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Abstract

Aeroelastic analysis is a major task in the design of long-span bridges, and recent

developments in computer power and technology have made Computational Fluid

Dynamics (CFD) an important supplement to wind tunnel experiments. In this pa-

per, we employ the Finite Element Method (FEM) with an effective mesh-moving

algorithm to simulate the forced-vibration experiments of bridge sectional mod-

els. We have augmented the formulation with weakly-enforced essential bound-

ary conditions, and a numerical example illustrates how weak enforcement of the

no-slip boundary condition gives a very accurate representation of the aeroelas-

tic forces in the case of relatively coarse boundary layer mesh resolution. To

demonstrate the accuracy of the method for industrial applications, the complete

aerodynamic derivatives for lateral, vertical and pitching degrees-of-freedom are
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computed for two bridge deck sectional models and compared with experimental

wind-tunnel results. Although some discrepancies are seen in the high range of

reduced velocities, the proposed numerical framework generally reproduces the

experiments with good accuracy and proves to be a beneficial tool in simulation

of bluff body aerodynamics for bridge design.

Keywords: Bridge aerodynamics, Aeroelasticity, Finite Element Method,

Aerodynamic derivatives, ALE-VMS

1. Introduction

Although the Finite Volume Method (FVM) is the most widely-used and thor-

oughly validated method in Computational Fluid Dynamics (CFD), the Finite El-

ement Method (FEM) has seen huge development in efficient and accurate model-

ing for CFD and Fluid–Structure Interaction (FSI) problems in the recent decades.

An important advantage with FEM is its natural ability to handle deforming spatial

domains, making it suitable for multi-physics simulations such as FSI. Moreover,

the continuous field variables makes handling of derived quantities very conve-

nient.

The core technology used in this work is the Arbitrary Lagrangian–Eulerian

Variational Multiscale (ALE-VMS) formulation of the Navier–Stokes equations

for incompressible flows [1–6] with weak enforcement of essential boundary con-

ditions (BCs) [7–12]. The former may be viewed as an extension of the residual-

based variational multiscale (RBVMS) method for turbulence modeling [13–15]

to moving domains using the ALE technique [16], while the latter acts as a near-

wall model and relaxes the boundary-layer resolution requirements for engineer-

ing applications without significant loss of solution accuracy. VMS methods, in
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context of both ALE and space–time (ST) techniques, have been successfully ap-

plied to a wide range of engineering problems [4, 5, 11, 12, 17–53], including

computation of aerodynamic derivatives in 2D [54].

To guarantee good mesh quality near the bridge surface during forced-vibration

simulations, the Solid-Extension Mesh Moving Technique (SEMMT) was adopted [55–

60]. In this approach, structured layers of elements generated around the solid

object move together with solid object, undergoing a rigid-body motion, and thus

preserving the original mesh quality. With this computational framework we com-

pute the aerodynamic derivatives from 3D numerical simulations of the forced-

vibration experiments and compare with corresponding wind tunnel experiments

for two carefully chosen sections: A rectangular prism with aspect ratio 10, and

a 1:50 scale model of the Hardanger bridge [61]. The rectangular prism, char-

acterized by strongly detached flows at the leading edge, represents the classical

example in bluff body aerodynamics and its flutter characteristics have been stud-

ied numerically using FVM and various turbulence models in, e.g., [62–64]. The

Hardanger Bridge, with a more streamlined shape, represents the new genera-

tion of long-span suspension bridges with highly optimized aerodynamic design.

A fully coupled free-vibration Fluid-Object Interaction (FOI) simulation of the

same bridge was carried out in [65]. Numerous forced-vibration experiments of

similar generic bridge sections have been performed numerically in, e.g., [66–69]

including 2D FEM in [54, 70].

The simulations carried out in this paper have been designed to reproduce the

experimental setup as closely as possible, and since the wind tunnel tests presented

herein are performed specifically for this work, we are to a much greater extent

able to compare and evaluate the results down to each time series. A description
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of our forced-vibration experimental setup are given in [71].

We consider an extruded slice of the bridge deck, which is treated as a rigid

object. Because the deck motion is prescribed in forced-vibration, this type of

problem gives a one-way dependence between the fluid mesh and fluid mechanics

problem. In the fluid mesh problem the boundary layer elements, which constitute

a significant portion of the nodal degrees-of-freedom, are treaded as rigid. This

results in a computationally efficient solution of the fluid mesh problem while

keeping the mesh distortion at a minimum.

The governing equations are presented in Sec. 2 and the discrete ALE-VMS

formulation with weakly-enforced BCs is presented in Sec. 3. Sec. 4 presents

aeroelastic forces in the context of bridge engineering and in Sec. 5 the analysis

setup is presented. Numerical results are given in Sec. 6, and conclusions are

drawn in Sec. 7.

2. Governing equations for fluid mechanics in moving domains

In this section we present the Navier-Stokes equations for incompressible

flows in an ALE description. Let Ω̂ ∈ Rnsd , nsd = 2, 3, represent the reference

fluid mechanics domain with coordinates x̂ and boundary Γ̂, and let Ωt ∈ Rnsd ,

nsd = 2, 3, represent the current-configuration fluid mechanics domain with co-

ordinates x and boundary Γt. The ALE mapping is given by the time-dependent

displacements of the fluid domain, ŷ (x̂, t):

x(t) = x̂ + ŷ (x̂, t) . (1)

See Fig. 1. We let Su and Sp denote the appropriate sets of infinite-dimensional

trial functions for the fluid velocity u and pressure p, respectively, and we de-
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Figure 1: Fluid domain and its boundary with outward normal vector n in the reference and

current configuration.

fine their corresponding test functions Vu and Vp. The trial functions satisfy the

essential boundary conditions ui = gi on the (Γt)gi part of Γt.

The variational formulation of the fluid mechanics problem is stated in terms

of the semi-linear and linear formsB and F , respectively, as follows. Find u ∈ Su
and p ∈ Sp, such that ∀w ∈ Vu and q ∈ Vp:

B ({w, q} , {u, p} ; û)− F ({w, q}) = 0, (2)

where

B({w, q} , {u, p} ; û) =∫
Ωt

w · ρ
(
∂u
∂t

∣∣∣∣
x̂

+ (u− û) · OOOu
)

dΩ

+
∫

Ωt

ε(w) : σ(u, p) dΩ +
∫

Ωt

qOOO · u dΩ, (3)

and

F ({w, q}) =
∫

Ωt

w · ρf dΩ +
∫

(Γt)h

w · h dΓ. (4)
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Here, ρ is the density, f the body forces, h the prescribed surface tractions on the

(Γt)h part of Γt and û = ∂ŷ
∂t

∣∣
x̂

is the fluid domain velocity. The Cauchy stress

tensor σ is defined as:

σ(u, p) = −pI + 2µε(u), (5)

where I is the identity tensor, µ the dynamic viscosity and ε(u) the symmetric

strain-rate tensor of u, given by:

ε(u) = 1
2
(
OOOu + OOOuT

)
. (6)

3. Discrete ALE-VMS formulation with weakly-enforced BCs

In the following we present the ALE-VMS formulation with weakly-enforced

boundary conditions and the mesh-moving strategy for forced-vibration analyses.

At the discrete level the fluid domain is partitioned into nel finite element subdo-

mains Ωe
t , and the boundary Γt is decomposed into neb surface elements denoted

Γbt . We define the finite-dimensional functional spaces for velocity, pressure and

fluid mesh displacement respectively as Shu , Shp and Shm, and their correspond-

ing test functions as Vhu , Vhp and Vhm. Superscript h indicates that its attribute is

finite-dimensional.

The ALE-VMS formulation augmented with weakly-enforced BCs is then

given: Find uh ∈ Shu , ph ∈ Shp and ŷh ∈ Shm , such that ∀wh ∈ Vhu , qh ∈ Vhp
and wh

m ∈ Vhm:
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BVMS
({

wh, qh
}
,
{

uh, ph
}

; ûh
)

+BWBC
({

wh, qh
}
,
{

uh, ph
}

; ûh
)

−F VMS
({

wh, qh
})

+BMSH
({

wh
m

}
, ŷh(t)

)
= 0, (7)

where

BVMS
({

wh, qh
}
,
{

uh, ph
}

; ûh
)

=∫
Ωt

wh · ρ
(
∂uh

∂t

∣∣∣∣
x̂

+
(
uh − ûh

)
· OOOuh

)
dΩ

+
∫

Ωt

ε(wh) : σ(uh, ph) dΩ +
∫

Ωt

qhOOO · uh dΩ

+
nel∑
e=1

∫
Ωe

t

τSUPS

((
uh − ûh

)
· OOOwh + OOOqh

ρ

)
·

rM
(
uh, ph

)
dΩ

+
nel∑
e=1

∫
Ωe

t

ρνLSICOOO ·whrC(uh) dΩ

−
nel∑
e=1

∫
Ωe

t

τSUPSwh ·
(
rM
(
uh, ph

)
· OOOuh

)
dΩ

−
nel∑
e=1

∫
Ωe

t

OOOwh

ρ
:
(
τSUPSrM

(
uh, ph

))
⊗

(
τSUPSrM

(
uh, ph

))
dΩ, (8)

F VMS
({

wh, qh
})

=
∫

Ωt

wh · ρ fh dΩ +
∫

(Γt)h

wh · hh dΓ, (9)
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BWBC
({

wh, qh
}
,
{

uh, ph
}

; ûh
)

=

−
neb∑
b=1

∫
Γb

t∩(Γt)g

wh · σ
(
uh, ph

)
n dΓ

−
neb∑
b=1

∫
Γb

t∩(Γt)g

(
2µε

(
wh
)

n + qhn
)
·
(
uh − gh

)
dΓ

−
neb∑
b=1

∫
Γb

t∩(Γt)−
g

wh · ρ
((

uh − ûh
)
· n
) (

uh − gh
)

dΓ

+
neb∑
b=1

∫
Γb

t∩(Γt)g

τBTAN
(
wh −

(
wh · n

)
n
)
·

((
uh − gh

) ((
uh − gh

)
· n
)

n
)

dΓ

+
neb∑
b=1

∫
Γb

t∩(Γt)g

τBNOR
(
wh · n

) ((
uh − gh

)
· n
)

dΓ. (10)

and

BMSH
({

wh
m

}
, ŷh(t)

)
=∫

Ωt̃

ε(wh
m) : Dh ε

(
ŷh(t)− ŷh(t̃)

)
dΩ. (11)

Eq. (8) introduces the stabilization parameters τSUPS and νLSIC. These have been

designed to provide good stability and optimal convergence of the discrete formu-

lation through extensive studies [7–9, 11, 13, 14, 17, 19, 25, 41, 53, 72–83]. In this

work we use the definitions given in [80]. In Eq. (10) τTAN and τNOR are bound-

ary penalty parameters for the tangential and normal directions, respectively, as

defined in [9], and (Γt)−g is defined as the inflow part of (Γt)g:

(Γt)−g =
{

x|
(
uh − ûh

)
· n < 0,∀x ⊂ (Γt)g

}
. (12)

rM and rC are residuals of the linear-momentum and continuity differential equa-
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tions, respectively, given by:

rM(uh, ph) =ρ
(
∂uh

∂t

∣∣∣∣
x̂

+
(
uh − ûh

)
· OOOuh − fh

)
− OOO · σ

(
uh, ph

)
, (13)

rC(uh, ph) =OOO · uh. (14)

The fluid mesh part of the problem, Eq. (11), is the linear-elastic equation with

the elastic tensor Dh defined on a “nearby configuration” Ωt̃ at time t̃ < t. In

practice, t̃ is taken at the previous time step. For mesh deformation we adopted

Jacobian-based stiffening [55–57].

The fluid mesh displacements ŷh and velocities ûh are prescribed on all bound-

aries. For a boundary, such as the bridge deck, that undergoes forced-vibration we

have employed the boundary conditions as follows. Let x̂hI and x̂h0,I denote the

reference coordinates of the fluid-object interface and its centroid, respectively.

For an arbitrary rigid-body displacement ŷh0,I(t) and rotation θ(t) of the centroid,

the displacement of the interface ŷhI (t) is taken as:

ŷhI (t) = (R(θ(t))− I)
(
x̂hI − x̂h0,I

)
+ ŷh0,I(t) (15)

where R (θ(t))) is the rotation tensor. The fluid-object interface velocity ûhI is

obtained by the time derivative of ŷhI .

We use the Generalized-α method (see [80, 84, 85]) for time integration of

the ALE-VMS equations. Within each time step we perform a single mesh solve

followed by predictor-multicorrector Newton–Raphson iterations for the fluid me-

chanics problem.
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Figure 2: Aerodynamic forces on a bridge section.

4. Aeroelastic forces

With reference to quasi-steady theory [86] and the strip method [87], the

aeroelastic forces on a line-like bluff body with width B and height H are given

by the instantaneous drag, lift and pitching moment per unit length, denoted D(t),

L(t) and M(t), respectively. These are commonly given in terms of their dimen-

sionless load coefficients, CD(t), CL(t) and CM(t), defined as:

CD(t) = D(t)
1
2ρU

2H
, CL(t) = L(t)

1
2ρU

2B
, CM(t) = M(t)

1
2ρU

2B2 , (16)

following the notation and conventions in Fig. 2. Fig. 2 also defines the three

degrees-of-freedom p, h and θ with respect to the bridge deck centroid which

defines the bridge deck motion. U is the mean wind velocity.

Following Theodorsen’s theory [88], Scanlan and coworkers proposed an em-

pirical expression for the motion-induced contribution to the aerodynamic forces

[89], where the self-excited drag, lift and pitching moment, Dse(t), Lse(t) and
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Mse(t), respectively, are given as:

Dse = 1
2ρU

2BK
[
P ∗1

ṗ

U
+ P ∗5

ḣ

U
+ P ∗2

Bθ̇

U

+KP ∗4
p

B
+KP ∗6

h

B
+KP ∗3 θ

]
, (17)

Lse = 1
2ρU

2BK
[
H∗5

ṗ

U
+H∗1

ḣ

U
+H∗2

Bθ̇

U

+KH∗6
p

B
+KH∗4

h

B
+KH∗3θ

]
, (18)

Mse = 1
2ρU

2B2K
[
A∗5

ṗ

U
+ A∗1

ḣ

U
+ A∗2

Bθ̇

U

+KA∗6
p

B
+KA∗4

h

B
+KA∗3θ

]
, (19)

where P ∗i , H∗i and A∗i , i = {1 .. 6} are the so-called aerodynamic derivatives

[89–91]. These shape-dependent parameters may be regarded as transfer func-

tions between body motion and self-excited forces, and are commonly expressed

in conjunction with the reduced frequency, defined as K = Bω/U , or the reduced

velocity, Vred = K−1, where ω is the angular frequency of the structural motion.

These aerodynamic derivatives are essential to assess the dynamic performance

and predict the critical wind speed of a dynamic system. Analogue to Eq. (16) it

is convenient to express the self-excited forces in terms of normalized load coef-

ficients, defined as:

CD,se = Dse(t)
1
2ρU

2H
, CL,se = Lse(t)

1
2ρU

2B
, CM,se = Mse(t)

1
2ρU

2B2 . (20)

As an alternative to the free-vibration wind tunnel experiment [92], the forced-

vibration experiment [93] has proven to be an efficient and repeatable method to

obtain the flutter characteristics of bridge sections [94, 95]. In this experiment

the sectional model is driven in a user-defined motion by a vibration excitation

system. The forces are simultaneously measured by force-transducers. A detailed

11



description of the experimental setup is given in [71]. All experiments should

however be considered with some uncertainty, as it has been pointed out in [96]

that laboratory environment or operational conditions might have a non-negligible

effect on the aeroelastic forces.

5. Analysis setup

B = 0.500 m

H
=

0.
1B

B = 0.366 m

H
=

0.
18
B

0.
61
H

Figure 3: Cross sections considered. BH10: rectangular prism with aspect ratio B/H = 10 (above)

and HAD3: 1:50 scaled model of the Hardanger bridge section (below).

The two sections shown in Fig. 3 are considered. The rectangular prism with

aspect ratio B/H = 10, referred to as BH10, represents the classical example in

the study of bluff body aerodynamics, and with its characteristic detached flows

at the leading edge it is also often considered as a representative of many types of

bridge sections. The other section is a 1:50 scale of the Hardanger bridge [61],

referred to as HAD3. In this work we consider the ”clean deck”, without details as

pavement and guide vanes. This model represents a new generation of suspension

bridges with highly optimized aerodynamic design. Although this cross section

is more streamlined, it still exhibit bluff body-like flow characteristics due to the

high Reynold’s numbers.
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Figure 4: Outline of the computational domain showing dimensions and adopted boundary con-

ditions.

The computational domain is taken as a box that represents a slice of the wind

tunnel. The inflow and outflow surfaces are placed approximately 3B and 8B

from the bridge deck centroid, respectively. For the upper and lower boundaries

of the domain we have used the physical dimensions of the wind tunnel with a

total height of 1815 mm and the deck centroid placed 930 mm above the floor,

as shown in Fig. 4. The physical width of the wind tunnel, i.e. the length of the

sectional model, is 2730 mm. The computational width is, however, reduced to

500 mm. In the parameter study in Sec. 6 this proves sufficiently wide to capture

the three-dimensional flow structures, which were shown to have a non-negligible

effect on the aerodynamic forces in [66] and [97].

For the fluid mechanics boundary conditions, smooth flow with wind velocity

U is prescribed on the inflow surface. The walls, including the transverse bound-
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(a) Wake refinement region.

(b) Boundary layer elements.

Figure 5: Close-up view of the fluid mechanics mesh near the bridge deck.

aries, are constrained with no penetration, and on the bridge deck the weakly-

enforced no-slip boundary condition is employed. The outflow surface is traction-

free.

An interior surface enclosing the bridge deck, shown in Fig. 5a, defines a wake

refinement region which is used to perform local mesh refinement and employ

mesh moving boundary conditions. The wake refinement region is constrained by

Eq. (15) to follow the vertical and horizontal motions of the bridge deck and rotate

with half the magnitude. With this setup, mesh distortion is kept at a minimum

while keeping the region of the refined mesh at the wake, even for relatively large

rotations.

For discretization all surfaces are meshed with unstructured linear triangles.

Prismatic elements extruded from the bridge deck surface define the boundary
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layers, as shown in Fig. 5b. In this work the number of boundary layers is set

to 10. For the fluid mesh problem these elements are treated rigidly, which be-

sides eliminating mesh distortion near the bridge deck also reduce the fluid mesh

problem significantly, as the boundary layers typically constitute nearly half of

the nodes in the computational model. The remaining volumes are meshed with

linear tetrahedrons.

With a total grid size of 8.3× 105 and 1.1× 106 nodes for BH10 and HAD3,

respectively, an effective computation relies on a parallel implementation. The

computations in this work make use of the Message Passing Interface (MPI) li-

braries adopted from [98] and [99].

The air density, ρ, is set to 1.225 kg/m3 and the dynamic viscosity, µ, is set

equal to 1.7894 × 10−5 kg/ms. The computational time stepping has been set to

approximately 1 × 10−3B/U , giving a maximum Courant number below 2.5 at

the smallest boundary layer elements.

The forced-vibration experiment is relatively easy to investigate numerically,

as no momentum equations need to be solved for the structure and the fluid me-

chanics and the fluid mesh blocks can be solved separately. With the sectional

model restricted to the three degree-of-freedom p, h and θ, with reference to Fig.

2, its motion can be described in the 2D ph-plane. With the strip method we also

consider the bridge deck as a rigid body.

Following the wind tunnel experiments [71] we excite the sectional models in

a single harmonic motion with amplitudes of 15 mm for p and h, and 2° for θ. For

each motion we have studied wind velocities of U = 4 and 8 m/s and vibration fre-

quencies of fj = 1.1, 0.8 and 0.5 Hz, j = {p, h, θ}, rendering reduced velocities,

Vred between 1.2 and 7.0 and Reynolds numbers in the range of 1.0 − 2.0 × 105
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for HAD3 and 1.4 − 2.7 × 105 for BH10. As a verification, some analyses are

performed for other combinations of U and f giving the same Vred.

The self-excited forces are taken as the total aerodynamic forces detrended

over the last whole number of displacement cycles. The aerodynamic derivatives

are then identified by least squares fitting of Eqs. (17) – (19), as described in [71].

6. Results

-2

0

2

-0.2
-0.1

0
0.1
0.2

-0.4
-0.2

0
0.2
0.4

-0.03
0

0.03

0.0 1.0 2.0 3.0

Rotation angle, θ(t) [°]

Drag coefficient, CD,se

Lift coefficient, CL,se

Time, t [s]

Moment coefficient, CM,se

Wind tunnel
w = 1000 mm

w = 500 mm
w = 250 mm

Figure 6: The effect of domain width on the self-excited force coefficients for BH10. Re =

2.7× 105, Vred = 4.3 (U = 8 m/s and fθ = 1.1 Hz).

In this section we present the numerical results. The aeroelastic forces are

16



mainly given in terms of the normalized load coefficients (Eqs. (16) and (20)),

or in terms of the aerodynamic derivatives. All comparisons between simulations

and experiments are conducted with the self-excited forces due to inaccurate cali-

bration of the absolute forces, which cancels out when the in-wind measurements

are subtracted from the corresponding still-air measurements. To the experimen-

tal data, a numerical Buttersworth filter [100] with low-pass frequency of 3 Hz

is applied to remove electrical noise and forces originating from vibration of the

sectional models. This issue is closely discussed in [71]. For the simulations,

however, where no such disturbances occur, we prefer to represent time series

either without any numerical filters or with both the filtered and the unfiltered

forces.

A parameter study of the domain width is presented in Fig. 6. From the in-

significant difference between the self-excited forces for domain widths in the

range of 250 to 1000 mm, it is evident that the three-dimensional effects are suffi-

ciently captured for the present study. As a consequence of the decreasing corre-

lation between the force fluctuations in the transverse direction, these become less

evident with the increasing domain width. This effect is most clearly seen in drag

comparing w = 250 mm and w = 500 mm. Throughout the rest of this work,the

domain width is set to w = 500 mm.

To ensure that the self-excited forces from the numerical analyses can be re-

garded as a stationary process we start sampling them at a time period of approx-

imately t = 5.5B/U after the deck is set to motion. At this time the effects of

the initial condition is no longer present in the case of non-moving decks and the

forces pose stable behavior, as seen in Fig. 7. We have assumed that the same

initialization time applies to the forced-vibration case. Note that for all analyses
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Figure 7: Development of total forces on BH10 and HAD3 with various wind speeds for a sta-

tionary simulation. The initial conditions, i.e. at t = 0, the flow is uniform in the entire domain.

the simulation is run for 1 s before the deck is set in motion. The aerodynamic

derivatives are computed from two cycles, which in [101] has proven to be a good

compromise between accuracy and computational efficiency.

We do not present any full convergence study herein. However, in Fig. 8 the

self-excited forces for a selected forced-vibration analysis (BH10 with U = 8

m/s and fθ = 1.1 Hz) are compared using half the time step (∆t/2), and dou-

bled mesh density also using half the time step (∆t, Refined). The latter yield

a Courant number approximately equal to the original analysis. The results are

indistinguishable and suggest that the numerical solution has converged.
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Figure 8: Convergence with respect to computational time stepping and mesh refinement of self-

excited forces for the BH10 section with Vred = 2.3 (U = 8 m/s and fθ = 1.1 Hz).

6.1. The role of weakly-enforced essential boundary conditions

To demonstrate the ability of the ALE-VMS method with weakly-enforced

BCs to deal with relatively coarse boundary meshes on bluff body aerodynamics

we have employed both the classical strongly-enforced, and the weakly-enforced

no-slip boundary conditions on a forced-vibration simulation of the HAD3 sec-

tion. For this study we take the original mesh setup described in Sec. 5 as the

reference analysis and compare with a relatively coarse mesh without the pris-

matic boundary layer elements. On this mesh the number of nodes is reduced by
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Figure 9: Load coefficients HAD3 at Re = 2 × 105 with U = 8 m/s, fθ = 1.1 Hz and w = 500

mm obtained with weakly- and strongly-enforced BCs (WBC and SBC, respectively) for a coarse

mesh. Reference solution represents a fine mesh with strongly-enforced BCs.

85 % to 150× 103 nodes.

Fig. 9 shows the total load coefficients for drag, lift and pitching moment

for the pitching mode with Vred = 3.2 (fθ = 1.1 Hz and U = 8 m/s) and un-

surprisingly, the weak BCs outperform the strong in terms of accuracy. While the

strong BCs underestimate the magnitudes of both drag and lift for such coarse dis-

cretizations, the weakly-enforced BCs captures the reference solution with very

good accuracy.

The strong BCs forms artificially thick boundary layers retarding the flow and
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(a) SBC. (b) WBC. (c) Reference.

(d) SBC. (e) WBC. (f) Reference.

Figure 10: Pressure (top) and air speed contours (bottom) for HAD3 at t = 2.40s for the u = 8

m/s and f = 1.1 Hz forced vibration simulation. (a) and (d): Strongly-enforced BCs (SBC), (b)

and (e): Weakly-enforced BCs (WBC), (c) and (f): Reference analysis.

makes it behave more viscous. The weak BCs, however, let instead the flow slip

on the surface without forming undesirably thick boundary layers. In this way

the pressure distribution, which dominates the aerodynamic forces, as well as the

turbulent structures, becomes more realistic. This is clearly seen in Fig. 10 where

pressure and air speed contours for a snapshot at t = 2.40 s are shown for the two

methods.

Remark 1. It should be remarked that although we see a significant difference

using weak and strong BCs for bluff bodies, earlier work [23] has found that for

streamlined bodies like airfoils where the flows are fully attached, the gain using

weakly-enforced BCs might be even larger.
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Remark 2. The mesh used in this study is artificially coarse and for the model-

scale geometrically clean sections studied in this work, the difference between

weakly- and strongly-enforced BCs becomes less significant. The example does

however show the supremacy of the weakly-enforced BCs for cases where suffi-

cient boundary layer resolution is unaffordable, e.g. for complex geometries with

pavements, spoilers, etc. and full-scale simulations with extremely high Reynold’s

numbers.

6.2. Flutter derivatives for BH10

For the BH10 section, the numerically computed aerodynamic derivatives gov-

erning the self-excited drag, lift and pitching moment are shown in Figs. 11, 12

and 13, respectively. The same plots also show the experimental results, for which

the dashed lines represent their least-square fitted 3rd order polynomial curve. For

the drag-related aerodynamic derivatives P ∗i the numerical results we get a nice

representation of the harmonic component related to lateral motion p, i.e. P ∗4

and P ∗1 , which is the most important flutter derivative concerning drag. For the

pitching motion the experiments reveal a very non-physical behavior for P ∗3 . For

this symmetrical cross section subjected to a pitching motion we would expect

a symmetrical response with double frequency in drag. The experimental P ∗3 do

however contain a distinct harmonic component. This error typically arise from

calibration of zero angle-of-attack. In the simulations the drag response is sym-

metric with respect to positive and negative angle-of-attack, giving P ∗2 and P ∗3

equal to zero. This is clearly seen in the time series in Fig. 14, showing the

self-excited forces for U = 8 m/s and fθ = 0.5 Hz.

For the H∗- type aerodynamic derivatives we observe fair agreement between

experiments and simulations for low values of Vred. However, for lower frequen-
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cies the deviations increase, especially for H∗4 and H∗2 indicating a difference in

phase of the self-excited forces between simulations and experiments. Moreover,

the simulations consequently render higher force magnitudes for both the vertical

and the pitching motion towards the stationary limit. Earlier work on the same

section have made the same observations, see e.g. [62, 63].

Regarding the pitching moment and their A∗-type aerodynamic derivatives

the experiments are reproduced with better accuracy although the observations

made for lift are also seen here, however less prominent. The time series used to

compute the aerodynamic derivatives related to pitching- and vertical motion for

Vred = 5.1 are respectively shown in Figs. 14 and 15.

Remark 3. One should keep in mind that because the self-excited drag is vanish-

ingly small, both compared to the lifting force and forces arising from structural

vibration of the sectional model, it is very difficult to separate from the total mea-

sured forces. As lift and pitching moment dominate the self-excited forces, the

lateral forces and motions are in fact often disregarded in flutter analyses. This

may however lead to underestimation of the critical flutter wind speed, as pointed

out in [102].

6.3. Flutter derivatives for HAD3

As for BH10, the aerodynamic derivatives for the HAD3 section are presented

in Figs. 16, 17 and 18 for self-excited drag, lift and pitching moment, respectively.

For this section there is generally very good agreement between simulations and

experiments, and particularly for those that have been pointed out as the most

important in flutter analysis [102]; A∗1, A∗2, A∗3 and H∗1 . Higher magnitudes of the

lift and the pitching moment are also seen for this section, however less distinct
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than for BH10. We also observe that excellent agreement is obtained for the phase

angles, i.e. the ratio between aerodynamic derivatives related to the structural

motion and its time derivative. This is clearly illustrated in the time series in Fig.

19, showing the self-excited forces for U = 8 m/s and fθ = 0.5 Hz.

The self-excited drag is mainly governed by the lateral velocity through P ∗1

and is in good agreement with the experiments. The experimental drag forces are

however, as pointed out in Sec. 6.2, due to their small magnitude associated with

a lot of uncertainty.

An interesting observation in the simulations is the action of the lateral motion

on the pitching moment, i.e. A∗6. To some extent the same effect is seen for the

lifting force in terms of H∗5 and H∗6 for experiments and simulations, however, the

experiments do not capture this effect for the pitching moment. Fig. 20, showing

the self-excited forces for U = 8 m/s and fp = 0.8 Hz, supports this observation.

7. Conclusions

In this paper a methodology to perform the forced-vibration experiment using

ALE-VMS techniques augmented with weak enforcement of the essential bound-

ary conditions has been presented. The problem is solved very effectively in

a blockwise fashion with a mesh-moving algorithm that reduces the fluid mesh

problem significantly.

It has been shown that in the case of coarsely discretized boundary layers, the

weakly-enforced BCs outperform the classical no-slip. Instead of forming artifi-

cially thick boundary layers and flow retardation, the flow is allowed to slip on the

surface and represent the pressure field and turbulent patterns more accurate. Al-

though an artificially coarse mesh was used to illustrate this, the example clearly
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show the ability of the formulation to accurately represent the aerodynamic forces

in cases where optimal mesh resolution is impossible.

Using the forced-vibration method, complete aerodynamic derivatives for lat-

eral, vertical and pitching degrees-of-freedom have been computed for two bridge

deck sectional models numerically. Wind tunnel experiments of the same sec-

tions have been performed and used for comparison. The setup of the numerical

simulations was chosen to match the experiments as closely as possible in order

to compare not only the aerodynamic derivatives, but also the time series from

which they are computed. The BH10 show fair agreement between simulations

and experiments. However, clear discrepancies appear in the region of high re-

duced velocities and especially H∗4 and H∗2 manifest that the structural velocity

is of different importance in the experiments and the simulations. For the HAD3

section the numerically obtained aerodynamic derivatives closely match the ex-

perimental, even for high Vred. However, although less distinct than for BH10,

also this section render higher self-excited forces in the simulations, especially

for the pitching moment.

Because of its computational effectiveness and user-friendly problem defini-

tion, we believe the proposed method represents a beneficial tool in aeroelastic

analysis of bridges. However, open questions remain regarding the discrepancies

in aerodynamic derivatives for high reduced velocities, especially prominent for

the rectangular prism, which encourage further investigations.
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Figure 11: BH10 aerodynamic derivatives governing self-excited drag.
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Figure 12: BH10 aerodynamic derivatives governing self-excited lift.
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Figure 13: BH10 aerodynamic derivatives governing self-excited pitching moment.
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Figure 14: Filtered and unfiltered self-excited force coefficients for the BH10 section (Num. and
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Figure 15: Filtered and unfiltered self-excited force coefficients for the BH10 section (Num. and
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Figure 16: HAD3 aerodynamic derivatives governing self-excited drag.
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Figure 17: HAD3 aerodynamic derivatives governing self-excited lift.
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Figure 18: HAD3 aerodynamic derivatives governing self-excited pitching moment.
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Figure 19: Filtered and unfiltered self-excited force coefficients for the HAD3 section (Num. and
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Figure 20: Filtered and unfiltered self-excited force coefficients for the HAD3 section (Num. and
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