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Abstract

The demand for e�cient communication and data storage is continuously in-

creasing and signal representation and compression are important factors in

digital communication and storage systems.

This work deals with Frame based signal representation and compression. The

emphasis is on the design of frames suited for e�cient representation, or for

low bit rate compression, of classes of signals.

Traditional signal decompositions such as transforms, wavelets, and �lter

banks, generate expansions using an analysis-synthesis setting. In this thesis

we concentrate on the synthesis or reconstruction part of the signal expansion,

having a system with no explicit analysis stage. We want to investigate the use

of an overcomplete set of vectors, a frame or an overcomplete dictionary, for

signal representations and allow sparse representations. E�ective signal rep-

resentations are desirable in many applications, where signal compression is

one example. Others can be signal analysis for di�erent purposes, reconstruc-

tion of signals from a limited observation set, feature extraction in pattern

recognition and so forth.

The lack of an explicit analysis stage originates some questions on �nding

the optimal representation. Finding an optimal sparse representation from an

overcomplete set of vectors is NP-complete, and suboptimal vector selection

methods are more practical. We have used some existing methods like di�er-

ent variations of the Matching Pursuit (MP) [52] algorithm, and we developed

a robust regularized FOCUSS to be able to use FOCUSS (FOCal Underdeter-

mined System Solver [29]) under lossy conditions.

In this work we develop techniques for frame design, the Method of Optimal

Directions (MOD), and propose methods by which such frames can success-

fully be used in frame based signal representation and in compression schemes.

A Multi Frame Compression (MFC) scheme is presented and experiments with

several signal classes show that the MFC scheme works well at low bit rates

using MOD designed frames. Reconstruction experiments provides compli-

mentary evidence of the good properties of the MOD algorithm.
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Chapter 1

Introduction

The demand for e�cient communication and data storage is continuously in-

creasing. One example is the enormous growth in Internet communication,

where image and video signals play an important role. Signal representation

and compression are important factors in digital communication and storage

systems, and are the subjects studied in this thesis.

A signal can be a real world continuous signal that is sampled at some sample

rate, like an ElectroCardioGram (ECG) signal, which is a monitoring of the

electrical pulses the body makes during heart beats. Other examples are

speech or audio signals, i.e. acoustic waves translated into electrical signals

which can be translated back to sound through a speaker. For real world

signals to become digital signals, two kinds of discretization is done. The

signals are sampled at some sample rate so that we get a set of amplitude

values representing the signal. The amplitude values also need discretization

since a computer works with numbers of �nite precision, thus the values are

quantized so they can be represented by a �nite number of bits. Another

class of signals we use in this thesis are digital images. A natural image is

represented by a �nite number of pixels, e.g. 512�512, where a �nite number of
bits are used to represent the gray level image value at each pixel. Commonly,

each pixel is represented as an 8 bit pattern in a gray tone image.

By signal compression we mean a bit-e�cient representation of a signal. There

are two distinct classes of compression methods: lossless compression and lossy

compression. By lossless compression it is understood that the compressed

signal is represented more e�ciently than the original signal and that it can be

reconstructed to exactly the same as the original signal. Lossy compression,

on the other hand, gives a bit-e�cient representation of an approximation

of the original signal, and consequently has greater compression potential.
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2 Introduction

Both classes of compression methods are widely used, and often a compression

scheme includes a combination, as is the case in this work.

For storing large amounts of data or transmitting data over a limited band-

width channel signal compression will be highly bene�cial. Since all physical

storage media and bandwidths are limited, compression is widely used. Stor-

age capacity and bandwidths are increasing with improved technology, but so

is the demand for the amount of data to be stored or transmitted, and e�ective

representation or compression will probably always be an issue.

E�ective signal representations, alternative parameterizations of a signal, are

desirable in many applications, where signal compression is one example. Oth-

ers can be signal analysis for di�erent purposes, reconstruction of signals from

a limited observation set, feature extraction in pattern recognition and so

forth.

The outline of this chapter is as follows: In the next section we de�ne some

terms frequently used in this thesis. The following section brie
y describes

a couple of signal representation and compression methods with relevance

for our work, and motivates the use of frames for signal representation and

compression. This is followed by a section brie
y explaining how we regard

statistical signal processing, and a section about previous work in the area of

frame based representation and compression and frame design. The chapter

is concluded by a section explaining the scope and contribution of this work.

1.1 De�nitions

The title of this thesis is Frame based signal representation and compression.

For now, frame vectors we use can be regarded as column vectors, each nor-

malized to one, from an N � K matrix with N � K. The whole collection

is called a frame or sometimes also a dictionary. The strict mathematical

de�nition of frames along with a thorough explanation of how frames are used

for representation purposes and frame based compression are presented in the

next chapter.

Some terms, frequently used in this thesis, are de�ned below. Let x be a signal

column vector of size N , each element being a signal sample. The signal vector

is approximated:

x ' x̂ =
X
j

wjfj; (1.1)

where ffjg,j = 1; : : : ;K are vectors constituting a frame, and the wj 's are

coe�cients. We have the following de�nitions:
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� Approximation: x̂ is an approximation to x IF kx� x̂k < T , where T is

a threshold. We call the approximation error the residual: r = x̂� x.

� Representation: By signal representation we mean an alternative de-

scription of the signal vector which can be used to reconstruct the signal

vector or an approximation to the signal vector. In Equation 1.1, if the

frame is known the set of coe�cients, fwjg, j = 1; : : : ;K is a signal rep-

resentation. Note that: Exact as well as approximate representations of

the form of Equation 1.1 are possible. Other times representation refers

to a collection of bits that can be used for the reconstruction.

� Compression: After a signal vector is approximated, or described by

a signal representation, the signal representation is typically coded by

some coding technique. A compressed signal is the coded version of the

signal representation. This is the collection of bits that can be used to

reconstruct the signal or the approximated signal.

� Sparsity : Let the coe�cient set fwjg , j = 1; : : : ;K constitute the K-

dimensional vector w, and let just a few of the K coe�cients be di�erent

from zero. w is then said to be sparse. By sparsity we mean degree of

sparseness.

1.2 Signal representation and compression methods

There exists many di�erent methods for signal representation and compression,

both lossless and lossy. This section brie
y describes a couple of techniques

with relevance for our work, and also motivates our work with frame based

signal representation and compression.

1.2.1 Entropy coding

The goal of lossless coding is to reduce the average number of symbols sent

while su�ering no loss of �delity. A classical example is the Morse code where

short binary codewords are used for more probable letters and long codewords

used for less probable letters. One such lossless coding scheme is entropy

coding. The average amount of \information" per source symbol of a zero-

memory source is called the entropy of the source, where \information" has a

mathematical de�nition [2]. Entropy provides a lower bound to the average

length of lossless codes, and good codes can perform close to this bound.
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Therefore uniquely decodable variable length lossless codes are called entropy

codes [26, 3].

The essence in entropy coding is utilizing a nonuniform probability density

function (pdf) of the di�erent symbols, and minimizing the average number

of bits transmitted for each source symbol. The code words have di�erent

length, thus it is also called a variable length coder.

Entropy is a measure of the expected information in the outcome of a source,

thus it is a measure of the variability in the probability of di�erent source

symbols. If the probability of the di�erent source symbols are very di�erent,

the entropy is low and the possible average bit rate is low. If the symbols

have equal probability, on the other hand, the same number of bits are used

for each symbol, and nothing can be gained using entropy coding.

1.2.2 Transform coding

A transform coder decomposes a signal using an orthogonal basis and quantizes

the decomposition coe�cients [50, 26].

For an N dimensional signal vector x, and a unitary transform matrix T of

dimension N �N we have the analysis and synthesis equations1:

y = TTx

x = Ty =

NX
j=1

yjtj '
NX
j=1

ŷjtj = Tŷ = x̂

where yj; j = 1; 2 : : : N are the transform coe�cients, and ŷj; j = 1; 2 : : : N are

the quantized coe�cients.

Transform based compression is a lossy compression technique, and the signal

distortion is minimized by optimizing the quantization procedure, the basis

(i.e. the transform matrix), and the bit allocation. The optimal basis for a

signal depends on the statistics of the stochastic process that produced the

signal. For high resolution quantization, the distortion-rate relationship D( �R)

is optimized by using a basis which minimizes the average di�erential entropy

[51]:

�H =
1

N

NX
j=1

H(yj); (1.2)

1For notational convenience we denote the forward matrix by TT and the inverse or

reconstruction matrix by T.
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where yj; j = 1; 2 : : : N are the transform coe�cients, and H(yj) is the dif-

ferential entropy associated with each coe�cient. If the process is Gaussian

then the coe�cients yj are Gaussian using any basis. Equation 1.2 is then

minimized if the transform is given by the eigenvectors of the autocorrelation

matrix of the stochastic process and it is called the Karhunen-Lo�eve Transform

(KLT) [26]. If the process is not Gaussian, or the high resolution assumption

does not hold, the KLT need not be the optimal transform. It is then a

nontrivial task to �nd the optimal transform even if the statistics are known

[51]. In addition to these di�culties the signal is often non-stationary, and

consequently no �xed transform will be optimal in all signal regions.

Potential for improvements

The limitations in the optimality of the KLT, the di�culties in �nding optimal

transforms, and the fact that for a non-stationary signal no �xed transform

will be optimal are all factors that motivates the use of frames, or overcomplete

dictionaries, for representation purposes. One reason for desiring an overcom-

plete dictionary is that it possesses greater robustness in the face of noise and

other forms of degradation [57]. The reason more pertinent to our purposes is

that an overcomplete dictionary will allow greater 
exibility in matching the

input signal with a sparse linear combination of frame vectors.

An orthogonal basis consist of N basis vectors of size N . A sparse coe�cient

vector is wanted for e�ective representation. Having more than N vectors to

choose from when forming the sparse representation improves the 
exibility.

More vectors to choose from increases the probability of �nding a small number

of vectors whose linear combination match the signal vector well. Such a set

of vectors is overcomplete, and it is no longer a basis but a frame [32]. The

reconstruction can be written:

x ' x̂ = Fw =

KX
j=1

wjfj; (1.3)

where wj and fj , j = 1; : : : K are the coe�cients and frame vectors respec-

tively. Since a linearly dependent set of vectors is used, an expansion is no

longer unique, and a unique \analysis frame" as in analysis transform does

not exist. A good �rst step in a compression scheme is to use as few vectors

as possible to obtain a good approximation for each signal vector, and sub-

sequently quantizing the corresponding coe�cients. Consequently it makes

sense to apply a sparsity constraint when �nding the coe�cients of Equa-

tion 1.3. Finding the optimal frame vectors to use in such an approximation



6 Introduction

is an NP-hard problem and requires extensive calculation [55]. Consequently

suboptimal vector selection techniques are used.

In frame compression the bit budget depends upon the number of vectors

used in the approximation; but also on the size of the frame. If the frame

is large, more bits have to be used to identify which vectors are used in the

approximation. On the other hand there are probably fewer vectors used than

with a small frame implying fewer bits spent on the quantized representation

of the coe�cients. Consequently there is a trade-o� between frame size and

position information, and the number of vectors used in the approximation.

These topics will be explored at length later in this thesis.

1.3 Statistical signal processing

In signal processing one can choose to deal with the known data as it is without

considering the signals as statistical, or one can choose to use a statistical way

of thinking. Using statistical signal processing, signals or variables can be

regarded as stochastic or deterministic. A deterministic variable is a �xed

parameter, known or unknown. A stochastic variable, or a random variable,

can be modeled using a probability function. Data can be regarded as a

realization of a stochastic or random process. However, a matter of discussion

is whether a signal should truly be considered to be a realization of a random

process or simply to be observed data that is treated using statistical methods.

In parts of this work we use a non-probabilistic way of thinking, and our algo-

rithm for frame-vector design, entitled Method of Optimal Directions (MOD),

is derived in this manner in Chapter 4.1. In other parts, especially Chap-

ter 4.2, a probabilistic point of view is used. It is interesting to note that even

though the viewpoints and technicalities in these sections are di�erent, both

viewpoints lead to the same design algorithm under a given set of assumptions.

1.4 Previous work

Goyal and Vetterli [30, 31, 32] have worked with frames or overcomplete expan-

sions. They have done several experiments using di�erent frames. The frames

they have used are chosen rather than optimized. For example they propose

the use of vectors on the N-dimensional spheres that maximize the minimum

Euclidean norm between the vectors, or corners of the hypercube. Goodwin

[28] use frames derived from a collection of damped sinusoids. The use of

damped sinusoids for signal decompositions is motivated by the commonality
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of damped oscillations in natural signals and the shortcoming of symmetric

atoms for representing transient signal behavior. Berg and Mikhael use a

frame that contains both the DCT (Discrete Cosine Transform) and the Haar

transform vectors for compression of speech signals [6, 7] and images [54, 8].

DeBrunner et. al. construct lapped frames by combining several Lapped Or-

thogonal Transforms (LOT), like LOTDCT, LOT Discrete Walsh Transform

(DWT), and LOT Discrete Slant Transform (DST), and these are successfully

used in image representation simulations [13, 14]. The use of frames in com-

pression schemes has been given some attention [31, 32, 28, 54, 15, 14, 56]

whereas the problem of frame design in this context is largely unexplored.

Some work in that area is done by Olshausen and Field [57], Lewicky and

Sejnowski [49], and Lee et al. [47].

1.5 The scope and contributions of this thesis

Traditional signal decompositions such as transforms, wavelets, and �lter

banks, generate signal expansions in an analysis-synthesis setting. In this

thesis we concentrate on the synthesis or reconstruction part of the signal ex-

pansion. We want to investigate the use of an overcomplete set of vectors,

a frame, or an overcomplete dictionary, for signal representations with the

objective of allowing sparse representations.

The focus of this thesis is on sparse signal representation and compression us-

ing a frame based approach. We start by de�ning frame based approximation

and comparing it to the principles behind common compression schemes like

transform coding, Vector Quantization (VQ), and �lter banks. Approxima-

tion capabilities and compression results will be presented and compared with

reference schemes.

We have tried to free ourselves from the analysis-synthesis paradigm by con-

centrating on the synthesis. This calls for a solution to the problem of �nding

the optimal coe�cients, since they can no longer be obtained from an associ-

ated \analysis frame". We use existing methods like di�erent variations of the

Matching Pursuit (MP) [52] algorithm. We also want to use FOCUSS (FO-

Cal Underdetermined System Solver [29]), but this algorithm gives an exact

sparse representation. A robust regularized FOCUSS is developed to enable to

use FOCUSS for an approximation, i.e. lossy representation, or for situations

where the data is polluted by noise.

In this work we develop techniques for frame design and propose methods by

which such frames can successfully be used in frame based signal representation

and compression schemes.
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Brie
y summarized, the major contributions of this thesis are:

� Using training data we develop a method for frame design called Method

of Optimal Directions (MOD).

� Frame design is regarded from a probabilistic point of view. This gives

additional insight into, and an alternative justi�cation of the MOD.

Other possibilities in frame design are indicated but not fully investi-

gated.

� Approximation capabilities for frames designed using MOD are investi-

gated for ECG signals, speech signals and digital images.

� Compression experiments using one frame in the compression scheme

is presented and compared to reference compression schemes for ECG

signals and digital images.

� A Multi Frame Compression (MFC) scheme is developed to increase the

representation 
exibility and compression capability.

� The concept of using variable sized frames in the MFC scheme is intro-

duced and a rationale for using variable sized frames is presented.

� Compression experiments on ECG signals using the MFC scheme with

both �xed size and variable size frames are presented and shown to

perform very well (1-4 dB better) compared to a reference compression

scheme.

� Compression experiments on images using the MFC scheme with �xed

size frames are presented and shown to perform up to 1 dB better than

JPEG (Joint Photographic Experts Group) for very low bit rates (bit

per pixel).

� Di�erent methods for deciding the parameter in regularized FOCUSS is

investigated, and a modi�ed L-curve2 approach is developed as a robust

method for �nding the regularization parameter.

� Some possible applications for frames and sparse representation, other

than compression, are introduced, e.g. signal reconstruction and blind

source separation. Experiments are done using a data set, MOD, and

regularized FOCUSS to reconstruct the frame producing the data set.

The reconstruction capability is shown to be very good.

2The L-curve was introduced by Hansen in [34] as a method for �nding the parameter in

a regularization problem.
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The regularized FOCUSS is explained in Chapter 3. The last part of Chapter 2

discusses the vector selection algorithms we use in this work, and was followed

naturally by the description of the robust regularized FOCUSS algorithm.

The reader, however, may skip Chapter 3 without any loss in understanding

of the frame design algorithm, the MOD, and the MFC scheme. The robust

regularized FOCUSS is used as the vector selection algorithm in an experiment

in Chapter 5 and in the reconstruction experiments of Chapter 8.
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Chapter 2

Frames and overcomplete

dictionaries

This chapter introduces the concept of frames, also called overcomplete dic-

tionaries. It describes a frame and how it can be used for representation and

compression purposes. Compression using frame techniques is compared to ex-

isting compression techniques like transform based compression, �lter banks,

wavelets, and di�erent kinds of VQ techniques.

2.1 Bases and frames

If an N -dimensional vector space V contains a linearly independent set B =

fbig of N vectors, then B is called a basis for V , and it spans the space. Any

vector, v, in the set V can be expanded as a linear combination of the basis

vectors:

v =

NX
j=1

�jbj; (2.1)

where �j is the coe�cient corresponding to the vector bj. The expansion is

unique because of the linear independence. If the set of vectors is orthogonal,

that is bi ? bj when i 6= j, then B is called an orthogonal basis for V [44].

A vector can also be written as a linear combination of an overcomplete set

of vectors. If the N -dimensional vector space V contains a set F = ffjg of K
vectors where K > N , and F spans the space V , F is an overcomplete set.

The vectors fj are not linearly independent, and F is not a basis but a frame.

11
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Any vector, v, in the space V can be expanded as a linear combination of the

frame vectors:

v =

KX
j=1

�jfj : (2.2)

Because of the linear dependence of the frame vectors, the expansion is not

unique.

The strict mathematical de�nition of a frame is as follows [67]: A family of

elements f'jgj2K in a Hilbert space H, where K is a countable index set, is

called a frame if there exist an A > 0 and a B <1, such that for all x in H1:

Akxk2 �
X
j

jh'j ; xij2 � Bkxk2: (2.3)

A and B are called frame bounds. If A = B the frame is said to be tight,

and if all the frame vectors in a tight frame have unit norm, then A gives

the redundancy ratio. This means that if, say, A = 2 there are twice as many

vectors as needed to span the space. If A = B = 1 and all the vectors have unit

norm, then the frame constitutes an orthonormal basis. The term frame thus

covers both a basis and an overcomplete set of vectors. For a �nite dimensional

space, any �nite set of vectors spanning the space forms a frame [32].

We use the term frame for a general linearly dependent set of vectors, typically

overcomplete, which spans the space. Other terms, like dictionary or codebook

have been used for similar sets, but these terms are often associated with vector

quantization or classi�cation.

2.2 Signal expansion

A signal expansion is simply a weighted sum of vectors fj . This weighted sum

may be identical to, or an approximation to a given signal vector x. If the

expansion is identical to x we can write

x = Fw =
X
j

wjfj ; (2.4)

where F is a (possibly in�nite) matrix with ffjg as columns and w is the vec-

tor of expansion coe�cients. Equation 2.4 can be interpreted as a synthesis

1ha; bi is the inner product of a and b.
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formula in the sense that x is synthesized, or built up, from a library of expan-

sion vectors using appropriately selected values for the expansion coe�cients.

For this reason F is sometimes referred to as a waveform dictionary. If the

matrix F is invertible, a unique set of coe�cients for the exact representation

of any signal vector x can be obtained as2

w = F�1x; (2.5)

and this is commonly referred to as the analysis equation in an analysis-

synthesis setting. Depending on the dimensions of the matrices and vectors

involved in Equations 2.4 and 2.5, which may extend to in�nity, as well as

the structure of the F matrix, the analysis-synthesis equations given above

cover many important cases including transforms, �lter banks, wavelets, and

wavelet packets [1].

The main objective for using the analysis-synthesis framework in signal pro-

cessing applications is to construct F such that the vector of coe�cients, w,

is more attractive to work with than x.

We concentrate on the synthesis or reconstruction part of a signal expansion.

If we put no restrictions on the choice of the waveform dictionary F, like in-

vertibility, dimension, orthogonality etc., Equation 2.4 also describes frames.

Let the synthesis describe an approximation, rather than an exact represen-

tation, of the signal vector x. Given the coe�cients fwjg, the reconstructed
signal vector x̂ is given by

x̂ = Fw =
X
j

wjfj: (2.6)

We let all the frame vectors, fj, be normalized to one, so that the frame vector

represent a shape. The gain is set by the coe�cient value.

2.3 Frames used for compression purposes

Let F denote an N�K matrix whereK � N and rank(F) = N . The columns,

ffjg , j = 1; : : : ;K, are normalized to one, and they constitute a frame. Let

xl be a real signal vector, xl 2 RN , xl can be represented or approximated as

x̂l =

KX
j=1

wl(j)fj = Fwl; (2.7)

2For notational convenience we denote the forward matrix by F�1 and the inverse or

reconstruction matrix by F.
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where wl(j) is the coe�cient corresponding to vector fj. In a good compres-

sion scheme, many of the wl(j)'s will be zero, while the approximation of

Equation 2.7 is good.

The corresponding error energy is

krlk2 = kxl � x̂lk2; (2.8)

where k � k denotes the Euclidean norm in RN . For a set of M signal vectors,

the mean squared error (MSE) can be calculated as

MSE =
1

NM

MX
l=1

krlk2: (2.9)

2.3.1 Frame coding compared to transform coding

The main idea behind transform coding is to remove redundancy in the input

vector, x, by transforming it to a new vector, y, with same dimension. The

vector y contains the coe�cients, and these are less correlated than the original

samples, thus we have energy compaction and thereby hopefully y can be

quantized more e�ciently than x. The lower dependency there is between a

set of variables, the more e�cient scalar coding becomes in the sense that there

is less to be gained by using more complicated vector quantization algorithms

[26].

A traditional transform coder use an N � N orthogonal transform. x is the

signal vector of dimensionN , T is the transform and y is the coe�cient vector,

also of dimension N . We have:

y = TTx (2.10)

x = Ty; (2.11)

T�1 = TT due to the orthogonality of T. It is common to refer to Equa-

tion 2.10 as analysis and to Equation 2.11 as synthesis. After analysis, the

coe�cient vector is approximated or quantized in some way, for example by

threshold and uniformly quantize each of the coe�cients. This gives the quan-

tized coe�cient vector ŷ, and the approximation error ky � ŷk. The recon-

structed signal vector using the quantized coe�cients becomes:

x̂ = Tŷ =

NX
j=1

ŷjtj; (2.12)
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where x̂ is the reconstructed signal vector, and the tj's are the columns of T,

and they are called basis vectors since T represents an orthogonal basis.

Let the signal vector to be coded, x, be regarded as a stochastic variable. Then

the overall distortion D is given by hkx � x̂k2i where h�i is the expectation

operator. For an orthogonal transform it can easily be shown that hkx�x̂k2i =
hky � ŷk2i.
Comparing frame based compression with transform coding, the synthesis

Equation 2.12 is seen to be very similar to Equation 2.7. The analysis part

on the other hand does not have an equivalent in frame compression. When

frames are used for compression, the focus is on the synthesis part, and we

free ourself from the usual analysis-synthesis setting. If K = N in Equa-

tion 2.7, and ffjg, j = 1; : : : ; N , spans the space, F constitute a transform.

If the transform is orthogonal we have the synthesis equation for a traditional

transform coder.

2.3.2 Frames compared to �lter banks and wavelets

Figure 2.1 shows 4 di�erent choices of F, as in Equation 2.6, corresponding

to traditional signal decompositions: Transform, frame, wavelet, and uniform

FIR �lter bank/LOT. In each case 3 identical blocks of the expansion vectors

are shown. The dots signify nonzero entries of the dictionary matrix. The �g-

ure gives an illustration on the di�erence and similarities between transforms,

frames, wavelets and �lter banks.

The upper left part of Figure 2.1 corresponds to ordinary transform coding.

The upper right part of the �gure corresponds to frames as used in this thesis.

The main focus of this work are design and use of such frames. From the

�gure we see that the frames are not overlapping, and therefore we can design

a frame on a block based form as done in this work. The same way as the

transform is expanded to an overcomplete frame, the two lower structures in

the �gure, wavelet and �lter bank/LOT, can be expanded to overcomplete

wavelets and �lter banks, lapped frames.

In [1] Aase et. al. introduce a generalization of the frame design algorithm

presented in Chapter 4. More general waveform dictionaries F, e.g. with over-

lapping, is included. Using the generalized algorithm, traditional wavelets or

�lter banks can be initial waveform dictionaries in the design scheme. Frames

as used in this thesis correspond to a non-unitary �lter bank, not critically

sampled, and without overlapping.
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Transform Frame

Figure 2.1: Waveform dictionaries corresponding to traditional decomposi-

tions. Starting with the transform dictionary, the dot columns within each

square represent the transform vectors. The frame dictionary is similar but

the number of frame vectors (K) is larger than the block length (N). In the

�lter bank/LOT case the vectors are twice as long as in the transform case,

thus rendering a 50% overlap between adjacent blocks. A wavelet uses dyadic

frequency partitioning, resulting in di�erent time shifts for expansion vectors

corresponding to di�erent frequency bands. This is seen in the �gure where

the (large) vectors corresponding to the low frequency bands have longer shifts

than the vectors corresponding to higher frequency bands.

Wavelet Uniform FIR �lter bank/LOT
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2.3.3 Frames compared to vector quantization

Vector Quantization (VQ) is a generalization of scalar quantization to the

quantization of a vector, but it's applications makes it far more than that.

VQ is often used for compression, and that is the object of this discussion.

In addition it can be used as a part of many digital processing tasks such as

classi�cation and recognition. A thorough study of VQ can be found in [26].

VQ

A vector quantizer designed for approximation of signal vectors of dimension

N consists of a large codebook of vectors, all of dimension N , along with a

vector selection strategy. The approximation of a speci�c input vector x1 is

the vector from the codebook closest to x1, and the index to this vector from

the codebook is used as the representation of that vector. The decoder uses

the index in a table-lookup to �nd the right codebook vector representing x1.

The de�nition of closest to is usually in the MSE sense:

min
i
kx1 � cik; (2.13)

where ci; i = 1; 2 : : : M are the codebook vectors.

We could picture the VQ technique as

x ' x̂ = Cg (2.14)

where x is the input vector, C is a N �M matrix containing all the codebook

vectors as columns, and g is an indicator vector. g has one component equal

to one, corresponding to the codebook vector closest to x. All other entries in

g are zero. The index of the nonzero component in g is used for representing

x.

Compared to the frame based approximation of Equation 2.7, we can see

relations. In VQ, M � N and the matrix (codebook) is indeed overcomplete.

Lets look at an extreme case of frame based approximation, whereK � N and

very few nonzero coe�cients is needed. If we no longer let the frame vectors

be normalized to one but have di�erent magnitudes as well as shapes, the

frame based system is similar to a VQ system. If only one nonzero coe�cient

is allowed in each approximation, and if the coe�cient value is equal to one,

we have a VQ system.

VQ is the ultimate solution to the quantization of signal vectors and no other

existing coding technique can do better. This can be understood by the fol-

lowing theorem and proof from [26]:
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Theorem: For any given coding system that maps a signal vector into one of

N binary words and reconstruct the approximate vector from the binary word,

there exist a vector quantizer with codebook size N that gives exactly the same

performance, i.e., for any input vector it produces the same reproduction as

the given coding system.

Proof: Enumerate the set of binary words produced by the coding system

as indexes 1; 2; : : : ; N . For the ith binary word, let the decoder output of the

given coding system be the vector ci. De�ne the codebook C as the ordered

set of code vectors ci. Then a VQ decoder achieves equivalent performance to

the decoder of the given coding system and a VQ encoder can be de�ned to

be identical to the encoder of the given coding system. 2

This means that if we can �nd the optimal VQ for a given performance ob-

jective, no other coding system will be able to achieve a better performance.

Unfortunately �nding the optimal VQ is not straightforward.

Using codewords of �xed length for the representation of the indexes, the

codebook can be optimized solely with respect to MSE. Allowing variable

length coding, on the other hand, opens up for entropy coding. In this case the

codebook should ideally be optimized with respect to both MSE and entropy,

which is much more complicated. In VQ �xed codeword length is the by far

most used technique, and the codebook design algorithms are optimizing with

respect to MSE solely.

There are no known closed-form solutions to the problem of �nding the optimal

VQ. Iterative techniques for �nding a local optimum are used. The Generalized

Lloyd Algorithm (GLA) �nds a local optimum by iteratively optimizing the

encoder with �xed decoder and the decoder with �xed encoder. Given a

training set T , the GLA steps are as follows [26]:

1. Begin with an initial codebook C(1). Set m=1.

2. Given a codebook C(m) = fcig, partition the training set into cluster

sets Ri using the Nearest Neighbor Condition:

Ri = fx 2 T : d(x; ci) � d(x; cj); all j 6= ig;

where d(x; ci) is a measure of the distortion between x and ci.
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3. Using the Centroid Condition, compute the centroids for the cluster sets

just found to obtain the new codebook, C(m+1) = fcent(Ri)g.

cent(Ri) =
1

C(Ri)

C(Ri)X
j=1

xj ;

where C(Ri) is the cardinality of the set Ri, that is, the number of

elements in Ri. If C(Ri) = 0 an alternate code vector assignment is

made for that cell.

4. Compute the average distortion for C(m+1). If it has changed by a small

enough amount since the last iteration, stop. Otherwise set m+ 1! m

and go to step 2.

Other disadvantages of VQ are the high search complexity for �nding the best

match from the codebook, and the storage demands of large codebooks. Es-

pecially the search complexity is a signi�cant problem when the codebooks

are large, and this has motivated the development of various constrained VQ

techniques. In these techniques the optimality is traded in exchange for easier

coding and/or smaller storage requirements. Two constrained VQ techniques

with obvious relations to frame based coding is brie
y explained in the follow-

ing.

Shape-gain VQ

Shape-gain VQ is a technique that decomposes the problem of approximating

and representing a vector into that of coding a scalar, the gain, and a nor-

malized vector, the shape. The idea of shape-gain VQ is that the shape of a

vector may recur with a wide variety of gain values. If this is true, it suggests

that the probability distribution of the shape is approximately independent of

the gain.

The gain of a vector x is g = g(x) = kxk, and the shape is s = s(x) = x

g(x)

de�ned for nonzero gain. This gives ksk = 1.

Shape-gain VQ is described by three objects:

� the gain codebook Cg = fgi; i = 1; 2; : : : ;Mgg,

� the shape codebook Cs = fsj ; j = 1; 2; : : : ;Msg,
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� the partition that describes the encoder R = fRi;j 2 RN ;

i = 1; 2; : : : ;Mg; j = 1; 2; : : : ;Msg. If x 2 Ri;j the approximation is

formed by the shape sj and the gain gi.

Using a shape-gain VQ to represent a signal vector, the shape vector closest

to the shape of the input vector is selected �rst. The vector from the shape

codebook with the largest inner product with the input vector is selected:

k = argmax
j
(xT sj): (2.15)

Using this shape vector, the gain from the gain codebook is chosen to be the

one closest to the value of the inner product:

l = argmin
i
(gi � xT sk)

2: (2.16)

k and l are the indexes representing the signal vector. If the shape and gain

had been truly independent, they could have been designed independently.

In practice they are not truly independent, however, and a common way of

designing a shape-gain VQ, optimized with respect to MSE, is a variation of

the GLA. This variation of the GLA is iterative and the main steps, using a

training set T , are as follows [26]:

1. Begin with an initial codebooks C
(1)
g and Cs

(1). Set m=1.

2. Given the codebooksC
(m)
g ;Cs

(m), �nd the optimal (minimum distortion)

partition R[C(m)
g ;Cs

(m)] of T .

3. Compute the average distortion: D(C
(m)
g ;Cs

(m);R[C(m)
g ;Cs

(m)]). If it

has changed by a small enough amount since the last iteration, stop.

Else continue.

4. Compute the optimal shape codebook Cs
(m+1) using C

(m)
g and

R[C(m)
g ;Cs

(m)] by �nding the shape centroids.

5. Compute the optimal partition R[C(m)
g ;Cs

(m+1)].

6. Compute the optimal gain codebook C
(m+1)
g using Cs

(m+1) and

R[C(m)
g ;Cs

(m+1)] by �nding the gain centroids.

7. Set m = m+ 1 and go to Step 2.
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Comparing shape-gain VQ to frame based approximation we see that in the

extreme case where only one frame vector is used in Equation 2.7 the methods

are basically the same if we quantize the frame coe�cient. In frame based

approximation all the frame vectors are normalized, and thus correspond to

the shape. The gain correspond to the coe�cient value. Shape-gain VQ and

frame based approximation may di�er in the design of the codebooks. We have

made no limitation in the frame based approximation in that the coe�cients

can only possess positive values. In other words, we let the sign be a part of

the gain codebook. This gives a smaller shape codebook, but a larger gain

codebook compared to the traditional shape-gain VQ.

Multistage VQ

MultiStage VQ (MSVQ) is also called cascaded VQ or residual VQ and has

been widely used in speech coding. The basic idea is to divide the encoding

task into several successive stages. The �rst stage performs a crude quantiza-

tion of the input vector using a small codebook. The residual from this stage,

that is the di�erence between the input vector and the reconstructed vector

from the �rst codebook, is treated as the input vector to the second stage.

Another relatively small codebook is used to quantize the residual, and this

provides a second approximation vector and a new residual. A third quantizer

may be used to approximate the second residual and so forth. The decoder

adds the vectors from the di�erent codebooks together to make an approxi-

mation of the input vector. This method gives signi�cant reduction in storage

requirements and search complexity compared to straightforward VQ.

Some 5-8 years ago it was common to do both the design of the codebooks,

and the coding at the di�erent stages independently of the other stages [26].

This was done as follows: A training set is used to design the �rst codebook.

Using this codebook, a set of residuals is calculated by letting the training

set be approximated by the codebook. This set of residuals is used to design

the codebook of stage 2 and so forth. The encoding procedure is illustrated

in Figure 2.2 a). The signal vector is �rst approximated using the �rst stage

codebook. The residual is calculated and the second stage codebook is used

to approximate the �rst stage residual and so forth, thus the coding strategy

is greedy.

In recent years more sophisticated MSVQ methods have been used. Iterative

sequential codebook design and simultaneous joint codebook design [69, 45]

gives better codebooks, but are computationally more expensive. An M -

L search procedure improves the coding strategy [45]. The strategy starts
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Figure 2.2: Illustration of traditional MSVQ. a) encoder b) decoder

with the �rst codebook. The M vectors achieving the lowest distortion are

selected, and the M residual vectors are calculated. The second codebook

is searched M times, once for each of the M residual vectors. From all the

resulting distortions of each of the codebook vectors approximating each of the

M residuals, the M paths achieving the overall lowest distortion are selected.

The procedure continues for all the stages, and after the last stage, the path

giving the lowest overall distortion is selected. Note that a given vector in any

codebook may be the root of more than one of the M paths selected at any of

the following levels.

The decoding part of the MSVQ has obvious similarity to signal approxima-

tion using frames. The decoder in Figure 2.2 b) approximate the signal vector

by a sum of vectors. The coe�cients in Equation 2.7 are the most obvious

distinction between MSVQ and frame compression. If Equation 2.7 was de-

scribing an MSVQ system, it would correspond to the situation where each

of the stages in the MSVQ was a shape-gain VQ. However, the systems di�er

both in design and encoding procedures. Let a signal be partitioned in blocks,

where each signal block is treated as a signal vector. In a frame based system

the number of frame vectors used in the sum in Equation 2.7, i.e. the number

of vectors used in the approximation can vary with each signal block. This way
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an approximation quality can be almost constant even if some of the signal

block are more di�cult to approximate than others. In an MSVQ based sys-

tem the number of vectors is constant. There is a possibility of thresholding,

but an approximation can never use more vectors than the number of stages,

thus the MSVQ o�ers less 
exibility in this sense.

A frame based system selects all the vectors from the same dictionary, or

frame. An MSVQ in general consists of di�erent codebooks at the di�erent

stages. Figure 2.3 a) illustrates a frame based system using m vectors in an

approximation, and b) illustrates an MSVQ system.
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Figure 2.3: Illustration of compression systems: a) Frame, b) MSVQ.

We want to compare frame based coding with MSVQ in the following. Note
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that even if the structure of the systems are similar, the design methods are

di�erent, and so are the encoding methods. The encoding is suboptimal for

both the frame system and the MSVQ. Thus the systems are not the same,

and will not produce exactly the same outputs, even if the systems have the

exact same approximation possibilities. Let an MSVQ have m stages. To

compare the MSVQ with a frame system, let the frame system use exactly m

vectors in each approximation, as the MSVQ does, and let the m frame vector

coe�cients be quantized by a quantizer with L di�erent scalar representation

values. The Frame based system gives:

Lm
�

K

m

�
(2.17)

di�erent approximation possibilities. The number of bits needed when the co-

e�cient positions and values are coded separately with �xed codeword length,

i.e. when using no run-length or entropy coding, is:

m log2 L+ log2

�
K

m

�
=

m log2 L+

KX
i=1

log2 i�
mX
i=1

log2 i�
K�mX
i=1

log2 i =

m log2 L+

KX
i=(K�m+1)

log2 i�
mX
i=1

log2 i (2.18)

The MSVQ system gives:

mY
i=1

Mi (2.19)

di�erent approximation possibilities. The number of bits needed to code the

indexes using a �xed codeword length, i.e. when using no run-length or entropy

coding, is:

mX
i=1

log2Mi: (2.20)

Three di�erent scenarios are investigated further:

Scenario 1: MSVQ with m equal codebooks

Let Ci = C thus Mi = M , and let M = KL. Let C consists of the K frame

vectors in F multiplied with all the L di�erent coe�cients allowed in the frame
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based system. In this case these two systems have theoretically the exact same

output possibilities. The MSVQ system needs:

m log2M = m log2KL = m log2 L+m log2K (2.21)

bits, whereas the number of bits needed for the frame system can be seen from

Equation 2.18. Subtracting Equation 2.18 from Equation 2.21 we get:

m log2K �
KX

i=(K�m+1)

log2 i+

mX
i=1

log2 i > 0 (2.22)

except when m = 1 where they are equal, but that will never be the case for

an MSVQ system. Thus the frame system requires fewer bits than the MSVQ

system for all practical purposes, and the di�erence increases with increasing

m. The systems have theoretically the same output possibilities, however both

methods uses suboptimal vector selection techniques, so the compression result

for one speci�c signal vector need not be exactly the same.

Scenario 2: MSVQ with di�erent codebooks and a frame system with the same

approximation possibilities

By letting the frame have the same approximation possibilities as the MSVQ

we mean that the frame can produce exactly the same output as all the possible

MSVQ outputs. This does not hold the other way around, since the frame

turns out to have much more approximation possibilities.

Let Cj 6= Ci; j 6= i, that is let the codebooks at the di�erent stages in the

MSVQ be di�erent. This is the common way to use an MSVQ. Let Mi =

KL; i = 1; : : : ;m for simplicity. If we want the frame based system to have

the same approximation possibilities, the frame now need to be of size N�mK.

The MSVQ system still uses

m log2(KL) = m log2 L+m log2K (2.23)

bits per signal vector. The frame system needs

m log2 L+

mKX
i=(mK�m+1)

log2 i�
mX
i=1

log2 i (2.24)

bits per signal vector. Subtracting Equation 2.24 from Equation 2.23 we get:

m log2K �
mKX

i=(mK�m+1)

log2 i+

mX
i=1

log2 i < 0 (2.25)
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except when m = 1 where they are equal, thus for all practical purposes. The

frame system seems to be more expensive, but on the other hand it turns out

to have much more approximation possibilities than the MSVQ. The frame

system has

Lm
�

mK

m

�
(2.26)

distinct possible approximations whereas the MSVQ system has
Qm

i=1KL =

(KL)m distinct possible approximations.�
mK

m

�
> Km (2.27)

except when m = 1, and much greater for most practical purposes. Since the

frame based system can be any combination of the mK di�erent vectors with

any of the L di�erent values, an MSVQ system would have to have all these

possible vectors in all of the codebooks to possess the same 
exibility, thus all

the codebooks would need to be C = [C1 C2 : : :Cm].

Scenario 3: Exactly the same number of possible approximations for MSVQ

and frame system

A third possible case is to let the frame based system and the MSVQ have

exactly the same number of possible approximations, but not necessarily same

approximations. From Equation 2.17 and Equation 2.19 we have:

Lm
�

K

m

�
=

mY
i=1

Mi: (2.28)

If Mi =M we get:

M = L m

s�
K

m

�
: (2.29)

The number of bits needed for the frame system is as in Equation 2.18. Com-

bining Equation 2.20 with Equation 2.29 gives the number of bits needed for

MSVQ:

m log2(L
m

s�
K

m

�
) =

m log2 L+ log2

�
K

m

�
(2.30)
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Comparing Equation 2.18 with Equation 2.30 we see that we need the exact

same number of bits for the MSVQ system and the frame system when we

have the same number of possible approximations instead of demanding the

same possible approximations.

The bit comparison in this section are all done without any run-length or

entropy coding, which can indeed change the situation.

2.4 Vector selection algorithms

The potential advantage in using a frame instead of an orthogonal transform is

that we have more vectors to choose from and thus a better chance of �nding

a small number of vectors whose linear combination match the signal vector

well. Since a linearly dependent set of vectors is used, an expansion is no

longer unique. In a compression scheme the goal is to use as few vectors as

possible to obtain a good approximation for each signal vector. Consequently

it makes sense to apply a sparsity constraint to the coe�cient set. Finding the

optimal frame vectors to use in such an approximation is an NP-hard problem

and requires extensive calculation [55]. A suboptimal technique is preferable

in order to limit the computational complexity. There exist several di�erent

vector selection methods dealing with this problem. They can be grouped into

sequential and parallel methods [60].

The sequential methods are greedy methods, selecting vectors one at a time.

They start by choosing the frame/dictionary vector that match the signal

vector best, building an approximation by iteratively selecting new vectors

according to some criterion, like the best match to the residual. Matching

Pursuit (MP) [52] and Orthogonal Matching Pursuit (OMP) [12] are examples

of such greedy algorithms for choosing vectors from a frame.

In the parallel methods all the vectors of the frame/dictionary are initially

selected, and processed. Vectors are eliminated until a requisite number re-

mains. Basis Pursuit [11], and FOCUSS (FOCal Underdetermined System

Solver) [29] are examples of parallel vector selection algorithms.

2.4.1 Matching Pursuit (MP) techniques

Greedy techniques for vector selection have been known for a long time. Mallat

and Zhong reintroduced MP in 1993 [52], and their algorithm is closely related

to algorithms used in statistics [25].
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Let ff
g
2�; � = f1; 2 : : : Kg be a set of vectors constituting a frame, F,

with K > N vectors, each of length N , and let ff
g
2� span the space RN . A

matching pursuit begins by projecting the signal vector x on a vector f
0 ; 
0 2
�, and computing the residual r [50].

x = (xT f
0)f
0 + r; (2.31)

kxk2 = jxT f
0 j2 + krk2 (2.32)

since r is orthogonal to f
0 .

To minimize r, f
0 ; 
0 2 � must be chosen such that jxT f
0 j is maximum:

jxT f
0 j � sup

2�

jxT f
 j: (2.33)

This is iterated to form an approximation of x. In iteration k the residual

from iteration k�1 is projected on the frame vectors ff
g
2�. Let r0 = x and

rk the residual after the k'th iteration. The next vector f
k chosen satis�es:

jrTk f
k j � sup

2�

jrTk f
 j: (2.34)

The approximation after iteration k + 1 can be written:

x = (xT f
0)f
0 + (rT1 f
1)f
1 + : : : (rTk f
k)f
k + rk+1 (2.35)

=

kX
j=0

(rTj f
j )f
j + rk+1: (2.36)

From Equation 2.36 we see that the coe�cients used in the approximation

of the vector x is the inner product between the residual at that stage in

the iterations and the chosen frame vector. This is not changed later in the

iterations. Since the frame vectors are not orthogonal, including a new vector

in the approximation might change the optimal coe�cient for the earlier chosen

frame vectors. This motivates the di�erent variations of MP algorithms. In the

following the two algorithms we have used in the present work are explained.

Orthogonal Matching Pursuit (OMP)

The algorithm we refer to as OMP in this thesis is due to Davis [12].

The OMP di�ers from the MP by optimizing all the coe�cient values after

each iteration, thus the OMP gives a better approximation but is computa-

tionally more expensive. What is done in the OMP is that the residual, for

each iteration, is orthogonalized to the space spanned by the previously chosen
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vectors. The algorithm starts exactly like the MP algorithm. The di�erence

occurs when the second frame vector has been selected. In MP the inner prod-

uct between the residual and the frame vector is the coe�cient value, and the

coe�cient value used with the previously chosen frame vector is kept. In OMP

both these coe�cients are optimized making the best possible approximation

of x using just these two frame vectors. The optimization is done by �nding

the least squares solution, which is computed from the pseudo inverse for the

overdetermined problem:

~w = (~FT ~F)�1~FTx = ~F+x: (2.37)

where ~F is a matrix consisting of the chosen frame vectors as columns, and ~w

is a vector with the corresponding coe�cients. Now the new residual is found:

r2 = x� ~w0f
0 � ~w1f
1 : (2.38)

The next vector is chosen as before:

jrTk f
k j � sup

2�

jrTk f
 j: (2.39)

The new coe�cients is found by using Equation 2.37, and this is done itera-

tively until either the required number of vectors are selected or the residual

is less than some limit. The approximation can be written:

x =

kX
j=0

~wjf
j + rk+1; (2.40)

or if we let the sparse vector w consist of the ~wj's at the right positions and

zero elsewhere:

x = Fw+ r: (2.41)

In [12] the algorithm is based on orthogonalizing the selected vector with

respect to the space that is spanned by the previous selected vectors. The

coe�cient used with this new orthogonalized vector is (rTk f
k) and need not

to be recalculated. This is equivalent to the explanation above.

Fast Orthogonal Matching Pursuit (FOMP)

The algorithm we refer to as FOMP was proposed by Garavi-Alkhansari and

Huang [27]. It is not a fast version of Davis' OMP from the previous section,
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but a fast version of a di�erent variant of the MP algorithm. The literature

is unfortunately not consistent in naming conventions used for di�erent MP

algorithms. We consistently refer to the various algorithms by the names given

by their originators.

The di�erence between the OMP in [12] and the FOMP in [27] is that the OMP

orthogonalize the residual with respect to the space spanned by the selected

vector in each iteration, whereas the FOMP orthogonalize the remaining vec-

tors in the dictionary with respect to the one just selected in each iteration.

After the last iteration, the coe�cients are recalculated using least squares

method as in Equation 2.37. This method have been called Order Recursive

Matching Pursuit (ORMP) in other references, and it gives better results than

OMP. It is considerably more computational expensive than Davis' OMP, but

Garavi-Alkhansari and Huang proposed a fast version in [27] and this is what

we call FOMP.

2.4.2 FOCUSS

The FOCUSS algorithm is a best basis, or vector selection algorithm, developed

by Gorodnitsky and Rao [29]. It was assumed that there is a perfect match

between the data x and a linear combination of a few columns of F:

x = Fw; (2.42)

where F is a N � K matrix where K � N . As we see the vector selection

problem consists of solving an underdetermined linear system of equations [60].

There are many solutions to the system of equations (2.42) and the best basis

selection problem corresponds to identifying a few columns of the matrix F

that best represent the data vector x [52]. This corresponds to �nding a

solution to (2.42) with few nonzero entries, i.e. a sparse solution.

FOCUSS, for FOCalUnderdetermined System Solver [29] is a parallel vector

selection algorithm. The FOCUSS method was motivated by the observation

that if a sparse solution is desired then choosing a solution based on the small-

est 2-norm is not appropriate. The minimum 2-norm criteria favors solutions

with many small nonzero entries, a property that is contrary to the goal of

sparsity [10, 29]. Consequently there is a need to consider the minimization

of alternative measures that promote sparsity. In this context, of particular

interest are diversity measures, functionals which measure the sparsity, and al-

gorithms for minimizing them to obtain sparse solutions. A popular diversity



2.4 Vector selection algorithms 31

measure is the `(p�1) diversity measure given by [62, 39],

E(p)(w) = sgn(p)

KX
j=1

jwj jp; p � 1: (2.43)

Minimizing these measures, with the constraint given by Equation 2.42, natu-

rally leads to the iterative algorithm FOCUSS. Let k be the iteration number.

The iterations are as follows [29, 62, 39]:

w(k+1) = Q(k+1)
�
FQ(k+1)

�+
x; (2.44)

where Q(k+1) = diag(jw(k)
j j1� p

2 ). \+" denotes the pseudoinverse. Intuitively,

the algorithm can be explained by noting that there is competition between the

columns of F to represent x. In each iteration, certain columns get emphasized

while others are deemphasized. In the end a few columns survive to represent

x providing a sparse solution. An initial solution, w(0), is needed in the

algorithm. If any of the columns are let out, that is any of the wj's are zero,

they can not get back in the competition, and the value will stay equal to

zero. Therefore the initial vector w(0) should not contain any zeros so that all

possibilities are kept open. A good initial vector is the minimum norm solution

to the Equation 2.42 since the minimum norm solution usually spreads the

energy over all the coe�cients.

De�ning

q
�
=(Q(k+1))�1w; (2.45)

in each iteration of the FOCUSS algorithm the solution w(k+1) is computed

as w(k+1) = Q(k+1)q(k+1), where

q(k+1) = argmin
q

kqk2 subject to FQ(k+1)q = x: (2.46)

By doing this scaling transformation, the FOCUSS algorithm can be solved by

a sequence of weighted minimum 2-norm problems. The FOCUSS algorithm

can be summarized as:

Q(k+1) = diag(jw(k)
j j1� p

2 )

q(k+1) = (F(k+1))+w; where F(k+1) = FQ(k+1) (2.47)

w(k+1) = Q(k+1)q(k+1)

Note that the algorithms 2.47 and 2.44 are entirely equivalent because they

are related by the scaling transformation of Equation 2.45.
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More details on FOCUSS can be found in [29, 62]. The next chapter deals

with a version of FOCUSS allowing noise in the data, or equivalently �nding

an approximated representation instead of an exact representation as done in

FOCUSS. This is called regularized FOCUSS, and gives the following equation

system: x = Fw+ n, or equivalent x̂ = Fw.



Chapter 3

Regularized FOCUSS

Our goal in the work presented in this chapter was to develop robust subset

selection methods that have applications to signal representation and to �nd

sparse solutions to linear inverse problems from noisy observations. This work

can also be found in [61].

We wanted to make a version of the FOCUSS algorithm that could deal with

noise in the data. This would make it possible to use it in situations where

the data have a sparse structure, but is polluted with noise. It also makes it

possible to use it in compression and frame design. To deal with noise in the

data, basis selection procedures based on a Bayesian framework was consid-

ered. An algorithm based on the MAP estimation procedure was developed

which lead to a regularized version of the FOCUSS algorithm. Some of the

results in this chapter were published in [23].

3.1 Basis selection in the presence of noise

The derivation of FOCUSS [29, 62] did not explicitly account for noise in the

data. It was assumed that there is a perfect match between the data x and

a linear combination of a few columns of F. In [29] reasonable modi�cations

were made to the algorithm to deal with noise. Here we take a formal approach

and extend the FOCUSS method to deal with noise in the measurements using

a Bayesian framework. As we will see, the stochastic framework provides the-

oretical insights and assists in developing robust methods. For this discussion,

we assume that the data vector x is the result of a true underlying sparse

structure:

x = Fw+ n; (3.1)

33
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where n is a random additive noise vector. Furthermore, in this formulation

w is also assumed to be a random vector independent of n. F is assumed

known. Under these assumptions, a Maximum A Posteriori (MAP) estimate

of w can be obtained,

wmap = argmax
w

ln p(wjx)
= argmax

w

[ln p(xjw) + ln p(w)]

= argmax
w

[ln pn(x� Fw) + ln p(w)] :

The last equality is obtained because p(xjw) = p(Fw+ njw), and F is as-

sumed known. Then n is the only random variable since w is given. This can

thereby be written as pn(n), where n = x� Fw.

This formulation is general with considerable 
exibility. In order to proceed

further, some assumptions about the noise n and the solution vector w have

to be made. The distribution of n is not very critical to the approach except

for analytical and computational tractability. We assume that n is a Gaussian

random vector with independent and identical distributed (iid) elements1, i.e.:

pn(n) = c1e
�
knk

2

2�2 : (3.2)

The distribution of w is quite important for the generation of sparse solutions.

For this purpose, the elements wj are assumed to be iid random variables

with generalized Gaussian distribution. The probability density function of

the generalized Gaussian distribution family is de�ned as [58, 68]:

f(w; p; �) =
p

2 p
p
2��(1

p
)
e
�
jwjp

2�p ; p > 0 (3.3)

where �(�) is the standard gamma function. If p = 2 and � = 1 this is the

standard normal distribution. p controls the shape, and � is a generalized

variance. If unit variance, �2 = 1, is wanted then � becomes a function of p,

and only one parameter can be varied:

�2 = 2
� 2
p

�(1
p
)

�(3p)
(3.4)

Figure 3.1 shows a plot of the pdf, f(w; p), for di�erent p's when �2 = 1. From

the �gure it can be seen that the pdf moves towards a uniform distribution

1More general Gaussian distributions can be also easily dealt with.
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Figure 3.1: pdf for the generalized Gaussian distribution with di�erent p,

�2 = 1. dotted: p = 10, dashed: p = 2 (standard normal distribution),

dash-dot: p = 1, solid: p = 0:5

.

as p!1, and towards a very peaky distribution as p! 0. A vector w with

dimension K, where the elements are generalized Gaussian and independent,

has the following pdf:

pw(w) = (
p

2 p
p
2��(1p)

)Ke
� 1
2�p

sgn(p)
PK

j=1 jwj j
p

(3.5)

To be consistent with the l(p�1) diversity measure of Equation 2.43 where

p � 1, the sgn(p) is added to allow for p < 0.

Substituting these densities in the expression for the MAP estimate results in

wmap = argmin
w

J(w);

where J(w) =

2
4kFw� xk2 + sgn(p)

�2

�p

KX
j=1

jwj jp
3
5 :
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Note that p = 2 gives rise to the standard regularized least squares problem.

For p � 1 it can be shown that the minima of J(w) are sparse. Following the

factored-gradient approach in [62, 39], an iterative algorithm can be derived

to minimize J(w) which has the form2 [63]:

w(k+1) = Q(k+1)
�
F(k+1)TF(k+1) + �I

��1
F(k+1)Tx; (3.6)

where F(k+1) = FQ(k+1) with Q(k+1) = diag(jw(k)
j j1� p

2 ) and � = sgn(p)�
2

�p
.

Using the fact that

F(k+1)T
�
F(k+1)F(k+1)T + �I

�
=
�
F(k+1)TF(k+1) + �I

�
F(k+1)T ; (3.7)

algorithm (3.6) can be expressed as

w(k+1) = Q(k+1)F(k+1)T
�
F(k+1)F(k+1)T + �I

��1
x: (3.8)

This is the iteration in the regularized FOCUSS algorithm. When the noise

level is reduced, � ! 0, then �! 0 and the algorithm reduces to the original

FOCUSS algorithm (2.44). The algorithm (3.8) has an interesting interpreta-

tion as Tikhonov regularization applied to (2.46). This can be readily seen by

rewriting (3.8) as a solution to a regularized least squares problem. Then we

have w(k+1) = Q(k+1)q(k+1), where

q(k+1) = argmin
q

kFQ(k+1)q� xk2 + �kqk2 (3.9)

Interestingly, this results in an algorithm identical to that suggested in [29].

In [29], the algorithm was arrived at as a way to make the 2-norm minimiza-

tion problem of (2.46) more robust to noise. This derivation provides formal

support to the approach. Convergence results can be found in [61].

3.2 The regularization parameter

The quality of the sparse solution obtained via the regularized FOCUSS is

governed by the choice of �, and there remains the problem of determining a

proper value for �. Determining a proper value for � is an important problem

and has implications to other subset selection methods as well as to other

regularization problems. Sparsity adds an interesting twist to this classical

2When the elements of F and x are complex, the transpose operation has to be replaced

by the Hermitian transpose
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problem, and in the subset selection context, there appears to be no practical

reason to limit the choice of � to a �xed value for all the iterations. A value

that is dependent on the iteration may be more appropriate. With this in

mind we suggest and study three approaches motivated by three di�erent

scenarios. The �rst approach is motivated by the desire to ensure a certain

quality of representation and exploits the availability of some information on

the perturbations. The second is motivated by the need to ensure a certain

degree of sparsity on the solution as would be required in applications like

compression. The third is induced by the desire to produce stable sparse

solutions without the need for much prior information.

3.2.1 Quality of �t criterion / discrepancy principle

A potentially useful approach is to try to seek a sparse solution that assures a

certain quality in the nature of the representation, i.e. kFw� xk � �. This is

called the discrepancy principle [35]. Algorithmically this reduces to solving

the optimization problem

min
w

E(p)(w) subject to kFw� xk � �: (3.10)

Assuming that the inequality constraint is active, which is usually true, and fol-

lowing the approach used to derive the regularized solution, an iterative algo-

rithm can be derived which at each iteration computes w(k+1) = Q(k+1)q(k+1),

where

q(k+1) = argmin
q

kqk2 subject to kFw� xk � �: (3.11)

An algorithm for computing q(k+1) is given in [59]. The convergence of the

algorithm to a sparse solution can be shown because it is possible to show that

in each iteration kq(k+1)k2 �PK
j=1 jwk

j jp, and the following lemma from [61]:

Lemma 1 in each iteration of the regularized FOCUSS algorithm (3.8), if

kq(k+1)k2 � PK
j=1 jw(k)

j jp, then the algorithm converges and the stable �xed

points are sparse solutions.

The proof follows readily from the convergence proof of FOCUSS presented in

[62].
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3.2.2 Sparsity criterion

Another option is to choose � so that the solution produced has a predeter-

mined number of nonzero entries r. Note that upon convergence the rank

of FQ(k+1) is equal to r, i.e. limk!1 rank(FQ(k+1)) = r. So a desirable ap-

proach would be to use a sequence �k to satisfy this limiting rank property,

while providing the best �t possible. A reliable procedure for doing this is

not yet available. One practical approach is to use a sequential basis selection

method like the OMP to select r columns, and to determine a value for the

error � in the representation. This � can be the basis of FOCUSS along the

lines suggested in section 3.2.1. If the procedure returns more columns than

desired, one can either prune the selected subset or go with OMP solution

whichever is better.

3.2.3 Modi�ed L-curve criterion

In this approach, the regularizing parameter is found by striking a compro-

mise between minimizing the norm of the solution vector, kqk2, versus the
error in the representation, kFQ(k+1)q� xk2. In this context, this choice also

translates into controlling the sparse nature of the solution, so that a trade

o� between quality of �t and sparsity is done. The use of such an approach

was �rst suggested in [29]. The L-curve was introduced by Hansen in [34] as

a method for �nding the parameter � in the regularization problem:

min
w

fkFw � xk2 + �kwk2g: (3.12)

When using regularized FOCUSS, as described in section 3.1, the regulariza-

tion problem can be written as:

min
q

fkFQ(k+1)q� xk2 + �kqk2g: (3.13)

If � is varied from 0 to1, kqk2, a measure of sparsity, decreases monotonically

from k(FQ(k+1))+xk2 to zero and kFQ(k+1)q�xk2, a measure of the approxi-

mation error, increases monotonically. The theory of the L-curve poses that a

plot of kqk2 versus kFQ(k+1)q�xk2 for di�erent � will be shaped as an L and

that a good � is the one corresponding to the corner in the L. Further more

it is suggested [34, 35, 33] that the corner of the L-shaped curve can be found

by �nding the maximum curvature. The plot of kqk2 versus kFQ(k+1)q�xk2
can be shown to be convex [35], and the maximum curvature will be at a trade
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o� point between sparsity and accuracy. The curvature can be computed by

means of the formula:

K(�) =
X 0(�)Y 00(�)�X 00(�)Y 0(�)

f[X 0(�)]2 + [Y 0(�)]2g3=2 ; (3.14)

where X(�) = kFQ(k+1)q�xk2 and Y (�) = kqk2. This way the computations

are done in the linear scale. In [35, 33] the curvature computations are done

in the log-log scale, that is X(�) = logfkFQ(k+1)q�xk2g, Y (�) = logfkqk2g.
The reasons for doing this is somehow unclear, but in [35] there are some

arguments for the corner to be more distinct in the log-log scale. A problem

pointed out by Reginska in [64] is that the L-curve in the log-log scale is no

longer convex in general. In [48] a linear scale L-curve is used, and in [24]

both linear and log-log scale L-curves are mentioned. In fact experiments

have shown that the log-log curve often has several corners and �nding the

maximum curvature in this scale does not necessarily correspond to a � with

a good trade o� between sparsity and accuracy.

Experiments show that using the log-log approach is not good for this appli-

cation of the L-curve method. The algorithm ends up emphasizing quality of

�t too much, and sparsity to little. Linear scale experiments show a potential

for the regularized FOCUSS to perform better than greedy algorithms like the

OMP, but for some data vectors it fails completely. The variance in the error

is large, which indicates that the method is not very robust. The L-curve

approach fails because the data will not produce an L-curve in each iteration

of the regularized FOCUSS algorithm.

To improve the robustness, we propose a method using a combination of the

discrepancy principle and the L-curve method, linear scale. We call this the

modi�ed L-curve method. When using the basic L-curve to decide � there is

no direct control on how many vectors to select, or a limit on the error. The

thought is simply that the L-curve is able to �nd the best way of minimizing

both these terms, or �nding the best trade o� between accuracy and sparsity.

In the proposed modi�ed L-curve method, we have to know something about

the variance of the noise, or alternatively something about the target SNR after

doing an approximation. From this knowledge an upper and an lower target

on the residual norm, �2 = kFw�xk2 can be made. Then for every iteration in

regularized FOCUSS the upper and lower target on �2 is used to �nd an upper

and a lower limit for �, f�min; �maxg. The � corresponding to the maximum

curvature in the linear scale, �c, is also calculated in every regularized FOCUSS

iteration. �c is then compared with the limits. If �c < �min then �min is used,

if �c > �max then �max is used, else �c is used. This ensures that the � will

always be acceptable even if there is no distinct L-corner.
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3.3 The regularization parameter - experiments and

results

Numerous experiments are conducted on synthetic data to understand the

reliability of the methods proposed above. Experiments are done using an

20�30 matrix, F, with random entries chosen from a normal distribution with

mean zero and variance one. The columns in F are normalized. The noise free

data vector is obtained as a linear combination of m randomly picked vectors

from F where the coe�cients are Gaussian random variables with zero mean

and unit variance. The constructed coe�cient vector is denoted �w. Two

di�erent values for m is used: 4; and 7. That means that �w has 4; and 7

nonzero values respectively. The noise free data vector is normalized ) �x.

The noisy data vector, x, is �x + n where n is a noise vector with Gaussian

random entries with zero mean and variance depending on the Signal to Noise

Ratio (SNR) in the experiment. Mathematically, the synthetic data can be

described as

F
�w

kF �wk = �x

x = �x+ n:

Each experiment is done with at least 100 di�erent data vectors; xl l =

1; 2 : : : M , M � 100.

In the experiments we know the frame, F, and the noisy data, xl; l =

1; 2 : : : M , and we use the di�erent versions of regularized FOCUSS and OMP

to �nd a coe�cient vector w.

Several factors have been studied to evaluate the experiments. There are two

types of error:

�21 = kFw � �xk2 (3.15)

�2 = kFw � xk2 (3.16)

�21 from Equation 3.15 is the error of the reconstructed signal compared to the

original signal before noise was added, and �2 from Equation 3.16 is the error

of the reconstructed signal compared to the original signal with noise. If one is

trying to �nd the underlying function of a known sparse process, then the �rst

error measure is the most informative. If one is trying to represent a signal in

the best possible manner without knowing the underlying generating function

(e.g. compression), then the latter will be the most informative.

Three di�erent experiments were done: The quality of �t criterion described in

section 3.2.1, the sparsity criterion described in section 3.2.2, and the modi�ed

L-curve criterion described in section 3.2.3. Experiments are done using OMP

on the same data sets for comparison.
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3.3.1 Test 1 and test 2 - Discrepancy principle and sparsity

criterion

The discrepancy principle (test 1) and sparsity criterion (test 2) are tested on

the same data set, and are therefore evaluated together.

In the experiment of the discrepancy principle we assume that we know some-

thing about the variance of the noise. This way we can set the bound on

the norm of the error as a function of the noise variance. Let the variance of

ni; i = 1; 2 : : : N be �2. Then hknk2i = N�2, and the error bound is set to

CN�2, where C is a selected constant. When using this approach the num-

ber, r, of vectors from the F matrix selected to approximate a data vector x

will vary for di�erent data vectors. To be able to compare the result using

regularized FOCUSS with result using OMP we have to either �x the error

and compare the number of vectors used, or �x the number of vectors used

and compare the error for each trial. Since it is not possible to �x the error

at an exact level, we choose to �x the number of selected vectors, r, using

regularized FOCUSS and OMP for the same data vector, and compare the

error. Using regularized FOCUSS, there is an upper bound on the norm of

the error, the r is not controlled directly. Thus for every data-vector, xl, the

regularized FOCUSS algorithm runs �rst, and the rl is found. Then the OMP

can be run for the same data vector with the restriction that it has to pick

exactly rl vectors. OMP is a greedy algorithm, and can easily be stopped at

any r or with an upper bound on the error.

In the experiment of the sparsity criterion the number of vectors to be se-

lected to approximate the data is �xed. That means that the number of

nonzero entries in w is �xed. In this experiment the goal is to �nd the best

possible approximation in terms of minimal MSE using a linear combination

of r columns from the F matrix. We use the same r as the m that where

used when producing the synthetic data, assuming that this factor is known.

Unfortunately it is not trivial to control the r when regularized FOCUSS is

used as vector selection algorithm. The way it is done in this experiment is

as follows: For a data-vector xl OMP runs �rst �nding an approximation us-

ing r vectors. The �2 from Equation 3.16 is calculated and used as an input

for the upper bound when running regularized FOCUSS as in the discrepancy

principle. Let rfocuss be the number of vectors that regularized FOCUSS uses.

If rfocuss > r it is pruned down to r by using OMP to select r of the rfocuss
vectors. If rfocuss < r extra vectors are added using OMP until r vectors are

selected. This way we always use r vectors in each approximation.

Explanation to the tables: 1 FOCUSS and 2 FOCUSS means test 1 and 2

using the regularized FOCUSS approach. p is a factor in the regularized
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Test p C �r �rm mean �21 mean �2 % �21 % �2

1 FOCUSS 0 0.8 9.3 5.86 0.0080 0.0044 57 24

1 OMP 9.3 5.58 0.0123 0.0074 29 62

2 FOCUSS 0 7 5.47 0.0150 0.0135 38 30

2 OMP 7 5.29 0.0179 0.0162 35 43

1 FOCUSS 0 1.2 8.35 5.60 0.0091 0.0066 46 20

1 OMP 8.35 5.68 0.0131 0.0095 40 66

2 FOCUSS 0 7 5.61 0.0135 0.0118 38 25

2 OMP 7 5.59 0.0143 0.0126 39 52

1 FOCUSS 0.5 1.2 6.7 5.44 0.0096 0.0098 30 25

1 OMP 6.7 5.37 0.0169 0.0144 33 38

2 FOCUSS 0.5 7 5.67 0.0098 0.0086 35 27

2 OMP 7 5.57 0.0124 0.0104 37 45

1 FOCUSS 0.8 1.5 7.88 5.84 0.0080 0.0063 45 23

1 OMP 7.88 5.58 0.0125 0.0094 41 63

2 FOCUSS 0.8 7 5.70 0.0126 0.0114 33 24

2 OMP 7 5.40 0.0163 0.0146 26 35

Table 3.1: Experiments done on test1 and test2 with the same data set. SNR=

20 dB, m = 7

FOCUSS algorithm3, �r means the average number of vectors selected per data

vector, �rm means the average number of selected vectors which is identical with

vectors used to construct �x, % �21/�
2 means the percentage of the trials where

regularized FOCUSS/OMP performs better in terms of �21/�
2. The reason why

e.g. % �2 regularized FOCUSS and % �2 OMP does not add to 1 is that they

perform exactly the same for some of the trials. For the experiments with test

1, C means the selected constant in the error bound as explained.

From Table 3.1 it can bee seen that the mean of both �21 and �
2 is less for regu-

larized FOCUSS than OMP in all the experiments. For low SNR in Table 3.2

this is still the case for the mean of �21 but no longer for �
2. For high SNR, but

withm = 4, seen in Table 3.3 the mean of both �21 and �
2 is less for regularized

FOCUSS than for OMP in most of the experiments. With one exception the

mean number of correct selected vectors, �rm, is larger for regularized FOCUSS

than OMP for both SNR's when using m = 7, but this is more variable when

m = 4. Most of these results is in favor of the regularized FOCUSS algorithm.

The reason for the �rm to be better for regularized FOCUSS when using m = 7

3described in Section 3.1 (from the lp�1 diversity measure)
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Test p C �r �rm mean �21 mean �2 % �21 % �2

1 FOCUSS 0 0.8 6.97 4.21 0.0782 0.0496 55 22

1 OMP 6.97 4.10 0.0840 0.0427 32 65

2 FOCUSS 0 7 4.26 0.0839 0.0470 56 32

2 OMP 7 4.13 0.0881 0.0428 34 58

1 FOCUSS 0.5 1 5.25 3.99 0.0844 0.0739 38 50

1 OMP 5.25 3.78 0.0909 0.0700 31 38

2 FOCUSS 0.5 7 4.46 0.0785 0.0444 15 26

2 OMP 7 4.30 0.0824 0.0408 54 62

1 FOCUSS 0.8 1 6.39 4.28 0.0791 0.0587 41 19

1 OMP 6.39 4.09 0.0841 0.0513 41 63

2 FOCUSS 0.8 7 4.43 0.0798 0.0452 39 29

2 OMP 7 4.18 0.0829 0.0449 32 42

Table 3.2: Experiments done on test1 and test2 with the same data set. SNR=

10 dB, m = 7

Test p C �r �rm mean �21 mean �2 % �21 % �2

1 FOCUSS 0 1 3.06 2.79 0.0265 0.0323 8 5

1 OMP 3.06 2.82 0.0279 0.0334 10 13

2 FOCUSS 0 4 3.54 0.0060 0.0101 16 6

2 OMP 4 3.58 0.0084 0.0122 18 28

1 FOCUSS 0.5 1 5.02 3.53 0.0057 0.0069 29 8

1 OMP 5.02 3.67 0.0071 0.0076 20 41

2 FOCUSS 0.5 4 3.51 0.0086 0.0117 13 7

2 OMP 4 3.64 0.0079 0.0115 20 26

1 FOCUSS 0.8 1 5.45 3.57 0.0051 0.0055 69 9

1 OMP 5.45 3.58 0.0102 0.0082 15 75

2 FOCUSS 0.8 4 3.56 0.0048 0.0085 13 4

2 OMP 4 3.52 0.0103 0.0136 7 16

Table 3.3: Experiments done on test1 and test2 with the same data set. SNR=

20 dB, m = 4
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than when using m = 4 is that the greedy algorithm, OMP, works well when

only a few vectors are to be selected. The sub-optimality becomes greater if

more vectors are selected. Regularized FOCUSS is also suboptimal, but as

it is a parallel algorithm it will have a greater probability of working better

when many vectors need to be selected.
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Figure 3.2: Histogram of �2focuss � �2omp for test 1 with SNR=20 dB, m = 7,

p=0. a) C = 0:8 b) C = 1

Figure 3.2 shows a histogram of �2focuss � �2omp for test 1 with SNR=20 dB,

m = 7, p=0, and C = 0:8 and C = 1 in a) and b) respectively. As is seen

from the Tables 3.1, 3.2, and 3.3 the results of % �21 and % �2 seems to be

in favor of the OMP in many of the experiments, but still the mean values

of �21 and �2 are in favor of the regularized FOCUSS. This is because when

OMP performs better it only performs marginally better, but when regularized

FOCUSS performs better it sometimes performs signi�cantly better. This is

seen by the skew histograms in Figure 3.2.
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3.3.2 Test 3 - modi�ed L-curve method

The modi�ed L-curve method requires some knowledge of the noise level, or

a target on the approximation SNR. In particular, the largest (�2max) and

smallest (�2min) error in the approximation are required. This is used to �nd

�max; �min, as described in section 3.2.3. In each regularized FOCUSS itera-

tion �max; �min; and �c is found.

The noise vector n has Gaussian random entries with variance �2n =
SNR
N , and

the SNR level is 10 or 20 dB. knk2 has a chi-squared distribution and is used

to �nd the limits. The limits �2min and �2max are chosen as P (knk2 � �2min) =

P (knk2 � �2max) = T , where T is a chosen threshold. For these experiments a

threshold of 0:1 was used and this gives �2min = 0:0062 and �2max = 0:0142 for

SNR = 20 dB, and 10 times as much for 10 dB.

If the true SNR of the data is unknown, targets for the SNR can be used to

decide the error limits. If the wanted SNR is approximately X dB, an upper

error limit can be set using X ��1 dB as an SNR target, and a lower limit

using X +�2 dB.

�2upper = 10�(X��1)=10kxk2 (3.17)

�2lower = 10�(X+�2)=10kxk2 (3.18)

For every data vector, x, an �2upper and �
2
lower is calculated using Equation 3.17,

and 3.18 before the regularized FOCUSS iterations start.

For each data vector in the experiment, regularized FOCUSS runs �rst and

rl is found, then OMP runs on the same data vector and stops after selecting

exact rl frame vectors. The errors are then compared.

In Table 3.4 results from the modi�ed L-curve method are showed with SNR's

on 10 and 20 dB.

Table 3.5 shows experiments where the true SNR for the generated data is 20

dB, but assumed to be unknown. A lower target is set to 15 dB and a higher

to 25 dB pretending not to know anything about the noise but wanting the

approximation to have an SNR between 15 and 25 dB. The results are in favor

of the regularized FOCUSS when compared to OMP. The achieved SNR can

be calculated from the mean �2. For p = 0 the SNRfocuss is 16.8 dB and for

p = 0:5 it is 17.6 dB. The results has a lower SNR than the true SNR, but

the number of selected vectors is approximately 5.5 when m = 7 was used to

generate the data.

Figure 3.3 a) is a plot of �rm for the di�erent data vectors, where �rm is between

3 and 11. From b) it is seen that the the variance in the error is small and that
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Test SNR p �r �rm mean �21 mean �2 % �21 % �2

FOCUSS 20 dB 0 7.04 5.35 0.0097 0.0103 53 42

OMP 7.04 5.05 0.0192 0.0176 47 51

FOCUSS 20 dB 0.5 6.86 5.32 0.0102 0.0094 45 36

OMP 6.86 5.05 0.0200 0.0178 55 55

FOCUSS 20 dB 0.8 10.69 5.97 0.0083 0.0036 74 26

OMP 10.69 5.68 0.0117 0.0049 26 74

FOCUSS 10 dB 0 4.08 3.46 0.1171 0.1152 52 39

OMP 4.08 3.06 0.1283 0.1186 39 48

FOCUSS 10 dB 0.5 4.34 3.58 0.0991 0.0938 59 41

OMP 4.34 3.22 0.1087 0.1168 34 46

FOCUSS 10 dB 0.8 8.38 4.57 0.0824 0.0393 76 21

OMP 8.38 4.14 0.0939 0.0295 24 77

Table 3.4: Experiments done on the modi�ed L-curve method. m = 7, SNR

on 10 and 20 dB.

Test p �r �rm mean �21 mean �2 % �21 % �2

FOCUSS 0 5.48 4.69 0.0204 0.0211 44 42

OMP 5.48 4.67 0.0224 0.0231 50 46

FOCUSS 0.5 5.51 4.93 0.0163 0.0174 50 38

OMP 5.51 4.71 0.0218 0.0215 45 41

Table 3.5: Experiments done on the modi�ed L-curve method. m = 7, SNR

target between 15 and 25 dB. True SNR for generated data is 20 dB
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Figure 3.3: Modi�ed L-curve, true SNR for generated data is 20 dB, SNR

target between 15 and 25 dB. a) number of selected vectors in each trial, b)

�2focuss for each trial

means that the variance in the approximation quality for the di�erent trails

are small. In this experiment the achieved SNR for each trail varies between

15 and 25 dB, which corresponds to the predetermined limits on the SNR.

Comparing a) and b) in Figure 3.3 it can bee seen that the error is in general

not smaller for the trails where �rm is large. This, and the small variance in

the error, indicates that the method combining the target SNR with the linear

scale L-curve is working well.

In summary, the original L-curve scheme exerts no strict controls over the

approximation quality, and this often results in the regularization parameter

improperly choosing between quality of approximation and sparsity, leading

to an unreliable procedure. Our proposed scheme remedies this by the re-

quirement of a target SNR, and procedures for determining the target SNR

are presented. The target SNR enables setting limits on the SNR desired of

the approximations, and then letting the L-curve algorithm �nd a good trade
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o� between sparsity and quality of �t within the controlled limits ensures ro-

bustness. In the context of compression, the possibility of controlling bounds

for the error, while obtaining the minimum bit rate at that error level can be

a very desirable property.

Regularized FOCUSS in the rest of this thesis uses themodi�ed L-curve method

to �nd the regularization parameters.



Chapter 4

Frame design

In this chapter the problem of frame design is addressed. We presented an

algorithm for frame design using a training set in [16]. In Section 4.1 we

present a signi�cantly improved version of the frame design algorithm which

we call the Method of Optimal Directions (MOD). MOD was �rst presented

in [18]. In Section 4.2 we discuss frame design from a probabilistic point of

view and establish that some of these approaches gives the same solution as

the MOD.

4.1 Method of Optimized Directions, MOD

The iterative algorithm designed to optimize frames is inspired by the GLA

described in Section 2.3.3. Each iteration in the GLA consists of two parts.

First the optimal classi�cation for the training set is found using a given

codebook. In the context of VQ, classi�cation corresponds to �nding the best

vector in the codebook representing the training vector. Secondly a better

codebook is found using the existing classi�cation and training set. It follows

that the new codebook is guaranteed to be no worse than the previous, and

the GLA will eventually �nd at least a local optimum.

The frame design problem is tackled the same way by dividing each itera-

tion in the training algorithm into two parts. Let F be the N � K frame,

xl; l = 1; 2 : : : M the training set, and wl; l = 1; 2 : : : M the set of coe�cients

found when computing approximations for the vectors in the training set. The

iteration can be summarized as:

49
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1. F and xl; l = 1; 2 : : : M are given. Find wl; l = 1; 2 : : : M by using a

vector selection algorithm.

2. wl and xl; l = 1; 2 : : : M are given. Find the best possible F, and

normalize the frame vectors.

As in a shape-gain VQ, the frame vectors are normalized, thus they represent

shape. The corresponding coe�cients represent the gain. Finding approxi-

mations for the training vectors in a frame based system is done by using a

suboptimal vector selection algorithm. Thus, as opposed to the GLA, there

is no guarantee for the next frame to be better than the previous after an

iteration. Finding the best possible frame when wl and xl; l = 1; 2 : : : M are

known is also a much more complicated task than using the centroid condi-

tions as done in the GLA. To solve this problem, we propose an algorithm to

�nd the optimal F in terms of MSE, when wl and xl; l = 1; 2 : : : M are known,

or estimated. Let xl be approximated using a vector selection algorithm:

x̂l =

KX
j=1

wl(j)fj = Fwl (4.1)

where wl(j) is the coe�cient corresponding to vector fj. The coe�cient vector

wl is sparse, i.e. only a few of the wl(j)'s are di�erent from zero. The residual

is:

rl = xl � x̂l; (4.2)

The idea is now to adjust all frame vectors in such a manner that the total

MSE, given by X
l

krlk2; (4.3)

becomes as small as possible. Denote by �j the adjustment of frame vector fj :

~fj = fj + �j; j = 1; 2 : : : K: (4.4)

In the following we show how to �nd the optimal adjustment vectors �j ; j =

1; 2; : : : K. Since we �nd the optimal directions in Equation 4.4, we call the

frame design algorithm the Method of Optimal Directions (MOD). The new

residual for a training vector xl is:

~rl = rl �
KX
j=1

wl(j)�j ; (4.5)
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where wl(j) is the existing coe�cient corresponding to the approximation of

training vector xl. A reduction of the total MSE over all training vectors is

desired: X
l

k~rlk2 �
X
l

krlk2: (4.6)

The resulting MSE after adjusting the frame vectors is investigated:

X
l

k~rlk2 =
X
l

krl �
KX
j=1

wl(j)�jk2 (4.7)

=
X
l

(rl �
KX
j=1

wl(j)�j)
T (rl �

KX
j=1

wl(j)�j) (4.8)

=
X
l

krlk2 � 2
X
l

KX
j=1

wl(j)�
T
j rl +

X
l

KX
j=1

KX
k=1

wl(j)wl(k)�
T
j �k: (4.9)

If Equation 4.6 is satis�ed, then:

KX
j=1

KX
k=1

ajk�
T
j �k � 2

KX
j=1

�
T
j bj � 0 (4.10)

where

ajk =

MX
l=1

wl(j)wl(k) (4.11)

bj =

MX
l=1

wl(j)rl: (4.12)

We want to �nd the minimum of
P

l k~rlk2, and this is equivalent to �nding

the minimum of the left side of Equation 4.10:

@

@�q(p)

0
@ KX

j=1

KX
k=1

NX
i=1

ajk�j(i)�k(i)� 2

KX
j=1

NX
i=1

�j(i)bj(i)

1
A = 0; (4.13)

where q = 1; 2 : : : K, and p = 1; 2 : : : N . After some manipulations we get:

KX
j=1

ajq�j(p)� bq(p) = 0: (4.14)
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This can be written in matrix form. Let2
6664

a11 a12 : : : a1K
a21 a22
...

. . .

aK1 aKK

3
7775 =

MX
l=1

wlw
T
l =M ~Rww (4.15)

�
b1 b2 : : :bK

�
=

MX
l=1

rlw
T
l =M ~Rrw (4.16)

where ~Rww and ~Rrw are the estimated auto-correlation matrix of w, and the

estimated cross-correlation matrix of r and w, respectively. Equation 4.14

becomes:

M ~Rww�
T =M ~RT

rw: (4.17)

where:

� =
�
�1 : : : �K

�
: (4.18)

The � matrix contains the optimal adjustment vectors. According to Equa-

tion 4.11, ~Rww is symmetric.

Assuming ~Rww to have full rank, we get:

� = ~Rrw
~R�1
ww: (4.19)

The new frame can consequently be written:

~F = F+ ~Rrw
~R�1
ww (4.20)

and this is shown in Appendix A.1 to be equivalent to:

~F = ~Rxw
~R�1
ww; (4.21)

where ~Rxw is the estimated cross-correlation matrix between the signal vectors

xl and the coe�cient vectors wl.
P

l k~rlk2 can not be less than 0, thus we

know that the problem has a minimum solution. Since Equation 4.19 has only

one solution when ~Rww is full rank, this is the minimum solution.

For each iteration, if the frame is adjusted according to Equation 4.20 this

gives the optimal improvement in MSE for the existing vector selection and

corresponding coe�cients.
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We have now focused on part 2 in the training algorithm. If an optimal

selection algorithm had been used in the part 1, the new frame would always

be better than, or as good as, the previous one, with respect to MSE. Selection

algorithms for frames are not optimal, so there is no way to guarantee a better

frame when using a practical selection algorithm, but test results show that

this scheme works remarkably well and produces frames that are well suited

for a given class of input data. Let F(k) be the frame after k iterations. In

summary, the algorithm for frame design works as follows:

1. Begin with an initial frame F(0) of size N �K, Assign counter variable

k = 1.

2. A vector selection algorithm is used to �nd an approximation for each

training vector, and all the residuals are calculated.

3. The frame is adjusted according to Equation 4.20. The frame vectors

are then normalized to unit length ) F(k).

4. A vector selection algorithm is used to �nd the new approximations and

residuals.

If (stop-criterion = FALSE) ) k = k + 1, go to step 3, else terminate.

Several stop-criteria can be used; for example maximum number of iterations

or almost constant MSE. The convergence properties are not yet fully under-

stood. Due to the lack of guarantee for the new frame to be better than, or as

good as, the previous, the algorithm should allow the MSE to grow for several

iterations without terminating the training. This can be seen from training

results in Chapter 5.

4.2 Frame design from a probabilistic point of view

The objective of this section is to get some more insight into the problem of

frame design by looking at it from a probabilistic point of view. A further

study of this topic can be found in [40, 41, 42, 43].

In Section 4.1 the frame design algorithm Method of Optimal Directions was

developed using training data without the use of statistics. In this section we

will consider frame design from a probabilistic point of view, and show the

interesting fact that the same algorithm, the MOD, can result using a proba-

bilistic way of thinking. This gives additional insight and understanding of the

MOD algorithm, and also opens for other frame design possibilities. There are
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several possible approaches. One is to assume that the frame is deterministic

but unknown, another is to assume that the frame is stochastic. Both these

approaches are investigated.

We start with a signal model:

x = Fw+ n =

KX
j=1

wjfj + n; (4.22)

where as before F is a frame: anN�K matrix whereK � N and rank(F) = N .

x is the observed (known) data vector, x 2 RN and XM = (x1;x2 : : :xM ) is

an observation set. In this section we assume that the data are constructed

from a structure as in Equation 4.22. When constructing a observation set,

the frame F is assumed to be constant, either if it is a constant deterministic

(but unknown) parameter or if it is one realization of a stochastic process

(still unknown). Di�erent realizations of the vectors w and n gives di�erent

observations x. n is assumed to be a random additive noise vector with the pdf

pn(n). Furthermore, w is also assumed to be a random vector independent of

n. WM = (w1;w2 : : :wM) is the true coe�cient set that made the observation

set together with the frame and the additive noise. ŴM = (ŵ1; ŵ2 : : : ŵM) is

the estimated coe�cient set, estimated from the observation set.

4.2.1 Deterministic but unknown frame

If F is deterministic but unknown, it would be desirable to �nd the Maximum

Likelihood (ML) estimate, since this is known to hold good qualities. The ML

estimate is de�ned as:

F̂ml(x) = argmax
F

p(XM ;F): (4.23)

The ML estimate is an estimate of an unknown but deterministic parameter.

The ML estimate for a parameter is the estimate that makes the given value

of the observation set the most likely value.

If the observation data are assumed to be iid, the ML estimate becomes:

F̂ml(x) = argmax
F

MY
j=1

p(xj ;F);

where:

p(xj ;F) =

Z
p(xj;w;F)dw =

Z
p(xj jw;F) � pw(w)dw (4.24)



4.2 Frame design from a probabilistic point of view 55

p(xj jw;F) = p(Fw + njjw;F) where nj is the only random variable since w

is given. This can thereby be written as pn(nj), where nj = xj � Fw. Thus

Equation 4.24 becomes:

p(xj ;F) =

Z
pn(xj � Fw) � pw(w)dw: (4.25)

The integral of Equation 4.25 is in general hard to solve. Di�erent approaches

have been proposed to deal with this di�culty. In [49] an assumption on the

probability of the coe�cients, pw(w), is made so that the integral can be solved

analytically. The assumption made is that the coe�cients are independent

and follow a Laplacian distribution, the latter to ensure sparseness of the

coe�cients. The results were not too convincing, and the authors claim that

the assumptions on the pw(w) probably can be partially responsible.

In [57] Olshausen and Field make the assumption that pn(xj�Fw)�pw(w) has
a fairly tightly peaked maximum inw-space, thus the integral of Equation 4.25

can be approximated by evaluating the argument of the integral only at its

maximum. This way they split up the problem in two to make it easier to

solve. This has similarities to the GLA way of thinking, where a complicated

problem is divided in two to make it easier to solve by iterating, but it can only

guarantee local minima. We do something similar here, and call the estimate

an Approximate Maximum Likelihood (AML). Assuming a current estimate

F̂, for F:

ŵ(F̂) = argmax
w

p(xj ;w; F̂); (4.26)

gives a estimation for the setWM , ŴM . This matrix is now used as if it were

known data:

F̂aml(x) = argmax
F

MY
j=1

p(xj ;F; ŵj)

= argmax
F

MY
j=1

pn(xj � Fŵj)

= argmin
F

hkx� Fŵk2iM ; (4.27)

where h�i means expectation in the case of statistical variables, and mean

(estimated expectation) in the case of a data set. The last step is due to the

assumption that pn(n) is Gaussian with iid elements and zeros mean:

pn(n) =
1

(2��2)
N
2

e
�
P n2i

2�2 = Ce
�
knk

2

2�2 ; (4.28)
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and by use of the equality :

argmax
a

(g(a)) = argmin
a
(� ln g(a)): (4.29)

The optimization problem of Equation 4.27 can be solved by taking the deriva-

tive with respect to F equal to zero:

@

@F
hkx� Fŵk2iM =

h @
@F

kFŵk2 � 2
@

@F
xTFŵiM =

h2FŵŵT � 2xŵT iM =

2F ~Rŵŵ � 2 ~Rxŵ = 0

This gives the following solution for F:

F̂aml = ~Rxŵ
~R�1
ŵŵ; (4.30)

where ~Rŵŵ is the estimated auto-correlation matrix for ŵ and Rxŵ is the esti-

mated cross-correlation matrix between the signal vector x and the coe�cient

vector ŵ:

~Rŵŵ =
1

M

MX
l=1

ŵlŵ
T
l

~Rxŵ =
1

M

MX
l=1

xlŵ
T
l :

Equation 4.30 can be seen to be the exact same solution as Equation 4.21,

thus the AML estimate is the MOD. The goodness of the AML estimate, or

the MOD, is of course dependent of how good the estimate of the coe�cient

vector set, ŴM , is. It turns out that performing the optimization required

in Equation 4.26 is nontrivial. It is the same NP complete vector selection

problem as before, and can be estimated by using a vector selection technique

like MP, OMP, FOCUSS etc.

These equations, which are identical to the MOD equations, were developed

using some assumptions. The noise vector is assumed to have iid elements

that are Gaussian distributed with zero mean. The other assumption is that

the approximation done by dividing the problem in two and iterate is a fairly

good approximation, but this kind of iterative algorithm only guarantee a local

optimum.
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4.2.2 Stochastic frame

In this section, F is considered to be a random variable. Both w and n

are still considered random variables, and XM is the observed data set. Let

the elements in the set WM be mutually independent, and assume that the

set WM is independent of the frame F. The latter assumption may seem

unreasonable, especially if we think in terms of Fw being a representation

of x, like we do in many cases like compression. On the other hand, if we

assume that x is produced from a true underlying sparse structure of the form

Fw+ n, like we do here, it may be very reasonable to assume independence

between F and w.

It is now desirable to �nd the Maximum A Posteriori (MAP) estimate of both

the frame F and the coe�cient vector set WM :

fF̂map;Ŵ
M
mapg = arg max

F;WM
p(F;WM jXM ):

p(F;WM jXM ) =
1

p(XM )
p(XM jF;WM )p(F;WM )

=
1

p(XM )
p(XM jF;WM )p(F)p(WM ) (4.31)

since F and WM are assumed independent. By use of Equation 4.29 and the

fact that the denominator in Equation 4.31 is not dependent on F and WM ,

the MAP becomes:

fF̂map;Ŵ
M
mapg = arg max

F;WM
p(XM jF;WM )p(F)p(WM )

= arg min
F;WM

f� ln p(XM jF;WM )� ln p(F)� ln p(WM )g

= arg min
F;WM

f� ln pn(X
M � FWM )� ln p(F)� ln p(WM )g

The noise vector, n is assumed to have iid elements with normal distribution

and zero mean. By the use of Equation 4.28 the estimates can be written:

fF̂map;Ŵ
M
mapg = arg min

F;WM
hkx� Fwk2 � � � ln p(F)� � � ln p(w)iM : (4.32)

Some assumptions have to be made to be able to continue. Let F be bounded,

so that kFk is constant. F is assumed to be uniformly distributed on the

RN�K space, within the limits caused by the bounding of F. Then p(F) is

some kind of constant, not dependent on F or W, and in this case it can be



58 Frame design

removed from Equation 4.32. Let (�� ln p(w)) = �f(w), the MAP estimates

can be written as:

fF̂map;Ŵmapg = arg min
F2F ;WM

hkx� Fwk2 + �f(w)iM (4.33)

This is a very hard problem to solve.

4.2.3 A less stringent estimation approach

In this section the problem of �nding the MAP estimate is split up so that it

gets easier to solve. The only thing that is known is the observed set of data

vectors, XM , and from this it is desired to �nd both a Frame, F, and a set

of coe�cient vectors, WM . It is desirable to �nd a solution that has a small

error or noise, this means that

hknk2i = hkx� Fwk2iM ;

should be small. At the same time the coe�cient vectors, wj, should be sparse

so that the representation is as e�cient as possible. The sparsity measure:

d(w) = sgn(p)

KX
j=1

jwj jp; p � 1; (4.34)

discussed in Chapter 3 is a good indicator of the sparsity, and is used here.

The optimization problem that needs to be solved can be written:

arg min
F;WM

hkx � Fwk2 + �d(w)iM (4.35)

which is similar to the problem of the MAP estimates in Equation 4.33. This

is a very hard problem to solve, and to make it easier it is split up:

argmin
F

hargmin
WM

hkx� Fwk2 + �d(w)iM iM : (4.36)

In practice this means that �rst the best possible coe�cient set,WM , is found

using an estimated F as a known parameter, and second the best estimate of

F is found using the set WM as known parameters. Thereby an iterative

algorithm results:

1. Let F be a known parameter

arg min
WM

hkx� Fwk2 + �d(w)iM ; (4.37)
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2. Let WM be known parameters

argmin
F

hkx� Fwk2 + �d(w)iM = argmin
F

hkx� Fwk2iM (4.38)

The two steps in the algorithm are now investigated closer. Starting with step

1, the optimization problem is to �nd the best coe�cient vector so that the

error is minimized and the sparsity is maximized. In general this is the NP-

complete problem discussed in Chapter 2.4 which the di�erent vector selection

algorithms give suboptimal solutions for. It can be shown, however, that if

some assumptions are ful�lled, FOCUSS will give the true optimal solution

to this problem. If the elements in the coe�cient vector w are independent

and generalized Gaussian distributed, the logarithm of the distribution of the

coe�cient vector is equal to the sparsity measure from Equation 4.34, thus

Equation 4.33 and Equation 4.35 are equivalent. In Chapter 3.1 it was shown

how FOCUSS gives the optimal solution to Equation 4.37 when the elements

in the coe�cient vector are assumed iid and have a generalized Gaussian dis-

tribution.

If the coe�cients do not have this distribution, the optimization problem of

Equation 4.37 is hard to solve, and a vector selection algorithm like FOCUSS

or MP techniques can be used to give a good suboptimal solution.

Equation 4.38 in step 2 can be solved by taking the derivative with respect

to F equal to zero. This is equivalent to what is done with Equation 4.27 in

Section 4.2.1, and the results are the same as shown in Equation 4.30. And

again, this is equivalent to the MOD algorithm.
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Chapter 5

Approximation using frames

As described in Section 2.3, frames can be used for compression purposes. The

idea is to approximate a signal vector using a �xed frame and a sparse coe�-

cient vector, i.e. a sparse representation. This chapter deals with frame design

using the MOD algorithm presented in Chapter 4, and the approximation

capabilities for the frames.

The objective was to investigate the approximation capabilities of frames de-

signed using MOD for di�erent classes of signals. In order to achieve this

objective we devised a number of experiments presented in Table 5.

No. Initial frame Signal Frame size Vector selection Approach to

class method ensure sparsity

1 ad hoc ECG 16� 41 FOMP Sparsity criterion

ad hoc Speech 16� 32 FOMP Sparsity criterion

2 training vec. ECG 32� 64 OMP Sparsity criterion

training vec. Speech 32� 64 OMP Sparsity criterion

3 training vec. ECG 32� 64 OMP MSE limit

training vec. ECG 32� 64 FOCUSS1 SNR target

4 training vec. images2 64� 64 FOMP sparsity criterion

training vec. images 64� 128 FOMP sparsity criterion

5 training vec. images 64� 128 FOMP MSE limit

Table 5.1: Di�erent experiments where frames are designed and the approxi-

mation capabilities tested and compared to DCT.

1Regularized FOCUSS with the regularization parameter decided by the modi�ed L-curve

method, as described in Chapter 3.
28� 8 image blocks are formed into image vectors with dimension 64.

61
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The frame design algorithm is applied to ECG, speech signals and images.

Training results from the experiments are shown, and the approximation ca-

pabilities of the trained frames are demonstrated on test signals and compared

to the approximation capability of the DCT.

The �rst experiment uses frames designed in an ad hoc manner as initial

frames. This requires some knowledge about the signal. Using the MOD as

frame design algorithm we can only guarantee a local optimum, thus the initial

frame will in
uence on the resulting frame. When having some knowledge

about the signal we can choose a good initial frame. In the latter experiments

normalized vectors from the training set are used to constitute an initial frame.

This way no prior knowledge is needed, and the algorithm constructs an initial

frame from the training set.

Di�erent ECG signals were used in training as well as testing. For diagnostic

purposes it can sometimes be necessary to continuously record the heart beat

of a person during a long time period (weeks). In situations like this it would

be natural to train the compression scheme for that person before using it. In

other applications a more general system that can be used on di�erent persons

is needed. On other signal classes similar issues may occur. Therefore we have

done experiments covering both these situations. The image experiments are

trained on a set of images and tested on images not included in the training

set.

In experiment no. 1 the block size is set to 16. This is because here the frame

consists of ad hoc made frame vectors, re
ecting typical signal segments, and

a large block size may be less practical. In experiments 2 and 3 a block size

of 32 is used because longer block size gives better results since there is a

correlation between signal samples. In experiment 4 and 5 image blocks of

8� 8 are used. This is a typical block size for image coding, and a reasonable

size for frame based approximation.

In experiment 1, 4, and 5 FOMP is used as the vector selection algorithm. In

experiment 2 OMP is used, and in experiment 3 both OMP and regularized

FOCUSS are used as vector selection algorithms. Our frame design algorithm

can be used in conjunction with any vector selection algorithm, and experiment

2 and 3 might get slightly better results using FOMP.

The approach to ensure sparsity used in experiment 1, 2 and 4 is to impose a

sparsity criterion allowing a predetermined number of nonzero entries in the

coe�cient vector. In 3 however we wanted to use the regularized FOCUSS

described in Chapter 3. The regularized FOCUSS requires a target on the

overall SNR. We do a similar experiment with OMP for comparison, and use

a limit on MSE. In 5 an MSElimit limits the number of iterations, and FOMP
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is the vector selection algorithm. Using an MSElimit instead of a sparsity

criterion allows 
exibility in the number of nonzero entries from signal vector

to signal vector and provides a more stable MSE throughout the signal.

Regularized FOCUSS is a parallel vector selection algorithms and very com-

putationally expensive. The practical signal vector sizes using such algorithms

are therefore limited, and this makes regularized FOCUSS impractical to use

for image representation.

In our training and testing experiments we use:

ND =
RMSE

�x
=

p
MSE

�x
(5.1)

as the normalized distortion (ND) measure, where �x is the power of the signal

calculated over the entire signal used in the training or testing experiment, and

RMSE is the Root Mean Squared Error.

5.1 Approximation capabilities for ECG and speech

signals

Representation and compression of ECG signals play an important role in this

thesis. ECG signals are used for monitoring patients, but also for diagnostic

purposes. Medical doctors may also be able to follow a disease development

having access to ECG records from di�erent stages of the disease. In this case

it might be useful to have records of ECG signals from di�erent stages in a

disease or at di�erent points in a person's life. Maybe in the future everybody

will have a piece of ECG recording in an archive for comparison purposes in

case of diseases later in life.

Long term collection of ECG data can be a subject when diagnosing patients

with irregular heart rhythms [65]. In cases like this the patient might need

to wear the recording and storage device 24 hour a day for several days. A

typical ECG signal is sampled at 360 Hz with 12 bits per sample. That gives

356 Mbit in 24 hours. Since the size of such a carry-on device has to be small,

the need for e�cient representation is obvious. While transporting a patient

to a hospital it may be an advantage if a wireless transfer of ECG signals

from the patient to the hospital is in operation. Diagnosing could be executed

before the patient arrives. The transfer of ECG records from a previously

used hospital or an archive to a treating hospital is another example of ECG

transmission.
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Figure 5.1: Basis vectors of the 32 � 32 DCT transform.

In these transmission and storage examples compression is useful. Dealing

with medical signals the question arises of whether the quality after lossy

compression is acceptable. Our guess is that for some purposes good quality

lossy compression can be used without problems whereas for other purposes

it might not be good enough. We have not investigated this any further.

This section concerns approximation capabilities for ECG and Speech signals

when using frames designed with the MOD algorithm. The experiments 1,2,

and 3 from Table 5 are presented here with �gures and results from the frame

design, and also test results on approximation capabilities.

Our test experiments are compared to approximation capabilities for signal

representations using the DCT. The basis vectors in the DCT of dimension 32

are plotted in Figure 5.1.

5.1.1 ECG and speech signals used

The ECG signals used are signals from the MIT arrhythmia database [53]. The

records are represented with 12 bits per sample, and the sampling frequency

is 360 Hz. The ECG signals used for training are MIT100, 0:00 to 5:00 min-

utes, and MIT207, 6:00 to 11:00 minutes, called MIT100train and MIT207train
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respectively. Training is also done on a mixed signal, MITmix. MITmix is

constructed from the following signal segments: MIT100 0:00 to 2:00, MIT103

03:25 to 05:25, MIT113 0:00 to 2:00, MIT207 06:00 to 08:00, and MIT217 0:00

to 2:00, thus MITmix is 10 minutes of data from 5 di�erent patients. The

ECG signals used for testing are MIT100, 5:30 to 10:30 minutes, MIT113,

0:00 to 0:30 minutes, and MIT207, 12:00 to 17:00 minutes, called MIT100test,

MIT113test, and MIT207test respectively.

The speech signals used are recorded at 16 kHz in a room without echo, and

down-sampled to 8 kHz. The training set, Speechtrain, consists of 8.75 seconds

of speech data. Another 8.75 seconds segment of speech data is used for testing,

Speechtest.

Small samples of some of the signals used are given in Figure 5.2. a) shows

20000 samples of Speechtrain. The following plots show 2000 samples of b)

MIT100train, c) MIT207train, d) MIT101, e) MIT103, and f) MIT217.

5.1.2 Experiment no. 1 - Ad hoc designed initial frames

The vector selection algorithm used in these experiments is FOMP, described

in Section 2.4.1.

Experiments on improving ad hoc designed frames was done on both ECG and

speech signals, with a block size of N = 16. Constructing a frame by using

segments of a typical signal in combination with DCT basis vectors was shown

in [15] to work quite well on ECG signals. In [32] the possibility of adapting

the frame by augmenting it with samples from the source is mentioned, but

not tried. In the experiment using ECG signals as the training set, the initial

frame is composed of DCT vectors in addition to vectors constructed using

typical QRS complexes (heartbeats in a normal sinus rhythm). The frame is

almost the same as the ad hoc based frame presented in [15], and it consists of

the 7 �rst DCT vectors and 34 ad hoc vectors made to match QRS complexes

in typical ECG signals, i.e. the initial frame has size 16� 41.

In [6] encouraging results are obtained using a frame with DCT and Haar

vectors for speech signals. We therefore use this frame as initial frame in the

speech signal experiment. With the chosen block size of 16, we have 32 frame

vectors. Since both the DCT and Haar transform contains a Direct Current

(DC) vector, one of them is replaced with a normalized random vector.

Figure 5.3 shows how the normalized distortion develops as we iterate for the

training experiments with ad hoc designed frames as the initial frames. The

training signals used where Speechtrain and MIT100train.
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Figure 5.2: a) Segment from the speech signal used in training experi-

ments. Segments of di�erent ECG signals are showed in: b) MIT100train,

c) MIT207train, d) MIT101, e) MIT103, and f) MIT217
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Figure 5.3: The normalized distortion is plotted as a function of training

iterations. In a), b), c), d), and e) Speechtrain, and 1,2,3,4, and 5 frame

vectors are used in each approximation, respectively. Initial frame: DCT and

Haar. In f), g), h), i), and j) MIT100train, and 1,2,3,4, and 5 frame vectors are

used in each approximation, respectively. Initial frame: 7 DCT vectors and

ad hoc designed vectors.
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Figure 5.4: Testing approximation capabilities of MOD designed frames. The

normalized distortion is plotted as a function of di�erent numbers of vectors in

an approximation. Dash-dot: DCT, solid: initial frame, dashed: optimized

frames. a) Speechtest, b) MIT100test, c) MIT113test.

These frame sets are tested on test signals. The frames optimized for ECG

signals are tested on MIT100test and MIT113test. The frames optimized for

speech signals are tested on Speechtest.

In Figure 5.4 the test results using the optimized frames and the initial frames

are shown together with test results using DCT. The comparison in Figure 5.4

shows that the improvement using the optimized frames, with respect to the

normalized distortion, is signi�cant both compared to the DCT and the initial

ad hoc designed frames.

For the experiment with speech signal the reduction in normalized distortion

using the optimized frame compared to the initial frame when using 1,2, 3,

4, and 5 vectors in the approximation are 26.7%, 32.6%, 35.9%, 38.2%, and

37.8%. The initial frame was the ad hoc designed frame made from both DCT

and Haar transform used by other authors, [6], with good results. For the
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ECG experiments the improvement is largest when using MIT100test. This

is not surprising since the MIT100test is data from the same patient as the

training set. The MIT113test is also a sinus rhythm, but for another patient.

The good results when using few frame vectors in each approximation indicate

that this technique will perform well at low bit-rates. Tables with normalized

distortion values from the tests can be found in Appendix B.

Some prior knowledge about the signal is required to use an ad hoc designed

frame as the initial frame. Using normalized training vectors to constitute an

initial frame is easier and requires no prior knowledge. A test was done with

initial frames of the same sizes as in the experiment with the ad hoc designed

initial frames, but with normalized training vectors as the frame vectors.

ND after terminated training

No. of vectors Speechtrain MIT100train
in the ad hoc training vectors ad hoc training vectors

approximations 16� 32 16� 32 16� 41 16� 41

1 0.4555 0.4357 0.1306 0.1534

2 0.2857 0.2809 0.0602 0.0688

3 0.1925 0.1990 0.0394 0.0425

4 0.1431 0.1554 0.0296 0.0330

5 0.1069 0.1229 0.0248 0.0261

Table 5.2: ND after terminated training for training experiments on

Speechtrain and MIT100train with ad hoc based initial frames and initial frames

constructed of normalized training vectors

The ND values after terminated training for both experiments are compared

in Table 5.2. The di�erence in the ND after terminated training for the

experiments with ad hoc designed initial frames and the experiments with

initial frames constructed of normalized training vectors is relatively small. For

simplicity and practical reasons we therefore use normalized training vectors

to constitute initial frames in the rest of the experiments in this thesis.

5.1.3 Experiment no. 2 - Initial frame from training set

The vector selection algorithm used in these experiments is OMP as described

in Section 2.4.1. The frame size is N � K, where N = 32 and K = 64.

Normalized versions of the �rst signal vectors in the training sets are used as

the initial frame vectors.
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Figure 5.5: Normalized distortion is plotted as a function of training iterations

where 1,2,3,4, and 5 frame vectors are used in each approximation. a), b), c),

d), and e) MIT100train. f), g), h), i), and j) MIT207train.
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Training was done using MIT100train and MIT207train shown in Figure 5.5.

Training was also done using MITmix as the training signal, and the initial

a) b)

c) d)

Figure 5.6: Some frames from experiments when training on mixed ECG signal

MITmix. a) Initial frame (training vectors), b) Frame trained for using 1

vector/block, c) Frame trained for using 3 vector/block, d) Frame trained for

using 7 vector/block

frame was constructed using all the �ve MIT signals that the MITmix was

composed from. The initial frame had normalized versions of the 13 �rst

training vectors from the MIT100, MIT103, MIT113, and MIT207 training

signals, and 12 from the MIT217 training signal.

In Figure 5.6 some of the frames trained in the experiment with MITmix is

shown. a) shows the initial frame used in the training. In b) the frame that

results after training when just allowing one frame vector to be used in each

approximation is shown. c) shows the frame resulting after allowing three
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frame vector to be used in each approximation, and d) shows the resulting

frame after allowing seven frame vectors to be used in each approximation.

The frame vectors are all normalized, thus the plots show the shapes. The

MITmix consists of segments from �ve di�erent ECG signals, and it can be

seen that the frame vectors re
ects shapes that can be found in typically ECG

signals. Di�erent variations of shapes that are similar to QRS segments can

easily be seen. Naturally this can particularly be seen on the frame vectors

shown in b), trained for using just one frame vector in each block. The frame

shown in c) has more vectors with higher frequencies, and even more so in

the frame plotted in d). This indicates that the frames are well trained for

use on ECG signals and should give better energy packing than an ordinary

transform like the DCT which is not optimal for this kind of signal.

Training was done using Speechtrain as the training signal, and in Figure 5.7

a) the shape of the initial frame vectors ares plotted. Figure 5.7 b), c), and

d) shows the frame vector after training using Speechtrain. The frames are

trained for using 1, 3, and 7 vectors in each approximation, respectively. The

shape of the frame vectors trained for speech can be seen to have shapes that

correspond to di�erent typical segments in speech, specially the frame vectors

where the frames are designed to use few vectors in each approximation.

The initial frames and the optimized frames trained on Speechtrain, MIT100train,

and MIT207train are tested on Speechtest, MIT100test, and MIT207test. The

results of the initial and optimized frames are shown in Figure 5.8 a), b), and

c). As can be seen from the �gure, the improvement after using the MOD to

design the frames is substantial. For the speech signal, the improvement of

the normalized distortion is 25, 39, 49, 54, 58, and 61 % when choosing 1, 2,

3, 4, 5, and 6 vectors in each approximation respectively. For the MIT100test
the improvement in normalized distortion is 47, 63, 68, 71, 72, and 71 %, and

for the MIT207test the improvement is 40, 47, 51, 53, 53, and 52 % when

choosing 1, 2, 3, 4, 5, and 6 vectors respectively. For comparison a test using

Speechtest, MIT100test, and MIT207test using DCT with the same number of

vectors in each approximation, is presented as well, and the MOD designed

frames have signi�cantly better approximation capabilities than the DCT in

these three examples. The frames trained on the MITmix signal is tested on

both MIT100test and MIT207test. For comparison a test using MIT100test and

MIT207test on the initial frame, and using DCT with the same number of coef-

�cients, is presented as well. Figure 5.8 d), and e) shows the results from these

tests, and the trained frames work obviously better than the initial frame and

the DCT for both the test signals. Tables with normalized distortion values

from the tests can be found in Appendix B.
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a) b)

c) d)

Figure 5.7: Some frames from experiments when training on the speech train-

ing signal Speechtrain. a) Initial frame (training vectors), b) Frame trained

for using 1 vector/block, c) Frame trained for using 3 vector/block, d) Frame

trained for using 7 vector/block

5.1.4 Experiment no. 3 - Target on SNR/limit on MSE

In the experiments done so far, a sparsity criterion decides how many vectors

to choose for each approximation, and this is held constant throughout each

experiment. In this experiment we use a target on the SNR or a limit on

the MSE for each block instead of �xing the number of vectors to use in each

approximation. A block length of N = 32 is used in this experiment. Using

an SNRtarget/MSElimit instead of a sparsity criterion allows 
exibility in the

number of nonzero entries from signal vector to signal vector and provides a

more stable MSE throughout the signal. As opposed to a sparsity criterion,

the MSE can not be held constant since the number of vectors used in an
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selected vectors in the approximations. Solid: initial frame, dashed: opti-

mized frames, dash-dot: DCT. a) Speechtest, b) MIT100test, c) MIT207test,

d) and e) are trained on MITmix and tested on: d) MIT100test, e) MIT207test.
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approximation is a discrete value.

When the OMP is used as vector selection algorithm an MSElimit means that

for each signal vector the OMP continues to select new vectors until the MSE

requirement is satis�ed.

The regularized FOCUSS works as described in Chapter 3 and need a target

SNR. The target SNR is less stringent than the MSElimit we use with the OMP

because the SNRtarget in regularized FOCUSS indicates the total quality level

we want to end up with, but it does not impose a stringent limit on a block

to block basis as is done with OMP. The FOCUSS algorithm is a parallel

algorithm and can not be controlled the same way as greedy algorithms like

OMP.

Now the number of vectors used in an approximation is not �xed. Since we

use the same SNRtarget or MSElimit throughout the training, the normalized

distortion does not change as much as in the training were the number of

selected vectors in an approximation is �xed. In these training experiments the

change in the average number of selected vectors as a function of the iterations,

is the crucial factor. We denote this factor �r. The change in the normalized

distortion is still interesting however since it can not be held constant, and

both these variables are shown as functions of iterations in the �gures in this

experiment.

To normalize the MSElimit we use

NDlimit =

p
MSElimit

�x
(5.2)

as a normalized distortion limit. Experiments are done with MIT100train and

MITmix as training signals, and with di�erent MSElimit using OMP as the

vector selection algorithm. MSElimit = 40 and MSElimit = 70 are used and

this gives NDlimit at 0.180 and 0.238 when MIT100train is used as training

signal, and NDlimit at 0.075 and 0.100 when MITmix is used as the training

signal.

The results are shown in Figure 5.9. The average number of vectors used in

each approximation, �r, is plotted as a function of iterations, and so is the

normalized distortion. The normalized distortion will always be less than

the NDlimit, and in our experiments it is signi�cantly less than the limit.

Investigating the distortion block by block, however, we �nd that some block's

have a distortion very close to the limit while others are much better so that

the total mean distortion turns out to be signi�cantly less than the limit. The

reason for the normalized distortion to decrease with the iterations is that the
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Figure 5.9: Training using OMP and NDlimit. The average number of vectors

used in the approximations, �r, and the normalized distortion are plotted as a

function of training iterations. a) and b) MITmix is the training signal. Solid:

NDlimit = 0:075 and dashed: 0.100. c) and d) MIT100train is the training

signal. Solid: NDlimit = 0:180 and dashed: 0.238.

frame vectors get better matched to the training set as the iterations proceeds

so that for signal blocks were the same �r is used as in an earlier iteration, the

distortion will decrease.

Figure 5.10 shows training plots of an experiment using regularized FOCUSS,

explained in Section 3, as the vector selection algorithm. In this training the

target SNR in the regularized FOCUSS is set to 20 dB. In terms of normalized

distortion this gives an NDtarget = 0:1. Another training experiment with

target SNR at 10 dB was tried, which gives an NDtarget = 0:316. The latter

choice of target SNR caused some problems. In this case the matrix ~Rww in

the MOD algorithm ended up not having full rank. This means that after

approximating the whole training set, there were still some frame vectors that

were not used at all. This never occurred in the experiments using Matching
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Figure 5.10: Training using regularized FOCUSS, target SNR 20 dB equivalent

NDtarget = 0:1. The average number of vectors used in the approximations,

�r, and the normalized distortion is plotted as a function of training iterations.

a) Average number of vectors used in the approximations b) normalized dis-

tortion for training on MIT100train.

Pursuit techniques. Maybe a larger training set would have reduced this risk,

but the training set was already reasonably big.

Instead of enlarging the training set, we dealt with the problem as follows: Af-

ter going through all the training vectors, the approximations are investigated.

If any of the frame vectors never occur in the approximations, the vector is

removed from the frame. One option is to let the frame shrink. On the other

hand if it is desirable to keep the frame size constant, the removed frame vector

can be replaced by another vector. Replacing the removed vector with a ran-

dom vector was tried, but the random vector often ended up never being used

either. It turned out that a better approach was to replace the vector with

a vector that we knew was going to be used at least once. Thus we replaced

it by the training vector that had been using the most frame vectors in its
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approximation in the previous iteration. The existing frame obviously lacked

a good �t for this particular training vector since it had to use many frame

vectors in the approximation. Letting a normalized version of this training

vector be a part of the frame of course reduces the number of vectors needed

in the approximation for that particular training vector (to one), and it might

reduce the number of vectors required in other approximations as well. This

training is shown in Figure 5.11.

We pick the frame with minimum MSE and average number of vectors used

during training, and it is displayed in Figure 5.12. Comparing Figure 5.12 with

Figure 5.6 we see that the frame trained using regularized FOCUSS seems to

re
ect typical QRS complexes, like in Figure 5.6 b) where one frame vector

is used in each approximation. The frame trained using regularized FOCUSS

also contains vectors with higher frequencies, corresponding to Figure 5.6 d)

where seven frame vectors is used in each approximation. This makes sense

since the frame trained using regularized FOCUSS uses one frame vector in

some approximations, and more in others.

The frames trained using OMP with MSElimit and the frames trained using

regularized FOCUSS are tested on the test signal MIT100test. The approx-

imation capability test is presented in Figure 5.13. For comparison a test

using DCT with di�erent MSElimit's is presented as well (dash-dotted curve).

Frames trained using MITmix, OMP, and di�erent MSElimit's are tested and

plotted in the dashed curve with o's. The dashed curve represents test results

on frames trained using MIT100train, OMP, and di�erent MSElimit's. We use

the same MSElimit in testing as we did in training. This means that the

NDlimit might be di�erent in training and testing because the signal variance

might be somewhat di�erent. We do not expect dramatic di�erences, however,

because the training and test data are form the same class of data.

We chose to use a constant MSElimit instead of a constant NDlimit (or constant

local SNR) because we do not want a more accurate representation in parts

of the signal with low variance, like between two heart beats, than in the

heart beat itself which contains much more important information. Using a

constant MSE on a block to block basis is also the optimal, in a rate-distortion

sense, in terms of the global MSE (or equivalent global SNR). In perceptual

speech and audio coders a larger MSE is tolerated in signal regions with larger

local SNR to explore irrelevance in the human auditory system. Note however

that a perceptual coder in general have a lower SNR than a source coder of

equivalent rate, but higher perceptual quality.

The solid curve with stars shows test results on the frame trained using reg-

ularized FOCUSS with target SNR at 20 dB. Di�erent thresholding is done.
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Figure 5.11: Training using regularized FOCUSS, target SNR 10 dB equivalent

NDtarget = 0:316. The average number of vectors used in the approximations,

�r, and the normalized distortion is plotted as a function of training iterations.

a) Average number of vectors used in the approximations b) normalized dis-

tortion for training on MIT100train.

The solid curve shows test results on the frame trained using regularized FO-

CUSS with target SNR at 10 dB, also here with di�erent thresholding.

From Figure 5.13 we see that the OMP and MSElimit approach performs

much better than the DCT with di�erent MSElimit's at the low �r's that we

concentrate on. MIT100train of course performs better than the frame trained

on MITmix, but they both outperforms the DCT. The frame trained on the

regularized FOCUSS with target SNR at 20 dB seems to perform poorer than

the DCT. The frame trained with target SNR at 10 dB, on the other hand,

performs better than the DCT at low �r's (with thresholding).

The test results indicate very good energy packing and approximation ca-

pability in the optimized frames for low average number of vectors in the

approximations, �r. The frames designed in this section have been optimized
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Figure 5.12: Frame vectors resulting after training on MIT100train using reg-

ularized FOCUSS, target SNR 10 dB.

for the type of signal they were trained on, and this can be seen by the way

typical signal segments is re
ected in the frame vectors. The basis vectors in

the DCT of dimension 32 can be seen in Figure 5.1 for comparison, and they

are not similar to signal segments from the di�erent signals used in the section.

This explains some of the reasons for the frames to have more e�ective energy

packing than a DCT when used on signals from the same signal class as the

training signals.

5.2 Approximation capabilities for images

The vector selection algorithm used in these experiments is FOMP as described

in Section 2.4.1. In the experiments we use image blocks of 8 � 8 pixels,

X. The frame based approximation capability experiments are compared to

approximation capability using the DCT. The two dimensional DCT possesses

the separability property, i.e. the 2-D DCT can be obtained in two steps by

successive application of the 1-D DCT. Doing DCT on a image block we �rst
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Figure 5.13: Approximation capability test on MIT100test. Normalized distor-

tion is plotted as a function of average numbers of vectors in the approxima-

tions. dash-dot: DCT with di�erent MSElimit's, solid: Regularized FOCUSS

with target SNR at 10 dB and di�erent thresholding, with *: Regularized

FOCUSS with target SNR at 20 dB and di�erent thresholding, dash: frame

trained with OMP and di�erent MSElimit's on MIT100train, with o: frame

trained with OMP and di�erent MSElimit's on MITmix
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do 1-D DCT over the rows, and then 1-D DCT over the columns of the result.

In matrix formulation this can be written as:

Y = TXTT (5.3)

where X is the 8 � 8 image block, T is the 8 � 8 DCT (synthesis) and Y is

the 8� 8 block of transform coe�cients, or the transform image.

Traditional image coders like JPEG use the separable DCT, which gives a

dictionary of size 64 � 64. The 8 � 8 basis images of the separable DCT

are shown in Figure 5.14. The separability property puts restrictions on the

Figure 5.14: Basis images of the separable DCT transform

2D transform. Training a frame to be separable is probably hard, and since it

would limit the 
exibility of the frame, due to the restrictions, we do the frame

based image approximation in a non-separable manner. This means that the

8�8 = 64 pixels from the image block are formed by lexicographically ordering
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of the rows of X into a 64� 1 vector, x:

X =

2
6664

x11 x12 : : : x1N
x21 x22
...

. . .

xN1 xNN

3
7775 ; (5.4)

x =

2
666666664

x11
...

x1N
x21
...

xNN

3
777777775

(5.5)

The synthesis equation becomes:

x = Fw+ r; (5.6)

where F is the N �K frame, N = 64. w is the K � 1 coe�cient vector and r

is the residual vector. In our experiments K = iN where i varies.

A frame vector with dimension 64 is formed as a frame image by taking the

�rst 8 elements as the �rst row, the next 8 elements as the second row an so

forth.

5.2.1 Images used

The images used for testing and training are all 512 � 512 green component

images, taken from composite RGB color images, originally represented with 8

bit per pixel. Six training images are used in all the training experiments. The

training images are Sailboat, Baboon, Barbara, Paglady, Bridge and Pepper,

and they are shown in Figure 5.15. The images used for testing are Lena and

Jet, shown in Figure 5.16 and 5.17.

5.2.2 Experiment no. 4 - Sparsity criterion, images

In this experiment training and testing is done on frames of size N � 2N =

64�128 and also on frames of size N�N = 64�64, i.e. not overcomplete. The

latter test is done to show that MOD gives improved approximation capability
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a) Boat b) Baboon

c) Barbara d) Paglady

e) Bridge f) Pepper

Figure 5.15: Images in the training set
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Figure 5.16: The original of the test image Lena
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Figure 5.17: The original of the test image Jet
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over the DCT even if the frame is not overcomplete, and that the approxima-

tion capability is improved even more by using overcomplete frames. In [38]

experiments show signi�cant improvement potential in the approximation ca-

pabilities of known N �N transforms (KLT,DCT) after training using MOD

and a training set.

The initial frames are made of normalized vectors from the training set. We

have learned from experiments that if the initial frame consists of training

vectors, the actual choice of training vectors does not e�ect the training result

much as long as all distinct classes or images are represented. Thus, the

initial frame is built of image blocks randomly picked according to a uniform

distribution over the training set.

The training is done by �xing the number of vectors that is allowed in each

approximation for a speci�c frame, i.e. the representation has a sparsity crite-

ria.

Figure 5.18 shows some training plots when training on images. The nor-

malized distortion in these experiments can be seen to drop with 17 to 35 %

during training. The distortion drops rapidly in the beginning of the training,

and after 50-100 iterations the improvement is less signi�cant.

Some of the frames that result after training can be seen in Figure 5.19, Fig-

ure 5.20, Figure 5.21, and Figure 5.22. The frame vectors are shown as frame

images since the frame vectors are used to approximate image blocks. A frame

vector with dimension 64 is formed as a frame image by taking the �rst 8 el-

ements as the �rst row, the next 8 elements as the second row an so forth.

The frame images in the �gures are ordered. The most frequently used frame

image is placed in the upper left corner. The frame images are placed row by

row and the one in the lower right corner is the least frequently used frame

image. For comparison with the frame images, see the 8 � 8 basis images of

the separable DCT shown in Figure 5.14.

The trained frame images re
ect typical image features, as the frames in Sec-

tion 5.1.1 re
ects typical features of the ECG and the speech signal. Looking

at Figure 5.14, the basis images of the DCT do not re
ect typical image fea-

tures, but it does have a DC block, and it has blocks with horizontal and

vertical edges. Note that the trained frame images also show edges that are

diagonal since the approximation is non-separable.

Figure 5.23 shows an approximation capability experiment of the test images

Lena and Jet. The sizes of the frames in the experiment are 64 � 64 and

64� 128. The approximation capabilities are compared to the separable DCT

transform on 8�8 image blocks, whose basis images can be seen in Figure 5.14.
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Figure 5.18: The normalized distortion is plotted as a function of training

iterations for training on images. a) 1, b) 2, c) 3, d) 4, e) 5, f) 6, g) 7, h) 8, i)

9, j) 10, k) 11, and l) 12 frame vectors are used in each approximation.
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Figure 5.19: Frame after training, 1 frame vector selected in each block

Figure 5.20: Frame after training, 3 frame vector selected in each block
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Figure 5.21: Frame after training, 5 frame vector selected in each block

Figure 5.22: Frame after training, 7 frame vector selected in each block
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From Figure 5.23 it can bee seen that the approximation capabilities of the

MOD designed N � N frames are signi�cantly better than that of the DCT

transform, and that the overcomplete frames have even better approximation

capabilities than the N �N frames.

No. of vectors Lena

in the DCT Frames Red. Frames Red

approximation N �N N � 2N % N �N %

1 0.320 0.219 31.7 0.227 29.2

2 0.237 0.166 29.8 0.177 25.5

3 0.194 0.140 28.0 0.151 22.3

4 0.167 0.122 26.9 0.130 22.0

5 0.147 0.110 25.6 0.120 18.9

6 0.132 0.100 24.4 0.110 17.1

7 0.120 0.091 24.4 0.100 16.5

8 0.111 0.085 23.5 0.093 15.7

9 0.102 0.078 23.2 0.089 13.2

10 0.095 0.074 22.2 0.083 12.3

11 0.089 0.070 21.5 0.079 10.8

12 0.083 0.065 21.3 0.075 9.7

Table 5.3: Normalized distortion after test on the image Lena. Red. % is

reduction in the normalized distortion relative to the DCT test.

The normalized distortions for the tests are printed in the Tables 5.3, and

5.4, together with the reductions in % of the normalized distortions in the

frame tests compared to the DCT tests. The tables show that the reduction

in the normalized distortion is between 9% and 32% in the tests. In the

�rst test, using overcomplete frames, it is obvious that there is a potential for

distortion reduction since there are more vectors to chose from when making an

approximation compared to an ordinary orthogonal transform. In the second

experiment where the frames are of size N � N there are not more vectors

to chose from, but still the improvement potential is proven to be signi�cant.

This illustrates the great potential of frames, not necessarily overcomplete,

optimized for a class of data using the MOD. The N�N frames, or transforms,

are not orthogonal as the traditional transforms like the DCT.
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Figure 5.23: Approximation capabilities of frames trained on training im-

ages are tested on the test images. The normalized distortion is plotted as a

function of di�erent numbers of vectors in an approximation. Solid: DCT,

dashed: Optimized frames. a) Lena size N �N , b) Lena size N � 2N , c) Jet

size N �N , d) Jet size N � 2N .
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No. of vectors Jet

in the DCT Frames Red. Frames Red

approximation N �N N � 2N % N �N %

1 0.456 0.324 28.9 0.340 25.5

2 0.354 0.252 28.8 0.265 25.1

3 0.297 0.214 28.0 0.231 22.1

4 0.259 0.191 26.2 0.203 21.6

5 0.233 0.176 24.2 0.190 18.1

6 0.212 0.163 23.0 0.177 16.3

7 0.195 0.149 23.4 0.164 16.0

8 0.181 0.140 22.7 0.156 14.1

9 0.170 0.129 23.7 0.149 12.4

10 0.159 0.122 23.5 0.142 10.8

11 0.150 0.116 22.5 0.135 10.0

12 0.141 0.110 21.9 0.128 9.2

Table 5.4: Normalized distortion after test on the image Jet. Red. % is

reduction in the normalized distortion relative to the DCT test.

5.2.3 Experiment no. 5 - Limit on MSE

In this experiment training and testing are done on frames of size N � 2N =

64� 128. The initial frames are made of normalized vectors from the training

set as described in Experiment no. 4, thus we have 128 initial frame images,

representing all the images from the training set. Instead of using a sparsity

criterion, an MSElimit is used on a block to block basis as the representation

requirement. FOMP is the vector selecting algorithm in both training and

testing. Training was carried out with di�erent MSElimit's.

Four frames were trained with MSElimit at 40, 70, 100, and 150, and this

corresponds to NDlimit at 0.11, 0.14, 0.17, and 0.20 respectively. The frames

were tested on Lena and Jet with the same MSElimit as designed for, and

with thresholding at di�erent levels. For the test image Lena, the MSElimit's

corresponds to NDlimit's at 0.12, 0.16, 0.19, and 0.23, and for test image Jet,

they correspond to 0.29, 0.38, 0.45, and 0.55.

As in the ECG experiment in Section 5.1.4, we keep the MSElimit constant

during the training, and we use the same MSElimit in testing as done in train-

ing. Keeping an MSElimit constant for an image (training or testing), and not

a relative measure as the NDlimit, is best in a rate-distortion sense. A constant
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NDlimit would demand increased accuracy at image parts with low local vari-

ance, like in a background in an image, and this is not desired. Since all the

images are limited between 0 and 255 peak values, the same argument can be

used for using the same absolute measure, MSElimit, on the test image as the

training images instead of a relative measure like NDlimit. An image, or part

of an image, with very low variance does usually not contain much important

information and we use the same MSElimit as in the more important images

or part of the images.

The results can be seen in Figure 5.24. A DCT test is depicted for comparison.

The DCT test is done by imposing di�erent MSElimit's on a block to block

basis, to make the comparison as fair as possible. Figure 5.24 a) shows the

results after testing on Lena, and in b) the results after testing on Jet are

plotted.

Comparing Figure 5.24 with Figure 5.23 indicates that the frames trained with

an MSElimit performs better in terms of approximation capabilities in these

tests.

5.3 Discussion

The results presented in this chapter demonstrate signi�cant bene�ts associ-

ated with optimizing frames for a given class of input data. The approximation

capabilities for the optimized frames are shown to be very good for one dimen-

sional signals such as ECG and speech, as well as for two dimensional signals,

i.e. digital images. Our experiments demonstrate an MSE improvement de-

creasing with the number of vectors used in each approximation as can be seen

in Table 5.3 and Table 5.4 as well as in the Figures 5.4 and 5.8. This is intu-

itively right since when using many vectors in each approximation it is possible

to get a good approximation with a lot of di�erent frames or transforms. From

Figure 5.6, Figure 5.7, Figure 5.19, Figure 5.20, Figure 5.21, and Figure 5.22

it can be seen that the frames trained for di�erent number of vectors used in

each approximation exhibit di�erent characteristics. These results motivate

the use of several MOD-designed frames in a complete compression scheme.

This is investigated and tested in Chapter 7.
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Figure 5.24: Approximation capabilities of frames trained on training images

are tested on the test image a) Lena, NDlimit's at 0.12, 0.16, 0.19, and 0.23,

and b) Jet, NDlimit's at 0.29, 0.38, 0.45, and 0.55. Training and testing are

executed using an MSElimit and FOMP. The normalized distortion is plotted

as a function of the average number of selected vectors in the approximations.

Dashed: DCT with di�erent MSElimit's, solid: Frames using FOMP and

MSElimit's at 40, 70, 100 and 150.
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Chapter 6

Compression using one frame

This chapter starts by investigating the properties of the frame coe�cients.

Reference compression schemes are explained, and some compression experi-

ments using frames are presented and compared to compression using reference

compression schemes.

6.1 Investigation of frame coe�cient properties

To get some insight into the properties of the frame coe�cients, some investi-

gation was done. This kind of insight is needed to �nd a good coding strategy

for the coe�cients, or just as explanations of why we get the results that we

get.

Figure 6.1 and Figure 6.2 show examples of histograms of the number of times

di�erent frame vectors are chosen. The experiments are done using frames

of size 32 � 64 trained and tested with OMP and MSElimit. MIT100train is

the training signal and MIT100test is the test signal for both the experiments.

In the experiment in Figure 6.1 MSElimit = 70 in both training and testing.

This gives an NDlimit = 0:24 at training and NDlimit = 0:23 at testing. The

experiment in Figure 6.2 used MSElimit = 40 in both training and testing.

This gives an NDlimit = 0:18 at training and NDlimit = 0:17 at testing. After

the training the frame was sorted so that the most frequently used vector in

the last training iteration becomes f1, i.e. the �rst frame vector, the second

most frequently used becomes f2 an so forth.

Figure 6.1 a) and Figure 6.2 a) show how many times the di�erent frame

vectors are chosen as the �rst chosen frame vector when representing the test

97
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Figure 6.1: Histogram of the number of occurrence for the frame vectors.

The frame is trained on MIT100train with MSElimit = 70 corresponding to

NDlimit = 0:24, and tested on MIT100test with MSElimit = 70 corresponding

to NDlimit = 0:23. a) shows how many times the di�erent frame vectors are

chosen as the �rst chosen frame vector, b) as the second, and for c), d), e),

and f) chosen as no. 3, 4, 5, and 6 respectively.

signal. Figure 6.1 b) and Figure 6.2 b) show how many times the vectors

are chosen as the second chosen frame vector and so forth. In a) we can see

indications that the frame was sorted before the test in that the histogram

shows a slightly decreasing tendency. Still we can see in all the plots in the

�gures that the frame vectors are selected fairly regularly from all the vectors

in the set, without any obvious preferences.

This is not surprising since we optimize solely with respect to MSE over the

set of frame vectors. We impose no other constraints, like entropy, in our

frame design algorithm. This means that all the vectors in the frame are

actively used to minimize the MSE, which for a �xed code word length would

be very desirable. In traditional JPEG-like transform coding the situation is
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Figure 6.2: Histogram of the number of occurrence for the frame vectors.

The frame is trained on MIT100train with MSElimit = 40 corresponding to

NDlimit = 0:18, and tested on MIT100test with MSElimit = 40 corresponding

to NDlimit = 0:17. a) shows how many times the di�erent frame vectors are

chosen as the �rst chosen frame vector, b) as the second, and for c), d), e),

and f) chosen as no. 3, 4, 5, and 6 respectively.

very di�erent. Figure 6.3 a) and b) shows histograms of the total number

of occurrence of the frame vectors from the same experiments as described

above. In c) and d) histograms of the number of occurrence of the di�erent

basis vectors are plotted after representing MIT100test with DCT and two

di�erent thresholding values. From a) and b) we can see, as stated earlier,

that there is a decreasing tendency in the number of occurrence, but that the

frame vectors are selected fairly regularly from all the vectors in the set. In

c) and d) on the other hand the number of occurrence decreases rapidly, and

the distribution is far from even. 44 and 60 % of the basis vectors are never

used in the two cases. The information of which of the coe�cients in a sparse

vector that are di�erent from zero can be regarded as position information.
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Figure 6.3: Histogram of the total number of times di�erent frame or trans-

form(basis) vectors are chosen, tested on MIT100test. a) NDlimit = 0:17, b)

NDlimit = 0:23, c) DCT, T=10, d) DCT, T=30.

The position information is far from uniform in the DCT case, and can clearly

be entropy coded. This makes entropy coding a very useful coding strategy for

ordinary transform coding. Fixed code word length on the other hand would

not perform, by far, as good as an entropy based scheme. Figure 6.3 a) and

b) shows that the distribution of the position information has some similarity

to a uniform distribution in the frame test, and not much can be gained by

entropy coding of the frame position information.

The Figures 6.4 and 6.5 show histograms of the coe�cient values for the 6

frame vectors chosen �rst, second and so on. The same frames as before are

tested on MIT100test with the same MSElimits as before. Figure 6.6 shows

histograms of the values of the six �rst DCT coe�cients. The variances of the

eight �rst coe�cient values for the DCT test (solid) are plotted in Figure 6.7

together with the variances of the coe�cients chosen �rst, second and so forth

of the two test examples with NDlimit = 0:17 (dash-dot) and NDlimit = 0:23
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Figure 6.4: Histograms of coe�cient values. The frame is trained on

MIT100train with OMP and MSElimit = 40 corresponding to NDlimit = 0:18,

and it is tested on MIT100test with MSElimit = 40 corresponding to NDlimit =

0:17. a) values of the coe�cients chosen �rst b), c), d), e), and f) values of

the coe�cients chosen as no. 2, 3, 4, 5, and 6 respectively.

(dashed).

By studying Figure 6.6 and 6.7 we see that the signal variance of the DCT

coe�cients decreases approximately monotonically. This is very advantageous

both when doing entropy coding with uniform quantizers, but also with no

entropy coding, where a bit allocating scheme would take advantage of the

decreasing variance. The situation for the frame coe�cients is somewhat dif-

ferent. There is a distinct decreasing tendency, which is an advantage, but

the decrease is not as monotonic or as rapid to approximately zero as for the

DCT coe�cients. Another observation is that the �rst frame vectors have a

signi�cantly larger variance than the �rst DCT coe�cient. The fact that in

the frame case there are di�erent vectors chosen as no. 1 at di�erent signal

blocks is probably partly responsible for this. But it does also explain why
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Figure 6.5: Histograms of coe�cient values. The frame is trained on

MIT100test with OMP and MSElimit = 70 corresponding to NDlimit = 0:24,

and it is tested on MIT100test with MSElimit = 70 corresponding to NDlimit =

0:23. a) values of the coe�cients chosen �rst b), c), d), e), and f) values of

the coe�cients chosen as no. 2, 3, 4, 5, and 6 respectively.

we get a better approximation using one frame vector than using one (usu-

ally the �rst) DCT vector. Another factor is that the distributions for each

of the coe�cient numbers are very peaky, and far from uniform in the DCT

case. This makes entropy coding of the coe�cient values advantageous. This

is also the case for the frame coe�cients but not as distinct as for the DCT

coe�cients.

If entropy coding is used for the position information and values, or symbols

combining position information and value, the optimal quantization would be

uniform quantization and thresholding. In the case of no entropy coding, the

histograms show that a bit allocating scheme would be bene�cial.
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Figure 6.6: Histograms of DCT coe�cient values for the signal MIT100test.

a) shows the values of the �rst DCT coe�cient, b), c), d), ), and f) coe�cient

no. 2, 3, 4, 5, and 6 respectively.

6.2 Reference compression schemes

A reference compression scheme is needed for comparison of rate-distortion

performance. We want to make a fair comparison and have chosen reference

compression schemes according to that. The scheme described in Section 6.2.1

is used in our ECG experiments. The coe�cients are entropy coded, and thus

have variable code word length. In our image experiments the widely used

compression standard, JPEG, is used as the reference compression scheme.

6.2.1 Variable length coding scheme for 1D signals

Since the frame based compression scheme is block based, the reference scheme

should be block based and the same block lengths should be used to ensure

a fair comparison. We choose to use a transform based scheme since that is
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Figure 6.7: The variance of coe�cient values, tested on MIT100test. Solid:

Variance of the eight �rst DCT coe�cient, dash-dot: Variance of the coef-

�cients chosen �rst, second and so forth for frame with OMP and NDlimit =

0:17, Dashed: Variance of the coe�cients chosen �rst, second and so forth

for frame with OMP and NDlimit = 0:23

widely used, and choose the most frequently used transform, the DCT. The

quantization and coding of the coe�cients are done as similarly as possible to

the quantization and coding of the coe�cients in the frame based compression

scheme.

We have a transform based compression scheme as follows: A transform,

e.g. the DCT, is used to �nd the transform coe�cients for a signal vector.

The coe�cients are quantized by a uniform mid-tread quantizer with quanti-

zation step �. The coe�cients are thresholded, that is all the coe�cients with

values w 2 [�T; T ] are set to zero. This gives a dead zone in the quantizer as

illustrated in Figure 6.8.

A run-length coder is used to indicate the position of the coe�cients. A

quantized coe�cient and the associated run are combined into one symbol.

These symbols, along with an End Of Block (EOB) symbol, are entropy coded.
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Figure 6.8: Uniform mid tread quantizer with dead zone due to thresholding.

This is somewhat JPEG-inspired. This scheme will work well for a DCT

scheme whereas, as revealed in the previous section, entropy coding will not

be that advantageous for frame based compression.

6.3 Compression of ECG signals

Some compression experiments using one frame is presented here. The exper-

iments are done using the frames optimized with an MSElimit and with OMP

as the vector selection algorithm.

Four di�erent experiments are done to compare frame based compression with

the reference compression scheme with entropy coding. Thus the frame coe�-

cients are uniformly quantized and thresholded, run-length and entropy coded

as in the DCT scheme.

The four experiments are done with di�erent quantizer steps, �, and thresh-

olding factors, T = �. In two of the experiments the frames are optimized

with MIT100train as the training signal and with di�erent MSElimit's. The

other two frames are optimized with MITmix as the training set, and also

with two di�erent MSElimit's. In all four experiments the frames are tested

on MIT100test. The results of the experiments are shown in Figure 6.9.

The frames trained on MIT100train performs better than the DCT scheme,

but the frames trained on MITmix performs poorer. This shows potential in
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Figure 6.9: Compression experiments on MIT100test. SNR in dB is plot-

ted as a function of the number of bit per sample. Solid: DCT, dashed:

NDlimit=0.17, and dash-dotted: NDlimit=0.23, both trained on MIT100train.

o: NDlimit=0.17 and *: NDlimit=0.23, both trained on MITmix.

using frame based compression, but also indicates that the frames need to be

tailored for the type of signal to be compressed.

6.4 Compression of images

Some compression experiments using a frame based compression scheme was

done on the test images Lena and Jet. The frames used in the experiments

were all trained on the six training images using FOMP as the vector selection

algorithm, and a limit on the MSE to provide sparsity. Six frames are used,

trained with MSElimit's at 40, 70, 100, 150, 200, and 250 corresponding to

NDlimit's at 0.11, 0.14, 0.17, 0.20, 0.24, 0.26. JPEG experiments on the same

images and with di�erent quality factors were performed for comparison.
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6.4.1 Coding of image representation

After using a frame to represent the image, in a non-separable way as described

in Section 5.2, the representation consists of coe�cient values and position

information. Since a limit on the MSE is used to provide sparsity, the number

of coe�cients will vary from image block to image block. The values are

quantized with a uniform quantizer with quantizer step � and thresholded

with T = �. Let XM be a 64 � 4096 matrix (M = 4096) consisting of the

image data of size 512 � 512, where a column in XM is the lexicographic

ordering of a 8� 8 image block.

XM ' X̂M = FWM ; (6.1)

where F is the 64�128 frame andWM is a matrix of size 128�4096 containing
all the coe�cient information, or the image representation.

Possible coe�cient values are : : :� 3�;�2�;��;�; 2�; 3� : : : and these are

mapped into : : : 6; 4; 2; 1; 3; 5 : : :. The position information is handled as run,

that is the number of zeros between two nonzero coe�cients. Since we know

the size of the frame EOB (End Of Block) information is not needed. We

just continue to count zeros in the next block until we get to the �rst nonzero

coe�cient. To limit the number of di�erent possible runs we make an exception

when all the coe�cients in a column of W are zero. In this case the run is

set to N = 64, and the respective value to zero. After this reorganization of

the coe�cients we have a string of runs and a string of values. Both the runs

and the values are now entropy coded using Hu�man tables. The �nal bit per

pixel rate is calculated including the Hu�man side information for the image.

6.4.2 Image compression results

In Figure 6.10 the results of the experiments are plotted with Peak Signal to

Noise Ratio (PSNR) as a function of bit per pixel. The PSNR is a common

measure of image quality and is calculated as:

PSNR = 10 log10(
2552

MSE
) (6.2)

since 255 is the largest possible pixel value in an 8 bit per pixel image. The

MSE is calculated as in Equation 2.9. When calculating the residuals in all the

image experiments, the pixel values of the reconstructed image are quantized

back to the 0-255 possible values of the 8 bit per pixel format of the original

image.
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The dashed curves show the JPEG performance on the test images with dif-

ferent quality factors. The solid curves show frame based compression with

di�erent MSElimit's. Figure 6.10 a) shows results from compression of the test

image Lena. MSElimit = 70; 100; 150; 200 and 250 are used, corresponding to

NDlimit's at 0.16, 0.19, 0.23, 0.27, and 0.30. Figure 6.10 b) shows results from

compression of the test image Jet. MSElimit = 40; 70; 100; 150; 200 and 250

are used, corresponding to NDlimit's at 0.28, 0.38, 0.45, 0.55, 0.64, and 0.71.
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Figure 6.10: Compression experiment on a) Lena and b) Jet. Training and

testing is done using MSElimit and FOMP. PSNR in dB is plotted as a function

of bit per pixel. Dashed: JPEG, solid: Di�erent MSElimit's as a function of

di�erent quantizing step, �.

Figure 6.10 shows that JPEG outperforms the frame based compression scheme

except for extremely low bit-rates where the frame based compression performs

best.

Figure 6.11 shows the reconstructed test image Lena after being compressed

with the frame based scheme to 0.15 bit per pixel. Figure 6.12 shows the
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reconstructed test image Lena after being compressed with JPEG at the same

bit rate, 0.15 bit per pixel. By inspecting the reconstructed images it is obvious

that the frame based scheme performed better at this bit rate. The PSNR for

the frame based scheme is 26.1 dB and PSNR= 24:7 dB for JPEG.

Figure 6.11: Reconstructed test image Lena after being compressed to 0.15

bit per pixel using a frame with NDlimit = 0:30 and � = 100. PSNR=26.1 dB
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Figure 6.12: Reconstructed test image Lena after being compressed to 0.15

bit per pixel using JPEG. PSNR=24.7 dB
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The reconstruction of the test image Jet after being compressed to 0.1 bit per

pixel using the frame based scheme is depicted in Figure 6.13. The recon-

structed image after JPEG compression at 0.11 bit per pixel (it is impossible

to get a JPEG compression at 0.1 bit per pixel) can be seen in Figure 6.14.

The frame based scheme performs much better as can easily be seen by com-

paring the images. The frame based scheme gives a PSNR at 30.3 dB whereas

the JPEG gives PSNR= 25:9 dB.

Figure 6.13: Reconstructed test image Jet after being compressed to 0.10 bit

per pixel using a frame with NDlimit = 0:55 and � = 60. PSNR=30.3 dB
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Figure 6.14: Reconstructed test image Jet after being compressed to 0.11 bit

per pixel using JPEG. PSNR=25.9 dB
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6.5 Discussion

The compression experiments show some good results, but are not as convinc-

ing as the approximation capability results presented in the previous chapter.

The chosen coding strategy and the chosen reference compression scheme is

however a matter of discussion. All the compression schemes use entropy cod-

ing, and as stated in Section 6.1 this favors DCT based schemes more than

frame based schemes.

In compression of ECG signals the coding of the coe�cients in the reference

scheme and the frame based scheme are identical. In the image compression

experiment JPEG is used as reference scheme and in JPEG the coding of the

coe�cients have been given a lot of consideration. Giving it more considera-

tion, we may �nd a more e�cient way of coding the image representation in

the frame based scheme.

The approximation capabilities of frames trained for using a predetermined

number of vectors in each approximation where shown in Chapter 5 to be

signi�cantly better than DCT. In Chapter 5 it was also shown that frame

vectors in a frame trained for using i vector in each approximation where

di�erent from frame vectors in a frame trained trained for using j vector in

each approximation, where i 6= j. This motivates for using several frames

designed for di�erent sparsity factors in a compression scheme. This scheme

is explored in the next chapter, and it gives considerable better compression

results than the experiments using one frame in this chapter.
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Chapter 7

Multi Frame Compression,

MFC

In this chapter the Multi Frame Compression (MFC) scheme [20, 19] is pre-

sented.

In Chapter 5 it was shown that frames designed for using one vector in each

approximation was quite di�erent from frames designed for using two, three,

four, and so forth frame vectors in each approximation. This motivates the

idea of using a set of frames designed for di�erent numbers of frame vectors

in each approximation instead of using a single frame as in Chapter 6. A

frame set would give much more 
exibility in forming the approximation than

a single frame. Some extra side information will be needed to tell which frame

is used approximating a signal block, but knowing which frame is used we also

know exactly how many coe�cients di�erent from zero in that block, thus the

extra side-information turns out to be very small.

7.1 The Multi Frame Compression (MFC) scheme

The main idea in MFC is to use a set of frames in the compression scheme,

letting one frame be optimized when using just one vector in each approxi-

mation, one when using two and so forth. When compressing a signal vector

the number of vectors required to ful�ll an MSE condition will decide which

frame to use. The frame notation is: Fi, i = 1; 2; : : : ; L, where L is the

maximum number of vectors allowed in an approximation, is a frame of size

N �K;K � N optimized for using i vectors in each approximation.

115
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Figure 7.1 illustrates the compression scheme. An MSEtarget is decided. The

vector selection scheme should be the same as the one used when designing

the frames. There is an order relation between the frames. F1 is designed

for, and used only if the signal block is approximated using only one vector

and coe�cient. The same goes for F2, but where two vectors and coe�cients

are used, and so forth. For compression of a signal it is desirable to use as

few coe�cients as possible to satisfy the MSEtarget. Since entropy coding is

used there is a possibility that using x vectors and coe�cients could require

fewer bits than x � 1 vectors and coe�cients for some signal vectors, but

fewer coe�cients means lower bit rate in general. The frame selection system

in MFC works by letting a signal vector �rst be approximated using just

one coe�cient, if that is not good enough in the MSE sense, two is tried,

and so forth. The coe�cients corresponding to the selected frame vectors

from the selected frame are quantized by a uniform mid tread quantizer and

thresholded. The quantized coe�cients are run-length and entropy coded.

There is an entropy coder designed for each frame, and each signal block

starts with a Beginning Of Block (BOB) symbol.
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Figure 7.1: Illustration of the compression scheme.

7.1.1 Representation of multi frame coe�cients

In the reference transform compression scheme the number of coe�cients not

quantized to zero will vary for di�erent signal vectors. In the context of

frame expansions this means that for a given quantizer step the number of

vectors needed in the approximation will vary for di�erent signal vectors if
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the approximation quality in terms of MSE is to be approximately constant

throughout the signal. The proposed compression scheme, MFC, uses several

frames where each frame is designed for use with a �xed number of frame

vectors in each approximation. In MFC the desired approximation quality

will decide the number of vectors to be used in the approximation of a signal

block.

If only one frame is used in conjunction with run-length entropy coding it

makes sense to use an EOB symbol between each signal block in the same way

as done in JPEG. When using MFC, a BOB symbol is needed to tell which

frame is used when approximating the next signal vector. The BOB tells that

frame Fi is used, and then it is clear that exactly i symbols, each consisting of

an amplitude and a run, will be transmitted before the next BOB. This means

that we can use run-length coding and entropy coding where each frame has

its own entropy coder. This is a strong advantage because the optimal entropy

coders can be very di�erent for the di�erent frames.

.EOB EOB EOB .

a)

b)

BOB:F3 BOB:F1 BOB:F2
....

..

Figure 7.2: a) MFC scheme using BOB symbols to tell which frame is used in

approximating the next signal block. b) Reference transform coding scheme,

or compression with one frame. An EOB symbol is needed to separate the

consecutive signal blocks.

Figure 7.1.1 illustrates the use of BOB and EOB. The boxes indicate an en-

tropy coded symbol, i.e. a bit sequence of variable length. As opposed to the

reference transform based compression scheme, in MFC we know exactly when

the next BOB is coming. Thus there is no need to let BOB be a special word

to be recognized, as an EOB has to be. This means the BOB symbol can also

be entropy coded.

Experiments show that the BOB requires more bit than the EOB, but the dif-

ference is relatively small. Thus the use of several di�erent frames, optimized

for di�erent numbers of vectors, and with their own entropy coder, requires

very little extra side information compared to using one frame, one entropy

coder and an EOB symbol.

For very low bit rates, like 0.2 - 1 bit per sample in ECG experiments, the

probability of using F1 or F2 is much larger than using Fi, i = 3; 4; : : : ; L.
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Thus the entropy of the BOB symbols is low. If the BOB symbols are Hu�man

coded, the extra side information when using these BOB instead of EOB

symbols is typically less than 0.03 bit per sample in our ECG experiments.

As in the reference transform based coder described in Section 6.2.1, the coef-

�cients are quantized by a uniform mid tread quantizer with quantizing step,

�, and thresholded by T . A run-length coder is used to indicate the position of

the coe�cients. A quantized coe�cient and the associated run are combined

into one symbol, and these symbols are entropy coded with separate entropy

coders for each frame.

7.1.2 Multi frame compression: Main algorithm

The MFC scheme works as follows: When compressing a signal vector, the

MFC scheme starts by using F1 to approximate the signal vector, the coef-

�cients are quantized, and the residual, rl, is calculated. The error energy,

krlk2, is compared to an MSEtarget. If the approximation is good enough F1

is used, if not F2 is tried and so forth. For frame Fi a signal vector, xl, is ap-

proximated as shown in Equation 4.1 where only i of the wl(j)'s are non-zero.

There is a strong connection between the quantization step, �, the threshold,

T , and MSEtarget. For a target bit-rate there is an optimal combination of

MSEtarget, �, and T . These factors can be incorporated into a quality factor

as was done in JPEG image coders.

For a signal vector approximated with frame Fi it is possible that one or

more of the i coe�cients are quantized to zero even though the requirement

on the MSEtarget is not satis�ed. In this situation it is not always bene�cial

to increment i, and try with the next frame. If that solution were to be

chosen, and the � is large compared to the optimal � for the MSEtarget, the

scheme would often use the frames with the maximum numbers of vectors

allowed in an approximation, which increases the bit-rate. If one coe�cient is

quantized to zero when using frame Fi, only i � 1 frame vectors are used in

the approximation, and it would be better to use frame Fi�1 which is designed

for using i� 1 vectors. An idea is therefore to decrement i and go back to the

previous frame, even though we know that this approximation was not good

enough compared to the MSEtarget. This way the compression scheme always

tries to use as few vectors as possible in each approximation, but we loose

some control over the local MSE for some of the signal vectors. This resulted

in good overall rate-distortion performance, but for some signal vectors the

error energy became very large. We dealt with this problem in the following

way: When the above described situation occurs for frame Fi, calculate the
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residual, and error energy, when using frame Fi�1. If this error energy is less

than factor�MSEtarget, the frame Fi�1 is used in the approximation of the

signal vector. If not, i is incremented and the approximation using frame Fi+1

is calculated. This way we allow the error energy to be larger than MSEtarget
for some of the signal vectors. Typically this happens for signal vectors with

large energy, that is in signal regions with large local variance. The signal to

noise ratio (SNR) is

SNR = 10 log10
�2x
MSE

(7.1)

so the MSE can be larger in a signal region with large local variance but still

the local SNR, and the visual quality, can be approximately the same. The

algorithm implementing the MFC scheme can be summarized as follows:

1. A desired approximation quality, MSEtarget, is chosen in terms of a target

MSE for the overall signal. Assign counter variable i = 1.

2. A vector selection algorithm is used to �nd the approximation when

using Fi.

3. The coe�cients are quantized with a uniform quantizer with quantiz-

ing step �, and they are thresholded with T = �. The residual after

quantization is calculated, and the MSEi is compared to MSEtarget.

4. If i = L go to 8.

5. If MSEi < MSEtarget go to 8.

6. If none of the coe�cients are quantized to zero,

i = i+ 1 and go to 2.

7. If MSEi�1 <factor�MSEtarget, i = i� 1 and go to 8. Else i = i+ 1 and

go to 2.

8. Fi is used when approximating the signal vector. The approximation is

entropy coded. Each frame has its own entropy coder.

9. A BOB symbol telling which frame was used is entropy coded and

prepended to the bits resulting from step 8.
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7.2 Variable sized frames

This section concerns the use of variable sized frames in the MFC scheme,

and it was �rst tried in [21]. As in the previous section, let Fi denote an

N �Ki matrix where Ki � N . The columns, ffjg , j = 1; : : : ;Ki, constitute

a frame. The vector length, N , is constant whereas the number of vectors

in a frame, Ki, can be di�erent for di�erent i's. The key idea here is to use

large frames, i.e. large K, when using a small number of frame vectors in an

approximation of a signal vector, and smaller frames when using more vectors

in each approximation. When the approximation of a signal vector consists

of many vectors an ordinary DCT will give good results, a large frame is not

necessary, and using a smaller frame will lower the average entropy because

there are fewer possible di�erent output symbols. When using very few vectors

in each approximation a large frame will provide a good chance of �nding a

small number of vectors whose linear combination match the signal vector

well, and perform better than a small frame.

7.2.1 Rationale for using variable frame size

We here make the assumption that all the output symbols have equal proba-

bility. This means that for each frame in the MFC scheme every combination

of quantized coe�cient value and run has the same probability. This assump-

tion makes it possible to do calculations on the bit rate for di�erent sized

frames. The assumption is unrealistic, but still this gives a rationale for using

variable sized frames in the MFC scheme. In an experiment we use the actual

histogram-based probabilities.

Let N be the block size, and Q the number of di�erent quantizer steps. Let

m be the number of di�erent possible output symbols, i.e. combinations of a

quantized value and a run. We assume that all the output symbols have the

same probability of occurring, and this gives log2m bits per output symbol.

For simplicity, we consider a scheme with two frames, F1 and F2, where the

size of both frames is N � K. With K di�erent frame vectors, we have K

di�erent possible runs. This is obvious for frame F1, and it is also correct for

frame F2 since there is a possibility for one of the coe�cients to be quantized

to zero. This gives KQ possible combinations of run and quantized coe�cient,

thus m = KQ.

For a given signal vector xl, let Di be the distortion using frame Fi, and Ri

the bit rate. Let us assume that:

xl : D1 > MSEtarget ) F2 is used) D2; R2: (7.2)
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We increase the size of F1 ) ~F1; to N � (K +1), and try again. Assume now

that:

xl : ~D1 < MSEtarget ) ~F1 is used) ~D1; ~R1: (7.3)

We know that ~R1 > R1 and it is realistic to assume that ~D1 � D2. Assume

that ~D1 = D2. First we show that ~R1 < R2, so that it is an improvement for

xl and the other signal vectors which now can use ~F1 instead of F2:

~R1 =
1

N
log2[(K + 1)Q] =

1

N
[log2(K + 1) + log2Q] (7.4)

R2 =
2

N
log2(KQ) =

2

N
[log2K + log2Q] (7.5)

R2 � ~R1 =
1

N
[log2Q+ 2 log2K � log2(K + 1)] (7.6)

=
1

N
log2(

QK2

K + 1
) (7.7)

If ~R1 < R2 then R2 � ~R1 > 0. This means that QK2

K+1
> 1. Q and K are

positive integers, so this will be true for all Q � 1 and K � 2 which means for

all practical purposes.

Secondly we will derive conditions indicating when the enlargement of F1 leads

to a total improvement in the rate-distortion sense, considering all the signal

vectors. All the signal vectors that �rst used F1 now have to use ~F1, and the

bit rates for these signal vectors are enlarged from R1 to ~R1. It is possible

that the distortion will get smaller in some of these blocks due to the fact that

there is an extra vector to choose from. We look at the worst case where the

distortion remains the same, and the bit rate increases.

Let p1 be the probability that F1 is used, and p2 that F2 is used when we

compress with the same sized frames. After changing F1 to ~F1, p1 + q is the

probability that ~F1 is used, and p2 � q that F2 is used. Rtot is the total bit

rate using F1 and F2, and ~Rtot is the total bit rate using ~F1 and F2.

Rtot = p1R1 + p2R2 (7.8)

~Rtot = (p1 + q) ~R1 + (p2 � q)R2 (7.9)

For ~Rtot to be smaller than Rtot:

q(R2 � ~R1) > p1( ~R1 �R1) (7.10)

With ~R1 and R2 given by Equation 7.4 and 7.5, and

R1 =
1

N
log2(KQ) =

1

N
[log2K + log2Q]; (7.11)
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we have the requirement

q

p1
>

~R1 �R1

R2 � ~R1

=
log2

K+1
K

log2
QK2

K+1

: (7.12)

If Equation 7.12 is true, it will be better in a rate-distortion sense to add an

extra vector to F1. We can easily do the same calculations when the size is

set to be for example N � jN; j = 1; 2 : : :. Let Fi, i = 1; 2 have size N � jN ,

and ~F1 have size N � (j + 1)N . The requirement for improvement in the bit

rate will then be:

q

p1
>

~R1 �R1

R2 � ~R1

=
log2

j+1
j

log2
NQj2

j+1

: (7.13)

For example, if N = 16; Q = 100; and j = 2:

q >
p1

18:9
(7.14)

This means that the number of signal vectors that originally used F2 but now

use ~F1, has to be greater than � 1
19

times the number of signal vectors that

used F1 in the �rst place (and now use ~F1).

An experiment using two frames was performed. F1 and F2 have size N �N ,

and ~F1 has size N � 2N . The frames were trained on MIT100train, and test

experiment was executed on MIT100test. The test signal was compressed using

F1 and F2, and then using ~F1 and F2. In both cases MSEtarget was constant,

and � was varied. The output symbols do not have equal probability, so

instead of using Equation 7.14 directly, the total bit rates ~Rtot and Rtot were

computed using the histogram-based probabilities. They are compared in

Table 7.1.

For � = 1 and � = 2, ~Rtot < Rtot and the scheme using ~F1 and F2 performs

better than the one using F1 and F2. From Table 7.1 it can be seen that

Equation 7.14 here is changed to approximately

q >
p1

12
; (7.15)

due to the nonuniform probability distribution to the output symbols.

Figure 7.3 shows rate-distortion plots for the two experiments. The o's and

the *'s in the �gure represent the MSE and the bit rates for the di�erent �'s

in Table 7.1. The �gure shows that the use of ~F1 instead of F1 works better

for � = 1, 2, 5, 7, 10, 12, 15, 18, 20, and 25. For � = 1; 2 it is obvious because
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� q p1 ~Rtot Rtot

1 0.0613 0.7233 0.4402 0.4508

2 0.0613 0.7233 0.4308 0.4358

5 0.0613 0.7227 0.4104 0.4069

7 0.0607 0.7230 0.3992 0.3924

10 0.0604 0.7215 0.3863 0.3770

12 0.0604 0.7218 0.3785 0.3687

15 0.0581 0.7247 0.3672 0.3558

18 0.0542 0.7298 0.3575 0.3437

20 0.0471 0.7416 0.3503 0.3345

25 0.0308 0.7733 0.3329 0.3130

30 0.0119 0.8092 0.3165 0.2919

Table 7.1: Experiment with two frames.
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Figure 7.3: Rate-distortion plot for two experiments using two frames with

variable size. *: F1 and F2, o: ~F1 and F2. Normalized distortion is plotted

as function of bit per sample.
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then Equation 7.15 is satis�ed. For the rest of the �'s the explanation lies

in the assumption that the distortion is constant, and in fact the distortion is

decreasing using ~F1 instead of F1 with the same �.

We have considered a scheme with only two frames for simplicity. The same

rationale can be used for a scheme with more than two frames. Let the MFC

scheme have L frames, Fi, i = 1; 2 : : : L, all of size N�K. The same argument

can be used by �rst enlarging F1, then enlarging F2 and so forth.

7.3 MFC experiments on ECG signals

We have done MFC experiments using ECG signals, and OMP is the vector

selection algorithm in all the experiments in this section. All the frames are

trained using the MOD algorithm of Chapter 4.

The trained frames for ECG signals from Experiment 2 in Chapter 5 are used

to form frame sets with frames of equal size. The experiment has frames of

size 32�64. Experiments are done with frames trained and tested on di�erent

segments on the same patient but also on frames trained on a mixed signals

and tested on several signals as in Experiment 2 in Chapter 5.

Some of the same frames, of size 32 � 64, are used in the experiments with

frame sets of variable size. In addition new frames with di�erent sizes N � iN

are trained to form sets of variable sized frames.

In all the experiments we use Hu�man coded BOB symbols to tell which frame

is used in the signal block representation. The frame coe�cients are quantized

with uniform quantizer and thresholded with T = �, and run-length coded.

Run and quantized value are combined into one symbol and entropy coded with

di�erent entropy coder for each frame. The factor in step 7 of the algorithm

was experimently set to 5. The compression experiments are compared with

experiments using the DCT based reference compression scheme described in

Section 6.2.1.

7.3.1 ECG signal compression experiments using �xed size

frames

In the experiment frames of size N � K were trained targeted at 1; 2; : : : 12

vectors in each approximation using MIT100train, MIT207train, and MITmix.

The signal vector size, N , is 32. The number of frame vectors in each frame,

K, is 2N = 64. The initial frame vectors are normalized versions of signal
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vectors in the training set as described in Section 5.1.3. Figure 5.5 shows

training plots for some of the frames used in the compression experiments.

For di�erent values of the desired approximation quality, MSEtarget, the quan-

tizing step, � was varied. Experiments on the same test signals were also done

using the DCT based reference compression scheme described in Section 6.2.1.

The dashed lines in Figure 7.4 shows the rate-distortion results of compression

experiments on MIT207test and MIT100test when the frame sets trained on

MIT207train and MIT100train were used.

The dashed lines in Figure 7.5 shows the rate-distortion results of compression

experiments on MIT100test and MIT101test when the frame set trained on

MITmix was used. MIT101 is from a patient that has not contributed to the

MITmix signal. MIT101test is MIT101, 6:00 to 11:00 minutes.

The results show that the MFC scheme works well. In terms of rate-distortion

it is better than traditional transform based techniques like the DCT for low

bit rates. Figure 7.4 shows that when using the MFC scheme, the SNR reaches

an almost constant level when the bit rate increases. The major reason for this

is the speci�cation of a desired approximation quality, MSEtarget. For a given

MSEtarget, if � is reduced to be less than the optimal �, the improvement

in SNR will be very small, especially for large MSEtarget. The increase of the

bit-rate will also be small. Di�erent MSEtarget have to be used for di�erent

target bit-rates. In our experiments we have been concentrating on low bit

rates. The coding scheme is restricted never to use more than L = 12 vectors

in an approximation. For higher target bit-rates a larger L would be used, but

this compression scheme is expected to work best for low bit rates.

7.3.2 ECG signal compression experiments using variable sized

frames

Several experiments with frames of di�erent sizes were performed. For block

size N = 32 frames of size N�jN j = 1; 2 : : : 7, were used. Letting the size of

frame Fi be N �N there are several possibilities. Fi can be a nonorthogonal

frame designed using MOD, or Fi can be an ordinary orthogonal transform,

e.g. the DCT. When using Fi, only i vectors can be used in the approximation

of a signal vector. Thus if Fi is an orthogonal transform we must set the N� i

smallest coe�cients to zero, and quantize the i largest coe�cients with the

uniform quantizer.

There are at least three reasons for using the DCT for some of the frames, Fi,

with large i's. One is that the frames, Fi, with large i's are computationally
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size N �N N � 2N : : : N � jN

F1
i F2

i : : : F
j
i

Table 7.2: Notation for di�erent sized frames Fi where i is the number of

vectors used in each approximation the frame is designed for.

expensive to design, but since this is done o� line it might not be relevant.

Another reason is that when many vectors are used in the approximation,

the approximation can be good with many di�erent frames, as it can with an

orthogonal basis like the DCT. Using DCT for some of the frames also solves

the problem of what to do if one or several of the coe�cients are quantized to

zero. Let Fi, i = D;D + 1; : : : ; L all be the ordinary DCT. If one of the D

largest coe�cients is quantized to zero when using FD and the residual is larger

than the target residual, we simply use FD when approximating the signal

vector. There are no reasons to �nd an approximation using FD+1 because

the same coe�cient will be quantized to zero. A third reason is that the

suboptimality of the vector selection schemes like the OMP/FOMP becomes

more signi�cant when many vectors are chosen, and by using a transform like

the DCT that problem is avoided.

Even if Fi, i = D;D+1; : : : ; L is the ordinary DCT there has to be L�D+1

di�erent frames in the sense that frame Fi is restricted to use no more than i

vectors in an approximation, and the BOB symbol must distinguish between

them.

Complete compression experiments were done using di�erent test signals. The

quantizing step, �, was varied for di�erent values of the desired approximation

quality, MSEtarget. The results are compared to the DCT based reference

compression scheme.

Experiments were done with block size N = 32. Fi, i = 1; 2; : : : 12 of size

N � Ki were optimized using MIT100train, MIT207train, and MITmix. The

number of frame vectors in a frame, Ki, is variable. The initial frame vectors

are normalized versions of the �rst Ki signal vectors in the training set (for

MITmix like described in Section 5.1.3), and the frames are trained using

MOD. Table 7.2 shows the notation for the di�erent sized frames.

We tried compression experiments with di�erent frame sets, and for this appli-

cation the following set worked well: F7
1, F

5
2, F

3
3, F

2
i ; i = 4; 5 : : : 7, and DCT

for i = 8; 9 : : : 12. This is the set used in the compression experiments shown

here. At this stage we lack a good way of deciding on the best frame size for

an application, but it is always possible to try di�erent alternatives and �nd

a set that works well. This is a topic for further investigations.
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The solid lines in Figure 7.4 shows the rate-distortion results of compression

experiments on MIT207test and MIT100test when the frame sets trained on

MIT207train and MIT100train were used. The experiments were done with a

number of di�erent values on the desired approximation quality, MSEtarget. In

the �gure the results are compared to results using the DCT based reference

compression scheme and the �xed size frame sets.
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Figure 7.4: Rate-distortion plots. solid with o's: DCT, dashed: MFC

scheme with di�erent MSEtarget using �xed sized frames, solid MFC

scheme with di�erent MSEtarget using variable sized frames. a) Trained on

MIT100train, tested on MIT100test b) Trained on MIT207train, tested on

MIT207test.

The solid lines in Figure 7.5 shows the rate-distortion results of compression

experiments on MIT100test and MIT101test when the frame set trained on

MITmix was used.

A heartbeat fromMIT100test and MIT207test are plotted in Figure 7.6 together

with reconstructed versions of the same heartbeat compressed using MFC
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Figure 7.5: Rate-distortion plots. solid with o's: DCT, dashed: MFC

scheme with di�erent MSEtarget using �xed sized frames, solid MFC scheme

with di�erent MSEtarget using variable sized frames. All frames were trained

on MITmix. a) Tested on MIT100test b) Tested on MIT101test.
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scheme and the DCT based reference compression scheme. The original signal

has 12 bit per sample, and the reconstructed signals were compressed to 0.4

bit per sample.

a)

b)

c)

d)

e)

f)

Figure 7.6: Part of test signals and reconstructed signals. a) Part of

MIT100test, original b) MFC, 0.4 bit per sample c) DCT, 0.4 bit per sam-

ple. d) Part of MIT207test, original e) MFC, 0.4 bit per sample f) DCT, 0.4

bit per sample.

Compared to the results from the DCT based reference compression scheme,

the variable sized frames perform very well at low bit rates.

7.3.3 Discussion

The optimized frames are used in an MFC scheme which performs very well

at low bit rates when tested on ECG signals. At low bit rates the experiments

demonstrate improved rate-distortion performance by 2-4 dB for the MFC

scheme when compared to a reference DCT coding scheme, when trained and

tested on di�erent time segments from the same patients. We also show that
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using variable sized frames instead of �xed sized frames in the MFC scheme,

a further improvement of approximately 0.2-1 dB is achieved.

When compressing ECG signals there is sometimes the need of continuously

recording the heart beat of a person during a long time period (weeks) for

diagnostic reasons. In a situation like this it would be natural to train the

scheme for that person before using it. In other applications a more general

system that can be used on di�erent persons is needed. On other types of

signals similar issues may occur. Therefore we have done experiments covering

both these situations.

Comparing Figure 7.4 and Figure 7.5 it can bee seen that the performance is

dependent on the training set, as expected. The test on the same patient as the

training in Figure 7.4 performs better than the test shown in Figure 7.5. The

latter experiment is a frame set trained on a set of signals to design a frame

set that can be used on a broader class of signals. The set is tested on both

a patient that has produced a part of the training signal, but on a di�erent

time segment, and on a patient that has not contributed to the training set.

The MFC scheme performs better than the DCT for low bit rates in all the

cases, but there is less to gain when the match between the training set and

the test signal is decreased.

Comparing Figure 7.4 and Figure 7.5 with Figure 6.9 in Chapter 6 it is easily

seen that the MFC scheme performs signi�cantly better than the compression

scheme with one frame and MSElimit.

7.4 MFC experiments on images

We have done some MFC experiments on images using a set of 12 �xed size

frames, size 64� 128, trained on the set of training images. The training and

testing are done using FOMP as the vector selection algorithm. JPEG exper-

iments on the same images and with di�erent quality factors were performed

for comparison.

The BOB symbols, i.e. the information of which frame is used for each image

block, are Hu�man coded as in the ECG experiments. The value and position

information for each of the frames are coded the exact same way as described

in section 6.4.1. The �nal bit rate is calculated including the Hu�man side

information for the image.



7.4 MFC experiments on images 131

7.4.1 Image compression experiments using �xed size frames

The result of the MFC experiment on the test image Lena is shown in Fig-

ure 7.7. The dashed curve shows JPEG compression experiments of the test

image with di�erent quality factors. The solid curves show MFC experiments

with di�erent MSEtarget's. For each of the MSEtarget, the � is varied. The

experiments demonstrate improved rate-distortion performance by 0.1-1 dB

for the MFC scheme when compared to JPEG at these low bit rates.
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Figure 7.7: MFC experiments on test image Lena. PSNR in dB is plotted

as a function of bit per pixel. Dashed: JPEG, solid: MFC with di�erent

MSEtarget.

Figure 7.8 shows the reconstructed test image Lena after being compressed

with the MFC scheme to 0.2 bit per pixel and PSNR = 28:2 dB. Correspond-

ing, Figure 7.9 shows the reconstructed test image Lena after being compressed

with JPEG to 0.2 bit per pixel and PSNR = 27:6 dB. Visual inspection proves

that the MFC scheme performs better than JPEG for this bit rate.

Figure 7.7 should be compared with Figure 6.10 a) in Chapter 6 to con�rm
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Figure 7.8: Reconstruction of test image Lena. Compressed to 0.2 bit per

pixel using MFC scheme with 12 �xed size frames. PSNR = 28:2 dB
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Figure 7.9: Reconstruction of test image Lena. Compressed to 0.2 bit per

pixel using JPEG. PSNR = 27:6 dB
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that the MFC scheme performs better than compression using one frame in

the image experiments, as well as in the ECG experiments.



Chapter 8

Other applications of frames

Again we consider the signal model:

x = Fw+ n; (8.1)

where x is an N �1 data vector, F is an N �K matrix where K � N , w is an

K � 1 sparse coe�cient vector and n is an N � 1 noise vector. The columns

of the matrix F form an overcomplete set, and spans the space RN .

Equation (8.1) shows up in several important applications. It can be used as a

convenient signal representation model useful for compression, and it can also

be a model for the true underlying system that produced the available dataset

x. The earlier chapters have mainly been occupied by lossy signal compression

where n represents the reconstruction error, and Fw = x̂ the approximation

of the signal vector x.

In the case of lossy signal compression the quality of the approximation, for

a given sparsity of w and a speci�ed F, is of primary importance. On the

other hand, if we want to �nd the true underlying structure that produced the

data, �nding the true F is essential. This can be the case in applications such

as signal reconstruction, estimation, and denoising, or blind source separation

for the case when we have fewer sensors than sources.

The next sections will address some of these applications. In an experimental

section we show that the frame design algorithm, MOD, described in Chap-

ter 4, used with a noise robust version of FOCUSS called regularized FO-

CUSS, described in Chapter 3, works well in reconstructing the true F from

the dataset x. The parameters in the regularized FOCUSS are selected ac-

cording to the modi�ed L-curve method described in Section 3.2.3. The MOD

135
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algorithm has already been shown to work well in designing frames for com-

pression purposes.

The regularized FOCUSS algorithm is a parallel vector selection algorithm,

based on minimizing a diversity measure. It works well �nding the correct

sparse vector when the data is made from a true underlying sparse structure.

The greedy methods, like OMP and FOMP works very well for compression

when choosing a relatively small number of vectors from a frame. These

algorithms are based on minimizing the MSE in each step, selecting a new

vector. In this chapter, where we want to reconstruct the true F, we therefore

use the regularized FOCUSS.

8.1 Signal reconstruction and estimation

The problem of �nding localized energy solutions from limited data arises

in many applications. Linear extrapolation problems can be represented as

Equation 8.1, with or without the noise vector n. The application can be

reconstruction or estimation of data.

In this situation the overcomplete matrix F represents an operator that maps

the unknown data w to a limited data set x, and the noise vector, n, is

discarded. Equation 8.1 is underdetermined and has an in�nite number of so-

lutions. A common solution is the minimum norm solution, which is computed

from the pseudo inverse:

wmn = FT (FFT )�1x: (8.2)

This solution tends to spread the energy over all of or a large number of the

entries in w. If a localized energy solution is desired as a consequence of

information about the problem, so that the energy is concentrated in only a

few of the entries in w, a sparse solution to Equation 8.1 is needed.

Gorodinitsky and Rao [29] have done work using this sparsity model for func-

tional imaging of the brain using EEG or MEG signals. In their work, the

content of the frame F was obvious, and there was no need for frame design.

Still the example shows that the model in Equation 8.1 can be useful in many

applications and the content of F may in general not be known so that the

frame needs to be reconstructed or estimated as well as the data set, w.

In the latter case Olshausen and Field have done work where they try to �nd

a model of some of the response properties of neurons in primary visual cortex

[57]. If the theory is that the neurons actually work according to the model

of Equation (8.1) with a sparse w, it is desirable to �nd the true F and w.
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8.2 Blind source separation

Blind source (signal) separation, also called the cocktail party problem due

to the way the human brain can distinguish between di�erent speakers in a

noisy environment, is a kind of �ltering problem that occurs in many di�erent

situations [36]. The blind separation problem was introduced by Herault and

Jutten in 1986 [37] and has been given considerable attention since that. Many

of the earlier suggested solutions were somewhat ad hoc but in recent years

more mathematical methods have been proposed, like Bell and Sejnowski's

infomax approach [5].

To formulate the blind source separation problem, consider a set of unknown

source signals wi(n); i = 1; 2 : : : K. The source signals are mutually indepen-

dent of each other. Unknown factors, represented by an unknown nonsingular

matrix F, mixes the source signals linearly, and a set of observation signals

xi(n); i = 1; 2 : : : N results:

x(n) = Fw(n): (8.3)

The need for blind source separation arises in many application including

� Speech separation where the independent sources are di�erent speakers.

The speech signals have been mixed together and needs to be separated

[5].

� Array antenna processing: Separation of multiple co-channel digital sig-

nals received by an antenna array [66].

� Multisensor biomedical records where the observed signals can be record-

ings from a multitude of sensors used to monitor biological signals of

interest [9].

� Financial market data analysis where the observed signals are di�erent

stock market data and one wants to �nd the set of independent dominant

components in the marked [4].

In the traditional blind source problem there is as many observed signals as

independent sources: N = K. In this case we know that F is an N�N matrix,

thus it is invertible since the independence of the sources provides full rank.

The blind source problem is usually formulated as �nding an estimate of the

F�1 matrix and use that to �nd estimates of the source signals ŵ(n) :

ŵ(n) = F̂�1x(n): (8.4)

The blind source separation problem is sometimes summarized as:
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� Given L independent realizations of the observation vector x �nd an

estimate of the inverse of the mixing matrix F [36].

An illustration of the problem is showed in Figure 8.1.

.

..
.
..

...

w1(n)

w2(n)

wN (n)

x1(n)
x2(n)

xN (n)

y1(n)

y2(n)

yN (n)

unknown mixer

Unknown environment

demixer

F B

Figure 8.1: The blind source separation problem as it is solved traditionally.

yi(n) is an estimator of wi(n) and B is an estimator of F�1.

Independent Component Analysis (ICA) has received attention in blind source

separation [5, 46], and it is a generalization of the Principal Component Anal-

ysis (PCA). PCA is the same as KLT, thus it removes the correlation between

the input signals. Using the PCA to estimate the F�1, the vectors in the

resulting matrix, B, are constrained to be orthogonal. The ICA not only

decorrelate the signals but also reduces higher-order statistical dependencies,

attempting to make the signals dependency as weak as possible. The ICA im-

poses no orthogonality constraints on the vectors in the matrix. The basis of

the ICA is that the sources, w(n), at each point in time are instant mutually

independent. A common assumption is that the number of sensors is greater

or equal to the number of sources, i.e. N � K, to assure that the matrix F

is full rank. This is necessary because the ICA �nds an estimation of F�1.

Another common assumption is no noise or only low additive noise.

Let the problem of blind source separation be reformulated as:

� Given L independent realizations of the observation vector x, reconstruct

or estimate the original signals and the mixing matrix.

The solution possibilities are no longer limited to estimate the inverse of F.

This way it is also possible to allow for more sources than sensors, i.e. K � N ,
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if at each point in time, n, there are only s � N sources active. This means

that at each point in time the number of nonzero sources is less than or equal

to the number of sensors, but that the total number of sources are greater

than the number of sensors. In other words the source vector w(n) needs to

be sparse, with no more than N nonzero entries. The mixing matrix F is now

of dimension N�K where K � N , thus, it is overcomplete. Assuming that all

the sources are active, i.e. none of the sources are zero at all times, the matrix

F spans the N dimensional space, and it is a frame. With an additive noise

vector this gives us the Equation 8.1 for each point in time. A time series will

give a set of data, as in the experiments in the following section.

Some work in this area is done by Lewicki and Sejnowski [49] and Lee et al.

[47].

8.3 Experiments on reconstructing the true frame

In this section we show some experiments on reconstructing the true frame

from a data set. This can be useful when we know that a physical system

has a true underlying sparse structure, and we only have access to the data

vectors produced by such a model. As indicated in the previous sections, this

can be used for signal reconstruction and estimation as well as in blind source

separation problems. Some of these experiments were shown in [22]

The experiments are done using a 20� 30 original matrix, Forig with random

entries, chosen from a normal distribution with mean zero and variance one.

The columns in Forig are normalized. The noise free data vector is obtained

as a linear combination of m randomly picked vectors from Forig where the

coe�cients are Gaussian random variables with zero mean and unit variance.

The constructed coe�cient vector is denoted �w. The noise free data vector is

normalized ) �x. The noisy data vector, x, is �x+ n where n is a noise vector

with Gaussian random entries with zero mean and variance depending on the

SNR in the experiment. Experiments were done without noise and with SNR

at 20 dB.

Mathematically, the synthetic data set can be described as:

Forg
�wl

kForg �wlk = �xl

xl = �xl + nl (8.5)

where l = 1; 2 : : : 1000.
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Experiments are done with m �xed at 4 and then at 7. Experiments with m

varying within the training vector set is also done. In this case m is uniformly

distributed between 1 and 10, this gives a mean �m = 5:5.

In the experiment the only available data is the training set xl; l = 1; 2 : : : 1000.

An initial frame is constructed by using a normalized version of the �rst 30

vectors from the training set, and this matrix is called F0. The frame that

the training converges to is called Fconv. If Fconv ' Forig the procedure has

worked well in reconstructing the generative model of the underdetermined

system with sparsity constraint.

The training of the frames is done by using MOD on the training set, and

by using the regularized FOCUSS described in Chapter 3 as the vector se-

lection algorithm required in the MOD. The parameters in the regularized

FOCUSS are selected according to the modi�ed L-curve method described in

Section 3.2.3.

Two issues are of special interest: The number of vectors used in an approxima-

tion, i.e. the sparsity, and the error. Therefore the average number of vectors,

called �r, and the normalized distortion are plotted as a function of training

iterations in the experiments. All the experiments converges completely.

Figures 8.2 and 8.3 show plots of the average number of vectors used in the

approximations and the normalized distortion as a function of training itera-

tions for the experiments without noise for m = 4 and m = 7 respectively. In

the experiment with m = 4 all the 30 frame vectors where reconstructed from

the data, so that Fconv = Forig
1.

In the experiment with m = 7, 29 of the 30 frame vectors were reconstructed

to within 1% error. In both these experiments, it can be seen from the �gure

that the average number of vectors used in the approximations at convergence

is lower than the number of vectors used to produce the data set. When

m = 4 the average number of vectors used in the approximations converges at

�r = 3:222 instead of 4, and for m = 7 it converges at �r = 5:103 instead of 7.

This means that the reconstruction of the set �wl

kForg �wlk
; l = 1; 2 : : : 1000 is not

quite accurate. This is not surprising since we use a version of FOCUSS that

allows for noise. Even if no noise were added in this training set, we start

the training with a wrong F since it is unknown, thus we have to allow for

noise if we want sparse solutions when we do the vector selection. In terms

of compression the results are encouraging since the reconstructed coe�cient

vector is even sparser than the true coe�cient vector, and this is true for

1a small di�erence, (1%) measured by the norm of the error for each vector, is allowed in

all the experiments



8.3 Experiments on reconstructing the true frame 141

0 10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

3.222

0 10 20 30 40 50 60 70 80 90 100
0.1

0.12

0.14

0.16

0.1008

�r

RMSE

�x

iterations

iterations

Figure 8.2: Training sequence of reconstructing experiment, m = 4, no noise.

The average number of vectors used in the approximations, �r, and the nor-

malized distortion are plotted as functions of iterations.

all the experiments presented here. For model reconstruction this may not

be desired, but since the true Forig is reconstructed, a FOCUSS version that

allows less noise can be used together with the true Forig, or the Fconv after

the training. This will result in a more accurate reconstruction of the set
�wl

kForg �wlk
; l = 1; 2 : : : 1000.

The normalized distortion in all the experiments is also plotted, and converges

to a lower value than the start value. Since we use the regularized FOCUSS as

the vector selection algorithm, we allow for noise in our attempt to model the

data vector. The regularized FOCUSS require a target SNR as input, and the

approximated vector will have an SNR somewhere around this value. There-

fore it is not expected for the distortion values to drop dramatically, as it does

in the training experiments in Chapter 5. In most of the training experiments

in Chapter 5 the OMP and FOMP are used as vector selection algorithms,

and a sparsity criterion is used. This way the number of vectors used in the
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Figure 8.3: Training sequence of reconstructing experiment, m = 7, no noise.

The average number of vectors used in the approximations, �r, and the nor-

malized distortion are plotted as functions of iterations.

approximations is constant, and the normalized distortion decreases. In the

experiments in this section both the average number of vectors used in the

approximations and the normalized distortion decreases during training. The

most dramatic development is in the average number of vectors used in the

approximations due to the target SNR when using the regularized FOCUSS,

but also the normalized distortion decreases when the iterations approach con-

vergence.

Figure 8.4 shows the experiments with m = 4 and noise level at 20 dB. In

this experiment all the 30 frame vectors where found, so that Fconv = Forig.

The experiment shown in Figure 8.5 was done with m = 7 and noise level

at 20 dB, and here 29 of the 30 frame vectors from Forig was reconstructed

in Fconv. The average number of vectors used in the approximations, �r, in

these two experiments converges at slightly higher values than in the two

earlier experiments and this is a consequence of the noise that is added to the



8.3 Experiments on reconstructing the true frame 143

0 20 40 60 80 100 120 140
2

4

6

8

10

12

3.405

0 20 40 60 80 100 120 140
0.12

0.13

0.14

0.15

0.16

0.17

0.1242

�r

RMSE

�x

iterations

iterations

Figure 8.4: Training sequence of reconstructing experiment, m = 4, noise level

20 dB. The average number of vectors used in the approximations, �r, and the

normalized distortion are plotted as functions of iterations.

training set.

For the two experiments with uniformly distributed m, shown in Figure 8.6

and 8.7, all the 30 frame vectors were reconstructed, so that Fconv = Forig.

Also here the average number of vectors used in the approximations at con-

vergence, �r = 3:752 and �r = 3:969, is less than the �m = 5:5, and it is less in

the no noise case than in the 20 dB case.

The experiment results indicate that MOD works very well with a good vector

selection algorithm. The MOD algorithm has already produced good results

on designing frames for compression of ECG signals and images as shown in

[17, 19] and in Chapter 6, and 7, and the results in this section provides

complimentary evidence of its good properties.
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Figure 8.5: Training sequence of reconstructing experiment, m = 7, noise level

20 dB. The average number of vectors used in the approximations, �r, and the

normalized distortion are plotted as functions of iterations.
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Figure 8.6: Training sequence of reconstructing experiment, uniformly dis-

tributed m, no noise. The average number of vectors used in the approxima-

tions, �r, and the normalized distortion are plotted as functions of iterations.
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Figure 8.7: Training sequence of reconstructing experiment, uniformly dis-

tributed m, noise level 20 dB. The average number of vectors used in the

approximations, �r, and the normalized distortion are plotted as functions of

iterations.



Chapter 9

Conclusions

The aim of this thesis was to investigate the use of overcomplete vector sets,

frames, for the purposes of signal representation and compression.

Emphasizing the synthesis part of a traditional analysis-synthesis setting, we

are not restricted to the traditional transforms, �lter bank, and wavelets and

we can use overcomplete sets of vectors. The increased freedom does make

a signal expansion non-unique, and the problem of �nding a good expansion

becomes more involved. We use existing matching pursuit techniques, and

also we developed a robust version of regularized FOCUSS. It seems like the

MP techniques are well suited for compression purposes where we need a good

approximation using a few vectors. On the other hand, if we want to �nd the

true underlying expansion that produced a noisy data set, or an approximation

of it, the robust version of the regularized FOCUSS seems to be a good vector

selection procedure. It is, however, very computationally expensive.

We have presented a frame design algorithm, the MOD. The design algorithm

is iterative and inspired by the GLA, and it requires a training set. We show

improved approximation capabilities compared to frames designed in an ad

hoc manner. Experiments show typical reduction in normalized distortion by

25 � 40 %. A simple way to solve the problem of �nding an initial frame is

to use a collection of the �rst training vectors. Experiments show good signal

representation performance for ECG signals, speech and images, using this

approach.

In general a frame based compression scheme is expected to work better than

ordinary transform coding for low bit rates, and for signals that are not sta-

tionary, i.e. all real life signals. We use ECG signals and images in our com-

pression experiments, both are non stationary, and our results shows improved

performance at low bit rates.

147
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A multi frame compression scheme, MFC, is developed, and improves both

the ECG and the images compression results.

With other purposes than compression in mind, e.g. blind source separation

with fewer signals than sources, we show that we are able to reconstruct a

frame from a data set using the MOD and the robust version of the regularized

FOCUSS.

9.1 Directions for future research

Based on experience gained during this work, we would suggest some possible

directions for future research.

� Convergence issues

We have not developed any formal proofs of convergence of the MOD

algorithm. In our experiments using MOD with regularized FOCUSS

on synthetic data, we observe convergence in all our experiments. In

the experiments using MP techniques and real world data the training

converges when we select one frame vector in each iteration. Note that

the vector selection is optimal in that situation. In all other situations

the vector selection is suboptimal. From the training experiments we

observe that the change in the MSE becomes small after a number of

iterations. At the point where the training is terminated, the change in

the MSE is as minor 
uctuations.

� Deciding optimal frame sizes

The frame sizes used in this thesis are all chosen rather than optimized.

Experimental results and ad hoc based reasoning have been the basis

for choosing frame sizes. Our rationale for using variable sized frames,

however, indicates that a more formal approach for �nding suitable frame

sizes could be developed. One possible problem is that it would be

dependent upon the probability distribution of the signals, which are in

general unknown. The pdf can probably be estimated using a training

set.

� Quality factor

The connection between the desired approximation quality and the quan-

tizing step, i.e. MSEtarget and �, can be embedded into a JPEG like

quality factor.
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� Robust coding

For transmission over noisy channels, robust coding is important. En-

tropy coding is not very robust, and a di�erent coding scheme is needed

for the purpose of robust coding. Since the probability distribution over

the position information of the frame coe�cients are much more even

than the probability distribution over the position information of tra-

ditional transform coe�cients, the entropy schemes used in this thesis

favors the traditional transform schemes. In a robust coding scheme, not

using entropy coding, the advantages of the frame based system over a

traditional transform based scheme may very well be more signi�cant

than shown in this work.

When entropy coding is used, uniform quantization is optimal. Without

entropy coding a pdf optimized quantizer is optimal. In a frame based

system a possible approach could be to use a large training set to estimate

the pdf of the coe�cient selected �rst, second and so on, and make pdf

optimized quantizers. Another approach is inspired by the shape gain

VQ. As described in Chapter 2 there is a strong relation between shape

gain VQ and frame based representation. We could, as in shape gain

VQ, train the codebook of gains as well as the codebook of shapes. This

can be done iteratively; for a given gain codebook and partition the

optimal shape codebook is found and after that the new suboptimal

partition. Next, given the shape codebook and partition, the optimal

gain codebook is found and again the new suboptimal partition is found,

and so forth. Note that in this context the suboptimal partition refers to

a suboptimal vector selection algorithm together with an optimal method

of �nding the best gain values when the vector selection is decided. The

shape codebook refers to the frame. The optimization is done solely

with respect to MSE. This was tried on ECG signals. The position

information, as run, and the coe�cient value were combined into one

symbol, as before. The probability distribution of the combined symbols

turned out to be fairly even. As expected, the distribution of the position

information had an even stronger similarity to a uniform distribution

than in the tests shown in Chapter 6.

� Other frame design methods

The MOD is quite computationally expensive having to use a vector

selection algorithm for each of the vectors in the training set for each

iterations along with the inversion of the matrix in Equation 4.20. A

less computational expensive algorithm could be desirable in many ap-

plications. One possible approach for the second part of MOD, where a

new frame is computed according to Equation 4.20 and a matrix inver-
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sion is needed, could be a iterative updating of the frame vectors instead

of recalculating them according to Equation 4.20. A gradient descent

approach gives:

F̂(k+1) = F̂(k) � �(k)
MX
l=1

r
(k)
l ŵT

l ; (9.1)

where �(k) is a variable step-size parameter. When looking at the prob-

lem

arg min
F;WM

hkx� Fwk2 + �d(w)iM (9.2)

we discovered that it had the trivial solution that both the error kx� Fwk2
and the sparsity measure d(w) can go to zero in the case where w ! 0

and F ! 1. To prevent this from happening F has to be bounded in

some way. One possible approach is to keep the Frobenius norm of the

matrix constant.

Letting the step size ensure the constant Frobenius norm, we get:

�(k) =
2

M

trace(F(k)T ~R
r(k)ŵ

)

trace( ~R
ŵr(k)

~R
r(k)ŵ

)
: (9.3)

This is shown in Appendix A.2.

The �rst part of MOD requires recalculated coe�cient vectors in every

iteration. A possible less computational approach would be an algorithm

iteratively updating the coe�cient vectors instead of recalculating them

for each iteration in the MOD algorithm. Kreutz-Delgado et. al. adress

this topic in [40, 43]. The problem of Equation 9.2 is interpreted as a

Lyapunov function, and this gives a possible approach for iterating both

the frame vectors and the coe�cient vectors.

� Total Least Square

The MOD algorithm for frame design uses a Least Square (LS) approach.

A possible improvement could be obtained by using a Total Least Square

(TLS) approach.

� Adaptive frame design

The frame design in this thesis is done o� line using a training set.

A scheme adapting the frame to the signal in real time could be an

advantage if we have a signal with slowly changing characteristics, or in
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other examples where we want to tailor a frame to a speci�c signal for

better performance. One example of the latter could be in speech coding:

A frame trained on a broad training set of di�erent speakers could be

the initial frame. In many situations just one speaker would use the

system for a period, and adapting the frame would lead to improved

performance.

� Lapped frames

In this thesis we have concentrated on a block based scheme with no

overlapping, like in traditional transform coding. This leads to well

known blocking artifacts. A natural generalization would be to lapped

frames. Comparing to the traditional analysis-synthesis setting this will

correspond to the more general lapped transform or �lter banks and

wavelets. A general algorithm for lapped frames is developed by Aase et

al. in [1].

� MSVQ

In Chapter 2 we do a theoretical comparison of frame based representa-

tion and MSVQ. Experiments could be done both to verify the theoret-

ical comparison as it is, and in compression schemes including coding of

the coe�cients/indices.
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Appendix A

Mathematical details

A.1

We here show that Equation 4.20 is equivalent to Equation 4.21. That is the

equation

~F = F+ ~Rrw
~R�1
ww (A.1)

is equivalent to

~F = ~Rxw
~R�1
ww: (A.2)

From the equations 4.1 and 4.2 we know that:

xl = Fwl + rl (A.3)

The estimated cross correlation matrix ~Rxw can be written:

~Rxw =
1

M

MX
l=1

xlw
T
l : (A.4)

Inserting Equation A.3 in A.4 gives:

~Rxw =
1

M

MX
l=1

(Fwl + rl)w
T
l

=
1

M

MX
l=1

Fwlw
T
l +

1

M

MX
l=1

rlw
T
l

= F
1

M

MX
l=1

wlw
T
l +

1

M

MX
l=1

rlw
T
l

= F ~Rww + ~Rrw:
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Inserting this in Equation A.2 gives:

~F = (F ~Rww + ~Rrw) ~R
�1
ww

= F+ ~Rrw
~R�1
ww

which is identical with Equation A.1.

A.2

In this section we show how a constant Frobenius norm of F led to Equation 9.3

in Chapter 9. Let kFkF denote the Frobenius norm of the matrix F;

kFk2F = trace(FTF):

Using a gradient descent approach to update the frame vectors we have:

F̂(k+1) = F̂(k) � �(k)
MX
l=1

r
(k)
l ŵT

l ; (A.5)

where rl = F̂ŵl � xl; l = 1; 2; : : : M , k is an iteration variable, and �(k) is a

step-size parameter. Using the step size to keep the Frobenius norm constant

gives:

trace(F(k+1)TF(k+1)) = trace(F(k)TF(k)): (A.6)

Substituting Equation A.5 in Equation A.6 we get:

trace(F(k+1)TF(k+1)) =

trace[(F(k) � �(k)
MX
l=1

r
(k)
l ŵT

l )
T (F(k) � �(k)

MX
l=1

r
(k)
l ŵT

l )] =

trace[F(k)TF(k) � F(k)T�(k)
MX
l=1

r
(k)
l ŵT

l � �(k)
MX
l=1

ŵlr
(k)T
l F(k)

+�(k)2
MX
l=1

ŵlr
(k)T

l

MX
i=1

r
(k)
i ŵT

i ] =

trace(F(k)TF(k))� 2�(k)trace(F(k)T
MX
l=1

r
(k)
l ŵT

l )

+�(k)2trace(

MX
l=1

ŵlr
(k)T
l

MX
i=1

r
(k)
i ŵT

i ) =

trace(F(k)TF(k))
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This gives:

�(k) =
2trace(F(k)T

P
l r

(k)

l ŵT
l )

trace(
P

l ŵlr
(k)T
l

P
i r

(k)
i ŵT

i )
(A.7)

De�ning:

~R
r(k)ŵ

=
1

M

MX
l=1

r
(k)

l ŵT
l

~R
ŵr(k)

=
1

M

MX
l=1

ŵlr
(k)T
l ;

We have:

�(k) =
2

M

trace(F(k)T ~R
r(k)ŵ

)

trace( ~R
ŵr(k)

~R
r(k)ŵ

)
: (A.8)
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Appendix B

Tables

Size 16� 32

No. of vectors Speechtest
in the DCT Initial frame: MOD opt.

approximation DCT+Haar frames

1 0.6518 0.6273 0.4599

2 0.4510 0.4266 0.2874

3 0.3194 0.3040 0.1950

4 0.2323 0.2256 0.1395

5 0.1700 0.1688 0.1050

Table B.1: Normalized distortion after test on Speechtest. Frames trained on

Speechtrain. Ad hoc based initial frame (DCT+Haar), size 16� 32.
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Size 16� 41

No. of vectors MIT100test
in the DCT Ad hoc based MOD opt.

approximation initial frame frames

1 0.6275 0.1901 0.1428

2 0.3772 0.1067 0.0687

3 0.2290 0.0658 0.0449

4 0.0724 0.0455 0.0325

5 0.0471 0.0348 0.0260

Table B.2: Normalized distortion after test on MIT100test. Frames trained on

MIT100train. Ad hoc based initial frame (7 DCT vectors + 34 ad hoc designed

vectors), size 16� 41.

Size 16� 41

No. of vectors MIT113test
in the DCT Ad hoc based MOD opt.

approximation initial frame frames

1 0.4637 0.1683 0.1180

2 0.2570 0.0773 0.0556

3 0.1497 0.0514 0.0372

4 0.0754 0.0384 0.0275

5 0.0477 0.0310 0.0227

Table B.3: Normalized distortion after test on MIT113test. Frames trained on

MIT100train. Ad hoc based initial frame (7 DCT vectors + 34 ad hoc designed

vectors), size 16� 41.
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Size 32� 64

No. of vectors Speechtest
in the DCT Initial MOD opt.

approximation frame frames

1 0.7372 0.7843 0.5883

2 0.5788 0.6920 0.4243

3 0.4627 0.6261 0.3217

4 0.3786 0.5688 0.2606

5 0.3147 0.5190 0.2181

6 0.2636 0.4739 0.1832

Table B.4: Normalized distortion after test on Speechtest. Frames trained on

Speechtrain. Initial frame from training vectors, size 32� 64.

Size 32� 64

MIT100test
No. of vectors MIT100train MITmix

in the DCT Initial MOD opt. Initial MOD opt.

approximation frame frames frame frames

1 0.7203 0.4474 0.2391 0.4917 0.2802

2 0.5571 0.3118 0.1142 0.3429 0.1563

3 0.4257 0.2567 0.0825 0.2683 0.1183

4 0.3183 0.2169 0.0640 0.2241 0.0998

5 0.2369 0.1910 0.0536 0.1948 0.0787

6 0.1713 0.1723 0.0497 0.1737 0.0679

Table B.5: Normalized distortion after test on MIT100test. Frames trained on

MIT100train and MITmix. Initial frame from training vectors, size 32� 64.
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Size 32� 64

MIT207test
No. of vectors MIT207train MITmix

in the DCT Initial MOD opt. Initial MOD opt.

approximation frame frames frame frames

1 0.4707 0.1739 0.1049 0.2486 0.1434

2 0.2226 0.1220 0.0643 0.1577 0.0828

3 0.1317 0.0988 0.0480 0.1115 0.0615

4 0.0859 0.0831 0.0391 0.0878 0.0516

5 0.0611 0.0708 0.0331 0.0736 0.0398

6 0.0465 0.0606 0.0291 0.0613 0.0352

Table B.6: Normalized distortion after test on MIT207test. Frames trained on

MIT207train and MITmix. Initial frame from training vectors, size 32� 64.
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