
Using a Mobile, Agent-based
Environment to support Cooperative

Software Processes

THESIS

Presented in Partial Fulfillment of the Requirements for
the Degree of

Dr.ing.

By

Alf Inge Wang

Norwegian University for Science and Technology
Dept. of Computer and Information Science

February 5, 2001



TO MY WIFE AND CHILDREN,

and

IN MEMORY OF
MY MOTHER IN LAW,

NELLA GJÆRE,
WHO DIED OF CANCER
BEFORE THIS THESIS

WAS FINISHED.

c Copyright 2001 by Alf Inge Wang
All Rights Reserved

ii



Abstract

Cooperative Software Engineering (CSE) means that large-scale, software development
and maintenance can be conducted in a distributed organisation or across organisations.
CSE can be characterised by distributed process fragments, partly shared workspaces, co-
operation planning, and frequent interactions in intra/inter-workspaces. To support CSE
processes, we must deal with dynamic, unpredictable processes as well as stable, repeat-
able processes with totally different characteristics. Traditional workflow and process
systems offer good support for stable, pre-planned processes, providing user agendas, in-
vocation of tools, presentation of process state etc. Multi-agent systems are well suited
to model and support users involved in cooperative processes. By combining these two
technologies, processes with characteristics similar to cooperative software engineering
processes can be modelled and supported more completely.

The thesis presents a framework called CAGIS Process Centred Environment (PCE), for
combining a workflow system with a multi-agent system. These are the main parts of the
thesis:

� A multi-agent architecture to support cooperative processes. This architecture
is particularly useful in modelling and providing support for cooperative activities
where software agents act on behalf of the user. The design and implementation of
this architecture is described.

� A workflow system to support distributed mobile processes. This workflow system
allows processes to be fragmented into smaller sub-processes that can be distributed
over several workspaces and moved between these workspaces.

� A gluing framework to specify the interaction between the workflow system and
the multi-agent architecture. The gluemodel defines the relationships between soft-
ware agents and process fragments (sub-processes), and a GlueServer is used as
a middleware between a workflow tool and a multi-agent system. Results from
applying the GlueModel framework on a cooperative software engineering (CSE)
process is also described.

� A Evaluation of the framework by modelling three practical cases:
- A conference organising process is modelled in three different process environ-
ments (including our own), and evaluated according to modelling completeness and
adaptability to process changes.
- A CSE scenario describing a software and maintenance process in a Norwegian
software company is modelled to show usefulness of the gluing framework.
- A project organisation scenario used to demonstrate how software agents can be
used in CAGIS Process Centred Environment to deal with evolution of distributed,
fragmented workflow models.

iii



iv



Preface

This dissertation is submitted to the Norwegian University of Science and Technology
(NTNU) in partial fullfillment of the requirements for the degree Doktor Ingeniør.

The work contained herein has been performed at the Department of Computer and Infor-
mation Science, NTNU, Trondheim, under supervision of Professor Reidar Conradi, and
at the Information Process Group, Computer Science Department, University of Manch-
ester, UK, under supervision of Ian Robertson.

The work has been supported by grant 112567/43 from the Norwegian Research Council
through the Distributed Information Systems (DITS) Programme

Thesis Structure

This thesis is an article collection where the main contribution is described through eight
core papers. Further, the thesis contains a part setting the work in context and summarises
what has been done. The thesis is organised into five parts as following:

Part I starts with an introduction chapter which describes the motivation and context for
the thesis, and outlines the research questions. Chapter 2 describes state-of-the-art rele-
vant to the thesis, whereas chapter 3 contains a description of various research methods
that can be applied to evaluate technology in Software Engineering, and then describes
the research focus and research method used in this thesis. In chapter 4, the thesis contri-
bution is summarised, and chapter 5 evaluates our contribution. Future work is presented
in chapter 6, and chapter 7 gives some concluding remarks.

Part II contains the Background papers that form the the knowledge and technology basis
for the thesis.

v



Part III contains the core papers, and constitutes the main contribution of the thesis.

Part IV contains the appendixes for the thesis. Appendix A to C list the design specifi-
cations for the three main parts of the implemented prototype. Appendix D and E show
screenshots from our evaluation of three process centred environments, while appendices
F to H present the process models used to model a conference management process using
three different process centred environments.

Part V lists all references for the whole thesis in a bibliography.

vi



Acknowledgements

To write a thesis is a lot of work that is impossible to do completely alone. Many people
have been directly or indirectly involved in my work, making it possible to finish this
thesis.

First, I would like to thank my adviser Professor Reidar Conradi for the effort he has put
into my work. Conradi has given me freedom to explore my research field, and helping
me back on the right track when I have headed on in wrong direction.

Second, I would like to thank my family that have supported me and given me love all the
way through my work. I would like to thank my wife Inger Synnøve Gjære for encour-
agement and support, and my daughters Stine Johanne Gjære Wang and Thea Camilla
Gjære Wang for inspiration.

Further, I would like to thank Professor Chunnian Liu from Beijing Polytechnic Uni-
versity (BPU), and the CAGIS project group for useful feedback and suggestions for
my work. I will especially thank these persons involved in the CAGIS project: Heri
Ramampiaro, Terje Brasethvik, Sobah Abbas Pettersen, Monica Divitini, and Jens-Otto
Larsen.

I would like to thank for the valuable six months I spent in Manchester where I was a part
of the Information Process Group at the University of Manchester. I would especially like
to thank Ian Robertson, and Mark Greenwood for interesting discussions and for giving
me insight into the ProcessWeb workflow tool. I would also like to thank Pete and Share
Hammond for being friends in Manchester, and to the Emmanuel Church, Didsbury for
feeding my soul.

I would also like to give special thanks to my father Noralf Wang for proof-reading this
thesis.

Through the work with this thesis, student projects have been used to implement proto-

vii



types and framework. I would like to thank these students for making contributions to my
work: Håkon Rydland, Joar Øyen, Morten Simonsen, Christian Thuv, Geir Prestegård,
Anders Aas Hanssen, Snorre Brandstadmoen, Bård Smidsrød Nymoen, Bjørn Haaken-
stad, Terje Salvesen, and Jan Waage.

I would also like to thank the software engineering group and the rest of the department
for providing a nice working environment, and for useful discussions. Especially I would
like to thank: Letizia Jaccheri, Minh Nguyen, Torgeir Dingsøyr, Øystein Nytrø, Guttorm
Sindre, Roxana Elena Diaconescu, Bjarte Østvold, Hallvard Trætteberg, Amund Tveit,
Babak Farshchian, Tom Reidar Henriksen, and Harald Haibo Xiao.

Further, I would like to thank the secretaries at our department that have always been
helpful for doing various tasks. I would especially thank Lisbeth Vågan and Anne Berit
Dahl for their kindness.

I have been privileged for the support from family and friends all the way through this
thesis. I would like to thank my family Noralf and Bergny Wang, Nella and Svein Gjære,
Karin, Oddgeir, Mats and Mari Holmen, John Arne Wang and Lisa Abrahamson, Anita,
Per Ove and Andreas Børseth, Julia og Kyrre Knudsen, Siri Gjære and Steinar Raknes.
In addition I would like to thank my closest friends with families: Thor-Ivar Dahlbakken,
Torbjørn Slørdahl, Arnvid Hellebust, and Oddleiv Moen.

At last, I would like to thank my God for creating me,
and giving me ability to think and be creative.

viii



Contents

Preface v

Acknowledgements vii

I Context 1

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Context: The CAGIS Project . . . . . . . . . . . . . . . . . . . 4

1.2.1 CAGIS Document Model Toolset . . . . . . . . . . . . . . . . . 5
1.2.2 CAGIS Transaction Specification Framework . . . . . . . . . . . 5
1.2.3 CAGIS Process Centred Environment . . . . . . . . . . . . . . . 6
1.2.4 The CAGIS Environment . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 State-of-the-art 11
2.1 Definitions and Terminology . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Software Engineering: Software Process . . . . . . . . . . . . . . 11
2.1.2 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Computer-Supported Cooperative Work (CSCW) . . . . . . . . . 15
2.1.4 Software Agents . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.5 Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Software Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 The Software Process . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Phase-independent Software Engineering Activities and Techniques 25

2.3 Software Process Technology (SPT) . . . . . . . . . . . . . . . . . . . . 27

ix



2.3.1 Process-centred Software Engineering Environments (PSEEs) . . 30
2.3.2 Research Trends and Challenges . . . . . . . . . . . . . . . . . . 32

2.4 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.1 Workflow Systems . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.2 Research Trends and Challenges . . . . . . . . . . . . . . . . . . 38

2.5 Computer-Supported Cooperative Work (CSCW) . . . . . . . . . . . . . 39
2.5.1 Process Support for Cooperative Work . . . . . . . . . . . . . . . 39
2.5.2 Research Trends and Challenges . . . . . . . . . . . . . . . . . . 41

2.6 Software Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6.1 Mobile Agent Systems . . . . . . . . . . . . . . . . . . . . . . . 43
2.6.2 Cooperative Software Agent Systems . . . . . . . . . . . . . . . 44
2.6.3 Research Challenges and Trends . . . . . . . . . . . . . . . . . . 47

2.7 Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.7.1 Middleware Systems and Technology . . . . . . . . . . . . . . . 48
2.7.2 Research Challenges and Trends . . . . . . . . . . . . . . . . . . 51

3 Research Focus and Method 53
3.1 Research Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Research Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.2 Metrics Definition and Data Collection . . . . . . . . . . . . . . 56
3.2.3 Models for Validation Technology . . . . . . . . . . . . . . . . . 57

3.3 Research Methods used in this Thesis . . . . . . . . . . . . . . . . . . . 59
3.3.1 Lessons Learned from the EPOS Project . . . . . . . . . . . . . . 60
3.3.2 Internal Validation of the CAGIS PCE . . . . . . . . . . . . . . . 60
3.3.3 Validation of our Approach using the Assertion Method . . . . . 60
3.3.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Own Contribution 63
4.1 Background for this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Non-Functional Requirements . . . . . . . . . . . . . . . . . . . 64
4.2.2 High-level Requirements . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.1 A Motivating Scenario . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.2 The CAGIS PCE Architecture . . . . . . . . . . . . . . . . . . . 67
4.3.3 The CAGIS DIAS Architecture . . . . . . . . . . . . . . . . . . 70
4.3.4 The CAGIS SimpleProcess Architecture . . . . . . . . . . . . . . 73
4.3.5 The CAGIS GlueServer Architecture . . . . . . . . . . . . . . . 76
4.3.6 Detailing the Architecture . . . . . . . . . . . . . . . . . . . . . 78

4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.1 Implementation of the CAGIS DIAS . . . . . . . . . . . . . . . . 81
4.4.2 Implementation of the CAGIS SimpleProcess . . . . . . . . . . . 83
4.4.3 Implementation of the CAGIS GlueServer . . . . . . . . . . . . . 84
4.4.4 Implementation Summary . . . . . . . . . . . . . . . . . . . . . 85

x



4.5 Paper Abstracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.1 Background Papers . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.2 Core Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Thesis Evaluation 93
5.1 Comparing the CAGIS PCE with two other PCEs . . . . . . . . . . . . . 94

5.1.1 Coverage of the Scenario . . . . . . . . . . . . . . . . . . . . . . 95
5.1.2 Adaptability of Process Change . . . . . . . . . . . . . . . . . . 96
5.1.3 Reflections on the Evaluation . . . . . . . . . . . . . . . . . . . 98
5.1.4 Comparison Conclusion . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Propositions to our Research Questions . . . . . . . . . . . . . . . . . . 100
5.3 Summary of Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Future Work 103

7 Concluding Remarks 105

II Background Papers 107

8 Total Software Process Model Evolution in EPOS 109
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.3 Conceptual and Categorization Framework . . . . . . . . . . . . . . . . . 111
8.4 EPOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.4.1 EPOS System Overview . . . . . . . . . . . . . . . . . . . . . . 112
8.4.2 EPOS meta-process for managing model evolution . . . . . . . . 115
8.4.3 Mechanisms for managing process evolution in EPOS . . . . . . 115

8.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.5.1 Background and Context . . . . . . . . . . . . . . . . . . . . . . 118
8.5.2 Project Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.5.3 Evolution Status . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.6 Evolution Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.6.1 Where-Why Frequency Analysis . . . . . . . . . . . . . . . . . . 121
8.6.2 Where-How Frequency Analysis . . . . . . . . . . . . . . . . . . 122
8.6.3 Typical Evolution Patterns . . . . . . . . . . . . . . . . . . . . . 122
8.6.4 Empirical Relations between Evolution and Project Profile . . . . 124

8.7 Managing Typical Evolution Patterns in EPOS . . . . . . . . . . . . . . . 125
8.8 Improvement Suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.8.1 Suggested Improvement Initiatives for XXX . . . . . . . . . . . 126
8.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9 Planning Support to Software Process Evolution 129
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.3 Classification of Process Evolution . . . . . . . . . . . . . . . . . . . . . 132

xi



9.3.1 Classification of Projects . . . . . . . . . . . . . . . . . . . . . . 132
9.3.2 Evolution Patterns and their Relation to Project Profile . . . . . . 133

9.4 Planning Support for Software Process Evolution . . . . . . . . . . . . . 134
9.4.1 Task Network Layout and Scheduling . . . . . . . . . . . . . . . 137
9.4.2 Cost Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.4.3 Evolution Pattern Analysis . . . . . . . . . . . . . . . . . . . . . 140
9.4.4 Measurements and Risk Analysis . . . . . . . . . . . . . . . . . 141

9.5 Preliminary Experiences . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

10 Improving Cooperation Support in EPOS CM 147
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
10.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

10.2.1 SCCS/RCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
10.2.2 ClearCase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
10.2.3 NSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
10.2.4 Adele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
10.2.5 Lotus Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
10.2.6 Other Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

10.3 Cooperation requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 150
10.4 ECM - the EPOS CM system . . . . . . . . . . . . . . . . . . . . . . . . 152
10.5 Extended cooperative support in EPOS . . . . . . . . . . . . . . . . . . . 154

10.5.1 Shared plans: Work-Unit Descriptions . . . . . . . . . . . . . . . 154
10.5.2 System information: Workspace Information . . . . . . . . . . . 155
10.5.3 Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
10.5.4 Communication infrastructure: ECM Message Services . . . . . . 157
10.5.5 Flexible locking mechanisms . . . . . . . . . . . . . . . . . . . . 158
10.5.6 Component exchange . . . . . . . . . . . . . . . . . . . . . . . . 158

10.6 Experiences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
10.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
10.8 Conclusions and further work . . . . . . . . . . . . . . . . . . . . . . . . 161

11 Teaching SPI through a Case Study 163
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
11.2 SQ and SPI Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

11.2.1 Course Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
11.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

11.3 Conclusive remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
11.3.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
11.3.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
11.3.3 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

12 Using XML to implement a workflow tool 173
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
12.2 The Renaissance process model . . . . . . . . . . . . . . . . . . . . . . 174

xii



12.2.1 The basic process model elements . . . . . . . . . . . . . . . . . 174
12.2.2 Relations between process model elements . . . . . . . . . . . . 175
12.2.3 Process state representation . . . . . . . . . . . . . . . . . . . . 176

12.3 eXtensible Markup Language (XML) . . . . . . . . . . . . . . . . . . . 177
12.3.1 What is XML? . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
12.3.2 Markup Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
12.3.3 Document Type Declarations (DTD) . . . . . . . . . . . . . . . . 177
12.3.4 Tool support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

12.4 The experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
12.4.1 Workflow tool implementation . . . . . . . . . . . . . . . . . . . 179
12.4.2 The Renaissance process model represented in XML . . . . . . . 180

12.5 Experiences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
12.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

III Core Papers 185

13 Supporting Distr. Cooperative Work in CAGIS 187
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
13.2 The CAGIS environment . . . . . . . . . . . . . . . . . . . . . . . . . . 188

13.2.1 Document models and tools . . . . . . . . . . . . . . . . . . . . 188
13.2.2 Process models and tools . . . . . . . . . . . . . . . . . . . . . . 191
13.2.3 Transaction models and tools . . . . . . . . . . . . . . . . . . . . 194

13.3 Conference Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
13.4 The CAGIS environment applied on the scenario . . . . . . . . . . . . . 198
13.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

14 A MAS for Cooperative Software Engineering 203
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
14.2 A Traditional Process Architecture supporting CSE . . . . . . . . . . . . 205
14.3 Multi-Agent Architecture for CSE . . . . . . . . . . . . . . . . . . . . . 207

14.3.1 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
14.3.2 Workspaces (WS) . . . . . . . . . . . . . . . . . . . . . . . . . . 208
14.3.3 Agoras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
14.3.4 Repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
14.3.5 The CSE Multi-Agent Architecture . . . . . . . . . . . . . . . . 210

14.4 An industrial scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
14.5 Application of the Architecture to the Scenario . . . . . . . . . . . . . . 212
14.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 216

15 Design for MAS for Coop. Software Engineering 217
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
15.2 Distributed Intelligent Agent System . . . . . . . . . . . . . . . . . . . . 219

15.2.1 DIAS components . . . . . . . . . . . . . . . . . . . . . . . . . 219
15.3 Design Principles for Mobile Agent Systems . . . . . . . . . . . . . . . . 220

xiii



15.3.1 Agent Location . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
15.3.2 Agent Communication . . . . . . . . . . . . . . . . . . . . . . . 221
15.3.3 Connection of agents and agent places . . . . . . . . . . . . . . . 223
15.3.4 Registration of agents and agent places . . . . . . . . . . . . . . 224
15.3.5 Moving Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
15.3.6 Removing Agents . . . . . . . . . . . . . . . . . . . . . . . . . . 225
15.3.7 CORBA Agent Interaction . . . . . . . . . . . . . . . . . . . . . 225

15.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
15.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

16 Impl. a MAS for Coop. Software Engineering 229
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
16.2 CAGIS Multi-Agent Architecture . . . . . . . . . . . . . . . . . . . . . 231

16.2.1 CAGIS Multi-Agent Architecture components . . . . . . . . . . 231
16.2.2 Example of a multi-agent architecture . . . . . . . . . . . . . . . 232

16.3 Requirements to the technology used . . . . . . . . . . . . . . . . . . . . 233
16.3.1 General requirements . . . . . . . . . . . . . . . . . . . . . . . . 233
16.3.2 System infrastructure . . . . . . . . . . . . . . . . . . . . . . . . 233
16.3.3 Agent implementation and configuration . . . . . . . . . . . . . . 233
16.3.4 Agent communication . . . . . . . . . . . . . . . . . . . . . . . 234
16.3.5 Knowledge sharing . . . . . . . . . . . . . . . . . . . . . . . . . 234
16.3.6 Design proposal for the prototype . . . . . . . . . . . . . . . . . 234

16.4 Technological guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . 235
16.5 Experiences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

16.5.1 DIAS I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
16.5.2 DIAS II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

16.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

17 Support for Mobile Software Processes in CAGIS 243
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
17.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
17.3 CAGIS Mobile Software Process Approach . . . . . . . . . . . . . . . . 248

17.3.1 Main Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
17.3.2 The Process Model Language . . . . . . . . . . . . . . . . . . . 249
17.3.3 Moving Process Fragments . . . . . . . . . . . . . . . . . . . . . 252
17.3.4 The Process Support Tools . . . . . . . . . . . . . . . . . . . . . 254

17.4 Discussion and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 256
17.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

18 Integrating Process Fragments with Agents 259
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
18.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
18.3 Review of MAS-based architecture for CSE . . . . . . . . . . . . . . . . 262
18.4 Gluing workflow with interactive agents . . . . . . . . . . . . . . . . . . 263

18.4.1 The GlueServer . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

xiv



18.4.2 The GlueModel . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
18.4.3 Interaction with other workflow tools . . . . . . . . . . . . . . . 266

18.5 Application scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
18.5.1 Scenario 1: Negotiation . . . . . . . . . . . . . . . . . . . . . . 268
18.5.2 Scenario 2: Coordination . . . . . . . . . . . . . . . . . . . . . . 269
18.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

18.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

19 Agents for evolution of workflow models 273
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
19.2 The CAGIS Process Centred Environment . . . . . . . . . . . . . . . . . 275
19.3 The Problem scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

19.3.1 Scenario 1: Anarchy . . . . . . . . . . . . . . . . . . . . . . . . 278
19.3.2 Scenario2: Exclusive update . . . . . . . . . . . . . . . . . . . . 279
19.3.3 Scenario 3: Exclusive update . . . . . . . . . . . . . . . . . . . . 279
19.3.4 Scenario 4: Exclusive access . . . . . . . . . . . . . . . . . . . . 279
19.3.5 Scenario 5: Level-based access . . . . . . . . . . . . . . . . . . . 280

19.4 Awareness Agents dealing with Workflow Evolution . . . . . . . . . . . 280
19.4.1 Support for scenario 1 . . . . . . . . . . . . . . . . . . . . . . . 281
19.4.2 Support for scenario 2 . . . . . . . . . . . . . . . . . . . . . . . 282
19.4.3 Support for scenario 3 . . . . . . . . . . . . . . . . . . . . . . . 283
19.4.4 Support for scenario 4 . . . . . . . . . . . . . . . . . . . . . . . 283
19.4.5 Support for scenario 5 . . . . . . . . . . . . . . . . . . . . . . . 283

19.5 Implementation of awareness agents . . . . . . . . . . . . . . . . . . . . 284
19.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

20 Evaluation of a Cooperative PCE 285
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
20.2 Definition of Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 287

20.2.1 Goal definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
20.2.2 Summary of definition . . . . . . . . . . . . . . . . . . . . . . . 288

20.3 Planning of the Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 288
20.3.1 Context selection . . . . . . . . . . . . . . . . . . . . . . . . . . 288
20.3.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 289
20.3.3 Evaluation of the research questions . . . . . . . . . . . . . . . . 289

20.4 Three Process Centred Environments . . . . . . . . . . . . . . . . . . . . 289
20.4.1 Endeavors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
20.4.2 ProcessWeb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
20.4.3 CAGIS Process Centred Environment . . . . . . . . . . . . . . . 293
20.4.4 Process Centred Environment Summary . . . . . . . . . . . . . . 297

20.5 Actual case example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
20.5.1 A1: Plan and announce conference . . . . . . . . . . . . . . . . 299
20.5.2 A2: Record response . . . . . . . . . . . . . . . . . . . . . . . . 300
20.5.3 A3: Reviewer selection . . . . . . . . . . . . . . . . . . . . . . . 300
20.5.4 A4: Paper review . . . . . . . . . . . . . . . . . . . . . . . . . . 302

xv



20.5.5 A5: Determine acceptance of papers . . . . . . . . . . . . . . . . 302
20.5.6 A6: Group accepted papers into sessions . . . . . . . . . . . . . 303
20.5.7 A7: Publish Conference Program . . . . . . . . . . . . . . . . . 304
20.5.8 N1: Negotiation process . . . . . . . . . . . . . . . . . . . . . . 304
20.5.9 Instantiation of the scenario . . . . . . . . . . . . . . . . . . . . 305
20.5.10 Conference Documents and Databases . . . . . . . . . . . . . . . 306
20.5.11 Process Changes . . . . . . . . . . . . . . . . . . . . . . . . . . 307

20.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
20.6.1 Modelling used by all three environments . . . . . . . . . . . . . 308
20.6.2 Modelling the Process in Endeavors . . . . . . . . . . . . . . . . 309
20.6.3 Modelling the Process in ProcessWeb . . . . . . . . . . . . . . . 309
20.6.4 Modelling the Process in CAGIS PCE . . . . . . . . . . . . . . . 310

20.7 Evaluation of the three PCEs . . . . . . . . . . . . . . . . . . . . . . . . 311
20.7.1 Coverage of the scenario . . . . . . . . . . . . . . . . . . . . . . 311
20.7.2 Adaptability of Process Change . . . . . . . . . . . . . . . . . . 313
20.7.3 Reflection on the Evaluation . . . . . . . . . . . . . . . . . . . . 315

20.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

IV Appendix 319

A CAGIS DIAS Design Specifications 321
A.1 Agent Design Specifications . . . . . . . . . . . . . . . . . . . . . . . . 321

A.1.1 System Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
A.1.2 Participation Agents . . . . . . . . . . . . . . . . . . . . . . . . 323
A.1.3 User Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

A.2 Agent Meeting Place Design Specifications . . . . . . . . . . . . . . . . 324
A.3 Agent Interface Design Specifications . . . . . . . . . . . . . . . . . . . 325

B CAGIS SimpleProcess Design Specifications 327
B.1 CAGIS SimpleProcess Architecture Design Specifications . . . . . . . . 327
B.2 CAGIS SimpleProcess PML Design Specifications . . . . . . . . . . . . 327
B.3 CAGIS SimpleProcess Tool Design Specifications . . . . . . . . . . . . . 328

C CAGIS GlueServer Design Specifications 329
C.1 GlueServer Design Specifications . . . . . . . . . . . . . . . . . . . . . 329
C.2 GlueModel Design Specifications . . . . . . . . . . . . . . . . . . . . . 330

D Screenshots from Individual Activities 331

E Screenshots from Cooperative Activities 337

F Process Models in Endeavors 343
F.1 Graphical Process Models in Endeavors . . . . . . . . . . . . . . . . . . 343
F.2 Activity Handlers in Endeavors . . . . . . . . . . . . . . . . . . . . . . . 343

xvi



G Process Models in ProcessWeb 351
G.1 Process Model for Individual Activities . . . . . . . . . . . . . . . . . . 351
G.2 Cooperative Activities Modelled in ProcessWeb . . . . . . . . . . . . . . 357

G.2.1 afsession.pml . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

H Process Models in CAGIS PCE 367
H.1 CAGIS Simple Process Model for the Scenario . . . . . . . . . . . . . . 367
H.2 GlueModel for the Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 371
H.3 CAGIS Cooperative Agents Support for the Scenario . . . . . . . . . . . 372

H.3.1 Session Selection Agent . . . . . . . . . . . . . . . . . . . . . . 372
H.3.2 Session Allocation Agent . . . . . . . . . . . . . . . . . . . . . . 375

V Bibliography 383

Bibliography 385

xvii



xviii



List of Tables

2.1 A small comparison of five research fields . . . . . . . . . . . . . . . . . 19
2.2 PSEEs classified according to PML paradigms . . . . . . . . . . . . . . . 30

4.1 The results from testing non-functional requirements in CAGIS DIAS II
and III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 The results from testing CAGIS DIAS II and III design specifications . . 83
4.3 The results from testing the CAGIS SimpleProcess design specifications . 84
4.4 The results from testing the CAGIS GlueServer design specifications . . . 84
4.5 Mapping high-level requirements to the CAGIS PCE implementation . . . 85

5.1 Coverage of the scenario modelled . . . . . . . . . . . . . . . . . . . . . 95
5.2 PCE adaptability to Process changes . . . . . . . . . . . . . . . . . . . . 96

8.1 Project Profiles for five studied projects . . . . . . . . . . . . . . . . . . 119
8.2 Evolution Profiles for five studied projects . . . . . . . . . . . . . . . . . 120
8.3 Percentage of Evolution Origin from five projects . . . . . . . . . . . . . 120
8.4 Frequency of Evolution Occurrences distributed over Causes . . . . . . . 121
8.5 Frequency of Evolution Occurrences distributed over Impacts . . . . . . . 122
8.6 Evolution Patterns vs. Approaches in EPOS . . . . . . . . . . . . . . . . 126

11.1 Semester Plan, each lecture corresponds to two hours. . . . . . . . . . . . 166
11.2 Students evaluation of the Software quality and process improvement

course 1998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
11.3 The exam results the last five years . . . . . . . . . . . . . . . . . . . . . 169

20.1 Summary of features in the three process centred environments . . . . . . 298
20.2 Coverage of scenario modelled . . . . . . . . . . . . . . . . . . . . . . . 312
20.3 PCE adaptability to Process changes . . . . . . . . . . . . . . . . . . . . 313

xix



xx



List of Figures

1.1 The CAGIS Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 The impact of software process technology . . . . . . . . . . . . . . . . 13
2.2 Basic concepts of process modelling . . . . . . . . . . . . . . . . . . . . 14
2.3 An overview of Software Engineering . . . . . . . . . . . . . . . . . . . 21
2.4 Waterfall development model vs. evolutionary development model . . . . 23
2.5 The four phases of a dialog in ActionWorkflow . . . . . . . . . . . . . . 37
2.6 Cooperative systems categorised according to the time/location matrix . . 40

4.1 A scenario used to illustrate the CAGIS PCE architecture . . . . . . . . . 67
4.2 Architecture for the CAGIS PCE . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Design of the CAGIS DIAS architecture . . . . . . . . . . . . . . . . . . 71
4.4 Recommended technologies for the CAGIS DIAS architecture . . . . . . 72
4.5 CAGIS SimpleProcess concepts . . . . . . . . . . . . . . . . . . . . . . 73
4.6 XML Document Type Declaration of the CAGIS SimpleProcess PML . . 74
4.7 An example of use of < prelink > and < postlink > tags . . . . . . . . 74
4.8 CAGIS SimpleProcess architecture . . . . . . . . . . . . . . . . . . . . . 75
4.9 CAGIS GlueModel example . . . . . . . . . . . . . . . . . . . . . . . . 77
4.10 CAGIS GlueServer architecture . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Cooperative activities modelled in Endeavors . . . . . . . . . . . . . . . 95

8.1 Categorization framework for process evolution . . . . . . . . . . . . . . 113
8.2 EPOS models and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.3 Method and tool support for managing process evolution in EPOS . . . . 116

9.1 Classification of Project Overall Profiles. . . . . . . . . . . . . . . . . . . 132
9.2 Classification of Evolution Patterns. . . . . . . . . . . . . . . . . . . . . 135
9.3 Relation Between Project Overall-Profiles and Evolution Patterns. . . . . 136
9.4 The coarse Process Model of Project (re)Planning Process. . . . . . . . . 138
9.5 Evolution Scenarios and Decision Making. . . . . . . . . . . . . . . . . . 142

xxi



10.1 EPOS CM with cooperative support added. . . . . . . . . . . . . . . . . 153
10.2 Schema for transaction and workspace database. . . . . . . . . . . . . . . 155

12.1 Relation types between activities/tasks . . . . . . . . . . . . . . . . . . . 176
12.2 Small XML example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
12.3 Example of XML Document Type Declaration . . . . . . . . . . . . . . . 178
12.4 Screen capture from the graphical workflow tool . . . . . . . . . . . . . . 181
12.5 The Renaissance process model DTD . . . . . . . . . . . . . . . . . . . 182
12.6 An activity represented in XML . . . . . . . . . . . . . . . . . . . . . . 183

13.1 Conceptual modelling for meta-data descriptions . . . . . . . . . . . . . 189
13.2 Overview of system architecture . . . . . . . . . . . . . . . . . . . . . . 191
13.3 The CAGIS Process Centred Environment . . . . . . . . . . . . . . . . . 193
13.4 Transaction management architecture . . . . . . . . . . . . . . . . . . . 195
13.5 Grouping of Accepted Papers into Sessions . . . . . . . . . . . . . . . . 197
13.6 The CAGIS framework applied on the scenario . . . . . . . . . . . . . . 199

14.1 A General Process Architecture Supporting CSE. . . . . . . . . . . . . . 206
14.2 An example of speech-act . . . . . . . . . . . . . . . . . . . . . . . . . . 209
14.3 Multi-Agent Architecture for Cooperative SE . . . . . . . . . . . . . . . 211
14.4 Scenario process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
14.5 Scenario of Software Maintenance and Development . . . . . . . . . . . 214

15.1 Communication example . . . . . . . . . . . . . . . . . . . . . . . . . . 222
15.2 An example of how the facilitator agent works . . . . . . . . . . . . . . . 223
15.3 Illustration connection between ADP and AMP . . . . . . . . . . . . . . 223

16.1 An example of an agent architecture application . . . . . . . . . . . . . . 232
16.2 Design architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
16.3 Implementation of the design architecture . . . . . . . . . . . . . . . . . 237

17.1 MAS-based architecture for cooperative software engineering . . . . . . . 245
17.2 Composition of a process . . . . . . . . . . . . . . . . . . . . . . . . . . 249
17.3 The concept of process fragment . . . . . . . . . . . . . . . . . . . . . . 250
17.4 XML Document Type Declaration of our PML . . . . . . . . . . . . . . 251
17.5 Example with linked activities in several workspaces . . . . . . . . . . . 252
17.6 An example of use of < prelink > and < postlink > tags . . . . . . . . 252
17.7 Moving process fragments between different process servers . . . . . . . 253
17.8 Screenshots of the Process modeller tool, the Agenda manager tool, and

the Monitor tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

18.1 An example of the CAGIS MAS-based architecture for CSE . . . . . . . 263
18.2 Workflow request to GlueServer . . . . . . . . . . . . . . . . . . . . . . 264
18.3 GlueServer architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
18.4 Fragment-agent-pair specification . . . . . . . . . . . . . . . . . . . . . 266
18.5 GUI tool for adding fragment-agent pairs to the GlueModel . . . . . . . . 267
18.6 GlueServer request written as a Wf-XML request . . . . . . . . . . . . . 267

xxii



18.7 GlueModel for scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 269
18.8 GlueModel for scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 270

19.1 The CAGIS Process Centred Environment . . . . . . . . . . . . . . . . . 277
19.2 Organisational hierarchy used in the scenarios . . . . . . . . . . . . . . . 278
19.3 Illustration of the workspace manager . . . . . . . . . . . . . . . . . . . 281

20.1 Endeavors architecture at user-level . . . . . . . . . . . . . . . . . . . . 291
20.2 Structure of ProcessWise Integrator . . . . . . . . . . . . . . . . . . . . 293
20.3 The role John described in PML . . . . . . . . . . . . . . . . . . . . . . 294
20.4 An example of an activity modelled in CAGIS SimpleProcess PML . . . 296
20.5 An example of a process fragment - agent pair specified in a GlueModel . 297
20.6 A High-level model of the conference organising process . . . . . . . . . 299
20.7 Decomposition of the conference process. . . . . . . . . . . . . . . . . . 301

D.1 Execution of the activity A1.1 in Endeavors . . . . . . . . . . . . . . . . 332
D.2 Activity A1.1 shown in Endeavors . . . . . . . . . . . . . . . . . . . . . 332
D.3 Interface to notify Endeavors that an activity in finished . . . . . . . . . . 332
D.4 Activity A1.1 and A1.2 shown in ProcessWeb . . . . . . . . . . . . . . . 333
D.5 Agenda for PC Chair in CAGIS SimpleProcess . . . . . . . . . . . . . . 334
D.6 The activity A1.1 in CAGIS SimpleProcess . . . . . . . . . . . . . . . . 335

E.1 No allocation conflicts for Session Chair 1 in Endeavors . . . . . . . . . 338
E.2 Session Chair 2 is forced to “unselect” a paper in Endeavors . . . . . . . 338
E.3 Session Chair 5 is asked to “unselect” a paper in Endeavors . . . . . . . . 338
E.4 Session Chair 1 selects timeslots for session 1 in ProcessWeb . . . . . . . 339
E.5 Timetable role for allocating timeslots for sessions in ProcessWeb . . . . 340
E.6 Paper selection agent in CAGIS . . . . . . . . . . . . . . . . . . . . . . 341
E.7 User is forced to “unselect” paper in CAGIS . . . . . . . . . . . . . . . . 341
E.8 User asked to “unselect” paper in CAGIS . . . . . . . . . . . . . . . . . 342
E.9 A random user is selected to “unselect” paper in CAGIS . . . . . . . . . 342

F.1 High-level process model of the conference process in Endeavors . . . . . 344
F.2 Activity A1:Plan and announce conference decomposed . . . . . . . . . . 344
F.3 Activity A2:Record response decomposed . . . . . . . . . . . . . . . . . 345
F.4 Activity A3:Reviewer selection decomposed . . . . . . . . . . . . . . . . 345
F.5 Activity A4:Paper review decomposed . . . . . . . . . . . . . . . . . . . 346
F.6 Activity A5:Determine acceptance of papers decomposed . . . . . . . . . 346
F.7 Activity A6.1:Suggest sessions decomposed . . . . . . . . . . . . . . . . 347
F.8 Activity A6.2:Select papers and Plan sessions decomposed . . . . . . . . 347
F.9 Activity A6.2.3:Paper allocation decomposed . . . . . . . . . . . . . . . 348
F.10 Activity A6.2.5:Session allocation decomposed . . . . . . . . . . . . . . 348
F.11 Activity handler for initiating a web-page . . . . . . . . . . . . . . . . . 349
F.12 Activity handler for dealing with paper allocation conflicts . . . . . . . . 350

xxiii



xxiv



Part I

Context

1





CHAPTER 1

Introduction

This chapter is an introduction outlining the context and motivation for the thesis.

1.1 Motivation

Today, software is a vital part of daily life e.g., in banking, insurance, construction of
buildings, shopping, telecom, entertainment, cars, busses, trains, air-traffic etc. We are
surrounded by all kinds of electronic equipment running some kind of software, from
the smallest watches to large banking systems. It is estimated that about 6 % of Gross
National Product (GNP) of industrial nations is spent on software (50/50 on COTS and
tailor-made) in OECD countries. In the telecom business 70-80 % of the costs is related
to software. Despite the fact that almost everything is dependent on software, the soft-
ware industry is struggling with project delays, budget overrun, poor software quality,
and software that is hard to maintain. One way of attacking the problems in the soft-
ware industry, is to improve the process of producing software systems (development and
maintainability).

From the early beginning of the software engineering era, software development pro-
cesses have been modelled to understand them, to guide people involved in the process,
to partially automate the process, and to improve the process. Inspired from production-
line industry processes (e.g. in mechanical engineering), software development processes
have been modelled as static and standardised processes. Traditionally, modelling and
enactment of software processes have been focusing on ”forcing” and guiding people to
work according to a specified model, where interaction between people has been coor-
dinated through a strictly defined control/data flow. Cooperative aspects of the software

3



4 CHAPTER 1. INTRODUCTION

development process have often been either eliminated or ignored, because it has been
hard to model cooperative activities in existing systems, or there has not being an inter-
est for doing so. Also, software development processes are human-centred processes.
In [CG98], Cugola and Ghezzi state that ”Human-centred processes are characterised by
two crucial aspects that were largely ignored by most software process research: They
must support cooperation among people, and they must be highly flexible”. This thesis
addresses these two challenges, and proposes a highly flexible framework for supporting
cooperative software engineering processes. Evaluation of how existing software process
technology (SPT) can cope with cooperative aspects has not been extensively performed.
This is also a lack of validation of SPT in general. This thesis has investigated how coop-
erative activities can be supported in SPT.

In the workflow and Computer-Supported Cooperative Work (CSCW) community, some
work has resulted in the development of cooperative workflow systems. Most of these
systems are role-based systems, where the roles and the cooperative interaction between
these roles are modelled. Lately, software agents have been used to model and enact
cooperative activities. The software agents represent users in cooperative efforts and act
according to the users’ requirements to reach a specified goal. By using software agents,
we can benefit from the agents’ ability to learn and adopt to a changing environment.
Activity-based workflow and process systems on the other hand, are efficient to model
pre-planned activities that e.g., can be derived from a project planning tool. Activity-
based workflow is not suitable for modelling cooperation, because interaction between
roles are hard to represent in activity networks. Many workflow systems have also a
problem to represent and support dynamic processes. This thesis presents a framework to
combine software agents with activity-based workflow, to gain flexibility and to be able
to model most aspects of a process.

1.2 Research Context: The CAGIS Project

This work has been executed as a part of a project called Cooperative Agents in a Global
Information Space (CAGIS) that started in January 1997. The CAGIS project is a multi-
disciplinary research project supported by the Norwegian Research Council where three
different research groups at the department of computer and information science have
worked together. The CAGIS project team consists of people from a database group, an
information system group, and a software engineering group.

The initial objectives for the CAGIS project [C+96] were:

� To give cooperating human problem-solvers (designers, engineers) better support
for concurrent and distributed team work.

� To provide a framework for the corresponding IT support, with distributed software
agents and data stores, and with domain specific formalisms and tools.



1.2. RESEARCH CONTEXT: THE CAGIS PROJECT 5

� To provide for specialised software agents to operate in the global information
space, e.g., Internet search agents and intelligent reconfiguration agents.

The work with the CAGIS project has resulted in a number of internationally published
papers, several student projects, new courses within distributed technology and software
agents, as well as a CAGIS environment (including prototype) [pro00] consisting of three
main parts:

1.2.1 CAGIS Document Model Toolset

The CAGIS document model toolset helps users to semantically classify and describe
documents published on the web, to make it easier to find and use these documents later.
This work is done semi-automatically by using a conceptual modelling language (the
Referent Modelling Language) to express a domain model, and by using text analysis
tools to perform classification and search. The conceptual model is then used as a basis
for creating meta-data descriptions of documents, that can be browsed or searched using
a web/Java-based model viewer.

Fundamental to the CAGIS document model approach is the use of a conceptual mod-
elling language to define and visualise the domain specific vocabulary to be used in the
classification and retrieval process. Conceptual modelling languages contain the formal
basis necessary to define a proper ontology, yet at the same time they offer a visual rep-
resentation that allows users to take part in the modelling. In addition, we can use such
languages to read and explore documents by interacting directly with the models. The
conceptual modelling language may thus be used throughout the entire process of classi-
fying and retrieving documents on the web. In this approach, we use the Referent model
language [Arn98] being an ER-like language with strong abstraction mechanisms and
sound formal basis.

A more detailed presentation of the CAGIS document model approach is given in [Ter99,
Ter00].

1.2.2 CAGIS Transaction Specification Framework

The CAGIS transaction specification framework is a transaction framework used to pro-
vide configurable, application-specific transaction models [RN00]. By making it possible
to adjust the degree of control provided by transaction models, the framework can support
situations demanding strict control for data correctness as well as situations with more re-
laxed (i.e. user-define) correctness and operational rules. The framework consists of two
parts:

� Transaction characteristics specification defining the main properties of the actual
transaction: degree of ACID properties, relationships among the involved transac-



6 CHAPTER 1. INTRODUCTION

tions to be executed, adopted correctness criteria, and applied policy. These charac-
teristics are statically defined and must be defined before the designated transactions
are executed.

� Transaction execution specification defines how the transaction execution is to be
performed at run-time, in terms of composition of management operations (e.g.,
delegate, abort, write, etc.) and regular access operations (read, write etc.).

Within the CAGIS framework the CAGIS transaction specification framework can be used
to manage the execution of software agents, by letting the CAGIS transaction manager
control the execution of agents. If an agent fails, the system can roll-back to a safe-state.
In addition, the CAGIS transaction manager can manage evolving workflow models, by
specifying how workflow models can be changed in terms of transactions.

The transaction management system described above was implemented in a working pro-
totype [Sel00, KK00] based on Java and the IBM Aglets-workbench. It has served as a
test-bed for the transaction specification framework.

1.2.3 CAGIS Process Centred Environment

The CAGIS Process Centred Environment (PCE) provides process support for people
that are distributed, working with cooperative activities as well as individual activities.
The CAGIS PCE provides a framework to support evolving processes, and to allow au-
tonomous parts of the process (process fragments) to interact. Simple individual activities
are modelled and enacted by the CAGIS SimpleProcess workflow tool [Wan00b]. Coop-
erative activities and interaction between autonomous process fragments are supported
through a multi-agent architecture, called CAGIS DIAS [WLC99, Alf00, Wan00a], with
cooperation agents. A so-called GlueServer is used as a middleware between the CAGIS
SimpleProcess workflow tool and the multi-agent architecture, using a GlueModel to de-
fine the interaction between process fragments and interacting agents [WCL00]. The work
presented in this thesis focus on the CAGIS PCE.

1.2.4 The CAGIS Environment

The CAGIS environment consists of a set of separate tools that may be used together
to provide support for cooperative work across the web. The three major components
of the CAGIS Environment are the above mentioned CAGIS Document model toolset,
CAGIS Transaction manager, and CAGIS PCE. Each of these tools is implemented in
true Web style, i.e. they are built around a standard Web server and use XML as a data
storage and interchange format. These tools may all be configured according to the actual
situations and usage. Central to the CAGIS environment, and binding the individual tools
together, is the CAGIS GlueServer. The GlueServer, configures a set of software agents
that can activate the different CAGIS tools. The GlueModel defines the relationships



1.2. RESEARCH CONTEXT: THE CAGIS PROJECT 7

between the individual workflow elements that may reside in different workspaces and
the software agent that may be used to access the individual tools. In this way, the various
components of the CAGIS toolset may be used together in order to provide situation
specific cooperative support.

GlueServer
Glue
model

Negotiation

Repository

...

...

AMP

Workflow tool

Workspace 1

Workflow tool

Workspace 2

Workflow tool

Workflow tool

Workspace 4

Documents

Legend

Workspace

User
agent

Negotiation
agent

Document
 model

Process
model

Workspace 3

     Document 
classification tool

Transaction
  manager

Figure 1.1: The CAGIS Environment

Figure 1.1 illustrates how the different parts of the CAGIS environment interacts. In each
workspace where a user or a group of users works, the CAGIS SimpleProcess workflow
tool is used to enact the individual processes. The cooperative activities and interac-
tions between workspaces are supported through the GlueServer. The workflow tools
in the workspaces will notify the GlueServer about state changes, and the GlueServer
will search through the GlueModel for workflow state matches. If a match is found, the
GlueServer will initiate one or more software agents that provide cooperative services for
users such as resource negotiation, coordination of artifacts, activating tools etc. A doc-



8 CHAPTER 1. INTRODUCTION

ument agent can activate the document classification tool that can be used for building
a domain model for shared documents. This domain model together with the document
classification tool can also be used by users in the various workspaces through document
agents for browsing documents, searching for specific documents or parts of the docu-
ments, classifying documents etc. The document classification tool helps users to share
common knowledge and information which is also an important aspect of cooperation.
The transaction manager is responsible for managing the integrity of the documents in the
repository, and to ensure that agents always leave the system in a consistent state. There is
a change for shared documents to be updated at the same time. To insure consistency, the
transaction manager can use three main approaches. Thefirst approach is to only permit
an exclusive lock on documents, allowing only one person to access a document at a time.
A second and a more relaxed approach is to allow reading access to a document while it
is updated. The third approach is to permit simultaneous updates, where consistency can
be achieved only through multiple-version handling with a sophisticated merging mech-
anism. It should be noted that software agents are not only activated by the GlueServer,
but can also be directly be activated by the users from their workspaces.

In addition to use the various CAGIS tools together as one CAGIS environment, one
CAGIS tool can be used to enhance functionality in another. n [Alf00], an example of how
the document models and tools can enhance the CAGIS multi-agent architecture is given.
The document models and tools are here used to model the agent ontology, which define
the language software agents can speak. In [Wan00c], the transaction models and tools
(in this paper called workspace manager) offer a way managing consistency of changing
workflow models. This means that the CAGIS environment offers a selection of tools,
which can be used in different combinations to give specific support.

A full description of the CAGIS environment applied to a conference organising scenario
is presented in the paper”Supporting Distributed Cooperative Work in CAGIS”, found in
chapter 13.

1.3 Research Questions

One of the main goals in the CAGIS research project was to give humans working in a
heterogeneous and distributed environment adequate support for process modelling and
enactment. Using this as a starting-point, this thesis will address the following research
questions:

1. Modelling: Investigatewhat is needed to model and enact distributed, cooperative
and individual processes in a heterogeneous environment. This research topic can
be further decomposed into:

1a) Investigate what formalism is needed to model and enact individual processes
(for individuals or groups).



1.3. RESEARCH QUESTIONS 9

1b) Investigate what formalism is needed to model and enact distributed, cooper-
ative processes.

1c) Investigate how the process can be distributed among the participants.

1d) Investigate how to model and support dynamic process changes.

2. Tools: Investigatehow to create an infrastructure for providing process execution
of distributed, cooperative processes in a heterogeneous environment.

2a) Investigate what architectures are needed to provide execution support for in-
dividual processes.

2b) Investigate what architectures are needed to provide execution support for dis-
tributed, cooperative processes.

2c) Investigate what technology can be used to provide a distributed, heteroge-
neous execution environment.

2d) Investigate how different technologies (from 2a, 2b and 2c) can be combined.

2e) Investigate how to provide an open-ended process architecture allowing other
process systems to be a part of the environment.

3. Validation: Investigate how the proposed approach compares to other approaches
using a practical case.

Propositions to these research questions are described in chapter 5.2.



10 CHAPTER 1. INTRODUCTION



CHAPTER 2

State-of-the-art

This chapter gives an introduction to the researchfields of software engineering, computer-
supported cooperative work (CSCW), workflow, software agents, and middleware. The
first part of this chapter (section 2.1) gives definitions of the central terms for the research
fields, and discusses how these researchfields are related. The rest of the chapter describes
each researchfield in more detail (section 2.2-2.7), identifies some research challenges in
these researchfields, and describes how our approach relates to these researchfields and
challenges.

2.1 Definitions and Terminology

This section outlines definitions of central terms used for software engineering (with em-
phasis on software processes), CSCW, workflow, software agents, and middleware. The
relationships between the researchfields are also discussed. A more detailed description
of the researchfields is given in the sections 2.2 to 2.7.

2.1.1 Software Engineering: Software Process

Software engineering is according to Webopedia1 defined as:

� “The computer science discipline concerned with developing large applications.
Software engineering covers not only the technical aspects of building software sys-

1Webopedia is a web-based online dictionary that can be found at http://webopedia.internet.com

11



12 CHAPTER 2. STATE-OF-THE-ART

tems, but also management issues, such as directing programming teams, schedul-
ing, and budgeting” [Web00].

The definition above states that there is much more to software engineering than simply
writing code. For development of rather small applications, the main focus will be on
efficient methods for producing high quality code. Software engineering however focuses
on producing large applications, and thus efficient management of resources like people,
tools, knowledge is crucial for the outcome of projects. Sommerville [Som95] describes
software engineering as:

� “Software engineering is concerned with software systems which are built by teams
rather than individual programmers, uses engineering principles in the develop-
ment of these systems, and is made up of both technical and non-technical aspects”.

Sommerville’s definition emphasises that software engineering is a collaborative activity
rather than programming by individuals. This view of software engineeringfits very well
with the focus of this thesis which is on cooperative software development processes.
Since the focus of this thesis is on software processes, the rest of this subsection will
focus on related definitions.

The termsoftware process [LB85] is used to denote all activities performed within a
software organisation.Software process modelling describes the activity of understanding
and describing a given software process. The termSoftware Process Technology (SPT) is
used about the concepts, languages, methods and tools used to support software processes.
According to Høydalsvik [Høy97] SPT can be defined as following:

� “Methods and tools that aim to support the definition and execution of software
development processes within a software development organisation (typical support
includes modelling, analysis, and evolution)”

From the descriptions and definitions of the software process related terms above, we
can see that neither of them explicitly mention any cooperative aspects software develop-
ment. Traditionally in software engineering, software development processes have been
seen from a top-down perspective, where higher management has coordinated and con-
trolled the software developers. In this thesis, we also want to add a perspective where the
cooperative aspects of software development are taken into account as well. Creative pro-
cesses such as software development are dependent on cooperative effort between team-
members.

In the introduction of the PROMOTER-2 book“Software Process: Principles, Method-
ology and Technology” [DBW98], the term SPT is used to describe“the integration of
the production and the management technologies in a comprehensive work environment
also called Process-sensitive Software Engineering Environment (PSEE) that supports
the whole process”. This means that a PSEE can be seen as a realisation of SPT. Fig-
ure 2.1 shows the impact of this technology, and illustrates how the PSEE implements,



2.1. DEFINITIONS AND TERMINOLOGY 13

controls and enhances both the feed-back and the feed-forward paths by which the man-
agement process controls the production process. A PSEE supports both the production
and management process for software production. The production process will change
due to changes in the working environment, while the management process standardises
ad-hoc routines in the working environment. Further, the PSEE integrates production,
process and management technology into an engineering environment used by people in
the working environment.

Provides Provides

Integrates
Exploits

Integrates

Supports

Standardises Justifies

Management
   process

Production
  process

Production
technology

   Process
technology

Management
 technology

Environment

Provides

Process−sensitive
      SEE (PSEE)

Figure 2.1: The impact of software process technology

The basic concepts in aprocess model are shown in figure 2.2 [DBW98]: Anactivity is
an atomic or composite operation, or a step of a process. Aproduct is a set of artifacts
to be developed, delivered and maintained in a project. Aresource is an asset needed by
an activity for it to be carried out. There are two important resources: theperformers
(e.g. human agents) and thetools. Performers are usually indirectly connected to an
activity via theirroles that can be used to describe responsibilities, obligations and skills.
The directions are policies, rules and procedures (i.e. process models) that govern the
activities. Figure 2.2 shows how the different concepts in a process model are related.

To be able to offer process support, the software process must be modelled.Software
process modelling can according to [Høy97] be defined as:

� “The activities performed, and language and tools applied, in order to create mod-
els of software development processes within a software development organisation”.

This definition is rather loose and does not say anything about what activities are typical
when modelling a process, and what process elements should be included in a process
model as described in figure 2.2. Activities that might be regarded as a part of a software



14 CHAPTER 2. STATE-OF-THE-ART

Performer

Role Direction

Tool

Has imput

Has intermediate
Has output

Has sub

Plays Needs
Obeys

Employs

Activity Product
Has sub

Has sub

Figure 2.2: Basic concepts of process modelling

modelling process are: Assessing process knowledge, identifying process elements (ac-
tivities, products, roles etc.), detailing process element descriptions, and relating process
elements.

Software process models can be used to understanding the process better through graph-
ical notations, but also to give active process support for the process participants. The
execution of software process models is called software process enactment and can be
defined as [Høy97]:

� “The activities performed, and languages and tools applied, in order to create and
use process programs which support software development processes within a soft-
ware development organisation” .

This definition has similarities to the definition of software process modelling. The main
difference is that the goal of software process enactment is to execute process models
(here named process programs) to support the software development.

2.1.2 Workflow

The Workflow Management Coalition is an organisation that has managed to standardise
workflow management through defining workflow terminology, defining a workflow ar-
chitecture, and by defining standard workflow application programming interface (API).
Workflow is according to the Workflow Management Coalition defined as:

� “The automation of a business process, in whole or part, during which documents,
information or tasks are passed from one participant to another for action, accord-
ing to a set of procedural rules” [WfM99].

From this definition we can conclude that the goal of workflow is to execute business
processes more efficiently, by coordinating activities or information.



2.1. DEFINITIONS AND TERMINOLOGY 15

The term process definition is used within workflow to denote the model of the process.
The Workflow Management Coalition has defined Process Definition as:

� “The representation of a business process in a form which supports automated ma-
nipulation, such as modelling, or enactment by a workflow management system.
The process definition consists of a network of activities and their relationships,
criteria to indicate the start and termination of the process, and information about
the individual activities, such as participants, associated IT applications and data,
etc.” [WfM99].

How does Workow relate to the other Domains?

When comparing the definitions for SPT and workflow, we can assume that the main
difference is that the former focuses on software engineering processes, while the latter
focuses on business processes. The definition of SPT is more general and includes evo-
lution of the process as part of it. General business processes are often stable and can
also often be predefined, since they consist of routine tasks such as routing documents for
approval etc. Software processes have also some management tasks that are the same for
every project, but much of the work is creative activities. In addition, software processes
change frequently during projects because the customer issues new or revised require-
ments, project managers tend to under-estimate various tasks under planning, the cus-
tomer delays to deliver documents, software developers are re-allocated to other projects
and so on [NWC97].

Compared to to the definition of Software Process Modelling (SPT), the definition of
Process Definition (Workflow) is more detailed, describing what information a workflow
model should contain. From the definitions above, the main difference between research
in the workflow community and the SPT community has been on what domain the process
models are applied to and focus on process evolution. This might indicate that SPT should
be able to handle creative human-centred work like design work, that requires dynamic
process changes being initiated by the persons involved. This view indicates that SPT
should be regarded as CSCW. The term Process Centred Environment (PCE) will in this
thesis be used to categorise both workflow systems, PSEEs, and CSCW systems with
process support.

2.1.3 Computer-Supported Cooperative Work (CSCW)

Although there has been a huge interest in the CSCW research-field, there is no univer-
sally accepted definition of CSCW [Wil91]. According to Bannon [Ban93], there is at
least five distinct ways of viewing CSCW:

1. CSCW as simply a loose agglomeration of cooperating and at times competing
communities. This view sees CSCW as an umbrella term with little content other



16 CHAPTER 2. STATE-OF-THE-ART

than something that has to do with people, computers and cooperation. Therefore
CSCW can be seen as a forum where people from different disciplines and with
partially overlapping concerns can discuss issues of mutual interests.

2. CSCW as a paradigm shift. Here CSCW is regarded as a paradigm shift be-
cause the organisational and human factors are taken into account when designing
computer support systems, as opposed to technology-focused design of computer
support systems.

3. CSCW as software for groups. This view sees CSCW as a research field focusing
on people working with computers in groups. The term groupware is often used to
name this area of CSCW.

4. CSCW as technological support of cooperative work forms. Here the emphasis
is on understanding cooperative work as a distinctive form of work, and on support-
ing these cooperative work forms with appropriate technology.

5. CSCW as Participative Design. This view on CSCW is an alternative to traditional
system design, where users are involved more thoroughly in the design process.

To summarise the five views above, we can say that CSCW focuses on human-centred
computing with emphasis on cooperation. In this thesis, CSCW will be regarded as soft-
ware for groups (view 3) with focus on cooperation between groups and between individ-
uals in a group.

How does CSCW relate to the other Domains?

Workflow is often seen as a part of the CSCW research, but has also strong relations to
office automation. According to Bannon’s five views of CSCW in section 2.1.3, work-
flow can be categorised under CSCW as software for groups (view three), and CSCW as
technological support of cooperative work forms (view four). SPT research has tradition-
ally been quite opposite to CSCW, because SPT has been focusing on improving software
processes from a top-down point of view. SPT has helped managers to improve and auto-
mate the software engineering without giving the same support for the developers doing
the actual work. This is also the case for some research within workflow. In CSCW, the
focus has been on the people doing the actual work, and how to support these people to
achieve efficient cooperative work. More recent research within workflow and SPT has
been focusing more on the CSCW aspects.

2.1.4 Software Agents

As with CSCW, there is no consensus on how to define the term software agents. Bjørn
Hermans has suggested two definitions that can be used on software agents [Her97]:



2.1. DEFINITIONS AND TERMINOLOGY 17

1. “An agent is a software thing that knows how to do things that you could probably
do yourself if you had the time.” Ted Selker of the IBM Almaden Research Center
(quote taken from Janca (1995) [Jan95])

2. “A piece of software which performs a given task using information gleaned from
its environment to act in a suitable manner so as to complete the task successfully.
The software should be able to adapt itself based on changes occurring in its en-
vironment, so that a change in circumstances will still yield the intended result.”
(informal definition by G. W. Lecky-Thompson)

The two definitions above are informal and rather vague. They both claim that software
agents can act on its own (autonomy). In addition, the second definition emphasises that
an agent should take the surroundings and changes in the surroundings into account when
deciding what to do next. This makes the second definition better than the first. Another
way of defining agents is to look at some characteristics that agents should hold [Her97]:

� The Weak notion of the concept ”agent”. Perhaps the most general way in which
the term agent is used, is to denote a hardware or (more usually) software-based
computer system that has the following properties:
Autonomy (agents operate without the direct intervention of humans or others), So-
cial ability (agents interact with other agents and (possibly) humans), Reactivity
(agents perceive their environment, and respond in a timely fashion to changes that
occur in it), Proactivity (agents are able to exhibit goal-directed behaviour by tak-
ing the initiative), Temporal continuity (agents are continuously running processes
not once-only computations or scripts that map a single input to a single output and
then terminate), and Goal orientedness (an agent is capable of handling complex,
high-level tasks).

� The Strong(er) notion of the concept ”agent”. For some researchers, especially
in the AI research field, the term agent has a stronger and more specific meaning.
The following characteristics could be used to define such agents:
Mobility; ability to move around in an network, Benevolence; assumption that
agents do not have conflicting goals, Rationality; assumption that an agent will
indeed act in order to achieve its goals, Adaptivity; (should be) able to adjust it-
self to the habits of its user, and Collaboration; an agent should not unthinkingly
accept instructions, but should take into account that the human user makes errors
and omits important information.

� ”Agency” and ”Intelligence”. These characteristics denote that agents must have
a certain degree of autonomy and authority, and should have intelligence. A short
definition of intelligence could be: ”Intelligence is the degree of reasoning and
learned behaviour...” [Apa95].

� The User’s ”Definition” of Agents. Researchers often define what a software agent
is. However, it is important that the users of agents also contribute to define software



18 CHAPTER 2. STATE-OF-THE-ART

agents. Users will not start to use software agents because they are e.g. proactive
or reactive, but rather because they can help them to for instance make work easier.

As we can see from the descriptions above, the definition of a software agent is a bit
illusive. We have therefore suggested our own definition of an agent:

� “A piece of autonomous software created by and acting on behalf of a user (or some
other agent). It is set up to achieve a modest goal, with the characteristics of auton-
omy, interaction, reactivity to environment, as well as pro-activeness.” [WLC99]

How do Agents relate to other the Domains?

We can see some similarities between software agents and CSCW. Characteristics like
social abilities, reactivity, and collaboration fit very well into the CSCW world. From a
CSCW point of view, software agents can be viewed as an enabling technology that can be
used to provide cooperative support. Software agents are however also used to implement
workflow systems and PSEEs.

2.1.5 Middleware

Middleware is a term that is used to describe some software that can serve as the glue
between applications. According to Webopedia middleware is defined as:

� “Software that connects two otherwise separate applications” [ISP00b].

The definition of middleware above can be a bit limited depending on what the term
software includes. In this thesis, an extended definition of middleware is defined as:

� “Software that connects two otherwise separate applications and models describing
this connection.”

How does Middleware relate to the other Domains?

Middleware is a research area creating technology that can be used across the research
fields SPT, workflow and CSCW. Middleware can be used to glue components within SPT,
workflow, and CSCW systems separately, or as bridges between technologies from these
research fields. In software engineering, PSEEs use middleware e.g. to create federated
environments consisting of tools and systems with various interfaces and APIs, running
on different platforms.



2.1. DEFINITIONS AND TERMINOLOGY 19

2.1.6 Summary

To summarise this section, we have compared the five research fields according to the
domains they are applied to and the goals they try to achieve as shown in table 2.1.

Research field Domain(s) Goal(s)
SPT Software Improve software development

development processes (efficiency, understanding,
processes management, process evolution).

Workflow Business Automate (conform) business
processes processes.

CSCW Administrative work, Improve cooperative user support.
engineering, education
games etc.

Agents Computer games, Intelligent systems,
information retrieval, Efficient distributed computing,
information filtering, Decomposition of complex tasks,
industrial process control, Evolving systems.
user interface design etc.

Middleware Distributed systems, Connecting separate systems
object technologies, and components.
architecture, security,
software engineering, etc.

Table 2.1: A small comparison of five research fields

The table shows that both the SPT and the workflow fields are domain specific, while the
rest can be applied to several domains. This is a simplification because SPT and workflow
can be applied to other domains as well, but are usually applied to software engineering
and business processes respectively. The goals of the research fields also reflect this same
tendency. For instance, one of the main goals for the CSCW community has been to im-
prove cooperative user support (with little enforcement). Cooperative computer systems
can be used in various domains such as in software engineering, in business processes,
in collaborative authoring, in collaborative graphical design etc. Middleware has also
a goal that is applicable on various domains, namely to connect separate systems and
components. The agent field is the only research area with several separate and possible
colliding goals. For instance it can be very hard to achieve an intelligent system that com-
putes efficiently over a network through mobile agents. Intelligent agent systems often
require very large programs which are not very well suited to be moved between nodes in
a network as mobile agents.



20 CHAPTER 2. STATE-OF-THE-ART

2.2 Software Engineering

This section describes the research field software engineering, with emphasis on software
processes since these are the focus of this thesis.

2.2.1 Introduction

In 1968 at a NATO Conference in Gramisch-Partenkirchen [NR69], the term Software En-
gineering was introduced. The conference discussed what then was called the “software
crisis” introduced by third generation computer hardware. The third generation comput-
ers were several times more powerful than previous hardware, and made it possible to
run and implement large software systems. Some initial experiments showed that existing
software development methods could not be scaled up to manage large software projects.
As a result most large software projects were delayed, costs were more than estimated,
were less reliable, had a bad performance, and were hard to maintain. Since the late
sixties, the computer hardware has become less expensive and more powerful, enabling
even larger software systems to be built. As mentioned in the introduction of this thesis
(section 1.1) software has become a very important part of everyday life. Despite the fact
that almost everything is dependent on software, the software industry is still struggling
with the same “software crisis” as they did in the sixties.

From the definitions of software engineering in section 2.1.1, it is clear that software en-
gineering involves everything that can impact on the how we develop software. Software
Engineering typically includes concepts, theories, paradigms, languages, methods, and
tools. Figure 2.3 shows an overview of software engineering, divided in two. The upper
part shows vertical software engineering techniques for each development phase in the
software process. The lower part shows horizontal techniques that are independent of the
development phases. Note that there exist more techniques than shown in the figure such
as software engineering environments, software engineering databases etc.

In [Bro86], Brooks argues that there is no “silver bullet” that can solve all the problems
in software engineering. There is no single development, technology, or management
technique that solve problems with modern software systems as complexity, conformity,
changeability and invisibility. Brooks uses the term invisibility to denote that the software
structure is invisible for the user, and that it is hard to visualise software.

The rest of this section will describe different research areas within software engineering,
starting with the software process.

2.2.2 The Software Process

The word software process was coined by Manny M. Lehman in 1969 when he spent a
year studying an IBM programming process to propose new research projects to improve



2.2. SOFTWARE ENGINEERING 21

Specification languages,
Formal specifications,
Graphical notiations,
Analysis methods,
Requirement validation,
Requirement management,
Requirement tools.

Requirement
specification

Design methods,
Design languages,
Graphical notations,
OO design,
Functional design,
Design tools.

System design

Programming
languages,
Programming
environments,
Programming
tools.

Implementation

Software testing
methods/tools,
Software inspection
methods/tools,
Cleanroom.

Verification &
validation

Maintenance
methods/tools.

Operation and
maintenance

P
ha

se
 d

ep
en

de
nt

Software Cost Estimation

Software Quality Management

Software Process Improvement

Software Configuration Management

Quality assurance, Quality planning, Quality control

Software process standards as ISO−9001, CMM...

Software engineering environments,  CASE−tools, PSEEs, PMLs.

CM−tools, CM standards and procedures, Change control boards.

Algorithmic cost modelling, Expert judgement, Estimation by analogy, 
Parkinson’s Law, Pricing to win.

P
ha

se
 in

de
pe

nd
en

t

Software Process Technology

Figure 2.3: An overview of Software Engineering

IBM’s programming capabilities. In [Leh69], the software process was named program-
ming process and was defined as “ the total collection of technologies and activities that
transform the germ of an idea into a binary program tape” . Lehman’s acknowledgement
of the “programming process” initiated the research field software process.

Overall Views on the Software Process (Lifecycle Models)

According to Cugola and Ghezzi in [CG98], the view of the software process has evolved
from viewing the process as a black box to viewing the process transparently. When view-
ing the software development process as a black box, the product (output) only depends
on the product requirements (input). In this view, the process of producing a product from
the product requirements is not defined at all. The problem of using this model, is that it is
hard to predict when and with what costs the product will be finished. Often, the product
requirements are informal and uncertain when starting a software development project.
This means that it is likely that the output (product) of the process is not what the user
wants.

To reduce the risks of failed software development projects, it is important to open the



22 CHAPTER 2. STATE-OF-THE-ART

black box and have a more detailed look at the process. The software life-cycle and
Waterfall model [Roy70] were defined to describe the life of a product from initial stage
to final production. The software development process was refined from being a black box
to a predefined sequence of phases, where each phase has a set of defined activities. Each
phase has an input and output, and the output from one phase is the input to the next. The
Waterfall process is in principle linear and a succeeding phase should not start until the
previous phase was finished. The motivation for this was that the developers should think
through everything in advance before the next phase, to avoid a sloppy attitude towards
controlled software development. However, in practice phases overlap making it hard to
follow the Waterfall model as defined, e.g. if problems with requirements are discovered
in design.

The evolutionary development model is another way viewing of the software development
process. This approach interleaves the phases specification, implementation and valida-
tion, and is based on rapid prototyping. A prototype is developed early in the project
based on some initial requirements. This prototype is then refined through interactions
with the customer until the customer is satisfied. The Spiral Model [Boe88] is an ex-
ample of an evolutionary development model that can incorporate different development
processes through separate iterations. There are two main types of evolutionary devel-
opment: Exploratory development where the objective is to work with the customer to
explore their requirements and deliver a final system, and Throw-away prototyping where
rapid prototyping is only used to understand the customers’ requirements. Evolutionary
development is also often called incremental development, since a software system is built
through several software increments rather than one final delivery.

Figure 2.4 illustrates the differences described above between the waterfall development
model and the evolutionary development model.

Software Process Phases

A software process is usually decomposed into some phases with associated software
engineering methods attached to them. The Waterfall model identifies the following five
phases:

1. Requirement specification is the process of specifying the customer requirements
of the final software system to be developed, and is usually divided into functional,
non-functional, and domain requirements. Requirements are usually specified in
natural language, but there are supplementary approaches to enhance the quality of
the requirement specification. Structured natural languages are defined standard
forms or templates to express the requirements specification. Design description
languages use a programming language with more abstract features to specify the
requirements by defining an observational model of the system. A Program De-
scription Language (PDL) derived from programming languages like Java or Ada
can be used for this purpose. Mathematical specifications use mathematical no-
tations such as finite-state machines or sets to specify requirements resulting in a



2.2. SOFTWARE ENGINEERING 23

Requirement
specification

System design

Implementation

Testing

Operation and
maintenance

Initial
version

Intermediate
versions

Final
versions

Outline
description

Concurrent
 activities

Specification

Development

Validation

Waterfall development model Evolutionary development model

Products

Figure 2.4: Waterfall development model vs. evolutionary development model

formal specification. The main problem with this approach is that most customers
don’ t understand such specifications. Graphical notations describe requirements
through graphical symbols, texts and arcs. In UML, the use-case model is used for
this purpose.
In addition to specification languages, methods and tools for problem analysis (e.g.
Viewpoint-Oriented Requirements Definition (VORD) [KS97]), requirements val-
idation (e.g. prototyping), and requirement management (e.g. requirement change
management) are used to aid this phase.

2. System designis the process of describing how the requirements are going to be
implemented, and includes identifying sub-systems, establishing the software ar-
chitecture, and describing how to create all sub-systems. The design process is
a creative process, and often software design is an ad hoc process. However,
there are structured design methods that can be used when designing software
consisting of sets of notations (often graphical) and guidelines about how to cre-
ate a software design. There are two main design strategies: Functional design
where the system is designed from a functional viewpoint (e.g., Structured De-
sign [YC75]), and Object-oriented design where the system is viewed as a col-
lection of objects (e.g. Object-Oriented Development (OOD) [Boo91], Hierarchi-
cal Object-Oriented Design (HOOD) [HM93], Object Modelling Technique (OMT)
[RBP+91], Responsibility-Driven Design (RDD) / Class-Responsibility-Collaboration
(CRC) [WBWW90], and Object-Oriented Analysis (OOA) [CY90]). Many graphi-
cal notations proposed for object-oriented design is now a part of the Unified Mod-
elling Language (UML) [Cor00b] that has become the industry-standard language



24 CHAPTER 2. STATE-OF-THE-ART

for specifying, visualising, constructing, and documenting the artifacts of software
systems. Note that UML is also used for other phases of software development.

3. Implementation is the process of realising the software design as a set of execu-
tional programs. Programming languages have evolved from being simple hardware-
based binary code, through mathematical based languages like FORTRAN, to high-
level, hardware-independent object-oriented languages like Java. Today we have a
variety of programming languages for different purposes like Prolog (AI), AWK
and Perl (text processing), ADA (military), Simula (simulation), and Java scripts
(Web-browser programming). In addition to the programming languages, the pro-
gramming environments have always been an important part of software engineer-
ing. Environments like Gandalf [HN86] and Cedar [SZBB86] tried to ease the
programming process by structuring the programming through a programming lan-
guage, selective user interfaces, tools, a common development database and inte-
gration of these elements.
Modern programming environments like Visual Studio from Microsoft [Cor00a],
offers a broad spectrum of tools for software development, including user interface
drawing tools, reusable component browsing, software configuration management,
task management etc.

4. Testing is the process of checking if the software conforms to its specification and
meets the need of the customers. The most common techniques for testing are
software inspections and software testing. Software inspections analyse and check
system representations such as requirements document, design diagrams, and the
program source code. Software testing involves execution of the final system with
test data and examining the outputs and the operational behaviour of the system.
There are several types of software testing, such as unit testing (white box), in-
tegration testing, function testing (black box), regression testing, system test, and
acceptance and installation tests. Cleanroom [MDL87] is a software development
method used for avoiding software defects through a defined inspection process.
The system is formally specified, the formal verifications are used to verify the
code. Testing can also be applied in phase 1-3.

5. Operation and maintenanceis the process of installing the system, putting the
system in operation and correcting errors that have not been discovered before this
phase. In many software project, this is the longest phase.

Customisable Process Support by Process Modelling

The term ”Process Programming” descends from Leon Osterweil’s keynote speech at the
9th International Conference on Software Engineering. The title of Osterweil’s speech
was ”Software processes are software too” [Ost87] and was the beginning of research on
explicit software process modelling and enactment, and on customisable software pro-
cesses. According to Osterweil, software organisations vary and their processes varies.
It is therefore necessary for environments that support software development is able to
adapt to special needs. To be able to explicitly support tailorable software development



2.2. SOFTWARE ENGINEERING 25

processes, process modelling languages (PMLs) were needed. The process models should
also be executable, to provide runtime process support. Lehman in [Leh87] criticised Os-
terweil’s keynote and said that in reality it is very hard to model software processes in
such details that they can be executable, since software processes evolve and changes
over time and consist of creative tasks. Thus, it is almost impossible to get conformance
between the process model and the real process.

2.2.3 Phase-independent Software Engineering Activities and Tech-
niques

Management of the software process is an on-going activity through the whole life-cycle
of a software system. We will look further into some of the aspects of managing the
development of software according to the lower part of figure 2.3. Note that software
process technology is described in a separate section (section 2.3).

Software Configuration Management

Software Configuration management (CM) is the development and application of stan-
dards, and procedures for managing an evolving system product. CM is typically con-
cerned with preserving consistency of documents and source codes in software projects.
Also the CM tools track and store the changes, making it possible to “go back” to a sta-
ble state of the process. CM tools are concerned with versioning products, and checking
out files from a database to a workspace and vice versa. Simple CM tools such as SCCS
[Roc75] and RCS [Tic85] use simple locking mechanism to ensure consistency, if two de-
velopers try to change the same file. By using strict locks, developers might have to wait
before accessing files delaying the project. More advanced CM-tools such as ClearCase
[Leb94] allow multiple developers to change the same file. This is achieved by creating
parallel version branches, that later can be merged by advanced merging tools. In addition
to CM tools, procedures for how to handle product changes should be defined. In larger
companies, change control boards are used to approve changes for products and docu-
ments. This means that the product management is controlled by process management.

Software Cost Estimation

Software costs can be tracked to three main sources: 1) Hardware and software costs (in-
cluding maintenance), 2) travel and training costs, and 3) effort costs (the costs of paying
software engineers). For most software projects the effort cost is dominant. According to
[Som95], there are five techniques for estimating software costs:

1. Algorithmic cost modelling developed by using historical cost information that
relates some software metric to the project cost. An example of an algorithmic cost
model is the COCOMO model [Boe81] that has been derived by collecting data
from a large number of software projects.



26 CHAPTER 2. STATE-OF-THE-ART

2. Expert judgement where several experts on the proposed software development
techniques and the application domain are consulted, and their estimates are com-
pared and discussed.

3. Estimation by analogywhere cost is estimated by analogy with similar completed
projects.

4. Parkinson’s Law where costs are determined by available resources rather than by
objective assessments.

5. Pricing to win where costs are estimated to whatever the customer is willing to
spend on the project.

Software Quality Management

The term software quality has different meaning to different people. According to [Fen91],
a definition of the term software quality could include fitness for purpose, conformance
to specification, degree of excellence, and timeliness. However if it should be possible to
measure software quality, quality should be specified according to a selection of product
attributes of interest to the user. What these attributes are is dependent on the application
area of the products.

To goal of quality management within software companies is to produce products with a
certain level of quality. Quality management typically involves these activities:

1. Quality assuranceis the process of establishing a framework of organisational pro-
cedures and standards to enable production of high-quality software. Quality assur-
ance standards have been defined for software products and for software processes
by national and international organisations like US DoD, ANSI, NATO, and IEEE.
Product quality standards are concerned with how the products are documented
through consistent appearance, structure and quality. Some product standards also
define documentation process including quality checks. The process quality stan-
dards define the process that should be followed during software development, and
are most commonly used in the development of military software and for devel-
opment of software for space shuttles and air-planes. One example of a quality
standard for software is ISO-9001.

2. Quality planning is the process of selecting the appropriate procedures and stan-
dards and adapt them to a specific software project.

3. Quality control is the process of controlling that the quality procedures are fol-
lowed by the software development team.

Software Process Improvement (SPI)

In the 1980s, the software industry became more and more concerned with quality. In-
spired by Japanese factories that had well-defined processes to achieve better quality,



2.3. SOFTWARE PROCESS TECHNOLOGY (SPT) 27

international standardisation organisations also developed standards for the software in-
dustry.

ISO-9001 is a well-known international standard requiring documentation of a set of pro-
cedures for a software company to produce quality products. In order to be ISO-certified,
a software company can systematically document the company procedures in 19 pre-
specified work areas. This means that ISO-9001 can help a company to improve the
software process to a certain level, but it does not specify a continuous improvement. A
criticism of ISO certifications is that companies only use them to show customers their
ISO-9001 diploma. Often the daily practices of a company are totally different from what
their quality system prescribes.

The Capability Maturity Model (CMM) focuses on how software companies can improve
their software development process. In CMM, the capability maturity level of the software
development processes for a company is assessed. CMM defines five maturity levels, and
recommended practices are described for each maturity level. Companies in the first
maturity level do not have a defined development process at all. At the highest maturity
level, the development process is continuously improved. The aim of CMM is to achieve
a higher maturity level by improving the process. A major problem with CMM is that
it is not very suitable to smaller software companies. Here some of the recommended
practices can not be used because they are too expensive or hardly relevant at all. It has
also been observed that in some cases that CMM instead of improving the efficiency of
the organisation, has resulted in increased bureaucracy.

2.3 Software Process Technology (SPT)

Software process technology aims at giving process participants various kinds of support
throughout the software engineering process. Software process tools are used to provide
process guidance, for enabling process automation, for making process analyses, and for
understanding the process better in order to improve it. When such tools are combined
in an environment to help developers to produce better software with less time and effort,
we call this a Process-centred Software Engineering Environment (PSEE). A PSEE (see
section 2.3.1 is regarded as a software development environment that can be tailored to
support specific software projects. PSEEs are different from other software engineering
environment because the process is modelled explicitly, while e.g. in many CASE tools
the process is implicit. The main component of a PSEE is a process engine, PSEEs may
also consist of process modelling tools, process model compilers, process model analy-
sers, product and model repositories, product tools etc. The process engine is responsible
for executing the process model including interacting with the user, activate tools, and
interchange data with a repository. There are two main types of software process models:

� Generic modelsare models of general software engineering processes that e.g.
are available in text books and in quality assurance specifications. These models
are often high-level and cannot be directly used to as a guideline for carrying out



28 CHAPTER 2. STATE-OF-THE-ART

projects.

� Specific modelsare models that reflects one project.

The generic models are often used as a starting-point, but must be adjusted and detailed
to create specific models and plans that can be applied directly in projects. To use specific
models in a PSEE the models must be represented in some formal language, making it
possible for the process engine to interpret and execute the model. PSEEs are used for
different purposes, and these can be classified as following [BNF96]:

� Passive role. The user guides the process and the PSEE operates in response to user
requests.

� Active guidance. The PSEE guides the user through the process by reminding the
user what to do and when. The user is not forced to perform the actions.

� Enforcement. The PSEE forces the user to act according to a specified process
model.

� Automation. The PSEE executes activities without user intervention.

The list above describes different views on how to manage software processes. Automation
is a way of speeding up the software process, but cannot be applied to the most time con-
suming tasks of software development such as designing and coding software, and writing
specifications. Enforcement is a way for the management to get the software developers
to follow a defined process model that has been planned in advance and in detail (better
conformance). In practise it is difficult to use PSEEs that enforce the process, because
most software processes change during projects and generally most people do not like
to be forced. Active guidance is a more relaxed process support, where the focus is on
helping the software developers through the various steps of the process by providing
useful information, and reminding the user when to do specific tasks. When a PSEE has
a passive role, it will act as a process information system. Note that different kinds of
enactment support can be provided in the same PSEE. In general, we can use PSEE to
automate simple stable tasks such as configuration management, compiling and building
programs etc, whereas guidance can be used for more creative and evolving parts of the
process.

Process support in the CAGIS PCE

In the CAGIS PCE, we have chosen to use active guidance to provide process support. The
CAGIS SimpleProcess workflow tool presents an agenda of activities and deadlines for the
user, and it gives the user an opportunity for navigating through the activity network. Parts
of the software processes can also be enforced in the CAGIS PCE, e.g. when software
agents forces one party in a resource negotiation process to deallocate some resources.
Enforcement of the process is however dependent on how the cooperation protocols are
implemented.



2.3. SOFTWARE PROCESS TECHNOLOGY (SPT) 29

Process Modelling Language (PML)

A Process modelling language (PML) describes processes through activities, products,
roles, tools, directions, and performers as described in section 2.1.1. Further, PMLs can
be classified in four main paradigms:

1. Programming language based PML, where the PML is a specialised programming
language based on conventional programming languages.

2. Rule based PML, where production rules are used to describe the software pro-
cess. Activities are described by rules with a pre-condition, an action, and a post-
condition. Rules have an associated role being responsible for the activity, and
resources needed to execute the activity.

3. Extended flow or network based PML, where Petri nets or Statecharts have been
used to model software processes.

4. Multi-paradigm based PML, where two or more of the above paradigms are com-
bined.

A programming language based PML often requires more time spent on creating (imple-
menting) the process models because the process has to be programmed in detail. An
advantage is, however, that such PMLs are very flexible and do not put many restrictions
on what can be modelled. The extended flow or network based PMLs and rule based
PMLs often demand less time on modelling a process, since such PMLs are rather easy to
represent partly or fully in graphical notations. The major disadvantage with such PMLs
is that the modelling language puts limitations on what and how the process can be mod-
elled. A multi-paradigm based PML can for instance use a programming language based
PML to model parts of a process that need a high degree of flexibility, while simpler parts
of the process can be modelled by a rule based PML. Note that the choice of PML also
often reflects the purpose of the PSEE such as active guidance, automation etc.

PMLs used in the CAGIS PCE

The process models in the CAGIS PCE are expressed in three different PMLs (the moti-
vation for this is described in section 4.3 in chapter 4. Individual processes are modelled
in the CAGIS SimpleProcess in a network based PML (number three in the list above)
expressed in XML syntax. In this PML, the process is represented as activities with
pre-order relations that are activated when a user push a button to notify that she/he has
completed an activity. Cooperative activities are in the CAGIS DIAS modelled through
an agent Java API. Although the agents are implemented in Java, we could call this a
programming language based PML (number one in the list above). The CAGIS agent
Java API provides a number of high-level methods that can be used to do agent specific
tasks. However most programming language based PMLs deviate more from the origi-
nal programming language. The third PML in CAGIS PCE, is CAGIS Glue modelling



30 CHAPTER 2. STATE-OF-THE-ART

language defining relationships between workflow elements (process fragments) and soft-
ware agents. The GlueModel can be regarded as being a part of the process model because
it triggers events in the process. The GlueModel can be classified as a rule based PML
(number two in the list above), because it specifies a set of rules that can trigger some
actions. If we look at the CAGIS PCE as a whole, it uses a multi-paradigm based PML
(number four in the list above). We have used three different PMLs, we can keep each
PML relatively simple and the combination of them can cover different domains like
simple individual process guidance (CAGIS SimpleProcess), cooperative process support
(CAGIS DIAS) and dynamic process rules (CAGIS GlueModel).

2.3.1 Process-centred Software Engineering Environments (PSEEs)

In the late 1980s and early 1990s, many prototype PSEEs were developed. Most of
these prototypes were non-commercial, and available for free for experimentation. Some
of these prototypes where Adele [BEM91], ALF [B+89], Arcadia [TBC+88], EPOS
[HC+88], Marvel [Kai90a], Merlin [PSW92], OIKOS [ACM88], SPADE [BBFL94].
There were also some commercial PSEEs: IPSE 2.5 [War89], Syner Vision [HP93], and
Process Weaver [Fer93]. All the PSEEs above had all their own PMLs and can be clas-
sified according to table 2.2. In Adele the process models were specified using a simple
imperative language tailored for database access combined with rules (triggers), ALF
combined logic programming with a rule based PML, and EPOS used an object-oriented
programming combined with rule-based models.

Programming based Rule based Network based Multi-paradigm
Arcadia Marvel Process Weaver Adele
IPSE 2.5 Merlin SPADE ALF
Syner Vision OIKOS EPOS

Table 2.2: PSEEs classified according to PML paradigms

Within the Software Processcommunity, research on how to support distributed, het-
erogeneous and cooperative software processes has recently gained more attention. In
[Tia98], Tiako outlines how to model federation of PSEEs. In such a federation, large
development projects can be realized by dividing the whole process into smaller pieces
assigned to distributed teams. The teams work on their own processes using their own
PSEEs. Tiako describes a federation process support architecture that aims to support not
only the enactment of processes, but also their definition by composition, decomposition
and/or federation.

In [BSK95], Ben-Shaul et al. propose the Oz approach to provide a federated PSEE by
composing different instances of local PSEEs. Each instance is devoted to support the
development process executed by a single organisation. The different PSEEs run au-
tonomously according to their own processes. Interaction of several PSEEs is accom-



2.3. SOFTWARE PROCESS TECHNOLOGY (SPT) 31

plished through a common activity called summit, where one site acts as a coordinator
and receives all needed data from other sites. The result is sent back from the coordinator
to all involved sites. This approach is called a master-slave federation. In [BCN+96],
Basile et al. take Oz as a starting point to provide federated PSEEs, and allow several
inter-organisation policies to be implemented and combined. A set of basic operations is
used to specify any inter-organisational policy (e.g., one operation for searching the phys-
ical location of a site, one operation for requesting execution of one service on another
site etc.).

APEL [DEA98] developed at Laboratorie Logiciels, Systemes Reseaux, France is another
research effort focusing on interoperability among heterogeneous PSEEs. In APEL, sev-
eral process engines can co-exist in the same environment using a common state server
for all process engines. This architecture makes it also possible to provide several dif-
ferent user interfaces. APEL aims to pursue two main goals: Support manage complex
distributed processes in a heterogeneous environment, and support process evolution.

Senitel [CNF98] is a PSEE that allows people explicitly to deviate from a process model
to cope with unexpected events. Traditionally this problem has been supported through
changing the process model on-the-fly in order to deal with the unexpected events. Senitel
specifies the process in the LATIN PML as a collection of task types. Each task type
describes an activity as a state machine and is characterised by a set of state variables,
a set of transitions, and a state invariant. State variables determine the structure of the
internal state of a task type. The state invariant is a logical predicate that has to hold during
the process. LATIN specifies two types of transitions: normal transitions and exported
transitions. A normal transition is automatically executed as soon as its preconditions are
true. An exported transition is executed if the user requests it and its preconditions are
true. It is however possible to force an exported transition regardless of the evaluation
of precondions. When the transition fires illegally, the user can deviate from the process
model to deal with unexpected events. Senitel records the relevant events occurring during
enactment in a knowledge base. The enactment is suspended only if one of the invariants
is violated. This event will initiate the reconciling activity that used the knowledge base
to perform a pollution analysis. A pollution analysis identifies illegally fired transitions
and potentially polluted variables through a logical reasoning on the knowledge base.

The ESPRIT PIE project (Process Instance Evolution, project no. 34840 in 1998–2000
[CDE+00]) attempts to federate several PSEEs by sophisticated and partly reflexive mes-
saging facilities (middleware). PIE distinguishes between federations of type master-slave
(either pre-planned or not) and peer-to-peer (no master, so pre-planned). In [BCN+96],
mechanisms and policies for federated PSEEs are discussed. The motivation for this work
is that software is developed across several organisations. Among these organisations in-
teraction can be characterised by:

� Geographical distribution where the organisation can be centralised or distributed,

� Homogeneous vs. heterogeneous processes where processes can be the same or
differ from team to team,



32 CHAPTER 2. STATE-OF-THE-ART

� Homogeneous vs. heterogeneous technologies where the same or different tech-
nologies can be used for different teams,

� Single company vs. multiple companies, and

� Singe nation vs. multiple nations where companies have to overcome problems
with different languages and cultures.

In a federation, levels of abstractions are used to differ between areas of concern. Basile
et. al., have defined four abstraction levels in a federation:

1. Infrastructure typically TCP/IP, DCE, and CORBA,

2. Basic operations built on top of the PML/PSEE as specific process fragments,

3. Inter-organisation policies directly implemented as constructs provided by PML,
and

4. Inter-organisation process providing support for definition and enactment of inter-
organisation processes.

CAGIS PCE related to PSEEs

During the work with the CAGIS PCE, we have been looking at some of the same prob-
lems that have been addressed in projects link Oz, APEL, and PIE. These two projects
have investigated how to federate several PSEEs. In Oz, this problem has been solved
from a transaction (database) point of view through the commit activity where shared data
are coordinated. In the APEL and the PIE projects, the problem of providing a federation
architecture of heterogeneous PSEE has been addressed by looking at how can different
process engines co-exist in the same environment, and how to deal with process evolution
in a federated environment. One goal for the CAGIS PCE has been to provide a middle-
ware for defining relationships and initiate interactions between different process support
components. This middleware can also be used to federate other systems and to initiate
cooperative activities between these systems. Since federation of PSEEs has not been
the main focus of this thesis, we have not time to test and implement scenarios where
federated PSEEs participate.

Senitel allows people explicitly to deviate from a process model supported through a
framework with a formal basis. In the CAGIS PCE we allow people to change their
processes during the enactment to provide flexibility, but we do not provide a environment
for doing controlled process deviation (in CAGIS PCE this is ad-hoc).

2.3.2 Research Trends and Challenges

Software process technology has not been widely accepted by the software industry yet,
and there are very few commercial PSEEs available. Does this mean that there is no need



2.3. SOFTWARE PROCESS TECHNOLOGY (SPT) 33

for SPT? If a software company wants to reach maturity level 3-5 in CMM (see section
2.2.3), they must focus on how they develop and maintain software (the software process).
The software process must be defined (level 3), it must be managed (level 4), and finally
it must be optimised (level 5). SPT provides tools for defining processes (modelling
processes), for managing processing through process measurement and analysis, and for
controlling the process through monitoring and automating the process. One reason for
the little application of SPT in the software industry can be that SPT tools and models
are not standardised. One very important research challenge is to find common repre-
sentations for modelling processes, common software process architectures, and common
software process tool APIs.

In order to use SPT, the software process has to be modelled in a formal model. Tra-
ditionally the process models have been created based on experiences from e.g. project
managers, but more detailed information is needed to give process participants useful pro-
cess support. A research challenge is therefore to understand what people are doing when
they are developing software. Some recent research within SPT community has started to
create tools for logging how software developers work [CW98]. These process discovery
tools must be integrated with COTS tools like Microsoft Office, Visual Basic, Rational
Rose,etc. , to really discover the details in the software process.

Another direction of recent SPT research has been (as mentioned in the previous section)
to enable PSEEs to be run in heterogeneous environments, and to federate different PSEEs
and SPT tools. To solve problems with heterogeneity and federation, standardisations of
PMLs, process architectures, and process APIs are needed. Another approach is to create
middleware that can bridge between existing tools and models.

According to Robert Balzer’s keynote speech at the Seventh European Workshop on Soft-
ware Process Technology [Bal00], the two main problems with existing SPT are that it
does not give appropriate cooperative process support for software developers and it does
not cope with process changes occurring during the process execution. This view is fur-
ther supported by Cugola and Ghezzi in [CG98] and by Conradi, Fugetta and Jaccheri in
[CFJ98], saying that process programming has failed to accommodate the parts of soft-
ware development that involve humans. The emphasis of most PMLs and PSEEs has been
on describing process models as normative models, containing pre-defined and expected
activities, and pushing automation to enforce them. Although the intention has been to
establish good practices for developing software, the official development process (the
process model) is quite different from the actual process (poor conformance). That is,
software processes are human-centred processes where interaction and cooperation are
very central aspects of the process. This has often been ignored by many PSEEs. Co-
operation is needed when negotiating about requirements or about resource allocation,
when specifying and implementing the products, as well as during product testing. Hu-
man processes demand flexibility, in order to cope with creative tasks, as well as changing
requirements, technologies, or work environment such as staff turn-over. A PSEE should
therefore be able to handle situations where projects must be heavily re-organised or re-
formed during project execution.



34 CHAPTER 2. STATE-OF-THE-ART

The main focus in this thesis has been to find the required architecture, the tools and the
models to better model and support cooperative and creative processes in a flexible way.
These problems have not been addressed adequately in existing PSEEs.

2.4 Workflow

The term workflow is a term that is associated with factory automation at the time the
second industrial revolution took place (around 1900). Around the 1950s, the same tech-
niques were used to automate offices. The first Office Information Systems were devel-
oped in the 1970s, with mixed success. Most systems failed because they were too rigid
and disturbed the working processes, rather than supporting them. Office Information
Systems have been focusing on making office work efficient. Workflow has also been
influenced from CSCW research. In the CSCW research field, a workflow system has
been seen as a specific type of groupware to support collaboration between people. Here
the focus has been on flexible computer support, as opposed to forcing people to work in
a specific way.

Work flow Interoperability

The Workflow Management Coalition has worked out a specification for interoperability
workflow binding in XML [WfM00], relying on an earlier, high-level process formalism
(Process Interchange Format, PIF) and standard tool architecture. The intention of this
XML specification is to allow workflow systems, supporting simple chained and nested
workflows, to interoperate both synchronously and synchronously. In practice, this means
that two workflow systems can exchange data and operations independently of implemen-
tation platform of these workflow systems. The XML specification describes how infor-
mation in a workflow message, exchanged between workflow systems, should be written.
Two types of messages can be used: request and response. A request message is used
to initiate an operation in a remote resource, and/or to provide input to that resource. A
response message is used to send the result of an operation to its requesting resource, pro-
viding output. The XML specification further defines how to specify process context and
data, process status, error handling, and operation. Four operations are defined (either of
type request and response):

1. CreateProcessInstance is used to instantiate a known process definition,

2. GetProcessInstanceData is used to retrieve the values of properties defined for the
given process instance resource,

3. ChangeProcessInstanceState is used to modify the process instance state, and

4. ProcessInstanceStateChanged is used to notify that a state change event has oc-
curred.



2.4. WORKFLOW 35

The workflow interoperability standard above illustrates one example of an important dif-
ference between SPT and workflow. The workflow community has managed to implement
standards and specifications making it possible for tools to interact regardless of whether
the tools are research prototypes or commercial. Although there is on-going research for
federating PSEEs, the SPT community has not defined any detailed implementation or
model standards. Maybe this is the reason why there are so few commercial PSEEs.

2.4.1 Workflow Systems

The workflow community has the last decades been focusing on building systems that
support distributed processes. In [YL99], Yoo and Lee describe a mobile agent platform
for workflow systems called X-MAS (proXy acting Mobile Agent Systems). Here, the
workflow system using the X-MAS mobile agent platform has a centralised coordinator.
The workflow model (process model) is defined centrally in a workflow definition tool.
The workflow management engine realizes workflow instances as mobile agents by asking
the mobile agent platform to create them. If there are any time constraints of agents, this
information is stored in an agent manager in the agent execution engine. The mobile
agents (workflow instances) may move from host to host, and interact with other entities
as users, databases, and applications.

Endeavors[HL98] is an open, distributed, extensible process execution environment de-
veloped at the University of California Irvine, and has been licensed by Endeavors Tech-
nology Incorporated. It is designed to improve coordination and managerial control of
development teams by allowing flexible definition, modelling, and execution of typical
workflow applications. XML is used extensively for implementation. There are five main
characteristics for Endeavors:

1. Distribution – Support for transparently distributed people, artifacts, process ob-
jects, and execution behaviour (handlers) using web protocols.

2. Integration – Allows bi-directional communication between its internal objects
and external tools, objects, and services through its open interfaces across all levels
of the architecture. Multiple programming languages are also supported through
APIs.

3. Incremental Adoption – Components of the system (user interfaces, interpreters,
and editing tools), may be down-loaded as needed, and no explicit system installa-
tion is required to view and execute a workflow-style process.

4. Customisation and Reuse– Implemented as a layered virtual machines architec-
ture, and it allows object-oriented extensions of the architecture, interfaces, and
data formats at each layer.

5. Dynamic Change– Allows dynamic changing of object fields and methods, the
ability to dynamically change the object behaviours at runtime, and late-binding of



36 CHAPTER 2. STATE-OF-THE-ART

resources needed to execute a workflow process. Process interpreters are dynami-
cally created as needed.

ProcessWeb[Yeo96] is a simple web-interface to ProcessWise [PMC96] Integrator pro-
duced by ICL in cooperation with the Information Process Group at the University of
Manchester. ProcessWise Integrator creates an environment enabling the activities of
people in an enterprise to be co-ordinated together, and integrated with the organisation’s
computing facilities. A process management system built using the ProcessWise Inte-
grator has a client/server structure and consists of four main components: User Interface,
Process Control Manager, Process description in their PML, and an Application Interface.
The most important component of ProcessWise Integrator is the Process Control Man-
ager (process engine), which acts as the central server. Its main function is to interpret
the PML description of the process. To ensure that processes may continue indefinitely,
the Process Control Manager has been implemented using a persistent store technology.
ProcessWeb can also be regarded as SPT, because it has been used to model and enact
software processes, and it has functionality for dealing with process evolution which is
typical of software development processes.

ActionWork flow [MG94] is a commercial workflow product from Action Technologies.
ActionWorkflow inspired by speech-act sees a business process as a conversation be-
tween two particular roles; the customer and the provider. A business process is seen as a
closed-loop ending with explicitly stated customer satisfaction. The basic structure for a
workflow model in ActionWorkflow consists of four phases as shown in figure 2.5:

1. Opening: Initiated either by a request from the customer or an offer from the
provider.

2. Agreement: The customer and provider agree upon unique conditions of satisfaction
for the particular dialog instance.

3. Performance: The actual performance takes place here by completing the requested
work and reporting of the completion.

4. Acceptance: The customer assesses the deliverable and declares satisfaction, or
refuses to accept according to the agreed conditions of satisfaction.

The ActionWorkflow System consists of three main components:

� ActionWorkflow Analyst; This is the process modelling tool used to model business
processes.

� ActionWorkflow Application Builder: This tool takes a process model as an input,
and adds forms, fields, and interfaces to external systems.

� ActionWorkflow Manager: This tool is responsible for executing the workflow.



2.4. WORKFLOW 37

AgreementOpening

PerformanceAcceptance

Conditions
       of
satisfaction

Customer Provider

Figure 2.5: The four phases of a dialog in ActionWorkflow

In addition an ActionWorkflow API is provided to deploy client workflow enabled appli-
cations.

InConcert [Sar96] produced by InConcert Inc. is an open workflow tool based on object-
oriented technology. InConcert provides distributed process support for various plat-
forms. “To-do” lists are provided for the users, and the managers have process tracking
and reporting tools available. The workflow can be changed during enactment, and ad-hoc
routing of the workflow is also supported. A process is in InConcert represented as jobs
containing jobs. A job describes a multi-person collaborative activity with some goal.
The job consists of a task structure and a shared workspace. The task structure can be
hierarchically decomposed, and a task has inputs and produces some outputs. Users are
assigned to roles that are responsible for tasks.

CAGIS PCE related to workflow

The workflow systems presented above represents a selection of existing systems having
some interesting assets. X-MAS is interesting because it illustrates an approach for com-
bining workflow with mobile agents. In the CAGIS PCE, we use mobile agents to provide
support for cooperative activities between people, while a more traditional workflow sys-
tem is used to support individual workflow. In X-MAS, mobile agents are used to wrap
activities that are distributed to move between people, tools, databases etc. Endeavors
is another interesting workflow system because of its flexibility and its ability to run on
heterogeneous platforms. Endeavors allows people to change their workflow during en-
actment, and does not put any restrictions on how the process is changed. We use the
same principle in the CAGIS PCE, where people can change the process models during
enactment in the way they want.

The implementation of the user-interface in CAGIS SimpleProcess workflow tool was
based on experiences from the ProcessWebworkflow tool. The user-client in Process-
Web is very flexible and convenient, since only a standard Web-browser is required to run
it. However, compared to the CAGIS SimpleProcess tool, ProcessWeb has a very flexible
programming language based PML that is very powerful for modelling interactions be-
tween people. ActionWork flow and InConcert are examples of commercial workflow



38 CHAPTER 2. STATE-OF-THE-ART

tools with two different philosophies. ActionWorkflow uses a PML where all activities
are modelled as a conversation between the customer and the provider. The conversation
based PML enables ActionWorkflow to model both activity networks and interactions
between roles. InConcert uses an activity-network based PML, and offers a rich object-
oriented framework for building specialised workflow tools.

2.4.2 Research Trends and Challenges

Recent research within the workflow field has been focusing on technical aspects as well
as more fundamental issues. Typical technical challenges for workflow research have been
to provide workflow systems that are scalable, have high availability, are easy to manage,
and that can manage security sufficiently. Further, research within the workflow field has
investigated how to provide distributed workflow, how to provide web-based workflow,
how workflow can be embedded into existing software systems, how to use advanced
transaction models in workflow systems, and how workflow systems can utilise technolo-
gies like CORBA and DCOM. Many of these technical problems have been solved in
research prototypes, but in many commercial workflow tools these issues have not yet
been addressed.

For the more fundamental research challenges, much research is still required to solve the
existing problems. Workflow systems have suffered from the same problems as PSEEs
by being too rigid when enforcing people to work according to a workflow model. Some
recent workflow research has started to look at how flexible workflow can be achieved
by allowing users deviate from the workflow model through exceptions, and by allow-
ing process changes during enactment like Endeavors described in 2.4.1. One problem
with flexible workflow is how to keep the workflow consistent. Deviation and process
changes should be analysed to understand the consequences of the changes. Another re-
search challenge has been how to offer users different views of the process from the same
underlying workflow model.

CAGIS PCE and Research Challenges

The work with the CAGIS SimpleProcess workflow tool has addressed both some tech-
nical issues like how to provide distributed and web-based workflow, and more funda-
mental issues like how to support and model flexible workflow [Wan99, Wan00b]. The
main difference between our prototype and other workflow prototypes is that we provide
support for moving a process fragment (one or more activities in a workspace) between
workspaces. This movement of activities can be used for re-allocating activities for differ-
ent roles/people, for re-structuring processes, for re-arranging activities, and for building
the processes from existing process fragments. This approach can be called component-
based workflow, since the process fragments become individual components that can be
combined in a flexible way. It is important to note that the CAGIS SimpleProcess work-
flow tool should be used in combination with our CAGIS DIAS agent system (support for
cooperative activities) and the CAGIS GlueServer. The GlueServer will then execute a



2.5. COMPUTER-SUPPORTED COOPERATIVE WORK (CSCW) 39

GlueModel specifying rules for when the workflow process should be changed, e.g. when
a allocation agent detects that the required human resources for a specific task are not
available.

2.5 Computer-Supported Cooperative Work (CSCW)

In 1984, Paul Cashman and Irene Grief organised a workshop of people from various dis-
ciplines, sharing an interest in how people work and how technology can support people’s
activities. The workshop was called “computer-supported cooperative work” . One main
motivation for doing research within CSCW was that the challenges in office automa-
tion were not primarily technical anymore. To improve cooperative support for people
working with computers, we had to learn more about how people work in groups and or-
ganisation and how technology affects that. CSCW started as an multidisciplinary effort
by technologists to learn from economists, social psychologists, anthropologists, organi-
sation theorists, educators, and anyone else who can shed light on group activity [Gru94].
CSCW applications typically include desktop conferencing and video conferencing sys-
tems, collaborative authorship applications, electronic mail extensions, electronic meet-
ing rooms, and group support systems. Workflow tools and process tools can be seen as a
specific group support system.

2.5.1 Process Support for Cooperative Work

This section describes research that has been focusing on process support for cooperative
work from a CSCW point of view. Note that this section gives examples of PSEEs and
workflow systems that can be regarded as systems for CSCW.

Cooperative work involves three aspects:

� Communication between involved parties: often low-level control flow.

� Coordination where participants activities are planned, scheduled, and monitored,
and where negotiation and arbitration also are necessary: i.e., high-level control
flow.

� Collaboration where participants share and exchange data and plans: mostly data
flow.

Cooperative systems and related support are also categorised according to the time/location
matrix [Gru94] as shown in figure 2.6. The CSCW typology shown in the figure dis-
tinguishes between synchronous and asynchronous work, and non-distributed and dis-
tributed work. In addition, this typology differentiates between predictable and unpre-
dictable synchronisation and distribution. Examples of types of CSCW systems are also
shown in the figure.



40 CHAPTER 2. STATE-OF-THE-ART

P
 L

 A
 C

 E

T I M E

Same

Same

  Different
      but
predictable

  Different
      but
predictable

Work
shifts

Team
rooms

Workflow
Computer
  bulletin
   boards

Electronic
     mail

Collaborative
     writing

Interactive
 multicast
 seminars

 Tele/video/
   desktop
conferencing

 Meeting
facilitation

  Different
   and un−
predictable

  Different
   and un−
predictable

Figure 2.6: Cooperative systems categorised according to the time/location matrix

Most of the work in the software process and workflow community has been focusing
on how to make people work together in an organised and model-based way (partly pre-
planned). For high-level processes with little detail, it is possible to make people work
in this manner. However, the development of software – or creative work in general
– involves that people cooperate closely and negotiate to solve problems and to do the
actual work. These kinds of processes are very hard to support by traditional software
process support tools, because the focus will be more at cooperative aspects than pure
coordination of work [WLCM98a].

Much CSCW work has been characterised as being synchronous and distributed accord-
ing to the above time/location matrix. We may add an extra dimension to the CSCW
typologies, considering different kinds of cooperative work, put in increasing complexity
of the process support they need [LC98]:

1. Ad-hoc cooperative work such as brainstorming, cooperative learning, informal
meetings, design work etc. Process support is often implemented through interac-
tive blackboards and awareness triggers, such as in [DT93] and Ariadne [SD97].
For instance, there is little formal product modelling to explain why certain people
are “ related” and therefore need to cooperate.

2. Predefined/strict workflow, in traditional Office Automation style is often repre-



2.5. COMPUTER-SUPPORTED COOPERATIVE WORK (CSCW) 41

sented by simple document/process flow. Examples of such systems can be Lotus
Notes [Orl92], Active Mail [GSSS92] and MAFIA [LvRH90].

3. Coordinated workflow, such as traditional centralised software maintenance work
consisting of check-out, data processing, check-in, and merge steps. There exist
several systems supporting coordinated workflow (mostly prototypes), e.g., EPOS
[CHLN94], MARVEL/Oz [BSK95], and APEL [DEA98].

4. Cooperative workflow, such as decentralised software development and mainte-
nance work conducted in distributed organisations or across organisations. Here
the shared workspace and the cooperation planning are the main extra factors from
the process point of view. Example of a system supporting distributed organisations
and processes is Oz [BSK95], and Endeavors [HL98].

According to the classification above, the CAGIS PCE should be placed into the category
cooperative workflow since this environment provides support for cooperative, distributed
software development. In addition, is it possible to categorise one of the components in
the CAGIS PCE differently. The CAGIS DIAS (agent system) is suitable for providing
process support to ad-hoc cooperative work such as brain storming, meeting support, and
awareness.

Lastly, it must be said, that CSCW has had a tradition for involving social scientists –
such as psychologists, social anthropologists, and organisational theorists – in carrying
out realistic (in-vivo) studies.

2.5.2 Research Trends and Challenges

Recent CSCW research has been focusing on various aspects of cooperative software sys-
tems, such as how to provide virtual communities for people that work in a distributed
environment. Systems providing support for virtual communities allow people to work
in virtual office environments where people share information, talks, and interact in other
ways. Schmidt and Bannon in [SB92] argues that the lack of focus in CSCW may hinder
its further development and lead to its dissipation. They further suggest that CSCW should
be concerned with the support requirements of cooperative work arrangements. Aware-
ness has been another important research area within CSCW, where the focus has been on
how to provide efficient infrastructures and user-interfaces making people aware of other
people and events. The World Wide Web and the Internet have introduced new possibili-
ties and research challenges for the CSCW community. Many collaborative systems to be
used on the Web have been made both as research prototypes and as commercial systems.
The Web and the Internet have opened a wider possibility to share information and to
interact beyond geographical distances and time-differences. Recent CSCW research has
also focused on pure technical issues like how to use Java and component architecture to
develop systems for CSCW. In addition the focus has been on building open systems that
can interact with a variety of tools, and that can run on different platforms.



42 CHAPTER 2. STATE-OF-THE-ART

Maybe the biggest challenge for research concerning process support for cooperative
work is to find the right balance between forced behaviour (automation), and non-unobtrusive
support (e.g. notifiers). Traditionally, the CSCW community has opposed all forced be-
haviour, while the SPT and workflow community has been focusing too much on automa-
tion. Also groupware created from CSCW research has not been focusing on process
support at all. These tools have provided an infrastructure for doing cooperative work
(for e.g. cooperative editors, sharing of documents etc.), without giving any process sup-
port at all. In order to find the right balance, the appropriate types of cooperative processes
must be identified and characterised. For each type of process, various types of process
support should be identified.

CAGIS PCE related to CSCW

The cooperative support in CAGIS is based on agent meeting places(AMPs), called ago-
ras in [MDP98], where standard or specialised agents can meet to help solve or negotiate
about a given task. Note, that such meeting-places are different from conventional, con-
trolled workspaces with formally checked-out artifacts. The process support in CAGIS
(including the GlueServer, CAGIS SimpleProcess workflow tool, and the CAGIS DIAS
agent system) can also be viewed as a framework for cooperative workflow, since the
focus is on support for distributed processes with cooperative aspects. Our approach
combines CSCW-like cooperative agents with traditional workflow support. Our research
distinguishes itself from other CSCW research with the focus on process.

2.6 Software Agents

The history of software agents started in artificial intelligence research in the late 70s,
where Carl Hewitt worked with a concurrent actor model [Hew77]. He proposed self-
contained, concurrent, interactive executing objects called actors. An actor had a encap-
sulated internal state and could respond to messages from other similar actors.

It is said that software agents are a new paradigm for developing software applications.
This has made research fields like software architecture, middleware, artificial intelligence
make use of software agents as a part of the research. Software agents can be applied in
a wide range of domains, like web-search agents, email-filters, desktop helpers, advance
control systems, e-commerce, cooperative computer support etc. In this section, we will
focus on two types of agents that are relevant to the CAGIS multi-agent architecture de-
scribed in this thesis; namely mobile agents and cooperative agents. These two types of
agents are combined in the our work.



2.6. SOFTWARE AGENTS 43

2.6.1 Mobile Agent Systems

A mobile agent is an agent with the ability to move around in a network. Mobile agents
have become a very popular research topic lately, and is also a much mis- or overused
word. Many technologies facilitate moving objects between hosts.

The Aglets framework [LO98, Lan97, OKO98, LA97], developed at IBM’s Research
Laboratory in Japan, but is not being supported anymore. Aglets provide support for
running Java programs (code and state) to move around in a network from one host to an-
other. That is, an aglet executing on a host can suddenly halt execution, dispatch (migrate)
to another remote host and start executing again. There are often misunderstandings be-
tween the terms aglets and applets. Unlike applets, an aglet also carries its state when it
migrates. An applet is only passive code that can move across the network from a server
to a client. At a (new) client, the applet is initialised in the context of a run-time process
where an interpreter can execute its code. An aglet can, because it is carrying its state
wherever it goes, travel in sequence to many destinations on a network.

Voyager [Gla99] by ObjectSpace is a product family consisting of an Object Request
Broker (ORB) with services, and an application server where the ORB supports mobile
agents.

Odyssey[Whi96] developed by General Magic enables developers to create and debug
their own mobile agent applications implemented in Java, and offers support for arranging
meetings on particular hosts, and publications of objects.

Jumping Beans[Ad 99] builds on the Java platform and provides a framework for Java
programs to “ jump” from computer to computer. The Jumping Beans architecture is based
on a client-server architecture, where programs moving from one host to another must do
this through a central management server. The central management server has a very strict
security system. This implies that the Jumping Bean framework is best suited for small
distributed networks rather than WANs like the Internet (because of firewalls).

Grasshopper [IKV00] is an agent development platform launched by IKV++ in 1998.
It enables users to create agent applications enhancing electronic commerce applications,
dynamic information retrieval, advanced telecommunication services and mobile comput-
ing. Grasshopper is completely implemented in Java and provide communication services
through CORBA giving the benefit of high distributed integration.

Bonding and Encapsulation Enhancement Agent (Bee-gent)[Cor00c] is an agent de-
velopment framework developed by Toshiba Corporation. It is entirely based on the
mobile agent concept. All applications become agents, and all messages are carried by
agents; thus it is possible to build a distributed system using existing applications

All the mobile agent frameworks above uses Java as an implementation language for
agents. Voyager and Grasshopper are a bit different compared to the other agent frame-
works, since they use an ORB that supports mobile agents, making it possible to integrate
other systems through standard CORBA interfaces.



44 CHAPTER 2. STATE-OF-THE-ART

2.6.2 Cooperative Software Agent Systems

In multi-agent systems, the software agents must cooperate in order to reach their goals.
In such systems, the agents are autonomous entities that can perform tasks assigned to
them independently, without user intervention. Such agents can be used to negotiate
about resources in domains like distributed support systems, system management, artifi-
cial intelligence, and electronic commerce.

The DYNAMICS agent framework described in [TGML98], Tu et al. present an archi-
tecture to integrate mobile and intelligent agents providing an approach of dynamically
embedding negotiation capabilities into mobile agents. One of the main difficulties with
a practical implementation of a system combining intelligence and mobility, is to prevent
that the agents get too big. Intelligent agents often must hold much more code than e.g.
simple GUI mobile agents. To deal with this problem, Tu et al. have listed three important
requirements for the design of plug-in2 architecture for mobile agents:

� Role-specific functionality: A mobile agent should only carry the functionality to
fill the role it is assigned to do.

� On-the-fly loading: Functionality needed of an agent should be loaded ”on de-
mand” .

� Flexible configuration: The agent’s functionality should also be flexible and dy-
namically configured, in order to reuse functionality in similar, but different con-
strained situations.

Tu et al. further proposes that the design and implementation of this architecture results
in a plug-in architecture called DYNAMICS , with the following components:

� A Communication module, concerned with the delivery and processing of any kind
of messages exchanged between the agents. If a message is recognised as a negotia-
tion message, its content is passed to the protocol module. KQML has been used for
implementing the communication module, and a new ontology called negotiation
has been introduced to recognise negotiation messages.

� A Protocol module, responsible for the protocol compliance of an agent. This im-
plies that the content of each incoming and outgoing negotiation message is in-
spected by the protocol module. The interface between the communication module
and the protocol module is determined by:
In: incoming negotiation message content and sender of message, and
Out: outgoing negotiation message content, addresse(s) of message and/or sending
mode (unicast/multicast)

2Plug-in means components that can be added and removed dynamically



2.6. SOFTWARE AGENTS 45

� A Strategy module, implementing a negotiation strategy responsible for producing
proper negotiation actions as required by the protocol module. The following dy-
namically typed parameters are used:
In: Current negotiation state is passed from protocol module.
Out: Negotiation action computed by the strategy module.

� A Rule module, used to configure or constrain objects. Configuration can be achieved
by performing actions on the main properties of the configured components. Three
different rule types exist: Invariant - is a condition that must hold true at any time
with regard to the entity it is assigned to (one or a group of cooperating agents), Pol-
icy - consists of a goal and an action leading to the goal, and Action rule - consists
of a trigger and an action to be performed when the trigger holds.

This structure defines the functionality of each module through interfaces, making it pos-
sible to use different implementation methods or algorithms. In this DYNAMICS archi-
tecture, most of the application semantics of mobile agents is realised by plug-ins. The
following types of plug-ins can dynamically be incorporated into agents:

� Roles introduce new functionality into agents or entities which serve as role con-
tainers. In a business environment, roles can typically be ”sellers” , ”buyers” , or
”notary” .

� Substitutes are used to provide new implementations of or replace an existing im-
plementation of an interface.

� Configurations are used to reconfigure an application component dynamically, mean-
ing that both the interface and implementation of the reconfigured component re-
main unchanged.

The interconnection between the different modules is as follows: The communication
module is a role plug-in, the protocol module is a substitute plug-in called by the com-
munication module, the strategy module is a substitute plug-in called by the protocol
module, and the rule module is a configuration plug-in for the strategy module. DYNAM-
ICS is used to create mobile, cooperative agents, and it is implemented in Java using
Objectspace’s Voyager system.

The DESIRE agent framework described in [BvET97], shows how a multi-agent mod-
elling framework can be used to model competitive cooperation of agents. DESIRE pro-
vides support for the design of a conceptual model of the behaviour of interacting agents.
Compositional agent models define the structure of the architectures, and components in a
compositional model are directly related to agents and their tasks. In DESIRE, five types
of knowledge are represented at a conceptual level:

1. Compositional structure of agents and their tasks. Tasks can be decomposable or
not, and are characterised by their input and output knowledge structures.



46 CHAPTER 2. STATE-OF-THE-ART

2. Interaction within and between agents and tasks.

3. Temporal relations between tasks (represented by rules in temporal logic).

4. Delegation of tasks to agents.

5. Knowledge structures.

Cooperation is an effective approach for allocating limited resources in many real life
situations. Brazier et al. use housing as a limited resource as an example of a real life
scenario where competitive cooperation can be applied. In the allocation process of apart-
ments, people search for housing with a monthly rent between x and y. Real estate agents
act as coordination agents that are responsible for conflict resolutions. When the DESIRE
framework is applied to this scenario, the competitive cooperation is modelled with com-
petitive agents and a material world where shared information is stored. A competitive
agent contains the following tasks:

� Maintain World Information. This task stores the material world information, being
information an agent has about the world state, namely presence of agents and
resources.

� Agent specific tasks. One agent specific task is modelled, namely Obtain Resource.

� Cooperation Management. This task is responsible for four subtasks: 1) Update
current agent information, 2) Determine access to resources depending on infor-
mation about the world, priorities between agents, and co-operativeness of other
agents, 3) Determine Priority based on domain specific knowledge, and 4) Deter-
mine Cooperation through observation and reasoning.

� World Interaction Management. This task is responsible for observing and perform-
ing actions proposed by Obtain Resource in the Agent Specific Tasks.

� Agent Interaction Management. This task manages communication between an
agent and other agents.

� Own Process Control. These tasks are responsible for determining which informa-
tion is needed to decide whether access to a resource is allowed, and where this
information is found.

� Agent task control. This task specifies activation of the task Own Process Control.

The main difference between the cooperative software agent systems presented above is
that DYNAMICS has combined mobility with intelligence, while DESIRE focuses on
conceptual models of the behaviour of interacting agents. If it is required to have mobile
agent support, DYNAMICS offers the right balance between mobile agents not being to
fat (in code-size) and modules for intelligence that can be incorporated in the agent on
demand. DESIRE’s strength is that is has a conceptual model for solving tasks where
agents have to compete to reach their goals.



2.6. SOFTWARE AGENTS 47

2.6.3 Research Challenges and Trends

Considerable effort has recently been spent on research on software agents. However,
still most of the existing agent frameworks are immature. One goal of software agent
research must be to standardise software agent architectures. Within mobile agent re-
search, effort has been spent on how to provide small efficient, intelligent mobile agents,
and languages for specifying their coordination. In [CFM00], Ciancarini et. al. propose
a coordination language that provides a formal framework for specifying and analysing
mobile software agent. A coordination language can express the creation and destruction
of agents, their communication activities, their distribution and mobility in space, and
synchronisation and distribution of their action over time. For cooperative agents there is
a need for standardising how they interact through standard procedures and formal mod-
els like speech-act and state machines. Another problem with software agents is that there
exists almost no validation of such systems by end-users. This means that it is really hard
to predict how useful agent systems really are. In [Han00], Hannemyr argues that im-
plemented agents are much simpler than their counterparts in the literature. He indicates
that it is really hard to implement very useful and advanced software agents, and that the
“agent” name is often used to sell products instead of functionality. There are however
some current developments of agent prototype systems that can deal with the problems of
intelligence, adaptive reasoning and mobility. These systems may not meet the high and
in some cases exaggerated expectations that agents can be used for solve anything, but it
is a step in the right direction.

CAGIS PCE related to Software Agents

As a part of the CAGIS PCE, the CAGIS DIAS is a mobile multi-agent architecture that
was originally implemented in Java by using the Aglets framework. By using mobile
agents we could benefit from less demand on servers since agents can execute locally,
and from less network load since the clients do not need to continuously interact with the
server. The current implementation of DIAS provides an infrastructure for cooperation
between agents through KQML, although the agent interaction does not rely on an un-
derlying conceptual model for doing reasoning. A simple state machine in combination
with speech-act protocols is used by the agent to decide what to do next. This ad-hoc
approach has been sufficient for solving the simple negotiation processes for resource al-
location present in the scenarios we have used. However, for supporting more complex
cooperative situations (e.g. negotiations), a more formal framework should be used to
model the agent interaction. The DYNAMICS framework presented in section 2.6.2 is
an appropriate candidate here, because it combines mobile agents and intelligent agents.
Another approach could be to drop mobility, and only focus on competitive intelligent
agent cooperation. In this case, the DESIRE framework is the most desirable solution
because of its focus on formal modelling of cooperating agents.



48 CHAPTER 2. STATE-OF-THE-ART

2.7 Middleware

Middleware products are typically used as bridges between software product, e.g. be-
tween a database system and a Web server. The term middleware is used to describe
separate products that serve as the glue between two applications.

Common middleware categories include: TP monitors, DCE environments, RPC systems,
Object Request Brokers (ORBs), Database access systems, and Message Passing. This
section describes middleware technology that are relevant to this theses, namely Web-
related technology, Object and component architectures, and Distributed Java access. For
a general introduction to middleware, see [Ber96].

2.7.1 Middleware Systems and Technology

This section looks into examples of existing middleware systems and technology.

Web-related technology

The World-Wide-Web (WWW) has become the defacto standard for sharing docu-
ments and communicating in distributed environments. WWW has provided an easy,
although simple way to make information or services widely available. Connected to
the Web/Internet, universal web-clients will run a local web-browser that talks to a web-
server, that again can talk to e.g. a database server over a CGI (Common Gateway In-
terface) protocol. There are now also many user-oriented, design tools for creating and
maintaining web-pages and corresponding web-sites.

The Web relies on the Hyper-Text Markup Language (HTML) used to specify the look
and the contents of web-documents. HTML is used to specify what colours, fonts, graph-
ics, video and sounds that should be visible when looking at this web-page. HTML can
also be used to specify simple interfaces through HTML-forms. These HTML-forms do
not provide the full functionality of user interfaces as provided in graphical operation
systems, but offer graphical user interfaces (GUIs) for doing selection from a list, enter-
ing text, selecting among radio-buttons, highlighting check-boxes and pushing buttons.
More specialised user interfaces for e.g. showing tables are not supported. Also by using
HTML, a web-page will be static. Because of these shortcomings, other web-standards
are used in combination with HTML e.g., Dynamic HTML, Java script, Macromedia
etc. HTML lacks the capability of specialisation. HTML describes how the data on a
web-page is presented through markup elements, but does not “understand” what the data
represents.

The eXtended Markup Language (XML)[Hol98, XML99] is more flexible, because
we can define our own markup elements. This enables us to tailor a document (often
a textual model in some formal language) to our own needs, storing and structuring the
data (document symbols) as we like. We can add that many XML parsers and other XML



2.7. MIDDLEWARE 49

support tools are available, and can be downloaded for free from the Internet. Initially,
the WWW was meant to be a network, where documents could be shared for reading.

Recent the Webdav [WW98] initiative has provided a protocol and a framework for also
access web-documents for editing. By using Webdav, it is possible to share documents on
the web both for reading and editing. Webdav offers simple collaborative versioning of
documents, but is has not gained a full intension from tool vendors. The last versions of
Microsoft office have support for uploading and downloading documents from the Web
by using the Webdav protocol.

Object and component architectures

In the hardware industry, the term component is used to describe a part of a device. A
hardware product is typically an assembly of several components. Recently, the term
component is also used for software parts that can be combined and assembled to produce
a product. Components are reusable and have a well-defined interface. A possible defi-
nition of a component can be “A small binary object or program that performs a specific
function and is designed in such a way to easily operate with other components and appli-
cations” [ISP00a]. This section describes component architecture providing infrastructure
for distributed components to interact.

The Object Request Broker (ORB)concept and the Common Object Request Broker
Architecture (CORBA) [OMG97, Bak97] are a central part of Object Management Ar-
chitecture (OMA) defined by the Object Management Group (OMG). CORBA defines a
mechanism that allows software components to communicate with each other and the sys-
tem itself. The location of components living on a CORBA bus (software component bus)
is totally transparent to the clients, and the clients can invoke a component’s methods, both
statically and dynamically. Static invocation means that the client knows the method name
and its parameters. For dynamic invocation, the client will ask the server for information
about available methods. All applications/objects communicate through the CORBA bus,
and their interfaces are specified in the Interface Definition Language (IDL). The CORBA
IDL is mappable to programming languages like Java, C, C++, Perl, COBOL etc. CORBA
services are collections of system-level services packaged with IDL-specified interfaces,
that complement the functionality of the ORB. OMG has published standards (some rather
general) for several services, such as naming, events, life-cycle, persistence, transactions,
concurrency control, relationships, externalisation, licensing, querying, properties, secu-
rity, time, collections, and trading. The CORBA facilities and domain interfaces provide
component frameworks that specify rules of engagement, common data formats, and ar-
chitecture boundaries.

Microsoft Distributed Component Architecture (MDCA) [CRW98] is an architec-
ture that is Microsoft’s answer to the challenges that component software presents the
computer industry today. Component Object Model (COM), Distributed COM (DCOM)
[CRW96] and its ActiveX language, and the next generation COM (COM+) denote a
set of related component object models incorporated into Microsoft’s family of Windows
operating systems. The “wrapped” components may also exist as binary code, not only



50 CHAPTER 2. STATE-OF-THE-ART

as source code that is the case with CORBA. The term ActiveX do not refer to a well-
defined technology, but can be characterised as a brand name. Today, Active X are most
commonly used to denote ActiveX Controls, which are components that follow certain
standards in how they interact with their clients. COM is not a technology for imple-
menting components, but it is used to define components and their interfaces. In addition,
COM defines how components and clients interact by providing means for clients to call
methods in components through a well-defined interface. COM provides transparent ac-
cess to components on a single host. DCOM extends COM and makes it possible for
components to communicate across a network. COM+ makes it easier for developers to
create and use software components in any programming language and by using any tool.
COM+ also introduces several new services to components, such as publishing and sub-
scribing, in-memory database with transaction support, queued components, and dynamic
load balancing.

Distributed Java access

Java has become the default programming language for programming distributed systems
for the Internet. The major advantages in using Java are object-orientation, platform inde-
pendent and rich support for distributed computing. This section describes methods and
framework for making distributed systems using Java.

Java Remote Method Invocation (Java RMI)[Mic99a] is an interprocess protocol for
Java, allowing Java Objects living in different Java Virtual Machines to invoke transpar-
ently each other’s methods. Since these Virtual Machines can be running on different
computers anywhere on the network, RMI enables object-oriented distributed computing.

JINI technology [Edw99, Mic00] is designed to enable users to simply connect any num-
ber of digital devices to the network, creating a “plug-and-play” community. By using
JINI technology, the network itself can be very dynamic; devices and services can be
added and removed regularly. JINI provides mechanisms to enable smooth adding, re-
moval, and finding devices and services on the network. JINI is built on top of Java,
object serialisation and RMI, which enable objects to move around the network between
virtual machines.

JavaSpaces[Mic99b, FHA99] from Sun is based on JINI, and is a framework for dy-
namic communication, coordination, and sharing of objects between network resources
like clients and servers. In a distributed application, JavaSpaces technology acts as a vir-
tual space between providers and requesters of network resources or objects. The virtual
space serves as a shared, network-accessible repository for objects. This virtual space
allows participants in a distributed environment to exchange tasks, requests and informa-
tion in the form of objects located in different JavaSpaces. The communication is handled
by matching objects in a Space with template objects; thus there is no need to know the
address of a specified host. This means that JavaSpaces technology provides a novel pro-
gramming model, that views an application as a collection of processes cooperating via
the flow of objects into and out of one or more JavaSpaces. It differs from the traditional
view where messages are passed between processes to invoke methods on remote objects.



2.7. MIDDLEWARE 51

2.7.2 Research Challenges and Trends

Middleware technologies can be used as a technological base to support distributed co-
operative software engineering. It is, however, not possible to simply pick the necessary
technologies one by one, combine them, and obtain a required distributed system.

To provide a graphical user interface (GUI) that is accessible for users in a heterogeneous
environment, HTML can be used. Although, HTML has limited capabilities for providing
advanced user interfaces, most user interaction can be supported through HTML. If more
advanced GUI features are needed, Java applets can be embedded into a web-page. Proper
methods to develop and maintain Web-based systems are however still immature. XML
is suitable for representing data, independent of how the data are represented in a web-
browser. The transition from XML to HTML must be efficient, as well at it should be
possible to change the way the data are presented without redefining the XML. A research
challenge for XML and HTML is to validate existing XML/HTML methods and tools.
XML-tools available are, however, very useful for fast prototyping.

In [ABE00], Andersen et al. argue that traditional middleware like CORBA and Java
RMI are not flexible and adaptable enough for new application types such as multimedia,
real-time and mobility. Middleware must be configurable to satisfy requirements such as
scheduling policies, special protocols for multimedia and resource management. Further,
they suggest that reflective middleware should be used to allow dynamic configuration of
middleware.

In a distributed execution environment it is important to enable efficient interaction be-
tween various software and hardware parts. Object and component frameworks try to pro-
vide such interaction through a software bus. By using a component framework, reusabil-
ity can also be provided, but this is no automatic feature. Such component frameworks
should also give guidelines for how to implement components that are reusable in future
implementations.

CAGIS PCE related to Middleware

This thesis does not address any research challenges described above for middleware, but
middleware is used as an enabling technology to provide the architectures and tools we
need. Our CAGIS PCE has used middleware extensively like HTML for providing user
interfaces, XML for storing data and for data exchange, and CGI to provide an interface
between the workflow tool and a web browser. Our work with a multi-agent architecture
has required us to use middleware like KQML, Java RMI, JavaSpaces, and JINI. Further,
we have used CORBA to facilitate a communication bus where other system can access
the agent system.

There is also a novel GlueServer [Wan99, Wan00b], a new middleware for connecting
static (pre-planned) workflow with software agents to achieve more dynamic (on-the-fly)
cooperation [Bjø00]. The GlueServer consists of a GlueEngine, a GlueModel, an Agent
Interface and a Workflow Interface. A GlueModel, written in XML, specifies how sim-



52 CHAPTER 2. STATE-OF-THE-ART

ple workflow processes involve interactive agents for handling cooperative and dynamic
aspects of the process. A workflow tool will typically notify the GlueServer about the
workflow process state. The GlueServer will check this state against the GlueModel, and
possibly invoke agents (e.g. negotiation agents). The result (e.g. from the negotiation
agent) will be brought back to the GlueServer, and a reaction (also defined in the Glue-
Model) will be sent back to the workflow tool. Typical reactions can be to re-start a
workflow sub-process, change a workflow sub-process, halt a workflow sub-process etc.
The GlueServer is implemented in Java, and by using a XML parser from SUN Microsys-
tems, and ORBIX Web’s CORBA implementation. The GlueServer can also be used as
middleware for providing federation of other agent systems and workflow systems.



CHAPTER 3

Research Focus and Method

This chapter describes the research focus and method of this thesis.

3.1 Research Focus

The research focus for this thesis has been on how to provide flexible process support for
cooperative software processes in heterogeneous environments. The research focus can
be divided into three main parts:

� Models and Concepts: This part of the work has been focusing on what mod-
els and concepts are necessary to model and support processes that contain both
distributed, cooperative processes, and local, individual processes. We found that
it was necessary to divide between cooperative and individual processes. It was
therefore required to specify the interaction between cooperative processes and in-
dividual processes. Our research in models and concepts has resulted in a process
modelling language for individual processes presented in the paper “Support for
Mobile Software Processes in CAGIS” , chapter 17. Further, the paper “ Integrat-
ing Software Process Fragments with Interacting Agents in chapter 18 describes a
language for specifying relations between process fragments and agents.

� Architectures: To be able to perform distributed process support in a heteroge-
neous environment, an architecture had to be established. This architecture had
to take care of the distribution of people and groups of people, and provide an
efficient infrastructure for doing interaction between distributed entities. This in-
frastructure needed a facility to distribute documents and models, and also a way of

53



54 CHAPTER 3. RESEARCH FOCUS AND METHOD

migrating these documents and models between distributed entities. The papers “A
Multi-Agent Architecture for Cooperative Software Engineering” (chapter 14), and
“Design Principles for a Mobile, Multi-Agent Architecture for Cooperative Soft-
ware Engineering” (chapter 15) present our multi-agent architecture, and how it
was designed.

� Technology: Since this PhD work had very limited human and time resources, it
was important to (re)use existing technology that could offer the needed services.
Typical technology was middleware technology for providing a distributed infras-
tructure, uniform user-interface clients (Web-clients), repository services, interop-
erability interfaces to other tools and systems etc. When choosing technology it was
important that it was open, that it could be run on different machines and operating
systems, and that it was relatively easy to program and configure. Functionality
for fast prototyping has been regarded as more important than performance when
selecting technology. The paper “ Implementing a Multi-Agent Architecture for Co-
operative Software Engineering” presented in chapter 16 describes the technology
choices we made for our multi-agent architecture.

3.2 Research Methods

This section presents research methods that can be applied in software engineering re-
search, and how this work relates to this thesis.

3.2.1 Introduction

Software engineering is a multi-disciplinary research field stretching from technical re-
search like development of various tools, through modelling and languages, to more
non-technical research like managing people and changing processes and organisation
etc. Software development cannot be performed like manufacturing, because it contains
human-intensive and creative activities. The goal of research within software engineering
is to make tools, methods, and models enabling software to be produced more effectively,
with better quality, on time, and spending less resources. From the definitions of software
engineering presented in section 2.1.1, we recall that software engineering focus on the
development of large software applications and that many people are involved in the de-
velopment. This means that it is very time-consuming and expensive to perform full-scale
research experiments, and in most cases this is impossible. Research methods are how-
ever required to examine if new technology, methods, tools, processes and so on really
improve goals like the software quality, and less development time. In [Bas92], Basili has
identified three main research approaches that are commonly used for doing experiments
in software engineering:



3.2. RESEARCH METHODS 55

1. The engineering method: By using the engineering experimental method, engi-
neers build and test a system according to a hypothesis. Based upon the result of
the test, they improve the solution until it requires no further improvement. The
engineering method is typically used to find better methods for structuring large
systems, and software engineering is here viewed as a creative task not to be con-
trolled by anything else than necessary restrictions on the resulting product.

2. The empirical method: A statistical method is proposed as a means to validate a
given hypothesis. Unlike the analytical method, there may not be a formal model
or theory describing the hypothesis. Data is collected to verify or falsify the hy-
pothesis. The empirical method can be applied on new technology to determine
if this new technology is better or worse than the existing for producing software
effectively.

3. The mathematical method: The mathematical method is based on mathematical
and formal methods for doing experiments. A formal theory is developed and re-
sults derived from that theory can be compared with empirical observations. The
mathematical method is usually used to find better formal methods and languages,
where software development is viewed as a mathematical transformation process.

The engineering method and the empirical method can be seen as variations of the sci-
entific method [Bas93]. Note also that a mixture of the research methods can be used
together.

The research approach being used in software engineering is determined from the focus
of the software engineering research. If the focus is mostly on technical aspects, the
engineering method will be the most appropriate selection. A problem with technical
experiments can be to preserve objective view of the experiment. When comparing a
research prototype with other existing solutions, it is usual to “bend the truth” to favour
own prototypes. Since it is very hard to test a number of systems in real environments,
many short-cuts will be taken to get the results such as testing only parts of the prototypes,
selecting few elements from the real environment that participates in the experiment etc.
These short-cuts have a tendency to favour own systems.

In other research where the focus is more on the social and human aspects of software
development, we tend to use research methods being used for social sciences. A problem
can be to bridge results and research between social and technical software engineering
research, because there is fundamental differences in how they work.

In the thesis the emphasis has been on the use of the engineering method, but we have
also conducted some limited empirical studies. In in section 3.3), we describe more in
detail the research methods used in this thesis.



56 CHAPTER 3. RESEARCH FOCUS AND METHOD

3.2.2 Metrics Definition and Data Collection

Data collection is an important aspect of experiments to validate research. Before starting
to collect data, it is important to know what metrics to be measured. Goal Question Metric
(GQM) method [BCR94b] is an approach used within software process improvement, but
can also be used to define metrics to be measured in software engineering experiments.
GQM method starts by defining the goal for an object, in this case in an experiment. The
next step is to establish a set of questions used to characterise the achievement of a specific
goal with respect to a selected quality issue. Finally, the final step is to associate a set of
data with every question in order to answer it in a quantitative way. In the final evaluation
of our CAGIS PCE approach described in chapter 20, the GQM method was used to define
the metrics that were measured in the experiment. The GQM method enabled us to more
clearly specify the objectives of the experiment and how to measure these objectives.

When the metrics are defined, the data will be collected. By collecting ”wrong” data or
by not collecting enough data, an experiment can be worthless. Here are some aspects
that according to Zelkowitz [ZW98] should be considered when collecting data:

� Replication: It is important that other researchers can replicate the results of an ex-
periment by reproducing the experiment. Unpredictable variables can make repli-
cation of results impossible and should be avoided. In addition it can be hard to get
a homogeneous sample of subjects for all runs of the experiment. This effect can
be counteracted by randomising the factors out of concern.

� Local control: The degree of modification to each subject when running an exper-
iment is called local control. Local control can be a serious problem in software
engineering research, because the project management will not allow a disturbance
in a software development project adding additional costs and risk.

� Influence of context:In software development, it can be hard to determine all the
factors that influence the results in an experiment. Usually a lot of people, tools,
methods, and artifacts are involved in software development projects, all affecting
the experiment. One example is that in most software companies, the software
developers have un-documented procedures which they follow when developing
software, that can be totally different from the documented, formal procedures that
should be used.

� Temporal properties: Data collection may be historical or current. Historical data
may be missing the information needed to come to a conclusion.

When we did an evaluation of our CAGIS PCE where we compared it to two other pro-
cess centred environments (presented in chapter 20) we had to consider how data were
collected. Although the data we collected in this experiment were limited, we addressed
the problems with collecting data described above: First, it was important that our ex-
periment could be replicated by other researchers by defining the experiment in enough
detail and clarity. Then we identified the two attributes we wanted to investigate: 1)



3.2. RESEARCH METHODS 57

How much of the scenario could be modelled and supported (coverage), and 2) How
well could the prototypes cope with specific process changes (adaptability). The experi-
ment further described in detail how these attributes should be measured using the GQM
method. Local control and Influence of context were major problems in our experiment,
since the three process centred environments were not used in a real software engineering
environment. When evaluating the results we have taken these two factors into account,
and used additional qualitative reasoning to produce a valid result. Temporal properties
have not been a problem for our experiment.

A fundamental problem concerning the results from an experiment is to determine how
valid the result is. Even if the data have been collected correctly, it does not automati-
cally mean that the result is generally valid. Internal validity means that the result of an
experiment is valid only within an organisation the experiment was designed for, while
external validity means that the result is applicable outside the scope of the experiment.
For software engineering experiments it is very hard to get results that are external valid,
because there are so many factors that can change the result of an experiment such as the
size of the organisation, how the company is organised, what products are being made,
how the development process is organised etc. The results from evaluating our CAGIS
PCE approach can not be said to be external valid, since it is not validated in several real
environment.

3.2.3 Models for Validation Technology

Zelkowitz and Wallace have developed a taxonomy for software engineering experimen-
tation based on various examples of technology validation [ZW98]. This taxonomy de-
scribes 12 different experimental approaches that are grouped into three broad categories:
Observational methods, historical methods, and controlled methods.

Observational Methods

The observational method collects relevant data as a project develops, and is characterised
with little control over the development process other than using the new technology being
studied. There are four types of observational methods:

1. Project Monitoring is collecting and storing data during a project without inter-
fering with the project. Project Monitoring can be used to get a status quo of how
software is currently developed.

2. Case Studyis an experiment where a certain attribute is monitored and data are
collected to measure that attribute, in order to investigate a specific goal for the
project. Data are often collected by people involved in the projects through inter-
views or forms.

3. Assertion is an ad-hoc validation method where developers execute their own ex-
periment to see if one proposed technology is better than other alternatives.



58 CHAPTER 3. RESEARCH FOCUS AND METHOD

4. Field Study is a validation method where often several projects are simultaneously
studied by an external group so the subject under study is not disturbed.

Historical methods

When historical methods are used, existing data are collected from completed projects.
Historical methods can be divided into four methods:

5. Literature search analyses results of papers and other documents to confirm an ex-
isting hypothesis or to improve the data collected in one project, with more similar
data.

6. Legacy datastudies previously completed projects by collecting all available quan-
titative data. Data that can be interesting to look at can be products, design docu-
ments, source code, test documentation, how the project was organised etc.

7. Lessons learnedstudies qualitative aspects of previous projects to improve future
projects by typically interviewing project members about impact on the introduction
of new technology.

8. Static analysisis a validation method focusing on collecting and analysing quan-
titative data related to completed software products. Typical data that can be mea-
sured is lines of code, number of modules, module dependencies etc.

Controlled methods

The controlled method is the same research method as used in experimental design in
other scientific disciplines. If sufficient instances of an observation are available, this re-
search method provides statistical validity of the result. There are four types of controlled
methods:

9. Replicated experimentis an experiment where several subjects are set to perform
a task in multiple ways. The researchers control the experiment, by setting control
variables such as method used, tools used, staff used etc.

10. Synthetic environment experimentsare experiments where the execution envi-
ronment is changed from its original setting to make the experiment more handable
to perform. In such experiments, the organisation is often scaled down, and only
parts of the software development process are executed focusing on specific issues.

11. Dynamic analysis is a way of evaluating products when they are executed, by
adding source code in the products making it possible to debug and measure per-
formance when the products are executed. By using this method, it is possible to
compare how efficient similar products execute similar functionality.



3.3. RESEARCH METHODS USED IN THIS THESIS 59

12. Simulation is a method where a model of the real environment is used in the exper-
iment of validating technology. The model is applied to some products (executed),
and data are collected from this simulation.

In this thesis we have used two of the research methods described in the list above. First,
we have used the assertionmethod to validate if our approach is better than other existing
approaches. Second, we have conducted a literature search in the beginning of our
project to see what we could learn and use from a previous project. More details about
the research methods we used are given in section 3.3.

Zelkowitz and Wallace performed a literature study in [ZW98] where they examined
what validation methods were used in a selection of software engineering research pa-
pers (IEEE Transaction on Software Engineering, IEEE Software, and proceedings from
International Conference on Software Engineering). They discovered that about 30 % of
the papers did not have any experiments at all, and about that 34 % of the papers used
Assertion for validation. For the rest of the papers Case study (10 %), Lessons learned (9
%), and Simulation (5.5 %) were the most popular methods used. It was also discovered
that the number of papers using different validation methods in e.g., IEEE Transaction on
Software Engineering do not differ much from numbers found for so-called hard sciences.

These were methods geared towards validation of technology (tools, architectures, models
etc.) for software engineering. A persistent problem in software engineering research is to
validate the proposed technology. The reason for this can be the large costs and risks with
running full-scale experiments in real environments for validation purposes. The number
one priority for many software companies is to produce software fast. Validation of new
technology can add work-load to software developers, and is therefore undesirable. It
is possible to reduce additional costs and risks by using research methods, like lessons
learned, simulation, and synthetic experiments that do not affect on-going projects. How-
ever, the results are not automatically valid in the real developing environment. Accord-
ing to Zelkowitz and Wallace’s literature study, almost one third of the investigated papers
did not have any experimentation at all, and another third used assertion as the research
method.

3.3 Research Methods used in this Thesis

The research methods used in this thesis can be divided into three main parts: A lessons
learned study to provide the initial requirements for our approach, an internal validation
of our prototypes in order to enhance and improve their functionality, and a final validation
of our CAGIS PCE using the assertion method.



60 CHAPTER 3. RESEARCH FOCUS AND METHOD

3.3.1 Lessons Learned from the EPOS Project

Initially, the work with this thesis started with a lessons learned study of our own EPOS
process environment. From studying the EPOS project, we discovered that the implemen-
tation of EPOS suffered from being too centralised, too many tightly coupled components,
based on out-dated technology, and running only on very specific hardware and software
configurations. To avoid falling into the same ” traps” as we did in EPOS, we conducted a
thorough prestudy in order to provide the necessary technology and architectures. Based
on the experiences from EPOS and the prestudy, we decided that the CAGIS PCE pro-
totype should consist of loosely coupled tools that can be distributed and open to other
tools, and running on various hardware and software configurations. The EPOS project
experiences on how to model processes and how to deal with evolution of software pro-
cesses (described in the background papers in the chapters 8 and 9) were used as basis for
process modelling in CAGIS. Further, the work on cooperative support in EPOS (chapter
10) providing cooperative awareness services was extended to a cooperative multi-agent
architecture used in the CAGIS project. The lessons learned study gave us some warn-
ings about what we should not do in the CAGIS project, as well as useful experience and
knowledge that have been further explored.

3.3.2 Internal Validation of the CAGIS PCE

During building the CAGIS PCE, we have validated our implementation internally to in-
vestigate if the different components can and will do what they are supposed to. Through
simple, small scenarios illustrating critical issues in cooperative software engineering, we
have tested that our prototypes provide the specified functionality, such as to provide sup-
port for doing efficient resource negotiation, for flexible re-allocation of activities, etc.
Based on these functional validations we have initiated new implementations of the pro-
totypes to enhance the existing functionality. In addition to validating the functionality of
the prototypes, we have also evaluated the technology used to implement the prototypes in
regards to the functionality offered and future support from the technology providers. The
technology evaluation of our agent architecture forced us to change the underlying agent
architecture from Aglets (IBM) to JavaSpaces (Sun). The reason for this change of tech-
nology was that Aglets was no longer supported by IBM, Aglets did not support newer
versions of Java (Java 2 or later), and JavaSpaces offered better support for changing our
agent system in run-time through JINI.

3.3.3 Validation of our Approach using the Assertion Method

The final validation of our work was an evaluation performed by the assertion method.
Our technology, as well as two other SPT technologies, were evaluated by modelling
the same conference organising scenario using all three SPT technologies and by com-
paring the results. We have also shown that our technology can model other scenarios.



3.3. RESEARCH METHODS USED IN THIS THESIS 61

The comparison between the three technologies was based on limited measurements of
process model completeness and adaptability. In addition, a discussion based on the mea-
surements was used to highlight strengths and weaknesses of the mentioned technologies.
The developers of the other technologies used in this evaluation, have themselves sug-
gested how to model a conference organising scenario, and also performed some mod-
elling themselves. The assertion method was chosen as research method for the final
validation because it was impossible to do “ real validation” in a software company within
the allocated budget and time.

3.3.4 Comments

In this thesis we have chosen to validate our CAGIS PCE prototype from a technical
point-of-view. We have tested that our system has the functionality needed to support
cooperative software engineering processes, and how our system technically performs.
Another approach would be to validate our system from the user’s point-of-view, and
investigate how our system helps users cooperate in a working environment. Research
within SPT usually has focused mainly on technical issues, while CSCW research has
looked more into the human aspects. A complete validation should cover both technical
and human issues, but we did not have time to do this in this thesis.



62 CHAPTER 3. RESEARCH FOCUS AND METHOD



CHAPTER 4

Own Contribution

4.1 Background for this Thesis

The work with the CAGIS Process Centred Environment has its root in the EPOS PSEE,
also developed at our department. EPOS consisted of two main parts: EPOS CM taking
care of software products through advanced transaction handling, and EPOS PM offering
a rich toolset to model and enact process models. In EPOS, we wanted to enhance its
cooperative support and its ability to change enacted process models on-the-fly. We also
looked at possibilities for making EPOS support distributed work, making user-clients
available on the Web. Over time EPOS had grown into a very large system, making it
almost impossible to maintain. A large number of students, researchers and guest re-
searchers had been programming many lines of Prolog and C. The different contributions
to the system were not all closely integrated, and it became a big problem to make the
EPOS PSEE work as an integrated environment.

The cooperative support added to EPOS [WLCM98b] offered a light-weight awareness
support (i.e. notification) for dealing with update access conflicts of artifacts. Cooperative
resolutions of access conflicts were offered through flexible locking mechanism, aware-
ness of access conflicts, synchronisation mechanisms for files, and merging of files where
two or more users had changed the same file.

To give on-the-fly support for changing an enacted process model, a set of operations
were offered in the graphical task-network browser [NWC97]. These operations made it
possible to directly manipulate the task-network by adding activities, remove activities,
manipulate the sequence of activities, and change attributes to activities and artifacts.

63



64 CHAPTER 4. OWN CONTRIBUTION

Although we managed to add cooperative support to EPOS and some support for on-the-
fly process evolution, the different parts of EPOS were almost impossible to integrate.
The EPOS prototype suffered from typical legacy system problems: undocumented code
and features, developers that knew the system started to work for other institutions (com-
mercial companies), and it was hard to update the system to newer versions of operating
system and newer versions of programming language and programming packages.

When the CAGIS projects started in 1997, we wanted to focus on cooperative process
support, distribution of the process, and on support for on-the-fly process evolution. Based
on the experiences with EPOS, we wanted the prototypes in CAGIS to consist of a set of
rather small tools that were relatively easy to maintain and were loosely coupled. Another
important aspect of the CAGIS prototype was to use recent technology to allow web-
integration, open architecture accessible to other systems, as well as extensive distributed
support for management of processes and artifacts. More details about the architecture of
our prototype are described in section 4.3

4.2 System Requirements

In section 1.3, research questions for this thesis were presented. These research questions
identify the topics of concern. The system requirements have been worked out based on
the research questions as a starting point to list requirements to fulfil the implementation
of the CAGIS PCE. The requirements are divided into two main parts: non-functional and
high-level functional requirements.

4.2.1 Non-Functional Requirements

The non-functional requirements describes what properties the CAGIS PCE should have
that are not directly related to functionality offered, and can be divided into five parts:

N1 Openness
Based on experiences from the EPOS project as mentioned in section 4.1, the
CAGIS PCE prototype should be open to existing tools and systems, and it should
run various hardware and software platforms. By open to existing tools and sys-
tems, we mean that the prototype should be easy to integrate with existing software
components and tools, and standard interfaces should be used to communicate to
other system whenever possible.

N2 Software and Hardware Requirements
It should be possible to run our prototype at a computer matching the power of
a Pentium 120 MHz or better, and with 32 MB Ram. The computer must have
software and hardware installed for accessing the Internet.



4.2. SYSTEM REQUIREMENTS 65

N3 Response Time
The CAGIS PCE prototype should prioritise functionality before performance, but
users of the prototype should not wait for more than 30 seconds for reactions on
user interactions at normal load of the network.

N4 Security
The CAGIS PCE prototype does not provide any additional security than the secu-
rity provided by the underlying technologies used.

N5 Maintainability and Extensibility
The CAGIS PCE prototype should be easy to configure, maintain and expand.
Rather than implementing one big system the prototype should consist of several
loosely coupled tools, and it must be possible to add more tools later on.

4.2.2 High-level Requirements

One of the initial objectives for the CAGIS project [C+96] was: “To give cooperating hu-
man problem-solvers (designers, engineers) better support for concurrent and distributed
team work.” . Based on this CAGIS project objective, a number of research questions were
identified as described in section 1.3. These research questions can be summarised as fol-
lowing: Investigate what is needed to model and enact dynamic distributed, cooperative
and individual processes in a heterogeneous environment, and investigate how to create an
infrastructure for doing so. Based on these research questions, we have identified seven
high-level functional requirements the CAGIS PCE should implement:

HF1 Local work support
The CAGIS PCE should provide tool support for guiding users through their own
individual working processes by telling the user what to do, and by making tools
and documents accessible for her/him.

HF2 Cooperative work support
The CAGIS PCE should support cooperative work processes, for coordinating ob-
ject, negotiating about shared objects or resources, delegating work, voting on pro-
posals etc.

HF3 Distributed work support
The CAGIS PCE should support processes that are geographically distributed.

HF4 Light-weight support
The CAGIS PCE should use process concepts and formalisms that are easy to un-
derstand and apply for the user.

HF5 Dynamic support
The CAGIS PCE should provide an infrastructure that can cope with changes of the
process, and is easy to configure and re-configure.



66 CHAPTER 4. OWN CONTRIBUTION

HF6 Local control
The CAGIS PCE should allow users to define and change their own local processes.

HF7 Managerial control
The CAGIS PCE should allow management, that represents users involved in co-
operative work processes, define and change cooperative rules for interaction.

In section 2.3.2 in the State-of-the-art chapter, the two main research challenges for
Process-centred Software Engineering Environments (PSEEs) were identified to be how
to provide proper cooperative process support (motivated by the creative activities in soft-
ware development), and how to offer flexible process support (because software processes
are highly unstable). Traditional PSEEs have not been able to address these challenges,
because they have focused on providing strict process support provided by centralised, in-
flexible architectures. In our work with the CAGIS PCE, we have focused on cooperative
support and flexibility which is reflected in the functional requirements above (HF1-HF7).

4.3 Architecture

This section describes the CAGIS PCE architecture and its components. The first part
of this section presents a motivating scenario used in the rest of this section. Then the
overall CAGIS PCE architecture is presented. The sections 4.3.3 to 4.3.5 present the
three main components of the CAGIS PCE architecture: The CAGIS DIAS, the CAGIS
SimpleProcess, and the CAGIS GlueServer. The last section (section 4.3.6) describes how
the three main components of our CAGIS PCE architecture were designed.

4.3.1 A Motivating Scenario

To make it easier to see how the different components in the CAGIS PCE interacts, we
will present a small scenario. The scenario describes a part of a process in a computer
game company named CoolGames, where we focus on two departments; the software
development department and the graphical design department located in Oslo in Norway
and in San Francisco in the USA respectively. Since these departments are geographically
distributed, they use computers to interact via the Internet. Figure 4.1 illustrates a part of
the development process for a new game for the two departments. In CoolGames’ new
project, they have some initial ideas of their new 3D graphics game.

The developers start to implement a 3D graphics-engine prototype (A1) while the de-
signers are drawing some concept-drawings (B1). After some time of development and
designing, they decide to have some brain-storming (C1) where they share ideas, draw-
ings, and testing results from experiments with the 3D graphics-engine. Based on the
result from this brainstorming, the process could go back to either one of the activities
A1 or A2, or both, or to continue to the activities A2 and B2. In the activities A2 and
B2, each department estimates how much human resources they will need on their own



4.3. ARCHITECTURE 67

A1: Code
gfx−engine
prototype

B1: Draw
concept−
drawings

A2: Estimate
resources

B2: Estimate
resources

A3: Code
gfx−engine

B3: Create
graphics

WS: Developers

WS: Designers

The Internet

A4: Test
gfx−engine

C2:Allocate
   resources

S1

S3

C1:Brain−
  storming

S2

Figure 4.1: A scenario used to illustrate the CAGIS PCE architecture

and how much resources they need to acquire from the other department. A negotiation
is then initiated (C2) between the two departments, where they negotiate about how much
resources they should get. If the allocation process goes into a deadlock, the two depart-
ments must change their estimates (go back to A2 and B2). After a successful allocation,
the process can proceed to the activities A3 and B3. The activity A4 will be started as
soon as the activity A3 is finished.

In figure 4.1 we can divide the process into three parts:

S1 Individual activities are activities that can be performed by individuals without
any interaction with other persons. The activities A1-A4 and B1-B3 are individual
activities.

S2 Cooperative activitiesare activities that only can be performed when more than
one person is involved. The activities C1 and C2 are cooperative activities.

S3 Cooperative rulesare relations between cooperative and individual activities (e.g.
between C1 and A2) drawn in the figure as dotted lines.

The classification above will be used later in this section to describe how the different
parts of the CAGIS PCE interact and what kind of activity support they provide.

4.3.2 The CAGIS PCE Architecture

In the CAGIS project, we wanted to look at how Cooperative Software Engineering (CSE)
could be supported. By Cooperative Software Engineering (CSE) we mean large-scale
software development and maintenance work which falls into the two categories coordi-
nated and cooperative workflow (see section 2.5.1). Because of the rapid spread of World
Wide Web as the standard underlying platform for CSCW systems and other systems,



68 CHAPTER 4. OWN CONTRIBUTION

more software companies are moving from the traditional centralised working style to
the decentralised one. In decentralised CSE, communication, coordination, collaboration,
and negotiation among the various participants are more complicated, because people are
not only geographically distributed, but may also work on different platforms, at different
times, with different process models.

The key issues of CSE are group awareness, concurrency control, communication and
coordination within the group, shared information space and the support of a heteroge-
neous, open environment which integrates existing, single-user applications. All these are
related to the software process.

Nowadays, it is believed that the Multi-Agent Systems (MAS) offer a better way to model
and support these distributed, open-ended systems and environments [CMM97, CM96].
A MAS is a loosely-coupled network of problem solvers (agents) that work together to
solve a given problem. The main advantages of a MAS are: Decentralisation where com-
plex systems are broken down to cooperative subsystems, Reuse of previous components,
Cooperative Work Support to better model and support the spectrum of interactions in co-
operative work, and Flexibility to cope with incomplete specification, constant evolution,
Scalability to distribute computation on several computers, and open-endness to other
systems. These advantages made us choose to use a MAS as a central component of our
architecture, because it was ideal for implementing cooperative support in a distributed
environment. By using a MAS to implement cooperative support it was required to pro-
gram agents that could provide this support using an agent API. For simple individual
activities we found that could be a over-kill, because it would take too much time to pro-
gram these simple processes. Therefore we then chose to add a workflow component into
our architecture that was specialised on modelling and enacting simple local workflow
processes. By keeping the workflow process modelling language simple, it was possible
for users to model and change their own processes. Our architecture now consisted of
a MAS and a workflow system that were not connected in any way. Thus, we needed a
middleware to glue the MAS and the workflow tool. By allowing the workflow tool and
the MAS to be loosely coupled through the middleware component, we could also allow
other agent and workflow systems to interact in one heterogeneous environment.

We have chosen an architecture consisting of these three main components also shown in
figure 4.2 providing process support according to the classification described in the last
part of section 4.3.1:

S1 The CAGIS SimpleProcessworkflow tool provides local process support for indi-
vidual activities. If we recapitulate to the scenario in figure 4.3.1, we can identify
the activities A1-A3 and B1-B3 as activities modelled and supported by the CAGIS
SimpleProcess tool.

S2 The CAGIS Distributed Intelligent Agent System provides support for coopera-
tive activities involving people working in a distributed environment. The activities
C1 and C2 involve more than one role and spans across workspaces (distributed),
and are regarded as cooperative activities supported by the CAGIS DIAS.



4.3. ARCHITECTURE 69

S3 The CAGIS GlueServer makes it possible for the CAGIS SimpleProcess work-
flow tool to interact with the software agents by specifying the cooperative rules
between individual workflow and cooperative workflow in a GlueModel. The re-
lations between individual and cooperative activities (represented in figure 4.3.1 as
dotted lines) indicate the cooperative rules that are modelled in the GlueModel.

Workflow
model

CAGIS SimpleProcess
CAGIS DIAS

Glue
model

CAGIS GlueServer

Workflow
model

CAGIS SimpleProcess

Workspace 1

Workspace 2

The Internet AMP

3.Report
   result

1.Report state

4.Activate
   reaction1.Report state

2.Initiate
   agent

4.Activate
   reaction

Figure 4.2: Architecture for the CAGIS PCE

A typical interaction between the different components in the CAGIS PCE will work
according to the four steps as shown in figure 4.2:

1. The CAGIS SimpleProcess workflow tool will report its state to the CAGIS Glue-
Server, e.g. that it is finished with executing the activity A1 in the motivating sce-
nario.

2. The CAGIS GlueServer will look through the GlueModel to see if anything is spec-
ified for the activities A1 abd B1, and it will initiate brain-storming agents in the
CAGIS DIAS (the cooperative activity C1).

3. The brain-storming agent can return two results: successful or unsuccessful. The
result is reported to the GlueServer when C1 as finished.

4. The GlueModel specify different reactions depending on the result reported to the
GlueServer (successful or unsuccessful). Depending on the result, the GlueServer



70 CHAPTER 4. OWN CONTRIBUTION

will activate a reaction in the CAGIS SimpleProcess, the CAGIS DIAS or the
CAGIS GlueServer. In our scenario a successful result from the cooperative ac-
tivity C1 will activate a reaction by the CAGIS GlueServer to execute the activities
A2 and B2 in the CAGIS SimpleProcess workflow tool. An unsuccessful result will
activate the CAGIS SimpleProcess workflow tool to re-execute the activities A1 and
B1.

The CAGIS SimpleProcess and the CAGIS GlueServer communicate through CGI, and
the CAGIS DIAS and the CAGIS GlueServer communicate through CORBA using the
MASIF 1 standard. The CAGIS PCE architecture is flexible since the CAGIS Glue-
Server can be used to interact with other agent systems through the mobile agent in-
terface, and the CAGIS GlueServer can also be used to communicate with other workflow
tools through the interoperability workflow-XML binding framework. In this way, the
CAGIS PCE can federate systems offering a variety of process support. Note that soft-
ware agents can interact both with the CAGIS GlueServer and directly with the users in
their workspaces.

In addition to the three main parts of the architecture, we have outlined a design of how
software agents can be used combined with an existing CAGIS Process Centred Envi-
ronment to deal with evolution of distributed, fragmented workflow models. This design
proposes a solution to solve consistency problems when process models are changed in
the workflow tool. We propose to use mobile software agents, offering awareness services
solving conflicting updates of process fragment. More details are described in paper 12
(section 19).

The architecture of the three main components of the CAGIS PCE will be described in
the following sections.

4.3.3 The CAGIS DIAS Architecture

Our multi-agent architecture is an extension and specialisation of the more general Agora
architecture proposed by Matskin et al. [MDP98] suitable for modelling and supporting
all kinds of cooperative work. The CAGIS DIAS architecture is a framework for imple-
menting support for communication, coordination, collaboration, and negotiation among
the various participants grouped in workspaces in a CSE process. The main components
in this architecture are agents, workspaces, AgentMeetingPlaces(AMPs), and reposito-
ries.

The non-functional requirements (N1 and N5) described in section 4.2.1 were the start-
ing point for our multi-agent architecture. We wanted the CAGIS DIAS to be easy to
configure and expand, and use free standard software components whenever available.
We also wanted to use mobile agents, because they provide efficient usage of network
bandwidth, and less computation on the server is needed. Figure 4.3 shows the initial

1MASIF is short for Mobile Agent System Interoperability Facility defined by the Object Management
Group (OMG).



4.3. ARCHITECTURE 71

Mobility support

Workspace

Communication Bus

Naming Trading Persistence

Relations Life cycle Events

Repository

Mediator Monitor

Coordinator Negotiator

Agent communication

M
ul

ti−
ag

en
t a

rc
hi

te
ct

ur
e

A
ge

nt
 in

fr
as

tr
uc

tu
re

C
om

po
ne

nt
 in

fr
as

tr
uc

tu
re

Facilitator
Facilitator

AMP

Local
Agent

Coordination
Agent

Negotiation
Agent

Workspace
Repository

Legend

Service

 Agent
Meeting
 Place
 (AMP)

Figure 4.3: Design of the CAGIS DIAS architecture

design for our multi-agent architecture. We have used a multi-tier architecture based
on the agent, places, and things paradigm. The lower part of the figure (component in-
frastructure and agent infrastructure) defines the foundation, based on available standard
implementations, which will provide functionality and services to the prototype of the
multi-agent architecture. Typical CORBA services are identified in the component infras-
tructure such as naming, relations, life cycle, trading, events and persistence. A central
component both in workspaces and AMPs in our architecture is the facilitator that simpli-
fies the implementation of agent communication, agent security, the mediation between
agents, and the monitoring of agents. The reason for this is that the interaction between
various entities can be controlled from one central point. The drawback with this solu-
tion is that the facilitators might become bottlenecks of the system. All communication
between the components in the architecture is provided through the communication bus.
Agent specific services for mobility and agent communication are also provided as ser-
vices connected to the communication bus. An AMP is in this figure described as a server
providing various services through a facilitator. Repository support is provided through a
persistence service.

Figure 4.4 illustrates the recommended technologies that should be used for the various
parts of the CAGIS DIAS architecture based on a technology study described in [Øye98].
The technology study suggested to use Java and Java IDL as the component infrastructure
because Java provides code portability, Java is a broadly accepted standard, many agent-
related technologies are implemented in Java, and Java is updated frequently and available
for free. By choosing Java IDL as a CORBA implementation, no other CORBA services



72 CHAPTER 4. OWN CONTRIBUTION

Mobility support

Workspace

Communication Bus

Naming Trading Persistence

Relations Life cycle Events

Repository

Mediator Monitor

Coordinator Negotiator

Agent communication

Facilitator
Facilitator

AMP XML

JATLite and
KQML

Aglets
Java and
Java IDL

Local
Agent

Coordination
Agent

Negotiation
Agent

Workspace Repository

Legend

Service

 Agent
Meeting
 Place
 (AMP)

Figure 4.4: Recommended technologies for the CAGIS DIAS architecture

than the naming service were supported. The other services must then be developed in
Java or can be replaced if Java IDL will offer them in the future.

To provide support for agent communication and as a foundation for implementing AMPs
and workspaces, we suggested to use KQML and JATLite. We recommend to use KQML
[FFMM97] as the agent communication language, because it is an extensible standard
that has many features required for an agent communication language. JATLite is a Java
implementation providing inter-agent communication through KQML and facilitates the
administration of, and communication between a group of related agents.

Further to provide mobility support for agents, the Aglets framework from IBM [LO98]
was selected. The Aglets framework was chosen because at the time we conducted the
technology study, the Aglets implementation was closest to OMG’s Mobile Agent Facility
specification. In addition we suggested to use XML to represent information and work-
productions in the architecture because a lot of XML tools are available in Java, and XML
does not put any restrictions on the format of the information it shall represent.

It should be noted that the lines drawn in figure 4.4 only loosely denote where the various
technologies should be used, and more experience is needed to decide exactly which of the
technologies are best in the specific situations. The actual implementation of the CAGIS



4.3. ARCHITECTURE 73

DIAS is described in section 4.4.1. This architecture is also described in paper 7 (section
14), paper 8 (section 15), and paper 9 (section 16).

4.3.4 The CAGIS SimpleProcess Architecture

In individual processes where communication, negotiation, cooperation or collaboration
between participants in workspaces are not required; a simple activity-based workflow
model is sufficient. By using a workflow tool to take care of such processes, it is simpler
for the participants to model and change their own processes, since no programming is
required. Flexibility has been the main motivation when designing the CAGIS SimplePro-
cess, by allowing the process model to be re-arranged and changed during enactment. This
flexibility allows us to gradually build a process model from existing process fragments,
to allow parts of the process to be unspecified, and to re-arrange and change the sequence
of activities of the process model run-time.

Process fragmentLinks

Activity

A1

A2

A3

A4 A5

A6

A7

A8

A9

B1 B2

B3

B4

B5

B6

B7

B8

B9

Workspace Team−BWorkspace Team−A

Figure 4.5: CAGIS SimpleProcess concepts

In the CAGIS SimpleProcess workflow tool, a process is represented as shown in figure
4.5. A process model can consist of several autonomous parts called process fragments.
A process fragment has a name and is associated with a workspace and can consist of one
or more activities located in private or shared workspaces. Relationships between activ-
ities are called links that define the execution sequence of the activities. A workspace
is identified by an URL that must be accessible for the CAGIS SimpleProcess. Process
models in CAGIS SimpleProcess are specified in XML and the document type declaration
(DTD) of the CAGIS SimpleProcess PML is as shown in figure 4.6. Since we have used a
XML DTD to specify our PML, it is possible to change the PML if required e.g. by adding
new part. The figure shows that an activity has a name and is located in a workspace and
is defined by the parts: Prelink(s), postlink(s), a state, a due time, a feedback option, a
description, and a code part. The code part is used to specify HTML-code or an URL to
a web-page to be presented when an activity is activated. The HTML-code can be used
to to present some texts and pictures, list hyper-links to important documents and tools,



74 CHAPTER 4. OWN CONTRIBUTION

present the user HTML-forms, or executing Java-applets. Prelinks specify the activities
to be executed before current activity, and postlinks specify the activities to be executed
after current activity. An activity will go from the state Waiting to Ready, if all prelinks
(the prior activities) have the state Finish. However, if the activity is specified with a
feedback loop, only one of the prelinks needs to have the state Finish to be activated. The
user must press a button to explicitly declare that she/he is finished with an activity. The
activity network works similar to hyper-linked web-pages with states. Figure 4.7 shows
the XML-code for specifying the pre- and postlinks for the activity A3 shown in figure
4.5.

<?XML encoding=’’UTF-9’’?>
<!ELEMENT process (name,

(processfragment)+>
<!ELEMENT processfragment (name,

(workspace),
(activity)+)>

<!ELEMENT activity (name,
(workspace),
(prelink)*,
(postlink)*,
(state)?,
(due)?,
(feedback)?,
(description),
(code)*)>

<!ELEMENT name (#PCDATA)>
...

Figure 4.6: XML Document Type Declaration of the CAGIS SimpleProcess PML

<Activity>
<Name>A3</Name>
<Workspace>Team-A</Workspace>
<Prelink>Team-A/A1</Prelink>
<Prelink>Team-A/A4</Prelink>
<Postlink>Team-A/A7</Postlink>
...

</Activity>

Figure 4.7: An example of use of < prelink > and < postlink > tags

Figure 4.8 shows the architecture for the CAGIS SimpleProcess. The figure shows how
the user interacts with the workflow system through four steps:



4.3. ARCHITECTURE 75

Agenda for: Conference/PcChair/

Due time:

1/2/2001
10/2/2001
15/3/2001
20/3/2001
25/3/2001

Activity:

Make Call for Papers
Manage Person Information
Distribute Call for Papers
Handle Received Papers
Notify Reviewers

State:

Finish
Ready
Waiting
Waiting
Waiting

Conference/ Go

Show agenda for workspace:

Back Forward Reload PrintStop

Web−browser 5.0

Agenda for: Conference/PcChair/

Due time:

1/2/2001
10/2/2001
15/3/2001
20/3/2001
25/3/2001

Activity:

Make Call for Papers
Manage Person Information
Distribute Call for Papers
Handle Received Papers
Notify Reviewers

State:

Finish
Ready
Waiting
Waiting
Waiting

Conference/ Go

Show agenda for workspace:

Back Forward Reload PrintStop

Web−browser 5.0

Agenda for: Conference/PcChair/

Due time:

1/2/2001
10/2/2001
15/3/2001
20/3/2001
25/3/2001

Activity:

Make Call for Papers
Manage Person Information
Distribute Call for Papers
Handle Received Papers
Notify Reviewers

State:

Finish
Ready
Waiting
Waiting
Waiting

Conference/ Go

Show agenda for workspace:

Back Forward Reload PrintStop

Web−browser 5.0

Process
Server

Process
Modeller

Agenda
Manager

Monitor
Tool

State Database

2. Call CGI Applications
3. Access
database

Web−server

CGI−applications

The  I N T E R N E T

1. User requestWeb−browser

4. CGI−application response

Figure 4.8: CAGIS SimpleProcess architecture

1. The user sends a user requestfrom the web-browser through the Internet to the
Web-server running CAGIS SimpleProcess. This user request is specified through
a HTML-form providing the user-interface for CAGIS SimpleProcess. Typical user
requests can be to look at the agenda for a specific workspace, activate an activity,
notify that an activity is finished etc.

2. The web-server will then call CGI-applications according to the user request.
CAGIS SimpleProcess consists of four CGI-applications: A process server respon-
sible for managing process changes and process states, a process modeller providing
an easy way for users to enter process models through a web-interface, an agenda
manager presenting user agendas and activities, and a monitor tool providing a
user-interface to monitor the process.

3. The active CGI-application access databasefor process states and process infor-
mation (both read and write).

4. A CGI-application responseis sent back to the web-browser as HTML.

In addition to the steps shown in figure 4.8, the CGI-applications access XML-documents
representing the process model in the users workspaces. Distributed workspace tech-
nology like BSCW [BHT97] and WebDAV [Whi97] can be used to provide workspace
support. The workspace support provided in the CAGIS environment has not been the
focus of this thesis, and is covered by other initiatives in the CAGIS project.

A more detailed description of this workflow tool is described in paper 10 (section 17).



76 CHAPTER 4. OWN CONTRIBUTION

4.3.5 The CAGIS GlueServer Architecture

The GlueServer is a piece of middleware used to provide interaction between multi-agent
systems (CAGIS DIAS) and the workflow systems (CAGIS SimpleProcess). A Glue-
Model specifies the relationship between process fragments and agents, making it possible
for process fragments to delegate tasks to software agents, to use software agents to evalu-
ate what to do next after completion of execution of a process fragment, or to monitor the
environment for events to detect exceptions. By using the GlueServer to combine agent
systems with workflow systems we can achieve better support for modelling and enacting
cooperative activities and individual activities respectively. In addition, the GlueServer
can be used to federate several agent systems and workflow systems into one heteroge-
neous, loosely coupled process centred environment.

A GlueModel is specified in XML using the Glue Modelling Language. Figure 4.9 shows
the GlueModel for modelling the dependencies between the activities A1 and C1 in the
scenario presented in figure 4.1 in section 4.3.1. The GlueModel specifies that as soon
as the workflow tool reports that the process fragment “A1:Code gfx-engine” is finished,
a brain-storming agent should be initiated in the agent system representing the activity
“C1:Brain-storming” . Based on the result returned by this brain-storming agent (success-
ful or unsuccessful), the workflow tool should execute the process fragment A2 or A1
respectively.

Here is a more detailed explanation of the GlueModel. The first part of the GlueModel
specifies the agentinvolved in the cooperative activity by an agent class and an amp-id to
the agent place where the the agent will interact with other agents (CoolGamesAMP). The
interaction type specifies how the workflow system and the agent system should interact.
When Periodic invocation is used, agents decide what to do next at the termination of a
process fragment. There are two other interaction types:

� Predefined interface meaning that the workflow tool delegates an activity to an
agent.

� Dynamic monitoring where monitoring agents are continuously probing the envi-
ronments for certain events or states. Whenever an abnormal situation is detected
by an agent, this abnormal situation is reported to the GlueServer that can execute
a reaction in the workflow tool (e.g. to change a process fragment, halt a process
fragment, execute a specified process fragment etc.)

The result tag is used to specify what values the agent can return.

The second part of the GlueModel specifies the process fragmentby a process fragment
ID. The rest of the process fragment part is used to describe a reaction specified by
result - action pairs. The result is the possible results returned from the agent, where
as the action specifies what to do if there is a match. The predefined actions in the Glue
modelling language are: execute process fragment, move process fragment, halt process
fragment, change and re-execute process fragment, add new process fragment, remove



4.3. ARCHITECTURE 77

process fragment, start new interaction (agent system), stop interaction (agent system),
create a new-AMP (agent system), remove AMP (agent system), and change fragment
agent pair (GlueServer)2.

<fragment-agent-pair>
<agent agent-class="agents.brainstorming" amp-id="CoolGamesAMP">

<interaction-type>Periodic invocation</interaction-type>
<result>successful|unsuccessful</result>

</agent>
<fragment fragment-id="Developers/A1:Code gfx-engine prototype">

<reaction>
<result>successful</result>
<action fragment-id="Developers/A2:Estimate resources"

body="execute_process_fragment_PFNUMBER"></action>
<result>unsuccessful</result>
<action fragment-id="Developers/A1:Code gfx-engine prototype"

body="reexecute_process_fragment_PFNUMBER">
</action>

</reaction>
</fragment>

</fragment-agent-pair>

Figure 4.9: CAGIS GlueModel example

The user should be able to specify the GlueModel directly in XML, or use a tool with a
graphical user-interface for entering the information required.

Workflow systems

Agent systemsAgent systems

Workflow systems

GlueModel
(fragment,agent)

(fragment,agent)
(fragment,agent)

(fragment,agent)

G
lu

eE
ng

in
e

GlueServer
2

4
3

Workflow Interface

Agent Interface

Agent systems

Workflow systems

51

Figure 4.10: CAGIS GlueServer architecture

Figure 4.10 shows the architecture of the CAGIS GlueServer consisting of three main
components:

2The actions without parenthesis are executed in the workflow tool.



78 CHAPTER 4. OWN CONTRIBUTION

� GlueEngine: The main purpose of the GlueEngine is to parse the GlueModel and
look for process fragment - agent pairs in the model matching with state information
received from the workflow System or the agent system. If a process fragment -
agent pair is found, the GlueEngine will initiate a reaction through the workflow
interface (typically move process fragments, re-execute process fragments etc.) or
the agent interface (initiate negotiation agent, create a new agent meeting place
etc.).

� Work flow Interface: The workflow interface interacts with workflow systems
through XML-interface.

� Agent Interface: The agent interface interacts with agent systems through a MASIF
interface.

A typical interaction between the three components in the CAGIS PCE can be as follows
(the numbers are illustrated in figure 4.10):

1. The Workflow system reports its state to the GlueServer via the workflow interface.

2. The GlueServer finds a process fragment - agent match in the GlueModel using the
GlueEngine.

3. The agent interface initiates an agent as specified in the GlueModel.

4. The agent system reports the result of an agent interaction back to the GlueServer
through the agent interface.

5. The GlueServer will activate a reaction according to the GlueModel.

The reaction can activate a specified operation in the workflow tool, but it can activate
an operation in the GlueServer or in the agent system. To enable other workflow tools to
interact with the rest of the CAGIS PCE, the GlueServer architecture should offer an in-
teroperability workflow-XML binding specified by the Workflow Management Coalition.
With the interoperability workflow-XML binding, the GlueServer can interact with other
workflow systems that support this feature. The GlueServer is described in more detail in
paper 11 (section 18).

4.3.6 Detailing the Architecture

Based on the high-level requirements described in section 4.2.2 and architecture of the
CAGIS PCE described above, we will now describe how our architecture is designed in
more detail. A set of design specifications will identify the different parts of the prototype
that should be implemented, described below for the three main parts of the CAGIS PCE
prototype.



4.3. ARCHITECTURE 79

The CAGIS DIAS Design Specification

The CAGIS Distributed Intelligent Agent System (DIAS) should provide a framework
for supporting cooperative activities between people in different workspaces and people
in the same workspace. Here is a summary of the full list of design specifications (D1-
D43) described in Appendix A:

DD1 Agent specifications:
An agent should register itself in an Agent Meeting Place (AMP) according to the
agent properties defined in MASIF standard. The CAGIS DIAS should provide
three main types of agents:

– System agents are responsible for creating, deleting, and managing AMPs.
System agents are also responsible for monitoring agent activity, accessing
repositories and external agent systems, and mediation between negotiation
agents in a deadlock.

– Participation agents are responsible for facilitating communication between
agents, agent negotiation and a KQML3 interface for users to directly commu-
nicate with agents.

– User agents are agents interacting with the user, that should be developed by
the user and must conform to the DIAS agent developer API.

DD2 AMP specifications:
The AMP should provide services for agents to interact and exchange messages and
services, and register itself in other AMPs according to the agent place properties
defined in the MASIF standard. Further, an AMP should initiate the required system
agents needed to receive and register agents, facilitate inter-agent communication,
monitoring agent activities, removing agents, and facilitate agent negotiation and
mediation.

DD3 Agent interface specifications:
The CAGIS DIAS should provide an interface to other mobile agent systems de-
fined in the MASIF standard. Further, an agent user client should be provided where
the user can subscribe to AMPs, and initiate, configure, interact with and terminate
her/his agents. An additional user interface for AMPs should also be provided for
removing agents.

The CAGIS SimpleProcess Design Specifications

The CAGIS SimpleProcess is a workflow system used to model and enact individual
workflow processes. Here is a summary of the full list of the design specifications (D44-
D64) described in Appendix B:

3KQML is short for Knowledge Query and Manipulation Language



80 CHAPTER 4. OWN CONTRIBUTION

DSP1 Architecture specifications:
A process model in CAGIS SimpleProcess can consist of several distributed process
fragments that can be locally modified and moved between workspaces.

DSP2 PML specifications:
The PML in CAGIS SimpleProcess should describe a process as a collection of pro-
cess fragments consisting of one or more activities that can have the states waiting,
ready and finished. Activities should execute code in HTML and are arranged in
execution sequence through hyper-links.

DSP3 Tool specifications:
The CAGIS SimpleProcess should provide three tools: A process server that should
manage activity states, adding/removing activities and facilitating movement of ac-
tivities between workspaces; a process modeller that should enable the user to enter
process models interactively; an agenda manager that should provide an agenda of
activities and activate ready activities; and a monitor tool that should provide an
interface for monitor process state and progress.

The CAGIS GlueServer Design Specifications

The GlueServer is a middleware used to facilitate interaction between software agents
(CAGIS DIAS) and process fragments (CAGIS SimpleProcess). Here is a summary of
the full list of the design specifications (D65-D75) described in Appendix C:

DGS1 GlueServer specifications:
The GlueServer should provide an interface enabling interaction with mobile agent
systems, and an interface for providing interaction with workflow systems (CAGIS
SimpleProcess). In addition, the GlueServer should be able to parse a GlueModel
and react according to it.

DGS2 GlueModel specifications:
The GlueModel should specify relationships between an agent and a process frag-
ment, the expected results returned from the agent, and what reactions to be exe-
cuted based on these results.

4.4 Implementation

The implementation of the CAGIS PCE prototype has been carried out by the author of
this thesis, and by several last-year students at the Department of Computer and Infor-
mation Science at the Norwegian University of Science and Technology. In total, the
CAGIS PCE prototype consists of almost 20,000 lines of code (where 20% of the code
was written by the author and 80% by MsC students) in Java and Perl.

Most of the CAGIS PCE has been implemented in Java, making it possible to run the
prototype on various platforms and making use of available technology based on Java.



4.4. IMPLEMENTATION 81

In addition, we have used CORBA to integrate different parts of the CAGIS PCE, and
XML for storing and representing information. The next three sections (sections 4.4.1 -
4.4.3) describes more in detail how each of the three main parts in the CAGIS PCE was
implemented, and they have fulfilled the design specifications. The last section (section
4.4.4) gives a summary of how the CAGIS PCE was implemented and what parts of the
CAGIS PCE provide support to the high-level requirements described in section 4.2.2.

4.4.1 Implementation of the CAGIS DIAS

A technology study briefly presented in CAGIS DIAS architecture section 4.3.3 suggested
that the following technologies should be used in the agent architecture: Java and Java
IDL for the component infrastructure, KQML and JATLite to provide inter-agent com-
munication and AMP/workspace support, the Aglets framework to support mobile agents,
and XML for information representation.

Our first implementation called DIAS I [PHBN99] tried to integrate these technologies
into one working agent system. However, we discovered that it was impossible to directly
integrate JATLite and Aglets because of overlapping functionality and that JATLite’s func-
tionality could not be used in a mobile fashion. Our decision was only to use the KQML
layer in JATLite to provide KQML support and use the functionality provided in Aglets to
provide AMP and workspace support. This was possible since JATLite is an open source
system. In our first prototype of CAGIS DIAS, we managed to integrate Java, Java IDL,
Aglets, the KQML-layer in JATLite and XML, but the services provided by the system
were too low-level and simple. To create agents, the developers had to heavily use Aglets
with some limited addition DIAS support for AMPs.

The second version of the agent prototype system was called DIAS II [HN00]. In DIAS II
we improved the agent-API by providing a set of high-level methods, and ’ by making the
agent-API independent of the underlying technology (Aglets). We also added support for
interactions with other mobile agent systems through the MASIF standard implemented
in Java using ORBIX CORBA. The new high-level agent-API made it easier and faster
to create new agents where the CAGIS DIAS system took care of localising agents (by
using unique ID’s or/and ontologies), communicating between agents, connecting and
registering agents, etc. The new CORBA interface made it also possible to interact with
the CAGIS GlueServer.

In 1999, IBM stopped supporting further development of Aglets making it impossible to
run Aglets on newer versions of Java. To continue the development of CAGIS DIAS,
we started to evaluate new technologies for providing mobility support for agents. The
criteria we used for selecting a new technology to replace Aglets were (based on imple-
mentation experience from DIAS I):

� The technology should provide a high-level API, making it possible to implement
an agent system faster.

� The technology should provide an easy transition from Aglets.



82 CHAPTER 4. OWN CONTRIBUTION

� The technology should be well integrated with Java.

� The technology should be easy to install and configure.

� The technology should handle dynamic changes of software system.

� The technology should be free and widely available.

Based on these criteria above, we chose to use JavaSpaces from Sun [FHA99] to imple-
ment DIAS III [SW00, Waa00, Sal01]. JavaSpaces is based on JINI, and is a framework
for dynamic communication, coordination, and sharing of objects between network re-
sources (more on JavaSpaces in section 2.7.1). JavaSpaces enabled us to replace Aglets
quickly, and saved us to implement functionality for discovering agent clients and servers
dynamically through the look-up service in JINI. Not all features in DIAS II have been
implemented in DIAS III. For all implementations of DIAS, XML has been used to store
agent information.

Testing the DIAS prototype

This paragraph describes how the prototypes CAGIS DIAS II and III were tested against
the non-functional requirements and design specifications. We have not only used the
CAGIS DIAS III when running scenarios because the implementation of this version of
the prototype is not complete. The DIAS prototype has been tested against the design
specifications given in Appendix A as well as the software development and maintenance
scenarios described in paper presented in chapter 14, and the conference organising sce-
nario described in the report presented in chapter 20.

Table 4.1 shows the results in percentage of completeness from testing the non-functional
requirements presented in section 4.2.1 for the prototypes CAGIS DIAS II and III. The re-
quirement N2 was not completely fulfilled in CAGIS DIAS II, because interface to other
mobile agent systems was implemented using ORBIX CORBA which is not platform in-
dependent. N2 is fulfilled in CAGIS DIAS III, because this feature was not implemented.
In addition, N5 is not completely fulfilled in CAGIS DIAS II because the Aglets frame-
work demands manual configuration of the network-setup. This problem was solved in
CAGIS DIAS III by using JavaSpaces and JINI.

Table 4.2 shows the results from testing the design specifications (summary of the design
specifications are given in section 4.3.6, and the complete list is given in Appendix A) for
the prototypes CAGIS DIAS II and DIAS III. The percentage is computed by the formula:

Score =
Number of implemented specifications

Total number of specifications Æ 100%

From table 4.2 we can see that most design specifications are implemented in CAGIS
DIAS II, but support for mediation between negotiating agents is missing. However, the
implementation of CAGIS DIAS III suffers from not being complete and is lacking of
functionality for several AMPs and the implementation of the MASIF interface to other
mobile agent systems.



4.4. IMPLEMENTATION 83

Non-functional Requirements DIAS II DIAS III
N1 Openness 100% 100%
N2 Software and Hardware Requirements 80% 100%
N3 Response Time 100% 100%
N4 Security 100% 100%
N5 Maintainability and Extensibility 80% 100%

Table 4.1: The results from testing non-functional requirements in CAGIS DIAS II and
III

Design Specifications DIAS II DIAS III
DD1 Agent specifications 93%, not D13, and D23 78%, not D6, D14, D15,

D17, D24, and D25
DD2 AMP specifications 92%, not D38 67%, not D28, D33, D39,

and D40
DD3 Agent interface specifications 100% 67%, not D41

Table 4.2: The results from testing CAGIS DIAS II and III design specifications

4.4.2 Implementation of the CAGIS SimpleProcess

The CAGIS SimpleProcess workflow tool implemented entirely in the programming lan-
guage Perl, and the Common Gateway Interface (CGI) was used to offer a user-interface
provided by a web-browser via a web-server. XML has been used to store process mod-
els, and small efficient file-databases provided in Perl have been used to manage state
information for the process engine.

Testing the CAGIS SimpleProcess prototype

All the non-functional requirements described in section 4.2.1 are fulfilled in the imple-
mentation of the CAGIS SimpleProcess prototype. The prototype server must run on
a software operating system running Perl and Apache web-server, but most operating
systems do. Our prototype is also easy to maintain and expand, by adding CGI-scripts
implemented in Perl if more functionality is needed.

The CAGIS SimpleProcess prototype has implemented the design specifications described
in section 4.3.6 based on the full list of specifications given in Appendix B as given in
table 4.3:

Table 4.3 shows that the specifications D47 “Process fragments can be distributed on
different sites” , and D60 “The process server should enable moving activities from one
workspace to another, and from one process server to another” were not fully imple-



84 CHAPTER 4. OWN CONTRIBUTION

Design Specifications CAGIS SimpleProcess
DSP1 Architecture specifications 75%, not D47
DSP2 PML specifications 100%
DSP3 Tool specifications 89%, not D60

Table 4.3: The results from testing the CAGIS SimpleProcess design specifications

mented. D47 is not supported, because the current implementation of CAGIS SimplePro-
cess server does not provide inter-site support. The specification D60 is partly imple-
mented, because movement of process fragments between workspaces is supported, but
not movement of process fragments between sites.

4.4.3 Implementation of the CAGIS GlueServer

The GlueServer was also implemented in the Java programming language, and the Glue-
Models are stored in XML. The agent system interface was implemented with ORBIX
CORBA according to the MASIF standard, using an interface agent in DIAS. The only
current workflow interface has been provided through CGI.

Testing the CAGIS GlueServer prototype

The implementation of the CAGIS GlueServer covers all the non-functional requirements
described in section 4.2.1 but not N1 fully. N1 is not completely fulfilled because the
CAGIS GlueServer is not platform independent demanding ORBIX CORBA to run.

The CAGIS GlueServer prototype has implemented the design specifications described in
section 4.3.6 based on the full list of specifications given in Appendix C as given in table
4.4:

Design Specifications CAGIS GlueServer
DGS1 GlueServer specifications 66%, not D66, D72, and D73
DGS2 GlueModel specifications 100%

Table 4.4: The results from testing the CAGIS GlueServer design specifications

Table 4.4 shows that three design specifications are not implemented in the prototype of
the CAGIS GlueServer. The specifications D66 and D72 are not fully supported because
we have not tested and implemented any specific interfaces to other mobile agent systems.
The F73 specification is not supported since the general workflow interface has not been
implemented either.



4.4. IMPLEMENTATION 85

4.4.4 Implementation Summary

The implementation of the CAGIS PCE is not a 100% complete implementation, but it
contains the functionality needed to test this prototype and to demonstrate our approach.
Table 4.5 shows what parts of the CAGIS PCE are used to support the high-level require-
ments described in section 4.2.2. Local work support is provided by the CAGIS Sim-
pleProcess workflow tool (HF1), using simple modelling concepts and formalisms (HF3)
that can be defined and changed by the user herself/himself (HF6). Cooperative work
(HF2) is mainly supported by the CAGIS DIAS, but the CAGIS GlueServer is also used
to specify executable cooperative rules between workspaces. The CAGIS GlueServer
provides a flexible infrastructure for handling dynamic changes and re-configuration of
process support (HF5) defined and managed by management representatives (HF7). All
parts of the CAGIS PCE provide distributed work support, but the the CAGIS SimplePro-
cess workflow server is limited to be run on one single site. Section 5.1 and the report
presented in chapter 20, describe more in detail how these requirements have been ful-
filled when the CAGIS PCE was used to model and support a conference management
process.

High-level Requirements Supported by
HF1 Local work support CAGIS SimpleProcess
HF2 Cooperative work support CAGIS DIAS + CAGIS GlueServer
HF3 Distributed work support CAGIS PCE
HF4 Light-weight support CAGIS SimpleProcess
HF5 Dynamic support CAGIS PCE
HF6 Local control CAGIS SimpleProcess
HF7 Managerial control CAGIS GlueServer

Table 4.5: Mapping high-level requirements to the CAGIS PCE implementation

We have spent most time on implementing the CAGIS DIAS prototype that also provides
most advanced functionality such as mobile cooperative agents. Since the CAGIS DIAS,
the CAGIS SimpleProcess and the CAGIS GlueServer have been developed in parallel, it
has been hard to fully integrate them into one environment. During the projects of devel-
oping the prototypes we have used evolutionary development where we have explored and
refined functionality during development. There has not been enough time to consolidate
the implementation into one environment, forcing us to do some manual configuration
and adjustments when running all three prototypes as an environment. We have however
managed to demonstrate the most important features of the CAGIS PCE prototype that it
is efficient to model and support processes with individual and cooperative activities, and
that it is efficient to model and support dynamic process changes. More on this in section
5.1 and the report presented in chapter 20.



86 CHAPTER 4. OWN CONTRIBUTION

4.5 Paper Abstracts

This chapter presents abstracts of all the papers contributing to this thesis. All the papers
have been published on international conferences and workshops, and have been fully
reviewed. The papers have been divided into the two sections Background Papers, and
Core Papers. The background papers were inputs to the work that resulted in the core
papers. Note that some of the papers in the Core Papers section overlap. These overlaps
were necessary to give the context of each paper, and made the papers easier to read when
published as stand-alone papers in a conference proceeding. The overlaps are mainly the
description of the CAGIS Process Centred Environment or parts of this environment. In
addition, the Core paper section includes a report of an evaluation of the thesis that will
be published as a paper in the future.

4.5.1 Background Papers

This section presents five papers that are relevant to the thesis, forming a basis when
working on the core issues outlined in section 4.5.2. These five papers cover relevant
topics like software process, software engineering, software process evolution, configu-
ration management, awareness, cooperative conflict handling, conducting a case-study,
implementing a workflow tool, and XML.

Paper 1: Total Software Process Model Evolution in EPOS

This paper presents a case study of a Norwegian banking software house where the ob-
jective is to adopt a categorisation framework for managing evolution in software projects
to identify project profiles and evolution patterns, and to suggest improvements to bet-
ter support frequent evolutions. Based on an analysis of collected evolution data from
an ongoing case study, we elaborate a QIP-inspired method and own techniques to evolve
corresponding process models in our Process-centred Software Engineering Environment,
called EPOS. The method describes also how to synthesise and reuse evolution experience
from completed projects to improve planning and estimation in new similar projects. The
collected data demonstrates that requirement changes which are detected in later devel-
opment phases, are major causes for cost overruns in the studied organisation.
Relevance to thesis:The work with this paper gave a good introduction to process evo-
lution and how to deal with such changes in a Process centred Software Environment
Environment (PSEE).
Author(s): Minh N. Nguyen (main), Alf Inge Wang, and Reidar Conradi.
Published where: International Conference of Software Engineering 1997 (ICSE’97),
Boston, USA, 21-23 May, 1997 [NWC97].
My contribution: This thesis’ author has written on most part of this paper, but in par-
ticular described how the EPOS PSEE can implement process changes.
Where in thesis: Chapter 8, page 109.



4.5. PAPER ABSTRACTS 87

Paper 2: Planning support to Software Process Evolution

The ability to handle changes is a characteristic feature of successful software projects.
The problem addressed in this paper is what should be done in project planning and itera-
tive replanning so that the project can react effectively to changes. Thus the work presents
research results in software engineering, as well as transfer of methods in knowledge engi-
neering to software engineering, applying the AI planning technique to software process
modelling and software project management. Our method is based on inter-project ex-
perience and evolution patterns. We propose a new classification of software projects,
identifying and characterising ten software process evolution patterns and link them to
different project profile. Based on the evolution patterns, we discuss the planning support
for process evolution and propose several methods that are new or significantly extend
existing work, e.g. cost estimation of process changes, evolution pattern analysis, and
a coarse process model for the initial planning- and the iterative replanning process.
The preliminary results have shown that the study of evolution patterns, based on inter-
project experience, can provide valuable guidance in software process understanding and
improvement.
Relevance to thesis:The paper focus forms a basis for understanding the changes in
software projects and how to deal with these changes trough iterative replanning.
Author(s): Reidar Conradi, Minh N. Nguyen, Alf Inge Wang, and Chunnian Liu (main).
Published where: International Journal of Software Engineering and Knowledge Engi-
neering. Volume 10, Number 1, 2000, World Scientific Publishing Company[CNWL00].
Also published [CNWL98].
My contribution: This thesis’ author contribution to this paper is mainly on how to deal
with project changes in process model (task-networks), and execution of experiments in
EPOS.
Where in thesis: Chapter 9, page 129.

Paper 3: Improving Cooperation Support in the EPOS CM System

This paper reports our experiences gained in designing, implementing, and experimenting
with technologies for improved support for cooperative work in our configuration man-
agement (CM) system. The aim of the work has been to find a set of mechanisms sup-
porting cooperation in a range of situations, from planning and scheduling long-lasting
CM activities, to resolving access conflicts between users. Although our tools are tailored
for our home-grown environment, the general approach should be applicable also to other
CM systems or usage domains. The emphasis of this paper is on flexible mechanisms to
solve access conflicts without enforcing only one way of working.
Relevance to thesis:This work was a good introduction to awareness and cooperative
support between people, forming a basis for cooperating agents in the CAGIS PCE.
Author(s): Alf Inge Wang (main), Jens-Otto Larsen, Reidar Conradi, and Bjørn P. Munch.
Published where:6th European Workshop in Software Process Technology, Weybridge,
UK, September 16-18, 1998 [WLCM98b].
My contribution: This thesis’ author was the main author of this paper, and was respon-
sible for implementing and executing experiments with cooperative support to resolve



88 CHAPTER 4. OWN CONTRIBUTION

access conflicts.
Where in thesis: Chapter 10, page 147.

Paper 4: Teaching Software Process Improvement through a Case Study

This paper describes the main design choices of a software process improvement course.
The course is organised around an industrial case study. In addition it is based on lectures
and group exercises. The case study is centred around four research questions: Why is
process improvement important [in your company]? Which processes does your company
have? Which improvement initiatives does your company implement? Which relation-
ships exist between software improvement and software quality? During the case study,
the students come in contact with actors from the local software industry. We experienced
problems with with relating quality and process issues, and that the insight was too su-
perficial. We also had problems with student involvement. Finally we propose a new set
of questions that are: Briefly describe a software system that is (or has been) important
for your company. Which attributes do you use to describe it? Which are the processes
around this system? Which are the improvement initiatives around these processes? How
general is that specific software system (and respectively its processes and improvement
initiatives) in the context of your company?
Relevance to thesis:This paper was a good introduction to how to conduct a case-study.
Also it was interesting to learn more about industrial software development processes.
Author(s): Torgeir Dingsøyr, Letizia M. Jaccheri, and Alf Inge Wang.
Published where: International Journal: Computer Applications in Engineering Educa-
tion. Also published at International Conference on Engineering and Computer Education
99 (ICECE’99), Rio de Janeiro, Brazil, August 11-14, 1999 [DLW00].
My contribution: The author of this thesis has written on all parts of this paper, but was
responsible for the sections Introduction and Evaluation.
Where in thesis: Chapter 11, page 163.

Paper 5: Using XML to implement a workflow tool

This paper presents experiences we had from building a workflow tool from scratch using
XML technology. We will present some strengths found using XML-technology, but also
some weaknesses. Although we had to create a simple process modelling language for
this workflow tool, the focus of this paper is on experiences on using XML technology
to build workflow tools. The experiences we have achieved, should be applicable for all
kinds for process modelling languages. The paper consists of three main parts. First, the
requirements for the workflow tool is outlined. Then XML technology is explained with
some simple examples. The last part of the paper describes experiences we achieved from
the experiment and the conclusions we drew from this.
Relevance to thesis:This work gave useful experiences and input to the workflow tool
we implemented to be a part of the CAGIS PCE.
Author(s): Alf Inge Wang.
Published where:3rd Annual IASTED International Conference on Software Engineer-



4.5. PAPER ABSTRACTS 89

ing and Applications (SEA’99), Scottsdale, Arizona, USA, October 6-8, 1999 [Wan99].
There is also a reference to this article at Dr.Dobb’s web-site, section for XML4.
My contribution: Solo-paper.
Where in thesis: Chapter 12, page 173.

4.5.2 Core Papers

This section presents the papers that are directly related to the work on the CAGIS PCE
consisting of a workflow tool, a multi-agent architecture, and a middleware for combining
the two (GlueServer). As an introduction, paper 6 describes how the CAGIS environment
can be applied to a part of a conference organising process. This work was carried out to-
gether with two other members of the CAGIS project, namely Heri Ramampiaro and Terje
Brasethvik. The CAGIS PCE is only one part of the whole CAGIS environment, which
also consists of a document management system [Ter99], and a transaction management
system [Rr99]. The papers 7,8, and 9 describe the CAGIS multi-agent architecture for
cooperative software engineering. These papers describe the architecture, the design, and
some experiences from implementing this multi-agent architecture. Paper 10 describes
the CAGIS workflow system that supports distributed, mobile processes. The papers 11
and 12 describe how the CAGIS multi-agent architecture and the CAGIS workflow system
can be combined. This section also includes report 1 that describes how our CAGIS PCE
was evaluated together with two other PCEs applied on a conference organising scenario.
This report will be published as a paper in the future.

Paper 6: Supporting Distributed Cooperative Work in CAGIS

This paper describes how the CAGIS environment can be used to manage work-processes,
cooperative processes, and how to share and control information in a distributed, hetero-
geneous environment. We have used a conference organising process as a scenario and
applied our CAGIS environment on this process. The CAGIS environment consists of
three main parts: a document management system, a process centred environment, and
a transaction management system. The paper describes how these main parts may be
configured and used together in order to support cooperative work in distributed environ-
ments.
Author(s): Heri Ramampiaro, Alf Inge Wang, and Terje Brasethvik.
Published where: 4th IASTED International Conference on Software Engineering and
Applications (SEA’2000), Las Vegas, Nevada, USA, 6-9 November 2000 [RBW00].
My contribution: The description of the CAGIS PCE, the description of the scenario and
how the CAGIS environment is applied to the scenario.
Where in thesis: Chapter 13, page 187.

4Dr. Dobb’s web-site section for XML: http://www.ddj.com/topics/xml



90 CHAPTER 4. OWN CONTRIBUTION

Paper 7: A Multi-Agent Architecture for Cooperative Software Engineering

This paper looks at how Cooperative Software Engineering (CSE) can be supported. We
first investigate the process aspects by presenting a traditional process architecture sup-
porting CSE. Then we propose a multi-agent architecture for CSE, which is better in terms
of simplicity and flexibility, and particularly useful in modelling and providing support to
cooperative activities. We describe an industrial scenario of CSE, and show how to apply
the proposed architecture to this scenario. The scenario is based on a software develop-
ment and maintenance process for a Norwegian software company.
Author(s): Alf Inge Wang, Reidar Conradi, and Chunnian Liu.
Published where: 11th International Conference on Software Engineering and Knowl-
edge Engineering (SEKE’99), Kaiserslautern, Germany, 17-19 June, 1999 [WLC99].
My contribution: Main author.
Where in thesis: Chapter 14, page 203.

Paper 8: Design Principles for a Mobile, Multi-Agent Architecture for Cooperative
Software Engineering

The paper describes experiences we have achieved from implementing a mobile multi-
agent system for cooperative software engineering, based on the Aglets technology from
IBM. When implementing the mobile multi-agent system, we faced problems dealing
with locating agents, inter-agent communication, registration of agents etc. Based on
our experiences, we present some design principles for how to locate agents, how agents
should communicate, how to manage connection to the agent system, how to register
agents and agent places, how to move agents, how to remove agents, and how to give
CORBA-agent interaction support. These design principles should be applicable for oth-
ers wanting to design mobile multi-agent systems using the Aglets technology.
Author(s): Alf Inge Wang, Anders Aas Hanssen, and Bård Smidsrød Nymoen.
Published where: 4th IASTED International Conference on Software Engineering and
Applications (SEA’2000), Las Vegas, Nevada, USA, 6-9 November, 2000 [Alf00].
My contribution: Main author.
Where in thesis: Chapter 15, page 217.

Paper 9: Implementing a Multi-Agent Architecture for Cooperative Software Engi-
neering

The paper describes experiences we have earned from implementing a multi-agent archi-
tecture used to support cooperative software engineering. Before starting to implement
a multi-agent architecture, important decisions and considerations must be taken into ac-
count. Decisions on how to provide efficient inter-agent communication support, what
language should the agents talk, should the agents be stationary or mobile, and what tech-
nology should be used to build the architecture must be made. This paper describes how
we implemented our multi-agent system, and the experiences we gained from building it.
Author(s): Alf Inge Wang.
Published where: 12th International Conference on Software Engineering and Knowl-



4.5. PAPER ABSTRACTS 91

edge Engineering (SEKE’2000), Chicago, USA, July 6-8, 2000 [Wan00a].
My contribution: Solo-paper.
Where in thesis: Chapter 16, page 229.

Paper 10: Support for Mobile Software Processes in CAGIS

This paper describes a prototype for supporting distributed, mobile software processes.
The prototype allows instantiated process models to be distributed in different workspaces,
and have mechanisms to allow parts of the process to be moved from one workspace to
another. The paper outlines the main concepts, a process modelling language and tools
to support distributed, mobile processes. Further, we discuss problems and possible so-
lutions for our prototype, and some experiments are also outlined. This work has been
carried out as a part of a project called CAGIS, described in the introduction of the paper.
Author(s): Alf Inge Wang.
Published where:7th European Workshop on Software Process Technology (EWSPT’2000),
Kaprun, Austria, February 22-25, 2000 [Wan00b].
My contribution: Solo-paper.
Where in thesis: Chapter 17, page 243.

Paper 11: Integrating Software Process Fragments with Interacting Agents

Cooperative software engineering processes involve structured, repeatable processes as
well as dynamic, cooperative processes. Existing workflow systems are suited to model
and support the former type of processes, and multi-agent systems are suited to model and
support the latter. We have designed and implemented a gluing-framework for integrating
workflow processes with software agents. By using this framework, support for cooper-
ative software engineering processes can be provided in a better and more flexible way.
This paper focuses on how to integrate these two kinds of components into a functioning
multi-agent based cooperative software engineering system.
Author(s): Alf Inge Wang, Reidar Conradi, and Chunnian Liu.
Published where: 4th IASTED International Conference on Software Engineering and
Applications (SEA’2000), Las Vegas, Nevada, USA, 6-9 November, 2000 [WCL00].
My contribution: Main author.
Where in thesis: Chapter 18, page 259.

Paper 12: Using Software Agents to Support Evolution of Distributed Workflow
Models

This paper outlines a high-level design of how software agents can be used combined with
an existing CAGIS Process Centred Environment to deal with evolution of distributed,
fragmented workflow models. Our process centred environment allows process frag-
ments of the same workflow model to be located in workspaces that are geographically
distributed. These process fragments can be changed independently in local workspaces
causing consistency problems. We propose to use software mobile agents, offering aware-



92 CHAPTER 4. OWN CONTRIBUTION

ness services solving conflicting updates of process fragment. Our solution is illustrated
using some scenarios.
Author(s): Alf Inge Wang.
Published where:International ICSC Symposium on Interactive and Collaborative Com-
puting (ICC’2000) at International ICSC Congress on Intelligent Systems and Applica-
tions (ISA’2000), Wollongong (near Sydney), Australia, December 12-15, 2000 [Wan00c].
My contribution: Solo-paper.
Where in thesis: Chapter 19, page 273.

Report 1: Evaluation of a Cooperative Process Support Environment

This report describes an evaluation where the same distributed conference organising pro-
cess is modelled in three different process centred environment Endeavors, ProcessWeb,
and our own CAGIS Process Centred Environment. Endeavors is an activity based, flexi-
ble workflow system, ProcessWeb is a role-based workflow system with a web-interface,
whereas the CAGIS Process Centred Environment combines an activity based workflow
system with a software agent system. The goal of the experiment is to investigate if
a combination of a traditional workflow system and software agent system better can
model and support distributed cooperative processes than stand-alone workflow systems.
We also want to investigate if a combination of workflow system and agent system better
can adapt to occurring process changes. A conference organising scenario is used as a
case in the experiment because it illustrates a distributed process containing both simple,
individual activities as well as more dynamic, cooperative activities. By evaluating how
well the different process centred environments can model and support the scenario, as
well deal with process changes, our CAGIS Process Centred Environment is validated.
Author(s): Alf Inge Wang.
Published where:Technical report IDI-nr 9/00, Dept. of Computer and Information Sci-
ence, Norwegian University of Science and Technology, December 2000.
My contribution: Solo-report.
Where in thesis: Chapter 20, page 285.



CHAPTER 5

Thesis Evaluation

This thesis has presented an approach for improving cooperative process support for
distributed users in a heterogeneous environment. Our approach combines traditional
activity-based workflow with software agents. By doing so, we can efficiently model and
enact individual activities as well as cooperative activities (more on this in section 5.1).
We have implemented a middleware called GlueServer to enable flexible configuration of
interaction between workflow systems and agent systems. The GlueServer enables us to
integrate dynamic agents as a part of the workflow. These agents can be used for typical
cooperative tasks (e.g. negotiation of resources and coordination of artifacts), as well as
environment observers notifying the workflow system for occurring events.

To evaluate our CAGIS PCE, we have modelled a conference organising scenario in our
process environment as well as in two others. In addition, we have run these process
models in all three process environments to see that the models are enactable and that
they can provide user support. We cannot regard the execution of the process models
as real enactment because they are not run in their real environment for actual usage.
Within the CSCW and workflow community there have been conducted some similar
experiments, but within SPT research we have not been able to find any similar. We hope
that this experiment can be an encouragement for others to conduct real process enactment
experiments.

This chapter is organised as the following: Section 5.1 describes our evaluation of the
CAGIS PCE by comparing it to two other systems, section 5.2 describes how our CAGIS
PCE addresses the research questions that were identified in the introduction of this thesis,
and finally section 5.3 summarises the contribution of this thesis.

93



94 CHAPTER 5. THESIS EVALUATION

5.1 Comparing the CAGIS PCE with two other PCEs

In the report “Evaluation of a Cooperative Process Support Environment” (see section
20), we compared our approach (the CAGIS PCE) to two workflow systems, Endeavors
and ProcessWeb, by modelling the same conference organising scenario. The process
models in the Endeavors are activity based and are created by using a graphical modelling
tool drawing an activity network and specifying attributes of the activities. When an ac-
tivity in Endeavors is enacted, an activity handler is executed. The activity handlers can
be a wrapping of a commercial tool (e.g. a spreadsheet) or for instance a Java program
with a graphical user interface (e.g. a form). The activity handlers interact with Endeavors
through events (messages). The PML in ProcessWeb is a special object-oriented program-
ming language where the process is represented as roles and interactions between roles.
A role is defined by some actions (methods), resources (attributes), and guards (precon-
ditions) that are used to specify when actions should be executed. Interactions provide
communication channels between two roles.

The conference organising scenario was described as a process consisting of individual
activities (such as “Make call for papers” , “Handle received paper” , “Fill in review report”
etc.) and cooperative activities (such as “Reviewer allocation” , “Session allocation” etc.).
The purpose of the evaluation was to answer to research questions: Is a combination of a
traditional workflow system and a software agent system better compared to a stand-alone
workflow system to:

R1 Model and demonstrate enactment of processes containing both dynamic coopera-
tive activities, as well as structured, individual activities ?

R2 Adapt to process changes ?

The evaluation of the two research questions listed above was answered by using a com-
bination of quantitative and qualitative research method. By quantitative is meant that
research question R1 was measured by looking at how much of (coverage) the conference
organising process could be modelled and enacted by each PCE (measured in percentage),
and the time spent on modelling the process. To find the answer to research question R2,
adaptability was measured by assessing the effort spent on implementing a specific pro-
cess change using a scale 1-5, where 5 indicated very little effort and 1 indicated very
strong effort. As the statistical data for this experiment were insufficient because only one
scenario was modelled, qualitative discussions were also used to to evaluate the research
questions when comparing the results from the experiment. The empirical data were used
to give an indication of the differences, and reasons for these differences were given when
evaluating the experiment.



5.1. COMPARING THE CAGIS PCE WITH TWO OTHER PCES 95

5.1.1 Coverage of the Scenario

Table 5.1 shows results from measuring coverage and modelling time for performing the
conference scenario in the three PCEs. The modelling time is not objective since we did
most of the modelling ourselves. In research question R1, we wanted to evaluate how
complete the three different PCEs could model and support the conference organising
scenario. All PCEs were able to completely model all individual activities, while we
experienced some problems modelling cooperative activities for allocating papers and
timeslots (resource negotiation) in Endeavors. In the conference management scenario,
reviewers can pick what papers they want to review, and the paper allocation activity
initiate negotiations between reviewers if more than three reviewers have selected the
same paper. Our problem was how to represent a negotiation process between different
roles in an activity-network. We chose to solve this problem by sequentially checking the
need for a negotiation represented by an allocation activity for each role. After checking
all roles (PC Member 1 to 5), we checked if any remaining negotiations were required.
If more conflicts remained, the same allocation activities were executed once again. This
approach is illustrated in figure 5.1.

Paper
allocation

Paper
allocation

Paper
allocation

Paper
allocation

Paper
allocation

Check for
remaining
conflicts

PC Member 1 PC Member 3 PC Member 5

PC Member 2 PC Member 4

Figure 5.1: Cooperative activities modelled in Endeavors

Modelling Endeavors ProcessWeb CAGIS PCE
Individual activities 100 % 100 % 100 %
Cooperative activities 80 % 100 % 100 %
Modelling time for individual activities 6 hours 10 hours 3 hours
Modelling time for cooperative activities 10 days 2 days 5 days

Table 5.1: Coverage of the scenario modelled

The modelling time for individual activities in table 5.1 shows that most time was spent
in ProcessWeb, then Endeavors, and least time was spent in CAGIS PCE. An explana-
tion could be that the modeller was most familiar with CAGIS PCE, but the modelling
in Endeavors and ProcessWeb was very straight forward without any time-consuming
problems. The difference in modelling time can be explained as following:



96 CHAPTER 5. THESIS EVALUATION

� ProcessWeb:The PML in ProcessWeb is close to a textual object-oriented pro-
gramming language, meaning that the modeller needs to “program” the process
as roles with different states representing the activities that the role is responsible
for. In addition, the modeller had to implement the infrastructure for interaction
between roles, role assignments, and role configurations.

� Endeavors: More time was spent on modelling in Endeavors compared to CAGIS
PCE, because in Endeavors we had to implement an activity handler that provided
a user-interface (a wrapping of a Web-browser) for guiding the user. If we don’ t
consider the time spent on implementing the activity handler, Endeavors was more
efficient for modelling the individual activities than CAGIS PCE. This means that
if you have the required activity handlers before you start to model processes, En-
deavors is the most efficient for modelling individual activities.

According to table 5.1, ProcessWeb was the most efficient PCE for modelling cooper-
ative activities. The reason for this is that the PML used in ProcessWeb is designed to
efficiently implement role-interaction. CAGIS PCE uses an agent-API to implement the
cooperative activities which in current state, are too low-level for modelling cooperative
activities efficiently. In Endeavors, the cooperative activities were implemented in Java
from scratch, making this the least efficient approach. The developers of Endeavors have
suggested to use globally visible blackboard for sharing and negotiating about common
objects accessed by various roles. This was not implemented because the documentation
for implementing such blackboards was not available.

5.1.2 Adaptability of Process Change

This subsection describes how efficient the three PCEs can adapt to a set of process
changes described in section 20.5.11 in the report presented in chapter 20. All PCEs
have support for changing the process model during enactment. Table 5.2 describes the
results from evaluating three PCEs’ ability to process changes. The result reflects how
much effort must be spent to implement the change, and is judged on a scale 1-5 (where
5 is Very little effort and 1 is Very strong effort):

Process change Endeavors ProcessWeb CAGIS PCE
1. Change activity sequence 5 3 5
2. Assign activity to another role 5 2 5
3. Change negotiation strategy 1 3 5
4. Change reviewer selection 1 3 5

Table 5.2: PCE adaptability to Process changes

Here are comments on results for each process change (1-4) shown in table 5.2:



5.1. COMPARING THE CAGIS PCE WITH TWO OTHER PCES 97

1. Change the activity sequence:This process change in Endeavors is done by a
graphical manipulation of the activity-network. In ProcessWebthis particular pro-
cess change depends on how the activities are represented in the roles. If the activi-
ties are represented as states in the role, some if-sentences must be changed to alter
the activity sequence. The changed role definition must in addition be compiled
into the system, and the role must be modified to get the new behaviour. In CAGIS
PCE, to change an activity sequence, you simply state where you want to move the
activities (the process fragment).

2. Assign an activity to another role: In Endeavorsrole assignment can be changed
by editing the AssignedTo attribute for an activity through Endeavors’ graphical user
interface. In ProcessWebassigning an activity to another role is more complicated.
First, the PML code describing the activity must be transfered from one role to
another. Second, the PML code for both roles (source and target roles) must be
changed to cope with the removal of activity in the source role and adding the
activity in the target role. Third, PML code for both roles must be compiled, and
both roles must be modified to their new behaviour. The reason why it is hard to
assign an activity to another role in ProcessWeb, is that the role is the unit of change.
This problem can be avoided by modelling all activities as separate roles. In CAGIS
PCE, hierarchical workspaces are used to represent roles. Re-assigning an activity
to another role, is done by simply moving the activity to another workspace.

3. Change negotiation strategy:We have not considered the effort of implementing
the new negotiation strategy, but rather how to integrate an already implemented
negotiation strategy into the process. In Endeavors, it is rather hard to implement
the N2 negotiation strategy (described in section 20.5.11). This is because it is hard
to represent a network of interacting roles using an activity-based process formal-
ism. The new negotiation strategy demands communication across different roles,
and is hard to represent in an activity network. ProcessWebis probably the best
environment for implementing the new negotiation strategy, but to incorporate this
strategy with existing roles can be hard. N2 demands extensive changes in the roles
that can make it hard to migrate from an old role definition to new one. If this
process change was known in advance, the process model could be implemented
to handle such massive changes. It should be noted that this problem has been ad-
dressed in ProcessWeb through support for meta-process. A process architecture is
used to provide support for a generic change making migration easier. Essentially,
making one change is hard, but with a meta-process you can spread this cost over
many changes over the lifetime of your system. In CAGIS PCE, it is very easy
to change negotiation strategy by editing the GlueModel for the process fragments
involving negotiation agents. To implement the N2 in the agent system is proba-
bly more time consuming than using ProcessWeb, but it is really easy to change
negotiation strategy if a matching implementation (cooperative pattern) is already
available.

4. Change reviewer selection:This particular process change demands that an activ-
ity is monitored and if the allocation of papers (negotiation) among reviewers is not



98 CHAPTER 5. THESIS EVALUATION

complete within a certain time, the PC Chair will select the reviewers for each paper.
In Endeavorsthis process change can be implemented by adding timeout function-
ality for the activity handlers in the paper allocation activity. When the timeout
event occurs, a control activity can be used to route the workflow to PC Chair that
have to manage the reviewer selection on her/his own. This process change de-
mands a lot of changes in both the activity handlers and the activity network. In
ProcessWebthis process change is easier to implement, but will also demand some
effort. The role assigned originally to this activity (PC Member) needs to have a
timeout function for selecting and allocating reviewers to papers. When this time-
out function is triggered, a message is sent to the PC Chair role that she/he must
allocate reviewers to papers. This means that the PC Chair and the PC Member role
definitions must be changed and the communication channel between them must be
configured. In CAGIS PCE the GlueModel can be used to implement this process
change. A monitor agent will monitor the reviewer allocation agents, and if they
are not finished within a certain time, the monitor agent will notify the GlueServer.
The GlueServer will then initiate an execution of a reviewer selection process frag-
ment for PC Chair. The definition of the reviewer selection process fragment for
PC Chair must be defined. Since monitor agents are a part of the CAGIS DIAS,
changes must be made in the GlueModel, and an additional process fragment for
reviewer selection for PC Chair must be defined.

5.1.3 Reflections on the Evaluation

Looking back at the research questions in section 1.3, we can say from the results in the
two above sections that a combination of a traditional workflow system and a software
agent system is better compared to a stand-alone workflow system to model and enact
cooperative processes and adapt to process changes. Some objections can, however, be
raised to this statement:

O1 The selection of scenario is biased.The reason for selecting the conference or-
ganising scenario was to use a scenario that was already described in the literature
(external validity). One important question is to ask whether the conclusion of this
evaluation is valid for other scenarios describing cooperative processes. To answer
this question, we have to look at how the conference scenario has been modelled.
We have distinguished between individual and cooperative activities. Individual ac-
tivities are activities where one role is assigned for performing this activity. In co-
operative activities, several roles are involved in performing the activity. We believe
that as long as other scenarios are modelled by distinguishing between individual
and cooperate activities, the evaluation result will be valid. If another approach is
used to model the process, the evaluation result is not necessarily valid.

O2 More experience with your own environment. A problem with our experiment,
is that we are more experienced with our own environment than the others. This
means that the modelling time can be unreliable. To address this problem, we spent



5.1. COMPARING THE CAGIS PCE WITH TWO OTHER PCES 99

about one week to exercise process modelling in Endeavors and about one month
with modelling process in ProcessWeb. The reason why more time was spent on
ProcessWeb, was that the author had used ProcessWeb for modelling before the
experiment was planned. In addition, we had no time-consuming problems when
modelling the individual activities in Endeavors and ProcessWeb. For cooperative
activities a modelling expert in ProcessWeb was used, but not for Endeavors. This
means that the modelling time for cooperative activities in Endeavors is likely to
be less if an expert had been used. However, since modelling interaction between
roles in Endeavors is not a part of the process modelling language, it is likely that
the evaluation result will be the same.

O3 Statistical invalid data. Using only one target process (conference process) we can
not statistically validate our two research questions only based on the quantitative
data we have collected. For a statistically valid experiment, data should be collected
from several scenarios modelled in the three PCEs. The collected data have only
been used as an indication of the evaluation result, and qualitative discussions have
enlightened the results from data collection.

O4 The selection of process changes is biased.We have tried to pick out process
changes that are likely to occur in the conference scenario. It is possible that our
selection is too limited, and more changes should be considered. Other process
changes could have indicated a more nuanced score for the three PCEs. However,
we believe that the selected process changes represent a wide spectrum of possible
changes making the result believable.

It should be noted that Endeavors and ProcessWeb are much more mature environments
compared to CAGIS PCE, and they offer richer semantics for expressing the process. In
CAGIS PCE, we have used agents to provide the functionality that we lose through having
only a simple workflow model. Since the agent-API is still too low-level, more advanced
workflow can be time consuming to implement in CAGIS PCE.

5.1.4 Comparison Conclusion

In this section we have endeavoured to investigate if a combined workflow - agent system
is more able to model cooperative processes and to implement process changes compared
to a stand-alone workflow system. We have modelled a conference organising scenario in
the PCEs Endeavors, ProcessWeb, and CAGIS PCE, and collected some data during the
modelling of the scenario. Our collected data and discussions indicate that the combined
approach performs very well in respect to cooperative processes and process changes.
This result is an encouragement to continue our research.

This evaluation was mainly performed by the author. For similar future evaluations, we
would like to pick people to do the experiments without any prior knowledge to either
system to ensure the validity of the results. One approach could be to use students that
are not familiar with any of the PCEs, give them a proper introduction to the PCEs (the



100 CHAPTER 5. THESIS EVALUATION

same amount), and let them model some processes. By using this approach, we would
be able to collect more data, and could make some statistical analysis. A problem would
be to find and pick descriptions of neutral scenarios that do not favour one of the PCEs.
Another approach would be to use experts on each PCE to model processes. A problem
with this approach is to deal with interpretations of the scenarios. Also if the experiment
was not controlled, it could be possible to fake the measurements. We can conclude that
doing such experiments are really hard and time-consuming.

The main contribution of our work is the GlueServer, making it possible to define cou-
plings between activity-based workflow and software agents. With regards to efficiency,
ProcessWeb was the best environment to model cooperative activities. For activities
where activity handlers were already implemented, Endeavors was most efficient for
modelling individual activities. Future work should therefore investigate how a com-
bination of Endeavors, ProcessWeb and CAGIS GlueServer would work (federation of
workflow systems). This combination features solid and rich modelling support for both
individual and cooperative activities, where the CAGIS GlueServer acts as a middleware.
Further, the GlueServer can be used to combine more than two workflow systems, al-
lowing loosely coupled, autonomous groups to choose their own workflow tool. In this
way, the CAGIS PCE provides cooperative support for a heterogeneous environment.
Current implementation for the CAGIS GlueServer does not yet provide a federation of
workflow systems through Workflow Management Coalition’s interoperability workflow-
XML binding. Other agent systems can also be integrated through the implementation of
OMG’s MASIF interface.

5.2 Propositions to our Research Questions

In section 1.3 ten research topics were outlined, describing the focus of the research in
this thesis. Here is a summary of how these research questions have been addressed:

1. Modelling: Investigate what is needed to model and enact distributed cooper-
ative processes.We have suggested to represent the process by software agents,
by an XML-based workflow model and a GlueModel. The decomposition of this
research question is addressed as following:

� 1a) Formalism needed to model and enact individual processes. We model
individual processes as a network of related activities written in XML. Our
XML-based process modelling language is described in paper 10 located in
chapter 17.

� 1b) Formalism to model and enact distributed, cooperative processes. We
have proposed to use software agents to model and support cooperative pro-
cesses. In addition we use a GlueModel to define the interaction between in-
dividual processes and cooperative processes. Paper 7 in chapter 14 describes
our cooperative agent approach, and the GlueModel is described in paper 11
in chapter 18.



5.2. PROPOSITIONS TO OUR RESEARCH QUESTIONS 101

� 1c) Process distribution among participants. The process can be distributed
in workspaces. Since every activity has an unique identifier (URL / Workspace
/ Activity), the process for individual participants can be distributed. Paper 10
in chapter 17 describes our approach for distributing processes.

� 1d) Model and support dynamic process changes. Dynamic process changes
are supported as following: 1) Software agents are used to probe the environ-
ment for specified events or changes that will be reported to the GlueServer,
2) The GlueServer will execute a reaction defined in the GlueModel, 3) A
reaction can be used to re-configure the process model, change parts of the
process model, execute specified parts of the process model, initiate another
agent, change the GlueModel. The support for dynamic process changes is de-
scribed in paper 7 (chapter 14), paper 10 (chapter 17), paper 11 (chapter 18),
and paper 12 (chapter 19).

2. Tools: Investigate how to create an infrastructure for providing distributed
process support.Our process support infrastructure consists of three main compo-
nents: A workflow tool, a multi-agent system, and a GlueServer. The decomposi-
tion of this research questions is addressed as following:

� 2a) Architectures needed to provide execution support for individual pro-
cesses. For the execution of individual processes, we use a CGI-based process
server that interacts with the users through standard web-browsers. More de-
tails about this architecture can be found in paper 10 in chapter 17.

� 2b) Architectures needed to provide execution support for distributed,
cooperative processes. We use a multi-agent architecture for this purpose.
In addition, the GlueServer provides a middleware between the multi-agent
architecture and the workflow tool. The CAGIS multi-agent architecture for
cooperative engineering is described in paper 7 (chapter 14), paper 8 (chapter
15), and paper 9 (chapter 16).

� 2c) Technology for providing a distributed, heterogeneous environment.
We have proposed to use the Web, Java-based agents, and CORBA to be able
to cope with various platforms and systems. Technology issues for the CAGIS
multi-agent architecture are discussed in paper 9 in chapter 16.

� 2d) Combinations of technologies (2a,2b and 2c). Our CAGIS PCE is im-
plemented by combining different technologies using middleware as CGI,
Web, XML, and CORBA. An overall description of the CAGIS process cen-
tred environment is presented in paper 6 in chapter 13, and in paper 13 in
chapter 20.

� 2e) Open process architecture. We suggest to use the WfC XML-interoperability
standard, and MASIF to enable other workflow systems and other agent sys-
tems to interact with our environment. You can find more details on this in
paper 10 in chapter 17, and paper 11 in chapter 18.

3. Validation: Investigate how our approach compares with others. We have mod-
elled the same conference management scenario in three different process centred



102 CHAPTER 5. THESIS EVALUATION

environments, including our own. Further, we have evaluated these environments
according to model completeness, and ability to handle process changes. The re-
sult showed that our approach consists of a useful combination of process support
(for individual, cooperative activities, and for dynamic changes), but each part of
our environment could be improved (CAGIS DIAS and CAGIS SimpleProcess) at
their particular process support areas. The evaluation of our approach is presented
in report 1 in chapter 20. In addition, we have also modelled other processes us-
ing our CAGIS PCE showing that it is not limited to only supporting conference
management processes.

5.3 Summary of Contribution

Here is a list that summarises the contribution of this thesis:

� Seven papers describing our CAGIS PCE that are published at international confer-
ences and workshops. In addition, five other papers related to the thesis have been
published internationally, where two of them are journal papers.

� A multi-agent architecture and prototype implementation to support cooperative
processes in software engineering and other domains.

� A prototype implementation of a flexible workflow tool for distributed processes.

� A simple XML-based PML.

� A gluing middleware framework and implementation for handling interaction be-
tween several single workflow systems and a multi-agent system.

� An XML-based language for specifying GlueModels (relations between process
fragments and software agents).

� An application and evaluation of the framework, where the framework is applied to
a conference organising process, a cooperative software engineering process, and
a project organising scenario. Further, the framework was evaluated against two
other process support systems, namely ProcessWeb and Endeavour. The result of
this evaluation showed that our framework is useful for modelling and supporting
cooperative processes and for handling process changes.



CHAPTER 6

Future Work

In the thesis evaluation in section 5, we said that our GlueServer facilitates several work-
flow systems and agent systems to co-exist in the same environment. This means that
the GlueServer acts as a federation server for various process systems. We know that the
GlueServer is technically capable of facilitating this federation of different systems, but
we need to make larger experiments to see how well this integration works for real scenar-
ios. Future work should explore scenarios where several different systems are involved in
a heterogeneous environment, loosely coupled through the CAGIS GlueServer.

Our current implementation of the CAGIS DIAS (agent system) is rather immature for
efficiently model cooperative activities. Thus, further work on the CAGIS DIAS should
enhance the agent-API to make it easier to model and implement cooperative activities.
Another approach is to use another existing mature cooperative agent platform, or simply
to use a role-based workflow tool as ProcessWeb for the purpose.

Mobile devices like portable PCs, palm-top PCs, and mobile-phones are becoming more
and more popular. An increasing number of applications will be available on such de-
vices. This means that future process support environments should consider support for
mobile devices. Mobile devices also mean that people’s work can be carried out at dif-
ferent places, allowing people to work in virtual companies or virtual organisations. This
means that the process modelling languages should take into account mobile work as a
part of the formalism. Another issue that must be considered is how to provide process
support for a variety of devices with different hardware, operating system, screen sizes,
input devices etc. Also mobile devices are usually not on-line all the time, bringing up
problems with synchronisation of models and files, update of process changes etc. A
new Norwegian research project named Mobile WOrk Across Heterogeneous Systems
(MOWAHS) starting June 2001 will bring the research from the CAGIS project into a

103



104 CHAPTER 6. FUTURE WORK

mobile world. Industrial cooperation with the MOWAHS project is being solicited.



CHAPTER 7

Concluding Remarks

Since the sixties, the software industry has struggled with creating huge, reliable and
maintainable software systems on time, and on budget. Also today, the software industry
is struggling with the same problems, and no ultimate solution is found. In this thesis,
the focus has been on how to model and support development processes, and how to deal
with changes of these processes. Software development processes are highly creative
and human-centric, and these factors should be taken into account by PCEs supporting
software development. Thus, such PCEs must provide modelling languages and the exe-
cution platform to execute cooperative processes that can change when they are enacted.
We believe that our approach presented in this thesis represents a framework in the right
direction for better supporting software development processes. Further experimentation
and exploration of our CAGIS PCE will give us indications whether this is the right way
to go.

105



106 CHAPTER 7. CONCLUDING REMARKS



Part II

Background Papers

107





CHAPTER 8

Total Software Process Model Evolution in EPOS

Minh N. Nguyen, Alf Inge Wang, and Reidar Conradi1

Abstract
This paper presents a case study of a Norwegian banking software house where the objec-
tive is to adopt a categorization framework for managing evolution in software projects
to identify project profiles and evolution patterns, and to suggest improvements to better
support frequent evolutions. Based on an analysis of collected evolution data from an
ongoing case study, we elaborate a QIP-inspired method and own techniques to evolve
corresponding process models in our Process-centered Software Engineering Environ-
ment, called EPOS. The method describes also how to synthesize and reuse evolution
experience from completed projects to improve planning and estimation in new similar
projects. The collected data demonstrates that requirement changes which are detected in
later development phases, are major causes for cost overruns in the studied organization.

Keywords:
Process model evolution, experience reuse and learning, categorization framework for
process evolution, evolution pattern, empirical evolution data.

1Dept. of Computer and Information Science, Norwegian University of Science and Technol-
ogy (NTNU), N-7035 Trondheim, Norway. Phone: +47 73593444, Fax: + 47 73594466, Email
nguyen/alfw/conradi@idi.ntnu.no

109



110 CHAPTER 8. TOTAL SOFTWARE PROCESS MODEL EVOLUTION IN EPOS

8.1 Introduction

The software industry needs to develop high quality software predictably on time and
budget. Much research has therefore focused on technologies for Software Process Im-
provement (SPI), i.e. techniques for improving the productivity and quality of associated
processes. We can mention efforts such as SEI-CMM [PWCC95], QIP/GQM [BCR94b],
Bootstrap [HMK+94] and SPICE [Dor93], etc. Likewise, many case studies have been
conducted in software organizations to validate the applicability of proposed technologies
[BCM+92] [PC94]. However, there is insufficient research addressing the innumerable
and unforeseen process changes that occur during normal software projects. Frequent
changes and interruptions are considered as major cause for late delivery, cost overrun,
missing features, and thus poor quality. The ability to handle unexpected events occurring
both within the organization and in the surrounding environment is thus claimed to be a
characteristic feature of successful companies. We need to improve our ability to predict,
plan and manage changes based upon previous experiences. Adequate enactment support
for process changes, embedded in a PSEE, is also considered necessary and desirable.

Our previous work [NC94a] has been revised to contain a classification of process change
and their impact on the enacting process (project) in the form of recognizable evolution
patterns. Such patterns associated with typical project and product profiles will contribute
to building an empirical base. By utilizing this base the predictability in project plan-
ning/scheduling process is improved and more confident. We have collected empirical
evolution data from several software projects to provide us better understanding of the
actual evolution profile. Appropriate support has then been introduced in our PSEE to
better manage the observed evolution.

8.2 Related Work

Some research has been dedicated to process model evolution. In [JC93] and [BFG93],
basic mechanisms and techniques for process model evolution are identified and imple-
mented in two different PSEEs, EPOS and SPADE respectively. These efforts have em-
phasized methods and mechanisms for changing process model fragments, represented
as types or classes in a versioned repository. No concrete couplings have been made
with actual evolution in real software projects. On the other hand, Madhavji provided a
methodological perspective of evolution [Mad91] and environmental facilities (e.g., de-
pendency and change structure) for changes in the Prism model [Mad92]. The model
focuses on managing consistent change propagation in a feedback-based environment.
Unfortunately, little effort has been dedicated to pursuit and apply the work which still
remains at model level. The major focus in [LB85] and [Leh94] is on classification and
studies of evolving entities, especially software systems, referred to as Program Evolution
Dynamics. In this work, Lehman has identified five evolving entities in the software pro-



8.3. CONCEPTUAL AND CATEGORIZATION FRAMEWORK 111

cess: revision/version, S-type program2, E-type application3, process, and process model.
However, this work does not offer sufficient detail in systematizing the impacts of evo-
lution patterns in a concrete context. Work by DeMarco [DeM82], in the TAME project
[OB92] and empirical studies at NASA-SEL [MPsP+94] discuss how to achieve control
and to improve estimation accuracy in rather large software projects. However, these re-
sults are not necessarily applicable for small and medium enterprises (SMEs). Large soft-
ware projects are far more complex due to number of persons, number of software com-
ponents and required amount of management involved. In general, there is little progress
in obtaining and keeping control over evolving software processes by exploiting tech-
nologies from software measurement [Fen91] [Cap91] or from experience reuse/synthesis
[BR91]. Indeed, most project management tools are of limited practical value, due to the
accumulated effect of process changes during project execution. Thus, EPOS attempts to
integrate process and project support in managing changes during development.

8.3 Conceptual and Categorization Framework

We distinguish between a changing real world where managerial and technical activities
take place, and a modeled world ,where the human perceptions and constraints of the real
world is represented by models and documentation. The former world is continuously
evolving due to changing needs and perceptions. The latter model remains static, until
humans determine to change it according to the world it reflects.

A software process is a set of managerial and technical activities applying certain tech-
nologies (methods and tools) to transform a requirement into a software system. The
process consists of three parts: a production process (p-p), a meta-process (m-p), and
process support (p-s). The primary goal of the p-p is to develop a software system in a
project context with limited resources (humans, production tools) and budget (scheduled
cost and time). Furthermore, the p-p should adhere to a plan acting as a project-specific
process model. The m-p describes and governs overall planning and executing of p-p, as
well as packaging of gained experiences and evolving the entire software process. The p-s
is comprised of a model of the real process (p-p and m-p) expressed in process modeling
language(s) and manipulated by a set of process tools (a PSEE).

There are two types of human agents interacting with and continuously raising change
pressure to a software process. External agents consist of suppliers/sub-contractors and
competitors. Internal agents comprise senior people (executive managers); middle (line
and project managers); process (QA, process designer); SW engineers (analysts, de-
signers, developers, testers, service people, etc.), and customer representatives. Exter-
nal factors, such as market trends/forces, technology availability, and unanticipated de-
lays/distortions, also influence and drive process evolution.

Below, we present a categorization framework for process evolution. A detailed de-

2S-type program is a program which satisfies the fixed initial specifications.
3E-type application is subjected to continuous evolution as environmental conditions change.



112 CHAPTER 8. TOTAL SOFTWARE PROCESS MODEL EVOLUTION IN EPOS

scription can be found in [NC96]. Our framework distinguishes between where, why,
what, when, how and by-whom process changes are introduced. Those six dimensions
can be hierarchically decomposed for refinement and future extensions.

Where: identifies the sources that request or cause a given process change.

Why: represents the major causes (drivers) behind changes. They are used for causal
analysis.

What: describes what process parts (p-p, p-s, m-p) are requested to be changed or af-
fected by this action.

When: distinguishes between the time when the change request is detected (Change De-
tection Time - CDT) and the time when the proposed change is designed and im-
plemented (Change Realization Time - CRT).

How: records the corrective and preventive actions being conducted to handle a given
process change. It contains organizational change, technological innovation or plan
adjustment.

By-whom: identifies the human agents who approve and perform the change action.

Each dimension can be further decomposed into several aspects. Each aspect is repre-
sented by appropriated categories. An observed process evolution, categorized by the
proposed framework, is called an evolution pattern. The evolution pattern is instru-
mented by a cost measure in term of gain or loss of productivity or progress. Figure 8.1
depicts the elaborated categorization framework for process evolution which is used in
the case study.

8.4 EPOS

This section gives you an overview of the PSEE EPOS and how EPOS support process
evolution through mechnisms and tools.

8.4.1 EPOS System Overview

EPOS [MCJOLW95] [CHLN94] is a software process modeling and enactment system.
EPOS supports a reflexive, object-oriented software process modeling language called
SPELL [C+92]. Several different sub-models are supported in EPOS for describing ac-
tivities and products. These sub-models are: Activity (task) model, Product model, Tool
model, Human and Role model, Cooperation model and Meta-Process model.

To support process modeling and evolution, we facilitate basic mechanisms for incremen-
tal (re)planning and enactment of the process models by process tools like the Planner



8.4. EPOS 113

where why what when how who

Ext. Agent

Int. Agent Planning

Development
Performer

Ext factor

Correction

Adjustment

Refinement

Improvement

planning

tracking

packaging

evolving

structure

product

Negotiation

market technology

operational
environment

Approver

competitor

supplier

plan doc.

resource

humans production
tool (sw/hw)

budget

Learning

Ext. Agent

senior

middle

process eng.
engineer

customer

Int. Agent

better insight

strategic
decision

Adjustment

delay/distortion

misunderstanding

ambiguity

omission

error

Correction

evolution
framework

activity

p−s

m−p p−p

CDT CRT

Development

specification

h−l design

detailed design

realization

testing
maintenancerevised req.

lack of competence

production

process

Technological
innovation

forward

backward

Plan
adjustment

Org.
change

re−allocation

training

Figure 8.1: Categorization framework for process evolution



114 CHAPTER 8. TOTAL SOFTWARE PROCESS MODEL EVOLUTION IN EPOS

and Process Engine [JC93] [LC93]. We have built the EPOSDB [Mun93] to store ver-
sioned software products, as well as their related process models. EPOS also supports
cooperative transactions.

C
O

M
M

U
N

IC
A

T
IO

N
    P

R
O

T
O

C
O

L
S

Task NetworkTask Network

Product Product

Root Project

Workspace
  manager

Workspace
  manager

Cooperation
   manager

Cooperation
   manager

Project 1 Project 2

Workspace1 Workspace2
Tools Tools

Models

Tools

Project metrics Project metrics

Project metrics

Product

Task

Product

Task

Figure 8.2: EPOS models and tools

Figure 8.2 shows EPOS activity models and tools. The Process Toolsbox shown in figure
8.2, comprises the following EPOS tools:

� Process Engine: Used to execute the task-network instantiated by the Planner.

� Planner: Incrementally invoked by the Process Engine to decompose high-
level tasks into an task-network.

� Task Network Editor : Makes it possible to directly manipulate the task-network
before and during execution, and supports features as add/remove/move Tasks and
Products.



8.4. EPOS 115

� Project Manager: Used to plan, start and stop a project and to retrieve useful
project metrics from the EPOS-database.

� Schema Manager: Responsible for textually/graphically browsing, editing, defin-
ing, analyzing, translating and evolving the Process Schema, and can be used on all
the process sub-models.

In figure 8.2 two other tools are shown: The Workspace Managerwhich handles version-
ing of workspaces and products, and the Cooperation Managerwhich is working close
to Workspace Manager and handles cooperation and coordination between workspaces
(not dealt with here).

8.4.2 EPOS meta-process for managing model evolution

Our meta-process consists of four major steps, and is highly inspired by the Quality Im-
provement Paradigm of Basili [BCR94a]. The steps are MP1: Planning/instantiation;
MP2: Enactment/tracking; MP3: Packaging/Assessment and MP4: Evolving/Learning.
MP1 and MP2 are reusing project experience, while the other two MP3 and MP4 are syn-
thesizing such experiences. Figure 8.3 depicts these meta-process steps within a project
and associated process tools in EPOS.

8.4.3 Mechanisms for managing process evolution in EPOS

To manage evolution of a software process, it is necessary to store and utilize information
characterizing a project and information about changes that are made to the project. It
it also important to have PSEE-tool support for changes made to the process model and
instantiated process representation. The two next subsections will describe experience
database support in EPOS and how EPOS support process model manipulation. The three
following subsections describe how to change the instantiated process representation on
the fly.

Retrieval of project experience

Project experience is stored in the Experience database as an evolution pattern and as-
sociated with a particular project and product profile. Two characterization forms have
been made to retrieve project and product profiles of the new project. Each characteristic
is instrumented by a corporate-specific weight. This weight indicates the importance or
dominance of a given characteristic when the degree of similarity is determined during
selection process of baseline project. Information from the filled-out forms is used to
select candidates among completed projects from the database. The baseline project is
chosen by summarizing the weights of matching characteristics. The evolution data of
the baseline project is available for planning and comparison.



116 CHAPTER 8. TOTAL SOFTWARE PROCESS MODEL EVOLUTION IN EPOS

Experience
database

Planning/
Instantiation

Enactment/
Tracking

instantiated
process model
   (plan)

project
context

generic model
+

advices, directives

result, measures

evolution
patterns

models,
experiences

revised models,
experience reports

product

Task Network
    Editor

Planner Project
Manager

Schema
Manager

categorization
framework

Project
Manager

Process
Engine

project
experience

Reuse Synthesis

assessed
experience

Packaging/
Assessment

Evolving/
Learning

MP1

MP2 MP3

MP4

Figure 8.3: Method and tool support for managing process evolution in EPOS



8.4. EPOS 117

Recording of project experience

While executing a project, changes are recorded by filling out an evolution request form.
This form collects data sufficient to categorize a given change into an evolution pattern
which is stored back to the Experience database with its impact in term of cost. The
project performance and product quality measures are also recorded for future learning.
On the other hand, new experiences may lead to a revised process model and revised
corporate profiles. Such support is provided by the Schema Manager tool which is a tool
for changing the process model.

Manipulation of task-network layout

The following techniques can be used to edit the task-network (making changes to the
instantiated process representation during enactment):

� Delete-task: Remove an task from the task network. This operation can only be
done if neighbor tasks can be coupled together.

� Add-task: Input an additional task to the task network. This operation can not be
applied to the task-network, if it leads to an inconsistent task-network.

By using combinations of the two above you get:

� Split-task: Replace one task with two or more new tasks placed side by side. The
new tasks are a subset of the task that was replaced.

� Merge-task: Replace two or more tasks by one new task. The new task is a collec-
tion of all tasks replaced.

Manipulation of task-network scheduling

It is sometimes required to modify the schedule of the task-network to adapt to various
change incidents. Such incidents vary from need to revise initial effort estimates to a
re-execute or to postpone a start date of a particular task.

During execution on an task-network, we can change individual properties of tasks, such
as:

� Start time or stop time of the task.

� Allocated time quota for the task.



118 CHAPTER 8. TOTAL SOFTWARE PROCESS MODEL EVOLUTION IN EPOS

Manipulation of task-network resourcing

It is sometimes required to reallocate human resources in order to manage an evolution
incident. Thus, it is necessary to support a change of:

� Human role responsible for conducting the task.

8.5 Case Study

This section presents the background and context of the case study, and the project profiles
and evolution status of the involved projects.

8.5.1 Background and Context

The studied software organization XXX is a Norwegian banking software house with
326 employees of which 89 are working with software production (a typical SME). It is
located in three different sites, with the biggest development department in Trondheim.
The proposed case study is carried out closely with a System Development Division in
Trondheim. The organization is ISO-9000 certified in January 1995 and thus has a docu-
mented quality system. Reporting and tracking procedures are installed to collect project
performance metrics such as consumed effort, remaining time and cost on paper-based
forms. Still, XXX suffers from late deliveries due to inaccurate estimates. It has also
realized that unanticipated changes during project is a major cause. Moreover, there ex-
ists neither an empirical base nor a quantitative foundation to assess the possible effects
of different types of changes based on previous experience. Most projects running at
XXX are homogeneous and similar with respect to contractual conditions, product char-
acteristic, solution architecture with operating platforms, customer profile. In addition,
projects adhere to a defined project model which includes contract negotiation, planning,
water-fall life cycle (i.e. analysis, design, implement, testing) and experience packaging.
The project staff is often synthesized from different divisions, depending on the project’s
required competence/expertise. As the final product is delivered, a corresponding main-
tenance environment must also be established to assure continuing on-line operation and
service. The studied organization needs to have a more sophisticated insight into the evo-
lution profile. Appropriate method and tool support can then be developed. That is the
primary objective of the cooperation with our research group. A simulated project envi-
ronment will be modeled in EPOS and necessary tool support is provided to manage the
actual evolution. Lesson learned from the prototyping scenario will be useful for XXX in
improving ability in project management.



8.5. CASE STUDY 119

8.5.2 Project Profile

This Case study is based on five projects named A to E. Following information are re-
trieved at project start by filling in a project characterization form. Those measures are
thus essentially fetched from the XXX’s project plan and start report of the studied project.
The project profile measures presented in the table 8.1 below are only a subset of those
included in the project characterization form used to gather this information. We only
select those project profile measures which demonstrate obvious differences between the
five studied projects.

A B C D E
Project type Develop. Upgrade Develop. Upgrade Upgrade

Project member 15 14 Varied 8 Varied

Effort (hour) 6990 3815 1150 1500 1520

Duration (mth) 13 9 5 4 4

Customer Bank Bank Bank Bank Internal

Competence Partly Internal Partly Internal Internal

Technology Partly Known Partly Known Known

Difficulty Manag. Manag. High Middle Manag.

Table 8.1: Project Profiles for five studied projects

We see from the table that most common project types and sizes at XXX are fairly rep-
resented in the project sample. In addition, the degree of risk level which is represented
by competence availability, knowledge of applied technology and project difficulty, also
cover the entire range of value domains. Projects C and E do not have a fixed number of
participants, and personnel are constantly changing during the project life time. That is
why their number of project members is defined as varied. Product profile is not included
in the table because they are partly not of relevance in our further analysis, and partly
lacking in the project archive.

8.5.3 Evolution Status

In this section, we present empirical results on evolution which are collected during the
case study. A thorough analysis of such data is described in next section. Most informa-
tion on process evolution are retrieved from from the monthly status reports of the five
studied projects. Table 8.2 illustrates the total number of evolution occurrences and their
associated correction effort. The average frequency of evolution occurrences per month
and average cost for each evolution are then derived.

Due to lack of evolution data in the project archive, some slots in the table above must
be left empty. Complete information on process evolution during project E, and evolution
cost in projects C and D are not documented at all. Despite of scarce information, the



120 CHAPTER 8. TOTAL SOFTWARE PROCESS MODEL EVOLUTION IN EPOS

A B C D E Mean
Total no. of evolution 77 19 17 9 4 31

No. of evolution per month 2.6 1.2 3.0 2.3 - 2.3

Total correction cost (hour) 11773 504 - - - 6139

Average cost per evol. (hour) 153 27 - - - 90

Table 8.2: Evolution Profiles for five studied projects

empirical results above demonstrate an average frequency of evolution occurrences of
2 or 3 per month. An average cost for correction effort is about 90 hours per process
evolution. Only projects A and B have fully documented the impacts of process evolution.
Therefore, we can hardly make further analysis based on such weak data foundation.
However, we can demonstrate where process evolution comes from, i.e. where-dimension
in the categorization framework. Table 8.3 presents the percentage of different evolution
origins from five studied projects and their, average values. The average numbers from the
table obviously indicates a superior dominance in percentage of evolution which comes
from customer. This conclusion is correct with respect to the perception at XXX. Only
now, we have established a quantitative indication to where process evolution comes from.

A B C D E Mean
Customer 34.9 73.6 47 50 50 51,0
Sub-contractor 4.8 0 0 0 0 1,2
Executive 7.2 5.3 17.7 0 25 7.3
Project manager 33.7 15.8 5.9 20 25 19.2
Project member 19.3 5.3 29.5 30 0 21.2

Total 100 100 100 100 100 100

Table 8.3: Percentage of Evolution Origin from five projects

8.6 Evolution Analysis

In this section, we describe the results which are obtained by analyzing collected process
evolution data. The analysis is basically performed within the context of our categoriza-
tion framework (as shown in figure 8.1) . A set of typical process evolution patterns are
then identified. Empirical relations between process evolution and project profile are also
presented.

We introduce below two ways to perform analysis by combining arbitrary evolution di-
mensions in the categorization framework (i.e. where, why, what, how, when and by-



8.6. EVOLUTION ANALYSIS 121

whom). The following analysis are done by combining dimensions where-why and where-
how. The reason for our choice of such combinations is simply that the analysis results
demonstrate interesting findings, and are further discussed in subsequent subsections. Of
course, there is no restriction on which or on number of evolution dimensions to be com-
bined to perform the analysis.

The numbers which are reported in following tables, are derived from the EPOS Evolution
Analyzer Tool (not described in this paper). Only four greatest process evolution origins
in table 8.3 (i.e. Customer, Executive, Project Manager and Project Member) are taken
into consideration in the analysis.

8.6.1 Where-Why Frequency Analysis

The percentages in table 8.4 are derived by keeping one Where-category fixed (e.g. Cus-
tomer), and then varying the category values in Why-dimension. That is, they illustrate
percentages of evolution occurrences distributed over different cause categories. Only in-
teresting categories in the Why-dimension are selected for illustration. The most frequent
evolution patterns are identified and discussed in depth later in this paper.

A B C D E Mean
Customer

Ambiguity 6.5 5.3 17.7 11.1 0 8.1
Error 1.3 5.3 0 0 0 1.3
Requirement rev. 5.2 15.8 17.7 44.4 25 21.6
Lack of competence 3.9 5.3 0 0 0 1.8
Delay 15.6 10.5 5.9 11.1 25 14
Postponement 5.2 21 0 0 0 5.2
Lack of resource 1.3 0 5.8 0 0 1.4
Executive

Re-prioritizing 7.8 5.3 17.7 0 25 11.2
Project manager

Under-estimate 29.9 15.8 5.9 11.1 25 17.5
Project member

Error 11.7 0 17.6 11.1 0 8
Lack of competence 5.2 5.3 5.9 0 0 3.2
Delay 3.9 0 0 11.1 0 3

Table 8.4: Frequency of Evolution Occurrences distributed over Causes



122 CHAPTER 8. TOTAL SOFTWARE PROCESS MODEL EVOLUTION IN EPOS

8.6.2 Where-How Frequency Analysis

On the similar manner, the percentages in table 8.5 are derived by keeping one Where-
category fixed (e.g. Customer), and then varying category values in the How-dimension.
That is, they represent the percentages of evolution occurrences distributed over different
impact categories. Only some interesting categories in the How-dimension are included
in the table. The identified impacts are used to validate EPOS’ approaches to manage
process evolution in section Managing typical evolution patterns in EPOS.

A B C D E Mean
Customer

Rework 7.8 15.8 0 11.1 25 11.9
Prolong task 7.8 31.8 23.5 33.3 0 19.3
Postpone task 20.8 21 11.8 0 25 15.7
Revise/re-estimate 1.3 5.3 11.8 11.1 0 5.9
Project manager

Rework 11.7 0 0 0 0 2.3
Prolong task 7.8 15.8 5.9 11.1 0 8.1
Project member

Rework 7.8 0 11.8 22.2 0 8.4
Prolong task 9.1 0 23.5 11.1 0 8.7
Postpone task 10.4 0 5.9 0 0 3.2
Training 1.3 5.3 5.9 0 0 2.5

Table 8.5: Frequency of Evolution Occurrences distributed over Impacts

The table 8.5 shows that rework and prolong task are superior evolution impacts on project
schedule. Such impacts require additional allocation of resources according to initial plan.
The frequency of evolution which requires rework, constitute 23% (summarizing the Re-
work numbers from table 8.5), while 36% of total evolution occurrences imply additional
resources allocated to a particular task (summarizing the Prolong tasks numbers from ta-
ble 8.5). A postponed task due to a process evolution does not involve any additional cost.
However, such evolution imply that the plan must be re-scheduled and allocated resources
must be released. Still depending on the extent of resource needed to such rescue tasks,
the figures in the table clearly demonstrates the importance and seriousness of process
evolution.

8.6.3 Typical Evolution Patterns

Based on the figures presented in tables 8.4 and 8.5 above, we identify eight most typical
and frequent evolution patterns. Such evolution patterns are below listed according to
decreasing frequency percentage. Within the description of evolution pattern, we also



8.6. EVOLUTION ANALYSIS 123

emphasize the necessary corrective actions. Such rescue actions will be then realized by
invoking different operations to manipulate project plan (i.e. task-network) in EPOS (see
section Mechanisms for managing process evolution in EPOS).

1. Customer revision (21.6%): The customer issues new or revised requirements ac-
cording to the initial specification. Such changes requires that completed tasks
must be re-executed. The extent of rework depends on which phase in development
life-cycle the requirement change is requested. New tasks can also be added into
the project plan to deal with new or enhanced system functionalities. Note that the
requirement revisions after initial delivery (i.e. maintenance phase) have not been
taken into consideration in this case study.

2. Under-estimation (17.5%): The project manager tends to under-estimate various tasks
under planning. This is partly due to misunderstanding of user requirements, and
partly lack of empirical foundation for making estimates. Such under-estimation
usually causes that initial estimates must be revised, and project plan must be re-
scheduled. Sometimes, new tasks are introduced while existing ones are either
removed, divided or merged.

3. Customer delay (14%): The customer delays to deliver documents (e.g., requirement,
customer site interface) as initially agreed. Such delays require a postponement of
tasks which are dependent on the given deliverables. The project plan must then be
revised to reflect that fact.

4. Resource re-allocation (11.2%): The executive management (division or senior man-
ager) re-allocates project personnel to other project as a result of strategic re-prioritizing.
Such happen when they want to “ rescue” other urgent projects, or to satisfy a higher
prioritized customer request. This high frequency of staff turn-over results in a vi-
olation of the project plan. That is, necessary resources and competence are not
available to keep in project progress on schedule. Human factors associated to a
particular task must be removed, and other dependent tasks must therefore be post-
poned.

5. Ambiguous requirement (8.1%): The customer is not clear when the initial require-
ments are specified. This is due partly to their limited insight into the problem, and
partly due to their lack of competence in a given technology. That is, important re-
quirement details are neglected or vaguely defined. Such ambiguous requirements
usually imply a rework of requirement specification, or an insertion of corrective
tasks.

6. Error commitment (8.0%): The project member have injected errors in technical
documents. Such an evolution pattern often initiates either rework or prolong the
current task. An specialized error removal task can also be inserted to deal with the
problem. Such corrective actions imply delay and thus re-scheduling of the project
plan.



124 CHAPTER 8. TOTAL SOFTWARE PROCESS MODEL EVOLUTION IN EPOS

7. Customer postponement (5.2%): Unexpected requests for postponing the start date
of an task are issued by the customer. Such postponement causes that the initial
project plan must be revised. The time and human factors which are associated to
scheduled tasks are changed.

8. Lack of competence (5.0%): This phenomena is more common among project mem-
ber (3.2%) than among customer (1.4%). Such events are resolved by assigning
project personnel to training to improve e.g. their knowledge on a particular de-
velopment method/language. Training tasks are thus added to the existing project
plan.

Based on the identified evolution patterns above, we have suggested a set of improve-
ment initiatives which are described in the section Managing typical evolution patternsin
EPOS.

8.6.4 Empirical Relations between Evolution and Project Profile

In this section, we present our findings on empirical relations between collected data (in
previous section) and project characteristics (see table 8.1). In particular, we observe typ-
ical evolution patterns on one hand, and external project profiles on the other hand. Such
empirical relations improve our ability to predict and then anticipate process evolution
based on what we know at project start (i.e. project profile). We have revealed following
interesting relations. Of course, this list is not exhaustive.

Project type vs. Evolution frequency Development projects (A and C) experience more
turbulence than upgrading ones (projects B, D, and E). This fact is illustrated by the
high percentages of evolution frequency in table 8.2 in projects A and C. This phe-
nomena can be explained by the fact that both customer and XXX in development
projects deal with a new problem which they often do not have sufficient technical
competence.

Project type vs. Customer revision A high degree of customer revisions is found in up-
grading projects (B, D, E) in table 8.4. This observation is somehow hard to ex-
plain. There are two assumptions usually associated to upgrading projects. Firstly,
technology is well-known, and required competence is available. Secondly, the cus-
tomer often states clear and well-defined enhancement requirements as they have
been using the product for a period of time. However, the second assumption does
not hold in our case. For instance in project B, the customer at project start deliv-
ered an requirement specification which has thereafter been revised so many times
that the initially agreed-upon contract must be completely re-negotiated. Therefore,
this empirical relation must be validated carefully later as with more data points.

Project duration vs. Under-estimation The degree of under-estimation seems to increase
proportionally with the project duration (see table 8.4). It is easy to accept the fact



8.7. MANAGING TYPICAL EVOLUTION PATTERNS IN EPOS 125

that it is hard to predict the behavior of some tasks taking place far beyond in the
future. Moreover, project managers at XXX suffer from the lack of empirical base-
lines from prior projects to rely their estimates on.

Project duration vs. Customer delay The extent of customer delay is proportional to
the project duration (see table 8.4). This is probably due to the fact that customer
tends to give such projects lower priority, and thus does not respect the initially
agreed-upon deadlines.

Project type vs. Ambiguous requirement Customers in development projects are often
uncertain on what features they really need. This normally leads to unclear and
vague specification of initial user requirements.

Project type vs. Error commitment Table 8.4 shows a superior representation of errors
done by project members in development projects. This is perfectly natural when
the project members must address a problem to which they do not completely mas-
ter.

Customer type vs. Customer revision Development project E with an internal customer
(i.e. XXX’s Product Division in this case study) has experienced a higher degree of
requirement revisions than other projects. This relation is not quantitatively illus-
trated by the collected data material, but has been acquired through reading other
reports. Nevertheless, it is easy to understand when we accept the fact that internal
development projects do not bear any economical risk for XXX, and in addition are
often given lower priority by the executive management level.

It is worthwhile to stress that the empirical relations above are retrieved by our limited data
ground which are collected during the case study. The explanations for the relations are
thus somehow speculative. As the amount of collected data grows, more valid relations
can then be extracted. After all, our primary intention is to demonstrate the usefulness
and benefits from collecting and analyzing such information.

8.7 Managing Typical Evolution Patterns in EPOS

To deal with the typical evolution patters necessary actions must be made to correct
a particular evolution pattern. Most of them imply a revision of the project plan (i.e.
task-network in EPOS) by either adding new tasks, manipulating existing ones, changing
schedule properties of tasks.

Below we summarize basic operations that can be used to manipulate the EPOS task-
network:

Adding task Put an additional task to the existing task network.

Deleting task Remove an existing task from the task network.



126 CHAPTER 8. TOTAL SOFTWARE PROCESS MODEL EVOLUTION IN EPOS

Schedule revision Start time, Elapse time and duration of the task in the network
can be revised during execution.

Resource revision Performer of the task in the network can be replaced. As the conse-
quence, the task is either suspended or canceled.

Table 8.6 shows how eight evolution patterns (enumerated 1–8 according to the list pre-
sented in last section) are dealt by EPOS’ approaches to manage task-network evolution.

Evolution pattern 1 2 3 4 5 6 7 8

Delete task operation x
Add task operation x x x x
Task schedule revision x x x x x x x x
Task resource revision x x x x

Table 8.6: Evolution Patterns vs. Approaches in EPOS

8.8 Improvement Suggestions

In this section we state our suggestions for improvements towards the studied software
company XXX on the basis of case study results and findings.

8.8.1 Suggested Improvement Initiatives for XXX

By consolidating the findings and analytical results from the case study, we propose fol-
lowing suggested improvement initiatives for XXX in the future. The following list is not
sorted in any priority order.

� The most frequent evolution pattern is revealed to be user requirement revision.
XXX should have therefore better dialog with customer in requirement specification
phase. That is, advanced technology in requirement engineering can be adopted to
better understand requirements and thus prevent them from modifying later.

� The second most frequent evolution pattern is concerned the issue of under-estimation.
This problem can be remedied adopting better estimation method. The case study
has demonstrated the benefit of learning from past experiences to establish baselines
and then improve estimate accuracy. The existing quantitative baselines at XXX are
still insufficient and incapable to provide precise estimates. However, they will be
improved over time if XXX commits to pursuit the the same work direction. On the



8.9. CONCLUSION 127

other hand, XXX should initiate better cooperation between System Development
Division and Sale Division in contract biding process. That is, realistic but also
competitive bids must be elaborated together.

� Incorporate new paper-based forms for characterizing project/product; collecting
evolution data; collecting actual project/product status and categorizing errors into
appropriate handbooks in the Quality System. Specifically, the three first forms are
included in the Project Management Handbook, while the last one in the System
Development Handbook. By doing so, XXX institutionalizes an effective data col-
lection process for the company. Further support for data collection and utilization
of collected data, can be provided by introducing an Experience Database (EDB).
Since an the Experience Database used needs times to be validated, those paper-
based forms can be used in the meantime.

� Select one or two pilot projects which will use the EDB for recording project/product
measures and process evolution. In parallel, the collected data from the five studied
projects should be stored in EDB available for use. The reason to run EDB together
with pilot projects is to validate its applicability, user-friendliness and correctness.
Necessary enhancements should be recorded and installed before EDB is released
for use within the company.

� Project managers are encouraged to use the EDB both to make project estimates,
and to anticipate possible impacts during project execution (planning with contin-
gency). It is a major step towards continuous learning and reusing past experiences.
As many projects record their data into the EDB, the existing baselines gradually
become valid, representative and convergent. The improvement evidences on esti-
mate accuracy are then significantly demonstrated. Patience and full commitment
are key issues to establish a valid experience foundation. We refer to an exam-
ple of at NASA-SEL. It took them 18 years (1977-94) with several experiments to
gather data before they manage to consolidate to a set of representative and reliable
baselines.

� To be able to achieve significant improvement in error reduction during develop-
ment, XXX is suggested to seriously collect and classify errors according to their
types, origins, severities, and related characteristics (partly covered by the an error
report form). XXX can then obtain a deep insight into the error problem and priori-
tize corrective actions according to error impacts. Adequate technology can thus be
evaluated and introduced to reduce number of errors or to detect them earlier. That
is, required effort to remove them can be declined considerably.

8.9 Conclusion

In this paper we have presented a taxonomy for classifying process evolution along six di-
mensions. A case study has been conducted with a software organization to collect actual



128 CHAPTER 8. TOTAL SOFTWARE PROCESS MODEL EVOLUTION IN EPOS

evolution data based on the defined categorization framework. The preliminary analysis
shows that most changes originate from customer delays or requirement changes. Such
changes are detected in the design and testing phase, and constitute a major impact in term
of extra cost. A QIP-inspired method with an experience database and associated tools
have been developed in EPOS to manage and analyze collected evolution occurrences
observed changes. Such support will improve the ability for planning and scheduling to
reduce unanticipated changes during project. The gained experiences is fed back to the
organization for making effective improvement decisions. However, the reuse of previous
project experiences has been negligible since such evolution data are non-existing. More
projects will be tracked to make the experience database more confident and complete.

Further, much research effort has dealt with managing changes on process models in term
of evolving types or classes. From our new work, we realize that rather pragmatic changes
to task instances (instantiated process) are much more frequent than type evolution. The
consistency impacts of such instance-level changes need to be better managed and deserve
more research attention.



CHAPTER 9

Planning Support to Software Process Evolution

Reidar Conradi, Minh Ngoc Nguyen, Alf Inge Wang1, and Chunnian Liu2

Abstract
The ability to handle changes is a characteristic feature of successful software projects.
The problem addressed in this paper is what should be done in project planning and it-
erative replanning so that the project can react effectively to changes. Thus the work
presents research results in software engineering, as well as transfer of methods in knowl-
edge engineering to software engineering, applying the AI planning technique to software
process modeling and software project management. Our method is based on inter-project
experience and evolution patterns. We propose a new classification of software projects,
identifying and characterizing ten software process evolution patterns and link them to
different project profile. Based on the evolution patterns, we discuss the planning support
for process evolution and propose several methods that are new or significantly extend
existing work, e.g. cost estimation of process changes, evolution pattern analysis, and
a coarse process model for the initial planning- and the iterative replanning process.
The preliminary results have shown that the study of evolution patterns, based on inter-
project experience, can provide valuable guidance in software process understanding and
improvement.

1Dept. of Computer and Information Science, Norwegian University of Science and Technology
(NTNU), N-7491 Trondheim, Norway. Phone: +47 73 593444, Fax: +47 73 594466, Email:
conradi/nguyen/alfw@idi.ntnu.no

2Beijing Polytechnic University (BPU),
Beijing, P.R. China.
Chunnian Liu’s work is partly supported by the Natural Science Foundation of China (NSFC), Beijing
Municipal Natural Science Foundation (BMNSF) and Chinese 863 High-Tech Program.

129



130 CHAPTER 9. PLANNING SUPPORT TO SOFTWARE PROCESS EVOLUTION

Keywords: Software Process Modeling, Software Process Evolution, measurements, plan-
ning.

9.1 Introduction

Coarsely, we have four kinds of changes/evolution in software processes. First, we have
two kinds of changes in a normal development process, namely delayed planning (e.g. of
design details), or replanning due to unforeseen events (e.g. changes in requirements or
in staffing). Due to the unstructured nature of many of these changes, traditional project
management tools are grossly insufficient [Håk94]. A third kind of change occur in a
later maintenance process, where a stream of change requests are being handled. These
changes can be characterized as perfective (50%), corrective (21%) adaptive (25%) and
preventive changes (4%) [LST78]. Lastly, a fourth kind of change is the more long-term
software process improvement (SPI), which implies goal-driven and systematic evolution
of the entire software process between projects, cf. CMM [PWCC95] and Experience
Factory [BCM+92].

So the scope of research in software process evolution is vast. The particular problem
addressed in this paper is what should be done in project planning so that the project
can react rationally and effectively to changes. Thus, we focus on the first two kinds of
changes, with some emphasis on the fourth (i.e. SPI).

We propose a framework of project profiles, process evolution patterns observed in projects,
and the relation between project profiles and evolution patterns. Then we discuss the
planning phase in depth, aiming to provide the project manager with method support in
configuring a more realistic and flexible project plan. This includes initial planning be-
fore the start of the project and iterative replanning during the execution of the project.
The method is based on inter-project experience and the evolution patterns. For a new
project, a matching baseline project is selected from an Experience Database to predict
the potential change patterns that are likely to occur in the new project. Based on this
information, the project manager can make more appropriate decisions in the project plan
so that the project is better prepared for the potential changes. These decisions will be
followed and/or revised, when changes do occur during the execution of the project. We
also present some preliminary, experimental results - including an industrial case study -
which covers part of this paper.

This work presents not only research results in software engineering alone, but also trans-
fers methods of knowledge engineering to software engineering, applying the AI planning
technique to software process modeling and software project management.



9.2. RELATED WORK 131

9.2 Related Work

Lehman [Leh94] has presented a classification of software projects and process evolution,
listing five evolution entities: Software Releases, Software Systems Under Development,
Application Domains, Development Process, and the Process Model. His paper also de-
scribes the evolutionary characteristics of each of these entities. However, his discussion
is in a very abstract manner.

On the other hand, Nguyen and Conradi propose a functional framework (neither too
abstract, nor overly complex in operational details) to classify process evolution and link
evolution patterns to different project profiles [NC94b]. The evolution characteristics are:
where (origin), why (cause), what (process element), when (phase), how (kind of change),
by-whom (modifier). All these characteristics can be subclassed.

The original EPOS Planner [Liu91] exploits a mixture of hierarchical and linear planning
[AIS88] to generate parts of the task network in a process model. In [LC93], Liu and Con-
radi present an incremental replanning algorithm to deal with “microscopic” changes in
the process model. For example, the replanning algorithm can adjust an existing task net-
work to reflect changes in the Product Structure and/or in task types (called the template
process model). But in real processes most changes with major impact on the process
quality and improvement are “macroscopic” ; see [NWC97]. Our previous work on re-
planning was also confined to individual projects, and inter-project experience on process
evolution was not considered. The (re)planning method presented here is based on inter-
project experience and more general evolution patterns.

In the domain of software experience databases, we have mentioned the Experience Fac-
tory improvement method developed at NASA-SEL and Univ. Maryland. The Experi-
ence Factory approach proposes a centralized improvement taskforce in a company, with
long-term and company-specific SPI as a goal, and is internally exploiting an experience
database. There is also the associated TAME project [BR91] to exploit reusable pro-
cess artifacts in an experience database, e.g. to make decisions about subsequent projects
within the same organization. Further, much work on experience databases and corpo-
rate memory as a vehicle for for organizational learning has been done, especially in the
engineering sector. This has often been accompanied by techniques such as statistical
analysis, data mining like that provided by rough-sets [Paw91], or AI-oriented methods
like case-based reasoning [Lea96]. Finally, there is also work on the use of OO-style
patterns to represent reusable classes of projects [JGJ97].

Madachy has implemented a knowledge-based system [Mad95] for risk assessment and
cost estimation. More recently Konito in [Kon96] proposes a systematic method for risk
management, where risk is seen as variance or degree of imprecision. The idea of risk
scenarios (the hierarchy of risk factor – risk event – reaction) is adapted in this paper to
systematically make planning decisions about how to deal with changes which are likely
to occur in the project; see Section 9.4.3.



132 CHAPTER 9. PLANNING SUPPORT TO SOFTWARE PROCESS EVOLUTION

9.3 Classification of Process Evolution

9.3.1 Classification of Projects

First we observe that it is not realistic to talk about evolution patterns for software projects
in general without linking them to different profiles of projects. Typical overall-profiles
may cover aspects such as cost-critical, time-critical, safety-critical, research-oriented
etc. Figure 9.1 shows a top-level classification of software projects, which we call overall-
profiles, in which a list of items (purpose, application domain, software product, main
concerns, typical changes, main risk) are used to characterize the overall profiles.

classical
time/budget
constrained
projects

time−critical
projects

research
prototyping
projects

public sector etc.

system software
application 
software

tailored
software

purpose
occupy market
of a public
software

(languages,
 OS,
 DBMS,
 Network,......)

run the project
within budget,
deliver software
in time,
user satisfaction

external:
    requirements,
    resource
internal:
    review/testing

put the product
to market
as soon as 
possible

external:
    market
internal:
    requirement,
    design

develop/maintain
applic. software
in safety−critical
domain

application 
software

tailored
software

external:
    error report
internal:
    testing

internal:
    specification

very low

Projects

Charact.

application
domain

software
product

main
concerns

typical
changes

main
risk

descr.

A B C D

safety−
critical
projects

develop/maintain
application
software in a
particular domain

commerce,
industry,
medicine,
communication,
...................

schedule delayed,
budget overrun,
user complaints

release delays

s

transportation,
military and space,
nuclear,
real−time control,
...........................

no critical errors,
remaining errors
are as few as
possible

critical errors
causing serious
losses of life/money

test new concepts
and techniques,
using extensive
prototyping

science,
computer science,
software technology,
process improvement

      
       

        

prototype software
to test/validate
new ideas,
algorithms,
methods, ..........

validity of new
methods and 
comparison with
existing ones

Figure 9.1: Classification of Project Overall Profiles.



9.3. CLASSIFICATION OF PROCESS EVOLUTION 133

We do not claim that Figure 9.1 shows a complete list. Also, sub-classification is possible
and may be necessary. For example, each of overall profiles A-D in Figure 9.1 can be
further classified according to the following characteristics among others:

Application domain: Telecom, Business-Processing, Military, MIS, Banking, Novelty:
release vs. new software; familiar vs. new application domain, and Software maturity
level of the organization.

In addition to the overall-profile of projects, we have an operative-profile with categories
such as: project manager, participants, contractual-constraints, project size, external--
suppliers, customers, operating-platform, implementation-languages, etc. Each part of
the operative-profile is assigned a corporate-specific weight, representing the relative im-
portance of the part in determining the similarity between various projects of the corpo-
rate. For example, a software house XXX may assign a high weight on contractual--
constraints, as it learned that projects with matching constraints behave similarly.

When we speak of project profile, we mean both overall- and operative-profile. In the
following, we assume that the Experience Database has been initialized with data from
a non-trivial number (20-50) of historical projects, according to the profile classification
described above. Linked to these project descriptions, we have attached template pro-
cess models that have been used in these projects. Such templates constitute a repertoire
of reusable process model parts that can be combined and instantiated into operative pro-
cess/project models. In such an Experience Database we also store estimation/risk models
for project planning, and quality models e.g. about defect densities.

9.3.2 Evolution Patterns and their Relation to Project Profile

In our approach, a evolution pattern is recognized by the following five steps:

1. Set up a framework with a hierarchy of characteristics describing various aspects of
change. In this paper we use the following top-level attributes, being an extension
of those in Minh’s PhD thesis [Ngu97] (Figure 9.2):

� Source of change: internal (triggered by feedback), or external (triggered by
change of input).

� Scope of change: local (microscopic), or global (macroscopic).

� Timing of change: in early or late phases of the process.

� Evolving entity: application-domain /environment /product /process /process-
model.

� Forward-action: actions taken in the forward path of the process.

� Backward-action: actions taken in the backward loop (feedback loop).

� Impact on schedule etc.: big/moderate/small impact on schedule/quality/cost.



134 CHAPTER 9. PLANNING SUPPORT TO SOFTWARE PROCESS EVOLUTION

2. Keep track of change occurrences over a large number of projects in an organiza-
tion, record them in a form complying with the framework, and store the data into
an Experience Database of the organization.

3. Set up criteria to classify changes defined by the project manager. Here two recorded
changes with the same attribute values are considered “ identical.”

4. Retrieve and analyze the evolution data stored in the Experience Database, grouping
similar changes with only “small differences” according to some criteria.

5. Each group of similar changes with significant number of change occurrences (say,
more than 5% of the total number of changes being analyzed) can be seen as an
Evolution Pattern.

Figure 9.2 shows some common evolution patterns. For each pattern we give the “normal”
value for each of the attributes. Each evolution pattern contains the following informa-
tion: The occurrence frequency of a certain change in the project; The explicit/implicit
reactions taken to deal with the change; The impact of the change on schedule, cost and
quality (the risks); And the associated metrics (measuring procedure, data attributes, anal-
ysis model and analysis results). Naturally, such evolution patterns are also recorded in
the Experience Database, and their usage are described in Section 9.4 on planning.

The relation between project profile and evolution patterns could be extracted from the
Experience Database, or a model of this relation could be validated/invalidated by the
data in the database. Figure 9.3 shows an example of such a relation, linking project
overall-profiles and evolution patterns.

9.4 Planning Support for Software Process Evolution

Our method is based on inter-project experience and evolution patterns.

Each previous project will have its overall/operative-profile recorded in the Experience
Base (EB). As we mentioned in Section 9.3.1, items in the operative profile include:
project manager, participants, contractual-constraints, project size, external-suppliers,
customers, operating-platform, implementation-languages, etc., and each item of the pro-
file is assigned a corporate-specific weight to express its importance in measuring the
similarity between projects.

A new project is initiated with its own overall/operative- profile. The project manager uses
it as the criteria to search the Experience Base for those previously completed projects that
are similar to the current project. Project similarity can be discovered by partial matching
between the corresponding profile items. These similar projects constitute the candidates
to be considered as the baseline for the current project. The best-matching candidate, i.e.
having the highest sum of the weighted attributes associated with the matched measures,
is then selected as the baseline project. Of course in practice, the choice of the baseline



9.4. PLANNING SUPPORT FOR SOFTWARE PROCESS EVOLUTION 135

Patterns

Charact.

Values

Source
of 
change

Scope
of 
change

Evolving
entity

Forward−
action

Backward−
action
(feedback)

Timing
of 
change

Pattern I

Pattern II

Pattern III

Pattern IV

Pattern V

Pattern VI

Pattern VII

Pattern VIII

Pattern IX

Pattern X

requirement
change

customer delay

resource
re−allocation

review−modify
cycle

test−modify
cycle

market change

sub−contractor
delay

macroexternal appl.domain,
product,
process

(usually)

external macro any time

external

external

external
(internal
to organ.)

internal

internal

internal

micro

micro

macro
   or
micro

macro

new development
technology
infusion

new process
technology
infusion

internal

internal

micro

macro

macro
   or
micro

macro
   or
micro

later phase
of process

any time

any time

environment,
product

environment,
process

environment,
process

environment,
process

process,
process−
model

process

product,
process,
process−
model

product,
process

product,
process

re−design,
re−analysis

re−implem.,
re−design,
re−analysis

moderate

moderate

re−analysis,
re−design,
re−implem.

re−analysis,
re−design,
re−implem.

early phase: moderate
later phase: big

early phase: moderate
later phase: big

risk to schedule:
depends

risk to schedule:
depends

risk to schedule:
big

re−schedule
forward path

improvement
in forward 
path

improvement
in forward 
path

none

none

none

negative
feedback
to constraint

negative
feedback
to constraint

none   moderate

global impact
is constrained
by negative feedback

global impact
is constrained
by negative feedback

re−schedule
forward path

re−schedule
forward path

re−schedule
forward path

re−schedule
forward path

internal
schedule
adjustment

early phase

early phase

(usually)

late phase

late phase

early phase

early phase

re−schedule
forward path

wait till
termination
of the cycle

wait till
termination
of the cycle

impact on
schedule,cost,
product quality
etc.

Figure 9.2: Classification of Evolution Patterns.



136 CHAPTER 9. PLANNING SUPPORT TO SOFTWARE PROCESS EVOLUTION

Pattern I

Pattern II

Pattern III

Pattern IV

Pattern V

Pattern VI

Pattern VII

Pattern VIII

Pattern IX

Pattern X

Project

Evolution

moderate

moderate

moderate

moderate

 low

low

low

moderate

high

high

high

high

none

low

low

high

low

high

low

moderate

low

low

low

low

low

low

low

high

high

high

high

none

none

none

low

high

low

moderate

low

low

Type Type TypeType

A B C D

time−
critical

requirement

market

customer

sub−contractor

resource

dev. technology

process technology

schedule

review

testing

proto−
typing

frequency
of ocurrence

safety−
critical

cost−
critical

Figure 9.3: Relation Between Project Overall-Profiles and Evolution Patterns.

project is eventually a human decision, but the above method can provide some automatic
help in the decision-making process.

Furthermore, the evolution patterns of the baseline project, which were recognized us-
ing the method given in Section 9.3.2, were also recorded in the Experience Base (EB).
Retrieving this information, evolution patterns become predictable for the current project.

In this section, we will discuss how a project manager can utilize the evolution infor-
mation of the baseline project to configure a more realistic, flexible plan for the current
project. He/she is then expected to be better prepared for potential changes, which can be
derived or predicted from the baseline project.

Project planning consists of initial planning and iterative replanning activities.

With our approach, the initial project plan will include the following essential items (be-
sides general descriptions of project objectives, constraints, organization, resource, etc.):

1. Task network: This expresses the hierarchy of and dependencies between activi-
ties. In the initial plan, only a rough network can be provided. This is then re-
fined/modified during the life-time of the project.

2. Schedule: The allocation of start/end time and various resources to each activity,
and a set of intermediate milestones, (presented by a set of charts).



9.4. PLANNING SUPPORT FOR SOFTWARE PROCESS EVOLUTION 137

3. Cost estimation: The estimated effort of the whole project, as well as of each activ-
ity. In our case, the cost of possible changes should also be estimated.

4. Evolution pattern analysis: Based on the anticipated evolution patterns from the
baseline project, try to actively change the project profile and/or improve the the
process model. If this is not feasible, set appropriate contingencies (extra activi-
ties/time/resource ) in the project plan to deal with possible changes.

5. Metrics: The relevant attributes and associated procedures to collect/analyze them.
The actual measures will be used for risk analysis, plan revision, experience learn-
ing for future projects, etc.

We first present in Figure 9.4 our coarse process model (as pseudo-code) of the project
planning process, significantly extending the one given in [Som95]. The planning process
has four steps, S1-S4, where we will focus on step S1 “ Initial Planning” and S3 “Replan-
ning.” The following subsections will describe our methods for each of the plan items,
focusing on the core problem: “How to deal with possible changes” . The resulting plan
will be “better” than the ones which are based on a particular individual’s experience or
on some algorithmic models. It is “better” because it is based on the whole organization’s
experience and is pre-prepared for possible changes.

9.4.1 Task Network Layout and Scheduling

The task network shows the task hierarchy (sub-tasking) and inter-dependencies. Initially,
only a rough task network can be created. During project execution (e.g. in the design
phase), high-level tasks are gradually decomposed into sub-tasks in a hierarchical way.

The project schedule should fill in start/end time and resource allocation for each task, all
milestones representing important stages in the project, and the critical path – the longest
path in the task network. Scheduling is based on cost estimation which is the subject
of the next subsection. The project manager must consider possible scheduling changes.
The following guidelines apply:

1. Schedule first as if nothing will go wrong, then increase the time periods and re-
sources for tasks affected by anticipated changes (see Section 9.4.3).

2. Estimates in the initial project schedule must be compared with actual elapsed time
in order to revise the schedule for the later parts of the project, even re-partition the
later parts to reduce the length of the critical path (see Section 9.4.4).

3. To react to a change during project execution, the layout of the current network
may need to be modified (adding/deleting/modifying tasks). In most cases, the
modification is a human decision (such as adding an extra review task to enhance
reliability), and can only be done manually (with some help of graphical editing
tools).



138 CHAPTER 9. PLANNING SUPPORT TO SOFTWARE PROCESS EVOLUTION

Define project constraints

end while

Define project milestones and deliverables

while

Generate automatically the top−level task network

Make the initial schedule

Enact the tasks according to schedule

if  (the risk is high)
then revise estimate

revise schedule
re−negotiate project constraints/deliverables

{project is not completed}

if 
then

end if

end if

then

(unexpected changes occur)

(Section 4.1)

or

Analyze Risks:

Deal with Changes:

execute the reaction of the scenario
record the occurrence of the scenario

elseif

deal with it based on the manager’s judgement

record this new evolution pattern/scenario/occurrence

Initial Planning

Decompose high−level tasks during the execution
Whenever possible, use the automatic Planner
Otherwise use Graphic Editor to do so manually

(Section 4.1)

(Section 4.3)

Make sub−plan for measurements and risk analysis (Section 4.4)

Continuing, iterative, (re)Planning

Estimate initial project profile

Estimate project cost (whole and for each phase)   (Section 4.2)

(task break−down,  period/resource allocation,  Section 4.1 and 4.2)

(a change scenario occurs)

Track progress

Collect and analyze the collected measures according to the measurements sub−plan

(Section 4.4)

(Section 4.4)

 (Section 4.3,  4.1 and 4.2)

Evolution pattern analysis:

Try to change the project profile and/or the process model, adapted to evolution patterns
Whenever possible and desirable

Otherwise
Put contingencies in the project plan

Experience Packaging and Learning: put back into Experience Database

S1.

S2.

S3.

S4.

:Task Decomposition:

Tracking and Monitoring:

Figure 9.4: The coarse Process Model of Project (re)Planning Process.



9.4. PLANNING SUPPORT FOR SOFTWARE PROCESS EVOLUTION 139

9.4.2 Cost Estimation

Project cost reflects efforts, training, equipment, and so on. Here we only consider the
efforts costs – the costs of paying project staff according to hours spent and their price.

Initial cost estimation is necessary to negotiate the project budget and the product price,
to set the periods and resources for each task in scheduling. Continuous cost recording is
later needed to ensure that spending is in line with budget (often being the estimate). Cost
estimation for changes is necessary to effectively manage the process evolution.

Our overall method for cost estimation is:

� Using experience data to help traditional cost estimation:

There is extensive literature on this, describing two kernel techniques of software
cost estimation: Estimation by analogy (often manual) and Algorithmic cost mod-
eling (often automatic). Our method is helpful for both. Estimation by analogy is
based on completed projects of the organization and in same application domain
(the baseline); Algorithmic estimation models such as COCOMO [Boe81] have to
be tuned to the need of a user organization using historical project data. In our
approach, the baseline project and historical measures are both stored in the Expe-
rience Database and available to the manager of the new project.

As a minimal example, using the COCOMO model, we have the following estima-
tion steps and results for a project implemented in C++:

1. Calculate the number of function points FP , e.g. 150 (estimated in require-
ment analysis or perhaps in high-level design);

2. Code size LOC = AV C3
� FP = 7500, where AV C = 50 for C++;

3. Effort = 2:4 � LOC1:6
= 20 person-months, where constants 2.4 and 1.6

are tuned using historical data, including documentation and testing;

4. Project duration is 2:5 � Effort0:38 = 7:8 months, i.e. the project will be
carried out by a 3 person-team (again, with constants 2.5 and 0.38 are tuned
using historical data).

� Cost estimation of process changes:

– The baseline project contains historical cost data for each change pattern.
These data can be used to estimate the cost of similar changes in the new
project. This method can be applied to the review-modify cycle (pattern
IX), test-modify cycle (pattern X), and other evolution patterns.

– For a new requirement, COCOMO or other models can also be used to esti-
mate the cost to satisfy the requirement, e.g. expressed as FPs.

3AVC = Average LOC for each function point.



140 CHAPTER 9. PLANNING SUPPORT TO SOFTWARE PROCESS EVOLUTION

– For requirement modification, the cost depends on the timing of the change
occurrence. Modifications occurring in early phase cost little, as the real im-
plementation work has not started yet. Changes occurring in later phases,
however, may cause costly profound re-design and re-implementation. Re-
quirements traceability techniques [LS96] can be used to identify the affected
software modules to estimate the efforts of such re-work.

9.4.3 Evolution Pattern Analysis

To achieve real SPI, the project manager should analyze carefully the anticipated evolu-
tion patterns from the baseline project, and try to actively change the project profile and/or
improve the the process model before the project starts. For example:

� If an evolution pattern indicates intrinsically unstable user requirements, we may
choose an incremental development-delivery model with “ time-boxing” [Red97] to
replace e.g. the waterfall model employed in the baseline.

� If an evolution pattern indicates a high defect rate, we may introduce more rigorous
inspection tasks in the project plan to reduce the risk in testing phase.

� If an evolution pattern indicates high people turn-over, we need to prioritize the
over-crowded assignments in the company’s pipeline (an improvement of the orga-
nization and the project profile).

Sometimes it may not be feasible to change the project profile or the process model.
In these cases, there should be some contingency (extra time/resources) decisions in the
project plan to be better prepared for anticipated changes. For example:

� Contingency factors (the percentage of extra time/resources) should be decided for
those tasks which are affected by the expected change patterns.

� Some resources should be reserved for possible re-work to cope with the anticipated
change patterns.

� Some possible extra tasks should be perceived beforehand to deal with changes, for
example re-negotiation with the customer about budget, functionality, and deliver
date in case of later requirement change.

In the following, we propose a systematic method to conduct the evolution pattern analy-
sis and to make corresponding decisions. Several evolution patterns can be expected for
a new project. Each pattern could cause different change events, and each event has alter-
native reactions and impact on the schedule/quality/cost. To provide a control mechanism
for analysis and decision making, we can create and use evolution scenarios. In the Riskit
method [Kon96], Kontio suggests to classify identified risks into elements (factors and



9.4. PLANNING SUPPORT FOR SOFTWARE PROCESS EVOLUTION 141

events), and describes plausible reactions for each event, resulting in what he terms a risk
scenario. However, his method does not utilize inter-project experience. In our case, an
evolution scenario is a path from an evolution pattern to one of its events, and further to
one possible reaction. The evolution patterns are anticipated from the baseline project.
Thus, it is easier and more natural to break down a pattern into several events, and to
provide alternative reactions to each event. All these are guided by the information in the
evolution pattern which embodies inter-project experience. Another difference between
our method and Riskit is that our proposed decisions are mainly made during the planning
phase - before a project starts - while risk analysis in Riskit is mainly carried out during
the project execution.

Using evolution scenarios, the main steps in decision making become:

1. For each evolution pattern, perceive the possible change events;

2. For each change event, perceive the alternative reactions.

3. Each path in the above decomposition graph is now an evolution scenario;

4. For each scenario, estimate the impact on schedule/quality/cost based on data in the
baseline – the actual impact in the baseline project for similar scenario;

5. For each scenario, estimate its probability based on the frequency data in the base-
line project;

6. If there are too many scenarios, select the ones with high probabilities and/or sig-
nificant impact, and make decisions to change the project profile and/or the pro-
cess model, or define appropriate contingencies to deal with the expected important
changes.

Figure 9.5 shows examples of evolution scenarios and decision making for some typical
evolution patterns.

9.4.4 Measurements and Risk Analysis

Systematic and valid process improvement can be achieved only by analyzing the process
in a quantitative way, i.e. requiring measurements. For example the Goal-Question-Metric
(GQM) method [BCR94b] that defines goals for software process improvement before
embarking on software measurement tasks. Our method for predictive process evolution
relies heavily on software metrics. Thus the project plan should include measurement of
the product as well as of the process.

In our case, the process goals for measurements are:

� To monitor projects and their environments for factors that could fail, and to predict
risks to schedule, budget, and product quality (risk analysis);



142 CHAPTER 9. PLANNING SUPPORT TO SOFTWARE PROCESS EVOLUTION

Requirement
Change

Sub−
Contractor
Delay

Pattern I

Pattern IV

Occur in
early
phase

Occur in
later
phase

Delivery
delay

Re−engineering

Change
product

Delay
project

Tentative
scheduling
later phase

Evolution
Patterns

Change Events

event 1

event 2

event 3

Reactions

scenario 1

scenario 2

scenario 3

scenario 4

scenario 5

scenario 6

event 4

probability

probability

probability

probability

probability

probability

Impact Decision

Impact

Impact

Decision

Impact

Impact

Impact

Decision

Decision

Decision

Decision

Call in the
supplier

90%

10%

20%

10%

40%

50%

Scenarios/Impact/Decisions

contingency
in the
requirement
analysis

contingency
and extra
resource
in impl.

schedule++

schedule++
cost++

schedule++

schedule++
cost++

depends
on the
result
of negot.

contingency
in testing

contingency
in testing

keep reqm.
analysis
to later 
phases

Re−negotiate

Malfunction

minor
(normal
situation)

keep
resources
longer
than planned

Incremental
system 
development 
and delivery

scenario 7

event 5

probability
10%

DecisionImpact

unstable
schedule,
incremental
cost

milestones
for each
delivery

requirements
are revised
or added
incrementally

Figure 9.5: Evolution Scenarios and Decision Making.



9.4. PLANNING SUPPORT FOR SOFTWARE PROCESS EVOLUTION 143

� To revise/refine the project plan to react to (anticipated) changes;

� To track change reactions for their cost and effectiveness;

� To gain experience for future projects; etc.

In the project plan, the following measurement mechanisms should be specified:

� The process/product attributes to measure during project execution;

� The data collection procedures, tools and timing;

� The mathematical/statistical/empirical models used in data analysis;

� The data analysis procedures and their results;

� How to use the results of data analysis, e.g plan revision, risk warning, future learn-
ing, and so on.

For a particular project, the project manager should focus on selected issues based on the
expected evolution patterns. In the following, we give some examples.

1. Requirement Change – Evolution Pattern I

� Data Collection and Analysis:
Count periodically the number of requirements (initially and number of added /deleted
/modified requirements).

� Risk Analysis: If the requirements are still being modified, then the schedule is still
at risk. If the total number of requirements is stabilizing, the risk is reduced.

� Reactions: If the risk to schedule is high, re-negotiate the budget or adopt the incre-
mental system development and delivery approach.

2. Sub-Contractor Delay – Evolution Pattern IV

� Data Collection and Analysis:
The estimated date D1 of the availability of the external product P (based on its
announced arrival time and the model for its acceptance testing) is periodically
reported to management. In the project plan, the manager has the planned date D2

for the availability of P.

� Risk Analysis: The risk to the project schedule and cost is inversely proportional to
D2 �D1.

� Reactions: If the risk to schedule is high, consider replacing the external product P.



144 CHAPTER 9. PLANNING SUPPORT TO SOFTWARE PROCESS EVOLUTION

3. Internal Schedule Adjust – Evolution Pattern VIII

� Data Collection and Analysis: the effort data (person-hours) is collected by weekly
reports to management showing recorded hours for each task. In the project plan,
the manager has effort estimates for each phase and the total effort. The actual and
estimated effort is periodically compared.

� Risk Analysis: Extensive deviation would indicate a potential problem area and risk
to the schedule.

� Reactions: classical project follow-up.

4. Review-Modify Cycle – Evolution Pattern IX

� Data Collection and Analysis: Measure module characteristics (size, complexity,
fan-in/fan-out, etc.). Use some model of correlation between module characteristics
and module risk level. Applying the model to each module, we can estimate its risk
level.

� Risk Analysis: To identify “high risk” modules that exceed their estimated or rec-
ommended complexity and size.

� Reactions: ”High risk” modules may need further investigation or even re-design.

5. Test-Modify Cycle – Evolution Pattern X

� Data Collection and Analysis: Estimate the total number of defects using industry
guidelines, e.g. 1 defect per KLOC. Periodically count the defects found, and esti-
mate the rate at which defects are found using some defect trending model. Then
we can estimate how many defects that remain at any time of the project.

� Risk Analysis: If too many defects have not been found and the product is released
shortly, then the reliability of the product may be unacceptably low and this is risky.

� Reactions: Prolong the period initially planned for the testing phase.

Based on different evolution patterns, the project plan should specify appropriate mech-
anisms for risk analysis and management (data collection, analysis method and models,
risk analysis method and models, etc.) and pre-allocate necessary resources for reactions.

9.5 Preliminary Experiences

Parts of the (re)planning process in this paper has been prototyped, using the EPOS sys-
tem [Ngu97]. Real projects were “simulated” in EPOS, with active process models. The



9.6. CONCLUSION 145

empirical data were taken from a case study conducted with a Norwegian banking soft-
ware house, called YYY [NWC97]. In that study we classified five historical projects and
collected actual change occurrences in these. Organization YYY is ISO-9001 certified
since January 1995, and has therefore a documented quality system. The purpose of the
case study was to collect actual evolution data based on parts of the framework described
in this paper. The preliminary analysis shows that most changes originate from customer
delays or requirement changes. Many such changes occur in the design and testing phase,
and constitute a major impact in term of extra cost. However, the case study and the ini-
tial EPOS implementation covers only part of the work presented in this paper. E.g., the
classification system was not fully utilized, and replanning was largely incomplete.

The experience database for YYY has now been re-implemented in ORACLE, and is be-
ing populated with data from 30 past projects and tried out on 5 ongoing projects [Ing98].
The gained experiences is being fed back to the organization for making effective im-
provement decisions. YYY now uses a classification metrics called Project Implemen-
tation Profile (PIP) to specify the operating-profile [SS86], using 10 factors and with 10
values each.

The proposed classification and planning framework will be tried out on a larger scale
in the Norwegian SPIQ project in 1997-2001, where SPIQ stands for “Software Process
Improvement for better Quality” . Most of the 12 participating SPIQ companies includ-
ing YYY are interested in establishing a corporate Experience Base to improve project
estimation and generally to achieve SPI. Five of them are now building up small, web-
based experience bases to improve their estimation capabilities. Their initial goal is better
cost/time estimation of current projects, and not to manage unanticipated process changes.
However, such process changes represent the (un)expected variation in such estimates,
and are thus valuable information. In the next round, more up-front planning for process
changes can be employed. For instance, one of these companies use five major tollgates in
their projects, where they assess progress and (re)plan further activities. This is consistent
with the proposed planning support in this paper.

9.6 Conclusion

The central topic of the paper is the planning support for software process evolution. This
work presents not only research results in software engineering alone, but also transfers
methods of knowledge engineering to software engineering, applying the AI planning
technique to software process modeling and software project management. The main
contributions in this work are:

� We propose a new classification of software projects, and several special overall-
profiles of projects (time-critical, safety-critical, and prototyping) are identified
apart from the classical time/budget constrained projects. In addition, several fac-
tors to constitute operative-profiles are introduced.



146 CHAPTER 9. PLANNING SUPPORT TO SOFTWARE PROCESS EVOLUTION

� We identify and characterize ten software process evolution patterns and link them
to different project profiles.

� Based on the evolution patterns, we discuss the planning support for process evo-
lution. The following methods are new or significantly extend existing work:

– Cost estimation for process changes;

– Evolution pattern analysis, and decision making for local contingencies or for
more global SPI.

– A total process for initial planning and iterative replanning, documented by a
coarse process model (as pseudo-code).

The presented framework is a bit preliminary and needs detailing towards individual com-
panies and cases. However, its core features have been applied with preliminary, encour-
aging results.



CHAPTER 10

Improving Cooperation Support in the EPOS CM
System

Alf Inge Wang, Jens-Otto Larsen, Reidar Conradi, and Bjørn P. Munch.1

Abstract
This paper reports our experiences gained in designing, implementing, and experimenting
with technologies for improved support for cooperative work in our configuration man-
agement (CM) system. The aim of the work has been to find a set of mechanisms support-
ing cooperation in a range of situations, from planning and scheduling long-lasting CM
activities, to resolving access conflicts2 between users. Although our tools are tailored
for our home-grown environment, the general approach should be applicable also to other
CM systems or usage domains. The emphasis of this paper is on flexible mechanisms to
solve access conflicts without enforcing only one way of working.

10.1 Introduction

One of the problems in software configuration management regards cooperative work
on large systems, where several people are doing development simultaneously, and their

1Norwegian University of Science and Technology (NTNU), N-7034 Trondheim, Norway,
falfw,jensotto,conradi,bjornmug@idi.ntnu.no

2Access conflict does in this paper mean that two or more people want to change the same file at the
same time.

147



148 CHAPTER 10. IMPROVING COOPERATION SUPPORT IN EPOS CM

work is not always independent.

A programmer may want to work in isolation, to avoid surprises when e.g. a library or
a common header file is suddenly changed by someone else. On the other hand, (s)he
may get in trouble when the work is finished, and turns out to be “wrong” because it is
based on an outdated version of the same library/header file. Other kinds of problems
arise when two developers want to change the same part of a product concurrently. To
allow such an action, it should be allowed to have temporary inconsistency and support
must be provided to ensure final consistency.

Situations like these inevitably show up in large development projects. Of course, it
is always a good idea to try to organize the work in such a way that access conflicts
do not happen too often. But it is not possible to avoid it totally without putting severe
restrictions on the work. Instead, a CM system should give support for planning, detecting
and dealing (this includes negotiation for solving conflicts of sharing data) with such
conflicts, rather than trying to avoid or work around them at all costs.

To aid cooperation between users of a CM system, one should not only consider access
restrictions to objects, but also provide awareness services to be able to see possible or
actual access conflicts. Additional information can also be used to e.g. plan activities,
negotiate about data sharing conflicts etc.

The EPOS CM system (ECM) is built on top of a general, versioned database (EPOSDB)
and offers a set of commands to access software components stored in the database. We
have added functionality in a number of areas to support cooperation among ECM users.
In this paper we will go through the added functionality.

The rest of this paper is organized as follows: Section 10.2 discusses support for cooper-
ative work within some existing CM and similar systems. Section 10.3 discusses about
what cooperative support a CM-system should have and presents a list of cooperative
support requirements for the EPOS-CM system. Section 10.4 is a short description of
the EPOS CM system and what cooperative support we have added to the system. Sec-
tion 10.5 describes the cooperative support we have added in EPOS. Section 10.6 presents
some experiences we have had using the cooperative support in ECM. Section 10.7 dis-
cusses how cooperative CM support is related to the process modeling domain. The last
section concludes this paper.

10.2 Related work

In this section we will give a brief presentation of some existing CM and similar sys-
tems, both commercial and research prototypes. We will describe their basic usage mode,
mechanisms for concurrency control, and support for concurrent, cooperative work.



10.2. RELATED WORK 149

10.2.1 SCCS/RCS

SCCS [Roc75] and RCS [Tic85] are both versioning systems. Components are checked
out from repositories and into file-based workspaces. To be able to return a changed com-
ponent to the repository, the component must be locked, thus preventing other users from
updating the component. Locks are released when components have been returned to the
workspace. Neither system has a formal workspace concept, nor do they provide support
for managing large workspaces. To summarize, these systems use simple component-
based locking and do not provide any support for cooperative work apart from informing
about who is holding locks on components.

10.2.2 ClearCase

ClearCase [Leb94] is a popular commercial CM system. Workspaces (Views) are central
to ClearCase and provide a framework for specifying workspace-wide versioning behav-
ior (version selection, branching, etc). Components are locked when checked out for
update and the locks are later released. The additional support for cooperative work pro-
vided by ClearCase is support to locate, possibly access the changed components and
support for handling software configurations on different distributed sites.

The cooperative support in ClearCase can be further improved by using ClearGuide.
ClearGuide is a Software Process Management product – that try to guide software devel-
opment teams through day-to-day activities, improving project coordination, and encour-
aging ongoing process improvement. This product is fully integrated with ClearCase.

10.2.3 NSE

NSE [Sun89, Fei91] (later TeamWare) has nested workspaces. Components are copied
from the parent workspace, changed, and returned to the parent workspace. NSE does
not lock components in parent workspaces, but has instead focused on detecting update
conflicts and supports the user in merging own changes with concurrent changes from
other workspaces when returning components to the parent workspace (during work and
when closing a workspace). NSE also has a number of features to synchronize workspace
contents with that of the parent. NSE allows users to go ahead with their work with
maximum concurrency and provides good support for the process of integrating changes.

10.2.4 Adele

Adele [BEM93], has a number of high-level CM features and a powerful mechanism for
automating workspace maintenance(triggers). Adele uses component locking and allows
components to be exchanged between workspaces, even automatically. By using the trig-
ger mechanism, Adele can provide some process support and also awareness support.



150 CHAPTER 10. IMPROVING COOPERATION SUPPORT IN EPOS CM

Apart from this functionality, upon which relatively advanced support can be built, there
is no particular system support for cooperative work.

10.2.5 Lotus Notes

Lotus Notes[Orl92] provides a way of organizing documents and making them available
to groups of people and individuals. The cooperative support in Lotus Notes is provided
by the means of sharing information. This is done by using a document database where
documents are stored. You can also use Notes as a GUI front-end for an information flow
system or workflow system.

There is, however, no well defined configuration management support in Lotus Notes. It
is possible to lock files manually and it is also possible to see latest changes to a text
document as text shown in another color than the rest of the text. There are, however, no
mechanisms to ensure consistency or to allow people to work in parallel.

10.2.6 Other Systems

Some dedicated Software Engineering DBMSes, like DAMOKLES [DGL86], provide
open and flexible long transaction models, but lack a user framework that enables coop-
eration support. Software engineering environments like Marvel [Kai90b], COO [Cla93],
and our own EPOS [MCJOLW95] all provide some cooperation functionality based on
their own databases.

More traditional groupware systems like TeamRoom [RG96], BSCW [BHT97] and Ob-
ject Lens [MLG92] provide support for awareness and group-sharing, but little or no
support for versioning management. These system provide workspaces with only limited
or no support for locking of documents and for dealing with different configurations of
these. However these systems support negotiation between users of the system.

10.3 Cooperation requirements

Software engineering involves large data sets at client sites and long update times. Since
the scope and sequence of updates are hard to predict and may involve overlapping/
versioned subsystems, traditional locking procedures may cause intolerable delays. Thus,
software engineering – like concurrent engineering in CAD/CAM and VLSI – also re-
quires support for long-lasting and user-controlled transactions, often called design trans-
actions [KKB85], or workspaces in the CM context.

From the discussion in section 10.2, we see that the most common way to handle concur-
rent work by many users is to avoid update conflicts by locking components (only NSE
uses another approach). Users will then have to communicate to decide how to handle



10.3. COOPERATION REQUIREMENTS 151

the access conflict: creating temporary versions to allow concurrent work, waiting for the
other user to finish work, or to work around the system (at the cost of loosing system
support).

Design transactions are not, however, enough to solve all problems regarding concurrent
work on the same files in a CM system. There must also be other mechanisms that can help
users at a higher level to do the right decisions before and during conflicting situations.
Some of these mechanisms are functionality typically provided in groupware systems,
some are related to scheduling software, while other mechanisms are related to advanced
CM systems.

Soft locks can for instance be used indicate that someone is changing a specific file. In
contrast to traditional locking, soft locks do not ensure consistency. This can, however,
be done through merging and negotiation.

If traditional locking is not enforced in a system, there are many ways to help users to
handle access conflicts that will occur. To make sure that access conflicts don’ t occur, it is
possible to plan the file access in advance. If no such actions has taken place, the system
can make users aware of what others do and what objects they access. To resolve access
conflicts when they arise, it is possible to use negotiate procedures and to exchange prod-
ucts between workspaces to merge changes. Some properties essential to a cooperative
CM system should be:

1. Shared plans: Planned and ongoing activities, both small fixes and larger efforts,
should be described and entered into the system so that other activities can be
planned as scheduled based on this information.

2. Workspace information: By making workspace related run-time information avail-
able in an easily accessible format, users are able to reason about the causes of
conflicts.

3. Awareness: Providing support for notifying users about events that will affect their
work in their respective workspaces.

4. Communication infrastructure: A cooperative system should include a system for
sending messages and notifications, both user and system generated information.
An integrated infrastructure will improve communication precision and performance.

5. Flexible locking mechanisms3: To manage concurrency problems, different lock
modes allow more concurrent work in a system-supported manner. The underlying
point is that with a formal criterion for correctness of concurrent component ac-
cess, we are able to reason about the inconsistencies that may arise, if we choose a
conflict-detecting instead of conflict-avoiding way of working.

3Flexible locking mechanism does in this paper represent a extended locking mechanism compared to
traditional locks that provides different lock-types (read locks, soft locks etc).



152 CHAPTER 10. IMPROVING COOPERATION SUPPORT IN EPOS CM

6. Component exchange: There should be a way to exchange a copy of a component
between workspaces, before checking it back into the repository (pre-commit ex-
change).

The next section describes how our CM system has been extended to support these re-
quirements with emphasis shared plans(1).

10.4 ECM - the EPOS CM system

This section gives a short introduction to the EPOS configuration management system
(ECM) and introduces the cooperative support that has been added to the system. For
more detailed description on ECM look in [LMCL95].

Figure 10.1 shows the main parts of the EPOS CM system with the cooperative support
added. The main parts of the system is the ECM tool and the EPOSDB [Mun93]. The
ECM tool has both a graphical and command-line user interface and provide support for:

� Manage workspaces: Navigate in workspace hierarchy4 and create new/abort/
commit workspaces.

� Manage components5: Navigate in the product space, check in and out compo-
nents etc.

The EPOS Database [Mun93] is a general-purpose DBMS with features geared for CM.
All objects are versioned according to our CoV versioning model [MLG+93], which we
will not discuss in this paper.

The shaded blocks in figure 10.1 represents the cooperative support extensions in EPOS.
Here is a short description of the extensions:

� ECM Tool Extra cooperative support: Send user messages, conflict detection,
synchronize file support, browse workspace information and merge file support.

� Awareness services: Browse/Subscribe notifications and automatic update of newer
versions of files.

� EPOS Message Server: Distribute system messages.

� Component exchange: Exchange components between workspaces before the workspaces
are committed.

� EPOSDB schema extension: To support Workspace information, flexible locking
and Shared working plans

4EPOS supports nested workspaces which is represented in the repository as nested transactions
5The term component in EPOS is used to name products, files etc.



10.4. ECM - THE EPOS CM SYSTEM 153

Unix tools Unix tools

Components
     (files) Components

     (files)
Workspace A Workspace B

Transaction A Transaction B

EPOS DATABASE

FILE SYSTEM

Awareness
   service

Awareness
   servicePlanning

   Tool

   EPOS
Message
  Server

Planning
   Tool

Component exchange

Components
     (files)

WS
?

Extended functionality

Old EPOS CM system

ECM tool ECM tool

Extra coop
   support

Extra coop
   support

Shared working
plans (WUDs)Workspace

information
(WS structure,
accessed comp,
user info etc.)

Locking information
(lock on comp, who
hold locks etc.)

Figure 10.1: EPOS CM with cooperative support added.



154 CHAPTER 10. IMPROVING COOPERATION SUPPORT IN EPOS CM

� Planning tool:Plan file access in advance to avoid conflicts.

More detailed description of these features is shown in section 10.5

10.5 Extended cooperative support in EPOS

This sections describes the the cooperative support we have added to the ECM system.
The cooperative support described in this section is not only restricted for EPOS and could
be applied to other CM-systems as well.

10.5.1 Shared plans: Work-Unit Descriptions

We want to provide support for declaration of work intentions. This means planning
information (e.g., resources, calendar and dates, and expected work sets), are specified
in a formalism comprehensible to both users and the system. This permits us to reason
on the plans against the actual state of a project: potential cooperation problems can be
identified and solved in advance. These specifications are primarily meant for a priori
coordination of work.

The term work-unit (WU) covers the notion of a “meaningful” unit of change/ revision
made to software objects in the EPOSDB. By storing work-units in the EPOSDB, it is
possible to share descriptions of planned work with other users, so that it will be pos-
sible to coordinate and schedule larger change jobs to minimize the potential for access
conflicts.

The intentions of the work to be performed in a work-unit is given by a work-unit descrip-
tion, WUD. This description primarily encompasses information needed to start an ECM
workspace, such as version configuration6 and read-/write-sets of named software com-
ponents. WUDs are stored in the EPOSDB using a schema which is structurally similar
to the one shown in figure 10.2.

WUDL (“Work Unit Description Language” ) is a textual language for defining properties
of and pre-declaring work intentions for a workspace or transaction. WUDL specifica-
tions are declarative, and their purpose is to define in advance which objects will or may
be accessed, not when and how. The most important information found in a Work Unit
Description is Read sets, defining what files will be read, and write sets, defining what
files will be changed.

We have implemented a planning tool [CLH95], as shown in figure 10.1, which can ana-
lyze a set of work-unit descriptions and suggest an execution history which will minimize
the set of dependencies between concurrently executing transactions.

6The version configuration is in EPOS represented through ambition and choice as described
in [Mun93].



10.5. EXTENDED COOPERATIVE SUPPORT IN EPOS 155

WUDL can be extended to contain elements for coupling ECM closer to the EPOS soft-
ware process support tools. A longer-term goal would be to supply a library of concur-
rency control and cooperation policies which cover the most methods found in database
systems. Using this library, we are able to specify work-units at a relatively high level of
abstraction.

10.5.2 System information: Workspace Information

Workspace information is stored in the database and maintained when users are perform-
ing operations related to workspaces. Some examples of the information are: A general
description of the work intention, the workspace structure (hierarchy), and the set of ac-
cessed objects along with lock modes. This information is accessible through a set of
tools/commands, and can be used to detect and/or avoid access conflicts at any time.

Session

1
N

N M

1 N

Workspace

ws_parent

lock

N M

Component
ws_checkout

1

User
active_user

1
active_in_ws

ws_owner
1

N

Figure 10.2: Schema for transaction and workspace database.

To support interactive conflict solving, we need to supply sufficient information for the
users to be able to locate the source of a conflict.

Our solution is a meta-database of workspace-related data. This database can be queried
from within any workspace and it is updated by various access and transaction control
operations. The transaction and workspace meta-database will give a consistent view of
which transactions exist and which objects are locked or checked out by which transac-
tions.

The main parts of the ER-schema for this meta-database is shown in figure 10.2. The
workspaces are modeled by an entity type and the hierarchy by the ws parent relation.
The information stored in workspace entities is basically what is described in the WUDL
section 10.5.1. The lock relation type models locked components, and similarly the
ws chkout relations show which workspaces have checked out a component. The user
entity type contains information about a user of the CM system (name, email, office,
phone number) and which workspaces are owned by the user. If the user is active, there



156 CHAPTER 10. IMPROVING COOPERATION SUPPORT IN EPOS CM

will be a session entity for each ECM client running, containing host and process
information.

ECM has graphical browsers which display this information (referred in figure 10.1 as
ECM Tool Extra), and the user can also query this part of the repository through the
command-line interface using the same commands as used for other database queries.

The goal has been to build a system where one can easily find the source of a conflict
arising from an attempted operation. The basic scenario is that a check-out operation fails
because the component is already checked out in another workspace. The user can then
find which workspaces have checked out the component, and which is causing the lock
conflict. From the workspace entity one can find the user owning the workspace and, if
any, the active users. The user will then have to take appropriate actions to resolve the
situation: delay the operation, undo one’s own work, or request the partner involved in
the conflict to act.

10.5.3 Awareness

Whenever a user invokes a command that will update the database contents, a notification
message is sent to all users that subscribes to this type of message and that may be affected
by the event. The notifications are handled by the EPOS Message Server as described in
section 10.5.4.

The notification messages are displayed and managed through a separate user interface,
with features for filtering out the notifications that are not interesting for the user. No-
tification about an actual access conflict cannot be filtered out. The two most important
message classes are:

� Possible write/write conflict: This message is used to tell a user that other users
have checked out the same component for updating. This makes it possible for a
user to abort the check-out of a component for updating to avoid an access con-
flict. The message will carry information about what workspaces the conflicting
components are checked out to and what users are currently connected to these
workspaces. EPOS CM has tool support for performing a negotiation process which
can be utilized for solving access conflicts.

� Actual write/write conflict: This message is sent if two or more workspaces have
checked out the same component for updating and checked in the components into
the workspace. This situation means that if the conflicting workspaces commit, an
actual write/write conflict occur.

At this stage it is possible to solve the access conflict in at least three ways. The first
and the least wanted way is to abort one of the workspaces (changes will be lost)
The second way is to synchronize the changes to a component made by two or more
workspaces. EPOS CM has a tool for going through the steps in a synchronization



10.5. EXTENDED COOPERATIVE SUPPORT IN EPOS 157

process. The last way of solving the access conflict is to do nothing before commit-
ting the workspace. The ECM Tool will automatically detect the components that
are in conflict with other workspaces. A merge tool will be invoked which suggests
how the files should be merged.

Another awareness service that EPOS CM provides is automatic update of a component.
This means that when the system detects that there exists a newer version of one com-
ponent, you have checked out into your workspace, there is support for updating this
component.

More detailed information about the awareness support in EPOS is described in [Wan95].

10.5.4 Communication infrastructure: ECM Message Services

To enable asynchronous cooperation between software developers using ECM, we have
designed and implemented a messaging system which is used for notifying users about
events, e.g. database access, updates and commit operations, originating from other workspaces.
Events are specified in terms of ECM operations, so that users can easily relate to the no-
tifications.

ECM Tool provides a user interface for displaying and browsing messages, and replying
to them or sending user written messages. The messages are stored as entities locally to
the receiving workspace.

This message system is primarily useful for giving early notification of actual or potential
conflicts in the case that workspaces use non-restrictive locking or no locking at all. A
workspace can subscribe to events and will receive a notification message whenever the
specified event takes place. It is possible to subscribe to specific types of messages (re-
lated to specific events) and it is also possible to subscribe to events related to specific
components or specific workspaces.

The EMS (“EPOS Message Server” ) is responsible for sending messages between workspaces.
ECM commands like check-in and check-out trigger the EMS, which will then send the
notification messages to all workspaces subscribing to the event.

A possible extension to EMS is a system which can respond to EMS messages and per-
form specified actions, e.g. automatically check out a component which has been changed
in a sibling workspace.

The awareness services described in previous section makes use of the ECM Message
services.



158 CHAPTER 10. IMPROVING COOPERATION SUPPORT IN EPOS CM

10.5.5 Flexible locking mechanisms

The flexible locking mechanism in EPOS is provided on two different levels; the database
level and the workspace level. The following will describe support on both these levels.

The EPOS Database locking support

In essence, the EPOSDB provides large set of lock-modes that can be used for enforcing
a variety of correctness criteria with different implementations. The responsibility for
guaranteeing correctness is partly left to the user and/or applications, in our case the ECM
Tool or ECM users. However, there is a default behavior that provides failure atomicity
and partial isolation.

Workspace locking support

When components are checked out into the workspace, they are locked in the repository
to control access by other users. We have defined 7 lock-modes which can be used to
achieve a range of access control behavior, spanning from the very restrictive to giving
warnings. Locks on components can be set through the Extra support in the ECM Tool
(see figure 10.1).

10.5.6 Component exchange

The basic workspace model (and the corresponding database transaction model) has been
extended with operations allowing flexible and system-supported exchange of objects be-
tween workspaces. This feature provides support to synchronize workspaces, further to
support merging changes to keep components consistent and also if user want to inter-
change components between workspaces.

In our CM system this is reflected as commands to move or copy components between
workspaces (through the database), both between ancestor and sibling workspaces. These
commands are used to exchange components between users/workspaces in a controlled
manner and at a fine granularity.

10.6 Experiences

This section presents some experiences we have so far from using cooperative support in
ECM.

The general impression from experimenting with cooperative support in ECM is that all-
though we have a flexible system this has its price. The philosophy supported in ECM



10.6. EXPERIENCES 159

of supporting different working modes means also that if one person wants to use only
a minimum set of the cooperative functionality, the rest of the users might suffer from
this. For instance, if one user don’ t want to create any shared plans, the rest of the users
will not be sure if they will have access conflicts or not. Another example is if one
person does not want to merge changes to a component with another persons changes,
this would lead to a fight. From these experiences we found it was necessary to have a set
of cooperation protocols that should be followed by people sharing the same components.
We experienced that if people did not agree on how to share the components before they
started to work, the users would not benefit from the cooperative support in the system.
However, if people agreed to follow a cooperative protocol, the system would provide
cooperative support.

We have identified four overall cooperation protocols that was useful to support sharing
of files:

1. Commit-Merge: People work individually without caring about other people until
the workspace is committed. Conflicting components must then be merged.

2. Merge-Commit: People synchronize components in access conflicts before the
workspace is committed.

3. Exclusive write lock: Components that are updated are locked with a write lock as
in SCCS/RCS.

4. Exclusive lock: Components that are updated are locked with a write as well as
a read lock. This means that no one can read changes to components before the
workspace is committed.

For the each of the four cooperation protocols above, different cooperative support ser-
vices can be applied. The Commit-Merge protocol imply that people don’ t care about co-
operating while changing the components. When merging the components, there might be
required to have support for negotiation between involved partners. The Merge-Commit
protocol, the emphasis is on awareness support. One need to know of access conflicts
when they occur, so a synchronization process can start between the involved workspaces.
Negotiation support is also needed for this protocol.

The two last protocols we have listed emphasis their cooperative support on shared plans.
In this scenario it is important to avoid people working on the same components at the
same time. Shared plans can then be used to create a plan for who can change components
when etc. Shared plans can also be used to find the reasons for locking components.

From the experiences described above, it seams like some cooperative protocols demands
a strict process to be followed, while other cooperative processes are more ad-hoc. Next
section will go into this more in detail.



160 CHAPTER 10. IMPROVING COOPERATION SUPPORT IN EPOS CM

10.7 Discussion

This sections discusses how the cooperative support in CM-systems relate the process
modeling domain.

All though EPOS also has a variety of tools to model and execute process models (EPOS-
PM), we did not use EPOS-PM support to implement cooperative support in ECM. There
are at least three reasons for this.

First, cooperative processes are often hard to model because they consist of many in-
teractions between involving actors. Most Process Modeling Languages (PMLs) focus
on activities and relationships between them, while for cooperative processes the actors
and interactions between actors are in focus. Clearly, cooperative processes is out of the
domain for most PMLs and thus can not be modeled in these languages.

Second, cooperative support must add little overhead work to the involved actors. Most
PM-systems requires a lot of work to get the processes up running. Since cooperative pro-
cesses often vary in the way they are, you must in most cases have to create a new model
every time you need some cooperative process support. One of the main requirements for
processes that could benefit from having process modeling support is that the process is
repeatable. Since this is seldom the case for cooperative processes, PM-support would be
just waist of time.

Third, cooperative processes evolve all the time. Even if in some cases there will be
cooperative processes that are similar, these processes would in most cases have small
changes or exceptions that would be different from time to time. This means that the
PM-system need to be able to support changes on the fly. All though some PM-systems
(including EPOS-PM) provide flexible support for handling changes to the process on the
fly, the operations to do these changes will offer to much time. Thus the user would not
benefit from the PM-system.

From the discussion above it seams like PM-systems can not provide any cooperative
support to a CM system. This is not always the case. The ”Shared plans” , as described
in section 10.3 and 10.5, often require a strict process to be followed if access conflicts
should be avoided. This means that the shared plans could be used to model the process
and the PM-system would provide support for executing the process. The Workspace
Information as described in section 10.5.2 might also provide useful input for a PM-
system. The PM-system can for instance benefit from information about who is working
with what and what files has been changed etc. A important question to ask here is if the
PM-system should be allowed to access these sensitive data that would make it possible
to for example to measure progress of people.



10.8. CONCLUSIONS AND FURTHER WORK 161

10.8 Conclusions and further work

We have presented a CM system which has been extended with mechanisms to support
cooperation between users of the system. We have discussed different types of informa-
tion that can be entered into the system and how it can be used for planning, conflict
detection and identification of partners involved in both possible and actual conflicts. We
have presented tools that can be used to retrieve information on demand and a tool that
can display messages about events caused by other users.

By integrating the cooperation support with the CM system, we are able to offer more
precise information related to the objects managed by the CM system, and result in more
reliable and easily maintainable information.

The users also have support from the CM system for propagating changes to each other, so
that they can resolve the conflicts resulting from parallel work. The system is customiz-
able and can be used to support a range of work modes, from loose to tight cooperation.

The idea of integrating work-related information into the CM system should be applicable
to other systems, even much simpler ones. We would need to implement tools to enter and
retrieve this information, and users must be made aware of the importance of providing
information about work intentions.

This paper presented how cooperative support can be provided in a CM-system. We have
also look at the relationship between cooperative support in a CM-system and process
modeling support. It seams that there is a gap between the CM- and PM-system in this
respect and future research should try to minimize this gap.



162 CHAPTER 10. IMPROVING COOPERATION SUPPORT IN EPOS CM



CHAPTER 11

Teaching Software Process Improvement
through a Case Study

Torgeir Dingsøyr, M. Letizia Jaccheri, and Alf Inge Wang1

Abstract

This paper describes the main design choices of a software process improvement course.
The course is organised around an industrial case study. In addition it is based on lectures
and group exercises. The case study is centred around four research questions: Why is
process improvement important [in your company]? Which processes does your company
have? Which improvement initiatives does your company implement? Which relation-
ships exist between software improvement and software quality?

During the case study, the students come in contact with actors from the local software
industry. We experienced problems with with relating quality and process issues, and that
the insight was too superficial. We also had problems with student involvement.

Finally we propose a new set of questions that are: Briefly describe a software system
that is (or has been) important for your company. Which attributes do you use to describe
it? Which are the processes around this system? Which are the improvement initiatives
around these processes? How general is that specific software system (and respectively

1Dept. of Computer and Information Science, Norwegian University of Science and Technol-
ogy (NTNU), N-7035 Trondheim, Norway. Phone: +47 73593444, Fax: + 73 594466, Email
dingsoyr/letizia/alfw@idi.ntnu.no

163



164 CHAPTER 11. TEACHING SPI THROUGH A CASE STUDY

its processes and improvement initiatives) in the context of your company?

11.1 Introduction

Software quality and software process improvement are central topics in modern IT in-
dustry. However, there is no standard consensus about how to educate future software en-
gineers in such topics. Software quality and software process improvement comprise both
technical and managerial issues. Among the technical, we list design, testing, inspection,
and configuration management. On the other hand, the quality and improvement mod-
els, like Capability Maturity Model [PCCW93], ISO 9000 [KJ95], Quality Improvement
Paradigm [BG94], etc. derive from managerial and organisational theories. When teach-
ing technical methods, such as design, one can employ the same educational methods that
are commonly used to teach programming languages or mathematics: First, the teacher
explains the method and provides examples. Then, the students are asked to solve toy
problems, alone or in groups, by employing the method. This educational method does
not properly work when applied to teaching of the managerial part of software process
improvement and software quality.

Since 1988, the Department of Computer and Information Science has been responsible
for teaching a Software quality and process improvement course (SQPI course) for 4th

year students at the Norwegian University of Science and Technology (NTNU). In the
beginning, the course concentrated on technical topics, such as design, programming,
testing, inspection, and configuration management. The educational method were the
classical one. Over the years, the contents of the course has changed to gradually to in-
clude a survey of software quality and improvement models, such as CMM and ISO9000.
However, the teaching methods have been stable.

The teacher presented motivating examples and figures. Typical examples include the
amount of money lost on failed software projects the last 20 years. However, many of
the examples were too distant from the students as they mainly concentrate on North
American IT industry. The course did not include practical exercises on the managerial
part of quality and improvement issues.

Some of the 4th years students have worked in Norwegian software companies and are fa-
miliar with problems caused by failed software projects. Also, other software engineering
courses rely on student projects with industry actors playing the customer role. In spite of
all, it was hard to motivate students with examples that are far away from companies they
have worked for or will work for in the future.

The result was that the course failed to get student involvement. Students got a surface
knowledge of the managerial topics, but were not able to relate them to the technical ones.
In addition, they were not able to relate the improvement and quality topics to the local
Norwegian IT reality.

In 1997, we redesigned the SQPI course with the goal of making students get a deeper



11.2. SQ AND SPI COURSE 165

understanding. We wanted the students to understand how different subjects in the course
were related, and how the course relates to the local IT industry. In this paper we will
discuss the course main design choices. The SQPI course is organised around a case
study where students interact with actors from the IT industry by interviewing them by
means of a set of research questions. The students are asked to write reports about their
perception of actor answers.

The rest of this paper is organised in three main parts. Section 11.2 describes the main
choices underlying the SQPI course and provides an evaluation of the course. Section
11.3 looks at similar related work, identifies the problem we detected with our approach
and suggest how we should remove this problems in the future.

11.2 The Software Quality and Software Process Improve-
ment course

In this section we describe the main design choices taken when preparing the course, and
also give an evaluation of the course.

11.2.1 Course Design

This (sub)section describes the plan of the course Software Quality and Software Process
Improvement for year 1998. Next section 11.2.2 will discuss course implementation. The
course design for year 1999 will be sketched in section 11.3.2.

The course is based on the following elements and their interaction:

1. A theory part. This is based on:

(a) The book ”Managing the Software Process” [Hum89]. We chose this book as
it is a solid book used by a lot of software engineering courses that address
software process issues. Other alternatives are [Gra92], [Gra97], [Cap98],
[PWCC95], [Fen91], [Zah98], [FKN94] and [Som95]. The big disadvan-
tage of our choice is that the book concentrates on North American software
industry and little on European.

The students are supposed to read the book early in the semester, in parallel
with lectures, before the case study begins. The students are encouraged to
find discrepancies, inconsistencies, and common points between book, lec-
tures, and case studies.

(b) Lectures and related material handed out by the teacher. Here, we intro-
duce the concepts of software development and maintenance process, software
quality, and software process improvement.



166 CHAPTER 11. TEACHING SPI THROUGH A CASE STUDY

The teacher distributes the slides before each lecture. Slides are also published
on the web-page of the course [JW99]. There are 10 hours of lectures, see
entry labelled by teacher in table 11.1.

Day Type Responsible Topic
Fri 23/1 Lecture Teacher Course Introduction
Mon 26/1 Lecture Teaching Assistant Introduction to Exercises
Fri 30/1 Lecture Teacher Sw Process
Mon 2/2 Lecture Teacher Sw Quality
Fri 6/2 Lecture Teacher Sw Process Improvement
Mon 9/2 Industry Presentation Telenor Novit Case Study
Mon 9/2 Deadline Students Inspection Exercise Delivery
Fri 13/2 Deadline and Presentation Students Delivery and presentation Telenor Novit
Fri 20/2 Industry Presentation Statoil Case Study
Fri 27/2 Deadline and Presentation Students Delivery and Presentation Statoil
Fri 6/3 Industry Presentation Ericsson Case Study
Fri 13/3 Deadline and Presentation Students Delivery and presentation Ericsson
Mon 16/3 Lecture Teacher Discussion and Conclusions
Mon 27/3 Deadline Students CM Exercise delivery
Mon 27/3 Lecture Teaching Assistant Information about Exercise Process Modelling
Mon 17/4 Deadline Students PM Exercise Delivery

Table 11.1: Semester Plan, each lecture corresponds to two hours.

(c) Group exercises related to theory. Groups consist of four students. There
are three exercises. The first consists of inspection of a piece of code (742
C++ lines). The second is testing and configuration management of the same
piece of code which is used in the first exercise. The inspection and testing
techniques to be employed are those explained in the text book. The third
exercise consist of modelling of a part of a software process by means of
the E3 [M.L98] formal process modelling language. We have chosen these
exercises as the text book puts emphasis on testing, inspection, and defined
process as first steps toward software process improvement.

Exercises are mandatory. Students cannot take at the exam without having
delivered their exercises. The evaluation of exercises do not influence the
exam grade. All exercises are delivered both on paper and electronically. This
is valid also for the group exercises related to case study.

2. A case study.

This consists of:

(a) Three presentations by actors from three Norwegian software companies. Each
actor is asked to give an answer to 4 questions. The questions are:

i. Why is process improvement important [in your company]?

ii. Which processes does your company have?

iii. Which improvement initiatives does your company implement?



11.2. SQ AND SPI COURSE 167

iv. Which relationships exist between software improvement and software
quality?

(b) Group exercises related to case study.

Each group is asked to write a document and to prepare a presentation that de-
scribes the actual presentation, how and if the questions are answered, which
are the relationships with other presentations, the text book, and lecture.

(c) Presentations by students and related discussion.

Each time, the teacher chooses 2 groups randomly among the total 10. Each
group has 30 minutes to present its contribution. 15 minutes are devoted to
discussion.

The exam is written and it has a duration of four hours. It is an open book exam. Each
student is asked to answer four questions:

1. Case study. The student is asked to evaluate one of the four research questions and
give examples. This one counts 30% of the final mark.

2. Process modelling related material. The exercise is to model a process fragment
presented by one of the three industry actor by mean of the E3 [M.L98] notation.
This counts 35%.

This question is intended to test how each student has assimilated stuff related to
exercises. Process modelling was chosen as it was possible to relate it with a process
that was distributed by an industry actor during the case study.

3. Book and material distributed by the teacher. The exercise asks to apply the function
point formula to the piece of code used during inspection and CM. The code is
provided. This one counts 15% of final mark.

This counts only 15% of final mark as the material is available to the students during
the exam.

4. General comprehension of the whole course. It asks about the relations between
Configuration Management and software process improvement. It asks for exam-
ples from case study and other experience. This counts 20%.

11.2.2 Evaluation

Our main requirements have been fulfilled: students met at lectures and participated ac-
tively to the course implementation. We were able to provide real examples from the
Norwegian software industry. This section discusses the main results of the course in-
cluding exam results.

Table 11.2 shows how the SPQI course scored in average on the students evaluation of the
course. The evaluation is a standard form used at NTNU consisting of nine questions. In



168 CHAPTER 11. TEACHING SPI THROUGH A CASE STUDY

questions 1-8, the students must choose from a scale from one to nine to indicate if they
are positive or negative to the question. Score one is a very negative answer, while score
nine is a very positive one.

No. Question asked Mean
1 Was the goal for the course made explicit ? 6,9
2 Did the teaching stimulate you to work with the course ? 6,4
3 Did the teaching of the course fit previous knowledge ? 7,4
4 How do you judge your own work with the course at this time ? 5,6
5 Does the load fit with the load given in the course description ? 5,7
6 Does this course build on thing you’ve learned in other courses ? 6,4
7 How is the teachers presentation technique ? 7,3
8 Does the exercise teaching work well ? 6,4

Mean value of all questions 6,51
Standard Deviation of all questions 0.66

Table 11.2: Students evaluation of the Software quality and process improvement course
1998

.

Table 11.2 indicate that students are above average happy with the course. Questions 1,
3 and 7 have scored high on this evaluation. This indicate that the students were very
pleased with the presentation of the goal of the course, that the course fit to their prior
knowledge and that the teaching technique of the was very good.

To make a more detailed description of the course evaluation, we want to present some of
the more detailed written evaluations of the course:

� “ It’s very good to have companies to get their view of the course’ subjects. It is also
interesting to see actually how they work in practise (not only theory). The book is
ok, but maybe a bit boring (too many details). I am very happy I chose this course.”

� “The teacher did not lecture the book directly: Good. Maybe the teacher should
have chosen to follow the book more anyway.”

� “The book together with the exercises complements very well and give look at
various subjects from different views. This inspires to be critical to the subjects
taught and to think on your own. The book is maybe a bit too americanised.”

� “The book is very good and points out many interesting things, but is maybe a bit
ambitious in some areas. I think this course has been one of the most interesting
course I have been taking. One thing can be changed: Too much work is spent on
exercises in this course. This means I don’ t get enough time to do other courses.”



11.2. SQ AND SPI COURSE 169

� “The course is a bit different with company presentations, but this force us read
through the book and relate this to present practises. The workload on the exercises
is to high. I didn’ t like the student presentations either (it didn’ t work well).”

Most of the students seemed to like the changes we have made. There were some critics
about the workload in the course, specially on the exercises. Many students wrote that
they were motivated to continue read more about subjects presented in the course.

Exam results

Table 11.3 shows the mean value of the exam results the last five years as well as the
standard deviation of the results. Grades are given from 1-6, where 1 is best and 6 worst.
In order to pass a course the student need at least the grade 4. Grades are given in 0.5
intervals.

Year of exam No. of students Mean Standard Deviation
1994 36 2.58 0.76
1995 48 2.34 0.59
1996 50 2.31 0.57
1997 34 2.57 0.99
1998 43 2.24 0.44

Total mean 42.2 2.41 0.67

Table 11.3: The exam results the last five years

The table shows that the year 1998 has the best mean of grades of all the five years and
also that the standard deviation of the exams grades are lowest. The following can explain
this:

1. Fewer and more general questions make it easier for students to write sensible an-
swers on the exam (harder to write completely wrong answers).

2. With more student involvement in the course, most students actually got interest in
the course and were motivated to work enough with the course to achieve a good
grade.

Looking more closely at the individual results from the exams the last five years, we also
found that in the year 1998 none achieved the best grade (1.0), but none failed the course.
One of the main changes in 1998 compared with earlier years, was how students partici-
pated in the course. It was required that the students played an active role themselves by
asking and commenting on how theory and practice relates. Most of the students had to
make presentations that compared these things, which forced them to read the book and
understand the various subjects in the course.



170 CHAPTER 11. TEACHING SPI THROUGH A CASE STUDY

11.3 Conclusive remarks

The section first looks at how our work relates to other works, the results of our work and
where we would like to go from here.

11.3.1 Related work

A general approach to teaching software engineering is to relate the course to either in-
dustry or a simulated environment (see [JL98] for a survey of project oriented work).
Other courses at our department at the Norwegian University of Science and Technology
have made extensive use of project-based work that involve both students and industrial
actors [ACK+94].

As discussed in [USK97], software engineering process education sets extra require-
ments. The main requirement seems that of providing the students with visible processes.
This would mean to let the students work at the management level.

Our approach differs from these ones surveyed in [JL98] as our students do not work in a
product oriented project, but they rather observe quality and project initiatives in industry.

Georgia Institute of Technology runs a course called Real World Lab [MB95], where un-
dergraduate students are involved with real industry projects with products and customers.
In addition, students take part in performing a CMM assessment on local industry by in-
terviews. The difference from our approach is that we use a normal auditorium setting
rather than project work. This is due to the project workload in other courses, and also
to the fact that there are few companies in Norway that can illustrate a CMM level above
one.

11.3.2 Summary

We have designed a software process improvement course around the integration of a case
study and a set of lectures and exercises. The case study is centred around four research
questions. Students must elaborate and present their perception of process and quality
initiatives in the companies.

Our main requirements have been fulfilled: students met at lectures and participated ac-
tively to the course implementation. We were able to provide real examples from the
Norwegian software industry.

Howevere there are some problems.

� Superficiality The work was generally too superficial. Participants from indus-
try and students did not have enough time to address all the issues that had been
planned. Each actor had two hours to give a whole picture of software process im-
provement and quality issues in his/her firm. And the picture was too general. Also



11.3. CONCLUSIVE REMARKS 171

the students had to produce three documents, and each document had to address the
four questions.

� Quality versus process Software quality issues were not adressed enought. While
the three company presentations adressed software process improvement issues,
they neglected the software quality ones. Nobody provided examples of real soft-
ware products. Really, the fourth question “Relationships between software im-
provement and software quality was not answered. This may come from the fact
that participants were people working at the quality manual level and not system
developers.

� Student participation There was not enought interest in student presentations by
those students who had already presented.

11.3.3 Further Work

To obviate these problems, we have designed a new plan for the course that will be fol-
lowed during the Spring semester 1999. According to the new plan, the theory part and
the group exercises related to theory.will be the same as last year (see section 11.2.1).
Concerning the case study we plan the following main changes:

There will be a couple of actor from one Norwegian software company who will rep-
resent both the process and the product view of the organisation. This should solve the
superficiality problem.

To solve the Quality versus process problem, the questions asked to the software compa-
nies will be the follwing:

1. Briefly describe a software system that is (or has been) important for your company.

2. Which attributes do you use to describe it?

3. Which are the processes around this system?

4. Which are the improvement initiatives around these processes?

5. How general is that specific software system (and respectively its processes and
improvement initiatives) in the context of your company?

Provided that there will be circa ten student groups as last year, we will have each group
working a given answer in a way that for each answer there will be two groups working
on it. In this way the quality of work around each question will hopefully be higher. Also,
since students are required to be acquainted with the whole set of questions, we hope that
there will be more interest in other group presentation. This would evantually solve the
Student participation problem.



172 CHAPTER 11. TEACHING SPI THROUGH A CASE STUDY



CHAPTER 12

Experience paper: Using XML to implement a workflow
tool

Alf Inge Wang1

Abstract
This paper presents experiences we had from building a workflow tool from scratch using
XML technology. We will present some strengths found using XML-technology, but also
some weaknesses. Although we had to create a simple process modelling language for
this workflow tool, the focus of this paper is on experiences on using XML technology
to build workflow tools. The experiences we have achieved, should be applicable for all
kinds for process modelling languages. The paper consists of three main parts. First, the
requirements for the workflow tool is outlined. Then XML technology is explained with
some simple examples. The last part of the paper describes experiences we achieved from
the experiment and the conclusions we drew from this.

Keywords: Process modelling language representation, workflow tools, XML

1Dept. of Computer and Information Science, Norwegian University of Science and Technology
(NTNU), 7035 Trondheim, Norway. Phone: +4773594485, Fax: +4773594466, Email: alfw@idi.ntnu.no

173



174 CHAPTER 12. USING XML TO IMPLEMENT A WORKFLOW TOOL

12.1 Introduction

Spring 1998, the Department of Computer and Information Science at the Norwegian Uni-
versity of Science and Technology (NTNU) was asked by a project called Renaissance,
to create a simple workflow tool to demonstrate the Renaissance process. The Renais-
sance project was a partially founded project by the European Commission under the
Framework Initiative (ESPRIT 22010). The main objective of the Renaissance project
was to develop a systematic method to support the re-engineering of legacy systems.
Among the results of the Renaissance project was the Renaissance method described in
the Renaissance method book [Con98]. This book describes a step-by-step process for
re-engineering legacy systems in an informal graphical process language. Our assign-
ment was to create a simple graphical web-based workflow tool that made it possible to
go through the whole process in an interactive manner.

Our research interest for this assignment was not to create yet another Process Modelling
Language (PML), but rather to see what technology to use to build a simple workflow
tool over a short period of time and with scarce resources. The PML we chose, repre-
sents a process as a activity network interconnected with artifacts. Activities are activated
through pre-conditions constrained by the states of their input artifacts. Although this
papers will outline how the PML is represented in XML, the focus of this paper is on
experience using XML to build a workflow tool (not the PML itself).

The rest of this paper is organised as following. Section 12.2 outlines the requirements
for the workflow tool we built. Section 12.3 explains what XML is and give some simple
examples of how to use XML. Section 12.4 describes the experiment of creating a work-
flow tool using XML. Section 12.5 presents the experiences we have achieved from using
XML as a basis of a workflow tool. Section 12.6 concludes this paper.

12.2 The Renaissance process model

This section will outline the process model elements found in the Renaissance method
description (the Renaissance process model) and how these elements are inter-connected.
The description of the Renaissance model gave us the requirements for building the work-
flow tool and put constraints on what elements we should include. One problem with this
description was that the process was described in an in-formal way. This caused that we
had to add some elements to the PML to make the process executable.

12.2.1 The basic process model elements

The Renaissance process model focuses on activities and documents needed or produced
by the activities. In addition roles are used to assign persons to specific tasks. The fol-
lowing basic constructs were a part of the model:



12.2. THE RENAISSANCE PROCESS MODEL 175

� Activity An activity is decomposable, and consists of sub-activities or sub-tasks.
An activity is described by a name,description, inputs and outputs. The pre- and
post-condition of an activity is depending on sub-activities/tasks as described in
section 12.2.3.

� Task A Task is an atomic unit, and cannot be decomposed. A task is also described
by a name, description, inputs, outputs, pre-conditions and post-conditions. In ad-
dition a task description contains a list of roles responsible for the task. A task can
be executed in parallel as well as in a sequential manner. Both for activities and
tasks, the state of the inputs decides when to execute.

� Input/Output Inputs and Outputs refers to documents or collections of document
that are involved in the process, and have a name as well as a state.

� Roles Roles define a generalised description of someone responsible for a task (e.g.,
project leader, secretary etc).

� User A user is a named human resource that can play several roles in a process.

12.2.2 Relations between process model elements

As indicated in previous section, activities and tasks have relationships to inputs and out-
puts (documents). In addition activities and tasks can be related in four different ways as
illustrated in figure 12.1 and described below:

1. Consist of relation describes the relation between an activity and its children (the
children can both be activities and tasks).

2. Sequential activity flow relation describes that two activities/tasks are executed
sequentially.

3. Concurrent activities relation describes that two or more activities/tasks are exe-
cuted in parallel.

4. Concurrent iterative activities relation describes that two activities/tasks are ex-
ecuted in a loop until a specified condition is fulfilled.

Since the Renaissance process did not have any conditional process flows (e.g., IF con-
dition1=true THEN do activity1 ELSE do activity2), conditional flow is not a part of the
PML.



176 CHAPTER 12. USING XML TO IMPLEMENT A WORKFLOW TOOL

Concurrent activities relation

Sequential activity flow relation

Activity A Activity F

Activity F1 Activity F2

Concurrent iterative activities relation

Activity D Activity E

Activity B Activity C

Consist of
     relation

Figure 12.1: Relation types between activities/tasks

12.2.3 Process state representation

The description above outlines the PML to be used to implement a workflow tool to
support the Renaissance process. More detailed information for how to make this process
representation executable was not available from the Renaissance project documentation.
We had to decide how to represent process states and find the mechanisms to make the
process model executable. We choose to use a state database to cope with the dynamic
aspects of the process model. The state database was divided into three parts:

1. Activity data Keeps the state information about each activity and task in the process
model. Whenever a pre-condition (input) or post-condition (output) is fulfilled, the
activity/task state may change. An activity/task can have four states, Not ready (0),
Ready (1), Started (2), and Finished (3).

2. Condition data Keeps the state information about each condition (pre- or post-
conditions). A condition state changes whenever a user has changed the state of
a document (read a document, produced a document, coded a document etc). A
condition can have three states as Not finished (0), Iterating (1), and Finished (2).

3. Concurrent data Keeps track of concurrent activities/tasks (both concurrent and
concurrent iterative activities/tasks. Two states are allowed for concurrent state:
Concurrent (0) and Not concurrent (1).

A more detailed description of the modelling language and the state database can be found
in [Sim98].



12.3. EXTENSIBLE MARKUP LANGUAGE (XML) 177

12.3 eXtensible Markup Language (XML)

XML is very similar to Hyper Text Markup Language (HTML) in many ways, which
is the most popular Web markup language today. HTML has revolutionised the Web,
by making it possible for everyone to create hyper-link related document consisting of
text, tables, sound and graphics. HTML is very well suited for creating web-pages, but it
lacks the capability for specialisation. HTML formats how the web-page data will look
like, rather than what that data represents. HTML is has also only predefined commands
(tags), and it can therefore not be tailored for specific needs.

XML is more flexible, because you can define your own markup elements. This means
that XML makes it possible to tailor the XML documents for different needs, and makes
it possible to use XML to represent all kind of data for different purposes. The rest of this
section will explain what XML is and how to use it.

12.3.1 What is XML?

Extensible Markup Language (XML) is a specially design subset of Standard Generalised
Markup Language (SGML), originally simplified and targeted at the WEB. You can use
it to format and transfer data in an easy an consistent way. The syntax of XML is similar
to HTML, further explained in next sub-section.

12.3.2 Markup Tags

Tags are used as directives to applications reading XML-text and are enclosed text strings
in angle brackets for example < TAG >. In HTML, these tags are used to tell the web-
browser what colours to use, the size of font, to include images etc. In XML, it is up to
the application reading the XML-file, what different tags mean. In figure 12.2, a small
example shows how XML can be used to store information. The first tag in the figure is
a processing instruction that tells the application that this document is an XML document
and uses XML version 1.0. The rest of the tags in the example are tags that are defined for
this example only. The XML-file above structures the data in a document consisting of one
or more customers. To create hierarchical structures, a start tag, like < DOCUMENT >,
and an end tag, like < =DOCUMENT > is used. Start and end tags are used to put data in
context and to group data. Between a start tag and an end tag you can either put data or
you can put more tags to define a multi-level hierarchy.

12.3.3 Document Type Declarations (DTD)

Since there are no restrictions for what tags you can define and how to structure these
tags, it is usable to define a Document Type Declaration (DTD). The DTD is not strictly
necessary in many XML documents, but to make sure that a document is written correctly



178 CHAPTER 12. USING XML TO IMPLEMENT A WORKFLOW TOOL

<?XML version = "1.0" ?>
<DOCUMENT>
<CUSTOMER>

<NAME>
<LASTNAME>Smith</LASTNAME>
<FIRSTNAME>John</FIRSTNAME>

</NAME>
<PROFESSION>Student</PROFESSION>
<PHONENUMBER>1-800-5412</PHONENUMBER>

</CUSTOMER>
<CUSTOMER>
...
</CUSTOMER>
</DOCUMENT>

Figure 12.2: Small XML example

a DTD is used. An XML processor can first read a DTD, then uses this DTD to check
if the XML documents follow the structure define in the DTD. To define a DTD you
need to define what tags are valid, what order should the tags go in and what tags can
contain other tags. You can say that a DTD defines the syntax for XML-files and the
XML preprocessor uses this information to find syntax errors in the XML file. To make it
easier to under stand what a DTD is, figure 12.3 presents the DTD for the example shown
in figure 12.2.

<?XML version = "1.0" ?>
<!DOCTYPE document [
<!ELEMENT document (customer)+>
<!ELEMENT customer (name, profession, phonenumber)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT profession (#PCDATA)?>
<!ELEMENT phonenumber (#PCDATA)*>
]>

Figure 12.3: Example of XML Document Type Declaration

As we can see, the DTD defines what tags are valid, and how the tags are structured.
Note that the + symbol means that the item can be repeated one or more times, the *
symbol means that the item it refers to can be repeated 0 or more times, and finally the
symbol ? means that you can have 0 or 1 element . The example above shows that one
DOCUMENT can consist of several CUSTOMER items, and that a CUSTOMER can have
several PHONENUMBERs.



12.4. THE EXPERIMENT 179

12.3.4 Tool support

There are several XML tools available on the market today. You can download most of
them from a Web-site for free. The functionality these tools provide varies from syntax
checkers to full-fledged XML parsers that builds up the document structure for example
as Java data-structures. Most XML parsers has support for creating unique identifiers
within a XML-file, which makes it easier to refer to elements in the XML document.

Also web-browsers have support for XML. Currently, Internet Explorer 4.0 from Mi-
crosoft has support for parsing XML documents and generating a hierarchically struc-
tured tree representation. In version 5.0 of Internet Explorer and version 5.0 of Netscape,
the support for XML has been expanded.

All the major software companies like IBM, Microsoft, Sun, Adobe, Netscape, AT& T
are developing XML tools for creating and parsing XML files. For a list of over fifty
XML tool implementation, take a look at this web-page [XML99]. To get an introduction
to XML, Steven Holzner’s book XML Complete[Hol98] is recommended.

12.4 The experiment

Autumn 1998, three 4th grade students at the Department of Computer and Information
Science, at the Norwegian University of Science and Technology (NTNU) started to work
on a workflow tool that can guide a user through the Renaissance process step-by-step.

12.4.1 Workflow tool implementation

These three students assign the the Renaissance workflow project, worked on the proto-
type for four months using about 1000 man-hours of work for implementing the system.
In this time, they have created:

� A graphical workflow tool, that produces a XML representation of the model [Fug99]
as shown in figure 12.4. This tool was created as a Java-applet using standard Java-
classes to draw the graphics and generate XML code.

� A workflow engine, that validates the XML-file, parses through the XML-document
and read and changes states of the process model. The workflow engine offers
a CGI-interface and was implemented in Perl. A C++ XML parser was used to
validate and parse through the XML document. The workflow engine supports also
cyclic loops in the process [Sim98].

� A web-based graphical workflow client, that guides the users interactively through
the process [Bre99]. This tool was implemented as Java applet communicating with
the workflow engine through a CGI-interface.



180 CHAPTER 12. USING XML TO IMPLEMENT A WORKFLOW TOOL

Figure 12.4 shows a screen capture of the graphical workflow tool we made. It is a screen
capture of two different windows. The main window named Applet for renMS project
is the modelling tool consisting of several buttons and a screen-area to draw the model
(partly covered by another window). To the right in the screen-area we can see an example
of the Renaissance process represented as five activities (the boxes). The other window,
named XML for the Renaissance Method is the result of pressing on the Show XML button
and is the process model represented in XML generated by the tool.

Although the prototype is not very stable and advanced yet, we were very pleased that we
could do so much in this short period of time and with little resources.

12.4.2 The Renaissance process model represented in XML

We choose to use XML to represent the process model in our workflow prototype. XML
was initially chosen, because we wanted to see how well XML was for this purpose and
to get an evaluation of practical use of XML.

First we would like to present the Document Type Declaration (DTD) for the description
of a task in XML. The DTD was used to define the grammar for our PML as well as
making it possible to check syntax and grammar of the process model. Figure 12.5 shows
the DTD for the Renaissance process model. Note that the ID listed in the DTD listing
generates an unique ID for the whole XML file.

A similar DTD file was also created for inputs/outputs as well as for roles and users. As
mentioned above the DTD-files was used to check the grammar and syntax of the XML-
files. Another use is to use the DTD file as input for a graphical process modeller tool.
What information you can enter the workflow tool is depended on the definition of the
PML found in the DTD-files. In this way, it is possible to change the modelling language
without changing the tool.

Now it is time to see how the process is represented in an XML-file. In figure 12.6, one
activity is described in XML.

12.5 Experiences

In our project of developing a workflow tool using XML technology, we wanted to see
how well suited XML was for representing process models. The last PSEE we built
in our research group, EPOS [CHLN94, COWL91, NWC97], we used Prolog syntax to
represent the process model. Actually, Prolog is not very far from XML when it comes to
representation of information, but the syntax of XML is simpler for un-experienced users.
We found that the main benefits from using XML were:

1. XML makes it easier for unexperienced users to model their own process mod-
els. This is mainly because XML syntax is similar to HTML, and that XML is rather



12.5. EXPERIENCES 181

Figure 12.4: Screen capture from the graphical workflow tool



182 CHAPTER 12. USING XML TO IMPLEMENT A WORKFLOW TOOL

<?XML encoding=’’UTF-8’’>
<!ELEMENT database (activity|task)*>
<!ELEMENT activity (name,

(input)*,
(output)*,
(concurrent)?,
(description)?)>

<!ELEMENT task (name,
(pre-condition)+,
(post-condition)+,
(concurrent)?,
(role)+,
(user)*,
(description)?)>

<!ATTLIST activity
key ID #REQUIRED
parent IDREF #IMPLIED>

<!ATTLIST task
key ID #REQUIRED
parent IDREF #REQUIRED>

...

Figure 12.5: The Renaissance process model DTD

readable and easy to understand.

2. XML makes it easier to create workflow engines, since many XML-parsers are
already available. We found that we could build a workflow engine in a relatively
short time, because tool support for parsing the XML and building data-structures
from XML-data already were available.

3. XML makes it easier to make the workflow tool available on the web. This
is mainly because XML-tools are implemented in Java or many XML-tools are
easy to integrate with a CGI-server. HTML code is also easy to include into XML
documents.

4. XML makes it easier to create graphical modelling tools. Since Java is an excel-
lent choice for creating graphical modelling tools (through good graphical support
and user-interface support), a Java-based XML processor make the transmission
from the Java graphical representation of the model to a XML document easy.

5. XML makes it easy to change the process model language. The DTD makes it
possible to change the language without changing the whole code for the applica-
tions using the XML document. This is possible, since the XML-processor will read
the DTD first and then check and build the data-structure for the XML-document.



12.6. CONCLUSION 183

<database>
<activity key=’’A0’’>
<name>Renaissance method</name>
<input>Current legacy system</input>
<output>Operational target system</output>
<output>New business goals</output>
<output>Revised business process</output>
</activity>
...
</database>

Figure 12.6: An activity represented in XML

Although, we were very pleased using XML to represent process models, XML has also
one major disadvantages. We found that it was very hard to represent dynamic data using
XML. The main reason for this, is that it can be hard and slow to frequently update specific
parts of the XML-document (often stored as files in directories). For instance, we did not
use XML to represent the states of the process (states of tasks and activities etc.). To do
this with XML, we had to read the whole XML-document into a data structure, change
some parts of the data structure, and translate the data-structure back to an XML-file.
We chose to use small Unix-databases to represent process state, since these databases
required small overhead to change its content.

Our experiences with XML indicate that it is suitable for storing and representing the
static parts of process models. By static parts, we don’ t mean parts that will never be
changed, but parts that will only be changed once in a while. The DTD will define the
syntax of the PML and can be used to check syntax of the XML files. Template process
models can also be made by using an almost empty XML-document. It is rather simple to
implement tools that create template process models based on process model instances,
by removing specific data from a XML document. This can be used later on as a starting
point for modelling similar processes.

12.6 Conclusion

In this paper we have looked at how XML can be used to make it simpler to create work-
flow tools. First we introduced the background for the experiment than founded the re-
quirements for the prototype we built. Although our mission was to create a workflow
tool for a specific process using a specific PML, the approaches we used can be used for
other similar projects.

XML is really just a way of organising data. What makes XML so useful is that the XML
language itself is not fixed and can be tailored to serve different purposes. It is really up
to the one building the application to define what tags to put in and how to organise these



184 CHAPTER 12. USING XML TO IMPLEMENT A WORKFLOW TOOL

tags. In addition you can use Document Type Declarations to define what tags and how
tags must be organised if XML files should be used by an application. Most XML parsers
has built in syntax and grammar checker, which is a very useful feature when building a
program that uses a textual model as input. Another good reason for using XML is that
XML documents are relatively easy to understand for software programs as well as for
humans. Since many people are familiar with the syntax of HTML, XML requires little
extra effort to understand. All lot of tools are available to make the transition between a
XML document and a data-structure as easy as possible.

Generally, we think that XML technology is a good help for researchers in general to
make it easier to create prototypes need some kind of model representation. At last for
our future prototypes, XML will be used.

Acknowledgement

We will give a big thank to Morten Simonsen, Jørgen Andre Brecke and Hans Kristian Fu-
glenes who have executed experiments using XML to build a workflow tool. In addition,
we wish to thank the Renaissance project for giving us an challenging exercise and Mark
Greenwood at Information Process Group, University of Manchester, for giving useful
feedback on this paper.



Part III

Core Papers

185





CHAPTER 13

Supporting Distributed Cooperative Work in CAGIS

Heri Ramampiaro1, Alf Inge Wang, and Terje Brasethvik

Abstract
This paper describes how the CAGIS environment can be used to manage work-processes,
cooperative processes, and how to share and control information in a distributed, hetero-
geneous environment. We have used a conference organising process as a scenario and
applied our CAGIS environment on this process. The CAGIS environment consists of
three main parts: a document management system, a process management system, and
a transaction management system. The paper describes how these main parts may be
configured and used together in order to support cooperative work in distributed environ-
ments.

Keywords: Document Modelling, Process Modelling, Transaction Modelling, and Co-
operating Agents.

13.1 Introduction

After the introduction of the Internet, more and more projects are taking place in het-
erogeneous environments where both people, information and working processes are dis-

1Dept. of Computer and Information Science, Norwegian University of Science and Technol-
ogy (NTNU), N-7491 Trondheim, Norway, Phone: +47 73 594485, Fax: +47 73 594466, Email:
fheri,alfw,braseg@idi.ntnu.no

187



188 CHAPTER 13. SUPPORTING DISTR. COOPERATIVE WORK IN CAGIS

tributed. Work is often dynamic and cooperative and involves multiple actors with dif-
ferent kinds of needs. In these settings there is a need to help people coordinate their
activities, share documents and information, and to manage access to shared resources.
While the web makes it fairly easy to distribute information, the web itself does not con-
tain explicit mechanisms to plan and coordinate activities and tasks, to organise, describe
and classify information, or to control access to - and ensure consistency of - project
documents.

In the absence of ”web-librarians” that can fulfil such tasks, the users themselves often
have to figure out ad hoc solutions for doing this. To help the users, what is needed is
a small set of powerful, easy-to-use and flexible tools that may be readily configured to
support the task at hand. The CAGIS project - Cooperative Agents in the Global Infor-
mation Space - aims to support such tasks by using a combination of software agents and
small web-accessible tools.

This paper describes how our CAGIS environment, described in section 13.2, addresses
the challenges given above. In section 13.3, we present a conference scenario to make the
problems and challenges more concrete, and the CAGIS environment is applied to this
scenario in section 13.4. Section 13.5 discusses our approach and concludes the paper.

13.2 The CAGIS environment

The CAGIS environment consists of three main components: A system for handling of
distributed documents and document understanding, a system for supporting cooperative
processes in a distributed environment, and a flexible transaction management system for
shared, distributed resources. The following three sub-sections will describe our effort in
these research areas in more details.

13.2.1 Document models and tools

Documents published on the web have to be organised, classified and described to facili-
tate later retrieval and use. One of the most challenging tasks is the semantic classification
- the representation of document contents. This is usually done using a mixture of text-
analysis methods, a carefully defined (or controlled) vocabulary or ontology, as well as a
scheme for applying this vocabulary when describing a document. The CAGIS document
model toolset helps the users of a project group to do this semi-automatically, by way of
a domain model expressed in a conceptual modelling language and by using text analysis
tools as an interface to perform the actual classification and search. In other words,we
use a conceptual model as a basis for creating meta-data descriptions (figure 13.1). These
meta-data descriptions may then be accessed through our java-model viewer that enables
search and browsing of documents through a standard web browser environment.

Fundamental to our approach is the use of a conceptual modelling language to define and



13.2. THE CAGIS ENVIRONMENT 189

ODF
"

 N

present

"

 N

search

doc
 awareness

 transaction

subscription
 export

Figure 13.1: Conceptual modelling for meta-data descriptions

visualise the domain specific vocabulary to be used in the classification and retrieval pro-
cess. Conceptual modelling languages contain the formal basis that is necessary to define
a proper ontology, yet at the same time they offer a visual representation that allows users
to take part in the modelling, and to read and explore documents by interacting directly
with the models. The conceptual modelling language may thus be used throughout the
entire process of classifying and retrieving documents on the web. In our approach, we
use the Referent model language [Arn98] an ER-like language with strong abstraction
mechanisms and sound formal basis.

Our approach may be described as a three-step process: Domain Model Construction,
Document Classification and Browsing & Retrieval - outlined below.

Domain Model Construction:

Conceptual modelling is mainly a manual process. However, our domain models must be
related to the text of the documents to be classified, hence we use a textual analysis tool
as input for the modeling. A reference set of documents from the domain is run through
a word frequency analysis tool, which produces a list of high frequency terms as input
candidates for the actual conceptual modelling task. This is a manual and cooperative
task performed by a selected set of users. Concepts are carefully selected, related to each
other and given a textual definition. In order to prepare the finished domain model for
later document classification, we then add lexical linguistic information to the model , i.e.
the model is enhanced by adding a term-list for each of the concepts in the model. The



190 CHAPTER 13. SUPPORTING DISTR. COOPERATIVE WORK IN CAGIS

term-list is a list of synonyms, instances and and conjugations for each concept that will
be used later in the classification of a particular document.

Document Classification:

Documents are classified by selecting domain model fragments that reflect the document
content. This is performed semi-automatically by matching the document text against the
term-lists for each of the concepts in the model. Concepts found in the document are then
shown to the user as a selection in a graphical model viewer and the user may manually
refine the classification by selecting and deselecting concepts and relations. When the
user is satisfied, the selected model fragment is translated into XML and is stored as an
”Object Descriptor File” . The user also has to provide a selected set of properties for the
document, such as its author, title etc. These attributes are also stored within the ODF.

Browsing and Retrieval:

In order to retrieve documents, the users enter a natural language query phrase which is
matched against the conceptual model in a similar way as in the classification process.
The domain model concepts found in this search phrase (if any) are extracted and used to
search the stored document descriptions. Users may then refine their search by interacting
with the model. Found documents are presented as list in a Web-browser interface. We
also have an enhanced ”document reader” , that is, when reading a document, all the terms
in the document that matched a model concept is marked as a hyper-link pointing to the
definition the model concept.

The layered architecture of our document tool is shown in figure 13.2. As mentioned, the
main parts of the system are the web-enabled user interface and a set of servlets running
on a standard web-server.

� The user interface is centred around a Java-based Referent-model viewer. As men-
tioned, users may interact with the model, explore concept definitions and relations,
and then use the viewer directly in order to perform both classification and retrieval.

� The Java servlets define the overall functionality of the system. They are invoked
from the model viewer and coordinate the linguistic tools incorporated into the
system.

� At an ” intermediary” layer, between the servlets and the web-server, we use a num-
ber of linguistic tools analyse natural language phrases and give the necessary input
to construct domain vocabularies and classify and retrieve documents. The Word
frequency analyser from WordSmith is a commercially available application for
counting word frequencies in documents and producing various statistical analyses.
A Finnish company, Lingsoft, has two tools for analysing nominal phrases and tag-
ging sentences needed for the classification and retrieval of documents. A smaller
Prolog application for analysing relations between concepts in a sentence is being
developed internally at the university.



13.2. THE CAGIS ENVIRONMENT 191

Classification
store
(XML)

Model
Repository

(XML)

 Webserver

 System Control

Documents
(HTML | TXT)

Domain
Model

Classification

 Java Servlet

Search

Sentence
Analysis

 Prolog Analysis

 Lingsoft Toolset

Morphological

Tagger

 WordSmith

 User Interface (Web) Language Tools Storage

 Java Applet

 Model Construction

 Document Classification

 Document Retrieval

Referent Model Viewer

DOC’s

DOC’s

DOC’s

Lexicon

(TXT)

Word 
Frequency
Analysis

NP−Tool

Figure 13.2: Overview of system architecture

� Finally, the documents and their classifications are stored as files at the web server
in HTML/TXT and XML format respectively. The domain model is also stored
in XML and must be maintained separately. The linguistic tools rest on lexical
information that is partly stored within the model XML file and partly integrated
with the tools themselves.

A more detailed presentation of our approach and the system is given in [Ter99, Ter00].

13.2.2 Process models and tools

A prototype of a process centred environment (PCE) has been developed to give process
support to distributed, cooperative processes in CAGIS. The CAGIS PCE consists of three
main components:

Workflow System supporting Distributed Mobile Processes

This workflow system is used to model simple, repeatable workflow processes, and the
system offers an agenda-browser for the end users. The workflow system allows an
instantiated workflow model to be distributed as several process fragments on different
workspaces. One benefit of this is the possibility to adapt the workflow to local environ-
mental conditions. The workflow model instances are defined as XML-files distributed
over several workspaces, and can be modified by the owner of the workspace. The ability



192 CHAPTER 13. SUPPORTING DISTR. COOPERATIVE WORK IN CAGIS

to move and change workflow instances during enactment, can be used for reallocation of
activities, dealing with exceptions (someone responsible for a particular activity acts sick),
and delegation of work. The Workflow system is implemented in Perl, providing a CGI-
interface through a web-server. For a more detailed description, see [Wan99, Wan00b].

The Process Modelling Language (PML) for the workflow system defines a process as set
of activities that can have mutual pre-order relationships specified in XML syntax. That
is, an activity can specify a set of pre-links identifying what activities to be executed be-
fore, and post-links identifying activities to be executed after the activity current activity.
The pre- and post-links can be written as URLs, and therefore allow the process to be dis-
tributed over several workspaces. Every activity definition specifies a code part (a script).
This code part is expressed in HTML, and can be used to simply present information, to
specify a user input through a form, or to start a Java-applet.The term process fragment
is used to name a group of activities in a workspace as part of the whole process. A pro-
cess fragment is specified by a name, a workspace (location), and a list of references to
activities.

Software Agents to support Dynamic, Cooperative Processes

While the workflow system described above takes care of simple, repeatable process, we
use software agents to support more cooperative and dynamic processes. Software agents
typically takes care of inter-workspace (inter-group) activities such as negotiation activi-
ties (e.g., about of resource allocation), coordination of artifacts and workflow elements
between workspaces, brain-storming, voting, marked support (e.g., agents as buyer and
sellers of services), etc. Our multi-agent architecture consists of four main elements:

� Agents An agent is set up to achieve a modest goal, characterised by autonomy,
interaction, reactivity to environment, as well as pro-activeness. We have identified
three main types of agents: (1) Work agents to assist in local production activities,
(2) Interaction agents to assist with cooperative work between workspaces, and (3)
System agents to give system support to other agents. Interaction agents are mobile,
while system and work agents are stationary.

� Agent Meeting Place (AMP) AMPs are where agents meet and interact. AMPs
support agents in doing efficient inter-agent communication. There can be different
types of AMPs for different purposes. Each AMP will have a defined ontology (the
framework described in section 13.2.1 can be used here), which the agents have to
follow. We can perceive special AMPs for negotiation, coordination, information
exchange, selling and buying services etc.

� Workspaces A workspace is a temporary container for relevant data (artifacts, mod-
els etc) in a suitable format to be accessed by tools, together with the processing
(work) tools. It can be private, as well as shared. Files stored in a repository can be
checked in and out to a workspace.



13.2. THE CAGIS ENVIRONMENT 193

� Repositories Repositories can be global, local, or distributed, and are persistent
storage of data. Experience Bases are one specific type of repository, that we can
use in our multi-agent architecture to support community memory.

The multi-agent architecture is implemented in Java, using IBM Aglets framework to pro-
vide mobile agents, KQML is used for inter-agent communication, and ORBIX CORBA
is used to offer communication to other applications and other agent systems. More de-
tailed description of the multi-agent architecture can be found in [WLC99, PHBN99,
HN00].

Agent-Workflow GlueServer

The Agent-Workflow GlueServer provides interaction between the workflow system and
the multi-agent system. A glue model in XML defines the relationship between workflow
elements and software agents. The GlueServer will offer services for a workflow activity
to trigger an agent and vice versa. The GlueServer is implemented in Java, and ORBIX
CORBA is used to facilitate communication with the agent system and workflow systems.
More information about the GlueServer can be found in [WCL00, Bjø00].

AMP
   Global
Repository

Workspace

Workflow tool

Workflow
model

Workspace

Workflow tool

Workflow
model

GlueServer

Agent Agent

   Agent
Interaction

moving agent

moving
 agent

Glue
model

moving
 agent

moving
 agent

moving
agent

Figure 13.3: The CAGIS Process Centred Environment

Figure 13.3 shows a simplified illustration of how the different components in the CAGIS
PCE interact. In figure 13.3, there are two workspaces, each running a workflow tool
(engine) with a local workflow model. In reality, this workflow tool can be shared, and
the local workflow models in the two different workspaces can have relationships be-
tween them. The figure illustrates two different ways that software agents can interact
with workspaces. In the first way, the agents can interact directly with the user in the
workspaces, using a graphical user interface to configure and interact with the agents.



194 CHAPTER 13. SUPPORTING DISTR. COOPERATIVE WORK IN CAGIS

In the second way, all interaction with software agents goes through the GlueServer and
the workflow tool. The workflow tool can activate an agent, or an agent can activate the
workflow tool. The figure also shows that agents can be used to access repositories, but
workspaces can also access files in the repository directly (not shown explicitly in the
figure).

13.2.3 Transaction models and tools

A transaction is a basic work unit (or possibly a program segment) executed to perform
some function or task by accessing and manipulating a shared database. Transaction
modelling aims to capture the essential characteristics of transactions. In general, these
characteristics include transaction behaviour and applied constraints.

Transaction modelling in CAGIS was motivated by the assumption that database man-
agement systems (DBMSes) will be used to manage resources. The main purpose of a
transaction management system is then to control and manage access to shared resources,
and to make sure that this access is done in accordance with prespecified consistency
or correctness preservation constraints. This section briefly describes our effort in de-
veloping a transaction framework and a transaction management system for cooperating
agents.

The transaction specification framework

We have proposed a transaction framework to specify and execute customisable transac-
tion models [RN00].

The main purpose of this framework is to provide configurable, application-specific trans-
action models. The ability to adjust the required degree of control to be provided through
the transaction models is crucial in order to cover different situations. Some situations
may, for instance, require strict control for data correctness, others may see control as just
a burden, and so on.

The framework support has two parts: Transaction characteristics specification and trans-
action execution specification.

The former characteristics specification defines the main properties of the transactions
to be executed: ACID properties, relationship among the involved transactions (e.i.,
transaction structures and transaction dependencies), adopted correctness criteria (i.e.,
user/application dependent criteria) and applied policy (i.e., rules for what mechanisms
are to be used and how they are used). These characteristics are statically defined and
must be done before the designated transactions are executed. The latter execution spec-
ification defines how the transaction execution is to be performed at run-time, in terms
of composition of management operations (e.g., delegate, abort, commit etc.) and regu-
lar access operations (e.g., read, write etc.). The execution specification must conform
the former, and has some fixed (though tailorable) initial operations, while the remaining



13.2. THE CAGIS ENVIRONMENT 195

operations can be adjusted at run-time.

Thus, CAGIS transaction framework distinguishes between static and runtime dynamic
specifications. Compared with related frameworks, such as ACTA [CR94], ASSET [BDG+94],
and TSME [GHM96], the main difference is on the dynamic property. Such a property is
important since it is not always possible to predict all aspects of application in advance.
This becomes particularly relevant when taking software agents as well as cooperative
work into consideration.

A detailed presentation of this transaction framework is given in [RN00].

The transaction management system

A system for the transaction specification described above is depicted in figure 13.4. This
system is divided into two components; a specification environment and a runtime man-
agement system.

DTD DTD

XMLXML

Special
XML−Parser

Characteristics
Specification

Initial Execution
Specification

Resource management
System

Transaction Manager

Execution 
Manager

Specification 
Manager

Characteristic
representations

Operation sets

Specification and
template database

Resource and 
logg store

Logging Resource 
request

Transaction
Characteristics

Transaction 
Execution

Specification environment

Runtime Management System

Figure 13.4: Transaction management architecture

� The specification environment allows a transaction model designer to specify the
characteristics of a transaction, and a set of operations to be run by a transaction.



196 CHAPTER 13. SUPPORTING DISTR. COOPERATIVE WORK IN CAGIS

Both specifications (characteristics and execution) are done in XML. A special
XML parser is used to verify specifications, against a corresponding prespecified
Document Type Definition (DTD). This parser transforms (1) the specification of
characteristics into an internal representation, and (2) the execution specification
into a set of internal operations. They are both used by the transaction manager (see
below) to control and monitor transaction executions. Further, both specifications
are kept in an internal specification database. To avoid redundant specifications,
the specification environment allows the designer to browse and check whether
the given transaction characteristics are already in the specification database. This
implies that future adjustments can be performed without needing to do the specifi-
cation from scratch. Finally, if changes are made, the designer is asked whether the
current specification shall be saved as a new version or to replace the old one.

� The runtime management system consists of a transaction manager and a re-
source management system. The transaction manager is responsible for managing
the specification and execution of transactions, and to ensure that any transaction
execution is done according to the specified characteristics. For example, if an
ACID model is chosen, the transaction manager will enforce atomic and isolated
execution. Correspondingly, if the atomicity property is relaxed, then the same
manager will ensure that any failure would not necessarily cause global rollback.
Instead, partial abort can be issued. As shown in figure 13.4, the transaction man-
ager again consists of a specification manager and an execution manager. The spec-
ification manager is responsible for controlling that all necessary representations
from the specification environment are complete. In other words, it has to make
sure that the specification of transaction characteristics can indeed be supported
and that all necessary semantics are represented. If such a specification is not fully
satisfiable, it will either notify the designer and ask him/her to adjust the specifi-
cation, or it will choose a closest supported specification that can be found in the
specification database. Otherwise, it makes the characteristics information avail-
able to the execution manager. The latter manager ensures that a transaction is
executed consistently with respect to its stated transaction characteristics and exe-
cution specifications. Based on these specifications, the execution manager issues
the necessary and suitable transaction management operations. This means, that it
issues begin, abort or commit operations, and other management operations
that the user has specified.

The resource management system is responsible for managing and providing sys-
tem resources for those actually executed transactions. It also maintains execution
information of running transactions, and uses this to handle transaction aborts and
system recovery. Finally, the resource management system is responsible of making
sure that committed results are kept in a persistent store.

The transaction management system described above was implemented in a work-
ing prototype [Sel00, KK00] based on Java and the IBM Aglet-workbench. It has
served as a test-bed for the transaction specification framework.



13.3. CONFERENCE SCENARIO 197

13.3 Conference Scenario

This section describes briefly a conference organising process which we shall use as a
scenario. This based on the scenario presented in [OSVS82]. The seven main activities
of the conference organising process are shown in bold-face in next paragraph.

First the Program Chair will initialise the conference management process by Planning
and announcing the conference. People wanting to contribute to the conference will
submit their papers. PC members will later Record submitted papers as well as infor-
mation about the authors. Then, Reviewers will be chosen based on their expertise, and
the Paper reviewing starts. The PC members will then Collect reviewing results, and a
(electronic) review meeting will be held to Determine acceptance of papers. Accepted
papers will then be Grouped into sessions and a final program, including a time-table for
conference sessions, will be produced.

In this paper, we will focus on the last main activity, Group Accepted Papers into Sessions.
Figure 13.5 shows the two main sub-activities of this activity.

Final

Schedule

Preliminary

Schedule

Schedule

Session 
Committee

Select papers

& 

Plan Session

Suggest

Sessions

Program Chair

Accepted 
Papers

Grouped 
Papers

Session :
 Subject (keywords)

 Papers

 Schedule

Figure 13.5: Grouping of Accepted Papers into Sessions

Suggest Sessions

The Program Chair is responsible for this activity, which can be decomposed into the
following process steps:

1. Match all papers against a document model defining terms and expressions, and the
relationships between them for the research domain.



198 CHAPTER 13. SUPPORTING DISTR. COOPERATIVE WORK IN CAGIS

2. Suggest a session division according to subjects.

3. Create a preliminary session schedule.

4. Set Up Session Committees (from Program committee members), one for each
committee.

Select papers & Plan Sessions

All members of Sessions Committees are responsible for this activity, and it can be de-
composed into the following process steps:

1. Determine session subject & goals: An initial session description will contain ses-
sion subject and goals.

2. Check papers for session: Sessions Committee members should mark papers that
are relevant for a session to notify their interest. Papers will be marked ”possible”.

3. Paper allocation: If papers are marked by more than one Session Committees, these
committees must negotiate about which session is going to get the paper. Papers
finally allocated to a session will be marked ”taken”.

4. Check timeslot for session: Each session committee will mark the timeslot for the
session.

5. Session allocation: Sessions that have the same timeslot will have to negotiate.
When all sessions are allocated, the result will be added to the session description.
The session description will now have the state ”final”.

6. Publish session description: Each Session Committee will publish their session
description to the other Session Committees and Program Chair.

In this paper we assume that the Program committee members will be distributed on
different locations and the work with organising the conference will be done through
computer interaction (without any physical meetings).

13.4 The CAGIS environment applied on the scenario

This section outlines how the CAGIS environment, consisting of tools and models to
support documents, processes and transactions, can be applied on the scenario described
in section 13.3. Our suggested architecture to support this scenario is shown in figure
13.6.

The two main activities we are focusing on, Suggest Session and Select papers & Plan
Session, are executed by the Program Chair and the Sessions Committees respectively.
In our solution we have therefor chosen to model the scenario using one workspace for
Program Chair and one workspace for each Session Committees. Each workspace has
a local process defined in a process model, and a workflow tool that enacts this process



13.4. THE CAGIS ENVIRONMENT APPLIED ON THE SCENARIO 199

GlueServer
Glue
model

Workflow tool

Workflow tool

Workflow tool

Session Committee

Session Committee

Program Chair

Negotiation

Workflow tool

Schedule
Paper
record

Accepted
papers

Repository

......

Transaction
 manager

AMP

Session Committee

Document clas−
sification tool

Document
   model

Process
 model

 User
agent

Negotiation
   agent

Workspace

Legend

Figure 13.6: The CAGIS framework applied on the scenario

model. The process models are defined according to the process steps defined for Suggest
Sessions and Select papers & Plan Session as given in section 13.3.

The Program Chair’s first process step is to classify all papers according to their themes.
This is done by using the Document classification tool to match all papers against the
domain model. The domain model defines the vocabulary of keywords, extracted from
the preliminary conference topics and from the submitted papers. The matching of papers
against the domain model is visualised in the document model viewer, thus illustrating
how the papers are thematically related to the concepts in the domain model. The Program
Chair may interact with the model viewer to achieve the proper subject division of papers.

The Workflow tool will here notify the GlueServer, that will initialise a document agent
that may be used to access the documents through the document servlet. In the two next
process steps, the workflow tool will present the Program Chair with necessary documents
and tools for creating a preliminary session schedule and setting up session committees.
When session committees are selected among PC members, the session committee mem-
bers will be notified through email describing what session committee to attend and what
workspace to access.

The Session Committees will then start to work in their workspaces according to the
process model enacted by the workflow tool (remember that all conference organising
work will be done distributed on computers). First they have to determine session subject
& goals, the workflow tool will notify the GlueServer that will initialise brainstorming
agents for each session committee member. The result of this brainstorming process



200 CHAPTER 13. SUPPORTING DISTR. COOPERATIVE WORK IN CAGIS

will end as an initial session description written by session chair. The next step of the
process will be for the session committees to choose what papers to be in the session.
Here the workflow tool notifies the GlueServer to initialise paper select agents. The
paper select agents will retrieve information about available papers, and let the session
committees mark interest of papers. The paper select agents will then mark papers in the
Paper record in the repository (see figure 13.5). The result from marking papers will be
returned to the GlueServer. If papers have been marked by several session committees,
negotiation agents will be initiated to negotiate about which session is going to get the
paper. If the negotiation process goes into a deadlock, the Program Chair will be notified,
and he/she will make a final decision. The next step, is for the session committee to
mark a timeslot for the session. This process works exactly like paper selection, but
session selection agents will be used instead. When all session committees have selected
their timeslots, the final session description is published to all participants, and the final
conference program can be produced.

The transaction manager is responsible for managing the integrity of the document in
the repository, and to ensure that agents always leave the system in a consistent state.
Based on the description above, the Session Committees share both the schedule docu-
ment and the paper record. Therefore, conflicts are likely to occur. There are several
possibilities to resolve these conflicts. For example, one may provide an exclusive lock
for each access, thus prohibiting other to see any changes until the related process is fin-
ished. This is usually unacceptable, since it might delay the session arrangement process.
Another possibility is to permit reading access. This allows other committees to see the
intermediate changes, and therefore eases their decision process. A third solution is to
permit simultaneous updates (i.e., write/write conflict). However, achieving consistency
is possible only if the system supports multiple-version handling, with a sophisticated
merging mechanism to capture all possible changes.

Next, tasks to support the session selection process are assigned to agents. As mentioned,
this may involve document access too. To allow the transaction management system to
ensure consistency, all agent operations involving repository access are managed as part
of transaction execution. This also ensures that conflicting document access is managed
properly. Moreover, suppose that a transaction consisting of several agent operations is
initiated by the GlueServer. Then, assume that one of the involved agents fails, for exam-
ple, while selecting papers from the paper record. Using traditional ACID transactions,
this would cause a global rollback, that would discard all changes made so far, and kill
all associated agents. However, if a lot of effort has already been invested, restarting all
tasks from scratch may be expensive. To cope with this, we model each agent operation
as a subtransaction of that executed by the GlueServer. Therefore, instead of aborting
the transaction and killing all involved agents, the transaction manager allows the failing
agent to just undo some of its changes. Other agents may proceed as normal.



13.5. CONCLUSION 201

13.5 Conclusion

This paper has presented the CAGIS toolset and its applications to a conference organi-
sation scenario. The CAGIS toolset consists of a set of separate tools that may be used
together to provide support for cooperative work across the web. The three major com-
ponents of CAGIS are the Workflow tool, the Document classification tool and the Trans-
action manager. Each of these tools is implemented in true Web style, i.e. they are built
around a standard Web server and use XML as a data storage and interchange format.
These tools may all be configured according to the actual situation and use. The Work-
flow tool allows for the creation of individual workspaces to support the activities of the
workflow, in addition, the workflow tool offers the ability to enact the part of the pro-
cess model that the workspace supports. The document classification tool uses a domain
specific vocabulary, the domain model, to help users classify and search for documents.
The transaction tool offers support for the specification and execution of customised and
application-specific transaction models. The transaction manager thus offers the ability to
design the required correctness criteria and to define and execute transactions that enforce
these criterias on shared resources. Central to our system, and binding the individual tools
together, is a GlueServer. The GlueServer, configures a set of software agents that can
activate the different CAGIS tools. The glue model defines the relations between the indi-
vidual workflow elements that may reside in different workspaces and the software agents
that may be used to access the individual tools. This way, the various components of the
CAGIS toolset may be used together in order to provide situation specific cooperative
support.

Our CAGIS environment is not only applicable to conference organisation processes. The
CAGIS environment can be used to support any process where people are working to-
gether, and where people and information are distributed. Examples of such processes
can be cooperative software engineering processes, distributed educational processes, dis-
tributed organising processes, processes of selling and buying merchandises on the web
etc. All these processes are characterised by distribution of people and information, and
require people to interact and cooperate to reach the goal of the process.

Furthermore, when combining the tools in the CAGIS environment, we enhance the func-
tionality of one specific CAGIS tool. In [Alf00], an example of how the document models
and tools can enhance the CAGIS multi-agent architecture is given. The document models
and tools are here used to model the agent ontology, which define the language software
agents can speak. In [Wan00c], the transaction models and tools (in this paper called
workspace manager) offer a way managing consistency of changing workflow models.
This means that the CAGIS environment offers a selection of tools, which can be used in
different combinations to give specific support. Future work will investigate more thor-
oughly what tools to pick for different scenarios.



202 CHAPTER 13. SUPPORTING DISTR. COOPERATIVE WORK IN CAGIS

Acknowledgements

We would like to thank Reidar Conradi for his constructive comments. The CAGIS
project is sponsored by the Norwegian Research Council’s Distributed Information Sys-
tems (DITS) Programme.



CHAPTER 14

A Multi-Agent Architecture for Cooperative Software
Engineering

Alf Inge Wang, Reidar Conradi1, and Chunnian Liu2

Abstract
This paper looks at how Cooperative Software Engineering (CSE) can be supported. We
first investigate the process aspects by presenting a traditional process architecture sup-
porting CSE. Then we propose a multi-agent architecture for CSE, which is better in terms
of simplicity and flexibility, and particularly useful in modelling and providing support
to cooperative activities. We describe an industrial scenario of CSE, and show how to
apply the proposed architecture to this scenario. The scenario is based on a software
development and maintenance process for a Norwegian software company.

Keywords: Computer-Supported Cooperative Work, Cooperative Software Engineering,
Software Process Technology, Multi-Agent Systems

1Dept. of Computer and Information Science, Norwegian University of Science and Technol-
ogy (NTNU), N-7035 Trondheim, Norway. Phone: +47 73593444, Fax: + 47 73594466, Email
alfw/conradi@idi.ntnu.no

2Beijing Polytechnic University (BPU), Beijing, P.R. China. Chunnian Liu’s work is partly supported
by the Natural Science Foundation of China (NSFC).

203



204 CHAPTER 14. A MAS FOR COOPERATIVE SOFTWARE ENGINEERING

14.1 Introduction

Most of the work in the software process community has been focusing on how to make
people work together in an organised and planned way (partly pre-planned). For high-
level processes with little details, it is likely that it is possible to make people work in
this manner. However, the development of software involves people that cooperate to
solve problems and to do actual work. These kind of processes are very hard to support
by traditional software process support tools, because the focus will be more at coopera-
tive aspects than pure coordination of work [WLCM98b]. In this paper we introduce an
architecture to provide support for cooperative software engineering.

Computer-Supported Cooperative Work (CSCW) is a multidisciplinary research area
focusing on effective methods of sharing information and coordinating activities. CSCW
systems are often categorised according to the time/location matrix [Gru94] (synchronous
/ asynchronous and non-distributed / distributed). We may add an extra dimension to
the CSCW typologies, considering different kinds of cooperative work in the order of
increasing complexity of the process support they need [LC98]:

� Ad-hoc cooperative work such as brainstorming, cooperative learning, informal
meetings, design work, etc.. Process modelling support here is implemented through
awareness triggers.

� Predefined/strict workflow, in traditional Office Automation style represented by
simple document/process flow. Examples of such systems can be Lotus Notes
[Orl92], Active Mail [GSSS92] and MAFIA [LvRH90].

� Coordinated workflow, such as traditional centralised software maintenance work
consisting of check-out, data-processing, check-in, and merge steps. There exist
several systems supporting coordinated workflow (mostly prototypes), e.g. EPOS
[CJM92], MARVEL [BSK95] and APEL [DEA98].

� Cooperative workflow, such as decentralised software development and mainte-
nance work conducted in distributed organisation or across organisations. Here the
shared workspace and the cooperation planning are the main extra factors from the
process point of view. Example of a system supporting distributed organisations
and processes is Oz [BSK95].

By Cooperative Software Engineering (CSE) we mean large-scale software development
and maintenance work which falls into the last two categories in the above list. Because of
the rapid spread of World Wide Web as the standard underlying platform for CSCW sys-
tems, more software companies are moving from the traditional centralised working style
to the decentralised one. In the decentralised CSE, communication, negotiation, coordi-
nation and collaboration among the various participants are more complicated, because
people are not only geographically distributed, but may also work on different platforms,
at different times, with different process models. A better understanding about CSE pro-
cesses is needed as well as a full range tool support of such processes. The research in



14.2. A TRADITIONAL PROCESS ARCHITECTURE SUPPORTING CSE 205

this area will help the software industry to change the work style to take full advantage of
WWW, and will enrich the research area of Software Process Technology (SPT) in which
so far a centralised work style has been often assumed implicitly.

Compared with the traditional architecture (as found in systems similar to EPOS [WLCM98b]),
an agent-based architecture is advantageous in terms of simplicity and flexibility, and par-
ticularly useful in modelling and providing support to cooperative activities [CMM97,
CM96]. In this paper, we try to integrate the areas of CSCW and SPT in a multi-agent ar-
chitecture. First we investigate the process aspects of CSE by presenting a traditional pro-
cess architecture supporting CSE. Then we propose a multi-agent architecture for CSE,
which is an extension and specialisation of the more general architecture [MDP98] for all
CSCW. This architecture will then be applied to an industrial CSE scenario.

14.2 A Traditional Process Architecture supporting CSE

The key issues of CSE are group awareness, concurrency control, communication and
coordination within the group, shared information space and the support of a heteroge-
neous, open environment which integrates existing, single-user applications. All these
are related to the software process. Within the SPT community there have been re-
search on each of the issues, but from a slightly different point of view (see, for example
[COWL91, NWC97, CHL95, Jac96]). To see how CSE is supported by a traditional ar-
chitecture, we present the process support in such a architecture. This architecture is
usually realized by a Process-sensitive Software Engineering Environment, a PSEE,
with a spectrum of functionalities and associated process tools. The support is needed in
three main areas; at the Process Modelling template level (defining process in PML), at
the Instance level (adding detail to process model), and for Enactment and monitoring.

To full fill the goal as a process support architecture for CSE, some underlying com-
ponents are needed. These components makes it possible to apply the architecture in
a distributed, heterogeneous environment. First, a portable platform infrastructure for
PSEE-based client tools are needed (candidates are HTML/CGI and Java). Second, the
architecture must offer an integrated environment for tool operation and communication
(candidates are CORBA [OMG97] or DCOM [CRW96]). Third, we need facilities for dis-
tribution of tools and workspaces (candidates are CORBA or DCOM). Fourth, we need a
community memory or experience base to store template process models (a candidate is
Experience Factory[BCM+92]).

Figure 14.1 presents a general PSEE architecture for CSE. Its cooperative support is pro-
vided through a shared workspace where files and parts of the process model are stored
and shared. The private workspaces are provided with tools for planning, scheduling and
enaction of the process model. The shared workspace provides support for cooperative
planning and negotiation, and for coordination through cooperative protocols. The shared
workspace is managed by a project manager. The architecture is web-based, and reposi-
tory and experience base support is provided through a web-server and a CGI-interface to



206 CHAPTER 14. A MAS FOR COOPERATIVE SOFTWARE ENGINEERING

Web server

client−1
client−2

Workspace
of client−2

Shared Workspace
(common Lib,
 etc.)

Internet Internet

Experience
   Base

reuse

coop. planner

evolution

planner
scheduler
process engine

planner
scheduler
process engine

config.
plan

local
  process
    model

Private
Workspace
of client−1

Private

Inter−Project

Persistent
Repository
Project DB

Negotiation / Coordination
client for Project Manager

CGI−Interface

process/
doc models

Figure 14.1: A General Process Architecture Supporting CSE.



14.3. MULTI-AGENT ARCHITECTURE FOR CSE 207

the repositories.

There are, however, several problems with such a PSEE/CSE architecture. First, it is too
centralised and has too much flavour of a centralised database surrounded by a fixed num-
ber of applications. Second, too homogeneous models are used assuming one common
PML. This means that one PML must be used by all involved partners, although this is
no necessarily the best solution. Third, it is hard to change process tools and models.
Due to the distributed and open setting, we should allow dynamic reconfiguration of pro-
cess models, as well as for process tools. Forth, a open-ended spectrum of process tools
may be needed to offer better support for cooperative work, than what classical PSEE
architecture can offer.

As will be seen in the next section, a multi-agent architecture seems more appropriate for
a general CSE.

14.3 Multi-Agent Architecture for CSE

The previous section shows how complex a CSE environment could be. Similar situations
exist in other areas such as Distributed Artificial Intelligence, Business Process Manage-
ment, and Electronic Commerce. Nowadays, it is believed that the Multi-Agent Systems
(MAS) are a better way to model and support these distributed, open-ended systems and
environments. A MAS is a loosely-coupled network of problem solvers (agents) that work
together to solve a given problem. The main advantages of a MAS are:

� Decentralisation: being able to break down a complex system into a set of decen-
tralised, cooperative subsystems. In addition, many groups of organisations are
inherently distributed.

� Reuse of previous components/subsystems: That is, building a new and possibly
larger system by interconnection and interoperation of existing (sub)systems, even
though they are highly heterogeneous. Thus, we do not request a common PML, so
different PMLs can be used in different subsystems.

� Cooperative Work Support: being able to better model and support the spectrum
of interactions in cooperative work, since software agents can act as interactive,
autonomous representatives of humans.

� Flexibility: being able to cope with the characteristic features of a distributed en-
vironment such as CSE, namely incomplete specification, constant evolution, and
open-endness.

In the remainder of the paper we try to model the problem area CSE as a MAS consisting
of four components Agents, Workspaces, Agoras and Repositories.



208 CHAPTER 14. A MAS FOR COOPERATIVE SOFTWARE ENGINEERING

14.3.1 Agents

In this paper, an agent is a piece of autonomous software created by and acting on behalf
of a user (or some other agent). It is set up to achieve a modest goal, with the charac-
teristics of autonomy, interaction, reactivity to environment, as well as pro-activeness.
The whole process (and meta-processes) of CSE is carried out by groups of people, using
tools, such as production tools, process tools, and communication tools. Each participant
can create a set of software agents to assist him/her in some particular aspects. There are
also some system agents created by default for the administrative purpose in the architec-
ture. We can perceive the following types of agents:

� System agents: These cover default agents for the administration of the multi-agent
architecture, such as creation and deletion of agoras. In some cases more specific
system agents are needed. Monitor agents track events in workspaces and agoras in
order to collect relevant measurements according to predefined metrics. Repository
agents can provide intelligent help for searching for information.

� Local agents: To assist in work within local workspaces. These agents act as per-
sonal secretaries dealing with local process matters such as production activities as
well as to define, plan, and enact process models.

� Interaction agents: To help participants in their cooperative work. Such agents can
be viewed as shared process agents, and they include four subclasses. Communi-
cation agents are used to support a spectrum of more high-level communication
facilities. All information flow, also simple communication, uses agents as the un-
derlying communication mechanism to make the architecture clean and simple. Ne-
gotiation agents verbalise their demands (possibly contradictory) to move towards
an agreement through the process of joint decision making [Mul96]. Coordination
agents support, e.g., a project manager issuing a work-order that involves a group
of developers; or a higher-level manager being called in to mediate between nego-
tiating agents to reach an agreement. Mediation agents are used to help negotiating
agents reach an agreement. In doing so, mediation agents may consult the Expe-
rience Base (EB, cf. Section 14.3.4), act according to company policies, or ask a
project manager (human) for help to make decisions.

14.3.2 Workspaces (WS)

A workspace is a place where human and software agents access shared data (usually
files) and tools which can be private or shared by a group of people. In addition, interac-
tion between users and software agents takes place in workspaces. The simplest form of
a workspace can be a file-system provided with services to read and write files. A more
advanced workspace can provide file versioning, access to of some repository, awareness
services, web support etc. BSCW [BHT97] is one example of an advanced web based



14.3. MULTI-AGENT ARCHITECTURE FOR CSE 209

workspace implementation. Agents can access data in the workspace either directly or
indirectly through tools.

14.3.3 Agoras

An agora [MDP98] is a place where software agents meet and interact , but can also be
a market place where agents “ trade” information and services. Agoras should provide
agents with more intelligent means to facilitate their interaction. The main purpose of the
agora is to facilitate cooperative support for applications and agents. Below we propose
the following preliminary functionalities that any agora should support.

1. Inter-Agent Communication:
This is not simple information-passing, it rather conveys intentions, goals, beliefs,
and other mental states to form the foundation of negotiation and other complex
interactions. An agora should facilitate agents to announce their capabilities and to
get in touch with agents capable of doing specific tasks. The following services are
needed to facilitate inter-agent communication:

1 2

8

6

3

7

4 5

A:Request
B:Promise

B:Reject
A:Withdraw A:Counter

B:Counter

A:Accept

A:Reject
B:Withdraw

A:Withdraw

B:Renege

A:Withdraw

A:DeclareB:Assert

9

A:Decline

Figure 14.2: An example of speech-act

� An agora should provide a predefined set of speech-acts [WF86] (conversation
types), such as proposal, counter-proposal, acceptance, rejection, confirm,
deny, inform etc. The various speech-acts types will define how agents can
interact with each other. In many cases a speech-act is represented as a state
transition diagram as the one shown in figure 14.2. The speech-acts act as
shared process model for how agents should interact. Figure 14.2 shows states
of a conversation between two agents A and B. States are shown as circles
while transition between one state to another is shown as arcs. The terminal
state 5 indicate a successful conversation and the bold lines shows the path of
a successful conversation.



210 CHAPTER 14. A MAS FOR COOPERATIVE SOFTWARE ENGINEERING

� An agora should specify a common syntax for messages transmitted through
the agora, so that the recipient can analyse the contents of a message.

� An agora should specify a common semantic of an agent language. One part
of this semantic is defined through speech-acts, i.e. what state transitions
of a conversation that a message will cause. The semantic also ensures that
software agents interpret the same words similarly.

� An agora should specify pragmatics for agents. This means that agents shall
not lie to other agents and the agents intentions should be honest.

2. Inter-Agent Negotiation:
The progress of a negotiation depends mainly on the negotiation strategies em-
ployed by the agents involved, but agoras should provide mechanisms to minimise
communication overheads.

14.3.4 Repositories

In our architecture, a repository represents an information server that in the simplest
form only provide services to store and retrieve persistent data. A more advanced repos-
itory will provide services for data modelling, searching through data, comparing data,
computing data etc. Repositories can be accessed either by tools or by agents.

The most fundamental repository is the production repository storing versioned products.
Other repositories may include process models, experiences, user-error-reports etc. The
more advanced repository is the community memory across projects which can be re-
alized by an Experience Base. Stored information from previous projects can then be
used to create more accurate estimates, foresee problems, and improve processes for new
projects [NWC97].

14.3.5 The CSE Multi-Agent Architecture

Within our architecture, the four CSE components are interconnected and interoperate as
follows:

1. Agents are created by people to help them work; by other agents to perform dele-
gated work; or by default to manage workspaces or agoras.

Note that agent creation is a process of instantiation of the corresponding agent
classes based on templates.

2. Agents are grouped mainly according to people grouping. In CSE, we can usu-
ally perceive various groups of people working as a team. The mechanism we
have used to group people and agents is by workspaces. Shared workspaces are
used to group teams of human and software agents working together, while private
workspaces provide support for one human and possibly several software agents.



14.3. MULTI-AGENT ARCHITECTURE FOR CSE 211

3. Interaction between agents is via agoras. Agoras can be to provide agent interac-
tion between group workspaces as well as interaction between private workspaces.
Some system agents are created by default to manage the agora (creation, deletion,
and bookkeeping).

4. Agents uses repositories. There are monitoring agents, to perceive events in workspaces
and agoras, to collect relevant data and to store the data into repositories. In this
way, the community memory is built. And in decision making, or when some ne-
gotiation runs into difficulties, mediation agents can help by utilising previous ex-
perience from some repository.

5. Within a group of agents and their shared workspace, any existing process models
are allowed, and the traditional process architecture described in Section 14.2 can
be applied. On the other hand, we can also apply this agent-based architecture
recursively to a group of agents.

WS1

WS2

Local Agent

Negotiation Agent

Coordination Agent

Monitor Agent

Mediate Agent

WorkSpace

Repository

Agent Group 1

Agent Group 2

Local
Reposi−
tory

Global
Repository

Local
Process
Model

Local
Process
Model

Agora

Legend

Agora

Figure 14.3: Multi-Agent Architecture for Cooperative SE

Figure 14.3 shows the four components of the CSE architecture and their interconnection
and interoperation. Note that the figure shows different types of agents and repositories.
In section 14.5 we will see a concrete architecture when our approach is applied to a CSE
scenario.



212 CHAPTER 14. A MAS FOR COOPERATIVE SOFTWARE ENGINEERING

14.4 An industrial scenario

This scenario is based on the software development and software maintenance process
from a real Norwegian software company, in this paper called AcmeSoft. The company’s
products exist on various operating system platforms, including Microsoft Windows NT
and various UNIX platforms. In this scenario we by software development mean the
development of future releases and updates of products, whereas by software maintenance
we refer to the correction of defects in released software. Common to these processes are
a production and testing process which builds the products for requested platforms and the
delivery process which creates the distribution media and ships products. An overview
of the main activities in the scenario process is shown is figure 14.4. Corresponding
responsible groups are listed below the activity name.

The Development process focuses on work that is directly related to changes of software
products and the planning and scheduling of these changes. The three main process steps
are: 1) Release and update planning, 2) Scheduling, and 3) Implementation.

The Maintenance process is triggered by a one of the following maintenance reports;
Software Query Reports (SQRs): Error report or desired, Release Problem Reports (RPRs):
Internal problem reports, or Production orders: Requests from customers for a given prod-
uct or product revision.

The maintenance agreements define priorities system for SQRs and RPRs, with five levels
from Critical down to May not be implemented named P0 to P5. Based on this classi-
fication, the correction phase of SQRs and RPRs is divided into the five following pro-
cess steps: 1) Registration (by the development department), 2) Estimation of resources
(which developer, effort, 3) Sendout (send SQR/RPR to developer), 4) Correction (actual
problem fix done by developer), and 5) Module testing (by developer).

The Production and testing process starts after a freeze in development code or after
defect corrections, or when customers request a delivery revision built for a specific plat-
form. The process consists of the three following steps: 1) Production, 2) Testing, and 3)
Verification

The Delivery process consists of activities to store products on distribution media and to
ship products. This process is initiated when a product release or update is made available,
and on customer demand. The delivery process can be divided into two main activities:
1) Delivery and 2) Shipping.

14.5 Application of the Architecture to the Scenario

Figure 14.5 shows our multi-agent architecture for the scenario described in the previous
section. In this architecture there are six agent groups (workspaces) corresponding to
the six groups First Line Support, Maintenance Process group (MPG), Update/Release
Planning group (URPG), Development group, Production and QA group, and Delivery



14.5. APPLICATION OF THE ARCHITECTURE TO THE SCENARIO 213

Production and
testing

Delivery

DevelopmentMaintenance
First line support
Maintenance group
Upd/Rel Plan group

Deliv/ship group

Development group

Production/QA group

Figure 14.4: Scenario process

and Shipping group.

Each group has their shared workspace. Each group has also its own process model,
which may be an existing legacy one. The process models of different groups can be
heterogeneous. Furthermore, some groups may have this new agent-based architecture
recursively. That is, an agent group may be spilt into several (sub)groups, and the shared
workspaces into several (sub)workspaces. In all cases, the inter-(sub)group communica-
tion is modelled explicitly via agoras. In the architecture, we can observe different kinds
of interaction agents belonging to various groups. Examples are:

� Two negotiation agents, one belonging to the First-Support group, the other to
the MPG, communicate via the agora Ag1. Because when the First-Support Office
conveys a user request for a change and the desired deadline for the new revision,
the MPG may or may not authorise the changes (according to their configuration
control policy). Even if the planning office agrees to authorise the changes, a dead-
line need to be negotiated. In other words, the Defect Priorities (P0–P4) shown in
figure 14.5 are the result of negotiation, rather than a simple information passing.

� Two negotiation agents (one belonging to the URPG, the other to the MPG) com-
municate via the agora Ag2. See below for detailed discussion.

� Some coordination agents are observed in between the MPG (or the URPG) and
the Development Team. This means that the change-order are given to a group of
developers. So the MPG needs to coordinate the development work . The change-
order will actual cause changes to the local process models. In this perspective we
can see the coordination of a change order as a process model change.

� Other negotiation and/or coordination agents could be observed in the figure, but
for simplicity we just show them as simple communication agents.

AcmeSoft has a distributed repository used as an EB of the company. The EB holds
information about previously completed projects and products and about previous up-



214 CHAPTER 14. A MAS FOR COOPERATIVE SOFTWARE ENGINEERING

WS

WS

WS

WS

WS

Development Process

Production and QA Process

Update/Release Planning Process

Defect Report
P0: 1 week
P1: 1 month
P2: next update
P3: next release
P4: new func. DB for

Defect
Reports register

estimate
allocate

coding
corection
module test
mergingupdate per quater

release per year

Conflict list

Work
Order

Customer
Report
Order

Order
for
DR
with
New
Platform New DR

Global test

verification

Rejection
Report

Accepted
Update /
Release

Make Executable
Copy
Forwarding

A1

A2

A3

A4.1

A4.2

B

C

D

EB

WS
First−Support Process

classification
forwarding

change
order

Maintenance Planning Process

Market/
Technology
Requirements

Ag1

Ag2

1) 2a)

2b)
3)

4)

Delivery and Shipping Process
5)

Order for
Existing DR

Figure 14.5: Scenario of Software Maintenance and Development



14.5. APPLICATION OF THE ARCHITECTURE TO THE SCENARIO 215

dates/releases of the current products. Typical data are: the project profiles, evolution
patterns, performance metrics, and process models.

Let’s have a closer look at the agora Ag2. There are various inter-agent activities occurring
in or transmitted through it. In the following, we explain some of these activities:

1. Negotiation and coordination between the URPG and the MPG.

First, remember that the main task of the URPG is to plan the next update and the
next release of a company’s products. In doing so, the URPG should make deci-
sions on issues such as what defects should be fixed and what new functionalities
should be included in the next update/release. What to include is based on mar-
ket analysis and feedback from users (prioritised defect reports). Naturally, market
and technology analysis contributes to this decision-making. The relevant informa-
tion is presented in users’ defect reports with the priority P2–P4, which is received,
analysed, and stored by the MPG. Based on this information, the MPG would give
requests, suggestions or advice to the URPG about the contents of the next up-
date/release. On the other hand, the URPG may accept, reject, or negotiate these
proposals. All these inter-agent activities are carried out through the agora M2.

Secondly, remember that the same development team is responsible both for main-
taining existing products and for developing new updates/releases. Here we have a
conflict in resource allocation, and negotiation is necessary.

2. Mediation in the negotiation between the URPG and the MPG.

As indicated, in solving a resource allocation conflict, the MPG and the URPG
may not by them selves be able to reach an agreement. E.g., the MPG would like
to “ lend” programmer A to fix an error in a product for user B that demands an
immediate reaction. On the other hand, the URPG would like to have A as the
chief programmer the full next year for a planned update/release. The problem
is that each negotiating agent views the issue only from its own angle, based on
local experience. Furthermore, in such a real-life domain, it is hard to evidence that
algorithm-based negotiation strategies alone can solve such problems reasonably.
Human intervention by a manager of the company may be necessary. How much
human intervention the agent will need, depends of the definition of the agent. In
this way it is possible to tailor the agent to the needs of the company. It should
be possible to state, e.g., that resource negotiation for more than a certain amount
of money must be done through human interventions. The mediation agent works
on behalf of the higher-level manager, in order to propose an overall beneficial
solution. In doing so, the mediation agent may utilise previous experiences by
searching the EB. For example, if the EB shows that user B has been an “ important”
customer in the past, the mediation agent may stand by the MPG and persuade the
URPG to consider another choice as chief programmer.



216 CHAPTER 14. A MAS FOR COOPERATIVE SOFTWARE ENGINEERING

14.6 Conclusions and Future Work

In this paper we have introduced an agent-based architecture to solve CSE problems.
This architecture consists of four main components: Agents, Workspaces, Agoras and
Repositories Agents provide flexible and dynamic support to cooperating users, as well
as help for doing every-day work. Agents can easily respond to a changing environment
(learn, adopt based on experiences in the ExperienceBase etc.). It is widely accepted that
real software processes evolve over time, so our process support must adopt and cope
with such changes. To enable agents to cope with process changes, they will need to
learn from prior experiences. In our architecture this is introduced through repositories
(ExperienceBases) as well as agents can learn on their own. Agoras and workspaces are
introduced to support agent interaction and grouping of agents, respectively.

Our architecture has been applied on one specific scenario. We believe, however, that
our multi-agent CSE architecture is applicable on various situations, processes and or-
ganisations. One concrete example is to support meta-process activities, such as discov-
ering/planning process models, negotiation about the process model and the real-world
model and assignment of resources to a instantiated process model. Our architecture’s
main contribution is to give process support where traditional SPTs often fail in respect
changing environment and unexpected events. Further work with describe formalities,
implementation of prototypes, and experiment with more industrial scenarios will show
if this is the case. Another outcome of our research will be to identify disadvantages of
MAS.

Acknowledgement

The authors of this paper want to first of all to thank Mihhail Matskin, Sobah Abbas
Petersen, Monica Divitini, Heri Ramampiaro for suggestions and discussions regarding
the paper and a big thank to Torgeir Dingsøyr and Joar Øyen for reading through and
giving useful comments on this paper.



CHAPTER 15

Design Principles for a Mobile, Multi-Agent Architecture
for Cooperative Software Engineering

Alf Inge Wang1, Anders Aas Hanssen2, and Bård Smidsrød Nymoen3

Abstract
The paper describes experiences we have achieved from implementing a mobile multi-
agent system for cooperative software engineering, based on the Aglets technology from
IBM. When implementing the mobile multi-agent system, we faced problems dealing
with locating agents, inter-agent communication, registration of agents etc. Based on
our experiences, we present some design principles for how to locate agents, how agents
should communicate, how to manage connection to the agent system, how to register
agents and agent places, how to move agents, how to remove agents, and how to give
CORBA-agent interaction support. These design principles should be applicable for oth-
ers wanting to design mobile multi-agent systems using the Aglets technology.

Keywords: Mobile agents, Multi-agent architecture, Software design.

1Dept. of Computer and Information Science, Norwegian University of Science and Technology
(NTNU), N-7491 Trondheim, Norway. Phone: +47 73 594485, Fax: +47 73 594466, Email: al@finge.com

2BEKK Consulting AS, Palekaia 1, 0150 Oslo, Norway, Email: anders.aas.hanssen@bekk.no
3Mogul.com, Kongensgt. 51E, N-7012 Trondheim, Norway, Email: BardN@numerica-taskon.no

217



218 CHAPTER 15. DESIGN FOR MAS FOR COOP. SOFTWARE ENGINEERING

15.1 Introduction

There are a number of mobile agent technologies available today, both commercial and
as research prototypes. Many of these agent technologies only provide a framework for
building a mobile agent system, and do not offer extensive solutions for e.g., inter-agent
communication, keeping track of agents, locating agents, etc. In this paper we describe
some design principles we have extracted from experiences building the mobile multi-
agent system called DIAS, based on the mobile agent technology Aglets from IBM. DIAS
is one important component for an architecture that supports Cooperative Software En-
gineering. Agents are used to represent actors in a cooperative effort, and give the users
of the agent system support for doing efficient negotiation, cooperation and exchange of
data.

When we started building our mobile multi-agent system, we had only a high-level archi-
tecture consisting of agents and agent places (more on this in section 15.2). We wanted
to allow both stationary and mobile agents, where the mobile agents could move between
agent places. User clients to the system can connect and disconnect to the agent system
dynamically, while the rest of the agent system can run continuously. As we started to do
low-level design, we discovered that mechanisms for dealing with mobility of agents, and
dynamic user client connections were not directly supported by the Aglets framework.
These mechanisms have been carefully designed to cope with scalability, security, and
stability. The rest of the paper describes the results we gained from our low-level design
of the DIAS system.

In [Yar98], Aridor and Lange report several design patterns they have found when creat-
ing mobile agent applications. In general, agent design patterns are used to capture good
solutions to recurrent problems to make agent applications more flexible, understandable,
and reusable. The patterns Aridor and Lange present, focus on agent travelling, agent
tasks, and agent interaction. Travelling patterns give solutions for routing agents among
destinations, forwarding newly arrived agents automatically to another host, and using
tickets to encapsulate quality of service and permissions needed to move an agent. Task
patterns are concerned with the breakdown of tasks and how these tasks are delegated to
one or more agents. Interaction patterns are concerned with locating agents and facilitat-
ing their interactions.

Mobile agents have become a very popular research topic lately. Many technologies fa-
cilitate moving objects between hosts. Voyager [Gla99] developed by ObjectSpace is a
product family consisting of an ORB and an application server supporting mobile agents.
Grasshopper [IKV00] is an agent development platform launched by IKV in 1998. It
enables the user to create agent applications enhancing electronic commerce applica-
tion, dynamic information retrieval, telecommunication services and mobile computing.
Grasshopper is completely implemented in Java giving the benefit of high distributed in-
tegration. Jumping Beans [Ad 99] builds on the Java platform and provides a framework
for Java programs to “ jump” from computer to computer. The Jumping Beans architecture
is based on client-server architecture, where programs moving from one host to another
must do this through a central management server. The central management server has



15.2. DISTRIBUTED INTELLIGENT AGENT SYSTEM 219

a very strict security system. By using a central management server, the Jumping Bean
framework is best fitted for small distributed networks rather than WANs (bottleneck).

15.2 The Distributed Intelligent Agent System (DIAS)

This section is a short introduction to the Distributed Intelligent Agent System (DIAS)
which is a part of CAGIS Multi-Agent Architecture for Cooperative Software Engineer-
ing. [WLC99] The CAGIS architecture uses agents to represent co-operative participants
in a cooperative effort and supports coordination, negotiation and communication through
agents. DIAS provides a foundation for creating a mobile multi-agent system through
high-level agent API and multi-agent services. The DIAS architecture is based on a more
general multi-agent architecture for supporting a distributed information technology ap-
plication [MDP98].

15.2.1 DIAS components

We have tried to keep the DIAS architecture simple and it consists of only two main
components. By combining these main components, we get a fully functional mobile
multi-agent system. The main components are:

� Agent A piece of software acting on behalf of a user. The agent is set up to achieve
a modest goal, with the characteristics of autonomy, interaction, reactivity to the
environment, as well as pro-activeness. There are three main groups of agents in
DIAS: System agents, Participation agents, and User agents. System agents ad-
ministrate the DIAS architecture. We have identified the following types of system
agents:
Manager agents are responsible for managing Agent Meeting Places (AMPs), Fa-
cilitator agents facilitate communication between agents, Monitoring agents log
events and manage security in AMPs, Repository agents retrieve information from,
add information to, and query repositories, and Interface agents provide and inter-
face between the agent system and other applications.

Participation agents can either be stationary or mobile, and they provide system
support for cooperative processes in agent places. Typical participant agents are:
Communication agents that bring messages or data from one agent to another agent
situated on a different agent place, Negotiation agents that help other agents to reach
an agreement, Mediation agents that will act on behalf on higher management and
use prior experience to solve locked negotiation processes, and KQML agents that
make it possible to directly send a KQML message from a user to agent. One
advantage with the latter agent, is the ability to communicate directly with other
agents without having to implement a specific agent for this purpose.

User agents are created by a user or by a vendor of agent applications, and can be



220 CHAPTER 15. DESIGN FOR MAS FOR COOP. SOFTWARE ENGINEERING

either mobile or stationary. The DIAS agent API is used by the developer to create
user agents.

� Agent Place An agent place is where software agents meet and interact in the DIAS
architecture. The agent places can be distributed on different hosts, and facilitate
means for efficient inter-agent communication based on KQML [FLM97]. Agent
places can also have CORBA-support, facilitating external applications to commu-
nicate with the agent system through interface agents. The OMGs standard, Mobile
Agent System Interoperability Facilities (MASIF), is used to provide a bridge be-
tween CORBA applications and DIAS. There are two main types of agent places:

– Agent Meeting Place (AMP) This is the place where the agents advertise their
capabilities, communicate with other agents. AMPs are where agents that rep-
resent different users can come to and interact. An AMP can be addressed as a
DIAS Service Provider (DSP) if an Agent Docking Place (ADP) is connected
to it. The AMP will then provide services to the ADP.

– Agent Docking Place (ADP) This is the user-client where the user interacts
with his/her agents, and where agents can be created and killed. Agents can
also communicate locally in ADPs.

The DIAS architecture was implemented in Java using Aglets Software Development
Kit from IBM [LO98] to provide agent mobility. Only KQML-layer in JATLite [JPC00]
was used to support the KQML communication language in our architecture. Since the
contents of a KQML message can be anything, we have chosen to use XML for this
purpose. XML gives us an easy way of representing and wrapping data, and there are
several XML tools available for Java as well.

15.3 Design Principles for Mobile Agent Systems

This section describes the adopted principles in designing a mobile multi-agent system.
A more detailed description of our design principles and how these principles are im-
plemented can be found in [HN00], while an overview of the technology and high-level
design issues in DIAS is discussed in [Wan00a].

15.3.1 Agent Location

In a mobile agent system, there most be a mechanism to locate mobile agents. A user
agent will start at the users ADP, and can visit to different agent places on different hosts.
Participant agents are also mobile and can move between agent places on behalf of a user
request or another agent. In DIAS, the ability to communicate with these mobile agents
is essential. Thus, a mechanism to locate mobile agents is needed. We have considered
three alternatives for locating agents in DIAS:



15.3. DESIGN PRINCIPLES FOR MOBILE AGENT SYSTEMS 221

1. Each agent knows where other agents are situated.

2. Agents make footprints where they go.

3. Agents report to an AMP where they go.

The first alternative will require agents to hold much updated information. This will
cause problems with performance and scalability, since agents can be mobile. The second
alternative implies that agents leave footprints to agent places when they are moving to
another agent place. When an agent wants to locate a certain agent, it must therefore
follow the footprints of this agent. This option can be quite complicated to implement
and is not especially efficient. Especially, when agents are killed, all the footprints must
be followed and deleted. If an agent has made a far journey, this removal of footprints can
be a time and resource consuming process. In DIAS, we have used the third alternative
to solve the agent location problem. In this approach, an agent must inform his new
location to an AMP before moving. We use the term DIAS Service Provider (DSP) to
name where an agent should report its localisation. By using this alternative, the process
of updating agent’s locations is distributed to several AMPs. The agent will only inform
its new location to the DSP when before moving to another agent place. Replication of
DSPs can also be used to achieve better availability of the agent system. Two rules are
used to decide the DSP of an agent:

1. Agents created in an AMP will get the current AMP as its DSP.

2. Agents created in an ADP will use the DSP of this ADP. When an ADP is cre-
ated, an AMP must be specified as DSP. AMPs are used as DSPs because they are
persistent while ADPs can be temporary.

All agents have their DSP as a part of their agent ID, making it possible to locate agents’
DSPs from an agent ID

15.3.2 Agent Communication

Because it was very hard to combine JATELite’s message router with Aglets, we had to
create our own agent communication mechanism. When agents communicate, the DIAS
system has to locate where the receiver of the message is situated. If communicating
agents are at the same agent place, they can exchange messages locally. If communicating
agents are on different agent places, the message will be carried by a communicating
agent. Here is a simple example showing Agent A at AMP1 sending a message to Agent
B located at ADP1. Note that system agents (not shown in the figure) are used to bring
the message from Agent A to Agent B.

These steps describe figure 15.1:



222 CHAPTER 15. DESIGN FOR MAS FOR COOP. SOFTWARE ENGINEERING

Agent A

Agent BAMP1
ADP1

AMP2

DSP is AMP2

Figure 15.1: Communication example

1. The message from Agent A to Agent B is first sent to a system agent locally at
AMP1.

2. A system agent at AMP1 finds the DPS address of agent B, and sends the message
to this DSP (here AMP2).

3. A system agent at AMP2 looks up the location of Agent B, and sends the message
directly to Agent B on ADP1.

4. Agent B replies the message with an acknowledgement (sent directly back to Agent
A)

As the example above illustrates, the DSP of the receiving agent is used to find this agent.
AMPs are dynamically exchanging ID information about agents in the system. AMPs that
also are DSPs, hold information about agents where-about. There are two types of agents
that are important when communicating in DIAS:

� Facilitator Agent Every AMP and ADP has a facilitator agent. All messages in the
DIAS system have to be sent through the facilitator agent, deciding if a message
should go directly to the receiver agent (locally) or via communication agents to
find the correct remote receiver.

Figure 15.2 illustrates two examples for how facilitator agents are used in DIAS.
First in figure 15.2, Agent A want to send a message to agent D. The facilitator
agent in AMP1, forwards the message using a communication agent to AMP2. The
facilitator agent in AMP2 then forwards the message to AMP3, where AMP3’s fa-
cilitator agent gives the message to the requested agent D. The second example in
the same figure is when agent B wants to send a message to agent C. The facil-
itator agent can then just give the message to agent C, since both are located in
AMP2. The facilitator agent will act according to available receiver agent infor-
mation, which is the agent identifier, agent’s DSP identifier and ontology. If the
agent and DSP identifiers are missing, the facilitator agent tries to find an agent
with matching ontology.



15.3. DESIGN PRINCIPLES FOR MOBILE AGENT SYSTEMS 223

Agent A

Facilitator
   Agent

Agent B Agent C

Agent D

Facilitator
   Agent

Facilitator
   Agent

Communication
       AgentCommunication

       Agent

AMP1

AMP2

AMP3

Figure 15.2: An example of how the facilitator agent works

� The Communication Agent The communication agent is responsible for bringing
a message from one agent place to another. A communication agent is triggered
by a facilitator agent, carries the message to the target destination, and delivers the
message to facilitator at the target agent place.

15.3.3 Connection of agents and agent places

Users of the DIAS are not connected to the agent system all the time, therefor mechanisms
for handling user connection and disconnection are needed. When a user wants to connect
to the agent system, an ADP (user client) must be initiated. The ADP must then connect
itself to an AMP to establish the connection with the rest of the agent system. This AMP
will provide services to the ADP, and thus is called DIAS Service Provider (DSP). An
illustration of how an ADP1 connects to AMP2 is shown in figure 15.3.

Manager
 Agent

Manager
 Agent

1. User name,
    Password

2. CONNECTED−
    TO−DSP

2. CONNECTED−
    TO−DSP

AMP1

AMP2

ADP1
Agent A
Created
in ADP1

3. PRESENT−ON−
CONNECTING−ADP,
   URL of ADP1

Agent C
Created
in AMP2

Agent B
Created
in ADP1

Figure 15.3: Illustration connection between ADP and AMP



224 CHAPTER 15. DESIGN FOR MAS FOR COOP. SOFTWARE ENGINEERING

The procedure used to handle connection of ADPs, ensures that all parties influenced by
the connection are notified. The procedure follows three steps:

1. The connecting ADP1 sends user name and password to the Manager Agent in
AMP2 (DSP of ADP1).

2. CONNECTED-TO-DSP tells all agents created in the ADP1 that this ADP is con-
nected to the agent system. This notification tells agents in other agent places (like
Agent A in figure 15.3) that it is possible to return home to ADP1.

3. The Manager Agent at the DSP (AMP2) will then receive the message PRESENT-
ON-CONNECTING-ADP, along with all needed information from ADP’s Manager
Agent (the ADP’s ID etc.).

When an ADP is disconnecting, the agent system must make sure that all involved par-
ties (agents and agent places) are notified, and status information must be updated. A
procedure involving three steps is used when an ADP disconnects:

1. DISCONNECTED-FROM-DSP notifies agents created in the ADP that the ADP
is going to disconnect. This makes it possible for these agents to return to home,
before the connection with the user is closed down. The user can configure the ADP
to wait for a certain time (default five seconds) before it will close down.

2. PRESENT-ON-DISCONNECTING-ADP is sent to all agents that are present on
the disconnecting ADP, to notify that they have to move themselves, or they will be
stopped.

3. DISCONNECT-FROM-DSP tells the DSP’s Manager Agent that the ADP is going
to disconnect. This Manager Agent can then delete registered information about the
ADP and disconnect it.

15.3.4 Registration of agents and agent places

In DIAS, agent places have registries about agents and other agent places in the system.
These registries are essential to make it possible for agents to communicate, and they
contain information about ID for agents and agent places. The registration of agents,
ADPs and AMPs is done as following respectively:

� Registration of agents First, agents will be registered as origin agent in the agent
place they were created . The origin agent registry hold information about the agent
ID, and it is used to inform agents (listed in origin agent registry) that an ADP has
moved. A user can choose to start his/her ADP at another site, and the users agents
must be informed about current location of the ADP. Second, all agents living in the
agent system should be registered as registered agents in agent places in the system.



15.3. DESIGN PRINCIPLES FOR MOBILE AGENT SYSTEMS 225

This registry makes it possible to get an overview of agents in the system. If agents
also have this agent place as a DIAS Service Provider (DSP), agent location is also
registered. Third, agents present at an agent place are registered as present agents as
well. When the facilitator agent is looking for a receiver of a message, the present
agent registry is checked first to see if the message can be delivered locally.

� Registration of ADPs A ADP can is only registered in DSPs as “ registered ADP” ,
where general information about the ADP, information about location of the ADP,
and ADP’s user information is given.

� Registration of AMPs When an AMP wants to register in another AMP, both
AMPs exchange information about themselves. In this way the AMPs will have
information about each other and be able to recommend each other to agents search-
ing for an AMP hosting a specified agent with given ontology.

15.3.5 Moving Agents

In DIAS, mechanisms for moving agents between hosts are supported in the underlying
technology provided by Aglets from IBM. However, the system must also be aware of
agents’ location any time. When an agent is moved to another agent place, the agent has
to give information to three agent places: (1) To the DSP about where it will move, (2) to
the agent place the agent will move from that it has left, and to the agent place the agent
will move to that it has arrived. An agent must be registered in the agent place it tries to
move to. If not, the agent tries to register itself before moving.

15.3.6 Removing Agents

In DIAS, agents can be created and killed at run-time. However, system agents cannot
be killed individually since they must provide their services as long the agent place is
running. If the agent places are shut down, the system agents associated with this agent
place will also be killed. Participation agents have often a dynamic nature, and can be
created and killed on demand. Since these agents are not registered any places, they can
be killed immediately. The user agents’ destiny is decided by the user, and it is up to the
user to kill them. These agents will unregister themselves from agent places before they
are killed.

15.3.7 CORBA Agent Interaction

DIAS offers external programs to access the multi-agent system through CORBA to en-
able programs in programming languages other than Java or other agent systems to inter-
act with DIAS. In addition, it should be possible to connect to an AMP without having
a local ADP installed on the host. A CORBA client can either interact directly with a



226 CHAPTER 15. DESIGN FOR MAS FOR COOP. SOFTWARE ENGINEERING

CORBA AMP, or interact with a CORBA ADP. The former means that we do not need an
ADP installed on the host, while the latter is a practical solution, since both the CORBA
programs will be on the same host as the ADP.

The Interface Agent plays the main role when CORBA programs interact with DIAS. This
agent is created as a system agent in its agent place, and connects to the ORB in the agent
place when created. In this way the Interface Agent is an agent as well as being a CORBA
object on the ORB. The following interfaces are used for CORBA interaction:

� MAF AgentSystem interface Defines agent operations like receive, create, sus-
pend, and terminate.

� MAF Finder interface Defines operations for registering and unregistering of agents,
and finding the location of agents, places and agent systems.

� DIAS interface Defines the communication method used by CORBA applications
(can be extended by the developer)

The Interface Agent is the “glue” between the CORBA client and the agents. The opera-
tions in the Interface Agent are invoked by the CORBA client. In DIAS, KQML is used
to express the communication between agents. When a CORBA client wants to send a
KQML message to an agent place (e.g., to initiate an agent) the following will happen:

1. The KQML message is translated to a string.

2. A CORBA call with the KQML string as a parameter is executed.

3. The CORBA object (the Interface Agent) on the CORBA server will then translate
the KQML string into a KQML message.

4. The KQML message will then be sent from the Interface Agent to the receiver
agent.

15.4 Discussion

The Aglet framework [LO98] provides underlying services for building a mobile multi-
agent system, but it lacks of high-level services to enable a fully functional agent system.
The design principles in section 15.3 describe how we added these high-level services to
provide a better way to manage mobility and distribution of agents, as well as agents inter-
action. Dealing with mobility and distribution is mainly a technical problem to ensure that
the system is reliable and scalable. However, agent interaction, it is not only a technical
problem. Our current implementation provides only simple means for agent interaction,
and should be replaced with a more advanced mechanism for dealing with this problem.
Domain models should be used as ontology to define as limited set of words agents can



15.5. CONCLUSION 227

understand and how these words are related and used. We are currently working on in-
corporating a document model for modelling ontology. In [GB00], Gulla and Brasethvik
offer a framework for creating a graphical model of an ontology and for exporting this
model as an XML document. A starting-point for an ontology model is generated using
a tool that parse through documents typical for the ontology domain chosen, resulting in
a list of domain specific words. A graphical modelling tool can then be used to refine
the ontology model and define relationships between words. The last step is to export the
ontology model to an XML document that can be used in DIAS.

15.5 Conclusion

In this paper, we have described some design principles applicable when designing a mo-
bile multi-agent system using Aglets technology. The principles are not closely related to
the underlying technology, and could therefore also be used for other agent technologies.
We found that our design principles will make it easier to generate agent applications,
since the agent system takes care of things as routing messages, locating agents, con-
necting and disconnecting user clients (ADPs). We are now exploring our agent system,
building agent applications, to gain more experiences of what advantages and shortcom-
ings our architecture has.

Acknowledgement

We would like to thank Reidar Conradi for useful comments and suggestions. The CAGIS
project is sponsored by the Norwegian Research Council’s Distributed InformationSys-
tems (DITS) Programme.



228 CHAPTER 15. DESIGN FOR MAS FOR COOP. SOFTWARE ENGINEERING



CHAPTER 16

Experience paper: Implementing a Multi-Agent
Architecture for Cooperative Software Engineering

Alf Inge Wang1

Abstract
The paper describes experiences we have earned from implementing a multi-agent archi-
tecture used to support cooperative software engineering. Before starting to implement
a multi-agent architecture, important decisions and considerations must be taken into ac-
count. Decisions on how to provide efficient inter-agent communication support, what
language should the agents talk, should the agents be stationary or mobile, and what tech-
nology should be used to build the architecture must be made. This paper describes how
we implemented our multi-agent system, and the experiences we gained from building it.

Keywords: Cooperative Software Engineering, Agents, Multi-agent system, KQML, XML,
Aglets, JATLite, CORBA.

16.1 Introduction

The last couple of years, distributed computing and agent technology have become more
and more popular. When researchers are developing prototypes, the choice of technolo-

1Dept. of Computer and Information Science, Norwegian University of Science and Technology
(NTNU), N-7491 Trondheim, Norway. Phone: +47 73 594485, Fax: +47 73 594466, Email:
alfw@idi.ntnu.no

229



230 CHAPTER 16. IMPL. A MAS FOR COOP. SOFTWARE ENGINEERING

gies and how to use different technologies is getting more and more complicated. This
paper describes experiences from designing and implementing a Multi-Agent System
(MAS) providing support for Cooperative Software Engineering (CSE). CSE is a research
area where focus is on how to support participants in cooperative processes working in
distributed organisations. In our MAS, agents are used to provide support for coopera-
tive processes as coordination and negotiation. The agents communicate through a de-
fined language, and the MAS offers the infrastructure for the agents interacting with other
agents and users.

Before we started to implement a MAS, a theoretical study on distributed architectures
and agent technologies was conducted by Joar Øyen, a diploma student at the Department
of Computer Science at the Norwegian University of Science and Technology. The out-
come of this study was a report [Øye98] giving us guidelines for building a multi-agent
architecture (MAA). We have used these guidelines as a starting point for our implemen-
tation.

We have been searching for related work that focuses on experiences from implement-
ing MAS using different types of technology. It seams like there is nothing or at least
very little published covering these issues. There are a lot of publications on high-level
descriptions of MAAs, such as [BJJT99, JLT99, BvET97], but details about technology
used or experiences from implementing these systems are left out.

We have used the multi-agent paradigm to implement our system, but there are alterna-
tive approaches. JavaSpaces [Mic99b] based on Java RMI and JINI, recently introduced
by SUN, provide an alternative approach for exchanging distributed objects. JavaSpaces
technology is a unified mechanism for dynamic communication, coordination, and shar-
ing of objects between Java technology-based network resources like clients and servers.
A JavaSpace is a virtual space between providers and requesters of network resources or
objects. This allows participants in a distributed solution to exchange tasks, requests, and
information in the form of Java technology-based objects. There are four primary opera-
tions you can invoke on a JavaSpace: (1) Write an entry into a JavaSpace, (2) Read an
entry from a JavaSpace that matches some specified parameters, (3) Take an entry from
a JavaSpace that matches some specified parameters (removing it), (4) Notify a specified
object when entries that match some specified parameters are written into this JavaSpace

An entry is in JavaSpace terminology a typed group of objects, expressed in a class for
the Java platform. JavaSpace technology offers much of the same functionality as MAS;
movement of objects, message handling, sharing of objects, etc. Maybe the most useful
functionality in this respect, is the support for searching for objects with certain properties.



16.2. CAGIS MULTI-AGENT ARCHITECTURE 231

16.2 CAGIS Multi-Agent Architecture for Cooperative
Software Engineering

This section is a short introduction to the CAGIS2 multi-agent architecture for Coopera-
tive Software Engineering. A more detailed description of this architecture can be found
in [WLC99].

16.2.1 CAGIS Multi-Agent Architecture components

Software agents are useful for supporting cooperative activities, since software agents can
act as human agents on behalf of humans. Our architecture uses this property of software
agents to model data- and control flow to implement a self-optimising or self-improving
process. The main components in this architecture are agents, workspaces, Agent Meeting
Place (AMP) and repositories:

� Agent A piece of autonomous software created by and acting on behalf of a user.
The agent is set up to achieve a modest goal, with the characteristics of autonomy,
interaction, reactivity to the environment, as well as pro-activeness. Agents are
grouped into three main groups. The first group, System agents, is used to execute
administrative tasks of the MAA. This can be to monitor human and software agent
activity, deal with repositories and managing AMPs (see the third point). The sec-
ond group, Local agents, assist users in work within local workspaces. The last
and most important agent group, Interaction agents, help users in their cooperative
work (coordination, negotiation, communication). Note that mediation agents are
also provided to suggest solutions for locked negotiation processes based on prior
experiences.

� Workspace (WS) A temporary container for relevant data in a suitable format,
together with the processing tools. Workspaces can be private as well as shared.

� Agent Meeting Place (AMP) AMPs are where software agents meet and interact.
AMPs are built on underlying communication mechanisms, but provide agents with
more intelligent means to facilitate their interaction. An AMP can also work as a
market place where agents can “ trade” information and services. The main purpose
of the AMP is to facilitate cooperative support for software agents.

� Repository A persistent storage of data that can be local, global or distributed.
Repositories can be accessed either by tools or by agents. One specific repository is
very important in the CAGIS MAA; the experience base. An experience base can
be used as the community memory, and a mediator agent can utilise prior stored
experiences to solve negotiation conflicts.

Next subsection will give an example of how the CAGIS MAA can be used.
2CAGIS (Cooperative Agents in Global Information space) is the name of a Norwegian research project

(1998-2000) with main focus on software support for distributed cooperation for human problem solvers.
More information about the CAGIS project can be found at:http://www.idi.ntnu.no/�cagis.



232 CHAPTER 16. IMPL. A MAS FOR COOP. SOFTWARE ENGINEERING

16.2.2 Example of a multi-agent architecture

Figure 16.1 shows how the CAGIS MAA can be used in a simplified software devel-
opment scenario. This example describes a coordinated software development process
involving multiple departments of an organisation. Each department is represented by a
workspace3, and an AMP is used as a place where the departments can cooperate through
software agents.

Legend

Local
Agent

Coordination
Agent

Negotiation
Agent

Monitor
Agent

Mediator
Agent

Workspace
Repository

 Agent
Meeting
Place

Maintenance
  planning

Update/
release
planning

Development

Historical
   data

 Agent
Meeting
Place

Figure 16.1: An example of an agent architecture application

This scenario demonstrates how it is possible to support a situation where limited human
resources in the development department cause trouble for a Maintenance planning de-
partment and an Update/release planning department. Both departments are competing
for human resources in the Development department, because the two departments want
to serve request and complaints from customers, and to improve the software product
respectively. If a negotiation process between for instance Maintenance planning and
Update/release planning takes to much time, the mediator agent (shown in figure 16.1)
will break into the negotiation process to make an agreement. The mediator agent can
base its judgement on experiences from prior projects (e.g., we lost a lost the biggest
customer because of too many bugs in the product last year), on company guidelines or
through interaction with the company’s management.

3Workspaces are used in this architecture to group people. It is however possible to have personal
workspaces.



16.3. REQUIREMENTS TO THE TECHNOLOGY USED 233

16.3 Requirements to the technology used

This section will outline the implementation requirements for the MAA described in sec-
tion 16.2. These are the requirements for a prototype of the system and not requirements
for a full-fledged system. The requirements given in this section should be quite general,
and should also be applicable to most MASs supporting mobile agents.

16.3.1 General requirements

The overall goal of the proposed CAGIS MAA was to be flexible and tailorable to many
different needs. The main requirement is therefore an open architecture that can evolve
together with the real world it is supposed to support.

Since a prototype of the architecture will be built in a short period of time, it is important
that the cost of the implementation is kept at a minimum, that is free and proven technolo-
gies should be used whenever appropriate. This means that the solution must be feasible
today.

Performance is not important for this prototype architecture.

16.3.2 System infrastructure

The organisations that the CAGIS MASs are intended to support, are inherently dis-
tributed, a heterogeneous environment, and are continually changing. The infrastructure
that is going to be the foundation of the system must thus define an open, flexible, and
malleable environment, which encompasses hardware platforms, operating systems and
networks.

A run-time environment to implement workspaces and AMPs must be provided by the
infrastructure. Such an environment must provide a number of services to its inhabitants.
Name registration and service advertising allows agents to be aware about each other’s
properties. In addition, event mechanisms will allow monitoring agents to register their
interest in specific events.

16.3.3 Agent implementation and configuration

Again, an open multi-platform solution is required. This includes the ability to ship binary
executables between different platforms, so that the agents can be mobile. Agents are
going to be built by experts, but it must be possible to tailor agents to the specific needs
of the different users. Some sort of agent scripting or agent configuration is therefore
required to let users fine-tune their system.



234 CHAPTER 16. IMPL. A MAS FOR COOP. SOFTWARE ENGINEERING

16.3.4 Agent communication

To be able for agents to communicate, we need a format to represent information, as well
as some conversation policies on how agents communicate. The architecture also requires
facilities for users to communicate with agents, and agents access to external entities like
repositories, workspaces, tools, AMPs etc..

The basic communication mechanisms (streams, messages, events, etc.) are provided by
the underlying system infrastructure, and the communication mechanisms uses these ser-
vices to provide more high-level facilities for inter-agent communication. First, agents
must be able to communicate with each other in a language that all involved parties un-
derstand (not only syntax of the language, but also semantics and pragmatics of the con-
versation). Second, agents must collaborate with each other to reach common goals. This
collaboration is controlled by process models that agents must interpret. Third, agents
also need mechanisms for coordination and negotiation to handle many common situa-
tions. Coordination mechanisms can be used to control the concurrency between multiple
agents and to exchange instructions that tell agents what to do. The system should provide
a negotiation model with a defined context and multiple negotiation strategies. Agents are
thus given the possibility to find out what is negotiated for and to select an appropriate
strategy to use.

16.3.5 Knowledge sharing

Communication mechanisms like coordination and negotiation operate in a cooperative
context and do therefore need to share common goals. The common goals represent some
form of group awareness or community memory, and are contained in a work context that
consists of information resources and control structures.

Common information can be stored in three different places in the architecture:

1. In repositories The main part of knowledge is contained in repositories.
2. In AMPs Meta-information about agents are contained in the AMPs, but the actual

information is contained inside the agents themselves.
3. In agents Agents may be used as information carriers of process information and

results.

The most important common requirement is however that information is stored in a for-
mally defined format that makes it accessible by agents.

16.3.6 Design proposal for the prototype

Figure 16.2 shows an overall design proposal for how the prototype should be structured.
We have used a multi-tier architecture based on the agent, places, and things paradigm.



16.4. TECHNOLOGICAL GUIDELINES 235

The lower part of the figure (component infrastructure and agent infrastructure) will define
a foundation, based on available standard implementations, which will provide function-
ality and services to the prototype of the MAA. In the shown architecture, the facilitators
are central components both in workspace and AMP. Facilitators simplify the implemen-
tation of agent communication and the coordinator, moderator, and monitor-components.
The reason for this is that the interaction between various entities can be controlled from
one central point. The drawback with this solution is of course that the facilitators might
become bottlenecks of the system.

Mobility support

Workspace

Communication Bus

Naming Trading Persistence

Relations Life cycle Events

Repository

Mediator Monitor

Coordinator Negotiator

Agent communication

M
ul

ti−
ag

en
t a

rc
hi

te
ct

ur
e

A
ge

nt
 in

fr
as

tr
uc

tu
re

C
om

po
ne

nt
 in

fr
as

tr
uc

tu
re

Facilitator
Facilitator

AMP

Local
Agent

Coordination
Agent

Negotiation
Agent

Workspace
Repository

Legend

Service

 Agent
Meeting
 Place
 (AMP)

Figure 16.2: Design architecture

16.4 Technological guidelines

This section will give advice on what technology to use to implement a prototype of
the MAS proposed in section 16.2 according to the requirements to the technology used
described in section 16.3.

1. Use Java and Java IDL [Mic99c] as the component infrastructure because (1)
Java provides code portability, garbage collection, object-orientation, (2) Java is
a broadly accepted standard, (3) Free implementation is available now, (4) Many
agent-related technologies are closely associated to Java.

2. Use the facilitators in the design architecture to implement the trader, event,
lifecycle, and relationship services as needed. By choosing Java IDL for the



236 CHAPTER 16. IMPL. A MAS FOR COOP. SOFTWARE ENGINEERING

component infrastructure, we have to use this CORBA implementation for the rest
of the system as well. This gives us a major drawback, because Java IDL only
provides the naming service of the CORBA services shown in figure 16.2. Since
the design shown in figure 16.2 has several services that are not supported in Java
IDL, these services must be developed in Java if required. These services can be
replaces, if Java IDL will offer them in the future.

3. Use Aglets to implement the mobility support for the agents. Mobility support
should ideally be implemented by OMG’s Mobile Agent Facility, but due to the
fact that this standard is under construction, Aglets will be recommended instead
4. Aglets [Lan97, OKO98, LA97] are Java objects, developed at IBM’s Research
Laboratory that can move from one host on a computer network to another. Aglets
servers provide distribution of aglets to aglets viewers. The viewers are the users
graphical interface to the aglets. From this interface the users can create, activate,
dispatch, and retract agents.

Using Aglets should provide an easy transition to the Mobile Agent Facility later,
because Aglets are one technology that is used as a basis for the Mobile Agent
Facility. Another advantage with the Aglets-technology is that user-interfaces for
controlling the operation of the agents are provided as a part of the technology.

4. Use KQML and JATLite for agent communication and as a foundation for im-
plementing workspaces and AMP. The Java Agent Template Lite (JATLite)[JPC00]
is a technology that provides a Java implementation that lets agents communicate
with each other, possibly by using Knowledge Query and Manipulation Language
(KQML). We recommend using KQML [FLM97] as the agent communication lan-
guage, because it is an extensible standard that has many of the advantageous fea-
tures that an agent communication language should have. JATLite is also a technol-
ogy that can be used to implement workspaces and AMPs, because each JATLite-
router defines an environment that facilitate the administration of and communica-
tion between a group of related agents.

5. Use XML to represent information and work-products in the architecture. eX-
tensible Markup Language (XML)[Hol98] does not put any restrictions on the for-
mat of the information is shall represent. Also tools to support XML are available
in Java.

How the recommended technologies are used to implement the various parts of the design
architecture is illustrated in 16.3. It must be noted that figure 16.3 only loosely denoted
where the various technologies should be used, and more experience is needed to decide
exactly which of the technologies that are best in the specific situations.

4At the time these technological guidelines was worked out, OMG’s standard for Mobile Agent Facility
was not finished, and there was not any implementation of OMG’s Mobile Agent Facility.



16.5. EXPERIENCES 237

Mobility support

Workspace

Communication Bus

Naming Trading Persistence

Relations Life cycle Events

Repository

Mediator Monitor

Coordinator Negotiator

Agent communication

Facilitator
Facilitator

AMP XML

JATLite and
KQML

Aglets
Java and
Java IDL

Local
Agent

Coordination
Agent

Negotiation
Agent

Workspace Repository

Legend

Service

 Agent
Meeting
 Place
 (AMP)

Figure 16.3: Implementation of the design architecture

16.5 Experiences from implementing a MAS based on
the guidelines

The implementation of our MAA is named Distributed Intelligent Agent System (DIAS).
We have implemented two versions DIAS namely DIAS I and DIAS II. Both implemen-
tations were developed by last year students at the Dept. of Computer and Information
Science at the Norwegian University of Science and Technology. This section describes
their work and experiences.

16.5.1 DIAS I

Spring 1999, four students used about 1000 hours to make the first version of the imple-
mentation of our MAA[PHBN99]. These students were skilled in Java-programming and
XML. However, the area of programming agents and implementing a MAS was totally
new to them. DIAS I used the requirements to technology (described in section 16.3) and
technological guidelines (described in section 16.4) as a starting-point for the prototype.



238 CHAPTER 16. IMPL. A MAS FOR COOP. SOFTWARE ENGINEERING

Choice of technology

We discovered that not everything from section 16.3 and 16.4 could be used directly when
implementing the system. The first problem we encountered was how to combine JATLite
and Aglets into one implementation. JATLite was well suited to implement facilitators for
workspaces, AMPs and generally for agent communication. Unfortunately, JATLite does
not support mobile agents. Since we wanted to have support for mobile agents, we had to
find a way of making JATLite mobile. The Aglets framework was suggested to be used
to support mobility, but then we had to integrate JATLite with Aglets. We found that this
was not an easy task. We chose to use Aglets as the main implementing standard for
agents and agent communication, and just to use parts of the KQML layer in JATLite.
This solution makes it possible to use mobile agents in all parts of the architecture. It
was possible to use parts of JATLite because JATLite is open-source. The parts missing
in Aglets compared to JATLite was quite easy to implement using the functionality found
in Aglets. Another reason for using Aglets was that the documentation was better than
JATLite.

The requirements to technology and technology guidelines suggested that we should use
CORBA (Java IDL) as the communication bus in our architecture. When we worked with
the first DIAS-project, the mobility support over the ORB was not possible because the
standardisation Mobile Agent System Interoperability Facility (MASIF) was not approved
yet by the OMG. Since we wanted to keep the mobility support for agents, Aglets was
chosen for communication over TCP/IP. Aglets was chosen because Aglets was one of
the agent languages that MASIF is based on. This should make the transition to MASIF
easier on a later stage.

KQML was chosen as communication language for our architecture, since KQML is the
most used standard for agent communication. Parts of the KQML layer in JATLite were
used to give the architecture KQML support. Since the designer is free to choose the
representation format of the content in a KQML message, we decided to use XML for
this purpose. XML is a good choice when the knowledge is going to be stored in a web-
server or in a file-system. XML has also become a well know standard for information
representation.

Experiences of use

Although the first version of DIAS was not very advanced, the architecture was sufficient
to demonstrate parts of the scenario described in section 16.2.2. Negotiation agents for
the groups Maintenance planning and Update/release planning used to negotiate about
limited human resources were implemented. The experiment showed that such negotia-
tion processes were supported in our architecture through negotiation agents and an AMP.
The agents were able to move between workspaces and the AMP, and they were able to
communicate using KQML as a communication language. The following KQML perfor-
matives were used in our agent-language (these performatives were sufficient at least to
demonstrate our scenario):



16.5. EXPERIENCES 239

� ask-if Sender wants to know if the sentence is in the Virtual Knowledge Base
(VKB) of the receiver.

� insert The sender asks the receiver to add content to its VKB.

� register The sender can deliver performatives to some named agents.

� tell The sentence is in the VKG of the sender.

� unregister A deny of a register performative.

� untell The sentence is not in the VKG of the sender.

We found some shortcomings with the DIAS I implementation. First, it was rather hard
to implement user agents, because substantial knowledge of the Aglets framework was
required. The low-level agent API made it hard to experiment for with own user agents.
Second, the implementation was lacking of high-level support for inter-agent communi-
cation and inter-AMP communication. The latter meant that to support several AMPs,
the programmer of the agents had to hard-code how to deal with the different AMPs and
agents. This was not desirable. Third, the DIAS I implementation did not provide support
for integrating the MAS with other systems.

Because of the shortcomings described above, we decided to continue with a DIAS II
project (see next section)

16.5.2 DIAS II

After finishing implementing DIAS I, two students continued the DIAS project as diploma
thesis’s, and spent about 1000 hours to extend the original implementation to DIAS
II [HN00]. The DIAS II project focused on making the original DIAS implementation
better. The following problems were addressed: agent security, integration with other
systems through CORBA, and making a higher-level agent API.

Choice of technology

In the first version of the DIAS implementation (developed in Java JDK 1.1), agent secu-
rity was not addressed at all. In JDK 1.2, the enhanced security model for fine-grained
resource access has been added. Because of this, JDK 1.2 would be a natural choice for
DIAS II. Unfortunately, the Aglet Software Development Kit, ASDK 1.1 does not sup-
port JDK 1.2. This meant that we had to abandon the new security features in JDK 1.2 if
we would like to keep Aglets to support mobility. By comparison, we found that ASDK
actually had almost the same security features as in JDK 1.2 included, so we chose to use
JDK 1.1.

Since we wanted to add possibility to integrate our MAS with other systems, CORBA sup-
port was needed for our architecture. One way of giving our architecture CORBA support
was to change Aglets with other mobile agent implementations supporting CORBA. Both



240 CHAPTER 16. IMPL. A MAS FOR COOP. SOFTWARE ENGINEERING

Odyssey [Whi96] and Voyager [Gla99] supports CORBA had provide interesting func-
tionality for distributed systems and interoperability between different communication
facilities. Another alternative was to continue using Aglets and to implement CORBA
support into it. We chose to do this, because it required less work and the Aglets imple-
mentation have better support for security. OrbixWeb [Bak97] was used as a CORBA
implementation, because of its functionality and availability at the University. External
systems can now communicate with our MASs in the AMPs with CORBA support. The
CORBA support is implemented according to OMG’s Mobile Agent System Interoper-
ability Facility (MASIF). MASIF is a standard to make it possible for interoperability
between various multi agent systems, and have four areas that are standardised: Agent
management, agent transfer, agent and agent system names, and agent system type and
location syntax. The rest of the implementation of DIAS II uses the same technology as
in DIAS I.

Experiences of use

The agent-API for DIAS II is totally different compared to the first version of DIAS. For
the first version, you had to write low-level Aglets-code to make an agent. In DIAS II,
you don’ t have to know that the architectures use Aglets technology at all. The following
areas are covered with high-level methods in the agent API:

� Create/kill agent These methods are called when creating new agents or when you
want to kill an agent. Agents will be moved back to where they were created before
it will be killed. Note that agents can also be cloned.

� Message handling Methods for sending/receiving KQML messages to/from other
agents. The architecture will take care of sending messages to the correct receiver.
The sender will always receive an acknowledgement when the receiver has received
the message.

� Register/unregister agents These methods are used to register/unregister agents in
AMPs.

� Move agents Methods for moving an agent to another AMP. If an agent cannot
find what he is looking for in an AMP, the AMP can suggest the agent to move to
another AMP.

� Information queries Various methods offer the agents the possibility to ask AMPs
for information about what agents are connected, what type of ontology is used,
what properties have other agents etc.

Another major change of the architecture is how agents communicate, and how AMPs
can communicate. In DIAS I it was necessary to explicitly state how the communication
between agents should be performed. In DIAS II, the system takes care of looking for
agents, using advanced communication agents. Agents are located according to agent ID
number, AMPs ID number or/and ontology of AMPs. If for instance neither the agent ID
number or AMPs ID number is know, the ontology is used to find a matching agent.



16.6. CONCLUSION 241

16.6 Conclusion

Implementing a MAS is not an easy task. The technologies available, makes it easier to
build robust systems in rather short time. It is however important to know what technolo-
gies are available and what to choose before starting building a MAS. It is also important
to know what technologies are possible to combine, before starting on the work. Our ex-
perience with building a multi-agent system is that the standards available should be used
when possible. Using OMG’s MASIF standard will make it possible for a system to com-
municate with other MASs as well to other applications through CORBA. KQML is the
most widely used agent communication language used, and makes it possible for agents
on different systems to communicate. XML offers a convenient information wrapping
that is useful for different purposes in an MAS, as information/knowledge representation,
small repositories etc. Using Java as the programming language, makes it possible for the
system to run in an heterogeneous environment, and most agent standard implementations
as well as XML tools are implemented in Java as well.

We are now using our CAGIS MAA for cooperative software engineering to make support
for various scenarios. In doing this, we want to see how general our architecture is and
recognise the shortcomings of our architecture.

Acknowledgement

We will give a big thank to Joar Øyen who has provided us with in-depth information
about distributed technology in theory and in practise. We would also like to thank Geir
Prestegård, Snorre Brandstadmoen, Anders Aas Hanssen, and Bård Smidsrød Nymoen
for implementing DIAS I. Anders Aas Hanssen and Bård Smidsrød Nymoen were also
responsible for the DIAS II implementation.



242 CHAPTER 16. IMPL. A MAS FOR COOP. SOFTWARE ENGINEERING



CHAPTER 17

Support for Mobile Software Processes in CAGIS

Alf Inge Wang 1

Abstract
This paper describes a prototype for supporting distributed, mobile software processes.
The prototype allows instantiated process models to be distributed in different workspaces,
and have mechanisms to allow parts of the process to be moved from one workspace to
another. The paper outlines the main concepts, a process modelling language and tools
to support distributed, mobile processes. Further, we discuss problems and possible so-
lutions for our prototype, and some experiments are also outlined. This work has been
carried out as a part of a project called CAGIS, described in the introduction of the paper.

Keywords: Mobile software process, Process Centred Environment, Workflow tool, Pro-
cess Modelling Language, Web, XML, CGI, Software agents

17.1 Introduction

For many years, most process centred environments (PCEs) have made the assumption
that one centralised process model is needed to represent the whole software process.
Since the introduction of the Internet, more and more organisations work in a distributed

1Dept. of Computer and Information Science, Norwegian University of Science and Technol-
ogy (NTNU), N-7491 Trondheim, Norway, Phone: +47 73594485, Fax: +47 73594466, Email:
alfw@idi.ntnu.no, Web: http://www.idi.ntnu.no/�alfw

243



244 CHAPTER 17. SUPPORT FOR MOBILE SOFTWARE PROCESSES IN CAGIS

way in heterogeneous environments. Distributed organisations must cope with manage-
ment of people working in different places, on different times, with different tools and
on different processes. For most traditional PCEs, it is impossible or at least very hard to
model processes with a highly distributed and heterogeneous nature. In addition, when
the organisation is divided into smaller, autonomous sub-organisations, it is impossible
to use one centralised model to reflect software processes with the scope of the whole
organisation. It is unthinkable, that one model, often managed by top-level management,
shall represent all autonomous groups. The process model must reflect the organisation
and thus be distributed into smaller autonomous parts [MLL97, STO99].

In 1986-1996, our research group, managed by Reidar Conradi, worked on a PCE proto-
type called EPOS [CHLN94]. EPOS was an advanced environment for managing soft-
ware processes as well as software artifacts through various tools. In 1997, a project called
Cooperative Agents in Global Information Space (CAGIS) [pro00] was started. One of
the main goals of the CAGIS project was to see how heterogeneous, distributed, coopera-
tive work could be supported. The first part of the project identified requirements for how
to support software process in a global information space. We soon found that our tradi-
tional EPOS environment could not fulfil requirements like openended-ness, distributed
processes, heterogeneous tools and dynamic changing and movement of fragments of
the process (process fragments). All these characteristics can be found in what we call
Cooperative Software Engineering (CSE) [WLC99]. EPOS suffered from being too cen-
tralised, too static and too closed a system to support CSE. The process models could only
be changed in each workspace, and coordination between workspaces was not sufficiently
supported. Thus a strict top-down approach changing the process model was enforced. In
reality only upper management could evolve the process model.

To put this paper in the right context, we give a short review of an overall architecture, to
which this work contributes. In [WLC99], we presented our CAGIS multi-agent architec-
ture for cooperative software engineering (see figure 17.1). The architecture consists of
four components:

1. Agents: Agents are set up to achieve a modest goal, with the characteristics of au-
tonomy, interaction, reactivity to environment, as well as pro-activeness. There are
three main types of agents: (1) Work agents to assist in local software production
activities, (2), Interaction agents to assist with cooperative work (such as commu-
nication, coordination, mediation and negotiation) between workspaces, and (3)
System agents to give system support to other agents. Interaction agents are mobile
agents, while system agents and work agents are stationary.

2. Workspaces: A workspace is a temporary container for relevant data in a suitable
format, together with the processing tools. It can be private as well as shared.

3. AgentMeetingPlace (AMP): AMPs are where agents meet and interact. AMPs
provide agents with support for doing efficient inter-agent communication. An
AMP is therefore a “special” workspace for software agents.



17.1. INTRODUCTION 245

4. Repositories: Repositories can be global, local or distributed, and are persistent.
Workspaces may check in and out information from repositories.

The architecture is implemented in Java, KQML is used for agent communication and
IBM Aglets [LO98] are used to support mobile agents [PHBN99]. In figure 17.1, arrows
between agents indicate inter-agent interaction. The arrows related to the monitor agent,
describe that this agent is logging events in the two workspaces and the AMP, and store
event information in the global repository. The mediation agent uses this information,
retrieved from the global repository, to support the inter-agent negotiation process.

Legend

Agent Meeting Place (AMP)

Local agent

Coordination agent

Negotiation agent

Monitor agent
Mediation agent
Workspace (WS)

Repository

Agent Group 1

Local
Reposi−
tory

Local
Process
Model

WS1

Agent Group 2

Local
Process
Model

WS2

AMP

   Global
Repository

Figure 17.1: MAS-based architecture for cooperative software engineering

In the CAGIS CSE architecture, interaction agents perform all collaboration between
workspaces. An AMP is the neutral meeting point for agents from different workspaces,
and it supports the inter-workspace process. Within a workspace, a simple PCE or a work-
flow tool can be used to give support for the local process. Since the local process does not
involve much coordination between involved actors (interaction agents are taking care of
this bit), the local process becomes relatively simple. If a project manager wants to assign
a specific job to a project member, interaction agents are used to find available human re-
sources. When the available project member is found, the project manager can use agents
to give this person a description of what to do, as well as a local process model (telling



246 CHAPTER 17. SUPPORT FOR MOBILE SOFTWARE PROCESSES IN CAGIS

him how to do it). This process model will then be moved from the project manager’s
workspace to the project members workspace.

This paper presents a prototype of a simple PCE/workflow system allowing a process
model to be distributed on several workspaces and where parts of the process (process
fragments) can be moved between workspaces. Remember that this prototype is not in-
tended used as a stand-alone system, but it is a part of the CAGIS multi-agent architecture
for CSE. Our prototype only supports simple and straightforward processes, since the in-
teractive agents in the enclosing CAGIS architecture will take care of the more advanced
processes.

The rest of the paper is organised as it follows. Section 17.2 present related work on
distributed PCEs, and mobile workflow. Section 17.3 presents the main concepts of our
approach. Section 17.4 briefly outlines some preliminary experiences, and discusses prob-
lems and possible solution for our prototype. Section 17.5 concludes the paper.

17.2 Related work

Within the Software Process community, the research area on how to support distributed
and heterogeneous software processes has recently been popular topic. In [Tia98], Tiako
outlines how to model federation of Process Sensitive Engineering Environments (PSEEs).
In such federation, large development projects can be realized by dividing the whole pro-
cess in to smaller pieces assigned to distributed teams. The teams work on their own
processes using their own PSEEs. Tiako describes a federation process support architec-
ture that aims to support not only the enactment of processes, but also their definition by
composition, decomposition and/or federation.

In [BSK95], Ben-Shaul et al. propose the Oz approach to provide a federated PSEE
by composing different instances of local PSEEs. Each instance is devoted to support
the development process executed by a single organisation. The different PSEEs run
autonomously according to their own processes. Interaction of several PSEEs is accom-
plished through a common activity called summit, where one site acts as a coordinator
and receives all needed data from other sites. The result is sent back from the coordinator
to all involved sites.

In [BCN+96], Basile et al. take Oz as a starting point to provide federated PSEEs, and
allows several inter-organisation policies to be implemented and combined. A set of
basic operations is used to specify any inter-organisational policy (e.g., one operation
for searching the physical location of a site, one operation for requesting execution of one
service on another site etc.).

In [BO96], Bhattacharyya and Osterweil address the problem of giving decision support
on moving and relocate process fragments to users. When a user wants to go mobile, a re-
quest is sent to a relocation request analysis engine (RELOCATE). RELOCATE receives
three types of data: Current process, network configuration and user request. The net-



17.2. RELATED WORK 247

work configuration data is used to compute what the performance will be if the user goes
mobile. The process information expresses the process structure (static information) and
the process execution state (dynamic information). RELOCATE will produce an answer
to the user as well as modified process information. The RELOCATE engine can be given
an entire software process and asked to come up with an ”efficient” allocation of process
fragments to users - in effect, producing a new, modified version of the software process.
It can also be asked to deal with problems regarding specific aspects of mobile computing
(e.g., use a laptop computer with a low processing speed).

In [YL99], Yoo and Lee describe a mobile agent platform for workflow systems called
X-MAS (proXy acting Mobile Agent Systems). Here, the workflow system using the X-
MAS mobile agent platform has a centralised coordinator. The workflow model (process
model) is defined centrally in a workflow definition tool. The workflow management
engine realizes workflow instances as mobile agents by asking the mobile agent platform
to create them. If there are any time-constraints of agents, this information is stored in
an agent manager in the agent execution engine. The mobile agents (workflow instances)
may move from host to host, and interact with other entities as users, databases, and
applications. A worklist handler in each location server enables mobile agents to run
applications and interact with humans. When an agent is finished with his job and has
come back, the workflow management engine stops the workflow instance of that agent.
X-MAS is implemented in Java and Remote Method Invocation (RMI) in Java is used to
implement agent mobility.

In [JHS+99], Jing et al. address how to adopt workflow systems to support mobile envi-
ronments. For many companies, the attraction of mobile computing comes from possibly
large productivity gains in the out-of-office workplace. There is a need to give process
support for this kind of mobile and dynamic environments, and mobility must be sup-
ported in workflow management systems. Such systems must deal with mobile resources
(equipment as well as human), support for location-independent activities (work at home
or anywhere), as well as location-dependent activities (need to go to a specific place, for
instance to deal with a customer etc.). Mobile resource management needs to efficiently
track resources, status of mobile resources, and the assignment of resources to work activ-
ities. This means dealing with problems regarding workflow resources that are not always
connected and that they can change status not being connected. Since resources move
around, synchronisation of workflow information can also cause some problems.

The first three papers presented in this section (Tiako [Tia98], Ben-shaul [BSK95], and
Basile et al. [BCN+96]) discuss how to support federation of PSEE. Our paper does not
discuss federation in particular, but touches issues such as local autonomy and distribu-
tion of process fragments. None of these papers look into how to support mobile software
processes. Bhattacharyya and Osterweil [BO96] however, describe how to analyse the
impact of relocation of a process fragment. We only describe the mechanisms to pro-
vide mobile process fragments, and does not provide advanced tools for analysing the
impact. The two last papers described in this section, discusses mobile workflow from
two different perspectives. Yoo and Lee [YL99] provide mobile workflow by making the
process instances mobile agents, while Jing et al. [JHS+99] addresses issues for how to



248 CHAPTER 17. SUPPORT FOR MOBILE SOFTWARE PROCESSES IN CAGIS

adopt workflow systems to support mobile environments. The former is opposite to our
approach because we enables mobility of process fragments, and uses stationary process
servers to execute distributed process fragments. The latter is more general and touches
issues that are discussed in our paper such as mobile resource handling.

17.3 CAGIS Mobile Software Process Approach

This section describes the main concepts, the process modelling language (PML), how to
move process fragments, and the tools to support mobile software processes.

17.3.1 Main Concepts

It is not so hard to see the similarities between process modelling and software program-
ming. There are also some PMLs that are very similar to general programming languages
(for instance the object-oriented text-based PML in ProcessWeb [Yeo96]). A running
process model (instantiated model) can in this analogy be viewed as a running program.
Traditional programs can only execute on the same machine and cannot be changed at
runtime2. However, if the program is a mobile software agent, it is possible for the pro-
gram to move between different machines and to change its properties during its lifetime.
Our idea is for process models to have mobility as mobile software agents. This means
that it is possible for process fragments to move between workspaces during enactment,
as well as to evolve process fragment instances.

In our prototype environment, a process model can be distributed as shown in figure
17.2. The process model consists of several activities that are linked together. The pro-
cess model is not represented as one centralised model, but is distributed to different
workspaces. Within the workspaces, there is local autonomy for the local process mod-
els. This means that people working in a workspace can change their own process model.
It is the links between activities that tie the process model together (also activities in dif-
ferent workspaces). A link between two activities describes which activity to be executed
first (pre-order), and the prelink and postlink tags are used to describe a link in our PML
(see section 17.3.2). To go from one activity to another (related with a link), a user ex-
plicitly tells the workflow tool that the first activity is finished by pushing a button in the
workflow tool.

The smallest building block in our PML is an activity. All activities are represented as
individual model objects, which are linked together in the same way as web pages on the
Internet. Another central concept of our prototype environment and PML is process frag-
ment. A process fragment is one or more activities that are linked together in a workspace.
For example, the four activities in workspace 1 in figure 17.2, can be a process fragment.

2There are programming environments that allow programs to move and change during execution such
as SmallTalk- and Java-programs



17.3. CAGIS MOBILE SOFTWARE PROCESS APPROACH 249

Activity

Link

Workspace 3Workspace 2

Workspace 1

Process model

Figure 17.2: Composition of a process

But a process fragment can also be any combination of related activities as shown in
figure 17.3. The term process fragment can therefore be used to name the group of ac-
tivities that are moved between workspaces. Since we use eXtended Markup Language
(XML) [Wan99] to wrap the process information being moved between workspaces, we
have defined the tag < processfragment > to define the context for linked activities.
More about this in section 17.3.2.

17.3.2 The Process Model Language

As mentioned above, an activity is an atomic building block in our PML. A process (frag-
ment) is modelled as a collection of related activities. To specify an activity in our PML is
similar to creating a small web page. Information is structured in XML, using < tags >

to specify valid syntax. The application interpreting the PML defines the semantic of the
language. In figure 17.4, the Data Type Definition (DTD) for the PML is described. The
DTD describes the elements needed to describe a process fragment and how these ele-
ments are structured. Note that ’+’ is used to describe one or more elements, ’*’ is used
to describe none or more elements, while ’?’ states that there can be none or one element.
PCDATA is used to specify the type of data tags, and means that these tags are of type
parsed character data (text).

In our PML (see figure 17.4) a process consists of one or more process fragments, and



250 CHAPTER 17. SUPPORT FOR MOBILE SOFTWARE PROCESSES IN CAGIS

Activity

Process fragment

Figure 17.3: The concept of process fragment

a process fragment consists of one or more activities. A process is identified by a <

name >, and a process fragment is identified by a < name > and a < workspace >. Ev-
ery activity in a process model defines a unique identifier by combining the< workspace >

defined for the process fragment and the < name > of the activity. In order to have a
unique identifier in a distributed environment, a URL is used as the workspace path. The
< prelink > tag defines the preconditions for an activity. This activity cannot start before
the activities listed in prelink (listed as unique identifiers) are finished. The < postlink >

will define what activity(ies) to execute next. The code tag is used to specify the HTML
code related to the activity. This code may range from a simple descriptive text, to the
definition of a complex interaction via a Java applet. An activity can have three different
states: Waiting, Ready, and Finish. The state Waiting indicates that the activity is waiting
on one or more activities to finish before it can be executed (specified in < prelink >).
The state Ready indicates that the activity is ready to start. When a user is finished work-
ing with an activity, (s)he explicitly notifies the workflow tool that the activity is Finished
by clicking on a button in the agenda tool (see section 17.3.4). The feedback tag is used
to specify whether an activity is a part of a feedback loop or not. If an activity is modelled
as a feedback activity, it can only have two prelinks, where one of the prelinks represents
the feedback loop. A feedback activity is activated if one of the prelinks has the state Fin-
ished. This is different from an activity without feedback, where all prelinks must have
the state Finished before it can be activated.

Figure 17.5 illustrates an example where the activity compile in workspace Kramer must
wait for activities code and read document in workspace Elaine to finish, and the activity
build in workspace George will be the last activity to be executed.

Figure 17.6 shows how the dependencies between the activities are specified in our PML
(XML syntax) for the example shown in figure 17.5. Since the activity compile (in the
example above) has more than one< prelink >, it cannot be executed before all activities
specified as < prelink > are finished.



17.3. CAGIS MOBILE SOFTWARE PROCESS APPROACH 251

<?XML encoding=’’UTF-9’’?>
<!ELEMENT process (name,

(processfragment)+>
<!ELEMENT processfragment (name,

(workspace),
(activity)+)>

<!ELEMENT activity (name,
(workspace),
(prelink)*,
(postlink)*,
(state)?,
(due)?,
(feedback)?,
(description),
(code)*)>

<!ELEMENT name (#PCDATA)>
<!ELEMENT workspace (#PCDATA)>
<!ELEMENT prelink (#PCDATA)>
<!ELEMENT postlink (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT due (#PCDATA)>
<!ELEMENT feedback (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT code (#PCDATA)>

Figure 17.4: XML Document Type Declaration of our PML

When modelling a process in our PML, it is possible to either write the process model
as an XML-document, or it is possible to use a form-based web-tool to create the model.
When instantiating the process model, all activities are registered in a process server (see
section 17.3.4) with an initial state, and XML-files defining each activity will be created
in the specified workspace. It is not necessary to define the whole process model at once,
but you can incrementally add process fragments when desired. The definition of an
activity can be modified directly by simply editing the XML-file for this activity in its
workspace (you can not change the state). For instance to change the activity code (in
most cases simply HTML describing what to do), will not affect other activities and can
be changed directly. However if prelinks and postlinks are changed, this will affect other
activities. Such changes should not be executed, before the effect of the change can be
analysed. A simple analysis would be to check that the activities described in the prelinks
and postlinks tags are activities registered in the process server. A more advanced analysis
would be to go through the whole activity-network to detect live-locks, dead-locks etc.



252 CHAPTER 17. SUPPORT FOR MOBILE SOFTWARE PROCESSES IN CAGIS

code

read 
document

compile

build

WS: Kramer

WS: Elaine
WS: George

Figure 17.5: Example with linked activities in several workspaces

<Activity>
<Name>compile</Name>
<Workspace>Kramer</Workspace>
<Prelink>Elaine/code</Prelink>
<Prelink>Elaine/read document</Prelink>
<Postlink>George/build</Postlink>
...
</Activity>

Figure 17.6: An example of use of < prelink > and < postlink > tags

17.3.3 Moving Process Fragments

When a process fragment is moved between workspaces at the same process server, the
< workspace > tags are changed while the rest of the information are left unchanged.
Then the associated XML-files are moved between the workspaces. The state of the
activities in the involved process fragment will be unchanged. If a process fragment is
moved between two process servers (two sites), this is done as illustrated in figure 17.7.
Let’s say that a process fragment in workspace 1 (WS1) at Site 1 is going to be moved to
workspace 4 (WS4) at Site 2.

� Step 1: Process server 1 will call a CGI-script at Process server 2 with some pa-
rameters (e.g.,
http://www.processserver2.no/movefragment.cgi?parameters). The parameters will
contain a reference to the workspace in Site 2 the process fragment is going to be
moved to (e.g., workspace=WS4), a URL to the XML-file representing the process



17.3. CAGIS MOBILE SOFTWARE PROCESS APPROACH 253

fragment
(e.g., xmlfile=http://www.processserver1.no/WS1/processfragment1.xml), and pos-
sibly a URL to other files related to the process.

� Step 2: Process server 2 will send a request for downloading the XML-file and
other related files from Process server 1 using the HTTP-protocol.

� Step 3: Process server 2 receives the XML file and other related files, and instantiate
the process fragment in the process server and WS4, if there are no conflicts.

� Step 4: Process server 1 removes the process fragment from WS1 and removes all
registered activities in the process fragment from the process server. Note that the
state of the activities in the process fragment is also moved from Process server 1
to Process server 2.

WS1

WS2

WS3 WS4

WS5

WS6

process
fragment

Site 1 Site 2

Internet

Process
server 1 Process

server 2

Step1
Step 2
Step 3

Process server 2 requests data from Process server 1
Process server 2 receives XML−file from Process server 1

Step 1 Step 2Step 3

Process server 1 call CGI−script in Process server 2

Figure 17.7: Moving process fragments between different process servers

There is also another way of moving process fragments and files between workspaces
(also between sites). Our own CAGIS multi-agent architecture for cooperative soft-
ware engineering described briefly in section 17.1 can be used for this purpose (see also
[WLC99, PHBN99] for details). Coordination agents are used to transport process frag-
ments represented in XML and other related files between workspaces. Other agents can
also be used to support the more unpredictable and dynamic aspects of the process, e.g.
negotiation about resources. Negotiation agents can also be used to solve arguments when
people in a workspace reject process fragments moved from another workspace.



254 CHAPTER 17. SUPPORT FOR MOBILE SOFTWARE PROCESSES IN CAGIS

Since our process server has an open interface through CGI, other infrastructures can also
be used for moving XML-files between workspaces. BSCW [BHT97] is one example of
such a system.

17.3.4 The Process Support Tools

Our system is programmed entirely in Perl and a web-interface is provided through a CGI.
The system consists of four main components:

� Process server/engine The process server has three main tasks. First, it manages
the state information of activities. Through CGI, the state of an activity can be
changed. Synchronisation of an activity having several prelinks, is done by check-
ing if all prelinks have the state Finished before the activity is activated. The pro-
cess server also manages information about activity iterations. Second, the process
server manages registration of new activities as well as unregistration of existing
activities (also during enactment). Registration and unregistration of activities are
activated through the CGI-interface. Third, the process server manages moving
process fragments to other process servers. Through CGI, other servers can ask to
move process fragments to them. The registration and unregistration of activities
described above is used to facilitate movement of process fragments. The process
server does not make any decisions for when process fragments are going to be
moved or not. These decisions are managed by a GlueServer and specified in a
GlueModel [WCL00]. The GlueModel defines rules for how workspaces and sites
shall collaborate.

� Process modeller A web-client for incrementally writing process models This is
a simple web-interface where it is possible to enter the process model, activity by
activity, to view, modify and remove existing activities. There is also support for
making it easier to model activities that are linked sequentially, by automatically
filling in information into the form.

� Agenda manager A web-client that provides an agenda to users or groups of users.
Through the agenda manager, you can choose what activities to execute next and
navigate through the process. Users are separated through the workspace mecha-
nism. A workspace can be for a single user or for a group. The agenda manager
also is used to visualise activities.

� Monitor This is an administrative tool that makes it possible to monitor the state
and the progress of a process. It is also possible to change state information of the
process at runtime using this tool.

In figure 17.8, a screenshot of the three different process tools are shown. In the upper left
corner, the Process modeller tool is shown, and to the right we can see the window of the
Monitor tool. The two windows below are both from the Agenda manager tool. To the



17.3. CAGIS MOBILE SOFTWARE PROCESS APPROACH 255

Figure 17.8: Screenshots of the Process modeller tool, the Agenda manager tool, and the
Monitor tool



256 CHAPTER 17. SUPPORT FOR MOBILE SOFTWARE PROCESSES IN CAGIS

left, the agenda for the workspace review/author is shown. To the right, the activity Edit
paper is shown.

17.4 Discussion and evaluation

The prototype is yet simple and does not provide much advanced functionality. However
we have gained some experiences based on modelling different processes and letting user
unfamiliar with process modelling try out the prototype. The first we discovered was that
our process-modelling tool was very intuitive and easy to use. For an inexperienced user,
it was possible to start to model a paper review process after a 5-minute introduction of
the basic concepts. We also made the same user to model the same process with a more
advanced textual role-based PML [Yeo96]. When using the latter PCE, it took several
days before the user could do the modelling. In the role-based PML, it was possible to
model much more advanced interaction between different roles and the visualisation of
activities was more flexible. Our prototype produces simple web-based workflow support,
where the activities are shown as web pages defined by the modeller. The few concepts
in our PML makes it easier for inexperienced users, but also makes it more limited for
advanced users. Since we want inexperienced users to interact, model and change their
own processes, we chose the former approach.

One problem in letting process fragments move around is that users connected to workspaces
can loose track of process fragments, and it is impossible to know where different pro-
cess fragments have moved. We propose to solve this problems using software agents. In
our multi-agent architecture (see section 17.1), we have identified monitor agents. Mon-
itor agents are system agents used to monitor events in workspaces and Agent Meeting
Places. Shared repositories are used to stored information gathered by the monitor agents.
Repository agents are used to retrieve event information, and give answer to users work-
ing in workspaces. In this way, it is always possible to know where process fragments are
located and what has happened to them by asking agents.

In the current version of our system, there are no restrictions on changing the activity
definition (model) in a local workspace. Since an activity is defined by a simple XML-
file, we propose to use a configuration management tool (CM-tool) to manage different
versions of activities. Any CM-tool can be used since the XML-file is only simple text.
The CM-tool can be used to track and manage changes of other files in the workspaces
as well. As the system is today, it is up to the user to ensure that the changes result in a
valid executable process model. This approach is quite similar to how web pages work
on the Internet and it is possible to define dangling links between activities. This gives
the users freedom to alter the process as much as they want, but also can generate a lot of
problems. We have identified a need for a tool to help the users to the right choices when
altering the process model. At least the tool should give a warning that certain changes
can cause dangling links between activities. This means that we need a tool for analysing
consistency and impact of process model changes.



17.5. CONCLUSION 257

In this paper we have proposed a framework for allowing a process model to be distributed
on several places, and so that parts of the process can be moved around during enactment.
In [WLC99], a software development and maintenance process from the software process
industry is described. A development department is doing all the coding and changing
of code in this company. It is likely to think that a work-order or change-order issued
to the development department also contains a process fragment. This means that a pro-
cess fragment will be moved from the department issuing the work-/change-order to the
development department. It is also possible to think of a scenario where a part of a soft-
ware project cannot be done internally in the company. The process fragment defining
this part of the process model can then for instance be moved and executed by an external
consultant company. The external consultant company will get a process fragment along
with the signed contract for the job. Outsourcing parts of software projects can then be
supported in the PCE/workflow tool, even if the job is executed in another environment.

17.5 Conclusion

Our prototype has formed a basis for supporting mobile software processes within the
CAGIS architecture. The integration of the whole architecture is still to be worked on, to
see the benefit from supporting mobile software processes. We expect to model and exe-
cute real-life CSE processes to gain useful experiences with moving software processes.

In this version of the prototype, there is no checking before adding an activity or a process
fragment other than to check that activities already exist. This means that it is possible
to instantiate process fragments that don’ t fit into the already running process model. We
are currently working on a tool to check that process fragments fit into the model, before
they are instantiated. Future work will try to solve this problem, and see how well real
CSE processes can be supported in the CAGIS architecture.

Acknowledgement

We want to thank the Information Process Group, Computer science department, Univer-
sity of Manchester giving useful feedback on our work, and giving good introduction to
the nice and flexible ProcessWeb environment. We would also like to thank Professor
Chunnian Liu from Beijing Polytechnical University for commenting this paper and giv-
ing us useful input, and Professor Carlo Montangero and Professor Reidar Conradi for
giving useful advises on how to improve the paper.



258 CHAPTER 17. SUPPORT FOR MOBILE SOFTWARE PROCESSES IN CAGIS



CHAPTER 18

Integrating Software Process Fragments with
Interacting Agents

Alf Inge Wang, Reidar Conradi1, and Chunnian Liu2

Abstract
Cooperative software engineering processes involve structured, repeatable processes as
well as dynamic, cooperative processes. Existing workflow systems are suited to model
and support the former type of processes, and multi-agent systems are suited to model and
support the latter. We have designed and implemented a gluing-framework for integrating
workflow processes with software agents. By using this framework, support for cooper-
ative software engineering processes can be provided in a better and more flexible way.
This paper focuses on how to integrate these two kinds of components into a functioning
multi-agent based cooperative software engineering system.

Keywords: Agents, Cooperative software engineering, Workflow, Web.

1Dept. of Computer and Information Science, Norwegian University of Science and Technolog (NTNU),
N-7491 Trondheim, Norway, +47 73 594485
alfw/conradi@idi.ntnu.no

2Beijing Polytechnic University (BPU), Beijing, P.R. China, bpvliu@public.bta.net.cn. Chunnian Liu’s
work was supported in part by the Natural Science Foundation of China (NSFC), Beijing Municipal Natural
Science Foundation (BMNSF), and the 863 High-Tech Program of China.

259



260 CHAPTER 18. INTEGRATING PROCESS FRAGMENTS WITH AGENTS

18.1 Introduction

Cooperative Software Engineering (CSE) means that large-scale, software development
and maintenance can be conducted in a distributed organisation or across organisations.
CSE can be regarded as a special case of Computer Supported Cooperative Work (CSCW).
If we categorise CSCW according to increasing complexity of process support [LC98],
CSE falls into the most complex category of CSCW, characterised by distributed pro-
cess fragments, partly shared workspaces, cooperation planning, and frequent interactions
in intra/inter-workspaces. To support CSE processes, you have the problem of dealing
with dynamic, unpredictable processes as well as stable, repeatable processes with totally
different characteristics. Workflow and process systems like InConcert [Sar96], Lotus
Notes [Orl92], Active Mail [GSSS92], and MAFIA [LvRH90] offer good support for
stable, pre-planned processes, providing users activity agendas, invocation of tools, pre-
sentation of the state of the process etc. Multi-agent systems are better fit to model and
support users involved cooperative processes [MM97, WJ95, DFJN97]. By combining
these two technologies, cooperative software engineering processes can be modelled and
supported more completely.

In [WLC99], we proposed a multi-agent system (MAS) architecture for CSE, which is an
extension and specialisation of the more general architecture [MDP98] for CSCW. The
MAS is particularly useful in modelling and providing support to cooperative activities
(communication, coordination, collaboration and negotiation). We have also developed
two prototyped systems based on the proposed architecture. One is a multi-agent archi-
tecture [PHBN99, HN00, SW00, Wan00a] supporting cooperative work through software
agents. The other, is a workflow tool [Wan99, Wan00b] to model and support simple sta-
ble, repeatable processes. In this paper we describe how we combined these two systems,
by using a GlueModel defining interaction between these systems, and a GlueServer exe-
cuting the GlueModel and communicating with the agent system and the workflow tool.
By doing this, we integrate the workflow process with interacting agents into a MAS-
based CSE system.

There are several advantages by combining workflow technology with multi-agent tech-
nology. Dynamic cooperative processes between people are hard to model in traditional
process modelling languages, because these languages have difficulty representing inter-
action between autonomous participants. However, software agents provide a natural way
of modelling dynamic cooperative processes by letting a software agent play a role to rep-
resent a person. In this way, the software agent can execute, e.g. a negotiation process on
behalf of a person and his wishes. Software agents are also useful when there is an un-
certainty in the process regarding resources, availability, the state of work etc. Software
agents can be used to gather required information for making decisions on what to do
next in the process. For more structured and more repeated processes, workflow tools can
provide a better support. This is because they make the process modelling simpler by of-
fering process modelling languages specialised for modelling such processes. Also many
companies have workflow tools already installed, and want to keep them. By combining
these technologies, we can benefit from both.



18.2. RELATED WORK 261

Our approach provides a framework for doing component-based workflow. This means
that process fragments (parts of the whole process model) can be combined in a flex-
ible way. The GlueModel defines the rules for how the workflow components can be
combined and (re-)configured, and software agents are used to get information from the
working environment to make the correct decisions. The process fragments are highly dis-
tributed, so process owners can change and manage their process fragments themselves.
The GlueServer framework can also be applied on other workflow systems, by using the
Interoperability Workflow-XML Binding framework. Since GlueModel can be used by
different workflow systems, an organisation can let sub-organisations use different types
of workflow tools locally. The GlueModel will define the interaction between these sub-
organisations, and interactive-agents will execute the according cooperative processes.

18.2 Related work

In [CS96], Chang and Scott present an agent-based workflow system. They claim, that
unlike groupware products that simply provide a passive information space, agent-based
workflow can enable active collaborative work among participants. The agent-based
workflow system proposed in their paper support people working in different places, to
work together at the same time in virtual rooms. The core of the system is based on
WWW and a set of distributed agents to facilitate various parts of workflows (as activity
agendas, document sharing and tool sharing) to improve efficiency among participants.
The architecture is based on stationary agents, and the HTTP-protocol serves as an in-
frastructure for agent-communication. The coupling to workflow is provided through a
workflow agent that interfaces with an existing workflow repository through a standard
Workflow Management Coalition API. This means that various workflow tools can ac-
cess the workflow repository, while the workflow agents act as facilitators, providing an
interface between other agents and the workflow tool.

In two papers [STO99, MLL97], Shepherdson and Merz et al., present two approaches
to use software agents for cross-organisational workflow. Both papers claim that an ob-
stacle for cross-organisational workflow is that organisations have to give up their local
autonomy to cooperating partners. One workflow system for the cooperating partners
is therefore not an appropriate choice. In [MLL97], Merz et al., propose to use mo-
bile agents to overcome problems for cross-organisational workflow, typically lack of a
common communication infrastructure, lack of central management, and high coordina-
tion costs of workflow management systems. Their multi-agent infrastructure serves as
a communication mechanism that bridges organisational boundaries. In [STO99], a ap-
proach called agent enhanced workflow has been chosen. Agent enhanced workflow is
achieved by combining a layer of agents with a commercial workflow system. The agent
layer is given responsibility of business process management. The advantage of this ap-
proach is to provide automatic provisioning, interoperability, support for visualisation and
verification services, while protecting the original investment in workflow technology.

The main difference in our approach compared to the approaches described above, is that



262 CHAPTER 18. INTEGRATING PROCESS FRAGMENTS WITH AGENTS

we use agents only to model and support cooperative activities between actors, while a
traditional workflow system is used to model and support isolated activities. We propose
a model and a framework to glue these two different models and systems, to benefit from
both.

18.3 Review of MAS-based architecture for CSE

In our MAS-based CSE architecture, there are four components [WLC99]:

1. Agents: An agent is a piece of software created by and acting on behalf of the user
or some other agent. It is set up to achieve a modest goal, with the characteristics
of autonomy, interaction, reactivity to environment, as well as pro-activeness. We
distinguish between the following different types of agents: Work agents to assist
in normal software production activities, Interacting agents to help participants in
their cooperative work, and System agents to give system support to other agents.

2. WorkSpaces (WS) A workspace is primarily a temporary container for relevant data
in a suitable format, together with the processing tools. Workspaces can be private
or shared, and the work in a workspace is often guided by a process model where
data can be checked in and out from persistent repositories.

3. AgentMeetingPlaces (AMPs) AgentMeetingPlaces are where agents meet and in-
teract. AMPs are built on the underlying communication mechanisms, but provide
agents with more intelligent means to facilitate their interaction by using KQML
[FFMM97] as a communication language and a defined ontology.

4. Repositories Our architecture allows persistent repositories to be global, local or
distributed. Repositories can be used as a storage for products, but also as an Expe-
rience Base.

In the architecture, the four components are interconnected and interoperated as follows:

1. Agents are created by people to assist their work; or by other agents to perform del-
egated work; or by default to manage WSs or AMPs. In this paper we are concerned
mainly with interacting agents triggered through the GlueServer by a workflow tool.

2. Agents are clustered mainly according to people grouping in workspaces.

3. Communication between agents is via AMPs.

4. Within a group of agents and their shared WS, any existing process models and their
tools are allowed, and any traditional process architecture can be applied. Differ-
ent process fragments may be expressed in different Process Modelling Languages
(PMLs) and require different process tools.



18.4. GLUING WORKFLOW WITH INTERACTIVE AGENTS 263

Figure 18.1 shows an example of our MAS-based architecture for CSE containing workspaces,
one AMP, agents and repositories. The negotiation agents and coordination agents are
used to provide cooperative support between the workspace WS1 and WS2.

Agent Group 1

Local
Reposi−
tory

Local
Process
Model

WS1

Agent Group 2

Local
Process
Model

WS2

AMP

   Global
Repository

Legend

Local agent

Coordination agent

Negotiation agent

Monitor agent
Mediation agent

Repository
Agent Meeting Place
Workspace

Figure 18.1: An example of the CAGIS MAS-based architecture for CSE

18.4 Gluing workflow with interactive agents

In a distributed setting, the overall process of a software development and maintenance
project is distributed on various WSs, so the local software process running in a particular
WS is a fragment of the overall process. Our main focus in this paper is the integra-
tion of process fragments with interacting agents. A process fragment can be seen as a
sub-process of the overall process, and the Workflow Management Coalition defines a
sub-process as the following: ”A process that is enacted or called from another (initi-
ating) process (or sub process), and which forms part of the overall (initiating) process.
Multiple levels of sub process may be supported.” [WfM99]

The smallest building block in our workflow PML is an activity. We define a process frag-
ment as a part of a process consisting of partial ordered activities, located in a workspace,
and its working context (data, tools, human roles and agents). Our framework defines the
integration between software process and interacting agents in terms of process fragments,
rather than the whole process or individual activities. We are not loosing any generality
by doing this, because a fragment may consist of a single activity. A process fragment is
identified by a name, workspace (URL), a list of activities and associated data. Since the
workspace is identified by a URL, the process fragment name and workspace name make



264 CHAPTER 18. INTEGRATING PROCESS FRAGMENTS WITH AGENTS

an unique identifier.

18.4.1 The GlueServer

The main functionality of the GlueServer is communication between workflow systems
and the multi-agent system, and installation and execution of the GlueModel. The Glue-
Server is implemented in Java using OrbixWeb CORBA implementation, and it consists
of four main parts (see figure 18.3):

1. FragmentServer The FragmentServer receives requests from the workflow system.
A GlueServer request formatted in XML looks as shown in figure 18.2. It describes
the identifier for the process fragment requesting the GlueServer, the other process
fragments involved (interactors), and the name of the agent-class that should be
initiated.

<GlueServerRequest>
<From>Fragment-id</From>
<Interactor>Fragment-id</Interactor>
...
<AgentClass>Agent-Class</AgentClass>

</GlueServerRequest>

Figure 18.2: Workflow request to GlueServer

2. GlueEngine The GlueEngine parses the GlueModel, and finds matching fragment-
agent pairs based on agent-class and fragment-ids (more on this in section 18.4.2).

3. AgentClient When fragment-agent matches are found in the GlueModel, the Agent-
Client connects to the multi-agent system and initiate agents as specified in the
GlueServer request and the GlueModel.

4. FragmentClient Depending on the result returned from the initiated agents and
what is specified in the GlueModel, the FragmentClient will send a response back
(formatted in XML) to the workflow system on what actions to take.

fragment-agent connection

We perceive the following types interactions between a workflow system and interacting
agents:

� Predefined Interface: Some process fragments have a predefined interface with in-
teracting agents. For example, a fragment may have a negotiation activity that is
delegated to an agent. When the execution arrives at that activity, a negotiation



18.4. GLUING WORKFLOW WITH INTERACTIVE AGENTS 265

Workflow system

Agent system

GlueModel
(fragment,agent)

(fragment,agent)
(fragment,agent)

(fragment,agent)

G
lu

eE
ng

in
e FragmentClientFragmentServer

AgentClient

GlueServer

Figure 18.3: GlueServer architecture

agent should be initiated, and the fragment may wait until the negotiation result is
reported by the agent.

� Periodic Invocation: For example, by the termination of a fragment, usually a de-
cision will be made about the next step of the process. The possible decisions
include: Going on to the next fragment, iterating on the current fragment, changing
the model of current fragment and re-executing it, moving the fragment to another
WS, etc. The decision may depend on environmental information, reported by in-
teracting agents.

� Dynamic Monitoring: Some monitoring agents may be designed to continuously
probe the events and status of the environment. Whenever an abnormal situation is
detected by an agent, the monitoring agent should report the information to relevant
process fragments and the latter should be aware of the information in time and
react accordingly.

18.4.2 The GlueModel

We use the GlueModel to specify how process fragments and interactive agents interact.
The GlueModel is specified in XML, and process fragments and interactive agents are
grouped into (fragment, agent) pairs. These pairs model all possible inter-operations of
fragments and agents in a CSE system.

Result-reaction pairs

The formalism specifies both the agent and the process fragment. The agent specification
contains the class of the involved agent, the identifier of the AMP where the agent works,
the type of interaction (communication, coordination, negotiation, etc.), and the result re-
ported by the agents. The fragment specification contains the process fragment identifier,



266 CHAPTER 18. INTEGRATING PROCESS FRAGMENTS WITH AGENTS

a list of (result, reaction)-pairs specifying the corresponding reaction by the process frag-
ment for each possible result reported by the agent. Figure 18.4 shows the definition of
the GlueModel given in XML document type definition. The set of possible reactions are
shown in figure 18.4 as the attribute body in the XML-element action.

<?xml version="1.0" encoding="UTF8"?>
<!ELEMENT GlueModel (fragment-agent-pair)+>
<!ELEMENT fragment-agent-pair (agent,fragment)>

<!ELEMENT agent (interaction-type,result)+>
<!ATTRLIST agent agent-class CDATA #REQUIRED

amp-id CDATA #IMPLIED>
<!ELEMENT interaction-type (#PCDATA)>
<!ELEMENT result (#PCDATA|result)*>

<!ELEMENT fragment (reaction)*>
<!ATTRLIST fragment fragment-id CDATA #REQUIRED>
<!ELEMENT reaction (result,action+)+>
<!ELEMENT action EMPTY>
<!ATTRLIST action fragment-id CDATA #IMPLIED
agent-id CDATA #IMPLIED
workspace-id CDATA #IMPLIED
amp-id CDATA #IMPLIED
body (execute_process_fragment_PFNUMBER
|move_process_fragment_PFNUMBER_to_workspace_WSNUMBER
|halt_process_fragment_PFNUMBER
|change_and_reexecute_process_fragment_PFNUMBER
|add_new_process_fragment_PFNUMBER
|remove_process_fragment_PFNUMBER
|start_new_interaction_by_AGENTNUMBER
|stop_interaction_by_AGENTNUMBER
|create_a_new_AgentMeetingPlace_AMPNUMBER
|remove_AgentMeetingPlace_AMPNUMBER
|change_fragment-agent-pair_PFNUMBER_AGENTNUMBER)

#REQUIRED>

Figure 18.4: Fragment-agent-pair specification

In the above formalism, a keyword marked by ’+’ or ’*’ means ”one or more” or ”none
or more” , respectively. The PFNUMBER, AGENTNUMBER, WSNUMBER and AMP-
NUMBER are used as place-holders for identifiers to process fragments, agents, workspaces,
and agent meeting places respectively. We have implemented a graphical Java-based tool
to make it easier to enter fragment-agent pairs. A screenshot of the GlueModel Maker is
shown in figure 18.5.

18.4.3 Interaction with other workflow tools

Current implementation of the GlueServer is not capable of interaction with other work-
flow systems than our own prototype. We will however describe how other workflow
systems can be integrated in the system using the Workflow Management Coalition In-
teroperability workflow-XML binding specification (Wf-XML) [WfM00]. The intention
of this specification is to allow workflow systems supporting simple chained and nested



18.4. GLUING WORKFLOW WITH INTERACTIVE AGENTS 267

Figure 18.5: GUI tool for adding fragment-agent pairs to the GlueModel

workflow interoperate both asynchronously and synchronously. The Wf-XML defines
two types of messages that can be sent between workflow systems; requests (initiate
an operation on a remote resource), and response (send the result of an operation to its
requesting resource). In addition four operations are defined for Wf-XML messages;
CreateProcessInstance, GetProcessInstanceData, ChangeProcessInstanceState, and Pro-
cessInstanceChanged. These four operations could typically be used as reactions in the
GlueModel. Note that the reactions described in section 18.4.2 are not supported by the
operations defined in Wf-XML. Figure 18.6 shows how a GlueServer request from a Wf-
XML compatible workflow system would look like.

<?xml version="1.0"?>
<WfMessage Version="1.0">
<WfMessageHeader>

<Request ResponseRequred="yes"/>
<Key>{Interactor process fragment}</Key>

</WfMessageHeader>
<WfMessageBody>

<ContextData>
<AgentClass>{Agent class}</AgentClass>

</ContextData>
</WfMessageBody>

<WfMessage>

Figure 18.6: GlueServer request written as a Wf-XML request



268 CHAPTER 18. INTEGRATING PROCESS FRAGMENTS WITH AGENTS

18.5 Application scenarios

In [WLC99], we presented a scenario based on the software development and mainte-
nance process from a Norwegian software company, in this paper called AcmeSoft. In
this section, we will look at some cases of interconnection and interoperation between
process fragments and interacting agents, and show how the GlueServer improves sup-
port for these situations.

First we recapitulate the relevant parts of the scenario. In company AcmeSoft, among
other things, there is a Maintenance Planning Group (MPG), a Release Planning Group
(RPG), and a Development Group (DG). The MPG major concern is to plan and es-
timate error corrections to existing software products based on error reports from cus-
tomers. The MPG process consists of the following process fragments: register report,
estimate resources, allocate resources, sends out (a Change Order to the DG) etc. On
the other hand, the RPG plans what new functionality should be implemented in exist-
ing software products based on requirements from emerging technology and market de-
mands. AcmeSoft is committed to quarterly update-releases and one major release per
year per product. The RPG process also includes fragments like estimate resources, al-
locate resources and sends out (a Work Order to the DF). Finally, all real development
and correction work is carried out by the DG consisting of software engineers. The pro-
cess fragments estimate resources in MPG/RPG try to allocate a particular developer (or
a group of developers) from DG for a particular maintenance/develop task. The identity
of a fragment is determined by a fragment name and a WS name. For example, the pro-
cess fragment estimate resources in MPG will be denoted as MPG/estimate resources.
To give unique identifiers to workspaces, they should be named with an URL (like http:
//www.acmesoft.no/project/MPG). In this paper we name the workspaces only with the
local workspace name.

18.5.1 Scenario 1: Negotiation

The first situation we consider, is when MPG and RPG compete for a particular devel-
oper. Remember that the same DG is responsible for both maintaining existing products,
and for developing new updates/releases. Suppose that both MPG and RPG are trying
to allocate the same developer because of his/her special skills. Here we have a conflict
in resource allocation between the process fragments estimate resources for MPG and
RPG. To solve the conflict, negotiation between MPG and RPG is necessary. In this case,
two negotiation agents representing the two groups (equipped with problem-specific ne-
gotiation strategies) carry out the inter-group interaction. The negotiation process will
be carried out in Acme Agent Meeting Place (AMP), providing inter-agent communica-
tion facilities. Figure 18.7 shows the XML for the fragment-agent pairs involved in the
negotiation process.

This situation shows how periodic invocation (see section 18.4.1) can be used to com-
bine workflow with agents. When MPG and RPG are estimating resources, they both will



18.5. APPLICATION SCENARIOS 269

<fragment-agent-pair>
<agent agent-class="agents.Negotiation" amp-id="AcmeAMP">

<interaction-type>negotiation</interaction-type>
<result>yes|no</result>

</agent>
<fragment fragment-id="RPG/estimate_resources">

<reaction>
<result>yes</result>
<action fragment-id="RPG/allocate_resources"
body="execute_process_fragment_PFNUMBER"></action>
<result>no</result>
<action fragment-id="RPG/allocate_resources"
body="change_and_reexecute_process_fragment_PFNUMBER">
</action>

</reaction>
</fragment>
</fragment-agent-pair>
<fragment-agent-pair>

<agent agent-class="agents.Negotiation" amp-id="AcmeAMP">
<interaction-type>negotiation</interaction-type>
<result>yes|no</result>

</agent>
<fragment fragment-id="MPG/estimate_resources">

<reaction>
<result>yes</result>
<action fragment-id="MPG/allocate_resources"

body="execute_process_fragment_PFNUMBER"></action>
<result>no</result>
<action fragment-id="MPG/allocate_resources"

body="change_and_reexecute_process_fragment_PFNUMBER">
</action>

</reaction>
</fragment>

</fragment-agent-pair>

Figure 18.7: GlueModel for scenario 1

access a shared repository denoting what resources they will need. As a result, the work-
flow tool will be able to know if a resource conflict has occurred. After the termination of
for instance MPG’s process fragment estimate resources, the workflow tool will send a
FragmentServer request for negotiation between MPG and RPG where the agent-class is
specified. The GlueServer will then look in the GlueModel for matching fragment-agent
pairs both for MPG and RPG, and initiate the agents involved in the negotiation process.
The result of the negotiation process will be sent back to the GlueServer, and the Glue-
Server will forward the reactions, according to the GlueModel, back to the workflow tools
in MPG and RPG.

18.5.2 Scenario 2: Coordination

Suppose that a particular developer in DG is assigned to a maintenance task by MPG,
but quits or is given another job before the task can be completed. Assume that DG is
not sure if they can assign this job to another of their own developers, or if they give



270 CHAPTER 18. INTEGRATING PROCESS FRAGMENTS WITH AGENTS

the assignment to an external organisation. Then the DG (or rather, its process fragment
report) would report this difficult problem to MPG. The replanning process fragment in
MPG may decide to delegate the unfinished work to someone else in DG if possible, or
an external organisation (company or another department). Coordination agents are used
to decide whether the work should be re-assigned in DG or to an external organisation.
The coordination agents will check updated information about the workload of DG. If the
outcome of the coordination is to assign the task to an external organisation, it will move
the remaining work together with its process fragment PF# to the external work space
WS#. A GlueModel for scenario 2 is shown in figure 18.8.

<fragment-agent-pair>
<agent agent-class="agents.Coordination" amp-id="ExternalAMP">

<interaction-type>coordination</interaction-type>
<result>local|external</result>

</agent>
<fragment fragment-id="DG/report">

<reaction>
<result>local</result>
<action fragment-id="DG/implement_changes"

body="change_and_reexecute_process_fragment_PFNUMBER">
</action>
<result>external</result>
<action fragment-id="DG/implement_changes"

body="halt_process_fragment_PFNUMBER"></action>
</reaction>

</fragment>
</fragment-agent-pair>
<fragment-agent-pair>
<agent agent-class="agents.Coordination" amp-id="ExternalAMP">

<interaction-type>coordination</interaction-type>
<result>local|external</result>

</agent>
<fragment fragment-id="MPG/replanning">

<reaction>
<result>local</result>
<action fragment-id="MPG/estimate_resources"

body="change_and_reexecute_process_fragment_PFNUMBER">
</action>
<result>external</result>
<action fragment-id="MPG/estimate_resources"

body="change_and_reexecute_process_fragment_PFNUMBER">
</action>
<action fragment-id="DG/implement_changes" workspace-id="EXTERNAL"

body="move_process_fragment_PFNUMBER_to_workspace_WSNUMBER">
</action>

</reaction>
</fragment>

</fragment-agent-pair>

Figure 18.8: GlueModel for scenario 2

In scenario 2, MPG will issue a request to the GlueServer to initiate a coordination process
involving the process fragments MPG/replanning and DG/report. Coordination agents
will find a solution to who is going to finish the job specified in the process fragment
implement changes. Depending on the result of the coordination (local/external), imple-
ment changes will be executed by DG or an external organisation. For the fragment-agent



18.5. APPLICATION SCENARIOS 271

pair (MPG/replanning, agent.Coordination), the result external will cause more than one
action to be executed. Note also that the coordination process is executed in ExternalAMP.
This is to make the coordination possible beyond local organisational borders.

18.5.3 Discussion

As we have shown in the two scenarios above, our framework for combining process
fragments with interactive agents enable us to model and support dynamic and ad-hoc
cooperative processes with software agents, while traditional workflow process described
in some process modelling language takes care of the routine processes. In scenario 1,
the software agents are used to negotiate about human resources between two groups.
The GlueModel is used to define how the workflow tools shall act according to the result
of the negotiation between the software agents. This means that each group can model
the local process concerning themselves on their own, while the GlueModel will model
how to deal with interaction with other groups. Scenario 2 shows how the glue model
can deal with exception handling, when a particular developer assigned for a specific task
is resigning or leaves. In this scenario, we could also use software agents to search for
external human resources capable of doing this specific task. In addition, the software
agents could form a market-place where they can look for expertise and negotiate about
the price to do a specific job. The glue model will then specify what activities to do next
based on the result returned by the agents.

The GlueModel is a part of the total process model, and defines how different cooperating
groups shall interact. Agents are then used to do inter-group interaction as representatives
for the groups. It is also possible to use the GlueModel to specify for what situations local
process models have to be changed, based on work-environment informations collected
by agents. This means that the GlueModel also models part of the meta-process. The
GlueModel will notify the local workspace, when a process model must be changed, and
the changes will be executed locally in the workspace. In addition, the GlueModel is
reflective. This means that a reaction in a fragment-agent pair can cause a change in the
same or other fragment-agent pairs.

When the GlueServer architecture is applied to a specific environment, one or more Glue-
Servers can be used. For small GlueModels (less than 50 fragment-agent pairs), one
GlueServer can be used. If larger GlueModels are demanded, several GlueServers should
be used. By using several GlueServers, it will be easier to maintain the GlueModels. This
is because each GlueModel will be smaller, and it is more likely that the maintenance of
the GlueModel will be done by a person that has more local knowledge of how people
cooperate for a given group. In this way, area of concern for maintaining the GlueModel
can be distributed according to how people are organised. Using several GlueServers will
also shorten the GlueServer response time. Since both AMPs and GlueServers provide
cooperative support between workspaces, one GlueServer per AMP could typically be
used. A GlueServer should be maintained by higher management, for instance a project
manager should be responsible for a GlueServer serving a project team. However, all peo-



272 CHAPTER 18. INTEGRATING PROCESS FRAGMENTS WITH AGENTS

ple affected by a GlueModel must participate in order to create a useful GlueModel. The
GlueModel will evolve over time, and hopefully reflect the cooperation protocols between
actors involved.

The GlueServer was relatively easy to implement, and it runs on Java Virtual Machine,
with OrbixWeb and Sun’s XML package installed. Agent-interaction is provided through
OMG’s MASIF standard, making it possible for the GlueEngine to interact with other
agents systems. Results sent back from the agent system is translated from KQML to
XML in the GlueServer. Multiple workflow interfaces can be added to the GlueServer
through CORBA, CGI-calls or Java RMI.

18.6 Conclusion

We have presented a framework for giving flexible process support to cooperative soft-
ware engineering processes, combining software agents with traditional workflow sys-
tems. The framework consists of a GlueModel specifying process-agent interaction and
a GlueServer providing integration of agent systems with workflow systems. Some real-
world CSE scenarios suggest that the mechanism is conceptually concise, and practically
useful. We are currently working on a validation of the GlueServer framework, where
other real-life CSE scenarios are modelled using other existing systems as well. From
this work we would gain more experiences in the advantageouses and disadvantageouses
our framework offers.

Acknowledgement

We want to thank to Bjørn Haakenstad for implementing the GlueServer, and executing
the scenarios. The CAGIS project is sponsored by the Norwegian Research Council’s
Distributed Information Systems (DITS) Programme.



CHAPTER 19

Using software agents to support evolution of
distributed workflow models

Alf Inge Wang1

Abstract
This paper outlines a high-level design of how software agents can be used combined with
an existing CAGIS Process Centred Environment to deal with evolution of distributed,
fragmented workflow models. Our process centred environment allows process frag-
ments of the same workflow model to be located in workspaces that are geographically
distributed. These process fragments can be changed independently in local workspaces
causing consistency problems. We propose to use software mobile agents, offering aware-
ness services solving conflicting updates of process fragment. Our solution is illustrated
using some scenarios.

Keywords: Process centred environments, software agents, workflow model consistency,
workflow model evolution, distribution, fragmentation.

1Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway, Email:
alfw@idi.ntnu.no, Phone: +47 73594485

273



274 CHAPTER 19. AGENTS FOR EVOLUTION OF WORKFLOW MODELS

19.1 Introduction

Dealing with evolution of workflow processes is not a trivial matter. One simple solution
to this problem is to have one centralised workflow model, that cannot be changed after
it is instanciated. In practice, it is however hard to follow a process that cannot change.
Most processes have uncertainties, and it is therefore impossible to model everything
correct in advanced. In our CAGIS Process Centred Environment we have proposed a
workflow tool where the workflow model is distributed into smaller parts called process
fragments, that can individually be changed locally. This gives the users the opportunity
for local adoptions, and therefore make the workflow model representation closer to the
real process. All this freedom can also cause problems with keeping the workflow model
consistent. Typical process changes can be re-arranging the order for when activities
should be executed, adding new activities, removing or merge activities, changing the
contents (code) of a activity, re-allocating activities, and re-scheduling activities.

In [NWC97], Nguyen et al. presents results from studying process changes in develop-
ment projects in a Norwegian banking software house. These process changes are causing
late project deliveries and bad resource and cost estimates. The four most typical reasons
for changing the development process were found to be: (1) Customer postponent The
customer requests unexpected postponing of the start date, causing a forward adjustment
of the entire project plan/schedule. (2) Customer delay The customer delays with deliv-
ering documents (e.g. requirements), causing re-allocation of already scheduled activities
and forthcoming dependent activities. (3) Customer misunderstanding The customer
misunderstands or ignores important details in the initial requirement specification caus-
ing backward adjustment or rework of completed activities. (4) Customer revision The
customer issues new or revised requirements due to better insight to the problem domain
causing forward adjustment by introducing additional activities to incorporate new or re-
vised features.

In [WLCM98b], we present work on how cooperation support can be improved in a con-
figuration management system dealing with consistency problems when changing docu-
ments. This problem is quite similar to dealing with consistency of workflow models, but
the latter is a more complicated matter. Workflow models define how people work in an
organisation, and how people are supposed to cooperate. Changes of workflow models
would therefore in most cases impact on how people are organised. These aspects are not
so relevant document consistency are in focus.

Most work on maintaining consistency in workflow and process systems have been fo-
cusing on database and transaction support for these systems. In [Cla93] describing Coo,
Godart proposes to use long transactions to save intermediate results, and that several
software processes can access these intermediate results without violating the correctness
criterion for the transaction. Intermediate results are managed as three different consis-
tency levels; stable, semi-stable, and unstable. TransCoop/CoAct [Rol98] is another work
in this research area where the motivation was to overcome the limitations imposed by the
use of a standard ACID model. The requirements for the transaction model were defined
by using four application scenarios: Cooperative authoring (ad-hoc processes), design for



19.2. THE CAGIS PROCESS CENTRED ENVIRONMENT 275

manufacturing (structured activities), software engineering (semi-structured processes),
and workflow (automated business processes). CoAct uses advanced transaction models,
and operations are exchanged between workspaces instead of exchange of data as in Coo.

19.2 The CAGIS Process Centred Environment

In 1997, a project called Cooperative Agents in Global Information Space (CAGIS) [pro00]
was started. One of the main goals of the CAGIS project was to see how heterogeneous,
distributed work could be supported. As an outcome of this project, we have implemented
a process centred environment (PCE) prototype to give process support to cooperative
software engineering (CSE) processes. The CAGIS PCE consists of three main compo-
nents:

� Workflow System supporting Distributed Mobile Processes This workflow sys-
tem is used to model simple, repeatable workflow processes, and the system of-
fers agenda-browser for the end-users. The workflow system allows an instanci-
ated workflow model to be distributed as several process fragments on different
workspaces. One benefit of allowing several instances of a workflow model to
be distributed and fragmented over several workspaces, is the possibility to adapt
the workflow to local environmental conditions. The workflow instances are de-
fined as xml-files located in the local workspaces, and can can be changed at any
time. The ability to move workflow instances during enactment, can be used for
reallocation of activities, dealing with exceptions (someone responsible for a par-
ticular activity is sick), and delegation of work. For a more detailed description, see
[Wan99, Wan00b].

The Process Modelling Language (PML) for the workflow system defines a process
as set of activities that can have pre-order relationships between them specified in
XML syntax. An activity can specify a set of pre-links identifying what activities
to be executed before, and post-links identifying activities to be executed after the
activity this particular activity. The pre- and post-links can be written as URLs,
and allow therefore the process to be distributed over several workspaces. Every
activity definition specify a code part. This code part is simply HTML, and can be
used to simple present text, to specify a form, or to start a Java-applet. The term
process fragment is used to name a group of activities in a workspace, that is one
part of the whole process. A process fragment is specified by a name, a workspace
(location), and a list of references to activities.

� Software Agents to support Dynamic, Cooperative Processes While the work-
flow system described above takes care of simple, repeatable process, we use soft-
ware agents to support more cooperative and dynamic processes. Software agents
typically takes care of inter-workspace activities as negotiation activities (e.g., about
of resource allocation), coordination of artifacts and workflow elements between
workspaces, brain-storming, voting, marked support (in a multi-company scenario,



276 CHAPTER 19. AGENTS FOR EVOLUTION OF WORKFLOW MODELS

we can perceive that agents acts as buyer and sellers of services), etc. Our multi-
agent architecture consists of four main elements:

– Agents An agents is set up to achieve a modest goal, characterised by auton-
omy, interaction, reactivity to environment, as well as pro-activeness. We have
identified three main types of agents: (1) Work agents to assist in local produc-
tion activities, (2) Interaction agents to assist with cooperative work between
workspaces, and (3) System agents to give system support to other agents.
Interaction agents are mobile, while system and work agents are stationary.

– Workspaces A workspace is a temporary container for relevant data in a suit-
able format to be accessed by tools, together with the processing (work) tools.
It can be private, as well as shared. Files stored in a repository can be checked
in and out to a workspace.

– Agent Meeting Place (AMP) AMPs are where agents meet and interact.
AMPs provide agents support for doing efficient inter-agent communication.
There can be different types of AMPs for different purposes. Each AMP will
have a defined ontology, that the agents have to follow. We can perceive spe-
cial AMPs for negotiation, coordination, information exchange, selling and
buying services etc.

– Repositories Repositories can be global, local, or distributed, and are persis-
tent storage of data. Experience Bases are one specific type of repository we
can use in our multi-agent architecture to support community memory.

More detailed description of the multi-agent architecture can be found in [WLC99,
PHBN99, HN00].

� Agent-Workflow Glue Server The Agent-Workflow Glue Server facilitates means
to specify how the workflow system and the multi-agent system shall interact.
A glue model defines the relationship between workflow elements and software
agents. The Glue Server will therefore provide support, so that a workflow activity
trigger an agent and vice versa. More information about the Glue Server can be
found in [WCL00, Bjø00].

Figure 19.1 shows a simplified illustration of how the different components in the CAGIS
PCE interact. In Figure 19.1, there are two workspaces, each running a workflow tool with
a local workflow model. In reality, this workflow tool can be shared, and the local work-
flow models in the two different workspaces can have relationships between them. The
figure illustrates two different ways that software agents can interact with workspaces.
In the first way, the agents can interact directly with the user in the workspaces, using
a graphical user interface to configure and interact with the agents. In the second way,
the user does not interact with the software agents directly. All interaction with software
agents goes through the Glue Server and the workflow tool. The workflow tool can acti-
vate an agent, or an agent can activate the workflow tool. The figure also shows that agents
can be used to access repositories, but workspaces can also access files in the repository
directly (not shown explicitly in the figure).



19.3. THE PROBLEM SCENARIOS 277

AMP
   Global
Repository

Workspace

Workflow tool

Workflow
model

Workspace

Workflow tool

Workflow
model

GlueServer

Agent Agent

   Agent
Interaction

moving
 agent

moving
 agent

moving
 agent

moving
 agent

moving
agent

Glue
model

Figure 19.1: The CAGIS Process Centred Environment

19.3 The Problem scenarios

The current version of our CAGIS PCE has no restricting for users to evolve workflow
models during enactment. This means that every user can in principle change his/her def-
inition of the workflow process in his/her workspace. Since the definition of the workflow
model is specified in XML (also instances of the workflow model), you can simply change
the workflow model using a text-editor. In our CAGIS PCE, a workflow model can con-
sist several process fragments that can be updated and distributed separately. This means
that a workflow model can be distributed over several workspaces as process fragments,
and each process fragment can be changed locally. By allowing this, we give freedom for
the every user of the workflow system to adopt their local process to their daily practise.
Typically local adoption could be to, add new activities, re-arrange the order for when ac-
tivities are going to be executed, to change code (HTML) of an activity an activity (make
it more close to reality), make a better estimate of time-consumption etc. By allowing
these local changes without putting any restrictions it will be very hard to ensure consis-
tency for the whole workflow model. For instance to re-arrange the execution-order of
activities in one workspace, could cause problems for activities in other workspaces hav-
ing pre/post-order links to these activities. Also if multiple instances of the same activity
get changed differently in various workspaces, it will be hard to know what version is the
correct one.

In the rest of this section we will look at some scenarios that identifies different work-
flow access policies for an organisation as shown in Figure 19.2. The organisation is
responsible for executing various research experiments, and is has a very simple structure
consisting of one manager, two project managers for project 1 and project 2, and three
project members in each project.



278 CHAPTER 19. AGENTS FOR EVOLUTION OF WORKFLOW MODELS

Project #1 Project #2

Manager

  Project
Manager1

  Project
Manager2

   Project
Member1.1

   Project
Member1.2

   Project
Member1.3

   Project
Member2.1

   Project
Member2.2

   Project
Member2.3

(PM1.1) (PM1.2) (PM1.3) (PM2.1) (PM2.2) (PM2.3)

(Mgr)

(PMgr1) (PMgr2)

Figure 19.2: Organisational hierarchy used in the scenarios

Note that the shape of the organisation is created to make it easier to illustrate the different
scenarios.

19.3.1 Scenario 1: Anarchy

The Manager wants all the project members in project 1 and 2 to do the same experi-
ment in parallel. This means that the Manager distributes the process fragment Parallel-
Experiment to the project managers Project Manager1 and Project Manager2. Project
Manager1 is not quite happy with the workflow definition of how Parallel-Experiment
should be executed, and makes changes to it (makes a new version Parallel-Experiment
version PMgr1). The project managers distribute their two different versions of Parallel-
Experiment to their respective project members. Some of the project members (both in
project 1 and 2) are not still happy with how the process fragment is defined, and creates
their own versions of it.

In this scenario, we have a very chaotic situation with a lot of different versions of what
should be copies of the same process fragment. As a result the experiment will be ex-
ecuted in different manners, and it will be hard to know what is the correct version to
be used. Even worse, if activities for one project member have been dependent on other
activities for another project member, it would be likely that changes in one workspace
would corrupt the whole workflow model.



19.3. THE PROBLEM SCENARIOS 279

19.3.2 Scenario 2: Exclusive update on one process fragment

As for scenario in section 19.3.1, the Manager wants to do the same experiment, but this
time the process fragment Parallel-Experiment can only be updated in one workspace
at a time. When this project starts, only the Manager can make changes to the process
fragment. If for instance Project Manager1 want to make changes to the process fragment,
the Manager must give the permit to change it to Project Manager1. In this fashion, the
process fragment can only be changed in one workspace at a time.

Although, this scenario is not as chaotic as last scenario, there are also problems to be
solved for this scenario. What happens if the process fragment Parallel-Experiment is
changed during the execution of this project ? How should the changes be propagated ?

19.3.3 Scenario 3: Exclusive update on related process fragments

In this scenario, the three project members in project 1 and 2 are responsible of different
part of the experiment. This means that the the process fragments for the three project
members will not be executed in parallel, but each project member has activities that are
dependent on the other project members activities. The process fragment Intervened-
Experiment, consists therefor of three process fragments that are interrelated. Since it is
only allowed for one workspace to change a group of process fragments that have inter-
relationships, only the project managers and the Manager can make changes. Typical
dependencies between process fragments are here pre-order relationships between activi-
ties.

Here we can get problems if Project Manager1 makes changes to the process fragment
Intervened-Experiment, and Project Manager2 does not. Should two different versions
of the process fragment be allowed during enactment ? What version to be used for later
similar projects ?

19.3.4 Scenario 4: Exclusive access

The Manager wants to execute a one-person experiment defined in the process fragment
Solo-Experiment. This process fragment is distributed to Project Manager2. Project
Manager 2 executes this process fragment using the workflow system. After doing the
Solo-Experiment, Project Manager2 recognise that the process fragment has to be changed
to adopt some environmental conditions, and it is then distributed to Project Member2.2.

In this scenario, only one workspace can access a process fragment at a time. This means
that only one workspace can read and/or update a process fragment simultaneously. This
cooperative protocol ensures the consistency of the process fragment, but also puts a lot
of limitations for how it can be used. It is not a problem for how to propagate changes,
since there is always only one instance of the process fragment around.



280 CHAPTER 19. AGENTS FOR EVOLUTION OF WORKFLOW MODELS

19.3.5 Scenario 5: Level-based access

The Project Manager1 has decided that his three project members only have exclusive
read/update access (see section 19.3.4) to the process fragment Solo-Experiment. This
means that only one project member can access (read and/or update) the process fragment
simultaneously. One level up in the organisational hierarchy, the project managers have
decided to have exclusive update access (see section 19.3.2) for the process fragment
Solo-Experiment. This means that both Project Manager1 and Project Manager2 can
get read access to process fragment Solo-Experiment, but only one of them can update
it. Project Manager2 has decided that his project members can do what-ever they want
with the process fragment (anarchy, see section 19.3.1).

This scenario illustrates that it is possible to have different access policies for different
groups in the organisation. There is however one important restriction for how different
access policies can be used: A workspace can not have a access policy that violate its
parent workspace’s access policy. We can identify four levels of access policies according
to strictness (1 is most strict, 4 is least strict):

1. Exclusive access (section 19.3.4)

2. Exclusive update on related process fragments (section 19.3.3)

3. Exclusive update on one process fragment (section 19.3.2)

4. Anarchy (section 19.3.1)

If for instance, Manager at the top in the organisation hierarchy, has decided to have
exclusive access on a specific process fragment, the rest of the organisation need to do the
same. Note that the project members in project 2 can only use access policy 4, ifProject
Manager2 has update access. A problem working in this manner is if one part of the
organisation wants to change their access policies, this can also cause changes on higher
and lower levels in the organisation.

19.4 Awareness Agents dealing with Workflow Evolution

From the scenarios in section 19.3, we have identified four access policies that should be
supported in the CAGIS PCE. The consistency problems in the three least strict access
policies (2-4) must be addressed and solved. To solve consistency problems, we need a
workspace manager to take care of versioning of process fragments, as well as access
restrictions and awareness services. In Figure 19.3, an overall design of the workspace
manager is illustrated.

The figure shows how the workspace manager interact with the repository and differ-
ent workspaces. In the repository, workflow templates and models are stored, as well as
model of how the workspaces are organised. Nested transactions are supported through
the workspace manager and the repository. Process fragments can be moved between



19.4. AWARENESS AGENTS DEALING WITH WORKFLOW EVOLUTION 281

Workspace

Process fragment

Awareness
Check in/out

Awareness
Check in/out

Awareness
Check in/out

Workspace
  Manager

PM1.1 PM1.2 PM1.3

Mgr

PMgr1

Repository

Check
in/out

Figure 19.3: Illustration of the workspace manager

workspaces, managed by the workspace manager. In addition, we need awareness sup-
port to deal with consistency problems. We suggest to use software agents to provide
awareness services, and to resolve model consistency problems.

The rest of this section describes how the support for the five scenarios described in sec-
tion 19.3 is supported by the workspace manager and software agents.

19.4.1 Support for scenario 1

In scenario 1, there is no access restrictions for a specified process fragments. All workspaces
can read and change this process fragment as much they want. As the workspace man-
ager supports nested transactions, consistency can be obtained by solving consistency
problems on one level in the workspace hierarchy at a time (bottom-up). When e.g., in
the workspace PM1.1 checks out the process fragment Parallel-Experiment for updat-
ing, and the workspaces PM1.2 and PM1.3 have checked out the same fragment for read,
nothing happens. If however, PM1.2 also checks out Parallel-Experiment for updating,
there is a conflict between the workspaces PM1.1 and PM1.2. The workspace manager
will then activate the awareness service by sending two negotiation agents to the respec-
tive workspaces. The negotiation agents will notify the users in workspace PM1.1 and
PM1.2 about the access conflict, and offer them three options to solve the problem:



282 CHAPTER 19. AGENTS FOR EVOLUTION OF WORKFLOW MODELS

1. Only one actor is allowed to update the process fragment: Initiate an negotia-
tion about who is going to get the access to update the process fragment Parallel-
Experiment. If one of the involved parties does not want this kind of negotiation,
one of the solutions below must be used.

2. Synchronise the changes: Initiate coordination agents, that will help the users
synchronise their changes by making changes visible for all involved actors. If
some changes are conflicting, negotiation agents are used to solve these situation.
The synchronisation is supported through merge tools that identify conflicting parts
of the XML-file defining the process fragment.

3. Synchronise when finished: This means that both workspaces updates the process
fragment independently. However, when when the process fragment is checked
back to the repository through the workspace manager, changes most be merged or
a new separate version of the fragment must be created.

Another situation we have to take care of, is when changes are made to e.g., two inter-
related process fragments in two different workspaces. This situation can be dealt using
the same three solutions as shown above. One of the involved workspaces can give away
update access to a process fragment, the changes in the two workspaces can be synchro-
nised (meaning the the changes made to a process fragment in one workspace, will be
visible in the other and vice versa.

19.4.2 Support for scenario 2

In scenario 2, only one workspace could change a specific process fragment at a time.
Here we have to deal with, how the changes of a process fragment should be propa-
gated to the rest of organisation. When a process fragment has been updated, all other
workspaces that have checked out the same process fragment for read, must be notified.
The workspace manager will activate update agents notifying all involved workspaces
that the process fragment has been updated, and ask them if they want to use the new
version of the process fragment. If the organisation has as a policy to always use the most
recent version of process fragments, the users in workspaces will be forced to update the
process fragment by the update agents. There are basically three choices of update policy:

1. Ignore update Involved workspaces will be notified, but the process fragments
will not be updated. This means that the changes of process fragments will only be
propagated when a new similar project is started.

2. Update at will It is up to the users if they want to update the process fragment
or not. This means that different versions of the process fragment is allowed, and
could cause some consistency problems.

3. Forced to update It will always be the most recent version of process fragments
used.



19.4. AWARENESS AGENTS DEALING WITH WORKFLOW EVOLUTION 283

19.4.3 Support for scenario 3

Here we have to solve the problem of propagating updated versions of inter-related pro-
cess fragments to workspaces having older versions of the same process fragments. The
solution is basically the same as described in section 19.4.2, but either all of the inter-
related process fragments are updated or none are to ensure consistency. If this policy is
not followed and only a few of the involved process fragments are updated, negotiation
agents will be used to decide if the update should be cancelled or if every involved process
fragment should be updated.

19.4.4 Support for scenario 4

When there is only one person that have access (both read and write) to a process frag-
ment at time, to consistency problems can occur. The biggest problem with this approach
is that process fragments will be totally locked for a time. When a user in a workspace
wants to check out a particular process fragment that is exclusively checked out by an-
other, the workspace manager will send a notification agent. The notification agent will
give information about who has checked out this process fragment, when it was checked
out. The notification agent could also be triggered by the user, to check for how long
this process fragment will be locked. The notification agent will then ask the user that
has access to the process fragment (or an agent representing this user) about when (s)he
believed to be finished by the job.

19.4.5 Support for scenario 5

In this scenario, we looked at what happened if different access policies were used in an
organisation. A central result in scenario was to keep consistency by forcing a workspace
to have a access policy not violating its parent workspace according to the four levels of
strictness as listed in section 19.3.5.

If at one level in the workspace hierarchy somebody decides to go for a more strict access
policy, all the sub-workspaces, must adhere to this change. If this organisation is based
on democratic principles, the workspace manager when being alerted about the change of
access policy, will activate voting agents, that will ask all involved workspace to change
to a more strict access policy or not. Based on the result of this voting, the access policy
will be changed or not. If democratic principles are not used, people can be forced to
change access policy. In any case if a change will take place, all the involved parties will
be notified by notification agents and be asked if they are ready to change access policy.
This is done to ensure that the all involved parties has adopted the new access policy
(checked in process fragments etc.), and is ready to change.

If at one level in the workspace hierarchy, somebody wants to go for a less strict access
policy, this will not affect the sub-workspaces but rather workspaces on a higher level. A



284 CHAPTER 19. AGENTS FOR EVOLUTION OF WORKFLOW MODELS

negotiation process must be initiated in order to get an agreement to go for a less strict
access policy. In a democratic organisation, voting agents can be used to reach an agree-
ment. For a more strictly hierarchical organisation, the manager at the top could make
the decision to make a change of access policy or not. If the access policy is changed,
affected workspace must be notified by notification agents, but there is no need to wait for
people to adapt to the new policy. People can work as before, or they can update process
fragments in a less strict manner.

19.5 Implementation of awareness agents

So far we have only identified the types of agents that could be used to provide aware-
ness support for workflow consistency. These agents are negotiation agent, coordination
agent, update agent, notification agent, and voting agent. These agents will communicate
in Agent Meeting Places (AMPs) using KQML to specify the communication. We have
defined the following performatives (speech-acts) that are used by agents: ask-if, tell, un-
tell, register, and unregister. The register and unregister performatives are used to register
to AMPs. Our multi-agent architecture, offers a high-level Java API used to program
agents. The API provides methods for moving agents between AMPs and workspaces,
communicates with other agents, (un)register in AMPs, clone agents etc. Graphical user
interfaces for agents are supported through Java Swing classes, and our multi-agent archi-
tecture offer graphical user interfaces to manage agents in workspaces, and administration
of AMPs.

19.6 Conclusion

In this paper we have looked at how software agents can be used to provide awareness
support for solving consistency problems of distributed workflow models. We have iden-
tified the necessary agents, and the functionality these agents should provide. Today, we
have only programmed simple prototypes of these agents, and they are not fully integrated
into the whole CAGIS PCE. The workspace manager has also to be completed, before our
approach can be more extensible tested. These tests will be based on real-life industrial
scenarios, and involve modelling of workflow, as well as implementation of awareness
agents. Future research will give more detailed experiences using software agents for
providing workflow model consistency.

Acknowledgement

I would like to thank Reidar Conradi for giving useful comments on the paper.



CHAPTER 20

Evaluation of a Cooperative Process Support
Environment

Alf Inge Wang1

Abstract
This report describes an evaluation where the same distributed conference organising pro-
cess is modelled in three different process centred environment Endeavors, ProcessWeb,
and our own CAGIS Process Centred Environment. Endeavors is an activity based, flexi-
ble workflow system, ProcessWeb is a role-based workflow system with a web-interface,
whereas the CAGIS Process Centred Environment combines an activity based workflow
system with a software agent system. The goal of the experiment is to investigate if
a combination of a traditional workflow system and software agent system better can
model and support distributed cooperative processes than stand-alone workflow systems.
We also want to investigate if a combination of workflow system and agent system better
can adapt to occurring process changes. A conference organising scenario is used as a
case in the experiment because it illustrates a distributed process containing both simple,
individual activities as well as more dynamic, cooperative activities. By evaluating how
well the different process centred environments can model and support the scenario, as
well deal with process changes, our CAGIS Process Centred Environment is validated.

1Dept. of Computer and Information Science, Norwegian University of Science and Technology
(NTNU), N-7491 Trondheim, Norway. Phone: +47 73 594485, Fax: +47 73 594466, Email:
alfw@idi.ntnu.no

285



286 CHAPTER 20. EVALUATION OF A COOPERATIVE PCE

Keywords: Process centred environments, Process modelling, Evaluation, Cooperative
activities.

20.1 Introduction

In 1997, the Norwegian research project called Cooperating Agents in the Global Infor-
mation Space (CAGIS) was initiated. One of the goals for the CAGIS project was to cre-
ate models and architectures to support distributed, cooperative processes. The prototype
CAGIS Process Centred Environment (PCE) is a result from this research. The CAGIS
PCE consists of three main parts, an activity-based workflow system, a multi-agent sys-
tem, and a gluing-framework for specifying and executing the interaction between the
workflow system and the multi-agent system. Activity-based workflow systems are very
good at modelling and supporting repetitive, structured processes containing a network of
activities with simple data- or control-flow relations. On the other hand, software agents
are ideal to model cooperative activities [JLT99, BvET97, TGML98, CMM97, MM97].
By combining activity-based workflow with software agents in CAGIS, we believe that
processes containing cooperative activities can be better supported. In this report, we
distinguish between two types of activities: Individual and cooperative activities. Indi-
vidual activities are activities where one role is assigned for performing this activity. In
cooperative activities, several roles are involved in performing the activity.

This report compares three PCEs according to their ability to model and support a con-
ference organising process, and how process changes to this particular process can be
dealt with. With this evaluation we want to validate if our approach of combining tradi-
tional workflow with software agents can do more than a stand-alone workflow system.
The other workflow system chosen for this experiment are Endeavors and ProcessWeb.
Endeavors is a flexible activity-based workflow system capable of dealing with dynamic
process changes. ProcessWeb is a role-based workflow system offering a web-interface to
the user. ProcessWeb’s domain is modelling of interactions between actors in a process.
These two workflow systems is chosen because of their flexibility and that they represent
a different process modelling philosophy.

The text Experimentation in Software Engineering by Wohlin et. al [WRH+00] has been
used as a starting point to formulate the evaluation. The method used is based on the Goal
Question Metric (GQM) method [BCR94b]. The case chosen is a conference organising
process. Originally we wanted to use a cooperative software engineering case from the
software industry, but due to not being able to find one described in sufficient detail, the
conference organising process was selected. The advantage selecting this case, is that the
process is widely known and described ([OSVS82, Car97]) and contain both individual,
structured activities as well as more dynamic, cooperative activities.



20.2. DEFINITION OF EXPERIMENT 287

20.2 Definition of Experiment

In this section we will define experiment used to evaluate our CAGIS PCE. The term
experiment will in this report denote an ad-hoc experiment. The validation method used
in this report is, according to Zelkowitz and Wallace in [ZW98], the assertion validation
method where developers being both experimenters and subjects of study.

20.2.1 Goal definition

The goal definition is the first step to analyse the problem at hand. In this case, the ob-
jective of the experiment is to compare three different process technologies to see how
well these technologies can support processes that both have individual as well as coop-
erative activities. Also it is important to investigate how well the three different process
technologies adapt to process changes.

The motivation for the experiment is to see if a new approach used in our CAGIS PCE, is
a feasible and perhaps better way to model and support processes containing both individ-
ual as well as cooperative activities. The new approach used in CAGIS PCE, combines
traditional workflow with software agents.

Object of study

The object of this study is the three process technologies Process Web, Endeavors and
CAGIS PCE, and their ability to model and support a distributed conference organising
process.

Purpose

The purpose of the experiment is to compare the ease of modelling and performance of the
three process technologies in modelling and supporting a distributed conference organis-
ing process. The distributed conference organising process consists of both structured,
individual activities as well as dynamic cooperative activities, and the performance will
be measured to see the coverage of these two aspects. In addition we will investigate how
the different technologies can cope with process changes.

Perspective

The perspective is from the point of view of the researchers, and the process is defined in
the researchers organising conferences [OSVS82].



288 CHAPTER 20. EVALUATION OF A COOPERATIVE PCE

Quality focus

The main effect studied in the experiment is model coverage of structured, individual
activities and cooperative activities, and support for dynamic aspects of a process.

Context

The evaluation was run by Alf Inge Wang at the Department of Computer and Information
Science, at the Norwegian University of Science and Technology in Trondheim, Norway.
Mark Greenwood, in Informatics Process Group at the University of Manchester has also
done some modelling of cooperative activities in ProcessWeb, and Professor Richard N.
Taylor, Department of Information and Computer Science at the University of California,
Irvine has suggested a solution to model cooperative activities for Endeavors. Most of the
modelling (apart from Greenwood’s effort ProcessWeb) and the measurement is done by
the author.

20.2.2 Summary of definition

Comparing three different process technologies
for the purpose of evaluating models
with respect to support for structured, individual activities and cooperative activities, and
to handle dynamic changes of such processes
from the point of view of the researchers
in the context of research community.

20.3 Planning of the Experiment

This section describes planning necessary to execute the experiment.

20.3.1 Context selection

The execution of the experiment has run at the University and will therefore not be eval-
uated in an industrial setting. This means that the result of the experiment is not auto-
matically valid in an industrial setting, but the result should give an indication of what
to expect. The experiment addresses a real problem, i.e., how to give sufficient process
support to both structured, individual activities as well as cooperative dynamic activities.

The description of the experiment should provide enough information for other researchers
to replicate the experiment in the same or the actual environment.



20.4. THREE PROCESS CENTRED ENVIRONMENTS 289

20.3.2 Research Questions

There are two research questions we would like to address in this experiment: Is a com-
bination of a traditional workflow system and a software agent system better compared to
a stand-alone workflow system to:

1. Model and demonstrate enactment of processes containing both dynamic coopera-
tive activities, as well as structured, individual activities ?

2. Adapt to process changes ?

20.3.3 Evaluation of the research questions

The evaluation of the two research questions listed above will be answered in a combina-
tion of a quantitative research and a qualitative research method. By quantitative means,
research question one will be measured by looking at how much of (coverage) the confer-
ence organising process is modelled and enacted by the process model in each PCE. The
coverage will be measured in number of activities that can be modelled and enacted. The
scale 1-5 will be used to express how much of an activity is modelled. If every aspect of
an activity can be modelled it will be weighted by 5. If not any aspect of an activity can
be modelled, it will be weighted by 0. The rest of the scale 1-4 will be used to say how
much of the activity can be modelled. The conference process consists of 25 activities,
and the percentage coverage of the model will measured by: (score /25 x 5) * 100. In ad-
dition will the developing time spent on creating the process models in the three process
environments be measured.

Further research question two will be measured by measuring adaptability. Adaptability
is measured, by assessing the effort spent on implementing a specific process change. A
scale 1-5 will be used to indicate how much effort has been used. 5 indicates Very little
effort, 4 indicates Little effort, 3 indicates Some effort, 2 indicates Strong effort, and 1
indicates Very strong effort.

As the statistical data for this experiment is insufficient because only one scenario is
modelled, qualitative discussions will also be used to to evaluate the research questions
when comparing the results from the experiment. The empirical data will be used to give
an indication of the differences, and reasons for these differences will be given when
evaluating the experiment.

20.4 Three Process Centred Environments

This section describes the three process centred environments (PCEs) we used in the
evaluation. The first PCE, Endeavors, is a semi-commercial workflow tool usually used



290 CHAPTER 20. EVALUATION OF A COOPERATIVE PCE

to model business processes. The second PCE, ProcessWeb, is a web-based research pro-
totype based on a commercial process engine used to model business processes as well
as software development processes. The last PCE presented, is our own CAGIS research
prototype that combines software agents with workflow, and can be used to model busi-
ness processes as well as software development processes.

20.4.1 Endeavors

Endeavors is an open, distributed, extensible process execution environment developed at
University of California Irvine, and has been licensed by Endeavors Technology Incor-
porated. It is designed to improve coordination and managerial control of development
teams by allowing flexible definition, modelling, and execution of typical workflow ap-
plications. There are five main characteristics for Endeavors:

� Distribution Support for transparently distributed people, artifacts, process objects,
and execution behaviour (handlers) using web protocols.

� Integration Allows bi-directional communication between its internal objects and
external tools, objects, and services through its open interfaces across all levels of
the architecture. Multiple programming languages are also supported through APIs.

� Incremental Adoption Components of the system (user interfaces, interpreters,
and editing tools), may be down-loaded as needed, and no explicit system installa-
tion is required to view and execute a workflow-style process.

� Customisation and Reuse Implemented as a layered virtual machines architec-
ture, and allows object-oriented extensions of the architecture, interfaces, and data
formats at each layer.

� Dynamic Change Allows dynamic changing of object fields and methods, the abil-
ity to dynamically change the object behaviours at runtime, and late-binding of re-
sources needed to execute a workflow process. Process interpreters are dynamically
created as needed.

The Endeavors architecture is object-oriented and consists of three major levels: The
user level, the system level, and the foundation level. The user level is responsible for
maintaining consistent views to users through management of coordinated updates. The
system level maintains the category object model abstractions and data structures, while
the foundation level is responsible for storing objects and invocation of handlers. In figure
20.1 the architecture of Endeavors user level and partly the system level is shown. The
user interact through a Client Manager that can invoke different artists (views) through the
Artist Manager. Instances of different artists communicate with a System Level Interface
wrapper and a Client Event Dispatcher (at the system level). More details about the
Endeavors architecture can be found in [HL98].



20.4. THREE PROCESS CENTRED ENVIRONMENTS 291

Figure 20.1: Endeavors architecture at user-level

Endeavors Process Modelling Language

The Process Modelling Language (PML) used in Endeavors is object-oriented, based on
the Teamware process modelling language [You94], and consists of five major modelling
categories [Gre98]:

� Activity An Endeavors activity is an end-user or automated agent-specific task that
can have the state initialized, enabled, executing, completed, and terminated. An
activity specification will take in a list of input artifacts, use the resources it has
to process, create new or modify old artifacts, and then pass off the newly cre-
ated/modified artifacts to its output list. Activities may also have sub-activities or
networks of sub-activities.

� Artifact An artifact is anything that can be produced or consumed by an activity,
typically a document. The top level Endeavors artifact defines the methods for
share, open, lock and restore artifacts.

� Resource Resources represents standard project management resources such as per-
sonnel, meeting rooms, budgets, computers. The most commonly used resource in
Endeavors are software tools such as compilers, and Web browsers.

� Network Networks are used in Endeavors to provide abstraction by logically group-
ing inter-dependent activities. Start and finish activities represent the first and final
actions of a process. Fork and join activities are used to specify activities executed



292 CHAPTER 20. EVALUATION OF A COOPERATIVE PCE

in parallel. Branch and merge activities are used to specify conditional activity flow
(can for instance be used to implement feedback loops).

� Arc An arc is used to define relationships between the categories listed above. Arcs
can represent control, data, or resource flow. Arcs have no default behaviour as-
sociated with them, but assist in determining the well-formedness of a workflow
fragment.

Each of these categories has their own set of messages, definition of fields, and default
handlers, but each definition can be dynamically extended, altered, assigned, removed, or
re-specified.

Processes can be modelled in Endeavors using the graphical Network Artist tool enabling
the user to draw processes using a palette of activities and control-flow mechanisms. If
the standard available activities are not sufficient, user-defined activity types can be cre-
ated. When an activity is activated, a handler is executed. A handler is a program using
Endeavors API to communicate with the system. Handlers can be used to wrap commer-
cial tools, or the user can create his/her own tools (questionares, simple user-interfaces
etc.). Some system handlers are available, and the user can create his/her own handlers
using one of the supported programming languages Java, Python, Ada95, or Tcl.

20.4.2 ProcessWeb

ProcessWeb [Yeo96] is a web-interface based workflow system based on the Process-
Wise [PMC96] Integrator (produced by ICL) implemented by Information Process Group,
University of Manchester. The web-interface is provided through the ProcessWise Inte-
grator application interface. ProcessWise Integrator creates an environment enabling the
activities of people in an enterprise to be coordinated and integrated with the organisa-
tion’s computing facilities. A process management system built using the ProcessWise
Integrator has a client/server structure and consist of four main components: User Inter-
face, Process Control Manager, Process description in PML, and an Application Interface.
Figure 20.2 shows an illustration of how these components are related.

The most important component of ProcessWise Integrator is the Process Control Manager
(process engine), which acts as the central server. Its main function is to interpret the PML
description of the process. To ensure that processes may continue indefinitely, the Process
Control Manager has been implemented using a persistent store technology.

ProcessWeb Process Modelling Language

ProcessWise Integrator’s PML is also object-oriented, and uses roles as the main concept
for modelling processes. Objects are called roles, and interactions to provide communica-
tion channels between roles. The role concept helps address the complexity of models by
providing a quasi-intuitive structuring of activities (human processes are messy and might
not be amenable to hierarchical approach). A role is defined by its actions (methods) and



20.4. THREE PROCESS CENTRED ENVIRONMENTS 293

   User
Interface

Application
 Interface

Applications and tools

  Process
description
  in PML

(process model)

   Process
   Control
  Manager

(process engine)

Figure 20.2: Structure of ProcessWise Integrator

its resources (attributes). Preconditions called ’when’ guards, are used to select action for
enaction, and they are expressed as if statements. Interactions are uni-directional, asyn-
chronous typed communication channels provided through a takeport and a give port. A
takeport received data or control flow from another role, and a giveport sends data or
control flow to another role. The giveport and takeport represents two ends of a single
interaction. No global variables can be defined in PML.

Figure 20.3 shows a simple example of a role called John. If this role receives the message
”Hello John!” , the message ”Hello to you too!!!” will be sent back to the sender. Note that
PML to specify the connection to the other role is note presented here. The role is defined
by a set of resources, defining the variables used in the role, and a set of actions (only one
action for this role). The PML consists of ordinary programming expressions like if-then,
and there are as well some predefined methods like Take and GiveCopy. The syntax for
a method is Methodname (parameter1 = variable1, parameter2 = variable2...). Usually
actions are specified with pre- and post-conditions (not shown in figure 20.3).

20.4.3 CAGIS Process Centred Environment

This section describes the CAGIS Process Centred Environment (PCE). The CAGIS PCE
consists of three subsystems:

� CAGIS SimpleProcess is a workflow tool with a web-interface, used to model
stable processes consisting of networks of activities that are executed by individu-
als. For users of CAGIS SimpleProcess, the activities will be shown as web-pages
that can contain a work description, links to relevant document or tools, HTML-
forms for entering necessary information, or a Java applet. A process in CAGIS
SimpleProcess can consist of several autonomous process fragments that can be
distributed over several workspaces. A process fragment can be anything from one
single activity to several related activities. The CAGIS SimpleProcess workflow



294 CHAPTER 20. EVALUATION OF A COOPERATIVE PCE

John isa Role with
resources

gp: giveport String
tp: takeport String
message: String
sendmessage: String
i: Int

actions
init: {

Take (interaction = tp, gram = message);
if message := "Hello John!"
then

sendmessage ="Hello to you too!!!";
GiveCopy (interaction = gp, gram=sendmessage);

end if
}

end with

Figure 20.3: The role John described in PML

tool offers an agenda-tool for web users, to make it easier to know the state of
the process, what tasks to do next etc. The process models can be written as tex-
tual XML-documents, or the web-based process modeller-tool can be used to enter
activities directly. In the former approach, the XML-document defining the pro-
cess model must later be parsed, and the process will then be instantiated. In the
latter approach, the activities will be instantiated as the user enters activity informa-
tion into the tool (activities will be instantiated incrementally one-by-one). A state
server (the process engine) will take care of the process states, and a monitor tool
is used by managers to supervise the progress and state of the process. Hierarchical
workspaces (i.e., a tree structure) are used model the organisation executing the pro-
cess, and CAGIS SimpleProcess has support for moving process fragments between
workspaces (between users) and also between sites. A more detailed description of
this workflow tool is found in [Wan00b].

� CAGIS Distributed Intelligent Agent System (DIAS) takes care of cooperative
activities between workspaces in the CAGIS PCE framework [WLC99, PHBN99,
HN00]. The software agents in CAGIS DIAS can be used to coordinate artifacts
and resources, negotiate about artifacts and resources, monitor the working envi-
ronment for changes or events, provide infrastructure for brainstorming, electronic
meetings, trading services etc. CAGIS DIAS provides the infrastructure for creating
cooperating agents, and consists of four main components:

– Agents: are autonomous software acting on behalf of a user or some other
agent, set up to achieve a modest goal. We have defined three types of agents:
System agents - give support to other agents, Interacting agents - provide
means for cooperation between users and agents, and User agents - agents
set to help users with specific problems.



20.4. THREE PROCESS CENTRED ENVIRONMENTS 295

– Agent Meeting Places (AMPs): are where agents meet and interact, control-
ling and providing facilities for how the agents can exchange information and
services.

– Workspaces: are temporary containers of relevant data where agents interact
with users and tools. Workspaces uses repositories as persistent storage of
files.

– Repositories: are persistent storages where any information can be stored or
retrieved. Repositories can be accessed directly by agents, and special reposi-
tories can be used as Experience Bases for software agents.

� CAGIS GlueServer To enable CAGIS SimpleProcess to interact with the CAGIS
DIAS, we have built a CAGIS GlueServer. The CAGIS GlueServer is a middleware
that uses a so called GlueModel, where relations between process fragments and
software agents are defined. The GlueModel can be seen as a part of the process
model defining rules for interaction with others, but also as a meta-model since it
can specify changes of the process model. The GlueModel can specify three types
interactions between a process fragment and an agent:

– Predefined Interface: An agent is executed instead of a process fragment,
e.g., a negotiation activity delegates its job to a negotiation agent.

– Periodic Invocation: Upon termination of a process fragment, an agent is
used to help decide what to do next. Possible decisions include: Go to next
process fragment, iterate current process fragment, change and re-execute cur-
rent process fragment, or move current process fragment to another workspace.

– Dynamic Monitoring: A monitoring agent probes events and status in the
working environment. When a specified event occur, a relevant process frag-
ment may be executed.

By using a separate model to describe the interconnection between agents and pro-
cess fragments, it is possible to use other workflow tools (e.g. than CAGIS Sim-
pleProcess) as well as other agent systems. This makes the CAGIS PCE more open-
ended, and ready to meet future challenges. The GlueServer and the GlueModel are
described in further detail in [WCL00].

CAGIS Process Modelling Languages

To specify a process in CAGIS PCE, two different process models and an agent-API are
used, according to the sub-systems described above. Here is a short description of the two
model and the agent-API:

CAGIS SimpleProcess PML

The CAGIS SimpleProcess PML is used to model simple, individual, repeatable pro-
cesses. The main building block is activity. An activity is represented by a web-page that



296 CHAPTER 20. EVALUATION OF A COOPERATIVE PCE

<Activity>
<Name>Edit resource-report</Name>
<Workspace>Prod Dept/Project Manager</Workspace>
<Prelink>Prod Dept/Project Manager/Read resource-report</Prelink>
<Postlink>Prod Dept/Project Manager/Send resource-report</Postlink>
<Description>Make changes to the resource-report

based on personal opinion</Description>
<Code>

<HTML>
Remember this:
<li>Do not change the first section</li>
<li>Make a new version of the report with your changes</li>

</HTML>
</Code>

</Activity>

Figure 20.4: An example of an activity modelled in CAGIS SimpleProcess PML

has a state and relationships to other web-pages. Since activity models are quite similar
to web-pages, the terms Prelink and Postlink are used to identify ordering relationships
between activities. If the activity C has the activities A and B as Prelinks and the activ-
ity D as a Postlink, the sequence of activities will be (A;B) ) C ) D, where A and
B may be executed in parallel. Activities are placed in hierarchical workspaces used to
model the organisation. Workspace names can be used to identify a company, department,
project group, roles, or even specific users. Workspaces can be private or shared. For each
workspace, an agenda will show activities related to this workspace. Several instances of
the same activity can be initiated in different workspaces. If several instances are needed
in the same workspace, different activity name is used for each instance. The code (script)
part of the CAGIS SimpleProcess PML is simply HTML, that can be used for describing
information, get input from the user through a HTML-form, or to execute a Java applet.

The CAGIS SimpleProcess PML is specified in XML, and an example with one activity
is shown in figure 20.4.3.

From the example, we can see that an activity is identified by a name, a workspace, and a
description. In addition prelinks and postlinks are used to describe relationships to other
activities, and a code part defines the presentation or action of the activity. The code can
also simply be a URL to an HTML-file, or be used to invoke an Java applet.

DIAS Agent Language

To support dynamic processes, the DIAS Agent Language is used. DIAS Agent Language
is a high-level agent API written for Java. KQML is used to define how agents should
communicate, and the content of a speech-act (e.g. tell-agent, ask-agent etc.) is specified
in XML. It is possible to implement both stationary as well as mobile agents. Examples of
agent methods available are: migrate agent, communicate to other agent, tell other agent,
announce service, request service, etc.



20.4. THREE PROCESS CENTRED ENVIRONMENTS 297

Glue Modelling Language

The Glue Modelling Language is used to specify how process fragments specified in
SimpleProcess PML and software agents (in DIAS) interact. The language has again an
XML syntax, and specifies the relationship between a process fragment and a agent.

<FRAGMENT-AGENT-PAIR>
<Agent agent-class="agent.Negotiation" amp-id="CompanyAMP">
<Interaction-Type>negotiation</Interaction-Type>
<Result>Yes|No</Result>

</Agent>
<Fragment fragment-id="MPG/estimate-resources">
<Reaction>

<Result>Yes</Result>
<Action fragment-id="MPG/allocate-resources"

body="execute_process_fragment_PFNUMBER">
</Action>
<Result>No</Result>
<Action fragment-id="MGP/estimate-resources"

body="change_and_reexecute_process_fragment_PFNUMBER">
</Action>

</Reaction>
</Fragment>

</FRAGMENT-AGENT-PAIR>

Figure 20.5: An example of a process fragment - agent pair specified in a GlueModel

In figure 20.4.3, a small example of a GlueModel containing one process fragment -
agent pair is shown. The GlueModel consists of two main parts: An Agent part and
a Fragment part. The Agent part is described by an agent class, an identification for
where the agent will interact with other agents (amp-id), the type of interaction involved,
and the result expected from the agent. The Fragment part is specified by a process
fragment identification (workspace name and process fragment name), and a Reaction.
The reaction consist of two main parts: a Result and an Action. The Result is similar to
an ” if-expression” in a programming language and specifies an expected result returned
from the agent. The Action part specifies what to be executed in the workflow tool, the
GlueServer or in the agent system.

20.4.4 Process Centred Environment Summary

In this section, three different process environment have been presented by describing the
overall architecture, tools offered, and the process modelling language used. We would
now like to compare these environments.

In table 20.1 describes a comparison of the three PCEs. These notes should be made about
the table. In feature 3, Endeavors expresses the PML graphically, but Java handlers must
also be written to get the activities do something useful. In feature 5, the table shows
whether the PCEs supports user-interfaces packages provided in programming languages



298 CHAPTER 20. EVALUATION OF A COOPERATIVE PCE

(e.g., in Java). In ProcessWeb and in CAGIS SimpleProcess, Java user-interfaces can be
provided by invoking Java applets in the HTML-code. The agent system in CAGIS PCE
can use Java user-interfaces directly.

Feature Endeavors ProcessWeb CAGIS PCE
1. Activity based PML Yes No Yes
2. Role based PML No Yes Yes (agents)
3. PML expressed as Graphical model Text Text
4. Web User-interface Indirectly Directly Directly
5. Native user-interface Yes Indirectly Indirectly/directly

Table 20.1: Summary of features in the three process centred environments

The main difference between the three PCEs is the way the processes are modelled and
the philosophy for the process modelling language. In Endeavors and in CAGIS Sim-
pleProcess, the process modelling language specifies the process mainly through activity
networks. In ProcessWeb the process models are specified by modelling roles that inter-
acts. The CAGIS PCE also allows the modelling of role interaction through the agent
system (CAGIS DIAS). We can therefore we say that the CAGIS PCE uses a mixed PML
philosophy.

The way the processes are modelled differs also between the three environments. In
Endeavors the process is modelled through manipulation of graphical objects in addition
to writing activity handlers in some programming language. In ProcessWeb, any text-
editor can be used to write PML. In the CAGIS SimpleProcess, the PML can be written
in a text-editor as an XML-document, or a simple HTML-form based tool. The agents are
implemented in any Java programming environment.

ProcessWeb and CAGIS SimpleProcess offers user-interfaces directly through the Web-
browser. In addition, Java applets can be invoked indirectly in the HTML-code. In En-
deavors, the user interface is dependent on the handlers that can be implemented in Java,
Python, Ada or Tcl. This means that the user-interfaces typically can be implemented
using standard GUI packages provided in the programming languages. A Web-interface
could also be provided indirectly, e.g. through some Java code. The agents in CAGIS
DIAS uses Java GUI-packages to provide a user-interface.

20.5 Actual case example: The conference management
process

Here we describe in detail a conference organising process, to be used as a case for eval-
uation. The scenario was chosen because it contained some cooperative elements as well
as simple coordination, and it is a well-documented scenario. In Olle et al. [OSVS82],



20.5. ACTUAL CASE EXAMPLE 299

a short textual description of the conference organising process is presented. A more de-
tailed description of the same case can be found in [Car97]. We describe the scenario
using a simple graphical notation showing activities and their sequence, and an additional
textual description of each activity (also decompositions of activities).

The high-level process of the conference organising process consists of seven activities as
modelled in figure 20.6.

A1:Plan and
announce
conference

PC Chair

A3: Reviewer
selection

PC Member

A4: Paper
review

PC Member PC Chair

A7: Publish
conference
program

PC Member

A5: Determine
acceptace of
papers

PC Chair/
Session Chair

A6: Group
accepted papers
into sessions

A2: Record
response

PC Chair

Figure 20.6: A High-level model of the conference organising process

The rest of this section gives a more detailed description of each of these activities. A
decomposition of the conference process is shown in figure 20.7. The notation used has
been developed by the author, and is an extension of a graphical notation used to show pro-
cess models in the EPOS PSEE. The extensions added to the original modelling language
is ability to explicitly show decomposition of activities, show cooperative activities, and
graphical notation for control flow. Section 20.5.10 describes all documents and databases
that are accessed in the conference scenario.

20.5.1 A1: Plan and announce conference

Function: Issue call for papers to potential participants.
Responsible: PC Chair
PreCondition: None
PostCondition: A2 (Terminated by Program Chair)
Document access: Conference-personDB(R/W), Call-for-papers(R/W)

R and W in the above table show how activities access documents: R refers to read, while
W refers to write).

A1 has the following three sub-activities (A1.1 and A1.2 are done in parallel):

� A1.1: Make call for papers Based on an available Call-for-papers template, a new
call for papers will be created. The activity should access an editor where Call-for-
papers can be written.



300 CHAPTER 20. EVALUATION OF A COOPERATIVE PCE

� A1.2: Manage person information In this activity, the PC Chair must search for
persons (the activity should provide access to the DBLP bibliography servers2 and
the ResearchIndex3) to update the database for potential participants. An interface
should also be presented to enter data in the Conference-personDB

� A1.3: Distribute call for papers Based on the results from A1.1 and A1.2, Call-
for-papers will be distributed to potential participants (via email). PreCondition:
Finished A1.1 and A1.2.

20.5.2 A2: Record response

Function: Handle response from potential participants.
Responsible: PC Chair
PreCondition: Finished A1
PostCondition: None
Document access: Email/mail(R), Conference-personDB(R/W), Acknowledge-templates(R)

Conference-papers(R), Paper-list (R/W)

A2 has the following sub-activities (based of the response received in A2.1, one of the
three activities A2.2, A2.3 or A2.4 will be next):

� A2.1: Check response and Maintain personDB First, this activity has to check
email sent to the conference email address (e.g., response@conference.org). Then
the Conference-personDB will be updated to track responses.

� A2.2: Handle Received paper Register received paper in Conference-personDB
and Paper-list (including title, address, authors, keywords etc), and store paper elec-
tronically. Then use a template to send an acknowledgement to the author.

� A2.3: Acknowledge Letter of Intent Send an acknowledgement and use an avail-
able template for this.

� A2.4: Regret late response Use a standard available template to send a regret for
a late response.

20.5.3 A3: Reviewer selection

Function: To select specific reviewers for each particular paper
Responsible: PC Member
PreCondition: Finished A1
PostCondition: A4
Document access: Paper-list(R/W), Conference-personDB(R), Conference-paper(R).

In A3, the Conference-personDB will be used to find the PC Member’s ID. A3 further has
two sub-activities:

2http://www.informatik.uni-trier.de/�ley/
3http://citeseer.nj.nec.com/cs



20.5. ACTUAL CASE EXAMPLE 301

A1.1: Make
call for papers

A1.2:Manage
person
information

A1.3:Distribute
call for papers

A1: Plan and announce conference

A2.1:Check
response and
maintain perDB

A2.2:Handle
received paper

A2.3:
Acknowledge
letter of intent

A2.4:Regret
late respons

A2: Record response

? X

A4.1:View
paper

A4.2:Fill in
reviewer
report

A4:Paper review

?

X

Legend

Feedback

Conditional
control flow

XOR 
control flow

Cooperative 
activity

A3.1:Select
paper

A3.2:Reviewer
allocation

A3: Reviewer selection

A5:Determine acceptance of papers

A5.1 Select
uncertain
papers

A5.2 Notify
involved
reviewers

A5.3 Review
meeting

A5.4 Final
paper selection

A6.2.4 Check
timeslot for
session

A6.2.5 Session
allocation

A6.2.6
Publish session
description

A6.2: Select papers & Plan sessions

A6.2.1 Deter−
mine session
subject & goals

A6.2.2
Check paper
for session

A6.2.3
Paper allocation

A6.1: Suggest sessions

A6.1.1 
Match papers

A6.1.2
Suggest
sessions

A6.1.3 
Set up session
committees

A7: Publish
conference
program

Figure 20.7: Decomposition of the conference process.



302 CHAPTER 20. EVALUATION OF A COOPERATIVE PCE

� A3.1: Select paper All PC Members will receive a list of submitted paper with
hyper-links that makes it possible to read through the papers. The PC Member will
then mark papers they are interested in reviewing. The PC Members’ ID will be
added to the Possible-reviewer-list in Paper-list.

� A3.2: Reviewer allocation All papers should be reviewed by three reviewers. If
more than three reviewers are allocated, a negotiation process between the involved
reviewers is initiated. If some papers do not have enough reviewers (less than three),
PC members with fewest marked papers will be asked to review these papers. See
section 20.5.8 for details for how to handle the negotiation process. When all papers
have three reviewers, the Actual-reviewer-list in Paper-list will be updated to reflect
this change. Activity A3.2 will not finish until three reviewers are allocated to all
papers.

20.5.4 A4: Paper review

Function: Review the papers according to the specifically prepared review
reports.

Responsible: PC Member
PreCondition: Finished A3.2
PostCondition: A5
Document access: Conference-personDB(R), Paper-list(R), Conference-papers(R),

Review-reports(R/W)

A4 has two sub-activities (A4.1 and A4.2 are executed sequentially for every paper re-
viewed):

� A4.1: View paper View the reviewed paper along with reviewing instructions.
The papers to be reviewed can be found by finding PC Member ID in Conference-
personDB and search for this ID in the Paper-list.

� A4.2: Fill in reviewer report Fill in a web-based form to generate a Review-report.
Each Review-report will be identified with the reviewer’s ID and a paper ID.

20.5.5 A5: Determine acceptance of papers

Function: To perform final accepted papers selection after a finished review
process.

Responsible: PC Member / PC Chair
PreCondition: Finished A4
PostCondition: A6
Document access: Paper-list(R/W), Conference-personDB(R/W), Conference-papers(R),

Acknowledge-templates(R), Review-reports(R)

Sub-activities (sequence A5.1, A5.2, A5.3, and A5.4):



20.5. ACTUAL CASE EXAMPLE 303

� A5.1 Select uncertain papers Responsible: PC Chair. Look through review results
and update State and the Review-result in Paper-list. The state can be Rejected,
Uncertain, or Accepted. The Review-result will reflect the average review score for
the paper.

� A5.2 Notify involved reviewers Responsible: PC Chair. Notify involved reviewers
to look through the papers with the state Uncertain one more time and prepare
review-meeting.

� A5.3 Review meeting Responsible: PC Members. The review meeting can be held
using Internet Relay Chat (IRC), net-meeting or similar tools.

� A5.4 Final paper selection Responsible: PC Chair. Update the Paper-list and
Conference-personDB to reflect the results from A5.3 above (all papers that had the
state Uncertain, will now either have the state Accepted or Rejected). Acknowl-
edgement of paper accept/reject will be sent to all authors (standard conference
template will be used for this purpose).

20.5.6 A6: Group accepted papers into sessions

Function: To finalise the conference program through grouping accepted
papers into session.

Responsible: PC Chair / Session Chair
PreCondition: Finished A5.4
PostCondition: A7
Document access: Paper-list(R/W), Conference-personDB(R), Conference-papers(R),

Conference-program(R/W), Session-descriptions(R/W),
Session-schedule(R/W)

A6 consists of two main sub-activities executed sequentially (A6.1 and A6.2):

A6.1: Suggest Sessions

The Program Chair is responsible for this activity, which can be decomposed further as
follows:

� A6.1.1 Match papers Match all papers against keywords defined by the confer-
ence.

� A6.1.2 Suggest sessions Suggest a session division according to subjects and create
a preliminary Conference-program.

� A6.1.3 Set Up Session Committees Choose a Session Chair (from PC Members)
for every session.

A6.2: Select papers & Plan Sessions

The Session Chair is responsible for this activity. It can be decomposed further into the
following six sub-activities:



304 CHAPTER 20. EVALUATION OF A COOPERATIVE PCE

� A6.2.1 Determine session subject & goals An initial Session-description will con-
tain session subject and goals.

� A6.2.2 Check papers for session The Session Chairs should mark papers that are
relevant for a session to notify their interest. The Session Chairs ID will be added
to Possible-session-list in Paper-list for the selected papers.

� A6.2.3 Paper allocation If papers are marked by more than one Session Chair,
these Session Chairs must negotiate (see N1 in 20.5.8) about which session is going
to get the paper. Also if some papers are to marked by any Session Chair, Session
Chair must be allocated. The final result from paper allocation to sessions will
be updated in Actual-session in Paper-list. A6.2.3 will go on until all papers are
allocated by one session.

� A6.2.4 Check timeslot for session Each Session Chair will mark timeslots for a
session in Possible-session-list in Session-schedule.

� A6.2.5 Session allocation Sessions that have the same timeslot must negotiate (see
N1 20.5.8). When all sessions are allocated, the result is added to Actual-session in
the Session-schedule. Activity A6.2.5 will go on until all timeslots are allocated by
one session.

� A6.2.6 Publish session description Each Session Chair will publish their Session-
description to the Program Chair.

20.5.7 A7: Publish Conference Program

Function: To finalise the conference program by combining
session descriptions.

Responsible: PC Chair
PreCondition: Finished A6.2.6
PostCondition: None
Document access: Session-descriptions(R), Session-schedule(R), Conference-program(R/W),

Conference-personDB(R)

The final Conference-program is updated by adding the Session-descriptions from all
sessions along with the the Session-schedule. The Conference-program will then be
distributed to all involved and invited to the conference (registered in the Conference-
personDB).

20.5.8 N1: Negotiation process

If more than three PC members are interested in reviewing the same paper (see A3.2 in
section 20.5.3), or more than one Session Chair is interested in the same object (a paper
in A6.2.3 or a timeslot in A6.2.5 in section 20.5.6), the following steps will be used to
solve the conflict of selecting objects for the involved actors:



20.5. ACTUAL CASE EXAMPLE 305

S1 The actor with most objects marked, will be forced to ”unmark” the conflicting
object.

S2 All involved actors will be asked at one at a time to ”unmark” the conflicting ob-
jects.

S3 One or more involved actors will be picked out randomly to ”unmark” the conflict-
ing object. This time the actor will be forced to ”unmark” object.

The process will start with S1. If S1 does not solve the conflict, S2 will be initiated. If
still there is a conflict, S3 will be iterated until the conflict is solved.

We have developed the negotiation strategy described above, and it only shows one ap-
proach to solve the conflict in a simple and clean way. Other negotiation strategies could
be used, but are not described here.

20.5.9 Instantiation of the scenario

This subsection describes how the conference organising process should be instantiated.
The instantiation process involves allocation of human agents to roles, and making the
scenario more concrete. The documents and the databases used in the scenario is de-
scribed in appendix 20.5.10.

The conference organisation

The conference organisation consists of 25 PC Members. From these 25 PC Members,
one person is selected to be PC Chair. The role PC Chair is responsible for managing the
conference. In addition, five PC Members are selected to be Session Chairs. A Session
Chair is responsible for arranging and managing a session. In our scenario, five sessions
will be held according to the five Session Chairs selected.

Attendance and reviewing

To limit the possibilities for how the conference scenario should be modelled, a specific
conference case called World Software Computing Conference 2000 (WSCC’00) will be
used. At WSCC’00, 50 papers were received. All these papers were reviewed by three
reviewers (meaning that a total of 150 reviews were performed). Every PC Member must
review 6 papers in average. However, the PC Chair allows every reviewer to pick from
four to eight papers to reviewed. If not all papers get three reviewers, reviewers with the
fewest papers will be forced to review extra papers.

Acceptance of papers

As the proceedings for the conference want to have a certain quality on the papers ac-
cepted, only the 20 best (40 %) papers will be accepted. In activity A6.1.3 five Session



306 CHAPTER 20. EVALUATION OF A COOPERATIVE PCE

Chairs will be selected from the 25 PC Members. Each Session Chair will in the activity
A6.2.2 mark interest for 3-5 papers to be allocated to their session.

Timeslots

The conference will run for four days, and there will be no parallel sessions on the con-
ference. Every session (Session Chair) have to allocate two timeslots (four hours) from
ten available timeslots for their session. The following timeslots are shown in the table
below:

Day one Day two Day three Day four
------------------- ------------------- ------------------- --------------------
0900-1100 Timeslot1 0900-1100 Timeslot4 0900-1100 Timeslot7 0900-1100 Timeslot10
1200-1400 Timeslot2 1200-1400 Timeslot5 1200-1400 Timeslot8 1200-1500 Conference
1500-1700 Timeslot3 1500-1700 Timeslot6 1500-1700 Timeslot9 summary

20.5.10 Conference Documents and Databases

This section describes all documents and databases used in the scenario. It is also de-
scribed how the documents and databases relates to specific activities.

Conference-personDB The Conference-personDB is a database containing potential
participants to the conference as well as people in the program committee. A
person is registered with: PersonDB-number, Name, Address, Telephone-number,
Fax-number, Email-address, Paper-number(s), Role-information [PC Chair, PC
Member, Session Chair] , Responses [Letter of Intent, Late response], and State-
information [Potential participant, Paper submitted, Paper accepted].
The Paper number(s) is used to as a key to refer to one paper or more papers in
Paper-list.
The Conference-personDB is accessed by these activities: A1.2(R/W), A1.3(R),
A2.1(R/W), A2.2A(R/W), A3(R), A5.4(R/W), and A6.1.3(R/W).

Paper-list The Paper-list is a list of all paper submitted where every entry has the fol-
lowing information: Paper-number, Paper-title, PersonDB-number, Authors, Paper-
keywords, Paper-location (URL), Possible-reviewer-list, Actual-reviewer-list, Possible-
session-list, Actual-session, State [Not-reviewed, Rejected, Uncertain, Accepted],
and Review-results.
The PersonDB-number is used as a key to link the Conference-personDB and
Paper-list. The Possible-reviewer-list is used to hold a list of PersonDB-number
of PC Members interested in reviewing the paper (see activity A3.1). The Actual-
reviewer-list hold a list of PersonDB-number to the three reviewers selected to re-
view the paper. Possible-session-list and Actual-session-list are used accordingly to
divide papers into sessions.
The following activities access Paper-list: A2.2(R/W), A3.1(R/W), A3.2(R/W),
A4.1(R), A5.1(R), A5.4(R/W), A6.1.1(R), A6.2.2(R/W), and A6.2.3(R/W).



20.5. ACTUAL CASE EXAMPLE 307

Session-schedule The Session-schedule is in this case a table containing ten timeslots.
Every timeslot has two parameters: Possible-session-list, and Actual-session.
Possible-session-list is used to list all sessions interested in one particular timeslot.
Actual-session denotes that one session is selected for this timeslot.
These activities access Session-schedule: A6.2.4(R/W), A6.2.5(R/W), and A7(R).

Call-for-papers Initially a template for Call-for-papers exists.
These activities will access Call-for-papers: A1.1(R/W) and A1.3(R).

Acknowledge-templates These templates are used to give uniform responses from the
program committee. Available templates are: Acknowledgement-for-received-paper,
Acknowledgement-for-Letter-of-Intent, Regret-late-response, and Acknowledgement-
of-paper-accept/reject.
These activities will use Acknowledge-templates: A2.1(R/W), A2.2(R/W), A2.3(R/W),
A2.4(R/W), and A5.4(R/W).

Conference-papers These are papers received from authors. They are stored at a web-
server with limited access to the PC Members. All Conference-papers have an
unique URL. Additional paper information is stored in Conference-personDB.
These activities access Conference-papers (read-only): A2.2, A3.1, A4.1, A5.1,
A5.2, A5.3, A6.1.1, and A6.2.2.

Review-reports Every paper review will result in a Review-report based on an avail-
able template. A Review-report is identified by a PersonDB-number and a Paper-
number.
These activities access Review-reports: A4.2(R/W), and A5.1(R).

Session-description Each session writes Session-description reflecting the goal and
content of a particular session.
These activities access Session-description: A6.2.1(W), A6.2.6(R/W), and A7(R).

Conference-program The Conference-program describes the contents of the confer-
ence, including all sessions.
These activities access Conference-program: A6.1.2(W), and A7(R/W).

20.5.11 Process Changes

This section describes the process changes that are going to be modelled and enacted in
the three PCEs after the initial process has been modelled and enacted. Note that these
process changes occur during enactment.

The following process changes should be applied to the scenario:

1. Change activity sequence. The activities A6.2.4 and A6.2.5 are exchanged with
A6.2.2 and A6.2.3. The new sequence for A6.2 will then be A6.2.1, A6.2.4, A6.2.5,
A6.2.2, A6.2.3, and A6.2.6 (see figure 20.7).

2. Assign activity to another role when one role is not available. The activity A2:
Record response should be re-assigned to PC Member #1.



308 CHAPTER 20. EVALUATION OF A COOPERATIVE PCE

3. Change negotiation strategy in N1. The new negotiation strategy N2, involves
three steps:

S1 All actors that have selected conflicting objects, will be asked to ”un-select”
these objects at the same time. The main difference with this this step and
S2 in N1, is that this step is executed in parallel while S2 in N1 is executed
sequentially.

S2 For the remaining conflicting objects, a communication channel is opened be-
tween actors that have selected the same conflicting object. By using this
communication channel (e.g. talk, IRC or similar), the actors can give argu-
ments for who should ”unselect” this object. For paper reviewing, expertise
within a certain research field can be used as an argument.

S3 For the remaining conflicting objects, actors will picked out at random to ”un-
select” these object until the conflict is solved.

4. Change reviewer selection. In a new version of the activity A3, this activity is
monitored. If all reviewers are not allocated within a certain time, PC Chair will
make a list of reviewers without any intervention from the PC Members.

20.6 Experimental Results

This section describes how the conference process was modelled in the three PCEs, and
some results from the modelling.

20.6.1 Modelling used by all three environments

To make it easier to compare the different PCEs and to reduce the modelling time, we
chose to represent all individual activities (opposed to cooperative activities) as web-
pages. For the user, the individual activities are shown as web-pages describing what
to do including HTML-forms, and have links to relevant tools and documents. All three
PCEs accessed the same HTML-files for presenting the activities to the users. In appendix
D, screenshots of the same activity (A1.1) is shown for the three PCEs as webpages (figure
D.2 (Endeavors), figure D.4 (ProcessWeb), and figure D.6 (CAGIS PCE)). In Endeavors,
a Java-based user-interface for explicitly notifying that the activity is finished is needed
as shown in figure D.3. Endeavors also shows the animation of the process in activity
networks as shown in figure D.1. In the CAGIS PCE, an agenda tool shows the agenda
for users as shown in figure D.5. A tool for showing the agenda can also be implemented
in ProcessWeb and Endeavors.



20.6. EXPERIMENTAL RESULTS 309

20.6.2 Modelling the Process in Endeavors

The modelling in Endeavors consisted of two main parts: The implementation of the
handlers, and the graphical modelling of the process. A handler is executed when an
activity in Endeavors is executed. We chose to implement the handlers in Java, since also
the Endeavors framework is implemented in Java. The following activity handlers were
implemented:

H1 Show HTML handler This handler was used to show HTML for individual web-
pages. In addition, we used this handler to provide the cooperative activities Select
paper (A3.1), Check paper for session (A6.2.2), and Check timeslot for session
(A6.2.4). A3.1, A6.2.2 and A6.2.4 accessed a database through HTML-forms us-
ing CGI. The Java source for this handler is shown in appendix F in figure F.11.

H2 Allocation handler The allocation handler is responsible for detecting conflicting
objects for current actor by accessing a database (Paper-list or Session-schedule)
through a CGI. In addition, this handler will initiate the negotiation process (N1)
as described in section 20.5.8. The Java source for an activity handler for paper
allocation is shown in appendix F in figure F.12.

When the allocation handler is invoked, the user will be prompted with one of three
possible user interfaces:

1. No allocation conflicts. This user interface will be shown if the user have
selected no conflicting objects. This user interface is shown in figure E.1 in
appendix D.

2. User is forced to ”unselect object”. This user interface is shown if S1 or
S3 for current user is true (see negotiation process N1 in section 20.5.8). A
screenshot of this user interface is shown in figure E.2.

3. User is asked to ”unselect object”. This user interface is prompted if S2 for
current user is true. This user interface is shown in figure E.3.

20.6.3 Modelling the Process in ProcessWeb

The conference organising process was in ProcessWeb modelled in two parts. The first
part modelled all individual activities, while the second part modelled cooperative activi-
ties.

Modelling the individual activities

The individual process was modelled as three roles: PC Chair, PC Member, and Session
Chair. Each role has several states representing the activities that this particular role is
responsible for. For each state, HTML was used to provide a user interface representing
each activity. The role changes state when the user click on a button in an HTML-form,



310 CHAPTER 20. EVALUATION OF A COOPERATIVE PCE

notifying ProcessWeb to change state. Interaction channels were implemented between
roles, making it possible for e.g., notify the PC Member when PC Chair had finished an
activity. The ProcessWeb PML source code is listed in appendix in G.1. In addition, a
screenshot from ProcessWeb executing the activity A1.1 and A1.2 is shown in figure D.4.
The reason for both A1.1 and A1.2 is shown in the same browser, is that these activities
are executed in parallel.

Modelling the cooperative activities

Only the cooperative activities A6.2.4 and A6.2.5 were implemented in ProcessWeb. The
reason for this was, that the other cooperative activities were similar and did not give
any new challenges. The implementation of A6.2.4 and A6.2.5 was carried out by Mark
Greenwood4. This was done to get an expert to implement the more complicated as-
pects of the scenario. In appendix G.2 the PML source for the activities A6.2.4 and
A6.2.5 is listed. These activities have been modelled through two roles: SessionChair
and TimeTable. In the SessionChair role, the user can select what timeslots (s)he is in-
terested in. The TimeTable role is the role responsible for the allocation of timeslots for
different sessions. From the TimeTable role, the allocation process is initiated, includ-
ing the negotiation process N1 described in 20.5.8. In appendix E, figure E.4 shows a
screenshot for the SessionChair role, and figure E.5 shows a screenshot for the TimeTable
role.

20.6.4 Modelling the Process in CAGIS PCE

In CAGIS PCE, the scenario was modelled as CAGIS SimpleProcess PML, as a Glue-
Model and as cooperative agents.

CAGIS SimpleProcess model

The CAGIS SimpleProcess PML was used to model the individual activities in the con-
ference organising scenario. All activities was described as < activity > elements in an
XML-document as shown in appendix H.1. Screenshots from demonstrating enactment
of this process is shown in appendix D in figure D.5 and figure D.6. The former shows
the agenda tool in SimpleProcess, while the latter shows the activity A1.1 enacted.

GlueModel

The GlueModel is used to model the relationships between the cooperative activities in
CAGIS SimpleProcess model (previous paragraph) and the cooperative agents (next para-
graph). The GlueModel contains six process fragment - agent pairs for the activities A3.1,
A3.2, A6.2.2, A6.2.3, A6.2.4, and A6.2.5. In appendix H.2, the GlueModel for these ac-
tivities are listed. For the selection activities (A3.1, A6.2.2, and A6.2.4), the GlueModel

4Mark Greenwood works for the the Informatics Process Group at University of Manchester



20.7. EVALUATION OF THE THREE PCES 311

specifies that selection agents are used for selecting papers or timeslots. If the selection
agent fails, current activity will be re-executed. The GlueModel further specifies that for
the allocation activities (A3.2, A6.2.3, and A6.2.5), negotiation agents are initiated. If the
allocation (of papers or timeslots) performed by the negotiation agents goes well, the next
activity in SimpleProcess will be executed. If the negotiation process discovers that the
user has to select more papers or timeslots, an activity for selecting papers or timeslots
will be executed.

Cooperating agents

Cooperating agents are used in this scenario for selecting papers and timeslots, and for
allocating the same resources. The agents used are mobile, and will move from a central
agent meeting place (AMP) to workspaces for the users. The Java code for a selection
agent is shown in appendix H.3.1, and the Java code for an allocation agent is shown
in appendix H.3.2. When a selection agent visits a user in her/his workspace, the user-
interface as shown in figure E.6 in appendix E is presented. Depending on the steps S1-S3
in the negotiation process N1 (see section 20.5.8), one of the following user interfaces will
be prompted the user as shown in figure E.7, figure E.8, or figure E.9 respectively.
Cooperative agents is a separate research field, and we have done little on detailing coop-
erative/negotiation agents, and providing a rich infrastructure for such agents.

20.7 Evaluation of the three PCEs

In this section we will compare Endeavors, ProcessWeb and CAGIS PCE.

20.7.1 Coverage of the scenario

Table 20.2 shows results from measuring coverage and modelling time for modelling
the conference scenario in the three PCEs. Note that additional time was used to create
HTML for the individual activities used in all PCEs, and is not shown in the table.

The first research question we wanted to evaluate, was how complete the three different
PCEs could model the conference organising scenario. For individual activities, all PCEs
could completely model all activities. For cooperative activities (A3.1, A3.2, A6.2.2,
A6.2.3, A6.2.4, and A6.2.5 5), we had some problems in modelling the allocation of
papers and timeslots in Endeavors. The problem was how to represent negotiation process
between different roles in an activity-network. We chose to solve this problem by invoking
an allocation handler for each role at a time. After all roles had activated their allocation
handler, the databases were checked to see if there were remaining paper or timeslots
conflicts. If there were more conflicts, the same allocation handlers for all roles involved
were executed again. This loop continued until all conflicts were solved. Figure F.4 shows

5The cooperative activity A5.3 was not modelled by any PCEs



312 CHAPTER 20. EVALUATION OF A COOPERATIVE PCE

graphical process model of A3: Reviewer selection, where a loop with A3.2 for all roles
involved (here five) models the allocation process.

Modelling Endeavors ProcessWeb CAGIS PCE
Individual activities 100 % 100 % 100 %
Cooperative activities 80 % 100 % 100 %
Modelling time for individual activities 6 hours 10 hours 3 hours
Modelling time for cooperative activities 10 days 2 days 5 days

Table 20.2: Coverage of scenario modelled

The modelling time in table 20.2 shows that for individual activities most time was used in
ProcessWeb and least in CAGIS PCE, where Endeavors comes in between. One explana-
tion could be that the modeller was most familiar with CAGIS PCE. However modelling
the individual activities in Endeavors and ProcessWeb was very straight forward, and we
were not delayed by any time consuming problems. The difference in modelling time can
be explained as following:

� ProcessWeb. The PML in ProcessWeb is close to a textual object-oriented pro-
gramming language. This means that the modeller needs to “program” the process
as roles with different states representing the activities the role is responsible. In ad-
dition, the modeller has implement the infrastructure for interaction between roles,
role assignments, and role configuration. The main reason more time had to be used
to model in ProcessWeb, was that the model had to be “programmed” and addition
configuration and infrastructure had to be modelled.

� Endeavors More time was spent on modelling in Endeavors compared to CAGIS
PCE, because in Endeavors we had to implement an activity handler that initiated
an HTML-document in a Web-browser. If we don’ t consider the time spent on
implementing the activity handler, Endeavors was more efficient for modelling the
individual activities than CAGIS PCE.

According to table 20.2, ProcessWeb is the most efficient PCE for modelling cooperative
activities. The reason for this is that the PML used in ProcessWeb is designed to efficiently
implement role-interaction. CAGIS PCE used an agent-API to implement the coopera-
tive activities. The current version of our CAGIS agent-API is too low-level for efficient
cooperative activity modelling. It should also be noted, that the user interface used in the
CAGIS PCE was more advanced compared to simple web-interface in ProcessWeb. In
Endeavors the cooperative activities was implemented in Java from scratch, making this
the least efficient approach. Richard N. Taylor at UCI6 has suggested to use globally visi-
ble blackboard for papers and timeslots in Endeavors, accessed by various roles. This was

6Professor Richard N. Taylor works for Department of Information and Computer Science, University
of California, Irvine



20.7. EVALUATION OF THE THREE PCES 313

not implemented because the documentation for implementing such blackboards were not
available.

20.7.2 Adaptability of Process Change

This subsection describes how efficient the three PCE can adopt to the process changes
described in section 20.5.11. In all of Endeavors, ProcessWeb and CAGIS PCE, the
process model can be changed during enactment. In Endeavors, the process model can
graphically be manipulated during enactment, and activity handlers can dynamically be
changed as well. In ProcessWeb, a process change is provided by extracting data and state
from a current role, a new role definition replaces the current role, and the extracted data
and state is restored in the new role definition. The CAGIS PCE, the activity network can
be changed by moving process fragments to another workspace or another place in the
workspace.

In table 20.3, the ability measures are mapped to different process changes to the three
PCEs. The first two process changes were implemented while the last two were not. For
the latter, we have investigated how to implement these process changed and we have
estimated how much effort these change requires. The result reflects how much effort
must be spent to implemented the change, and is scaled 1-5 (where 5 is Very little effort
and 1 is Very strong effort):

Process change Endeavors ProcessWeb CAGIS PCE
1. Change activity sequence 5 3 5
2. Assign activity to another role 5 2 5
3. Change negotiation strategy 1 3 5
4. Change reviewer selection 1 3 5

Table 20.3: PCE adaptability to Process changes

Here are comments on results for each process change (1-4) shown in table 20.3:

1. Change the activity sequence In Endeavors, to do this process change, you sim-
ply have to remove two control flow arcs and add two new ones. In ProcessWeb
this particular process change depends on how the activities are represented in the
roles. If the activities are represented as states in the role, some if-sentences must
be changes to change the activity sequence. The changed role definition must in
addition be compiled into the system, and the role must be modified to get the new
behaviour. In CAGIS PCE, to change an activity sequence, you simply state where
you want to move the activities (the process fragment).

2. Assign an activity to another role In Endeavors role assignment can be changed
by editing the AssignedTo attribute for an activity through Endeavors graphical user



314 CHAPTER 20. EVALUATION OF A COOPERATIVE PCE

interface. In ProcessWeb assigning an activity to another role is more complicated.
First, the PML code describing the activity must be transfered from one role to
another. Second, the PML code for both roles (source and target roles) must be
changed to cope with the removal of activity in the source role and adding the ac-
tivity in the target role. Third, PML code for both roles must be compiled, and both
roles must be modified to their new behaviour. The reason it is hard to assign an ac-
tivity to another role in ProcessWeb, is that the role is the unit of change. This prob-
lem can be avoided by modelling all activities as separate roles. In CAGIS PCE,
hierarchical workspaces are used to represent roles. To re-assign an activity to an-
other role, this activity is simply moved to another workspace.

3. Change negotiation strategy We have not considered the effort of implementing
the new negotiation strategy, but rather how to integrate an already implemented
negotiation strategy into the process. In Endeavors, it is rather hard to implement
the N2 negotiation strategy (described in section 20.5.11). This is because it is hard
to represent a network of interacting roles using an activity-based process formal-
ism. The new negotiation strategy demands communication across different roles,
and is hard to represent in an activity network. ProcessWeb is probably the best
environment for implementing the new negotiation strategy, but to incorporate this
strategy with existing roles can be hard. N2 demands extensive changed in the roles
that can make it hard to migrate from an old role definition to new one. If this
process change was known in advance, the process model could be implemented to
handle such massive changes. It should be noted this problem has been addressed
in ProcessWeb through support for meta-process. A process architecture is used to
provide support for a generic change making migration easier. Essentially making
one change is hard, but with a meta-process you can spread this cost over many
changes over the lifetime of your system. In CAGIS PCE, it is very easy to change
negotiation strategy by editing the GlueModel for the process fragments involving
negotiation agents. To implement the N2 in the agent system is probably more
time consuming than using ProcessWeb, but it is really easy to change negotiation
strategy if a matching implementation (cooperative pattern) is already available.

4. Change reviewer selection This process change demands that the activity A3: Re-
viewer selection is monitored and if three reviewer are not allocated to all papers
within a certain time, PC Chair will do the reviewer selection. In Endeavors this
process change can be implemented by adding timeout functionality for the activity
handlers in A3. When the timeout event occur, a control activity can be used to
route the workflow to PC Chair that have to do the reviewer selection on her/his
own. This process change demands a lot of changes in both the activity handlers
and the activity network. In ProcessWeb this process change is easier to implement,
but will also demand some effort. The role assigned originally for A3 (PC Mem-
ber) need to have a timeout function for selecting and allocating reviewer to papers.
When this timeout function is triggered, a message is sent to the PC Chair role that
(s)he must do the reviewer to paper allocation. This means that the PC Chair and
the PC Member role definitions must be changed and the communication channel



20.7. EVALUATION OF THE THREE PCES 315

between them must be configured. In CAGIS PCE the GlueModel can be used to
implement this process change. A monitor agent will monitor the reviewer alloca-
tion agents and if they are not finished within a certain time, the monitor agent will
notify the GlueServer. The GlueServer will then initiate an execution of a Reviewer
selection process fragment for PC Chair. The definition of the Reviewer selection
process fragment for PC Chair must be defined. Since monitor agents is a part of the
CAGIS DIAS, changes must be made in the GlueModel, and an additional process
fragment for reviewer selection for PC Chair must be defined.

20.7.3 Reflection on the Evaluation

Looking back on the research questions in section 20.3.2, we can from the results in
the two above sections say that a combination of a traditional workflow system and a
software agent system is better compared to a stand-alone workflow system to model and
enact cooperative processes and adapt to process changes. Some objections can however
be raised to this statement:

O1 The selection of scenario is biased. The reason for selecting the conference or-
ganising scenario was in order to use a scenario that was already described in the
literature (external validity). One important question is to ask whether the conclu-
sion of this evaluation is valid for other scenarios describing cooperative processes.
To answer this question, we have to look at how the conference scenario has been
modelled. We have distinguished between individual and cooperative activities.
Individual activities are activities where one role is assigned for performing this ac-
tivity. In cooperative activities, several roles are involved in performing the activity.
We believe that as long as other scenarios are modelled by distinguishing between
individual and cooperate activities, the evaluation result will be valid. If another
approach is used to model the process, the evaluation result is not necessary valid.

O2 More experience with your own environment. A problem with our experiment,
is that we are more experienced with our own environment than the others. This
means that the modelling time can be unreliable. To address this problem, we
spent about one week to exercise process modelling in Endeavors and about one
month with modelling process in ProcessWeb. The reason more time was spent
on ProcessWeb, was that the author had used ProcessWeb for modelling before the
experiment was planned. In addition, we had no time-consuming problems when
modelling the individual activities in Endeavors and ProcessWeb. For cooperative
activities a modelling expert in ProcessWeb was used, but not for Endeavors. This
means that the modelling time for cooperative activities activities is likely to be less
if an expert had been used. However, since modelling interaction between roles
in Endeavors is not a part of the process modelling language, it is likely that the
evaluation result will be the same.

O3 Statistical invalid data. Using only one target process (conference process) we can
not statistically validate our two research questions only based on the quantitative



316 CHAPTER 20. EVALUATION OF A COOPERATIVE PCE

data we have collected. For a statistically valid experiment, data should be collected
from several scenarios modelled in the three PCEs. The collected data has only
been used as an indication of the evaluation result, and qualitative discussions have
enlighten the results from data collection.

O4 The selection of process changes is biased. We have tried to pick out process
changes that are likely to occur in the conference scenario. It is possible that our se-
lection is to limited, and more changes should be considered. Other process changes
could have indicated a more nuanced score for the three PCEs. However, we believe
that the selected process changes represent a wide spectrum of possible changes
making the result believable.

It should be noted that Endeavors and ProcessWeb are much more mature environments
compared to CAGIS PCE, and they offer richer semantics for expressing the process. In
CAGIS PCE, we have used agents to provide the functionality that we lose through having
only a simple workflow model. Since the agent-API is still to low-level, more advanced
workflow can be time consuming to implement in CAGIS PCE.

20.8 Conclusion

In this report we have endeavoured to investigate if a combined workflow - agent system is
better able to model cooperative processes and to implement to process changes compared
to a stand-alone workflow system. We have modelled a conference organising scenario in
the PCEs Endeavors, ProcessWeb, and CAGIS PCE, and collecting some data during the
modelling of the scenario. Our collected data and discussions indicate that the combined
approach performs very well in respect to cooperative processes and process changes.
This result is an encouragement to continue our research.

This evaluation was mainly performed by the author. For similar future evaluations, we
would like to avoid this approach to ensure the validity of the results. One approach
could be to use students that are not familiar with any of the PCEs, give them a proper
introduction to the PCEs (the same amount), and let them model some processes. By using
this approach, we would be able to collect more data, and could make some statistical
analysis. A problem would be to find and pick descriptions of neutral scenarios that not
favour one of the PCEs. Another approach would be to use experts on each PCE to model
processes. A problem with this approach is to deal with interpretations of the scenarios.
Also if the experiment was not controlled, it could be possible to fake the measurements.
We can conclude that doing such experiments are really hard and time-consuming.

The main contribution of our work is the GlueServer, making it possible to define cou-
plings between activity-based workflow and software agents. With regards to efficiently,
ProcessWeb was the best environment to model cooperative activities. When the ac-
tivity handlers had been implemented in Endeavors, Endeavors was most efficient for
modelling individual activities. Future work should therefore investigate how a com-



20.8. CONCLUSION 317

bination of Endeavors, ProcessWeb and CAGIS GlueServer would work (federation of
workflow systems). This combination features solid and rich modelling support for both
individual and cooperative activities, where the CAGIS GlueServer acts as a middleware.
Further, the GlueServer can be used to combine more than two workflow systems, allow-
ing loosely coupled, autonomous entities choose their own workflow tool. In this way,
the CAGIS PCE provides cooperative support for a heterogeneous environment. Current
implementation for the CAGIS GlueServer does not yet provide a federation of work-
flow systems through Workflow Management Coalition’s interoperability workflow-XML
binding. Other APIs should also be considered.

Acknowledgements

First we would like to thank Mark Greenwood for modelling parts of the conference man-
agement process in ProcessWeb, and for giving valuable feedback during the experiment.
We would also like to thank Reidar Conradi, Ian Robertson, Richard N. Taylor, and Letizia
Jaccheri for useful comments.



318 CHAPTER 20. EVALUATION OF A COOPERATIVE PCE



Part IV

Appendix

319





APPENDIX A

CAGIS DIAS Design Specifications

Here is a summary of the design specifications of the CAGIS Distributed Intelligent Agent
System (DIAS) extracted from the technical report [PHBN99, HN00, SW00].

A.1 Agent Design Specifications

This subsection describes the design specifications for the different types of agents in the
DIAS. There are three main categories of agents; system agents, participation agents, and
user agents.

A.1.1 System Agents

System agents administrate the Agent Meeting Places (AMPs) in the DIAS II architecture.
All system agents are stationary agents.

Manager Agents

The manager agent is responsible for managing the AMPs, and need to correspond to the
following design specifications:

[D1] Enable creation and deletion of AMPs.
[D2] Enable user clients to connect to an AMP.
[D3] Register new agents in AMPs.

321



322 APPENDIX A. CAGIS DIAS DESIGN SPECIFICATIONS

[D4] Clean up when an agent has left an AMP.
[D5] Advertise an AMP to other AMPs.
[D6] Register information about other AMPs.

Facilitator Agents

These agents play an important role when agents communicate, and need to correspond
to the following design specification:

[D7] Find a suitable receiver of a message when the receiver ID is
not specified.

Monitor Agents

The monitor agents are logging events in AMPs and watching security. A monitor agent
must:

[D8] Log agents when they arrive and leave an AMP.
[D9] Log messages sent between agents when they are sent via an

facilitator agent.
[D10] Make sure the security policy is upheld.

Repository Agents

These agents access repositories and must correspond to the following design specifica-
tions:

[D11] Retrieve required information in repositories on behalf of a
user or other agents.

[D12] Insert information in repositories on behalf of a user or
other agents.

Mediation Agents

These agents work for an agreement between negotiation agents. Meditation agents
should:

[D13] Force an agreement between negotiating agents if the
negotiation has taken too much time or used too many
interactions (specified by an administrator). Mediation is



A.1. AGENT DESIGN SPECIFICATIONS 323

performed on behalf of a negotiation agent or predefined rules
found in a repository.

Interface Agents

These agents are connected to the ORB and must correspond to the following design
specifications:

[D14] Connected to the ORB.
[D15] Implement the MASIF interfaces.
[D16] Provide an interface for interaction with agents in the DIAS

system.
[D17] Registered in the Implementation Repository of the ORB. This

means that the Interface Agent must know which server classes
that are supported on the server. The ORB uses this
information to locate active objects.

A.1.2 Participation Agents

Participation agents can either be stationary or mobile, and facilitates communication
between agents.

Communication Agents

These agents facilitates communication between agents, and must correspond to the fol-
lowing design specifications:

[D18] Bring a message from one agent to another when the agents are
situated in different AMPs.

[D19] Provide a mechanism for telling the sender of the message
whether the messages was received or not, or whether some
error occurred during sending.

Negotiation Agents

Negotiation agents provide help for a user or other agents to reach an agreement, and must
correspond to the following design specifications:

[D20] Negotiate on behalf of the user or other agents
[D21] Negotiate within a number of interaction or within a

predefined time quantum.



324 APPENDIX A. CAGIS DIAS DESIGN SPECIFICATIONS

[D22] Perform all negotiations in an AMP.
[D23] Negotiation agents can be interrupted by a mediating agent if

NA.2 fails.

KQML Agents

A KQML agent enables the user to directly send messages from a user to agents in DIAS,
and must correspond to the following design specifications:

[D24] Provide a simple GUI for entering KQML performatives and
parameters.

[D25] One KQML agent should always be available at an AMP.

A.1.3 User Agents

User agents are agents that are created to interact with the user. Such agents can either be
mobile or stationary, and must correspond to the following design specifications:

[D26] Must conform the the DIAS developer API.
[D27] Must be either mobile or stationary.

A.2 Agent Meeting Place Design Specifications

The Agent Meeting Place (AMP) is where agents interact and exchange messages and
services. An AMP must correspond to the following design specifications:

[D28] An agent should be able to register itself with the following
parameters according to the MASIF standard: Agent name, Agent
location, Agent system type, Language id, Agent description,
Major version, Minor version, and Agent properties.

[D29] Receive agents and allow the to reside in the AMP.
[D30] Enable possible rejection of agents based on security

violations.
[D31] Enable pausing of an agent by saving the agent to disk, and

later resume it.
[D32] Facilitate at least a facilitator agent, a manager agent, and

a monitor agent.
[D33] An AMP should be described according to the MASIF standard:

Agent place name, System type, Language map, Agent place
description, Agent place description, Major version, Minor
version, and Agent place properties.

[D34] Facilitate logging of events that takes place in the AMP.



A.3. AGENT INTERFACE DESIGN SPECIFICATIONS 325

[D35] Facilitate logging of messages sent to agents via the
facilitator agent.

[D36] Provide an administrator interface for removing agents.
[D37] Facilitate negotiation using negotiation agents in the AMP.
[D38] Facilitate mediation between negotiating agents according to

some specified parameters.
[D39] Inform other AMPs about its services.
[D40] Store information about other AMPs.

A.3 Agent Interface Design Specifications

Here is a list of design specifications that must be fulfilled to enable the agent system to
interact with users and other systems:

[D41] Interaction with other agent systems should be provided using
an Object Request Broker (ORB) with MASIF interface objects.

[D42] Agent system user clients enable the user to subscribe to AMPs
from her/his workspace.

[D43] Agent system user clients enable the user to initiate,
configure, interact, and terminate her/his agents.



326 APPENDIX A. CAGIS DIAS DESIGN SPECIFICATIONS



APPENDIX B

CAGIS SimpleProcess Design Specifications

CAGIS SimpleProcess is a simple workflow system providing the users with a web-
interface to interact with the system.

B.1 CAGIS SimpleProcess Architecture Design Specifi-
cations

The architecture of CAGIS SimpleProcess should correspond to the following design
specifications:

[D44] A process model can be a collection of coupled process model
fragments that can be distributed over several workspaces.

[D45] A process fragment can be moved from one workspace to another.
[D46] A process fragment definition can be edited locally in a

workspace.
[D47] Process fragments can be distributed on different sites.

B.2 CAGIS SimpleProcess PML Design Specifications

The CAGIS SimpleProcess Process Modelling Language (PML) should fulfil the follow-
ing design specifications:

327



328 APPENDIX B. CAGIS SIMPLEPROCESS DESIGN SPECIFICATIONS

[D48] A process model is described in XML.
[D49] A process has a name and can consist of one or more

process fragments.
[D50] A process fragment has a name and is associated with a

workspace, and consists of one or more activities.
[D51] An activity has a name, a state, a due time, a description, a

code, and is associated with a workspace.
[D52] Activities are linked by prelinks and postlinks, similar to

hyper-links. A prelink holds an identifier to an activity prior
to current activity. A postlink holds an identifier to an
activity that is going to be executed after current activity.

[D53] Feedback loops are allowed in activity networks.
[D54] An activity can have three states: Waiting, Ready, and Finish.
[D55] The code is used to hold HTML-code or an reference to a

HTML-file.

B.3 CAGIS SimpleProcess Tool Design Specifications

The CAGIS SimpleProcess tools should fulfil the following design specifications:

[D56] The CAGIS SimpleProcess tools should provide a interface
available through a standard web-browser.

[D57] The process server should manage the state information of
activities.

[D58] The process server should enable registration and initiation
of new activities.

[D59] The process server should enable removal of activities.
[D60] The process server should enable moving activities from one

workspace to another, and from one process server to another.
[D61] The process modeller should provide a simple HTML-interface

for entering, changing, removing and browsing activities.
[D62] The agenda manager should present agenda information for all

workspaces, and activate activities that are ready to be
executed.

[D63] The agenda manager should provide an interface for navigating
through the activity-network enabling users to explore
activity dependencies.

[D64] The monitor tool}, should enable an interface to monitor state
and progress of the process.



APPENDIX C

CAGIS GlueServer Design Specifications

The GlueServer is a middleware used to facilitate interaction between software agents
(CAGIS DIAS) and a workflow system (CAGIS SimpleProcess). Here is a summary of
design specifications for the GlueServer based on the design specifications described in
[Bjø00].

C.1 GlueServer Design Specifications

The GlueServer should correspond to the the following design specifications:

[D65] Enable an interface to CAGIS DIAS through a DIAS interface
agent.

[D66] Use CORBA to communicate to other systems (through MASIF).
[D67] Enable an interface to CAGIS SimpleProcess through a CGI

interface.
[D68] Enable to receive and process communication requests from

process fragments.
[D69] Be able to read GlueModels from some repository, and store it

as an internal structure.
[D70] Be able to find the correct process fragment - agent pair

based on information received from the workflow tool.
[D71] Execute the following reactions: Execute process fragment,

Move process fragment, Halt process fragment, Change and
re-execute process fragment, Add new process fragments, Remove
process fragment, Start new interaction by agent, Stop
interaction by agent, Create a new Agent Meeting Place, and
Remove Agent Meeting Place.

329



330 APPENDIX C. CAGIS GLUESERVER DESIGN SPECIFICATIONS

[D72] Provide a general interface to mobile agent systems defined by
OMG’s MASIF standard.

[D73] Provide a general workflow interface using the
interoperability workflow-XML binding framework.

C.2 GlueModel Design Specifications

The GlueModel should fulfil the following design specifications:

[D74] The GlueModel should be available as an XML-document.
[D75] The GlueModel should be according to the formalism below:

FRAGMENT-AGENT-PAIR
AGENT

(key AGENT-CLASS,
in AMP-ID,
in INTERACTOR+,
INTERACTION-TYPE,
RESULT)

PROCESS FRAGMENT
(key FRAGMENT-ID,
<RESULT : REACTION>*)



APPENDIX D

Screenshots from enacting Individual activities

This appendix shows screenshots of the user-interfaces for individual activities (not coop-
erative) in the conference scenario for the three different process centred environments;
CAGIS PCE, Endeavors, and ProcessWeb. The screenshots from the different PCEs are
quite similar, because all user interaction is provided through HTML and webpages.

In the figures D.2, D.4, and D.6 the activity “A1.1 Make call for papers” is shown for
Endeavors, ProcessWeb, and CAGIS SimpleProcess respectively. The main difference
between the way the activities are shown, is that CAGIS SimpleProcess and ProcessWeb
have additional interface for notifying the workflow system that the user is finished with
the activity A1.1. In Endeavors, an additional Java user-interface is used to notify the
workflow system that an activity is finished, as shown in figure D.3. CAGIS SimplePro-
cess also provides an agenda for each role in the process as shown in figure D.5. This
feature can also be implemented in Endeavors and ProcessWeb. Figure D.1 shows how
Endeavors animate the execution of the process.

331



332 APPENDIX D. SCREENSHOTS FROM INDIVIDUAL ACTIVITIES

Figure D.1: Execution of the activity A1.1 in Endeavors

Figure D.2: Activity A1.1 shown in Endeavors

Figure D.3: Interface to notify Endeavors that an activity in finished



333

Figure D.4: Activity A1.1 and A1.2 shown in ProcessWeb



334 APPENDIX D. SCREENSHOTS FROM INDIVIDUAL ACTIVITIES

Figure D.5: Agenda for PC Chair in CAGIS SimpleProcess



335

Figure D.6: The activity A1.1 in CAGIS SimpleProcess



336 APPENDIX D. SCREENSHOTS FROM INDIVIDUAL ACTIVITIES



APPENDIX E

Screenshots from enacting Cooperative Activities

This appendix shows screenshots taken from enactment of cooperative activities in En-
deavors, ProcessWeb and CAGIS PCE.

In Endeavors, one of three user interfaces can be prompted when allocating an object
(paper or timeslot):

O1 When there is no allocation conflict, the user interface in figure E.1 is shown.

O2 When a user is forced to “unselect” an object, the user interface in figure E.2 is
shown.

O3 When a user is asked to “unselect an object, the user interface in figure E.3 is shown.

These user interfaces are taken from the cooperative activity A6.2.3: Paper allocation.

In ProcessWeb, screenshots from the cooperative activities A6.2.4: Check timeslot for
session and A6.2.5: Session allocation have been taken. In figure E.4, we can see the
user interface used to request timeslots for Session Chair 1. In figure E.5, a screenshot of
the role Timetable is shown. The Timetable role is responsible for allocating timeslots to
sessions through negotiation steps S1-S3.

In CAGIS PCE, we have included screenshots from the cooperative activities A3.1: Select
paper, and A3.2: Reviewer allocation. Figure E.6 shows a screenshot from a Paper
selection agent (for activity A3.1). Figures E.7, E.8, and E.9 shows screenshots from the
Reviewer Allocation Agent in action.

337



338 APPENDIX E. SCREENSHOTS FROM COOPERATIVE ACTIVITIES

Figure E.1: No allocation conflicts for Session Chair 1 in Endeavors

Figure E.2: Session Chair 2 is forced to “unselect” a paper in Endeavors

Figure E.3: Session Chair 5 is asked to “unselect” a paper in Endeavors



339

Figure E.4: Session Chair 1 selects timeslots for session 1 in ProcessWeb



340 APPENDIX E. SCREENSHOTS FROM COOPERATIVE ACTIVITIES

Figure E.5: Timetable role for allocating timeslots for sessions in ProcessWeb



341

Figure E.6: Paper selection agent in CAGIS

Figure E.7: User is forced to “unselect” paper in CAGIS



342 APPENDIX E. SCREENSHOTS FROM COOPERATIVE ACTIVITIES

Figure E.8: User asked to “unselect” paper in CAGIS

Figure E.9: A random user is selected to “unselect” paper in CAGIS



APPENDIX F

Endeavors Process Model for the Conference Scenario

F.1 Graphical Process Models for the Scenario

In Endeavors, the activity network is modelled in the Endeavors Network Artist. This
section shows screenshots from the process model for the conference scenario. In figure
F.1, the high-level process is shown, where the rests of the figures shows decompositions
of this process.

F.2 Activity Handlers for the Scenario

There are two different activity handlers used for the conference organising process. The
activity handler Browser Execute shown in figure F.11, is used to start a web-browser
showing the user what to do or asking for information in a HTML-form. The second
handler Allocate Execute shown in figure F.12, is used to solve paper allocation conflicts
for reviewing. Similar handlers are also used to deal with other allocation problems.

343



344 APPENDIX F. PROCESS MODELS IN ENDEAVORS

Figure F.1: High-level process model of the conference process in Endeavors

Figure F.2: Activity A1:Plan and announce conference decomposed



F.2. ACTIVITY HANDLERS IN ENDEAVORS 345

Figure F.3: Activity A2:Record response decomposed

Figure F.4: Activity A3:Reviewer selection decomposed



346 APPENDIX F. PROCESS MODELS IN ENDEAVORS

Figure F.5: Activity A4:Paper review decomposed

Figure F.6: Activity A5:Determine acceptance of papers decomposed



F.2. ACTIVITY HANDLERS IN ENDEAVORS 347

Figure F.7: Activity A6.1:Suggest sessions decomposed

Figure F.8: Activity A6.2:Select papers and Plan sessions decomposed



348 APPENDIX F. PROCESS MODELS IN ENDEAVORS

Figure F.9: Activity A6.2.3:Paper allocation decomposed

Figure F.10: Activity A6.2.5:Session allocation decomposed



F.2. ACTIVITY HANDLERS IN ENDEAVORS 349

import BrowserControl;
import WaitDialog;

import java.awt.*;
import java.applet.Applet;
import java.util.Hashtable;
import java.util.Vector;
import Endeavors.Foundation.Services.CategoryHandler;
import Endeavors.Foundation.EndFoundation;

public class Execute extends CategoryHandler
{

public void run()
{

Integer id = (Integer) args.get("NodeID");

String title = EndFoundation.GetName(id);
String url = EndFoundation.Retrieve(id,"URI");
String role = EndFoundation.Retrieve(id,"AssignedTo");
String description = EndFoundation.Retrieve(id,"Description");

BrowserControl.displayURL(url);

String dialogstring = "Description: " + description + "\n"+
"Action: Execute tasks in the web-browser and press Done.";

WaitDialog wd = new WaitDialog(role,dialogstring,"Done");
wd.waitForDone();

}
} // Execute

Figure F.11: Activity handler for initiating a web-page



350 APPENDIX F. PROCESS MODELS IN ENDEAVORS

import SelectDialog;
import PaperDatabase;

import java.io.*;
import java.awt.*;
import java.applet.Applet;
import java.util.*;
import Endeavors.Foundation.Services.CategoryHandler;
import Endeavors.Foundation.EndFoundation;

public class Execute extends CategoryHandler
{

public void run()
{

Integer id = (Integer) args.get("NodeID");
String title = EndFoundation.GetName(id);
String url = EndFoundation.Retrieve(id,"URI");
String role = EndFoundation.Retrieve(id,"AssignedTo");
String description = EndFoundation.Retrieve(id,"Description");
String automate = EndFoundation.Retrieve(id,"Automate");

PaperDatabase paperdatabase = new PaperDatabase();
boolean conflict = paperdatabase.CheckConflict(role);

if (conflict) {
boolean most_papers = paperdatabase.CheckMostPapers(role);

if (most_papers) {
String dialogstring = description + "\n" + "This item will be unselected";
SelectDialog sd = new SelectDialog(role,dialogstring,"OK");
sd.waitForDone();

} else {
String dialogstring = description +"\n"+ "Do you want to unselect this item?";
SelectDialog sd = new SelectDialog(role,dialogstring,"Unselect",url);
sd.waitForDone();

}
} else {
SelectDialog sd = new SelectDialog(role,"No allocation conflicts","OK");
sd.waitForDone();

}

}
} // Execute

Figure F.12: Activity handler for dealing with paper allocation conflicts



APPENDIX G

ProcessWeb Process Model for the Conference
Scenario

This section is divided into two parts. The first section contains the PML code for the
individual activities modelled in ProcessWeb. The second section contains the PML code
for the cooperative activities modelled in ProcessWeb.

G.1 Process Model for Individual Activities

! Review model
!
! This is a simple process model of a paper review process.
! The process has four roles that interact with each other.

! SessionChair Role
! =================

SessionChair isa HKClient2 with
resources

giveNotification : giveport tableof Any ! Interaction with PCChair (output)
takeNotification : takeport tableof Any ! Interaction with PCChair (input)

state: Int := 0
result: Int := 0

wwwFile : String
receiveTable: tableof Any:= tableof Any ()
sendTable : tableof Any := tableof Any ()
parseTable : tableof Any := tableof Any ()

actions
! Set initial values for some variables
init : {

wwwFile := configuration.processWebHome ++ configuration.templateDirectory ++
’conference/sessionchair.html’;

parseTable(’$modelName’) := modelName;
parseTable(’$roleName’) := roleName;
state := 1;

} when state = 0 & configuration ˜=nil

351



352 APPENDIX G. PROCESS MODELS IN PROCESSWEB

initial_state: {
state := 2;
parseTable(’$message’) := ’’;
parseTable(’$state’) := state;
SendToUser(

gram=WWW_file(
file_name=wwwFile,
replacement_table=parseTable),

connection=userRolePorts);
} when state = 1

receive_selection: {
Take(

gram=cgi_data,
interaction=userRolePorts.userTakeport);

if cgi_data ˜= nil & cgi_data(’a621’) ˜= nil then
state := 4;

end if;

if cgi_data ˜= nil & cgi_data(’a622’) ˜= nil then
state := 5;

end if;

if cgi_data ˜= nil & cgi_data(’a623’) ˜= nil then
state := 6;

end if;

if cgi_data ˜= nil & cgi_data(’a624’) ˜= nil then
state := 7;

end if;

if cgi_data ˜= nil & cgi_data(’a625’) ˜= nil then
state := 8;

end if;

if cgi_data ˜= nil & cgi_data(’a626’) ˜= nil then
state := 9;
sendTable(’state’) := ’publish session’;

! Send notification to PCChair
GiveCopy(

gram=sendTable,
interaction=giveNotification);

end if;

parseTable(’$state’) := state;
SendToUser(

gram=WWW_file(
file_name=wwwFile,
replacement_table=parseTable),
connection=userRolePorts);

cgi_data := nil;

} when cgi_data = nil & userRolePorts ˜= nil & userRolePorts.userTakeport ˜= nil

receive_pcchair: {
Take(

interaction=takeNotification,
gram=receiveTable);

state := 3;
parseTable(’$state’) := state;

SendToUser(
gram=WWW_file(

file_name=wwwFile,
replacement_table=parseTable),

connection=userRolePorts);

} when takeNotification ˜= nil & state = 2
end with

! PCchair Role
! ============
PCChair isa HKClient2 with
resources

giveMessage : giveport tableof Any ! Interaction with SessionChair role
takeMessage : takeport tableof Any ! Interaction with SessionChair role
giveOrders : giveport tableof Any ! Interaction with PCMember role
takeToken : takeport tableof Any ! Interaction with PCMember role

state : Int := 0
state2: Int := 0
state3: Int := 0
reviewresult : Int := 0
a11: String
a12: String
paper: String



G.1. PROCESS MODEL FOR INDIVIDUAL ACTIVITIES 353

wwwFile : String
sendTable : tableof Any := tableof Any ()
receiveTable : tableof Any := tableof Any ()
parseTable : tableof Any := tableof Any ()

actions
init: {

wwwFile := configuration.processWebHome ++ configuration.templateDirectory ++
’conference/pcchair.html’;

parseTable(’$modelName’) := modelName;
parseTable(’$roleName’) := roleName;
parseTable(’$message’) :=’’;
state := 1;

} when state=0 & configuration ˜= nil

waiting: {
! A11 & A12
state := 2;
parseTable(’$state’) := state;
SendToUser(

gram=WWW_file(
file_name=wwwFile,
replacement_table=parseTable),

connection=userRolePorts);

} when state = 1

receive_selection: {
Take(

gram=cgi_data,
interaction=userRolePorts.userTakeport);

if cgi_data(’a11’) ˜= nil | cgi_data(’a12’) ˜= nil then
if cgi_data ˜= nil & cgi_data(’a11’) ˜= nil then

a11 := ’checked’;
end if;
if cgi_data ˜= nil & cgi_data(’a12’) ˜= nil then

a12 := ’checked’;
end if;
if a11 = ’checked’ & a12 = ’checked’ then

! A13
state := 3;

end if;
end if;
if cgi_data ˜= nil & cgi_data(’a13’) ˜= nil then

! A21 Check Response
state := 4;
sendTable(’state’) := ’review’;
GiveCopy(

gram=sendTable, ! Give orders to PCMember
interaction=giveOrders);

end if;
if cgi_data ˜= nil & cgi_data(’Response’) ˜= nil then

if cgi_data(’Response’) = ’Paper received’ then
! A22 Handle received paper
state := 5;

end if;
if cgi_data(’Response’) = ’Letter of intent’ then

! A23 Acknowledge letter of intent
state := 6;

end if;
if cgi_data(’Response’) = ’Late response’ then

! A24 Regret late response
state := 7;

end if;
end if;

if cgi_data ˜= nil &
( cgi_data(’a22’) ˜= nil | cgi_data(’a23’) ˜= nil | cgi_data(’a24’) ˜= nil ) then

! From either A22 | A23 | A24 Go back to A21
state := 4;

end if;

if cgi_data ˜= nil & cgi_data(’a51’) = ’finished’ then
state := 9;

end if;

if cgi_data ˜= nil & cgi_data(’a52’) = ’finished’ then
state := 4;
sendTable(’state’) := ’reviewmeeting’;
GiveCopy(

gram=sendTable, ! Give orders to PCMember
interaction=giveOrders);

end if;

if cgi_data ˜= nil & cgi_data(’a54’) = ’finished’ then
state := 11;

end if;

if cgi_data ˜= nil & cgi_data(’a611’) = ’finished’ then
state := 12;

end if;



354 APPENDIX G. PROCESS MODELS IN PROCESSWEB

if cgi_data ˜= nil & cgi_data(’a612’) = ’finished’ then
state := 13;

end if;

if cgi_data ˜= nil & cgi_data(’a613’) = ’finished’ then
state := 4;
sendTable(’state’) := ’session’;
GiveCopy(

gram=sendTable, ! Give orders to PCMember
interaction=giveMessage);

end if;

if cgi_data ˜= nil & cgi_data(’a7’) = ’finished’ then
state := 20;

end if;

! Generate UI feedback to PCChair
parseTable(’$a11’) := a11 as String;
parseTable(’$a12’) := a12 as String;
parseTable(’$state’) := state;

SendToUser(
gram=WWW_file(

file_name=wwwFile,
replacement_table=parseTable),

connection=userRolePorts);
cgi_data := nil;

} when cgi_data = nil & userRolePorts ˜= nil & userRolePorts.userTakeport ˜= nil

receive_pcmember: {
Take(

gram=receiveTable,
interaction=takeToken);

if receiveTable(’state’) = ’paper reviewed’ then
state := 8;

end if;
if receiveTable(’state’) = ’finished reviewmeeting’ then

state := 10;
end if;

! Generate UI feedback to PCChair
parseTable(’$message’) := ’’;
parseTable(’$state’) :=state;
SendToUser(

gram=WWW_file(
file_name=wwwFile,
replacement_table=parseTable),

connection=userRolePorts);
} when takeToken ˜= nil & state > 2

receive_sessionchair: {
Take(

gram=receiveTable,
interaction=takeMessage);

if receiveTable(’state’) = ’publish session’ then
state := 14;

end if;

! Generate UI feedback to PCChair
parseTable(’$message’) := ’’;
parseTable(’$state’) :=state;
SendToUser(

gram=WWW_file(
file_name=wwwFile,
replacement_table=parseTable),

connection=userRolePorts);

} when takeMessage ˜= nil & state > 2

end with

! PCmember Role
! =============
PCMember isa HKClient2 with
resources

giveMessage : giveport tableof Any ! Interaction with PCChair role
takeOrders : takeport tableof Any ! Interaction with PCChair role

state: Int := 0
paper: Int := 0

wwwFile : String
receiveTable : tableof Any := tableof Any ()



G.1. PROCESS MODEL FOR INDIVIDUAL ACTIVITIES 355

sendTable : tableof Any := tableof Any ()
parseTable : tableof Any := tableof Any ()

actions
init: {

wwwFile := configuration.processWebHome ++ configuration.templateDirectory ++
’conference/pcmember.html’;

! Need to define these to avoid trouble with HTML output
parseTable(’$modelName’) := modelName;
parseTable(’$roleName’) := roleName;
parseTable(’$message’) := ’’;

state := 1;
} when state=0

waiting: {
state := 2;
parseTable(’$state’) := state;
SendToUser(

gram=WWW_file(
file_name=wwwFile,
replacement_table=parseTable),

connection=userRolePorts);
} when state = 1

receive_pcchair: {
Take(

gram=receiveTable,
interaction=takeOrders);

if (receiveTable(’state’) = ’review’) then
state := 3;

end if;
if (receiveTable(’state’) = ’reviewmeeting’) then

state := 7;
end if;

parseTable(’$state’) := state;

SendToUser(
gram=WWW_file(

file_name=wwwFile,
replacement_table=parseTable),

connection=userRolePorts);
} when takeOrders ˜= nil

receive_selection: { ! send_paper
Take(

gram=cgi_data,
interaction=userRolePorts.userTakeport);

if cgi_data ˜= nil & cgi_data(’a31’) = ’finished’ then
state := 4;

end if;

if cgi_data ˜= nil & cgi_data(’a32’) = ’finished’ then
state := 5;

end if;

if cgi_data ˜= nil & cgi_data(’a41’) = ’finished’ then
state := 6;

end if;

if cgi_data ˜= nil & cgi_data(’a42’) = ’finished’ then
state := 2;
receiveTable(’state’) := ’paper reviewed’;
GiveCopy(

gram=receiveTable, ! Send token back to PCChair
interaction=giveMessage);

end if;

if cgi_data ˜= nil & cgi_data(’a53’) = ’finished’ then
state := 2;
receiveTable(’state’) := ’finished reviewmeeting’;
GiveCopy(

gram=receiveTable, ! Send token back to PCChair
interaction=giveMessage);

end if;

! Give UI feedback to the PCMember role
parseTable(’$state’) := state;
SendToUser(

gram=WWW_file(
file_name=wwwFile,
replacement_table=parseTable),

connection=userRolePorts);
cgi_data := nil;

} when cgi_data = nil & userRolePorts ˜= nil & userRolePorts.userTakeport ˜= nil
end with



356 APPENDIX G. PROCESS MODELS IN PROCESSWEB

!
! Need a BOOT role to instanciate the different roles
! in the process model
! ===================================================
ReviewBoot isa HKClient2 with

resources
userRolePorts_sessionchair, userRolePorts_pcchair : ModelUserRecord
userRolePorts_pcmember : ModelUserRecord

sessionchair, pcchair, pcmember : Role

! Interactions between the Roles
sessionchairGiveNotification, pcchairGiveOrders, pcmemberGiveOrders: giveport tableof Any
pcchairGiveMessage,pcmemberGiveMessage: giveport tableof Any

pcchairTakeMessage, pcmemberTakeOrders : takeport tableof Any
pcmemberTakeToken : takeport tableof Any
sessionchairTakeNotification, pcchairTakeToken : takeport tableof Any

sendReq_sessionchair, sendReq_pcchair, sendReq_pcmember : giveport HKRequest

reviewprocessClasses : Classes

startRoleBindings_sessionchair, startRoleBindings_pcchair : tableof Any
startRoleBindings_pcmember : tableof Any

warnings: String

actions
start_reviewprocess: {

! Create the interactions between roles
NewInteraction(

giver=sessionchairGiveNotification,
taker=pcchairTakeMessage);

NewInteraction(
giver=pcchairGiveMessage,
taker=sessionchairTakeNotification);

NewInteraction(
giver=pcchairGiveOrders,
taker=pcmemberTakeOrders);

NewInteraction(
giver=pcmemberGiveMessage,
taker=pcchairTakeToken);

! Create duplicates of the Housekeeper Interaction <sendReq>
Duplicate(

original=sendReq,
duplicate=sendReq_sessionchair);

Duplicate(
original=sendReq,
duplicate=sendReq_pcchair);

Duplicate(
original=sendReq,
duplicate=sendReq_pcmember);

! Create User Role for each role defined
CreateUserRole(

nodeID=nodeID,
roleName=’SessionChair’,
managerGiveport=managerGiveport,
newUser=userRolePorts_sessionchair);

CreateUserRole(
nodeID=nodeID,
roleName=’PCChair’,
managerGiveport=managerGiveport,
newUser=userRolePorts_pcchair);

CreateUserRole(
nodeID=nodeID,
roleName=’PCMember’,
managerGiveport=managerGiveport,
newUser=userRolePorts_pcmember);

! Set up the bindings for the four roles involved. The bindings
! are held in a table - the keys of the table should correspon
! to variable names used in the role classes.
startRoleBindings_sessionchair := tableof Any (

’roleName’ -> ’Reviewprocess SessionChair’,
’modelName’ -> modelName,
’giveNotification’ -> sessionchairGiveNotification,
’takeNotification’ -> sessionchairTakeNotification,
’sendReq’ -> sendReq_sessionchair,
’userRolePorts’ -> userRolePorts_sessionchair);

startRoleBindings_pcchair := tableof Any (
’roleName’ -> ’Reviewprocess PCChair’,
’modelName’ -> modelName,
’giveMessage’ -> pcchairGiveMessage,
’giveOrders’ -> pcchairGiveOrders,
’takeMessage’ -> pcchairTakeMessage,



G.2. COOPERATIVE ACTIVITIES MODELLED IN PROCESSWEB 357

’takeToken’ -> pcchairTakeToken,
’sendReq’ -> sendReq_pcchair,
’userRolePorts’ -> userRolePorts_pcchair);

startRoleBindings_pcmember := tableof Any (
’roleName’ -> ’Reviewprocess PCMember’,
’modelName’ -> modelName,
’giveMessage’ -> pcmemberGiveMessage,
’giveOrders’ -> pcmemberGiveOrders,
’takeOrders’ -> pcmemberTakeOrders,
’takeToken’ -> pcmemberTakeToken,
’sendReq’ -> sendReq_pcmember,
’userRolePorts’ -> userRolePorts_pcmember);

! Get the set of compiled classes from the environment
! of this role. This is necessary for the StartRole Action
GetRoleClasses(outputClasses=reviewprocessClasses);

! Create the role instances. The binding tables should
! ensure that all Interactions and User Roles are
! bound to the correct resources.
StartRole(

className=’SessionChair’,
roleInst=sessionchair,
inputClasses=reviewprocessClasses,
bindings=startRoleBindings_sessionchair,
warnings=warnings);

StartRole(
className=’PCChair’,
roleInst=pcchair,
inputClasses=reviewprocessClasses,
bindings=startRoleBindings_pcchair,
warnings=warnings);

StartRole(
className=’PCMember’,
roleInst=pcmember,
inputClasses=reviewprocessClasses,
bindings=startRoleBindings_pcmember,
warnings=warnings);

! Let Housekeeper know about the new Roles.
GiveCopy(

interaction=sendReq,
gram=HKRequest(

roleName=’SessionChair’,
roleAssoc=sessionchair,
request=’ADD’));

GiveCopy(
interaction=sendReq,

gram=HKRequest(
roleName=’PCChair’,
roleAssoc=pcchair,
request=’ADD’));

GiveCopy(
interaction=sendReq,

gram=HKRequest(
roleName=’PCMember’,
roleAssoc=pcmember,
request=’ADD’));

} when start_reviewprocess = nil
end with

G.2 Cooperative Activities Modelled in ProcessWeb

The cooperative activities described in the conference scenario are basically the same,
because they use the same negotiation strategy for solving conflicts. We will therefor
show the PML code just for two cooperative activities in this section: A6.2.4:Check
timeslot for session and A6.2.5:Session allocation. These two activities was modelled
by Mark R. Greenwood, Informatics Process Group at the University of Manchester.

The process modelling code for the activities A6.2.4 and A6.2.5 are described in the file
afsession.pml. Note that the file devstart.pml is needed in order to compile this file, but



358 APPENDIX G. PROCESS MODELS IN PROCESSWEB

this file was only used for debugging purposes.

G.2.1 afsession.pml

! Session allocation - afsession.pml
! RMG 16-10-00

! requires HKClient3, StartHK3 (devstart.pml)

RequestSlotMsg isa Entity with
parts
sessionName : String
slotName : String
remove : Bool := false

end with

SlotInfo isa Entity with
parts
allocated : String
possible : collof String

end with

TimeTableMsg isa Entity with
parts
! allocation : tableof SlotInfo
alloc_html : String
message : String

end with

AllocHTML isa Action with
out
alloc : tableof SlotInfo
alloc_html : String
slotnames : collof String

resources
slot, session : String

parts

do_it: {
alloc_html := ’<table border>\n<tr><th>Slot Name</th> <th>Allocated</th> <th>Requested</th>\n’;
forevery slot in slotnames do

alloc_html := alloc_html ++ ’<tr><td>’ ++ slot ++ ’</td>’;
if alloc(slot).allocated = nil then

alloc_html := alloc_html ++ ’<td> none </td>’;
else

alloc_html := alloc_html ++ ’<td>’ ++ alloc(slot).allocated ++ ’</td>’;
end if;
if lengthof alloc(slot).possible = 0 then

alloc_html := alloc_html ++ ’<td>()</td></tr>\n’;
elsif lengthof alloc(slot).possible = 1 then

alloc_html := alloc_html ++ ’<td>( ’ ++ alloc(slot).possible(1) ++ ’ )</td></tr>\n’;
else

alloc_html := alloc_html ++ ’<td>( ’;
forevery session in alloc(slot).possible do

alloc_html := alloc_html ++ session ++ ’ ’;
end do;
alloc_html := alloc_html ++ ’)</td></tr>\n’;

end if
end do;
alloc_html := alloc_html ++ ’</table>\n’;

} when do_it = nil

end with

FindMost isa Action with
out
conflict : SlotInfo
requests : tableof collof String
res : String

resources
max : Int := 0
sess : String

parts

find:{
forevery sess in conflict.possible do

if lengthof( requests(sess) ) > max then
max := lengthof( requests(sess) );
res := sess;

elsif lengthof( requests(sess) ) = max then



G.2. COOPERATIVE ACTIVITIES MODELLED IN PROCESSWEB 359

res := ’multiple’;
end if;

end do;
}
when max = 0

preconds
conflict ˜= nil & requests ˜= nil

postconds
res = ’multiple’ | res memberof conflict.possible

end with

RemoveRequests isa Action with
in
sess : String

out
alloc : tableof SlotInfo

resources
slot : String
slotnames : collof String
index : Int

parts
remove:{

Domain( table = alloc, collection = slotnames );
forevery slot in slotnames do

if sess memberof alloc(slot).possible then
RemoveAtIndex(

collection = alloc(slot).possible,
index = sess indexin alloc(slot).possible);

end if;
end do;

}
when remove = nil

end with

TimeTable isa HKClient3 with
resources
slots : collof String ! initialised at startup
sessions : collof String ! initialised at startup

! require lengthof(slots) = lengthof(sessions) * max_sessions
max_sessions : Int := 2

allocation : tableof SlotInfo := tableof SlotInfo ()
! the domain of allocation = slots

! requests and allocated could be derived from allocation
! but it is easier to have them separate to retrieve information
! by session name
requests : tableof collof String := tableof collof String ()
allocated : tableof collof String := tableof collof String ()

requestTP : takeport RequestSlotMsg
updateGPs : tableof giveport TimeTableMsg

phase : String := ’mark’
allocate_pending, finished : Bool := false

request : RequestSlotMsg
reply : TimeTableMsg
slot : String
session : String
index : Int

allocation_html : String

actions

init: {
if wwwFile = nil then
wwwFile := configuration.processWebHome ++ configuration.templateDirectory ++ ’examples/timet.htm’;

end if;
parseTable(’$lastmsg’) := ’No message has been sent’;
parseTable(’$modelName’) := modelName; ! <modelName> should have been set by Developer
forevery slot in slots do

allocation(slot) := SlotInfo(
allocated = nil,
possible = collof String () );

end do;
forevery session in sessions do

requests(session) := collof String();
allocated(session) := collof String();

end do;
AllocHTML( alloc=allocation, alloc_html=allocation_html,

slotnames=slots );



360 APPENDIX G. PROCESS MODELS IN PROCESSWEB

parseTable(’$allocation’) := allocation_html;
SendToUser(

gram=WWW_file(
file_name=wwwFile,
replacement_table=parseTable),

connection=userRolePorts);
} when

init = nil & ! i.e. only do the <init> action once
configuration ˜= nil ! <configuration> is set by an action in HKClient3

mark_timeslots: {
Take( interaction = requestTP, gram = request );
parseTable(’$lastmsg’) := request;
! assume request is fully-formed, no nil parts
! and request.slotName isin slots
if request.remove | request.slotName memberof requests(request.sessionName) then

GiveCopy( interaction = updateGPs(request.sessionName),
gram = TimeTableMsg(

message = request.slotName ++ ’ request/relinquish ignored’)
);

else
AddToCollection(

collection = allocation(request.slotName).possible,
item = request.sessionName );

AddToCollection(
collection = requests(request.sessionName),
item = request.slotName );

AllocHTML( alloc=allocation, alloc_html=allocation_html,
slotnames=slots );

parseTable(’$allocation’) := allocation_html;
forevery session in sessions do

reply := TimeTableMsg(alloc_html=allocation_html);
if session = request.sessionName then

reply.message := request.slotName ++ ’ request accepted’;
else

reply.message := ’update’;
end if;
Give( interaction = updateGPs(session),

gram = reply );
end do;

end if;
! parseTable(’$allocation’) := allocation;
parseTable(’$requests’) := requests;
SendToUser(

gram=WWW_file(
file_name=wwwFile,
replacement_table=parseTable),

connection=userRolePorts);
}
when phase = ’mark’

receive_selection:{
Take(gram=cgi_data, interaction=userRolePorts.userTakeport);
if cgi_data = nil then

cgi_data := tableof String(); ! for ease of parsing
end if;

phase := cgi_data(’phase’);
}
when userRolePorts ˜= nil

! First deal with allocation where there are no conflicts
! note one alloaction may lead to others as other requests are removed
! this action part also deals with allocation during conflict

first_alloc: {
index := 1;
while index <= lengthof(slots) do

slot := slots(index);
if lengthof( allocation(slot).possible ) = 1 then

session := allocation(slot).possible(1);
if lengthof( allocated(session) ) < max_sessions then

allocation(slot).allocated := session;
AddToCollection(

collection = allocated(session),
item = slot );

allocation(slot).possible := collof String();
RemoveAtIndex(

collection = requests( session ),
index = slot indexin requests(session) );

reply := TimeTableMsg(
message = slot ++ ’ allocated’ );

Give( interaction = updateGPs(session),
gram = reply );

end if;
if lengthof( allocated(session) ) = max_sessions then

requests(session) := collof String();
RemoveRequests(

sess = session,
alloc = allocation );

index := 1
else



G.2. COOPERATIVE ACTIVITIES MODELLED IN PROCESSWEB 361

index := index + 1
end if;

else
index := index + 1

end if;

end do;
AllocHTML( alloc=allocation, alloc_html=allocation_html,

slotnames = slots );
parseTable(’$allocation’) := allocation_html;
forevery session in sessions do

reply := TimeTableMsg(
alloc_html=allocation_html,
message = ’alloc update’);

Give( interaction = updateGPs(session),
gram = reply );

end do;
! parseTable(’$allocation’) := allocation;
parseTable(’$requests’) := requests;
SendToUser(

gram=WWW_file(
file_name=wwwFile,
replacement_table=parseTable),

connection=userRolePorts);
allocate_pending := false;
if phase = ’no_conflict’ then

phase := ’negotiate’;
end if;

}
when phase = ’no_conflict’ | allocate_pending

neg1:{
forevery slot in slots do

if lengthof(allocation(slot).possible) > 1 then
FindMost( conflict = allocation(slot),

requests = requests,
res = session );

if session ˜= ’multiple’ then
RemoveAtIndex(

collection = allocation(slot).possible,
index = session indexin allocation(slot).possible );

RemoveAtIndex(
collection = requests(session),
index = slot indexin requests(session) );

GiveCopy( interaction = updateGPs(session),
gram = TimeTableMsg(

message = slot ++ ’ relinquished negotiation phase 1’)
);
end if;
if lengthof(allocation(slot).possible) = 1 then

allocate_pending := true;
end if;

end if;
end do;
if ˜ allocate_pending then

AllocHTML( alloc=allocation, alloc_html=allocation_html,
slotnames = slots );

parseTable(’$allocation’) := allocation_html;
forevery session in sessions do

reply := TimeTableMsg(
alloc_html=allocation_html,
message = ’alloc update’);

Give( interaction = updateGPs(session),
gram = reply );

end do;

SendToUser(
gram=WWW_file(

file_name=wwwFile,
replacement_table=parseTable),

connection=userRolePorts);
end if;

! move to phase neg2 supplied from user interface
phase := ’negotiate’;

}
when phase = ’neg1’

neg2:{
forevery slot in slots do

if lengthof(allocation(slot).possible) > 1 then
forevery session in allocation(slot).possible do

GiveCopy( interaction = updateGPs(session),
gram = TimeTableMsg(

message = ’conflict ’ ++ slot ++ ’ please relinquish’)
);

end do;
end if;

end do;

parseTable(’$lastmsg’) := ’Negotiation phase 2 - requests sent’;
SendToUser(



362 APPENDIX G. PROCESS MODELS IN PROCESSWEB

gram=WWW_file(
file_name=wwwFile,
replacement_table=parseTable),

connection=userRolePorts);

! alter phase to avoid looping
phase := ’neg2b’

}
when phase = ’neg2’

unmark_timeslots: {
Take( interaction = requestTP, gram = request );
parseTable(’$lastmsg’) := request;
! assume request is fully-formed, no nil parts
! and request.slotName isin slots
if request.remove & request.slotName memberof requests(request.sessionName) then

slot := request.slotName;
session := request.sessionName;
RemoveAtIndex(

collection = allocation(slot).possible,
index = session indexin allocation(slot).possible );

RemoveAtIndex(
collection = requests(session),
index = slot indexin requests(session) );

GiveCopy(
interaction = updateGPs(session),
gram = TimeTableMsg(

message = slot ++ ’ relinquish accepted’)
);

if lengthof( allocation(slot).possible ) = 1 then
allocate_pending := true;
! first_alloc will run and send revised allocation

else
AllocHTML( alloc=allocation, alloc_html=allocation_html,

slotnames = slots );
parseTable(’$allocation’) := allocation_html;
forevery session in sessions do

reply := TimeTableMsg(
alloc_html=allocation_html,
message = ’alloc update’);

Give( interaction = updateGPs(session),
gram = reply );

end do;
end if;

else
GiveCopy( interaction = updateGPs(request.sessionName),

gram = TimeTableMsg(
message = request.slotName ++ ’ relinquish/request ignored’)

);

end if;
! parseTable(’$allocation’) := allocation;
parseTable(’$requests’) := requests;
SendToUser(

gram=WWW_file(
file_name=wwwFile,
replacement_table=parseTable),

connection=userRolePorts);
}
when phase = ’neg2b’
! could have guard phase = ’neg2b’ & ˜allocate_pending

neg3: {
finished := true;
forevery slot in slots do

if lengthof (allocation(slot).possible) > 1 then
session := allocation(slot).possible(1);
! not very random ?
RemoveAtIndex(

collection = allocation(slot).possible,
index = 1 );

RemoveAtIndex(
collection = requests(session),
index = slot indexin requests(session) );

GiveCopy(
interaction = updateGPs(session),
gram = TimeTableMsg(

message = slot ++ ’ relinquish negotiation phase 3’)
);

end if;
if lengthof( allocation(slot).possible ) = 1 then

allocate_pending := true;
finished := false;

end if;
end do;
if finished then

! parseTable(’$allocation’) := allocation;
parseTable(’$requests’) := requests;
SendToUser(

gram=WWW_file(
file_name=wwwFile,



G.2. COOPERATIVE ACTIVITIES MODELLED IN PROCESSWEB 363

replacement_table=parseTable),
connection=userRolePorts);

end if;
}
when phase = ’neg3’ & ˜allocate_pending & ˜finished

end with

SessionChair isa HKClient3 with
resources
sessionName : String
slots : collof String
! allocation : tableof SlotInfo := tableof SlotInfo ()
alloc_html : String := ’No sessions have been requested’

requestGP : giveport RequestSlotMsg
updateTP : takeport TimeTableMsg

update : TimeTableMsg
message : RequestSlotMsg
log : collof String := collof String()

actions

init: {
if wwwFile = nil then
wwwFile := configuration.processWebHome ++ configuration.templateDirectory ++ ’examples/sessc.htm’;

end if;
parseTable(’$sessionName’) := sessionName;
parseTable(’$msgsent’) := ’No message has been sent’;
parseTable(’$modelName’) := modelName; ! <modelName> should have been set by Developer

parseTable(’$allocation’) := alloc_html;

parseTable(’$slots’) := HTMLOptionList(
name = ’slot_name’,
options = slots,
size = 10);

parseTable(’$log’) := ’’;
parseTable(’$cgierr’) := ’’;
SendToUser(

gram=WWW_file(
file_name=wwwFile,
replacement_table=parseTable),

connection=userRolePorts);
} when

init = nil & ! i.e. only do the <init> action once
configuration ˜= nil ! <configuration> is set by an action in HKClient3

rec_update: {
Take(interaction = updateTP, gram = update );
if update.message ˜= ’update’ then

AddToCollection(
collection = log,
item = update.message );

end if;
if update.alloc_html ˜= nil then

alloc_html := update.alloc_html;
end if;
parseTable(’$allocation’) := alloc_html;
parseTable(’$log’) := log;
SendToUser(

gram=WWW_file(
file_name=wwwFile,
replacement_table=parseTable),

connection=userRolePorts);
}
when updateTP ˜= nil

receive_selection:{
Take(gram=cgi_data, interaction=userRolePorts.userTakeport);
if cgi_data = nil then

cgi_data := tableof String(); ! for ease of parsing
end if;

if cgi_data(’session_cmd’) = ’request’ & cgi_data(’slot_name’) memberof slots then
message := RequestSlotMsg(

sessionName = sessionName,
slotName = cgi_data(’slot_name’));

GiveCopy(
interaction = requestGP,
gram = message);

parseTable(’$lastmsg’) := message;
parseTable(’$cgierr’) := ’’;

elsif cgi_data(’session_cmd’) = ’relinquish’ & cgi_data(’slot_name’) memberof slots then
message := RequestSlotMsg(

sessionName = sessionName,
slotName = cgi_data(’slot_name’),
remove = true );

GiveCopy(



364 APPENDIX G. PROCESS MODELS IN PROCESSWEB

interaction = requestGP,
gram = message);

parseTable(’$lastmsg’) := message;
parseTable(’$cgierr’) := ’’;

else
parseTable(’$cgierr’) := cgi_data;
SendToUser(

gram=WWW_file(
file_name=wwwFile,
replacement_table=parseTable),

connection=userRolePorts);
end if;

}
when userRolePorts ˜= nil

end with

ConfSetup isa StartHK3 with
resources
sessions : collof String := collof String (’Session1’,’Session2’,’Session3’,’Session4’, ’Session5’)
slots : collof String := collof String( ’T1-Day1AM1’, ’T2-Day1PM1’, ’T3-Day1PM2’, ’T4-Day2AM1’, ’T5-Day2PM1’,

’T6-Day2PM2’, ’T7-Day3AM1’, ’T8-Day3PM1’, ’T9-Day3PM2’, ’T10-Day4AM1’ )

requestSlotGP : giveport RequestSlotMsg
requestSlotGP2 : giveport RequestSlotMsg
requestSlotTP : takeport RequestSlotMsg

timeGPs : tableof giveport TimeTableMsg := tableof giveport TimeTableMsg();
timeTableGP : giveport TimeTableMsg
timeTableTP : takeport TimeTableMsg

sess : String

! standard resources startup role
startRoleBindings : tableof Any
rolePointer : Role

actions

start: {
NewInteraction(giver = requestSlotGP, taker = requestSlotTP );

forevery sess in sessions do
Duplicate( original = requestSlotGP,

duplicate = requestSlotGP2 );
NewInteraction( giver = timeTableGP,

taker = timeTableTP );
timeGPs(sess) := timeTableGP;

startRoleBindings := tableof Any (
’roleName’ -> ’Session Chair ’ ++ sess,
’modelName’ -> modelName,
’slots’ -> slots,
’sessionName’ -> sess,
’requestGP’ -> requestSlotGP2,
’updateTP’ -> timeTableTP
);

StartPWebAndUserRole(
roleclassName = ’SessionChair’,
nodeID = nodeID,
managerGiveport = managerGiveport,
roleInstance = rolePointer,
pwebclasses = pwebclasses,
initbindings = startRoleBindings,
messages = messages,
sendReq = sendReq );

end do;

startRoleBindings := tableof Any (
’roleName’ -> ’TimeTableDB’,
’slots’ -> slots,
’sessions’ -> sessions,
’modelName’ -> modelName,
’sessionName’ -> sess,
’requestTP’ -> requestSlotTP,
’updateGPs’ -> timeGPs
);

StartPWebAndUserRole(
roleclassName = ’TimeTable’,
nodeID = nodeID,
managerGiveport = managerGiveport,
roleInstance = rolePointer,
pwebclasses = pwebclasses,
initbindings = startRoleBindings,
messages = messages,
sendReq = sendReq );



G.2. COOPERATIVE ACTIVITIES MODELLED IN PROCESSWEB 365

parseTable(’$messages’) := messages;
SendToUser(

gram=WWW_file(
file_name=wwwFile,
replacement_table=parseTable),

connection=userRolePorts);

}
when start = nil & init ˜= nil

end with



366 APPENDIX G. PROCESS MODELS IN PROCESSWEB



APPENDIX H

CAGIS PCE Process Model for the Conference
Scenario

Here, the process model for the CAGIS PCE environment for the conference organising
process will be presented. The process model consists of three main parts: the process
model for the activities, the gluemodel, and the Java-code for the cooperative agents.

H.1 CAGIS Simple Process Model for the Scenario

Here is the XML-file for modelling the activities in the conference organising scenario.

<Process>
<Name>Conference management process</Name>
<ProcessFragment>
<Name>A1:Plan and announce conference</Name>
<Workspace>Conference</Workspace>
<Activity>

<Name>A11:MakeCallForPapers</Name>
<Workspace>PcChair</Workspace>
<Postlink>PcChair/A12:ManagePersonInformation</Postlink>
<Due>None</Due>
<Description>Create a call for papers</Description>
<Code>http://validation.finge.com/pcchair/a11.html</Code>

</Activity>
<Activity>

<Name>A12:ManagePersonInformation</Name>
<Workspace>PcChair</Workspace>
<Postlink>PcChair/A13:DistributeCallForPapers</Postlink>
<Due>None</Due>
<Description>

Search for persons and update the Conference-personDB
</Description>
<Code>http://validation.finge.com/pcchair/a12.html</Code>

</Activity>
<Activity>

<Name>A13:DistributeCallForPapers</Name>
<Workspace>PcChair</Workspace>
<Prelink>PcChair/A11:MakeCallForPapers</Prelink>
<Prelink>PcChair/A12:ManagePersonInfromation</Prelink>

367



368 APPENDIX H. PROCESS MODELS IN CAGIS PCE

<Postlink>PcChair/A31:CheckResponseAndMaintainPersonDB</Postlink>
<Postlink>PcMember[1-25]/A31:SelectPaper</Postlink>
<Due>1/10/2000</Due>
<Description>Send call-for-papers via email to
potential partisipants</Description>
<Code>http://validation.finge.com/pcchair/a13.html</Code>

</Activity>
</ProcessFragment>

<ProcessFragment>
<Name>Record response</Name>
<Workspace>Conference</Workspace>
<Activity>

<Name>A21:CheckResponseAndMaintainPersonDB</Name>
<Workspace>PcChair</Workspace>
<Prelink>PcChair/A13:DistributeCallForPapers</Prelink>
<Postlink>PChair/A22:HandleReceivedPaper</Postlink>
<Postlink>PcChair/A23:AcknowledgeLetterOfIntent</Postlink>
<Postlink>PcChair/A24:RegretLateResponse</Postlink>
<Due>None</Due>
<Feedback>PChair/A22:HandleReceivedPaper</Feedback>
<Feedback>PcChair/A23:AcknowledgeLetterOfIntent</Feedback>
<Feedback>PcChair/A24:RegretLateResponse</Feedback>
<Description>Check conference email and act accordingly</Description>
<Code>http://validation.finge.com/pcchair/a21.html</Code>

</Activity>
<Activity>

<Name>A22:HandleReceivedPaper</Name>
<Workspace>PcChair</Workspace>
<Prelink>PcChair/A21:CheckResponseAndMaintainPersonDB</Prelink>
<Postlink>PcChair/A21:CheckResponseAndMaintainPersonDB</Postlink>
<Due>None</Due>
<Description>Register received paper and store paper
electronically</Description>
<Code>http://validation.finge.com/pcchair/a22.html</Code>

</Activity>
<Activity>

<Name>A23:AcknowledgeLetterOfIntent</Name>
<Workspace>PcChair</Workspace>
<Prelink>PcChair/A21:CheckResponseAndMaintainPersonDB</Prelink>
<Postlink>PcChair/A21:CheckResponseAndMaintainPersonDB</Postlink>
<Due>None</Due>
<Description>Send an acknowledgement by using a standard
template</Description>
<Code>http://validation.finge.com/pcchair/a23.html</Code>

</Activity>
<Activity>

<Name>A24:RegretLateResponse</Name>
<Workspace>PcChair</Workspace>
<Prelink>PcChair/A21:CheckResponseAndMaintainPersonDB</Prelink>
<Postlink>PcChair/A21:CheckResponseAndMaintainPersonDB</Postlink>
<Due>None</Due>
<Description>Use a template to send an email with regret
for a late response</Description>
<Code>http://validation.finge.com/pcchair/a24.html</Code>

</Activity>
</ProcessFragment>

<ProcessFragment>
<Name>ReviewerSelection</Name>
<Workspace>Conference</Workspace>
<Activity>

<Name>A31:SelectPaper</Name>
<Workspace>PcMember[1-25]</Workspace>
<Prelink>PcChair/A13:DistributeCallForPapers</Prelink>
<Postlink>PcMember[1-25]/A32:ReviewerAllocation</Postlink>
<Due>10/10/2000</Due>
<Description>Select paper you want to review</Description>
<Code>http://validation.finge.com/glueserver.cgi?
processfragment=PcMember[1-25]/A31:SelectPaper&
agentclass=agent.Selection.Paper</Code>

</Activity>
<Activity>

<Name>A32:ReviewerAllocation</Name>
<Workspace>PcMember[1-25]</Workspace>
<Prelink>PcMember[1-25]/A31:SelectPaper</Prelink>
<Postlink>PcMember[1-25]/A41:ViewPapers</Postlink>
<Due>11/10/2000</Due>
<Description>Check if your selection of papers is ok</Description>
<Code>http://validation.finge.com/glueserver.cgi?
processfragment=PCMember[1-25/A32:ReviewerAllocation&
agentclass=agent.Negotiation.Reviewer</Code>

</Activity>
</ProcessFragment>

<ProcessFragment>
<Name>PaperReview</Name>
<Workspace>Conference</Workspace>
<Activity>

<Name>A41:ViewPapers</Name>
<Workspace>PcMember[1-25]</Workspace>
<Prelink>PcMember[1-25]/A32:ReviewerAllocation</Prelink>



H.1. CAGIS SIMPLE PROCESS MODEL FOR THE SCENARIO 369

<Postlink>PcMember[1-25]/A42:FillInReviewerReport</Postlink>
<Due>25/10/2000</Due>
<Description>View papers to be reviewed</Description>
<Code>http://validation.finge.com/pcmember/a41.html</Code>

</Activity>
<Activity>

<Name>A42:FillInReviewerReport</Name>
<Workspace>PcMember[1-25]</Workspace>
<Prelink>PcMember[1-25]/A41:ViewPapers</Prelink>
<Postlink>PcChair/A51:SelectUncertainPapers</Postlink>
<Due>1/11/2000</Due>
<Description>Fill in a review-report for the reviewed
papers</Description>
<Code>http://validation.finge.com/pcmember/a42.html</Code>

</Activity>
</ProcessFragment>

<ProcessFragment>
<Name>DetermineAcceptanceOfPapers</Name>
<Workspace>Conference</Workspace>
<Activity>

<Name>A51:SelectUncertainPapers</Name>
<Workspace>PcChair</Workspace>
<Prelink>PcMember[1-25]/A42:FillInReviewerReport</Prelink>
<Postlink>PcChair/A52:NotifyInvolvedReviewers</Postlink>
<Due>5/11/2000</Due>
<Description>Update Paper-list according to review
results</Description>
<Code>http://validation.finge.com/pcchair/a51.html</Code>

</Activity>
<Activity>

<Name>A52:NotifyInvolvedReviewers</Name>
<Workspace>PcChair</Workspace>
<Prelink>PcChair/A51:SelectUncertainPapers</Prelink>
<Postlink>PcMember[1-25]/A53:ReviewMeeting</Postlink>
<Due>5/11/2000</Due>
<Description>Notify the involved reviewers with
uncertain papers</Description>
<Code>http://validation.finge.com/pcchair/a52.html</Code>

</Activity>
<Activity>

<Name>A53:ReviewMeeting</Name>
<Workspace>PcMember[1-25]</Workspace>
<Prelink>PcChair/A52:NotifyInvolvedReviewers</Prelink>
<Postlink>PcChair/A54:FinalPaperSelection</Postlink>
<Due>15/11/2000</Due>
<Description>Hold an electronic review-meeting</Description>
<Code>http://validation.finge.com/pcmember/a53.html</Code>

</Activity>
<Activity>

<Name>A54:FinalPaperSelection</Name>
<Workspace>PcChair</Workspace>
<Prelink>PcMember[1-25]</Prelink>
<Postlink>PcChair/A611:MatchPapers</Postlink>
<Due>20/11/2000</Due>
<Description>Update Paper-list and Conference-personDB
according to review result</Description>
<Code>http://validation.finge.com/pcchair/a54.html</Code>

</Activity>
</ProcessFragment>

<ProcessFragment>
<Name>Suggest Session</Name>
<Workspace>Conference</Workspace>
<Activity>

<Name>A611:MatchPapers</Name>
<Workspace>PcChair</Workspace>
<Prelink>PcChair/A54:FinalPaperSelection</Prelink>
<Postlink>PcChair/A612:SuggestSessions</Postlink>
<Due>30/11/2000</Due>
<Description>Match all papers agains keywords defined
by the conference</Description>
<Code>http://validation.finge.com/pcchair/a611.html</Code>

</Activity>
<Activity>

<Name>A612:SuggestSessions</Name>
<Workspace>PcChair</Workspace>
<Prelink>PcChair/A611:MatchPapers</Prelink>
<Postlink>PcChair/A613:SetUpSessionCommittees</Postlink>
<Due>3/12/2000</Due>
<Description>Suggest a session division according to subjects
and create a preliminary Conference-program</Description>
<Code>http://validation.finge.com/pcchair/a612.html</Code>

</Activity>
<Activity>

<Name>A613:SetUpSessionCommittees</Name>
<Workspace>PcChair</Workspace>
<Prelink>PcChair/A612:SuggestSessions</Prelink>
<Postlink>SessionChair[1-5]/A621:DetermineSessionSubjectAndGoal</Postlink>
<Due>5/12/2000</Due>
<Description>Choose Session Chairs (from PC Members) for every
session and notify them</Description>



370 APPENDIX H. PROCESS MODELS IN CAGIS PCE

<Code>http://validation.finge.com/pcchair/a613.html</Code>
</Activity>

</ProcessFragment>

<ProcessFragment>
<Name>SelectPapersAndPlanSessions</Name>
<Workspace>Conference</Workspace>
<Activity>

<Name>A621:DetermineSessionSubjectAndGoal</Name>
<Workspace>SessionChair[1-5]</Workspace>
<Prelink>PcChair/A613:SetUpSessionCommittees</Prelink>
<Postlink>SessionChair[1-5]/A622:CheckPapersForSession</Postlink>
<Due>10/12/2000</Due>
<Description>Write an initial Session description</Description>
<Code>http://validation.finge.com/sessionchair/a621.html</Code>

</Activity>
<Activity>

<Name>A622:CheckPapersForSession</Name>
<Workspace>SessionChair[1-5]</Workspace>
<Prelink>SessionChair[1-5]/A621:DetermineSessionSubjectAndGoal</Prelink>
<Postlink>SessionChair[1-5]/A623:PaperAllocation</Postlink>
<Due>15/12/2000</Due>
<Description>Select papers that should be
included in your session</Description>
<Code>http://validation.finge.com/glueserver.cgi?
processfragment=SessionChair[1-5]/A622:CheckPapersForSession&
agentclass=agent.Selection.Session</Code>

</Activity>
<Activity>

<Name>A623:PaperAllocation</Name>
<Workspace>SessionChair[1-5]</Workspace>
<Prelink>SessionChair[1-5]/A622:CheckPapersForSession</Prelink>
<Postlink>SessionChair[1-5]/A624:CheckTimeslotForSession</Postlink>
<Due>15/12/2000</Due>
<Description>Allocate papers to a session</Description>
<Code>http://validation.finge.com/glueserver.cgi?
processfragment=SessionChair[1-5]/A623:PaperAllocation&
agentclass=agent.Negotiation.Session</Code>

</Activity>
<Activity>

<Name>A624:CheckTimeslotForSession</Name>
<Workspace>SessionChair[1-5]</Workspace>
<Prelink>SessionChair[1-5]/A623:PaperAllocation</Prelink>
<Postlink>SessionChair[1-5]/A625:SessionAllocation</Postlink>
<Due>18/12/2000</Due>
<Description>Select two timeslots for your session</Description>
<Code>http://validation.finge.com/glueserver.cgi?
processfragment=SessionChair[1-5]/A624:CheckTimeslotForSession&
agentclass=agent.Selection.Timeslot</Code>

</Activity>
<Activity>

<Name>A625:SessionAllocation</Name>
<Workspace>SessionChair[1-5]</Workspace>
<Prelink>SessionChair[1-5]/A624:CheckTimeslotsForSession</Prelink>
<Postlink>SessionChair[1-5]/A626:PublishSessionDescription</Postlink>
<Due>19/12/2000</Due>
<Description>Allocate session to timeslots</Description>
<Code>http://validation.finge.com/glueserver.cgi?
processfragment=A625:SessionAllocation&
agentclass=agent.Negotiation.Timeslot</Code>

</Activity>
<Activity>

<Name>A626:PublishSessionDescription</Name>
<Workspace>SessionChair[1-5]</Workspace>
<Prelink>SessionChair[1-5]/A625:SessionAllocation</Prelink>
<Postlink>PcChair/A7:PublishConferenceProgram</Postlink>
<Due>20/12/2000</Due>
<Description>Update and publish Session-description</Description>
<Code>http://validation.finge.com/sessionchair/a626.html</Code>

</Activity>
</ProcessFragment>

<ProcessFragment>
<Name>PublishConferenceProgram</Name>
<Workspace>Conference</Workspace>
<Activity>

<Name>A7:PublishConferenceProgram</Name>
<Workspace>PcChair</Workspace>
<Prelink>SessionChair[1-5]/A626:PublishSessionDescription</Prelink>
<Due>15/01/2001</Due>
<Description>Update and distribute the final
Conference-program</Description>
<Code>http://validation.finge.com/pcchair/a7.html</Code>

</Activity>
</ProcessFragment>

</Process>



H.2. GLUEMODEL FOR THE SCENARIO 371

H.2 GlueModel for the Scenario

Here is the GlueModel for the conference organising scenario, defining the relationships
between process fragments (listed in section H.1) and software agents (listed in section
H.3).

<GlueModel>
<fragment-agent-pair>
<agent agent-class="agent.Selection.Paper" amp-id="ConferenceAMP">

<interaction-type>coordination</interaction-type>
<result>ok|fail</result>

</agent>
<fragment fragment-id="PcMember[1-25]/A3.1:SelectPaper">
<reaction>

<result>ok</result>
<action fragment-id="PcMember[1-25]/A3.2:ReviewerAllocation"
body="execute_process_fragment_PFNUMBER">
</action>
<result>fail</result>
<action fragment-id"PcMember[1-25]/A3.1:SelectPaper"
body="execute_process_fragment_PFNUMBER">

</reaction>
</fragment>

</fragment-agent-pair>

<fragment-agent-pair>
<agent agent-class="agent.Negotiation.Reviewer" amp-id="ConferenceAMP">

<interaction-type>negotiation</interaction-type>
<result>ok|select</result>

</agent>
<fragment fragment-id="PcMember[1-25]/A3.2:ReviewerAllocation">
<reaction>

<result>ok</result>
<action fragment-id="PcMember[1-25]/4.1:ViewPaper"
body="execute_process_fragment_PFNUMBER">
</action>
<result>select</result>
<action fragment-id"PcMember[1-25]/A3.1:SelectPaper"
body="execute_process_fragment_PFNUMBER"></action>

</reaction>
</fragment>

</fragment-agent-pair>

<fragment-agent-pair>
<agent agent-class="agent.Selection.Session" amp-id="ConferenceAMP">

<interaction-type>coordination</interaction-type>
<result>ok|fail</result>

</agent>
<fragment fragment-id="SessionChair[1-5]/A6.2.2:CheckPaperForSession">
<reaction>

<result>ok</result>
<action fragment-id="SessionChair[1-5]/A6.2.3:PaperAllocation"
body="execute_process_fragment_PFNUMBER"></action>
<result>fail</result>
<action fragment-id="SessionChair[1-5]/A6.2.2:CheckPaperForSession"
body="execute_process_fragment_PFNUMBER"></action>

</reaction>
</fragment>

</fragment-agent-pair>

<fragment-agent-pair>
<agent agent-class="agent.Negotiation.Session" amp-id="ConferenceAMP">

<interaction-type>negotiation</interaction-type>
<result>ok|fail</result>

</agent>
<fragment fragment-id="SessionChair[1-5]/A6.2.3:PaperAllocation">
<reaction>

<result>ok</result>
<action fragment-id="SessionChair[1-5]/A6.2.4:CheckTimeslotForSession"
body="execute_process_fragment_PFNUMBER"></action>
<result>fail</result>
<action fragment-id="SessionChair[1-5]/A6.2.3:PaperAllocation"
body="execute_process_fragment_PFNUMBER"></action>

</reaction>
</fragment>

</fragment-agent-pair>

<fragment-agent-pair>
<agent agent-class="agent.Selection.Timeslot" amp-id="ConferenceAMP">

<interaction-type>coordination</interaction-type>
<result>ok|fail</result>

</agent>
<fragment fragment-id="SessionChair[1-5]/A6.2.4:CheckTimeslotForSession">
<reaction>

<result>ok</result>



372 APPENDIX H. PROCESS MODELS IN CAGIS PCE

<action fragment-id="SessionChair[1-5]/A6.2.5:SessionAllocation"
body="execute_process_fragment_PFNUMBER"></action>
<result>fail</result>
<action fragment-id="SessionChair[1-5]/A.2.4:CheckTimeslotForSession"
body="execute_process_fragment_PFNUMBER"></action>

</reaction>
</fragment>

</fragment-agent-pair>

<fragment-agent-pair>
<agent agent-class="agent.Negotiation.Timeslot" amp-id="ConferenceAMP">

<interaction-type>negotiation</interaction-type>
<result>ok|fail</result>

</agent>
<fragment fragment-id="SessionChair[1-5]/A6.2.5:SessionAllocation">
<reaction>

<result>ok</result>
<action fragment-id="SessionChair[1-5]/A6.2.6:PublishSessionDescription"
body="execute_process_fragment_PFNUMBER"></action>
<result>fail</result>
<action fragment-id="SessionChair[1-5]/A6.2.5:SessionAllocation"
body="execute_process_fragment_PFNUMBER"></action>

</reaction>
</fragment>

</fragment-agent-pair>

</GlueModel>

H.3 CAGIS Cooperative Agents Support for the Scenario

This section contains the Java source code for the agents used to represent the two coop-
erative activities A6.2.4:Check timeslot for session and A6.2.5:Session allocation (section
20.5.6).

H.3.1 Session Selection Agent

Here is the Java code for the Session Selection Agent.

package no.ntnu.diplom.userAgents;

import no.ntnu.diplom.systemAgents.*;
import net.jini.core.entry.Entry;
import javax.swing.*;
import javax.swing.table.*;
import java.awt.event.*;
import java.awt.*;
import java.util.*;

/**
* This is the Session Selection Agent. This agent is distributed to all
* the Session Chairs of the Program Committee during the Select Papers
* and Plan Sessions activity. The agent provides a graphical user interface
* (GUI) for the users. The agent collects the result from the users and returns
* home.
*/
public class SessionSelectionAgent extends UserAgent implements ActionListener{

public Boolean finished = new Boolean(false);
public Vector route = new Vector();
public Vector selection = new Vector();
public JFrame frame = new JFrame ("User Agent");
public Button send_button = new Button("Send");
public Button start_button = new Button("Start");
public Button dispose_button = new Button("Dispose");
public Button ok_button = new Button("Ok");
public JLabel name_text = new JLabel("Session Selection Agent");
public JTextArea locationArea = new JTextArea(30,40);
public JTextArea description_text;
public String[] columnNames = {"Id","Author",

"Title",



H.3. CAGIS COOPERATIVE AGENTS SUPPORT FOR THE SCENARIO 373

"Select"};
public Object[][] data;
public JTable tab;
public String posReviewer;

//Constructors

public SessionSelectionAgent(){
agentType = "UserAgent";}

/**
* This method starts the agent at the different Agent Places. When
* the mobile agent is taken out of the JavaSpace, it needs to be
* activated. The Receiver Agent takes care of this by invoking this
* method. (The name of the "activate method" is standard for all the
* mobile agents in this architecture.)
*/

public void startAgent(){
if(finished.booleanValue()){

finish();}
else{

String location = destinationID;
posReviewer = destinationID;

description_text = new JTextArea(" Hello member "
+ location + " (Session Chair), \n"
+ " please select desired papers from the table.");

MyTableModel myModel = new MyTableModel(columnNames, data);
JTable table = new JTable(myModel);
tab = new JTable();
tab = table;

TableColumn column0 = table.getColumnModel().getColumn(0);
column0.setPreferredWidth(15);
TableColumn column1 = table.getColumnModel().getColumn(1);
column1.setPreferredWidth(150);
TableColumn column2 = table.getColumnModel().getColumn(2);
column2.setPreferredWidth(250);
TableColumn column3 = table.getColumnModel().getColumn(3);
column3.setPreferredWidth(5);

//Panel for the table
JPanel tablePanel = new JPanel();
tablePanel.setLayout(new GridLayout(0, 1));
tablePanel.add(table);
tablePanel.setBounds(20,130,550,150);

//Scrollbar for the table
JScrollPane scrollPaneTable = new JScrollPane(table);
tablePanel.setBorder(BorderFactory.createLineBorder(Color.black));
tablePanel.add(scrollPaneTable, BorderLayout.CENTER);
scrollPaneTable.setHorizontalScrollBarPolicy(JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);

frame.getContentPane().setLayout(null);
description_text.setEditable(false);
description_text.setBackground(frame.getBackground());

description_text.setBounds(170,70,350,55);
description_text.setFont(new Font("Serif", Font.ITALIC, 16));

name_text.setFont(new Font("Comics", Font.BOLD, 20));
name_text.setBounds(200,20,250,30);
send_button.setBounds(250,310,70,30);
frame.setBounds(400,100,600,400);
send_button.addActionListener(this);

locationArea.setBounds(170,155,130,30);
locationArea.append("Location: " + location);
locationArea.setLineWrap(true);
locationArea.setEditable(false);
Color color = frame.getBackground();
locationArea.setBackground(color);

if(!route.isEmpty()){
destinationID = (String)route.remove(0);}

else{
destinationID = "amp";}

frame.getContentPane().add(name_text);
frame.getContentPane().add(description_text);
frame.getContentPane().add(send_button);
frame.getContentPane().add(tablePanel);

frame.setResizable(false);
frame.show();

}
}



374 APPENDIX H. PROCESS MODELS IN CAGIS PCE

/**
* This method is called when the Session Selection Agent is initiated at
* the AMP. The init() method gets the needed information (Session Chairs
* and papers) from the repository by using the Repository Agent.
* The method sends one instance of the Session Selection Agent to each of
* the Session Chairs in the Program Committee. This way the members can
* select possible papers for their sessions in papallel.
*/
public void init(){

RepositoryAgent ra = new RepositoryAgent();
route = ra.getSessionChairs();
data = ra.getPapers();

SessionSelectionAgent nextAgent;
DispatcherAgent da = new DispatcherAgent();

for (Enumeration e = route.elements() ; e.hasMoreElements() ;) {
nextAgent = new SessionSelectionAgent();
nextAgent.destinationID = (String)e.nextElement();
nextAgent.data = data;

//Tell the DispatcherAgent to dispatch the current Agent
da.dispatchMe(nextAgent, "conference", nextAgent.destinationID);

}
}

/**
* This method is called if the agent is retrieved manually from the
* space without having done any work.
*/

public void disposeAgent(){
frame.getContentPane().setLayout(null);
name_text.setBounds(85,20,200,30);
dispose_button.setBounds(110,120,70,30);
frame.setBounds(400,100,300,200);
dispose_button.addActionListener(this);

frame.getContentPane().add(name_text);
frame.getContentPane().add(dispose_button);
frame.setResizable(false);
frame.show();

}

/**
* This method is invoked when the mobile agent successfully returns from
* its trip. The method updates the repository with the collected information
* by using the Repository Agent.
*/

public void finish(){
RepositoryAgent ra = new RepositoryAgent();

JTextArea finished_text = new JTextArea(" The agent has returned\n"
+" successfully from member "
+ (String)selection.elementAt(0) + "!");

ra.insertSessionPapers(selection);

finished_text.setEditable(false);
finished_text.setBackground(frame.getBackground());

frame.getContentPane().setLayout(null);
name_text.setBounds(85,20,200,30);
finished_text.setBounds(70,60,200,50);

ok_button.setBounds(110,120,70,30);
frame.setBounds(400,100,300,200);
ok_button.addActionListener(this);

frame.getContentPane().add(name_text);
frame.getContentPane().add(finished_text);
frame.getContentPane().add(ok_button);
frame.setResizable(false);
frame.show();

}

/**
* This method is invoked when either the "Send" button, "Dispose"
* button or the "Ok" button is presed. The method performs the
* necessary actions.
*
* @param ae This is the ActionEvent causing the invokation.
*/

public void actionPerformed(ActionEvent ae){

if (ae.getSource() == send_button){
selection = new Vector();



H.3. CAGIS COOPERATIVE AGENTS SUPPORT FOR THE SCENARIO 375

selection.addElement(posReviewer);
int num = tab.getRowCount();
for(int i=0; i<num; i++){
String bol = (String)tab.getValueAt(i, 3).toString();
if(bol.equals("true")){

selection.addElement((String)tab.getValueAt(i, 0).toString());
}

}

SessionSelectionAgent nextAgent = new SessionSelectionAgent();
destinationID = "amp";
nextAgent.finished = new Boolean(true);
nextAgent.data = data;
nextAgent.selection = selection;

//Tell the DispatcherAgent to dispatch the current Agent
DispatcherAgent da = new DispatcherAgent();
da.dispatchMe(nextAgent, "conference", destinationID);
frame.dispose();

}

if (ae.getSource() == dispose_button){
frame.dispose();}

if (ae.getSource() == ok_button){
frame.dispose();}

}//end_actionPerformed
}

H.3.2 Session Allocation Agent

Here is the Java-code for the session allocation agent.

package no.ntnu.diplom.negotiationAgents;

import no.ntnu.diplom.systemAgents.*;

import net.jini.core.entry.Entry;
import javax.swing.*;
import javax.swing.table.*;
import javax.swing.border.*;
import java.awt.event.*;
import java.awt.*;
import java.util.*;

/**
* This is the Session Allocation Agent. If more than one Session Chair
* are interested in the same paper for their session, the Session Allocation
* Agent will take care of the negotiation so that the number of sessions
* for each paper don’t exceeds one. The Session Allocation Agent is a mobile
* Negotiation Agent which can migrate to the Session Chairs involved in the
* conflict in order to solve it. The agent provides a graphical user interface
* (GUI) for the users. It collects the result from the users and returns home.
*/
public class SessionAllocationAgent extends NegotiationAgent implements ActionListener{

public Boolean finished = new Boolean(false);
public Boolean removeMessage = new Boolean(false);
public Boolean removeRandomMessage = new Boolean(false);
public Boolean step2_finished = new Boolean(false);
public Boolean step2 = new Boolean(false);
public Boolean step2_nextround = new Boolean(false);
public Vector route = new Vector();
public Vector selection = new Vector();
public JFrame frame = new JFrame ("Negotiation Agent");
public Button send_button = new Button("Send");
public Button dispose_button = new Button("Dispose");
public Button ok_button = new Button("Ok");
public Button yes_button = new Button("Yes");
public Button no_button = new Button("No");
public JLabel name_text = new JLabel("Session Allocation Agent");
public JTextArea locationArea = new JTextArea(30,40);
public JTextArea description_text = new JTextArea("Here comes a little description");

public Vector papers_Id = new Vector();
public Vector papers_Prl = new Vector();
public Vector copyOf_papers_Id = new Vector();
public Vector copyOf_papers_Prl = new Vector();
public Vector conflictMembers = new Vector();
public Vector removedPerson = new Vector();
public Vector removedFrom = new Vector();



376 APPENDIX H. PROCESS MODELS IN CAGIS PCE

public Object[][] data;
public String paperNumber;

//Constructors

public SessionAllocationAgent(){
agentType = "NegotiationAgent";

}

/**
* This method activates the agent at the different Agent Places. When
* the mobile agent is taken out of the JavaSpace, it needs to be
* activated. The Receiver Agent takes care of this by invoking this
* method. (The name of the "activate method" is standard for all the
* mobile agents in this architecture.)
*/

public void startAgent(){
if(finished.booleanValue()){}
else if(removeMessage.booleanValue()){

frame = new JFrame("Negotiation Agent - Message");
frame.getContentPane().setLayout(null);
name_text.setFont(new Font("Comics", Font.BOLD, 18));
name_text.setBounds(80,20,250,30);
ok_button.setBounds(155,160,70,30);
frame.setBounds(400,100,400,230);
description_text = new JTextArea("Hello member " + destinationID + " (Session Chair).\n"

+ "Paper " + paperNumber + " is in conflict. Since you are one of the\n"
+ "Session Chairs who have selected most papers,\n"
+ "you have been removed from paper " + paperNumber + ".");

description_text.setEditable(false);
description_text.setBackground(frame.getBackground());
description_text.setBounds(70,60,350,90);
description_text.setFont(new Font("Serif", Font.PLAIN, 14));

ok_button.addActionListener(this);

frame.getContentPane().add(name_text);
frame.getContentPane().add(description_text);
frame.getContentPane().add(ok_button);
frame.setResizable(false);
frame.show();

}
else if(removeRandomMessage.booleanValue()){

frame = new JFrame("Negotiation Agent - Message");
frame.getContentPane().setLayout(null);
name_text.setFont(new Font("Comics", Font.BOLD, 18));
name_text.setBounds(80,20,250,30);
ok_button.setBounds(155,130,70,30);
frame.setBounds(400,100,400,200);
description_text = new JTextArea("Hello member " + destinationID + " (Session Chair).\n"

+ "You have been removed at random from paper " + paperNumber);
description_text.setEditable(false);
description_text.setBackground(frame.getBackground());
description_text.setBounds(70,60,350,50);
description_text.setFont(new Font("Serif", Font.PLAIN, 14));

ok_button.addActionListener(this);

frame.getContentPane().add(name_text);
frame.getContentPane().add(description_text);
frame.getContentPane().add(ok_button);
frame.setResizable(false);
frame.show();

}
else if(step2.booleanValue()){

frame = new JFrame("Negotiation Agent - Paperconflict");
frame.getContentPane().setLayout(null);
name_text.setFont(new Font("Comics", Font.BOLD, 18));
name_text.setBounds(80,20,250,30);
yes_button.setBounds(115,160,70,30);
no_button.setBounds(200,160,70,30);
frame.setBounds(400,100,400,230);
description_text = new JTextArea("Hello member " + destinationID + ".\n"

+ "Paper " + paperNumber + " is in conflict.\n"
+ "Are you willing to remove it from your session list?");

description_text.setEditable(false);
description_text.setBackground(frame.getBackground());
description_text.setBounds(70,60,350,70);
description_text.setFont(new Font("Serif", Font.PLAIN, 14));

yes_button.addActionListener(this);
no_button.addActionListener(this);

frame.getContentPane().add(name_text);
frame.getContentPane().add(description_text);
frame.getContentPane().add(yes_button);
frame.getContentPane().add(no_button);
frame.setResizable(false);
frame.show();

}
else if(step2_nextround.booleanValue()){



H.3. CAGIS COOPERATIVE AGENTS SUPPORT FOR THE SCENARIO 377

System.out.println("Step 2. going for the next paper");
handleConflictStep2();

}

else if(step2_finished.booleanValue()){
//Step3
System.out.println("Step 2 finished.");

for(int i=0; i<removedPerson.size(); i++){
System.out.println("Removing member " + removedPerson.elementAt(i)

+ " from paper " + removedFrom.elementAt(i));
RepositoryAgent ra = new RepositoryAgent();
ra.removeSession((String)removedPerson.elementAt(i),

(String)removedFrom.elementAt(i));
}

Vector[] papers = findConflictPapers();
papers_Id = papers[0];
papers_Prl = papers[1];

if(papers_Id.size() > 0){
System.out.println("Step2 didn’t remove all conflicts. Start step3.");
handleConflictStep3();

}
}

}

/**
* This method is called when the Session Allocation Agent is initiated at
* the AMP. The init() method gets the needed information (Session Chairs and
* papers) from the repository by using the Repository Agent.
* The method collects the different papers and starts the negotiaton
* process if some of the papers are in conflict.
*/
public void init(){

RepositoryAgent ra = new RepositoryAgent();

Vector[] papers = findConflictPapers();
papers_Id = papers[0];
papers_Prl = papers[1];

if(papers_Id.size() > 0){
handleConflictStep1();}

if(papers_Id.size() > 0){
copyOf_papers_Id = papers_Id;
copyOf_papers_Prl = papers_Prl;
handleConflictStep2();

}
}

/**
* This method sends a message to a given Session Chair of the Program Committee
* if the Session Chair is randomly removed from a paper during step 3 of the
* negotiation process.
*
* @param paperId The idetifier for the paper the member is removed from.
* @param member The idetifier for the removed member.
*/
public void sendRemovedMessage(String paperId, String member, Boolean random){

SessionAllocationAgent nextAgent;
DispatcherAgent da = new DispatcherAgent();

nextAgent = new SessionAllocationAgent();
nextAgent.destinationID = member;
nextAgent.agentType = null;
nextAgent.paperNumber = paperId;
if(random.booleanValue()){

nextAgent.removeRandomMessage = new Boolean(true);}
else{

nextAgent.removeMessage = new Boolean(true);}
nextAgent.papers_Id = papers_Id;
nextAgent.papers_Prl = papers_Prl;

//Tell the DispatcherAgent to dispatch the current Agent
da.dispatchMe(nextAgent, "conference", nextAgent.destinationID);
frame.dispose();

}

/**
* This method gets all the possible session papers from the repository
* by using the Repository Agent. The papers which have exactly one
* possible session are updated to the repostory as actual session (this
* session are allocated to the paper). The papers which have more than
* one possible session registered to them are sorted in different
* vectors and returned.
*
* @return An array of vectors with the papers in conflict.



378 APPENDIX H. PROCESS MODELS IN CAGIS PCE

*/
public Vector[] findConflictPapers(){

Vector papers_Id = new Vector();
Vector papers_Prl = new Vector();

RepositoryAgent ra = new RepositoryAgent();
data = ra.getPossibleSessionPapers();

for (int i = 0; i < data.length; i++) {
for (int j = 1; j < data[i].length; j++) {

if(numberOfPossibleSessions((String)data[i][1]) == 1){
Vector readyPapers = new Vector();

/*Format for the vector (papers):
* 0 - id
* 1 - session list
*/
readyPapers.addElement(data[i][0]);
readyPapers.addElement(data[i][1]);
ra.allocateSession(readyPapers);

}

if(numberOfPossibleSessions((String)data[i][1]) > 1){
papers_Id.addElement(data[i][0]);
papers_Prl.addElement(data[i][1]);

}
}

}
Vector[] papers = {papers_Id,papers_Prl};
return papers;

}

/**
* This is step 1 of the negotiation process. This method are used during this
* step to remove the Session Chairs who have selected the most papers for their session
* from the given paper, and send out a message to the removed Session Chairs.
* If some of the papers get exactly one session during this step, the Session Chair
* are allocated as actual session for the papers, and the repository is updated (through the
* Repository Agent).
*/
public void handleConflictStep1(){

System.out.println("Step 1 begins...");
Vector psl = new Vector();
Vector internal_removedMembers = new Vector();
Vector internal_removedFrom= new Vector();

//Remove given person from given paper!!!
//Only the papers in conflict (papers_prl) are considered.
for(int i=0; i<papers_Id.size(); i++){

int personId = findBiggestSelectionActor(papers_Prl);
psl = new Vector();
if(personId != -1 && papers_Prl.size() > i){

String dummy = (String)papers_Prl.remove(i)+",";
while(dummy.length()>0){

Integer num =
new Integer(Integer.parseInt(dummy.substring(0, dummy.indexOf(","))));
psl.addElement(num);
dummy = dummy.substring(dummy.indexOf(",") + 1);

}
for(int j=0; j<psl.size(); j++){

if((Integer.toString(personId)).equals(psl.elementAt(j).toString())){
String removed = psl.remove(j).toString();

//Save the removed members and paperIds
internal_removedMembers.addElement(removed);
internal_removedFrom.addElement(papers_Id.elementAt(i));

}
}

if(psl.size() > 1){
String pslString = new String();
for(int j=0;j<psl.size();j++){

//Formatting the String
if(j == 0){

pslString = pslString + (psl.elementAt(j)).toString();}
else{

pslString = pslString + "," + (psl.elementAt(j)).toString();}
}
papers_Prl.add(i,pslString);

}//end_if
}

}//end_for

for(int k=0; k<internal_removedMembers.size(); k++){
System.out.println("Message to member#: " + internal_removedMembers.elementAt(k)

+ " - Removed from: " + internal_removedFrom.elementAt(k));
RepositoryAgent ra = new RepositoryAgent();
ra.removeSession((String)internal_removedMembers.elementAt(k),

(String)internal_removedFrom.elementAt(k));



H.3. CAGIS COOPERATIVE AGENTS SUPPORT FOR THE SCENARIO 379

}

Vector[] papers = findConflictPapers();
papers_Id = papers[0];
papers_Prl = papers[1];

SessionAllocationAgent nextAgent;
DispatcherAgent da = new DispatcherAgent();

for (int h=0; h<internal_removedMembers.size(); h++) {
removedPerson.addElement(internal_removedMembers.elementAt(h));
removedFrom.addElement(internal_removedFrom.elementAt(h));

sendRemovedMessage((String)internal_removedFrom.elementAt(h),
(String)internal_removedMembers.elementAt(h),

new Boolean(false));
}

}

/**
* The method finds the next stop of its journey and starts the
* migration of the agent to the destination. This is step 2 of
* the negotiation process. During this step the Session Allocation
* Agent migrates to the Sesion Chairs involved in the overbooked papers.
*/
public void handleConflictStep2(){

System.out.println("Step2 begins...==================================================");

String paper = (String)copyOf_papers_Id.remove(0);
String temproute = (String)copyOf_papers_Prl.remove(0) + ","; //Special format
conflictMembers = new Vector();

while(temproute.length()>0){
Integer num = new Integer(Integer.parseInt(temproute.substring(0,

temproute.indexOf(","))));
conflictMembers.addElement(num);
route.addElement(num);
temproute = temproute.substring(temproute.indexOf(",") + 1);

}

SessionAllocationAgent nextAgent;
DispatcherAgent da = new DispatcherAgent();

nextAgent = new SessionAllocationAgent();
nextAgent.destinationID = route.remove(0).toString();
nextAgent.route = route;
nextAgent.paperNumber = paper;
nextAgent.step2 = new Boolean(true);
nextAgent.papers_Id = papers_Id;
nextAgent.papers_Prl = papers_Prl;
nextAgent.copyOf_papers_Id = copyOf_papers_Id;
nextAgent.copyOf_papers_Prl = copyOf_papers_Prl;
nextAgent.conflictMembers = conflictMembers;
nextAgent.removedPerson = removedPerson;
nextAgent.removedFrom = removedFrom;

da.dispatchMe(nextAgent, "conference", nextAgent.destinationID);
frame.dispose();

}

/**
* This method removes a possible Session Chair from a paper at random,
* updates the repository (using the findConflictPapers() method
* which again uses the Repository Agent) and sends a message to
* the removed Session Chair.
*/
public void handleConflictStep3(){

System.out.println("Step3 begins...==================================================");

while(papers_Id.size() > 0){
System.out.println("In conflict" + " - " + papers_Prl.elementAt(0));

int member = findRandomMember((String)papers_Prl.elementAt(0));
System.out.println("Random member " + member + " removed from "

+ papers_Id.elementAt(0));
RepositoryAgent ra = new RepositoryAgent();
ra.removeSession(Integer.toString(member), (String)papers_Id.elementAt(0));

sendRemovedMessage((String)papers_Id.remove(0),Integer.toString(member),
new Boolean(true));

Vector[] papers = findConflictPapers();
papers_Id = papers[0];
papers_Prl = papers[1];

}
}

/**
* This method is called if the agent is retrieved manually from the
* space without having done any work.



380 APPENDIX H. PROCESS MODELS IN CAGIS PCE

*/
public void disposeAgent(){

frame.getContentPane().setLayout(null);
name_text.setBounds(85,20,200,30);
dispose_button.setBounds(110,120,70,30);
frame.setBounds(400,100,300,200);
dispose_button.addActionListener(this);

frame.getContentPane().add(name_text);
frame.getContentPane().add(dispose_button);
frame.setResizable(false);
frame.show();

}

/**
* This method finds the number of possible sessions from a string. The
* sessions in the string are separated by comma (",").
*
* @param prl The string with the possible sessions.
* @return The number of possible sessions contained in the string.
*/
public int numberOfPossibleSessions(String prl){

String workString = prl;
int number = 1;
boolean charachterExists = false;
for(int i=0; i<prl.length();i++){
if(workString.startsWith(",")){

number++; }
else if(workString.startsWith("NA")){

number = 0;}
workString = prl.substring(i);

}
return number;

}

/**
* This method is invoked when either the "Ok" button, the "Yes" button or
* the "No" button is pressed. The method performs the necessary actions.
*
* @param ae This is the ActionEvent causing the invokation.
*/
public void actionPerformed(ActionEvent ae){

if (ae.getSource() == dispose_button){
frame.dispose();}

if (ae.getSource() == ok_button){
frame.dispose();}

if (ae.getSource() == yes_button){
removedPerson.addElement(destinationID);
removedFrom.addElement(paperNumber);

if(conflictMembers.size() > 0){
Integer temp = (Integer)conflictMembers.remove(0);}

SessionAllocationAgent nextAgent;
DispatcherAgent da = new DispatcherAgent();
nextAgent = new SessionAllocationAgent();
if(route.size() > 0 && conflictMembers.size() > 1){

nextAgent.destinationID = route.remove(0).toString();
nextAgent.step2 = new Boolean(true);
nextAgent.route = route;

}
//No more papers....
else if(copyOf_papers_Id.size() == 0){

nextAgent.step2_finished = new Boolean(true);
nextAgent.destinationID = "amp";

}
//No conflict with this paper....
else if(conflictMembers.size() == 1){

System.out.println("No more confl. with paper: " + paperNumber);
nextAgent.destinationID = "amp";
nextAgent.step2_nextround = new Boolean(true);

}
else{

nextAgent.destinationID = "amp";
System.out.println("XXX No more confl. with paper: " + paperNumber);
nextAgent.step2_nextround = new Boolean(true);

}

nextAgent.paperNumber = paperNumber;
nextAgent.papers_Id = papers_Id;
nextAgent.papers_Prl = papers_Prl;
nextAgent.copyOf_papers_Id = copyOf_papers_Id;
nextAgent.copyOf_papers_Prl = copyOf_papers_Prl;
nextAgent.removedPerson = removedPerson;
nextAgent.removedFrom = removedFrom;

da.dispatchMe(nextAgent, "conference", nextAgent.destinationID);
frame.dispose();

}
if (ae.getSource() == no_button){



H.3. CAGIS COOPERATIVE AGENTS SUPPORT FOR THE SCENARIO 381

//Moved on without editing the paperlist.
SessionAllocationAgent nextAgent;
DispatcherAgent da = new DispatcherAgent();
nextAgent = new SessionAllocationAgent();
if(route.size() > 0){

nextAgent.destinationID = route.remove(0).toString();
nextAgent.step2 = new Boolean(true);
nextAgent.route = route;

}
else if(copyOf_papers_Id.size() == 0){

nextAgent.destinationID = "amp";
nextAgent.step2_finished = new Boolean(true);

}
else{

nextAgent.destinationID = "amp";
nextAgent.step2_nextround = new Boolean(true);

}
nextAgent.paperNumber = paperNumber;
nextAgent.papers_Id = papers_Id;
nextAgent.papers_Prl = papers_Prl;
nextAgent.copyOf_papers_Id = copyOf_papers_Id;
nextAgent.copyOf_papers_Prl = copyOf_papers_Prl;
nextAgent.conflictMembers = conflictMembers;
nextAgent.removedPerson = removedPerson;
nextAgent.removedFrom = removedFrom;

da.dispatchMe(nextAgent, "conference", nextAgent.destinationID);
frame.dispose();

}
}//end_actionPerformed

}



382 APPENDIX H. PROCESS MODELS IN CAGIS PCE



Part V

Bibliography

383





Bibliography

[ABE00] Anders Andersen, Gordon S. Blair, and Frank Eliassen. OOPP: A re-
flective component-based middleware. In Norsk Informatikkonferanse
(NIK’2000), pages 7–18, Bodø, Norway, November 20-22 2000.

[ACK+94] R. Andersen, R. Conradi, J. Krogstie, G. Sindre, and A. Sølvberg. Project
Courses at the NTH: 20 Years of Experience. In J. L. Diaz-Herrera, edi-
tor, Software Engineering Education, Lecture Notes in Computer Science
750, pages 177–188. Springer Verlag, 1994. ISBN 3-5405-7461-1.

[ACM88] V. Ambriola, P. Ciancarini, and C. Montangero. OIKOS The Architecture
of Adaptable Environments for Software Specification and Development.
Technical report, Dipartimento di Informatica — Universita di Pisa, Oc-
tober 1988. Draft version.

[Ad 99] Ad Astra Engineering Inc. Jumping Beans - The Mobility Framework.
web: http://www.JumpingBeans.com, 1999.

[AIS88] José A. Ambros-Ingerson and Sam Steel. Integrating Planning, Execution
and Monitoring. In Proc. of AAAI’88, pages 83–88, 1988.

[Alf00] Alf Inge Wang and Anders Aas Hanssen and Bård Smidsrød Nymoen.
Design Principles for a Mobile, Multi-Agent Architecture for Cooperative
Software Engineering. In Proc. IASTED Internation Conference Software
Engineering and Applications, pages 134–140, Las Vegas, Nevada, US,
6-9 November 2000.

[Apa95] Gilbert Aparicio. The role of intelligent agents in the information infras-
tructure. Technical report, IBM, United States, 1995.

385



386 BIBLIOGRAPHY

[Arn98] Arne Sølvberg. Data and what they refer to. In P. Chen, editor, Concep-
tual modeling: Historical perspectives and future trends, Los Angeles,
California, USA, 1998. 16th Int. Conf. on Conceptual modeling.

[B+89] K. Benali et al. Presentation of the ALF Project. In [MSW90], 23 p., May
1989.

[Bak97] Seán Baker. CORBA Distributed Objects - Using Orbix. ACM press and
Addision-Wesley, 1997. ISBN 0-201-92475-7.

[Bal00] Robert Balzer. Keynote on Current State and Future Perspectives of
Software Process Technology. In Reidar Conradi, editor, Proc. 8th
European Software Process Workshop on Software Process Technology
(EWSPT’2000), page 220, Kaprun (Salzburg), Austria, February 21-25
2000. Springer Verlag LNCS 1780.

[Ban93] Liam J. Bannon. CSCW: An Initial Exploration. Scandinavian Journal
of Information Systems, 5:3–24, August 1993.

[Bas92] Victor R. Basili. The Experimental Paradigm in Software Engineering. In
H. Dieter Rombach, Victor R. Basili, and Richard W. Selby, editors, Ex-
perimental Software Engineering Issues: Critical Assessment and Future
Directions, pages 3–12, Proc. Int’ l Workshop, Dagstuhl Castle, Germany,
September 14-18 1992. Springer Verlag LNCS 706.

[Bas93] Victor R. Basili. The Experimental Paradigm in Software Engineering.
In H.D. Romach, V.R. Basilli, and R.W. Selby, editors, Experimental
Software Engineering Issues: Critical Assessment and Future Directives,
1993. Springer Verlang, LNCS 706.

[BBFL94] Sergio Bandinelli, Marco Braga, Alfonso Fuggetta, and Luigi Lavazza.
The Architecture of the SPADE Process-Centered SEE. In [War94], pages
15–30, 1994.

[BCM+92] Victor R. Basili, G. Caldiera, Frank McGarry, R. Pajerski, G. Page, and
S. Waligora. The Software Engineering Laboratory – an Operational Soft-
ware Experience Factory. In Proc. 14th Int’l Conference on Software En-
gineering, Melbourne, Australia, pages 370–381, May 1992.

[BCN+96] C. Basile, S. Calanna, E. Nitto, A. Fuggetta, and M. Gemo. Mechanisms
and Policies for Federated PSEEs: Basic Concepts and Open Issues. In
Carlo Montangero, editor, Proceedings of the 5th European Workshop
on Software Process Technology, volume 1149 of LNCS, pages 86–91,
Nancy, France, October 1996. Springer-Verlag.

[BCR94a] Victor R. Basili, Gianluigi Caldeera, and H. Dieter Rombach. Encyclo-
pedia of Software Engineering, volume 1, chapter Measurement, pages
646–661. John Wiley Sons, 1994.



BIBLIOGRAPHY 387

[BCR94b] Victor R. Basili, Gianluigi Caldiera, and Hans-Dieter Rombach. The Goal
Question Metric Paradigm. In [Mar94], pages 528–532, 1994.

[BDG+94] Alexandros Biliris, Shaul Dar, Narain H. Gehani, H. V. Jagadish, and
Krith Ramamritham. Asset: A system for supporting extended trans-
actions. In Richard T. Snodgrass and Marianne Winslett, editors, Proc.
of the ACM SIGMOD International Conference on Management of Data
(SIGMOD 94). ACM Press, May 1994.

[BEM91] Noureddine Belkhatir, Jacky Estublier, and Walcelio L. Melo. Adele2:
A Support to Large Software Development Process. In Proc. 1st Confer-
ence on Software Process (ICSP1), Redondo Beach, CA, pages 159–170,
October 1991.

[BEM93] Noureddine Belkhatir, Jacky Estublier, and Walcelio Melo. Software Pro-
cess Model and Work Space Control in the Adele System. In [Ost93],
pages 2–11, 1993.

[Ber96] Philip A. Bernstein. Middleware: A Model for Distributed System Ser-
vices. Communications of the ACM, 39(2):86–98, May 1996.

[BFG93] Sergio Bandinelli, Alfonso Fuggetta, and Carlo Ghezzi. Software Process
Model Evolution in the SPADE Environment. IEEE Trans. on Software
Engineering, pages 1128–1144, December 1993. (special issue on Pro-
cess Model Evolution).

[BG94] Victor R. Basili and Scott Green. Software Process Evolution at the SEL.
IEEE Software, pages 58–66, July 1994.

[BHT97] Richard Bentley, Thilo Horstman, and Jonathan Trevor. The World Wide
Web as enabling technology for CSCW: The case of BSCW. Computer
Supported Cooperative Work: The Journal of Collaborative Computing,
7:21, 1997.

[Bjø00] Bjørn Haakenstad. GlueServer, support for integrating workflow-systems
with interactive agents. Technical report, Norwegian University of Sci-
ence and Technology (NTNU), March 2000. Technical Report, Dept. of
Computer and Information Science, EPOS TR 375, 71p.

[BJJT99] Frances M.T. Brazier, Catholijn M. Jonker, Frederik Jan Jurgen, and Jan
Treur. Distributed Scehduling to Support a Call Centre: a Co-operative
Multi-Agent Approach. Applied Artificial Intelligence Journal, 13:65–90,
1999. Special Issue on Multi-Agent Systems.

[BNF96] Sergio Bandinelli, Elisabetta Di Nitto, and Alfonso Fuggetta. Supporting
cooperation in the SPADE-1 environment. IEEE Transactions on Soft-
ware Engineering, 22(2), December 1996.



388 BIBLIOGRAPHY

[BO96] Supratik Bhattacharyya and Leon Osterweil. A Framework for Reloca-
tion in Mobile Process-Centered Software Development Environments.
Technical report, Department of Computer Science, University of Mas-
sachusetts at Amherst, 23 August 1996.

[Boe81] Barry W. Boehm. Software engineering economics (on COCOMO
model). Prentice-Hall, 1981.

[Boe88] Barry W. Boehm. A Spiral Model of Software Development and Enhance-
ment. IEEE Computer, pages 61–72, May 1988.

[Boo91] G. Booch. Object Oriented Design with Applications. Ben-
jamin/Cummings, California, 1991.

[BR91] Victor R. Basili and Hans D. Rombach. Support for Comprehensive Reuse
(on TAME project). Software Engineering Journal (special issue on Soft-
ware process and its support), 6(5):303–316, September 1991.

[Bre99] Jørgen Andre Brecke. Design and implementation of the Renaissance pro-
cess system client. Technical report, Dept. of Computer and Information
Science, NTNU, Norway, 1999.

[Bro86] Frederick P. Brooks. No Silver Bullet: Essence and Accidents of Software
Engineering. In [Kug86], 1986.

[BSK95] Israel Ben-Shaul and Gail E. Kaiser. A Paradigm for Decentralized Pro-
cess Modeling. Kluwer Academic Publishers, Boston/Dordrecht/London,
1st edition, 1995. ISBN 0-7923-9631-6.

[BvET97] Frances Brazier, Pascal van Eck, and Jan Treur. Modelling Competitive
Co-operation of Agents in a Compositional Multi-Agent Framework. In-
ternational Journal of Cooperative Information Systems, 6:67–94, 1997.
Special Issue on Formal Methods in Cooperative Information Systems:
Multi-Agent Systems.

[C+88] Reidar Conradi et al., editors. Norsk Informatikk Konferanse — NIK’88,
Sundvolden Turisthotell outside Oslo, 248 p. Tapir, Trondheim, November
1988.

[C+92] Reidar Conradi et al. Design, Use, and Implementation of SPELL, A
Language for Software Process Modeling and Evolution. In [Der92],
pages 167–177, 1992.

[C+96] Reidar Conradi et al. CAGIS – Cooperating Agents in the Global Infor-
mation Space, 38 p. Technical report, IDT, NTNU, June 1996. National
Basic Research Project in Distributed Information Systems.

[Cap91] Jones Capers. Applied Software Measurement: Assuring Productivity and
Quality. Software Engineering Series. McGraw-Hill, 1991.



BIBLIOGRAPHY 389

[Cap98] K. Caputo, editor. CMM Implementation Guide: Choreographing Soft-
ware Process Improvement. Addison Wesley, 1998. ISBN 0-2013-7938-
4.

[Car97] Steinar Carlsen. Conceptual Modeling and Composition of Flexible Work-
flow Models. PhD thesis, Dept. of Computer and Information Science,
Norwegian University of Science and Technology, Trondheim, Norway,
December 15 1997.

[CDE+00] Pierre-Yves Cunin, Sami Dami, Jacky Estublier, Gianpaolo Cugola, Al-
fonso Fuggetta, H. Verjus, F. Pacull, and M. Rivière. Support for Soft-
ware Federations: The PIE Platform. In Reidar Conradi, editor, Proc.
8th European Software Process Workshop on Software Process Technol-
ogy (EWSPT’2000), Kaprun (Salzburg), Austria, 21–25 Feb. 2000, pages
38–52. Springer Verlag LNCS 1780, February 2000.

[CDW87] Reidar Conradi, Tor M. Didriksen, and Dag H. Wanvik, editors. Proc.
IFIP WG-2.4 International Workshop on Advanced Programming Envi-
ronments, 16-18 June 1986, Trondheim, Norway. Springer Verlag LNCS
244, 604 p., March 1987.

[CFJ98] Reidar Conradi, Alfonso Fugetta, and Mari Letizia Jaccheri. Six theses
on software process research. In Volker Gruhn, editor, Software Process
Technology, 6th European Workshop (EWSPT’98), pages 100–104, Wey-
bridge, UK, September 16-18 1998. Springer Verlag LNCS 1487.

[CFM00] Paolo Ciancarini, Francesco Franze, and Cecilia Mascolo. Using a Co-
ordination Language to Specify and Analyze Systems containing Mobile
Components. ACM Trans. on Software Engineering and Methodology,
9(2):167–198, 2000.

[CG98] Gianpaulo Cugola and Carlo Ghezzi. Software Processes: a Retrospective
and a Path to the Future. SOFTWARE PROCESS – Improvement and
Practice, 4(2):101–123, 1998.

[CHL95] Reidar Conradi, Marianne Hagaseth, and Chunnian Liu. Planning Support
for Cooperating Transactions in EPOS. Information Systems, 20(4):317–
326, June 1995.

[CHLN94] Reidar Conradi, Marianne Hagaseth, Jens-Otto Larsen, and Minh
Nguyen. EPOS: Object-Oriented and Cooperative Process Modelling. In
[FKN94], pages 33–70, 1994.

[CJM92] Reidar Conradi, M.Letizia Jaccheri, and Cristina Mazzi. Design, Use and
Implementation of SPELL, a language for Software Process Modeling
and Evolution. In Proc. Second European Workshop on Software Process
Technology (EWSPT’92), Trondheim, Norway., pages 196–214, 1992.



390 BIBLIOGRAPHY

[Cla93] Claude Godart. COO: A transaction model to support cooperation soft-
ware developers coordination. In 4th European Software Engineering
Conference, pages 361–379, Garmisch, Germany, 1993. Springer Ver-
lag, LNCS 717.

[CLH95] Reidar Conradi, Chunnian Liu, and Marianne Hagaseth. Planning Support
for Cooperating Transactions in EPOS. Information Systems, 20(4):317–
326, June 1995.

[CM96] Anthony Chavez and Pattie Maes. Kasbah: An Agent Marketplace for
Buying and Selling Goods. In Proceedings of the First International Con-
ference on the Practical Application of Intelligent Agents and Multi-Agent
Technology, London, UK, April 1996.

[CMM97] Anthony Chavez, Alexandros G. Moukas, and Pattie Maes. Challenger: A
Multi-agent System for Distributed Resource Allocation. In Proceedings
of the International Conference on Autonomous Agents, Marina Del Ray,
California, USA, 1997.

[CNF98] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. Exploiting
an event-based infrastructure to develop complex distributed systems. In
Proc. 20th Int’l Conf. on Software Engineering (ICSE’98), Kyoto, Japan,
April 1998. IEEE CS Press.

[CNWL98] Reidar Conradi, Minh Ngoc Nguyen, Alf Inge Wang, and Chunnian Liu.
Planning Support to Software Process Evolution. In Proc. Eight Interna-
tional Conference on Software Engineering and Knowledge Engineering
(SEKE’98), 18–20 June 1998, page 16 p., San Francisco, USA, 1998.

[CNWL00] Reidar Conradi, Minh Ngoc Nguyen, Alf Inge Wang, and Chunnian Liu.
Planning Support to Software Process Evolution. International Journal
of Software Engineering and Knowledge Engineering, Special Issue: Best
papers from SEKE’98, 10(1):31–37, February 2000.

[Con98] Renaissance Consortium. The RENAISSANCE
Method Handbook. Published by web, June 1998.
http://www.comp.lancs.ac.uk/computing/research/cweg/projects/renaissance.

[Cor00a] Microsoft Corp. Visual Studio home page. web:
http://msdn.microsoft.com/vstudio/, November 2000.

[Cor00b] Rational Software Corp. Unified Modeling Language Resource Center.
web: http://www.rational.com/uml, 2000.

[Cor00c] Toshiba Corporation. Multi-Agent Framework for 100% Pure Agent Sys-
tem. web: http://www2.toshiba.co.jp/beegent/, 2000.



BIBLIOGRAPHY 391

[COWL91] Reidar Conradi, Espen Osjord, Per H. Westby, and Chunnian Liu. Ini-
tial Software Process Management in EPOS. Software Engineering Jour-
nal (Special Issue on Software process and its support), 6(5):275–284,
September 1991.

[CR94] Panos K. Chrysanthis and Krithi Ramamritham. Synthesis of extended
transaction models using ACTA. ACM Transactions on Database Sys-
tems, 19(3):450–491, sept 1994.

[CRW96] Microsoft Corporation, Redmond, and Washington. Microsoft DCOM:
A Technical Overview. web: http://www.eu.microsoft.com/ win-
dows/downloads/bin/nts/DCOMtec.exe, 1996.

[CRW98] Microsoft Corporation, Redmond, and Washington. Mi-
crosoft Component Services: A Technology Overview. web:
http://www.microsoft.com/com/wpaper/compsvcs.asp, 1998.

[CS96] Jin W. Chang and Colin T. Scott. Agent - based Workflow: TRP Support
Environment (TSE). In Fifth International World Wide Web Conference,
Paris, France, May 1996.

[CW98] Jonathan E. Cook and Alexander L. Wolf. Discovering Models of Soft-
ware Processes from Event-Based Data. ACM Transactions on Software
Engineering and Methodology, 7(3):215–249, July 1998.

[CY90] P. Coad and E. Yourdon. Object-Oriented Analysis. Yourdon Press, Pren-
tice Hall, New Jersey, 1990.

[DBW98] Jean-Claude Derniame, Badara Ali Baba, and David Wastell. Software
Process: Principles, Methodology, and Technology. Springer Verlag
LNCS 1500, Berlin, Germany, 1998.

[DEA98] S. Dami, J. Estublier, and M. Amiour. APEL: A Graphical Yet Executable
Formalism for Process Modeling. In Process Technology edited by E.
Nitto and Alfonso Fuggetta, pages 61–96, Politecnico di Milano and CE-
FRIEL, 1998. Kluwer Academic Publishers.

[DeM82] Tom DeMarco. Controlling Software Projects: Man-agement, Measure-
ment and Estimation. Yourdon Press Computing Series. Prentice Hall,
Inc, 1982. ISBN 0-13-171711-1 025.

[Der92] Jean-Claude Derniame, editor. Proc. Second European Workshop on
Software Process Technology (EWSPT’92), Trondheim, Norway. 253 p.
Springer Verlag LNCS 635, September 1992.

[DFJN97] J. E. Doran, S. Franklin, N. R. Jennings, and T.J. Norman. On cooperation
in multi-agent systems. The Knowledge Engineering Review, 12(3):309–
314, 1997.



392 BIBLIOGRAPHY

[DGL86] Klaus Dittrich, Willi Gotthard, and Peter C. Lockemann. DAMOKLES —
a Database System for Software Engineering Environments. In [CDW87],
pages 353–371, 1986.

[DLW00] Torgeir Dingsøyr, M. Letizia, and Alf Inge Wang. Teaching Software Pro-
cess Improvement Through a Case Study. Computer Applications in En-
gineering Education, Special Issue: Contributions from the International
Conference on Engineering and Computer Education, 8(3 and 4):229–
234, 2000.

[Dor93] Alex Dorling. SPICE: Software Process Improvement and Capability dE-
termination (ISO 15054). Software Quality Journal, 2:209–224, 1993.

[DT93] Flavio DePaoli and Francesco Tisato. Language Constructs for Coopera-
tive Systems Design. In [SP93], pages 329–343, 1993.

[Edw99] W.K. Edwards. Core Jini. Sun Microsystems Inc, Prentice-Hall Inc, 1999.

[Fei91] Peter H. Feiler. Configuration Management Models in Commercial Envi-
ronments. Technical report, Carnegie-Mellon University, Software Engi-
neering Institute, Pittsburgh, Pennsylvania, March 1991. 53 pp.

[Fel93] Stuart I. Feldman, editor. Proceedings of the Fourth International Work-
shop on Software Configuration Management (SCM-4), Baltimore, Mary-
land, May 21–22, 1993.

[Fen91] Norman Fenton. Software Metrics: A Rigorous Approach. Chapman &
Hall, 1991.

[Fer93] Christer Fernström. Process WEAVER: Adding Process Support to
UNIX. In [Ost93], pages 12–26, 1993.

[FFMM97] Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire. KQML
as an Agent Communication Language. In J. M. Bradshow et al., editors,
Software Agents. MIT Press, 1997.

[FHA99] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces Principles, Patterns,
and Practice. Addision Wesley, June 1999. Sun Microsystems Inc.

[FKN94] Anthony Finkelstein, Jeff Kramer, and Bashar A. Nuseibeh, editors. Soft-
ware Process Modelling and Technology. Advanced Software Develop-
ment Series, Research Studies Press/John Wiley & Sons, 1994. ISBN
0-86380-169-2, 362 p.

[FLM97] Tim Finin, Yannis Labrou, and James Mayfield. Software Agents, chapter
KQML as an agent communication language. MIT Press, Cambridge,
1997. Ed. Jeff Bradshaw.



BIBLIOGRAPHY 393

[Fug99] Hans Kristian Fuglenes. WWW technologies for handling process mod-
els. Technical report, Dept. of Computer and Information Science,
NTNU, Norway, 1999.

[GB00] Jon Atle Gulla and Terje Brasethvik. On the Challenges of Business
Modeling in Large-Scale Reengineering Projects. In Chen, Embley,
Kouloumdjian, Liddle, and Roddick, editors, Fourth International Con-
ference on Requirements Engineering (ICRE’2000). Schaumburg, Illi-
nois, June 2000.

[GHM96] Dimitrios Georgakopoulos, Mark F. Hornick, and Frank Manola. Cus-
tomizing transaction models and mechanisms in a programmable envi-
ronment supporting reliable workflow automation. IEEE Transactions on
Knowledge and Data Engineering, 8(4):630–649, August 1996.

[Gla99] Graham Glass. ObjectSpace, Overview of Voyager: ObjectSpace’s Prod-
uct Family for State-of-the-Art Distributed Computing. White paper, Ob-
jectSpace, 1999. Availeble on web: http://www.objectspace.com/products
/documentation/VoyagerOverview.pdf.

[Gra92] Robert B. Grady. Practical software metrics for project management
and process improvement. Hewlett-Packard Professional Books. Prentice-
Hall, 1992.

[Gra97] R. B. Grady, editor. Successful Software Process Improvement. Prentice
Hall, 1997. ISBN 0-1362-6623-1.

[Gre98] Gregory Alan Bolcer. Flexible and Customizable Workflow Execution on
the WWW. PhD thesis, University of California, Irvine, 1998.

[Gru94] Jonathan Grudin. Computer-Supported Cooperative Work: Its History
and Participation. IEEE Computer, 27(5):19–26, 1994.

[GSSS92] Yaron Goldberg, Marilyn Safran, William Silverman, and Ehud Shapiro.
Active Mail: A Framework for Integrated Groupware Applications. In
D. Coleman, editor, Groupware ’92, pages 222–224. Morgan Kaufmann
Publishers, 1992.

[Håk94] Morten Håker. Evaluering av Prosjektstyringsverktøy, December 1994.
79 p. (diploma thesis). EPOS TR 239.

[Han00] Gisle Hannemyr. Cartoon Heroes Critical Reflections on Software
Agents. In Norsk Informatikkonferanse (NIK’2000), pages 79–90, Bodø,
Norway, November 20-22 2000.

[HC+88] Svein O. Hallsteinsen, Reidar Conradi, et al. The epos programming en-
vironment — an introduction. In In [C+88], p. 187–198, 1988. (Also as
DCST TR 58/88, EPOS TR 70, Jan 1989.).



394 BIBLIOGRAPHY

[Hen88] Peter B. Henderson, editor. Proc. 3rd ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software Development Envi-
ronments (Boston), 257 p., November 1988. In ACM SIGPLAN Notices
24(2), Feb. 1989.

[Her97] Bjørn Hermans. Intelligent Software Agents on the Interne. First Monday
- Peer-reviewed Journal on the Internet, 2(3), March 3rd 1997.

[Hew77] Carl Hewitt. Viewing Control Structures as Patterns of Passing Messages.
Journal of Artificial Intelligence, 8(3):323–364, 1977.

[HL98] Arthur S. Hitomi and Dong Le. Endeavours and Component Reuse in
Web-Driven Process Workflow. In Proceedings of the California Software
Symposium, Irvine, California, USA, 23 October 1998.

[HM93] B. Heintz and M. Muller. HOOD Reference Manual 3.1. Masson, Paris,
1993.

[HMK+94] Volkmar Haase, Richard Messnarz, Günther Koch, Hans J. Kugler, and
Paul Decrinis. BOOTSTRAP: Fine-Tuning Process Assessment. IEEE
Software, pages 25–35, July 1994.

[HN86] A. Nico Habermann and David Notkin. Gandalf: Software Develop-
ment Environments. IEEE Transactions on Software Engineering (TSE),
12(12):1117–1127, December 1986.

[HN00] Anders Aas Hanssen and Bård Smidsrød Nymoen. DIAS II - Distributed
Intelligent Agent System II. Technical report, Norwegian University of
Science and Technology (NTNU), January 2000. Technical Report, Dept.
of Computer and Information Science.

[Hol98] Steven Holzner. XML Complete. McGraw-Hill, 1998. ISBN 0-07-
913702-4.

[Høy97] Geir Magne Høydalsvik. Experiences in Software Process Modeling and
Enactment. PhD thesis, Department of Computer and Information Sci-
ence, Norwegian University of Science and Technology, 9 March 1997.

[HP93] Hewlett-Packard. Developing SinverVision Processes. Technical Report
Part Number: B3261-90003, Hewlett-Packard Company, 1993.

[Hum89] Watts S. Humphrey. Managing The Software Process. SEI Series in Soft-
ware Engineering. 493 p. Addison–Wesley, 1989.

[IKV00] IKV. GrassHopper - The Agent Platform. web:
http://www.ikv.de/products/grasshopper/, 2000.

[Ing98] Bent Ingebretsen. Erfaringsdatabase for firma X (in Norwegian), 2 March
1998. 206 p. + Confidential Appendix 14 p., EPOS TR 313 (diploma
thesis).



BIBLIOGRAPHY 395

[ISP00a] ISP. component - isp glossary definition and links. web:
http://isp.webopedia.com/TERM/c/component.html, 2000.

[ISP00b] ISP. middleware - isp glossary definition and links. web:
http://isp.webopedia.com/TERM/m/middleware.html, 2000.

[Jac96] M.Letizia Jaccheri. Reusing Software Process Models inE3. In The Tenth
International Software Process Workshop, 6, 1996.

[Jan95] Peter Janca. Pragmatic Application of Information Agents. In BIS Strate-
gic Decisions, Norwell, United States, May 1995.

[JC93] M. Letizia Jaccheri and Reidar Conradi. Techniques for Process Model
Evolution in EPOS. IEEE Trans. on Software Engineering, pages 1145–
1156, December 1993. (special issue on Process Model Evolution).

[JGJ97] Ivar Jacobson, Martin Griss, and Patrick Jonsson. Software Reuse: Ar-
chitecture, Process and Organization for Business Success. ACM Press /
Addison Wesley Longman, New York / Reading, Massachusetts, 1997.

[JHS+99] Jin Jing, Karen Huff, Himanshu Sinha, Ben Hurwitz, and Bill Robinson.
Workflow and Application Adaptions in Mobile Environments. In Second
IEEE Workshop on Mobile Computer Systems and Applications, New Or-
leans, Lousiana, USA, 25-26 February 1999.

[JL98] M. L. Jaccheri and P. Lago. How Project-based Courses face the Chal-
lenge of educating Software Engineers. In Jorge L. Diaz-Herrera, edi-
tor, Proc. of the joint World Multiconference on Systemics, Cybernetics
and Informatics (SCI’98) and the 4th International Conference on Infor-
mation Systems Analysis and Synthesis (ISAS’98), Orlando, USA, pages
377–385. Springer Verlag, LNCS 750, 1998. ISBN 980-07-5081-9.

[JLT99] Catholijn M. Jonker, Remco A. Lam, and Jan Treur. A Multi-Agent Ar-
chitecture for an Intelligent Website in Insurance. In Cooperative Infor-
mation Agents III, Proceedings of the Third International Workshop on
Cooperative Information Agents, CIA’99, volume 1652 of Lecture Notes
in Artificial Intelligence, pages 86–100, 1999.

[JPC00] Heecheol Jeon, Charles Petrie, and Mark R. Cutkosky. JATLite: A Java
Agent Infrastructure with Message Routing. IEEE Internet Computing,
4(2), March/April 2000.

[JW99] M. L. Jaccheri and A.I. Wang. Software quality and software process
improvement course home page, 1999. http://www.idi.ntnu.no/˜systprog
(in Norwegian).

[Kai90a] Gail E. Kaiser. A flexible transaction model for software engineering.
In Proc. 6th International Conference on Data Engineering (ICDE ’90),



396 BIBLIOGRAPHY

pages 560–567, Los Angeles, CA, February 1990. IEEE Computer Soci-
ety. Invited paper.

[Kai90b] Gail E. Kaiser. A flexible transaction model for software engineering. In
Proc. 6th International Conference on Data Engineering, pages 560–567,
Los Angeles, CA, February 1990. IEEE Computer Society. Invited paper.

[KJ95] R. Kehoe and A. Jarvis, editors. Iso 9000-3: A Tool for Software Product
and Process Improvement. Springer, 1995. ISBN 0-387-94568-7.

[KK00] Lars Killingdal and Mufrid Krilic. Programmerbare transaksjoner – pros-
jektoppgave, April 2000. Student project report (pre-diploma), 133 p.

[KKB85] H. Korth, W. Kim, and F. Bancilhon. A Model of CAD Transac-
tions. In Proceedings of the 11th International Conference on Very Large
Databases, pages 25–33, 1985.

[Kon96] Jyrki Kontio. A Case Study in Applying a Systematic Method for COTS
Selection. In H. Dieter Rombach, editor, Proc. 18th Int’l Conf. on Soft-
ware Engineering (ICSE’96), Berlin, pages 201–209. ACM/IEEE-CS
Press, N.Y., March 1996.

[KS97] G. Kotonya and I. Sommerville. Requirements engineering with view-
points. In R.H. Thayer and M. Dorfman, editors, Software Requirements
Engineering, pages 150–16, Los Alamitos, CA, USA, 1997. IEEE Com-
puter Society Press.

[Kug86] Hans-Juergen Kugler, editor. Information Processing’86. North-Holland,
IFIP, 1986.

[LA97] Danny B. Lange and Yariv Aridor. Agent Transfer Protocol – ATP/0.1.
Technical report, IBM Tokyo Research Laboratory, March 19 1997.
Availeble on web: http://www.trl.ibm.co.jp/aglets/atp/atp.htm.

[Lan97] Danny B. Lange. Java Aglet Application Programming Inter-
face (J-AAPI) White Paper - Draft 2. Technical report, IBM
Tokyo Research Laboratory, February 19 1997. Availeble on web:
http://www.trl.ibm.co.jp/aglets/JAAPI-whitepaper.html.

[LB85] M. M. Lehman and L. A. Belady. Program Evolution — Processes of
Software Change. Academic Press, 538 p., 1985.

[LC93] Chunnian Liu and Reidar Conradi. Automatic Replanning of Task Net-
works for Process Model Evolution in EPOS. In [SP93], pages 434–450,
1993.

[LC98] Chunnian Liu and Reidar Conradi. Process View of CSCW. In Proc. of
ISFST98, Ocon Technology Application, pages 46–51, Bremen, Germany,
15-17 September 1998. International Workshop on Intelligent Agents in
Information and Process Management.



BIBLIOGRAPHY 397

[Lea96] David Leare. CBR – Experiences, Lessons and Future Directions.
AAAI/MIT Press, 1996.

[Leb94] David B. Leblang. The CM Challenge: Configuration Management that
Works. In [Tic94], chapter 1, pages 1–37. John Wiley, 1994.

[Leh69] Manny M. Lehman. The Programming Process. Technical Report Rep.
RC 2722, IBM Research Centre, Yorktown Heights, NY 10594, Septem-
ber 1969.

[Leh87] M. M. Lehman. Process Models, Process Programming, Programming
Support. In Proc. 9th Int’l Conference on Software Engineering, Mon-
terey, CA, pages 14–16, March 1987. (Response to an ICSE’9 Keynote
Address by Leon Osterweil).

[Leh94] Manny M. Lehman. Software Evolution. In [Mar94], pages 1202–1208,
1994.

[Liu91] Chunnian Liu. An Expert System for Program and System Development.
In Proc. AVIGNON’91, Avignon, France, May 27–31, 1991, Volume 3,
pages 97–110, 1991.

[LMCL95] Jens-Otto Larsen, Bjørn P. Munch, Reidar Conradi, and Patricia Lago.
Improving Cooperation Support in the EPOS CM System. In Proc. 8th
ERCIM Database Research Group Workshop on Database Issues and In-
frastructure in Cooperative Information Systems, 23–25 Aug. 1995, NTH,
Trondheim, Norway, pages 135–147. ERCIM report 95-W002, SINTEF,
1995.

[LO98] Danny Lange and Mitsuru Oshima. Programming and deploying Java
mobile agents with Aglets. Addison-Wesley, 1998.

[LS96] Mikael Lindvall and Kristian Sandahl. Practical Implications of Trace-
ability. Technical report, Linköping University, 1996. To appear in Soft-
ware Practice and Experience, 18 p.

[LST78] B. P. Lientz, E. B. Swanson, and G. Tompkins. Characteristics of appli-
cation software maintenance. Communications of the ACM, 21(6), June
1978.

[LvRH90] Ernst Lutz, Hans v.Kleist Retzow, and Karl Hoernig. MAFIA - An Ac-
tive Mail-Filter-Agent for an Intelligent Document Processing Support.
In S. Gibbs and A.A. Verrijn-Stuart, editors, IFIP, North-Holland, 1990.
Elsevier Science Publishers B.V.

[Mad91] Nazim H. Madhavji. The process cycle. Software Engineering Journal,
6(5):234–242, September 1991.



398 BIBLIOGRAPHY

[Mad92] Nazim H. Madhavji. Environment Evolution: The Prism Model of
Changes. IEEE Trans. on Software Engineering, SE-18(5):380–392, May
1992.

[Mad95] R.J. Madachy. Knowledge-Based Risk Assessment and Cost Estimation.
Automated Software Engineering, 2:219–230, 1995.

[Mar94] John J. Marciniak, editor. Encyclopedia of Software Engineering. John
Wiley and Sons, 1994.

[MB95] M. M. Moore and T. Brennan. Process improvement in the classroom.
In Rosalind L. Ibrahim, editor, SEI Conference on Software Engineering
Education, pages 123–130. Springer Verlag, LNCS 895, 1995. ISBN 3-
5405-8951-1.

[MCJOLW95] Bjørn P. Munch, Reidar Conradi, Minh Ngoc Nguyen Jens-Otto Larsen,
and Per H. Westby. Integrated Product and Process Management in EPOS.
Journal of Integrated CAE, 30 p., 1995. (special issue on Integrated Prod-
uct and Process Modeling).

[MDL87] Harlan D. Mills, M. Dyer, and R. Linger. Cleanroom Software Engineer-
ing. IEEE Software, 4(5):19–25, September 1987.

[MDP98] M. Matskin, M. Divitini, and S. Petersen. An Architecture for Multi-
Agent Support in a Distributed Information Technology Application. In
International Workshop on Intelligent Agents in Information and Process
Management, page 12, Bremen, Germany, 15-17 September 1998.

[MG94] G. De Michelis and M.A. Grasso. Situating Conversations within the Lan-
guage/Action Perspective: Teh Milan Conversation Model. In CSCW’94,
Chapel Hill, North Carolina, USA, 1994.

[Mic99a] Sun Microsystems. Java Remote Method Invocation (RMI). web:
http://www.sun.com/products/jdk/1.2/ docs/guide/rmi/, 1999.

[Mic99b] SUN Microsystems. JavaSpaces TM Specification. White pa-
per, SUN Microsystems, January 25 1999. Availeble on web:
http://www.sun.com/jini/specs/js.pdf.

[Mic99c] SUN Microsystems. Java(TM) IDL. web:
http://java.sun.com/products/jdk/idl/, Updated 12 december 1999.

[Mic00] Sun Microsystems. Community resources (Jini Specification). web:
http://www.sub.com/jini/specs, 2000.

[M.L98] M.L. Jaccheri and G.P. Picco and P. Lago. Eliciting Process Models in E3.
ACM Transactions on Software Engineering and Methodology, 7(4):368–
410, October 1998.



BIBLIOGRAPHY 399

[MLG92] T. W. Malone, K.Y. Lai, and K.R. Grant. Agents for Infromation Sharing
and Coordination: A History and Some Reflections. In J.M. Bradshaw,
editor, Software Agents,, pages 109–143, Toronto, Canada, 1992. AAAI
Press/The MIT Press.

[MLG+93] Bjørn P. Munch, Jens-Otto Larsen, Bjørn Gulla, Reidar Conradi, and
Even-André Karlsson. Uniform Versioning: The Change-Oriented
Model. In [Fel93], pages 188–196, 1993.

[MLL97] Michael Merz, Boris Liberman, and Winfried Lamersdorf. Using Mobile
Agents to Support Interorganizational Workflow-Management. Interna-
tional Journal on Applied Artificial Intelligence, 11(6), September 1997.

[MM97] Zakaria Maamar and Bernard Moulin. An agent-based approach for in-
telligent and cooperative systems. In Knowledge and Data Engineering
Exchange Workshop, pages 19 –26. IEEE Computer Society Press, 1997.

[MPsP+94] Frank McGarry, Rose Pajer-ski, Gerald Page, Sharon Waligora, Vic-
tor Basili, and Marvin Zelkowitz. Software Process Improvement
in the NASA Software Engineering Laboratory. Technical report,
NASA/Goddard Space Flight Center, Computer Sciences Corporation,
University of Maryland, 1994. CMU/SEI-94-TR-22, ESC-TR-94-022.

[MSW90] N. Madhavji, W. Schaefer, and H. Weber, editors. Proc. First Interna-
tional Conference on System Development Environments and Factories
— SDEF’89, 9-11 May 1989, Berlin, London, March 1990. Pitman Pub-
lishing, 241 p.

[Mul96] H. J. Muller. Negotiation Principles. In Foundations of Distributed Arti-
ficial Intelligence, pages 211–230. Wiley Interscience, 1996.

[Mun93] Bjørn P. Munch. Versioning in a Software Engineering Database — the
Change Oriented Way. PhD thesis, DCST, NTH, Trondheim, Norway,
August 1993. 265 p. (PhD thesis NTH 1993:78).

[NC94a] Minh Ngoc Nguyen and Reidar Conradi. Classification of Meta-processes
and their Models. In Proc. from the third International Conference on
Software Process, Washington, USA, 10-11 October, pages 167–175,
1994.

[NC94b] Minh Ngoc Nguyen and Reidar Conradi. Classification of Meta-processes
and Their Models. In [Per94], 1994. 167–175.

[NC96] Minh N. Nguyen and Reidar Conradi. Towards a Rigorous Approach for
Managing Process Evolution. In Carlo Montangero (Ed.): “Proc. 4th Eu-
ropean Workshop on Software Process Technology (EWSPT’96)”, pages
18–35, Nancy, France, 9–11 Oct. 1996. Springer Verlag LNCS 1149.



400 BIBLIOGRAPHY

[Ngu97] Minh Ngoc Nguyen. Framework and Approach for Managing Software
Process Evolution in EPOS. PhD thesis, IDI, NTNU, 22 May 1997. IDI-
rapport 97:7, NTNU PhD thesis 1997:73, SU-report 6/97.

[NR69] Peter Naur and Brian Randell, editors. Software Engineering – Proc.
NATO Conference in Garmisch-Partenkirchen, 1968. NATO Science
Committee, Scientific Affairs Division, NATO, Brussels, January 1969.

[NWC97] Minh Ngoc Nguyen, Alf Inge Wang, and Reidar Conradi. Total Software
Process Model Evolution in EPOS. In Richard N. Taylor and Alfonso
Fuggetta (Eds.), editor, Proc. 19th Int’l Conf. on Software Engineering
(ICSE’97), pages 390–399. ACM/IEEE-CS Press, N.Y., May 1997.

[OB92] Markku Oivo and Victor R. Basili. Representing Software Engineering
Models: The TAME Goal Oriented Approach. IEEE Transactions on
Software Engineering, 18(10):886–898, October 1992.

[OKO98] Mitsuru Oshima, Guenter Karjoth, and Kouichi Ono. Aglets Specification
1.1 Draft. Technical report, IBM Tokyo Research Laboratory, September
8 1998. Availeble on web: http://www.trl.ibm.co.jp/aglets/spec11.html.

[OMG97] OMG. CORBA Components: Join Initial Submission. ftp:
ftp://ftp.omg.org/pub/docs/orbos/97-11-24.pdf, 1997.

[Orl92] W.J. Orlikowski. Learning from Notes: Organizational Issues in Group-
ware Implementation. In Proceedings of the Conference on Computer-
Supported Cooperative Work, CSCW’92, pages 362–369, Toronto,
Canada, 1992. ACM Press.

[Ost87] Leon Osterweil. Software Processes are Software Too. In Proc. 9th Int’l
Conference on Software Engineering, Monterey, CA, pages 2–13, March
1987. (Keynote address at the conference).

[Ost93] Leon Osterweil, editor. Proc. 2nd Int’l Conference on Software Process
(ICSP’2), Berlin. 170 p. IEEE-CS Press, March 1993.

[OSVS82] T. W. Olle, H.G. Sol, and A. A. Verrijn-Stuart. Information Systems De-
sign Methodologies: A Comparative Review. North-Holland, 1982.

[Øye98] Joar Øyen. Guidelines for Implementing Software Agent Architec-
tures. Technical report, Norwegian University of Science and Technol-
ogy (NTNU), December 1998. Technical Report, Dept. of Computer and
Information Science, 161 p.

[Paw91] Z. Pawlak. Rough Sets – Theoretical Aspects of Reasoning about Data.
Kluwer Academic Publishers, Boston, London, Dordrecht, 1991.



BIBLIOGRAPHY 401

[PC94] Daniel J. Paulish and Anita D. Carleton. Case Studies of Software-
Process-Improvement Measurement. IEEE Computer, pages 50–56,
September 1994.

[PCCW93] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles V. Weber.
The Capability Maturity Model for Software, Version 1.1. IEEE Software,
pages 18–27, July 1993.

[Per94] Dewayne E. Perry, editor. Proc. 3nd Int’l Conference on Software Process
(ICSP’3), Washington, 187 p. IEEE-CS Press, October 1994.

[PHBN99] Geir Prestegård, Anders Aas Hanssen, Snorre Brandstadmoen, and
Bård Smidsrød Nymoen. DIAS - Distributed Intelligent Agent System,
April 1999. EPOS TR 359 (pre-diploma project thesis), 396 p. + CD,
Dept. of Computer and Information Science, NTNU, Trondheim.

[PMC96] ICL Enterprises Process Management Centre, Enterprise Technology.
ProcessWise Integrator, PML Reference. Staffordshire, UK, first edition,
April 1996.

[pro00] CAGIS project. Cooperative agents in global information space webpage.
web: http://www.idi.ntnu.no/�cagis, 2000.

[PSW92] B. Peuschel, W. Schaefer, and S. Wolf. A Knowledge-Based Software De-
velopment Environment (on MERLIN). International Journal of Software
Engineering and Knowledge Engineering, 2(1):79–106, March 1992.

[PWCC95] Marc C. Paulk, Charles V. Weber, Bill Curtis, and Mary B. Chrissis. The
Capability Maturity Model for Software: Guidelines for Improving the
Software Process. SEI Series in Software Engineering. 640 p. Addison–
Wesley, 1995.

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object-Oriented Modeling and Design. Prentice Hall, New Jersey, 1991.

[RBW00] Heri Ramampiaro, Terje Brasethvik, and Alf Inge Wang. Supporting
Distributed Cooperative Work in CAGIS. In 4th IASTED International
Conference on Software Engineering and Applications (SEA’2000), Las
Vegas, Nevada, USA, 6-9 November 2000.

[Red97] Felix Redmill. Software Projects – Evolutionary vs. Big-Bang Delivery.
John Wiley, New York, 1997. 254 p., ISBN 0 471 93343 0.

[RG96] Mark Roseman and Saul Greenberg. TeamRooms: Network Places for
Collaboration. In M.S. Ackerman, editor, CSCW’96 ACM Conferrence
on Computer Supported Cooperative Work, pages 325–333, Boston, MA,
USA, 1996. ACM Press.



402 BIBLIOGRAPHY

[RN00] Heri Ramampiaro and Mads Nygård. Cagistrans: A transaction frame-
work to support cooperating agents. Technical Report IDI-5/00, Norwe-
gian University of Science and Technology, 2000.

[Roc75] Mark J. Rochkind. The Source Code Control System. IEEE Trans. on
Software Engineering, SE-1(4):364–370, 1975.

[Rol98] Rolf A. de By and Wolfgang Klas and Jari Veijalainen. Transaction Man-
agement Support for Cooperative Applications. Kluwer Academic Pub-
lishers, 1998.

[Roy70] W. W. Royce. Managing the Development of Large Software Systems:
Concept and Techniques. In Proceedings of WesCon, pages 1–9, August
1970. Reprinted in Proc. Int’ l Conf. Software Eng., IEEE Computer So-
ciety Press, 1987, pp. 328–338.

[Rr99] Heri Ramampiaro and Mads Nygård. Transaction support for cooperative
environments: A state-of-the-art. Technical Report IDI-nr. 10/99, Norwe-
gian University of Science and Technology, 1999.

[Sal01] Terje Salvesen. Global Agent Migration with DIAS III. Technical report,
Norwegian University of Science and Technology (NTNU), January 29
2001. EPOS TR 408 (diploma project thesis), 98 p. + 45 p. App.

[Sar96] Sunil K. Sarin. Object-Orient Workflow Technology in InConcert. In
Forty-First IEEE Computer Society International Conference: Technolo-
gies for the Information Superhighway, pages 446–450, Santa Clara, Cal-
ifornia, February 25-28 1996.

[SB92] Kjeld Schmidt and Liam Bannon. Taking CSCW seriously – supporting
articulation work. Computer Supported Work. An International Journal,
1(1-2):7–40, 1992.

[SD97] Carla Simone and Monica Divitini. Ariadne: Supporting Coordination
through a Flexible Use of the Knowledge on Work Process. Journal UCS
(Electronic Journal), 3(8), 1997. Also as NTNU/SU-report 23/97 and at
http://www.iicm.edu/jucs 3 8.

[Sel00] Rune Selvåg. Web-transactions. Master’s thesis, Norwegian University
of Science and Technology, 2000.

[Sim98] Morten Simonsen. Diploma thesis: Renaissance Multimedia System.
Technical report, Dept. of Computer and Information Science, NTNU,
Norway, 1998.

[Som95] Ian Sommerville. Software Engineering. Addison-Wesley, 1995. ISBN
0-2014-2765-6.



BIBLIOGRAPHY 403

[SP93] Ian Sommerville and Manfred Paul, editors. Proc. 4th European Soft-
ware Engineering Conference (Garmisch-Partenkirchen, FRG), Springer
Verlag LNCS 717, 516 p., September 1993.

[SS86] R.L. Schultz and D.P. Slevin. Project Implementation Profile (PIP).
Project Management Journal, September 1986. Distributed in Com-
pendium in course 92520 Project Organization, 1997 NTNU; translated
to Norwegian by Telenor-Novit.

[STO99] J.W. Shepherdson, S.G. Thompson, and B.R. Odgers. Cross Organ-
isational Workflow Co-ordinated by Software Agents. In Workshop
on Cross-Organisational Workflow Management and Co-ordination, San
Francisco, USA, February 1999.

[Sun89] Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, CA 94043,
USA. The Network Software Environment – A Sun Technical Report,
1989.

[SW00] Terje Salvesen and Jan Waage. DIAS III - Distributed Intelligent Agent
System Using JavaSpaces. Technical report, Norwegian University of Sci-
ence and Technology (NTNU), April 2000. EPOS TR 390 (pre-diploma
project thesis), 118 p. + 21 p. App.

[SZBB86] Daniel C. Swinehart, Polle T. Zellweger, Richard J. Beach, and Robert B.
Bagmann. A structured view of the Cedar programming environment.
ACM Transactions on Programming Languages and Systems, 8(4):419–
490, 1986.

[TBC+88] Richard N. Taylor, Frank C. Belz, Lori A. Clarke, Leon Osterweil,
Richard W. Selby, Jack C. Wileden, Alexander L. Wolf, and Michael
Young. Foundations for the Arcadia Environment Architecture. In
[Hen88], pages 1–13, November 1988.

[Ter99] Terje Brasethvik and John Atle Gulla. Semantically accessing documents
using conceptual model descriptions. In P. Chen, D.W. Embley, and S.W.
Little, editors, Advances in conceptual modeling, Paris, France, Novem-
ber 1999. WEBCM*99.

[Ter00] Terje Brasethvik and John Atle Gulla. Natural language analysis for se-
mantic document modeling. In E. Metais, editor, Proceedings on 5th In-
ternational Conference on Application of Nature Language to Information
Systems (NLDB’2000), Versailles, France, June 2000.

[TGML98] M.T. Tu, F. Griffel, M. Merz, and W. Lamersdorf. A Plug-in Architecture
Providing Dynamic Negotiation Capabilities for Mobile Agents. In 2.
Intl. Workshop on Mobile Agents (MA’98), Stuttgart, Germany, September
1998.



404 BIBLIOGRAPHY

[Tia98] Pierre F. Tiako. Modelling the Federation of Process Sensitive Engineer-
ing Environments: Basic Concepts and Perspectives. In Volker Gruhn,
editor, Proc. 6th European Workshop on Software Process Technologies,
pages 132–136, Weybridge, UK, 16-18 September 1998. Springer Verlag,
LNCS 1487.

[Tic85] Walter F. Tichy. RCS — A System for Version Control. Software —
Practice and Experience, 15(7):637–654, 1985.

[Tic94] Walter F. Tichy, editor. Configuration Management. (Trends in software).
John Wiley, 1994. ISBN 0-471-94245-6.

[USK97] R. L. Upchurch and J. E. Sims-Knight. Designing Process-Based Soft-
ware Curriculum. In Proc. of the 10th ACM/IEEE-CS Conf. on Software
Engineering Education and Training, pages 28–38. IEEE Computer So-
ciety Press, April 1997. ISBN 0-8186-7886-0.

[Waa00] Jan Waage. COCAS - COnference Cooperative Agent System. Tech-
nical report, Norwegian University of Science and Technology (NTNU),
December 2000.

[Wan95] Alf Inge Wang. Diploma thesis: Conflict HAndling Tool-kit eXtension.
Technical report, Dept. of Computer Science, NTH, Norway, December
1995.

[Wan99] Alf Inge Wang. Experience paper: Using XML to implement a workflow
tool. In 3rd Annual IASTED International Conference Software Engineer-
ing and Applications, Scottsdale, Arizona, USA, 6-8 October 1999.

[Wan00a] Alf Inge Wang. Experience paper: Implementing a Multi-Agent Ar-
chitecture for Cooperative Software Engineering. In Twelfth Interna-
tional Conference on Software Engineering and Knowledge Engineering
(SEKE’2000), Chicago, USA, 6-8 July 2000.

[Wan00b] Alf Inge Wang. Support for Mobile Software Processes in CAGIS. In
Reidar Conradi, editor, Seventh European Workshop on Software Process
Technology, Kaprun near Salzburg, Austria, 22-25 February 2000.

[Wan00c] Alf Inge Wang. Using Software Agents to Support Evolution of Dis-
tributed Workflow Models. In Proc. International ICSC Symposium on
Interactive and Collaborative Computing (ICC’2000), page 7pp, Wollon-
gong (near Sydney), Australia, December 12-15 2000.

[War89] Brian Warboys. The IPSE 2.5 Project: Process Modelling as the basis for
a Support Environment. In [MSW90], 26 p., May 1989.

[War94] Brian Warboys, editor. Proc. Third European Workshop on Software Pro-
cess Technology (EWSPT’94), Villard-de-Lans, France. 274 p. Springer
Verlag LNCS 772, February 1994.



BIBLIOGRAPHY 405

[WBWW90] R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented
Software. Prentice Hall, New Jersey, 1990.

[WCL00] Alf Inge Wang, Reidar Conradi, and Chunnian Liu. Integrating Workflow
with Interacting Agents to support Cooperative Software Engineering. In
Proc. IASTED Internation Conference Software Engineering and Appli-
cations, Las Vegas, Nevada, USA, 6-9 November 2000.

[Web00] Webopedia. Definitions and links: Software engineering.
http://webopedia.internet.com/TERM/s/software engineering.html,
2000.

[WF86] Terry Winograd and Fernando Flores. Understanding Computers and
Cognition: A New Foundation for Design. Addison-Wesley, 1986. ISBN:
0201112973.

[WfM99] WfMC. Workflow Management Coalition - Terminology & Glos-
sary. Technical report, The Workflow Management Coalition, Febru-
ary 1999. Document Number WFMC-TC-1011, Availeble on web:
http://www.aiim.org/wfmc/standards/docs/glossy3.pdf.

[WfM00] WfMC. Workflow Standard - Interoperability Wf-XML Bind-
ing. Technical report, The Workflow Management Coalition, May
1 2000. Document Number WFMC-TC-1023, Availeble on web:
http://www.aiim.org/wfmc/standards/docs/Wf-XML-1.0.pdf.

[Whi96] Jim White. Mobile Agents White Paper. Technical report, General Magic,
1996. Availeble on web: http://www.ai.univie.ac.at/�paolo/lva/vu-
sa/html/white whitepaper/.

[Whi97] Jim Whitehead. WebDAV: Evolving the Web
into a read Write Medium. MSDN Online web:
http://msdn.microsoft.com/workshop/standards/webdav.asp, April 7
1997.

[Wil91] P. Wilson. Computer Supported Cooperative Work: An Introduction. Ox-
ford, Intellect Books, 1991.

[WJ95] M. J. Wooldridge and N. R. Jennings. Intelligent agents: Theory and
practice. The Knowledge Engineering Review, 10(2):115–152, 1995.

[WLC99] Alf Inge Wang, Chunnian Liu, and Reidar Conradi. A Multi-Agent Ar-
chitecture for Cooperative Software Engineering. In Proc. The Eleventh
International Conference on Software Engineering and Knowledge En-
gineering (SEKE’99), pages 1–22, Kaiserslautern, Germany, 17-19 June
1999.



406 BIBLIOGRAPHY

[WLCM98a] Alf Inge Wang, Jens-Otto Larsen, Reidar Conradi, and Bjørn Munch.
Improving Cooperation Support in the EPOS CM System. In Volker
Gruhn, editor, Proc. EWSPT’98, Weybridge (London), 18-19. Sept. 1998,
Springer Verlag LNCS 1487, pages 75–91, September 1998.

[WLCM98b] Alf Inge Wang, Jens-Otto Larsen, Reidar Conradi, and Bjørn Munch. Im-
proving Cooperation Support in the EPOS CM System. In Volker Gruhn,
editor, Proc. EWSPT’98, London, 18-19. Sept. 1998, page 17, September
1998.

[WRH+00] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Reg-
nell, and Anders Wésslen. Experimenation in Software Engineering - An
Introduction. Kluwer Academic Publishers, Boston / Dorrecht / London,
2000.

[WW98] E. James Whitehead and Meredith Wiggins. WEBDAV: IETF Standard
for Collaborative Authoring on the Web (Web-based Distributed Author-
ing and Versioning). IEEE Internet Computing, pages 34–40, Sept./Oct.
1998.

[XML99] XML.COM. XML.COM - XML Implementations. web:
http://www.xml.com/xml/pub/Guide/XML Implementations, 1999.
(C) Seybold Publications and O’Reilly and Associates, Inc.

[Yar98] Yariv Aridor and Danny B. Lange. Agent Design Patterns: Elements of
Agent Application Design. In Katia P. Sycara and Michael Wooldridge,
editors, Proc. Second International Conference on Autonomous Agents,
pages 108–115, St. Paul, Minnepolis, USA, May 9-13 1998. ACM Press,
New York.

[YC75] E. Yourdon and L. L. Constantine. Structured Design. Yourdon, Inc.,
New York, 1975.

[Yeo96] Benjamin Yeomans. Enhancing the world wide web. Technical report,
Computer Science Dept., University of Manchester, 1996. Supervisor:
Prof. Brian Warboys.

[YL99] Jeong-Joon Yoo and Dong-Ik Lee. X-MAS: Mobile Agent Platform for
Workflow Systems with Time Constraints. In Proc. Fourth International
Symposium on Autonomous Decentralized Systems, Tokyo, Japan, 20-23
March 1999.

[You94] Patrick S. Young. The Teamware Language Reference Manual.
Teamware, March 1994.

[Zah98] S. Zahran, editor. Software Process Improvement. Addison Wesley, 1998.
ISBN 0-2011-7781-X.



BIBLIOGRAPHY 407

[ZW98] Marvin V. Zelkowitz and Dolores R. Wallace. Experimental Models for
Validating Technology. IEEE Computer, 31(5):23–31, May 1998.


