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Thesis Outline

The thesis consist of the following papers, which can be read independently of

each other, though it is natural to read Paper I before Paper II and III.

Paper I Bayesian inversion of piecewise aÆne operators in a

Gaussian framework. With Henning Omre. Submitted.

Paper II Geostatistical approach to event migration of seis-

mic re
ection times. In Kleingeld, W.J. and Krige D.G.

eds, (2002) Proceedings of the Sixth international Geo-

statistics congress, Cape Town, South Africa, April 2000,

Vol 1, pp 114-123, revised 2001.

Paper III Case speci�c uncertainty assessment in cross well

tomography. Report

Paper IV Cauchy prior for Bayesian linearized seismic AVO

inversion. Report

Paper V Rapid spatially coupled AVO inversion in the

Fourier domain. With Arild Buland and Henning Omre.

Submitted.

In addition, the thesis contain an introduction in which inverse problems in

general are discussed and comment on the content of the �ve papers from this

general point of view.

Background

The �ve papers included in the thesis are motivated by challenges encountered

in the Bayesian approach to inverse problems. In particular nonlinear topics are

of interest.

The linear theory of Bayesian inversion can be de�ned by requiring a linear

relation between the parameter and the observations, additive Gaussian obser-

vation errors and a Gaussian prior distribution for the parameter. In the linear

theory, both the relation between the parameter and observations, and the re-

lation between the observations and the estimator are linear. The Bayesian

inference in this standard case is well known from the statistical litterature.

Nonlinearities arise whenever either of the three assumptions de�ning the linear

theory of Bayesian inversion is invalid. In the nonlinear case Bayesian inference

must normally be adapted to the problem at hand, and frequently it requires
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sophisticated sampling methods to explore the posterior distribution.

In Paper I, II and III the nonlinearity is introduced by assuming that the obser-

vations have a nonlinear relation to the parameter, still keeping the Gaussian

assumption for the prior and the observation error. By assuming the relation

between the parameter and the observations to be piecewise aÆne, suÆcient

structure of the inverse problem is imposed such that part of the analysis can

be treated analytically.

Paper IV and V consider inverse problems where the likelihood model can be

linearized on a logarithmic scale. In Paper IV a non Gaussian prior distribution

is introduced hence the resulting estimator is a nonlinear operator on the obser-

vations. Paper V is only marginally nonlinear, since it is fully linearized on the

logarithmic scale. The main concern in Paper V is however the dimensionality

of the problem.

Paper I is mainly concerned with theoretical aspects of the posterior distribution

for piecewise aÆne inverse problems. The other papers are related to various

topics in seismic inversion. Paper IV and V have been developed to a stage such

that real data is used in the inversion.

Summary

Paper I considers piecewise aÆne inverse problems. This is a large group of

nonlinear inverse problems. Problems that obey certain variational structures

are of this type. In inverse problems it is frequently such that some features

are well determined by the observations while others are poorly resolved. In

the Bayesian approach this imply that the likelihood forces the posterior dis-

tribution to be concentrated near hyper surfaces in the parameter space. In

nonlinear problems this causes most generic sampling algorithms to be slow.

The structure that is enforced in piecewise aÆne inverse problems allows the

posterior distribution to be decomposed as a mixture of truncated Gaussian dis-

tributions. Under given regularity conditions this mixture distribution is non

singular even if the observations are exact. A sampling algorithm that exploit

this decomposition is proposed. The decomposition can however be used in a

variety of sampling algorithms and is not limited to the sampling algorithm

used here. Two small example problems are used to illustrate the theory as it

is developed.

Paper II treats a problem in re
ection seismic within the framework of piece-

wise aÆne inverse problems. Assuming a known, constant velocity in a layer,

the problem is to determine the position of a re
ector in the subsurface based on

zero o�set traveltimes. This is a standard simpli�cation of the problem in re
ec-

tion seismic. A synthetic example show that the uncertainty is well represented

if there is a small number of observations, whereas the subsurface is satisfac-

tory reconstructed when a large number of observations are considered. In the
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example it is demonstrated that the current approach improve the standard

approach.

In Paper III cross well tomography is discussed in a Bayesian setting. In cross

well tomography the slowness �eld, being the inverse of the velocity, is recon-

structed based on the traveltimes of a signal generated in one well and received

in an other well. The travel time recorded is the shortest time that is physically

possible. The inverse problem is approximated by a piecewise aÆne inverse

problem of the form considered in Paper I. The calculations are carried through

for this problem by exploiting Fermat's principle of least time. The methodology

is tested for a synthetic example. In the Bayesian approach to this problem,

several slowness �elds are sampled from the posterior distribution. All the

proposed samples honor the traveltime observations up to the speci�ed error

structure. These slowness �elds are averaged to produce the Bayesian estima-

tor. The resulting estimator does not honor the the traveltime observations as

the individual samples do, but generally have larger traveltimes. This is due to

the nonlinearity in the problem. This e�ect is carefully explained in the paper.

The synthetic example further show that a linearized approach is reasonable

in the sense that it capture the main features in the estimate. The nonlinear

estimate does however reduce the loss with about 10 % in the synthetic ex-

ample. The linearized approach does not give a realistic representation of the

uncertainty. In synthetic example the linearized approach underestimate the

integrated variance by 30 %.

In Paper IV the objective is inversion of seismic pressure amplitudes recorded

in a marine seismic survey. After several steps of preprocessing, the seismic

observations can be modeled by a linear relation to the seismic re
ectivity, which

again may be approximated by a linear relation to the material parameters

on a logarithmic scale. The material parameters considered are pressure wave

velocity, shear wave velocity and rock density. The seismic data that correspond

to re
ections below one location at the surface are given as angle gathers. In

Paper IV each angle gather is inverted independently. The main concern in

Paper IV is that the seismic re
ectivity have heavier tails than what is predicted

by a standard Gaussian model. A prior distribution based on superposition of

a Cauchy process and Gaussian processes is proposed. As a test case material

parameters observed in a well log at the Sleipner �st Field is used to generate

synthetic seismic observations. This is used as a basis for comparison between

the proposed Cauchy model and a purely Gaussian model. The well log is used

to estimate the parameters in the prior distribution both for the Cauchy model

and for the pure Gaussian model. In a region with large variability the estimator

for the pressure wave velocity resulting from the Cauchy model improves the

risk by as much as 14 %. The Cauchy model also cause the uncertainty bounds

to vary such that regions with low variability have shorter credibility intervals

and regions with high variability have longer credibility intervals than for a pure

Gaussian model. The model is also tested for real seismic observations. The

results are satisfactory, although the uncertainty is large due to large observation
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errors in the seismic data.

Paper V has the same objective as Paper IV, that is to estimate pressure wave

velocity, shear wave velocity and rock density, based on preprocessed data from

a marine seismic survey. In Paper V it is however assumed that the Gaussian

assumption can be justi�ed. The focus in this paper is to incorporate lateral

dependencies in the estimates. When latteral dependencies are included, all

parameters are coupled, and must be solved simultaniously. This lead to a high

dimensional problem. Paper V exploits the fact that a Fourier transform of the

problem yield a block diagonal form such that a small problem may be solved

for each frequency component independently. Both the posterior mean and the

posterior covariance can be computed and stored eÆciently, due to the special

structure of the problem. This opens the possibility for including additional

information such that well data to obtain a re�ned solution around the well. The

methodology is tested on a seismic cube from the Sleipner �st Field, where 12

million parameters are estimated. The total computing time after preprocessing

is 6 minutes, the posterior covariance can be computed in additional 3 minutes

on a single 400 Mhz Mips R12000 CPU. Hence the algorithm is extremely rapid.
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Fundamentals of inverse problems

Odd Kolbj�rnsen

Department of Mathematical Sciences

Norwegian University of Science and Technology

Norway

1 Introduction

Inverse problems can be de�ned as problems that consist in �nding the cause of

an observed e�ect. An inverse problem is always paired with a direct problem

that provide the e�ect of a given cause. This de�nition requires the formulation

of any speci�c problem to be based on physical laws and that physics must

specify what is a cause and what is an e�ect as well as provide the equations

relating the e�ects to the causes (Bertero 1989). Inverse problems arise naturally

if one is interested in determining the internal structure of a system based on

the system's observed behavior or in determining the unknown input that give

rise to an observed output (Hansen 1998).

In a mathematical language an inverse problem relate to an operator equation,

y = K(z) ; (1)

with K : Z ! Y being a possibly nonlinear operator. The direct problem is

to determine the e�ect, y, of a given cause, z, whereas the inverse problem is

to determine the cause, z, of an observed e�ect y. The function space Z is

commonly denoted the model space or parameter space, while Y is denoted the

data space.

Expression (1) is unlikely to hold when y is a measured quantity, since measure-

ments have �nite precision. In addition Expression (1) may be inaccurate in the

sense that the operator K does not model all aspects of the physical processes

that produce the observations. The problem is hence more realistically stated

as,

y = K(z) + " ; (2)

with " being an error term.

To give a comprehensive account for all aspects of inverse problems, is im-

possible in a short introduction since the �eld have so many branches spanning

physical, mathematical, computational and statistical aspects. The current pre-

sentation include basic mathematical and statistical de�nitions that are relevant
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for inverse problems, and discuss some of the philosophies that underlies the dif-

ferent solution methods. The presentation will concentrate on the case where

K : Z ! Y is a compact linear operator since this theory is by far the best de-

veloped. The inversion methods and the underlying philosophies are frequently

generalized to solve nonlinear inverse problems. This is brie
y discussed.

The presentation is organized as follows. Mathematical aspects of inverse prob-

lems are presented in in Section 2. Inversion by regularization is presented in

Section 3. The statistical theory of point estimation is presented in 4. Statis-

tical minimax inversion and Bayesian inversion are presented in Section 5 and

6 respectively. In Section 7 the three inversion methodologies are compared

with respect to similarities and di�erences. Section 8 contains some concluding

remarks and the authors personal preferences. In Section 9 the content of the

thesis is discussed in light of the current introduction.

2 Mathematics of inverse problems

The presentation in this section is based on Engl, Hanke and Neubauer (1996),

Kirsch (1996) and Hansen (1998). It contain basic mathematical de�nitions and

discusses approximate solutions to inverse problems.

2.1 Problem classi�cation

According to the informal de�nition above a problem is classi�ed as direct or

inverse by the physics de�ning the problem. From a mathematical point of

view problems are more naturally labeled as being well-posed or ill-posed. A

problem is well-posed if there exists a unique, stable solution. The notion of a

well-posed problem is attributed to Hadamard (1902, 1923). Although there is

no formal connection between the two sets of labels, it is however true, with few

exceptions, that direct problems are well-posed while the corresponding inverse

problems are ill-posed. A de�nition of a well-posed inverse problem reads,

De�nition 1 (Well-posed) Let Z and Y be normed spaces and let K : Z ! Y

be a continuous operator from Z into Y. The problem y = K(z) is well-posed

in the sense of Hadamard if the following three conditions are satis�ed:

1. Existence: There exist a solution z 2 Z for any y 2 Y with K(z) = y

2. Uniqueness: There exist at most one solution z 2 Z for any y 2 Y with

K(z) = y

3. Stability: For every positive number �, there exist a positive number Æ(�)

such that any pair z1; z2 2 Z for which kK(z1)�K(z2)k < Æ(�), kz1�z2k <

�
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Problems for which at least one of the three conditions above fails to hold are

termed ill-posed.

Whether a problem is well-posed or not, depend both on the operator K and

the function spaces Z and Y .

The simplest case of an operator equation is, a matrix equation, y = K z, for

which Z = R
n, Y = R

m and K is a m�n matrix. The existence criterion then

imply that the rank of K is equal to m, the uniqueness criterion imply that the

rank of K is equal to n. Hence to assure both existence and uniqueness the

matrix must be square and have full rank. These are also suÆcient conditions

for a matrix equation to be well posed. Any inverse problem formulated as

a square matrix equation of full rank is hence stable in a strict mathematical

sense. For matrix equations the criterion of stability relates to computational

aspects of the inverse, K�1. If a small change in y produce a large change in

z = K
�1
y, the system is said to be unstable. The standard example of such a

matrix is

K =

�
1 1 + �

1 1

�

with � being a small number. Let the supscript T denote matrix transpose. The

solution for yT = [ 2 ; 2 ] is zT = [ 2 ; 0 ], while the solution for yT = [ 2+ � ; 2 ]

is zT = [ 1 ; 1 ], hence a change in the input of order � result in a change in

the answer of order one. In unstable systems, some of the equations are almost

linearly dependent. These systems are therefore hard to solve numerically, see

Hansen (1998) for an extensive discussion.

2.2 Singular value expansion

Consider an operator equation

y = K z ; (3)

with K : Z ! Y being a compact linear operator between two Hilbert spaces.

In common notation K
� : Y ! Z denotes the adjoint of K, and is de�ned by

the requirement that for all z 2 Z and y 2 Y , (K z; y) = (z;K�
y), with (�; �)

denoting inner products in Y and Z at the left and the right side of the equality

respectively. For any compact linear operator K : Z ! Y , there exist a singular

system f�i; vi; uig
1

i=1, with �i being nonnegative numbers, fvig
1

i=1 and fuig
1

i=1

being complete orthonormal systems of basis elements for Z , and Y respectively.

That is, z 2 Z and y 2 Y can be represented by the generalized Fourier series,

z =
P

zi vi and y =
P

yi ui, with zi = (vi; z) and yi = (ui; y). The numbers �i
are the singular values of K, these are usually ordered in a non increasing order,

�1 � �2 � � � � � 0. Singular systems resembles the eigensystem of compact self

adjoint operators, indeed f�2
i
; vig

1

i=1 and f�
2
i
; uig

1

i=1 are the eigensystems of the

self adjoint operators K�
K and KK

� respectively.
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The singular system de�nes the singular value expansion of K,

K z =

1X
i=1

�i (vi; z)ui ; (4)

The singular value expansion diagonalize the problem such that the generalized

Fourier coeÆcients of z can be solved independently, i.e.

Kz = y , �i zi = yi ; i = 1; 2; : : : : (5)

The ill-posedness of a linear inverse problem is frequently related to the decay of

the singular values. As i!1, �i ! 0, hence the e�ect of zi in Kz diminishes

as i ! 1. The rate of decay of the singular values can be used to classify

linear ill-posed problems. A problem is termed mildly ill-posed if �i � i
�r and

0 < r � 1, moderately ill-posed if �i � i
�r and r > 1 or severely ill-posed if

�i � expf�rig or worse.

The singular value expansion is the in�nite dimensional analog of the singular

value decomposition of a matrix. In the case of K being a real m � n matrix,

this decomposition reads,

K = U�V T =

min(n;m)X
i=1

�i ui v
T

i
;

with U = [u1 u2 � � � um] 2 R
m�m and V = [v1 v2 � � � vn] 2 R

n�n being matrices

with orthonormal columns, and � being a m � n diagonal matrix with the

singular values, �1 � �2 � � � � � �min(n;m), on the diagonal. From the equations

K
T
K = V �T �V T and KK

T = U��TUT it is seen that the singular value

decomposition of K is closely linked to the eigenvalue decomposition of KT
K

and KK
T .

2.3 Fundamental subspaces and the generalized inverse

The range of K, R(K), are those y 2 Y that can be reached from a z 2 Z .

This is in general not a proper subspace of Y , but the closure of this set, R(K),

is so. R(K) is spanned by the basis elements of Y that correspond to strictly

positive singular values, i.e. fuigfi :�i>0g. The orthogonal complement of R(K)

in Y is termed the null space of K�, denoted N (K�), and it is spanned by

the basis elements for which the corresponding singular values are zero, i.e.

fuigfi :�i=0g. Similarly Z can be divided into two subspaces corresponding to

whether the elements in
uence the output of K or not. From Expression (4) it

is easy to see that the subspace that in
uence the output of K is spanned by

the basis elements of Z for which the corresponding singular values are strictly

positive, i.e. fvigfi :�i>0g. This space is the closure of the range of K
�, denoted

R(K�). The orthogonal complement of R(K�) in Z is termed the null space
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of K, denoted N (K), and is spanned by the basis elements of Z for which the

corresponding singular values are zero, i.e. fvigfi :�i=0g. It is more natural to

relate to the operator K instead of the adjoint, hence it is common to de�ne

R(K�) as the orthogonal complement of N (K), i.e. R(K�) = N (K)?.

The generalized inverse, Ky, of a compact linear operator K can be de�ned

using the singular system of K,

K
y
y =

X
fi : �i>0g

(ui; y)

�i
vi ; (6)

when y 2 R(K) this generalized Fourier series converge. The solution is easily

found by solving the sequence problem in Expression (5). For a given y 2 Y the

convergence of the series in Expression (6), is equivalent with y satisfying the

Picard criterion, X
fi : �i>0g

j(ui; y)j
2

�2
i

<1 :

When the Picard criterion is ful�lled, the general solution to the inverse problem

is characterized by the sum of one component from the null space of K and the

generalized inverse of y, i.e. for any z0 2 N (K),

z = z0 +K
y
y : (7)

This decomposition of the general solution as a sum of the homogeneous solu-

tion and a particular solution, is common in di�erential equations and matrix

algebra.

2.4 Approximate solutions

In a real case the observations are prone to contain error hence the operator

equation in Expression (3), should be replaced by

y = K z + " ; (8)

with " being an error term, see Expression (2). For most inverse problems the

generalized inverse, Ky, is unstable because �i ! 0 as i ! 1. This imply

that a small error " will contribute signi�cantly to the series in Expression (6)

because the inner product (ui; ") is divided by �i. That is, the Picard criterion is

usually not ful�lled for measured data. Since the true solution of Expression (8)

cannot be obtained, an approximate solution is sought. An approximate solution

is denoted ẑ. Some commonly used approximations are discussed below. All

the approximate solutions are parameterized by a nonnegative number � that

de�nes the degree of approximation. The parameter, �, is de�ned such that

� = 0 de�nes the exact solution. This parameter is brie
y discussed below and

more throughly in Section 3.
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Filtering is a common way to obtain smoother solutions. In the context of

inverse problems, �lter factors may be introduced in the generalized Fourier

series de�ning the generalized inverse, see Expression (6). The approximation

may then be written as

ẑ =
X

fi : �i>0g

�i(�)
(ui; y)

�i
vi ; (9)

with �i(�) being �lter or shrinkage factors, and f�i; vi; uig
1

i=1 being the singular

system of K. The �lter factors satisfy 0 � �i(�) � 1 and �i(0) = 1, and are

de�ned such that the series in Expression (9) converge for � > 0. Many di�erent

approximate solutions of Expression (8) have the form of Expression (9). In fact

this expression is to general and a speci�c choice must be made for the �lter

factors �i(�). An example is the truncated singular value expansion, which can

be de�ned by �i(�) = If�i > �g, where If�g is one if the event in the brackets

is true, zero otherwise. In this case only the terms where the singular value

exceed � are included. The singular value expansion of a problem is generally

not known this complicates the approach in practical situations.

Tikhonov regularization exploits the fact that for any y 2 R(K) the generalized

inverse is the unique solution of the least squares problem

z = arg min
z 2 N(K)?

kKz � yk2: (10)

When y 62 R(K), the solution K
y
y is unbounded, i.e. kKy

yk = 1. Tikhonov

regularization avoid this by adding a penalty term in the minimization to keep

z bounded. The approximate solution, ẑ, is de�ned as the unique solution of

ẑ = argmin
z2Z

kKz � yk2 + �J(z); (11)

with J(z) being a suitable penalizing functional; and � being a positive number

determining the trade o� between the mismatch to the data and the penalizing

term. The most common choice of penalizer is the squared norm in Z , i.e.

J(z) = kzk2. In this case the approximate solution have the form of Expression

(9), with �i(�) = �
2
i
=(�2

i
+ �). Other choices are Sobolev norms, L1 norm

and maximum entropy. The methodology can also be generalized by using

other measures for deviations in the data. Tikhonov regularization may be

formulated in di�erent ways, such as minimizing the error in the data subject

to an upper bound on the penalizing functional, or as minimizing the functional

subject to an upper bound on the error. For any given data y there is an one

to one connection between the di�erent formulations, where the bounds can be

computed in terms of � and y.

Landweber iteration is an algorithmically de�ned approximate solution. It can

be regarded as steepest decent algorithm with a �xed step length, ! < 1=�21 .

The approximate solution is de�ned iteratively by

z
n = z

n�1 � !K
�(Kz

n�1 � y) ; (12)
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with starting point z0 = 0. After m = 1=� iterations, the solution obtained

have the form in Expression (9) with �i(�) = 1� (1� !�
2
i
)m. Note that when

y 62 R(K) the true solution is unbounded, since Expression (12) converge to the

true solution it is not bene�cial to iterate the expression too many times. The

amount of approximation hence lies in the number of iterations.

Conjugate gradient is another iterative technique for approximating the solution

in Expression (10). The conjugate gradient identify the best solution in the

Krylov subspace space of order m after m iterations. The Krylov subspace of

order m is de�ned by

Km(K
�
K;K

�
y) = spanfK�

y; (K�
K)K�

y; : : : ; (K�
K)m�1

K
�
yg:

In certain applications the Krylov subspace of order m is an approximation

to the subspace spanned by the �rst m singular vectors, i.e. spanfvig
m

i=1. In

these cases the conjugate gradient method stopped after m = 1=� iterations,

can be seen as an approximation to the truncated singular value expansion with

1=� terms. Note again that the amount of approximation is determined by the

number of iterations.

Landweber and conjugate gradient iterations as de�ned above are used as means

to de�ne approximate solutions, for this purpose a �nite number of iterations

is required. The iterations can also be used as numerical schemes to solve

well posed problems such as Expression (11). For such cases the the number

of iterations is a purely numerical question. Practical implementation of the

methods above require discretization. Di�erent discretization schemes can also

be used to de�ne approximate solutions of the continuous problem. Most of

the methods above can be described as �ltering of the singular system. The

singular value expansion is however not directly accessible for a given problem.

In a given situation the Landweber iteration is hence much easier to implement

than the general �ltering scheme.

The approximate solutions above are not fully speci�ed but depend on the pa-

rameter � that determines the tradeo� between data adaption and the bounded-

ness of the approximate solution, ẑ. Many techniques are developed for choosing

the parameter �. The L-curve is a helpful tool in understanding the impact of

a particular choice, and can be used in various ways to pick a particular value

of �. Cross validation and generalized cross validation (Wahba 1990) are also

used for this purpose. The parameter choice is formalized in the regularization

theory to be discussed next.

3 Inversion by regularization

The basic idea of regularization theory, is that the approximate solution should

be stable with respect to small deviations in the observations. The problem

can be seen as a game between a scientist and a malicious opponent. For given
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bounds on the parameter z 2 C and the error k"k < Æ, the scientist can choose

the approximate solution, ẑ, depending only on the data y. The subset C � Z

should at least exclude the components of z that does not in
uence the data,

i.e. N (K). The opponent can chose the parameter, z, within the restriction

C. The pay o� in the game is the maximum deviation between approximate

solution and the parameter for errors within the error bound

sup
ky�K zk<Æ

kẑ � zk2

This measure of deviation can be interpreted as allowing the opponent to chose

the error in addition to the parameter. The ultimate goal for the scientist is

hence to �nd an approximate solution that minimize the worst case deviation.

In order to reduce the complexity of the problem an indexed family of contin-

uous operators R� : Y ! Z is considered. A family of operators is denoted

a regularization strategy if R�Kz ! K
y
Kz for all z 2 Z when � ! 0. That

is R�K converge pointwise to the projection operator onto N (K)?. All of the

approximate solutions listed in Section 2.4 are valid regularization strategies.

A regularization method consist of a regularization strategy, R�, and a rule for

selecting the index �. A selection rule that only depend on the error bound, Æ,

is denoted an apriori selection rule, if the index also depend on the data, y, it

is termed an aposteriori selection rule. A pair (R�; �) is called an admissible or

convergent regularization method if

sup
ky�K zk<Æ

�(Æ; y)! 0 as Æ ! 0 ;

and

sup
ky�K zk<Æ

kR�(Æ;y)y �K
y
Kzk ! 0 as Æ ! 0 :

That is, as the error in the data tends to zero, so should the amount of reg-

ularization and the error of the approximation. By choosing a regularization

strategy, the original problem has been reduced to a one dimensional problem,

selecting a value of � for a given value of Æ and y.

The most widespread procedure for selection of � is the discrepancy principle

of Morozov, which de�nes the value of the regularization parameter � to be the

one that yields kKR�y�yk = Æ, with Æ being the maximum bound on the error.

Regularization methods are evaluated by the rate of convergence as the error in

the observation approach zero. In this respect the goal is to obtain an uniform

convergence rate in Z , this is however impossible for most inverse problems.

For this reason attention is drawn to subsets of Z of the form

ZB;� = f z = Bw; kwk < � g; (13)

with B :W ! Z being a bounded linear operator; and � being a �nite number.

This can be interpreted as an abstract smoothness constraint on z. Typical
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theorems for inversion by regularization consist of two results, the �rst result

state the optimal convergence rate in ZB;�, the second result prove that one

particular regularization method have the optimal rate of convergence in ZB;�.

A typical theorem is hence that the approximate solution found by Tikhonov

regularization using a quadratic regularizer and a selection rule given by the

discrepancy principle, is obtained by an admissible regularization method and

obtain the optimal convergence rate in ZK�;�.

Inversion by regularization is a general approach and can be used to solve non-

linear inverse problems. There are however few general results for this type

of problems. Most convergence theorems are of local type, or assume that the

global solution of a minimization problem can be found. Further, the unique-

ness problem is not as easily decomposed as for linear systems, see Expression

(7). To avoid problems in this respect a new origin, z0, that represent the best

prior guess is selected. When several solutions can be chosen, the one closest

to z0 is preferred. Tikhonov regularization, with penalizer J(z) = kz � z0k
2 is

widely used in nonlinear inverse problems. Since there are few rigorous results

in this area there is no general optimality results for the solution obtained in

most practical cases.

4 Statistical aspects of inverse problems

In the current presentation, inverse problems will be discussed in the context of

point estimation (Lehmann and Casella 1998). There are many other statisti-

cal aspects of inverse problems than those discussed here. Most important are

statistical methods for estimating the regularization parameter �, for a regular-

ization strategy R�, without having a prior bound on the error, see O'Sullivan

(1986), Wahba (1990) and Hansen (1998) for a discussion of some of these

methods, see also Stark (2000) for an insightful discussion of inverse problems

as statistics.

From a statistical point of view an inverse problem, as phrased in Expression

(2) and (8), is no di�erent from any other estimation problem. A parameter z

in a parameter space Z is to be estimated based on observations, y, in the data

space Y . The statistical link between the parameter, z, and the observations,

y, is described by the likelihood, p(yjz). Here, and in what follows, p(�) is being

used as a generic probability distribution. A parameter z, or a feature of z, is

said to be unidenti�able if it does not in
uence the likelihood, otherwise it is

identi�able. An estimator, ẑ, for z is a measurable function of the data, ẑ(y),

or in general an operator, ẑ : Y ! Z . To evaluate an estimator a loss function,

L(z; ẑ), is de�ned. A common choice, that will be used in what follows, is the

squared L
2 norm, i.e. L(z; ẑ) = kz � ẑk2. The statistical philosophy is that if

the experiment conducted to give the observations y is repeated, a new sample

y
0 from p(yjz) is obtained. Hence the error, ", in Expression (2) and (8) is given

a random variable interpretation. The objective is now to identify the estimator

9



that minimizes the expected loss when observations are sampled according to

the likelihood. The expected loss of an estimator, ẑ(y), is denoted the risk,

rẑ(z), and is de�ned pointwise in Z by,

rẑ(z) =

Z
Y

kz � ẑ(y)k2 dp(yjz) = EY jz
�
kz � ẑ(Y )k2

	
:

An estimator is said to be admissible if no other estimator can improve the risk

uniformly in Z . The risk is de�ned pointwise in Z , but the estimator must be

chosen without knowledge of z, hence in some way or other the estimator must

take the risk for all z 2 Z into account. In the minimax risk approach, the

maximum risk over Z is used to compare estimators. An estimator is optimal

if it has the least maximum risk in comparison to any other estimator. This

philosophy is used for inverse problems in Section 5 below. In the average risk

approach a measure is de�ned on Z and the the optimal estimator is de�ned as

the one that minimizes the average risk according to this measure. The average

risk approach is the fundament of Bayesian statistics which is further developed

in Section 6 below.

The principles of estimation are the same for inverse problems as for any other

statistical problem. Most inverse problems do however have some characteristics

that distinguish them from the classical statistical theory. In inverse problems

the number of parameters will frequently be of the same order, most often larger,

than the number of observations. This can be seen from the sequence problem

in Expression (5). Inverse problems of this type have closer resemblance to

problems where the number of parameters grow together with the number of

observations, than to the classical large sample theory (Lehmann 1999). Stein

(1956) showed that the celebrated maximum likelihood estimator is inadmis-

sible in a sequence model when there is an equal number of observations and

parameters, larger than two. It is hence not likely that the maximum likelihood

methodology will succeed in solving inverse problems. Further, in inverse prob-

lems the parameter is observed through a transform, see Expression (2), and

not directly as in the traditional statistical theory of function estimation.

5 Statistical minimax inversion

In the minimax approach the estimates are evaluated by the maximum risk in

Z . The problem can be seen as a game between the scientist and a malicious

opponent. For given bounds on the parameter z 2 C and a speci�ed likelihood

model, p(yjz), the scientist can choose the estimator, ẑ, depending only on the

data y. The opponent can chose the parameter, z, within the restriction C � Z .

The pay o� in the game is the risk for the opponents choice of parameter, that

is the expected loss under the likelihood model,

rẑ(z) = EY jz
�
kz � ẑ(Y )k2

	
:
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The subset C may be a smoothness constraint such as Expression (13). The

ultimate goal for the scientist is hence to �nd an estimator that minimize the

worst case expected loss.

Estimators in the minimax approach are frequently evaluated by the rate of

convergence as the information content of the date increase, the zero noise limit

is common. Typical theorems for statistical minimax inversion consist of two

results. First the optimal rate of convergence in C is obtained next an optimal

estimator is found. The case where the set C is of the quadratic type, see

Expression (13) is treated in Johnstone and Silverman (1990,1991), in which

a rate optimal estimator is de�ned. The estimator correspond to �ltering of

singular values, see Expression (9). The estimator truncate the singular value

expansion and shrink the remaining coeÆcients.

In some cases a smoothness constraint on the parameters such as Expression

(13) can be limiting. The resulting estimators are always linear or almost so.

Resent developments in the �eld of computational harmonic analysis allow for

using the notion of sparsity rather than smoothness. The resulting estimator

being represented by the wavelet-vaguelette decomposition (Donoho 1995). The

main idea is that wavelets give a sparse representation of functions. Since the

functions sought have few large coeÆcients, the focus can be directed towards

which coeÆcients that should be estimated, instead of trying to estimate all.

The typical result for these type of estimators is that the minimax rate of con-

vergence is obtained adaptively within a logarithmic term. The adaptivity is in

contrast to the traditional approaches where the smoothness must be de�ned

prior to the estimation. The estimators based on wavelet-vaguelette decompo-

sition has been particular successful for mildly and moderately ill-posed inverse

problems.

The concern in minimax estimation is to get the best possible estimator for z, not

to assess the uncertainty. There are however statistical results that deal with the

uncertainty of the estimates also in this case, Stark (2001) considers con�dence

intervals for linear estimators of linear functionals, and report the methods of

strict bounds (Backus 1989) and minimax con�dence intervals (Donoho 1994),

in both cases under the assumption of K being a compact linear operator.

The minimax approach is a general principle for estimation, and would apply

also to nonlinear inverse problems. It is however a complex machinery and to

the knowledge of the author, which may be limited, there has been no extensive

study of minimax estimation for general nonlinear inverse problems.

6 Bayesian inversion

In the Bayesian approach knowledge and uncertainty regarding the parameter,

z, is summarized in probability distributions. The prior distribution, p(z), rep-

resent the knowledge of z prior to observations. The average risk, commonly
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denoted the Bayes risk, of an estimator, ẑ(y), is the expected risk under the

prior measure,

Bẑ[p(z)] = EZ frẑ(Z)g = EZ
�
EY jZ

�
kZ � ẑ(Y )k2

		
: (14)

The objective in Bayesian estimation is to �nd the estimator that minimizes

the Bayes risk, Bẑ [p(z)], for a given prior p(z). When the Bayes risk is �nite,

the order of integration in Expression (14) can be interchanged. The Bayes

estimator, ẑB : Y ! Z , is then formally de�ned by

ẑB = argmin
ẑ

EY
�
EZjY

�
kZ � ẑ(Y )k2

		

The problem can be solved for each y separately by minimizing

ẑB(y) = argmin
ẑ

EZjy
�
kZ � ẑ(y)k2

	
(15)

The major advantage of this expression is that the estimator only need to be

found for the observation, y, actually obtained. The unique minimizer of Ex-

pression (15) is known to be the posterior expectation, that is

ẑB(y) = EZjyfZg : (16)

This is the classical Bayes estimator. The averaging measure in Expression (15)

and (16) is denoted the posterior distribution and can formally be written as

p(zjy) =
p(yjz)p(z)

p(y)
: (17)

For the Bayesian analyst the posterior distribution is the answer to the inverse

problem, since this contains his updated knowledge regarding the parameter.

The knowledge can be used to produce the best estimate of a parameter accord-

ing to a general loss function and to assess uncertainty regarding the parameter.

Expression (16) and (17) look quite convenient, but computation of these quan-

tities can be diÆcult. In order to evaluate expectations under the posterior

distribution in the general case various types of Monte Carlo integration can

be used. The most common approach is Markov chain based techniques like

Metropolis-Hastings (Robert and Casella 1999). One important special case is

however analytically tractable and will be describe in grater detail below. In

the special case the observations are related to a compact linear operator with

additive error, see Expression (8), and the parameter, z, and the error, ", are

modeled as Gaussian random functions.

A Gaussian random function, Z, in a separable Hilbert space can be represented

by the Karhunen-Lo�eve expansion, see Yaglom (1987),

Z =

1X
i=1

Zi vi ;

12



with fZig
1

i=1 being independent Gaussian random variables with mean �i and

variance 
2
i
; and fvig

1

i=1 being the corresponding basis elements of unit length.

The pairs f
2
i
; vig

1

i=1 is the eigensystem of the covariance operator of Z. This

is the in�nite dimensional equivalent of the eigenvalues and eigenvectors of the

covariance matrix. For simplicity let fZig
1

i=1 be centered, i.e. �i = 0; 8 i. The

observations are y = Kz + ", see Expression (8), with K : Z ! Y being a

compact operator; and " being an error term, modeled as a Gaussian random

function. Assume further that " have the Karhunen-Lo�eve expansion

" =

1X
i=1

"i ui

with f"ig
1

i=1 being centered independent Gaussian random variables with vari-

ance �
2
i
, and for presentational simplicity that K have the singular system

f�2
i
; vi; uig

1

i=1, with vi and ui being identical to the basis elements in the

Karhunen-Lo�eve expansion of Z and " respectively. The posterior random func-

tion (ZjY = y) can then be represented by the same Karhunen-Lo�eve expansion

as the prior, only with di�erent coeÆcients. De�ning yi = (ui; y) this reads

(ZjY = y) =

1X
i=1

(ZijYi = yi) vi ; (18)

with f(ZijYi = yi)g
1

i=1 being independent Gaussian random variables with mean

yi�i=(�
2
i
+�

2
i
=


2
i
) and variance 
2

i
[1��

2
i
=(�2

i
+�

2
i
=


2
i
)]. The optimal estimator

can in this case be found explicitly as

ẑ(y) =

1X
i=1

�
2
i

�2
i
+ �2

i
=
2

i

(ui; y)

�i
vi

Note that this result is of the form in Expression (9).

Nonlinear inverse problems �ts equally well into the Bayesian methodology, as

linear. The optimal estimator under quadratic loss is again the conditional ex-

pectation, and the uncertainty is again described by the posterior distribution.

There is no additional problem with identi�ability since the posterior is a mea-

sure on the parameter space. There is however a computational cost which may

be a severe obstacle.

7 Comparison of methodologies

In the previous sections inversion by regularization, statistical minimax inver-

sion and Bayesian inversion, are presented as methodologies to solve inverse

problems. In the current section these methodologies are compared.

In the presentation above inversion by regularization is presented as a mathe-

matical approach whereas the other two are presented as statistical approaches.
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This classi�cation focuses the observation error, ". In the mathematical ap-

proach the error is chosen by a malicious opponent that always makes the least

favorable choice, whereas in the statistical approaches the error is considered

random, hence it will change if the experiment is repeated.

Historically the mathematical and statistical approaches are developed sepa-

rately and di�erent languages have emerged. The result is that di�erent names

have been given to the same e�ect, and similar names have been given to di�er-

ent e�ects. The �rst is exempli�ed by uniqueness in the mathematical language

and identi�ability in the statistical. An example of the latter is that an ad-

missible regularization strategy relate to an e�ect in the zero noise limit, while

an admissible estimator relates to the performance of a particular estimator

regardless of the noise level.

From a mathematical point of view the important notion for the solution is sta-

bility and convergence, which is implied by an upper bound on the estimation

error in terms of the observation error. These bounds are seldom tight such

that tight uncertainty bounds for the approximate solution can be derived. In

a discrete problem the maximum estimation error of an approximate solution,

can in theory be found using constrained optimization. This is however a hard

problem to solve numerically. In the statistical literature the two estimation

approaches justify two di�erent strategies to assess the uncertainty. In the min-

imax approach few techniques are able to assess the uncertainty in the setting

of inverse problems, the few rigorous methods stated above are limited to lin-

ear inverse problems. In the Bayesian approach the uncertainty is described

by the posterior distribution, any probabilistic uncertainty statement regarding

the parameter can be deduced from this distribution. Stark (1992) denote the

Bayesian uncertainties as formal uncertainties, because they are based on an

apriori assumption about the parameter that cannot be veri�ed.

In many respects it is more natural to classify the methodologies by their view

on the parameter. Inversion by regularization and statistical minimax inversion

regard the parameter as a �xed quantity, while in the Bayesian approach it is

considered to be random. In Donoho (1994) a related problem is investigated,

a deep connection between two �xed parameter approaches corresponding to

those above is found.

Results in any of the three methodologies, require that additional information

is given. In the �xed parameter approaches this is done by imposing bounds

on the parameter space such as Expression (13). In the Bayesian approach the

information is given in terms of a probability measure on Z . The Bayesian

approach hence requires stronger assumptions, since the relative importance of

any two elements in Z can be measured.

Consider also the achievement of the methodologies, within their own standard.

In the Bayesian approach the optimal estimator under quadratic loss is well

de�ned, i.e. EZjyfZg, hence it is a computational question to obtain the solution

for given set of data. The �xed parameter approaches are more ambitious, but
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only rate optimality is established.

Tikhonov regularization is frequently given a Bayesian interpretation, by de�n-

ing

p(z) = const� expf��2�J(z)=2g

and

p(yjz) = const� expf��2kKz � yk2=2g

with const being a generic normalizing constant; � being a scaling factor; and

J(z), kKz�yk2 and � being as as for Expression (11). The posterior distribution

is then

p(zjy) = const� expf��2(kKz � yk2 + �J(z))=2g

The value of z that maximizes this distribution is denoted the maximum poste-

rior estimate. This is identical to the solution found by Tikhonov regularization,

see Expression (11). Although this estimate for computational reasons is com-

monly used in Bayesian analysis, it is not a proper Bayes estimate in the cases

considered here, since no proper loss function correspond to this estimator.

There is also a connection between the statistical minimax inversion and Bayesian

inversion. The minimax approach can be seen as a game version of the Bayesian

approach. In this game the scientist pick the estimator, ẑ, whereas the opponent

may pick the prior distribution, �(z), within a restricted class of distributions.

The pay o� in this game is the Bayes risk with the prior from the opponent,

i.e. Bẑ [�(z)]. This connection is an essential part in the theory of statistical

minimax inversion.

8 Conclusions

The three methodologies are all successful for linear inverse problems, and the

solutions look surprisingly similar.

The philosophical di�erence between mathematical approach and the statistical

approaches is the nature of the observation error. The mathematical approach

considers the worst case error. The statistical approaches regard the error as

random. To choose one over the other based on this criterion is a philosophical

debate of the nature of the error, ". The error is caused by many sources. If

all of the sources are of equal strength, the central limit theorem, can be used

to argue the case for random errors. If some of the sources are dominant, this

will produce a systematic error hence the mathematical philosophy would be

preferable.

A practical di�erence between the mathematical approach and the two statisti-

cal approaches, is that stability is focused in the mathematical approach whereas

uncertainty is focused in the statistical approach. There is a fundamental dif-

ference between the two notions, i.e. a solution can be stable and have large
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uncertainty. In the authors opinion assessment of uncertainty is an important

issue, hence he tends to favor the statistical approaches.

The Bayesian choice of prior distribution is usually criticized in traditional

statistics. The critique is not as severe when it comes to the inverse problems

considered here since information about the parameter must be included apriori

in any case. Non informative prior distributions is in the author opinion only

of interest for hyper parameters when inverse problems are considered, since

inverse problems requires additional structure to be enforced. The Bayesian

methodology achieves more and is more widely applicable, but the Bayesian

assumptions regarding the parameters are stronger than that of minimax es-

timation. Whether the Bayesian achievements are worth the price of stronger

assumptions is for the practitioner to decide.

From a purely statistical point of view the minimax estimator usually have bet-

ter properties and should be preferred. On the other hand minimax estimators

are only found for special cases, and are hence generally not available. Phe-

nomena that are studied in inverse problems frequently have spatio-temporal

structures, hence modeling the prior by random �elds seem natural and may

give the Bayesian estimates an advantage. The Bayesian methodology also guar-

antee the estimator to be admissible. Hence the Bayesian estimators can be used

also by non-Bayesian that do not fully believe in the posterior distribution.

When it comes to aspects of uncertainty, the question is whether formal uncer-

tainties are acceptable or not, keeping in mind that the alternative might be no

assessment at all. In the authors opinion formal uncertainties are acceptable in

any engineering application, but can be questioned for scienti�c purposes.

Non of the theories are fully developed in the nonlinear case. In the Bayesian

approach the optimal estimator is known in theory, but there is no general way

to compute it. The choice in the nonlinear case is frequently between Tikhonov

regularization and the Bayesian approach, i.e. the maximum aposteriori esti-

mate and the conditional expectation. The authors personal preference is the

conditional expectation since this account for many reasonable solutions and is

the one where loss criterion carry through to the �nal estimate also for nonlinear

problems.

9 The thesis in the current context

The thesis is fully within the framework of Bayesian inversion, but parts has

been inspired by work within the other solution frameworks.

The focus in the introduction is mainly on linear estimators for linear inverse

problems. Nonlinear inverse problems and nonlinear estimators are presently

subject to extensive research interest, but a complete theory for these type of

problems is still lacking.
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Paper I is devoted to a particular type of nonlinear inverse problem an practical-

ities for Bayesian inversion in this case. Paper II and III are speci�c applications

of Paper I. A feature that is of particular interest in Paper III is that the the

conditional expectation does not honor the data to the same extent as individual

samples. This imply that the maximum posterior estimator is better adapted

to the data than the conditional expectation. The reason for this is that the

conditional expectation take all of the parameter space into account when pro-

ducing the �nal estimator. The maximum posterior estimator identify only one

extreme case among many possible. The conditional expectation hence produce

a more robust summary of the posterior distribution.

In Paper IV the prior is formulated by smoothing independently scattered ran-

dom measures. For the Gaussian case this relates to Expression (13) with B

being the smoothing kernel. When the prior measure is discretized this corre-

spond to the version presented in Neumaier (1998). The use of both a Gaussian

random process and a Cauchy process may be seen as a Bayesian version of basis

selection (Donoho and Stark 1989; Donoho and Huo 2001). The choices being

a spike basis de�ned through the Cauchy process or a harmonic basis de�ned

through the Gaussian processes.

The essence of the Paper V is contained in Expression (18). By using the Fourier

transform each set of frequency components may be solved independently. The

only di�erence to Expression (18) is that in Paper V several parameters are

solved simultaneously using information from several angles. Hence a block

version of the result is required. In the context of seismic inversion Expression

(18) is obtained when the impedance is estimated from the zero o�set data. The

fact that the fast Fourier transform correspond to the singular vectors of the

discretized problem makes the approach highly eÆcient.
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Abstract

Piecewise aÆne inverse problems, are solved in a Bayesian framework

with a Gaussian random �eld prior on the parameter space.

The inverse problem is to reconstruct the parameter when its mapping

through a piecewise aÆne operator is observed, possibly with errors. A

piecewise aÆne operator is de�ned by partitioning the parameter space

and assign a speci�c aÆne operator to each part. Both problems with a

discrete �nite partition and a continuous partition are considered.

Piecewise aÆne inverse problems is a general class of nonlinear in-

verse problems, in particular inverse problems obeying certain variational

structures, such as Fermat's principle in traveltime tomography, is of this

type.

The main result is that the posterior distribution is found to be a

mixture of truncated Gaussian distributions, and the expression for the

mixing distribution is partially analytical tractable. The decomposition is

used to propose a sampling algorithm. The algorithm is applicable also for

problems with exact observations, for which generic sampling algorithms

tends to fail.

KEY WORDS: Bayesian statistic, Nonlinear inverse problem, Piece-

wise linear inverse problem, Sampling algorithm.
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1 Introduction

A feature of many inverse problems, that makes them un�t for the traditional

statistical setting of parameter estimation in large sample theory (Lehmann

1999), is that the number of unknown parameters is of the same order or larger

than the number of observations.

In the statistical literature on inverse problems of this type, two di�erent risk

criterions are used for evaluating estimators, being the minimax risk and the

Bayesian risk. For the early theory of linear inverse problems, the two ap-

proaches essentially give the same solution. A classical minimax result of Pinsker

(1980) in function estimation, prove that the solution obtained by quadratic reg-

ularization, (Tikhonov 1963), have the optimal rate of convergence in the zero

noise limit. This result is extended to cover the setting of inverse problems

(Johnstone and Silverman 1990). In the Bayesian approach a quadratic regu-

larizer is formally equivalent with a Gaussian random �eld prior as described in

Tarantola (1987) and Wahba (1990). The conditional expectation in this model

will again be the solution found by regularization. This solution is also denoted

the maximum posterior (MAP) solution since it is the mode in the posterior dis-

tribution. The minimax theory will not be pursued any further, although there

are many resent results in this �eld, (Donoho 1995; Abramovich and Silverman

1998; Johnstone 1999).

In this article a Bayesian approach with a Gaussian random �eld prior is used,

to solve piecewise aÆne inverse problems. In the Bayesian tradition the full

posterior distribution is the solution to the inverse problem. The maximum

posterior (MAP) solution is commonly used also for nonlinear inverse problems

(O'Sullivan 1986; Tarantola 1987; Wahba 1990). For genuine nonlinear inverse

problems this choice is not obvious, since the posterior frequently have multiple

modes and the mode with the highest posterior value need not be the one that

is most representative. Multiple random samples from the posterior yields a

common Monte Carlo representation of the posterior, and is the approach used

here.

In the current article piecewise aÆne inverse problems both with a �nite and

a continuous partition of the parameter space is considered. The main result

is that the posterior is calculated to be a mixture of truncated Gaussian distri-

butions in both cases. The main contribution of the article is the solution in

the case of a continuous partition. This is a non trivial extension of the results

for a �nite partition. An algorithm which uses the decomposition to sample the

posterior is proposed. The algorithm is based on rejection sampling, but the de-

composition can be used more generally and is essential for eÆciently exploiting

the global structure of the inverse problem in any sampling algorithm.

The class of piecewise aÆne inverse problems is very general by its de�nition.

In particular an inverse problem obeying a certain type of variational structure,

can be phrased as a piecewise aÆne inverse problem. Fermat's principle in travel
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time tomography (Berryman 1997) is of this type. The authors have applied

the methodology to event migration in re
ection seismic and nonlinear cross

well tomography. In the current article two small examples of piecewise aÆne

inverse problems are used to illustrate the concepts as they are introduced.

Example 1: The L1 norm

Problem: A two dimensional vector is to be recovered, based on one observation

of the L1 norm of the vector. This is a low dimensional synthetic example that

gives results that is easy to illustrate graphically.

Example 2: The meteorologist.

Problem: A meteorologist is supposed to continuously monitor the temperature

during a day. After reading the thermometer in the morning, he leaves it unat-

tended the rest of the day. The next day when he return to the oÆce, he reads

the thermometer again. In the 24 hour period between the two readings, only

the day maximum and the day minimum value can be obtained from the ther-

mometer, not at what time they occurred. The meteorologist need to recover

the entire temperature �eld of the previous day.

To the authors knowledge there is no previous attempt to unify the treatment

of piecewise aÆne inverse problems. The results for the �nite index case, are

however generally known and special cases are encountered by several authors,

see Kolessa (1986) for this type of observations in a �ltering setting. Liu and

Chen (1998) also consider an example of this type in the setting of a particle

�lter. The results for the continuous index is a nontrivial extension of the �nite

index case, and is the main contribution of the current paper.

2 Bayesian approach to inverse problems

The recovery of a function z based on observations of a transform of the function

is termed an inverse problem. When z is assumed to be in a function space Z ,

the observations are y =K(z ) + ", with K : Z ! Rr being the known forward

map of the inverse problem, and " 2 Rr being observation error.

Normal typing is used to denote scalars and scalar functions, while bold typing

denote vectors and vector valued functions. A generic probability distribution

is denoted pf�g and Pf�g denotes a generic probability. Both the notation pfzg

and pfZ = zg is used to denote the distribution of Z, the latter to emphasis the

random variable in question. The notation pfzjY = yg denotes the conditional

distribution of Z given Y = y.

The Bayesian approach to inverse problems, is in principle no di�erent from

the Bayesian approach to any other problem (Gelman et al 1995). The analyzer

must specify a prior on the parameter space and a likelihood for the observations.

The Bayesian framework is very 
exible and it allows for stochastic modeling of
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the prior distribution to quantify lack of knowledge and to merge observations

from di�erent sources.

The prior distribution, pfzg, is modeled by a Gaussian random �eld (Vanmarcke

1983) in this work.

Example 1 The L1 norm continued

The random vector is assumed to have a bi-Gaussian prior distribution, hence

pfzg = N2(0;�Z) with �11 = �22 = 1 and �12 = �21 = 0:5. The contour lines

of this density is plotted as ellipses in Figure 1.

Example 2 The meteorologist continued

The meteorologist has developed a stochastic model for the temperature during

one day, t 2 [0; 24];

Z(t) = Z0 + Z1 sin
�t

12
+ Z2 cos

�t

12
+ eZ(t);

with Z0; Z1; Z2 and eZ(t) being stochastically independent; pfz0g = N(15; 52),

pfz1g = N(5; 22), pfz2g = N(0; 0:52), and eZ(t) is a zero mean residual Gaussian
random process with covariance function C

eZ
(t; t+ h) = expf�3jh=4j2g. Hence

Z is a Gaussian random process, being twice continuous di�erentiable for t 2

[0; 24]. Figure 2 shows 200 samples from this prior distribution.

The likelihood model is assumed to contain additive Gaussian error, hence

pfyjZ = zg = Nr (K(z );�z

");

with Nr being the r dimensional multi Gaussian distribution; K(z) being the

forward map of the inverse problem and �z

" being the covariance of the obser-

vation error, note that this in general may depend on z.

The Bayesian answer to any question is contained in the posterior distribution,

pfzjY = yg, being the conditional distribution of the parameters given the

data. The posterior distribution is formally proportional to the product of the

prior and the likelihood,

pfZ = zjY = yg / pfZ = zgpfY = yjZ = zg : (1)

The object is to sample the posterior distribution to obtain a Monte Carlo rep-

resentation. The samples represent the posterior uncertainty of the inversion

and can be combined to a single estimate by using a loss function (Gelman et al

1995). Several generic sampling algorithms are developed. Generic approaches

only require the probability distribution to be known up to a normalizing fac-

tor and are hence ideal for sampling the distribution in Expression (1). Some

generic approaches are, rejection sampling (von Neumann 1951), resampling

schemes (Rubin 1988) and Markov chain based methods (Hastings 1970). All of

these methods have merits in solving inverse problems, and there are numerous
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variants of their implementations. The Markov chain based methods appear as

the most general ones and are extensively used.

Frequently in inverse problems, it is such that some features are well determined

from the likelihood model while others are poorly resolved. The result being

that the posterior is concentrated along hyper surfaces in the parameter space.

In this case most generic approaches become slow. Normally they fail for the

case of exact nonlinear observations. The current work is primarily motivated

by inverse problems where the observations have high precision.

3 Piecewise aÆne inverse problems

In the �rst part of this section, piecewise aÆne inverse problems are de�ned in

general. In the following two parts, attention is drawn to two special cases where

the piecewise aÆne operator have a �nite and a continuous index. For both cases

the posterior is calculated as a mixing distribution, and a sampling algorithm

based on rejection sampling is proposed. For the case of a �nite index the

algorithm produces exact independent samples from the posterior distribution.

For the case of a continuous index, the mixing distribution to be sampled is

only known up to a normalizing constant. Given independent samples from this

mixing distribution, independent samples from the posterior may be produced.

The proposed algorithm is not the only way to exploit the decomposition. It is

also discussed how the decomposition can be used to produce other sampling

algorithms.

3.1 Problem De�nition

Piecewise aÆne inverse problems are de�ned by the forward map being a piece-

wise aÆne operator.

De�nition 1 (Piecewise aÆne operator) An operatorK : Z ! Rr, is said

to be piecewise aÆne, if it can be represented in the following way:

K(z) =Kxz + kx for z 2 Ax ; x 2 X

with X being an index set, fAxgx2X being a partition of Z; Kx : Z ! Rr being

bounded linear operators on Z and kx being r dimensional vectors. The in-

dexed set of triplets fAx;Kx;kxgx2X are the parameters of the piecewise aÆne

operator.

This de�nition of piecewise aÆne operators is very general. Its usefulness de-

pends on the index set X . One special case is obtained by X = f1g in which

the class of aÆne operators are obtained. The other extreme is letting X = Z ,
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in which any operator can be represented as piecewise aÆne. In this article in-

termediate groups are considered, by letting X = f1; :::;mg and X � Rd. The

two examples above being one of each type. It will always be assumed that the

operator is measurable with respect to the prior measure, pfzg, on Z .

De�ne also the aÆne operators of a piecewise aÆne operator.

De�nition 2 (The aÆne operators of a piecewise aÆne operator) Let

K be a piecewise aÆne operator with parameters fAx;Kx;kxgx2X . Then the

aÆne operators fKxgx2X of K is de�ned by

Kx(z) =Kxz + kx ; z 2 Z ; x 2 X

The aÆne operators of a given piecewise aÆne operator is hence de�ned by

fKx;kxgx2X , hence extending the aÆne pieces to the entire Z .

The random variable, Y , actually observed is de�ned through its conditional

distribution,

pfY jZ = z; z 2 Axg = Nr(Kxz;�
x

"
); (2)

with �x

" being the covariance matrix of the observation error, possible depen-

dent on the index. The marginal distribution of Y is not obvious due to the

nonlinearity of K. De�ne also the random variables fY xgx2X , that correspond

to observe the aÆne operators of K,

pfY xjZ = zg = Nr(Kx(z);�
x

"
) ; (3)

with �x

"
being as for the likelihood in Expression (2). Note that the marginal

distribution of Y x, is Gaussian, with parameters:

�
Y x

= EfKxZg+ kx

�Y x
= CovfKxZg+�x

"

In general �x

" may be singular, but �Y x
should be of full rank.

Example 1 The L1 norm continued

The piecewise aÆne operator of this problem is the L1 norm K(z) = kzk1,

de�ned as:

K(z) =

8>><
>>:

z1 + z2 z1 � 0 ; z2 � 0

z1 � z2 z1 � 0 ; z2 < 0

�z1 + z2 z1 < 0 ; z2 � 0

�z1 � z2 z1 < 0 ; z2 < 0

:

This problem has a discrete index X = f1; 2; 3; 4g. In Figure 1, the contour

kzk1 = 2 is plotted as a solid line, the extensions of the aÆne operators at the

same level are plotted as dotted lines. Assume that y = 2 is observed and that

the observation error is distributed as N(0; 0:12).
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Example 2 The meteorologist continued

The meteorologist has observed the temperature each morning and the global

extremes in between. To de�ne this operator, consider its action on the function

z(t). The piecewise aÆne operator is:

K(z) =

8>><
>>:

z(0)

z(tmax)

z(tmin)

z(24)

z 2 Atmax;tmin
;

with

tmax = arg max
t2[0;24]

z(t) ; tmin = arg min
t2[0;24]

z(t) ;

and Atmax;tmin
= fz 2 C2([0; 24]) : z(tmax) � z(t) � z(tmin) ; 8t 2 [0; 24]g,

where C2([0; 24]) denotes the functions on [0; 24] being two times continuously

di�erentiable. Hence the operator is indexed by a continuous index T = [0; 24]�

[0; 24]. The index correspond to the location where the maximum and the

minimum occur, this is of course not observed. Assume z(0) = 19:78, z(24) =

19:74, max0�t�24 z(t) = 26:04 and min0�t�24 z(t) = 16:61 is observed, and that

the observations are exact. The observations are indicated in Figure 2.

3.2 Finite Index

The objective is to assess the posterior distribution. The full posterior will not

be Gaussian due to the nonlinearity inK, although within eachAx the posterior

will be a truncated Gaussian distribution. The following theorem characterizes

the posterior in terms of a mixing of these truncated Gaussians.

Theorem 1 (Finite partition) Let Z be a Gaussian random �eld with distri-

bution pfzg, such that PfZ 2 Zg = 1, and K : Z ! Rr be a pfzg-measurable

piecewise aÆne operator with index set X � N with jX j < 1 and parameters

fAx;Kx;kxgx2X . Further let Y and fY xgx2X be de�ned by Expressions (2)

and (3) above. Assume further that:

8x 2 X rank f�Y x
g = r

9x 2 X PfZ 2 AxjY x = yg > 0

Then,

pfZ = z; Z 2 AxjY = yg = (4)

pfZ = zjY x = y;Z 2 Axg �
PfZ 2 Ax jY x = yg � pfY x = yg

pfY = yg
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Proof :

A standard identity of conditional distributions is:

pfZ = z; Z 2 AxjY = yg =
pfZ = z jY = y;Z 2 AxgpfY = y;Z 2 Axg

pfY = yg
:

By de�nition,

pfZ = zjY = y;Z 2 Axg = pfZ = z jY x = y;Z 2 Axg

pfZ 2 Ax;Y = yg = pfZ 2 Ax ;Y x = yg

The result now follow by,

pfZ 2 Ax;Y x = yg = pfZ 2 Ax jY x = ygpfY x = yg QED.

Note that the �rst term in Expression (4) is a truncated Gaussian distribution

conditioned to the linear constraint Y x = y. The second term gives the poste-

rior probability of being in Ax. The rank criterion is to assure that the mixing

distribution on X do not have any singularities. The positivity criterion assures

that there exists a solution to the problem.

The mixing distribution of Theorem 1, provides a sampling strategy to sample

the posterior distribution.

Algorithm 1 FTGM-algorithm (Finite Truncated Gaussian Mixing)

1. Sample x� � q(x) / pfY x = yg

2. Sample Z� � pfZjY x� = yg

3. If Z� 2 Ax� stop.

The algorithm is a variant of rejection sampling. The �rst objective is to ob-

tain the posterior probability of being in Ax. In Theorem 1 this probability is

calculated as:

PfZ 2 AxjY = yg =
PfZ 2 Ax jY x = yg � pfY x = yg

pfY = yg
:

Note that pfY = yg is just the normalizing constant in the expression and

0 < PfZ 2 AxjY x = yg < 1 , hence proposing Ax according to q(x) /

pfY x = yg and accepting according to PfZ 2 AxjY x = yg, is a standard

rejection algorithm for sampling Ax. The algorithm does not give optimal

acceptance rate for q(x), since the acceptance probability in the algorithm

�(x) = PfZ 2 AxjY x = yg < 1 ; 8x 2 X . The value PfZ 2 AxjY x = yg is in
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general not straight forward to calculate, however an event with this probabil-

ity can be obtained by sampling Z� from pfzjY x = yg and accept if Z� 2 Ax.

The second objective is to sample pfzjY x = y;Z 2 Axg, this is a truncated

Gaussian distribution. By sampling pfzjY x = yg and accepting if Z 2 Ax

this distribution is sampled correctly. The two acceptance criterions are the

same for the two objectives of the algorithm, hence they are coupled in the �nal

algorithm.

Due to the positivity constraint in Theorem 1, the algorithm produces a sample

in �nite time. The acceptance rate of the algorithm, can be calculated as:

paccept =
pfY = ygP

x2X
pfY x = yg

: (5)

In comparison, the standard rejection algorithm with proposals drawn from

the prior and accepted with probability proportional to the likelihood, have

acceptance rate:

paccept = pfY = yg(2�)r=2 j�"j
1=2 ; (6)

for the case with �xed �". This is heavily dependent on the scale of the obser-

vation error. For the sampling algorithm proposed, the size of the observation

error is of secondary importance. Resampling techniques and algorithms based

on naive use of Markov Chains, also have a reduced performance when the ob-

servations are precise. Since X contains a �nite number of states, q(x) can be

calculated exactly. The FTGM-algorithm is hence fully speci�ed and provides

exact independent samples from the posterior.

Example 1. The L1 norm continued

The FTGM-algorithm is implemented for this example. Figure 1 shows a scatter

plot of the samples obtained using the algorithm. The posterior have four modes

which are visible in the scatter plot. Note that the algorithm is exact and

the samples are independent. The observed acceptance rate is 88:5% in this

example.

From Expression (5) it is clear that the acceptance probability is dependent

on the observed value, y. Figure 3, shows this dependence for Example 1.

For comparison the acceptance rate for naive rejection sampling is plotted as a

dotted line in the same �gure.

The fact that the FTGM algorithm produces independent samples from the

posterior is appealing, but in practical situations the acceptance rate PfZ 2

AxjY x = yg may be very small. An example of this is found in Example 1

when y is small, see Figure 3. The decomposition of Theorem 1 imply that

pfZ = z; Z 2 AxjY = yg / pfZ = z jY x = yg pfY x = yg I fz 2 Axg;

with Ifz 2 Axg being one if z 2 Ax, zero otherwise. This can be exploited

to develop algorithms that are based on the generic principles, but specialized
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to the inverse problem at hand. The idea being the same as for the FTGM -

algorithm, �rst to sample the index, next exploit the aÆne structure to propose

a sample.

3.3 Continuous Index

The objective is to assess the posterior distribution. In the case of a �nite index

one is free to choose the operators Kx and the partition fAxgx2X ; as long as

the resulting operator K(z) is measurable. For a continuous partition further

speci�cations are needed.

De�nition 3 (Index continuity of operator) An indexed set of bounded

operators, Kx : Z ! Rr with x 2 X � Rd is continuous in the index with

respect to a probability measure pfzg on Z, if:

P
n

lim
�x!0

kKxZ �Kx+�xZk = 0 ; 8x 2 X
o
= 1

That is, de�ne a d-parameter, r-dimensional random �eld on X , by for each

x 2 X associating the r-dimensional vector KxZ. De�nition 3 implies sample

path continuity for this �eld on X .

De�nition 4 (Restricted linear partition) A partition fAxgx2X with

X � Rd of Z is a restricted linear partition if,

Ax = fRxz + rx = 0g \ Cx;

with Rx : Z ! Rd being a bounded linear operator; rx being a d-dimensional

vector function; and Cx is any subset of Z. The set of triplets fRx; rx; Cxgx2X
are the parameters of the restricted linear partition.

Hence for a restricted linear partition, having parameters fRx; rx; Cxgx2X , the

part Ax� contain only those z's in the subset Cx� for which Rx�z + rx� =

0. Further regularity conditions must be assumed about the restricted linear

partition with respect to the prior measure on Z .

De�nition 5 (Regular restricted linear partition) Let Leb(�) denote

the Lebesgue-measure on Rd. A restricted linear partition with parameters

fRx; rx; Cxgx2X is regular with respect to a prior measure pfzg on Z if:

10



i) rank(CovfRxZg) = d ; 8x 2 X

ii) rxRx : Z ! Rd�d is a bounded linear operator,continuous in index.

iii) Leb(fx : detfrxRxZg = 0g) = 0 a:s:

iv) rx is continuously di�erentiable in each component.

v) Cx is pfzjRxZ + rx = 0g measurable

vi) 9B 2 X with Leb(B) > 0 : PfZ 2 CxjRxZ + rx = 0g > 0 ; 8x 2 B

For a regular restricted linear partition, the linear part, RxZ + rx, constitutes

a non stationary d - dimensional Gaussian random �eld on X . The restriction,

RxZ + rx = 0, in the partition are the zero crossings of this random �eld.

The level crossings of RxZ + rx is a point process due to the match of the

dimension of the parameter space and the value space of the process. For one

speci�c realization z each point is also marked with Ifz 2 Cxg, the indicator

of Cx being one if z 2 Cx, zero otherwise. This mark determines the value of x

uniquely among the points of the point process, hence determines the part, Ax,

which z belongs to. Let this be illustrated by Example 2.

Example 2 The meteorologist continued

Assume the extreme values do not occur at the boundary. The global maximum

and minimum during the 24 hour period are hence obtained in the interior of

the region at critical points. Since z is twice continuously di�erentiable, the

derivative of z is zero at critical points, hence the parameters of the partition

are :

Rtmax;tmin
z = [z0(tmax); z

0(tmin)]

rtmax;tmin
= 0

Ctmax;tmin
= Atmax;tmin

;

with Atmax;tmin
as previously de�ned. The partition is regular with probability

one. Criterion i) is ful�lled if tmax 6= tmin, this possibility is ruled out since

equality corresponds a constant temperature pro�le. Criterion ii) and iii) are

ful�lled since:

rtmax;tmin
Rtmax;tmin

z =

�
z00(tmax) 0

0 z00(tmin)

�

Criterion iv) is ful�lled by the de�nition of rtmax;tmin
. Criterion v) is ful�lled

since z is twice continuous di�erentiable. The number of critical points within

the domain will be �nite with probability one. By assumption one of these points

are the global maximum and one the global minimum point hence criterion vi)

is also ful�lled.

In the continuous index problem, an extended piecewise aÆne operator is intro-

duced.
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De�nition 6 (Extended piecewise aÆne operator) For a piecewise

aÆne operator de�ned on a continuous domain, X , having the parameters

fAx;Kx;kxgx2X and a regular restricted linear partition with parameters

fRx; rx; Cxgx2X the extended piecewise aÆne operator is de�ned by:

~K(z) = ~Kxz + ~kx for z 2 Ax ; x 2 X ;

~Kxz =

2
4 Kxz

Rxz

rxRxz

3
5 ; ~kx =

2
4 kx

rx

rxrx

3
5

The random variables that correspond to observe the aÆne operators of the

extended piecewise aÆne operator, is denoted ~Y x and are de�ned through the

conditional distribution,

pf ~Y xjZ = z; z 2 Axg = Nr+d+d2( ~Kxz; ~�"

x

); (7)

with ~�"

x

being a matrix consisting of �x

"
in the upper left corner and zeros

otherwise.

Theorem 2 (Continuous partition) Let Z be a Gaussian random �eld with

distribution pfzg, such that PfZ 2 Zg = 1. Further let K : Z ! Rr be a pfzg-

measurable piecewise aÆne operator with index set X � Rd, 0 < Leb(X ) < 1

and parameters fAx;Kx;kxgx2X , having a regular restricted linear partition,

with parameters fRx; rx; Cxgx2X . Denote the parameters of the extended piece-

wise aÆne operator by fAx; ~Kx; ~kxgx2X . Let Y , f ~Y xgx2X be as de�ned by

Expressions (2) and (7) above. Assume ~Kx is continuous in index; ~kx; ~�"

x

be-

ing continuously dependent on x; and that rankfCovfrxRxZgg = n. Assume

further:

rankfCovf ~Y xgg = r + d+ n ;8 x 2 X

9B �R � Rd �Rn with Leb(B �R) > 0 : 8(x; r) 2 B �R

PfZ 2 Cxj ~Y x = (y;0; r) g > 0

Then,

pfZ = z;rx(RxZ + rx) = r; Z 2 Cx; jY = yg

= pfZ = zj ~Y x = (y;0; r);Z 2 Cx g (8)

� PfZ 2 Cxj ~Y x = (y;0; r) g �
j det(r)jpf ~Y x = (y;0; r) g

pfY = yg

The �rst term in Expression (8) is a truncated Gaussian distribution. The

second term is the acceptance criterion and the third term is the proposal dis-

tribution on X �Rn. Note that there are only linear equality constraints in the

12



�rst term and that the second and third term is the posterior density for being

in Ax with rx(RxZ + rx) having the value r.

In comparison to the �nite index case, Expression (8) contains the determinant

of the Jacobian. Due to this factor, the mixing distribution must be extended.

Instead of just drawing the region Ax containing z, the value of the Jacobian of

the linear part of the restriction, RxZ + rx, must be sampled simultaneously.

This is also the feature that makes the continuous index a nontrivial extension

of the �nite index case. The appearance of such a determinant when turning

from the case of a discrete index, to the case of a continuous index, is similar

to what appears for transforms of random variables. The proof of Theorem 2 is

left to Appendix A.

The mixing distribution of Theorem 2, provides a sampling strategy for the

posterior.

Algorithm 2 CTGM-algorithm (Continuous Truncated Gaussian Mixing)

1. Sample x�; r� � q(x; r) with q(x; r) / j det(r)jpf ~Y x = (y;0; r) g

2. Sample Z� � pfZj ~Y x� = (y;0; r�)g

3. If Z� 2 Cx� stop.

The algorithm is a variant of rejection sampling, and works exactly as for the

case of a �nite index. The only di�erence is that the index is extended. The

acceptance rate of the algorithm can be calculated as

paccept =
pfY = ygR

X

R
Rd

2 j det(r)jpf ~Y x = (y;0; r) g dr dx

The di�erence from the �nite index case, is that the normalizing constant of

q(x; r) is unknown, hence the proposal distribution for the mixing, must be

sampled by the use of generic algorithms.

Example 2. The meteorologist continued

The CTGM-algorithm is implemented for this case. The proposal distribution q

is sampled using a SIR-algorithm (Rubin 1988) using 500000 proposals. Figure

4 show 400 independent samples from the SIR approximation to the posterior.

The true curve is plotted in white. The acceptance rate in step 3 of the CTGM-

algorithm is observed to be 43:8% in this example. The correct distribution is

sampled within the discretization e�ect of the SIR-algorithm, even for this case

with exact observations. The naive use of any generic algorithm will fail for this

case, due to the exactness of the observations.

The acceptance rate in step three of the CTGM-algorithm may become small,

the problem is however not as severe as for the �nite index case since additional
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information is provided, i.e. fRxZ + rx = 0g. The decomposition in Theorem

2 may be used to describe the following identity,

pfZ = z;rx(RxZ + rx) = r; Z 2 Cx; jY = yg

/ j det(r)j pfZ = zj ~Y x = (y;0; r)gpf ~Y x = (y;0; r) g I fz 2 Cxg ;

with Ifz 2 Cxg being one if z 2 Cx, zero otherwise This result can again be used

to specialize a generic algorithm to the problem at hand.

Since the current approach requires the use of generic algorithms, the direct use

of such algorithms to sample Z should be considered an alternative. The current

approach compare favorable in two respects: �rstly it reduces the number of

parameters that have nonlinear relations to a minimum; secondly under the

assumptions of Theorem 2, the distributions to be sampled are nonsingular even

if the observations are exact, for this case the direct use of a generic algorithm

fails and provides no alternative.

4 Conclusions and discussion

A Bayesian approach to solve piecewise aÆne inverse problems, is developed.

Piecewise aÆne inverse problems have an intuitive de�nition and are easy to

picture mentally. Although piecewise aÆne inverse problems only provide a

small step into the world of nonlinearity, they possess genuine nonlinear fea-

tures. Piecewise aÆne inverse problems constitutes a large class of problems,

including travel time tomography and event migration of travel times from re-


ection seismic.

Both problems with a �nite and a continuous index are considered. The general

result is the decomposition of the posterior distribution as a mixture of trun-

cated Gaussian distributions in both cases. The general formulation has to the

authors knowledge not previously appeared, although results for a �nite index

are generally known. The results for a continuous index, is however a nontrivial

extension of those for the �nite index.

An algorithm that uses the decomposition and is based on rejection sampling

is proposed. When tested on small example problems, the algorithm gives rea-

sonable acceptance rates, and provides solutions to problems that can not be

solved by direct use of generic sampling algorithms.

The decomposition can also be used to develop more sophisticated generic sam-

pling algorithms, or to obtain a di�erent goal than to sample the posterior

distribution, for example to estimate expectations of functionals of Z. Contrary

to direct use of generic algorithms, algorithms that makes use of the decompo-

sition exploits the global structures of the inverse problem. Major bene�t of

using the proposed approach is expected to appear when the observations have

high precision.
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The algorithm has similarities to an auxiliary variable approach, but is not so

in a strict sense since the index introduced is a function of the parameter.

The theory is developed for Gaussian random �eld priors, but can easily be

extended to include mixtures of Gaussian random �elds.
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A Proof of Theorem 2

To simplify notation, de�ne the random variable X implicitly by Z 2 AX(Z),

and the random vector �elds R(x) = RxZ + rx; Y (x) = Y x ; x 2 X . In the

current notation the content of Theorem 2 is restated as:

pfX = x;Y = yg =Z
Rd

2

jdet(r)jPfZ 2 CxjR(x) = 0;rxR(x) = r;Y (x) = yg

� pfR(x) = 0;rxR(x) = r;Y (x) = yg dr :

Proof :

Consider the following identity

PfX 2 B \ Y 2 
g = Pf9x 2 B : R(x) = 0;Y (x) 2 
; Z 2 Cxg

De�ne a random counting process by

N
(B) = #fx 2 B : R(x) = 0;Y (x) 2 
; Z 2 Cxg

Note that N
(B) 2 f0; 1g since fR(x) = 0g \ Cx constitutes a partition, hence:

EfN
(B)g = Pf9x 2 B : R(x) = 0;Y (x) 2 
; Z 2 Cxg

This expectation can be obtained under suitable regularity conditions for the

random �elds involved (Adler 1981). First note that

N
(B) = lim
"!0

Z
B

Æ"(R(x))I(Z 2 Cx \ Y (x) 2 
)j det(rxR(x))j dx ; (9)
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Figure 1: Conditioning to the L1 norm. A scatter plot containing 177 values

sampled from the posterior by the use of FTGM-algorithm. Superimposed on

this is the contour lines from prior distribution; a solid square showing the

contour of the piecewise aÆne operator at the observed level, kzk1 = 2; and

dashed lines showing the extension of the aÆne operators at the same level.
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Figure 2: Conditioning to extreme value observations; observations and prior.

The horizontal lines shows the observed level of maximum and minimum values.

The white circles at each end, show the values observed at the boundaries, in

addition 200 samples from the prior distribution used in Example 2, is displayed,

some of the samples are partially or completely outside the scaling of the �gure.
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Figure 3: Comparison to naive rejection sampling. The acceptance rate is plot-

ted as a function of the observed value in Example 1. The solid line is the accept

probability for the FTGM-algorithm, the dotted line is the corresponding for

naive rejection sampling.
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Figure 4: Conditioning to extreme value observations; the posterior. The actual

temperature is displayed as a white curve, together with 400 realizations from

the posterior distribution, sampled by the CTGM-algorithm in Example 2.
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Abstract

Zero o�set traveltimes from re
ection seismic, are integrated in a

Bayesian framework to localize a geological subsurface. The �rst arrival

is �tted into the framework of piecewise aÆne operators. A partially

analytical expression for the posterior distribution is used to develop an

algorithm to sample from the posterior distribution. An eÆcient approxi-

mate algorithm to sample from the posterior distribution is also proposed.

A synthetic example illustrate the results.

1 Introduction

Inverse problems arising in geophysics are frequently solved by using geostatisti-

cal methodology. Working with re
ection time inversion, Delprat-Jannaud and

Lailly (1993), recognize the bene�t of de�ning a continuous model independent

of discretization. They pose the solution as being the argument that minimize

an objective function. The objective function is a trade o� between the resid-

ual sum of squares and a regularization term. The uncertainty is assessed by

evaluating the Hessian of the residual sum of squares for a linearized problem

(Delprat-Jannaud and Lailly 1992).

When the regularization term is a norm in a reproducing kernel Hilbert space,

there exists a dual probability measure for random functions, (Tarantola 1987;

Wahba 1990). Using this measure as a prior in a Bayesian model, the maxi-

mum posterior estimate, is identical to the solution found by regularization. The

maximum posteriori estimate is frequently used for Bayesian models (O'Sullivan

1986), although the classical Bayes estimate is the conditional expectation (Robert

and Casella 1999). In general the posterior distribution may be regarded as the

Bayesian answer to an inverse problem. The Bayesian methodology hence pro-

vide a stable estimate and assess the associated uncertainty.

The objective is to localize a geological subsurface, by using zero o�set non-

migrated re
ection times. The subsurface is the borderline between two layers, it

is assumed that the velocity is constant in the top layer. If the exact traveltimes
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are known in a region, there is an one to one relation between the traveltimes

and the subsurface, see for example Kleyn (1977). The traveltimes are however

discretely sampled with errors. A standard solution is to �t a spline function

through the traveltimes, see for example Gj�ystdal and Ursin (1981). Event mi-

gration as used in this article di�ers from Kirchho� migration (Bleistein, 1987).

For a background model having constant velocity, Kirchho� migration takes

events in data space and back projects them along elliptic curves. Event mi-

gration localize the recorded event along the same elliptic curve. In the current

work the problem is solved by a Bayesian methodology in a Gaussian frame-

work. The traveltime observations are �t into the framework of piecewise aÆne

operators (Kolbj�rnsen and Omre 2002). This formulation gives an expression

for the posterior distribution that is partially analytical tractable. Using this

expression, an algorithm to sample the posterior distribution is proposed, as

well as an eÆcient sampling algorithm that samples an approximation to the

posterior distribution. The approximate approach still honor the nonlinearities

in the observations. The method is illustrated in a synthetic example.

The constant velocity model is not suÆciently complex to describe a realistic

earth model. The problem is however related to re
ection tomography (Farra

and Madariaga 1988; Delprat-Jannaud and Lailly 1993). In re
ection tomogra-

phy both the subsurface and the velocity �eld above the subsurface is unknown.

A linearized analysis of re
ection tomography show that large components of

the velocity �eld and re
ector position remains undetermined by traveltime ob-

servations (Delprat-Jannaud and Lailly 1992; Bube and Meadows 1999). A

Bayesian solution to the inverse problem in re
ection tomography, would give a

contribution by its ability represent uncertainty in such nonlinear problems.

2 Model

Consider a two layer model, with constant seismic velocity, v, in the top layer.

The twice continuously di�erentiable Gaussian random function fZ(x) ; x 2 Rg,
represents the geological subsurface being the depth to the boundary between

the two layers.

The Gaussian random function is de�ned by its mean and its covariance,

�Z(x) = EfZ(x)g ; x 2 R

CZ(x1; x2) = CovfZ(x1); Z(x2)g ; x1; x2 2 R:

For the Gaussian random function to be twice di�erentiable with probability

one, the expectation is required to be twice di�erentiable, and regularity condi-

tions must be enforced to the covariance function, see Stein (1999) for details.

There is however no stationarity assumption, hence a model formulation as in

Bayesian kriging (Omre and Halvorsen 1989), is admissible. The space of twice

continuous di�erentiable functions on R is denoted C
2(R). To keep notation
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short, Z will be used to denote the random function it self, Z(x) will denote

the random function evaluated at the location x. Lower case letters will denote

deterministic functions such as speci�c sample paths. Bold letters are used to

denote vectors and vector valued functions.

3 Observations

The current section describes the experimental set up that produces the travel-

time observations, and phrases the problem in the setting of a piecewise aÆne

inverse problem.

Geometrical aspects of the data collection, is illustrated in Figure 1. A pulse is

generated on the surface in the shot location, xs. The pulse propagates into the

ground and is re
ected by the subsurface. The part of the pulse that is re
ected

in the location x propagates back to the surface and is the �rst to arrive in the

receiver location xr. In the point x, where this re
ection occurs, the elliptic

curve with foci at xs and xr is tangent to the subsurface, see Figure 1. The

time from the pulse is generated in xs until it is received at xr is denoted the

traveltime. The o�set is half of the horizontal distance between the shot and

receiver location. In the current presentation only zero o�set traveltimes are

considered hence xs = xr , and the ellipse degenerate to a circle.

For a given shot/receiver location the two way re
ection time is a nonlinear

multi valued functional of the geological subsurface fz(x) ; x 2 Rg. In the geo-

logical model described above there is at least one re
ection for each shot. This

re
ection occur at minimum distance from the shot location to the subsurface.

Only this �rst arrival is considered in this article, but a similar approach can

be used to deal with multiple arrivals. For a subsurface z and a shot/receiver

location xs the traveltime of the �rst arrival can be expressed as:

t(z; xs) = min
x2R

2

v

p
z(x)2 + (x� xs)2;

with v being the velocity in the top layer, and the value of x that obtains the

minimum is the re
ection location. Observations of �rst arrival will be �tted

into the framework of piecewise aÆne operators as de�ned in Kolbj�rnsen and

Omre (2002).

De�nition 1 (Piecewise aÆne operator) An operator K : Z ! Rn, is
said to be piecewise aÆne, if it can be represented as:

K(z) =Kxz + kx for z 2 Ax ; x 2 X

with X being an index set, fAxgx2X being a partition of Z; Kx : Z ! Rn being
bounded linear operators on Z and kx being n dimensional vectors. The indexed
set of triplets fAx;Kx;kxgx2X are the parameters of the piecewise aÆne oper-
ator.
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Kolbj�rnsen and Omre (2002) considers both �nite and continuous index sets,

X . The problem of event migration is in the current presentation adapted to

the framework of piecewise aÆne operators having a continuous index set. For

the case of a continuous index set, the partition is assumed to have a special

form.

De�nition 2 (Restricted linear partition) A partition fAxgx2X with
X � Rd of Z is a restricted linear partition if,

Ax = Cx \ fRx(z) = 0g;

with Cx being any subset of Z; Rx(z) = Rxz + rx; with Rx : Z ! Rd being a
bounded linear operator; and rx being a d-dimensional vector function. The set
of triplets fCx;Rx; rxgx2X are the parameters of the restricted linear partition.

For zero o�set traveltimes, measured for the shot location, xs, de�ne the indexed

functionals,

Kx(z) =
2

v

p
z(x)2 + (x � xs)2 ; (1)

Rx(z) = z(x) � z0(x) + x� xs ; (2)

with v being the velocity in the top layer; z being the subsurface; z0 being the

derivative of the subsurface; and x being the spatial reference. In addition de�ne

the function sets

Cx =
�
z 2 C

2(R) : z(x)2 + (x� xs)
2
< z(u)2 + (u� xs)

2; u 2 R1 n fxg
	

(3)

The functionalsKx, Rx and the function sets Cx correspond to the parameters of
the piecewise aÆne operator, and the restricted linear partition. Any re
ection

from the subsurface, z, back to the shot location, xs, will occur in a location x

with Rx(z) = 0, that is the place where the subsurface is tangent to the circle

with center xs. A re
ection from this point will have the traveltime Kx(z). In

addition only the �rst arrival is considered, hence the re
ection from xmust have

the minimum time, that is z 2 Cx. The parameters of the traveltime operator are
hence identi�ed by the expressions above, but does not automatically conform

to the framework of the piecewise aÆne operators sinceKx and Rx are nonlinear

functionals. However since Z(x) and Z
0(x) can be solved exactly when Kx(Z)

and Rx(Z) are known only a minor adjustments is needed. The exact details

for this is in Appendix A.

Having observed the minimum traveltime at n shot locations, denoted xs =

[xs 1; :::; xs n ], an indexed operator is made by stacking the operators corre-

sponding to each shot location into a vector. For each shot location a new

dimension is added to the index, x = [x1; :::; xn ]. This gives

K(z) =Kx(z) for z 2 Ax ; x 2 X ; (4)
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with

Kx(z) = [Kx1(z); ::: ;Kxn(z) ]
T

;

Rx(z) = [Rx1(z); ::: ; Rxn(z) ]
T

;

Ax =

n\
i=1

Cxi \ fRx(z) = 0g :

The index, x, of the resulting piecewise aÆne operator have an intuitive inter-

pretation. When z 2 Ax, z have the minimum distance to the shot locations

xs in the re
ection locations x. Since only the minimum distance is considered

there will be a monotone relation between the shot locations and the re
ection

locations.

The exact relation between the traveltimes and the subsurface is described

above, but the traveltimes are observed with errors. Let the observed random

variable, Y , be de�ned by its conditional distribution,

p(yjZ = z) = Nn(K(z);�")

with K(z) being de�ned by Expression (4); and �" being the the covariance

matrix for the observation error. The marginal distribution of Y is not Gaussian

due to the nonlinearity of K.

4 Sampling the posterior

The main result in this section is an algorithm for sampling the posterior when

conditioning to traveltimes. This algorithm is based on a decomposition of

the posterior obtained in Kolbj�rnsen and Omre (2002). The Jacobian of the

restrictions in the partition, rxRx(z), is needed to obtain the decomposition.

It is further convenient to introduce the extended operators

~Kx(z) = ~Kx(z) for x 2 X ;

with

~Kxz =

24 Kx(z)

Rx(z)

rxRx(z)

35 :
Note that this is a collection of operators indexed by the same index as the

original problem. De�ne the random variables ~Y x corresponding to observations

of each of the operators ~Kx,

p(~y
x
jZ = z) = Nn+d+d2( ~Kx(z); ~�") ;
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with ~Kx being the extended operator for index x; and ~�" being an extension

of �". The values of ~�" are like �" in the upper left n � n corner and zero

otherwise.

The objective is to compute the posterior distribution of Z given Y = y. In

Kolbj�rnsen and Omre (2002) this distribution is derived as a mixing of trun-

cated Gaussian distributions, under given regularity conditions. The result for

the traveltime observations reads,

pfZ = z; Z 2 Cx;rxRx(Z) = rjY = yg

= pfZ = zjZ 2 Cx; ~Y x = (y;0; r) g (5)

� PfZ 2 Cxj ~Y x = (y;0; r) g �
j det(r)jpf ~Y x = (y;0; r) g

pfY = yg

The distribution on the left hand side is the distribution of Z when Z is in Cx
and rxRx(Z) have the value r. The posterior distribution of Z is obtained

by integrating out x and r. In Appendix A the expressions above are given

in terms of Z(x), Z 0(x) and Z
00(x), for a traveltime observation with re
ection

in the location x. The �rst term on the right hand side of Expression (5) is a

truncated Gaussian distribution when the observations are without error, the

case with errors being treated in Appendix A. The second term is a probability

and the third term is a measure on X �Rd2 . The product of the second and

third term is the joint posterior density for Z being in Cx andrxRx(Z) having

the value r. Note that rxRx(z) is diagonal and that the elements on the

diagonal are positive for z 2 Cx due to the second order criterion for minima.

The mixing distribution of Expression (5), provides a sampling algorithm for

the posterior.

Algorithm 1 CTGM-algorithm (Continuous Truncated Gaussian Mixing)

1. Sample x�; r� � q(x; r) with q(x; r) / j det(r)jpf ~Y x = (y;0; r) g

2. Sample Z
� � pfZj ~Y x

� = (y;0; r�)g

3. If Z� 2 Cx� stop.

The algorithm is a variant of rejection sampling. The acceptance rate of the

algorithm is given by

paccept =
pfY = ygR

X

R
Rd

2 j det(r)jpf ~Y x = (y;0; r) g dr dx
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The algorithm yields samples from the posterior when conditioning to a piece-

wise aÆne operator. The posterior density for Z being in Cx with rxRx(Z)

having the value r is sampled correctly since the proposal distribution in Step

1 is proportional to the third factor of Expression(5) and the acceptance part

in Step 3 is exactly the second factor of Expression (5). When a pair (x�; r�)

is accepted, the sampled value z
� is a valid sample. Note that the re
ection

locations, x, are monotone as a function of the shot locations, xs and that the

elements of r are positive. These inequality constraints should be imposed when

sampling q(x; r).

The challenging part of the algorithm is to sample the proposal distribution,

q(x; r) / j det(r)jpf ~Y x = (y;0; r) g; (6)

which is known apart from the normalizing constant, see Appendix A for details.

There are several ways to sample this distribution. One approach is to sample

the distribution using a McMC algorithm. As an alternative, an algorithm that

samples an approximation to q(x; r) is proposed. The approximate approach

still honor the nonlinear structure of the problem since only Step 1 of the CTGM-

algorithm is approximated.

The distribution q(x; r) is approximated by a sequence of truncated Gaus-

sian distributions. Firstly q(x; r) is approximated by a Gaussian distribution,

qG(x; r). The distribution qG(x; r) is sampled sequentially, but for each vari-

able in the sequence the relevant constraint is imposed on the conditional dis-

tribution. The resulting approximation is neither a Gaussian nor a truncated

Gaussian distribution, but the absolute magnitude of the proposal density can

be assessed directly in the sampling approach. Since the exact distribution is

known to a multiplicative factor, importance weights for the sampled values can

be calculated. These weights can be used to remove bias in the sample. This is

not done in the current study, however.

5 Example

The methodology is tested in a synthetic example. Uncertainty in the shot/re-

ceiver location is included in addition to the observation error. To correctly

account for these e�ects, shot locations, xs, and observation errors, ", should

be sampled simultaneously with x and r, see Appendix A.

The prior model for the re
ector is de�ned to be a stationary Gaussian random

�eld,

Z(x) = Z0 + eZ(x) ; x 2 [0; 10];

with pfZ0g = N(2; 1); and eZ(x) being a zero mean Gaussian random �eld with

covariance Covf eZ(x); eZ(x+h)g = 0:152 expf�3 � (h=2)2g. Several samples from
the prior distribution are shown in Figure 2. Note the extreme uncertainty
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in the level of the samples, that make several of the samples lie partially or

completely outside the scales of the �gure. The realization used in this example

is plotted with a thick line.

Figure 3 shows the lines that connect the shot/receiver locations with the re
ect-

ing point at the subsurface to be recovered. The uncertainty in shot location is

assigned standard deviation �xs = 10 m. The observation error of the traveltime

is assigned standard deviation �t = 0:05 sec. The interval velocity is assumed

to be v = 1 km/sec. In Figure 4 the observed traveltimes and assumed shot

locations are plotted together with the true traveltimes, which of course can be

exactly computed in this synthetic example. The CTGM-algorithm is imple-

mented in two simulation studies. In the �rst study only the �ve traveltimes

that is marked in Figure 4 is used, in the second all 81 traveltime observations

are used.

Figure 5 display the sample values from the study when only �ve traveltime

observations are used. The proposal distribution q(x; r) is sampled by a McMC-

algorithm. The acceptance rate in the �nal step of the CTGM-algorithm, is 98%,

leaving the sampling of q as the most time consuming part. Compared with the

samples from the prior distribution, see Figure 2, there is a dramatic reduction

in uncertainty. The level is well determined and, the true subsurface is within

the ensemble of samples from the posterior distribution.

Figure 6 display the sample values from the study when all 81 traveltime obser-

vations are used. The approximate sampling approach is used. The observed

acceptance rate is 4:95% in the �nal step of the CTGM-algorithm. The relatively

low acceptance rate is partially due to numerical instability in this particular

problem since extreme smoothness is imposed by the second order exponential

correlation function. In this case the uncertainty is very low within the region

containing observations. At both ends there is larger uncertainty. Some of the

samples have extreme values at the end of the interval. This is an artifact that

is caused by the interaction of the approximate sampling algorithm and the ex-

treme smoothness of the second order exponential correlation function. Apart

from the valley between 6 and 7 km the true subsurface is well within the en-

semble of samples from the posterior distribution. The deviation in this valley

can partially be explained by the actual observation errors in this region, see

Figure 4.

The ensemble of samples can be combined to a single estimate. To reduce the

in
uence of the outliers, see Figure 6, the pointwise median is used as an esti-

mator. For comparison the standard estimate based on inverting the smoothed

traveltimes is computed. In Figure 7 (a)-(c) the estimates are compared with

each other and to the true subsurface. The standard estimate have higher,

sharper tops and more shallow, broader valleys, than both the true subsurface

and the proposed estimate. The standard estimate miss out both the valley

around 4 km and the valley between 6 and 7 km. In the 
at regions such as

the interval between 1 and 3 km the standard estimate is as good as the pro-
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posed. The cause of the di�erence in the estimates is that the smoothing of the

traveltimes in the standard approach, implicitly impose a spatial assumption of

stationarity for the traveltime as a function of the shot location. In the proposed

approach the stationarity is imposed directly on the subsurface.

6 Conclusions

Zero o�set traveltimes from re
ection seismic are used to localize a geological

subsurface. A Bayesian approach is developed by �rst de�ning the prior and

likelihood and next condition to the observations. The posterior distribution is

explored by sampling. Further an approximate sampling algorithm that honor

the nonlinearities of the problem is proposed.

The methodology yields satisfactory results when evaluated in an example. The

uncertainty can be represented when few observations are present, and the func-

tion is well recovered within the shot section when a realistic amount of data

is used. When compared to a standard estimate, the proposed approach is

computationally more expensive, but gives a better estimate in curved sections.

Observations being linear operators of the random �eld, such as well obser-

vations can be included, by using the conditional distribution as input to the

algorithm, or by extending the aÆne operator. Seismic observations with o�set,

can be treated in the same frame work and the method extend to traveltimes

in 3-D. A small inhomogeneous deviation from the constant velocity can also

be accounted for by using a perturbation argument, this will produce a colored

error term that is dependent on the re
ection point, and is a �rst step in the

direction of surface re
ection tomography.
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A Adapting traveltime information to the CTGM

algorithm

This appendix contain detailed calculations to �t traveltime observations from

re
ection seismic into the frame work piecewise aÆne operators. The calcu-

lations below are for the case of one observation, but the extension to several

observations is obvious, since the transforms apply locally to each set of variables

corresponding to each single traveltime.

Firstly assume that the observed traveltimes do not have any observation error.

The mixing distribution to be sampled in the CTGM-algorithm is then,

q(x; r) = const� jrjpfKxZ = t; Rx(Z) = 0;rxRx(Z) = rg;
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with KxZ, Rx(Z) and rxRx(Z) referring to Expressions (1) and (2). For a

given x rename the random variables (KxZ; Rx(Z); rxRx(Z) ) by (T;R0; R1)

and (Z(x); Z 0(x); Z 00(x) ) by (Z0; Z1; Z2). The relation between (T;R0; R1) and

(Z0; Z1; Z2) is given by:

T =
2

v

q
Z2
0 + (x� xs)2 ;

R0 = Z0 � Z1 + x� xs ; (7)

R1 = Z0 � Z2 + Z
2
1 + 1 :

This relation can be inverted to �nd :

Z0 =

s�
Tv

2

�2
� (x� xs)2 ;

Z1 =
xs � x�R0

Z0
; (8)

Z2 =
R1 � Z

2
1 � 1

Z0
:

The variables (Z0; Z1; Z2), have a known Gaussian distribution, hence the dis-

tribution of (T;R0; R1) may be calculated by the usual transformation rule.

Assuming (T;R0; R1) = (t; 0; r), the outcome of (Z0; Z1; Z2) is given by the

following expressions:

z0(t; x; xs) =

s�
tv

2

�2
� (x� xs)2 ;

z1(t; x; xs) =
xs � x

z0(t; x; xs)
;

z2(t; x; xs; r) =
r � z1(t; x; xs)

2 � 1

z0(t; x; xs)
:

Using the transformation rule yields the result

q(x; r;xs; t) = const�

���� r
tv
2

z0(t; x; xs)3

����
� pfZ(x) = z0(t; x; xs); Z

0(x) = z1(t; x; xs); Z
00(x) = z2(t; x; xs; r)g;

with xs and t regarded as given parameters; and the joint probability distribu-

tion of (Z(x); Z 0(x); Z 00(x) ) being known from the prior.

When observation error is included in traveltime and shot location, the mixing

distribution must be extended such that it include the true traveltime and the

true shot location as well. Hence by denoting the observed traveltime y, the

task is to sample the distribution

~q(x; r; t; xs; y) = q(x; r;xs; t)pf" = y � tgpfxsg;

11



with; pf" = y � tg being the likelihood of the observation; and pfxsg being a

prior distribution for the shot location.

In general two conditional probabilities are not identical even if the events be-

hind the conditioning bar match. Conditional statements are relative to the

��algebra generating the events. The equivalence between sampling the dis-

tribution pfZjZ(x); Z 0(x); Z 00(x)g in place of pfZjKx(Z); Rx(Z);rxRx(Z)g, is
due to the one to one relation between Z(x), Z 0(x) and Z 00(x); and KxZ, Rx(Z)

and rxRx(Z)), that is given by Expressions (7) and (8).

B Figures
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Figure 1: Traveltime geometry. The pulse generated in xs is re
ected in the

point (x; z(x) ) at the subsurface and is detected by the receiver in xr. In the

point, x, where the re
ection occur the ellipse with foci in xs and xr, (dashed

line) is tangent to the surface.
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Figure 2: Traveltime migration; the prior. The actual curve is shown with a

thick black line together with 100 samples from the prior model for the geological

horizon, several of the samples are partially or completely outside the scales of

the �gure.
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Figure 3: Traveltime geometry. The upper straight horizontal line is the surface,

the geological horizon to be recovered is the lower curved horizontal line. The

vertical lines are the ray paths connecting the shot location at the surface to to

the nearest point at the geological horizon.
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Figure 4: Traveltime migration; the observations. The observed traveltimes

are plotted as circles together with the true traveltimes as a solid line. The

observations have errors in both xs and t. The �lled circles is the subset of

observations used when only �ve observations are considered.
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Figure 5: Traveltime migration; the posterior. The actual horizon is displayed

in white together with 99 samples from the posterior, using only the �ve obser-

vations marked in Figure 4. The dots in the bottom of the �gure indicates the

actual re
ection locations for the 5 observations.
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Figure 6: Traveltime migration; the posterior. The actual horizon is displayed

in white together with 99 samples from the posterior, using all 81 observations

in Figure 4. The dots in the bottom of the �gure indicates the actual re
ection

locations for all 81 observations.
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Figure 7: Comparison of estimates and true subsurface; The truth is plotted

with a thin full line; the standard estimate with thick full line; and the proposed

estimate with a thick dashed line. Comparison of truth and proposed estimate

(a); truth and standard estimate (b); proposed and standard estimate (c).
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Abstract

The inverse problem in cross well tomography is solved by a Bayesian

methodology in a Gaussian framework. A �nite element approach is used

to resolve the variational structure given by Fermat's principle, as a re-

sult the approximate forward map is piecewise aÆne. In the Gaussian

framework the posterior distribution can be calculated as a mixture of

truncated Gaussian distributions. A sampling algorithm that exploit this

structure is proposed. The methodology is tested in a small synthetic

example.

KEY WORDS: Bayesian statistics, Sampling based inference, piece-

wise aÆne inverse problem, nonlinear traveltime tomography, Fermat's

principle.

1 Introduction

Cross well tomography is an important source of information about elastic pa-

rameters of the earth. Both the direct problem of wave propagation (Langan,

Lerche and Cutler 1985; Vidale 1988; Auld 1990) and the inverse problem in

cross well tomography (Menke 1984; Berryman 1990; Langan and Bube 1998)

are subject to substantial research interest.

The direct problem in cross well tomography is nonlinear, the solution is given by

the minimum of a set of linear functionals. In linearized cross well tomography

the solution to the direct problem is approximated by picking one of the linear

functionals in the set.

The primary goal in cross well tomography is to stably estimate material pa-

rameters of the earth based on traveltime observations. Linearized cross well

tomography gives a qualitative understanding of the problem. Menke (1984)

show that linearized cross well tomography resolves the material parameters of

an isotropic earth poorly, especially in the horizontal direction. The case for

anisotropic case is even worse (Bube and Meadows, 1998). Further, related op-

erators such as X-ray and Radon transforms have unbounded inverses (Faridani,
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1997). The inverse problem of cross well tomography is hence ill-posed, since it

is both underdetermined and unstable.

Ill-posed inverse problems is commonly solved by regularization or equivalently

by introducing rigid boundaries on the parameter space (Bertero, 1989). The

solution is then obtained by minimizing an objective function. For nonlinear

problems such as cross well tomography, iterative solvers are frequently used.

Berryman (1990) notice that this formulation does not fully appreciate the vari-

ational structure that is present in the problem of cross well tomography. The

�rst arrival time obeys Fermat's principle, i.e. it is the shortest traveltime that

is physically possible (Aronsson 1970). Berryman (1990) uses Fermat's prin-

ciple to construct feasibility constraints for the solution. When he uses the

feasibility constraints to determine the step size in his solver he obtain a stable

reconstruction.

A secondary and frequently equally important objective in cross well tomog-

raphy is to assess the uncertainty of the estimate. Common approaches are

resolution theory (Menke, 1984) and a singular value decomposition (Michelena

1993), in either case the operator is linearized. In nonlinear problems such as

cross well tomography, it is hard to describe the underdetermined and badly

determined features exactly, since they do not span a linear space.

The current work apply a Bayesian approach to the inverse problem of cross well

tomography. In Bayesian analysis a likelihood is de�ned according to the sta-

tistical link between the parameter of interest and the observations and a prior

distribution is de�ned for the parameter of interest. The prior distribution is

frequently criticized by non-Bayesians. However for ill-posed inverse problems,

such as cross well tomography, the prior distribution plays an essential role. The

prior distribution stabilizes the solution and resolves the problem of underde-

termination. The prior hence serve the purpose of regularization and de�ne soft

boundaries on the parameter space. In a speci�c case there is often available

information about the scales of the slowness, either based on general geological

knowledge or analog reservoirs. This information can be included through the

prior distribution. The e�ect of the assumptions can be visualized by random

samples from the prior distribution.

The Bayesian solution to the inverse problem, is the posterior distribution which

is formally proportional to the product of the likelihood and the prior. For most

practical problems it is bene�cial to approximate the posterior distribution by

a �nite representation. In the current work the posterior distribution is approx-

imated by random samples assigned equal weight. This approach apply to both

linear and nonlinear problems. The Bayesian approach achieve both goals in

cross well tomography. The posterior mean is a stable estimate. The posterior

distribution itself describes the uncertainty of the estimate. Bayesian uncer-

tainty assessment is hence case speci�c. The posterior distribution is relative to

the observation at hand and depend on the prior distribution and the likelihood

which are de�ned such that their characteristics are adapted to the case under

study.
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Bayesian approaches to problems in tomography is developed by several authors,

(Natterer 1980; Carfantan and Mohammad-Djafari 1997), most authors only

consider the maximum posterior estimate and does not use the full power of

the Bayesian analysis. In the current work the Bayesian inversion, i.e. an

algorithm to sample the posterior, is worked out in a Gaussian framework, taking

account of the nonlinear features. In Kolbj�rnsen and Omre (2002) the theory

of piecewise aÆne inverse problems in a Gaussian framework is presented. The

posterior distribution is a mixture of truncated Gaussian distributions in this

case. The contribution in the current work is to use the Fermat's principle to

phrase cross well tomography as a piecewise aÆne inverse problem and develop

the methodology of Kolbj�rnsen and Omre (2002) for this problem.

Section 2 describes the problem of cross well tomography. In section 3 the

problem of cross well tomography is formulated as an piecewise aÆne inverse

problem, by using a �nite element approach to approximate Fermat's principle.

Section 4 describes the statistical models that are used, and section 5 contains

the posterior distribution together with the sampling approach. Section 6 dis-

cuss a generalization of the approach. In section 7 two small examples are

investigated. Section 8 contain a discussion of the results.

2 Problem description

The current section gives a brief introduction to the problem of cross well to-

mography. The slowness, the inverse of the velocity, is the material parameter of

relevance. In the current presentation the medium is assumed to be isotropic,

but the approach can easily be extended to media with elliptical anisotropy

(Bube and Meadows, 1998).

The objectives in cross well tomography is to reconstruct the slowness �eld in a

region,R, between two wells based on imperfect observations of traveltimes from

sources in one well to receivers in the other well, and to assess the uncertainty

of the reconstruction. Figure 1 illustrates the situation. A source is placed in

one well at the location (xs; zs), a receiver is placed in the other well at the

location (xr ; zr). The traveltime is the time it takes for a wave to propagate

from the source to the receiver.

For simplicity the earth is considered to vary only with depth, z, and the

lateral component describing the inter distance between the two wells, x, i.e.

s(x; y; z) = s(x; z). Further the slowness is assumed to be twice continuously

di�erentiable, i.e. s 2 C
2(R).

The traveltime between a source and a receiver is denoted the Fermat time

because it obeys Fermat's principle. That is, it is the minimum traveltime from

the source to the receiver. To make this precise Berryman (1997) introduce

two types of functionals for traveltime. Let � be the set of continuous paths

connecting the source and the receiver. For a given 
 2 � de�ne the traveltime

3



functional, �(
; �), associated with this path by its action on a slowness �eld, s,

�(
; s) =

Z



s(x; z) dl


with dl

 being the in�nitesimal distance along 
. De�ne now the traveltime

functional, ��, corresponding to the Fermat time. For given slowness �eld, s,

this is de�ned as,

�
�(s) = min


2�
�(
; s) : (1)

The Fermat time is the minimum path integral of the slowness along any con-

tinuous path connecting the source and the receiver. The Fermat path, 
�, is

de�ned as the path where this minimum occur,



�(s) = argmin


2�
�(
; s):

The Fermat path need not be unique, but for a given source/receiver pair it

almost surely is so. The Fermat time can be expressed as

�
�(s) =

Z

�(s)

s(x; z) dl

�(s)

;

that is, if the Fermat path is known the traveltime is a linear functional of s.

In a medium of constant slowness, the Fermat paths are straight lines connecting

the source and the receiver. A perturbation argument (Boyse and Keller 1995)

show that the bending of the Fermat path is a second order e�ect, hence the

traveltime can be approximated to the �rst order by the line integral along

the straight line connecting the source and the receiver. This is the argument

used in linearized cross well tomography to pick a particular path. Figure 2

show a slowness �eld where the perturbation argument is not valid due to large

deviations from a constant background. Figure 2(a) show the linear paths for 16

source/receiver pairs. Figure 2(b) show the Fermat paths for the same slowness

�eld. For such cases other approximations are needed.

3 Cross well tomography as a piecewise aÆne

inverse problem

To phrase cross well tomography as a piecewise aÆne inverse problem, each

traveltime is approximated by a piecewise aÆne functional. In the current work

the Fermat time, ��(s) in Expression (1), is approximated by a �nite element

approach.

�
�

0 (s) = min

2�0

�(
; s) ; (2)
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with �
�

0 (s) being the approximate Fermat time; and �0 being the set of �nite

elements. The set �0 consist of piecewise linear paths, parameterized with d

internal nodes. The nodes are equispaced in the lateral directions and free to

move in the vertical direction, see Figure 3. Each path is hence parameterized

by a d dimensional parameter, 
 = ( 
1; 
2; :::; 
d ), being the vertical coordinate

of each node. In what follows there will not be made any notationally distinction

between the parameter 
 and the piecewise linear path that is associated with

it. The path parameter is a vector with d components but it is denoted by a

normal type letter to avoid confusion when several traveltimes are considered.

Further let 
�0 (s) 2 �0 denote the path where the minimum in Expression (2)

occur. The path 

�

0 (s) is hence the approximate Fermat path.

Figure 4 and 5 visualize the �nite element approximation for the slowness �eld

in Figure 2. Figure 4 show how the traveltime approximation improve with an

increasing number of internal nodes for the 16 traveltimes indicated in Figure

2. Figure 5 show how one Fermat path change as the number of internal nodes

increase. In this particular case the approximation is good even with a low

number of internal nodes.

Note that the �nite parameterization of the path does not force any particular

parameterization of the slowness, this is in contrast to approaches that use block

models and Snell's law for ray bending at the block boundaries. The accuracy of

the approximation will of course depend on the slowness �eld. In the continuous

formulation of the problem, paths between di�erent source/receiver pairs can

cross one time at most. This ordering is forced also in the discrete problem even

if several crossings could occur for this case.

According to Kolbj�rnsen and Omre (2002) a piecewise aÆne operator is de�ned

as

De�nition 1 (Piecewise aÆne operator) An operatorK : Z ! Rr, is said
to be piecewise aÆne, if it can be represented in the following way:

K(z) =Kxz + kx for z 2 Ax ; x 2 X

with X being an index set, fAxgx2X being a partition of Z; Kx : Z ! Rr being
bounded linear operators on Z and kx being r dimensional vectors. The in-
dexed set of triplets fAx;Kx;kxgx2X are the parameters of the piecewise aÆne
operator.

The �nite element approximation to the Fermat times is a piecewise aÆne op-

erator with a continuous index set, �0. For operators having a continuous index

set a special type of partition is treated in Kolbj�rnsen and Omre (2002).

De�nition 2 (Restricted linear partition) A partition fAxgx2X with
X � Rd of Z is a restricted linear partition if,

Ax = fRxz + rx = 0g \ Cx;
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with Rx : Z ! Rd being a bounded linear operator; rx being a d-dimensional
vector function; and Cx is any subset of Z. The set of triplets fRx; rx; Cxgx2X
are the parameters of the restricted linear partition.

The approximate traveltime, ��0 (s) in Expression (2), can be represented as

�
�

0 (s) = �(
; s) for s 2 A
 ; 
 2 �0 (3)

with

A
 = fs 2 C
2(R) : �(
; s) � �(~
; s) for ~
 2 �0g ;

hence s 2 A
 , 
 = 

�

0 (s). That is, 
 is the approximate Fermat path of s,

using the prede�ned resolution given by �0. Note further A
 � fr
�(
; s) = 0g

with r
�(
; s) being the gradient of �(
; s) with respect to the path, evaluated

for the Fermat path, 
. The operator r
� : �0 � C
2(R) ! Rd is linear in the

second argument, i.e. slowness, for any value of the �rst, i.e. path. The partition

fA
g
2�0 in Expression (3) is hence a restricted linear partition according to

De�nition 2. Further the Hessian of the traveltime with respect to the path,

r
r
� , is of importance. Note that due to the parameterization, the Hessian

is tridiagonal.

For each traveltime there are two functionals, �(
; s) and �
�

0 (s), and two oper-

ators g(
; s) = r
�(
; s) and h(
; s) = r
r
�(
; s), that are of importance.

The operators g(
; s) and h(
; s) are both linear in the second argument and

produce row vectors and matrices respectively. When r traveltimes are consid-

ered, the paths corresponding to each of the traveltimes are collected to form

one large index, 
 = [
1; 
2; :::; 
r], this should not be confused with the pa-

rameterization of the individual paths; i.e. 
i = (
i1; :::; 
id) for i = 1; ::; r. The

traveltime functionals are stacked to form vector valued operators, � (
; s) and

� �0(s), and the relevant operators are joined,

g(
; s) =
�
g(
1; s) g(
2; s) : : : g(
r; s)

�
(4)

h(
; s) =

2
6664

h(
1; s) 0 : : : 0

0 h(
2; s)
...

. . . 0

0 : : : 0 h(
r; s)

3
7775 ;

further

A
 =

r\
i=1

A
i :

The traveltimes are hence approximated by a piecewise linear operator with a

linear restricted partition, and can thereby be solved in a Gaussian framework

by the methodology of Kolbj�rnsen and Omre (2002). The Gaussian framework

is de�ned next.
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4 Statistical models

In Bayesian analysis knowledge and uncertainty is quanti�ed by probability

distributions. A generic distribution and a generic probability is denoted by p

an P respectively. The relevant random variable will occasionally be displayed

in the argument of p to clarify which distribution that is referred.

The likelihood is the statistical link between the parameter of interest and the

observation. In Bayesian analysis it is given the interpretation of being the con-

ditional distribution of traveltimes for a given slowness. In the current Gaussian

framework, the observations are assigned additive Gaussian errors. Let T � de-

note the random variable that is observed. The conditional distribution of T �

for a given s is then

p(t�js) = Nr(�
�

0(s);�") ; (5)

with t� being the outcome of T �; s being a slowness �eld; Nr denoting the

r dimensional multinormal distribution; � �0(s) being the approximate Fermat

times for the slowness �eld s; and �" being the covariance for the observation

error. De�ne also the indexed set of random variables T (
), that is de�ned

for each 
 by the conditional distribution that correspond to observation of the

path integrals, � (
; s),

p(t
 js) = Nr(� (
; s);�") ;

with t
 denoting the outcome of T (
); s being a slowness �eld; � (
; s) being

the traveltimes in s along 
; and �" being as in Expression (5). The marginal

distribution of T � is dependent on the distribution of the slowness and does

not have an explicit representation in the current analysis. The marginal dis-

tribution of each of the random variables T (
) will however be Gaussian if the

slowness is so. The additive error term is modeled by a random error, it includes

both observation errors and model errors.

In the current Gaussian framework the slowness, S, is assumed to be a Gaussian

random �eld (Vanmarcke, 1983). The prior distribution is formally denoted

p(s), but is symbolic and not a density since S is a random �eld. The slowness

to be reconstructed is assumed to be two times continuously di�erentiable, see

Section 2. Gaussian random �elds are well suited to represent di�erent degrees

of smoothness. In the presentation below it is assumed that the slowness �eld is

almost surely two times continuously di�erentiable, i.e. P (S 2 C
2(R)) = 1, see

for example Stein (1999) for details about how to de�ne such a Gaussian random

�eld. This smoothness criterion is somewhat relaxed in Section 6, however.

The random variables that are de�ned by randomizing g(
; s) and h(
; s), see

Expression (4), over the prior distribution of S for a �xed selection of paths,

are denoted by capital letters, i.e. G(
) and H(
). Because the operators,

g(
; s) and h(
; s), are linear in the second argument the corresponding random

variables are Gaussian. These random variables are used to decompose the

posterior distribution.
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5 Representing the posterior distribution

The posterior distribution in the inverse problem of cross well tomography is de-

composed as a mixture of truncated Gaussian distributions. This representation

is in turn used to de�ne an algorithm to sample the posterior distribution. The

samples from the posterior distribution yields an approximation of the posterior

distribution.

The theory of piecewise aÆne inverse problems, is developed in a Gaussian

framework in Kolbj�rnsen and Omre (2002). Using the notation introduced

above, the posterior distribution of S can be represented as a mixture distribu-

tion

p fS = s; S 2 A
 ;H(
) = hjT � = t�g

= p fS = sjS 2 A
 ; (T (
);G(
);H(
)) = (t�;0;h)g (6)

�P fS 2 A
 j(T (
);G(
);H(
)) = (t�;0;h)g

�
jdet(h)jp f(T (
);G(
);H(
)) = (t�;0;h)g

pfT � = t�g
:

The distribution on the left hand side is the posterior distributions of S when

S 2 A
 and H(
) have the value h. The marginal posterior distribution of

S is obtained by randomizing Expression (6) over 
 and h. The �rst term in

Expression (6) is a truncated Gaussian distribution, since the equality constraint

is linear. The second term is a probability and the third term is a non-negative

measure on �0�R
(2d�1)r, with d being the number of internal nodes and r being

the number of observations. The product of the second and third term is the

posterior density for S being in A
 with H(
) having the value h. Note that

h is fully described by (2d� 1)r values, see Section 3. In addition a necessary

condition for S 2 A
 is that H(
) is positive de�nite. The mixing distribution

of Expression (6), provides a sampling strategy for the posterior.

Algorithm 1 CTGM-algorithm (Continuous Truncated Gaussian Mixing)

1. Sample 
#;h# � q(
;h) with

q(
;h) / jdet(h)jp f(T (
);G(
);H(
)) = (t�;0;h)g

2. Sample s
# � p

�
S = sj(T (
#);G(
#);H(
#)) = (t�;0;h#)

	
3. If S# 2 A
# stop.

The algorithm splits the sampling into a nonlinear step, a linear step and an

acceptance step. In the nonlinear step a value for the the Fermat paths and
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the Hessian of the traveltimes along the Fermat paths is proposed. The matrix

h
# is restricted to be positive de�nite, hence the paths 
# are local minima.

In the second step a slowness �eld, s#, that have local minima along the paths


#, with h(
#; s#) = h# is drawn. In the third step it is controlled that 
#

in fact is the Fermat paths, if not the sampled slowness is rejected and a new

pair of (
;h) must be drawn. Since the proposed paths are guaranteed to be

local minima, there is usually a high acceptance rate in the third step. The

nonlinear step in the algorithm is the challenge. To sample the distribution

q(
;h) a McMC algorithm is used. The decomposition given in Expression (6),

can also be exploited in other types of algorithms. The bene�t of using the

decomposition is that it uses the global structure of the inverse problem.

6 Generalization to a non-smooth slowness

The smoothness assumption regarding the slowness is common in a continuous

formulation of cross well tomography. In the current work it is however imposed

by the solution method and is hence undesirable. In this section the theory is

extended to account for small perturbations from a smooth background, let

s(x; z) = sL(x; z) + � sH(x; z) ;

with sL being a lowfrequent background model; and � sH being a highfrequent

perturbation with � being a small number. By a standard perturbation argu-

ment, similar to the one used in Boyse and Keller (1995), the traveltime can be

expanded in an asymptotic series in powers of �. Including only the �rst order,

this reads

� �(sL + � sH) = � �(sL) + � � (
�(sL); sH) +O(�
2)

with � �(sL) being the Fermat times in the lowfrequent part of the slowness;


�(sL) being the Fermat path in the lowfrequent part; � (
�(sL); sH) being the

line integral of sH along 
�(sL); and O(�
2) being higher order terms which are

neglected in what follows. The likelihood in Expression (5) is now replaced by

p(t�jsL; sH) = Nr (�
�

0(sL) + � � (
�0(sL); sH);�") ;

with � �0(sL) and 

�

0(sL) being the approximate Fermat times and paths in the

lowfrequent part of the slowness respectively.

The sampling of the the lowfrequent and highfrequent part is done sequentially.

For a �xed low frequent part the problem of sampling the highfrequent part is

the linearized problem for a non-constant back ground. The challenge is hence

to sample the lowfrequent part in the presence of the highfrequent part. This

can be done by computing the marginal likelihood of sL. Assuming SH to be a

Gaussian random �eld independent of sL this can be done analytically. If SH
is centered the marginal likelihood for sL 2 A
 is,

p(t�jsL) = Nr(�
�

0(sL);�(
) +�") ;
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with �(
) being the covariance of line integrals of �SH along the paths, 
. As-

suming that SL is a Gaussian random �eld, this formulation is still within the

scope of the theory of piecewise aÆne inverse problems developed by Kolbj�rnsen

and Omre (2002).

The characteristic that allows for the generalization is that the highfrequent

part have an additive e�ect for which the statistical properties only depend on

the index of the piecewise aÆne inverse problem, i.e. the Fermat paths. S�lna

and Papanicolaou (2000) �nd a similar result for a di�erent type of deviation

from a smooth background.

7 Example

In the current section a synthetic example is investigated to highlight some of

the di�erences between the current approach and a linearized problem. The

traveltimes investigated relates to the slowness in Figure 2.

The slowness is a stationary Gaussian random �eld and is de�ned by its mean,

variance and spectral density, these are denoted by �S ; �
2
S
and �S(kx; kz) re-

spectively. It is convenient to specify the correlation in terms of the spectral

density since this makes it easier to control the di�erentiability of the random

�eld. The spectral density is assumed to have the form

�S(kx; kz) /
�
1 + (kz Lz)

2 + (kx Lx)
2
��(�+2)=2

;

with kz and kx being spatial frequencies; Lz and Lx being scales in depth

and lateral direction respectively; and � being the parameter that controls the

smoothness. In the subsequent examples the prior distribution is de�ned by

�S = 0:5ms/m, �S = 0:06ms/m, Lz = 225m, Lx = 130m and � = 18.

Figure 6 show the resulting covariance function for the depth, z, and the lateral

component, x. The slowness �eld in Figure 2 is a random sample from this prior

distribution.

The observations have variance �" = �
2Ir�r, with � = 0:1ms being the stan-

dard deviation of the error; Ir�r being the r � r identity matrix; and r being

the number of observations. The observations are hence recorded with a high

precision since the travel times are ranging from 48:1ms to 76:6ms

7.1 One observation

In this paragraph only one observation is considered. The source is in the left

well at the depth 150m and the receiver is in the right well at the depth 50m.

The approximation of the Fermat path in the true slowness �eld is displayed

in Figure 5 for a variable number of internal nodes. The approximation of the

Fermat time as a function of the number of internal nodes is displayed in the
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top right corner in Figure 4. The observed traveltime is 76:6ms. One traveltime

observation hardly provide any information regarding the slowness �eld, hence

no features of the true slowness can be expected to be retrieved. The exam-

ple highlight di�erences between linear and nonlinear cross well tomography,

however.

The inversion procedure is carried out for zero, one and seven internal nodes.

The case with no internal nodes correspond to the linear case and is not dis-

cussed in any further detail. When only one internal node is considered, the

mixing distribution q(
; h) is two dimensional, the density for the current case

is displayed in Figure 7. To sample the mixing distribution for the case of seven

internal nodes, a Markov chain is constructed. The algorithm use a di�usion

step to sample the path. For a given path, 
, the distribution q(
;h) is approx-

imated by a Gaussian distribution, this distribution is sampled sequentially to

assure h to be positive de�nite. One sample is extracted for every 200 iteration,

extracting a total of 3000 samples. Figure 8(a) show the value of the 2end,

4th and 6th internal node, and Figure 8(b) show the corresponding diagonal

elements of h. The plots show that the algorithm is slowly mixing. Figure

9(a)-(c) show the paths used in the inversion when zero, one and seven internal

nodes are used respectively. For the case of one and seven internal nodes these

are the samples from the corresponding mixing distribution in Step 1 of the

CTGM-algorithm. For comparison the true path is plotted in the same �gures.

The uncertainty of the path is clearly illustrated by the �gures. The acceptance

rate in the third step of the CTGM-algorithm is 96% and 92% for the case with

one and seven nodes respectively.

Figure 10(a)-(c) show the �nal estimates using the three strategies. The estimate

for zero internal nodes is obtained analytically. Visually the estimates appear

to be similar. All estimates increase the slowness along the line connecting the

source and the receiver. The main e�ect of the internal nodes are better seen

in cross sections of the estimates. Figure 11(a)-(c) show cross sections of the

estimates at x = 10m, x = 50m and x = 75m respectively. The nonlinear

estimates are consistently larger, and have a larger region of in
uence. The

deviation from the background is 20% larger for the case with seven internal

nodes than it is for the linear estimate. Much of the nonlinear e�ect on the

estimate is present in the case with only one internal node.

The main e�ect of the nonlinearity is however hidden by the averaging that is

done in the estimation. The nonlinearity is present in the individual samples. To

illustrate the di�erences, 500 samples from the three conditional distributions

are used. Let 
0 denote the direct line from the source to the receiver. For each

sample, s#, the two traveltime functionals �(
0; s
#) and �

�(s#) are computed.

That is the line integral of the slowness along 
0 and the Fermat time. Figure

12(a)-(c) display the scatter plot of these two functionals evaluated for each

sample using three approaches. In linear tomography the line integral remains

stable and the Fermat time 
uctuates, whereas in the case with seven internal
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nodes the opposite e�ect is observed. For the case with one internal node the

Fermat times are quite stable, but some large deviations are present. Compare

also some of the conditional probabilities that is illustrated in Figure 12. The

percentage of the samples having Fermat time less than 75ms is 29%, 5% and

0%, and the percentage of the samples having have line integral larger than

78ms is 0%, 16% and 24% for the case with zero, one and seven internal nodes

respectively. Much of the nonlinear e�ect is hence gained by including just one

internal node.

In the algorithm, the Fermat path is drawn conditioned to the observed travel-

time. The mixing distribution of the Fermat path, q(
; h), is hence dependent

on the observed value of the traveltime. Figure 13(a) and (b) visualize this

e�ect in the case with one internal node. The �gures show q(
; h) for t = 50ms

and t = 100ms. Note that q(
; h) is not the posterior distribution of (
; h)

since the acceptance probability is factored out, but q(
; h) still indicate the

general shape of the distribution since the acceptrate in the third step of the

CTGM-algorithm is large. When the observed value of t is small, i.e. t = 50ms,

it is likely that the path has followed the direct line from source to the receiver.

This is illustrated in Figure 14(a) where 1000 paths sampled from q(
; h) are

displayed. Notice the low spread of the samples that, indicate a channel of high

velocity connecting the source and receiver. When the observed value of of t

is large, i.e. t = 100ms, it is likely that the Fermat path is bent either up or

down as is indicated by the bi-modality in Figure 13(b). This is illustrated in

Figure 14(b) where 1000 paths sampled from q(
; h) are displayed. Notice how

most paths avoid the middle of the �gure. This indicate a bump of low velocity

located on the direct line connecting the source and the receiver.

7.2 Several observations

In this paragraph all 16 traveltimes, see Figure 2, are considered. Compared to

the results of the previous paragraph, more of the structure of the slowness �eld

is expected to be recovered.

The inversion procedure is carried out for zero and one internal node. The

results for zero internal nodes are obtained analytically. The results for one

internal node is obtained using the CTGM-algorithm. To sample the mixing

distribution in Step 1 of the CTGM-algorithm a Markov chain is constructed in

the same manner as in the previous paragraph. In each step a change is proposed

in all the paths simultaneously. For the given path proposal the distribution

q(
;h) is approximated by a Gaussian distribution and sampled sequentially to

assure h to be positive de�nite. A sample is extracted after every 400 iteration,

extracting a total of 2000 samples. Figure 15 show the mixing plot of the 32

random variables that are sampled. In general the mixing plots are satisfactory,

but the internal node in the path that start in the left well at depth 150m and

arrive in the right well at depth 50m to is however mixing slightly slower than
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the other parameters. The mixing plot for this parameter is in the top right

corner in Figure 15(a). The acceptance rate in the third step of the CTGM-

algorithm is 98%.

Figure 16(a) and (b), show the estimates from the two models. Visually the

estimates appear to be similar and have captured some of the features of the

slowness. A high slowness region in the true slowness is located is located from

depth 60m to 120m and at lateral position 30m to 100 m. This is also present

in the estimates, but the shape is slightly wrong. At the depth of 150 meters the

estimates have a high value at the left and a low value at the right. This is also so

for the true slowness. Comparing the two di�erent estimates closely, the features

are more di�use in the nonlinear estimate than in the linear estimate. When

the deviation from the true surface is measured, the nonlinear estimate improve

the quadratic loss by 10%. It is however substantially more time consuming to

compute the nonlinear estimate.

As a measure of the variability, the pointwise variance is integrated. The pos-

terior in the linear case has 30 % lower integrated variance than the posterior

in the nonlinear case. This does not necessarily mean that the full posterior is

better determined in the linear case, since the integrated variance only respond

to the marginal posterior distributions. In the linear case each observation will

reduce the posterior integrated variance. This is generally not true for nonlinear

observations.

8 Discussion

The inverse problem in nonlinear cross well tomography is solved by a Bayesian

methodology in a Gaussian framework. The traveltimes obey Fermat's principle.

This variational structure is approximated by a �nite element method. Under

the �nite element approximation the forward map of nonlinear cross well tomog-

raphy is piecewise aÆne. For a test example the approximation is reasonable

even for a coarse resolution of the �nite elements.

The estimate is taken to be the posterior expectation which is optimal un-

der quadratic loss. The posterior distribution is explored by sampling and the

expectation is approximated by the sample average. When the conditional ex-

pectation is used as estimator, the estimated slowness �eld will not reproduce

the Fermat times in the case of exact observations. This is due to the convexity

of the problem. Each individual sample will have a Fermat time corresponding

to the observed time, but the Fermat path will di�er between samples. When

all the samples are averaged the Fermat time will be a lower bound for the path

integral along any path, hence the Fermat time in the average medium will be

larger. In general it is diÆcult to preserve nonlinear properties in an estimator.

In nonlinear cross well tomography this can however be done by estimating the

Fermat paths and then average the slowness for the given Fermat times under
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the given selection of Fermat paths. This will however raise issues on estimating

the Fermat paths. This is further complicated by the fact that the posterior

distribution of the Fermat paths can be multi modal, see Figure 13.

The ray paths are 
exible in the current nonlinear approach whereas in a linear

approach, they are �xed. When studied in an example with one observation

the nonlinear estimate have a deviation from the background that is 20% larger

than the linear estimate. When studied in an example with 16 observations,

the nonlinear estimate perform 10% better in terms of quadratic loss compared

to the linear estimate. In both cases however the estimates look similar and

only a small amount is gained by using the methodology in this respect. The

major impact of the nonlinearity is however regarding typical deviations from

the estimate, i.e. in the uncertainty.

The challenge in the methodology is to sample the mixing distribution q(
;h),

see Algorithm 1. In the current work this is done by a naive implementation of

a McMC algorithm, the resulting chain is slowly mixing. EÆcient exploration

of q(
;h) is of high importance for further development of the methodology.

The prior distribution of the slowness �eld is Gaussian. Gaussian random �elds

constitute a large class of prior distributions and is in particular well suited for

modeling of smoothness. The methodology can also be extended to priors being

mixtures of Gaussian distributions.
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Tables and �gures
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Figure 1: Cross well tomography. The two vertical lines are boreholes, the

region between the two boreholes is R. A source is situated in one well at the

the location (xs; zs), a receiver is situated in the other well at the the location

(xr; zr). The time it takes for a pulse to propagate from the source to the

receiver is recorded.

16



(a) (b)

Figure 2: Linear paths and Fermat paths. The paths used for linear tomography

(a); The Fermat paths for the superimposed slowness �eld (b).
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Figure 3: Finite element approximation to Fermat's principle. The path between

the source and the receiver is restricted to be piecewise linear between internal

nodes. Two di�erent paths are displayed for the case with two internal nodes.

The path is parameterized by the vertical distance to the knot point,(
1; 
2)

and (
01; 

0

2) for the two paths respectively
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Figure 4: Minimum traveltime, dependence of number of internal nodes. For

each of the 16 traveltimes, the minimum traveltime is plotted as a function of the

number of internal nodes. Increasing column number correspond to increasing

depth of starting point. Increasing row number correspond to increasing depth

of end point. The values where computed for zero, one, three, seven and 15

internal nodes to have a monotone decay.
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Figure 5: Minimum path, dependence of number of internal nodes. For one set

of endpoints, the minimum path is plotted for zero (dashed line), three (dotted

line) and 15 (full line) internal nodes.
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Figure 6: The correlation function used in the example of Section 7. The dashed

line being for the depth, z, and the full line being for the lateral direction, x.
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Figure 7: Proposal distribution for one internal node. The proposal distribution

in the nonlinear step in the CTGM algorithm for the actual observation; i.e.

t = 76:6ms.

22



500 1000 1500 2000 2500 3000

50

100

150

500 1000 1500 2000 2500 3000

50

100

150

500 1000 1500 2000 2500 3000

50

100

150

(a)

500 1000 1500 2000 2500 3000

0.02

0.04

0.06

0.08

500 1000 1500 2000 2500 3000

0.02

0.04

0.06

0.08

500 1000 1500 2000 2500 3000

0.02

0.04

0.06

0.08

(b)

Figure 8: Mixing plot for the Markov chain used in nonlinear inversion for

seven internal nodes. Three path parameters (a); three parameters for the

gradient of the constraint (b). In both (a) and (b) the top is for the parameter

corresponding to x = 25m the middle corresponding to x = 50m and the

bottom corresponding to x = 75m.
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Figure 9: Comparison of paths used for reconstruction. The red line is the

actual Fermat path in the problem, the black lines are the paths used in (a)

linear inversion; (b) nonlinear inversion with one internal node;(c) nonlinear

inversion with seven internal nodes. In (b) and (c) 3000 paths are displayed.
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Figure 10: Comparison of estimates. The conditional expectation using (a)

linear tomography; (b) nonlinear tomography one internal node; (c) nonlinear

tomography seven internal nodes.
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Figure 11: Cross sections of estimates. Dash/dot line - linear tomography;

dashed line - nonlinear tomography with one internal node; full line - nonlinear

tomography with seven internal nodes. The cross sections show vertical slices

for lateral components (a) x = 10m;(b) x = 50m; (c) x = 75m.
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Figure 12: Comparison of results for linear and nonlinear inversion. The scatter

plot of the posterior distribution of the traveltime along the linear path and

the Fermat path for (a) linear tomography; (b) nonlinear tomography with one

internal node; (c) nonlinear tomography with seven internal nodes.
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Figure 13: Proposal distribution for one internal node. The proposal distribu-

tion in the nonlinear step in the CTGM algorithm for extreme observations (a)

t = 50ms; (b) t = 100ms.
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Figure 14: Proposed paths with one internal node and extreme observations.

1000 proposed paths sampled from the proposal distributions plotted in Figure

13 in the nonlinear step in the CTGM algorithm for extreme observations (a)

t = 50:0ms; (b) t = 100ms.
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Figure 15: Mixing plot for the Markov chain used in nonlinear inversion for one

internal node and 16 observations. The path parameters i.e. 
 (a); the second

derivative i.e. h (b). In both (a) and (b) the ordering of the �gures is such that

an increasing column number correspond to increasing depth of starting point

of the path. Increasing row number correspond to increasing depth of end point

of the path.
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(a) (b)

Figure 16: Comparison of estimates 16 observations. The conditional expecta-

tion using (a) linear tomography; (b) nonlinear tomography one internal node.
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Abstract

A Bayesian approach is used to estimate material parameters of the

underground. The parameters to be estimated are pressure wave velocity,

shear wave velocity and density. The data analyzed are angle gathers. The

underground usually have a layered structure. A stationary log Gaussian

prior model is frequently used, but is not adequate to describe a layered

structure. In the current approach the prior is modeled by a superpo-

sition of a Cauchy and Gaussian processes on a logarithmic scale. The

Cauchy process yields a model for the layering whereas the Gaussian pro-

cesses describe 
uctuations within a layer. The physics of the likelihood is

approximated by a linear operator between the logarithm of the material

parameters and the observed seismic traces, the error structure is assumed

to be Gaussian. The �nal estimate is optimal under the loss criterion of

absolute deviation and is evaluated by Monte Carlo integration.

The current methodology is compared to a pure log Gaussian model.

The material parameters observed in a well at the Sleipner �st �eld is used

as a test case and synthetic seismic observations are generated. Over all

the velocity estimates in the current model reduces the risk by 7%, and the

average length of the 90% credibility interval is reduced by 7%. In a region

where the true velocity have large 
uctuations, the velocity estimate in

the current model improve by 14% and 10%. In a region where the true

velocity is slowly varying, the 90% credibility interval is reduced by 10%.

There are only minor e�ects of the model concerning the estimate of the

rock density.

The current model is tested for real seismic observations collected in a

marine seismic survey above the Sleipner �st �eld. The inversion results

are satisfactory, but the information content in the observations is small

due to large errors in the data.

KEYWORDS:Bayesian statistic, Independently scattered random mea-

sures, Deconvolution, Seismic inversion
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1 Introduction

The objective of seismic inversion, is to estimate material parameters of the

underground. The observations are obtained by generating an acoustic wave

above the target area and record the signal re
ected from the underground.

A simpli�ed model for the wave propagation, is obtained by regarding the re-


ected signal as the response of a locally vertical 1D-earth model, see for example

Sheri� and Geldart (1995). In this model the re
ected signal can be approxi-

mated by a convolution of a wavelet and the seismic re
ectivity. The seismic

re
ectivity is again connected to the material parameters through the Zoeppritz

equation.

The problem of seismic inversion is inherently ill-posed. The high frequency

components of the wave that respond to high frequency changes in the rock

are dampened due to intrinsic absorption, hence an exact stable inversion is

beyond reach. A stable reconstruction of the material parameters, can only be

obtained by providing, directly or indirectly, information about the preferred

solution. The Bayesian formalism is well suited for this task. The Bayesian

choice of prior distribution is a direct way of introducing preferences in the

solution space.

Stationary Gaussian random �elds are frequently used to construct prior dis-

tributions, this choice is particularly successful for solving linear inverse prob-

lems, due to the simplicity of the solution, (Tarantola 1987). Buland and Omre

(2002a) treats the current problem in the Gaussian framework. A stationary

Gaussian random �eld prior, give preference towards smooth solutions. At the

geological scales considered in seismic exploration, the earth frequently have

slow variations within a layered structure. Hence there appears to be a con
ict

between a stationary Gaussian random �eld prior, and the phenomenon under

study.

In the current work, a Bayesian methodology is used to solve the problem of

seismic inversion. This requires a prior distribution for the material parameters

and a likelihood for the observations. To account for the layered structure,

the prior distribution is described by a superposition of Gaussian and Cauchy

random �elds. Both these types of random �elds can be constructed by the

theory of independently scattered randommeasures (Rajput and Rosinski 1989).

The likelihood model in the current paper is identical to the one used in Buland

and Omre (2002a).

The objective of modern Bayesian inference is to explore the posterior distribu-

tion, which is formally proportional to the product of the prior and the likeli-

hood. In the current approach this is done by sampling. The samples represent

the space of uncertainty with respect to the inversion. In the current presen-

tation the samples are combined to a single estimate using the loss criterion of

absolute deviation.
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There are alternative Bayesian approaches to modeling of layered structures.

Common alternatives are to use a Bernoulli Gauss prior (Mendel 1983), or to

model the layering as a point process and mark each point with a random leap

size (Malinverno and Leaney 2000). There are also non-Bayesian approaches

to inverse problems. Traditional approaches such as quadratic regularization

(Tikhonov 1963) and �ltering of singular values (Bertero 1989; Hansen 1998)

are formally equivalent to Gaussian random �eld priors (Tarantola 1987; Whaba

1990), and su�er the same de�ciencies. However, resent development in com-

putational harmonic analysis, allows for reconstruction by wavelet-vaguelette

decomposition (Donoho 1995; Abramovich and Silverman 1998). For a general

class of function spaces, the reconstruction adaptively obtain the minimax rate

of convergence in the zero noise limit within a log term. This approach is not

pursued in the current paper, this is partially because the inverse problem that

arise in the current setting does not have suÆcient regularity, i.e. the singular

values does not have a power law decay.

The data collection procedure and geophysical aspects of the the likelihood

model is discussed in Section 2. The statistical construction of the prior and the

likelihood is presented in Section 3. The posterior distribution is developed in

Section 4, together with the sampling algorithm. In Section 5 the methodology

is compared to the standard Gaussian theory in an example where synthetic

seismic is generated based on material parameters observed in a well at the

Sleipner �st Field. Section 6 presents inversion of a seismic inline from the

Sleipner �st Field. Lastly, a discussion of the results is included in Section 7.

2 Data collection and geophysical model

The current section gives a brief introduction to practical aspects regarding the

data collection and the geophysical assumptions used in the current work. This

is all standard methodology in the geophysical community. A more detailed

discussion on an introductory level can be found in Sheri� and Geldart (1995).

The material parameters of the earth considered in this work are � being the

pressure wave velocity; � being the shear wave velocity; and � being the den-

sity. These parameters are suÆcient to characterize an isotropic elastic medium.

Other sets of three parameters are frequently used by geophysicists, but there

is an one to one relation between di�erent choices. Below each point at the

surface, the material parameters are described by the time pro�le relative to

the re
ected wave, f�(t); �(t); �(t)g. Figure 1 display the material parameters

observed in a well at the Sleipner �st Field. The observed depth pro�le is con-

verted to a time pro�le. The conversion between time and depth is a standard

problem in seismic inversion, but is not discussed here.

The seismic data that will be considered in the current presentation is recorded

in the North Sea above the Sleipner �st Field. In a marine seismic survey an
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air gun attached to a ship, generates an acoustic wave. The wave propagates

through the earth, and is re
ected due to contrasts in the sub sea rock for-

mations. The re
ected signal propagates back to the surface and is recorded

in several hydrophones located in a cable being towed by the ship. The hy-

drophones record the amplitude of the re
ected pressure �eld as a function of

time. A seismic trace is a strain or a pressure amplitude as a function of time.

A collection of seismic traces is denoted a gather. The collection of seismic

traces recorded in the hydrophones after one shot with the air gun is denoted

a common shot point gather, for obvious reasons. In a seismic survey several

common shot point gathers are collected, these gathers are further processed.

Buland and Omre (2002a) lists 24 di�erent steps of the processing sequence.

The processed data are in the form of common depth point gathers, CDP gath-

ers for short. In a CDP gather, the seismic signal correspond to the amplitudes

in re
ections occurring below one location at the surface, the distance from this

location to the shot location is denoted the o�set. The processing objective is

to make the traces in the CDP gather correspond to primary re
ections from

a locally vertical 1D-earth model. In a vertical 1D-earth model, the material

parameters of the earth is assumed to vary only with depth. The assumption

of a vertical 1D-earth model is local, hence material parameters below di�erent

locations at the surface may vary at a larger scale.

The seismic signal in CDP gathers used in the inversion, is indexed by angle, �,

in addition to time, t, and are hence denoted angle gathers. The ray path of a

wave is de�ned as the normal vector of the wave front. The angle reference, �,

indicate the angle between the ray path and the vertical line in the point where

the re
ection occur. Figure 2 show three ray paths that have a common angle

of incidence to the vertical line. The amplitudes from these re
ections will have

the same same angle reference in the angle gather. As the time increases in the

angle gather data must be collected at larger o�set to keep the angle � �xed.

The time reference in the angle gather de�nes the depth to the re
ecting point

in terms of the zero o�set re
ection time. Figure 3 show three ray paths that

have the same depth to the re
ection. The amplitudes from these re
ections

will have the same same time reference in the angle gather. The time reference

in the angle gather does not correspond to the physical re
ection time. The

physical re
ection time increase with an increasing o�set since the length of the

ray path increase, see Figure 3.

A seismic inline of 176 angle gathers, each containing seismic traces for nine

angles, were recorded and processed as a part of a seismic survey above the

Sleipner �st Field. Figure 4 shows a time window of the average trace for each

angle gather in this inline. The averaging of traces in a gather is denoted stacking

in the geophysical terminology. In Figure 5 one of the collected angle gathers is

displayed. This gather has approximately the same surface coordinates as the

well for which the material parameters are observed, see Figure 1.

The seismic signal in an angle gather can for each angle, �, be modeled as a
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convolution of a wavelet and seismic re
ectivity corresponding to this angle,

d(�; t) = s� � cPP (�; t) + em(�; t) ; (1)

with t being zero o�set re
ection time; s� being a wavelet speci�c to the angle

�; cPP (�; t) being the seismic re
ectivity for re
ections occurring at the angle �;

and em(�; t) being model error. For each time coordinate, the seismic re
ectivity

measure the strength of the re
ection from this particular point. The subscript

of cPP , indicates that this is the re
ectivity of a propagated pressure wave to

a re
ected pressure wave. There are also re
ection coeÆcients involving shear

waves. Only the pure pressure wave re
ections are considered here, since only

pressure measurements are recorded in the hydrophones.

The Zoeppritz equation describes the dependence between the local material

parameters, f�(t); �(t); �(t)g, and the seismic re
ectivity, cPP (�; t), for any an-

gle of the ray path in the 1D-earth model. Stolt and Weglein (1985) introduce

a time continuous weak contrast approximation to the Zoeppritz equation. By

additional assumptions de�ned below the dependencies of the angle and the

material parameter separates for the seismic re
ectivity, yielding the relation,

cPP (�; t) = a�(�)
d

dt
ln�(t) + a�(�)

d

dt
ln�(t) + a�(�)

d

dt
ln �(t) + ec(�; t) (2)

with ec(�; t) being model error; and

a�(�) =
1

2
(1 + tan2 �) ;

a�(�) = �4�
2
0

�20

sin2 � ; (3)

a�(�) =
1

2

�
1� 4

�
2
0

�20

sin2 �

�
;

with �0 and �0 being constants. The assumption made in Expression (2) is

that the ratio of �(t)=�(t) can be approximated by �0=�0. Buland and Omre

(2002a) demonstrate that the modeling error due to this assumption is small

compared with the typical noise level in real seismic data. Note that the constant

ratio only is assumed in order to approximate Expression (2) and will not carry

through to the �nal estimates. Buland and Omre (2002a) formulate a slightly

more general approximation by allowing the ratio to have a preselected time

dependence. This type of time dependence could also be included in the current

formulation.

The convolutional model and the weak contrast approximation, see Expression

(1) and (2), has a limited range of validity. The crucial point being that the

seismic preprocessing achieve its goal within a reasonable error. The largest

contrast in the material parameters that is observed in the well at the Sleipner

�st Field occur about 2380 ms and have the magnitude 0:3. This is close to
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the limit of both the convolutional model and the weak contrast approximation.

Below this contrast the angle and time index in the angle gather may be disori-

ented since the rays bend at the boundary and this e�ect is not fully accounted

for in the preprocessing. Also for large angles surface waves may form in the

boundary layer and create additional noise.

The objective is now to reconstruct the material parameters, �(t), �(t) and �(t)

based on the seismic traces in the corresponding angle gather. The material

parameters below each location is inverted independently.

3 Statistical model

Bayesian inference requires a statistical model for both the prior and the likeli-

hood. The material parameters are de�ned on a continuous domain and hence

the prior should be modeled by random functions. In addition the prior model

should be suÆciently 
exible to capture essential characteristics of the material

parameters. The likelihood includes the physical link between the observations

and the material parameters, and the statistical model for the errors.

3.1 The prior model

The prior model is de�ned for the logarithm of the material parameters:

[�L(t); �L(t); �L(t) ] = [ ln�(t); ln�(t); ln �(t) ] :

This parameterization guarantees the the material parameters to be positive

and is convenient due to the linear relation to the likelihood, see Expression (2).

The prior model is described by the locationwise relations;

�L(t) = �
0
L + b

C
� "C(t) + b

1
� "1(t) + b

2
� "2(t) + b

3
� "3(t) ;

�L(t) = �
0
L + b

C
� "C(t) + b

1
� "1(t) + b

2
� "2(t) + b

3
� "3(t) ; (4)

�L(t) = �
0
L + b

C
� "C(t) + b

1
� "1(t) + b

2
� "2(t) + b

3
� "3(t) ;

with "C(t) being a centered Cauchy random process; "1(t); "2(t) and "3(t) being

centered Gaussian random processes; the b's being scale parameters describing

the locationwise dependencies between the material parameters; and �
0
L; �

0
L;

and �
0
L being Gaussian random variables centered at the median values for

�L(t); �L(t) and �L(t) respectively. All random components on the right hand

side of Expression (4) are assumed to be independent. The Cauchy process "C(t)

primarily model the abrupt changes in material parameters, while the Gaussian

processes primarily model the smooth variations.
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The random processes involved are de�ned by smoothing of independently scat-

tered random measures (ISRM),

"C(t) =

Z
�C(t� h) dC(h) (5)

"j(t) =

Z
�j(t� h) dWj(h) ; j 2 f 1; 2; 3 g

with dC(h) being the Cauchy measure; dWj(h); j 2 f 1; 2; 3 g being independent
Wiener measures; and �j ; j 2 fC; 1; 2; 3 g being kernel functions. A short

introduction to ISRM is included in Appendix A, a more rigorous presentation

is found in Rajput and Rosinski (1989). It is assumed that k�0Ck1 < 1 and

k�0jk2 <1; j 2 f 1; 2; 3 g, with 0 denoting di�erentiation with respect to time.

This imply that the derivative �elds, "0j(t); j 2 fC; 1; 2; 3 g, are stationary. It is
further assumed that

R
"j(t) dt = 0 for j 2 fC; 1; 2; 3 g, the integral being over

the region under consideration, hence all the variability regarding the global

level is represented by �
0
L; �

0
L; �

0
L.

The prior distribution as de�ned above, is stationary for the derivatives of the

logarithm of the material parameters, �0L(t), �
0
L(t) and �

0
L(t). By integrating

these and center the integrated �eld, the logarithms of the material parameters

will generally not have a stationary distribution, but have higher variability

at both ends of the interval. To prevent this e�ect, information regarding the

increase of level in the material parameters could be supplied. For the Sleipner

�st Field this is done by extracting low frequency information from a well and

enforce this as an additional constraint to de�ne the prior.

3.2 The likelihood

The pro�le of the material parameters, is reconstructed independently below

each location, using the seismic traces in the corresponding angle gather. The

physical link between the observations and the material parameters is de�ned

by combining Expression (1) and (2). As a result the likelihood is de�ned by,

dobs(�; t) = a�(�)s� � �0L(t) + a�(�)s� � �0L(t) + a�(�)s� � �0L(t) + e(�; t) ; (6)

with t being the zero o�set re
ection time; � being the angle reference in the

angle gather; dobs(�; t) being the observed seismic signal; s� and the a's being

as in Expression (1) and (3); and e(�; t) being the error term. The error term

represent both observation errors and model errors, and is modeled as a cen-

tered Gaussian random �eld on [ 0; �=2 ]�R, being independent of the material
parameters. The errors are correlated both in time and angles, but to main-

tain simplicity it is assumed that the dependencies separates in the covariance

function,

Covfe(�k; ti); e(�l; tj)g = ��(�k)��(�l) ��(�k; �l) �t(ti; tj) ; (7)
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with ��(�) being angle dependent standard deviation; ��(�k; �l) being a corre-

lation function describing the dependencies in angular direction; and �t(ti; tj)

being a correlation function describing the dependencies in time direction. Note

that the likelihood only involve the derivative processes, hence it is invariant to

changes in �
0
L, �

0
L; and �

0
L.

The likelihood is linear with respect to the random measures dC(h) and dWj(h);

j 2 f 1; 2; 3 g in Expression (5). Focusing these random measures in Expression

(6), one may write,

dobs(�; t) =

Z
KC(�; t� h) dC(h) +

3X
j=1

Z
Kj(�; t� h) dWj(h) + e(�; t) (8)

with dobs(�; t) being the observed seismic signal; e(�; t) being the error; and

Kj(�; t) =
�
b
j
� a�(�) + b

j
� a�(�) + b

j
� a�(�)

�
@

@t
(s� � �j); j 2 fC; 1; 2; 3 g;

with s� being the seismic wavelet, see Expression (1); �j being kernel functions,

see Expression (5); and the a's and the b's being as in Expression (3) and (4).

4 The posterior

The joint posterior distribution of the random measures, dC(h) and dWj(h);

j 2 f 1; 2; 3 g, see Expression (5) and (8) are explored in this section. The

logarithm of the material parameters can then be found by a linear transform

of the measures according to Expression (4) and (5). The likelihood is linear,

but the Cauchy measure disturbs the traditional Gaussian-linear machinery.

Formally, let C, W and D denote the Cauchy measure, the Wiener measures

and the seismic observations respectively. The posterior distribution is explored

by splitting it according to the identity:

p(w; cjd) = p(cjd)p(wjd; c): (9)

The factor p(cjd) is the distribution of a Cauchy measure under a linear con-

straint with Gaussian errors. The factor p(wjd; c) is the distribution of the

Wiener measure under a linear constraint with Gaussian errors. The �rst factor

can be sampled by McMC algorithms, while the second factor can be evaluated

analytically.

4.1 Discretization of the problem

In order to implement the Bayesian methodology on a computer, the problem

is discretized. This is done by creating discrete equivalents of the relations
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above. Having the prior and the likelihood de�ned on a continuous domain

enables control of discretization and assure consistency if the discretization is

re�ned. The random measures are discretized into independent random seeds,

see Appendix A. The random processes involved, are then modeled by the

discrete equivalent of Expression (5),

"C = �C C

"j = �jW j ; j 2 f 1; 2; 3 g ; (10)

with �j ; j 2 fC; 1; 2; 3 g being a matrix representing the convolving kernels,

�j , in Expression (5); C being iid Cauchy seeds; and W j ; j 2 f 1; 2; 3 g being
three independent sets of iid Gaussian seeds. For later reference let � and �

denote the scale of Cauchy seeds and Gaussian seeds respectively.

The discrete equivalent of Expression (8), may be written as

d =KCC +KW + e (11)

with d being the discretized seismic signal in the angle gather; C and W T =

[W T
1 ; W

T
2 ; W

T
3 ] being the random seeds, see Expression (10); KC and KT =

[KT
1 ; K

T
2 ; K

T
3 ] being matrices representing the kernels in Expression (8); and

e being the discretized error term. The error vector have a multi Gaussian dis-

tribution centered at zero and covariance �E . Exact de�nitions of the random

variables d and e and the matrices KC and K are given in Appendix B.

The objective is now to sample the posterior distribution of the random seeds

C and W . Given a sample from this distribution, a sample of the material

parameters are obtained by using Expression (4) and (10).

4.2 The posterior Cauchy seed

When the focus is on the Cauchy seed, Expression (11) can be restated as,

d =KCC + eN

with d; KC; C being as in Expression (11); and eN = KW + e, hence the

error structure is altered,

p(eN ) = Nmn (0;�N ) ;

with �N = �
2KKT+�E being the covariance matrix. The posterior can hence

be written as:

p(cjd) = const�
hQn

i=1

�
1

��(1+(ci=�)2)

�i
(12)

� exp
�� 1

2
(KCc� d)T��1

N (KCc� d)
	
:
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The posterior distribution of C is multi modal. By di�erentiation of Expression

(12) it is easily found that any local mode cLM satisfy the relation,

cLM =
�
KT

C
��1
N KC +D(cLM)

��1
KT

C
��1
N d ; (13)

with D(cLM) being a diagonal matrix with D(cLM)ii =
2

�2+(cLM
i

)2
. The expres-

sion for cLM above should be compared with the corresponding for a Gaussian

prior, for which D(cLM)ii =
1
�2
G

. The maximum posterior estimator correspond

to linear shrinkage in the Gaussian model, whereas in the current model the

maximum posterior correspond to nonlinear shrinkage.

The modes of the posterior distribution, p(cjd), are located close to subspaces

constructed by setting most of the coeÆcients of C to zero. This is due to the

sparse structure of the Cauchy seed, as is pointed out in Appendix A. This fact

allows for eÆcient sampling based on the multi directional Gibbs sampler (Liu

and Sabatti 2000). Details of the algorithm is in Appendix C and E.

4.3 The posterior Gaussian seed

When the value of the Cauchy seed is given, C = c, Expression (11) can be

expressed as,

d�KCc =KW + e :

The conditional posterior can be calculated explicitly ,

p(wjd; c) = N3n (�w
;�w) ;

with

�
w
= �

2KT
�
�
2KKT +�E

��1
(d�KCc)

�w = �
2I � �

4KT
�
�
2KKT +�E

��1
K

Note in particular that the posterior covariance does not depend on the value

of the Cauchy seed, hence if the maximum posterior solution for the seeds is

sought, the search may be done sequentially in Expression (9).

Since the full conditional distribution is Gaussian, there are several standard

ways to sample the posterior distribution in this case. The approach used here

is direct simulations, details of the algorithm is in Appendix E.

Because the Gaussian seeds are easy to sample when the Cauchy seed is given,

several Gaussian seeds are generated for each Cauchy seed.
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5 Comparison to a pure Gaussian model

The model de�ned in the current work is compared with a model having a

purely Gaussian prior. The test case is based on material parameters observed

in the well at the Sleipner �st Field, see Figure 1, synthetic seismic observations

are generated based on this pro�le. In Figure 1 the depth pro�le is converted

to a time pro�le. The region under consideration is the time interval from

2000� 2400 ms. The drilling stopped after 2390 ms below this depth the value

of the material parameters is �xed at a constant level.

The prior parameter values are estimated from the well observations. The esti-

mation procedure is described in the next section and Appendix D. The level

and scale parameters, see Expression (4), are listed in Table 1 and 2, the deriva-

tive of the kernels, �0j ; j 2 fC; 1; 2; 3 g, see Expression (5), are displayed in

Figure 6 and 7 for the Cauchy model and the pure Gaussian model respectively.

A random e�ect could be added to the level parameters, but this serves no pur-

pose in this example since the seismic observations are una�ected by a change

in these parameters.

The likelihood is modeled by the linearized 1D-earth model, see Expression (1),

(2) and (3), using �0=�0 = 0:5. The data is collected for nine equispaced angles

from 5Æ to 37Æ. The smoothing wavelet of Expression (1) is assumed to have

the functional form

s�(t) = a(�) (1:5� 2�2�2t2) expf��2�2t2g; (14)

with a(�) being an amplitude scale; and � = 25 Hz being the peak frequency.

The wavelet is independent of angle and the amplitude is selected such that

ks�k2 = 1. This is a Ricker like wavelet, see Sheri� and Geldart (1995), modi-

�ed such that the low frequency components are larger. This is to avoid large


uctuations in the low frequent components in the solution, and is done instead

of rede�ning the prior to contain lowfrequent information.

The error structure have a white and a colored component. The white noise

component contribute 1% of the variance, and the colored component contribute

the remaining 99%. The colored component has the form given in Expression

(7). The random error in time direction is obtained by convolving the seismic

wavelet, see Expression (14), with the Wiener measure, this de�nes �t(ti; tj).

The error correlation in the direction of angles is given by,

��(�k; �l) = exp f�3j�k � �lj=��g (15)

with �� = 60Æ being the length scale for the correlation. The standard deviation,

��(�), is assumed constant as a function of angle and is 0:002. A discussion of

the correlation structure is included in the next section.

The synthetic observations are obtained by applying the linearized forward

model to the parameters from the well logs, and add errors according to the

11



likelihood. The synthetic observations are displayed in Figure 8. The signal to

noise ratio, measured as the ratio of the squared L
2 norms, is about 64. Un-

der the loss criterion of absolute deviation the estimate is the median of the

marginal posterior distribution for the relevant parameter.

The estimates in the Cauchy model are evaluated using 800 sampled Cauchy

seeds, sampling �ve Gaussian seeds for each Cauchy seed. The results from

the Gaussian model can be obtained analytically. The estimates and the true

parameter values are displayed in Figure 9 and 10 for the Cauchy model and

the pure Gaussian model respectively. Figure 11 and 12 show the error in the

estimates together with a 90% credibility interval.

Evaluating the estimates by eye, both methods keep the true value reasonable

well within the error margin and captures the main features in the velocities,

�(t) and �(t), whereas neither model resolve the density, �(t), satisfactory. The

biggest visual di�erence appears at the leap in the parameter values at 2380

ms. For the Cauchy model the leap is present in the estimate, whereas in the

Gaussian model it is smoothed over a region, compare Figure 9 and 10. The

error for the Cauchy model seems una�ected by the leap, but the smoothing in

the pure Gaussian model results in large 
uctuations in the error around 2380

ms, compare Figure 11 and 12. A similar e�ect is observed around the peak at

2310 ms.

When the estimates are evaluated by the criterion of absolute deviation the

Cauchy model produces a better �t for the velocity estimates but there is no

gain for the density. For the material parameters in Figure 1 the risk is estimated

by averaging the loss for 100 errors simulated according to the likelihood. The

overall risk improvement is 7% for the velocity estimates. No improvement is

noted for the rock density. If only the interval from 2000 ms to 2250 ms is

considered there is essentially no di�erence between the two models. The main

advantage of the Cauchy model is observed in the region 2250 ms to 2400 ms,

where the velocities have large 
uctuations. In this region the estimates are

improved by 14 % and 10 % for �(t) and �(t) respectively.

The Cauchy model reduces the average error margin in the 90% credibility

interval by 7% for the velocities �(t) and �(t). However in the regions with

large 
uctuations, the error margins for the Cauchy model is larger than for the

pure Gaussian model. Note in particular the region around 2310 ms where the

credibility interval increases in the Cauchy model. Note also the characteristic

peaks in the credibility intervals in the regions where the leaps are, i.e. around

2310 ms and 2380 ms. This indicate uncertainty in the jump location. In the

top region between 2000 ms to 2250 ms the error margin in the 90% credibility

interval is about 10% shorter in the Cauchy model compared with the pure

Gaussian model.
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6 Sleipner �st Field

In this section the seismic inline of 176 angle gathers collected above the Sleip-

ner �st Field, see Figure 4, is inverted independently in each location. The

inversion of the Sleipner data is based on the procedure de�ned above, using

the observed part of the well log in Figure 1 to �t parameters in the prior model,

and the colocated angle gather, see Figure 5, to estimate the parameters in the

likelihood. Normal plots of the derivative of the logarithmic material parame-

ters from the well log are displayed in Figure 13. The �gure clearly illustrate

the heavy tailed nature of the phenomenon, hence the need for a non-Gaussian

model in this case study.

By assuming the processes de�ned as the derivative of the logarithmic material

parameters to be ergodic, averages under the marginal distribution can be eval-

uated by time averages of these processes. The scale parameters in Expression

(4) can hence be estimated by a modi�ed method of moments, keeping the scale

of the Cauchy �eld at �xed ratios. The �nal estimates are listed in Table 1.

Details about the estimation procedure are left to Appendix D. The Cauchy

process is primarily modeling the layered structure, hence the smoothing ker-

nel for the derivative process is �xed as a Dirac at the level of grid resolution.

The kernel is displayed in Figure 6 (a). The Gaussian processes, "01(t); "
0
2(t)

and "
0
3(t), are then estimated by subtracting an estimate of the Cauchy �eld,

and decouple the processes by the inverse of the estimated scale matrix for the

Gaussian processes. The correlation function for each of the Gaussian processes

are then �t by eye to an empirical estimate. A more advanced technique com-

bining the methodology of Appendix D with tapering (Fodor and Stark 2000)

could be developed, but is not believed to give any signi�cant advantage in the

current application. The estimated kernels, being the symmetric square root

of the correlation operator, are displayed in Figure 6 (b)-(d). The kernels are

those used in the example of the previous section.

In the likelihood the seismic wavelet and the noise covariance must be estimated.

This is an inverse problem by itself. Buland and Omre (2002b) uses a Bayesian

approach with vague priors to estimate the parameters. A slightly modi�ed

method is used here. Before the estimation is performed the well log and the

seismic traces are aligned in time such that the highest peak of the seismic

traces match the leap in parameter values at 2380 ms. The estimated wavelets

are displayed in Figure 14.

The residuals after the wavelet estimation have two components of error, being

due to observation errors in the well logs and in the seismic data. Only the sum

of the errors is identi�able. Hence a subjective choice must be made regarding

the seismic error structure. The variance of the error is modeled by a colored

component of 99 % and a white component of 1 %. The colored component

of the error is mainly due to e�ects related to the approximate model and

imperfections of the seismic processing, hence the error is on the same scales as

13



the data. The time correlation of the error is hence obtained by convolving an

average wavelet with white noise, this de�nes �t(ti; tj). The angle correlation

of the error is chosen to be a �rst order exponential correlation function, see

Expression (15), with length scale �� = 30Æ. The standard deviation of the error

��(�) is chosen to be constant and have the value 0:35. This correspond to a

signal to noise ratio ranging from �ve to two since the energy in the wavelets

vary with angle.

The seismic wavelet contain only intermediate frequencies. This gives large


uctuations in the sampled values due to uncertainty in the low frequencies. In

Gaussian models it is common to extract the low frequency components from

the well and center the samples and estimates around this mean value. This

approach is not optimal for the Cauchy model since it interfere with the structure

of the prior distribution. In the current approach the low frequency content of

the well is included by extracting the information below 10 Hz from the well

log. The prior distribution is now rede�ned. The new prior distribution is the

distribution previously de�ned conditioned to observations of the low frequency

components according to the well observations. Figure 15 show the pointwise

median and 90% credibility interval for the material parameters in the well

location when the low frequency information is included.

The estimates are based on 200 samples of the Cauchy seeds, sampling 10 Gaus-

sian seeds for each Cauchy seed. The mixing of the sampling algorithm is brie
y

commented in Appendix C and appears to be satisfactory. A larger number of

samples would have been desirable to reduce the Monte Carlo variation in the

estimates. The parameters are reconstructed in the region between 2050 ms and

2450 ms to avoid boundary e�ects due to missing observations.

Figure 16 displays the estimates below the well location together with 90% cred-

ibility interval. Comparing this �gure with Figure 15 it is seen that the seismic

only carry a moderate amount of information regarding the parameters, however

the estimates contain more details than the prior and the credibility intervals are

generally shorter than in the prior. In Figure 17 the current estimates are com-

pared with the well logs. The estimates have a reasonable good correspondence,

except from the peak at about 2310 ms that bears no e�ect in the estimate

of �(t). Contrary to the synthetic example, the estimate is smoothed in the

region containing the leap. This is due to uncertainty in the jump location.

Most individual samples have one jump at about the right position, but this

location varies slightly between samples, this re
ects the multi modality of the

posterior distribution. When the posterior distribution is multi modal, such as

in the current case, it is in general impossible to �nd one estimate that both

have a characteristic shape and represent average properties of the posterior.

The global mode of the posterior distribution is an alternative estimator. This

estimator will reproduce a leap in the parameter value, and hence be visually

attractive. It would however have a worse performance if measured by average

quantities.
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Figure 18 show the the 90% credibility interval for the error and the actual error

for the well. The smoothing e�ect of the estimate around the leap produces a

large error in this location, but even this large error is within the credibility

interval due to the characteristic peak in the credibility interval around the leap.

The peak in the credibility interval indicate the uncertainty in jump location.

The �nal estimates of �, � and � for all the 176 gathers are displayed in Figure

19(a)-(c). The leap value between 2350 ms and 2450 ms dominates the picture,

but other details are also present. The Monte Carlo variation of the estimates

causes some disturbance to the pictures in particular for the density estimate,

see Figure 19(c). For the estimate of �, see Figure 19(b), the the estimate is

threshold at 3500 m=s in order to represent the contrasts in the estimate bet-

ter, the estimate exceed this value in some areas below the leap these areas are

colored red. the maximum value of � is about 4250 m=s and occur in the read

area at the leap boundary for gather 43. Below the leap especially in the lower

left corner of the �gure the estimates 
uctuate. The basis of these 
uctuations

are present i the data, but may be due to imperfections of the preprocessing.

There are several sources of errors. If time axis is shrunk to much in the pre-

processing energy is migrated to higher frequencies, if the e�ect of geometrical

spreading and absorption is over compensated the signal is ampli�ed, also the

velocity dependence of the references in the angle gather may be problematic.

In general the estimates are reasonable.

7 Discussion with conclusions

The prior model is de�ned in a consistent way by the use of independent scat-

tered random measures. A superposition of Cauchy and Gaussian processes

models a layered structure with slow variations within each layer. Compared

to the more common Bernoulli Gauss model, the Cauchy model introduces the

layering without introducing dichotomy explicitly, and is de�ned independent of

grid. The current model is an alternative to modeling the layers by point pro-

cesses. The likelihood model is based on well founded geophysical principles.

The estimator is evaluated by stochastic simulation. The loss criterion of ab-

solute deviation account for all the generated samples in a robust way. In an

example the Cauchy model is compared to a pure Gaussian model. The test

example is based on real material parameters observed in the Sleipner �st Field

and synthetic seismic data is generated. For the velocities the Cauchy model

is found to reduce the over all risk by 7%. In regions where the material pa-

rameters have large 
uctuations the estimates of the velocities improve by 14 %

and 10 %. Over all the error margins in the 90% credibility interval is reduced

by 7%. In regions where the material parameters are slowly varying the 90%

credibility intervals for the velocities are reduced by 10%. The model only have

a minor impact on estimation of the rock density. In general the uncertainty

of the estimates are well represented in the Cauchy model in particular the
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uncertainty in leap locations.

For the Sleipner �st Field, the model de�ne a prior distribution that account

for the layered structure. To restore the material parameters, with reasonable

error margins, low frequency information must be included from the well log. In

the current approach this is done by rede�ning the prior distribution to be the

conditional distribution when given low frequency information from the well log.

The inversion results are satisfactory and the uncertainty is well represented.

The uncertainty is however large due to large errors in the data.

Ideally a model that accounts for lateral dependencies should be developed. In

such a model the well information could be included in a consistent way. The

current model does not immediately generalize to include lateral dependencies.

It is however possible to de�ne a spatial model by superposition of stationary

Cauchy �elds in higher dimensions, such a model would however substantially

increase the computational cost and raise additional questions regarding esti-

mation of prior parameters and sampling algorithm.

The Cauchy model might be considered to have too heavy tails, hence unreal-

istically large leaps in the parameter values may occur according to the prior

distribution. The random �elds de�ned above are related to random �elds of

type G (Barndor�-Nielsen and Prez-Abreu 2002). Random �elds of type G are

very general and o�er a broad specter of prior distributions that can be inves-

tigated. In particular multivariate normal inverse Gaussian distributions is a

class of 
exible distributions that bridges the gap between multivariate Cauchy

distributions and Gaussian distributions. To utilize such random �elds as priors

is a topic for further research.
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A Independently scattered random measures

Independently scattered random measures o�ers a way of constructing prior dis-

tributions for functions de�ned on a continuous domain inRd. The presentation

below is motivated from the point of application, a more rigorous presentation

is found in Rajput and Rosinski (1989).

De�nition 1 (Independently scattered random measures,(ISRM)) An

independently scattered random measure, Z 2 Rd is a set of random variables

indexed by the Borel sets in Rd, such that for any sequence of disjoint Borel

sets fAig1i=1 in Rd the two properties hold.

i) Z(Ai) ; i = 1; 2; ::: ; are independent,

ii) Z(
S
iAi) =

P
i Z(Ai) a.s.,

with a.s. denoting almost sure convergence of the series.

The Wiener measure and the Cauchy measure will be de�ned next. Let
D
=

denote equality in distribution, and j � j denote the Lebesgue measure on Rd.

The Wiener measure, can be de�ned by i) and ii) in addition to

iii)w Z(Ai)
D
= Gauss(0; jAij);

with Gauss(0; �2) being a Gaussian distributed random variable with zero mean

and variance �2. The Wiener measure is a signed random measure on Rd. In

what follows W is used to refer to this measure.

The Cauchy measure, can be de�ned by i) and ii) in addition to

iii)c Z(Ai)
D
= Cauchy(jAij);

with Cauchy(�) being a centered Cauchy distributed random variable with the

scale factor � . The density of a Cauchy(�) random variable is:

pC(x; �) =
1

��

�
1 +

�
x
�

�2� ; x 2 R ; � > 0 :

The Cauchy measure is a signed random measure on Rd. In what follows C is

used to refer to this measure.

A.1 Stationary random �elds de�ned by ISRM

The stationary �elds obtained by convolving a kernel � with the ISRM,

"(t) =

Z
Rd

�(t� h) dZ(h); (16)
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is of particular interest in the current application.

The random �elds generated by the Wiener measure and the Cauchy measure

will be used for constructing the prior distribution. Let k�k1 and k�k2 denote
the L1 and L

2-norms respectively and assume k�k1 + k�k2 <1.

A stationary Gaussian random �eld is de�ned by

"G(t) =

Z
Rd

�(t� h) dW (h):

According to the standard theory "G(t) have a covariance function uniquely

de�ned by � (Vanmarcke 1983).

A stationary Cauchy random �eld is de�ned by

"C(t) =

Z
Rd

�(t � h) dC(h):

The term Cauchy �eld is twofold deserved. Firstly, it is constructed based on

the Cauchy measure, secondly all marginal distributions are Cauchy distributed,

"C(t)
D
= Cauchy(k�k1):

Linear transforms of stationary �elds de�ned by Expression (16), are given by

transforming the kernel � correspondingly. Let K denote the linear transform

and apply this transform to the random �eld, then

K"(t) =

Z
Rd

K�(t� h) dZ(h);

with K" being the transformed �eld; and K� being the linear transform applied

to the kernel �. Appropriate regularity conditions must apply to � and K in

order to make K" well de�ned. In the current application the linear transforms

of interest are integration, convolution, and di�erentiation.

A.2 Discretization of ISRM

In the current article independent scattered random measures are used to de�ne

prior distributions for functions on a continuous domain. Having a continuously

de�ned prior, enables control of the discretization error, and guarantees stability

of the discretization as the resolution increases. An independently scattered

random measure is discretized into independent random seeds by integrating

over small volumes. For t 2 Rd use the multi index notation to denote t� =

� ��t = (�1�t1; �2�t2; :::; �d�td) for � 2 Zd, and let j�tj denote the Lebesgue
measure of the volume element �t.

Discretization of the Wiener measure results in,

W� =

Z t�+�t

t�

dW (h);
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with W� being an iid sequence of random variables such that

W�
D
= Gauss(0; j�tj):

For the Wiener measure the standard normal seed is scaled by
p
j�tj.

Discretization of the Cauchy measure results in,

C� =

Z t�+�t

t�

dC(h);

with C� being an iid sequence of random variables such that

C�
D
= Cauchy(j�tj):

For the Cauchy measure the standard Cauchy seed is scaled by j�tj.
In Figure 20 the Wiener measure and the Cauchy measure are visualized by

discretized realizations. The �gure clearly reveal the underlying structure of

the random measures. The Wiener measure distributes the energy equally along

the region, while the Cauchy measure concentrates most of the energy in a few

locations. The focusing of energy is one of the properties that motivated the

use of Cauchy �elds in the current application.

B Details regarding discretization of the prob-

lem

The observations are collected for the angles �k; k = 1; :::;m; for each angle

the functions are discretized into vectors of length n. For a given angle �k

Expression (6) then translates into

dk = a�(�k)SkD�L + a�(�k)SkD�L + a�(�k)SkD�L + ek; (17)

with dk being the discretized seismic traces; the a's being as for Expression (3);

Sk being a matrix representing convolution with the wavelet s�k ; D being a

matrix representing di�erentiation; �L, �L and �L being discretization of the

material parameters; and ek being the discrete error at angle �k. The full error

vector eT = [eT1 ; :::; e
T
m] have a multivariate Gaussian distribution,

p(e) = Nnm (0;�E)

with �E being the covariance matrix. Due to the separability, see Expression

(7), the covariance matrix have the form �E = ��
�t, with �� and �t being

m � m and n � n matrices describing the error covariance and correlation in

direction of angles and time respectively; and 
 being the Kronecker tensor

product.
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Focusing on the random seeds C andW j ; j 2 f 1; 2; 3 g in Expression (10), the
likelihood is linear,

d =KCC +KW + e (18)

with dT = [dT1 ; :::;d
T
m] being the discretized seismic traces; C and W T =

[W T
1 ; W

T
2 ; W

T
3 ] being the random seeds; KC being a nm � n matrix; K

being a mn � 3n matrix; and e being the error term as de�ned above. KT =

[KT
1 ; K

T
2 ; K

T
3 ]. The matrices Kj ; j 2 fC; 1; 2; 3g all have the same form,

the relation is

Kj =

2
64

a
j
1S1D�j

...

a
j
mSmD�j

3
75 ;

with Sk being the matrix representing convolution with the wavelet at at angle

�k;D being a matrix representing di�erentiation; �j being matrices representing

the kernel functions, see Expression (10); and

a
j
k = a�(�k)b

j
� + a�(�k)b

j
� + a�(�k)b

j
� ; j 2 fC; 1; 2; 3 g ;

with the a's on the right hand side being as in Expression (3); and the b's being

as in Expression (4).

C The multi directional Gibbs sampler

The multi directional Gibbs sampler is a particular case of the generalized Gibbs

sampler (Liu and Sabatti 2000). The generalized Gibbs sampler is a Markov

chain based method for sampling a distribution. A Markov chain having the

target distribution as stationary distribution is constructed by de�ning the up-

dating rules.

Let cold be the current state of the chain; fvlgLl=1 be an over complete pool of

basis vectors; and s be a scalar. For the purpose of describing the algorithm,

let p(�) be the target density. The multi directional Gibbs sampler is described
by the updating rule:

1. Draw l
� uniformly from f1; :::; Lg

2. Draw s
� from q(s) / p(cold + s � vl�)

3. Let cnew = cold + s
� � vl�

In the current application of the multi directional Gibbs sampler, the unit vec-

tors are chosen as translations of the vectors in Figure 21. The density values
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of q(s) is known to proportionality by Expression (12),

q(s) /

2
664 Y
fi : vl

�

i
6=0g

1

��

�
1 +

�
cold
i

+s vl
�

i

�

�2�
3
775 expf� 1

2�2
l�

[s� �Tl�(d�KCc
old)]2g;

with

�
2
l� =

h
(vl

�

)TKT
C
��1
N KCv

l�
i�1

;

and

�l� = �
2
l��

�1
N KCv

l�
:

The likelihood give essential bounds for the posterior range. The univariate

density q(s) is calculated on a dense grid centered at �Tl�(d � KCc
old) and

stretching 5�l� to each side. Note that �l and �l are speci�c to each unit vector

vl, and that their expressions only depend on the angles for which the traces

are observed. Since the same set of angles are used for all gathers, �l� and �l�
only need to be calculated once for the total study.

In the current work the simulation is initiated in a local mode. The local mode is

found by iterating Expression (13). After a burn in of 20 random scans through

the pool of basis vectors, a sample is extracted at the end of every 2end random

scan through the pool of basis vectors. The mixing for the Cauchy seed in the

Sleipner �st Field is displayed in Figure 22. The Cauchy seed is visualized

in the �gure. The middle plot show the sampled seed value that correspond

to the leap value at 2380 ms. The seeds form the two nearest neighbors at

both sides are in the plots above and below, respectively. In the �gure three

samples are extracted in each random scan through the pool of basis vectors.

The �gure clearly show how the sampling algorithm move between di�erent

modes corresponding to di�erent locations for the leap in the parameter values.

D Estimation of prior scale parameters

In this appendix a methodology for estimating the scale parameters of Expres-

sion (4) is supplied. The scaling of the Gaussian processes is the square root

of the pointwise covariance matrix for the logarithm of the material parameters

given the Cauchy process. This part requires six parameters to be estimated.

LetBG denote a symmetric matrix with the values of the scaling of the Gaussian

�eld. For the Cauchy process three parameters must be estimated.

If all nine parameters are to be determined, the estimates are unstable. This is

seen by the fact that if all random processes are Gaussian, only six parameters

can be identi�ed. To further reduce the number of parameters, the ratios of

the parameters for the Cauchy process are held �xed; [ bC� ; b
C
� ; b

C
� ] = 
vT with

22



vT = [ 1:0; 1:0; 0:15 ], only the global scale 
 is estimated. According to geo-

physical literature it is reasonable to assume that the �rst two components are

of approximately of the same size, the third component is selected to be about

size of (�L(2500)��L(2000))=(�L(2500)��L(2000)). The scale parameters are

estimated by a modi�ed method of moments, by computing the sample averages

and tune the scale parameters so that the population averages match the sample

averages for a given set of functions.

For a stationary random process, f"(t); t 2 R g, de�ne "i =
R ti+�t
ti

"(s)ds. The

random variables "i are then identically distributed. Let " denote a generic

random variable being distributed according to the law of "i . If f"(t); t 2 R g,
is ergodic, the sample averages of "i approaches the marginal distribution of "

as the number of observations increases and the step length, �t, is kept �xed.

Using this notation for the random �elds involved in the current problem, the

functions used in the method of moments are,

I(j
 "0C + "
0
Gj > K)

and 2
4 �

0
L

�
0
L

�
0
L

3
5 [�0L; �0L; �0L ]I(j
"0C + "

0
Gj < K);

with 
 being the global scale for the Cauchy process; K being a �xed constant;

I(�) being an indicator function for an event; "0C being as for Expression (4);

and "
0
G being a linear combination of the Gaussian processes, "01, "

0
2 and "

0
3, see

Expression (4). In the current setting, K = 0:0495 and


 "
0
C + "

0
G = 0:60�0L + 0:32�0L + 0:54 �0L

The estimates must be solved numerically. Since the main focus is not on these

parameters, approximate values for the population averages are computed, by

using the approximations

P (j
 "0C + "
0
Gj > K) � P (j"0C j > K=
)

and

P (j"0C j > K=
) � 2


�K
:

The approximations improves as K increases.

E Simpli�cations by using the Fourier transform

The expressions stated in the previous sections are valid for more general models

than the particular that is speci�ed. In the speci�ed model, several expressions
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simplify since the Fourier transform simultaneously diagonalize the stationary

operators considered. To use the simpli�ed formulas the convolutions must be

de�ned cyclic. This is done by tapering the data and extend the vectors by zero

padding to avoid boundary problems.

Let XT denote the orthogonal Fourier transform, and X denote its inverse.

Now introduce the relations,

Sk =X�s
kX

T
; k 2 f1; 2; :::;mg ;

�j =X�jXT
; j 2 fC; 1; 2; 3 g ;

�E = �� 
�t
;

�t =X�tXT
;

X
m = Im�m 
X ;

XT 
m = Im�m 
XT
;

with the �'s being diagonal matrices; 
 being the Kronecker tensor product;

and

�� =

2
64

�
�
11 : : : �

�
1m

...
. . .

...

�
�
m1 : : : �

�
mm

3
75 :

According to these identities;

�N = �
2KKT +�E =X
mDNX

T 
m

with

DN =

2
64
D11 : : : D1m

...
. . .

...

Dm1 : : : Dmm

3
75 ;

with Dkl being diagonal matrices having the form:

Dkl = �
�
kl�

t + �
2

3X
j=1

a
j
ka

j
l�

s
k�

s
l (�

j)2:

The inverse of �N can be calculated by solving a m�m system for each Fourier

component separately. When �E have a small white noise component the in-

version is stable. The inverse of DN have the same structure as DN ,

DN
�1 =

2
64
D11

: : : D1m

...
. . .

...

Dm1
: : : Dmm

3
75 :

with Dkl being diagonal matrices.
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For the sampling the Cauchy seed, �l� and �l� , need to be computed. First

simplify the matrix KT
C
��1
N KC using the notation above,

KT
C
��1
N KC =XT�2

HX
T

with

�2
H =

mX
k=1

mX
l=1

a
C
k a

C
l �

s
k�

s
lD

kl(�C)2;

hence:

�l� = k�HX
Tvl

�k�12 ;

�Tl�KCc
old = �

2
l�(X

Tvl
�

)T�2
HX

T cold ;

�Tl�d = �
2
l�(X

Tvl
�

)T

 
mX
k=1

mX
l=1

a
C
k �

s
kD

kl�C

�H
XTdl

!
;

with dl being the discretized traces at angle �l.

For the normal seed computations, the important quantities are �
w
and �w.

These are split into the components corresponding to each of the normal seeds,

W j ; j 2 f 1; 2; 3 g,

�
w
=

2
4 �w

1

�w

2

�w

3

3
5

and,

�w =

2
4 �w

11 �w

12 �w

13

�w

21 �w

22 �w

23

�w

31 �w

32 �w

33

3
5 :

By the above notation,

�w

j = �
2X

mX
k=1

mX
l=1

a
j
kD

kl�j�s
kX

T (dl � (KCc
old)l);

with (KCc
old)l being the vector containing the, (l� 1)n+1; (l� 1)n+2; :::; ln,

components of KCc
old, further

�w

ij = �
2
Æij � I � �

4X

 
mX
k=1

mX
l=1

a
j
ka

i
lD

kl�j�i�s
k�

s
l

!
X

T
;

with Æij = 1 if i = j, and Æij = 0 if i 6= j,

The random seeds can hence be sampled by sampling the frequencies ofW 1;W 2;W 3

simultaneously. For each of the n frequencies, a 3� 3 matrix must be factored.
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Tables and �gures

material level scale scale scale scale

parameter "C "1 "1 "3

� 7:9941 0:0059 0:0183 �0:0014 0:0004

� 7:2651 0:0059 �0:0014 0:0303 �0:0014
� 7:7629 0:0009 0:0004 �0:0014 0:0106

Table 1: Level and scale parameters for the Cauchy model. The table relates to

Expression (4).

material level scale scale scale scale

parameter "C "1 "1 "3

� 7:9941 0:0000 0:0319 0:0102 0:0032

� 7:2651 0:0000 0:0102 0:0449 0:0007

� 7:7629 0:0000 0:0032 0:0007 0:0120

Table 2: Level and scale parameters for the pure Gaussian model. The table

relates to Expression (4).
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Figure 1: Well logs. The material parameters observed in a well at the Sleipner

�st Field. The observed depth pro�le is converted to a time pro�le. The drilling

stopped at 2390 ms below this depth the value is �xed at a constant level.
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Figure 2: Angle gather-common angle. The ray paths all have a common angle

to the vertical line, and hence a common angle in the angle gather
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Figure 3: Angle gather-common time. The ray paths all have a common depth

of re
ection, and hence the same time reference in the angle gather.
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Figure 4: Stack section for the seismic inline. The seismic inline is observed in

a marine seismic survey above the Sleipner �st Field.
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Figure 5: Angle gather number 67. The seismic traces in this angle gather is

recorded in the well location.
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Figure 6: Smoothing kernels for the Cauchy model. The kernels are relates to

the random components of Expression (4). The functions shown are, �0C(t) (a);

�
0
1(t) (b); �

0
2(t) (c) and �

0
3(t) (d), respectively.
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Figure 7: Smoothing kernels for the pure Gaussian model. The kernels are

relates to the random components of Expression (4). The functions shown are,

�
0
C(t) (a); �

0
1(t) (b); �

0
2(t) (c) and �

0
3(t) (d), respectively.
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Figure 8: Synthetic observations. The CDP gather inverted in the example in

Section 6. The observations are generated by the linearized model and errors

where added according to the likelihood.

34



2000 4000 6000

2000

2050

2100

2150

2200

2250

2300

2350

2400

alpha
T

im
e
 [
m

s
]

1000 2000 3000

2000

2050

2100

2150

2200

2250

2300

2350

2400

beta

2000 2500 3000

2000

2050

2100

2150

2200

2250

2300

2350

2400

rho

Figure 9: Inversion results for the Cauchy model. The median and is plotted

together with the true parameter values.
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Figure 10: Inversion results for the pure Gaussian model. The median is plotted

together with the true parameter values.
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Figure 11: Errors for the Cauchy model. The 90% credibility interval for the

error predicted by the simulations displayed together with the actual error.
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Figure 12: Errors for the pure Gaussian model. The 90% credibility interval for

the error predicted by the simulations displayed together with the actual error.
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Figure 13: Normal plots for the derivative of the logarithm of the material

parameters.
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Figure 14: The wavelets for the inversion. The wavelets where estimated from

the well log displayed in Figure 1 and the angle gather displayed in Figure 5.
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Figure 15: The prior distribution gather 67. The prior median and pointwise

90% credibility interval.
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Figure 16: The posterior distribution gather 67. The posterior median and

pointwise 90% credibility interval.
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Figure 17: The inversion results for Sleipner �st gather number 67. The �gure

display the inverted path together with the values observed in the well in red.
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Figure 18: Errors for for Sleipner �st gather number 67. The 90% credibility

interval for the error predicted by the simulations displayed together with the

actual error.
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Figure 19: The inversion results for Sleipner �st data. The estimated values

being the posterior medians for (a) �; (b) �; and (c) �, respectively.
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Figure 20: Comparison of the Winer measure and the Cauchy measure. The

measures are discretized by integrating over intervals of length 1=1024. (a)

One random sample of the discretized Wiener measure. The Gaussian seed

have the scaling factor 1=
p
1024. (b) One random sample of the discretized

Cauchy measure. The Cauchy seed have the scaling factor �c=1024. The factor

�c � 0:416 adjust the scale so that the the measure of the total region [ 0; 1 ]

have the same 90'th percentile for the two measures.

46



−1 0 1

2050

2100

2150

2200

2250

2300

2350

2400

2450

[m
s
]

−1 0 1
2050

2100

2150

2200

2250

2300

2350

2400

2450

−1 0 1

2050

2100

2150

2200

2250

2300

2350

2400

2450

Figure 21: Directions for multi directional Gibbs sampler. The pool of basis vec-

tors used in the multi directional Gibbs sampler, are translations of the functions

above. The resolution of the �gure is such that each plateau correspond to the

size of one vector component.
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Figure 22: Mixing of multi directional Gibbs sampling, for the Sleipner �st

Field. Time traces for the the Cauchy seed. The sampled seed value that

correspond to the leap value at 2380 ms is in the middle plot, the two nearest

neighbors at both sides are above and below. Note that the scale of the �gure

is for the Cauchy seed. To get the scale that apply to the derivative of the

logarithm of the material parameters, the seed should be divided by 2 due to

the kernel in Figure 6(a) and multiplied by the second column in Table 1, due

to the relation in Expression (4).
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Rapid spatially coupled AVO inversion
in the Fourier domain

Arild Buland1, Odd Kolbj�rnsen & Henning Omre

Department of mathematical sciences

Norwegian University of Science and Technology

Trondheim, Norway

Abstract

Spatial coupling of the model parameters in an inversion problem pro-

vides lateral consistence and robust solutions. We have de�ned the in-

version problem in a Bayesian framework, where the solution is repre-

sented by a posterior distribution obtained from a prior distribution and

a likelihood model for the recorded data. The spatial coupling of the

model parameters is imposed via the prior distribution by a spatial cor-

relation function. In the Fourier domain, the spatially correlated model

parameters can be decoupled, and the inversion problem can be solved

independently for each frequency component.

For a spatial model parameter represented on n grid nodes, the com-

puting time for the inversion in the Fourier domain follows a linear func-

tion of the number of grid nodes, while the computing time for the fast

Fourier transform follows an n log n function. We have developed a 3-D

linearized AVO inversion method with spatially coupled model parame-

ters, where the objective is to obtain posterior distributions for P -wave

velocity, S-wave velocity, and density.

The inversion algorithm has been tested on a 3-D dataset from the

Sleipner Field with 4 million grid nodes, each with three unknown model

parameters. The computing time was less than 3 minutes on the inversion

in the Fourier domain, while each 3-D Fourier transform used about 30

seconds on a single 400MHz Mips R12000 CPU.

KEY WORDS: Bayesian statistic, Seismic inversion, 3-D inversion,

Sampling algorithm, Merging observations

1Arild Buland also work at Statoil Research Centre,Trondheim, Norway.
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1 Introduction

Many geophysical inverse problems can naturally be cast in a Bayesian frame-

work, where it is possible to combine available prior knowledge with the infor-

mation contained in the measured data, see e.g., Tarantola and Valette (1982);

Tarantola (1987); Duijndam (1988a,b). The solution of a Bayesian inverse prob-

lem is represented by the posterior distribution. From the posterior distribu-

tion, the best estimate of the solution and the corresponding uncertainty can

be extracted. A set of plausible solutions can also be drawn directly from the

posterior distribution.

Amplitude versus o�set (AVO) inversion can be used to extract information

about the elastic subsurface parameters from the angle dependency in the re-


ectivity, see e.g., Hampson and Russell (1990); L�ortzer and Berkhout (1993);

Pan et al. (1994); Buland et al. (1996); Gouveia and Scales (1998). In practice,

and especially for 3-D surveys, linearized AVO inversion is attractive since it can

be performed with use of moderate computer resources. Prior to a linearized

AVO inversion, the seismic data must be processed to remove nonlinear rela-

tions between the model parameters and the seismic response. Important steps

in the processing are the removal of the moveout, multiples, and the e�ects

of geometrical spreading and absorption. The seismic data should be prestack

migrated, such that dip related e�ects are removed. After prestack migration,

it is reasonable to assume that each single bin-gather can be regarded as the

response of a local 1-D earth model. The bene�ts of prestack migration be-

fore AVO analysis is discussed in Brown (1992); Mosher et al. (1996); Buland

and Landr� (2001). We further assume that wave mode conversions, interbed

multiples and anisotropy e�ects can be neglected after processing. Finally, the

prestack gathers must be transformed from o�sets to re
ection angles.

Under Gaussian model assumptions, an explicit analytical solution of a Bayesian

linearized AVO inversion problem is worked out for a single angle gather, see

Buland and Omre (2001a). The objective of this method is to obtain posterior

distributions for the P -wave velocity, S-wave velocity, and density. The solution

is fast to compute and the method is therefore suitable for inversion of seismic

3-D data. However, the model parameters are not laterally coupled, so each

CDP gather is inverted independently of the neighbor CDPs.

In the current paper, a spatially coupled model is de�ned to obtain a spatial

consistent and robust solution of the linearized AVO inversion problem. The

consequence of the spatial coupling is that the solution in each location depends

on the solutions in all other locations. Even for small data sets, this results in

an enormously system of equations. For example, a small 3-D inversion problem

may have dimension 100�100�100, that is n = 106 grid nodes. The computing

time for inversion of the corresponding equation system is proportional to n3,

denoted O(n3). An obvious approximate approach to this problem is to assume

that the solution in a speci�c location only depends on the solutions at the
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nearest neighbor locations, see e.g., Omre et al. (1993); Rue (2000). Domain

decomposition constitutes another approximate technique, where the inversion

area is divided into several subareas, each limited to a size which eÆciently can

be handled by the actual computer. The problems with this method are related

to boundary e�ects and the �nal coupling of the inverted subareas. In this pa-

per we present a Bayesian AVO inversion method where the spatial coupling

can be handled exactly under certain assumptions. The method utilizes that

the covariance matrix for a homogeneously correlated spatial variable sampled

on a regular grid can be diagonalized by a Fourier transform, see Wood (1995).

In the Fourier domain, the inversion problem can be solved independently for

each frequency component. The computing time for the inversion in the Fourier

domain is then O(n), which is the optimal scaling property for an inversion algo-
rithm. However, the computing time for a fast Fourier transform is according to

O(n logn), such that the Fourier and inverse Fourier transforms will dominate

the computing time asymptotically.

2 Methodology

The seismic re
ection coeÆcients depend on the material properties of the sub-

surface. An isotropic, elastic medium is completely described by the three mate-

rial parameters f�(x; t); �(x; t); �(x; t)g, where �, �, and � are P -wave velocity,

S-wave velocity, and density, x is the lateral position, and t is the vertical seis-

mic traveltime. A weak contrast approximation to the seismic re
ectivity is

(Aki and Richards, 1980; Stolt and Weglein, 1985)

c(x; t; �) = a�(x; t; �)
@

@t
ln�(x; t)

+a�(x; t; �)
@

@t
ln�(x; t) + a�(x; t; �)

@

@t
ln �(x; t); (1)

where � is the re
ection angle, and

a�(x; t; �) =
1

2

�
1 + tan2 �

�
;

a�(x; t; �) = �4�
2(x; t)

�2(x; t)
sin2 �; (2)

a�(x; t; �) =
1

2

�
1� 4

�2(x; t)

�2(x; t)
sin2 �

�
:

The elastic subsurface parameters can be collected in a vector �eld. Motivated

by the form of the re
ectivity function in expression (1), let

m(x; t) = [ln�(x; t); ln�(x; t); ln �(x; t)]
T
; (3)
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where T denotes transpose such that m(x; t) is a column vector. Further, let

a(x; t; �) be a row vector

a(x; t; �) = [a�(x; t; �); a�(x; t; �); a�(x; t; �)] : (4)

For zero incidence re
ections, the re
ectivity function c(x; t; �) reduces to

c(x; t; 0) =
1

2

@

@t
lnZP (x; t); (5)

where ZP = �� is the acoustic impedance. In this case, a(x; t; 0) reduces to 1/2,

and m(x; t) reduces to lnZP (x; t). Inversion for acoustic impedance from zero

incidence data can be de�ned by a simple reformulation of the AVO inversion

problem, and is therefore not further discussed in this paper.

The seismic data are represented by the convolutional model

dobs(x; t; �) =

Z
s(�; �) c(x; t� �; �) d� + e(x; t; �); (6)

where s is the wavelet, and e is an error term. Note that the wavelet is allowed

to be angle dependent, but independent of the lateral position x. The wavelet

is assumed to be stationary within a limited target window.

2.1 The Fourier transform

The spatial coupled inversion problem can be decoupled in the Fourier domain.

The inversion problem can then be solved independently for each frequency

component. Let the Fourier transform be de�ned as

~f(k; !) =

ZZZ
f(x; t) exp[�i(k � x+ !t)] dx dt; (7)

with inverse transform

f(x; t) =
1

(2�)3

ZZZ
~f(k; !) exp[i(k � x+ !t)] dk d!; (8)

where i =
p
�1, ! is the temporal frequency, and k is the spatial frequency

vector with components kx and ky. In the following, frequency means a (k; !)

pair. Note that geophysicists often call kx and ky wavenumbers, and the sign

of the temporal frequency ! is often de�ned opposite of the de�nition above.

The Fourier transform of the convolutional model in expression (6) is

~dobs(k; !; �) = ~s(!; �) ~c(k; !; �) + ~e(k; !; �): (9)

We use a constant �=� ratio in expression (2), such that a(x; t; �) = a(�), then

the Fourier transform of the convolutional model can be written

~dobs(k; !; �) = g(!; �) � ~m(k; !) + ~e(k; !; �); (10)
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where g is a row vector de�ned by

g(!; �) = i! ~s(!; �) a(�); (11)

and ~m(k; !) is the Fourier transform of the elements inm(x; t), that is ln�(x; t),

ln�(x; t), and ln �(x; t), see expression (3). Although a constant �=� ratio is

used in an approximative expression for the re
ection coeÆcient, the solution

will in general have a varying �=� ratio. Further, note that the di�erentia-

tions in equation (1) now appear as an i! term in expression (11). In Buland

and Omre (2001a), it was assumed that m(x; t) was di�erentiable with respect

to time, but here it is suÆcient to assume that the convolution of s(t; �) and

a(�) �m(x; t) is di�erentiable.

For a set of n� speci�ed re
ection angles, the Fourier transformed seismic data

can be written in the vector form

~dobs(k; !) =G(!) ~m(k; !) + ~e(k; !); (12)

where G(!) is an n� � 3 matrix de�ned by

G(!) =

2
64

g(!; �1)
...

g(!; �n� )

3
75 ; (13)

and ~dobs(k; !) and ~e(k; !) are n�-dimensional vectors.

2.2 The prior model

The elastic parameters �(x; t), �(x; t), and �(x; t) are assumed to be log-

Gaussian random �elds, hence the vector �eld m(x; t), which contains the log-

arithm of these parameters, is Gaussian with expectation

�
m
(x; t) = [��(x; t); ��(x; t); ��(x; t)]

T ; (14)

where the elements are the expectations of ln�(x; t), ln�(x; t), and ln �(x; t),

respectively, and with covariance

�m(x1; t1;x2; t2) = Covfm(x1; t1);m(x2; t2)g: (15)

We assume that the covariance function is stationary and homogeneous, and

can be factorized as

�m(x1; t1;x2; t2) = �0;m �m(�; �); (16)

where �m(�; �) is a spatial correlation function, � = [jx2 � x1j; jy2 � y1j]T ,
� = jt2 � t1j, and

�0;m =

2
4 �2� ������� �������

������� �2
�

�������
������� ������� �2�

3
5 : (17)
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The diagonal elements of �0;m are the variances, and ��� , ���, and ���, are

the correlations between ln�(x; t), ln�(x; t) and ln �(x; t), respectively. A more

general covariance function is also allowed, where the covariance function is com-

posed of a sum of terms with the form on the right-hand side of expression (16).

The model parameters and the seismic data are so far de�ned for continuous

x and t. In practice, the seismic data are available in a discrete form. In the

following we assume an identical sampling of the model parameters and the

seismic data on a regular grid in space and time. This is a required assumption

for this method. Let the discrete representation of the model parameter �eld

m(x; t) in a time window and for a set of lateral positions be written m. The

discrete model parameter vectorm is Gaussian with expectation vector �m and

covariance matrix �m, shortly denoted

m � Nnm(�m;�m); (18)

where nm is the dimension of m. For a 3-D problem on a regular grid with

n = nxnynt grid nodes, the dimensions of m and �
m
are nm = 3n, while the

dimension of �m is nm � nm. Since the covariance function can be written as

in expression (16), the complete covariance matrix for m can be written as a

Kronecker product

�m = �0;m 
�m; (19)

where each of the elements in the 3�3 constant matrix �0;m, de�ned in expres-

sion (17), are multiplied with the n � n correlation matrix �m, de�ned from

�m(�; �).

The spatial dependency can be decoupled by Fourier transforming the problem.

The Fourier transform of m, denoted ~m, is Gaussian with Fourier transformed

expectation vector ~�
m
and covariance matrix

~�m = �0;m 
 ~�m; (20)

where ~�m is the diagonal eigenvalue matrix of �m scaled by the dimension of

the discrete Fourier transform, see Appendix A. The important consequence of

this diagonalization is that the frequency components of ~m are independent,

with each component being Gaussian

~mk � N3(~�m;k;
~�m;k); (21)

with index k corresponding to a speci�c discrete (k; !) pair. The covariance

matrix for frequency component k is a 3� 3 matrix de�ned by

~�m;k = ~�m;k�0;m; (22)

with ~�m;k being the corresponding diagonal element in the scaled diagonal eigen-

value matrix ~�m. Further, and of crucial importance, is that the n = nxnynt

6



eigenvalues can be calculated eÆciently by a 3-D Fourier transform of n discrete

samples of the correlation function �m(�; �) extended to a circulant form, see

Appendix A. That means that the complete n� n correlation matrix �m and

the even larger covariance matrix �m are not involved in the computations.

2.3 The statistical model for the seismic data

We assume that the error term e(x; t; �), introduced in the convolutional model

in expression (6), is zero mean colored Gaussian noise. The covariance of the

error vector e(x; t) = [e(x; t; �1); : : : ; e(x; t; �n� )]
T is

�e(x1; t1;x2; t2) = �0;e �e(�; �); (23)

where �0;e is an n��n� covariance matrix containing the noise variances for the

di�erent re
ection angles and the correlations between the angles, and �e(�; �)

is a spatial and temporal correlation function. Again we allow sums of terms

with the form on the right-hand side of expression (23). Note that white noise is

a special case, where �0;e is diagonal, and �e(�; �) = 0 except for �e(0; 0) = 1.

As for the prior model above, the frequency components of the discrete Fourier

transformed error vector ~e are now independent Gaussian

~ek � Nn�
(0; ~�e;k): (24)

From expressions (12), (21), and (24), each frequency component of the seismic

data is then apriori Gaussian

~dobs;k � Nn�
(~�d;k;

~�d;k); (25)

where

~�d;k = Gk ~�m;k; (26)

~�d;k = Gk
~�m;kG

�

k
+ ~�e;k; (27)

and � denotes the conjugate transpose (adjoint).
The cross-covariance between the Fourier transform of seismic data and the

model parameters is

Covf~dobs;k; ~mkg = Gk
~�m;k: (28)

The cross-covariance is needed to compute the posterior distribution.

2.4 The posterior model

The posterior distribution is de�ned by a Gaussian conditional distribution. A

general presentation of Gaussian and conditional Gaussian distributions can be

7



found in Anderson (1984). Using expressions (21) and (25)-(28), the posterior

distribution for frequency component k is given by the Gaussian conditional

distribution

~mkj~dobs;k � N3(~�mjdobs;k
; ~�mjdobs;k

); (29)

where

~�mjdobs;k
= ~�m;k + (Gk

~�m;k)
� ~�

�1

d;k
(~dobs;k � ~�d;k) (30)

~�mjdobs;k
= ~�m;k � (Gk

~�m;k)
� ~�

�1

d;kGk
~�m;k: (31)

The core part of the inversion is the calculation of the 3 elements in the poste-

rior mean vector in expression (30) and the 3 � 3 posterior covariance matrix

in expression (31) for all frequency components k, that is for all discrete (k; !)

pairs. The solution is transformed back to the (x; t) domain by 3-D inverse

Fourier transforms, 3 for the posterior mean, and 6 for the posterior covariance

since the covariance is symmetrical. The posterior distribution of the model

parameters is represented by the posterior mean �
mjdobs

and the posterior co-

variance �mjdobs
. The posterior covariance is stationary and homogeneous and

hence can be represented by six cubes of size n.

A set of possible solutions can be generated by simulation from the posterior

distribution. This can be done eÆciently in the Fourier domain: For each

frequency component k, draw ~mk from the posterior distribution, and then

transform ~m to m by an inverse 3-D Fourier transform for each of the three

model parameters inm. Sincem represents the logarithm of the elastic material

parameters, see expression (3), the corresponding set of simulated solutions of

the P -wave velocity, S-wave velocity, and density are obtained by the inverse

transform exp[m]. Since the posterior distribution for the model parameters can

be represented explicitly by the posterior mean and covariance, the inversion

results can be merged with a set of well logs to re�ne the solution around wells.

This can be done both for the conditional mean and the conditional simulations

using Kriging, see e.g., Cressie (1991).

2.5 The inversion procedure

The inversion procedure can shortly be summarized by the following steps :

1. De�ne the prior model for the model parameters based on the available

knowledge, that is �m(x; t), �0;m, and �m(�; �), see expressions (14)-(17).

2. Estimate the wavelet s(t; �).

3. Estimate the noise covariance, that is�0;e and �e(�; �), see expression (23).

4. Calculate the discrete 3-D Fourier transform of �m(x; t), �m(�; �), �e(�; �),

and the 1-D Fourier transform of s(t; �). Sort the seismic data dobs(x; t; �)
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into common angle cubes, and 3-D Fourier transform each of these angle

cubes to ~dobs(k; !; �).

5. For each frequency component k, calculate the posterior expectation

~�
mjdobs;k

and the posterior covariance ~�mjdobs;k
, see expressions (30) and

(31).

6. Inverse Fourier transform the solution represented by the posterior mean

and covariance.

3 Inversion example of Sleipner data

A rectangular portion of a seismic survey from the Sleipner �st Field is used

in this inversion example. This is the same dataset which was used in Buland

and Omre (2001a), where a more detailed presentation of the dataset can be

found, including seismic processing, prior model de�nition, wavelet estimation

and estimation of the noise covariance. More on wavelet estimation and the

estimation of the noise covariance can be found in Buland and Omre (2001b).

The main focus in this paper is on the lateral coupling of the model parameters.

The inversion area is de�ned from inlines 1411 to 1751, and from crosslines 1225

to 1400, covering 9.3 km2, or 12% of the total survey. Only each second line

is used, such that nx = 176 and ny = 171. The seismic data set is reduced to

three angle stacks, n� = 3, representing 9Æ, 21Æ, and 33Æ. The thickness of the

target area is 250ms in two-ways traveltime, such that nt = 126 with sampling

interval 2ms. The time window follows an interpretation of the main layering

in this target zone. The corresponding number of frequency components are

n! = 318, nkx = 350, and nky = 340, that is 38 million frequency components.

Compared to the grid size, this increase is caused by extending the problem to

a circulant form, see Appendix A. The grid size is not optimal with respect to

fast Fourier transform, so the fast radix-2 Fourier transform can not be applied.

The spatial coupling of the model parameters is imposed through the spatial

correlation function in expression (16). The lateral correlation of the model

parameters is estimated from the seismic data and found to be adequately �tted

by a �rst order exponential correlation function,

�m;�(�) = exp

2
4�

q
�2
x
+ �2

y

dr

3
5 ; (32)

with lateral range dr = 250m. The temporal correlation of the model parame-

ters can not be directly estimated from the seismic data since they are blurred

by the seismic wavelet. However, a temporal correlation function can be esti-

mated directly from the well logs, here modeled by the composite correlation
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function

�m;� (�) =
1

2

(
exp

"
�
�

�

dt1

�2
#
+

�
1� 2�2

d2t2

�
exp

"
�
�

�

dt2

�2
#)

; (33)

with temporal range parameters dt1 = 1:8ms and dt2 = 9ms, see Buland and

Omre (2001a). The complete spatial correlation function �m(�; �) is the product

of the lateral and the temporal correlation functions de�ned in expressions (32)

and (33).

The error term e(x; t; �) in the convolutional model, expression (6), includes

both seismic noise and errors related to the inversion methodology. We have

assumed that the error is zero-mean Gaussian with covariance function on the

form given in expression (23). The simplest form of the covariance function is

obtained for white noise, that is noise with no spatial correlation. However, in

seismic inversion, the most serious noise is usually source generated noise, where

remaining multiples are an important example. Such noise components have a

smooth waveform similar to the waveform of the primary events. The estimated

temporal correlation of this noise can be modeled by a scaled second derivative

of a second order exponential correlation function,

�e;� (�) =

�
1� 2�2

d2t

�
exp

"
�
�
�

dt

�2
#
; (34)

where the temporal range is estimated to dt = 13ms. Note that this correlation

function can be recognized as a Ricker wavelet with center frequency fc = 25Hz,

using the relation dt = 1=(�ft). Further, we model the lateral correlation of the

seismic coherent noise with same correlation function as the model parameters,

see expression (32). A �rst order exponential correlation function is also used

to model the correlation between the di�erent re
ection angles, with range es-

timated to d� = 10Æ. The variance of the coherent noise is estimated to 0.1,

and the variance of the white noise component is estimated to 0.01. In the

frequency domain, the coherent seismic noise colored by the seismic wavelet is

band-limited, lacking the lowest and the highest frequencies. In contrast, the

white noise distributes equally to all frequencies.

The complete solution of the inversion is represented by the posterior distribu-

tion, de�ned by the posterior mean and covariance, see expressions (30) and

(31). In Figure 1, the P -wave velocity, S-wave velocity, and density correspond-

ing to the exponent of the posterior mean of m, exp[�mjdobs
], are shown for

inline 1627. A well is located at crossline 1291, and the well logs are plotted

for comparison, showing good agreement with the inversion results. A constant

time slice of the P -wave velocity and the S-wave velocity at 2320ms are shown

in Figure 2. The real data of inline 1627, the synthetic data computed from the

posterior mean solution, and the corresponding residual are shown in Figures 3,

4, and 5 for 9Æ, 21Æ, and 33Æ. It is important to realize that the objective of
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the inversion is not only to minimize the data residual, but to estimate a solu-

tion which honor both the seismic data and our prior knowledge. The residual

could have been reduced by erroneously altering the error covariance, e.g., by

erroneously reducing the variance or the spatial correlation range.

A set of possible solutions for the P -wave velocity, S-wave velocity, and density

can be found by drawing a set of vectors ~m from the posterior distribution,

inverse Fourier transform them to m, and then calculate exp[m]. One such

simulated solution is shown in Figure 6 for inline 1627. The simulated solution

di�ers signi�cantly from the smoother posterior mean solution in Figure 1, but

both give a good explaination of the real seismic data.

The prior model speci�es the prior values for the variances of ln�, ln�, and

ln �. These values are de�ned on the diagonal of �0;m, see expression (17). In

this example, the prior variances are estimated from the well logs to be

Diag(�0;m) = 10�4 � [39; 123; 4]: (35)

After inversion, the corresponding posterior variances are

Diag(�0;mjdobs
) = 10�4 � [22; 85; 4]: (36)

The variance of ln� has the relatively strongest decrease, followed by the vari-

ance of ln�. The variance of ln � is hardly changed, that means that the inver-

sion does not provide signi�cant new information which reduces the uncertainty

about this parameter.

In Figures 1 and 6, the well logs are plotted for comparison with the inversion

result. However, the well logs can be included in a re�ned solution by Kriging,

see e.g. Cressie (1991). This requires speci�cation of a covariance matrix for

the well log errors. For simplicity, this covariance matrix is here set to zero,

that means that the well logs are de�ned to be exact. Including the well logs

to the sections in Figures 1 and 6 by Kriging gives the corresponding updated

solutions shown in Figure 7 and 8. Since the well logs are de�ned to be exact, the

solutions updated by Kriging is equal to the well logs in the well position. The

in
uence of the well logs decreases with increasing distance to the well position,

and the uncertainty of the re�ned solution decreases near the well. The e�ect

of the merge of the well log information with the seimic inversion results is

most distinct for the posterior mean density in Figure 7. The reason is that

seismic data provides little information about the density, resulting in a smooth

posterior mean solution. After the merge with the density log, the solution is

far more detailed near the well. Also the simulated solutions in Figure 8 are

updated near the well and practically unchanged far from the well. The average

of a large number of simulated solutions updated by Kriging will approach the

solution in Figure 7.
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4 Discussion and conclusions

We have developed an eÆcient AVO inversion technique where the spatially

correlated model parameters are decoupled in the Fourier domain. The seismic

data and the model parameters are assumed to be represented on an identical,

regularly sampled grid. Further, the covariance functions for the model param-

eters and the data errors are assumed to be homogeneous and stationary, that is

translationally invariant. When the range of the spatial dependency is shorter

than the total spatial extension of the grid, the inversion technique is exact with

respect to the spatial coupling.

The solution of the inversion problem is represented by a Gaussian posterior

distribution with explicit matrix expressions for the posterior mean and covari-

ance. The posterior mean can be interpreted as a smooth best estimate of the

solution, while the posterior covariance contains the uncertainty and the corre-

lation structures of the solution. The posterior covariance is homogeneous and

stationary, such that the estimated uncertainty of the solution is equal for all

positions (x; t). The uncertainty at the boundary of the inversion area is in

general underestimated, most severely at the corners. This problem is related

to the assumed symmetry in the spatial coupling of the model parameters. At

the boundary of the inversion area, this symmetry is lacking. The thickness of

the in
uenced boundary zone depends on the correlation range.

The computing time for the inversion in the Fourier domain follows a linear

function of the total number of grid nodes, O(n), while the computing time

for the fast Fourier transform follows an O(n logn) function. A 3-D dataset

from the Sleipner Field represented by 3 angle stacks on a grid with 4 million

grid cells, each with 3 unknown model parameters, used less than 3 minutes on

the inversion on a single 400MHz Mips R12000 CPU. In addition, each Fourier

transform used about 30 seconds, but asymptotically the Fourier transforms

will dominate the computing time when n approaches in�nity. The inversion

method is suitable for parallellization, since the inversion problem can be solved

independently for each frequency component. Utilizing that the seismic data are

band limited, a further speedup can be obtained by inverting only the signi�cant

frequencies.
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A Diagonalization of a covariance matrix by DFT

In the following, the relationship between the discrete Fourier transform (DFT)

and the eigen-values and eigen-vectors of a circulant matrix is presented. Fur-

ther, it is shown how this can be used to diagonalize a homogeneous covariance

function sampled on a regular grid. For simplicity, the presentation is limited

to 1-D, but the extension to higher dimensions is straightforward. More details

on these topics can be found in Brockwell and Davis (1987); Wood and Chan

(1994); Wood (1995).

A.1 The DFT

The 1-D discrete Fourier transform (DFT) of the sequence f(k); k = 0; : : : ; n�
1, can be written

~f(l) =

n�1X
k=0

f(k) exp

�
�2�ikl

n

�
; l = 0; : : : ; n� 1; (37)

with inverse transform (IDFT)

f(k) =
1

n

n�1X
l=0

~f(l) exp

�
2�i

kl

n

�
; k = 0; : : : ; n� 1: (38)
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The DFT can alternatively be written as a matrix-vector product

~f = Ff ; (39)

where f = [f(0); : : : ; f(n� 1)]T , and

F =

2
6664

1 1 � � � 1

1 w1 � � � wn�1

...
...

...

1 wn�1 � � � w(n�1)2

3
7775 ; (40)

where w = exp[�2�i=n]. The matrix corresponding to the IDFT is F�1 =

n�1F �, where � denotes the conjugate transpose. If the dimension n is a power

of 2, the fast radix-2 Fourier transform (FFT) can be used.

A.2 Circulant matrices

An n � n matrix M is a circulant matrix if the elements mkl are de�ned by a

function m(�) with period n such that mkl = ml�k = m(l � k), that is

M =

2
6664

m0 m1 � � � mn�1

mn�1 m0 � � � mn�2

...
...

...

m1 m2 � � � m0

3
7775 ; (41)

see Brockwell and Davis (1987). Note that a circulant matrix is Toeplitz, but

the opposite is generally not true. The eigenvalues of a circulant matrix M are

�l =

n�1X
k=0

m(k) exp

�
�2�ikl

n

�
; l = 0; : : : ; n� 1; (42)

with orthonormal eigenvectors

vl = n�1=2

2
6664

1

wl

...

w(n�1)l

3
7775 : (43)

The circulant matrix M can be diagonalized by

VMV
� = �M ; (44)

where �M = diagf�0; �1; : : : ; �n�1g, and V is the unitary eigenvector matrix

V = [v0;v1; : : : ;vn�1]: (45)

For the following, it is important to recognize that the eigenvalues of a circulant

matrix M are equal to the DFT of the �rst row, and that F = n1=2V .
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A.3 Diagonalization of a circulant covariance matrix

Let r(x) be a zero mean Gaussian variable with homogeneous covariance func-

tion

�(x1; x2) = �2�(�); (46)

where � = jx2 � x1j. Let r be a discrete representation of r(x) sampled on a

regular grid, xk = k�x, where k = 0; : : : ; nx � 1. The corresponding nx � nx
covariance matrix is then symmetric Toeplitz,

� = �2

2
6664

�0 �1 � � � �nx�1
�1 �0 � � � �nx�2
...

...
...

�nx�1 �nx�2 � � � �0

3
7775 ; (47)

where �k = �(k�x). This covariance matrix is not circulant, but it can be

embedded in a symmetric circulant n� n matrix

�c = �2

2
6666666664

�0 �1 � � � �n=2 � � � �1
�1 �0 � � � �n=2�1 � � � �2
...

...
...

...

�n=2 �n=2�1 � � �
... �n=2�1

...
...

...
...

�1 �2 � � � �n=2�1 � � � �0

3
7777777775
; (48)

where n � 2(nx � 1), and such that the top left nx � nx sub matrix of �c

is equal to �. The circulant matrix �c is a legal covariance matrix if and

only if it is positive de�nite. A suÆcient, but not neccessary condition for

positive de�niteness is that �k = 0 for all k > k0, where k0 < nx, see Wood

(1995). Strictly, this excludes many of the most common correlation functions,

for example exponential correlation functions with order (1; 2]. However, the

range of a correlation function will often be much shorter than the total spatial

dimension, such that �k � 0 for all k > k0. In such cases a truncation of the

correlation function may be adequate.

Let now rc be an extension of r with dimension n and covariance matrix �c.

While r is sampled on a line, rc can be interpreted to be sampled on a circle.

Then the Fourier transform of rc, ~rc = Frc, has a diagonal covariance matrix

~�c = F�cF
� = nV �cV

�1 = n�� = ~��; (49)

where �� is the eigenvalue matrix of �c with real nonnegative eigenvalues.

This means that the correlated variables in r are transformed to independent

variables in the Fourier domain. From above, we know that �� can simply be
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calculated by a DFT of the �rst row of �c. This means that it is not necessary

to compute the matrix products F�cF
�. In fact, the complete matrix �c is

not involved in the computations.

The extension to 2-D and 3-D problems is straightforward. Let r be a discrete

representation of a zero mean Gaussian variable with homogeneous covariance

function, sampled on a regular 2-D or 3-D grid. The corresponding covariance

matrices are block Toeplitz in 2-D and nested block Toeplitz in 3-D, and they

can be embedded in block or nested block circulant matrices. Similarly to the

1-D case, the n eigenvalues can be found by a 2-D or 3-D DFT of a circulant

discrete representation of the correlation function.

B Figures
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Figure 1: P -wave velocity (top), S-wave velocity (middle), and density (bottom)

corresponding to the posterior mean.
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Figure 2: Time slice of the P -wave velocity (top) and the S-wave velocity (bot-

tom) at 2320ms.
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Figure 3: Real data (top), synthetic (middle), and residual (bottom) for 9Æ.
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Figure 4: Real data (top), synthetic (middle), and residual (bottom) for 21Æ.
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Figure 5: Real data (top), synthetic (middle), and residual (bottom) for 33Æ.
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Figure 6: Simulated P -wave velocity (top), S-wave velocity (middle), and den-

sity (bottom).
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Figure 7: The posterior mean solution conditioned to the well logs.
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Figure 8: The simulated solution conditioned to the well logs.
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