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Abstract

In a traditional communication system, the coding process is divided into
source coding and channel coding. Source coding is the process of compressing
the source signal, and channel coding is the process of error protection. It can
be shown that with no delay or complexity constraints and with exact knowl-
edge of the source and channel properties, optimal performance can be obtained
with separate source and channel coding. However, joint source—channel cod-
ing can lead to performance gains under complexity or delay constraints and
offer robustness against unknown system parameters.

Multiple description coding is a system for generating two (or more) de-
scriptions of a source, where decoding is possible from either description, but
decoding of higher quality is possible if both descriptions are available. This
system has been proposed as a means for joint source—channel coding. In this
dissertation, the multiple description coding is used to protect against loss of
data in an error correcting code caused by a number of channel errors exceed-
ing the correcting ability of the channel code. This is tried on three channel
models: a packet erasure channel, a binary symmetric channel, and a block
fading channel, and the results obtained with multiple description coding is
compared against traditional single description coding. The results show that
if a long-term average mean square error distortion measure is used, multiple
description coding is not as good as single description coding, except when the
delay or block error rate of the channel code is heavily constrained.

A direct source—channel mapping is a mapping from amplitude continuous
source symbols to amplitude continuous channel symbols, often involving a
dimension change. A hybrid scalar quantizer-linear coder (HSQLC) is a direct
source—channel mapping where the memoryless source signal is quantized using
a scalar quantizer. The quantized value is transmitted on an analog channel
using one symbol which can take as many levels as the quantizer, and the
quantization error is transmitted on the same channel by means of a simple
linear coder. Thus, there is a bandwidth expansion, two channel symbols are
produced per source symbol. The channel is assumed to have additive white
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Gaussian noise and a power constraint. The quantizer levels and the distri-
bution of power between the two symbols are optimized for different source
distributions. A uniform quantizer with an appropriate step size gives a per-
formance close to the optimized quantizer both for a Gaussian, a Laplacian,
and a uniform memoryless source. The coder performs well compared to other
joint source-channel coders, and it is relatively robust against variations in the
channel noise level.

A previous image coder using direct source—channel mappings is improved.
This coder is a subband coder where a classification following the decorrelat-
ing filter bank assigns mappings of different rates to different subband sam-
ples according to their importance. Improvements are made to practically all
the parts of the coder, but the most important one is that the mappings are
changed, and particularly, the bandwidth expanding HSQLC is introduced.
The coder shows large improvements compared to the previous version, espe-
cially at channel qualities near the design quality. For poor channels or high
rates, the HSQLC provides a large portion of the improvement. The coder is
compared against a combination of a JPEG 2000 coder and a good channel
code, and the performance is competitive with the reference, while the robust-
ness against an unknown channel quality is largely improved. This kind of
robustness is very important in broadcasting and mobile communications.
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Capacity of fading channel given state

K x L matrix with ones on the main diagonal and zeros
elsewhere

Set of subsources assigned to class j
Index

Number of direct source-channel mappings in image
coder

1) Time index
2) Horizontal pixel index
3) Number of data symbols in a block code

Channel dimension
HSQLC proportionality constant between a; and ¢;
HSQLC quantizer error scaling constant

1) Index
2) Vertical pixel index

1) Source dimension
2) Number of source symbols per block

Number of source symbols per block with multiple de-
scription coding

Number of source symbols per block with single de-
scription coding

Lagrangian function
Lagrangian function

Side size of multiple description index assignment ma-
trix

1) Number of bits per block produced by source coder
2) Size of quantizer codebook

3) Number of subbands in parallel filter bank
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My

nMD

nsD

Dy
Pe

Pe,MD

De,SD

Pij
bi

Number of bits per block produced by multiple descrip-
tion source coder

Number of bits per block produced by single description
source coder

1) Number of symbols per block in a block code
2) Observed scalar noise symbol

Number of channel symbols per block with multiple
description coding

Number of channel symbols per block with single de-
scription coding

Maximum block length

Number of subsources

Random noise symbol (at time instant k)
Random noise vector at time instant k

Observed noise symbol on channel branch no. 7 (at time
instant k)

Random noise symbol on channel branch no. 7 (at time
instant k)

Random noise vector in channel branch 7 at time instant

k
Number of diagonals in index assignment matrix

Number of cells at each side of the origin in scalar quan-
tizer

1) Packet erasure probability
2) Prime as basis for Reed-Solomon code

Bit error probability
Block error probability

Block error probability with multiple description coding
System

Block error probability with single description coding
system

Channel transition probability

Probability of quantizer cell no. ¢
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~(1)

p; Probability of quantizer region no. j of description no.
l

Pout Channel outage probability

pa(a) Probability mass function of quantized HSQLC symbol

pax,.(alz,...) Generally: Probability mass function of A conditional
on X, ...

P Recieved channel power in block fading channel

P; Channel power of mapping j

Ppam Channel power of direct PAM symbol

P Observed average channel power in power allocation
algorithm

Piot Average available channel power

Pr(-) Probability of an event

q Alphabet size of block code

Q) Quantizer function

R Total rate (number of channel symbols per source sym-
bol)

R Information theoretic rate

R; Rate of mapping j

Ri (%) Rate when quantizing subsource ¢ with quantizer v; in
bit allocation based system

R, Channel bit rate

R Source bit rate

Rgl) Bit rate of description no. [

Rsum Cumulative rate in rate allocation algorithm

Riot Overall available rate for image coder

Rtot Overall available bit rate for bit allocation based system

R The set of real numbers

S Number of bits per PAM symbol in side information
transmission

S CSNR

St Sphere in L dimensions
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Sz Horizontal image size

Sy Vertical image size

t 1) Correcting ability of block code
2) General variable

T Transpose

u(+) Unit step function

(k) General decoded symbol at time instant k

U (k) General random symbol at time instant k

v(k) General observed received symbol at time instant k&

v; Class to which subsource 7 has been mapped

Uj Quantizer used to quantize subsource 7 in bit allocation
based system

T Observed scalar source symbol

X(k), X Random scalar source symbol (at time instant k)

X (k) Random source vector at time instant &

X (k) Random decoded vector at time instant &

X (k) Random decoded scalar source symbol at time instant
k

X, (k) ith element of X (k)

X (k) Decoded random signal with single description source

Y (k)
Y (k)

decoder

Decoded random signal with central decoder
Decoded random signal with side decoder
Expected value of random signal X (k)

Centroid of quantizer interval no. ¢

Centroid of quantizer region no. j of description no. [
Original pixel value at position (k,1)

Decoded pixel value at position (k,1)

Maximum possible pixel value

Minimum possible pixel value

Random scalar channel symbol at time instant k

Random channel vector at time instant &
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Y (k) Random received scalar symbol at time instant &k

Y (k) Random received vector at time instant k

9i(k), Ui Observed received symbol of channel branch no. i (at
time instant k)

Yi(k), i Random channel symbol of channel branch no. i (at
time instant k)

Y.(k) Random channel vector of channel branch no. ¢ at time
instant k

Yi(k), V; Random received symbol of channel branch no. i (at
time instant k)

Y (k) Random received vector of channel branch no. ¢ at time
instant k

z The variable in the Z transform

The set of integers
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AWGN
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BSC
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dB
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HDA-FEAD
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IEC
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IP

ISO
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MAP
MD
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MSE
MUX
OPTA
PAM
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pdf
PR
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PSNR
QAM
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Mean square error
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Quadrature amplitude modulation
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Chapter 1

Introduction

In the recent years, the area of telecommunication has gone through a large
development, both scientifically, technically, and financially. This area has also
caught a lot of public attention, perhaps more than any other technological
field. The use of wireless services, such as mobile phones, has gone through
a tremendous growth, and new services are being developed rapidly. In these
new services, there is a high demand for multimedia services, including the
transmission of images, video, and high quality audio. Such sources have a
high information rate, while the capacity of the wireless channels is limited.

Both compression of the source signals (source coding) and efficient utiliza-
tion of the channels (channel coding) are topics that are subject to extensive
research. Still, it is not always possible to obtain the desired quality of the
received signals given the channel constraints that exist. In order to get the
most out of the limited resources, new methods should be sought in order to
come as close to the performance bounds as possible. Despite good results
obtained with separate source and channel coding, unification of these opera-
tions can give improvements in some cases. Thus, joint source-channel coding
is a concept that deserves further attention. This topic has received increasing
attention, although far from that of separate source or channel coding.

In this dissertation, two fundamentally different joint source—channel cod-
ing methods are investigated. One is based on multiple description coding,
the other is a hybrid digital-analog scheme. The most successful of these, the
hybrid digital-analog system, is utilized in an image coder.

1.1 Source and Channel Coding

Figure 1.1 shows a typical block diagram of a digital communication system
for transmitting a source signal. There are several ways of sub-dividing the
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Figure 1.1 Typical blocks of a digital transmission system. The letters at each con-
junction indicates the nature of the signal transferred between the blocks. D: Discrete.
C: Continuous. T: Time. A: Amplitude

system into blocks in such a schematic overview. Not all systems contain all
the blocks, and there might be operations performed in some systems that do
not fit well into the framework of Figure 1.1.

The blocks right above each other perform converse operation. The sam-
pling block performs the conversion from a time continuous to a time dis-
crete signal. It is well known from the sampling theorem (Shannon, 1949)
that the sampling/interpolation operations can be performed losslessly for a
band-limited signal, provided that the sampling frequency is at least twice
the bandwidth. The sampling operation creates a signal that is time discrete.
In practice, sampling is usually combined with analog-to-digital conversion,
creating an amplitude discrete signal. The unavoidable quantization noise in-
troduced in this process is often small compared to the distortion introduced
by the rest of the system, and thus, the signal can be viewed as an amplitude
continuous signal. The decomposition block performs some sort of frequency
analysis, for instance by linear prediction, or transform or subband filtering,
in order to reduce or remove the correlation that is present in most natural
signals. The source encoder performs such operations as quantization, bit al-
location and entropy coding in order to compress the signal, and produces a
bit stream (or stream of other finite alphabet symbols). Source coding is often
used as a term for the operation of the two blocks last mentioned. In some
systems, such as with vector quantization designed for a source with mem-
ory or in closed-loop DPCM (differential pulse code modulation) (Gersho and
Gray, 1992), these two blocks are joined into one, and in other systems, they
are jointly designed, such as if half-whitening predictive coding is performed
followed by a coder designed for the signal with some correlation left.
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The channel encoder block performs operations to protect the bit stream
generated by the source coder against transmission errors by increasing the
number of bits. The symbol mapping block is used to represent the operation
of generating a stream of real or complex-valued symbols from the bit stream
output by the channel encoder block. Typical operations of this block are pulse
amplitude modulation (PAM), quadrature amplitude modulation (QAM) and
phase shift keying (PSK). As indicated by these names, this operation is often
interpreted as a part of the modulation process. Here, the modulation will be
used to denote only the process of going from the time discrete signal to a time
continuous one by performing pulse shaping and modulating the signal onto a
carrier. The symbol mapping process is said to create an amplitude continuous
signal, although almost all practical schemes will only use a limited number of
amplitudes. However, the use of other amplitudes is assumed to be feasible,
and due to channel noise, the symbol detection block can observe a continuum
of amplitudes.

For system analysis, the modulation and demodulation blocks are often
included in the channel model, creating a time discrete channel. The famous
result by Nyquist (1928) states that the discrete symbol rate can be up to
twice the channel bandwidth, the Nyquist rate; this can also be shown from
the sampling theorem. It is also common to include the symbol mapping and
detection blocks in the channel model to get a binary channel.

Soft decision decoding is very common, and this is a joint design of the sym-
bol detection and channel decoder blocks. Even on the encoder side, some form
of unification of the channel encoder and symbol mapping blocks is common.
A reason for this is that a system performing close to the channel capacity of
an analog channel, must have a symbol mapping giving a quite large symbol
error rate (Blahut, 1987). Then, the channel coder must know the probabilities
of different error events to be well designed.

A successful scheme for jointly designing channel coding and symbol map-
ping is trellis coded modulation (TCM) (Ungerboeck, 1982), which has been
followed by a vast amount of work in the same field. TCM-like methods can
be used alone or in combination with a traditional channel code.

1.1.1 The Source—Channel Separation Theorem

The coding of a continuous amplitude source can be described by the rate-
distortion function, which gives the minimum rate needed to encode the source
with a certain distortion, and a channel can be described by its capacity, which
is the largest rate at which the channel can transfer information reliably. Both
these measures were defined by Shannon (1948). It can be shown that codes
exist that perform arbitrarily close to these bounds (Blahut, 1987). A conse-



Introduction

quence of this is that a source signal can be transmitted on a channel with
a certain distortion if the channel capacity is arbitrarily close to the rate-
distortion function of the source at the considered distortion. Furthermore,
this can be obtained with a source code that encodes the source at a rate suf-
ficiently close to the rate-distortion function followed by a channel code that
gives a sufficiently small probability of error at a rate sufficiently close to the
channel capacity. The latter result is often called the source—channel separation
theorem.

Some issues are worth noticing concerning the source—channel separation
theorem. There exist channels for which it does not hold because the capacity
in some way depends on the coding method. An example of such a channel is a
multiple access channel, where the capacity depends on the correlation between
the input signals (Cover and Thomas, 1991), another example is the block
fading channel discussed in Section 2.7, where the channel is described in terms
of the length of the channel codewords. Another problem with the separation
theorem is that the codes must have unconstrained lengths in order to come
arbitrarily close to the bounds. This means that for a certain coding delay, the
separation of source and channel coding might not be optimal. Perhaps the
most important problem is that although separate source and channel coding
can be optimal for a certain channel, the separation is highly non-robust. If
the channel parameters change so that the capacity is lower than expected,
the channel code cannot give a low error probability, and the source code then
cannot give a low distortion if the codes are designed to be very close to the
bounds. Furthermore, the separation means that if the capacity is higher than
expected, the distortion cannot go down.

1.1.2 Joint Source—Channel Coding

The problems mentioned above are reasons for looking at joint source—channel
coding, despite the separation theorem. The term joint (or combined) source—
channel coding will be used about all methods where at least the source coding
and channel coding blocks of Figure 1.1 either are unified into a common block
or are jointly designed in some way.

In terms of Figure 1.1, a joint source—channel code can include more blocks
than source coding and channel coding. If the code is designed for a source
with memory, it means that the decomposition and reconstruction blocks are
included. If it is designed to utilize the continuous amplitude nature of the
source, for instance by using soft information in the decoder, the symbol map-
ping and detection blocks are part of the joint source—channel encoder and
decoder, respectively. This situation is discussed in Chapter 3.

From the mentioned possible shortcomings of coder separation, it can be
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deducted that the use of a joint source—channel code can be justified

e if no known separate source and channel codes can give the performance
of the joint source—channel code;

e if the joint source—channel code can get the desired performance with a
lower complexity than separate codes;

e if under delay constraints, the joint source-channel code performs better
than separate codes;

e if the joint source—channel code gives good results for a larger range
of channel qualities, thus it is more robust against unknown channel
qualities.

The last point is very important. Although modern communication systems
may well include advanced systems for estimation of channel parameters and
two-way communication for transmitting such information back from the re-
ceiver to the transmitter, there are cases when this is impossible. One example
is when the transmission delay is too large for a dynamic adjustment of the
coding parameters, such as in space communications. Another example is
broadcasting, where the same signal is received by many independent users,
each of which sees a different channel.

The use of joint source—channel coding has some disadvantages. Modern
communication systems are often quite complex, where data can be transmit-
ted through a chain of communication channels having highly diverse proper-
ties. The separation of source and channel coding means that the end users only
need to focus on the source coding and do not have to know much about the
nature of the channel segments, while the nodes of the communication system
only need to focus on appropriate channel coding for the channel segments that
they serve, not the source that is being transmitted. If joint source—channel
coding is to be applied to such a communication system, the source may have to
be re-coded at the nodes to fit to different kinds of channels. This means that
the nodes must know about source coding for different types of sources. Thus,
joint source—channel coding is best suited for situations where the channel can
be known by the end users.

1.2 Previous Work

One approach to joint source-channel coding is that of robust quantization.
The idea of robust quantization is that the quantizer is designed so that it
not only gives a low distortion provided correctly received quantizer index,
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but also so that the distortion associated with typical error events is limited.
Fine (1964) gave a framework for optimizing a coding system with a discrete
amplitude, possibly noisy channel. Kurtenbach and Wintz (1969) optimized a
scalar quantizer for a noisy channel. The algorithm was improved by Farvardin
and Vaishampayan (1987), who later extended the work to vector quantiza-
tion (Farvardin, 1990; Farvardin and Vaishampayan, 1991). Hagen and Hedelin
(1999) used a linear block code to design the reconstruction codebook.

Massey (1978) considered linear block codes both for channel coding and
for source coding, and demonstrated that the source and channel code could
be concatenated, thereby simplifying the realization.

Sayood and Borkenhagen (1991) and Phamdo and Farvardin (1994) used
the residual redundancy after source coding with DPCM or vector quantiza-
tion, respectively, to perform error correction decoding. This way, a source
coder becomes a joint source—channel coder by a modification of the decoder.

Most joint source—channel coders are based on fixed length codes, since in
variable length codes, errors can lead to loss of synchronization, with a catas-
trophic result. Buttigieg and Farrell (2000) used a Viterbi algorithm to decode
variable length codes designed for joint source—channel coding, and Sayood,
Otu and Demir (2000) used DPCM and a combination of a convolutional code
and a Huffman code at the encoder and Viterbi decoding.

A much used form of joint source—channel coding is that of unequal error
protection (UEP). This means that the channel code is designed such that
the most important parts of the coded source signal is protected more heavily
than the less important parts. In this case, there is separate source and channel
coding, but the two codes are connected in an intelligent manner, which means
that the two coders must know each other’s operation, making this a form of
joint source—channel coding. An early discussion of UEP was done by Masnick
and Wolf (1967), later work include (Modestino and Daut, 1979; Hagenauer
and Stockhammer, 1999), to mention a few. Goldsmith and Effros (1998) used
rate-compatible punctured convolutional coding, which is a form of UEP, in
combination with a channel-optimized vector quantization, where the codes
were jointly designed and the rate optimally distributed between them.

This section contains only a few of the many works on joint source—channel
coding. Section 2.2 discusses previous work on multiple description coding,
some of which falls under the category of joint source—channel coding. In
Section 3.3, results for some codes which utilize the continuous amplitude
nature of the channel are given, while Section 4.1 gives some examples of joint
source—channel coding for images. Still, the overview of previous work is not
meant to be exhaustive.
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1.3 Outline of the Dissertation

The dissertation contains five chapters. The main ones, Chapters 2—4, are
mostly self-contained.

Chapter 2: A class of joint source—channel codes based on multiple descrip-
tion coding in combination with traditional channel codes is considered
and compared to a traditional single description coding based system.
This is investigated for three channel models: a packet erasure channel,
a binary symmetric channel, and a block fading channel.

Chapter 3: Methods for mapping analog source symbols directly to analog
channel symbols are described, and a bandwidth expanding mapping
denoted hybrid scalar quantizer-linear coder (HSQLC) is developed. Its
performance for different memoryless source distributions and an additive
white Gaussian channel is studied.

Chapter 4: The mappings described in Chapter 3 are applied to an existing
image coder. The coder operation is described, and several of the coder
blocks are modified. The coding results are investigated, and the coder
is analyzed to find the significance of some of the operations performed.
It is also compared to a system consisting of state-of-the-art source and
channel coders.

Chapter 5: Conclusions are drawn from the results of the previous chapters.
In addition there are three appendices:

Appendix A: The existence of maximum distance separable codes over large
enough symbol alphabets is proven. This result is applied in Chapter 2.

Appendix B: Formulas are found for the mean square error and the optimal
receivers given a transmitter of the HSQLC from Chapter 3.

Appendix C: The original images used for performance evaluation in Chap-
ter 4 are shown.
1.4 Contributions of the Dissertation

Chapter 2:

e Joint source—channel codes based on multiple description coding and er-
ror correcting block codes are proposed for three different channel models.
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e [t is shown that existing high-rate approximations for multiple descrip-
tion quantization are not uniformly convergent, and that this make them
unsuitable when the parameter is allowed to be optimized.

e Comparisons are made between single and multiple description coding
under similar conditions, to find when multiple description coding is
useful.

Chapter 3 and Appendix B:
e The hybrid scalar quantizer-linear coder system is introduced.

e Formulas for an optimal receiver given an HSQLC transmitter are found
for different memoryless sources.

e A simplified receiver is proposed.

e Formulas are found for the mean square error of the proposed system
with the simplified receiver.

e The coder parameters are optimized.

e The performance of the HSQLC is investigated and compared to other
systems.

Chapter 4:

e New mappings are introduced to an existing joint source-channel image
coder, including the HSQLC, which introduces bandwidth expansion to
the coder.

The power and bandwidth allocation algorithm of the coder is improved.

A new coding strategy of the side information is proposed.

e The coder performance is investigated, including the influence of the
HSQLC mapping and the power allocation.

e The coder performance is compared against other systems.



Chapter 2

Joint Source—Channel Codes
Based on Multiple Descriptions

Multiple description (MD) coding is a multiuser source coding method, where
several (usually two) descriptions of the source signal are given, and decoding
should be possible from either of them, while decoding of higher quality should
be possible from more than one description. It was originally formulated as
an abstraction of a packet network communication problem. Its formulation
makes it natural to design a joint source—channel code based on multiple de-
scription coding, where robustness against lost blocks of data can be obtained.
In this chapter, this robustness is used to protect against loss of data occurring
when a traditional channel code fails to correct enough information on a noisy
communication channel, and the performance of such a coder is compared to
a more traditional system.

The chapter is organized as follows. In Section 2.1, the traditional multiple
description coding problem is formulated, and Section 2.2 describes previous
work on MD coding. In Section 2.3, an overview of the system and channels
considered here is given. Section 2.4 describes and discusses the source coding
part of the system. In Sections 2.5, 2.6, and 2.7, a description is given of the
erasure channel, the binary symmetric channel, and the block fading channel,
respectively, with a discussion on the applied channel coder and results for the
total system in each case. Finally, the results are discussed in Section 2.8.

This chapter is based on (Coward, Knopp and Servetto, 2001a) and (Coward,
Knopp and Servetto, 20015).
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Figure 2.1 Multiple description coder with two descriptions

2.1 Multiple Description Coding Formulation

Multiple description coding is a problem of an encoder producing several out-
puts, or descriptions, and several decoders taking different number of descrip-
tions as input. In general, any number of descriptions can be produced, but in
this chapter, as in most of the literature, only the case of two descriptions is
considered. This situation is shown in Figure 2.1. The encoder produces two
descriptions, and one of the decoders, the central decoder takes both descrip-
tions as input, while the other two, the side decoders, only take one description
each.

The central distortion dy is defined as the expected distortion between
the input X (k) and the output of the central decoder, Xo(k), while the side
distortions di and da, are defined as the expected distortion between the input
X (k) and the output of the side decoders, X (k) and Xy (k), respectively. For a
quadratic distortion measure and real-valued signals, the distortions are given
by

4 =E [(X(k) —Xi(k))Q] i {0,1,2). (2.1)

The problem is formulated as follows. Given the rates of the two descrip-
tions, Rgl) and R§2), minimize dy subject to the constraints

dl S dl,max (2-2)
d2 S d2,max> (2'3)

where di max and da max are given constants. If d; = do and Rgl) = Rgz), the
descriptions are said to be balanced.
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2.2 Previous Work

The problem of multiple descriptions was originally formulated at the 1979
IEEE Information Theory Workshop, resulting in works by Witsenhausen
(1980), Wolf, Wyner and Ziv (1980), Ozarow (1980), and El Gamal and Cover
(1982). All these works seek theoretical bounds on the performance of multiple
description coding, not practical coder designs. Later works on performance
bounds include (Ahlswede, 1985) and (Zhang and Berger, 1995). Venkatara-
mani, Kramer and Goyal (2001) have found bounds on the achievable perfor-
mance region for MD coding with more than two descriptions.

One of the first practical coder designs for multiple descriptions was done by
Jayant (1981), who used subsampling with a scheme for reducing the percep-
tual effect of aliasing to perform MD coding of DPCM speech. This approach
was later improved by Ingle and Vaishampayan (1995).

Perhaps the most important design principle for MD coders is based on
quantization. Already Jayant (1981) mentioned the possibility of using a mid-
tread and a mid-rise quantizer to obtain each description, a method that would
work even for memoryless sources, but rejected the idea due to the high rate
needed on the two descriptions compared to the rate of a single description
coder giving the same distortion as the central decoder. However, Vaisham-
payan (1993) designed multiple description scalar quantizers where the rate of
the descriptions can be traded off against the side distortions. This quantizer
is obtained by a standard scalar quantizer followed by an index assignment
that splits the signal into two descriptions, see Section 2.4.3.1. Vaishampayan
and Domaszewicz (1994) considered entropy constrained quantizers, Batllo and
Vaishampayan (1997) used transform coding to apply the quantizers to sources
with memory, and Vaishampayan and Batllo (1998) found high-rate approx-
imations of the scalar quantizer performance. Jafarkhani and Tarokh (1999)
constructed MD trellis coded quantizers, and MD vector quantizers have been
studied by Vaishampayan, Sloane and Servetto (2001). Berger-Wolf and Rein-
gold (1999; 2000) found an index assignment and a performance bound for
MD scalar quantization for more than two descriptions. Non-balanced MD
vector quantization was studied by Fleming and Effros (1999), including more
than two descriptions, and by Diggavi, Sloane and Vaishampayan (2000). MD
quantizers have been applied by Servetto, Ramchandran, Vaishampayan and
Nahrstedt (2000) to design an image coder. Streaming video based on the
same principle was developed by Servetto and Nahrstedt (2001).

Another approach to multiple description coding is frequency domain meth-

ods, where the descriptions are generated using some sort of frequency anal-
ysis, prior to independent quantization of the descriptions. Wang, Orchard,
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Vaishampayan and Reibman (2001) used transform coding as the frequency
method, and applied the method to image coding. Goyal and Kovacevi¢
(2001) also studied transform coding, including the case of more than two
descriptions. This was applied to audio coding by Arean, Kovacevié¢ and Goyal
(2000). Chung and Wang (1999) used lapped orthogonal transforms to design
MD coding, with an image coder application. Quantized frame expansions
were used by Goyal, Kovacevi¢ and Vetterli (1999), again allowing for more
than two descriptions. Yang and Ramchandran (2000) designed an MD coder
based on filter banks, and Balan, Daubechies and Vaishampayan (2000) used
a windowed Fourier method.

A special case of multiple description coding is obtained by relaxing the
side distortion constraint on one of the descriptions, thus getting two (or more)
descriptions of different importance. The most important description is then
needed for good decoding. This problem is known as successive refinement
or multiresolution coding, and has been studied by Equitz and Cover (1991),
Rimoldi (1994), and several others.

In this chapter, multiple description coding will be used for joint source—
channel coding. Some previous works exist on this problem. Goyal et al.
(1999) considered a frequency domain method on an erasure channel. The
performance of an MD quantizer on a Rayleigh fading channel was studied by
Yang and Vaishampayan (1995), and Alasti, Sayrafian-Pour, Ephremides and
Farvardin (2001) investigated the case of an MD quantizer with a congestion
network model.

A good historical survey of multiple description coding, giving an alter-
native presentation from this section, can be found in (Goyal and Kovace-
vié, 2001).

2.3 Problem Considered

The systems considered in this chapter are communication systems for trans-
mitting samples of an analog source over a communication channel. The source
is always memoryless, real and Gaussian, and the distortion measure is the
mean square error. A system using multiple description coding in combination
with channel coding is used as a joint source—channel coder, and the perfor-
mance is compared against a more traditional system.

It is assumed that there somehow exist two parallel independent channels,
and two systems transmitting on these two channels will be considered. One
system uses a multiple description (MD) coder which produces two descrip-
tions. These descriptions are channel coded separately and transmitted on the
two channels. The other system uses a single description (SD) coder, which
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Figure 2.2 Coding system based on multiple description coding
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Figure 2.3 Coding system based on single description coding

produces only one output. This is channel encoded in a way suitable for trans-
mission on two channels of the given characteristics and transmitted on the
channel pair. The two coding systems are shown in Figures 2.2 and 2.3.

The transmission is block based, and one block from the source coder cor-
responds to one block from the channel coder. If the number of channel errors
exceeds the channel code’s correcting ability, the block is lost, and the source
coder has to deal with this situation. The MD coder will have an advantage
in this case, since decoding of a somewhat reduced quality is possible from the
other description if one description is lost. This robustness is deliberately intro-
duced in the source coder so that the channel coder can be made less powerful,
and this brings the system into the class of joint source—channel coders.

Three different channel models are considered. One is an erasure channel,
which is used as a model of a packet switched network. This channel takes
packets as the input, and some of the packets are lost in the transmission.
Section 2.5 provides a treatment of this channel.

The second model is a binary symmetric channel, which takes a binary
input, and produces bit errors as random events. This channel can be seen as
a model of an analog channel with additive white Gaussian noise on which bits
are transmitted with a given memoryless modulation. The binary symmetric
channel will be discussed in more detail in Section 2.6.

The last channel model is a block fading channel. It has a fading state that
can be assumed to be constant for a certain period of time, and two channels
with independent fading states. This channel is discussed in more detail in
Section 2.7.

The source—channel separation theorem was discussed in Section 1.1.1, and
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Figure 2.4 Single description source encoder and decoder

it states that for a source with a given rate-distortion function and a channel
with a given capacity, an optimal coder for transmitting the source over the
channel can be achieved with a source code that reaches the rate-distortion
bound followed by a channel code that reaches the channel capacity. The
block fading channel is an example of a channel where the theorem does not
hold (Ozarow, Shamai and Wyner, 1994). For other channels, in order to get
a source code that reaches the rate-distortion bound and a channel code that
reaches the capacity, the codes normally have to be infinitely long, thus having
infinite delay.

Multiple description coding is a source coding method that is designed to
work reasonably well even in the presence of channel errors. This means that
it cannot approach the traditional rate-distortion bound unless the constraint
on the side distortion is sufficiently relaxed. Thus, in a situation where the
source—channel separation theorem holds, multiple description coding will not
be useful. Therefore, for the erasure channel and the binary symmetric chan-
nel, only cases where the delay is constrained are considered. For the block
fading channel, even a case of unconstrained block length is interesting, as the
separation theorem does not hold for that channel.

2.4 Source Coding

There are two kinds of source coders, a multiple description coder and a single
description coder. Three models for the performance of the coders are con-
sidered: The rate-distortion function, which is treated in Section 2.4.1, a high
rate quantization model, which is discussed in Section 2.4.2, and a uniform
scalar quantizer model, which is described in Section 2.4.3. For all cases, the
encoders and decoders can be described as in Figures 2.4 and 2.5. The de-
coders use information from the channel coder on block losses to decide which
output to use. For the single description coder, in case of a block loss, the
expected value X of the source is output, otherwise the decoded value X (k) is
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output. For the multiple description coder, the output of the central decoder,
Xy (k), is output if no blocks are lost. If a block in one of the two descriptions
is lost, the output of the other side decoder, X; (k) or Xs(k), is output. If the
block in both descriptions is lost, X is output.

The source bit rate of the coders is defined as the number of bits produced
per input source sample, and is denoted Rs. In the multiple description coder,
it is the total number of bits in the two descriptions that is counted.

2.4.1 Rate-Distortion Performance of the Source Coders

The rate-distortion function gives a bound on the distortion of a source coder
given a rate, or vice versa. Further, the converse theorem guarantees the exis-
tence of codes that perform arbitrarily close to the rate-distortion bound. Thus,
the rate-distortion function can be used to find a bound on the performance
of the coding systems. In order to come arbitrarily close to the rate-distortion
function, no constraint can be put on the delay of the coder, meaning that the
block length usually must approach infinity.

For the single description source coder, the rate-distortion function of the
source was found by Shannon (1948). The distortion d is defined as the mean
square error when no blocks are lost,

- 2
d=E [(X(k) - X(k)) ] . (2.4)
For a memoryless Gaussian unit variance source, the bound is:
d > 272k (2.5)

For the multiple description coder, the rate-distortion function for a Gaus-
sian input was found by Ozarow (1980). If a quadratic distortion measure



16

Joint Source—Channel Codes Based on Multiple Descriptions

is used, so the distortions are given by (2.1), and the coder is balanced, so
dy = d and the rate of each description is Rs/2, the bound is given by:

dy > 278 (2.6)

1
dy > 2728 : (2.7)

1—(1—d1—\/m)2

2.4.2 High Rate Quantizer Model

The coders are now assumed to be quantizers. A common way of analyzing
systems with quantization is to use a high rate model. A high rate model for
vector quantization in multiple description coding has been found by Vaisham-
payan et al. (2001). For a balanced multiple description coder using entropy
coding and producing R;/2 bits per sample in each of the two descriptions,
the central average distortion do(R;) of an optimal quantizer satisfies

lim do(Ry)2R(1+9) = LG (4)22hUx), (2.8)

Rs—o0

and the average side distortion d;(Rs) = da(Rs) satisfies

lim dy(R,)2%(179) = G(Sy)22h(x). (2.9)

Rs—o0

Here, G(A) is the normalized second moment of a Voronoi cell of the L-
dimensional lattice A, L is the vector dimension, G(SL) is the normalized
second moment of a sphere in L dimensions, h(fx) is the differential entropy
of the source, and a € (0,1) is a parameter. For the single description coder
producing R, bits per sample, the average distortion d(Rs) of the optimal
quantizer satisfies

lim d(R,)2%Fs = G(A)22h(Fx), (2.10)

Rg—00

The limits above are pointwise convergent for any a € (0,1). However,
it will be shown that (2.8) is not uniformly convergent. Single description
quantization of rate Ry is equivalent to multiple description quantization of
a source into two descriptions of rate Ry/2 each when the constraints on the
side distortions are completely relaxed. This means that the central distortion
cannot be smaller than the distortion of a single description coder of the same
rate,

d(Rs) < dp(Rs). (2.11)
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Note that Equation (2.10) is independent of a. Thus, if (2.8) is to be uni-
formly convergent, d(Rs)2%% — do(R,)2%(1+%) must converge uniformly to
G(A)22MFx) — 1G(A4)22MIx) = 3G(A)2%(Fx). This means that convergence
can be analyzed by studying

B(a) = [d(R)27™ — do(R)2™(H) —2G(a200)]. (212

If d(R,) < do(Ry), it is possible to find an a € (0,1) such that d(R,)2%fs —
do(R,)2%:(119) < 0 by choosing an a that satisfies

ac (max {1 — 2 log, ’{;’(ﬁs)),o} , 1) . (2.13)

If d(R,) = do(Ry), it is still possible to find an a € (0, 1) such that d(R,)22%s —
do(R,)2%:(119) < ¢ for any € > 0. This is obtained for

~ 1 lopn o 2%Rs 2Rs
a € (max {1 7, 108 22Rs—e/d(Rs)’O} ’ 1) e <2d(R,) (2.14)
(0,1) v€ > 22 d(Ry)

This means that for any € > 0, there is an a € (0,1) that satisfies
§(a) > 3G(A)22hUx) — ¢ (2.15)

Since gG(A)?Zh(fX) > 0 and independent of R, and a, this means that
SUPge(0,1) 0(a) is bounded away from zero, and (2.8) cannot be uniformly
convergent.

The fact that the convergence is not uniform means that if the limit per-
formance is used as a approximation for a given finite rate, there will be values
of a for which the approximation is poor.

As another way of illustrating this problem, look at the approximation of
the distortions obtained by removing the limit operation in Equations (2.8)—
(2.10), and denote the approximations dg(Rs), di(R;), and d(R,). If the con-
stant a in the multiple description code model is increased, the central dis-
tortion becomes smaller and the side distortion larger. If a — 1, the side
distortion becomes independent of the rate. This should correspond to the
single description case. However,

lim do(Rs) = 1G(A)22MIx)2=2R — 14(R,). (2.16)

This means that the estimate of the central distortion of the multiple descrip-
tion coder is one fourth of the estimate of the single description distortion with
the same total source rate. This cannot be true for the actual distortions, as
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stated in Equation (2.11). When the multiple description coder is to be com-
pared against the single description one, different values of the parameter a
must be considered. When the approximation used for the multiple description
coder is more optimistic than the one for the single description coder for some
values of a, it is difficult to decide which coder is really the best performing one.
Thus, the high rate model is unsuitable for the comparisons in this chapter.

2.4.3 Uniform Scalar Quantizer

Since a high rate model is not suitable, a more accurate model must be found.
Due to the assumption of a memoryless source, the problem is quite simple, and
the performance can be found by some integrals over the probability density
function of the source. For a vector quantizer, such integrals will be difficult to
calculate due to the complicated integration limits that are obtained. However,
with a scalar quantizer, this is not a problem. For a Gaussian source, the
integrals can then be expressed by error functions, which can be calculated with
any mathematics program. For a scalar quantizer followed by an entropy coder,
a uniform quantizer has a performance very close to the optimum (Farvardin
and Modestino, 1984), so a uniform scalar quantizer will be assumed.

The single description encoder in Figure 2.4 will now consist of a scalar
quantizer followed by an entropy coder, while the single description decoder
consists of an entropy decoder followed by a dequantizer. The multiple descrip-
tion coder is given by Figure 2.6, showing that there is an index assignment
which distributes the information of the quantizer output between the two
descriptions, and separate entropy coding of each index assignment output.

In order to avoid error propagation between blocks and limit the delay
introduced by the coder to the number of source samples in one block, the
entropy decoding should be carried out separately on each block. It is assumed
that the rate out of the entropy coder can be approximated by the actual
entropy of the quantized signal, and if this is to be approximately correct, the
blocks must contain a relatively large number of source samples. Then, it will
also be possible to have a constant number of source samples per block while
keeping the blocks equally large. This gives a constant delay.

In the single description coder, if a uniform quantizer of step size § is used,
the distortion of the quantizer is

o0

617
d=dy= Y /( (@ — 3:)fx () dx, (2.17)

i=—00 i—%)ﬁ

where fx(z) is the probability density function of the source, and #; is the
representation value of interval ¢ € Z. The optimal representation values are
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Figure 2.6 Multiple description source coder based on scalar quantization

the centroids of the intervals, given by

(i+3)0
/(+ zfx(z)dz

i—1)d

D)5 '
/( fx(z)dx

i—3)0

(2.18)

& =

2

For a Gaussian source X, closed-form expressions for (2.17) and (2.18)
suitable for numeric calculation with a mathematics program can be found
with the exception of the infinite sum in (2.17)!. To be able to calculate the
distortion, the sum is taken with ¢ going from —N, to N, where N, is chosen
as

N, = [SWTXW , (2.19)

where ox is the standard deviation of the source and [¢] is the smallest integer
greater than or equal to ¢. In addition, the outer integration limits, (—Ng —
1/2)d and (Ng + 1/2)0, are replaced with —oo and oo, respectively.
The entropy is
o0
Ry, =H, = Z —pi logy pi, (2:20)

t=—00

!Such expressions are calculated in Appendix B, Section B.3.1.
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where p; is the probability of interval 4,

ey
pi—/( fx(z) dz. (2.21)

i—3)0

In order to be able to calculate the entropy, the sum is limited in the same
manner as for the distortion.

In the multiple description case, there is an index assignment after the
quantizer that splits the quantized symbols into two symbol streams, which
are entropy coded separately. The index assignment will be investigated in
more detail in Section 2.4.3.1.

The central distortion dy = dg, where dy is as in Equation (2.17). If the m

quantization regions of the two descriptions are given by .A;l), je{0,... ,m—
1}, 1 € {1,2}, then the side distortions are given by

dy = Z/m z— i fX( ) da (2.22)

NO
Tj

the set .A(l),

where Z’ is the representation value of each region, given by the centroid of

W fA§z)fo(x) dz

- W' (2.23)

The entropies of the two signals in the multiple description coder are

RV =HY =3 iV 1og, 7", (2.24)
=0
for I € {1,2}, where
By = o x@ (2.25)

The index assignment is balanced, so Rgl) = RgQ) = R,/2 and d; = d».

2.4.3.1 Index Assignment

The index assignment used is proposed by Vaishampayan (1993). This assign-
ment method has two parameters: the side size m of the index assignment
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Figure 2.7 Index assignment matrix, N, = 10, m = 8, and ngiag = 3.

matrix and the number of diagonals ngiag, which must be an odd number or
2. These two parameters are mostly redundant; the parameter that specifies
the relationship between the side and the central distortion is the number of
diagonals. m should be chosen as small as possible given a number of diagonals.

An example of an index assignment matrix is given in Figure 2.7. A value
is first quantized using the uniform quantizer, and the corresponding single
description index is found. The placement of the index in the matrix decides
the two multiple description indices. In the example, 21 single description
indices numbered from —10 to 10 are used. The matrix side size is m =
8, giving 8 multiple description indices for each description. The number of
diagonals in the matrix is ngjag = 3. With three diagonals, there is room for
22 indices, so one cell in the lower one of the three central diagonals is empty.

An example of how the quantization is performed is shown in Figure 2.8.
It is assumed that a unit variance Gaussian source is being quantized with a
uniform quantizer of step size § = 1/2. According to Equation (2.19), this
gives N, = 10 which corresponds to 21 levels, as in Figure 2.7. Assume that
the sample to be quantized lies in the cell with single description index 3. From
the matrix, it is seen that the two multiple description indices are 4 and 5. The
corresponding side quantization regions can be found by taking the union of
the quantization intervals with single description indices given by row 4 and
column 5, respectively, which gives

A =[5 0[5 ]) and AP = [§,9) U]

N
o

).

The representation value of a side dequantizer is given by Equation (2.23).

7

(S]]

?

=



22

Joint Source—Channel Codes Based on Multiple Descriptions

0
0

4 dae
4 Law

N 4
4 L

w
4 dai~

S
1 Lo

ot
4+ 42

[=>]
4+ 42

3

—10,—9,—8,—-7,-6,—5,—4,—-3,-2 —1,
T T T T T T T T T T

@
©
=
(=)

I‘I
|

Figure 2.8 An example of the MD quantization of a zero mean Gaussian source
of variance 0% = 1 using a uniform quantizer of step size § = 1/2 and the index
assignment matrix of Figure 2.7. The upper line shows the variable X that is to
be quantized. The next line shows the quantizer cells and the corresponding single
description indices. The next three lines show the two side quantizer cells and the
central quantizer cell, along with the centroid of the cell, for a value which lies in the
cell of single description index 3.

§=1/2 §=1/10

‘ Ndiag ‘ Rs ‘ d() ‘ d1 ‘ m Rs ‘ d() ‘ d1 ‘ m
2 (| 4.21 | 0.020 | 0.077 | 12 || 8.74 | 0.00083 | 0.0033 | 52

3 3.3710.020 | 0.18 | 8| 7.68 | 0.00083 | 0.015 | 36

51 349 0020 0.65| 6 | 6.36 | 0.00083 0.11 | 22

7| 3.62 | 0.020 | 0.66 | 6| 5.89 | 0.00083 0.27 | 18

91 410 [ 0.020 | 0.84 | 6 || 5.76 | 0.00083 0.51 | 14

11 || 4.10 | 0.020 | 0.84 | 6 || 5.87 | 0.00083 0.62 | 14

Table 2.1 The source rate (sum of the rates in each description) Rs, the central
and side distortions dy and d;, and the matrix side size m for multiple description
quantization with a quantizer of step size § using ngiag diagonals

The central quantization region is
(1) (2 _r5 7
A NAT =1[3,1)-

As mentioned in the example, the number of levels used by the multiple
description quantizer is given by Equation (2.19), since an infinite number of
levels cannot be used with the index assignment algorithm. Thus, the index
assignment will depend on how N, is found. However, it turns out that as long
as Iy is chosen large enough, so that the probability of the outer intervals is
small, the choice does not influence on the performance of the coder when the
number of diagonals is held constant.

The index assignment does not work properly if the number of diagonals
is too large. This is demonstrated in Table 2.1. There, the performance of
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the multiple description quantizer with a fixed step size is shown for a varying
number of diagonals. The central distortion is constant, while the rate and
side distortions vary. When the number of diagonals increases, the rate is
reduced while the side distortion is increased. However, when the number of
diagonals goes from 5 to 7 for 6 = 1/2 and from 9 to 11 for § = 1/10, both the
rate and the side distortion increases. By looking at the side size of the index
assignment matrix, it is seen that the size is not reduced any more when the
number of diagonals reach the saturation levels. The reason is that the index
assignment does not allow smaller matrices, although it would be possible in
theory; when § = 1/2, the number of levels is 21, and in 7 diagonals of a
matrix of side size m = 5, there is room for 23 values. However, it might not
be possible to find a balanced index assignment.

This shows that the index assignment algorithm is not perfect. It should
also be possible to fill the matrix completely, and thus get a source rate equal
to the single description case. This problem is treated by Berger-Wolf and
Reingold (2000).

The performance of the MD quantizer is shown in Figure 2.9, where the
signal-to-noise ratio (SNR) of the central and side decoder is plotted against
the source rate for different number of diagonals. Results where the number
of diagonals is too large, as demonstrated in Table 2.1, are omitted. For high
rates, the distance between the central and side SNR is constant, and the
lowest possible difference is 6 dB for high rates, obtained with two diagonals.
Note that for low rates, the central SNR is only marginally higher than with a
lower number of diagonals, while the side SNR is significantly lower compared
to the case of fewer diagonals. As the rate is somewhat increased, the high-rate
performance is obtained, where the increase in central SNR and the decrease
in side SNR compared to fewer diagonals is about the same.

2.4.4 Total Distortion

The total average distortion of the system is given by E[(X (k) — X (k))?], see
Figures 2.4 and 2.5. In order to calculate this, the probability of block errors
pe must be known. This will be calculated in Sections 2.5, 2.6, and 2.7. Since
the two parallel channels are assumed to be independent, block errors in the
two channels of the multiple description coding system are independent events.
The decoder is assumed always to know when a block is lost, so no corrupted
blocks are output from the channel decoder.
For the single description coder, the average distortion is then given by

Dsp = (1 = pe,sp)d + Pe,sD0 5 (2.26)
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Figure 2.9 The central (solid) and side (dashed) SNR as a function of the source rate
(sum of the rates in each description) for the MD quantizer on a Gaussian memoryless
source. The number of diagonals is (from below for central SNR, from above for side
SNR) 2, 3,5, 7,9, and 11.

where og( is the signal variance and p. sp is the block error probability in this
case, while in the multiple description case, the average distortion is

Dyp = (1 = pep)?®do + pemp(l — penp) (dr + da) + P2 ypoy,  (2:27)

where p, mp is the block error probability in the MD system. The formulas are
valid for d, dy, d1, and do found by any of the models described in this section.

2.5 Erasure Channels with Large Input Alphabets

When transmitting in packet switched networks, packets might get lost in the
transmission. The packet erasure channel can be used as a model for this
kind of channel. The channel is assumed to transmit symbols which are erased
with a probability p, and erasures are independent events. If a symbol is
erased, the receiver knows this, and if it is not erased, it is received correctly
with probability one. Since the erasures are independent, the two independent
channels depicted in Figures 2.2 and 2.3 are equivalent to one channel with
twice the capacity in this case.

For error protection, linear block codes will be considered. In packet
switched networks, the symbols will be packets, typically consisting of at least
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hundreds of bits. Thus, it is assumed that one symbol (packet) is enough to
transmit an isolated block of source data with rate and distortion performance
as described in Section 2.4, so the block size of a channel code is allowed to be
as low as one. The large symbols also mean that a delay constraint will force
the blocks to be quite short.

In the multiple description coder, channel coding is performed separately
on each description, while there is only one channel coding operation in the
single description coder. In order to provide the same delay, this means that
the block length of the channel code can be twice as large for the SD coder
compared to the MD coder. If Lsp is the number of source symbols per block
with single description coding, Lyp is the number of source symbols per block
with multiple description coding, R, is the source bit rate, R, is the channel
bit rate (the number of channel bits per data bit, or equivalently, the ratio of
data symbols in a block), v is the number of channel bits per channel symbol,
and ngp and nyp are the number of channel symbols per block with SD and
MD coding, respectively, then the total rate R measured in channel bits per
source symbol is

vnsp Ry
R = = — 2.28
Lsp R (2.28)
for the single description coder and
p— 2o _ B (2.29)

Lun  R.

for the multiple description coder. This means that for the same delay, Lgp =
Lyvp, nsp = 2nyvp. Note that R, and Rg need not be the same for the two
coding systems, but for a fair comparison, R must be the same.

2.5.1 Channel Coding

A linear block code is used to protect the source bits against channel errors.
The block code is described by the block length n, the number of data symbols
per block k£ and the minimum distance dpin, and is then called an (n, &k, dmin)
code. The minimum distance decides the number of erasures that the code can
correct; it can correct at least dmin — 1 erasures in a block.

Maximum distance separable (MDS) codes are codes that have the largest
minimum distance possible for a given block length n and number of data
symbols &, and their minimum distance is given by (Blahut, 1983)

din =n — k + 1 (2.30)
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In Appendix A, it is shown that for any n, MDS codes exist provided that the
alphabet size g is large enough.

For a channel of erasure probability p, an (n,k,n —k+ 1) MDS code gives
a channel bit rate R, = k/n and a correcting ability of n — k erasures in a
block, so the block error probability is

pm1-%° (Z)piu . (2.31)

1=0

2.5.2 Optimizations

For the erasure channel, both the uniform scalar quantizer and the rate-
distortion limit will be considered as source coding models. Since no specific
assumption is made for the alphabet size, the source block length L can ap-
proach infinity even for a finite block length n, which defends the use of the
rate-distortion bound. A maximum block length np,,x will be provided, as will
an erasure probability p. The block lengths ngp < 2nmax and nyp < Nmax are
assumed.
The parameters that can be varied are then

e The block length nyp or nsp
e The number of data symbols &

e The quantizer step size § with the uniform quantizer, or the source bit
rate R, with the rate-distortion bound

e For the multiple description coder, the number of diagonals in the index
assignment matrix with the uniform quantizer, or the side distortion d
with the rate-distortion bound

Given the parameters above, it is possible to calculate the total distortion and
the total rate R. With the uniform scalar quantizer, all the parameters above
except § are discrete. This means that for a desired total rate R, the best
scheme can be found using discrete optimization (trying all possibilities) of
the discrete parameters, numerically solving for ¢ in each case. With the rate-
distortion bound, both Rs and d; are discrete, and in this case, R; is found
from the other parameters, d; is optimized numerically using Matlab’s Opti-
mization Toolbox (Coleman, Branch and Grace, 1999) for each combination of
the discrete parameters, which can subsequently be optimized discretely.
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Figure 2.10 Performance of multiple (solid) and single (dashed) description coding
on an erasure channel with erasure probability p = 0.1 assuming source coding by
uniform scalar quantization. The maximum block size is nmax-

2.5.3 Comparisons

Figure 2.10 shows the signal-to-noise ratio (SNR) as a function of rate for
the coding systems with varying maximum block length nmax on the erasure
channel. The uniform scalar quantizer with ideal entropy coding is used as
the source coding model. With very short blocks, MD coding will be as least
as good as SD coding, but longer blocks give SD coding an advantage. For
Nmax = 1, MD coding is always as least as good as SD coding for the displayed
channel quality range. In this case, no channel coding (i.e., a (1,1, 1) identity
code) can be performed for MD coding. This is the situation that most closely
resembles the problem formulation of multiple description coding, since that
does not assume the existence of any channel code. For SD coding, either
no code or a (2,1,2) repetition code can be used. This explains the elbow
in the SD performance plot for nmax = 1 around 4 bit/sample, this point is
where the performance curves of no coding and a repetition code cross. The
repetition code produces two packets per input source block, and corresponds
to MD coding where the index assignment has only one diagonal (although
this scheme is not considered in the MD coder), cf. Section 2.4.3.1.

Figure 2.11 shows how the performance varies if the erasure probability is
changed. As one would expect, multiple description coding performs relatively
better for poor channels, since the shortcomings of a short channel code are
more evident there.

In Figure 2.12, the experiments from Figure 2.10 are repeated under the as-
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triangles) description coding on an erasure channel as a function of maximum block
size Mpmax assuming source coding by uniform scalar quantization, for different total

rates R and erasure probabilities p.

sumption that the source coder now performs according to the rate-distortion
bound. The differences from Figure 2.10 are moderate, but the distance has
been reduced when SD coding is better than MD. This is due to the imperfec-
tions of the index assignment algorithm described in Section 2.4.3.1, which do
not apply to the rate-distortion performance.

The results so far have shown, not unexpectedly, that multiple description
coding performs relatively better when the block lengths are constrained to
be short. In Figure 2.13, this is investigated by considering the performance
as a function of the block size constraint. Note that the MD code often has
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a constant performance up to quite high values of nmax. This is because no
channel code is the preferred scheme in this case even as nmax increases. The
figure reveals that SD coding outperforms MD coding already at quite low
Nmax values, and for the best channel, SD coding is always better at the rate
R = 4. Still, if the delay constraints prevent the use of any channel code at
all, multiple description coding clearly gives an improvement in most cases.

The results reveal that if a certain delay can be accepted, MDS block codes
over the alphabet defined by packets can give better protection with single
description than with multiple description coding. However, with very tight
delays, MD coding does better than SD coding in many cases. The erasure
channel model used in this section was introduced as a model of a packet
network, but it can also be used as a model of a communication system where
block codes are used to protect against bit errors in the transmission. Then,
an erasure corresponds to the situation when there are more errors in a block
than the code can correct. If the channel coding scheme is fixed and delay
constraints prevent the use of a block code on the packet level, MD coding is
often better than SD coding. However, if the error protection within the blocks
can be varied, it can be jointly optimized with the source coder, changing the
results. This situation is investigated in the next two sections for two different
channel models.

2.6 Binary Symmetric Channel

The binary symmetric channel (BSC) takes a binary input, and bit errors are
independent events and occur at a probability p,. The independence of the
errors means that the two parallel channels in Figures 2.2 and 2.3 are equivalent
to one channel with twice the capacity, just as for the erasure channel.

As mentioned, the transmission is block based. Two different cases are
studied, illustrated in Figure 2.14. The first case has the following properties:

e The number of channel bits per block is the same in the multiple and the
single description coder.

e The delay introduced by the coder in terms of source samples is twice
as large in the multiple description coder as compared to the single de-
scription coder, assuming that the source decoder operates on blocks no
larger than the channel blocks.

e The model is good if a limiting factor is the complexity of the channel
coder, or if the family of available channel codes limits the number of
available block sizes.
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Figure 2.14 Block sizes of the single and multiple description coder

The properties of the second case are:

e The number of channel bits per block is twice as large for the single
description coder as for the multiple description coder.

e The delay introduced by the coder in terms of source samples is the same
in both systems.

e The model is good if a limiting factor is the admissible source delay.

The number of source samples per block is Lgp and Lyp with the single
and multiple description coders, respectively, and from this, the source coder
produces Msp = R;Lsp or Myp = RsLyp bits. In the single description
coder, these Mgsp bits are processed by a channel coder which produces a block
of ngp = Mgsp/R, channel bits. Here, R, is the channel bit rate measured in
data bits per channel bit. The total rate of the system is defined as the number
of channel bits per source symbol,
nsp _ B

R = = — 2.32
Lsp R, (2:32)
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In the multiple description coder, there are Myp/2 bits for each description.
The channel coder produces a block of nyp = M%IC)/Q channel bits from these
Myip/2 source bits. The total rate is now the total number of channel bits

produced per source symbol:

_ 2o _ B (2.33)

R— —
Lvp R.

As with the erasure channel, R, and R, may be different for MD and SD
coding, but R must be the same in a fair comparison.

The binary symmetric channel satisfies the source—channel separation the-
orem if the block length is infinite. The only way of achieving a source coder
whose performance reaches the rate-distortion functions of Section 2.4.1 is to
have infinitely long blocks. Then the separation theorem is satisfied, and an
optimal coding system can be obtained with a source coder that does not ac-
cept errors on the input of the decoder. Thus, the single description coder
will be optimal in that case. Because of that, only finite block lengths are
considered. The channel coder that is used is described below.

2.6.1 Channel Coding

The error protection is assumed to be performed by an (n, k, dmin) linear block
code, just as for the erasure channel, but this time the symbol alphabet is
binary, since errors occur independently on bits. For the single description
coder, n = ngp and k = Mgp, and for the multiple description coder, n = nup
and k = MMD/2

The minimum distance decides the number of bit errors that the code can
correct; a code can correct at least ¢ bit errors in a block if its minimum
distance satisfies

donin > 2t + 1. (2.34)

Binary MDS codes are not attainable (Blahut, 1983), so the MDS perfor-
mance assumed for the erasure channel cannot be used here. No specific code
is assumed, instead only codes that satisfies the Gilbert bound (Blahut, 1997)
are considered. The Gilbert bound for binary linear block codes states that for
any integers n and dimin, 2 < dmin < 7, there exists a binary (n, k,dmin) linear
code with dpjn > cimin whose dimension k satisfies

dri_l CL) > 2"k, (239

1=0
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This means that one can assume the existence of a code of block length n and
minimum distance dmin Where k is given by

k= [n — log, dril (?ﬂ . (2.36)

i=0
If such a code does not exist, the Gilbert bound guarantees the existence of a
better code of the same block length.

The assumption of codes found from the Gilbert bound needs some justifi-
cation, since it can be argued that it gives unrealistic performance estimates.
For short codes, the Gilbert bound gives a conservative approximation of the
attainable code performance, so better codes than predicted are attainable. For
long codes, the Gilbert bound will have a different problem: it is not known
how to construct codes of the predicted quality. For short codes, an example
with practical codes will be given in comparison to Gilbert bound assumption.
For long blocks, the Gilbert bound will be used exclusively. The results may
be over-optimistic, but it is likely that the demonstrated performance can be
found for somewhat longer blocks, and that the Gilbert bound provides in-
sight in how variations of the channel code rate influence the overall system
performance.

The channel bit rate is given by R, = k/n. The block error rate p, can be
described in terms of the block length n, the number of bit errors ¢ that can
be corrected, and the bit error probability py:

t

pe=1-3 (1) -pr (237

i=0
2.6.2 Optimizations

The performance of the coder will be calculated assuming the uniform scalar
quantizer. The performance of the coders will be optimized, assuming that the
source block length L or the channel block length n is given, along with the
bit error rate py. The parameters that can be varied are the following;:

e The quantizer step size 6.
e The minimum distance dp;, of the channel code.

e For the multiple description coder, the number of diagonals in the index
assignment matrix.

This situation is very similar to the erasure channel, and for a desired total
rate R, the best scheme can be found by a discrete optimization of the discrete
parameters, numerically solving for § in each case.
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Figure 2.15 Rate-distortion performance for multiple (solid) and single (dashed)
description coding with a block size of n = 1000 channel bits and bit error probabilities
of (from below) 10!, 1072 and 103.

2.6.3 Comparisons

The performance of the multiple and single description coder are to be com-
pared, with the distortion given by Equations (2.26) and (2.27), at specified
total rates R. In Section 2.6.3.1, the case of a fixed channel block length is
considered, while in Section 2.6.3.3, the source block length is kept constant.

2.6.3.1 Fixed Channel Block Length

In Figure 2.15, the rate-distortion performances of the coders are shown for
fixed bit error rates. The graphs show the performance using a channel block
code of length n = 1000 for both cases, and the performance has been optimized
as described in Section 2.6.2. For the multiple description case, also the number
of diagonals has been chosen as the best performing one. The rate shown is
the total rate R on the channel.

It is seen that for low rates, the performance of the single and multiple
description system is about the same, while for high rates, the single description
system outperforms the multiple description one. For low bit rates, few bits can
be spent on error correction, and this means that the probability of block errors
is greater than for high bit rates. Then, the superior performance of multiple
description coding in the case of a block error can be exploited. Still, this is
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Figure 2.16 Rate-distortion performance for multiple (solid) and single (dashed)
description coding with a block size of n = 63 channel bits and bit error probabilities
of (from below) 10!, 1072 and 103

not enough to perform better than single description coding. This explanation
is supported by the fact that the difference between the two systems increases
more slowly when the bit error probability is higher, as can be seen from the
figure, especially when comparing the case of p, = 107! to the other two cases.

In Figure 2.16(a), the results of Figure 2.15 are repeated for shorter blocks
of n = 63 channel bits. When using the Gilbert bound in this case, multiple
description coding is preferred for a poor channel, p, = 10~!. However, the
performance obtained with either system in this case is hardly ever acceptable.
Note also that the curves are non-smooth. This is because the number of
different channel codes available is smaller when the codes are short. This also
means that there are areas for p, = 1072 and p, = 10~2 where the multiple
description coder performs better, as there is no available channel code that
is well enough suited for the single description coder in that case. With these
short blocks, note that the assumptions that the rate can be approximated by
the entropy and that the blocks have a constant number of both source and
channel symbols, are not well justified anymore.

In Figure 2.16(b), the codes predicted by the Gilbert bound have been re-
placed with actual codes of length n = 63 found in (Peterson and Weldon, 1972,
Appendix D). Only the codes with the largest k for each minimum distance
are considered. The graphs demonstrate the fact that the Gilbert bound is
loose for short blocks, so better codes than predicted can be obtained.



36

Joint Source—Channel Codes Based on Multiple Descriptions

10° 107 10°
Bit error probability
Figure 2.17 SNR as a function of bit error probabilities for a total rate of R = 8
bit/sample for the MD and SD case. Solid lines: MD coding with a (1000, 810, 31)
channel code and (from below at p, = 1072) 2, 3, 5, 7, 9, and 11 diagonals. Dashed
line: SD coding with a (1000,810,31) channel code. Dash-dotted line: SD coding
with a (1000, 771, 39) channel code.

In Figure 2.17, the SNR is shown as a function of the bit error probabil-
ity for multiple and single description coding. This shows the robustness of
the coders against variations in the bit error probabilities. For the multiple
description case, the number of diagonals changes, while the error correcting
code is kept constant. It is seen that as the number of diagonals increases,
the performance of the coder improves for good channels, at the cost of poorer
performance in the transition region around p, = 10~2. The single description
coder with the same error correcting code performs better than all the multi-
ple description coders for good channels, and worse in the transition area, as
expected. However, if the error correcting code for the single description case
protects some more bits, the performance becomes better than all the multi-
ple description coders for all bit error rates. This means that the increase in
robustness that can be achieved with multiple description coding is less than
what can be achieved with extra protection in the single description case.

Similar results as in Figure 2.17 can be obtained for other bit rates, packet
sizes, and channel code parameters. If the bit rate is lower, the results are
less evident, as the difference between different schemes is smaller. If the
packets are shorter, it might become impossible for single description coding to
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outperform multiple description coding for every bit error probability, because
the number of possible channel code parameters is smaller.

2.6.3.2 Constraints on the Outage Probability

The formulas for the distortion in Equations (2.26) and (2.27) are average
distortions, taken over infinite time. In a short period of time, the distortion
can be very different from this. For the coders considered in this chapter,
there are only two possibilities for the single description case, correctly received
blocks with a distortion given by (2.17) and incorrectly received blocks with a
distortion equal to the signal variance ag(, that is, a total loss. For the multiple
description case, there are three possibilities, two correctly received blocks with
a distortion given by (2.17), one correctly received block giving a distortion
as in (2.22), and no correctly received blocks, giving a distortion of 0%. The
cases of distortion 0% will be referred to as an outage. This case is particularly
bad, as the receiver will have no information for the duration of the outage. In
many applications, the subjective distortion that this causes will be far greater
than the outage’s contribution to the total mean square error.

In order to deal with the problem of outages, a constraint will be imposed
on the probability of an outage. This means that for each total bit rate, only
the channel codes that makes the outage probabilities smaller than a certain
level are considered. For the single description coder, the outage probability
is equal to the block error probability p., while for the multiple description
coder, the outage probability is pZ.

In the multiple description case, the loss of one description is not considered
an outage. However, in some cases, the side distortion may be very large, which
means that the loss of one description in practice will be almost as bad as an
outage. In order to avoid this situation, it is possible to put a constraint on
the side distortions as well, meaning that only numbers of diagonals that give
low side distortions are considered.

Figure 2.18 shows the performance of the coders as a function of the max-
imum outage probability for different rates. Very low outage probabilities
cannot be obtained for the single description case, because the channel code
with length n = 1000 is unable to produce such a low error probability for these
channels. As the maximum outage probability decreases, the performance is
constant before it starts dropping. The reason for the constant value is that
the overall best channel code of course has an outage probability less than one,
and the performance will start dropping when the maximum outage proba-
bility goes below that level. The constant value is held much longer for the
multiple description coder, and this means that it can outperform the single
description coder when the maximum outage probability is small enough. This
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Figure 2.18 Performance of the multiple (solid) and single (dashed) description
coders when the maximum outage probability is constrained. The bit error probability
py = 1072, the channel block length n = 1000, and the total rate is R.

is expected, since the outage probability is smaller with the multiple descrip-
tion coder. The reason for the staircase shape of the curves is that the number
of possible parameter combinations is finite, and thus, the same system must
be used for slightly different maximum outage probabilities, meaning that the
obtained maximum outage probability is sometimes smaller than the specified
one.

When the total rate increases from 1 bit per sample to 5 bits per sample, the
performance of the single description coder increases more than of the multiple
description coder, and thus, the range of maximum outage probabilities for
which the multiple description coder is the best, is reduced. This can easily be
explained, as more error protection can be introduced with a higher total bit
rate, and thus, the advantage of multiple description coding becomes smaller.
More surprisingly, as the rate increases from 5 to 10 bits per sample, the
multiple description coder’s performance increases more than the performance
of the single description coder. An explanation for this can be that as the source
bit rate increases, the possible number of diagonals in the multiple description
coding goes up, cf. Section 2.4.3.1. Specifically, it becomes possible to design
a multiple description coder that performs close to a single description coder
in the central dequantizer, with the cost that the side distortions increase.

This explanation is supported by Figure 2.19. Here, the side SNR measured
in dB is constrained to be at least one third of the central SNR. With this
constraint, the performance increases more for the single description coder
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Figure 2.19 Performance of the multiple (solid) and single (dashed) description
coders when the maximum outage probability and the side distortion are constrained.
The bit error probability p, = 1072, the channel block length n = 1000, and the total
rate is R.

than for the multiple description coder as the rate increases. Note that for 1
bit per sample, there is no difference when imposing the extra constraint.

The examples shown here were all for a bit error probability of 1072. For
higher bit error probabilities, the block error probability will also have to be
higher, and thus, the multiple description coder will become more favorable,
just as when the total rate is decreased.

2.6.3.3 Fixed Source Block Length

If the number of source samples per block is to be constant, the number of
channel bits per block is twice as high for the single description coder as com-
pared to the multiple description coder. Longer block codes will normally
give better performance, so this case should be more favorable to the single
description coder.

In Figure 2.20, the rate-distortion performances of the coders are shown for
fixed bit error rates when the number of source samples per block is constant.
The graphs show the performance using blocks of length L = 500 source sam-
ples for both cases. As expected, this makes the difference between the single
and multiple description coder performance larger that when the channel block
length is constant, as in Figure 2.15.

For a shorter source block length of L = 50, which is shown in Figure 2.21,
the single description coder still performs better than the multiple description
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Figure 2.20 Rate-distortion performance for multiple (solid) and single (dashed)
description coding with a block size of L = 500 source samples and bit error proba-
bilities of (from below) 10!, 1072 and 1073.
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Figure 2.21 Rate-distortion performance for multiple (solid) and single (dashed)
description coding with a block size of L = 50 source samples and bit error probabil-
ities of (from below) 1071, 10=2 and 1073.
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Figure 2.22 Performance of the multiple (solid) and single (dashed) description
coders when the maximum outage probability is constrained. The bit error probability
py = 1072, the block size is L = 500 source samples, and the total rate is R.

coder in all the displayed cases, except for p, = 10~! and low rates. Here, the
channel block length increases by rate, which explains why single description
coding is much better at high rates, as opposed to short blocks of fixed channel
block length in Figure 2.16(a), where the rate does not influence much on the
performance difference for rates above a certain level.

When the block length of the error correcting code is doubled, the block
error probability is normally reduced if channel bit rate R, is the same. For
very high bit error probabilities, this might not be the case. However, the delay
limit gives only a maximum block size. Thus, shorter blocks can be chosen if
they give better performance. In the graphs above, only the maximum block
size was considered.

A comparison of the robustness of single and multiple description coding
to varying channel quality, as was done in Figure 2.17, will come out more
in favor of the single description coder when the source block size is constant,
since the only thing that is changed, is that the maximum channel block length
of the single description coder is twice that of the multiple description coder.

Also when the outage probability is constrained, the single description
coder should come out more favorable when the source block length is the
one that is kept constant. This is confirmed by Figures 2.22 and 2.23, which
can be compared to Figures 2.18 and 2.19, respectively. In Figure 2.23, the
side SNR measured in dB is again restricted to be at most one third of the
central distortion.
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Figure 2.23 Performance of the multiple (solid) and single (dashed) description
coders when the maximum outage probability and the side distortion are constrained.
The bit error probability p, = 1072, the block size is L = 500 source samples, and
the total rate is R.
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Figure 2.24 Channel model for block fading channel

2.7 Block Fading Channel

A block fading channel (Ozarow et al., 1994) with two independent channel
realizations is considered. This channel is shown in Figure 2.24. The encoder
takes the input X and creates two real-valued symbols Y; and Y5, which are
transmitted on the two channels. The fading is modeled through the multi-
pliers, and the two factors /a1 and ,/ag are independent and Rayleigh dis-
tributed and vary so slowly that their value can be assumed to be constant
throughout the transmission of a block. The signal is corrupted by the inde-
pendent additive white Gaussian noise signals N; and No.

The blocks consist of L source samples which are represented by n channel
symbols on each channel. The system is characterized by the total rate R
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which is defined as
R=— (2.38)

that is, the number of channel symbols produced per source symbol. The
long-term average power of the received symbols Y;, 7 € {1,2}, is given by

P=E [ff] , (2.39)

and is assumed to be equal for both channels. It is assumed that the noise
power E[N?] =1 for i € {1,2}. The receiver signal-to-noise ratio is defined as
the ratio between the received signal power and the noise power, so in linear
scale, this ratio will be equal to P.

The channel code is assumed to be based on coded modulation. In the
multiple description coder, the channel encoder and decoder blocks of Fig-
ure 2.2 are coded modulation and demodulation. The source coder produces
M = R;L bits, with M /2 in each description, from a block of L channel bits,
and the channel coders produce n channel symbols from the M/2 bits. The
channel code rate is defined as R, = %, so the total rate R = Rs/R,. In the
single description coder, the channel encoder and decoder blocks of Figure 2.3
are a coded modulation block followed by an interleaver, and a de-interleaver
followed by coded demodulation, respectively. The coded modulation produces
2n channel symbols from the M Dbits of the source coder, and these channel
symbols are distributed between the two channels by the interleaver. The
channel code rate is still R, = %, and the total rate is thus R = R,/R, as for
the multiple description coder.

For this channel, it is impossible to find codes whose block error probability
approaches zero as the block length increases. This means that the channel has
no capacity in the traditional sense, and that the source-channel separation
theorem does not hold. Thus, it is interesting to analyze the performance
of the coders when the block length approaches infinity. Assume that the
overall rate R, the channel rate R., and the source rate R are fixed, while
the number of source symbols per vector, L, approaches infinity. Then, the
number of channel symbols per block, 2n in the single description case and n
in the multiple description case, will also approach infinity. The assumption
that the fading state is constant throughout a block is still assumed to hold.
In this case, expressions exist for bounds on the performance, and it is possible
to get a performance arbitrarily close to the bounds. For the source coder, the
performance bound is the rate-distortion function described in Section 2.4.1.
For the channel coder, the performance is described below.
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2.7.1 Channel Coder

The difference between the channel coders in the single and multiple description
coding systems is that the SD coder uses both the channels with an interleaver,
while the MD coder uses the channels separately. The performance bound for
the block fading channels has been found by Ozarow et al. (1994). It cannot
be described as a traditional channel capacity, as there is no code for which the
block error probability approaches zero as the block length approaches infinity
on this kind of channel. Instead, the bound is given as a block error probability
as a function of the channel code rate R..
The block error probability can be stated as

pe = Pr[14 < R.]Pr[Block error | I4 < R(]
+ Pr[I4 > R Pr[Block error | I4 > R.], (2.40)

where 14 is the capacity of the channel at a given fading state. This can be
written as a bound:

Pe > Pr[I4 < R.|Pr[Block error | Iy < R¢] ~ Pr[I4 < R,] (2.41)

because the probability of block errors is close to 1 if the code rate is greater
than the channel capacity. If the block length of the code approaches infinity,
it is possible to get the second term in (2.40) to approach zero, Pr[Block error |
I4 < R.] will approach 1, and the block error rate will approach the last term
in (2.41). This term will be denoted the channel outage probability poys, and
is used as an approximation of the performance bound. When the block length
n approaches infinity, this is the actual bound.

The bound is found by assuming the signaling alphabet of the coded modu-
lation increases, so that the probability density function of the channel output
can approach Gaussian. The bound is given by (Ozarow et al., 1994)

Pe = pout > Pr{logy(1+ aP) < 2R} (2.42)
when one channel realization is used, that is, the multiple description case, and
Pe = pout > Pr{logy(1+ a1 P) + logy(1 + agP) < 4R.} (2.43)

when two channel realizations are used, that is, the single description case.
Here, a, a1, and a9 are exponentially distributed random variables with a
probability density function of

e ,a>0
fala) = {0 a0’ (2.44)
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and P is the received symbol power as defined in Equation (2.39). For the
probability in Equation (2.42), a closed-form expression can be found:

B(2e 1
2 C
pou 2Pr{a < p (P -1} = [T etda— 1o e hE),
0
(2.45)

The expression in Equation (2.43) can be written as:

Pout > Pr {10g2(1 + alP) <A4R. - 10g2(1 + O‘ZP)}
e far > (2 wntren) )

24Rc710g2(1+a2P)71

1 (94Rc _ 1
_ /p(2 1) /P( )e*ale*‘” dous do (2.46)
0 0
L (24Rc—1
_ /P( )(1 _ 6_%(24Rc*10g2(1+a21’)—1)) e dag.
0

This integral will be solved numerically.

From Equation (2.40), it is seen that the block error probability can be
dominated by the channel outage probability if it is much greater than the
probability of a block error given that the channel is not in an outage state.
This means that it is possible to get a block error probability that comes
reasonably close to the channel outage probability even without using very
long blocks. This problem is investigated by Knopp and Humblet (2000), and
it turns out that it is possible to get the outage probability to be close to the
bound with a small signaling alphabet.

2.7.2 Coder Models and Optimizations

Assuming that the block length approaches infinity and the source and channel
coders reach the performance bounds, Equations (2.5), (2.6), and (2.7) can be
used for the performance of the source coder, Equations (2.42) and (2.43) give
the performance of the channel coder, and Equations (2.26) and (2.27) give
the total distortion. The distortion can be found given the total rate R and
the received signal power P. There are parameters to be decided. For both
coders, the channel rate R. can be varied. The source rate R, will then be
given by Ry = R/R.. In the multiple description coder, the side distortion
can also vary. If d; is chosen to a value that satisfies (2.6), then dy will be
the smallest value satisfying (2.7). The minimum distortion can be found by
numerical optimization of the distortion with R, and d; as variables (only R,
in the single description case).
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SNR [dB]

Receiver SNR [dB]

Figure 2.25 Overall SNR as a function of receiver SNR for multiple (solid) and
single (dashed) description coding on a block fading channel for total rates R (from
below) 0.5, 1, 2, 5 and 10.

It is more difficult to treat a more practical system based on finite block
lengths. For the source coder, the uniform scalar quantizer as in Section 2.4.3
can be used. For the channel coder, to the author’s knowledge there exists
no bound that resembles the Gilbert bound for the binary symmetric channel,
which would be an upper bound on the block error probability of the best
practical coder of a given channel rate, block length, and signaling alphabet.
It is possible to design a family of channel codes of different rates and evaluate
their probability. However, the design of codes for coded modulation is outside
the scope of this dissertation. In order to get an idea of the performance of
a practical coder, results will be calculated using the uniform scalar quantizer
performance for the source coder and the channel outage probability bounds
for the channel coder. An example will be given in order to show the difference
between a practical channel coder and the bound.

2.7.3 Results

In this section, the distortions obtained as described above are calculated for
some values of the parameters. The parameters R, and d; are found by mini-
mizing the overall distortion numerically using Matlab’s Optimization Toolbox.
The integral in Equation (2.46) is also calculated numerically in Matlab.

In Figure 2.25, the performance of the two coders is shown for varying
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Figure 2.26 Block error probability of the multiple (solid) and single (dashed)
description coder along with the MD decoder outage probability (dash-dotted) as a
function of receiver SNR for total rate R. The MD decoder outage probability is the
square of the MD block error probability.

channel qualities and rates. The single description coder performs significantly
better than the multiple description coder in all cases.

Figure 2.26 shows the block error probability for the optimized value of
R, in the single and multiple description case. In the single description case,
a block error means that the receiver must output the source mean. This
situation will be denoted a decoder outage, to distinguish it from the channel
outage defined in Section 2.7.1. In the multiple description case, the decoder
outage probability is p?, and this probability is also shown in the graphs.

For a high rate, the decoder outage probability is about the same for both
systems, actually a little higher for the multiple description coder. For lower
rates, the multiple description coder has a smaller outage probability than the
single description coder. Note that except for high rates and good channels,
the outage probability is fairly high, in the order of 107!.

2.7.3.1 Practical Coder

In order to get an idea of how coders with finite block lengths would work, the
rate-distortion function for the source coder is replaced by the performance
functions of the uniform scalar quantizer of Section 2.4.3. The results are
shown in Figure 2.27, and it is seen that the practical coder performs about
0.5-1 dB worse than the theoretical one. The difference between the single
and the multiple description coder is approximately equal for the two source
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Figure 2.27 Performance of the coder with source coder evaluated as rate-distortion
function (upper curve) or with uniform scalar quantizer (lower curve) for multiple
(solid) and single (dashed) description coding with total rate R

models. By looking at receiver SNR values that give the same performance
for the multiple and single description coder, it can be seen that the multiple
description coder must have a channel that is 1-3 dB better.

Figure 2.28 shows the optimal channel code rate as a function of total rate
for a channel with a receiver SNR of 5 dB, along with the SNR performance
of the coding systems. The difference between the practical and theoretical
source coder systems is small. The multiple description coder has a higher
channel code rate, meaning that it has less error protection. This is expected,
as the source code in this case is robust against errors. The best performing
practical multiple description coder for the parameters of Figure 2.28 always
has two diagonals in the index assignment, that is, high error robustness.

In Figure 2.29, the performance of practical channel coders of R, = 0.5
bits per channel symbol is shown along with the bounds of Equations (2.42)
and (2.43). The coders are half-rate convolutional codes with 16 or 64 states,
with BPSK modulation, designed for one or two parallel channels. The block
error probability has been estimated by simulating 105 blocks of length 128
bits. The generators for the convolutional codes can be found in (Knopp and
Humblet, 2000) for two parallel channels, and e.g. in (Proakis, 2001, Table
8.2-1) for one channel. It is possible to design codes for other rates as well,
as is done in (Knopp and Humblet, 2000) for more than two parallel channels.
The results in Figure 2.29 show that the performance of a practical coder can
be within approximately 0.5 dB of the bound for one channel (MD coding)
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Figure 2.28 Performance of the coder with source coder evaluated as rate-distortion
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channel sample for one channel (upper curves) and two channels (lower curves). Solid
with circles: 16 states. Solid with crosses: 64 states. Dashed: lower bound.
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and 1 dB of the bound for two channels (SD coding). Comparing this to the
results in Figure 2.27, shows that the difference between the performance of
single and multiple description coding may be reduced, but single description
coding will still perform better. This conclusion is drawn by assuming the
difference between the performance of a practical coder and the bound will be
approximately the same as in Figure 2.29 also for other channel code rates.

2.8 Discussion

The results in this chapter show that in most of the examples, multiple de-
scription coding gives a performance inferior to that of a traditional single
description coding system. This is of course a disappointing result, but never-
theless an interesting one, considering the amount of work that exists on MD
coding. It is essential to discuss the results in order to decide to which extent
they discourage the use of MD coding for joint source—channel coding.

There are examples where MD coding does outperform SD coding. The
common property of these examples is that the channel code is restricted: With
the erasure channel and the BSC, it happens when the channel code is short,
and thus not very powerful. With the BSC, MD coding better than SD coding
was only documented for a codeword length of 63 bits on a poor channel and
Gilbert bound performance; with actual codes, SD coding is better even there.
The delay constraint imposed by a channel code of less than 63 bits is hardly a
problem in multimedia transmission, so such poor codes is only an issue if the
complexity of the channel coding units is a limiting factor. Communications
hardware becomes more and more powerful, so even for low-cost applications,
such a limit is not likely to apply.

For the erasure channel, each codeword is assumed to be long, a typical
IP (internet protocol) packet size is in the order of 10-20 Kbits. Then, the
delay constraints making MD coding better than SD coding are possible. For
example, the transmission of an image of 512x 512 pixels at a rate of 0.25 bit per
pixel produces 64 Kbits, and this can then correspond to about 3—6 IP packets.
In such a situation, MD coding can make sense on the erasure channel, and MD
coding of images can be done with fairly good results (Servetto et al., 2000).
On a binary symmetric channel or a block fading channel, the small symbol
alphabet means that the block sizes will be much larger than 3-6, and the
results showing that SD coding is better than MD apply.

Not very long channel codes are needed before SD coding becomes the
better scheme on the erasure channel. In some applications, the erasures may
not be independent, but there could still be two independent channels. In this
case, the use of block codes for error protection might be much less powerful,
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and MD coding could be an alternative.

If the outage probability is constrained for the BSC, MD coding is preferred
in many cases. This is also a constraint on the channel code, since a code with
low error probability is enforced, and the constraint is stricter for the SD code.
Note that the distortion when one description is lost with the MD coder can
be quite large: even if it is constrained to one third of the SNR in dB of the
central SNR, for instance, there is a huge difference between a SNR of 30 dB
and 10 dB. For low rates with the MD quantizer considered, it is not possible
to find a solution with a much stricter constraint such as one half of the central
SNR, however, it is possible for higher rates, where the difference between the
side and central SNR is approximately 6 dB when the index assignment matrix
has two diagonals. Then, a stricter constraint could be imposed, but results
such as in Figure 2.19 would then come out more in favor of SD coding.

With the block fading channel, the MD coder is worse than the SD one
for all the cases considered. For this channel, the source—channel separation
theorem does not hold, so it was hoped that the multiple description coder
could utilize the diversity obtained by two independent channels in an efficient
manner. However, it turns out that this diversity is better utilized by the
channel coder, because the variation of the channel quality is smaller when the
two channels are turned into one by interleaving, and thus, the channel outage
probability drops.

Besides the possibility for improvement of the performance for a specific
channel quality, joint source—channel coding can be used for obtaining robust-
ness against an unknown channel quality. Figure 2.17 shows that this does not
happen with MD coding. This example applies to the BSC for a specific rate,
but there is no reason why this could not be generalized. The performance
curves as a function of channel quality are just as steep for MD coding as for
SD coding, and this means that MD coding does not improve the robustness of
a channel code. If another channel model or channel code is used, the steepness
of the performance curves will change, but that applies both to MD and SD
coding.

A very important question is whether the poor performance of MD coding
demonstrated in this chapter can be generalized to other ways of exploiting
multiple descriptions in joint source—channel coding. In all the examples except
for the tightest delay constraints on the erasure channel, traditional channel
coding is utilized. There are two reasons for this. First, to exploit multiple
descriptions, the receiver must know whether to use a side or central decoder,
and then, there must be a way of telling if errors means that the received data
are usable or not. For the BSC, some sort of an error detecting code is the
only way of telling this, assuming that the underlying physical channel is not
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available. With a long error correcting code, it is usually a low probability of
receiving a valid codeword that is not the correct one, and this means that
the code is error detecting as well as error correcting. With the block fading
channel, it can be possible to avoid the use of a channel code, since the fading
state can be estimated, giving information on the probability of error. For the
erasure channel, the errors are always detected, so a traditional channel code
is not necessary. The second reason for using channel coding is that it provides
good protection. In many cases, MD coding cannot provide enough robustness
alone and has to be combined with another method. This applies to all the
channel models.

There are some other publications on the use of MD coding in joint source-
channel coding, with a different conclusion, stating that MD coding does give
an improvement. Yang and Vaishampayan (1995) studied the use of MD coding
on a Rayleigh fading channel. The differences between their work and the work
in this chapter is that error correcting coding is not considered with the MD
coder, the appropriate decoder is chosen from an estimate of the fading state in
the receiver. In addition, fixed rate MD quantization is used, and this means
that the delay is very short. A reference system using error correcting coding
is considered, but with the same delay as the MD coder, the performance is
lower. These results are certainly valid, but the delay introduced by longer
channel codes and entropy coding is often acceptable, especially considering
the improvement such coding can give.

For the case of a packet network model, MD coding in a joint source-
channel coding setup has been considered by Alasti et al. (2001). They use a
more sophisticated channel model than the extremely simple erasure channel
model used here, although the channel model is still said to be largely sim-
plified. The model is of a congestion network, and the paper concludes that
MD coding is much better than SD coding for high network loading. This
corresponds to a large erasure probability in the packet erasure channel model.
Besides the different channel model, an important difference is that channel
coding on the packets is not considered in (Alasti et al., 2001). Thus, that result
is consistent with the result of Figure 2.10(a). The channel model considers two
independent channels (“queues”), but packet losses on those two channels are
not necessarily independent. That makes the use of channel codes on packets
less efficient, and MD coding more suitable. The assumption of two indepen-
dent channels seems to be motivated by the nature of MD coding with two
descriptions, rather than by typical characteristics of actual networks, though.

It is definitely possible to find examples where the introduction of multiple
description coding gives an improvement. The problem is that this happens
in situations where there is a constraint on the channel coding, and this limits
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the attainable performance. Of course, a delay constraint or other constraint
on the channel code may very well occur, but they should not be made stricter
than necessary. Also, the results obtained in this chapter indicate that quite
harsh constraints are needed before MD coding is preferred.

It is clear that the variation of the delivered MSE is higher with SD than
with MD coding. This is related to the fact that MD coding is preferred if
the outage probability is constrained, at least for the BSC. If the variation
of the MSE must be low, MD codes may be a solution. In image coding, for
example, MD coders can be designed that give fairly good results both with
the central and side decoders (Servetto et al., 2000). Even though better ex-
pected performance can probably be obtained with a single description coder,
except when very few packets are used on an erasure channel, the performance
could be quite unacceptable if important coefficients for the image decoding
is lost completely, while a reduction of quality could be acceptable in some
cases. This means that MD coding might offer a good trade-off between sys-
tems which almost always work, but with a limited quality, and systems that
have a low average distortion, but a high probability of unacceptable decoding
quality. This is a topic that must be investigated further in order to get clear
conclusions, with comparisons between MD coding and other ways of achieving
a low probability of unacceptably high distortion.






Chapter 3

Direct Source—Channel
Mappings

This chapter considers joints source—channel coding methods that take contin-
uous amplitude source symbols and produce potentially continuous amplitude
channel symbols for transmission on an additive white Gaussian noise channel.
Any combination of a source coder, channel coder and symbol mapping can be
said to perform this operation. Direct source—channel mapping will be used to
denote the process when the operation is performed without any intermediate
steps, or where intermediate steps are designed in a way that takes the whole
process into account. The mappings are assumed to be memoryless vector op-
erators, the only memory allowed is given by the dimensionality of the input
and output vectors of the mapping.

The aim of using direct source—channel mappings is twofold. It is hoped
that the performance can be better than separate source coding, channel coding
and modulation, and that robustness against mismatch between the expected
and actual quality of the channel can be better.

The chapter is organized as follows. In Section 3.1, a mathematical def-
inition of the problem is given. Section 3.2 presents a performance bound,
and Section 3.3 presents previous work on the topic. In Section 3.4, a system
for bandwidth doubling is proposed and expressions for its performance are
derived. Section 3.5 presents coding results, and Section 3.6 provides a dis-
cussion of the results. Parts of the work in this chapter have been presented
in (Coward and Ramstad, 1999; Coward and Ramstad, 2000a; Coward and
Ramstad, 2000b; Coward and Ramstad, 2000c¢).

55
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Figure 3.1 Overall system description

3.1 Problem Formulation

The system that is considered is shown in Figure 3.1. A source produces
real-valued random vectors X (k) of length L. The elements of the vectors
are denoted source symbols, and the L-dimensional space in which the vectors
reside is called the source space. The vectors are transformed by an encoder
mapping «,

a:RF 5 RE (3.1)

into real-valued vectors Y (k) of dimension K, which are to be transmitted
on a channel. The elements of these vectors are called channel symbols, and
they are said to lie in the channel space. There is a constraint on the power
consumption per channel symbol, given by

E[YT(R)Y (k)] = E [a(X ()T (X (8)] < Ko} (3.2)

On the channel, the vectors Y (k) are contaminated by additive noise IV (k),
forming received vectors Y (k). These are transformed by a decoder mapping

B,
g :RE 5 RE (3.3)

into vectors X (k). The aim of the system is to minimize the mean square error
(MSE) D, defined by

D= 1B [(X(k) - Xk) Xk - X(K) (3.4)

Throughout this chapter, the source will be assumed to be stationary and
generate memoryless source symbols, i.e., X;(k) is statistically independent
of X;(l) for (i,k) # (j,1), where X;(k) is the ith component of X (k), and
the statistical properties are independent of k£ and i. The same assumption is
made for the noise, which in addition is assumed to have a Gaussian probability
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distribution, giving an additive white Gaussian noise (AWGN) channel. For
the source, Gaussian as well as Laplacian and uniform probability distributions
will be considered.

The noise variance is defined as
1
o = =P [NT(k)N (k)] , (3.5)

and the channel signal-to-noise ratio (CSNR, measured in dB) is defined as

2

CSNR = 101og, o 2. (3.6)
oN
The source variance is
1
0% = B [XT (k)X (k)] , (3.7)
while the signal-to-noise ratio (SNR) in dB of the system is defined as
o2
SNR = 10log;q —=-. (3.8)
D
The rate of the system is defined as
K
R = T (3.9)

i.e., the number of channel symbols produced per source symbol. When K < L,
there are more source samples than channel samples per time unit, and this
situation will be referred to as bandwidth reduction. Similarly, the situation
when K > L is called bandwidth expansion.

3.2 Optimal Performance Theoretically Attainable

The optimal performance theoretically attainable (OPTA) is the theoretical
lower bound on the distortion with a coder as described in Section 3.1 given
a rate R = K/L and a CSNR (Berger and Tufts, 1967). Note that only the
rate, not K and L, is specified, so very large values of K and L may be needed
to approach the OPTA. The bound is found from Shannon’s channel capacity
and rate-distortion bounds (Shannon, 1948). If the channel capacity of the
source is given by C(S), where C is the capacity and S is the CSNR measured
in linear scale, and the distortion-rate function is given by D(R), where D is
the distortion and R is the rate, then the OPTA is given by D(RC(S)).
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For an AWGN channel, the capacity measured in bits per channel symbol
is given by (Shannon, 1948)

o? 1 o?
C (U—;/) = ilogz (1 + U—g) , (3.10)
N N

and for a memoryless Gaussian source, the mean square error distortion at the
distortion-rate bound is given by (Shannon, 1948)

D(R) = 0%2 2R, (3.11)
so in this case, the OPTA is given by
2 2 o2\ F
D = g% 2~ Rloga(Itoy fon) — 52 (1 + é) : (3.12)

In this work, the AWGN is the only channel model considered. For source
models different from Gaussian, the distortion-rate function can be found using
a numerical algorithm (Blahut, 1972).

The distortion-rate function D(R) is convex and non-increasing (Berger,
1971), and from (3.10), it can be seen that the capacity of an AWGN channel
C(S) is a concave, non-decreasing function. From this, it can be shown that
the OPTA distortion D is a convex, non-increasing function of S.

3.2.1 An Optimal System

It is well known that for a memoryless Gaussian source transmitted on an
AWGN channel at a rate R = 1, a system exists that achieves the OPTA, see
for instance (Goblick, 1965). Such a system is obtained by K = L = 1, simply
by using the transmitter

Y (k) = a(X (k) = Z—;X(/ﬁ) (3.13)

and the receiver

V (k). (3.14)

D=E [(X(k) - X(k))Q] —E

2 2
oy + oy \ox
2 2 2\ 1
OxON _ 2 Ty
=0x 1+_ 5
o2 + o2 o2
Y N N
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Figure 3.2 Mapping proposed by Shannon (1949)

which is the same as the OPTA for R = 1, proving the optimality of the
system. This simple system will be denoted a direct PAM (pulse amplitude
modulation) system, since a PAM channel sample is created directly from a
source sample just by multiplication.

3.3 Previous Work

The concept of direct source—channel mappings was conceived already by Shan-
non (1949). Figure 3.2 is a reproduction of Figure 4 from Shannon’s paper,
and is a proposal for a bandwidth expanding mapping. The square represents
the two-dimensional channel space in which signaling takes place, and the line
winding through it represents the one-dimensional source space. The circle
shows how noise in the channel space gives a limited distortion in the source
space. Shannon points out that if the noise increases, the uncertainty can lead
to an error in which portion of the line that is received, giving a large error.
Shannon also mentions the bandwidth reduction case, suggesting a situation
like in Figure 3.2, but where the square represents the two-dimensional source
space and the line represents the one-dimensional channel space. Here, quanti-
zation must be performed by mapping a point in the source space onto a point
on the line.

Later works have proposed methods for finding good source—channel map-
pings for different sources and channels. Berger and Tufts (1967) studied the
use of linear PAM methods for various channels, and pointed out that for
AWGN channels, one can reach the OPTA when R = 1, but not otherwise.
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They also proposed a non-linear “Shannon-Cantor” method for other rates.
Lee and Petersen (1976) developed the optimal linear block mapping given
the statistical properties of the source and channel. This system is discussed
further for a memoryless source and channel in Section 3.3.1.

A method that has been used in several varieties is the joint design of
quantization and modulation sets. This is a natural combination, since quan-
tization and modulation in a way represent inverse operations. Quantization
is the mapping from a source space to an index, and inverse quantization is the
mapping from an index to a set of points, the codebook, in the source space.
Modulation, on the other hand, is a mapping from an index to a set of points
in a channel space, while inverse modulation, or detection, is a mapping from
the channel space to an index. Also, the nature of these mappings are usually
quite similar, since both in quantization and detection, the set of points being
mapped to one index is a simply connected set, and inverse quantization or
modulation of this index gives a point contained in that set.

Ayanoglu and Gray (1987) designed a joint source-channel code based on a
trellis code, and Fischer and Marcellin (1991) joined the design of trellis coded
quantization and trellis coded modulation, exploiting the similarity between
the operations. The trellis introduces memory to the system, which strictly
speaking brings it outside the definition of a source-channel mapping used
here.

Vaishampayan (1989) performed a joint optimization of the quantizer and
modulation sets. In order to make this possible, two simplifications were
considered. One system, which was also treated in (Vaishampayan and Far-
vardin, 1992), considered the use of a linear receiver, while the other used
detection demodulation. Liu, Ho and Cuperman (1993) performed optimiza-
tions of a joint system with a soft decoder, Skoglund and Hedelin (1999) used
a Hadamard transform to design a vector quantizer for use with binary phase
shift keying (BPSK) modulation, and Skinnemoen (1994) used Kohonen learn-
ing to optimize a vector quantizer for transmission by quadrature amplitude
modulation (QAM). Fuldseth and Ramstad (1997a) followed up the case with
detection demodulation from (Vaishampayan, 1989) with an improvement of
the optimization algorithm. In (Fuldseth, 1997), this is elaborated with several
more results, including both bandwidth reduction and expansion. The system
is described in Section 3.3.2.

Mittal (1999) introduced a set of hybrid digital-analog coding systems
with emphasis on robustness against varying channel qualities. By studying
performance limits for the digital part and linear direct PAM for the analog
part, achievable performance regions for a pair of channel qualities using the
same encoder were found. A practical speech coder was obtained by using
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a CELP (code-excited linear predictive) coder as the digital part. Further-
more, the duality between an encoder-decoder pair («, ) and the coder (8, «)
obtained by interchanging the encoder and decoder was studied. These top-
ics are also treated in several papers: (Phamdo and Mittal, 2000; Mittal and
Phamdo, 2000a; Mittal and Phamdo, 2000b; Mittal and Phamdo, 2000¢), and
other papers by the same authors. A practical implementation of a band-
width expanding hybrid digital-analog coder for a general source was found by
Skoglund, Phamdo and Alajaji (2000; 2001a), where a vector quantizer followed
by BPSK modulation was used as the digital part. Skoglund, Phamdo and
Alajaji (2001b) have also found a hybrid digital-analog system for bandwidth
compression, where the analog and digital parts are added and a bandwidth
reducing linear on non-linear mapping is used in the analog part. Coward and
Ramstad (1999; 2000a; 20005) designed a bandwidth expanding system with
a multi-level scalar quantizer as the digital system, introducing some analog
properties there as well. This system is elaborated in Section 3.4.

3.3.1 Block Pulse Amplitude Modulation

The block pulse amplitude modulation (BPAM) system was introduced by Lee
and Petersen (1976)'. It is a linear system for transmitting a vector source on
a vector channel with additive noise, which corresponds to Figure 3.1 where
the operators a and 8 are multiplication by constant matrices. Then, the
transmitter and receiver are given by

Y (k) = (X (k) = AX (k) (3.16)

X (k) = B(Y (k)) = BY (k), (3.17)

respectively.

For the case of a vector source derived from a memoryless stationary scalar
source and a white noise channel, a set of very simple matrices gives optimum
performance. There is only one non-zero element in each row and each column
of these matrices, and the transmitter and receiver matrices are given by

oy oxoy
A=—1T B=——"—+1 3.18
ox KxL 0'%/—}-0']2\] LxK ( )
when K < L, and
K oy | L oxoy
A=4/—-1T B=\—7F""—"+1 3.19
Lox KxL K o%, + 012\, LXK ( )

!The term BPAM was not used by Lee and Petersen, but has been used by Vaishampayan
(1989) and others.
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Figure 3.3 Performance of the BPAM system (solid) for different rates R compared
to the OPTA (dashed) for a Gaussian memoryless source on an AWGN channel

when K > L, where Ik is a K X L matrix with ones on the main diagonal and
zeros elsewhere. This means that the BPAM coder simply removes samples to
perform bandwidth reduction and inserts zero samples to perform bandwidth
expansion. When K = L, the BPAM system is similar to a direct PAM system.

The performance of the BPAM system is shown in Figure 3.3 for a Gaussian
memoryless source. The BPAM system has performance close to the OPTA
for very poor channels (below 0 dB), but the gap between the performance and
the OPTA increases with the channel quality. If K = L, the BPAM system
achieves the OPTA, just as the direct PAM system.

3.3.2 Power-Constrained Channel-Optimized Vector
Quantization

Power-constrained channel-optimized vector quantization (PCCOVQ) was pro-
posed in (Fuldseth and Ramstad, 1997a; Fuldseth, 1997). The problem con-
sidered follows the framework of Section 3.1, and the mapping from source to
channel space is performed by a vector quantizer followed by a modulation
mapping, giving a mapping from source space to a finite number of points in
channel space. The size of the vector quantization codebook is M. The channel
symbols are uniformly spaced in each channel dimension, and the receiver uses
nearest neighbor detection to pick a value from the reconstruction codebook.
The encoding is done by choosing the symbol that minimizes the expected dis-
tortion under a power constraint. The distance between the channel symbols
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(a) CSNR 0.26 dB (b) CSNR 20.0 dB

Figure 3.4 The reconstruction codebook of a PCCOVQ system with L =2, K =1,
and M = 256, designed for a memoryless unit variance Gaussian source for transmis-
sion on an AWGN channel with a specified CSNR. The circles show the positions
of the reconstruction codewords in the 2-dimensional source space, and the lines are
drawn between source symbols which correspond to neighboring channel symbols.

and the reconstruction codebook are found by optimization using simulated
annealing for given source statistics.

An interesting difference between PCCOVQ and a traditional system is
that a high symbol error rate is a desired property. The reason is that when
errors occur, the most probable decoded symbols are close in channel space to
the transmitted symbol, and the optimization of the reconstruction codebook
makes sure that such channel symbols correspond to source symbols of small
Euclidean distance. This property is illustrated in Figure 3.4, where it can be
seen that the codebook vectors lie on a line through the source space. If the
error probability is made smaller while retaining the optimal shape, the number
of points must be reduced, which means that the points on the line get further
apart. Then, the distortion due to quantization increases without lowering the
distortion due to channel noise, and the optimized PCCOVQ system will start
to resemble a traditional unconstrained vector quantizer. The performance as
a function of the channel quality then reaches saturation. The codebook size
decides for what channel quality it happens.

Figure 3.4 also shows the difference in the shape of the codebook according
to the CSNR. For a poor channel, the codewords form a straight line. This is
equivalent to the BPAM system, except for the finite length. In BPAM, only
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one of the two symbols are transmitted, which corresponds to a line along one of
the axes of the source space, but the line in Figure 3.4(a) is a 45 degree rotation
of that. Such an orthonormal transformation does not alter the performance of
the BPAM system. Note that this BPAM equivalent occurs at a CSNR where
BPAM has a performance close to the OPTA, cf. Figure 3.3(a). Figure 3.4(b)
has the shape of a double spiral, which is more efficient than the shape in
Figure 3.2 because the most probable symbols near the origin of the source
space get a small amplitude, keeping the power consumption down.

In (Fuldseth, 1997) both bandwidth reduction, as in Figure 3.4, and band-
width expansion, is considered. It turns out that while bandwidth reduction
can give a performance only about 1 dB from the OPTA for memoryless Gaus-
sian sources, bandwidth expansion performs much worse, especially for high
CSNR values. This has several causes. One reason is that higher dimensional
channel spaces need more points in the constellation to get the same minimum
distance between the points in channel space, and the codebook size has to
be kept down due to the complexity of the optimization algorithm. Another
reason is that the fixed grid in the channel space prevents the algorithm from
assuring that the probability of any error giving a high distortion is low enough.
There is also an attempt to optimize the constellation in (Fuldseth, 1997), but
this algorithm becomes very complex, preventing the use of a large codebook
size.

3.4 Hybrid Scalar Quantizer—Linear Coder

In previous works on direct source—channel mappings, few, if any, good results
are found for bandwidth expansion on channels with high CSNR. In this
section, a coder that follows the hybrid digital-analog scheme of Mittal (1999)2
is developed for memoryless sources.

In (Mittal, 1999), different hybrid digital-analog systems are presented.
The system called System 2 is reproduced in Figure 3.5, using the notation of
this chapter. Mittal assumes infinite memory in the digital coder, meaning that
the digital source coder can reach the rate-distortion bound and the channel
coder can reach the channel capacity. The linear encoder is introduced to
bring robustness into the system so that it will work well for different channel
qualities, and the system is analyzed to find achievable performance regions
for a coder that can be used for two different noise levels.

In this work, all the signals in Figure 3.5 are scalar, and the tandem source
and channel coder is replaced by a scalar quantizer. Robustness is achieved by
limiting the number of quantizer levels and by using one channel symbol per

2The coder presented here was developed independently of Mittal’s work.



3.4 Hybrid Scalar Quantizer—Linear Coder

65

N (k)
X (k) Source Channel Y. (k) Yl(k) Channel Source X(k)
—|— e 9%

encoder encoder \ decoder decoder
Source
decoder
+ — Ny (k)
Linear |Y2 (k) _|_ Y (k) Linear
encoder U decoder

Figure 3.5 Block diagram of System 2 from (Mittal, 1999)
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Figure 3.6 The HSQLC system

quantized symbol, where the quantizer levels and the corresponding channel
symbols are ordered in the same way. This kind of system will be denoted
a hybrid scalar quantizer-linear coder (HSQLC) system. Figure 3.6 shows
the block diagram of the system. As opposed to the more general system of
Figure 3.5, all the blocks are memoryless, and the two branches have to have
the same rate. Thus, the source space has dimension L = 1 and the channel
space has dimension K = 2, giving a total rate of R = 2.

3.4.1 Transmitter

The transmitter side of the proposed system works as follows. The symbols
X (k) are quantized using an M-level quantizer ). The quantizer uses a set
of decision intervals D; = (d;,di+1], © € {0,... ,M — 1}, where dy = —0
and dy = o0o. It returns the index 7 and the corresponding representation
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value A(k) = a;. For transmission on the channel, the quantization index
is represented by the symbol Y1(k) = ¢;. The quantization error B(k) =
X (k) — A(k) is multiplied by a constant K} giving the symbol Y3(k), which is
transmitted together with Y7 (k) on the channel.

In order to meet the channel power constraint of Equation (3.2), the values
of ¢; and K must be chosen so that

SE[YT(K)Y (k)] = & (E[Y? (k)] + K; E[B*(K)]) < 0. (3.20)

When the MSE is to be minimized, (3.20) will be satisfied with equality. Note
that it is not demanded that Y7 (k) and Y5(k) have the same power as long as
(3.20) is satisfied.

3.4.2 Receiver

Two different receivers will be used: One that is optimal given the transmitter,
and a simplified one based on hard decision on the received quantizer symbols,
and linear decoding of the quantizer error symbols.

3.4.2.1 Optimal Receiver

In general, the optimal estimate in the MSE sense of a symbol U(k) given
received symbols v(j), j € {k,k —1,...}, is (Gersho and Gray, 1992)

a(k) = E[U(K) | v(k),v(k - 1),...]. (3.21)

Here, both the source, encoder and channel are memoryless, so the optimal
receiver is given by

#(k) = E[X(k) | 91(k), 92(F)]
= E[A(K) [ 91(k), 92(k)] + E[B(K) | 91 (), §2(k)]-

Thus, estimates a(k) and b(k) for A(k) and B(k) will be found, and they will
be added in order to get an estimate Z(k) of X (k).

The receiver functions are denoted [ (91(k),92(k)) and Bo(91(k), g2(k)),
respectively. When the receivers are known, the MSE can be found as

(3.22)

D=FE [(X(k) - X’(k))2]

///w_ﬁl () + 11, Kp(z — Q(z)) +n2)

— Bo(C(z) + n1, Kp(z — Q(x)) + no)]?
fN(nl)fN(nQ)fX(-T) dny dns dz, (3.23)
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where Q(-) gives the quantized value drawn from {a;} and Cg(-) gives the
corresponding value from {¢; }, and fx(x) and fx(n) are the probability density
functions (pdf) of the input signal and the noise, respectively.

In Section B.1 of Appendix B, it is shown that the optimal receivers are:

M-1 dit1—a;
> aifn(n — ) / fx(b+ai)fn (g2 — Kpb) db
= di—a;
Bi(G1,G0) = -2 p— (3.24)
Z N —c / fx(b+a;) fn (g2 — Kpb) db
di—a;

diy1—a;

M-—1
S fw(on - / b (b -+ as) (G2 — EKyb) db
— di—a;
B2(G1,92) = 3\231

(3.25)

dit1—a;
I — ) / fx(b+ ai)fn (g2 — Kyb) db
i=0 di—a;
For Gaussian, Laplacian, and uniform sources, it is possible to find closed-
form expressions for the optimal receivers, see Sections B.1.1-B.1.3. However,
to the author’s knowledge, it is impossible to find a closed-form expression for
the MSE obtained with these receivers. That makes them unsuitable for use

with optimization.

3.4.2.2 Simplified Receiver

For the quantized symbol, a simplification of the receiver is the use of hard
decision decoding, meaning that the receiver can only return the representation
values a;, i € {0,... ,M — 1}. The receiver returns a; if the received value
71(k) € &;, where &;, i € {0,... — 1} are disjoint sets such that UM lg =

R. It is intuitively clear that 8 have to be intervals, and that one can write
& = (ej,e;41) provided that the ¢; are sorted in ascending order, ¢;+1 > ¢;,i €

{0,... .M —2}.
This means that the receiver is given by:
Bi(i(k), 92(k)) = B1(ij1(k)) = a; when §1(k) € (e, €i41], (3.26)
where 7 € {0,1,... ,M — 1} and —c0o = ¢y < e; < --- < ey-1 < ey = 0.

Since this receiver function depends only on §;(k), the notation By (f:(k)) is
introduced.

For the quantization error symbol, a simplified receiver is achieved by hav-
ing a receiver depending only on ¢s(k), using the optimal linear receiver, that
is the linear function

Ba(§2(k)) = 75 i2(k) (3.27)
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that minimizes E[(B(k) — B(k))?]. Since both the source, encoder and noise
are memoryless, the optimal linear receiver will be the same as the Wiener
filter (Therrien, 1992) for B(k) when 2(k) is observed. It is easy to show that
the optimal value of k is

K2 2
K=l (3.28)
Kjog +oy
where 0% is the variance of B(k). Thus, the optimal linear receiver for (k)
is given by

1 K,?UQB
= _———23 L _ g5(k). 3.29
Ky Kga%—i—a?v 9a(k) ( )

b(k) = Bo(91(k), G2(k)) = Ba(9a(k))

Using these receivers, a closed-form expression for the MSE can be found for
Gaussian, Laplacian and uniform sources, assuming that the decision intervals
&; of the hard decision decoder are known.

3.4.3 Optimizations

The performance of the HSQLC system will be optimized, minimizing the MSE
under the power constraint given by Equation (3.20). In order to have a treat-
able expression for the MSE, the simplified receivers are used. In Section B.3,
it is shown that the MSE in this case is given by

(1 - ”)Q/ddHlefX(w) dw

i

dit1
+2(1 — k) (ka; —aj)/ zfx(z)dz

d;
22 dit1
Ko
+ ((ﬁai —a;)? + K2N> / fx(z) dm] , (3.30)
b d;
where p; ; is the probability of receiving a; given that a; was transmitted,
€j+1—C;
Di,; :/ fn(n1)dni. (3.31)
ej—c;

Expressions for the value of 0% which is needed to find & and for the integrals
over different source distributions are also given in Section B.3.

The mean square error given by (3.30) can be minimized numerically with
respect to the quantizer parameters a;, 7 € {0,... ,M —1},¢;, 1 € {0,... ,M —
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1}, di, 1€ {1,... ,M—1},e;, i € {1,... , M —1} and Kj. There is a constraint
on the channel power as given by Equation (3.20). In order to impose this
constraint, K is held outside the optimization and is instead found from the
other parameters and the power constraint by solving (3.20) with equality. The
value of E[Y?(k)] is then needed, and it is found in Section B.3. There are
additional constraints that there exists a real-valued solution for Kj, i.e., that
E[Y2(k)] < 02, and that d; < d;11 and e; < e;4q for all i € {0,... , M — 1}.
These constraints are imposed by the use of penalty functions (Walsh, 1975).
The quantizer is assumed to be symmetric around zero, meaning that the
number of parameters that need to be optimized is reduced approximately
by a factor of 2. The symmetry assumption is justified by the symmetry of
both the source and noise probability distribution. The numerical method
used is the Nelder-Mead simplex (direct search) method as implemented in
the Optimization Toolbox of Matlab (Coleman et al., 1999).

The optimization is performed for increasing noise levels. As initial condi-
tions for the optimization, the result for the previous noise level is used. The
initial condition for the lowest noise will be explained in Section 3.5.

3.5 Results

Coding results for the HSQLC system will be given for memoryless sources
with three different source distributions: Gaussian, Laplacian, and uniform.
The pdf of the distributions are given in Sections B.1.1-B.1.3. In addition,
the performance of HSQLC and PCCOVQ is compared to a traditional system
with separate source and channel coding.

3.5.1 HSQLC for Gaussian Source

The performance obtained with the HSQLC system with M = 25 quantization
levels on a Gaussian memoryless source is shown in Figure 3.7. The results are
shown both for the simplified receivers and with the use of the optimal receivers
and the encoder found by the optimization. For the simplified receivers, the
MSE is found from Equation (3.30), while with the optimal receivers, the
MSE is found by Monte Carlo simulations, where 107 random source samples
and a double number of random noise samples are generated for each noise
level. The HSQLC system is compared to the OPTA, a PCCOVQ system
(Fuldseth, 1997) with L =1, K = 2, and M = 256 points in the constellation,
BPAM (Lee and Petersen, 1976), and hybrid digital-analog—fixed encoder,
adaptive decoder (HDA-FEAD) (Skoglund, Phamdo and Alajaji, 2001a). The
latter coder consists of a vector quantizer of dimension 8 and codebook size
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Figure 3.7 Performance of the HSQLC with simplified (solid) and optimal (solid

with dots) receiver, compared to the OPTA (dashed), a PCCOVQ system (dash-dot),

BPAM (dotted), and HDA-FEAD (stars), for a Gaussian memoryless source. All the

systems have rate R = 2. The two graphs show the same results over different CSNR,

ranges.

256 being transmitted on a BPSK channel, and one quantization error symbol
per source symbol transmitted with a linear coder. Both symbols have the
same power, and the encoding vector quantizer is optimized given a certain
channel noise, while the decoder can be re-optimized for the actual CSNR. In
Figure 3.7, the design and actual CSNR are equal.

The results reveal that the proposed system is competitive with all the
reference systems. For high CSNR values, it performs several dB better. The
PCCOVQ system is slightly better than the HSQLC below 9 dB. The use
of optimized receivers gives a slight improvement compared to the simplified
ones (up to approximately 0.5 dB). However, it is not necessarily worth the
increased complexity.

Figure 3.8 shows the quantizer levels obtained with the optimization. The
spacing between the levels increases as the channel quality goes down, in order
to keep the probability of decoding error of the quantized value low. This
also means that the number of effective quantization levels goes down, since
the probability of the outer quantization intervals becomes negligible. In the
figure, decision levels d; larger than 5 in magnitude have been removed, since
the probability of a Gaussian source having that high a magnitude is only
5.7 -10~7. Numerical inaccuracy in the optimization process also means that
decision levels larger than 5 and their corresponding representation values get
a random-like behavior.
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CSNR [dB] CSNR [dB]
(a) Source representation values a; (b) Channel representation values c;
(solid) and decision levels d; (dashed) (solid) and decision levels e; (dashed)

Figure 3.8 Optimized representation values and decision limits for a zero mean unit
variance Gaussian source on a unit power constrained AWGN channel as a function of
CSNR. The number of decision levels is M = 25. Source decision levels d; larger than
5 in magnitude have been removed together with the corresponding representation
values.

Figure 3.7 shows that the HSQLC system performs similarly to the BPAM
system for low CSNR values. This can be explained from Figure 3.8, since the
decision levels for poor channels are quite large, meaning that the probability
that the quantized symbol is different from zero is very low. Thus, the HSQLC
approaches BPAM when the channel noise increases. This is also demonstrated
by Figure 3.9, which shows the percentage of the total power occupied by the
two symbols in the HSQLC. At intermediate to good channels, the two sym-
bols get about the same amount of power, but for poor channels, the linearly
encoded symbol gets almost all the power, and this explains the similarity to
BPAM, where all the power is spent on a linearly encoded symbol.

Since the number of quantization levels M = 25 is odd and symmetry is
assumed, the quantizer becomes a mid-tread quantizer with a representation
level of zero. The optimization process can reduce the number of quantization
levels, but not turn the quantizer into a mid-riser quantizer. To check the
performance of a mid-riser quantizer, also the case of M = 24 has been tried,
and the result is shown in Figure 3.10. The use of a mid-tread quantizer is
slightly better from 5-12 dB, and there is no difference in performance at
higher CSNR values. At CSNRs above 27 dB, M = 25 is also better, but that
is probably due to the increased number of levels, since 24 or 25 levels is too
little to obtain the optimal performance. Below 5 dB, the systems perform
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Figure 3.9 Percentage of the total channel power occupied by the quantized symbol
Yi (k) (solid) and the quantization error symbol Y5 (k) (dashed) as a function of CSNR
with HSQLC on a Gaussian memoryless source
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Figure 3.10 A mid-riser based HSQLC system with simplified receivers and M = 24
levels for a unit variance Gaussian source
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Figure 3.11 HSQLC mappings plotted in channel space for a Gaussian memoryless
source and unit channel power constraint

equally again. The reason for this can be seen from Figure 3.10(b), which
shows that two representation levels go to zero, creating a de facto mid-tread
quantizer. The results show that a mid-tread quantizer can always be used
without losing optimality.

Figure 3.8 is one way of visualizing the coder operation. Another way of
doing it is shown in Figure 3.11. There, the two-dimensional channel space
gives the axes, and the solid line represents the points in the channel space
that are used for transmission. Neighboring points on a line segment repre-
sents neighbors in the one-dimensional source space, and the dotted lines show
which end points of the line segments that are neighbors in the source space.
Each solid line is shifted slightly to the left with respect to the line above
it; this reduces the consequence of an erroneously decoded quantized symbol.
Figure 3.11(a) shows why the representation values are outside the decision
intervals for low CSNRs in Figure 3.8(a), it simply means that the outer line
segments are shifted so far that they only take up one side of the second axis.

3.5.1.1 Modification of the Shape of the Mapping

If Figure 3.11 is compared to Figure 3.2, two differences come to one’s attention.
The line in the two-dimensional channel space is discontinuous, which is due
to the simplification that a scalar quantizer represents. The other difference is
that in Figure 3.2, the line segments go back and forth, while in Figure 3.11, all
the line segments go in the same direction. This can be changed by changing
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Figure 3.12 HSQLC mappings for a Gaussian source when the sign of B(k) is
changed for every second quantizer interval, plotted in channel space for unit channel
power constraint

the sign of B(k) if the quantization index i is odd (or even) at the encoder side,
cf. Figure 3.6, and changing it back in an appropriate manner at the decoder.
The mapping resulting from doing so, performing new optimizations of the
parameters, is shown in Figure 3.12. This mapping has a closer resemblance
to Figure 3.2. Its performance compared to the original HSQLC system is
shown in Figure 3.13. The original system has better performance. This can be
explained by looking at the squared error if the quantized symbol is erroneously
decoded and the neighboring symbol is received. In the original system, the
error is approximately constant regardless of the value of the quantization error
symbol. In the modified system, the error is small if the transmitted channel
symbol lies close to a conjunction of line segments and large if it is far from
the conjunction. On average, this gives a larger squared error, since the square
operator amplifies large values.

3.5.1.2 Uniform Quantizer

By studying Figure 3.8, it can be observed that the spacing between the quan-
tizer levels is close to uniform for any CSNR, except for the highest values,
where the outer levels have a larger spacing. This applies especially for the de-
cision limits d; and e;, while the representation values a; and ¢; are not quite
uniformly spaced. This observation suggests a simplification of the design
procedure. If the quantizer levels are forced to be uniform, only the spacing
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Figure 3.13 Performance difference between the original HSQLC system and the
system where the sign of B(k) is changed for every second quantizer interval. Both
systems use simplified receivers and M = 25 quantizer intervals.

between them needs to be specified, which reduces the number of optimization
parameters drastically. If M levels are used, the parameters can be found from

a; = (i— 1) 6,, i €{0,... ,M —1},
¢i=(i—21)6., ie{0,..., M -1},
di=(i—%)dq, i€{1,... ,M—1},
ei=(0—2)0, i€ {1,... , M -1},

so the optimization can be performed with respect to only the four parameters
0a, Oc, 04 and d.. The value of M is not an important parameter, provided it
is large enough so that the probability of the outer levels is small. In theory, it
could be set to infinity, but in order to calculate the MSE from (3.30), a finite
value is needed. M is chosen so that dj;—1 > 6, making sure the probability
of X (k) being in the outer intervals of the quantizer is very small (less than
2-107%). M is always odd, giving a mid-tread quantizer.

The performance difference between the original system and the system
with uniform quantizer levels is shown in Figure 3.14. The result shows that
a quantizer where all levels are optimized is only up to 0.01 dB better than a
quantizer with uniform distance. For CSNRs above 27 dB, the uniform quan-
tizer levels perform slightly better. This is because the number of quantizer
levels, M = 25, used in the original optimization, is too small, while with the
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Figure 3.14 Difference between the original HSQLC and the HSQLC with uniformly
spaced quantization levels for a Gaussian source. The simplified receiver is used in
both cases.

uniform levels, a large number of quantization intervals is easily feasible. This
also explains the non-uniform spacing of the decision levels shown in Figure 3.8
for good channels. This non-uniformity is simply due to the limited number
of quantizer levels, and will not occur if M is increased. The results plotted in
Figure 3.14 are for simplified receivers, but the optimal receivers can be used
with the uniform quantizers just as well as with the original ones.

As mentioned earlier, the initial values for optimization of the quantizer
is the optimized quantizer for a slightly higher CSNR. This applies to all the
varieties of the system. The initial value for the highest CSNR, 30 dB, was
originally taken as a Lloyd-Max quantizer (Gersho and Gray, 1992) with M
levels for a Gaussian source. This was done for a smaller value of M than
25. When it turned out that the optimal quantizer is approximately uniform,
the initial value for a high number of quantizer levels was taken by using an
optimized quantizer for a lower number of levels and interpolating the extra
levels. For the system with alternating sign of B(k), the quantizer of the
ordinary system for 30 dB was used as an initial value, and with the uniform
quantizer system, the spacing of the innermost levels of the ordinary system
was used as initial values.

3.5.1.3 Channel Mismatch

In many applications, the encoder does not know the actual channel, and in an
application like broadcasting, each receiver has a different channel, meaning
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that it is impossible to design an encoder that is optimal for all parties. When
studying the performance for such a situation, a design CSNR is assumed
for the encoder. For the decoder, there are two possibilities, either it can be
designed for the same CSNR as the encoder, or it can be re-designed from
the actual CSNR, provided the receiver has a means of estimating the channel
quality. If optimal quantizers are used, Equations (3.24)—(3.25) can be used
with the actual noise level. If simplified receivers are used, x must be re-
calculated from (3.28), and new values of e; must be found. The latter could
be done by new numerical optimizations, but a simpler way is the use of a
maximum a posteriori (MAP) receiver, explained in Section B.2.

The result of channel mismatch for different systems is shown in Fig-
ure 3.15. For low design CSNR values, a lot can be gained by re-designing
the decoder for the actual CSNR, while this gain is much smaller for high
design CSNRs. The use of optimal receivers gives a substantial gain if the de-
sign CSNR is high, the actual CSNR is lower, and the decoder is re-designed.
The gain is small (or even negative) in most other cases. The HSQLC system
is compared to the HDA-FEAD system from (Skoglund et al., 2001a). That
system has a decoder which is optimized for the actual CSNR. The proposed
system with a re-designed decoder performs better than the HDA-FEAD for
all cases except when the design CSNR is 5 dB and the actual CSNR is 9 dB
or more, where the HDA-FEAD is up to 0.1 dB better. The fact that HDA-
FEAD performs best compared to the HSQLC for a design CSNR of 5 dB can
be explained from the use of BPSK signaling for the digital part. For 0 dB,
it would be better to use a BPAM-like structure, (cf. Figure 3.7, where HDA-
FEAD is inferior to BPAM at 0 dB), and at 10 dB, the number of levels in
the quantized symbol should be larger than two. At 5 dB design CSNR, the
HDA-FEAD is also inferior to BPAM, but when the actual CSNR is higher,
the BPSK is useful.

3.5.2 HSQLC for Laplacian Source

Figure 3.16 shows the performance of the HSQLC, both with optimal and
simplified receivers, for a Laplacian source. This time, the number of quantizer
levels is M = 31. A greater number of quantizer levels is needed than for
the Gaussian source because the probability of large amplitudes is greater for
the Laplacian distribution. The performance is compared to the OPTA, a
PCCOVQ system with L =1, K = 2, and M = 256 constellation points?, and
to the BPAM. The OPTA gives a higher SNR than for a Gaussian source, while

3This system was not reported in (Fuldseth, 1997), but it is designed using the method-
ology from that work.
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Figure 3.15

(c) Design CSNR, 10 dB

(d) Design CSNR 20 dB

Performance at CSNR, mismatch for the HSQLC and the HDA-FEAD

with a Gaussian source. The solid lines represent the HSQLC with optimal (with
dots) or simplified (without dots) receiver designed for the actual CSNR, the dashed
lines represent the HSQLC with optimal (with crosses) or simplified (without crosses)
receiver designed for the design CSNR, and the dash-dotted line represents the HDA-
FEAD system ((a)—(c) only).
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Figure 3.16 Performance of the HSQLC with simplified (solid) and optimal (solid

with dots) receiver, compared to the OPTA (dashed), a PCCOVQ system (dash-dot),

and BPAM (dotted), for a Laplacian memoryless source. All the systems have rate

R = 2. The two graphs show the same results over different channel ranges.

the BPAM is unchanged since it is linear. Again, the use of optimal receivers
gives a small improvement compared to the simplified ones. The PCCOVQ
system performs about equally to the HSQLC with simplified receivers up to
approximately 8 dB, but worse than HSQLC with optimal receivers. Above
that, HSQLC is clearly better with either receivers.

The quantizer optimized for the Gaussian source was used as initial values
for the optimization at 30 dB. The extra levels were interpolated.

The optimized quantizer levels for the Laplacian source are shown in Fig-
ure 3.17. Here, source decision levels d; larger that 10 in magnitude have been
removed, the limit has been set higher than for the Gaussian distribution be-
cause of the increased probability of large amplitudes. There is some noise on
the quantization levels of high amplitudes due to numerical inaccuracy in the
optimization process. The significance of this on the performance is negligible.

With the Gaussian source, the probability of the quantized value being
anything but zero was very low for CSNR values close to 0 dB. Here, that
probability is somewhat higher. This is also illustrated by Figure 3.18 which
shows that even at 0 dB, 2 % of the total power is spent on the quantized
symbol. This is not much, but enough to distinguish the proposed system
from BPAM, something which can also be seen by the performance of those
two systems in Figure 3.16.



80

Direct Source-Channel Mappings

25

CSNR [dB] CSNR [dB]
(a) Source representation values a; (b) Channel representation values c¢;
(solid) and decision levels d; (dashed) (solid) and decision levels e; (dashed)

Figure 3.17 Optimized representation values and decision limits for a zero mean
unit variance Laplacian source on a unit power constrained AWGN channel as a
function of CSNR. The number of decision levels is M = 31. Source decision levels
d; larger than 10 in magnitude have been removed together with the corresponding
representation values.
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Figure 3.18 Percentage of the total channel power occupied by the quantized sym-
bol Y3 (k) (solid) and the quantization error symbol Y5(k) (dashed) as a function of
CSNR with HSQLC on a Laplacian memoryless source
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Figure 3.19 Difference between the original HSQLC and the HSQLC with uni-
form (solid) and quadratic (dashed) quantization levels for a Laplacian source. The
simplified receiver is used in all cases.

3.5.2.1 Systematic Quantizer

The use of a uniform quantizer gave a very good result for the Gaussian dis-
tribution. The optimized quantizer for the Laplacian distribution is somewhat
further from uniformity. Still, the use of a quantizer with levels given by
few parameters hugely simplifies the optimization procedure. Thus, two sys-
tematic quantizers will be tried: once again a uniform quantizer as given by
Equations (3.32)-(3.35), and a quantizer given by the quadratic functions:

ai = (i — M) G+ (i — M=) i - ML &, i€ {0,... , M —1}  (3.36)
ci=(i— M) ¢+ (i - M) i - Mg, iefo,...,M -1}  (3.37)
i=( )G+ (- |i— Y|, ie{l,... . M—1} (3.38)
ei=(i— )¢+ (i — M) |i—- Y|t ie{l,...,M -1} (3.39)

The latter quantizer will be referred to as a quadratic quantizer. It is character-
ized by eight parameters, and although this is more than the four parameters
characterizing the uniform quantizer, it still represents a large reduction of the
number of parameters needed when the CSNR is high. In the calculations of
the MSE from (3.30), M is chosen to an odd value so that das—1 > 12 for both
the uniform and the quadratic quantizer.

The results of the systematic quantizers are shown in Figure 3.19. The
uniform quantizer gives a small deterioration compared to the original one.
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Figure 3.20 Difference between the performance of a coder optimized for the actual
pdf and the performance of coders optimized for a different shape of the pdf than
the actual one. The solid lines show the original quantizer where all the levels are
optimized, the dash-dotted lines show the uniform quantizer, and the dashed line
shows the quadratic quantizer (Laplacian design pdf only). Simplified receivers are
used in all cases. Note the different scale on the two plots.

With the quadratic quantizer, the loss is negligible. At CSNRs above 27.5 dB,
the quadratic quantizer performs better than the original, which is caused by
the limited number of quantizer levels in the latter.

3.5.2.2 Source Mismatch

A stationary memoryless source producing random symbols is characterized by
the pdf of the symbols. Determining that function from the observed source
symbols can be a difficult task. However, some parameters like mean and
variance are easy to estimate. A pre-determined model can then be used for
the shape of the pdf. This model can sometimes be uncertain, and a desired
feature is then that the performance of a coder has a low sensitivity to the shape
of the pdf. The performance when using a coder designed for a Gaussian source
applied to a Laplacian source of the same mean and variance as the design pdf,
or vice versa, is shown in Figure 3.20. The graphs show that the sensitivity
to pdf mismatch is low in all cases, except when a quantizer where all the
levels are optimized for a Gaussian source is applied to a Laplacian source.
The reason why this gives a large deterioration is that there are no quantizer
levels of large enough amplitude to cover the tails of the Laplacian distribution.
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Figure 3.21 Performance of the HSQLC with simplified (solid) and optimal (solid
with dots) receiver, compared to the OPTA (dashed) and BPAM (dotted), for a
uniform memoryless source. All the systems have rate R = 2.

With a uniform quantizer, any amplitudes can be covered. In the performance
calculations for systematic quantizers, a value of M suitable for the actual pdf
has been used. This is acceptable because the limitation of M is only needed
to perform numeric calculations of the MSE with Equation (3.30). In order to
perform quantization in practice, M needs not be limited except to what the
dynamic range of the processing unit demands. This shows a clear advantage
of using systematic quantizers: Larger tails of the actual pdf than the design
pdf are handled well.

3.5.3 HSQLC for Uniform Source

Figure 3.21 shows results for a uniformly distributed source. The optimization
is performed in a slightly different manner this time. Due to the abrupt change
in probability density that occurs in a uniform distribution, the optimization
is unable to move quantization levels away from the mean in order to remove
them, as happened for the Gaussian and Laplacian distributions. Thus, at
each CSNR point, the same number of quantization levels as in the previous
(higher CSNR) point is considered, using the optimal quantizer of the previous
point as the initial value, along with a number of quantizer levels reduced by
one compared to the previous point. If the reduction gives an improvement,
another reduction of the number of levels is tried, until the reduction increases
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Figure 3.22 Optimized representation values and decision limits for a [—1, 3] uni-

form source on a unit power constrained AWGN channel as a function of CSNR

the distortion. A uniform quantizer is used as the initial value for the reduced
quantizers. The best performing of all the quantizers that have been tried is
chosen. For a CSNR of 30 dB, up to 15 levels are considered, but 14 levels give
the best performance at 30 dB.

Figure 3.22 shows the quantization levels for the uniform source. Note
that the quantizer this time alternates between a mid-tread and a mid-riser
quantizer as a function of CSNR. At high CSNR values, the innermost levels
seem quite uniformly spaced, while the outer are tighter. For CSNRs below
4.5 dB, the number of levels is one, meaning that the system with simplified
receivers becomes exactly equal to the BPAM, something which is also seen in
Figure 3.21.

3.5.3.1 Uniform Quantizer

As for the Gaussian and Laplacian sources, a uniform quantizer will be tried
for the uniform source. In Section B.3.4, it is shown that if

a; = (i— 2414 ie{o,...,M—1} (3.40)
and
di=0G-Y)4, ie{l,..., M—1}, (3.41)

where A is the width of the uniform distribution (cf. Equation (B.34)), the
expression for the MSE using optimal receivers can be simplified. It is then
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Figure 3.23 Performance of HSQLC system with uniform quantizer for a uniform
memoryless source

given by a sum of one and two-dimensional integrals. These integrals can be
found numerically, and if ¢; is chosen to be proportional to a;,

¢ = Kpai, 1€{0,... ,M —1}, (3.42)

only the constants K, and K} need to be found for a given M. One of these
constants can be found from the other given a channel power constraint, so
the problem has only one variable, and is reduced to a problem of distributing
channel power between the symbols. In this case, numerical optimization of the
MSE given by numerically solved integrals is feasible, so the optimal receivers
can be used in the optimization process. The MSE can be calculated for
different M, and the best one will be chosen.

The performance of a uniform quantizer for a uniform source is demon-
strated in Figure 3.23. As seen, the loss is relatively small, and more is gained
by using optimal receivers than by optimizing the different quantizer levels
separately. The difference in performance fluctuates because the quantizer
step size with the uniform quantizer only takes values that divide A, while the
original quantizer can have any spacing between the levels.

The uniform quantizer for the uniform source gives the opportunity to use
the optimal receivers in the optimization process, instead of optimizing using
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Figure 3.24 Performance difference between the HSQLC system with uniform quan-
tizer optimized assuming optimal receivers and a system with uniform quantizer op-
timized assuming simplified receivers, but actually using optimal receivers. The solid
line shows the case when the number of levels M is optimized using the performance
with optimal receivers, while for the dashed line, the performance using simplified
receivers has been used for finding the best M.

simplified receivers and then applying the optimal receivers, as must be done
in other cases. Figure 3.24 shows how much is gained by assuming optimal
receivers in the optimization, which is not much. Note that in some cases,
the optimal value of M is different depending on the type of receiver that is
assumed when the MSE is calculated, and then, more is gained from optimizing
M using the correct receivers than from optimizing the power distribution with
the optimal receivers. This indicates that the gain from assuming optimal
receivers in the optimization process could be somewhat higher when also the
quantizer levels are optimized numerically. Still, no large improvement can be
expected, as the gain from introducing optimal receivers in the first place is
small.

3.5.4 Comparison to Entropy Coding

Traditional coding systems for compression are often based on entropy coding,
since quantization in combination with entropy coding is more efficient than
pdf optimized quantization (Ramstad, Aase and Husgy, 1995). Entropy coding
lacks the robustness of the direct source-channel mappings, though, since an
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Figure 3.25 Performance of a PCCOVQ system with codebook size M = 256 (solid)
compared to a uniform quantizer followed by an ideal entropy coder and an ideal
channel coder (dash-dotted) and to the OPTA (dashed). The source is memoryless
Gaussian.

entropy coder breaks down due to synchronization problems whenever an error
occurs.

An entropy coding based system is a pure source coder. In this section, a
channel coder that performs as the channel capacity will be assumed, thus, the
results for entropy coding are lower bounds on the distortion. A uniform scalar
quantizer with centroid representation values is used, since uniform quantiza-
tion is close to the optimal scalar quantizer in combination with entropy cod-
ing (Farvardin and Modestino, 1984). The entropy coder is assumed to give a
rate equal to the actual entropy. The entropy and distortion of the quantizer
are calculated by integration over the source pdf as was done in Chapter 2, so
no high-rate approximation or simulations are used.

In Figure 3.25, the PCCOVQ system of (Fuldseth, 1997) with rates } and &
is compared to the entropy coding based system having the same total rate. As
seen, PCCOVQ) is better than the entropy coding based system, even though an
optimal channel coder is assumed. Of course, the limiting factor of this coder
is the scalar quantizer. The PCCOV(Q system combines two or four source
symbols for the encoding, and if the entropy coder based system could do the
same, that is, use a two or four-dimensional vector quantizer, its performance
would improve. When a high-rate assumption applies, the gain by using a
two-dimensional vector quantizer is approximately 0.17 dB, and for a four-
dimensional quantizer, it is approximately 0.39 dB (Lookabaugh and Gray,
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Figure 3.26 Performance of an HSQLC system with optimal receivers (solid) com-
pared to a uniform quantizer followed by an ideal entropy coder and an ideal channel
coder (dash-dotted) and to the OPTA (dashed). The source is memoryless Gaussian.

1989). Thus, on good channels where the high-rate assumption holds, the rate
% entropy coding system will still be inferior to PCCOVQ, while the rate %
system gets a performance very close to PCCOVQ), if vector quantization of

the same dimension as in PCCOVQ is performed.

Figure 3.26 compares the HSQLC system to the entropy coding based sys-
tem that also has a total rate of two. In this case, the latter system is better,
so bandwidth expansion with HSQLC is not as efficient as bandwidth reduc-
tion with PCCOVQ. Still, getting a channel coder performance equal to the
capacity is impossible, so in practice, the advantage of the entropy coder based
system would be reduced or vanish entirely. For the channel qualities shown
in Figure 3.26, the HSQLC demands a CSNR up to about 3.5 dB better than
the entropy coding based system. A channel code with a performance 3.5 dB
below the capacity for high CSNRs is a good code.

The direct source—channel mappings are much more robust than the en-
tropy coder system. Since an optimal channel coder is assumed, no meaningful
decoding can be expected below the design CSNR, and the performance will
not improve above the design CSNR since the quantization is the only source
of distortion. The robustness of the HSQLC coder was demonstrated in Fig-
ure 3.15, and the performance of PCCOVQ coders at channel mismatch is
shown in Figure 3.27. As seen, the performance decreases relatively slowly
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Figure 3.27 The performance of PCCOVQ mappings for a memoryless Gaussian
source at CSNR different from the design CSNR (solid). The design CSNR is shown
with a star, and the dashed line shows the performance of PCCOVQ evaluated at the
design CSNR.

below the design CSNR, and increases somewhat above it before saturation is
reached.

So far, only robustness to varying channel quality and pdf shape has been
discussed. Another issue is robustness against source variance mismatch. This
will be handled differently by a direct source—channel mapping, which has a
fixed rate, and an entropy coding based system, where the rate varies according
to the source variance. This kind of robustness is investigated in Figure 3.28,
where the rate-distortion performance of direct source—channel mappings and
the entropy coding based system described above are compared. For the direct
source—channel mappings, the channel symbols are assumed to be scaled so
that the power constraint is satisfied exactly, and the scaling factor is assumed
to be known by the receiver. With the HSQLC, a uniform quantizer is used so
that the number of quantizer levels is not limited. In the entropy coder based
system, the ideal entropy coder is designed for a Gaussian unit variance source.
The results for entropy coding and HSQLC are found by integration over the
source pdf as before, while the results for PCCOVQ are found by Monte Carlo
simulations over 106 channel samples.

From Figure 3.28, just as from Figure 3.26, it can be seen that PCCOVQ
performs better than the entropy coding system on the design source, while
HSQLC performs worse than it. If the variance of the actual source is higher
than expected, the entropy coder system gives a performance far away from the
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Figure 3.28 Rate-distortion performance of the direct source—channel mappings
compared to an entropy coder based system for source variance mismatch. The solid
line shows the OPTA at a CSNR of 20 dB for a unit variance Gaussian source, and
the dotted lines show the OPTA for Gaussian sources of variance (from below) 0.1,
0.3, 3.0 and 10.0. The square shows the performance of the direct source—channel
mapping designed for and applied to a Gaussian unit variance source, and the circles
show the performance of the same mapping applied to sources of the other variances
mentioned above. The asterisk shows the performance of an entropy coding system
designed for a Gaussian unit variance source, and the crosses shows the performance
of the same coder applied to Gaussian sources of the variances stated above. A CSNR
of 20 dB is assumed in all cases.

OPTA, worse than the direct source—channel mappings. With a source variance
below expected, the entropy coder is slightly better. Still, the direct source
channel mappings must be said to be more robust against changing source vari-
ance, which comes in addition to their increased channel robustness. There is
an inherent difference in how the systems react to source variance changes.
With the direct source channel mappings, the rate is constant, while the dis-
tortion varies. If the channel samples are not scaled, the channel power will
vary, while the distortion changes less. With the entropy coder system, on the
other hand, the rate varies, and the distortion changes less. If the underlying
bit rate is high enough, such as for the rate 2 system of Figure 3.28(b), the
distortion is virtually constant. The channel power will always be constant.
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3.6 Discussion

3.6.1 HSQLC Performance

For low CSNR values, the performance of the HSQLC is comparable to other
direct source channel mapping methods, but for good channels, it is clearly
better. The reason is the use of a discrete channel symbol where the number
of levels is allowed to increase. The difference between the OPTA and the
HSQLC performance increases very slowly with the CSNR. This stands in a
clear contrast to the BPAM system, since the SNR as a function of the CSNR
(both measured in dB) for the BPAM asymptotically has a slope of one, while
the OPTA’s asymptotic slope is two.

The performance is better than the HDA-FEAD, which is another hybrid
digital-analog system. At moderate design CSNR values (10 dB), the quan-
tizer part of the HDA-FEAD has too few levels, while at low CSNR values (0
and 5 dB) it seems that the HDA-FEAD spends too much power on the quan-
tization error symbol, as it performs worse than BPAM. It might be a problem
with BPAM (or HSQLC at low CSNR) that every second symbol carries all the
power, but this can be taken care of by an orthonormal linear transformation
which would not alter the performance. It would however change the spectrum
of the channel signal, and if that is a problem, pseudo-random scrambling of
the sign of the output symbols (with correction in the receiver) can be used to
recover a white channel signal.

The robustness of the HSQLC is limited, but no worse than the HDA-
FEAD. Knowledge of the actual channel quality by the decoder is essential if
the encoder is designed for a poor channel. For a high design CSNR, knowledge
of the actual quality gives some improvement when the actual channel quality
is lower, especially if optimal receivers are used. What happens then is that
the quantized symbol is detected using soft decision. Since the channel noise
will be larger than the quantization noise in this case, the performance will
approach direct PAM transmission with the channel power assigned to the
quantized symbol, while the quantization error symbol is not very useful, and
will contribute little to the decoded symbol.

Robustness was not addressed in the optimization process, so the robust-
ness that is obtained is a result of the fundamental nature of the HSQLC.
With a low dimension of the code, the ability to adapt exactly to the channel
quality is limited, and both the use of a naturally ordered quantized symbol
and a linearly coded symbol give a certain robustness. It might be possible
to re-optimize the coder with robustness as an additional feature, for instance
by imposing constraints on the performance at some channel qualities while
minimizing the distortion at another channel quality.
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Optimal receivers give a very limited performance gain except when the
encoder assumes a good channel and the actual channel is poor. This situa-
tion does not give a good performance in any case, so often, the encoder will
be designed for a channel not much better than the worst channel for which
decoding should be possible at all. The optimal receivers require higher com-
plexity than the simplified ones since they are based on non-linear functions
requiring a large number of multiplications to be implemented. Still, they
are memoryless, and if the HSQLC contributes only negligibly to the total
computational complexity of the system, the use of optimal receivers can be
defended. Otherwise, when channel qualities far below the design CSNR need
not be supported, simplified receivers should be used.

The use of uniform quantizers seems to be a good choice. They work pretty
well for both Gaussian, Laplacian and uniform sources, and the optimization
becomes much simpler when they are used. Furthermore, the use of a uni-
form quantizer gives robustness concerning the shape of the source pdf. Since
the number of quantizer levels can be unlimited, distributions with long tails
are handled well even if the design pdf has shorter tails, and also outliers
(a few symbols from another stochastic process) with larger variance can be
supported.

3.6.2 Channel Model

In Section 3.1, the channel model was given without any argumentation. An
AWGN channel is a very common model, but some issues should be addressed.
The time discrete nature of the channel is merely a model for signaling on a
time continuous channel. If the physical channel is to be utilized efficiently,
signaling must take place at the Nyquist rate (Nyquist, 1928; Blahut, 1987).
For a passband system, this means that the discrete system will be derived from
either a single sideband PAM system, or a QAM system where the in-phase
and quadrature components have been interleaved. Assuming additive white
Gaussian noise as the only distortion, these systems are equivalent. Since the
model operates with real-valued symbols, it is denoted a PAM model, but it
can also be derived from a QAM system, at least in theory.

Another issue is the synchronization. This is always a problem in commu-
nication systems, but when the signaling alphabet is limited, clear transitions
between symbols will exist, allowing resynchronization in the receiver. With
continuous amplitude channel symbols, which are often produced by direct
source—channel mappings, finding transitions between symbols can be a diffi-
cult task. The problem can be solved by putting pilot symbols in the stream
to allow resynchronization. If QAM is used, synchronization must also be as-
sured for the carrier in order to determine the phase of the received symbols,
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something which can also be obtained with pilots.

A third issue is fading channels. A slowly fading channel can be turned
into an approximate AWGN channel by equalization, but the resulting AWGN
channel will have varying amplification and CSNR. The amplification must
be known by the receiver when information is transmitted in the amplitude of
the symbols, and again pilot symbols may be the solution. The robustness of
the mappings would be a useful property for a channel of varying CSNR. The
performance is improved if the receiver can estimate the actual CSNR, and
even more if this information can also be sent to the transmitter. Finally, to
perform the equalization, pilot symbols are also needed if continuous amplitude
is used so decision feedback is impossible.

The amount of pilot symbols needed will definitely depend on the channel
and the kind of mapping used. In hybrid digital-analog systems, for instance,
the digital part may be used for synchronization or decision feedback equaliza-
tion, reducing the need for pilot symbols.

3.6.3 Future Work

The HSQLC can provide only one rate, namely R = 2. It is desirable to
develop coders for other rates as well. For rates below one, the PCCOVQ
system gives very good performance, and for a rate of one, an optimal system
exists for memoryless Gaussian sources. For rates in the range (1,2), the
quantized part of several source symbols could be combined into one symbol,
using a PCCOVQ-like method. The codebook vectors would then have a larger
minimum distance than shown in Figure 3.4, since a low symbol error rate is
desirable when used in conjunction with a quantization error symbol.

For rates larger than two, finding good mappings of the HSQLC type would
be more difficult. In order to create coders of integer rates, a natural idea
would be to split the symbols using several levels of quantizers and finishing
with a linear encoder. This would resemble successive refinement (Equitz and
Cover, 1991), but not based on bits, so the number of quantizer levels in
each split can be different from two and the least significant bit is replaced
by a continuous symbol. The problem with such a method is that it creates
some symbols of a very large importance. These need to be protected using
few levels and enough power. Such symbols will reduce the robustness of the
coder, since the remaining symbols contain very little useful information if
the most significant symbol is erroneously decoded. It is possible to include
traditional error protection for the most significant symbols, and this might
improve the performance at the design CSNR, but the robustness would be
further reduced. It would also be possible to use a vector quantizer for the
analog part, as in (Skoglund et al., 2001a), maybe with other modulation than
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BPSK, but such a vector quantizer would probably suffer some of the same
problems as with the use of scalar quantizers of several splits, because it is
unavoidable that two points of short distance in the channel space will have a
large distance in the source space unless large portions of the channel space is
unused (as in BPAM). Still, by allowing the modulation set to be optimized, a
relatively good performance might be possible. The experience with bandwidth
expanding PCCOV(Q suggests that it might be very computationally complex
to perform the optimizations.

Considering sources with memory might be necessary for some applications.
In order to handle that, memory must be introduced in the coder. This can
be done with a vector quantizer as Skoglund et al. (2001a) did, perhaps with
larger modulation sets than BPSK if high CSNR values are to be considered.
Also, the power distribution between the symbols should be optimized, and
maybe the signal set, too.

Considering other channel models, such as fading channels, can be an im-
portant issue for many applications, as can the synchronization problems. Ex-
periments should be carried out to find the amount of pilot symbols needed for
a reliable synchronization. Furthermore, methods for handling fading channels
by estimating the fading state can be investigated.



Chapter 4

Image Coder Using Joint
Source—Channel Coding

As an application of direct source-channel mappings, an image coder is con-
sidered in this chapter. Image compression is a topic that has caught a lot of
attention, and most of the research is performed for error-free channels. This
gives methods that can be used for applications such as storage and transmis-
sion, provided that sufficient error protection is used. As mentioned earlier,
joint source—channel coding can give advantages such as robustness against
unknown channel qualities and lower computational complexity to obtain the
same distortion.

Most recent image coders are subband coders (including the special case of
wavelet based systems), such as the new standard, JPEG 2000, of which part 1,
the basic coder, has been issued as an international standard (ISO/IEC, 2001).
The coder proposed here is a subband coder based on a coder proposed by
Lervik (1996).

The chapter is organized as follows. In Section 4.1, some previous work
on joint source—channel coding of images is presented. Section 4.2 gives a
description of the proposed coder explaining the design of each part of the
coder. In Section 4.3, coding results with the proposed coder are presented
and compared to other coders, and analysis is performed to investigate different
aspects of the coder. Section 4.4 provides a discussion of the results. An earlier
version of the coder was presented in (Coward and Ramstad, 2000c¢).

4.1 Previous Work

One of the first works in joint source—channel coding of images was done by
Modestino and Daut (1979), who traded off the source and channel coder

95



96

Image Coder Using Joint Source-Channel Coding

rates and used unequal error protection for the bits of DPCM coding. This
was later extended to transform coding (Modestino, Daut and Vickers, 1981).
Later works on unequal error protection in image coding have been done by
Fazel and Lhullier (1990) and Tanabe and Farvardin (1992), who considered
variable length source coding, and Chande and Farvardin (2000), who com-
bined unequal error protection with progressive transmission. Ruf and Mod-
estino (1999) used operational rate-distortion techniques to trade off source
and channel coding rates in an unequal error protection scheme and found
information-theoretic performance bounds, and Cai and Chen (2000) also in-
cluded an all-pass filter to improve the performance. Kozintsev and Ram-
chandran (1998) and Zheng and Liu (1999) combined unequal error protection
with multiresolution modulation, where the modulation set is non-uniform,
allowing for different error probability for different bits. The combination of
source coding and multiresolution modulation in these papers gives a direct
source—channel mapping.

Another approach to joint source—channel image coding is the use of robust
quantization, as was done by Vaishampayan and Farvardin (1990), who used bit
allocation and quantizers optimized for a channel with errors. Skoglund (1995)
used a Hadamard based framework with soft decoding. Chen and Fischer
(1998) used robust quantization together with a frequency scrambling to reduce
the perceptual impact of the noise. The coder proposed by Lervik and Ramstad
(1996) has a quantizer that is jointly designed with a modulation set, as the
PCCOVQ system described in Section 3.3.2, but not optimized, and a direct
PAM mapping. This system was improved in (Lervik, 1996), where some
PCCOVQ-like properties where included. The work in this chapter is based
on the framework of that system.

4.2 Coder Structure

The coder is supposed to operate on an AWGN channel as described in Sec-
tion 3.1, with a fixed noise power and a constraint on the average signal power.
The number of channel samples generated for one image is also constrained,
and this number is specified by a rate measured as the number of channel
samples generated per pixel (picture element).

The structure of the proposed coder is shown in Figure 4.1. The image is
first filtered by an analysis filter bank. The subbands are then divided into
blocks of subband samples. On these samples, classification is performed, as-
signing each block to one of J+1 classes. Samples in class 0 are not transmitted,
while the other classes are transmitted using one of J direct source—channel
mappings. The classification table is necessary to perform decoding of the
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Figure 4.2 M-channel uniform maximally decimated filter bank. Analysis filter
bank to the left, synthesis filter bank to the right.

image, and it must be received free of error. Thus, it is compressed and error
protected using traditional techniques before it is transmitted.

The decoder receives the classification table and uses that to select the
appropriate decoding mapping for each block. The blocks are then placed
correctly into a reconstructed subband image, where zero values have been
inserted for the blocks of class 0. Then, the synthesis filter bank is applied to
generate an approximation of the transmitted image.

Below, the different blocks of the coder are explained in more detail.

4.2.1 Filter Bank

Figure 4.2 shows an analysis and a synthesis filter bank (Vaidyanathan, 1993).
The analysis filter bank is used for decorrelation of the signal, by taking out
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different frequency components and placing them in subbands. The analysis
filter Hy(z) is typically a lowpass filter, Har—1(2) is typically a highpass fil-
ter, and the other filters are bandpass filters with different passbands. The
synthesis filter bank is used for reconstruction of the signal, and the synthe-
sis filters Fy(z), ... , Far—1(z) normally have approximately the same passband
frequency ranges as their analysis counterparts. If the output of the synthe-
sis filter bank is equal to a delayed version of the input of the analysis filter
bank when the outputs of the analysis filter bank are transferred undistorted
to the synthesis filter bank, the filter bank has the perfect reconstruction (PR)
property.

In the filter bank in Figure 4.2, all the decimators use the same decimation
factor. Such a filter bank is called a uniform filter bank. Furthermore, the
decimation factor is equal to the number of subbands, which means that the
total number of symbols per time unit at the output of the analysis filter
bank is the same as the number of symbols per time unit at the input. This
decimation factor is the highest for which PR can be obtained, and thus, the
filter bank is said to be mazimally decimated.

An image is a two-dimensional signal, and decorrelation is needed in both
dimensions. This calls for a two-dimensional filter bank. The most common
way to implement this is by applying a one-dimensional filter bank to each
dimension. The resulting two-dimensional filter bank is then called separable.

Lervik (1996) used the filter bank denoted “32I” proposed by Aase (1993).
This is a separable uniform filter bank with eight bands in each direction and
32 filter taps in all the filters. The filter bank has the property of almost perfect
reconstruction.

A disadvantage of a uniform filter bank is that there is still much correlation
left in the lowpass-lowpass band, i.e., the band that has been lowpass filtered
in both dimensions. One way of handling this is to apply another filter bank
to the lowpass-lowpass band, as in the system described below.

In this work, the filter bank denoted “System K” proposed by Balasingham
(1998) is used. This system consists of an eight-band uniform filter bank and
three different two-band filter banks that are applied only to the lowpass band
of the previous stage. This results in an overall non-uniform filter bank with a
resulting lowpass-lowpass band that is decimated 64 times in each dimension.
This kind of splitting is called dyadic splitting, and the total filter bank is called
a tree-structured filter bank. The uniform filter bank used in the first stage has
32 taps and almost perfect reconstruction, just as “32I”, and is designed using
the same algorithm, but with different optimization parameters specifying a
performance closer to PR, giving other filter taps. The two-channel filter banks
are different, but they all have perfect reconstruction and have nine filter taps
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Figure 4.3 Organization of the subbands

in the analysis lowpass and the synthesis highpass filter and seven filter taps in
the other two filters. For small images, the number of dyadic splits is reduced
in order to avoid creating too small bands. In the coding examples, the image
size is 512 x 512 pixels, which is enough for three splits to be performed.

After filtering with a non-uniform filter bank, several subbands with differ-
ent decimation factors are obtained. In order to keep a rectangular structure,
as for the original image, the subbands are organized as shown in Figure 4.3,
where the low frequency subbands are placed towards the left and the top. The
lowest frequency subbands are decimated several times and are thus smaller.
The figure also gives a good illustration of the structure of the filtering, where
the low frequencies are filtered the most.

Natural images do not contain discrete frequency components at other fre-
quencies than zero, so the only subband that will have an expected value
different from zero is the lowpass-lowpass band. The mean of that band, how-
ever, can give a large contribution to the power of the filtered image. Thus,
the mean of the lowpass-lowpass band is subtracted before further coding and
is transmitted separately.

In order to analyze the performance of the coding of the subband samples,
the connection between noise before and after the synthesis filter bank must
be known. If the distortion of the subband signals can be modeled as additive
stationary white noise, the distortion on the output of the synthesis filter bank
is additive noise of the same variance, provided that the impulse response
energy of all the synthesis filters is one (Vaidyanathan, 1993). If the passbands
are relatively flat, the noise will be approximately white. Note that for multi-
stage filter banks, it is the overall impulse response through all the filters that
must have unit energy. This property is satisfied for the filter bank used here.



100

Image Coder Using Joint Source-Channel Coding

4.2.2 Rate and Power Allocation

In (Lervik, 1996; Lervik and Fischer, 1997), an algorithm for allocating rate
and power is presented. Here, an improvement of the algorithm is proposed.

The coder operates under rate and power constraints. From the classifica-
tion point of view, the source can be said to consist of a number of subsources,
each having a different source variance. Here, the subsources are blocks of
8 x 8 subband samples (which are normally smaller than the subbands). Each
subsource is assigned to one out of J + 1 classes, and to each class, there is a
corresponding rate and distortion.

4.2.2.1 Introduction to Rate Allocation

Rate allocation is performed to ensure that the subsources are encoded in a
manner that gives the lowest overall distortion while maintaining the overall
rate constraint. In practice, that means allocating more rate to the subsources
having the largest variances. Rate allocation is closely related to bit allocation,
which is a common operation in binary output subband and transform coders
(Gersho and Gray, 1992). The rate is here measured in channel samples per
pixel, and the distortion is partly due to the channel noise, but otherwise the
situation is the same.

The problem of rate allocation can be viewed as an operational rate-
distortion problem (Ortega and Ramchandran, 1998). This means that points
of distortion as a function of rate that are obtainable with the considered coder
framework will be given. These points can be plotted in a diagram, and only
the points lying on the lower convex hull of the set of points are used as can-
didates, because otherwise, a point of the same rate giving a lower distortion
can be found by a linear combination of two points on the convex hull. For the
case of only one subsource, this is illustrated in Figure 4.4. This graph shows
the actual rate-distortion points that are obtained with the mappings used in
this coder, which will be described in Section 4.2.3, for a CSNR of 20 dB. In
this case, all the points lie on the convex hull. If a mapping is introduced that
has an operational point above the dashed line, this mapping should never be
used.

In practice, the number of subsources is large. As long as the overall rate
constraint is fulfilled, any combination of assignments of subsources to one of
the classes can be considered, giving an enormous number of possible rate-
distortion points, most of which are not on the convex hull. An algorithm for
performing rate allocation while remaining on the convex hull was proposed
by Westerink, Biemond and Boekee (1988). An adaptation of this algorithm
to the present problem is given in Section 4.2.2.5.
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Figure 4.4 Operational rate-distortion performance for one unit variance subsource.
The stars show the operational points, and the dashed line shows the convex hull.

4.2.2.2 Introduction to Power Allocation

To the different classes, there is a corresponding rate, which is given by the
nature of the mapping used for this class. There is a limitation on the total
power of the encoded image signal, but there is no demand that all the classes
have the same channel power. Thus, power can be allocated between the classes
in a manner so that the total distortion is minimized.

If mappings with every possible rate and power are available and the map-
pings perform according to the OPTA of a Gaussian source, it has been shown
by Lervik (1996) that the channel power of each class should be the same when
the distortion is minimized. However, this result does not apply to the pro-
posed system, since the number of possible rates is limited and not all of the
mappings perform according to the OPTA. Still, if the mappings provide a set
of rates which are not too far from the optimal rates obtained assuming any
rate is available, and if their performance is good, the optimal channel power
values of each class should not be too different.

4.2.2.3 Finding the Distortions

The rate is fixed for each class, but the distortion is a function of the distri-
bution of source samples assigned to the class and the channel power that the
class has been allocated. Finding this fidelity function can be a highly complex
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task for an arbitrary source pdf. If the assignment of subsources to classes is
assumed to be free, clearly the distribution of source samples will vary. How-
ever, a simplification of the problem can be obtained by assuming that the
distortion is independent of the shape of the source sample distribution, and
depends only on the variance of these samples. As explained in Section 4.2.1,
the expected value is zero.

Under the assumption that the distortion is independent of the source pdf
shape, the distortion of each class, which is taken as the mean square error
between the source samples and the decoded values for class j, can be written
as bj (EJQ-,P]-). Here, ¢,2 is the variance of the entire set of source symbols
mapped to class j, and P; is the channel power for class j. In order to have
mappings working for different source variances, all source samples in class j
will be divided by &; before the mapping is applied, and multiplied by the
same value in the decoder. This means that the mapping will always see a
source of unit variance, and the distortion is

Dj(a}, Pj) = a3 D;(P;), (4.1)
where DJ(IJJ) = D](I,P])

Assume that there are N subsources identified by a unique index i €
{0,... ,N —1}. Define v; as the class to which subsource 7 has been assigned
and Z; as the set of subsources that have been assigned to class j. This means
that

T, = {i | v = j). (4.2)
If the subsources have samples of variances 01-2, i €{0,... ,N — 1}, then
52 = 1 Z o2 (4.3)
oLl et '
’LEIj

where |Z;| denotes the cardinality of Z;.

The overall distortion (disregarding any distortion due to a non-PR filter
bank) of the system given a classification {v;}icfo,...,n—1} and a power assign-
ment {P;}jeqo,...,7} is then

J
1 _
Dyot = > |Zilo7 D, (). (4.4)
j=0

If the rate of class j measured in channel samples per source sample is R;,
the total permitted rate measured in channel samples per pixel is Rio, and
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the average channel power constraint is Py, then the optimization problem
can be formulated as follows: Select the classification {Z; };cfo,...,y—1} and the
power assignment {P;};cqo,..,7} that minimize Dy under the constraints

J
1
N Z Zj|Rj < Rioy (4.5)
3=0
and
1
NRt ¢ Z ‘I |R P < thot (46)

Finding a solution of this problem is a highly complex task. However, there
exist methods for solving the problem of rate allocation for a fixed power assign-
ment, and for solving the problem of power allocation for a fixed classification.
These problems will be discussed below.

4.2.2.4 Power Allocation for a Fixed Classification

For a fixed classification, all the v; and Z; are given, so the problem is reduced
to minimizing (4.4) with respect to Pj, j € {0,...,J} under the constraint
given by (4.6). Using the Lagrange multiplier method, this problem can be
stated as minimizing the unconstrained problem

J

- 1 -

L=5 |Tlo7D;(P, +)\—Z|I R, P;, (4.7)
—~

where X is a Lagrange multiplier. Simplifying the problem by multiplying by
N and setting A = RyotA, the Lagrangian

J J
Y T1a3D;(P) + A Y |Z;|R; P (4.8)

L

is obtained. The minimum value is found by differentiating the Lagrangian

with respect to P; > 0, j € {0,... ,J}, and setting the derivatives to zero:
oL _
P, = \Z;15% Dy' (P;) + MZ;|R; = 0 (4.9)
|}

(4.10)



104

Image Coder Using Joint Source-Channel Coding

Here, D;' is the derivative of D;. From the formulation of the Lagrangian, it
is clear that X has to be positive, since otherwise, all the class channel powers
will go towards infinity.

The function D; is only defined on [0,00). For any reasonable choice of
mapping, the function will be non-increasing, so the derivative is non-positive.
If the distortion function of a mapping is proportional to the OPTA of the
source and rate considered (or of any other source and rate), it will also be
convex, so the derivative is increasing, and there is at most one solution. Also,
the distortion will approach zero as the power approaches infinity, and a con-
stant greater than or equal to one as the power approaches zero. This means
that the derivative also approaches zero as the power approaches infinity.

The non-negativity constraint on the class channel powers can be handled
by Kuhn—Tucker conditions (Walsh, 1975). However, the problem is simple, so
for each j € {0,...,J}, if (4.10) has a solution for P; € [0, 00), that solution is

chosen, and if —D;'(P;) < )\% for all P; € [0,00), the optimal value is P; = 0.
J

A problem that has not been discussed so far is that of finding D;'(P;)
and its inverse. For most practical mappings, the distortion has to be found
experimentally. The method that is used is to produce a table of distortions as
a function of the class channel power. Between the points, interpolation can
be used, giving a quadratic spline estimate of the distortion. The estimated
derivative then consists of straight line segments, and the inverse of the deriva-
tive can be found by a search. There is no guarantee that the convexity or
even the non-increasing property of the distortion function is retained when
the distortion of a practical mapping is used. This means that all possible so-
lutions must be tried, so the one giving the smallest Lagrangian can be chosen.
Due to the simplicity of the problem, this can be done separately for each class
j€{0,...,J}.

Another problem is finding the Lagrange multiplier. Solving directly for it
dramatically increases the complexity of the problem, since it creates an equa-
tion that depends on all the unknowns. However, it can be found iteratively,
as will be explained in Section 4.2.2.6.

4.2.2.5 Rate Allocation for a Fixed Power Assignment

The rate allocation part of the algorithm from (Lervik, 1996; Lervik and Fis-
cher, 1997) is based on a bit allocation algorithm proposed by Westerink et al.
(1988). The problem considered there is the problem of bit allocation for N
subsources that are to be quantized, where the distortion to be minimized is
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given by

N-1
Dioy = Y Di(#;) (4.11)

and the rate constraint is given by

N-1
Rtot == E RZ(’IAJZ), (412)

=0

where 9; is the quantizer that is used for subsource 1, ﬁz(ﬁz) is the distortion of
quantizing subsource i using quantizer #;, and R;(#;) is the bit rate obtained
for subsource ¢ with o;.

In this work, the quantizers are replaced with mappings, each having a
distortion that depends on the signal and noise power. Furthermore, if power
allocation has been performed so that the channel power of the mappings
are different, the power consumption must be taken into account, so that the
Lagrangian given by Equation (4.8) is the objective function to be minimized.
The Lagrangian can be written as

J
L= EII\UQD Pj) + X\ _|L;|R,P;

§=0
J J
Z 1Zil 7 |I (2 oiDi(P) +AY Y RiP (4.13)
1€Z; Jj=01i€Z;
N-1
= (U?Dvi(Pvi)_‘_/\R’Uini)'
1=0

If the signal (and noise) power is fixed, this is principally the same situation
as the bit allocation problem. The rate in this work is the number of channel
symbols per source symbol, as opposed to the bit rate. If (4.13) is compared
0 (4.11) and (4.5) to (4.12), it is seen that if ©; = v;, Ds(9;) = 02Dy, (Py;) +
AR, P,., and R;(#;) = R,,, then £ = Dy and NRyo; = Ryor, making the
problems equivalent when X and P; are fixed for all j € {0,...,J M. If power
allocation has not been performed and the class source power is the same for
all the classes, this corresponds to setting A = 0.

The algorithm is proven to be optimal in (Westerink et al., 1988), so for
a fixed power allocation, if the correct Lagrangian multiplier does not change

!The inequality sign in Equation (4.5) does not change the principle.
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from the classification, and under the assumption that changing the shape of
the source pdf in each class does not change the distortion of the class, an
optimal rate allocation algorithm exists.

4.2.2.6 A Rate and Power Allocation Algorithm

It will now be assumed that the classes are sorted so that Ry > R; for k > j
and that symbols in class 0 are not transmitted, so Ry = 0 and Dy(FP) =1
for all Py. This means that Py can be chosen arbitrarily, and that the term
corresponding to j = 0 in (4.8) is constant.

Combining the rate and power allocation methods proposed in the two
previous sections, the following algorithm can be obtained.

1. Initialize P; = Py for j € {1,...,J}, v, = 0 for i € {0,... ,N — 1},
Rsym =0, and A = 0.

2. Find the subsource i and the class j > v; that maximizes the fraction?

Rj — R,

considering only ¢ and j that satisfy Rsum + Rj — Ry; < N Ryos.
3. Increase Rgym by Rj — R,,; and set v; to j.

4. If NRyot — Rsum > min (R; — Ry,;), go to 2.
4 >v;

5. If A=10, set A to Ap.

6. Find the power distribution {P;};c(y,...,7; that minimizes the Lagrangian
J
L= (7;53D;(P;) + NT;|R; P;) .
Jj=1
7. Calculate the consumed power,

J
1
Pys = E I;|R; P;.
obs NRtot j:1‘ J| 7+

8. If Pyps differs more from P, than a predefined value, guess a new A, and
go to 6.

2This fraction is obtained by modifying a similar fraction from the algorithm in (Westerink
et al., 1988) as described in Section 4.2.2.5.
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9. Calculate the average distortion
1 J
Dyot, = N Z \Z;10% D;(Py)
=0

10. If the relative change of Dy, is larger than a predefined value, go to 2.
Otherwise quit.

The guess of A in step 8 is done by linear interpolation if values of Py both
above and below P have been observed during the the iterations, otherwise
A is multiplied by a constant (larger than one if Pyps > Py, and smaller than
one if Pyps < P;ot)- Note that in step 2, only the subsource of largest variance
for each class needs to be considered,.

In this algorithm, steps 1-4 correspond to the bit allocation algorithm
from (Westerink et al., 1988), with a modified distortion function. There
are two major differences between the proposed algorithm and the algorithm
from (Lervik, 1996; Lervik and Fischer, 1997). Firstly, that algorithm per-
formed power allocation in a similar manner as the rate allocation, using only
a finite set of power values, instead of using a Lagrange multiplier method, and
secondly, it only performed one rate allocation followed by a power allocation,
and no iteration between these, as in the proposed algorithm. This means
that it was not necessary to take the power into account in the rate allocation
algorithm, as is done here by using the Lagrangian as the distortion function.

The optimality of the rate allocation algorithm given a fixed power alloca-
tion is shown from (Westerink et al., 1988) in Section 4.2.2.5, and the power
allocation algorithm is optimal for a fixed rate allocation since every critical
point of the derivative of the Lagrangian is considered. In both cases, the
optimality is of course conditioned on the correctness of the estimated distor-
tion functions. However, the optimality of each part of the algorithm does not
guarantee that the total algorithm is optimal. The alternation between the
rate and power allocation might bring the distortion into a local minimum as
a function of all the parameters, even though the two parts give global optima
with respect to subsets of the parameters. The starting condition of equal
power for all classes is well justified from the fact that this is optimal for a
related problem, so hopefully, the algorithm gives the global optimum in most
cases.

4.2.3 Direct Source-Channel Mappings

The source symbols belonging to one class are transmitted using the same map-
ping. In the classification, it is assumed that the performance of a mapping
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is independent of the shape of the source symbol distribution. However, very
few actual mappings have that property. Thus, in order to analyze the perfor-
mance of the mappings, a source distribution must be assumed. The samples
within one subsource are well modeled as Gaussian, but when the number of
classes is low, meaning that many subsources of different variance are assigned
to the same class, a Laplacian distribution is a better model, cf. (Joshi and
Fischer, 1995; Lervik, 1996). Thus, a Laplacian source distribution is assumed
in the design and performance evaluation of the mappings.

In this work J = 5 mappings are used to produce channel symbols. The
mappings have rates i, %, %, 1, and 2. For the mappings with rate be-
low 1, power-constrained channel-optimized vector quantization (PCCOVQ)
coders (Fuldseth, 1997) are used. The mapping with rate 1 is a direct PAM
mapping, while the mapping with rate 2 is a HSQLC mapping (cf. Chapter 3).

4.2.3.1 PCCOVQ Mappings

Power-constrained channel-optimized vector quantization (Fuldseth, 1997) is
briefly described in Section 3.3.2. The mappings have source dimension L,
channel dimension K, and codebook size M. They are characterized by the
reconstruction codebook, the minimum distance of the channel symbols Ap,
and a Lagrangian multiplier Ap handling the power constraint.

Figure 4.5 shows the codebook for a Laplacian memoryless source. Com-
pared to Figure 3.4(b) which shows the codebook for a Gaussian source, notice
the changed shape, due to the shape of a two-dimensional Laplacian pdf.

The PCCOVQ mappings used in this work are all designed for a memoryless
Laplacian source. Three sets of parameters are employed: L = 4, K = 1,
M = 256, giving a rate of ;, L = 2, K = 1, M = 256, giving a rate of 3,
and L =3, K =2, M = 1024, giving a rate of % In all cases, the mappings
are optimized for different channel CSNR values with approximately 1 dB
spacing. Although the codebook is larger for the third parameter set, this
mapping reaches saturation for a lower channel quality than the other two.
The reason is the channel dimension of 2 in this case, giving only /1024 = 64
channel symbols in each dimension. A codebook size of M = 2562 = 65536
would give too high complexity in the optimization process, and possibly also
in the encoding process of the signal. Of these three mappings, the one of rate
% is the only one reported in (Fuldseth, 1997). The other two were designed
using the same methodology.

The performance of the three mappings is shown in Figure 4.6. It can be
seen that the performance compared to the OPTA is fairly good, especially for
the mappings of rates % and i. Note that the two mappings with 256 channel
symbols per channel dimension reach saturation at CSNR around 45-50 dB
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Figure 4.5 The reconstruction codebook of a PCCOVQ system with L =2, K =1,
and M = 256, designed for a memoryless unit variance Laplacian source for transmis-
sion on an AWGN channel with a CSNR of 23.1 dB. The circles show the positions
of the reconstruction codewords in the 2-dimensional source space, and the lines are
drawn between source symbols which correspond to neighboring channel symbols.

whereas the mapping with 64 channel symbols per channel dimension reaches
saturation around 30 dB.

As mentioned in Section 4.2.2.4, CSNR values between the points for which
optimization has been performed can be chosen by the power allocation algo-
rithm. For such points, the reconstruction codebook for the nearest point is
chosen, while the parameters Ap and Ap are interpolated linearly (using linear
CSNR values) between the two neighboring points of the desired CSNR value.
Of course, this does not assure the exact performance as estimated with the
quadratic spline interpolation of the distortion, but due to the relatively small
spacing between the points, the approximation is quite good. The reason why
the codebook is not interpolated is that at some points, an abrupt change from
one codebook shape to another occurs. At these points, an interpolation of
the codebook vectors might lead to a constellation of poor performance.

4.2.3.2 Direct PAM Mapping

For a memoryless Gaussian source and a rate of one, an optimal mapping is
found simply by using multiplication by a constant as the encoder and decoder,
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Figure 4.6 SNR performance of the three PCCOV(Q mappings optimized for differ-
ent CSNR values for a Laplacian memoryless source (solid), compared to the OPTA
for the same source (dashed)

cf. Section 3.2.1. This system is denoted a direct PAM system. If the source
has unit variance, the desired channel power is Ppay, and the noise power is
0]2\,, the encoder should multiply by +/Ppam, and the decoder should multiply
by v/Peam/(Ppam + 0%), cf. Equations (3.13) and (3.14).

For source probability distributions other than Gaussian, this mapping
is no longer optimal, but the performance is the same as for the Gaussian
case, which is still very good for many distributions. The performance for a
memoryless Laplacian source is shown in Figure 4.7.
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Figure 4.7 SNR performance of the direct PAM mapping for different CSNR, values
for a Laplacian memoryless source (solid), compared to the OPTA for the same source
(dashed)

4.2.3.3 HSQLC Mapping

The hybrid scalar quantizer-linear coder (HSQLC) system is described in
Chapter 3. It was shown that the use of uniform quantizers gives very little
deterioration compared to optimized quantizers, and therefore, uniform quan-
tizers will be used here. They have the advantage that they have an unlimited
number of quantization intervals, which gives a better handling of probability
distributions that have longer tails than the distribution for which they are
optimized, cf. the performance of a quantizer optimized for a Gaussian source
applied to a Laplacian source in Figure 3.20(a).

The coder is given by five parameters that vary as a function of channel
quality: the four distances &, 6., d4, and ., and the quantization error am-
plification Kj. The performance of the coder on a uniform Laplacian source is
shown in Figure 4.8.

As for the PCCOVQ mappings, the coder performance and parameters are
tabulated for the rate and power allocation. Due to the simple optimization,
the distance between the CSNR points is only 0.1 dB, and for values between
the points, linear interpolation of all the parameters is used.

4.2.3.4 Normalization of the Channel Power

All the mappings are designed to give an output signal of the pre-defined
desired channel power when the input is zero mean, unit variance Laplacian.
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CSNR [dB]

Figure 4.8 SNR performance of the HSQLC mapping optimized for different CSNR,
values for a Laplacian memoryless source (solid), compared to the OPTA for the same
source (dashed)

The zero mean is assured by the filter bank and the subtraction of the mean
of the lowpass-lowpass band, and the unit variance is obtained by dividing the
source samples in each class by the observed root mean square (RMS) value.
However, the probability distribution is not always exactly Laplacian. This,
combined with statistical uncertainty due to a limited number of samples,
means that the actual mean square output value can be different from the
desired output power. To make sure that the power constraint of the output
signal is satisfied and that no class consumes more power than it has been
assigned at the expense of the other classes, the output values of each mapping
is divided by the ratio between the RMS value of the output values of that class
and the square root of the desired class power. At the receiver, the samples
are multiplied by this fraction to get back the original value. For the direct
PAM mapping, the fraction will always be exactly one.

4.2.4 Coding of the Side Information

The largest amount of side information from the coder is the classification
table. This table has to be transmitted error free, since it is used to determine
how the the received symbols are interpreted by the decoder. This means
that it has to be error protected using traditional error correcting coding.
The table is highly correlated and non-uniformly distributed, and can thus be
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compressed. Since error protection is used and any uncorrected error is fatal
anyway, traditional entropy coding can be used for compression.

In addition to the classification table, the following information needs to
be transmitted error free:

e The size of the image

e The mean of the lowpass-lowpass band

The standard deviation of the source symbols in the classes 1-5

The Lagrange multiplier A of the power allocation

The ratio between the output RMS value and the square root of the
desired class power for each class

The class channel power values obtained by the power allocation can be re-
calculated in the receiver from the Lagrange multiplier in combination with
the classification table and the class source standard deviations.

The size of the image is transmitted as two unsigned 16 bit values. The
mean of the lowpass-lowpass band, the class source standard deviations, and A
are all transmitted as 32 bit IEEE 754 standard floating point numbers (IEEE,
1985). The ratio between the output RMS value and the square root of the
desired class power is a number close to one, and is encoded with a 12 bit
uniform quantizer in the interval (0,2). The value for the direct PAM mapping
is always one, so this is not transmitted. This gives a total of 320 bits. The
additional side information is not compressed. The accuracy of the 32 bit
floating point numbers is higher than actually needed, so the amount of data
could be reduced.

4.2.4.1 Compression of the Classification Table

The classification table is correlated because neighboring blocks in one subband
tend to have about the same source variance due to the image correlation, and
because blocks on similar location within a subband tend to have correlated
source variance values as details produce high variances in all subbands. In
addition, low frequency subbands tend to have higher class source variance
than high frequency subbands.

The compression of the classification table is carried out through first order
adaptive arithmetic coding (Nelson and Gailly, 1996). In order to exploit the
correlation, the classification table is scanned as shown in Figure 4.9. First, the
blocks from the lowpass-lowpass band of the parallel filter bank (which have
been filtered again with a tree-structured filter bank) are scanned, then the
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1 8 | 9 116 |23 :130:143:250| 24 :129:144:249 | 31 :122:151:242

2 7 |10 115 |40 :113:160:233 | 39 :114:159:234| 32 i121 :152 :241

3 6 |11 i14 |53 :100/1731220|54 i 99 174 219| 61 | 92 |181 212

4 15 |12 13 |70 83 190203 |69 | 84 189 204|62 | 91 182 211

17 1136137 1256 | 22 11311421251 | 25 1128 :145:248 | 30 123 i150 243
46 1107 1166 1227 | 41 '112:161:232 |38 115158 235 | 33 1120 1153 1240
47 1106 116726 | 52 1101172221 |55 | 98 (175:218| 60 : 93 1180 213

76 77 :196:197| 71 : 82 :191:202| 68 : 85 :188:205| 63 : 90 183 :210

18 1135138 1255 | 21 1132141252 | 26 1127 146 247 | 29 1124 149 244
45 1108165228 | 42 (111 162 231 |37 (116157 236 | 34 119 154 1239
48 1105168225 | 51 1102 171 222( 56 | 97 176217 | 59 | 94 1179 214

75 {78 1105108 | 72 |81 {192 201 |67 | 86 {187 206 | 64 | 89 (184 209

19 :134:139 :254 | 20 :133:140:253 | 27 :126:147 :246 | 28 1125 :148 :245
44 109 :164 :229 | 43 :110:163:230| 36 :117:156:237| 35 :118:155:238
49 :104:169:224 | 50 :103:170:223| 57 : 96 :177:216 | 58 : 95 :178:215

74 079 :1194:199| 73 180 :193:200| 66 : 87 :186:207| 65 : 88 1185 :208

Figure 4.9 Scanning order for the classification table, demonstrated on 4 x4 parallel
subbands with two dyadic splits and a total of 16 x 16 blocks. The numbers indicate
the order in which the block class numbers are organized. The solid lines denote
subband limits, and the dotted lines denote block limits. The subband image is
organized with lower frequencies to the left and to the top.

other bands are scanned so that blocks with the same position in neighboring
bands are placed after each other. The figure shows the situation for a smaller
filter bank than in this work in order to demonstrate the principle.

4.2.4.2 Error Protection of the Side Information

For protection of the side information, traditional error correcting coding is
used, since no error is allowed in this part of the signal. Because the amount
of side information is quite small and it must be possible to transmit one image
individually, the block length of the error correcting code must be small. In
addition to the error correcting code, a signaling constellation must be selected
since the channel has continuous amplitude.

Reed—Solomon coding (Blahut, 1983) is a frequently used block code. It
operates on a coding alphabet p”, where p is a prime and v is a positive integer.
The codeword length is n = p¥ — 1, and the number of data symbols per code
word is k. The code can then correct up to ¢t = (n — k)/2 symbol errors in a
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block. Usually, p = 2, and the codeword length is then vn bits.

Here, binary symbols are used to encode the side information, so a Reed—
Solomon code of p = 2 is used. The signaling represents s bits per channel
symbol, so the signaling is 2°-PAM. The bit error probability py can be found
from the CSNR and s (Proakis, 2001), and from n and k, the block error rate
of the Reed—Solomon code can be found as in Equation (2.37), except that
pp 1s replaced with the symbol error probability 1 — (1 — p)®. For a given
block size n and a maximum error probability, the combination of s and k that
maximizes the number of data bits per channel symbol, (ks)/(vn), is used.

In this work, CSNR values down to 10 dB are considered. The signaling is
2-PAM, the code symbols consist of 5 bits, and the codewords have 31 symbols
with 25 data symbols and 6 parity symbols. This gives a block error rate of
6.74-107% at 10 dB.

4.2.4.3 Finding the Size of the Side Information

The size of the side information of an image is not known until the classification
and entropy coding have been performed. If a certain number of channel
samples is permitted for an image, this means that the number of channel
samples available for transmitting the subband image samples is not known
when the classification is performed. Thus, an iterative method is used to find
the side information size.

Since block coding is used to protect the side information from channel er-
rors, the side information size is quantized, which makes it easier to find. First,
an initial guess is made for the side information size, based on the coding rate
and the image size. Then, the corresponding number of channel samples for
transmitting the subband samples is calculated, and classification is performed
based on that number of channel samples. If entropy and channel coding of
the side information gives the same size as the estimate, the classification is
finished, otherwise, the side information size is assumed not to change, and
classification is performed again. This is normally done until the estimate
of the side information size is equal to the actual size. Because the size of
the coded side information changes little as the rate of the remaining channel
signal is changed, convergence is normally reached quickly, within 3-4 itera-
tions. Sometimes, however, the estimate will never be correct. In that case,
the smallest of the side information estimates considered in the iterations that
have given a total number of channel symbols below the desired number is
chosen.

If the coding rate of the image does not have to be specified exactly, a
coding rate that does not include the side information can be given. This will
speed up the encoding, since classification is performed only once.
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4.2.5 A Summary of Changes

As mentioned, the framework of the proposed coder is the same as for the coder
from (Lervik, 1996). Most of the coding blocks have been changed, though.
In order to provide an overview of the differences, the significant changes are
listed below:

e The filter bank has been changed.

The power allocation is performed using a Lagrange multiplier method.

Iteration between rate and power allocation has been introduced.

The power and bandwidth allocation is adjusted to an expected channel
quality, while in (Lervik, 1996), the channel assumption was fixed.

All the mappings have been changed, except the direct PAM mapping.
Particularly:

— Lervik had a mapping combining two symbols of different signifi-
cance, which were given nominal rates of % and i.?’ This has been
replaced with a mapping of rate %, which takes three symbols of the
same significance.

— A mapping of rate 2 has been introduced.

— The mappings are designed according to the assumed channel qual-
ity.

e The coding of the side information has been changed, introducing arith-
metic coding of the classification table. This calls for finding the side
information size iteratively.

4.3 Coding Results

The proposed coder is evaluated by encoding some images at different rates
and assumed channel qualities, adding white Gaussian noise to the signal,
and decoding. The results are mainly evaluated using a mean square error
distortion measure, given as the peak signal-to-noise ratio (PSNR) measured

A problem with this mapping was that the symbol of nominal rate 1 got a significantly
higher distortion than the symbols of rate % encoded with another mapping.
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in dB, which is defined as

(xmax - iUrnin)2
~18y—1 ’

z(k,1) — z(k,1
ssyZ§ )*

k=0

where S, and Sy are the horizontal and vertical image sizes, x(k,!) is the pixel
value at position (k,1), #(k,l) is the decoded pixel value, and Zmax and Zmin
are the maximum and minimum possible pixel values of the original image, so
for an image represented with one 8 bit integer per pixel, Zmax — Tmin = 255.

It is well known that distortion measures based on square error give limited
insight in the perceptive distortion of an image. Still, they are frequently used
due to their simple calculation and the lack of good alternatives. Also, when
comparing images which have the same type of errors, square error measures
correspond quite well to the perceptive quality. In order to show what kind of
artifacts the coder introduces, a few image examples will be given.

The images that are used to evaluate the coder performance are shown in
Appendix C. All the pictures have size 512 x 512 and are represented with 8
bit grayscale values.

4.3.1 Performance of the Proposed Coder

Figure 4.10 shows the result when coding these images with the proposed coder
for different rates and channel qualities. The coder has been optimized for the
actual channel quality in each case. The PSNR values are calculated simu-
lating five transmissions of each image? and averaging the MSE; this applies
to all reported results for the proposed coder. As expected, the performance
increases with the CSNR and the rate. The PSNR values are quite different for
the four images at the same rate and CSNR. This has to do with the level of
detail, and a detailed image naturally needs more resources to be transmitted
satisfactorily. However, the subjective difference is not as large as the PSNR
values could indicate, because in general, less detailed images do not need as
high PSNR values as less detailed ones to get the same subjective quality.
Figure 4.11 shows the percentage of the channel signal that must be spent
on side information. This percentage naturally decreases as the rate goes up,
however, the absolute size of the side information increases with the rate. The

“A number as low as five is chosen because the size of the images (512 x 512 pixels)
means that a lot of channel symbols are generated for one image, and the variation in
decoded quality from image to image is therefore relatively small.
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Figure 4.10 Coding results for the for test images as a function of CSNR for a
coder optimized for the actual channel quality. The rates are (from below) 0.03, 0.05,
0.083, 0.1, 0.125, 0.166, 0.25 and 0.5 channel symbols per pixel.

side information percentage takes only a finite number of values due to the
block coding of the side information.

The probability of side information error in an image depends on the num-
ber of coding blocks used. For the images, rate, and channels considered in
Figure 4.10, the number of Reed—Solomon blocks needed to transmit the side
information varies from 10 to 55, with higher numbers for higher coding rates.
With 55 blocks at 10 dB, the image error probability is 3.71 - 104, which cor-
responds to one error in 2698 transmitted images. Larger images can of course
get higher error probabilities. For channels below 10 dB, the error protection



4.3 Coding Results 119

w
=]
w
o

N
al
T

|

n
=]

n
o

Relative amount of side information [%)]
= =
o (4]

Relative amount of side information [%)]
=
ol

|

2

o
o

15 20 25 30 35 10 15 20 25 30 35

10
CSNR [dB] CSNR [dB]
(a) “Lena” (b) “Barbara”

w
[=]
w
o

1

N
al

1

Relative amount of side information [%]
&
T H T
; ; ;
Relative amount of side information [%)]
= N
o o
}

i
S)
=
[S)

J
J

o
o

15 20 25 30 35 10 15 20 25 30 35

10
CSNR [dB] CSNR [dB]
(c) “Goldhill” (d) “Bridge”

Figure 4.11 Percentage of side information in the encoded image streams as a
function of CSNR for different images and rates. The rates are (from above) 0.03,
0.05, 0.083, 0.1, 0.125, 0.166, 0.25 and 0.5 channel symbols per pixel.

is not sufficient, and if such channels can occur, the protection must be im-
proved. Above 10 dB, the image error probability is quickly reduced, at 13 dB,
the block error rate is 4.89 - 10712, If the channel quality is never allowed to
go down to 10 dB, the error protection could be weakened.

4.3.2 Robustness

An important motivation for using joint source—channel coding is robustness
against changing channel qualities. The results in Figure 4.10 assume that
the coder knows the actual channel quality. This is not always the case. Fig-
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Figure 4.12 Performance at channel qualities different from the design CSNR for
design CSNR values of 10, 15, 20, and 25 dB. The rates are 0.05 (solid) and 0.25
(dashed), and the design CSNR of each curve is marked with a star.

ure 4.12 shows the results for different design CSNR values when the channel
quality changes. For channels worse than the design CSNR, the performance
drops quite rapidly, but some dB below the design CSNR, the results are still
acceptable. Above the design CSNR, some improvement in obtained, but not
as much as if the design CSNR were higher.
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Figure 4.13 Performance comparison of the proposed coder (solid) to the coder
from (Lervik, 1996) (dashed). The rates are (from below) 0.083, 0.1, 0.125, and 0.166

channel samples per pixel.

4.3.3 Comparison to Earlier Coder

Figure 4.13 shows the coder performance® compared to the coding results re-
ported by Lervik (1996). The results are substantially better for all the rates,
channel qualities, and images. The reference coder has been designed with side
information protection that works down to 10 dB, just as the proposed coder.

The coder in (Lervik, 1996) did not perform any optimization for different

5The increased slope between CSNR values of 35 and 40 dB can be explained by the

similar behavior for the PCCOVQ mappings of rates i and % at these channel qualities, cf.

Figure 4.6(a)-(b).
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Figure 4.14 Coding results for various images and rates compared to the coder
from (Lervik, 1996) at CSNR values different from the design CSNR. The solid line
is the proposed coder optimized for CSNR, values of 10, 18, and 25 dB (marked with
a star), and the dashed line is the coder from (Lervik, 1996).

channel qualities. Thus, the results reported there are valid also when the
encoder does not know the channel quality. In order to obtain that property
also for the proposed coder, it must be designed for one particular CSNR.
The result when this is done is illustrated in Figure 4.14. As seen, the design
CSNR will decide where the proposed coder outperforms the reference. For a
design CSNR of 18 dB, the proposed coder outperforms the reference at all
the displayed channel qualities for the images and rates shown in Figure 4.14.
For CSNR values around the design CSNR, the improvement is large.
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Figure 4.15 Coding results with (solid) and without (dashed) the use of the rate 2
HSQLC mapping. The rates are (from below) 0.03, 0.1, and 0.5 channel symbols per
pixel.

4.3.4 Influence of the Bandwidth Expanding Mapping

One of the changes from the coder from (Lervik, 1996) is the inclusion of a
bandwidth expanding mapping, the HSQLC mapping of rate 2. The improve-
ment obtained by including that mapping is shown in Figure 4.15. This map-
ping has a large influence on the result for high rates and poor channels, while
for low rates and good channels, there is no difference at all, simply because
the HSQLC mapping is never allocated in these situations. For high rates, the
rate 2 mapping is naturally used more frequently than for low rates. For poor
channels, it is more desirable than for good channels, because the important
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Figure 4.16 Performance at channel qualities different from the design CSNR, with
(solid) and without (dashed) the use of the rate 2 HSQLC mapping. The rates are
(from below) 0.03 and 0.5, and the design CSNR values are 15 and 25 dB, marked
with a star.

symbols need protection on the poor channels at the expense of representation
of the details, while for good channel, sufficient protection can be obtained
with a mapping of lower rate, allowing also less important subband samples
to be transmitted. Also, the improvement by using the HSQLC mapping is
smaller for a detailed image like “Bridge” than for a less detailed image like
“Lena”. This is because the relative difference between subband variances are
larger in an image of low detail level, so the high rate mapping can be used
more frequently.

A problem with the HSQLC mapping is that it is less robust than the
direct PAM mapping. The consequences of this is illustrated in Figure 4.16,
which shows that when the design CSNR is high, the performance of the coder
is worse at low CSNR values when the HSQLC mapping is included. This
applies even when the gain at the design CSNR is small, cf. the rate 0.03 at a
design CSNR of 25 dB.

The visual effect of the bandwidth expanding mapping is shown in Fig-
ure 4.17. For a design CSNR and actual CSNR of 25 dB, the difference is
barely noticeable, but when the CSNR drops to 15 dB, there is a difference.
However, it is questionable whether the image with the HSQLC mapping is
the worst, even though it has the lowest PSNR. The low PSNR value can be
partially explained from the darkened area around the left side of the mouth,
which is probably due to a decoding error of the quantized symbol in the
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(a) 35.0 dB/34.5 dB (b) 27.7 dB/26.9 dB (c) 32.7 dB/31.9 dB

(d) 34.4 dB/33.7 dB (e) 29.5 dB/28.4 dB (f) 30.6 dB/29.6 dB

Figure 4.17 Extract from “Lena” at a rate 0.1 with (upper row) and without (lower
row) the bandwidth expanding mapping. In the left column, the design CSNR and
the actual CSNR are both 25 dB, in the middle column, the design CSNR is 25 dB
and the actual CSNR is 15 dB, and in the right column, the design and actual CSNR,
are both 15 dB. Under each extract, the PSNR of the whole image (with the applied
noise sequence) and the PSNR of the shown segment are stated.

HSQLC mapping. Such spots caused by fairly large errors in low frequency
symbols can be seen all over the image, and can be somewhat more annoying
in the background, which is not shown here. For the design CSNR of 15 dB
with the same actual CSNR, the coder with HSQLC is clearly preferable, both
visually and from the PSNR value.

4.3.5 Influence of the Tree-Structured Filter Bank

The filter bank consists of an 8 band uniform filter bank followed by three
dyadic splits of the lowpass-lowpass band of the uniform bank, cf. Section 4.2.1.
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Figure 4.18 Results for “Lena” with (solid) and without (dashed) dyadic splitting
of the lowpass-lowpass band of the parallel filter bank at rates (from below) 0.03,
0.05, 0.1, 0.25, and 0.5.

Such a tree-structured filter bank, which is not used in (Lervik, 1996), has been
introduced to remove more of the correlation of the image before encoding.
The significance of this is shown in Figure 4.18, which shows the coding results
with the proposed filter bank compared to results with the uniform filter bank
part of this, where the dyadic splits are not performed. The figure shows that
more gain is obtained by the dyadic splits at low rates; for a rate of 0.5, the
performance actually drops. If the bandwidth expanding mapping is not used,
the performance is better without the dyadic splits for most of the rates.

An explanation of this behavior is that the dyadic splits not only remove
correlation, they also increase the variance of the subband samples in the
lowest frequency bands. Thus, with the use of a tree-structured filter bank,
some symbol of a very large variance need to be transmitted. This is best
done with a mapping of high rate relative to the total rate. Such a mapping
is available for low rates, but not high, if the rate of the mapping is taken
relative to the total rate. Removing the mapping of the highest rate is then
worse when the dyadic splits are used.

4.3.6 Influence of the Power Allocation

The significance of the power allocation is shown in Figure 4.19. The figure
compares the results of the proposed coder to the results obtained when power
allocation is disabled, i.e., when all the class channel powers are equal to the
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Figure 4.19 Coding result with power allocation (solid), without power allocation
(dashed), and with power allocation after the rate allocation, but no iterations to redo
the rate allocation (dash-dotted). The rates are (from below) 0.03, 0.05, 0.1, 0.166,
and 0.5, and the design CSNR is equal to the actual CSNR.

power constraint of the channel. In addition, results when the iterations be-
tween rate and power allocation described in Section 4.2.2.6 are disabled, i.e.,
when the algorithm stops the first time point 10 is reached. This corresponds
to the algorithm from (Lervik, 1996; Lervik and Fischer, 1997), except that
the power allocation is performed by a different method.

The results show that for poor channels, in particular for high rates, a
large improvement is obtained by the power allocation, while in other cases,
the improvement is insignificant. Most of the improvement is obtained with-
out the iterations between rate and power allocation, but in some cases, a
significant gain can be observed when introducing it, for instance, a 1.5 dB
improvement is obtained for “Lena” at a CSNR of 10 dB and a rate of 0.5.
For good channels, where the improvement is small, the difference in allocated
channel power between the classes is relatively small, which explains the little
change in performance.

It is no coincidence that the cases where the bandwidth expanding mapping
gives the largest improvement are also the cases where power allocation is most
useful. For poor channels, protection of the most important symbols to avoid
the full amount of channel noise to deteriorate this portion of the signal is
essential. This can be obtained either by higher rate or by increased power
for these symbols. For poor channels, it can be observed that the classes of
the highest rates also have the largest power allocated to them. This indicates
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Figure 4.20 Performance of the proposed coder on poor channels. The rates not
including side information are 0.25, 0.5, 1.0 (solid, from below), and 1.5 (dashed).

that mappings of higher rates would be desirable.

4.3.7 Performance on Poor Channels

So far, only CSNR values down to 10 dB have been considered, and the chan-
nels in the lower quality segment of the considered channels have been denoted
“poor channels”. In many applications, these are actually good channels, and
thus, also channels of lower quality should be considered. The side information
protection that has been used only works down to around 10 dB, and with the
method used, it is only possible to protect well for channels down to approxi-
mately 7 dB. In order to code the side information for lower channel qualities,
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a different method, such as a convolutional code (Blahut, 1983) in combina-
tion with a Reed—Solomon code, must be considered. This is not investigated
further. Instead, results given for channels below 10 dB will be stated for rates
not including the side information. The actual rates will thus be somewhat
higher.

Figure 4.20 shows coding results for CSNR values between 0 and 10 dB.
The rates considered are higher than before, since a high rate is needed to get a
reasonable quality on such a channel. The most striking result is that the rate
of 1.5 performs much worse than lower rates. This is due to a shortcoming of
the rate and power allocation algorithm. The rate allocation part will always
allocate as much of the specified rate as possible, even if allocation steps lead
to deterioration in quality. The reason why allocating more rate can lead to
a quality loss, is that when too many blocks are allocated rate 2, the power
of that class cannot be as high as when the class has fewer blocks allocated.
For instance, for “Lena” with a CSNR of 0 dB and a rate of 1.0, the symbols
that have been allocated a rate of two has a power giving those symbols a
channel signal-to-noise ratio of 11.8 dB (the low rate symbols have very little
power allocated), while for a rate of 1.5, the channel signal-to-noise ratio of the
rate 2 symbols is only 1.76 dB. Thus, the protection of the most important
symbols drops, but less important symbols are better protected. This result is
a convincing proof that mappings of higher rates are essential.

Figure 4.21 shows the visual quality of the proposed coder. At 0 dB, the
attainable quality is limited, although it will be sufficient for some applications,
given enough rate. For 5 dB, more acceptable results can be obtained.

4.3.8 Comparison to a Traditional System

Although some joint source—channel image coders exist, the far most com-
mon way to deal with the problem of image transmission is to perform source
and channel coding separately. Recent developments in channel coding have
resulted in codes with a performance very close to the channel capacity for
AWGN channels (Nickl, Hagenauer and Burkert, 1997; MacKay and Neal,
1997; Chung, Forney, Richardson and Urbanke, 2001), and this fact supports
the use of separate source and channel coding. However, similar robustness as
obtained with the proposed coder has not been demonstrated.

It should be noted that the distance from the Shannon limit of 0.27 and
0.0045 dB stated in the titles of the abovementioned papers refer to the limit
for a binary input AWGN channel, not the capacity of a general input AWGN
channel. The papers consider low CSNR values where these two limits are close,
but for the CSNR values considered for the proposed coder, the bounds are far
apart. Since the channel model accepts any input symbol, and this is utilized
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(a) 24.6 dB/23.9 dB (c) 30.0 dB/29.1 dB

¥

(d) 29.3 dB/28.5 dB (e) 31.4 dB/30.5 dB (f) 33.4 dB/32.9 dB

Figure 4.21 Extract from “Lena” at a CSNR of 0 dB (upper row) and 5 dB (lower
row) and rates not including side information of (from left) 0.25, 0.5, and 1.0. Under
each extract, the PSNR of the whole image (with the applied noise sequence) and the
PSNR of the shown segment are stated.

in the proposed coder, a coding method that uses more general modulation
schemes than BPSK is needed in order to come close to the channel capacity
for channels with CSNR from 10 dB and up. Myhre, Markhus and @ien (2001)
use QAM modulation with Gray coding and low density parity check (LDPC)
codes® (Gallager, 1962; MacKay, 1999) with soft decision. For CSNR values in
the range 10-25 dB, performance 3.0-3.2 dB away from the channel capacity
of a general input AWGN channel is obtained, and the error probability curves
are very steep. Based on this result, the channel code will be assumed to give
zero error probability for CSNR values more than 3.0 dB to the right of the
the channel capacity curve as a function of CSNR, and a high probability of

5Also known as Gallager codes
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Design CSNR

Total rate || 15 dB | 20 dB | 25 dB
0.1 || 0.2037 | 0.2838 | 0.3659
0.25 || 0.5093 | 0.7095 | 0.9147

Table 4.1 Bit rates in bits per pixel for the JPEG 2000 coder corresponding to
different total rates and channel qualities

error for lower CSNRs. The steepness of the error probability curves justifies
this assumption. The channel capacity is given by (Shannon, 1948)

1 P,
C = = log, (1 + %) : (4.15)
2 on

where Pj is the power constraint and 012\, is the noise power of the channel.

A new image coding standard, JPEG 2000, has recently become an in-
ternational standard. This coder can certainly be called state-of-the-art, and
thus, as a reference image source coder, the JPEG 2000 part 1 baseline coder
(ISO/IEC, 2001), implemented in verification model 8.0, is used. The standard
supports insertion of resynchronization symbols in order to limit the conse-
quences of channel bit errors, but due to the steepness of the error curves of
the channel code, the bit error rate is almost always either very high or very
low, so such symbols are not useful.

The proposed coder is designed for a certain CSNR. When setting up the
reference coder, the channel code will be assumed to have a channel rate R,
measured in bits per channel symbol, equal to the capacity of a channel 3 dB
below that CSNR,

(4.16)

CSNR—S)

1
R = 3 log, (1 +10%%

The rate of the proposed coder, Rt is given as the number of channel samples
per pixel, and if the reference coder shall give the same rate, the bit rate Ry
of the source coder must be given by

Rs = RtotRc- (417)

Figure 4.22 shows coding results with the proposed coder compared to the
results with the reference coder. The proposed coder is clearly more robust
since it can give fairly good results also below the design CSNR, while the
reference coder cannot offer decoding below the design CSNR. For better
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Figure 4.22 Coding result with the proposed coder (solid) and the JPEG 2000
coder followed by a channel coder (dashed). The total rate is (from below) 0.1 and
0.25 channel samples per pixel, and the design CSNR, values are 15, 20, and 25 dB
(marked with a star or a circle). The PSNR of the JPEG 2000 coder is not given below
the design CSNR, since correct reception of the image cannot be expected there. The
bit rates of the JPEG 2000 coder are given in Table 4.1.
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(a) 34.6 dB/34.3 dB (b) 34.0 dB/33.4 dB (c) 32.9 dB/31.9 dB

(FME 717

(d) 30.9 dB/29.5 dB (e) 31.2 dB/29.7 dB (f) 30.3 dB/28.5 dB

Figure 4.23 Extracts from “Lena” and “Goldhill” with a design CSNR of 20 dB and
a total rate of 0.1 channel symbols per pixel. The left column shows the JPEG 2000
coding result, the middle column shows the result with the proposed coder at the
design CSNR, and the right column shows the proposed coder at a CSNR of 17 dB.
Under each extract, the PSNR of the whole image (with the applied noise sequence)
and the PSNR of the shown segment are stated.

channels than expected, the proposed coder gives a certain gain, which is not
the case for the reference coder. The performance at the design CSNR varies
from image to image. For “Lena”, the reference coder is clearly better, while
for the other images, the proposed coder is usually better even at the design
CSNR. There is a tendency that the proposed coder is better for detailed
images, while the reference coder is better for less detailed images, although
the set of images is too small to verify such a claim.

Some image examples are shown in Figure 4.23, which demonstrates the
difference in the artifacts obtained with the two coders. For “Lena”, the
JPEG 2000 coder gives a smoother look of the face, which is visually pleasant,
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although the original image has a fine texture that is lost in the coding pro-
cess. For the proposed coder, this texture seems to be exaggerated. This is
because the highest frequency components of the texture have been removed
and channel noise has appeared in the image. The last statement is shown
clearly for a worse channel, where the speckled pattern is stronger. Note that
with the JPEG 2000 coder and the assumed channel coder, decoding would be
impossible for a channel of 17 dB, while the quality with the proposed coder is
still satisfactory. For “Goldhill”, the proposed coder reproduces the image with
better detail, for instance at the roof tiles. It seems that the proposed coder
is visually better than JPEG 2000 for a detailed image, and vice versa for a
non-detailed image. The difference is larger that the PSNR difference would
indicate.

4.4 Discussion

The proposed coder has shown good results compared to both the coder from
(Lervik, 1996) and the JPEG 2000 coder with a channel coder. Especially the
second result is interesting, since the proposed coder has a performance similar
to a combination of state-of-the-art source and channel coders at the design
channel quality, but with an added feature of robustness against changing
channel qualities.

The JPEG 2000 coder uses entropy coding, while the proposed coder allo-
cates a fixed-rate coder from a limited set of mappings to each block. These
schemes were compared in a simplified manner in Section 3.5.4, where it was
shown that PCCOV(Q mappings perform better than a combination of scalar
quantization, ideal entropy coding and ideal channel coding. The same would
apply for the direct PAM mapping, since its performance is equal to the OPTA
for a Gaussian source. It was also shown that the mappings provide a greater
robustness against varying source variances. However, the entropy coding
scheme gave a better performance than the HSQLC, although that was with
a channel coder that obtains the capacity; with a channel coder 3 dB below
it, as assumed here, they would have about the same performance. Entropy
coding based systems also have some other advantages over the direct source—
channel mappings. Any rate is achievable, while the mappings can be designed
only for a few rates. Furthermore, with adaptive entropy coding, it is possible
to adjust to the actual distribution of the samples that are to be coded with
the same entropy coder, to a large extent overcoming the robustness problems
demonstrated in Section 3.5.4. All in all, these points give an indication of
why the two coders give quite similar results. It should be noted that the
JPEG 2000 coder is a result of a long process involving hundreds of scientists
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optimizing all parameters and processes, and a similar process for the proposed
coder would probably give room for a substantial improvement. On the other
hand, JPEG 2000 is not merely optimized for MSE performance, but also for
complexity, progressive decoding abilities, to some extent visual quality, and
other factors.

In the design of the coder, robustness has not been addressed directly, both
the mappings and the classification algorithm are designed with performance
at the design channel quality as the only criterion, robustness is a side effect.
The robustness is a property of the mappings; since they have no or very fine
quantization, the performance will change with the channel quality, and since
the dimensionality of the mappings is low, the adaptation cannot be done to
one exact channel quality. The comparisons to (Lervik, 1996) reveal, however,
that while the performance near the design CSNR has improved a lot, the
performance far away from it does not improve much. If robustness is taken to
mean the relative change in performance when the channel quality is different
from expected, the robustness has been reduced, but if it is taken to mean
the performance over a large range of channel qualities, it is improved, since
it is better for some qualities and equally good for others. The results when
the HSQLC mapping is disabled, reveals that this mapping to a large extent
causes the effect that may be called reduced robustness.

A way of increasing the robustness could be to design the mappings with
an extra criterion of robustness. This could for instance be done by imposing
a constraint on the performance of one or more CSNR values different from
the value for which the mapping is optimized. When considering the HSQLC
mapping, the problem concerning the robustness below the design CSNR is
that the probability of error of the quantized symbol becomes quite large when
the CSNR drops below the design CSNR. Thus, the quantization step size
should probably be increased somewhat compared to the optimal value at the
design CSNR, in order to get higher robustness below that value.

If the decoder is able to estimate the actual channel quality, the perfor-
mance of the HSQLC can be improved, as was demonstrated in Section 3.5.1.
With a high design CSNR, the improvement is moderate, though. It should
also be possible to perform a similar adaptation of the decoders for the other
mappings. If a coder is to be designed for operation on channels of lower qual-
ities than what is considered in this work, adaptation of the decoders to the
actual CSNR will be more important.

Several of the results indicate that mappings of rates higher than two are
needed in many situations. The problem is how such mappings could be de-
signed, which is discussed in Section 3.6.3. One possibility is a combination of
a traditional bit based quantizer (scalar or vector) followed by a channel coder,
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and transmission of the quantization error, as shown in Figure 3.5. If such a
scheme is used, the quantized symbols could be channel coded together with
the side information. This would make it possible to use more efficient error
correcting coding with larger block lengths, and the classification algorithm
could be designed such that the blocks are filled up. A problem with such a
scheme is that the robustness is reduced, since the error correcting code will
not work below a certain level, and only the analog symbol gives performance
improvement above that level. For very poor channels (near 0 dB), the need
for higher rate mappings is the largest. In this case, simple BPAM mappings
give a good performance compared to the OPTA, cf. Section 3.3.1, and can be
used.

For very poor channels, the side information must be better protected than
what has been done in the proposed coder. This means that the relative
amount of data spent on side information increases. If the error protection of
the side information is done with a fixed code regardless of the channel quality,
this applies in all cases. Coders designed for very good channels will not give
acceptable performance on very poor channels even if the side information is
decoded correctly. Thus, it should be possible to adapt the lowest channel
quality for which the side information can be decoded to the rest of the coder.
This can be done by transmitting information on how the side information is
coded first. This very small amount of data must be well protected.

The power allocation gives a large improvement of the coder performance
in some cases, but the results indicate that this is because of the lack of map-
pings with high enough rates. If such mappings are provided, the influence of
the power allocation would probably be small, and the coder could then be
simplified by removing it.

The rate and power allocation algorithm is likely to find the global mini-
mum of the estimated distortion function given a rate and power constraint,
cf. the discussion in Section 4.2.2.6. However, it does not take the size of the
side information into account. It might be possible to make a modification of
the algorithm so that allocating blocks to an improbable class gets an extra
penalty due to the increased side information size it causes. Still, the exact
contribution is difficult to calculate due to the complexity of the side infor-
mation coding. There is also no guarantee that the estimated distortion is
correct, since this is calculated for an ideal Laplacian source, while the actual
pdf of a subsource, and thus the distortion, depends on the actual classification
performed.

The rates considered for the mappings are chosen from what mappings are

easy to design. It is clear that mappings with rates larger than two should be
considered, but the number of mappings of lower rates has not been optimized.
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It would probably be possible to design PCCOVQ mappings that have rates
1 2

of other simple fractions, such as g or . As long as the performance of a
mapping lies on the convex hull of the operational rate-distortion function, as
in Figure 4.4, it will always lower the distortion of the coder for a given rate.
This is however a rate not including side information, and the side information
will normally increase when new mappings are added. Thus, the number of
mappings is a tradeoff between the total rate including side information and
the distortion. In this work, no experiments have been performed to find which
mappings should be used and which should be left out.

In Section 3.6.2, the applicability of the channel model is discussed, and
that discussion also applies here. In order to get the synchronization that is
needed, pilot symbols may have to be inserted in the channel signal, which will
reduce the performance of the coder somewhat. Pilot symbols might also be

needed for traditional coding systems, but not necessarily as frequently.






Chapter 5

Conclusions

In this dissertation, two fundamentally different ways of performing joint
source—channel coding have been explored, and the conclusions drawn in the
two cases are also quite different. For the multiple description coding based
system, it was concluded that it did not provide any improvement in most
cases. The hybrid scalar quantizer—linear coder system, on the other hand,
gives an improvement. It could be argued that Figure 3.26 shows that the
performance of the HSQLC is inferior to the combination of a scalar quantizer
and an ideal channel coder, but the channel coder must have a very large delay
to perform close to the channel capacity, while the HSQLC has practically no
delay. The necessary length of a channel code needed to get similar perfor-
mance as with a separate channel code has not been explored, but since the
HSQLC is memoryless, it is clear that the delay will be larger.

The source—channel separation theorem states that separate source and
channel coding can be arbitrarily close to the optimum for most channels,
which is why the advantages that joint source—channel coding gives in each
case should be compared to a realistic alternative with separate source and
channel coding. For the HSQLC, advantages are obtained in terms of ro-
bustness and delay. For the MD coder, it turned out that in many cases, no
advantages were obtained. Note that although joint source—channel coding is
not always profitable, a joint optimization of the source and channel code can
be important. There is a trade-off between rate spent on source coding, giving
lower distortion in the case of error-free transmission, and rate spent on chan-
nel coding, reducing the probability of error. On the block fading channel, for
example, the source and channel coder were adjusted so that the block error
probability was relatively high both with MD and SD coding, cf. Figure 2.26.

The channel code is really the key difference between the two systems.
The MD coder is of a nature that makes it suitable for use in combination
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shows which points have neighboring SD index values.

with channel coding. However, the results show that when the channel code is
introduced, it often protects better alone than in combination with MD coding,
except when the channel code is heavily constrained. In the HSQLC (or other
direct source—channel mappings such as PCCOVQ), there is no traditional
channel code, and instead, the analog nature of the channel is utilized by the
coder. In a hybrid digital-analog framework as the HSQLC, it is possible to
use a channel code in the digital branch, but the analog branch should be of a
nature such that the channel noise is added directly to the signal, thus taking
advantage of the unimodal, zero mean nature of a typical noise process (such
as Gaussian noise). In the HSQLC, even the quantized symbol utilizes the
channel noise properties directly, by making sure that errors with the smallest
quadratic value are the most probable.

The utilization of the analog nature of the channel makes the HSQLC fairly
robust compared to systems based on good channel codes. With the MD code,
Figure 2.17 indicates that the robustness is not increased compared to the
underlying channel code. This means that one of the potential advantages of
joint source—channel coding is not achieved in this case.

The HSQLC and the multiple description quantizer have in common that
they operate by splitting one symbol into two separate ones. Both the cost
measure and the channel distortion are different. The cost measure is in terms
of power for the HSQLC and entropy for the MD quantizer, and the channel
distortion is AWGN for the HSQLC and symbol erasure for the MD quantizer.
Still, a resemblance can be seen by comparing the graphic view of the MD
index assignment, shown in Figure 5.1, to the plots of the HSQLC in channel
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space, shown in Figure 3.11. One difference is that the channel space points
go along the diagonal for the MD quantizer, while they go along the second
axis, or a line rotated somewhat compared to that, for the HSQLC. This is
related to the fact that the MD quantizer is balanced, so the two descriptions
contain the same amount of information about the source. This is not the
case for the HSQLC, where the quantized symbol is of greater importance
than the quantization error symbol.! This means that the HSQLC is more
related to the special case of MD coding known as multiresolution coding or
successive refinement (Equitz and Cover, 1991), where one of the side distortion
constraints has been relaxed. The quantized symbol corresponds to the most
significant bits in successive refinement, while the quantization error symbol
corresponds to the least significant bits. The difference in the shape (other than
the angle) between the two systems has to do with the distortion properties.
MD coding protects against an erasure of any symbol, while HSQLC protects
against noise on both the symbols.

Joint source—channel coding is interesting only for a source on which some
distortion can be allowed, and results are perhaps most interesting when evalu-
ated on a real source. The HSQLC has been demonstrated to give good results
in an image coder where it was used in combination with other mappings. The
case of still image coding may not be as interesting as video coding, since the
need for compression and limited delay is more evident there, but video coding
usually uses a still image coder to encode difference frames and intra-frame
coded frames. The difference frames do usually not require as high rate as still
images, so the need for a bandwidth expanding mapping could be smaller. A
video coder based on PCCOVQ was proposed in (Fuldseth, 1997; Fuldseth and
Ramstad, 19975). This coder does use a rate 2 mapping, and it is likely that
replacing this mapping with HSQLC will give an improvement. The need for
mappings of higher rates observed in Chapter 4 might be less of a problem for
a video coder.

The MD coding system was not applied to any real source, since the results
were not good compared to SD coding. The experiments on MD coding were
performed with the intention of using an MD video coder (Servetto and Nahr-
stedt, 2001) for transmission on a radio channel. However, the results with a
model source on the binary symmetric and block fading channels, which can
be used to model the radio channel under different circumstances, did not en-
courage this application. If subjective criteria were taken into account, the
situation could change, since the variation of the received quality is smaller

!The two symbols could be given equal importance by rotating all the points in the
channel space prior to transmission, with an inverse rotation at the receiver. A rotation is
an orthonormal operation, which does not alter the properties of the white Gaussian noise.
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with MD coding, although the average mean square error is usually larger.

Directions for further work have been proposed in the previous chapters.
The results suggest further research on direct source—channel mappings to a
larger extent than on MD coding used as a joint source-channel coding method.
For the mappings, in addition to what has been mentioned in Chapter 3,
comparisons to systems using separate source and channel coding with actual
codes should be made, in order to find how much longer delay is needed to get
the same performance and how this will influence on the robustness. The use
of HSQLC for other sources than image coding, such as video or audio coding,
should also be considered.



Appendix A

Existence of M DS Codes over
Huge Symbol Alphabets

In this appendix, it will be proven for a block code that if the size of the
symbol alphabet is large enough compared to the block size, maximum distance
separable codes always exist.

The Gilbert bound (Blahut, 1997) for g-ary linear block codes states that
for any integers n and dmm, 2 < dpin < n, there exists a g-ary (n,k,dmin)
linear code with dmin > dInln whose dimension k satisfies

dnil G) (a-1'2q"" A

1=0

log, (dnffl ()~ 1)1') < duin, (A2)

1=0

If

then there exists a k such that dyi, > n — k, and since the dpin <n—k+1,
there must be a k such that dpj, =n — k + 1, giving an MDS code.

If the alphabet size is large, ¢ — 1 > n, the largest element of the sum in
(A.2) will be for i = dpin — 1, so

log, (dnil (?) (g — 1)") < log, (dmin ( dmi:_ 1) (¢ — 1)d‘“i“_1)

1=0
< logq (dmlnndmln_l(q _ 1)d1nin_1) (A3)

= 1qu dmin + (dmin - 1) logq(n(q - 1))
< logq Amin + (dmin - 1)(1 + Iqu n)
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This means that the existence of an MDS code is assured when

10g, diin + (dmin — 1)(1 +log,n) < duin
dmin — logq dmin

1+1log,n <
gq dmin -1
1 —log, dmin
log,n < ———4 —
e dmin -1
l—logq dmin
n<q dmin=l | (A4)
Since dmin < n for any code,
1—logg dipin —log, n 1
g Tmin 1 >q et = (2> " (A.5)
SO
q\n-t n
n < & g>n (A.6)
n

is a sufficient condition for MDS codes to exist. The requirement that g—1 > n
is always fulfilled if (A.6) holds. The Gilbert bound is valid for dp,, > 2, but
dmin = 1 corresponds to a code where n = k and no erasures can be corrected,
which is obtained by an identity code, so an MDS code can be assumed even
then. This result tells us that for any block size, any alphabet size over a certain
value ensures the existence of an MDS code. The alphabet size has to be huge
compared to the codeword length, but ¢ = 2 where v is the number of bits per
packet, and typical IP packets consist of hundreds of bits or more, while delay
constraints prohibit the use of long blocks. In addition, the bound obtained in
(A.6) is quite conservative. Thus, when working with erasure channels, MDS
codes will be assumed.

In Section 2.5.3, block lengths up to 20 for MD coding and 40 for SD coding
are considered. These block lengths do not violate (A.6) for typical packet
networks, since log,(40%°) < 213, meaning that if the symbols are packets of
213 bits or more, a maximum distance code exists. This is less than the number
of bits in a typical internet packet.
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Derivations Concerning HSQLC

In this appendix, formulas for the performance of the HSQLC needed in Chap-
ter 3 are derived. Section B.1 treats optimal receivers, in Section B.2, expres-
sions for a MAP receiver for the quantized symbol are derived, and in Sec-
tion B.3, expressions for the MSE of the system assuming simplified receivers
are found.

B.1 Derivation of Optimal Receivers

Here, the general formula for the optimal receivers of the HSQLC system will
be derived.

Equation (3.22) shows that E[A(k) | 91(k), 92(k)] and E[B(k) | §1(k), 92(k)]
must be found. Since there is no memory in the system, and thus no depen-
dence on the time index k, it will be dropped for the derivation here. From
the definition of conditional expectation,

M-1

BlA|91,50] = ) aipyy, 3, (0 | §1,52). (B.1)
i=0

Here, p ALY (a; | 91,72) is the conditional probability that A = a; given i
and fjo. Now, define f, y. (a,1,72) as the joint probability distribution of
A, f"l, and Ys. Note that this function is discrete in a and continuous in 1
and 9, so that integrating over ¢; and ¢o gives the discrete probability mass
function of A, while summing over all a;, i € {0,... , M — 1} gives the joint
probability density function of Y; and Ys. From the definition of conditional
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probability (Walpole and Myers, 1993),

PN fAf/f/(aiaglagZ)
pADAﬁ,f/z(a’i | y17y2) = Mfl, D2 . (B2)

Z fA,f/l,f/z (a’ia gla g?)

i=0
In order to find f, TREE look at the joint probability of both branches at both
the transmitter and receiver end, f, 5 V1., From this,

fA’YI,%(ai,Ql,?)Q) = / fAyByl’g@(ai,b, 71, 72) db. (B.3)

In order to find the joint probability distribution f, 4 1.7, consider the fol-
lowing.

fA,B,?l,}A’Q (CL,‘, ba ?)1, lg2) = fA,B(a’i7 b)ff/hf@‘A’B(:gla :02 | aj, b) (B4)
where fa p is the joint probability density function of A and B, and Iy, Y5A,B

is the conditional probability density on 1}1 and 1?'2 given A and B. Since N;
and N, are statistically independent of the input and of each other, one can
write

I, Neja,B(n1, 12 | @i, b) = fn(n1) fa(n2), (B.5)

where fy is the probability density function (pdf) of the identically distributed
noise symbols Ny and Ny. By noting that Y7 and Y5 are connected to the noise
by

}A’l =c + Ny (B.6)
Yy = Ky B + Ny, (B.7)

one can change variables from Y7 and Y3 to Ny and Ny to get
f}A’l,}A/'Z‘A7B(:017Ig2 | ai,b) = le,NQ‘A,B(g]- — Ci,:l)2 — Kbb | ai,b) (B 8)
= fn(91 — ci) fn (2 — Kpb).

Thus,

Fa,B.11,5, (@i b 91, 72) = fa,B(ai, b) N (1 — ci) fn (92 — Kob). (B.9)
Then, to find fa B, assume that the input symbol X is in the interval D; =
(di,dit+1]. Then A = a;, B = X — a;, and the probability distribution of B is

fx(b+ai)
0 otherwise,

when b € (d; — a;,dit1 — a4, (B.10)



B.1 Derivation of Optimal Receivers

147

where fx is the pdf of the source symbol X. Since A = a; when X € D;,
fa,B(a;i,b) = fpja(b| a;) Pr(A = a;)

_ {fX(b—I—ai) when b € (d; —

0 otherwise.
Inserting (B.9) and (B.11) into (B.3) gives

dit1—a;
Fayn v, (@is 91, 92) = /d fx(b+ai) fn (G — i) fn (g2 — Kipb) db
i a5

e (B.12)

= fn (i1 —Ci)/ fx(b+ a;) fn (92 — Kyb) db
di—a;

and from (B.1), (B.2

(B.11)
Qaj, dl-l-l - ai],

, and (B.12),
M1 disr—as
> aifn(in - Cz)/ fx(b+ai) fn (g2 — Kib) db
ElA|91,9] = Z]\:/A,O_l Zi'_laia' (B.13)
2 I - Cz)/d_: Fx (b + ai) f (o — Kob) db
- —

as stated in (3.24).

To find the other conditional expectation, E[B(k) | 91(k),92(k)], again
state the definitions

o0
E[B | §1,92] = / bf 51y 7, (0 | 91, 92) db (B.14)
—0o0
and

f (b ylayQ)
Fri1,%, (0 | 91, 92) B

, (B.15)
/ Ty (1, 2) b

where f %19 (b ] 91,72) is the conditional pdf that B = b given ¢; and ¢2, and
f B,Y1,Y>

is the joint probability density of these variables. This joint pdf can
be found by summing f 4 B.9: 9,(@i, b, 91,92) over 4, so from (B.9) and (B.11)

M—1
Foin0, 0 01:82) = D fa gy 1, (@i 0,91, 92)

=0
M-1

= Y fx(b+a) fn(§ — ) fn (o — Kob)u(b — (di — a;))u((diy1 — ai) = b),
i=0

(B.16)
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where u(-) is the unit step function,

0 whent<O0
u(t) =4 Ve (B.17)
1 whent > 0.
This gives
M- diy1—a;
S - ) [ b+ 0 (i — Ko db
z:O di—a;
= B.1
E[B | 1, 92] = 5~ - , (B.18)
Z (h —ci / fx(b+ai)fn (92 — Kpb) db
— di—a;

as stated in (3.25).

B.1.1 Optimal Receivers for a Gaussian Source

In order to find analytic expressions for (B.13) and (B.18), the probability
density functions fx(n) and fx(z) must be known. The noise is Gaussian
with zero mean and variance 0%, S0

1 _i
e N, (B.19)

fn(n) =

2moN

and for a Gaussian zero mean source of variance 0%,

1 _z
e *x. (B.20)

fx(z) =

2mox

Two integrals need to be solved. First, look at

o dit1—a;
10« / Fx(b+ a;) fa (G2 — Kyb) db
d

i—a;

e 2"X ZoN db

B 1 di+1 —Qj __ (b+a2i)2 o (?j2._I§bb)2
2roxon Jq4

i—a;
1 e (e B e (e S0 o (et )
= e N X TN X N db.
d

2moxonN i—a

(B.21)

This integral can be solved by completing the square in the exponent and
applying the definition of the error function,

erf(x) = —- / (B.22)
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or by using a symbolic mathematics program, such as Maple. The solution is

1 1 (122+aiKb)2
719 — e 2oxTKiok

= X
2v/2m /012\, + Kgag(
/ o 2 9
1 oy + Kjoy o2.a; — Kyo2
erff| — | ————(diy1 —a;) + Nt bIx Y2

V2 OXON O'Xo'N\/O'N‘FKI?O'X
1 [yJov+ K§a§((

o3ai — Kyok 9o

—erf| — d; —a;) + (B.23)
V2 OXON UXUN,/UN—i—KI?UX
Then look at,
dit1—a;
def N
e / bfx(b+ ai)fn(ij2 — Kyb) db
d;—a;
dig1—a; _ (bta))?  (Ga—Kyb)?
= ;/ be 20’3( 20-12\7 db
2roxON Jd;—a;
1 /diH_ai *%<ﬁ+§>b2*<ﬁa¢*%@2>b*%(7 oy @%)
= — be X °N X N db.
2oxXON Jd,—a,
(B.24)

This integral can also be solved by completing the square in the exponent
and changing the variable of integration, or by using a symbolic mathematics
program. This gives

(1) _ 1 ONOX
i 2 2 2

2oy + Kyox
—r;]zv(Kb(dHl—ai)—?h) oy

_ 1 42
g{dz+1+e N(Kb(dz ai)—32)* "xd

ao KbO'
N b Xy21§) (B.25)
UN+Kb %

Now, analytical expressions for (B.13) and (B.18) are found by inserting
Equations (B.19), (B.23) and (B.25).

B.1.2 Optimal Receivers for a Laplacian Source

A zero mean Laplacian source has the source pdf
S (B.26)
e X | .
V2ox

fx(z) =
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where 0% is the variance. The noise is still Gaussian, so Equation (B.19)

applies. Due to the absolute value in the source pdf, three different cases have
to be treated. First, consider the case d; < d;j+1 < 0. Then,

(0-) div1—a; X
" = / fx(b+a;) fn (92 — Kpb) db
d

i—ai
diy1—a; _ (!;2*Kbb)2 V2(bta;)
1 202 + TxX
= e db (B.27)
2\/7_'('0')(0']\] d;—a;
) K} R .
1 div1—ai —2712352-1-((,ﬁ-|-Kfzbyz)b+(0@a¢—f2 5 y%)
== e i \7X ok T )
2\/7_1'0)(0'1\/ di—a;

As in the Gaussian case, the integral can be solved by completing the square
in the exponent, or by a symbolic mathematics program. This gives

ViKEoxa;+vaKyo xistod

_ 1 p)
I(O ) = — &€ KbaX
E 2V2Kyox

K U2 ON )
- erf | —=——(ditq —a;i) — -
[ (\/%N( t+a i) V2on  Kpox

Ky Jo ON )]
—erf [ == (d; — a;) — - . (B.28
“ (ﬁ(m( %) = oo Kyox (B-28)

Similarly, for 0 < d; < djy1,

(04) dit1—a;
Iz' = / fX(b+ai)fN(g2 —Kbb) db
d

i—a;
~ViIKZoxa;—VIKyoxiatoy
7,2
Kb 5e

1
= ——¢
2V2Kyox

K, 7o oN )
Nerf [ =2 (djsq — a;) — +
|:er (ﬂUN( 1+a aZ) \/ﬁO'N KbUX
K, 7o 20N )]
—erf | ——(d; — a; + . (B.29
€r (\/iaN( i az) ( )

- V2oy | Kwox
For d; < 0 < d;41, the integral can be divided, giving

(0) dit1—a;
Ii + = /d‘ f)((b+ G,i)fN(@)Q — Kbb) db

i A

—a; dit1—a;

— [ rxtedn- Kby b+ [ Lxo+ o) (i~ Kob) db
d;i—a; —a;

=17 + 100

di41=0 d;=0

(B.30)
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The other integral also has to be treated for three different cases. For
di <diy1 <0,

(1) dit1—a;
)= / bfx(b+a) f (g2 — Kpb) db
d

i—a;
2\/7_TKI?O'X
[ — b (Ky(dig1—ai)=92)"+ Y2 dis =52 (Kp(di—ai)=2)° + 2 d;
- | —e W X +e “°N 7x

 §Kpox + V203 700-)
i

B.31
o . (B31)

using the same method for solving the integral as for the Gaussian source. For
0<d; <diya,

(14) dit1—a;
IZ- = / bfx(b + a,')fN(:Qg — Kbb) db
d

i—a;
N 2\/7_TKI?O'X
[ —2—12—(Kb(di+1—ai)—@2)2——‘/22di+1 —Q—IT(Kb(di—ai)—?h)z——\/gzdi
.| —e %N 7x 4+ e “N X
JoKpox — /2073
Y2 bUX2 \/_GNIZ(0+)’ (B.32)
Kjox
For d; < 0 < d;41, again the integral can be divided,
1 dit1—a;
1) = / bfx(b+ a;)fx (g2 — Kyb)db
di—a; (B.33)
— 147 sl
¢ d;i+1=0 + ¢ d; =0
B.1.3 Optimal Receivers for a Uniform Source
For a uniform source, the source pdf is given by
1 A A
% when — 5 <z< 2
T) = 2 =" =2 B.34
Ix(@) {0 otherwise. ( )
2 A?

The mean of the source symbols is then zero, and the variance is 0% = 5.
For this distribution, it will be assumed that the endpoints of the quantizer are
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given by dy = —% and dy; = %. The noise pdf is still given by Equation (B.19).
Now,

0) dit1—a; R
I; :/ fx(b+ai)fn(92 — Kpb) db
d

i =

dip1—a; _ (@2=Kpb)®
B Tzl— / B (B.35)
TON Jd;—a;
1 Ky(dit1 — a;) — Zh) (Kb(di —a;) — ’QQ)]
= ——— |erf — erf ,
2AK; [ ( V20N V20N

and

(1) dit1—a; .
IZ- = / bfx(b + ai)fN(yg — Kbb) db
d

i —0aq
N 2
1 di+17ai 7(?!2_Kbb)
:7/ be *n db (B.36)
AV27mon Jd;—a;
(Kp (dig1—a5)—52)° (K (di—a;)—92)> N
__oN | T P A B 310
A\/27TK§ Ky *

For the special case of a uniform quantizer with midpoint representation
values and a quantizer step size that divides the width A of the uniform source
distribution, the expressions of Equations (B.13) and (B.18) can be simplified.
Assume that the quantizer has M quantization intervals of width § = A/M.
This means that d; = (i — M /2)4, and that a; = (i — (M —1)/2)4, as midpoint
representation values are used. Now, d; 11 — a; = §/2, and d; — a; = —§/2, so

(0) 1 KTI’(S — o _KTMS — 9o

and

O IN Tk 4 % 4+ 92,0 B.38
' AV2TK? O (B39

Note that in this case, IZ-(O) and Ii(l) are independent of 4, and can thus be
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written 1(®) and I"). Inserting this in Equations (B.13) and (B.18) gives:

(ah—cpz M- _ (@1-cy)?
Z 2o'.N I(O) Z a/ie 20’N
\/271'

Bi(91,92) = E[A | 91,92] =

M 1 _ (1-¢)? ©) T M1 _ (@1-¢i)?
Zo'N2 I e 20'N2
Z \/27r0N ZZ:%
(B.39)
and
M-1 1 (@1 —cp)?
e 2G'N I(].)
o BB i — V2moy 70
Ba(91,92) = E[B | 1, 92] = 7, X TN O)

(B.40)

\/_UN

Note that in this case, £ is independent of ¢, and (3, is independent of 1,
just as for the simplified receivers.

_ \EU_N —e R te ¥ L e
m K Ko _ g, Kb5 — iy K,
erf | =—— erf

B.2 Derivation of MAP Receiver

A way of finding the the receiver decision intervals &; of the simplified receiver
is the use of a maximum a posteriori (MAP) receiver for the quantized symbols.
A MAP receiver is designed so that it finds the most probable symbol to have
been transmitted given the received symbol. Strictly speaking, this is not the
same as minimizing the MSE. However, if the quantized symbol is correctly
received, this gives no contribution to the squared error, as opposed to an
erroneous reception, so maximizing the probability of correct reception also
gives a low MSE, and is unlikely to give any significant difference from the
optimal detection.

The MAP receiver outputs the 7 that maximizes the conditional probability

9,401 | ai)pa(aq)
fy, (91) '

Py (ai | 1) = (B.41)
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Since Y7 is a result of adding noise to the transmitted signal Y7, it is clear that

fyy 14l | i) = fn (i — ci). (B.42)
The probability of A = a; is
dit1
pala;) =/ fx(z)dz. (B.43)
d;

Since fy, (91) is constant with respect to 4, it can be kept out of the optimiza-
tion. The MAP index is then found by
iMap = argmax fy (91| ai)pa(a) = argmax fn(§1 — ci)pa(ai).
1€{0,... , M—1} 1€{0,... ,M—1}
(B.44)
The noise is zero mean Gaussian, so by inserting (B.19),
1 _@1-ep)? _@1=ep)?

. - b 0_2
IMAP = argmax e N pa(e;) = argmax e N pa(a;).
i€{0,...,M—1} V2moy; i€{0,..., M—1}

(B.45)

The decision limits can now be found from the points where the objective
functions given neighboring i values are equal. Thus, e; is given by the ¢; that
solves the equation

~ 2 o
_ @1-ci—1) _@1—cp)?
20’2

e Noopalaii)=e N pa(a), (B.46)
which gives

2
ON

n _P4(1) (B.A7)
ci—ci-1  pa(ai-1)

fori € {1,...,M — 1}, e¢g = —o0, and ep; = oo. This requires that all the
transmitted values have an interval for which it maximizes the conditional
probability. If not, there will be an ¢ where e;_1 > e; when calculated by
(B.47). Then, the ¢; for the value of ¢ that gives the problem must be removed
and the decision levels recalculated. In practice, this is not a problem.

The integral in (B.43) is found for different probability distributions in
Section B.3.

In the beginning of the section, it was claimed that a MAP receiver is
not equivalent to the decision limits that minimize the MSE, but that the
difference should be small. This can be verified from Figure 3.15, where the
HSQLC with simplified receiver designed for the actual CSNR uses the MAP
receiver, while the receiver designed for the design CSNR used the decision
limits that minimize the MSE. At the design CSNR, there is no significant
difference between the results.

ei = 5(ci +cim1) —
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B.3 Derivation of Mean Square Error

The MSE of the HSQLC system is given by Equation (3.23). When the sim-
plified receivers are used, B1(91,92) depends only on §; and Ba(§1,2) depends

only on ?32, and they can be written 51 (@1, @2) = ,81 (Ql) and ,82 (:l)l, @2) = ,82 (gg)
This gives

D = E[(X — X)}]
/ / / [z — B1(Cy(z) + n1) — Bo(Kp(z — Q(2)) + n2))?
IN(n1) fn(n2) fx (z) dny dng do. (B.48)

The functions Cy and @ return Cy(z) = ¢; and Q(z) = a; when z € (d;, djt1].
By inserting this in (B.48),

M-1 diy1 oo oo N 5
D=3 [ At - Aulkita -+ o)
fn(ni) fv(n2) fx(x) dny dno dz.  (B.49)

Furthermore, Bl(ci +n1) = aj when ¢; + ny € (ej,ej41). This means that

M-1

i+1
ST
- d;

=0

00 M Loreji—c -
/ (& — aj — Po(K(x — a5) + mo)]?

—c;

fn(n1) fn(n2) fx (z) dni dny dz. (B.50)
Then, apply B2(ij2) = %, J2 and rearrange to get

-1

M-1 dit1 0o KN 2
— — . — 00
=0 7=0 v

€j+1—Ci

fn(n2) fx(z) dna dz / fn(n1)dny. (B.51)

€5 —C4

Now, introduce the probability p;; of receiving a; given that a; was trans-
mitted. This happens if the noise N; is in the interval (e; — ¢j, e;41 — ¢,
SO

€j+1—C4
Di,j Z/ fn(n1) dny. (B.52)

8]‘ —Cq
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This gives
M—1M-1 dip1 oo
D= Z Z pi,j/ / [(1 — k)22 +2(1 — K)(ka; — a;)r + (ka; — aj)2
i=0 j=0 d; —00
2K 2K K2n2
_ E(l — K)nox — — (ka; — aj)no + K—;] fn(n2) fx(z)dng dz
M—1M-1 div1 oo
= Pij [/ / fn(n2) dny
i=0 j=0 d; —o0

(1= k)22? + 2(1 — K)(ka; — aj)z + (ka; — a;j)?) fx(z) dz

diy1 oo
_ i{_’z /l + /_Oonng(ng) dna((1 — K)z — Kka; + a;) fx(z) do
2 dit1 oo
+ Ilz_g/l ' /_oonng(m)dnz fx(z) d:L':|

_ Zl Mﬁlpm [/di“ (1 - k)22% + 2(1 — K)(ka; — a;)z

d;

2.2 di+1
+ (ka; — aj)Q)fX(x) dz + R IN fx(x) dx] ,

Ky
(B.53)

%

where it has been used that fy is a pdf of a variable with zero mean and
variance 012\[. A rearrangement gives

dit1
(1 —/<;)2/d' " 2 fx(z) dzx

dit1
+2(1 — k) (ka; —aj)/ zfx(z)dz

i

+ ((mi —aj) + “;%?v) / o Fx(@) dw], (B.54)

d;

which is the same as Equation (3.30).
The constant & is given by Equation (3.28), which shows that the variance
of B, 0% must be found. The distribution fg(b) can be found as

M-1
fe®) =" fanlaib), (B.55)
1=0
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and fa, g(ai,b) was found in Equation (B.11). Using that,

o] M-1 .
o—%:/_ b2 fp(b)db = Z/_ v fa,5(a;,b) db

div1—a;

M—1 1+1

:Z/ v fx (b + a;) db—Z/ (z — a;)?fx(z)dx
i=0 Jdi—ai
M—

1 dit1 dit1 dit1
22 fx () dz — 2a; rfx(z) dz + a? Ifx(z) dm]
> [ | et [

d;
M-1 dit1 dit+1
=o0% + Z [—2ai/ rfx(z) dr + a? fX(:c)dm] .
i=0 i d;

(B.56)

When performing optimizations of the MSE, the channel power constraint
of Equation (3.20) must be satisfied. That means that oy, = E[Y?] and
oy, = E[Y}] must be found. o} = K;o%, so what remains is finding o7,
which is given by

M-1 M-1 M-1 dit1
oy, = Z EPr(Y) =¢) = Z EPr(X eD;) = Z 022/ fx(z)dx.
i=0 i=0 i=0 ‘

(B.57)

To find D from (B.54), a closed-form expression for p; ; is needed. The
noise is always assumed to be Gaussian, so fy is given by (B.19). Using the
definition of the error function,

2
Sy o (55) o (5]
i e N dn ~ erf (£ —erf
Pig = \/27TO'N /ezcz ' [ < fUX V20x
(B.58)

Now, closed-form expressions for D, &, U%,-l, and 0%,2 can be found by solving
the three integrals | (ZHl fx(z) dz, which is the probability of X € (d;,d;1+1] =
D;, f(zi“:vfx(x) dz, and fd‘?“foX(:v) dz. In Sections B.3.1, B.3.2, and B.3.3,

these integrals are calculated for Gaussian, Laplacian, and uniform source dis-
tributions, respectively.
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B.3.1 Gaussian Source

The pdf of a Gaussian source is given by (B.20), and

2

dit1 1 dit1 —=
fx(z)dr = / e x dr
/di X( ) V2rmox Jg;
2|t () = (V)]
= — |erf —erf , B.59
2 [er (\/EUX * V20 ( )

2 42

di+1 1 di+1 _i t= mz Hél
952 20% 1 20 —
/ zfx(z)dz = / ze X dx = 7/(12)(6 to2 dt
d; 2rox Jd; 2mox =
X
431 a7
ag 52 52
— X —e Zo-X +6 20’X , (B60)

and, using integration by parts,

2

dit1 1 dit1 _=z
2
/ 22 fx(z) dz = / r’e X dx
d 2nox Ja

i
2

1 dit1 ,212_
= z | ze *°x | dx
V2mox /dz (

2 2
N Sy
= —— |—djy1e X +die x +/ e *x dz

i

2 2
S d;

552 902
- 2 —di+16 2a'X +dZe 20'X

() () o
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B.3.2 Laplacian Source

First consider the case d; < d;+1 < 0. The probability density function is given
by (B.26), and

/ dmf (z)d ! / e 5 dp = [ T m] (B.62)
x(z)dr = e’x dr=-|e °x —ex |, .
d; V2ox Ju; 2
/di+1 f ( )d 1 /dH—l 3z p
rix(z)dr = ze’x axr
d; \/iO’X d;
1 V2diqy V3d; dit1 iz
== [dz’+1€ °x —dje °x —/ e°x dw]
2 d;
1 ox\ Y2t ( UX) @]
=—||diz1——=)e °x —|di——=]e°x |, B.63
(oo 5)% (o3 o
and
zfx(z)dxr = r°e’x ar
p \/§UX ‘/dl
1 ) V2d; 41 o V2d; dit1 o
== |:dz'—|—le °x —dje’x — 2/ Te°x dac]
2 d;
1 ﬁdi+1 V2d;
=3 [(dfﬂ —V20xd;i1 + U%() e °x = (d? —V20oxd; + 03() eG_XL] ;
(B.64)

where integration by parts was used in the last two equations. Similarly, for
0<d; <diqa,

dit1 1 Vg, _ V24,
/ fx(z)dzx = 3 [—e °x +e °X ] , (B.65)
d

i

dit1 1 ox\ -Vt ox | ¥
de =5 | = (dipn + —= x +|di+—2 X,
[ e =g [ (s ) (e )

(B.66)

and

dit1
/ 22 fx () dz
d

i

_ ﬁdi—}—l _\/Edi
[— (dfﬂ +V20xd;11 + a§() e X + (d,2 +V20xd; + 03() e °x ]

(B.67)

1
2
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When d; < 0 < d;41, the integrals must be written as a sum of two integrals,
one going from d; to 0, and another going from 0 to d;+1. The previous
expressions can be used for each of these integrals. This gives:

dit1 1 _ Vi V2d;
/ fX(w)da::§ [2—6 X —eX ] , (B.68)
d;
dit1 1 ox B V2d;4q ox V2d;
zfx(z)dr =< |- |dis1+ —=]e °x —|di——F=]ex |,
e 3] () ()]
(B.69)
and
diy1 1 V24
/ 22 fx(z)de = 2 [203( - (dlzﬂ +V20xdis1 + ag() e °x
V2d;
- (dz2 — V20 xd; + U§(> e °x ] (B.70)
B.3.3 Uniform Source
In this case, the pdf is given by (B.34). Assuming dy = —% and dp; = %,
dit1 1 [fdit1 dit1 — d;
= — = — B.71
. fx(z)dz 2, dz A (B.71)
dit1 1 [dit+1 d?. . — d?
/d,- zfx(z)dr = Z/dl mdw:%, (B.72)
and
dit1 1 [dit1 A3, ., —d3
/d,- Q:QfX(x)dx:Z/di ac?dm:%. (B.73)

B.3.4 MSE Using Optimal Receivers for Uniform Source and
Uniform Quantizers

When the source is uniform, and the quantizer is also uniform with midpoint
representation values and quantization interval § = %, the quantized symbol
A and the quantization error B are independent of each other. This can be
seen by realizing that the conditional distribution fp 4 is given by

1 when — 8 <p<
fB|A(b|ai):{6 when —35 <0< 3, (B.74)

0 otherwise,
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regardless of i. Thus, fg(b) = fpa(b | a;), and A and B are statistically
independent. In Section B.1.3, it was shown that the optimal receivers in this
case depend only on the received version of the variable they are estimating.’
Since the noise sequences are independent of both the signal and of each other,
the received signal Y, will be independent of B and of Yg, and the received
signal Y, will be independent of A and of Y, and as the receiver functions
depend only on one variable, A will be independent of B and B , and B will
be independent of A and A. This means that the expression for the MSE can
be rewritten as

(
= E[(A— A)?+2E[(A - A)(B - B)] + E[(B — B)} (B.75)
2
]

since both A, B, A and B have zero mean due to symmetry. Since the optimal
receivers depend only on one variable in this case, they will be written 81(f1)
and (2(y2) as for the simplified receivers. The MSE is now given by

D = E[(A — B1(Ca(A) + N1))?] + E[(B — B2(KyB + N3))]

= 3 [ o B o) Pr(A = -

+ /_Z/_Z(b — Ba (Kb + n2))? f5(b) f (n2) dbdns,

where C,(A) returns the channel sample value corresponding to the quantized
value A, so Cy(a;) = ¢;. Due to the uniform distribution and quantizer, Pr(A =

a;) = % = % for all 1, so,

2

_ ™
D= + 2% d
I
41 1 /00/2(1) Bo (Kb + ))2_23%(1 db. (B.77)
- - n e 1 . .
5 Vara Jsel s 2(Kp 2 2

The expressions for the receivers can now be inserted, and the remaining prob-
lem is the integrals in (B.77). There is no closed-form expression for these
integrals with the receivers of Equations (B.39) and (B.40), but numerical
one and two-dimensional integration is feasible in combination with the one-
dimensional numerical optimization needed in this problem.

!This can also be shown from the statistical independence.






Appendix C

Original Images

Figures C.1-C.4 show the four original images used in the coding examples in
Chapter 4.
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Figure C.1 Original image “Lena”
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Figure C.2 Original image “Barbara”
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Figure C.3 Original image “Goldhill”
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Figure C.4 Original image “Bridge”
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