression 29

find the optimal solution. Except from the work described in Section 3.4,
the rate-distortion optimization focus in frame based coding has received more
attention in recent works. Neff and Zachor present operational RD models for
MP video coding [35]. They propose two models for predicting the rate and
distortion. Thus, it is not RDO MP, but faster methods finding solutions near
to RDO MP. An operational RDO scheme is presented by Vleeschouwer and
Zachor [58]. Here, in-loop quantization is used, or in other words, Quantized
MP (QMP) in an RDO setting.

30 Rate-distortion optimal (RDO) compression

Chapter 4

The operational
rate-distortion encoder
(ORDE)

In this chapter we introduce the core contribution of this work, which is the
formulation and solution of our minimization problem. The reader should
keep in mind that in this chapter, the frame F, the coefficient value and index
VLC tables, and the Lagrangian Multiplier λ are fixed and known. In Sec-
tion 4.1, the set of selected frame vectors is orthonormalized. Due to this, the
time consumption of finding the rate-distortion optimal solution is radically
reduced. A new problem formulation is presented in Section 4.2. This is the
same problem as presented in Section 3.2, but with respect to orthonormalized
coefficients. Still the complexity of this problem is high. Graph theory tech-
niques presented in Section 4.3 reduce the time consumption radically without
changing the problem formulation. In Section 4.4, the problem formulation
is changed one more time by adding a constraint. Only ordered selection of
frame vectors is allowed. Now, instead of encoding coefficient indices, the runs
between the indices are encoded. We can use run-length coding (RLC) as a
part of the entropy coder, resulting in a reduction in the bit rate. The solution
set is smaller, resulting in the chance of higher distortion, but RLC generates
a lower bit rate. A summary of the proposed algorithms’ complexity is given
in Section 4.5.

31

32 The operational rate-distortion encoder (ORDE)

4.1 Orthonormalization of selected frame vectors

In this section, our starting point is the sum of minimization problems in (3.5),
which is formulated as

L∑

l=1

[
min
w̃l

(
Dl(w̃l) + λRl(w̃l)

)]
. (4.1)

Let us look at one of these problems, the one including signal block l, xl. First,
we first choose a particular set of M frame vectors and attempt to find an op-
timal solution for this particular selection. If the M vectors were orthonormal,
the total distortion would be the sum of the coordinate distortions. However,
this is not necessarily the case. The optimization problem still involves depen-
dent quantizers, and is therefore very complex. We now force this orthonormal
condition on the problem by using a QR-decomposition [3], which results in
a new space where the total distortion is simply the sum of the coordinate
distortions. Hence in this space, there are no dependencies among the coeffi-
cients and therefore the problem is now an independent quantizer allocation
problem, which is much faster to solve as the set of optimal quantizers for each
coefficient is also the optimal solution to the overall problem.

For a given combination of M nonzero coefficients, the rate for the index
symbols is known, since we know the Variable Length Codeword (VLC) table
in the entropy coder. Yet, we still do not know the distortion nor the rate
for the value symbols. It is always the case that M < N , due to the sparse
representation idea. Let us define a new matrix, Φl, which is the set of selected
column vectors of F (corresponding to the nonzero coefficients). The matrix
Φl will have dimensions N×M and represent an undercomplete set of vectors.
Let vl = [vl,1 vl,2 · · · vl,M]T and ṽl = [ṽl,1 ṽl,2 · · · ṽl,M]T be the
nonzero coefficients of wl and its quantized version w̃l, respectively, like it
was defined in Section 2.2.1. Since M < N , the best reconstruction of signal
vector xl when unquantized coefficients are used is given by

x̂l = Φlvl = Φl(ΦT
l Φl)−1ΦT

l xl, (4.2)

due to the Best Approximation Theorem [3]. More details about projection
and this theorem are given in Appendix A.2. The error is orthogonal to
any vector spanned by the column vectors in Φl. By using the Pythagorean
theorem, the distortion in block l can be written as

Dl = ‖xl − x̃l‖2 = ‖xl − x̂l‖2 + ‖x̂l − x̃l‖2. (4.3)

4.1 Orthonormalization of selected frame vectors 33

This is illustrated in Figure 4.1, where the dots represent possible values the
reconstructed vector, x̃l, can take. The first term in (4.3) is the distortion
caused by the vector selection. This term is a constant due to (4.2), since both
xl and Φl are known when the set of selected vectors is known. Now, we can
focus on the second term of the equation, which is the quantization distortion.
The column vectors in Φl are not necessarily orthogonal, and therefore we still
have dependencies between the coefficients. By using QR-decomposition, we
can get an orthogonal version of Φl. We can write Φl = QlRl, where Ql is
an N ×M matrix with all vectors orthonormal, and Rl is an M ×M upper
triangular matrix. QR-decomposition is explained in detail in Appendix A.1.
The nonzero coefficient vector related to the orthonormal basis, vo

l , and its
quantized version, ṽo

l , were introduced in Section 2.2.3. Since Rl is known,
the relation between the orthogonal and the nonorthogonal coefficient vector
can easily be written as vo

l = Rlvl. The last term of (4.3) can be written as

‖x̂l − x̃l‖2 = ‖Qlvo
l −Qlṽo

l ‖2

= (vo
l − ṽo

l)
TQT

l Ql(vo
l − ṽo

l)

= ‖vo
l − ṽo

l ‖2 =
M∑

m=1

(vo
l,m − ṽo

l,m)2. (4.4)

)
~

(
ll
xx −

l
x̂

Mℜ

x l
∈ ℜ N

)ˆ(
ll
xx −

)
~ˆ(
ll
xx −

l
x
~

Figure 4.1: A visualization of the orthogonality between the minimum error
vector and the subspace spanned by the column vectors in Φl. The dots
represent possible values of x̃l.

Due to the QR-decomposition of Φl the computation of (4.2) is simplified.

34 The operational rate-distortion encoder (ORDE)

That is, the projection matrix, Φl(ΦT
l Φl)−1ΦT

l , can be replaced by QlQT
l in

the following way:

Φl(ΦT
l Φl)−1ΦT

l

= QlRl(RT
l QT

l QlRl)−1RT
l QT

l

= QlRl(Rl)−1(RT
l)−1RT

l QT
l

= QlQT
l . (4.5)

It should be noted that we expect the upper triangular matrix, Rl, to be
invertible, i.e., all its diagonal elements are nonzero. This is true when all
column vectors of Φl are linearly independent. If the column vectors are
linearly dependent, there are redundancy in the representation and one of the
dependent vectors should be removed. Thus, Rl will always be invertible. It
should also be noted that if the order of the selected frame vectors is changed,
Ql and Rl will be different. Having M vectors, the number of ways to order
them is M !, and consequently the number of different QR-decompositions is
M !.

The importance of (4.4) is that in the orthonormal space, the quantization
distortion is simply the sum of the coefficient distortions. More specifically,
Dl in (4.3), can be written as a constant plus the sum of independent coefficient
distortions.

4.2 Reformulation of the optimization problem

The original optimization problem in (3.3) is hard to solve since the distortion
cannot be written as the sum of coefficient distortions. In the previous section
we have shown an orthogonalization procedure, which results in the quanti-
zation distortion being the sum of the coefficient distortions in an orthogonal
space. The original optimization problem, however, asks for quantization and
encoding of the original decision vectors, which are not in this orthogonal
space. In this section we reformulate the original optimization problem, in
that we quantize and encode the orthogonal coefficients, which has the effect
that the distortion and the rate become additive with respect to its orthogonal
coefficient rates and distortions. I.e., the dependencies between the orthogo-
nal coefficients are decoupled. We will from now on use the coefficient vector
ṽo

l = [ṽo
l,1 ṽo

l,2 · · · ṽo
l,M]T as the decision variable. For a given combination

of M nonzero coefficients and a given order of selected frame vectors, we know

4.2 Reformulation of the optimization problem 35

Φl. We find Ql and Rl, the QR-decomposition of Φl. For signal block l the
new problem is

‖xl −QlQT
l xl‖2

+ λ
(M∑

m=1

(Rind
l,m) + REOB

)

+
M∑

m=1

min
ṽo

l,m

(
(vo

l,m − ṽo
l,m)2 + λRval

l,m

)
, (4.6)

minimized with respect to ṽo
l . The first term of (4.6) is the first term of (4.3),

found by (4.2) and (4.5). Note that the rates, Rind
l,m and Rval

l,m, now depend
on the coefficients of the new decision vector, since these are the coefficients
encoded and transmitted. The coefficient values are restricted to be one of
the J symbols in the values codeword table. Due to this fact, the last term of
(4.6) can be written as

M∑

m=1

min
j∈{1,...,J}

(
(vo

l,m − values(j))2 + λRvalues(j)

)
, (4.7)

where Rvalues(j) is the number of bits of codeword no. j in values. From (4.7)
it becomes clear that the problem is now much faster to solve, since only JM
comparisons are necessary in order to find the minimum solution, compared
to the JM comparisons needed in our original problem. The unquantized
coefficient vector, vo

l , is found by

vo
l = Rlvl = Rl(ΦT

l Φl)−1ΦT
l xl = QT

l xl. (4.8)

To find the optimal rate-distortion tradeoff, we must solve (4.6) for all
(

K
M

)
M !

combinations for M = {1, . . . , Mmax}, and store the minimum of all solutions.
When working with low bit rate compression, the maximum number of nonzero
coefficients per block, Mmax, is low, resulting in a computationally manageable
problem.

It is the orthogonal coefficient vector, ṽo
l , and the corresponding indices that

are entropy encoded and transmitted through the channel. Therefore, a QR-
decomposition is required in the decoder in addition to knowledge of the frame
and the VLC tables used in the encoder. For every signal block, l, the set of

36 The operational rate-distortion encoder (ORDE)

selected frame vectors, Φl, is found by decoding the index codewords. The ma-
trix Ql is found by QR-decomposing Φl, and the reconstructed signal vector,
x̃l, is found by

x̃l = Qlṽo
l . (4.9)

A full search through all combinations of up to Mmax frame vectors (including
all vector ordering permutations) is necessary in order to find the optimal
solution. Yet, there is a considerable amount of time to save by choosing the
right search strategy. This is the topic of Section 4.3.

ORMP, described in Section 2.2.3, follows similar steps to the ones we pro-
pose in this chapter. The orthogonalization of frame vectors is essential in
both approaches. But, ORMP is clearly based on a heuristic and therefore it
does not provide an RD optimal solution. In this work, we choose the orthog-
onalized vector that is giving us the best RD tradeoff. This is done for all
combinations of up to Mmax vectors. If the value of Mmax is at least as large
as the largest number of coefficients needed per signal block, our new approach
finds the rate-distortion optimal solution of the problem that the RDO ORMP
algorithm addresses, and it does so in an efficient way. While the problem in
Section 3.2 leads to the RD optimal solution of the problem that the Basic
MP algorithm addresses, the solution of the problem in Section 4.2 is the RD
optimal solution of the problem that ORMP addresses.

While the encoding of the signal is different, the decoding is the same, all of the
ORMP, RDO ORMP, and ORDE cases. The reconstruction of signal block l
is described in the algorithm in Figure 2.4. This is done for the entire set of
L signal blocks.

4.3 Time complexity reduction using a solution tree

In this section we organize all
∑Mmax

M=0

(
K
M

)
M ! possible ways of combining up to

Mmax frame vectors. We build a solution tree for each signal block, whose pur-
pose is to make it possible to use techniques that give us additional complexity
reduction of coding each signal vector optimally.

Consider a tree where each node represents a unique set of selected vectors
from the frame F, i.e., a unique Φl. The root node represents the selection
of zero vectors (M = 0). It has K child nodes. Each of these represents the
selection of exactly one frame vector (M = 1). The edges that connect the
root node to its child nodes are named “1”, “2”, ... ,“K”, to indicate the index

4.3 Time complexity reduction using a solution tree 37

of the frame vector that is selected. All nodes in level 1 have K−1 child nodes
each, all nodes in level 2 have K − 2 child nodes, and so on, down to level
Mmax where the tree is bounded and no child nodes exist. For any node in the
tree (except from the nodes at level Mmax), the branches to the child nodes
are named “1”, “2”, ... ,“K”, except from the branch names that lead from
the root node down to the current node. This is why the number of children
for each node at level M is equal to K −M . In other words, a frame vector
can never be selected twice. In Figure 4.2 an illustration of this tree is shown.
It will have Mmax + 1 generations, or levels, included level 0. Level M will
have

M−1∏

m=0

(K −m) =
K!

(K −M)!
=

(
K

M

)
M ! (4.10)

number of nodes. The entire tree represents all possible combinations of
0, 1, . . . , Mmax vectors selected, including all vector ordering permutations.
For each node, we find the minimum rate-distortion solution by solving (4.6)
for the given combination. To find the globally optimal solution for the signal
block, we need to evaluate all nodes in the tree.

M = 1

M = 0

M = 2

1 2

K-1

K

2 3 K 1 3 K... ...

...

K-2...1

Figure 4.2: Graphical representation of the solution tree. Each node represents
the minimum rate-distortion solution given a unique set of selected vectors.
The root node has zero vectors selected, each node in the 1st generation have
one vector selected, each node in the 2nd generation have two vectors selected,
and so on. The entire tree represents all possible combinations of selecting up
to Mmax of K frame vectors.

38 The operational rate-distortion encoder (ORDE)

4.3.1 Time complexity reduction by depth-first-search

By choosing depth-first-search (DFS) as the search strategy in this tree, we
can build the QR-decomposition for each node recursively. There are two
benefits by using DFS: There are fewer computations in order to find the QR-
decomposition, and only one coefficient has to be found in order to find the
best set of coefficients for the respective node.

DFS starts in the root node, moving on to the first child, then to the first
child of the first child, and so on, until a node in level Mmax is reached. It
then backtrack to level Mmax − 1. For any node in the tree, the next step in
the DFS strategy is as follows: If there are unvisited children, go to one of
them. If not, backtrack to parent node. DFS stops when all nodes in the tree
are visited.

Suppose that we know the minimum cost, Cl,M−1, for a parent node at level
M − 1,

Cl,M−1 = ‖el,M−1‖2 + αl,M−1 + βl,M−1, (4.11)

where

el,M−1 = xl −Ql,M−1QT
l,M−1xl,

αl,M−1 = λ
(M−1∑

m=1

(Rind
l,m) + REOB

)
,

βl,M−1 =
M−1∑

m=1

min
ṽo

l,m

(
(vo

l,m − ṽo
l,m)2 + λRval

l,m

)
.

Here Ql,M−1 (N × (M −1)) is the orthonormal basis in the QR-decomposition
of Φl,M−1, the matrix of selected frame vectors. When going from a parent
node to a child node, we use the same set of selected frame vectors, but only
adding a new frame vector, φl,M , as the last column in the set of selected
frame vectors, Φl,M (N ×M), that is

Φl,M =
[

Φl,M−1 φl,M

]
. (4.12)

The new frame vector will always be added to the right end of the matrix.
Let Ql,M denote the orthonormal basis of the QR-decomposition of Φl,M .

4.3 Time complexity reduction using a solution tree 39

Since an iteration of the Gram-Schmidt process [3] leaves orthonormal vectors
computed in previous steps unchanged, Ql,M can be written

Ql,M =
[

Ql,M−1 ql,M

]
, (4.13)

where

ql,M =
φl,M −∑M−1

m=1 〈φl,M ,ql,m〉ql,m∥∥φl,M −∑M−1
m=1 〈φl,M ,ql,m〉ql,m

∥∥ . (4.14)

The Gram-Schmidt process is explained more thoroughly in Appendix A.1.
The minimum solution for a particular child node at level M is given by

Cl,M = ‖el,M‖2 + αl,M + βl,M , (4.15)

According to (4.13), the difference between xl and its projection on span(Φl,M)
can be written as

el,M = xl −Ql,MQT
l,Mxl

= xl −Ql,M−1QT
l,M−1xl − ql,MqT

l,Mxl

= el,M−1 − ql,MqT
l,Mxl. (4.16)

Going from a parent node in level M −1 to the child node in level M , the first
M − 1 vectors are not changed, thus the first M − 1 index codewords are the
same. A new index codeword is added, and αl,M is

αl,M = λ
(M∑

m=1

(Rind
l,m) + REOB

)

= λ
(M−1∑

m=1

(Rind
l,m) + REOB

)
+ λRind

l,M

= αl,M−1 + λRind
l,M . (4.17)

Each element in the coefficient vector ṽo
l is found individually according to

(4.7). Due to (4.8) the first M−1 unquantized coefficients, [vo
l,1 · · · vo

l,M−1]T ,
will be the same because the first M − 1 vectors in Ql,M are not changing.

40 The operational rate-distortion encoder (ORDE)

The quantized coefficients, [ṽo
l,1 · · · ṽo

l,M−1]T , will be the same, and only
the last added coefficient, ṽo

l,M , needs to be found. Thus, βl,M can be written
as

βl,M =
M∑

m=1

min
ṽo

l,m

(
(vo

l,m − ṽo
l,m)2 + λRval

l,m

)

=
M−1∑

m=1

min
ṽo

l,m

(
(vo

l,m − ṽo
l,m)2 + λRval

l,m

)

+ min
ṽo

l,M

(
(vo

l,M − ṽo
l,M)2 + λRval

l,M

)

= βl,M−1 + min
ṽo

l,M

(
(vo

l,M − ṽo
l,M)2 + λRval

l,M

)
,

(4.18)

or, by using (4.7) for m = M :

βl,M = βl,M−1 + min
j∈{1,...,J}

(
(vo

l,M − values(j))2 + λRvalues(j)

)
. (4.19)

To find ql,M in (4.14) we need 2NM +1 multiplications and NM−1 additions
when using Gram-Schmidt. If we would need to use Gram-Schmidt to find
the entire Ql,M , the number of multiplications and additions would be equal
to

∑M
m=1 2Nm + 1 and

∑M
m=1 Nm − 1, respectively. In all practical cases,

N À 1, thus the number of multiplications and additions is approximately
equal to 2NM(M + 1)/2 and NM(M + 1)/2, respectively. Computing only
ql,M instead of the entire Ql,M will result in a reduction in the number of
multiplications and additions by a factor equal to (M +1)/2. The complexity
reduction factor is larger for larger M , i.e., the benefits of using the DFS
strategy are greater for larger values of Mmax.

Due to the knowledge of the parent node’s optimal solution, the number of
comparisons needed to find the optimal solution of the child node at level M
is reduced. The first M − 1 elements in the coefficient vector is the same as
the parent’s coefficients. Only the last coefficient must be found. In (4.18) the
number of comparisons is reduced from JM to J .

4.3 Time complexity reduction using a solution tree 41

4.3.2 Further time reduction by pruning and lower bounds

So far, full search has been claimed to be the only way to find the optimal
solution of the presented problem in this chapter. In fact, there is a situa-
tion where pruning can be done and the problem still being solved optimally.
Consider the case where the algorithm is working on a node at level M in the
tree, where M < Mmax. Going to a child node at level M + 1 would increase
the number of nonzero coefficients by one, as one more vector is added to
the set of selected frame vectors. The bit rate will increase with minimum
(Rval

min + Rind
min) bits, where Rval

min and Rind
min are the minimum number of bits

for a value and an index codeword from the VLC tables, respectively. The
projection error of the child node, ‖el,M+1‖2, will always be less than or equal
to the projection error of the parent node, ‖el,M‖2. In (4.15) this is the only
term that can cause a decrease in the cost function when adding a vector, but
the projection error will obviously never be negative. Thus, if

‖el,M‖2 < λ(Rval
min + Rind

min), (4.20)

this node is not representing the optimal solution, since the minimum increase
by adding a vector in the set of selected vectors is larger than the potential
decrease in the cost function. This branch of the tree can be pruned, since
this node’s children never will hold the optimal solution. Equation (4.20) is of
great value in the order of time saving: The full search solution can be found
without a full search, which is called implicit enumeration [59] in the integer
programming terminology.

Further time savings can be achieved if particular nodes can be eliminated as
an optimal candidate, without a full calculation of this node. Let C∗

l be the
so far minimum cost of block l. As an initial value, C∗

l could be set to the
root node cost, Cl,0 = ‖xl‖2 +λREOB. An alternative is to use a fast heuristic
to find a suboptimal solution. C∗

l is updated every time a node’s solution is
better than C∗

l . For a particular node at level M , we define the lower bound
(LB) for the minimum node cost as

LB = ‖el,M‖2 + αl,M + λMRval
min. (4.21)

LB represents the theoretical minimum cost, when the set of selected vectors
is known. If C∗

l < LB for a particular node, we know that the global optimal
solution is not represented by the particular set of frame vectors, and further
computation in order to find βl,M is not necessary. The DFS algorithm pro-
ceeds to the next node, e.g., a child node. In the worst case C∗

l ≥ LB in

42 The operational rate-distortion encoder (ORDE)

all nodes, and a full computation is necessary. But, in an average case many
nodes do not need full computation, and the time saved by the introduction
of lower bounds is significant.

The pseudo code of the operational rate-distortion encoder (ORDE) algorithm
is presented in Figure 4.3. It can be divided into three major parts. The
initialization in line 3 to 8, the graph traversal in line 9 to 32, and the particular
node cost calculation in line 14. For the sake of readability, this part is fully
shown in Figure 4.4. As input to the ORDE algorithm, the signal, x, is
reshaped to be a matrix, X, with dimensions N × L, where column vector
l is signal block l, xl. In addition, the frame F, the VLC tables, λ, and the
maximum number of selected vectors per block, Mmax, are given. The outputs
of the algorithm are the set of optimal quantized coefficient values, (Ṽo)∗, and
their corresponding set of indices, (I)∗. Both sets are matrices with dimensions
Mmax×L, where column vector l is the set of optimal coefficient values, (ṽo

l)
∗,

and their corresponding set of indices, (il)∗, respectively.1

The graph traversal method in this algorithm is depth-first-search (DFS). Very
often DFS is presented recursively. Here, it is presented iteratively, or nonre-
cursively. The reason for this is to make the implementation of this algorithm
more effective. In any program, a function’s local data are stored on the pro-
gram stack when another function is called. A recursive function may call
itself many times, resulting in some time consumption when maintaining the
stack [30]. With a nonrecursive representation these function calls can be
avoided and unnecessary time consumption is saved.

In line 15 the conditional statement make the algorithmic traversal to a child
node, as long as the current node is not at level Mmax, and the pruning
criterion in (4.20) is not met. Else, the algorithm traverses to the sibling
node “next right”. By “next right”, we mean the node representing the set
of selected vectors where the last added vector is replaced by the not selected
vector having the lowest index value higher than the current one. If there are
no sibling nodes next right, the algorithm backtracks (in line 25 to 31).

In Figure 4.4, the node cost is calculated. The so far best set of coefficient
values and indices, (ṽo

l)
∗ and (il)∗, are both inputs and outputs. The outputs

will be different from the inputs only if the minimum cost of the current node,
Cl,M , is smaller than the so far minimum cost of signal block l, C∗

l . See line 14
to 18. A full calculation is only performed if the lower bound (LB) of this
node represents a smaller value than the so far minimum cost for this signal
block, C∗

l . In other words, βl,M is not calculated for all nodes. This implies

1If the rate-distortion optimal solution of block l has less than Mmax coefficients, the last
elements of (ṽo

l)
∗ and (il)

∗ are put to 0, respectively.

4.3 Time complexity reduction using a solution tree 43

Algorithm Operational Rate-Distortion Encoder (ORDE)

input : X = [x1 x2 · · · xL], F, values, indices, λ, Mmax

output: (Ṽo)∗ = [(ṽo
1)
∗ (ṽo

2)
∗ · · · (ṽo

L)∗], (I)∗ = [(i1)∗ (i2)∗ · · · (iL)∗]
// For all signal blocks:1

for l = 1, . . . , L do2

C∗
l ← Cl,0 ← ‖xl‖2 + λREOB // Initialize the so far min. cost.3

(ṽo
l)
∗ ← ∅ // The so far best set of nonzero coefficient values.4

(il)∗ ← ∅ // The so far best set of nonzero coefficient indices.5

el,0 ← xl, αl,0 ← 0, βl,0 ← 06

M ← 1 // Number of selected vectors initially put to 1.7

il ← [1]T8

// Depth-first-search in full tree:9

while il,1 ≤ K do10

// Still unmarked nodes in the tree.11

if il,M ≤ K then12

// Find the M th quantized coefficient, ṽo
l,M , if LB ≤ C∗

l :13

Algorithm Node cost calculation in Figure 4.4.14

if M < Mmax and ‖el,M‖2 ≥ λ(Rval
min + Rind

min) then15

// Go to first child node:16

inew ← lowest index of not selected frame vectors.17

il ← [iTl inew]T18

M ← M + 119

else20

βl,M ← ∅21

// Go to the sibling node “next right”:22

il,M ← lowest index value higher than il,M , from the23

set of not selected frame vectors.
end24

else25

// il,M > K. Backtrack.26

M ← M − 1 // Go to parent node.27

βl,M ← ∅28

// Go to the sibling node “next right”:29

il,M ← lowest index value higher than il,M , from the set30

of not selected frame vectors.
end31

end32

end33

Figure 4.3: Operational Rate-Distortion Encoder (ORDE) algorithm.

44 The operational rate-distortion encoder (ORDE)

that there can be situations where a child node needs full calculation, but
where the parent node is not fully calculated. βl,M−1 is unknown, but has to
be found before βl,M can be found, according to line 11. Obviously, βl for all
ancestors have to be known in order to find βl,M for the current node.

Algorithm Node cost calculation

input : xl, F, values, λ, C∗
l , (ṽo

l)
∗, (il)∗, il

output: (ṽo
l)
∗, (il)∗

// Find the M th quantized coefficient, ṽo
l,M , if LB ≤ C∗

l :1

φl,M ← fil,M2

ql,M found by Gram-Schmidt // Equation (4.14).3

el,M ← el,M−1 − ql,MqT
l,Mxl // Equation (4.16).4

αl,M ← αl,M−1 + λRind
l,M // Equation (4.17).5

LB ← ‖el,M‖2 + αl,M + λMRval
min // Equation (4.21).6

if LB ≤ C∗
l then7

if βl for all ancestors not found then8

Find those, such that βl,M−1 is known9

end10

βl,M ← βl,M−1 + minj∈{1,...,J}
(
(vo

l,M − values(j))2 + λRvalues(j)

)
11

// Equation (4.19).
ṽo
l,M ← values(jM) // jM is the index of the optimal element of12

the values table.
Cl,M ← ‖el,M‖2 + αl,M + βl,M // Equation (4.15).13

if Cl,M ≤ C∗
l then14

C∗
l ← Cl,M15

(ṽo
l)
∗ ← ṽo

l16

(il)∗ ← il17

end18

end19

Figure 4.4: Calculation of minimum cost of a current node.

Let us show an example that illustrates the time savings of using lower bounds
and pruning. We use the proposed algorithm to code a Gaussian AR(1) process
with ρ = 0.95. We use a 16× 32 frame trained on another AR(1) signal. The
training scheme used is presented in next chapter. The number of different
coefficient values is J = 32. In Table 4.1 we show the time consumption

4.4 Ordered vector selection and run-length coding 45

Mmax 2 3 4
Original problem 1 320 74411
Orthogonalized problem 0.127 5.7 223
Orthogonalized problem using DFS 0.064 1.9 56
Orthogonalized problem using DFS,
LB and pruning 0.028 1.26 38.2

Table 4.1: Time units relative to encoding one signal block using the original
formulation in (4.1) when Mmax = 2. K = 32 and J = 32 for all cases.

when using 1) the original problem in (4.1), 2) the orthogonalized version in
(4.6) using an arbitrary traversing algorithm, 3) the orthogonalized version
by DFS strategy, and 4) the orthogonalized version by DFS strategy, lower
bounds (LB) and pruning techniques. The experiment is done for Mmax =
{2, 3, 4}. The time units in the table are relative to coding one signal block
using the original formulation when Mmax = 2. The largest time reduction is
achieved by the orthogonalization procedure described in Section 4.1 and 4.2,
particulary in the case when Mmax = 4. When using the DFS strategy, the
time is reduced by an additional factor equal to Mmax. What is interesting
to see is that the time is further reduced by 32 - 56 %, when lower bounds in
each node in the tree are used. This is a significant contribution for speeding
up the algorithm without loosing optimality.

4.4 Ordered vector selection and run-length coding

In order to get an even more efficient algorithm, we add a constraint to our
problem: Frame vectors are selected and QR-decomposed only in the order as
they appear in the frame F. By doing this we reduce the size of the search
in the problem, since all but one of the M ! permutations of a given set of
M vectors are eliminated. In addition, it opens up for the use of run-length
coding (RLC) [27] as a part of the entropy coder. Instead of encoding the
coefficient indices, the number of zeros between each nonzero coefficient, runs,
is encoded in RLC. After the last nonzero coefficient in each block, an End
Of Block (EOB) symbol is transmitted, as it was done when the indices got
encoded directly. The run for the kth coefficient is the number of zeros in front
of this coefficient. Consider an example where the solution set of selected frame
vector indices is il = [7 8 23]T . The corresponding set of runs would be
[6 0 14]T ; There are 6 zeros in front of the 7th coefficient, 0 zeros between
the 7th and the 8th coefficient, and 14 zeros between the 8th and the 23rd

coefficient.

46 The operational rate-distortion encoder (ORDE)

In the situations where the number of nonzero coefficients is greater than one,
there will be more low valued runs than high valued runs. If we look at the
entire set of signal blocks, the entropy of the run-lengths will be less than
the entropy of coefficient indices. This is the same as saying that run-length
coding is more bit efficient than coding the coefficient indices directly. The
introduction of ordered vector selection results in a reduction of the number of
solutions, and we can draw a new reduced solution tree, like the one presented
in Figure 4.5. This tree is not balanced like the full solution tree in Figure 4.2.
The reduced tree is equal to the full tree at level 0 and 1, and the edges
that connect the root node to its child nodes are named “1”, “2”, ... ,“K”,
indicating the vector selected. The node that represents the selection of frame
vector no. 1, f1, has K − 1 child nodes. These children represent the selection
of two vectors (M = 2), where the first vector of Φl is f1 and the second is fi,
where i = 2, 3, . . . , K, respectively. But, the node representing Φl = [f2] has
K−2 children, the node with Φl = [f3] has K−3 children, and so on. Thus, the
node with Φl = [fK−1] has only one child, and the node representing Φl = [fK]
has none. The reduced tree will have Mmax levels, as the full tree, but the
number of nodes is reduced from

∑Mmax
M=0

(
K
M

)
M ! to

∑Mmax
M=0

(
K
M

)
. There is no

longer M !, but one way the set of M frame vectors can be ordered. This is a
considerable reduction in problem size. We do not have the same optimization
problem as when coding the indices, since the vector selection now is ordered.
But, the introduction of RLC can give us a more bit efficient representation
and thus a better rate-distortion optimal solution. Experimental results from
comparisons between ordered and not ordered vector selection are presented
in Chapter 6.2.4 on AR(1) signals, and in Chapter 7.3.3 on ECG signals.

The ORDE algorithm for the reduced tree is a bit different than the ORDE
algorithm for the full tree. Line 9 to 32, in Figure 4.3 are replaced by the
algorithm described in Figure 4.6. It is still nonrecursive depth-first-search,
but the number of nodes is reduced, and the traversing through the tree is
simpler. It is easier to find the first child node, il,M+1 = il,M + 1, and to find
the sibling node “next right”, il,M = il,M + 1. Another difference is that the
indices table is replaced by a runs VLC table as input to the ORDE algorithm.
In line 5 of Figure 4.4, Rind

l,M is replaced by Rrun
l,M , the number of bits of the

added run codeword.

4.5 ORDE and complexity

An overview of the number of solutions of the cases described so far is given
in Table 4.2. We can see the tremendous reduction in complexity between

4.5 ORDE and complexity 47

M = 1

M = 0

M = 2

1 2 K-1 K

2 3 K 3 4 K K

Figure 4.5: The reduced solution tree. Each node represents the minimum
rate-distortion solution for a set of selected vectors. The entire tree represents
all possible combinations of selecting up to Mmax of K frame vectors in the
same order as they appear in F.

Complexity

a) Original nonorthogonalized problem 1 +
∑Mmax

M=1

(
K
M

)
JM

b) Orthogonalized problem 1 +
∑Mmax

M=1

(
K
M

)
JMM !

c) Orthogonalized problem using DFS 1 +
∑Mmax

M=1

(
K
M

)
JM !

d) Orthogonalized problem using DFS
and ordered vector selection

1 +
∑Mmax

M=1

(
K
M

)
J

Table 4.2: Number of solutions when encoding one signal block optimally.

the original nonorthogonalized problem and the orthogonalized problem us-
ing depth-first-search and ordered vector selection. In addition, we have a
complexity reduction caused by the lower bound technique presented in Sec-
tion 4.3.2. For fixed values of K and J , the complexity reduction is becoming
very significant for increasing Mmax.

So far we have presented a formulation of the optimization problem and an
algorithm that finds the optimal solution in an computational efficient way.
Now, we will look at the parameters that this optimal solution highly depends
on, the frame and the VLC tables. Next chapter is about how to train these
parameters.

48 The operational rate-distortion encoder (ORDE)

Algorithm nonrecursive depth-first-search in reduced tree

10 while il,1 ≤ K do
11 // Still unmarked nodes in the tree.
12 if il,M ≤ K then
13 // Find the M th quantized coefficient, ṽo

l,M , if LB ≤ C∗
l :

14 Algorithm Node cost calculation in Figure 4.4.

15 if M < Mmax and ‖el,M‖2 ≥ λ(Rval
min + Rrun

min) then
16 // Go to first child node:
17 il ← [iTl (il,M + 1)]T

18 M ← M + 1
else

20 βl,M ← ∅
21 // Go to the sibling node “next right”:
22 il,M ← il,M + 1

end
else

25 // il,M > K. Backtrack.
26 M ← M − 1 // Go to parent node.
27 βl,M ← ∅
28 // Go to the sibling node “next right”:
29 il,M ← il,M + 1

end
end

Figure 4.6: The nonrecursive depth-first-search in reduced tree algorithm.

Chapter 5

Frame design and variable
length coder (VLC)
optimization

The rate-distortion optimal solution highly depends on the frame and the VLC
tables used in the frame based coding scheme. In this chapter, we describe how
we train the VLC tables and the frame for the particular class of signals that we
are going to compress, in order to get an improved coding result. The training
scheme is presented in Section 5.2, and it consists of two loops. In the first
loop, a frame design algorithm from previous work, called Method of Optimal
Directions (MOD) is used. The MOD algorithm is presented in Section 5.1.
The first loop is fully described in Section 5.2.1. In this loop a coarse update
of the frame is made. The second loop is presented in Section 5.2.2. A fine
update of the frame is made by a suboptimal, but convergent algorithm, in
parallel to an optimal update of the VLC tables. The trained frame and the
updated VLC tables are ready to be used in an ORDE scheme for the same
class of signals.

5.1 The MOD algorithm

When using frames in a compression scheme, it is important that the frame
is well designed in order to get a sparse representation with a good quality
of the reconstructed signal. The design flexibility is one of the benefits of
using frames instead of orthogonal transforms. In [14] the method of optimal
directions (MOD) is introduced. This is an iterative frame training algorithm

49

50 Frame design and variable length coder (VLC) optimization

for use with vector selection algorithms, like Matching Pursuit (MP). MOD is
inspired by the General Lloyd Algorithm (GLA), which is used for optimizing
Vector Quantization (VQ) codebooks [16]. GLA will always find a better
codebook for each iteration and converge to a local minimum. This is not the
case for MOD, if the vector selection algorithm is MP, or another suboptimal
method.

Let the signal vectors be organized as the N×L matrix X = [x1 x2 · · · xL],
and let the corresponding coefficient vectors be the K × L matrix W =
[w1 w2 · · · wL]. Each iteration of MOD can be divided into two steps:

1. F and X are known. Find W by using a vector selection algorithm.

2. W and X are known. Find a better F.

The vector selection algorithm used in step 1 is Matching Pursuit or another
greedy algorithm. In step 2 the frame is optimally updated. The minimization
problem is formulated as

min
F
‖X− FW‖2. (5.1)

This is a Least Squares problem [3], and a unique solution exists if W has full
rank. The new frame is found by

F = XWT (WWT)−1. (5.2)

In addition, the new frame vectors are normalized. The two steps will con-
tinue iterating until a stop criterion is met. Several criteria can be used; for
example maximum number of of iterations, or almost constant distortion from
one iteration to another. If both step 1 and step 2 in the algorithm were opti-
mally solved, the algorithm would be guaranteed to converge. This is not the
situation here, since step 1 is not optimal. Note that the coefficient matrix
with unquantized elements, W, is used. Quantization is not a part of MOD,
nor any QR-decomposition.

5.2 The training scheme 51

5.2 The training scheme

The training scheme of this work consists of two iterative loops. An illustration
is given in Figure 5.1. A central part of both loops is the operational rate-
distortion encoder (ORDE) algorithm. Whether the algorithm of Figure 4.3
with index coding, or the algorithm of Figure 4.6 with run-length coding is
used, the training scheme works exactly the same. Figure 5.1 shows the run-
length coding case. For index coding, the runs VLC table is replaced by the
indices VLC table. The purpose of the first loop, Loop 1, is to get a coarse
update of the frame. In this loop, the frame vectors can change order for each
iteration, thus an update of the runs VLC table would be meaningless. This
is why the update of VLC tables is placed in the second loop, Loop 2.

5.2.1 Loop 1: Coarse frame design in an RDO coding scheme

In Loop 1, we use the same technique as MOD to find the new frame, but on
the set of quantized coefficients, W̃ = [w̃1 w̃2 · · · w̃L], instead of W, thus

F = XtrW̃T (W̃W̃T)−1. (5.3)

Xtr is the training signal organized as an N × L matrix. The output from
ORDE is the set of orthogonalized and quantized coefficient values, (Ṽo)∗, and
indices, (I)∗. To generate W̃ from (Ṽo)∗ and (I)∗, the QR-decomposition of
each set of selected vectors from F, Φl, has to be found. This is a straight
forward operation when using ordered vector selection, since we know the
combination of the selected vectors from (I)∗:

Φl = [f(il,1)∗ f(il,2)∗ · · ·]. (5.4)

By Gram-Schmidt, the QR-decomposition of Φl, Ql and Rl, are found. Col-
umn vector l in W̃, w̃l, is found by

w̃l = R−1
l w̃o

l . (5.5)

w̃o
l is a vector of K elements, where the only nonzero elements are the set with

index values as indicated in (il)∗. These elements’ values are listed in (ṽo
l)
∗.

In (5.3), the matrix (W̃W̃T) has to be full rank in order to be invertible. In
situations where a particular frame vector, fk, has not been selected for any
of the L signal blocks, (W̃W̃T) will not be full rank. This problem is solved

52 Frame design and variable length coder (VLC) optimization

Initial

VLC tables

Training signal, tr
X

ORDE

Compute cost

iii
RDC λ+=

1−< ii
CC

No

Yes

1+←ii

Test signal, X

Coarse update of

frame (MOD)

Initial

frame

Change the

order of the

frame vectors

1
F

i
F

ε>−− ii
CC

1

No

Yes
1+←ii

Update

frame

Update

VLC tables

() () i
i

o **

,
~

IV

ORDE

ORDE

λ max
M

tr
X

λ max
M

11
, runsvalues

Loop 1

1−← iiLoop 2

ii
runsvalues , () () i

i

o **

,
~

IV
i

F

i

i

i

runsruns

valuesvalues

←
←
←

*

*

*
FF

λ max
M

test

**
, runsvalues

*
F

() ()**

,
~

IV
o

Figure 5.1: Operational Rate-Distortion Encoder (ORDE) and training loops
for the run-length coding case. The scheme is the same for index coding, by
replacing “runs” with “indices”.

5.2 The training scheme 53

by removing frame vector fk from F. Let the remaining frame be named F′.
Correspondingly, row k in W̃ is removed and the remaining (K−1)×L matrix
is called W̃′. Then we solve

F′ = XtrW̃′T (W̃′W̃′T)−1. (5.6)

When F′ is found, a new frame vector is added in order to get a frame with
dimensions N × K. Instead of choosing a random vector, the signal vector
with corresponding coefficient vector with the highest number of nonzero co-
efficients is chosen. We call this vector xs, and the corresponding coefficient
vector w̃s. If there are more than one coefficient vector in this category, w̃s

is the vector that in addition has the highest bit rate. By adding xs to the
frame, we will reduce the bit rate in the next iteration for signal block s, since
only one frame vector will be chosen to represent xs. All the column vectors
in the updated frame are normalized, in order to get frame vectors of unit
length.

The last part of the frame updating in Loop 1 is a reorganization of the frame
vectors. The most frequently chosen vector from ORDE is the first vector
in the new frame. The rest of the vectors is placed in descending frequency
order. This is done in order to get a higher density of low valued runs, and
thereby an overall lower bit rate, after the update of the VLC tables in Loop 2.
Due to the reorganization, the runs between nonzero coefficients will change
dramatically from one iteration to another. Thus, an update of the VLC
tables is not taking place in Loop 1. This reorganization has no meaning
when coding indices instead of runs. Even though (5.2) is optimal in the
distortion sense [14], (5.3) is not optimal in this work. This is because W̃ is
a function of F: In (5.5), for each column of W̃, the QR-decomposition of a
subset of F has to be found. Or in other words, F is on both sides of the
equality sign of (5.3). A change in F would change column vectors in W̃,
resulting in another design of F.

The algorithm will iterate as long as the computed cost for iteration no. i,
Ci = Di + λRi, is less than Ci−1, the cost in the previous iteration. Loop
1 is not guaranteed to converge, nor in distortion or rate-distortion sense.
However, experimental results in the next chapter show that this scheme works
well and generates frames that are well suited for the given class of input data.
The loop terminates at iteration i′ where Ci′ ≥ Ci′−1. The cost, Ci′ , the frame,
Fi′ , and the set of coefficient values, (Ṽo)∗i′

, and indices, (I)∗i′
, are set equal

to Ci′−1, Fi′−1, (Ṽo)∗i′−1
, and (I)∗i′−1

, respectively. i′ is set to i′ − 1. The
algorithm proceeds to Loop 2. Loop 1 is summarized in the pseudo code in
Figure 5.2.

54 Frame design and variable length coder (VLC) optimization

Algorithm Training Loop 1

input : Xtr, F1, values1, runs1, λ, Mmax

output: Ci′ , Fi′ , (Ṽo)∗i′
, (I)∗i′

[(Ṽo)∗1 , (I)∗1] ← ORDE(Xtr, F1, values1, runs1, λ, Mmax)1

C1 ← D1 + λR12

C0 ← 2C1 // Just to make the while loop to start.3

i ← 14

while Ci < Ci−1 do5

i ← i + 16

for l = 1, . . . , L do7

w̃o
l ← 08

M ← min{Mmax, index of last nonzero element of (ṽo
l)
∗i}9

for m = 1 to M do10

w̃o
l,(il,m)∗i ← (ṽo

l,m)∗i

11

end12

w̃l ← R−1
l w̃o

l // Equation (5.5).13

end14

Fi ← XtrW̃T (W̃W̃T)−1 // Equation (5.3).15

for k = 1, . . . , K do16

f i
k ←

f i
k

‖f i
k‖

// Normalization of frame vector k.17

end18

Sort the frame vectors in decreasing selected frequency order.19

[(Ṽo)∗i
, (I)∗i

] ← ORDE(Xtr, Fi, values1, runs1, λ, Mmax)20

Ci ← Di + λRi21

end22

Ci′ ← Ci−123

Fi′ ← Fi−124

(Ṽo)∗i′ ← (Ṽo)∗i−1
25

(I)∗i′ ← (I)∗i−1
26

i′ ← i− 127

Figure 5.2: Training Loop 1.

5.2 The training scheme 55

5.2.2 Loop 2: Convergent frame design and VLC optimization

Loop 2 is guaranteed to converge to a lower or equal cost, Ci ≤ Ci−1, for
each iteration. As in Loop 1, the vector selection is done by ORDE, which
always will give us the minimum cost. The updates of the VLC tables and the
frame are done in parallel, since they are separable. That is, a change in the
VLC tables would only affect the bit rate, and the update of F will, in this
loop, only affect the distortion. Updating of the VLC tables is based on the
symbol frequency distributions for the encoded versions of (Ṽo)∗ and (I)∗. If
run-length coding is used, it is necessary to find the set of runs between the
index values in the columns of (I)∗. Based on the symbol frequencies in this
set, the runs VLC table is updated. Huffman coding [16] is used to find the
new set of symbol codewords, both for the runs and the values VLC table.
The reason for using Huffman coding is that we focus on operational RDO
coding, i.e., practical optimal coding where all parameters are known prior to
the encoding. In arithmetic coding, for example, the bit stream will be made
after all codewords are known, based on the knowledge of each codewords
entropy. After the VLC tables updates, the bit rate will always be less or
equal than with the previous VLC tables.

The update of the frame, F, in Loop 2 will not affect the rate, but only the
distortion. Thus, the bit rate will after several iterations converge to a local
optimum [32]. The update of F is a simple heuristic, where a change in it is
made only if it results in a smaller distortion. The overall distortion, D, is
given by

D =
L∑

l=1

‖xl −Qlṽo
l ‖2, (5.7)

where xl and ṽo
l are fixed parameters in this part of the training loop. For a

single frame element, fnk, we add a small real valued constant, δ, and normalize
the entire frame vector, and call it f+

k . Let us call the new frame F+, the QR-
decomposition of its subset in block l Q+

l , and the new overall distortion D+.
D+ is found by

D+ =
L∑

l=1

‖xl −Q+
l (ṽo

l)
∗‖2. (5.8)

If D+ > D, we turn δ negative and repeat the procedure described above. If
D+ < D, the frame F is set equal to F+, and the algorithm continues adding

56 Frame design and variable length coder (VLC) optimization

δ to fnk, normalizing fk, and so on. The iterations stop when D+ ≥ D. This
is done for every single frame element, fnk, n = 1, . . . , N and k = 1, . . . ,K in
sequential order.

The new frame and VLC tables are used as inputs in the next iteration of
Loop 2. The iterations terminate when the cost reduction from one iteration
to next is less than a predefined small number, ε. The training procedure is
complete. The last updated frame and VLC tables are used as parameters in
the encoding of the test signal, Xtest, in addition to the same λ and Mmax

values that are used in the training scheme. Loop 2 is summarized in the
pseudo code in Figure 5.3 and Figure 5.4.

Algorithm Training Loop 2

input : Xtr, Fi′ , values1, runs1, λ, Mmax, Ci′ , (Ṽo)∗i′
, (I)∗i′

output: F∗, values∗, runs∗

ε ← small positive number1

i ← i′2

while Ci−1 − Ci > ε or i = i′ do3

i ← i + 14

// Update the VLC tables:5

Find the frequencies of value symbols in (Ṽo)∗i−1
6

Find the runs between the index values in the columns of (I)∗i−1
7

Find the symbol frequencies of this set of run symbols.8

Based on the symbol frequencies, find the new Huffman table for9

the value and run symbols. New VLC tables: valuesi and runsi.

// Update the frame:10

Algorithm Convergent frame update in Figure 5.4.11

[(Ṽo)∗i
, (I)∗i

] ← ORDE(Xtr, Fi, valuesi, runsi, λ, Mmax)12

Ci ← Di + λRi13

end14

F∗ ← Fi, values∗ ← valuesi, runs∗ ← runsi15

Figure 5.3: Training Loop 2.

5.2 The training scheme 57

Algorithm Convergent frame update

input : Xtr, Fi−1, Di−1, (Ṽo)∗i−1
, (I)∗i−1

output: Fi

Fi ← Fi−1, Di ← Di−11

for k = 1, . . . , K do2

for n = 1, . . . , N do3

δ ← small positive number4

do5

f+
k ← [f i

1k f i
2k · · · (f i

nk + δ) · · · f i
Nk]T6

f+
k ← f+k

‖f+k ‖
// Normalization of frame vector k.

7

F+ ← [f i
1 f i

2 · · · f+
k · · · f i

K]8

Find Q+
l for every signal block, where F+ is frame.9

D+ ← ∑
l ‖xl −Q+

l (ṽo
l)
∗i−1‖210

if D+ > Di then11

δ ← −δ12

end13

while (D+ > Di and δ < 0) end14

while D+ < Di do15

Fi ← F+, Di ← D+16

Repeat line 6 to 10.17

end18

end19

end20

Figure 5.4: Convergent frame design algorithm.

58 Frame design and variable length coder (VLC) optimization

Chapter 6

Compression of AR(1) signals

In this chapter we show some experiments done to illustrate the capability
of the Operational Rate-Distortion Encoder (ORDE) on AR(1) processes. In
Section 6.1 the theoretical rate-distortion function for an AR(1) process is
presented. One of the experiments in Section 6.2 compares the obtained results
to this lower bound, in order to illustrate how close the practical experiments
using the ORDE scheme are to the theoretical bound. Section 6.3 summarizes
the results from the 5 experiments presented in Section 6.2.

6.1 The theoretical Rate-Distortion Function

The average information content, or entropy, of a continuous-amplitude source
is infinite. Each sample from such a source can have an infinite number of
possible values. Furthermore, the bit rate needed for an exact reproduction,
R, is infinitive. No practical coding procedure can reproduce a continuous
waveform with perfect fidelity. But, given an upper bound of R, it is possible
to find the theoretical lower bound of the distortion, D, for some known classes
of signals. Gaussian sources are in this group of signals. The rate-distortion
function, D(R), is given by the following parametric equations [27]:

D(φ) =
1
2π

∫ π

−π
min{φ, Sxx(ejω)}dω (6.1)

and

R(φ) =
1
2π

∫ π

−π
max

{
0,

1
2

log2

Sxx(ejω)
φ

}
dω, (6.2)

59

60 Compression of AR(1) signals

where Sxx(ejω) is the power density spectrum of the Gaussian signal, and
φ ∈ R+ is the parametric variable. D(φ) and R(φ) only depend on Sxx(ejω).
If the Gaussian source is memoryless, the signal is white noise and Sxx(ejω)
is a constant. To be more precise, Sxx(ejω) = σ2

x, where σ2
x is the variance

of the source signal. If the Gaussian source has memory, signal samples are
correlated, and the source entropy will be less than the entropy for a memo-
ryless source. In other words, the distortion will be less at the same bit rate,
resulting in a better rate-distortion performance.

An AR(1) signal is a first-order Markov process [41] with a Gaussian source,
or in other words, a signal from a Gaussian source with memory. The power
density spectrum is no more a constant. For an AR(1) process,

Sxx(ejω) =
1− ρ2

1 + ρ2 − 2ρ cos(ω)
σ2

x, (6.3)

where ρ ∈ [0, 1〉 is the adjacent-sample correlation coefficient. If ρ = 0, there
is no correlation between adjacent samples.

The small distortion region [27] is defined by

D ≤ 1− ρ

1 + ρ
σ2

x. (6.4)

For this region the rate-distortion function can be found in a simpler way than
by using the parametric equations in (6.1) and (6.2). D(R) is given by

D(R) = (1− ρ)22−2Rσ2
x. (6.5)

In this work ρ = 0.95, i.e., the small distortion region is defined by D ≤
0.0256σ2

x, due to (6.4). In Figure 6.9 in Experiment no. 2, the dotted line
represents the theoretical RD function for an AR(1) process with ρ = 0.95.
The part of the curve where D/σ2

x > 0.0256 is found by solving (6.1) and (6.2)
with discrete values of φ in the range 0.0256 and up. It is not possible to reach
the theoretical RD function in a practical coding scheme. Yet, a comparison
between an encoder’s operational RD function and the theoretical RD function
is useful in order to get a measure of the encoder’s RD performance.

6.2 Experiments on AR(1) signals 61

6.2 Experiments on AR(1) signals

In all experiments in this section, two different AR(1) processes with ρ = 0.95
are used as input training and input test signals. For an AR(1) process with
ρ = 0.95, the DCT transform is almost equal to the KLT transform [27], due to
the fact that the eigenvectors of this process are cosines at this ρ-value. Thus,
the DCT transform is optimal in the energy packing sense with this process
as input signal. This is one of the main reasons for emphasizing experiments
with this class of signals.
The main focus of the experiments is to get a view of the performance of the
Operational Rate-Distortion Encoder (ORDE), and on how different parame-
ters and settings affect it. The object of each experiment is as follows:

Experiment no. 1: Training of frame and VLC tables. ORDE rate-
distortion performance for different initial frames.

Experiment no. 2: ORDE rate-distortion performance compared to
the theoretical RD function.

Experiment no. 3: Bit rate versus signal to noise ratio (SNR) for differ-
ent values of λ, number of frame vectors (K), num-
ber of value codewords (J), and maximum number
of selected vectors per signal block (Mmax).

Experiment no. 4: Comparisons of ORDE and RD optimized Match-
ing Pursuit in RD performance and in time con-
sumption.

Experiment no. 5: The reduction in calculations when introducing
lower bounds in ORDE. (See Section 4.3.2.)

The training and testing signals are the same for all experiments, as well as
the signal block length, N = 16. In experiments 1, 2, 3, and 5, ordered vector
selection and Run-Length Coding is used in the ORDE, while a comparison
between four different vector selection algorithms is made in experiment 4. In
experiments 1, 2, 3, and 4, the number of signal blocks is L = 2048, while
in experiment 5, L = 64. In experiments 1, 2, 4, and 5, K = 32, J = 32,
and Mmax = 4. In experiment 3, K = {16, 32, 48}, J = {16, 32, 64}, and
Mmax = {2, 3, 4, 5}.

6.2.1 Experiment no. 1

This experiment focuses on how the frame F and the VLC tables values and
runs change as a result of the training described in Section 5.2. Three dif-
ferent frames are used as initial frame, all with dimensions 16× 32 and with
normalized column vectors:

62 Compression of AR(1) signals

Frame 1: Ad hoc frame. The column vectors are random vectors from an
AR(1) process.

Frame 2: Ad hoc frame. The first 16 column vectors are the 16×16 Inverse
Discrete Cosine Transform (IDCT), and the last 16 vectors are
random vectors from an AR(1) process.

Frame 3: Designed frame from previous work [12]: Design for using Or-
thogonal Matching Pursuit on AR(1) signals.

An illustration of the frame column vectors of Frame 1, Frame 2, and Frame
3, is given in Figure 6.4.

In each iteration of the training scheme, the object is to find the minimum
cost for all signal blocks, C = D+λR, where R and D are the overall rate and
distortion, respectively. A representative learning curve, where each iteration’s
cost, C, is shown in Figure 6.1. In this case, where λ = 0.0005, Mmax = 4,
and Frame 3 is the initial frame, the training terminates after 39 iterations.
The number of iterations will vary from case to case. In the figure we can
see a significant drop in the cost when entering training Loop 2. This drop
is noticeable in the learning curve of all experiments in this work. The drop
is taking place where the updating of the VLC tables starts. In Loop 1, the
object is to reduce the distortion, by frame training. In Loop 2, a bit rate
reduction is added, by VLC optimization, resulting in a considerable cost
reduction.

If there were no frame training, but only VLC optimization, the cost func-
tion results would highly depend on how the initial frame is designed. This
is demonstrated in Figure 6.3(a). The operational rate-distortion function
(ORDF) is presented for three cases, where Frame 1, 2 and 3 are used as ini-
tial frames, respectively. To be accurate, it is discrete points on the convex
envelope of the ORDF that are found. In this experiment eight points on the
convex envelope are found by coding the test signal for eight different values
of λ: {1

2 , 2
2 , . . . , 8

2}0.0005. With no frame training, there is a big difference
in the RD performance. In particular, Frame 1 is much worse than the other
two, which is no surprise, since the frame is found randomly. Even though
Frame 2 and Frame 3 have a better RD performance, frame training would
improve the results. In Figure 6.2 the full training learning curves are shown.
The initial cost values are quite different for the three frames, but the cost
at last iteration of each curve are approximately the same. The number of
iterations vary, particularly in Loop 1. While the Frame 3 case has 18 Loop
1 iterations, the Frame 2 case has 84. Loop 1 terminates when the cost, C, is
no longer decreasing from one iteration to the next. It is not possible to tell,
in advance, at what iteration Loop 1 terminates, but we can see it happens

6.2 Experiments on AR(1) signals 63

0 5 10 15 20 25 30 35 40
0.026

0.0265

0.027

0.0275

0.028

0.0285

0.029

0.0295

Loop 1 Loop 2

Iteration number

C
 =

 D
 +

 λ
R

Figure 6.1: The learning curve when training the frame and optimizing the
VLC tables on an AR(1) signal. The first 30 iterations are executed in Loop
1, and the last 9 in Loop 2. L = 2048, λ = 0.0005, Mmax = 4. Initial frame is
Frame 3.

64 Compression of AR(1) signals

when the learning curves has flattened out. The results of using the trained
frames are presented in Figure 6.3(b). Compared to Figure 6.3(a) the results
are better for all three cases, and the RD performance are, in practice, the
same. The striking resemblance between the results makes it interesting to
look closer to the three initial frames and their trained versions. The initial
frames are shown in Figure 6.4, while their correspondingly trained versions
are shown in Figure 6.5. The sample sets represent the frame column vectors
in the order as they appear in F. We can see that the trained frames are quite
different from the initial frames, in particular Frame 2. Frame 3 has the least
changes. These observations correlate to the learning curves in Figure 6.2: It
is the Frame 2 case that has the largest cost reduction. The trained frames in
Figure 6.5 are more similar to each other than the initial frames. It seems like
all three training experiments have converged to almost the same design. The
similarity between the frames explain the approximately equal characteristics
shown in Figure 6.3(b).

0 10 20 30 40 50 60 70 80 90
0.017

0.018

0.019

0.02

0.021

0.022

0.023

0.024

0.025

0.026

0.027

Iteration number

C
 =

 D
 +

 λ
R

Frame 1
Frame 2
Frame 3

Figure 6.2: The learning curve for three different initial frames Frame 1, Frame
2, and Frame 3. L = 2048, λ = 0.0005, and Mmax = 4.

In training Loop 1, the updated frame vectors are reorganized in an order
where the most frequently used frame vector is the first one in the new frame.
The other vectors are placed in order of descending usage frequency. (See

6.2 Experiments on AR(1) signals 65

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

3

4

5

6

7

8

9

10

x 10
−4

Rate [bit/sample]

D
is

to
rt

io
n

Frame 1
Frame 2
Frame 3

(a)

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

3

4

5

6

7

8

9

10

x 10
−4

Rate [bit/sample]

D
is

to
rt

io
n

Initial frame Frame 1
Initial frame Frame 2
Initial frame Frame 3

(b)

Figure 6.3: Bit rate versus distortion when encoding the test signal at eight
different λ-values. Frame 1, 2 and 3 are used as initial frame. The results (a)
with no frame training, and (b) with training included, are presented. Both
(a) and (b) include VLC optimization.

66 Compression of AR(1) signals

(a)

(b)

(c)

Figure 6.4: The 32 frame vectors in the initial frames (a) Frame 1, (b) Frame
2, and (c) Frame 3. A column in the frame is presented as one sample set in
the figure.

6.2 Experiments on AR(1) signals 67

(a)

(b)

(c)

Figure 6.5: The frames after training, where the initial frames were (a) Frame
1, (b) Frame 2, and (c) Frame 3. A column in the frame is presented as one
sample set in the figure.

68 Compression of AR(1) signals

Section 5.2.1). There will be fever long runs and more short runs between the
nonzero coefficients, that after VLC optimization in Loop 2 will give us a lower
bit rate for coding the run codewords. In Figure 6.6, the results from using this
reorganization is shown as solid lines, while the dotted lines are the results from
not having this reorganization in Loop 1. The plots show results from using
Frame 1, Frame 2, and Frame 3 as initial frame, respectively. In all three cases,
the training period expands with more than 30 iterations. In addition, the cost
at the final training iteration is marginally worse. This is also the case for the
test signal, where the rate-distortion plot in Figure 6.6(b) illustrates a small
shift to the right in all curves when not including the reorganization. The bit
rate is marginal higher for all situations, while the distortion is approximately
at the same place. This demonstrates the value of using the reorganization of
frame vectors in training Loop 1.

Not only the frame, but also the VLC tables for run and value codewords are
updated in the training scheme. To set the initial codeword lengths for values,
a Gaussian probability density function (pdf) with zero mean is used. In other
words, we expect low values to be more frequently used than high values. The
initial run codeword lengths are set based on a uniform pdf, saying that long
and short runs between the nonzero coefficient have an equal probability of
occurrence. From the last experiment where the effect of reorganization of
frame vectors were demonstrated, this is not true. But, the difference is not
large, and will in any case be updated in the first iteration of training Loop
2. The initial codeword lengths for values and runs are shown in Figure 6.7
(a) and (b), respectively. There are 32 values and 32 runs in this case. The
initial value codeword lengths vary from 4 to 6 bits, where the small absolute
values have 4 bits, and the large absolute values have 6 bits. The distribution
of bits is chosen to be like this, because there is a higher likelihood that small
values are used than large values. The 33rd bar in the run bit length plot
represents the bit length of the End Of Block (EOB) symbol, which is initially
set to be 1 bit. The reason for this is the high probability of this symbol. In
this work Huffman coding is used to find the representation for all symbols.
Due to this, all bit lengths are integers. An example of how the value and run
codeword bit lengths have changed after training is shown in Figure 6.7 (c)
and (d), respectively. The bit lengths of values indicates that the frequency
of small, but not too small values, are large. Short runs are more frequent
than longer runs, and the frequency of the EOB symbol is large, due to its bit
length of 2 after Huffman coding.

6.2 Experiments on AR(1) signals 69

0 20 40 60 80 100 120

0.018

0.019

0.02

0.021

0.022

0.023

0.024

0.025

0.026

Iteration number

C
 =

 D
 +

 λ
R

Frame 1
Frame 2
Frame 3
Frame 1, no reorganization
Frame 2, no reorganization
Frame 3, no reorganization

(a)

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

3

4

5

6

7

8

x 10
−4

Rate [bit/sample]

D
is

to
rt

io
n

pe
r

sa
m

pl
e

Frame 1
Frame 2
Frame 3
Frame 1, no reorganization
Frame 2, no reorganization
Frame 3, no reorganization

(b)

Figure 6.6: (a) The learning curve from the training and (b) the rate-distortion
curves from the testing where Frame 1, Frame 2, and Frame 3 are initial
frames. The solid lines represent the case where replacement of frame vectors
find place in training Loop 1, while the dotted lines are the cases without this
replacement.

70 Compression of AR(1) signals

−1 −0.5 0 0.5 1
0

2

4

6

8

10

value

bi
ts

 p
er

 v
al

ue
 s

ym
bo

l

(a)

0 10 20 30
0

2

4

6

8

10

run

bi
ts

 p
er

 r
un

 s
ym

bo
l

(b)

−1 −0.5 0 0.5 1
0

2

4

6

8

10

value

bi
ts

 p
er

 v
al

ue
 s

ym
bo

l

(c)

0 10 20 30
0

2

4

6

8

10

run

bi
ts

 p
er

 r
un

 s
ym

bo
l

(d)

Figure 6.7: The initial bit lengths for the (a) value and (b) run codewords,
and the bit lengths after last iteration of the training Loop 2 for the (c) value
and (d) run codewords.

6.2 Experiments on AR(1) signals 71

6.2.2 Experiment no. 2

In this experiment we want to show the RD performance of ORDE compared
to the theoretical RD bound for an AR(1) process. We also want to show the
difference of using a 16× 16 Discrete Cosine Transform (DCT) and a 16× 32
trained frame.

In the training scheme we use Frame 3 from the previous experiment as the
initial frame. The learning curve is shown in Figure 6.8. In the same figure
the learning curve of the DCT case is plotted. For both cases, λ = 0.001.
Remember that the DCT is not trained, but kept intact through the entire
training and testing procedure. It is only the VLC tables that are updated.
This is the reason why it has just a few training iterations. Except from the
initial encoding step, all of them take place in Loop 2.

0 10 20 30 40 50 60 70 80 90 100 110
0.026

0.028

0.03

0.032

0.034

0.036

Loop 1 Loop 2

Iteration number

C
 =

 D
 +

 λ
R

DCT
Frame 3

Figure 6.8: The learning curves for a case where a 16 × 16 DCT is used as
frame, and a case where Frame 3 is trained. The DCT case has just a few
number of iteration, since the Loop 1 frame training is omitted and only VLC
optimization in Loop 2 is included.

The rate-distortion diagram in Figure 6.9 illustrates the RD performance of
the two cases where the AR(1) test signal is input, and λ vary from 0.0005 to
0.004. Note that the y-axis is distortion per sample divided by σ2

x, where σ2
x

is the variance of the input signal. In this experiment, σ2
x = 0.0105, since the

72 Compression of AR(1) signals

input signal is scaled in order to fit the quantization range. The theoretical
Rate-Distortion Function (RDF) is plotted as a dotted line, and found by
using the parametrical equations in (6.1) and (6.2) for D > 0.0256σ2

x. In
the small distortion region, where D ≤ 0.0256σ2

x, Equation (6.5) is used to
find RDF. The experimental results from using ORDE and a trained frame is
represented with the solid line with circles. The line follows the curvature of
RDF very well for the presented set of convex envelope points, where the bit
rate is between 0.3 and 0.5 bit/sample larger than RDF at the same values of
SNR. For the DCT case, the bit rates are 0.03 to 0.05 bit/sample larger than
for the trained frame case.

0 0.5 1 1.5
0

0.05

0.1

Rate [bit/sample]

D
is

to
rt

io
n

pe
r

sa
m

pl
e/

σ x2

16x16 DCT
16x32 trained frame
Theoretical RD function

Figure 6.9: The rate-distortion results for the DCT and the trained frame case
compared to the theoretical rate-distortion function. The y-axis is distortion
per signal block divided by the input signal variance, σ2

x.

6.2.3 Experiment no. 3

There are some parameter settings that will impact the RD performance of
the coding algorithm of this work. In this experiment we will examine the
influences of: The dimensions of F (N and K), the number of quantization
steps (J), the Lagrangian multiplier (λ), and the maximum number of selected
vectors per signal block (Mmax). These entities do not only affect the RD

6.2 Experiments on AR(1) signals 73

performance, but will also have a significant influence on the encoding time.
The number of rows in F, N , is set to 16, and is not adjusted to a higher
value in this experiment, due to encoding time considerations. In most of
the experiments in this work, K = 2N . If we double N , we would double
K, which would increase the number of nodes in the tree from

∑Mmax
M=0

(
K
M

)
to∑Mmax

M=0

(
2K
M

)
in the reduced tree case. If K = 32 and Mmax = 4, we have 41449

nodes in the tree. If K = 64 and Mmax = 4, the number of nodes is 679121.
The doubling of K results in an increase in the number of nodes by a factor
of approximately 16. If N is doubled as well, the time needed for calculations
of each node would increase, and the total time consumption would cross the
limit of reasonable time consumptions of encoding.

First, we present the RD results when using frames with different numbers of
columns. N = 16 and K = {16, 32, 48}. The initial frames are all put together
like Frame 1, which is a set of normalized random AR(1) column vectors. All
three frames are trained with λ = 0.0005, prior to the testing on another
AR(1) signal with eight λ-values in the range [0.00025, 0.002]. The RD results
are presented in Figure 6.10, where the Signal-to-Noise Ratio (SNR) is used
on the y-axis. SNR is defined by

SNR = 10 log10

∑L
l=1 ‖xl‖2

∑L
l=1 Dl

. (6.6)

The y-axis has an inverted role compared to previous RD plots: The best RD
curve is the one which is nearest to the upper left corner of the diagram. The
three curves are very close to each other, but the case where K = 16 has a
lower bit rate at coarse coding, while the cases where K = 32 and K = 48 has
better rates when coding with smaller loss of information. The reason is that
the number of bits needed to represent a run codeword is reduced at K = 16.
The set of frame vectors to choose from is smaller, but this disadvantage does
not seem to manifest itself before λ is small, and a higher bit rate is allowed.

A change in the number of quantization steps, J , will affect the RD perfor-
mance of the ORDE. Note that an increase in J will increase the number of bits
per symbol, but reduce the granular noise in the quantizer. The quantization
overload noise is the same, since the quantization range is unchanged. Results
from an experiment with J = {16, 32, 64} is shown in Figure 6.11. Having
just a few steps, J = 16, will reduce the number of bits of value codewords.
This will result, as demonstrated in the figure, in a lower bit rate at coarse
coding, but it has a disadvantage at fine coding, since the SNR will decrease
as a result of the increase in quantization noise. The reasonable number of
quantization levels has an upper limit. In this experiment it seems like 64

74 Compression of AR(1) signals

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
10

11

12

13

14

15

16

Rate [bit/sample]

S
N

R
 [d

B
]

K = 16
K = 32
K = 48

Figure 6.10: Rate versus SNR results of AR(1) test signal for different dimen-
sions of F: 16× 16, 16× 32, and 16× 48.

quantization levels is too much. For the given set of λ-values, the case with
32 levels is all over 0.05 bit per sample better at the same SNR values.

The Lagrangian multiplier, λ, is the turning knob used to change between low
and high bit rate coding. If λ = 0, the bit rate is not taken into consideration,
and the reconstructed signal of the representation code will be of good quality,
i.e., the SNR is large. When increasing λ, the bit rate will be reduced, and the
same will the SNR value. This is illustrated in Figure 6.12. The curves show
the results of coding the same AR(1) test signal, but with different trained
frames. The same initial frame, Frame 3, is used, but the training has been
done for seven different values of λ. For each of the seven training cases, testing
is done with eight different Lagrangian multiplier values, λ = {1

2 , 2
2 , . . . , 8

2}λ,
where λ is the Lagrangian multiplier in the training procedure. The theoretical
RDF is presented in the plot as a dotted line, where RDF’s SNR,

SNRRDF (R) = 10 log10

σ2
x

DRDF (R)
. (6.7)

DRDF (R) is found by (6.5) for the small distortion region, and by the para-
metrical equations, (6.1) and (6.2), for the rest of the curve.

6.2 Experiments on AR(1) signals 75

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
10

11

12

13

14

15

16

Rate [bit/sample]

S
N

R
 [d

B
]

J = 16
J = 32
J = 64

Figure 6.11: Rate versus SNR results of AR(1) test signal for different number
of value symbols: 16, 32, and 64.

It is necessary to set an upper limit for the number of selected vectors of each
signal block, in order to keep the algorithm’s time consumption to a reasonable
level. The value of this limit, Mmax, will affect the RD performance of the en-
coder if there are signal blocks where the cost, Cl = Dl+λRl, would be smaller
when having more than Mmax selected vectors. In Figure 6.13 we can see the
bit rate versus SNR results at different values of Mmax. In Figure 6.13(a)
the frame and VLC tables are trained at λ = 0.0005, while in Figure 6.13(b)
λ = 0.001 in the training procedure. Thus, the eight points of the ORDF’s
convex envelope in the test signal case are at λ = {0.00025, 0.0005, . . . , 0.002},
and λ = {0.0005, 0.001, . . . , 0.004}, respectively. We can see in both diagrams
that at rates less than 1 bit per sample there are approximately no differences
in the results, even though Mmax is as small as 2. At higher rates, we can see
that the results are worse for the case where Mmax = 2, than for the other
cases. The differences between the other three cases, where Mmax is 3,4, and
5, are very small at this bit rate range. But, the impact of Mmax to the RD
performance of the ORDE highly depends on λ. If λ is chosen to be smaller,
the total number of bits can be larger, and the number of signal blocks where
Mmax prevents a better solution to be found, will increase.

In Figure 6.14, histograms show the number of signal blocks with 0, 1, 2,
3, 4, or 5 selected vectors, at the case where Mmax = 5. In Figure 6.14(a),

76 Compression of AR(1) signals

0 0.5 1 1.5 2
4

6

8

10

12

14

16

18

20

Rate [bit/sample]

S
N

R
 [d

B
]

λ = 0
λ = 0.0001
λ = 0.0002
λ = 0.0005
λ = 0.001
λ = 0.002
λ = 0.005
RDF

Figure 6.12: Rate versus SNR results for 7 different values of λ in the training
scheme. The dotted line is the theoretical Rate-Distortion Function (RDF).

6.2 Experiments on AR(1) signals 77

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
10

11

12

13

14

15

16

Rate [bit/sample]

S
N

R
 [d

B
]

M
max

 = 2

M
max

 = 3

M
max

 = 4

M
max

 = 5

(a)

0.5 0.6 0.7 0.8 0.9 1 1.1
9

10

11

12

13

14

Rate [bit/sample]

S
N

R
 [d

B
]

M
max

 = 2

M
max

 = 3

M
max

 = 4

M
max

 = 5

(b)

Figure 6.13: Rate versus SNR results of the test signal for different values of
Mmax. The Lagrangian multiplier in the training scheme is (a) λ = 0.0005
and (b) λ = 0.001.

78 Compression of AR(1) signals

λ = 0.0005 in the training procedure, while in Figure 6.14(b) the frame and
VLC tables are trained at λ = 0.001. There are only two of the histograms
that includes any signal blocks with as much as 5 selected vectors. In the case
where λ = 0.00025 and λ = 0.0005 in Figure 6.14(a), there are 27 and 1 blocks
with 5 selected vectors, respectively. This shows that if Mmax ≥ 5, the RD
performance will not be deteriorated at λ > 0.0005 for this class of signals. In
Figure 6.14 (a) and (b), there are several histograms with the same λ-value
in the test case. But, these histograms are not equal. The only difference
in the setups is that λ-values in the training procedure are 0.0005 and 0.001,
respectively. For the latter situation, all corresponding histograms show a
small increase in the number of signal blocks with a small number of selected
vectors. This observation verify that the λ-value should be chosen carefully, in
order to find the best designed frame and VLC tables according to the desired
rate and distortion features for the given class of input signals.

6.2.4 Experiment no. 4

We will now compare the ORDE algorithm with Rate-Distortion Optimized
(RDO) Matching Pursuit, proposed in [17], and described in Section 3.4. Both
RDO Basic (or standard) Matching Pursuit (RDO BMP) and RDO Ordered
Recursive Matching Pursuit (RDO ORMP) will be tested. RDO BMP and
RDO ORMP are both greedy vector selection algorithms. They are much
faster than the ORDE algorithm, but they are suboptimal. In Table 4.2 d) in
Section 4.5, the algorithm complexity of ORDE is equal to 1 +

∑Mmax
M=1

(
K
M

)
J .

The corresponding worst case complexity for RDO BMP and RDO ORMP is
Mmax. In order to get a fair comparison, we have to use the ORDE algorithm
with index coding (ORDE ind) instead of Run-Length Coding (RLC). This is
the full tree search algorithm described in Section 4.3.2. The reason for using
this algorithm is that the RDO matching pursuit techniques can not use RLC.
The frame vectors are selected one by one and in an arbitrary order. This
allows a frame vector with a lower index number than the previous selected
one to be chosen. If RLC had been used, the new coefficient would destroy
the previous selected coefficient’s run data. Thus, index coding is used in
RDO BMP and RDO ORMP. Even though we cannot compare the matching
pursuit techniques directly to the ORDE with Run-length Coding (ORDE
run) presented in Section 4.4, we show the latter algorithm’s performance in
the same diagrams.

The learning curves are all shown in Figure 6.15. In Figure 6.15(a), λ = 0.0005,
and in Figure 6.15(b), λ = 0.001. Mmax = 4 in both cases. In all four curves
the big drop in the cost, which is the intersection between training Loop 1 and

6.2 Experiments on AR(1) signals 79

0 1 2 3 4 5
0

500

1000

1500

λ = 0.00025
0 1 2 3 4 5

0

500

1000

1500

λ = 0.0005
0 1 2 3 4 5

0

500

1000

1500

λ = 0.00075
0 1 2 3 4 5

0

500

1000

1500

λ = 0.001

0 1 2 3 4 5
0

500

1000

1500

λ = 0.00125
0 1 2 3 4 5

0

500

1000

1500

λ = 0.0015
0 1 2 3 4 5

0

500

1000

1500

λ = 0.00175
0 1 2 3 4 5

0

500

1000

1500

λ = 0.002

(a)

0 1 2 3 4 5
0

500

1000

1500

λ = 0.0005
0 1 2 3 4 5

0

500

1000

1500

λ = 0.001
0 1 2 3 4 5

0

500

1000

1500

λ = 0.0015
0 1 2 3 4 5

0

500

1000

1500

λ = 0.002

0 1 2 3 4 5
0

500

1000

1500

λ = 0.0025
0 1 2 3 4 5

0

500

1000

1500

λ = 0.003
0 1 2 3 4 5

0

500

1000

1500

λ = 0.0035
0 1 2 3 4 5

0

500

1000

1500

λ = 0.004

(b)

Figure 6.14: The number of signal blocks where the optimal solution has
0, 1, . . . , 5 selected frame vectors. The Lagrangian multiplier in the training
scheme is (a) λ = 0.0005 and (b) λ = 0.001.

80 Compression of AR(1) signals

2, occurs after a random number of iterations. The total number of iterations
is varying, as well. As is clearly seen, the ORDE algorithms outperforms the
RDO matching pursuit algorithms in both figures. ORDE run has the best
cost, and its training procedure terminates after fewer iterations. When the
trained frames and VLC tables are used as inputs in the four respective test
cases, we can see the results in the rate versus SNR plots in Figure 6.16. As
in the previous figure, the Lagrangian multiplier in the training scheme is
(a) λ = 0.0005 and (b) λ = 0.001. At low bit rates the four algorithms have
approximately the same SNR. But, as the rate increases the ORDE algorithms
are much better than the MP algorithms. At 1.2 bits per sample, the ORDE
algorithms are approximately 1 dB better. In both (a) and (b), ORDE run
is slightly better than ORDE ind, even though ORDE ind has a larger set
of solutions. The reason why ORDE run is doing better is that Run-Length
Coding is used. Encoding the runs instead of the indices results in a more bit
efficient representation.

As mentioned, there is a difference in the time consumptions of the four algo-
rithms presented. With Mmax = 4, the difference is considerable. Time results
are shown in Table 6.1. The table shows the average time used to generate
one RD-point in the curves of Figure 6.16 (a) and (b). As the MP algorithms
use 9 and 13 seconds in average to encode 2048 signal blocks, the ORDE run
algorithm uses 271 seconds in average for the same blocks. ORDE ind uses
5569 seconds, or one hour and 33 minutes, in average. A full search is very
time consuming. ORDE ind is more than 20 times more time consuming than
ORDE run. At the same time, the ORDE run often performs better in the
rate-distortion sense, like it did in this experiment. See Figure 6.16.

The algorithms are implemented in Matlabr [26]. Parts of the algorithms are
implemented in C++, in order to speed up the encoding of each signal block.
The computer used in all experiments is a PC with a 2.4 GHz Intel Pentium
4 processor.

6.2.5 Experiment no. 5

The last experiment on AR(1) signals focus on the time consumption reduction
by the introduction of lower bounds, presented in Section 4.3.2. It is not
necessary to do a full calculation of each and every node in the solution tree,
if we can eliminate a particular node from being optimum based on some
knowledge of the node cost and the so far best solution, C∗

l . For a particular
node, we know the lower bound (LB) of the cost, given by (4.21). If C∗

l < LB,
it is not necessary to evaluate this node any further. We can not prune the

6.2 Experiments on AR(1) signals 81

0 20 40 60 80 100 120 140
36

37

38

39

40

41

42

43

44

45

46

Iteration number

C
 =

 D
 +

 λ
R

ORDE run
ORDE ind
RDO ORMP
RDO BMP

(a)

0 10 20 30 40 50 60
54

55

56

57

58

59

60

61

62

63

64

65

Iteration number

C
 =

 D
 +

 λ
R

ORDE run
ORDE ind
RDO ORMP
RDO BMP

(b)

Figure 6.15: Learning curves for four different algorithms: ORDE run, ORDE
ind, RDO ORMP, and RDO BMP. The Lagrangian multiplier in the training
scheme is (a) λ = 0.0005 and (b) λ = 0.001.

82 Compression of AR(1) signals

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
10

11

12

13

14

15

16

Rate [bit/sample]

S
N

R
 [d

B
]

ORDE run
ORDE ind
RDO ORMP
RDO BMP

(a)

0.5 0.6 0.7 0.8 0.9 1
9

10

11

12

13

Rate [bit/sample]

S
N

R
 [d

B
]

ORDE run
ORDE ind
RDO ORMP
RDO BMP

(b)

Figure 6.16: Rate versus SNR test signal results for four different algorithms:
ORDE run, ORDE ind, RDO ORMP, and RDO BMP. The Lagrangian mul-
tiplier in the training scheme is (a) λ = 0.0005 and (b) λ = 0.001.

6.3 Summary 83

Average time
Algorithm in seconds
RDO BMP 9
RDO ORMP 13
ORDE run 271
ORDE ind 5569

Table 6.1: The average time used to encode 2048 signal blocks for the RDO
BMP, RDO ORMP, ORDE run, and ORDE ind algorithms, when Mmax = 4.

tree based on this knowledge. Eventual child nodes have to be evaluated, but
the chance of a full calculation is smaller if the parent node has not been fully
calculated. In other words, we are in a branch of the tree that seems not to
include the optimal node. Figure 6.17 shows the in percentage number of fully
calculated nodes in the tree, for different values of Mmax and λ. The solid lines
and the dotted lines represent the test results where λ = 0.0005 and λ = 0.001
in the training loops, respectively. Except for small values of λ, λ = 0.0001,
the number of fully calculated nodes decreases as the tree is getting deeper, by
increasing Mmax. In all the 24 different encodings of the signal, it is less than
1.6 % of the nodes that are fully calculated. This results in a considerable
reduction in the time used to encode the signal in a rate-distortion optimal
way.

6.3 Summary

The experiments on AR(1) signals can be summarized as follows: The results
show the importance of having a well designed frame and optimized VLC tables
for the particular class of signals. Compared to the suboptimal RDO Matching
Pursuit algorithms, the algorithms presented in this work, the Operational
Rate-Distortion Encoder (ORDE) are slower but they perform better than
RDO BMP and RDO ORMP.

For each of the five experiments presented, we can summarize as follows:

Experiment no. 1:
Training of frames is essential. The main thing is not the shape of the initial
frame, but that a complete training is performed, both by a coarse updating
in Loop 1 and a finer updating in Loop 2. Yet, if a specific initial frame
should been chosen, Frame 3 is preferred. The update of VLC tables in Loop
2 are essential. The experiment shows that small absolute values are more

84 Compression of AR(1) signals

3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M
max

N
um

be
r

of
 fu

lly
 c

al
cu

la
te

d
no

de
s

[%
]

λ = 0.0001
λ = 0.0002
λ = 0.0005
λ = 0.001

Figure 6.17: The percentage number of fully calculated nodes for different
values of Mmax and λ.

6.3 Summary 85

frequently used than large absolute values, and consequently are the codewords
with the smallest number of bits. In fact, it is the third smallest absolute values
that are most frequently used. In the run codeword table, the smallest run
codewords are more frequently used, thus they have the smallest number of
bits.

Experiment no. 2:
The results from using a 16 × 32 trained frame is better than from using a
16×16 DCT. For the same range of SNR, the bit rate is 0.03 to 0.05 bit/sample
less. Compared to the theoretical RDF, our algorithm has a bit rate which is
0.3 to 0.5 bit/sample larger, for the given set of convex envelope points.

Experiment no. 3:
The size of the frame has some impact on the RD performance. Using a 16×16
trained frame gives better results at low bit rates, while 16× 32 and 16× 48
trained frames are best at higher rates than 1.1 bit per sample. The preferable
number of quantization steps, J , is 32, Particularly for bit rates larger than 1
bit per sample. At lower bit rates, J should be less. In the training scheme,
λ should be chosen carefully, in order get the best possible trained frame and
VLC tables for the preferred range of bit rates. The value of Mmax should not
be too large, in order to keep the time consumption at an acceptable level.
At the same time, it must not be too small, such that the RD performance
is reduced. The right value of Mmax depends on λ. If λ is not too small,
Mmax can be small. In this experiment, when λ = 0.0005 it is acceptable that
Mmax = 4.

Experiment no. 4:
The RDO MP algorithms are much faster than the ORDE algorithms. While
RDO BMP and RDO ORMP use 9 and 13 seconds in average to encode
2048 signal blocks, ORDE run and ORDE ind use 271 and 5569 seconds in
average, respectively. Remember that this is when encoding the signal. The
decoding is executed very quickly for all four algorithms. The differences in
the RD performance is negligible at rates lower than 0.7 bits per sample, but
at higher rates, the ORDE algorithms outperforms RDO MP. At 1.2 bits per
sample, the ORDE algorithms are approximately 1 dB better. ORDE run are
better than ORDE ind for all rates in this experiment.

Experiment no. 5:
For AR(1) signals, and with these λ-values, 98.4 % of the nodes do not need
full calculation. This demonstrates the benefit of introducing the lower bound
technique, in order to reduce the total time consumption of the ORDE algo-
rithm, without sacrifice of optimality.

86 Compression of AR(1) signals

Even though conclusions are drawn for AR(1) processes as input signals, the
encoder settings can be quite different for other classes of input signals. This is
shown in next chapter, where electrocardiograms (ECGs) are used as examples
of real-world input signals.

Chapter 7

Compression of ECG signals

In this chapter we show experimental results from coding of electrocardio-
gram (ECG) signals, using the Operational Rate-Distortion Encoder (ORDE).
Compression of ECG signals has been performed in previous work, employing
many different techniques. Examples are sub-band coding [25], frame based
coding [12], dynamic programming in a shortest path formulation [23], and
rate-distortion optimal coding in time domain [37]. The focus in this chapter
is rate-distortion optimal frame based coding of ECG signals.

For ECG, and other real-world signals, it may be hard to find the right range
of value symbols, or quantization levels. A quantization step size optimization
procedure is proposed in Section 7.1. This is incorporated into the previously
presented training scheme. Due to the large dynamic range in an ECG signal,
it is preferable to preprocess the signal prior to the encoding by ORDE. Two
different preprocessing proposals are presented in Section 7.2. The experiment
results are given in Section 7.3. Section 7.4 summarizes the findings of the
chapter.

7.1 Quantization step size optimization

So far in this work, the value symbols have been fixed, both in the training and
the testing scheme. These symbols are representation values from a mid-rise
uniform quantizer [16]. In a uniform quantizer the distance from one value to
the next in the table is constant. This constant is the quantization step size,
∆. The J values can be represented as a vector, val, given by

val(∆) = ∆a, (7.1)

87

88 Compression of ECG signals

where

a =
[
− J + 1

2
+ 1 − J + 1

2
+ 2 · · · − J + 1

2
+ J

]T
. (7.2)

When J is even, there are J/2 positive and J/2 negative elements in a, in a
symmetric distribution around zero. ∆ and J are the two parameters that fix
the range of val. For real-world signals, like ECG signals, it is hard to find the
best prefixed range of val for a particular signal, without a time consuming
“trial-and-error” testing. This is why we will include an optimization proce-
dure for ∆ in the training scheme. Our objective is: Given the set of frame
vector coefficients and the input signal, find the minimum rate-distortion so-
lution with respect to ∆. We still have a uniform quantizer, since ∆ is a scalar,
but we search for another value of ∆ that would give us better rate-distortion
results.
First, we note that it is only the distortion that can be changed, as each coef-
ficient is connected to the same values codeword, whose bit rate is unchanged.
Thus, our objective function can be reduced to

z = min
L∑

l=1

‖xl −Qlṽo
l ‖2

= min
L∑

l=1

(xT
l xl − 2xT

l Qlṽo
l + ṽoT

l ṽo
l). (7.3)

The first term in the sum, xT
l xl, is a constant, thus it can be removed from

the objective function. Next, we write the M × 1 vector ṽo
l as

ṽo
l = Θlval, (7.4)

where Θl is an M × J binary (0,1)-matrix. We have only one “1” in each
row. The position of the “1” determines the value of the coefficient. Now, the
objective function can be written as

z(val) = min
val

L∑

l=1

(valTΘT
l Θl − 2xT

l QlΘl)val (7.5)

z(∆) = min
∆

L∑

l=1

(∆aTΘT
l Θl − 2xT

l QlΘl)∆a

= min
∆

L∑

l=1

(∆2aTΘT
l Θla− 2∆xT

l QlΘla). (7.6)

7.2 ECG signal preprocessing 89

z is differentiable, and we can find local extreme values at dz
d∆ = 0:

dz

d∆
= 2δ

L∑

l=1

(aTΘT
l Θla)− 2

L∑

l=1

(xT
l QlΘla) = 0. (7.7)

The function z(∆) is convex and it has only one extremum, thus the extremum
is a minimum, which is located at

∆ =
∑L

l=1 xT
l QlΘla∑L

l=1 aTΘT
l Θla

. (7.8)

This is the optimal solution of (7.3) with respect to ∆. (7.8) is implemented
in the training scheme as presented in Figure 7.1, just after ORDE in both
training loops. This figure is a part of Figure 5.1 in Chapter 5. The shaded
boxes represent the optimization of ∆, and the subsequential update of the
value symbols, by using the new ∆ in (7.1). In Figure 7.1, there is added a
loop called “Loop 1.5”. The contents of this loop is shown in Figure 7.2. It
includes only two blocks, the ORDE and the ∆-optimizer, and the algorithm
will continue iterating until the cost reduction from one iteration to the next
is less or equal to a small positive number, ε. One may think that since both
blocks produce an optimal cost solution to their problems, this loop would
always terminate after one iteration. This is not true, due to the fact that
output values of ORDE are input values of the ∆-optimizer, and vice versa.
But, the cost will converge to a local minimum, like it does in Loop 2. The
effects of introducing ∆-optimization in the training scheme is presented in
Section 7.3.1.

7.2 ECG signal preprocessing

Typically, an ECG signal has a large dynamic range. In Figure 7.3 we can see
a section of an ECG signal of a healthy human. The peaks are the heartbeats.
Between these peaks the signal amplitudes are small, but not insignificant.
From a medical point of view, it is important to take care of all of the heart
activity information.

Due to the fact that most of the signal energy is in the heartbeat peaks, the
number of coefficients per signal block, M , would be larger in these parts of
the signal than in other parts, in order to keep the overall distortion at a low
level. The number of coefficients would be more evenly distributed among

90 Compression of ECG signals

ORDE

Compute cost

iii
RDC λ+=

1−< ii
CC

No

Coarse update

of frame F i

Yes

ε>−− ii
CC

1

No

Update

VLC tables

Update

frame
Yes

() () i
i

o **

,
~

IV

ORDE

λ max
M

tr
X

λ max
M

tr
X

Loop 1

Loop 2

1−← ii

() () i
i

o **

,
~

IV

Loop 1.5

Figure 7.1: A part of the training scheme presented in Figure 5.1, with quan-
tization step size (∆) optimization added, as shaded boxes. ∆-optimization is
added into “Loop 1.5”, as well, which is illustrated in Figure 7.2.

7.2 ECG signal preprocessing 91

ε>−− ii
CC

1

No

Yes

ORDE

λ max
M

tr
X

Loop 1.5

() () i
i

o **

,
~

IV
iii

runsvalues F,,
Update

quantizer

Figure 7.2: “Loop 1.5”, where only two blocks are included, the ORDE and
the ∆-optimizer.

Figure 7.3: A section of an ECG from a healthy human.

92 Compression of ECG signals

signal blocks if the dynamic variations were smaller. This is the reason for
introducing a lossless preprocessing of the ECG signal, before it is encoded by
the proposed encoder of this work. We will look at two different preprocessors,
presented as Preprocessor A and Preprocessor B. In both preprocessors, the
idea is to extract some information from the blocks of signal samples. This
information is encoded by a lossless coder, generating a string of bits which has
to be transmitted, in addition to the bit stream produced by the ORDE. An
advantage of this preprocessing is the reduction in both bit rate and distortion
of the remaining signal. A disadvantage is the increase in the time of decoding
the signal. A lossless decoder has to be added. We justify this time increase,
due to the fact that the time needed to decode the signal, in any circumstances,
is much lower than the time needed to encode it. A more detailed description of
Preprocessor A and Preprocessor B is given in Section 7.2.1 and Section 7.2.2,
respectively.

7.2.1 Preprocessor A

In this preprocessor, the mean values of each of the L signal blocks are found.
The original signal, X, is a matrix with dimensions N × L. If µl is the mean
value of signal block l, the entire set of mean values is organized as the L× 1
vector µ. Since we have high correlation between adjacent mean values, it
makes sense to use Differential Pulse Code Modulation [16] (DPCM) encoding
on µ. The DPCM representation symbols are entropy encoded using Huffman
coding, resulting in “Bit stream A”. In Figure 7.4(a), the entire preprocessor
is shown. The bit stream has to be decoded by an entropy decoder and
an inverse DPCM, resulting in the reconstructed mean value vector, µ̆ =
[µ̆1 µ̆2 · · · µ̆L]T . The input signal of ORDE, E, is the difference between
the original signal, X, and the reconstructed preprocessor signal, X̆:

E = X− X̆ = X− [1 1 · · · 1]T µ̆T , (7.9)

where the vector of all ones is of length N . (7.9) says that each element of
column l in X̆ is the reconstructed mean value of signal block l. Thus, column
l in E is signal block l with zero mean.

The bit stream of values and runs from ORDE, and “Bit stream A”, are
together the compressed representation of the original signal. At the decoder,
the reconstruction of E, Ẽ, is found by using the algorithm in Figure 2.4, for all
L signal blocks. The decoding of “Bit stream A” is presented in Figure 7.4(b),
and it is identical to the decoding in the preprocessor, used to generate µ̆ and
X̆. The reconstruction of the original signal is found by

7.2 ECG signal preprocessing 93

Huffman

encoder

Find mean values of

all signal blocks

Bit stream A

Huffman

decoder

DPCM

decoder

+
(N x L)

E

-
(N x L)

DPCM

encoder

µ

(1 x L)

[] TT

µ111
µ

(1 x L) (N x 1)

X

(N x L)

X

(a)

Bit stream A

+
(N x L)

+
(N x L)

E
~

X
~

Huffman

decoder

DPCM

decoder

µ

(1 x L) (N x 1)
(N x L)

X
[] TT

µ111

(b)

Figure 7.4: (a) Preprocessor A. The preprocessor output, X̆ is subtracted
from the original signal, X, and the difference, E, is the input signal to be
encoded by ORDE. (b) The reconstruction scheme needed to generate the
reconstruction of the original signal, X̃, based on the ORD decoded signal, Ẽ,
and the preprocessor bit stream A.

94 Compression of ECG signals

X̃ = Ẽ + X̆. (7.10)

Experimental results from coding ECG signals where preprocessor A is in-
cluded, are given in Section 7.3.2.

7.2.2 Preprocessor B

Preprocessor B has much of the same properties as preprocessor A. A difference
signal, E = X − X̆, is generated and used as input signal for the ORDE.
The preprocessor generates a separate bit stream, which is called “Bit stream
B” when preprocessor B is used. See Figure 7.5(a). Instead of finding the
mean value of each signal block, the input signal is down-sampled by a factor
P . In this work P = 8, half of the signal block lengths. In order to avoid
aliasing [41], the signal is low-pass filtered prior to down-sampling. A FIR
filter is used. The cut-off frequency is at 1/P , where the frequency band is
defined as [0, 1.0〉. The filter length is 3P , and the impulse response is denoted
h(n). The down-sampled signal is then DPCM encoded and entropy encoded,
resulting in “Bit stream B”. This is the representation of the preprocessor
signal, thus the last part of the preprocessor in Figure 7.5(a) and the decoder
shown in Figure 7.5(b) are identical: The bit stream is entropy decoded and
DPCM decoded. Then, the signal is up-sampled by a factor P . Finally, it is
filtered by a low-pass filter with impulse response g(n). The filter is symmetric,
has a cut-off frequency at 0.5, and a filter length equal to 8P + 1. Out of
this, X̆ is generated, which is a low-passed version of X. As in (7.10), the
reconstruction of the original signal is X̆ added to the reconstructed difference
signal, Ẽ.
There is a striking similarity between preprocessor A and B. In fact, prepro-
cessor B is a generalization of preprocessor A. If P = N and g(n) = h(n) =
1
N [1 1 · · · 1], preprocessor B is equal to preprocessor A. We still hold on to
the notation “preprocessor A” and “preprocessor B”, to distinguish between
the extraction of the mean of sets of signal samples, and the extraction of a
low pass signal.
Experimental results from coding ECG signals where preprocessor B is in-
cluded, are given in Section 7.3.2.

7.3 Experimental results

In this section, the main focus is to get a view of the performance of the Oper-
ational Rate-Distortion Encoder (ORDE) on ECG signals. In order to avoid

7.3 Experimental results 95

Huffman

encoder
h(n)

DPCM

encoder

Bit stream B

Huffman

decoder
g(n)

DPCM

decoder

+X

(N x L)

E

-
(N x L)

↑P

↓P

(N x L)

X

(a)

Bit stream B
Huffman

decoder
g(n)↑P

DPCM

decoder

+
(N x L)

+
(N x L)

E
~

X
~

(N x L)

X

(b)

Figure 7.5: (a) Preprocessor B. The preprocessor output, X̆ is subtracted
from the original signal, X, and the difference, E, is the input signal to be
encoded by ORDE. (b) The reconstruction scheme needed to generate the
reconstruction of the original signal, X̃, based on the ORD decoded signal, Ẽ,
and the preprocessor bit stream B.

96 Compression of ECG signals

confusion between AR(1) and ECG experiments, we continue the numbering
of experiments from the previous chapter. The objectives of the experiments
in this chapter are:

Experiment no. 6: ORDE rate-distortion performance, with and with-
out quantization step size optimization in the training
scheme.

Experiment no. 7: ORDE performance when preprocessing the input sig-
nal by preprocessor A and preprocessor B.

Experiment no. 8: Comparisons of ORDE and RD optimized Matching
Pursuit with ECG signals as inputs.

In all experiments of this section, ECG signals are used as input training and
input test signals. The ECG signals used are signals from the MIT arrhyth-
mia database [31]. The records are represented by 12 bits per sample, and the
sampling frequency is 360 Hz. Five different signals are used, and short seg-
ments of these are presented in Appendix B. MIT100 is an ECG of a healthy
human. MIT103, MIT113, MIT207, and MIT217 are ECG signals of hearts
with abnormal rhythms. Three different training signals and two different test
signals are used:

Training signals:
MIT100train 4 minutes and 40 seconds of MIT100, from 0:00 to 4:40 min-

utes. L = 6300.
MIT207train 4 minutes and 40 seconds of MIT207, from 6:00 to 10:40

minutes. L = 6300.
MITmixtrain 5 minutes, consisting of five segments of one minute length

from MIT100, MIT103, MIT113, MIT207, and MIT217, re-
spectively. The segments are MIT100 0:00 to 1:00 minutes,
MIT103 3:25 to 4:25 minutes, MIT113 0:00 to 1:00 minutes,
MIT207 6:00 to 7:00 minutes, and MIT217 0:00 to 1:00 min-
utes. L = 6750.

Test signals:
MIT100test 4 minutes and 40 seconds of MIT100, from 5:30 to 10:10

minutes. L = 6300.
MIT207test 4 minutes and 40 seconds of MIT207, from 12:00 to 16:40

minutes. L = 6300.

In all experiments, N = 16, K = 32, J = 32, Mmax = 4, and Frame 3 is the
initial frame.

7.3 Experimental results 97

7.3.1 Experiment no. 6

In this experiment, the effects of using quantization step size (∆) optimization
is presented. When ∆-optimization is used, it is included in three loops in the
training scheme, as presented in Figure 7.1. Due to the optimality in the way
we solve the minimization problem in (7.6), the new value of ∆ will guarantee
a cost that is lower or equal to the current cost, if it is used in ORDE in
the next iteration. Figure 7.6, 7.7, and 7.8 show the training results when
MIT100train, MIT207train and MITmixtrain are input signals, respectively. In
all three diagrams, the circled line is the learning curve where ∆-optimization
is not included, while the line with triangles is the learning curve where ∆-
optimization is included in the training scheme. In Figure 7.6, the learning
curves are almost equal. In the case where ∆-optimization is added, the big
drop in cost is one iteration prior to the other case. The big drop is, as it
was for AR(1) signals, at the iteration when Loop 2 is entered and VLC table
optimization is started. It is not shown in the diagram, but Loop 1.5 is iterated
only once. It is the last iteration prior to the big drop, iteration no. 25. The
cost at the final iteration in the case where ∆-optimization is not used, is
close to the cost of the other case. The reason is that the initial value of ∆ is
close to the optimum value, when MIT100train is input signal. The value of
∆ change from 0.0625 to 0.0639.

When MIT207train is the input signal, the situation is different, as shown in
Figure 7.7. Initially ∆ = 0.0625, but at the last iteration ∆ = 0.0700. The
cost in the final iteration is 4 % less when ∆-optimization is included. In the
same diagram, we can see which loop each iteration in the ∆-optimization
curve belongs to. The first five iterations are in Loop 1, and the eight next
belong to Loop 1.5. Iteration 14 is the first in Loop 2, and this is where we
have the big drop in the cost. Figure 7.8 shows the learning curves when
MITmixtrain is input signal. Here, quantization step size optimization gives
larger improvements to the final results. The cost in the final iteration is 13
% less when ∆-optimization is included, compared to the situation where ∆
is not adjusted. The value of ∆ is changed from 0.0625 to 0.0735.

The results of coding the MIT100test signal is shown in the rate versus SNR
plots in Figure 7.9. The frame and VLC tables were trained on (a) MIT100train

and (b) MITmixtrain, respectively. The curves with triangles show the results
where the trained ∆ is used, and the curves with circles use a fixed ∆-value, the
same as the initial value, ∆ = 0.0625. In both plots, the case where a trained
∆ is used is better than the other. The difference is largest in Figure 7.9(b),
where the MITmixtrain was the training input signal. At bit rates between
0.45 and 0.55 bit/sample, the results when optimizing ∆ are between 0.6 dB

98 Compression of ECG signals

0 5 10 15 20 25 30 35 40
5

5.5

6

6.5

7

7.5
x 10

−3

Iteration number

C
 =

 D
 +

 λ
R

No ∆−optimization
∆−optimization

Figure 7.6: The learning curve from the training procedure with MIT100train

as input signal.

0 5 10 15 20 25 30 35 40
5.5

6

6.5

7

7.5

8

x 10
−3

 Loop 1 Loop 1.5 Loop 2

Iteration number

C
 =

 D
 +

 λ
R

No ∆−optimization
∆−optimization

Figure 7.7: The learning curve from the training procedure with MIT207train

as input signal.

7.3 Experimental results 99

0 5 10 15 20 25 30 35 40

6.5

7

7.5

8

8.5

9

x 10
−3

 Loop 1 Loop 1.5 Loop 2

Iteration number

C
 =

 D
 +

 λ
R

No ∆−optimization
∆−optimization

Figure 7.8: The learning curve from the training procedure with MITmixtrain

as input signal.

and 1 dB better, while in the MIT100train case, the improvements at the
same bit rates are between 0.1 dB and 0.3 dB. This is no surprise, due to the
large differences in the learning curves in Figure 7.8, compared to the small
differences in Figure 7.6.

In Figure 7.10 the results of coding the MIT207test signal is shown. The frame
and VLC tables were trained on (a) MIT207train and (b) MITmixtrain, respec-
tively. The differences are larger for this signal, compared to the MIT100test

signal. For bit rates between 0.55 and 0.65 bit/sample, the result improve-
ments of using ∆-optimization are as large as 1.2 to 1.4 dB in Figure 7.10(a)
and 1.9 to 2.3 dB in Figure 7.10(b). This illustrates the importance of includ-
ing quantization step size optimization in the training loops.

7.3.2 Experiment no. 7

In this experiment, results from preprocessing input signals are presented.
Both Preprocessor A and B, introduced in Section 7.2, are tested. In Fig-
ure 7.11, a set of 900 samples from MIT100test is shown. The original signal,
X, is the dashed line in Figure 7.11(a) and (c). In the same diagrams, the

100 Compression of ECG signals

0.4 0.45 0.5 0.55 0.6

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

20.5

Bit rate [bit/sample]

S
N

R
 [d

B
]

No ∆−optimization
∆−optimization

(a)

0.4 0.45 0.5 0.55 0.6

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

20.5

Bit rate [bit/sample]

S
N

R
 [d

B
]

No ∆−optimization
∆−optimization

(b)

Figure 7.9: The rate versus SNR results when MIT100test are encoded. The
input signal in the training procedure is (a) MIT100train and (b) MITmixtrain.

7.3 Experimental results 101

0.55 0.6 0.65 0.7 0.75
18

18.5

19

19.5

20

20.5

21

21.5

22

22.5

23

23.5

Bit rate [bit/sample]

S
N

R
 [d

B
]

No ∆−optimization
∆−optimization

(a)

0.55 0.6 0.65 0.7 0.75
18

18.5

19

19.5

20

20.5

21

21.5

22

22.5

23

23.5

Bit rate [bit/sample]

S
N

R
 [d

B
]

No ∆−optimization
∆−optimization

(b)

Figure 7.10: The rate versus SNR results when MIT207test are encoded. The
input signal in the training procedure is (a) MIT207train and (b) MITmixtrain.

102 Compression of ECG signals

solid line is the preprocessor output signal, X̆, from Preprocessor A and Pre-
processor B, respectively. In both preprocessors, the DPCM coder has 16
quantization steps. In Figure 7.11(a), we can see the square-shaped output
signal from Preprocessor A, where each plateau is the mean value of the corre-
sponding 16 samples from the original signal. The difference signal, E, which is
the input signal to the ORDE, is shown in Figure 7.11(b). There are still peaks
in this signal, but their absolute magnitudes are smaller. In Figure 7.11(c),
we can see the output signal from Preprocessor B follows the original signal
better than in the case mentioned above. It is a low pass filtered version of the
original signal. This results in a difference signal with less energy, as shown
in Figure 7.11(b). In Preprocessor B, the down- and up-sampling factor is 8,
the anti-aliasing filter length is 24, and the interpolation filter length is 65.

A sample set of MIT207test is shown in Figure 7.12. As the original signal in
Figure 7.12(a) and (c) indicates, this is an ECG of an abnormal heart rhythm.
All encoder settings are identical to the MIT100test signal case. The difference
signals when using Preprocessor A and B are presented in Figure 7.12(b) and
Figure 7.12(d), respectively. For the MIT207test signal case, we can see that
the difference signal when using Preprocessor B, is considerably reduced. This
should lead to ORDE results with low distortion at low rates.

MIT100test and MIT207test are encoded and decoded at the given settings.
For both cases, the training input signal is MITmixtrain, and ∆ is optimized.
The final test results of the same set of samples shown in Figure 7.11 and
Figure 7.12, are presented in Figure 7.13 and Figure 7.14, respectively. For
both figures, (a) is the original signal, (b) is the reconstructed signal where
no preprocessing is used, (c) is the reconstructed signal where Preprocessor
A is used, and (d) is the reconstructed signal where Preprocessor B is used.
Going from diagram (b) to (d) in both figures, the curves get more and more
smooth. It is no surprise that the distortion is decreasing when going from
diagram (b),(c) to (d), but the bit rates are at the same level.

When using a preprocessor, some of the signal information is transmitted, or
stored, in the preprocessor bit stream. The bit rates of the ORDE and the
preprocessor for the MIT100test signal at SNR values between 20.6 and 21.0
dB is given in Table 7.1. The total bit rate is the bit rate of the ORDE output
added to the preprocessor bit rate. The frame and VLC tables used in the
test are trained on MITmixtrain. Three situations are presented: When no
preprocessing is used, when Preprocessor A is used, and when Preprocessor
B is used. For the preprocessor cases, three different numbers of quantization
steps, κ, in the DPCM encoder are used: κ = {4, 8, 16}. If κ is small, the
number of bits in the preprocessor bit stream will be small, and the prepro-
cessor output signal, X̆, will be less accurate. If we want to keep the SNR

7.3 Experimental results 103

−200

−100

0

100

200

300

(a)

−200

−100

0

100

200

300

(b)

−200

−100

0

100

200

300

(c)

−200

−100

0

100

200

300

(d)

Figure 7.11: MIT100test, sample no. 50400 to 51300. Original signal samples
as dotted lines in (a) and in (c). The solid lines are the corresponding samples
of: Preprocessor A (a) reconstruction signal (X̆), and (b) difference signal (E).
Preprocessor B (c) reconstruction signal (X̆), and (d) difference signal (E).

104 Compression of ECG signals

−100

0

100

(a)

−100

0

100

(b)

−100

0

100

(c)

−100

0

100

(d)

Figure 7.12: MIT207test, sample no. 50400 to 51300. Original signal samples
as dotted lines in (a) and in (c). The solid lines are the corresponding samples
of: Preprocessor A (a) reconstruction signal (X̆), and (b) difference signal (E).
Preprocessor B (c) reconstruction signal (X̆), and (d) difference signal (E).

7.3 Experimental results 105

−100

0

100

200

300

(a) Original signal, 12 bit/sample

−100

0

100

200

300

(b) No preprocessing, 0.77 bit/sample, SNR = 21.46 dB

−100

0

100

200

300

(c) Preprocessor A, 0.79 bit/sample, SNR = 22.70 dB

−100

0

100

200

300

(d) Preprocessor B, 0.80 bit/sample, SNR = 22.96 dB

Figure 7.13: MIT100test, sample no. 50400 to 51300. Corresponding samples
from (a) the original signal, the reconstructed signals (b) with no preprocess-
ing, (c) when Preprocessor A is used, and (d) when Preprocessor B is used.

106 Compression of ECG signals

−100

0

100

(a) Original signal, 12 bit/sample

−100

0

100

(b) No preprocessing, 0.68 bit/sample, SNR = 22.97 dB

−100

0

100

(c) Preprocessor A, 0.66 bit/sample, SNR = 25.56 dB

−100

0

100

(d) Preprocessor B, 0.68 bit/sample, SNR = 26.42 dB

Figure 7.14: MIT207test, sample no. 50400 to 51300. Corresponding samples
from (a) the original signal, the reconstructed signals (b) with no preprocess-
ing, (c) when Preprocessor A is used, and (d) when Preprocessor B is used.

7.3 Experimental results 107

value at same level, the number of bits in the ORDE output bit stream will
be larger for a small κ. The preprocessor bit rates are approximately doubled
when using preprocessor B, compared to using preprocessor A. The ORDE
bit rates when using preprocessor B at κ = {8, 16} are less than when using
preprocessor A, but if we look at the total bit rates, preprocessor A is best at
this level of SNR values. By using preprocessor A at κ = 16, we get the best
SNR value and the best bit rate, 20.99 dB at 0.59 bit/sample.

ORDE rate Prepr. rate Total rate SNR
[bit/sample] [bit/sample] [bit/sample] [dB]

No preprocessing 0.68 - 0.68 20.82
Prepr. A, κ = 4 0.53 0.13 0.66 20.76

κ = 8 0.43 0.18 0.61 20.88
κ = 16 0.35 0.24 0.59 20.99

Prepr. B, κ = 4 0.64 0.24 0.88 20.64
κ = 8 0.31 0.37 0.68 20.81

κ = 16 0.23 0.48 0.71 20.85

Table 7.1: Bit rates at approximately same SNR value, where total bit rate
is ORDE bit rate added to preprocessor bit rate. Test signal is MIT100test

when frame and VLC tables are trained on MITmixtrain. Three situations
are compared: Where no preprocessing is used, where Preprocessor A is used,
and where Preprocessor B is used. For the preprocessor cases, three different
numbers of quantization steps are tested: κ = {4, 8, 16}.

In order to get a view of the rate-distortion performance of using preprocess-
ing, rate versus SNR plots from the testing where MIT100test and MIT207test

are input signals are presented in Figure 7.15 and Figure 7.16, respectively.
In Figure 7.15(a) and Figure 7.16(a), the frame and VLC tables are trained
on MIT100train and MIT207train, respectively. In Figure 7.15(b) and Fig-
ure 7.16(b), MITmixtrain was training signal. The seven curves in all four
diagrams are: When no preprocessing is used, when Preprocessor A is used
at κ = {4, 8, 16}, and when Preprocessor B is used at κ = {4, 8, 16}. For the
MIT100test signal, using preprocessor A at κ = 8 or 16 give best results at bit
rates less than 0.78 bit/sample. For higher rates, the best result is obtained
by using preprocessor B at κ = 16, regardless of the training signal used. For
the MIT207test signal the worst rate-distortion results are obtained when no
preprocessing is used. The best results for bit rates higher than 0.6 bit/sample
we get when using preprocessor B at κ = 8 or 16.

108 Compression of ECG signals

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
15

16

17

18

19

20

21

22

23

24

25

Bit rate [bit/sample]

S
N

R
 [d

B
]

No preprocessing
Prepr. A, κ=4
Prepr. A, κ=8
Prepr. A, κ=16
Prepr. B, κ=4
Prepr. B, κ=8
Prepr. B, κ=16

(a)

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
15

16

17

18

19

20

21

22

23

24

25

Bit rate [bit/sample]

S
N

R
 [d

B
]

No preprocessing
Prepr. A, κ=4
Prepr. A, κ=8
Prepr. A, κ=16
Prepr. B, κ=4
Prepr. B, κ=8
Prepr. B, κ=16

(b)

Figure 7.15: Bit rate versus SNR results from the encoding of MIT100test,
where Preprocessor A or Preprocessor B, or no preprocessor is used at all. The
input signal in the training procedure is (a) MIT100train and (b) MITmixtrain.

7.3 Experimental results 109

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
19

20

21

22

23

24

25

26

27

28

29

30

Bit rate [bit/sample]

S
N

R
 [d

B
]

No preprocessing
Prepr. A, κ=4
Prepr. A, κ=8
Prepr. A, κ=16
Prepr. B, κ=4
Prepr. B, κ=8
Prepr. B, κ=16

(a)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
19

20

21

22

23

24

25

26

27

28

29

30

Bit rate [bit/sample]

S
N

R
 [d

B
]

No preprocessing
Prepr. A, κ=4
Prepr. A, κ=8
Prepr. A, κ=16
Prepr. B, κ=4
Prepr. B, κ=8
Prepr. B, κ=16

(b)

Figure 7.16: Bit rate versus SNR results from the encoding of MIT207test,
where Preprocessor A or Preprocessor B, or no preprocessor is used at all. The
input signal in the training procedure is (a) MIT207train and (b) MITmixtrain.

110 Compression of ECG signals

7.3.3 Experiment no. 8

This experiment compares four different coders on ECG signals: ORDE with
index codewords (ORDE ind), ORDE with run codewords (ORDE run),
Rate-Distortion Optimized Basic Matching Pursuit (RDO BMP), and Rate-
Distortion Optimized Order Recursive Matching Pursuit (RDO ORMP). In
this experiment Preprocessor A with κ = 16 is used prior to the encoding,
regardless of which of the four coders that is used. The initial frame in the
training scheme is Frame 3, the training of frame, VLC tables and ∆ has been
done at λ = 0.0005, J = 32, and Mmax = 4 for all four coders. The test
results of MIT100test as input signal are presented as rate versus SNR plots in
Figure 7.17, where (a) MIT100train and (b) MITmixtrain were training input
signals, respectively. In both cases ORDE is better than the RDO Matching
Pursuit algorithms for the entire actual bit rate range. At a bit rate of 0.6
bit/sample, the ORDE algorithms are approximately 1.5 dB better than the
Matching Pursuit algorithms in both plots.

Figure 7.18 shows the test results of MIT207test as input signal, trained on (a)
MIT207train and (b) MITmixtrain, respectively. ORDE is better than RDO
Matching Pursuit algorithms for this signal, as well. In Figure 7.18(a) RDO
BMP is better than RDO ORMP. At 0.65 bit/sample ORDE run is 0.6 dB
better than RDO BMP. In Figure 7.18(b) the ORDE algorithms are more
than 1 dB better than RDO BMP at 0.65 bit/sample. It is interesting to see
that ORDE run is better than ORDE ind for all bit rates in Figure 7.17 and
Figure 7.18. This is a demonstration of the advantage of using run-length
coding: Even though the set of solutions is less, the bit rates are lower, that
all in all results in a reduced cost.

7.4 Summary

The experiments on ECG signals can be summarized as follows: (1) In addition
to the training of frame and VLC tables, it is important to optimize the
quantization steps between the representation values in the value codeword
table. (2) It is preferable to preprocess signals with large dynamic variations.
(3) The ORDE algorithms are more time consuming, but outperforms RDO
MP algorithms when encoding ECG signals.

For each of the three experiments presented, we can summarize as follows:

Experiment no. 6:
The introduction of ∆-optimization in the training scheme resulted in a clear

7.4 Summary 111

0.45 0.5 0.55 0.6 0.65
17.5

18

18.5

19

19.5

20

20.5

21

21.5

22

Rate [bit/sample]

S
N

R
 [d

B
]

ORDE run
ORDE ind
RDO ORMP
RDO BMP

(a)

0.45 0.5 0.55 0.6 0.65
17.5

18

18.5

19

19.5

20

20.5

21

21.5

22

Rate [bit/sample]

S
N

R
 [d

B
]

ORDE run
ORDE ind
RDO ORMP
RDO BMP

(b)

Figure 7.17: MIT100. Comparisons of four different algorithms in the rate-
SNR sense. The input signal in the training procedure is (a) MIT100train and
(b) MITmixtrain.

112 Compression of ECG signals

0.5 0.55 0.6 0.65 0.7 0.75
21.5

22

22.5

23

23.5

24

24.5

25

25.5

26

26.5

27

Rate [bit/sample]

S
N

R
 [d

B
]

ORDE run
ORDE ind
RDO ORMP
RDO BMP

(a)

0.5 0.55 0.6 0.65 0.7 0.75
21.5

22

22.5

23

23.5

24

24.5

25

25.5

26

26.5

27

Rate [bit/sample]

S
N

R
 [d

B
]

ORDE run
ORDE ind
RDO ORMP
RDO BMP

(b)

Figure 7.18: MIT207. Comparisons of four different algorithms in the rate-
SNR sense. The input signal in the training procedure is (a) MIT207train and
(b) MITmixtrain.

7.4 Summary 113

improvement of the RD performance in the experiments presented, particularly
for the test case where MIT207test is input signal. In general, the number of
iterations in the training scheme increases, but the cost is reduced.

Experiment no. 7:
Preprocessing of the ECG signal results in an ORDE input signal with less
dynamic variations. Thus, the overall cost will be reduced. Results show that
preprocessing gives better rate-distortion results. For low bit rates, preproces-
sor A with κ = 8 would be to prefer. For higher bit rates (> 0.8 bit/sample)
preprocessor B with κ = 16 gives best results.

Experiment no. 8:
The ORDE algorithms outperforms the RDO MP algorithms. The benefits
of using run-length coding is demonstrated in this experiment: ORDE run is
better than ORDE ind at all bit rates. ORDE run is less time consuming
than ORDE ind, particularly when Mmax is large.

114 Compression of ECG signals

Chapter 8

Conclusions and Summary

In this thesis, the main focus has been the development of an efficient method
for rate-distortion optimal frame based coding. The efficiency is achieved
by: a) using a QR-decomposition which results in a new set of independent
decision variables; b) by choosing the right search strategy; and c) by us-
ing ordered vector selection that allows the use of run-length encoding. The
overall complexity is reduced by a factor of JM−1, where J is the number of
different values the representing coefficients can take on, and M is the num-
ber of nonzero coefficients per signal block. This is a tremendous complexity
reduction.

We have demonstrated that it is possible to find the RD optimal solution
to the vector selection problem, within a reasonable amount of time. The
problem is still NP-hard, and compared to Matching Pursuit or traditional
transform coding, the encoding can be much more time consuming. But,
this is asymmetric coding: Even though encoding takes time, the decoding
of the signal is done very fast. The ORDE algorithm in this work generates
an important quality measurement: The rate-distortion optimal solution of
the problem that the RDO ORMP algorithm addresses. If the Lagrangian
multiplier is zero (λ = 0), our approach finds the optimal solution to the
ORMP problem, when the values the quantized coefficient can take on, are
known in advance to vector selection.

In order to find a best possible compression result for a given signal, it is
important to train the frame and the VLC tables using a training signal from
the same class of signals. Experiments on AR(1) signals show that the ORDE
performs better with a well trained frame. The shape of the initial frame is
less significant. The most important contribution in the cost reduction of all
presented learning curves, is caused by the optimization of the coefficient value

115

116 Conclusions and Summary

and index/run codeword bit lengths. In the coding of ECG signals, another
parameter determining the entries of the value codewords table is optimized:
The quantization step size, ∆. Since the number of value codewords is fixed, ∆
will set the range of coefficient values. As experiments on ECG signals show,
∆-optimization is important if we do not want an in advance “trial-and-error”
testing in order to find a good value of ∆.

Finally, it is demonstrated through AR(1) and ECG signals experiments, that
ORDE outperforms RDO MP in the rate-distortion sense. ORDE with run-
length coding (ORDE run) is better than ORDE with index coding (ORDE
ind) in the experiments presented, even though ORDE run has a smaller
solution set. I.e., ORDE run shows better performance than ORDE ind, both
in consumption of time and in the rate-distortion sense.

8.1 Directions for future research

This work has given insight in a new field of operational rate-distortion optimal
coding. Based on this insight, suggestions for future work is as follows:

• Various parameter optimizations
In addition to the value symbol step size (∆) optimization, more research
should have been done to find the optimal value of other parameters, in
the rate-distortion sense. Relevant parameters are: The number of value
and index/run symbols, the number of frame vectors, and the number
of samples per signal block.

• Training scheme refinements
In this thesis, training Loop 1 terminates at the first iteration where
the cost is no longer decreasing. Other termination criteria could have
been considered. value VLC table optimization might be considered for
inclusion in Loop 1, in addition to Loop 2. In Loop 2, a more intelligent,
but still convergent, frame update algorithm could have been found.

• Rate-distortion optimized partial search
While ORDE search in the entire solution tree in order to find the op-
timal solution to our problem, RDO ORMP follows a one path depth-
first-search strategy in order to find a good sub-optimal solution. A
compromise between these two search strategies is partial search. In
contrast to MP, where only the best node in each level is selected, the
B best nodes are picked out. In the next level, there are more than one
path to be investigated, and a subtree is built. There can be different

8.1 Directions for future research 117

numbers of selected nodes in each level. Let Bm be this number for level
m, where m = 1, . . . , Mmax. The number of nodes to be investigated
would be 1 +

∑
m

∏
m(Bm). Partial search is slower than RDO ORMP,

but will generate a better or equal rate-distortion solution. The idea of
partial search in vector selection has previously been used in [10] and
[55] in the minimization of distortion. In the RDO sense, it has partly
been investigated in [28].

118 Conclusions and Summary

Appendix A

Mathematical details

In this appendix we go deeper into some of the linear algebra terms mentioned
in Chapter 4. All the material of this appendix is taken from the book of
elementary linear algebra by Anton [3].

A.1 QR-decomposition by Gram-Schmidt

Let U = [u1 u2 · · · uM] be an arbitrary N × M (M ≤ N) matrix
with linearly independent column vectors. A set of orthonormalized column
vectors, Q = [q1 q2 · · · qM] can be found from U by using the Gram-
Schmidt process shown in Figure A.1. In line 4 the term 〈um,qj〉 is the inner
product between the two vectors, um and qj . If both are vectors in RN ,
〈um,qj〉 = uT

mqj , which is the Euclidean inner product.

The QR-decomposition of U is defined as

U = QR, (A.1)

where Q is the N × M matrix with orthonormal column vectors found by
the Gram-Schmidt process, and R is an M × M invertible upper triangular
matrix. The nonzero elements of R are all inner products of column vectors
in U and column vectors in Q in the following way:

R =

〈u1,q1〉 〈u2,q1〉 · · · 〈uM ,q1〉
0 〈u2,q2〉 · · · 〈uM ,q2〉
...

...
...

0 0 · · · 〈uM ,qM 〉

 (A.2)

119

120 Mathematical details

Gram-Schmidt process

input : U // N ×M matrix with linearly independent columns.
output: Q // N ×M matrix with orthonormal columns.

U = [u1 u2 · · · uM]1

q1 ← u1
‖u1‖2

for m = 2 to M do3

qm ← um−
∑m−1

ξ=1 〈um,qξ〉qξ

‖um−
∑m−1

ξ=1 〈um,qξ〉qξ‖4

end5

Q = [q1 q2 · · · qM]6

Figure A.1: The Gram-Schmidt process.

A.2 Best Approximation Theorem

Best approximation theorem: If U is a finite-dimensional subspace of an
inner product space Z, and if z is a vector in Z, then proj Uz is the best
approximation to z from U in the sense that

‖z− proj Uz‖ < ‖z− u‖ (A.3)

for every vector u in U that is different from proj Uz.

In other words, among all vectors u in U the vector u = proj Uz minimizes
the distance ‖z− u‖. In Figure A.2, we can see that the vector z− proj Uz is
orthogonal to the subspace U .

z
U

proj

zz
U

proj−

U

z

Figure A.2: The vector z− proj Uz is orthogonal to the subspace U .

A.2 Best Approximation Theorem 121

Let A be an N × M matrix with linearly independent column vectors that
span U . The product Au is a linear combination of the column vectors in A.
Now, the orthogonal projection of z on U is

proj Uz = A(ATA)−1ATz. (A.4)

122 Mathematical details

Appendix B

ECG compression test signals

This appendix contains short segments of the ECG signals used in the com-
pression experiments in Chapter 7. This is to illustrate how the ECG signals
vary with different heart arrhythmias.

All the ECG signals are taken from the MIT-BIH Arrhythmia Database [31].
The sampling frequency is 360 Hz with a resolution of 12 bits per sample. In
Chapter 7 we use both a training and a testing signal from MIT100, a training
and a testing signal from MIT207, and a mixed training signal, called MITmix.
This is a 5 minutes signal consisting of pieces from 5 different signals: MIT100,
MIT103, MIT113, MIT207, and MIT217. While the MIT100 is normal sinus
rhythm, the others are various abnormal rhythms. In Figure B.1, the first 8
seconds of each of the following signals are shown: a) MIT100, b) MIT103, c)
MIT113, d) MIT207, and e) MIT217.

123

124 ECG compression test signals

(a)

(b)

(c)

(d)

(e)

Figure B.1: The first 8 seconds of each of the following signals are shown: a)
MIT100, b) MIT103, c) MIT113, d) MIT207, and e) MIT217.

Bibliography

[1] S. O. Aase, J. H. Husøy, K. Skretting, and K. Engan. Optimized signal
expansions for sparse representations. IEEE Trans. Signal Processing,
49(5):1087–1096, May 2001.

[2] J. Adler, B. D. Rao, and K. Kreutz-Delgado. Comparison of basis se-
lection methods. In Proc. of the 30th Asilomar Conference on Signals,
Systems and Computers, volume 1, pages 252–257, Monterey, California,
Nov 1996.

[3] H. Anton. Elementary Linear Algebra. John Wiley and Sons, Inc., New
York, 7th edition, 1994.

[4] T. Berger. Rate distortion theory: A mathematical basis for data com-
pression. Prentice Hall, 1971.

[5] R. Caetano, E. A. da Silva, and A. G. Ciancio. Matching pursuits video
coding using generalized bit-planes. In IEEE Proc. ICIP 2002, volume 3,
pages III–677 – III–680.

[6] S. Chen, S. A. Billings, and W. Luo. Orthogonal least squares methods
and their application to non-linear system identification. International
Journal of Control, 50(5):1873–1896, 1989.

[7] S. S. Chen. Basis Pursuit. PhD thesis, Stanford University, November
1995.

[8] S. F. Cotter, J. Adler, B. D. Rao, and K. Kreutz-Delgado. Forward
sequential algorithms for best basis selection. In IEE Proc. - Vision,
Image and Signal Processing, volume 146, pages 235 – 244, October 1999.

[9] S. F. Cotter, M.N. M. N. Murthi, and B. D. Rao. Fast basis selection
methods. In Asilomar Conference on Signals, Systems and Computers,
volume 2, pages 1474–1478, November 1997.

[10] S. F. Cotter and B. D. Rao. Application of tree-based searches to match-
ing pursuit. In IEEE Proc. ICASSP 2001, volume 6, pages 3933–3936,
Salt Lake City, USA, May 2001.

125

126 BIBLIOGRAPHY

[11] G. Davis. Adaptive Nonlinear Approximations. PhD thesis, New York
University, September 1994.

[12] K. Engan. Frame Based Signal Representation and Compression. PhD
thesis, Norwegian University of Science and Technology/ Stavanger Uni-
versity College, September 2000.

[13] K. Engan, S. O. Aase, and J. H. Husøy. Method of optimal directions
for frame design. In Proc. ICASSP ’99, pages 2443–2446, Phoenix, USA,
March 1999.

[14] K. Engan, S. O. Aase, and J. H. Husøy. Multi-frame compression: Theory
and design. Signal Processing, 80:2121–2140, October 2000.

[15] P. Frossard, P. Vandergheynst, R. M. Fi. Ventura, and M. Kunt. A
posteriori quantization of progressive matching pursuit streams. IEEE
Trans. Signal Processing, 52(2):525–535, February 2004.

[16] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression.
Kluwer Academic Publishers, Boston, 1992.

[17] M. Gharavi-Alkhansari. A model for entropy coding in matching pursuit.
In IEEE Proc. ICIP ’98, pages 778–782, Chicago, USA, November 1998.

[18] M. Gharavi-Alkhansari and T. S. Huang. A fast orthogonal matching
pursuit algorithm. In IEEE Proc. ICASSP ’98, pages 1389–1392, Seattle,
USA, May 1998.

[19] I. F. Gorodnitsky and B. D. Rao. Sparse signal reconstruction from lim-
ited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE
Trans. Signal Processing, 45:600–616, March 1997.

[20] V. K. Goyal. Theoretical foundations of transform coding. IEEE Signal
Processing Magazine, pages 9–21, September 2001.

[21] V. K. Goyal and M. Vetterli. Consistency in quantized matching pur-
suit. In Proc. Int. Conf. Acoust. Speech, Signal Proc., pages 1787–1790,
Atlanta, May 1996.

[22] V. K. Goyal, M. Vetterli, and N. T. Thao. Quantization of overcomplete
expansions. In Proc. IEEE Data Compression Conf., pages 13–22, Utah,
March 1995.

[23] D. Haugland, J.G. Heber, and J.H. Husøy. Optimisation algorithms for
ECG data compression. Medical & Biological Engineering & Computing,
35:420–424, July 1997.

[24] D. A. Huffman. A method for the construction of minimum redundancy
codes. Proc. IRE, 40(9):1098–1101, September 1952.

BIBLIOGRAPHY 127

[25] J. H Husøy and T. Gjerde. Computationally efficient subband coding of
ECG signals. Medical Engineering and Physics, 18:132–142, March 1996.

[26] MathWorks Inc. http://www.mathworks.com/.

[27] N. S. Jayant and Peter Noll. Digital Coding of Waveforms. Prentice-Hall,
Englewood Cliffs, 1984.

[28] L. Koldal. Data compression using tabu search and partial search heuris-
tics. Master’s thesis, Stavanger University College, 2003 (in Norwegian).

[29] S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency dic-
tionaries. IEEE Trans. Signal Processing, 41:3397–3415, December 1993.

[30] U. Manber. Introduction to Algorithms, a Creative Approach. Addison
Wesley, 1989.

[31] Massachusetts Institute of Technology. The MIT-BIH Arrhythmia
Database CD-ROM, 2nd edition, 1992.

[32] G. Melnikov, G. M. Schuster, and A. K. Katsaggelos. Shape coding using
temporal correlation and joint VLC optimization. IEEE Trans. Circuits
and Systems for Video Technology, pages 744–754, Aug 2000.

[33] J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. Legall. MPEG
Video: Compression Standard. Van Nostrand Reinhold, New York, 1996.

[34] B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM
Journal on Computing, 24:227–234, April 1995.

[35] R. Neff and A. Zakhor. Matching-pursuit video coding - part ii: Opera-
tional models for rate and distortion. IEEE Trans. Circuits and Systems
for Video Technology, pages 27–39, Jan 2002.

[36] R. Nygaard. Shortest path methods in representation and compres-
sion of signals and image contours. PhD thesis, Norges teknisk-
naturvitenskapelige universitet (NTNU)/Høgskolen i Stavanger, Septem-
ber 2000.

[37] R. Nygaard, G. Melnikov, and A. K. Katsaggelos. A rate distortion opti-
mal ECG coding algorithm. IEEE Trans. Biomedical Engineering, 48(1),
Jan 2001.

[38] A. Ortega and K. Ramchandran. Rate-distortion methods for image and
video compression. IEEE Signal Processing Magazine, pages 23–50, Nov
1998.

128 BIBLIOGRAPHY

[39] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching
pursuit: recursive function approximation with applications to wavelet
decomposition. In Proc. of the 27th Asilomar Conference on Signals,
Systems and Computers, volume 1, pages 40–44, Monterey, California,
Nov 1993.

[40] W. B. Pennebaker and J. L. Mitchell. JPEG Still Image Data Compres-
sion Standard. Van Nostrand Reinhold, New York, 1992.

[41] John G. Proakis and Dimitris M. Manolakis. Digital Signal Processing:
Principles, Algorithms and Applications. Prentice Hall Inc., New Jersey,
3rd edition, 1996.

[42] K. Ramchandran and M. Vetterli. Rate-distortion optimal fast treshold-
ing with complete jpeg/mpeg decoder compability. IEEE Trans. Image
Processing, 3(5):700–704, September 1994.

[43] T. Ryen, S. O. Aase, and J. H. Husøy. Finding sparse representation of
quantized frame coefficients using 0-1 integer programming. In Image and
Signal Processing and Analysis, 2001. ISPA 2001, pages 541–544, Pula,
Croatia, 2001.

[44] T. Ryen, G. M. Schuster, and A. K. Katsaggelos. A frame-based rate-
distortion optimal coding system using a lower bound depth-first-search
strategy. In Proc. of Nordic Signal Processing Symposium, Tromsø, Oc-
tober 2002.

[45] T. Ryen, G. M. Schuster, and A. K. Katsaggelos. A rate-distortion opti-
mal coding alternative to matching pursuit. In IEEE Proc. ICASSP ’02,
pages 2177–2180, Orlando, USA, May 2002.

[46] T. Ryen, G. M. Schuster, and A. K. Katsaggelos. Efficient frame vector
selection based on ordered sets. In IEEE Proc. ICIP ’03, pages III –
777–780 vol.2, Barcelona, Spain, September 2003.

[47] T. Ryen, G. M. Schuster, and A. K. Katsaggelos. A rate-distortion op-
timal alternative to matching pursuit. IEEE Trans. Signal Processing,
52:1352–1363, May 2004.

[48] K. Sayood. Introduction to Data Compression. Morgan Kaufmann, San
Francisco, 2nd edition, 2000.

[49] G. M. Schuster and A. K. Katsaggelos. Rate-Distortion Based Video
Compression. Kluwer Academic Publishers, Boston, 1997.

[50] G. M. Schuster and A. K. Katsaggelos. An optimal polygonial bound-
ary encoding scheme in the rate distortion sense. IEEE Trans. Image
Processing, 7(1):13–26, January 1998.

BIBLIOGRAPHY 129

[51] C. E. Shannon. A mathematical theory of communication. Bell Syst.
Tech. J., 27(3):379–423, 1948.

[52] C. E. Shannon. Coding theorems for a discrete source with a fidelity
criterion. IRE National Convention Record, 4:142–163, 1959.

[53] K. Skretting. Sparse Signal Representation using Overlapping Frames.
PhD thesis, Norwegian University of Science and Technology/ Stavanger
University College, October 2002.

[54] K. Skretting, K. Engan, J. H. Husøy, and S. O. Aase. Partial search vector
selection for sparse signal representation. In Proc. 12th Scandinavian
Conf. on Image Analysis, SCIA 2001, pages 613–620, Bergen, October
2001.

[55] K. Skretting and J. H. Husøy. Partial search vector selection for sparse
signal representation. In Proc. of Nordic Signal Processing Symposium,
Bergen, October 2003.

[56] K. Skretting, J. H. Husøy, and S. O. Aase. A simple design of sparse signal
representations using overlapping frames. In Image and Signal Processing
and Analysis, 2001. ISPA 2001, pages 424–428, Pula, Croatia, 2001.

[57] M. Vetterli and T. Kalker. Matching pursuit for compression and appli-
cation to motion compensated video coding. In IEEE Proc. ICIP 1994,
volume 1, pages 725–729.

[58] C. D. Vleeschouvwer and A. Zakhor. In-loop atom modulus quantization
for matching pursuit and its application to video coding. IEEE Trans.
Image Processing, 12(10):1226–1242, Oct 2003.

[59] Laurence A. Wolsey. Integer programming. John Wiley and Sons, Inc.,
New York, 1st edition, 1998.

