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Thesis outline

The thesis consists of the following two self-contained parts:

PART I: A Bayesian hierarchical model for the population dynamics of coastal cod.
Report.

PART II: Modelling spatial variation in disease risk using Gaussian Markov random
field proxies for Gaussian random fields. With Hivard Rue. Report.

Both reports address the problem of sampling based inference in Bayesian hierarchical
models, but within two different areas of application. While the study in Part I focus
on modelling and inference for a problem in marine biology for which the data are tem-
porally structured, the study in Part II is concerned with the analysis of spatially struc-
tured epidemiological data. The parameters of the models are estimated using Markov
chain Monte Carlo methods (Gilks, Richardson and Spiegelhalter, 1996). The properties
of the models in terms of mixing and convergence of the MCMC algorithms are stud-
ied empirically based on simulated data sets, utilising re-parameterisation (Part I) and
blocking (Part II) to improve the performance of the parameter estimation procedures.

The major part of the thesis is Part I, where a Bayesian hierarchical model for the pop-
ulation dynamics of cod along the Norwegian Skagerrak coast is presented. The data
on which the study is based have been collected as part of monitoring programme that
was initiated by a controversy between a fisherman and a scientist during the first few
years of the 20th century (Dahl and Dannevig, 1906). They could not agree on whether
releasing cod larvae would enhance the population of cod within separate fjords along
the coast, and to resolve the controversy, a release experiment followed by beach seine
catches was conducted. The experiments and the related discussions motivated the
establishment of a long-term monitoring programme that is still conducted (Smith,
Gjeseeter, Stenseth, Kittilsen, Danielssen, Solemdal and Tveite, 2003). The data used in
the study are samples of the two juvenile age-groups of cod at a set of locations in fjords
along the coast, taken annually over a period of 43 years. The model is an extension of
the models defined in Bjernstad, Fromentin, Stenseth and Gjesaeter (1999) and Stenseth,
Bjernstad, Falck, Fromentin, Gjeseeter and Grey (1999), and includes an age-structured
model for the dynamics of the population as well as a model for the sampling process
generating the data. No data is available for the mature cod, but the mature abundance
is represented by a latent variable that is linked to the juvenile cod abundances by a
stochastic recruitment process. The parameters and abundances are estimated using a
Metropolis-Hastings sampler. Applying the estimation procedure to a simulated data
set, the mixing properties are shown to be improved by re-parameterising the model,
although mixing problems persists for the adult cod, for which we have no data, and
related parameters. Since the model parameters and not the abundances are the quan-
tities of main interest in the study, an alternative approach based on sampling from the
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marginal posterior distribution of the parameters, integrating over the abundances, is
proposed. Based on the estimated model for the population dynamics, the release ex-
periment from the early 20th century is imitated by conducting a simulation study of
the effect of releasing juvenile cod.

In Part II, a spatially structured model for the geographical variation in disease risk is
presented. Spatial variation in the risk of a disease is often represented by disease maps,
displaying disease incidence of mortality rates in a set of disjoint regions. Since the pop-
ulations in different regions often vary substantially in size, the variability of these raw
estimates of disease risk differs between regions, such that spurious estimates of high
risk in regions with low populations can mask the true spatial pattern of the risk. Start-
ing with the works of Clayton and Kaldor (1987) and Besag, York and Mollié (1991)
a number of authors have presented Bayesian approaches to the problem of smooth-
ing the crude maps. Typically, the data underlying the maps are aggregated counts in
administratively specified regions, and the resulting maps are based on estimates that
are disjoint across region boundaries. However, in many cases it seems reasonable to
assume that the risk of a disease vary smoothly across the region of interest. In the
case of point data, for which the exact locations are known, the model-based geostatisti-
cal approach by Diggle, Tawn and Moyeed (1998) or the Poisson-Gamma random field
model approach by Best, Ickstadt and Wolpert (2000) can be taken. Recently, Kelsall and
Wakefield (2002) presented a geostatistical approach to estimating a smoothly varying
surface based on aggregated count data, using an underlying Gaussian random field
(GRF) to derive a log-Normal approximation to the joint distribution of relative risks at
the regional level. In Part II of this thesis, an alternative approach is presented, based
on specifying a GRF on a lattice, and fitting a Gaussian Markov random field (GMRF)
to this GRF (Rue and Tjelmeland, 2002). Inference is based directly on the risk surface
model as defined on the lattice, avoiding an approximation to the distribution of the
regional risks. Utilising the computational convenient structure of the Markov random
field, efficient algorithms for estimating the risk surface and the hyper-parameters of
the model, based on the routines implemented in Rue and Follestad (2002), are devel-
oped. The properties of the sampling based estimation approach is studied empirically
using two simulated data sets, and the method is applied to a set of data on mortality
from oral cavity cancer in Germany.
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Abstract

We present a non-Gaussian and non-linear state-space model for the population dy-
namics of cod along the Norwegian Skagerrak coast, embedded in the framework of a
Bayesian hierarchical model. The model takes into account both process error, repre-
senting natural variability in the dynamics of a population, and observational error,
reflecting the sampling process relating the observed data to true abundances. The
data set on which our study is based, consists of samples of two juvenile age-groups
of cod taken by beach seine hauls at a set of sampling stations within several fjords
along the coast. The age-structure population dynamics model, constituting the prior
of the Bayesian model, is specified in terms of the recruitment process and the processes
of survival for these two juvenile age-groups and for the mature population, for which
we have no data. The population dynamics is specified on abundances at the fjord level,
and an explicit down-scaling from the fjord level to the level of the monitored stations is
included in the likelihood, modelling the sampling process relating the observed counts
to the underlying fjord abundances.

We take a sampling based approach to parameter estimation using Markov chain Monte
Carlo methods. The properties of the model in terms of mixing and convergence of the
MCMC algorithm are explored empirically on the basis of a simulated data set, and we
show how the mixing properties can be improved by re-parameterisation. Estimation of
the model parameters, and not the abundances, is the primary aim of the study, and we
also propose an alternative approach to the estimation of the model parameters based
on the marginal posterior distribution integrating over the abundances.

Based on the estimated model we illustrate how we can simulate the release of juvenile
cod, imitating an experiment conducted in the early 20th century to resolve a contro-
versy between a fisherman and a scientist who could not agree on the effect of releasing
cod larvae on the mature abundance of cod. This controversy initiated the monitoring
programme generating the data used in our study.
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Chapter 1

Introduction

In this report we describe and explore a Bayesian hierarchical model for the population
dynamics of cod along the Norwegian Skagerrak coast. The term population dynamics
refers to the dynamic processes governing the life cycle of cod, including the recruitment
of new individuals to the population, as well as the growth and survival of the fish at
different stages of the life cycle. The main focus is on approaches to the estimation
of model parameters, but the model can also be used to estimate the abundances of
different age-groups of the population.

The data that are analysed have been collected as a part of a long-term and ongoing
monitoring programme with its origins in the early 20th century. The monitoring pro-
gramme was established following a controversy between a fisherman and a scientist
who could not agree on the effect of releasing cod larvae on the abundance of mature
cod within a fjord (Dahl and Dannevig, 1906). The investigations that were carried out
to try to settle the question did not lead to any conclusion that could be agreed on by
both parties, but the discussions following these initial investigations lead to the estab-
lishment of annual beach seine catches in a number of fjords along the southern coast of
Norway. Similar catches are still being conducted, and they constitute the basis for our
modelling.

When building fisheries models, there are two main sources of stochasticity to take into
account, giving rise to process and observational error respectively (Polacheck, Hilborn
and Punt, 1993). The process error represents natural variability in the dynamics of the
population, while the observational error reflects the data collection process, relating
the observed data to the actual populations. In general, state-space models (e.g. West
and Harrison, 1997) represent a coherent approach to the specification of models that
include both sources of error, an approach that has also been taken in the fisheries lit-
erature. A review of approaches to statistical modelling of fish population dynamics is
given in Section 3.1.
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We develop a non-Gaussian state-space model for the population dynamics of Skager-
rak cod, embedded in the framework of a Bayesian hierarchical model. The model is an
extension of the age-structured model of Bjernstad, Fromentin, Stenseth and Gjeseeter
(1999a), that will be described in Section 3.2. The prior model for the population dy-
namics, defining the system equation of the state-space model, should reflect the life
cycle of cod, that can be described in terms of the rate of recruitment of new individu-
als to the population and rates of survival between different age groups. Of particular
interest is the detection of any between-group and within-group interactions between
juvenile stages of the cod. Another important issue is the specification of a model for
the sampling process relating the observed data to the true underlying population abun-
dances, and this model constitutes the observation equation of the state-space model.
After establishing the model, we illustrate how we can use the model with a set of es-
timated parameters to simulate the effect of releasing juvenile cod on the mature cod
abundance, imitating the release experiment that initiated the monitoring programme
producing the data used in the study.

The parameters of the model are estimated by Markov chain Monte Carlo methods,
based on annual data on two age groups of juvenile cod from a set of sampling sites in a
selection of fjords along the coast. To assess the performance of our sampling algorithm,
we apply the approach to a simulated data set. Using single-site Metropolis-Hastings
sampling leads to slow convergence and mixing for several of the unknown parame-
ters. This can be related to the facts that the number of parameters, including the an-
nual abundances at each sampling site, is large, and that there are high correlations be-
tween some of the parameters. This often leads to slow convergence (see e.g. Gilks and
Roberts, 1996). We illustrate how re-parameterising the model leads to improved mix-
ing and convergence, but mixing problems persist for some parameters. However, our
main interest is to study the processes governing the population dynamics, and stock
assessment is only a secondary goal. Therefore, we suggest an alternative approach that
can be taken to estimate the parameters of the model, using a Metropolis-Hastings algo-
rithm sampling from the marginal posterior distribution of the model parameters given
the observed counts, marginalising over the unknown populations.

The report is organised as follows. In Chapter 2 we give some biological and historical
background on the Flodevigen data set and present the data. A review of general ap-
proaches to the modelling of fish population dynamics as well as of previous work on
the Flodevigen data is given in Chapter 3. In Chapter 4 the models for the population
dynamics and the sampling process are defined, and in Chapter 5 we present the sam-
pling based approach to estimation of parameters and abundances, including results for
a set of simulated data as well as the Fledevigen data. In Chapter 7 we describe how
the effect of releasing juvenile cod can be simulated using the model. An alternative
approach to parameter estimation based on sampling form the marginal posterior dis-
tribution, integrating over the abundances, is described in Chapter 8. A summarising
discussion is given in Chapter 9.



Chapter 2

Biological and historical background on
the Flodevigen data

In this chapter, we give a brief overview of the biology of the cod and some historical
background on the data on which our study is based.

2.1 The cod life cycle

The life cycle of the Norwegian Skagerrak cod (Gadus morhua L.) can be divided into
four main stages (Gjoseeter, Stenseth, Ottersen, Lekve, Dahl, Danielssen, Torstensen and
Christie, 2003a; Stenseth, Bjernstad, Falck, Fromentin, Gjeseeter and Grey, 1999), as il-
lustrated in Figure 2.1. The cod along the Skagerrak coast normally spawn in late winter
or early spring (February, March or April), and the eggs are hatched one or two weeks
after spawning. The larvae stage lasts until May-June, when the larvae metamorphose
into juveniles (small fish), constituting the 0-group cod of the autumn that year. One
year later, at the age of about 1.5 years, the juveniles are referred to as the 1-group cod.
The Skagerrak cod is assumed to mature at the age of two to three years (Gjoseeter, En-
ersen and Enersen, 1996). We will assume that all cod at the age of two years and older
belong to the spawning population.

Based on results from a tagging experiment in the late 1980’s, Danielssen and Gjeseeter
(1994) conclude that the Norwegian Skagerrak cod populations seem to be relatively
isolated and non-migratory. The 0-group and parts of the 1-group cod are generally
found closer to the shore in more shallow water than the adult cod, but they tend to
move to deeper water during summer and winter, probably due to variations in tem-
perature (Danielssen and Gjeseeter, 1994; Gjoseeter and Danielssen, 1990, and references
therein). The juvenile cod tend to settle where they find food and places to hide from

3
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predators (Johannessen and Sollie, 1994). In a study of Atlantic cod by Tupper and
Boutilier (1995), the results suggest that cod settle in any habitat, but that growth and
survival is best in areas where they find shelter.
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Figure 2.1: The life cycle of cod (Ill.: Ottar N. Bjernstad, Department of Entomology,
Pennsylvania State University).

2.2 Historical background

The data that make up the basis of the study described in this report, is a subset of
the data from a unique monitoring programme that has been run at the Norwegian
Skagerrak coast in its present form since 1919; see Smith, Gjeseeter, Stenseth, Kittilsen,
Danielssen, Solemdal and Tveite (2003) for a recent review. The monitoring programme
was initiated following a controversy between Gunder Mathiesen Dannevig (1841-1911),
a fisherman and a captain of sailing vessels, and Johan Hjort (1869-1948), a pioneer in
marine research, about the effect of releasing hatched cod larvae on the size of the pop-
ulation of adult cod in a restricted area like a fjord.

Dannevig (Figure 2.2, left) was the founder of the Flodevigen Hatchery (later the Flade-
vigen Marine Research Station), near Arendal in Southern Norway, which was com-
pleted in 1884 (Solemdal, Dahl, Danielssen and Moksness, 1984). He argued that there
was a deterministic relationship between the number of yolk-sac cod larvae and the
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Figure 2.2: Gunder Mathiesen Dannevig at his desk at Flodevigen (left), and Johan Hjort
(right) (Institute of Marine Research, Flodevigen Marine Research Station).

number of recruits to the population, and as a consequence, releasing larvae would
supplement the free living fish populations (Dahl and Dannevig, 1906). In particular,
releasing larvae could thus counteract the effect of over-fishing. His theory was based
on the opinion that the cod appeared in local fjord populations with its own egg and lar-
val production, a point of view that was in agreement with observations by fishermen
who claimed that the cod in different fjords were of different types. Thus, the released
larvae would be relatively abundant enough to enhance the local cod population.

Hjort (Figure 2.2, right) disagreed with Dannevig about the existence of local fjord pop-
ulations, and was of the opinion that the coastal cod belonged to one large oceanic
population that migrated over large areas. He argued that the larvae would be carried
by the stream between the fjords and also into the open Skagerrak sea. As a conse-
quence, he found it useless to try to enhance the cod population by releasing cod larvae
in a fjord, since the number of released larvae would be relatively small compared to
the number of naturally hatched larvae (Dahl and Dannevig, 1906). He was also of the
opinion that annual fluctuations in the stock was mainly due to natural variation. Some
time during the first few years of the 20th century however, Hjort gave up his theory
that there is one large migrating cod population, and instead opposed Dannevigs opin-
ion on the effect of hatching by arguing that artificially hatched larvae was no more
capable of living than larvae naturally hatched in the fjords (Schwach, 2000).

As a side comment, it is worth mentioning that the controversy between the scientist
Hjort and the practitioner Dannevig is also believed to be motivated by political reasons,
related to different views on the future of the Norwegian fisheries. Dannevig wanted
to preserve the traditional coastal fisheries, while Hjort’s vision was to modernise the
fishing industry, and he was of the opinion that artificial hatching would hamper this
process of modernisation (Schwach, 2000).

URN:NBN:no-3402
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To be able to solve the controversy, and to conclude whether or not releasing hatched
larvae was useful, Dannevig proposed to make a series of beach seine hauls in some
selected fjords in Southern Norway. After several proposals during the 1890’s and early
1900’s were rejected, the Norwegian Government eventually decided to fund the hauls.
In the years 1903-1905, Dannevig, assisted by a member of Hjort’s staff, Knut Dahl,
made hauls in two selected fjords, before and after releasing hatched larvae. Dahl also
made hauls in nearby fjords with no release. However, the experiment did not help to
settle the disagreement between the two parties, since Dannevig and Dahl arrived at
contradictory conclusions based on the collected data. Dannevig had, although reluc-
tantly, agreed that Dahl could conduct additional investigations in the fjords where the
larvae were released. As described in Dahl and Dannevig (1906), these investigations
included studies of the hydrographical conditions of the fjords as well as biological ex-
aminations of the cod. Dahl wanted to take into account the results of these additional
investigation as well as the results from the fjords with no release in their final report
on the study, but Dannevig disagreed, since he was of the opinion that they were not
relevant to the problem. As a consequence, the final report (Dahl and Dannevig, 1906)
is given as separate contributions from the two. The translated extracts from the conclu-
sions quoted below (Solemdal et al., 1984) should clearly illustrate their lack of agree-
ment. Based on the results from the release experiment, as well as from his additional
investigations, Dahl argued that the observed increase in the number of juvenile cod
after releasing larvae could not be distinguished from natural fluctuations as observed
by an increasing number of juveniles in nearby fjords as well. Some of his results were
summarised as illustrated in Figure 2.3. Thus, he concluded that

”In my opinion, it has already been proved that such a release (of yolk sac larvae) is
not capable, to any provable extent, of affecting the natural stock of yolk sac larvae
of even a small and limited area, and even less able of increasing the fishery in such
an area.”

On the other hand, Dannevig concluded that

“The result of the now completed investigations is new evidence of the accuracy
of our theory so often emphasized: that artificial hatching is not merely the most
important, but also the only means for maintenance and improvement of the fish
stocks in our fjords, and also that the money is more profitably used in order to
increase the hatching production than spent on investigations for which the result is
known in advance.”

The investigations did not resolve the controversy, but the study, and the general discus-
sion on the effect of hatching, is believed to be one of the factors leading to the further
research by Johan Hjort on the causes of the fluctuations in the fisheries (Schwach, 2000).
The research resulted in his theory that these fluctuations were due to natural variation
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in the strength of different year-classes of juveniles, where a year-class of fish is the
group of fish that were spawned in the same year. Further, the environmental condi-
tions during the critical early phases of the development of the larvae were believed to
be essential in determining the strength of a year-class (Hjort, 1914; Hjort, 1926). Today,
this theory is considered fundamental to fisheries research (Schwach, 2000; Myers and
Cadigan, 1993b).

The 1903-1905 beach seine hauls, and the failure to resolve the controversy based on the
results from these hauls, motivated establishing a long-term monitoring programme
along the same lines, but extending the number of fjords. From 1919 the monitoring
programme was established in it’s present form (Solemdal et al., 1984). The Fladevigen
hatchery was taken over by the Norwegian government in 1918, and is from 1973 a
laboratory of the Norwegian Institute of Marine Research. A brief description of the
present beach seine sampling procedure is given in Section 2.3.
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Fig. 8. Grahsk fremstilling af meengden af torskeyngel pr. vadirzk i de undersegte
fjorde juli—aungust 1804—1905.

Figure 2.3: Illustration of some of the results from the release experiment, according to
K. Dahl (Dahl and Dannevig, 1906, p.76). The horizontal bars represent the number of
juveniles per haul in five fjords in the autumn of 1904 (shaded) and 1905. Larvae were
released in the spring of 1904 in the first two fjords and both years in the last fjord.
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Age-group || Mean | Med | Min | Max | Proportion of 0 counts (%)
0-group 13.3 5 355 23
1-group 1.98 1 0 34 49

o

Table 2.1: A summary of the data in the two Riser fjords.
2.3 The data

At present, about 120 stations are sampled, among them 33 have been sampled since
the beginning in 1919. The sampling is performed by beach seine hauls between the
beginning of September and mid October each year, and follows a strict procedure (see
e.g. Gjosaeter, Stenseth, Sollie and Lekve, 2003b). The sampling procedure is illustrated
in Figure 2.4, and pictures from the beach seine hauls are given in Figures 2.5 and Fig-
ures 2.6. The beach seine catches are operated from a specially designed boat. One
person holds one of the ropes of the beach seine while the boat with the seine is rowed
along a line as shown in Figure 2.4 (A). Another person takes the other rope, and goes
ashore at a distance of around 5-15m from the first person (B). Then the beach seine
is hauled, and the number of individuals of each species are counted (C). The juvenile
cod is categorised as 0-group or 1-group cod according to their length. The beach seine
is 40m long and 3.7m deep, each haul covers an area of up to 700m?, and the depth
sampled varies from 3 to 15m.

In our study we use a subset of the data consisting of catches taken over the period
from 1956-1998 in 49 stations within 13 fjords. A map of the sampling region is given
in Figure 2.7, and a table of the fjords and stations used in the study as well as plots of
the 49 time series of abundances of 0-group and 1-group cod are given in Appendix A.
We also select a smaller subset of data to be used as a basis for studying the properties
of the statistical model. This dataset, which we will denote the Riser data, is made
up from samples from 12 stations in two fjords in the Riser area, Sandnesfjord and
Sendeledfjord, shown in the bottom panel of Figure 2.7. We also restrict ourselves to
the 38 years between 1957 and 1994. Consequently, this subset consists of 456 observed
counts of 0-group and 1-group cod. We will treat the 12 stations as belonging to one
single fjord by modelling the total abundances of the different age-groups within the
two nearby fjords. Plots of the data, aggregated within fjords and over the fjords, are
given in Figure 2.8, while the 12 separate time series of 0-group and 1-group data can
be found in Figures A.4, A.5 and A.6 in Appendix A. A summary of the station specific
counts is given in Table 2.1. Observe that a substantial fraction of the observed counts
are zero.



Figure 2.4: Illustration of the sampling procedure for a sampling station (Institute of
Marine Research, ill.: Vetle Madsen).
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Figure 2.5: The sampling procedure in early years of the study, illustrated by a picture
from a beach seine haul in 1907 (Institute of Marine Research). Captain Dannevig can
be seen in the middle of the picture, inspecting the beach seine hauls.

Figure 2.6: The sampling procedure of today. (Institute of Marine Research. Photo:
Qystein Paulsen).
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The Skagerrak coast

1 tnreefjorden

2 Topdulsfioiden

3 Hovig

4 Bufjorden-Grinstad
5 Flodevigen

6 Lyngor-Dypude
7 Sandenesfiorden

8 Sandeledfjorden
9 Risor skjwrgand
10 Stolefjorden

11 Kilsfjorden

12 Hellefjorden
13 Soppekilen

14 Crenlandsfiordene
15 Sandefjord

16 Vrongen Tinme
17 Hobywestrand
18 Indye Oslofjord
19 Drobal:

20 Hyvalor

Figure 2.7: The study region, the whole area (top) and the sub-area made up from the
Riser fjords (bottom), numbered 7 and 8 in the top map. (The maps are provided by the
Institute of Marine Research).
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Figure 2.8: Aggregated data from the two fjords in the Riser area: Sandnesfjord (top),
Sendeledfjord (middle) and total (bottom).
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Chapter 3

Literature review

3.1 Approaches to fish population dynamics modelling

Most fisheries models include structural time series components, relating current and
past population abundances (Schnute, 1994). In general, fisheries models can broadly be
categorised into one of two main groups: biomass dynamics models and age-structured
models, with delay-difference models as an intermediate type (Hilborn and Walters,
1992; Quinn and Deriso, 1999). In biomass dynamics models, current stock abundance,
typically in terms of biomass B, is related to previous biomass B;_; by adding a surplus
production function ¢(B,), quantifying the effect of recruitment, growth and natural
mortality, and subtracting the catch. The surplus production represents the amount of
biomass that can be taken while maintaining the biomass at a constant rate. Parameters
are estimated based on catch data, measured in total biomass, and relative abundance
data from catches (catch per unit effort, CPUE) or from surveys. If catch-at age data
are available, the population dynamics might be specified in terms of abundances at
different age-cohorts. Such age-structured models include relations representing sur-
vival between the different cohorts as well as recruitment of new individuals to the
population. Delay-difference models explicitly model an age-structured dynamics of a
population, including biologically meaningful parameters for recruitment, growth and
mortality, but the equations describing the age-structured processes are collapsed into
one equation, such that in contrast to the age-structured models, age-specific data are
not needed to fit the model. Using this type of model, it is implicitly assumed that the
age-structured equations modelling the population dynamics hold exactly.

When building and analysing fisheries models, there are two main sources of stochas-
ticity to take into account, giving rise to process and observational error respectively
(Polacheck et al., 1993). The process error represents natural variability in the dynam-
ics of the population, and emphasis on the stochasticity in early stages of the life cycle
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of the cod dates back to the pioneering work of Hjort (1914). The observational error
reflects stochasticity in the data collection process, relating the observed data to the ac-
tual populations. The models can be divided into three categories according to which
sources of variability that are taken into account. (see e.g. Schnute (1994) and refer-
ences therein). The first category includes models in which the population dynamics
is assumed to be deterministic, such that given the model parameters, the dynamics is
fully determined. In this category, observational error is the only source of variability
included in the model. In models belonging to the second category, the observations
are assumed to be exact, while process error is included to reflect natural variability in
the model for the population dynamics. Models in the third category combine the two
other types of models, treating both the population dynamics and the sampling process
as stochastic. To enable the application of traditional parameter estimation methods,
only one source of error has often been taken into account when fitting fisheries mod-
els, but it has been pointed out that this simplifying assumption might cause biases in
the parameter estimates (De Valpine and Hastings, 2002, and references therein).

A coherent way to include both process and observational errors in fisheries models is
to define the models in a state-space modelling framework (West and Harrison, 1997).
Schnute (1994) describes how state-space modelling constitutes a general framework for
developing sequential age-structured fisheries models, and discusses frequentist and
Bayesian approaches to estimation of the model parameters using the Kalman filter
an errors-in-variables paradigms. Depending on the type of data, the quantity to be
represented by the state vector of the state-space model will typically be the total count
or biomass of the fish or the number or biomass of fish categorised in age or length
groups. The population dynamics will be represented by the state or system equation,
and the sampling process by the observation equation of the state-space model.

For linear Gaussian models, parameters can be estimated using likelihood based esti-
mation within a Kalman filter framework. This approach has been taken by e.g. Sulli-
van (1992) modelling catch-at-length data, and Freeman and Kirkwood (1995) and Reed
and Simons (1996) who use total catch and catch per unit effort data. In the first two of
these studies the system equation is linear in the population abundances, while Reed
and Simons (1996) use a multiplicative model, such that log populations are linear in
the log populations at the previous time step. Kimura, Balsiger and Ito (1996) com-
pare Kalman filter and non-linear least squares estimates of the parameters of a delay-
difference model based on simulated relative abundance and catch data, and show that
the Kalman filter approach appears to be superior in the presence of process error. New-
man (1998) formulates a state-space model for the movement and survival of salmon,
defining the components of the state vector as the number of individuals in different
regions. A spatially structured dynamic model is formulated based on specifying in-
dividual movement and survival, and by integrating over areas he arrives at a corre-
sponding model for aggregated counts in different regions. Parameters are estimated
by maximum likelihood, evaluating the likelihood using the Kalman filter.
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In general, specifying the structural time series model in terms of a state-space model
allows for the incorporation of non-Gaussian distributions and non-linearities in the
specification of the population dynamics and the sampling process. However, intro-
ducing non-linearities and non-normality imply that classical methods for estimation,
like the Kalman filter, is not generally applicable. The extended Kalman filter, relying on
linear approximations based on Taylor series expansions, was used by Gudmundsson
(1994) to fit parameters of a non-linear state-space model of catch-at-age data. In a re-
cent paper, Schnute and Kronlund (2002) apply the extended Kalman filter to estimate
relationships between stock and recruitment based on catch and escapement data for
salmon. De Valpine and Hastings (2002) present an alternative method, which they call
the "numerically integrated state-space method”, for estimating states and parameters
of general population models. They extend the Kalman filter approach to non-linear
and non-Gaussian state-space models following Kitagawa (1987), by numerically esti-
mating all probability distributions and calculations involved.

Advances in simulation based estimation using Markov chain Monte Carlo (MCMC)
methods have increased the applicability of Bayesian methods to fit non-linear and
non-Gaussian state-space models (e.g. Carlin, Polson and Stoffer (1992), Geweke and
Tanizaki (2001)). These methods have also been introduced to fisheries modelling, and
the potential for applying the Bayesian approach in conjunction with MCMC methods
within population dynamics modelling is pointed out by several authors (e.g. Punt
and Hilborn, 1997; Buckland, Goudie and Borchers, 2000; Myers, 2001). In Schnute and
Kronlund (2002), a frequentist extended Kalman filter approach and a Bayesian errors-
in-variables approach to estimation of the parameters of a state-space model for stock-
recruitment relationships for salmon are contrasted, using MCMC methods to assess
the uncertainty of modal estimates of the parameters from the two approaches. Param-
eters of state-space models representing the population dynamics for tuna are estimated
using Gibbs sampling in combination with the adaptive rejection Metropolis algorithm
in Meyer and Millar (1999) and Metropolis-Hastings within-Gibbs sampling in Millar
and Meyer (2000b). The models are also extended to incorporate age-structured data
(Millar and Meyer, 2000a). Knight, Weir and Pettitt (2003) adopt a fully Bayesian hier-
archical model for summer whiting, explicitly modelling the sampling process using a
Binomial distribution. They include a spatially autoregressive model for the densities
of counts, and estimate parameters using MCMC. A Bayesian approach to parameter
estimation has also recently been taken in an analysis of the data on which our study is
based. Bjernstad et al. (1999a) use Gibbs sampling to estimate parameters in a dynamic
model for the coastal populations of cod along the Norwegian Skagerrak coast. In the
next section we give an overview of previous analyses of the Skagerrak cod data.
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3.2 A review of previous analyses of the Norwegian Sk-
agerrak cod

As described in Section 2.2, the data from the beach seine hauls along the Skagerrak
coast were originally collected to study the effect of releasing artificially hatched cod
larvae, and many early publications on the data were related to this problem (see e.g.
Gjeseeter, Stenseth, Sollie and Lekve (2003b), Tveite (1971) and references therein). The
larval release programme was continued until 1971. Based on analysis of variance on
the 0-group data from the period 1920-1969, Tveite (1971) concluded that the release of
cod larvae could not be significantly separated from other natural sources of variability
as a source of variation in year-class strength.

In recent years, more attention has been drawn to studies of the effect of the juvenile
post-settlement stages. Julliard, Stenseth, Gjoseeter, Lekve, Fromentin and Danielssen
(2001) study the mortality of juvenile cod using a different set of data resulting from
a release-recapture experiment within one fjord. The study is based on capture-mark-
recapture modelling, assuming that tagged individuals might be recaptured at a series
of different capture occasions. Based on data obtained from fishermen returning tags
from recaptured individuals, they estimate parameters representing natural and fishing
mortality by maximum likelihood. The results indicate a very hight mortality the first
few months of the 0-group juvenile stage.

Spatial and temporal patterns of the abundance of cod, as well as other coexisting
species, have been studied by Fromentin and co-workers (Fromentin, Stenseth, Gjosaeter,
Bjornstad, Falck and Johannessen, 1997; Fromentin, Stenseth, Gjeseeter, Johannessen
and Planque, 1998; Fromentin, Gjeseeter, Bjernstad and Stenseth, 2000). Based on de-
scriptive analysis and spectral analysis of the raw 0-group and 1-group data, they iden-
tify 2-2.5 year cycles as well as long-term trends in abundance of both age-groups, and
report substantial spatial variation both between fjords and between stations within a
fjord (Fromentin et al., 1997; Fromentin et al., 2000). Similar results on the temporal pat-
tern is found by Bjernstad et al. (1999a) using spectral analysis. Fromentin et al. (1998)
examine possible relationships between climatic conditions, represented by NAO (the
North Atlantic Oscillation index) and long-term fluctuations in abundance of juvenile
cod. The results do not give any evidence of the existence of such a correspondence.
They also consider the effect of bottom flora coverage on the abundances, and give
reasons for a possible relation between the variation in bottom flora coverage and cod
abundance.

An important aspect of study within population dynamics of fish is the study of pos-
sible density-dependencies between and within age-groups. (Myers, 2001; Myers and
Cadigan, 1993a). Density-dependencies can be caused by competition for food, or pre-
dation of older individuals on younger. The effect of density-dependencies in survival
of juvenile cod has also become a focus of study on the Flodevigen data. Bjernstad
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and co-authors (Bjernstad, Fromentin, Stenseth and Gjesaeter, 1999b) introduce a test
for density-dependent survival by testing for convexity in the survival function relating
the 1-group at one year to the 0-group the previous year. They show that the method,
that does not require any parametric form of the density function, is relatively robust to
the presence of measurement error, and using the method, they conclude that there is
significant within-group density-dependency in the survival from 0-group to 1-group
cod. Lekve, Ottersen, Stenseth and Gjeseeter (2002) identify skewed length distribu-
tions of the juvenile cod, and they suggest that the skewness might partly be caused
by competition between the juveniles. Their results further indicate that the growth
and survival of juvenile cod can be influenced by environmental factors, like directional
wind stress setting up currents transporting food in favourable directions.

In Fromentin, Myers, Bjernstad, Stenseth, Gjesaeter and Christie (2001), direct (within-
group) and delayed (between-group) density-dependent mortality is estimated based
on the model defined in Myers and Cadigan (1993a). This model incorporates stochas-
tic recruitment, which includes egg production, hatching and survival to the 0-group,
but Fromentin and co-workers add a stochastic component to the density-independent
juvenile mortality. It is assumed that the observations are proportional to the true abun-
dances, but with a log-Gaussian observational error added. The parameters are es-
timated by maximum likelihood based on 0-group and 1-group data that are aggre-
gated in fjords and then log-transformed. The estimates indicate a difference between
south-western and north-eastern fjords. There is little evidence of delayed density-
dependent mortality in the south-west, but the results indicate such an effect for some
of the north-eastern fjords. Within-group density-dependency is found in both regions.
Post-settlement density-independent survival seems to have some significance, partic-
ularly in the south-western fjords. The variability in recruitment of 0-group cod seems
to be larger in the north-western than in the south-eastern fjords.

An age-structured dynamic model for the population dynamics is defined in Bjornstad
et al. (1999a). They aggregate the data in two regions, consisting of the south-western
and north-eastern stations respectively, and estimate parameters describing the popula-
tion dynamics for each region separately. It is assumed that two adult age groups, two
and three year old cod, contribute to the adult spawning stock. We here give a brief de-
scription of this model, since it constitutes the basis for our hierarchical Bayesian model
to be presented in Chapter 4. For each region, let X; and Y; be the abundance in year ¢
of the 0-group and 1-group cod respectively, and let Z, and W; denote the abundance of
two and three year old cod. Then, their population dynamics model can be summarised

by
Y; = Xiiexp(e+SlogXi1+vlogYi_1) (juvenile survival)
Z; = MY (survival from 1-group to 2-year old)
Wy = N1 (survival from 2- to 3-year-old)
Xy = exp(ay)(Z; +Wy) (recruitment of 0-group cod)
3.1)
17
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The density-dependent juvenile survival rate is assumed to be log-linear in the log-
abundances of the 0-group and 1-group cod the previous year, in correspondence with
other studies (Bjornstad et al., 1999b; Myers and Cadigan, 1993a). Stochasticity enters
the model by assuming the annual recruitment rate, represented by exp(«;), to be log-
Normal with constant mean and variance. The other components of the population
dynamics as defined by (3.1) are assumed to be deterministic. Further, they assume the
aggregated count data to be noisy observations of the true abundances, with measure-
ment error approximated by Poisson variability. So no explicit model for the sampling
process relating true abundances to the actual samples is included. The parameters of
the model, except for the adult survival rate A that is kept fixed, are estimated using
the Gibbs sampler with adaptive-rejection sampling, using the aggregated data for both
0-group and 1-group cod. They estimate within- and between-cohort effects, but the
within-cohort effect is weaker (|y| < |8]). Also, a non-zero density-independent effect
(c) on juvenile survival is found. Changing the fixed value of the adult survival A influ-
ences the recruitment rate, but it appears to have no effect on other parameters.

In Stenseth et al. (1999), a similar age-structured population dynamics model for the
Skagerrak cod is defined, including the log-linear density-dependent survival at the ju-
venile stages, density-independent survival to adult cod and stochastic recruitment. As
in Bjernstad et al. (1999a), it is assumed that the stochasticity in the recruitment pro-
cess dominates the stochasticity in the survival processes, but in contrast to that study,
only the two year old cod is assumed to contribute to the adult spawning population.
Further, they assume no measurement error. They combine the components of the age-
structured model into one time series model for the 0-group cod, for which the data
is most abundant, eliminating the 1-group and adult cod populations from the popu-
lation dynamics equations. They identify the resulting model as an ARMA(2,1) model
for the O-group cod populations. Based on their estimates, it is concluded that there is
evidence of both within-group and between-group density-dependencies for the juve-
nile cod. Also, they argue that the results are in agreement with a periodic cycle of 2-2.5
years for the abundance of 0-group cod.

Chan, Stenseth, Lekve, Gjoseeter and Ottersen (2003b) extend the age-structured model
of Stenseth et al. (1999) to incorporate abiotic (temperature, NAO) and biotic (coexisting
species) factors as covariates in the survival and recruitment models, and to take into
account both natural and fishing mortality. In contrast to the previous studies described
above, all adult stages are included in the model, but they assume them to have the same
biological properties. Also, the model is fully specified on a fjord-level, based on the as-
sumption that the cod spawns in deeper waters of the fjord. As in Stenseth et al. (1999),
the variables corresponding to the 1-group and adult populations are eliminated from
the dynamic model, leaving an ARMAX(2,2)-model in the state variable corresponding
to the O-group cod. The parameters are estimated using the 0-group data only. The data
are aggregated to fjord level, using weights representing the chance of an egg settling
as juvenile cod in the given sampling sites in the fjord. The results support the conclu-
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sions of the earlier studies that there are significant between-and within-group density-
dependencies. The recruitment is estimated to increase by increased water-temperature,
and they estimate an increase in fishing mortality over the years of study.

Based on the model of Chan et al. (2003b), a simulation study of the effect of releasing
larvae as well as juvenile cod has been conducted (Chan, Stenseth, Kittilsen, Gjoseeter,
Lekve, Smith, Tveite and Danielssen, 2003a). Evidence of significant augmented mature
population sizes in some fjords are found, but the increases are considered to be too
small to be of practical significance.

There are two main weaknesses with the majority of dynamic models defined so far
on the Skagerrak cod data. First, the observational error represents measurement error
only, which implies that the sampled data are assumed to be proportional to the true
abundances. No explicit model for the sampling process, relating the observed counts
to the true underlying population abundances, is included. As a consequence, the pop-
ulation dynamics is estimated as if defined on the sampled and not the true underlying
abundances. Fromentin et al. (2001) explicitly include proportional catchability in the
model, but the model parameters are estimated on centred data. Second, except for the
model in Fromentin et al. (2001), the relations defining the survival of juvenile and adult
cod are assumed to be deterministic. This assumption is based on the results of earlier
studies, indicating that stochastic fluctuations in juvenile and adult survival are small
compared to the stochasticity of the recruitment process and survival at earlier stages
(Hjort, 1914; Hjort, 1926; Cushing, 1990). However, recent studies have indicated that
variation in juvenile stages are also important and should be taken into account (e.g.
Fromentin et al., 2001 and references therein). Our aim is to generate and study a model
for the population dynamics of the Skagerrak cod by extending and modifying the pop-
ulation dynamics model (3.1), including stochastic variation in all components of the
population dynamics as well as an explicit model for the sampling process generating
the data.

19
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Chapter 4

The statistical model

We define the statistical model as a state-space model within a Bayesian hierarchical
modelling framework. Within this framework, the stochastic model is naturally divided
into two components, one specifying the dynamics between the different age groups
of cod, and the other representing the sampling process relating the true underlying
population abundances to the sampled cod at the monitored locations.

Our statistical model is based on the assumption that each fjord represents a reproduc-
tive unit, and that there is no migration between fjords (Danielssen and Gjeseeter, 1994).
The total spawning population of cod within a fjord is assumed to contribute to the
recruitment of young cod at all monitored locations along the shore. Further, we will
define the population dynamics on total fjord populations of all age groups involved.
Since the data are samples taken at a limited number of locations along the shore, our
model should include a down-scaling between the population abundances at fjord level
and the sampled 0-group and 1-group cod at the monitoring stations along the shore.
This is incorporated in the model for the sampling process.

For each fjord f, the state vector for each year ¢ is three-dimensional, and made up by
the components X;,, Y, and Z;,, representing the abundance of 0-group (X), 1-group
(Y) and mature (Z) cod respectively. The corresponding observation vector consists of
catches of 0-group cod, denoted X¢, and 1-group cod Y}, for each year ¢ and at a set
of monitored locations ¢. Thus, for each fjord the observation vector is 2 x ny x n-
dimensional, where n; is the number of stations in fjord f and n; the number of years
of study. For the mature cod, no data is available.

We specify our hierarchical model by first defining the population dynamics model as a
prior model for the population abundances, and then the sampling process, constituting
the likelihood of our model.
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4.1 The population dynamics model as a Bayesian prior

Our model is a modified and extended version of the population dynamics model de-
fined in Bjernstad et al. (1999a) and Stenseth et al. (1999). The dynamics regulating the
population can be characterised by two main processes, the recruitment of new indi-
viduals, including spawning and survival to the first juvenile stage, and survival from
one year to the next. We specify two relations for survival, one for the survival from
0-group to 1-group cod, and one for the survival between the 1-group and adult cod as
well as for the adult cod. In contrast to the models in Bjernstad et al. (1999a), where two
and three year old cod are considered as separate age groups, and Stenseth et al. (1999),
where only the two year olds are assumed to contribute to the spawning stock, we do
not distinguish between different age groups of mature cod. We assume that the mature
population, consisting of all cod at the age of two years or older, experience the same
rate of survival. This is in analogy to the approach taken by Chan et al. (2003b).

While Bjernstad et al. (1999a) and Stenseth et al. (1999) consider the population dynam-
ics, except for the recruitment process, to be deterministic, we impose stochasticity in all
components of the state-space model. We specify the prior distributions for recruitment,
survival between 0-group and 1-group cod and adult survival in terms of conditional
distributions, given past values of all population abundances and other time depen-
dent parameters. To simplify the notation, we will denote by past(t) the collection of
all abundances and other time dependent variables up to, but not including, year ¢. In
Figure 4.1 a schematic representation of the dynamics of the life cycle of the cod, as
described in Section 2.1, is given in terms of the variables Z,, X; and Y, for one single
fjord, suppressing the fjord subscript f. Graphically, our prior model can be illustrated
as in Figure 4.2, discarding all parameters. The arrows indicate conditional dependen-
cies. For example, given past abundances, the 1-group population abundance in year ¢
depends on the 0-group and 1-group abundances in year ¢ — 1, while the 0-group abun-
dance in year ¢, given past abundances as well as the current abundance of mature cod,
depends on the current mature abundance only.

4.1.1 Recruitment of new individuals

Conditional on the past and on the current adult population abundances Z;,, we define
the prior mean of the 0-group abundance to be

E(Xy4 | past(t), Zps, o0, {cn}) = Zrexplao+ap); t=1,2,...,n. 4.1)

In our model, the recruitment rate exp(ag + ;) reflects the spawning process as well
as the survival from the larval to the 0-group stage. We assume that the rate of recruit-
ment of new individuals to the population is density-independent, but allow for time
dependencies. The component «; represents possible effects of time-varying biotic and
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Yeart — 1 Year t Year t + 1
Spring Autumn Spring Autumn Spring
spawning, density dep. survival
Zt_ ! smal Xt_ ! sumal Y; - Zt+ !
{X7 1} { X7,
{Yia1} {Yiz}
(Sampling) (Sampling)

Figure 4.1: An illustration of the dynamics of the life cycle of the cod within one fjord
in terms of the stochastic variables of the prior model. The subscripts ¢ and ¢ refers to
location and year, while the fjord subscript of the adult (Z;), 1-group (}}) and 0-group
(Xy) fjord population abundances is suppressed.

Xt Xt Xt+ 1

Y, Y, Yoy

Z._i Z, Z,

+1

Figure 4.2: Graphical description of the prior model for the population dynamics. The
age-groups are denoted by X, (0-group), Y; (1-group), and Z; (mature cod).
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abiotic factors, e.g. climatic and hydrographical conditions, on the spawning and early
survival of the larvae. We impose the constraint ), a; = 0, such that «, represents the
mean level of the log recruitment rate, and «; temporal fluctuations around this mean
level.

Since we are dealing with count data, a discrete distribution will in principle be most
appropriate. In practice however, the population sizes will be relatively large, since the
model for the population dynamics is defined on the fjord level. Therefore, we choose
to use a Gaussian assumption on the error in the mean. The variance is assumed to
be proportional to the mean number of new recruits to the population, such that the
conditional prior distribution of X;,, given the past population history as well as the
current adult abundance Z;,, is defined by

Xf,t | paSt(t)7 Zf,taa07 {at},éz ~
N(Zrpexp(ao+ ar), Zprexp(0p + an)); t=1,2,...,n, (4.2)

Here, the over-dispersion factor 4, is given by §,, = 5;. + ag, where exp(é;) represents the
over-dispersion.

4.1.2 Survival between the juvenile stages

The juvenile survival is specified as survival between the 0-group and 1-group stages
from September/October one year to the same time of the next year. We will allow for
within- and between-age-group density-dependency in the survival rate, such that the
survival rate from year ¢ —1 to year ¢ depends on the abundances of 0-group and 1-group
cod in year ¢ — 1. Otherwise, the survival rate is assumed to be independent of time.
Earlier studies have indicated that the density-dependent survival rate is approximately
log-linear in the O-group and 1-group-abundances the previous year (Bjernstad et al.,
1999b; Myers and Cadigan, 1993a), and we choose to use a log-linear model in analogue
to the model in Bjernstad et al. (1999b) for the conditional mean of the 1-group cod.
Thus, we define the mean number of surviving 0-group cod by

E(Yy,: | past(t), 8,7,5) = exp(—r) X} .0 Y, t=2,3,... n,, (4.3)

which can also be written as
E(Yy, | past(t), 8,7, k) = Xsi_1exp(—k — Slog(Xsi—1) — vlog(Yre—1)). 4.4
The degree of dependency on the population abundances at time ¢ —1 is governed by the
parameters (3 for within-group dependency and +y for between-group dependency. The

parameter ~ represents the level of the density-independent component of the survival
rate. All these parameters are restricted to be non-negative.
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Assuming that the survival process for each individual can be approximated by inde-
pendent Bernoulli trials, we define the conditional prior distribution for Y}, by a Bino-
mial distribution, given by

Yie | past(t), 8,7, 5 ~ Bin(Xp,1,exp(—k) X770 Y70)). (4.5)

To complete the prior model definition, a non-informative uniform prior f(y;,1) is spec-
ified for the abundance at year 1, such that

flysa) < 1; ysp1=0,1,2,... 4.6)

4.1.3 Adult survival

The number of adult cod in year ¢ will depend on the number of adult cod, Z;_,, and
the 1-year cod abundance, Yy, the previous year. We assume that the Norwegian
Skagerrak cod matures at the age of two years, and that all age groups of mature cod
are equivalent with respect to reproduction and survival.

We will denote the rate of survival for the adult cod by exp(—#), where 6 is the instan-
taneous mortality. We do not distinguish between natural and fishing mortality, such
that the parameter ¢ will represent the total mortality for the adult and 1-group cod.
In analogy to the 1-group cod, we assume that conditional on the past, the number of
adults follows a Binomial distribution, given by

Zypy | past(t),0 ~ Bin((Zri-1+Yyi-1),exp(—0)); t=2,3,...,n, 4.7)
and that
flzp1) o 1; 241 =0,1,... 4.8)

4.1.4 Specification of hyper-priors of the population dynamics

We restrict the parameters oy, 6, 5, v and s to be non-negative, and they are all as-
signed Gamma priors. The overall mean recruitment rate exp(ag) could in principle
be less than 1 (and thus «y < 0), but biologically a recruitment rate less than 1 would
be meaningless, since this would lead to a continuing decrease in the population. We
assign equal and independent Gaussian priors oy ~ N(0,7,'); t = 1,...,n, to the pa-
rameters representing the temporal structure of the log recruitment rate, but impose the
constraint ), o, = 0. The common precision 7, is assumed to be unknown and to be
estimated, and is given a vague Gamma prior. The over-dispersion factor §, in (4.2) is
assigned a Gaussian prior with fixed hyper-parameters, truncated at 0. A summary of
the hyper-priors, including specification of the chosen values of the hyper-parameters,
will be given in Section 5.1.
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4.2 The sampling process

The sampling process is represented by the likelihood of the Bayesian hierarchical model.
Since no observations are available for the mature cod, the sampling process is given by
the beach seine catches of the juvenile cod, which tend to stay in shallow waters near
the shore in the autumn, at the time of the year when the sampling takes place. The
sampling processes are assumed to be independent and equivalent for the two juvenile
age-groups, so we derive the model for the 0-group cod only.

Defining the population dynamics on the fjord level, we have to incorporate some kind
of down-scaling of the population abundances from the fjord level to the level of the
monitoring stations. To reflect the sampling procedure as described in Figure 2.4, we
find it conceptually convenient to define the model in terms of three steps. First, we
have to define the fraction of the 0-group cod population that might happen to be in
the area covered by the seine at a location 7 at the time of sampling. This fraction is the
population that has settled near a station ¢ in a year ¢, using this area as its nursery area.
We denote the corresponding stochastic variable by X7,. Second, the cod tend to move
to and from the shore, such that only a fraction of the population that has settled at a
location, will actually be in the area covered by the seine at the time of sampling. We
will denote this fraction the catchable population, and it is represented by the variable
X[;. Finally, some individuals might escape from the seine, leaving the number that is
actually caught, which are the data X?,. To summarise, the likelihood should reflect the
sub-processes

o settling at a location ¢,
e movement to and from the shore, and

e escaping or not escaping from the beach seine.

The last two processes are defined at the sampling location scale, while the settling
process includes down-scaling of the true population abundances to the scale of the
data. In Figure 4.3, we give a schematic description of the three sub-steps in our model
for the sampling process in terms of the corresponding stochastic variables.

We will assume that the settling process, as well as the actual sampling, depends on the
bottom coverage. More specifically, we assume that the juvenile cod tend to settle where
there is a large amount of vegetation on the bottom, providing food and shelter, and the
probability of escaping the seine is larger if the vegetation is dense. The second sub-
process, movement to and from the shore, is assumed to be distributed independently
of location and time.

The term ”settling” might be a bit misleading the way it is used in the definition of the
sampling process. Since the population dynamics apply to the cod at fjord level, there
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Fjord f Stationi; ¢ € f

Figure 4.3: A schematic description of the sampling process. The left figure illustrates
the settling at different locations in a fjord, and the right figure the sampling process
at one sampling station. In the right figure, the full line represents the beach seine, the
dashed line the outer boundary of the nursery area for the 0-group cod (X), and the
dotted line the outer boundary of the nursery area for the 1-group cod (Y).

is no underlying assumption that the 0-group an 1-group cod settle permanently at a
specific location. Rather, we assume that the cod spread in the fjord in a way such that
on the average, there is a higher population density where the bottom coverage is good.
Within this general pattern, we in principle allow each individual to move around.

4.21 Specification of the likelihood model

We model the first process, the settling at a location ¢, using a multinomial distribution.
This is motivated by the fact that for each fjord f and year ¢, the settling process can
be considered as an experiment consisting of X, independent trials. Each of the X,
0-group cod has a certain probability of settling at each of the ny locations in fjord f, or
at another, non-monitored, location along the shore of the fjord. Thus, each experiment
has ny + 1 possible outcomes. The independence assumption implies that we assume
the cod to move independently of each other, and thus schooling is ruled out.

Let p; be the probability of settling at location i in year ¢ for a 0-group individual. If we
let X5, denote the number of cod settling in the part of the fjord that is not monitored,
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the multinomial model for the settling process can be written

(Xogs---r Xn,, X tlPOts 507 s) ~ Multinom(Xy 45 poys- - -, Poye)- 4.9

Conditionally on the number of cod that has settled at a location, the number of cod
that moves to the shore at location i is taken to be Binomial, with parameters X7, and
piy*, thatis

XX: 0" ~ Bin(X],, 07" (4.10)

Here, we implicitly assume that the sub-populations at different locations and years
behave independently of each other. Similarly, we model the actual sampling of the
cod as another Bernoulli trial, such that the observed number of 0-group cod, given
the number in the region covered by the beach seine, X/, and the probability of not
escaping, py;, is given by

XX 0y ~ Bin(X7, py).- (4.11)

In analogy to X3, in (4.9), let X§, denote the O-group cod that is not sampled, that is
X§, = Xg4 — Y32, X2, In words, X§, represents all 0-group cod in the part of the fjord
that is not monitored, as well as the 0-group cod at the monitored stations that is not
caught. Combining (4.9), (4.10) and (4. 11) we arrive at a multinomial distribution for
the conditional distribution of (X§,,..., X} ,) given the 0-group fjord abundance X,.
The distribution is given by

(Xg,t7 e ’Xzf,tlpg,t7 e ’pfzf,t) ~ Multinom(Xf’t; Pat, e 717:31,,,5), (412)
where
Py = pffpi'i“”pff, i=1,...,n4, and
Py, = 1- ij o (4.13)

Observe that since we model the true underlying populations, X;,, at fjord level, the
sampling probabilities p;, at the monitored locations will be small. The correlation be-
tween the variables in a multinomial model is

_pftpft
\/pzt pzt \/pjt p]t

For small sampling probabilities, Cor(X?,, X?,) ~ —,/pf,p},, which is again small for
small p}, and p},. Thus, in practice, we do not introduce any large errors by assuming
independence and using the marginal Binomial distributions, given by

Cor(X7,, X7,) (4.14)

X2 | Xpe, 07y ~ Bin(Xyp, piy)- (4.15)
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To give a rough estimate of the order of magnitude of the sampling probabilities, con-
sider the case where we assume that the probability of settling is equal at all locations.
Let Q(f;) be the length of the coastline of the fjord to which location ¢ belongs, and L
the distance between the two landing points of the beach seine. Then, the settling prob-
ability at location ¢ and year ¢ can be taken to be the fraction of the shore of the fjord
covered by the seine, such that pj7y = L/Q(f;); V(i,t). Assuming further that p;} = 1
and p;;* = 1 for all i and ¢, we get that pf, = p;; = L/Q(f;); Vt. For the fjords in the
study, we have L/Q(f) < 0.005, and thus Cor(X?,, X¢,) < 0.005, which is negligible.

So far we have only considered the O-group population. For the 1-group population,

we assume that the situation is equivalent, such that the likelihood of (Yy,,...,Y}? ;) is
given by
(Yoo os Y,ff,t|pg’t, e i) ~ Multinom(Yy e pgss -, Ph0)- 4.16)
Here,
Py = PP B i=1,...,ns, and
ny
Pl o= 1= ey (4.17)
=1

The marginal Binomial distributions for the 1-group cod are given by

Y | Yy 0l ~ Bin(Yyy, pl,). (4.18)

4.2.2 Specification of the sampling probabilities of the likelihood

The sampling probabilities of the 0-group and 1-group cod were defined in terms of the
corresponding parameters for the sub-process, as shown in (4.13) and (4.17). We im-
pose prior distributional assumptions on the settling probabilities p;;” and p;y, scaling
these probabilities by fixed values of the catchability probabilities p;* and p;;* and the
probabilities p{;” and pj} of not escaping. These fixed values are specified on the basis
of expert biological information.

Based on the fact that the juvenile cod tend to settle where they find food and hiding
places (see Section 2.1), it seems reasonable to assume that the settling probability at
different stations depends on the amount of vegetation on the bottom. Sampling ef-
ficiency might also be related to bottom vegetation. Diving behind the seine during
sampling has shown that fish hiding in dense vegetation may sometimes escape un-
der the seine (Fledevigen Marine Research Station, unpublished underwater video and
personal communication). Therefore, increase in bottom vegetation probably makes the
location a more attractive habitat for young cod, but allows for a less efficient beach
seine catch.
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Thus, we incorporate a categorical variable d;,;, describing the amount of vegetation
on the bottom at the sampling site ¢ in year ¢. The values taken by d;; are coded as
1,2,3,4,5, for “no vegetation”, “few plants”, “some plants”, “many plants” and “bot-
tom totally covered”, respectively. We will assume that this variable can be related to
the suitability of the habitat as a nursery area for young cod, and also to how easy it is

to obtain a good sample of O-group and 1-group cod individuals.

We first describe the prior distributions for the settling probabilities p;;" and p;. We will
choose equivalent priors for the two age groups, and concentrate on the priors for the
0-group. Using the multinomial likelihood (4.12), the conjugate prior distribution is the
Dirichlet distribution. This takes into account that the p;,’s, including the ones for the
non-monitored locations, are dependent, and should sum to 1. We are interested in the
probabilities representing the monitored locations, and for these, we have the constraint

nf
> P < LVt (4.19)
i=1

However, as pointed out in Section 4.2.1, the settling probabilities will be small, such
that the constraint (4.19) will be satisfied. Consequently, we define marginal priors for
p;;, and the settling processes at different locations are assumed to be independent. We
take into account the assumption on habitat preferences due to bottom vegetation by
including the bottom coverage d;; as a covariate, and define the settling probabilities
to take one out of 5 different values, depending on the categorical variable d;;. More
specifically, we let

5
logit(p{y) =1og(L/QUf)) + Y e Tia, =3 (4.20)
k=1
where the parameters ¢;*; k = 1,...,5 are random effects that are to be estimated from

the data. This choice of prior is motivated as follows. As mentioned in Section 2.1, the
juvenile cod tend to live near the shore in the autumn, when the sampling take place.
If we assume that the cod settles uniformly along the coastline of fjord, it would seem
reasonable to let

Py = L/QUf), (4.21)
where L/€)(f;) is the fraction of the coastline of the fjord covered by station i. Recall
that L represents the distance between the landing points of the beach seine, and Q(f)
is a measure of the length of the coastline of fjord f. We adjust this average value by
multiplying by a factor 1 + ¢, depending on the value k of the covariate d;;, such that

L Ny
iy = =1+ cdu,=k)- (4.22)
)t Q(f)( ; k4 [d, k])
Since the settling probabilities p;;” will be relatively small, we have that logit(p;;’) =
log(piy /(1 = piy)) ~ log(piy). Defining ci® = log(1 + ¢;), the prior model in (4.20)

follows.
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We assign equal Gaussian priors to the ¢;*’s, such that

(")~ N(ptew Tew) (4.23)

where yi. , and 7. , are both fixed. The parameters will be estimated under the constraint
Sk =0, (4.24)
it

such that the ¢;*’s can be interpreted as deviations from an overall mean level of the
settling probability for the monitored stations. For the estimated deviations to be valid
for non-monitored locations as well, we need to assume that the sampling stations are
representative for the whole coastline of the fjord.

The probability of a cod being near the shore, and thus catchable at the time of sam-
pling, is assumed to be constant, but different for the two age groups. We denote these
constants by ¢, and ¢, for the 0-group and 1-group cod respectively. Finally, in analogy
to the settling probabilities p;;” and p;, we let the probabilities of not escaping, p;;” and
p;, each take one out of 5 different fixed values, py*; k=1,...,5and p;?; k=1,...,5,
respectively, depending on the value of the variable d;;. The actual values assigned to
these parameters will be specified in Section 5.1.

4.3 Summary of the model

A summary of the components of the model is given in Table 4.1. Prior specifications of
the sampling probabilities of the likelihood are given in Table 4.2, and the structure of
the prior model, including the parameters, is illustrated in Figure 4.4.
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Prior model (population dynamics):
Recruitment: Xpe | past(t), Zrs, o, {au e, 6n ~ N(Zppexp(ao + ar), Zppexp(dy + o))
Juvenile survival: Yy, | past(t), 8,7, k ~ Bin(Xy—1,exp(—k) X;f_lijtv_l)
Adult survival: Zsy | past(t), 0 ~ Bin((Zp—1 + Y1), exp(—0))

An overview of the hyper-priors is given in Table 5.2 in Section 5.1.

Likelihood (sampling process):

0-group: X7 | XDl ~ Bm(Xf,hpf,t)
1-group: V% 1 Yie,ply ~ Bin(Yyg, pfy)

The sampling probabilities are given by

S, M,T_0,r S,y MY 0,y

xr —
Pie=Piy Piy Piy and pi, = p; i oY,

and the prior specifications of the components of p?, and p{, are given in Table 4.2.

Table 4.1: A summary of the Bayesian hierarchical model for the population dynamics
and the sampling process.
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Settling probability

O-group | logit(p;) = log(L/Q i) + 31—y 8" Tia, =k
p(ci’w) ~ N(:U'c,wa Tc,w)
Legs Tep fixed

T-group | logit(p]¥) = log(L/Q(f:)) + ey 8" Lias =1}
p(ci’y) ~ N(:uwn TC,y)
Heys Tey fixed

Probability of being catchable

0-group | p;v" =, V(i,t)
1, fixed

1-group | pi7¥ =45 V(i)
1y fixed

Probability of not escaping

O-group | piy = Y4y Py fai=ips K =1,...,5
Py k=1,...,5 fixed

l_group p?”ty = Zi:l pZ’yI[di,Fk]? k= ]_7 ey 5
prY; k=1,...,5 fixed

Table 4.2: Prior specifications for the sampling probabilities of the likelihood.
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Figure 4.4: Graphical description of the prior model for the population dynamics, in-
cluding the parameters. The age-groups are denoted by X; (0-group), Y; (1-group) and
Z; (mature cod), where the fjord index is suppressed.
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Chapter 5

A sampling based approach to
parameter estimation

The parameters of the hierarchical Bayesian model are estimated using Markov chain
Monte Carlo methods (Gilks, Richardson and Spiegelhalter, 1996; Robert and Casella,
1999). The unknowns to be estimated are the survival and recruitment parameters 3, -,

..........

.....

and the abundances {X;,}, {Y},} and {Z;,} for all fjords f and years ¢. In this chapter
we study the results from estimating the model parameters as well as the abundances
using the Metropolis-Hastings sampler. The parameters {o;}¢, {c}’" }x and {c* }, are up-
dated in three blocks, one for each group of parameters, while the remaining parameters
and the abundances are updated using single-site Metropolis-Hastings steps.

To complete the model, the hyper-parameters of the population dynamics prior and
the likelihood defined in Chapter 4 should be specified, and these specifications are
given in Section 5.1. Some details on the implementation of the algorithm are given
in Section 5.2. To study the convergence and mixing properties of the algorithm, we
apply the algorithm to a simulated data set and describe how re-parameterising the
model leads to improved mixing. The results of this simulation study are presented
in Sections 5.3 and 5.4. The results from applying the re-parametrised model to the
Fledevigen data are given in Chapter 6.

5.1 Specification of hyper-parameters

The hyper-parameters are specified on the basis of reasonable choices of prior means
and prior ranges of the parameters, partly on the basis of other studies. We first con-
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sider the parameters of the sampling process, as defined in Table 4.2. The prior means
of the parameters ¢}"; k = 1,...,5 of the settling probabilities (4.20), and the similar
parameters for the 1-group cod, denoted ¢;¥; k = 1,...,5, are set equal to zero. The
prior variances are specified such that the interval (—log(100),1og(100)) corresponds
approximately to four times the standard deviation. As explained in Section 2.1, the
1-group cod tend to stay further away from the shore than the 0-group data, and thus
the beach seine catches are less efficient for these data. Therefore, the probability of
being catchable is assumed to be larger for the 0-group than the 1-group cod, and the
corresponding parameters are fixed to ¢, = 0.4 and ), = 0.1 based on biological ex-
pert opinion. This means that it is assumed that on the average 40% of the O-group
cod and 10% of the 1-group cod will be in the region covered by the beach seine at the
time of sampling. In Section 5.4 we assess the sensitivity of the estimated parameters
on the choice of values for 1, and ¢,. The probability of escaping was defined to be a
function of the amount of bottom vegetation, represented by the categorical covariate
d; ;. Assuming that the O-group cod, which are the smallest, have the highest chances of
escaping, these probabilities are fixed according to the values given in Table 5.1.

d; pftw pfiy

5 (bottom totally covered) | 0.8000 0.8500
4 (many plants) 0.8375 0.8750
3 (some plants) 0.8750 0.9000
2 (few plants) 0.9125 0.9250
1 (no vegetation) 0.9500 0.9500

Table 5.1: Fixed values of the probabilities of not escaping as a function of bottom cov-
erage d; ;.

We now turn to the parameters of the population dynamics prior. We need to specify
the hyper-parameters for the log recruitment rate parameters ag and a;;t = 1,...,n in
(4.2), the parameters 3, v and « in (4.5), and the parameter ¢ in (4.7). The probability
of survival for the juvenile cod is given from (4.5) by p, = X f_f_ Y5l exp(—k). Using
the estimated monthly survival rates found in Julliard et al. (2001), the probability of
survival from 0-group cod in September year ¢ to 1-group cod in September year ¢ +
1 is approximately exp(—2.5) = 0.08. If we let x = 0 and 8 = 7, we can obtain a
set of fjord specific values of 3 by using rough estimates of the 0-group and 1-group
abundances at fjord level. Assuming that the cod show no habitat preferences and settle
uniformly along the coast, a rough estimate of the abundances can be found by up-
scaling of the observations at station level by the factor Q(f)/(0.9¢,L) for the 0-group
and Q(f)/(0.9¢,L) for the 1-group using mean levels of the probabilities of settling,
being catchable and not escaping given above. Using this strategy, we obtain a set of
estimates of 3 in the range 0.1 to 0.15 corresponding to a survival rate of exp(—2.5).
Further, a value of § = v = 0.5 leads to fjord specific survival rates which are all less
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than 0.001, which seems well below a reasonable limit for the survival probabilities. We
take E(8) = E(y) = 0.2, and fix the hyper-parameters of the Gamma-prior of these to
parameters such that P(5 > 0.5) = 0.05, leading to Gamma(2, 10)-priors.

For k, we fix the hyper-parameters such that P(x > 3) = 0.05, and choosing, somewhat
arbitrarily, £(x) = 1, we arrive at the prior k ~ Gamma(1.0,1.0). For 6, we use the
results from Julliard et al. (2001), where the adult survival rate exp(—6) was estimated
to exp(—1). Further assuming that the adult survival rate is not very likely to be less
than exp(—3) = 0.05, we choose § ~ Gamma(1.0,1.0) as for .

We now consider the parameters of the recruitment process (4.2). The parameters in
the Gamma prior for « is specified such that E(ay) = 5. Assuming a relatively vague
prior, we let g ~ Gamma(0.5,0.1). The parameters modelling the temporal structure in
the log recruitment rate, oy, are assigned equal Normal(u,, 75 ') priors with p, = 0 and
7o ~ Gamma(0.01, 0.01), but they are constrained to sum to zero. Finally, the parameters
of the truncated Normal prior distribution of ¢, is us, = 10 and 75, = 2571,

A summary of the parameters of the population dynamics prior model and the likeli-
hood, their prior distributions and hyper-parameters is given in Table 5.2.

Parameter | Status | Prior distr./value | Hyper-parameters
Population dynamics prior:

Qg estimated | Gamma a, =0.5,06,=0.1

&) estimated | Gamma ag =20, 83 =10.0

v estimated | Gamma ay, =2.0,0,=10.0

0 estimated | Gamma ap=1.0,08,=1.0

K estimated | Gamma a, =1.0,8,=1.0

o estimated | Normal Lo = 0.0, 74

To estimated | Gamma ar = 0.01, 53, =0.01
Oy estimated | Normal (truncated) | u;s, = 10, 75, = 2571
Likelihood:

Uy fixed 1, =04

pyik=1,...,5 | fixed See Table 5.1

Py fixed Py, =0.1

pylik=1,...,5 | fixed See Table 5.1

¢";k=1,...,5 | estimated | Normal e = 0.0,7., =5.07"
¥ k=1,...,5 | estimated | Normal fey = 0.0,7., =5.07"

Table 5.2: Summary of the parameters of the prior model of the abundances and of the
likelihood model. The status refers to whether the parameters are to be estimated or are
kept fixed.
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5.2 Implementation details and preliminary results

The estimation procedure is implemented in C++. The Metropolis-Hastings updates are
based on random walk proposals, and the proposal distributions are tuned during a
set of initial iterations to give reasonable acceptance rates. The acceptance rates for the
model parameters for the final runs using the simulated data or the Fledevigen data are
in the range 6-58%, For the simulated data, the acceptance rates for the abundances are
between 16 and 47%, while for the Fledevigen data, they are in the range 7-73%.

In the Binomial likelihoods (4.15) and (4.18) for the O-group and 1-group cod respec-
tively, the abundances X;; and Y}, will typically be large, and the sampling probabili-
ties pf; and p}, are small. For computational convenience, we use a Poisson approxima-
tion to these Binomial likelihoods for large values of the updates of the abundances.

About 19% of the values of the covariate d;; are missing for the whole set of monitoring
stations, and about 14% for the two fjords in the Riser area. For each iteration of the
sampler, the missing values are replaced by a simulated value. In the case of a missing
value at time ¢, we fill in a value sampled in the range [diow, dhign), Were dio,, and dp;gp, are
the smallest and largest values measured at time ¢t — 1 and ¢ + 1 at that location. If one
of these two is also missing, the corresponding non-missing value closest to ¢ is used.

Initial runs of the sampling algorithm on the Riser data presented in Figure 2.8, indicate
that the mixing is poor and the convergence is slow. The convergence and mixing of a
single-site Metropolis-Hastings algorithm might be improved by re-parameterising the
model, such that the posterior correlations between the parameters are eliminated or
reduced (Gilks and Roberts, 1996). To assess the performance of the estimation proce-
dure and the effect of re-parameterisation, we conduct a simulation study running the
algorithm on a simulated data set. The simulated data and the results of the study are
presented in Section 5.3.

5.3 Simulation study

In this section, we assess the performance of our estimation procedure based on a set of
simulated data, described in Section 5.3.1. In Section 5.3.2, results from using the orig-
inal parameterisation are presented. The effect of re-parameterising the model on the
convergence and mixing of the sampling algorithm is studied in Sections 5.3.3 and 5.3.4.
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5.3.1 The simulated data set

The simulated data set is generated such as to mimic the subset of data from the mon-
itoring stations in the two Riser fjords. We simulate the Bayesian dynamic model over
a period of n; = 38 years using the parameters shown in Table 5.3 and Figure 5.1. The
values of the covariate d; ; representing the amount of bottom vegetation are taken to be
those of the 12 monitoring stations of the Riser area. The random effects o, representing
the temporal structure of the log recruitment rate, are set equal to the estimated values
from a preliminary run on the Riser data. This time series of estimated values indicate
that there is no strong temporal structure in the log recruitment rate, and from the QQ-
plot at the bottom right in Figure 5.1, assuming the random effects a;;t = 1,...,n, to
be Normal with common variance seems appropriate. Their empirical variance is 1.08,
and the prior mean of 7, is set to 1.0. The simulated time series of the 0-group, 1-group
and adult populations, together with the data sampled using the likelihood model in
(4.15) and (4.18), are given in the middle and bottom panels of Figure 5.1.

Population dynamics prior:
Parameter | vy K 0 ) O
Value 0.1 0.1 0.5 1.0 3.0 | 10.0

Sampling model (likelihood):

0-group:
Parameter O o B A TN
Value 09509125 | 0.875 | 0.8375| 0.8 | 04
1-group:
Parameter || p7¥ | p3?¥ p3? [
Value 0.95 | 0.925 09 0875 [ 085 | 0.1

Table 5.3: The parameters of the simulated data set.

5.3.2 Results from the original parameterisation

Preliminary runs indicate that estimating all parameters based on the simulated data set
using the original parameterisation leads to poor mixing for several of the parameters.
To get some initial insight into the structure of the parameter estimation problem, the
likelihood surface for the posterior model can be studied. In our problem, this surface
is high-dimensional and of a complicated form. However, some information can be
obtained by studying plots of marginal and pairwise joint full conditional distributions
defined for the sampling based estimation algorithm. In Figure 5.2 we have plotted the
full conditional distribution for the parameters 3, v, &, §, o and 6,. Similar plots of joint
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Figure 5.1: The recruitment parameters {a;}, and the settling probability factors {c¢;*}
and {¢;V}, of the simulated data set (top row), the simulated time series of abundances
(middle row) and the simulated 0-group and 1-group data aggregated over all loca-
tions in the fjords (bottom). The bottom right panel shows a QQ-plot of the recruitment

parameter vector & = (ay, ..., ap,)".

full conditionals of pairs of parameters are given in Figure 5.3. In both plots, we have
conditioned on the true abundances of the simulated data set as well as on true values
on the remaining parameters. From Figure 5.2 we observe that the probability mass is
highly concentrated for 3, v and 4, and has clear, but less concentrated peaks for x, o
and 0,. The most striking feature of Figure 5.3 is the strong conditional dependency
between the parameters 3, v and & of the prior model (4.5) of juvenile survival. The
other parameters appear to be conditionally independent of each other as well as of 3,
« and &, and the modes are well identified.

To assess the variability of the marginal full conditional distributions, we compute
rough estimates of the coefficient of variation (cv) from empirical 2.5% and 97.5% quan-
tiles of these distributions. The resulting values are cvg = 0.8¢7*, cv, = 1.0e7*, cv,, =
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1.0e72, cvg = 1.1e72, cvy, = 0.8¢7! and cvs, = 2.3. The over-dispersion parameter ¢, in
(4.2) has by far the largest coefficient of variation and is thus expected to be the param-
eter that is most difficult to identify. Based on these results as well as the preliminary
runs, we decide to keep ¢, fixed at its true value §, = 10 throughout the simulation
study.

For the original model, as for all re-parameterisations, the MCMC algorithm was run
using 5.1 million iterations, after some initial runs used to tune the algorithm. Trace
plots are generated using every 1000th iteration, discarding the initial tuning iterations,
leaving a total of 5100 updates. The trace plots for a selection of the parameters of the
population dynamics using the original model, which we will denote by Model I, are
shown in Figure 5.4. The mixing is poor and the convergence is slow for all parameters,
except for the precision 7,. Further, the trace plots indicate that there is high cross-
correlation between the simulated Markov chains for the parameters ¢, representing
adult mortality and the mean log recruitment rate ay. This is also clearly seen from the
scatter plots in Figure 5.5. There is also some evidence of correlation between 3 and v,
and between § and &, but not so strong.

The parameters « and 6 are contained in the population priors involving the unknown
adult population abundances Z;, for which we have no data. In Figure 5.6, the MCMC
updates for the time-independent parameters are plotted against the updates of the log
abundances for year 1976, which is in the centre of the period of study and should
be least affected by boundary effects. We observe that the abundance estimate of the
adult population Z;g7 is strongly correlated to ag and §. The levels of 3, v and « seem
to be independent of the adult abundance, but there is some evidence of increasing
simulation variance for increasing values of Zig7s. The empirical correlation between
6 and Z;, over the last 30 years of the period of study, discarding the initial 8 years,
are in the range [—0.94, —0.88]. In contrast, all parameters appear to be independent of
the 0-group and 1-group abundance estimates. To improve mixing and convergence,
we explore different parameterisations of the prior model defined by the conditional
distributions in (4.2), (4.5) and (4.7). The re-parametrised models are defined in the next
subsection, and the results are given in Section 5.3.4.

5.3.3 Re-parameterising the model

By re-parameterising the model, we aim at reducing the correlation between the pa-
rameters to be estimated. Based on the results for the original model, as well as the joint
full conditional distributions displayed in Figure 5.3, we now motivate and describe the
different re-parameterisations for which we explore the convergence and mixing prop-
erties of the corresponding sampling based estimation algorithm. A summary of the
different re-parameterisations is given in Table 5.4. The first re-parameterisation, de-
noted Model 1II, is based on the evidence of strong correlation between « and ¢ from
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Figure 5.2: Full conditional distributions of the global parameters of the population
dynamics. The vertical lines indicate the true values.

the scatter plots of Figure 5.5. This observation contrasts with the results displayed in
Figure 5.3, but recall that those results were obtained conditionally on the abundances.
In Figure 5.5 we have also included the updates of the parameter given by the difference
oo — 6. The correlation between this parameters and 6 or « is less than the correlation
between the two original parameters. Therefore, we re-parameterise the model intro-
ducing the parameter n = oo — #, and update § and 7 instead of # and ag. A further
motivation of this choice of 7 is given by the expression obtained by substituting the

conditional prior mean of Z;;, E(Z;, | past(t), Z;, ao, {a.}), for Z;, in the conditional
prior mean of X,. From (4.2) and (4.7) we have that

E(Xyy | past(t), Zis, a0, {aw}) = Zprexp(ap+ay), and 6.1
E(Zg, | past(t),0) (Zyp—1+ Y1) exp(—0). (5.2)

Substituting the mean (5.2) for Z;, in (5.1), we get

E(X;, | past(t), Zps, a0, {ou}) = (Zyp—1+ Y1) exp(—0) exp(ao + o)
= (Zf,t—l + Yf,t—l) exp(ao -0 + O(t) (53)

Even if the parameter 6 is also contained in the conditional prior variance of Z;;, the
parameters ¢ and oo might suffer from near non-identifiability, and = oo — 0 will
possibly be better identified.

Since data are available for the 0-group and 1-group cod but not for the adult cod, the
parameters 3, v and &, governing the survival from the 0-group to the 1-group stage
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Original model
Model I Model 11 Model 111
5 g g
Y v v
K K (k = k1 — B log(X) — v log(Y))
0 0 0
Qo (ap=n+16) (g =1n+6)
n=oy—0 n=ay—0
k1 =k + B log(X) + v log(Y)

Model IV Model V

B B

i Y

(5= 2 = 9 06LX) — 7 Togl¥) | (s = ma = 8 08(X) — 7 ogl¥)
(g =n+16) (ap = aff — log(Z))
n=oy—0
(k1=n-v) K1 = K+ B log(X) + 7 log(Y')
v=mn-—FK
ap® = ag +log(Z))

Table 5.4: Parameters of the different re-parametrised models. The parameters in paren-
theses are not estimated, but at each iteration computed from the estimated parameters
by the given relation. For further details, see the text.

are expected to be more easily identified that the parameters oy and §. However, the
trace plots in Figure 5.4 indicate that the mixing for these three parameters is slow, and
for k, the estimation variance is very large. Observe from Figure 5.5 that 5 and « as
well as 8 and v are negatively correlated, an observation that is consistent with the
joint full conditionals shown in Figure 5.3. The mean of the Binomial conditional prior
distribution of the survival of juvenile cod, as defined in (4.4), is log-linear in Xy, ;
and Y;,_1, with x representing an intercept in the log-linear model. In analogy to linear
regression, the parameters «, 8 and  in the re-parametrised model

exp(—r1 — B(log X;i1 —log X..) — y(log Y1 — logY..)) (5.4)

for the prior survival probability of the O-group cod, as given by (4.5), are expected
to be less correlated than x, 8 and v of the original parameterisation. In our model,
the covariates log X;,_; and logY;,_; are themselves unknowns to be estimated, and
using this parametrisation, care should be taken such that all parameters, including the
population abundances, are assigned valid values at each update. We will denote by
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Model III the re-parameterised model obtained by introducing (5.4) to Model 1L

In Model II, we combined the global parameters # and «. If we continue the reasoning
based on substitution of means motivating Model II, we can also include the parameter
#1 in (5.4), representing the average level of juvenile survival, in a linear combination of
density-independent parameters. Substituting £(Y;,_1) for Y;,_; in (5.3), we get (sup-
pressing conditioning on the past and the parameters in the notation)

Xpto =P Yiio =
EX = Z 1+ é ,——— € — € —9+ + .
(Xra) = (Zrams (exp(logX.,)) (exp(logK.)) xp(=hn)) expl %+ ar)
(5.5)

We introduce the parameter
v=oay—0— K, (5.6)

estimate 6, 7 and v, and compute o, and x; from (5.6) and the relation = ap — 6. The
resulting re-parameterised model is denoted Model IV.

Finally, we re-parameterise the prior model for the recruitment of new individuals (4.5)
by centring the log adult population abundances, Z;, resulting in Model V. This trans-
formation is motivated by the centring approach to re-parameterisation of random-
effects models suggested by Vines, Gilks and Wild (1996), denoted sweeping by Gilks
and Roberts (1996). The conditional prior mean of X, defined in (4.1) can be written as

E(X;, | past(t), Zri, 0, {a}) = exp(log(Zy,) + o+ ay)
= exp(log(Zsy) —log(Z., ) +1og(Z,) + a0 + )

= exp(log(Zsy) —log(Z.) + ag® + ), (5.7)

where
ay® = ag +log(Z ). (5.8)

The log mean of the abundances is swept from the abundances to the overall mean of
the log recruitment rate, .

5.3.4 Comparison of the results from different re-parameterisations

In this subsection we present the main results from each re-parameterisation and dis-
cuss the effect of each model in terms of mixing and convergence of the parameters that
are estimated.

In Figure 5.7 trace plots for the parameters involved in the re-parametrisation in Model
I are plotted. Comparing the plot of ay against # for the original model to the plot of
the new parameter 1 against § for the re-parametrised model, also shown in Figure 5.7,
we observe that the degree of dependency has not been reduced to any large extent. So
not very much is gained using this re-parameterisation.
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In contrast, the centring of the log abundances in Model III results in a substantial im-
provement of the mixing for 8, v and &, as illustrated in Figure 5.8. We also observe
that the correlation between 3 and the intercept term x, of the re-parameterised model
is less than the correlation between 5 and «; the absolute value of the empirical correla-
tion between the updates is reduced from 0.69 to 0.36. The true values § = 0.1, y = 0.1
and x = 0.5 are all within the credibility intervals generated from empirical 2.5% and
97.5% quantiles. These are [0.065, 0.194] for 3, [0.014, 0.144] for v and [0.013, 1.417] for &.
The convergence remains slow for the parameters o and 6, and these parameters are
still strongly correlated to the mature abundance, as illustrated by the scatter plots of
Figure 5.9.

From the results for running Model IV (not shown), we find that the convergence and
mixing of v is much slower than that of «,, such that nothing is gained by including the
parameter v.

From the trace plot of the updates of aj® of Model V, shown in Figure 5.10, we can
conclude that this parameter is substantially better behaved than «. From (5.8) we
have that

exp(ag°) = exp(wo) exp(log(Z.)), (5.9)

and this factor can be regarded as a measure of the overall mean number of new recruits
to the population per year, where the mean is taken over all fjords (in our simulated
example one fjord) and the whole period of study. Thus, the results indicate that the
mean number of recruits is a well behaved quantity in terms of mixing and convergence,
but that it is difficult to identify the relative contributions of the abundance of mature
cod and the recruitment rate per adult cod to this number.

To summarise the findings regarding the global parameters, trace plots for all param-
eterisation, except Model 1V, are plotted together in Figure 5.11. From the plot it is
apparent that the main improvement in convergence and mixing is achieved by apply-
ing the centring of re-parameterisation III. Also, we observe that the hyper-parameter
7o is well-behaved for all parameterisations.

Trace plots for the temporal fluctuations of the log recruitment rate, represented by
{at}+, are shown Figure 5.12 for five of the years. There seems to be no major differences
in the mixing properties for the different parameterisations. There is some indication
of heterogeneity in the sampling variance, and as illustrated for «;o using Model III
in the bottom row of Figure 5.9, the updates of the «;’s are correlated to the updates
of the mature abundances. The settling probability factors {c;*}; and {c;}; of the
sampling probabilities summarised in Table 4.2, are computationally well-behaved for
all models, as can be seen from Figures 5.13 and 5.14. The estimated posterior means
for {a,}t, {c¢}" }x and {¢}} are shown in Figure 5.15, together with the true values. The
fit is good and the variability is small, except for ¢ and ¢{* which are estimated on
the basis of very few observations (< 10), and the first few elements of {a;}; suffering
from initialisation effects. We observe that although the mixing of the «;’s was found
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not to be quite satisfactory, and the updates are correlated to the adult abundances, the
estimated posterior means indicate that the true temporal structure is well reproduced.

So far, we have focused on the effects on the model parameters. In Figure 5.16 we plot
trace plots of the abundances for two years, year 1967 and 1968, for all parameterisa-
tions. Convergence and mixing is good for the 0-group and 1-group populations, while
for all models the mixing is poor and convergence is very slow for the adult population
abundance. Despite the apparent convergence problems for the abundance of adult cod,
we proceed by presenting posterior mean estimates to get an indication of the fit to the
data, but the poor mixing should be keep in mind when interpreting the results. Esti-
mated and true abundances for the 38 years of study are plotted in Figure 5.17. These
plots indicate that the O-group population abundance is very well estimated. The fit
of the 1-group population is quite good, but the abundances seem to be systematically
slightly underestimated, particularly for the large abundance estimates. The estimated
adult population fluctuates substantially between the re-parameterisations, as expected
from the poor mixing.

In Figure 5.18 we further illustrate the behaviour of the abundance estimates, using the
estimates based on Model III. Here, we have plotted the estimated posterior means of
the abundances for the two juvenile age-groups as a function of time, together with the
observed fjord total of sampled individuals of each age-group. The means are taken
over every 1000th iteration, discarding the first 100000 iterations after tuning. To sim-
plify visual comparison, the observations of the 0-group and 1-group cod are up-scaled
by the constants Q(f)/(ns,L) and Q(f)/(nsy, L) respectively, where n; is the num-
ber of stations in fjord f. These up-scaling factors are analogous to the values used in
Section 5.1 to specify the hyper-priors of the population dynamics priors. Also, the esti-
mated time series for the 0-group and 1-group cod, the latter shifted back one year and
up-scaled by a constant, are shown together. We observe that the temporal structure
of the abundance estimates follows the data well for both age-groups, with the closest
fit for the O-group data. However, comparing the middle panel to the bottom panel,
we are inclined to believe that the estimates for the 1-group cod owe more to the prior
model than to the likelihood. Thus, we can conclude that the information inherent in the
simulated data seems to be stronger for the 0-group than the 1-group population, and
not strong enough to give reliable estimates for the adult populations using the current
model.

For Model III we also ran the sampling algorithm for two alternative sets of initial val-
ues for the parameters. The results are illustrated by trace plots in Figures 5.19 and 5.20.
We observe that different initial values leads to substantially different estimated poste-
rior distributions for § and «, as well as the mature abundances, confirming the lack
of convergence for these parameters. The mixing properties of the «,’s are also vari-
able, but although the corresponding posterior means will differ, the resulting temporal
structures (not shown) are similar for all three runs. On the other hand, the estimated
posterior distributions of 3, v and « as well as the abundances of the 0-group and 1-
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group cod are essentially the same for all runs.

Note that we have simulated our dataset such that the 1-group data contains a substan-
tial number of zeros reflecting the structure of the original dataset for the Riser fjords.
Also, the values of the covariates d;; in the simulation study is chosen to match the val-
ues for the stations in this area. Therefore, we will expect the convergence problems to
be of the same order or worse for the Riser data.

The parameters showing poorest convergence after re-parameterisation are o and 6,
which from Figure 5.9 are found to be highly correlated to the adult populations. How-
ever, referring to Figure 5.3, the mode of the joint full conditional distribution of o and
6 seems to be well identified. Running the program using the original model and keep-
ing the populations fixed at their true values, this result is confirmed, as can be seen
from the trace plots in Figure 5.21. The convergence is fast and mixing is good for all
parameters. Observe that since the parameters of the population dynamics as defined
in (4.2), (4.5) and (4.7) depend on the data only through the abundances, the data { X7,
and {Y;%} will not be informative for the population dynamics parameters when we
condition on the true population sizes {X;,;}, {Y;,;} and {Z;,}. Moreover, fixing the
abundances, the estimation problem is equivalent to the problem of estimating the pa-
rameters of each of the three components of the prior model separately. Estimating all
parameters of the recruitment process (4.2) based on abundances from one fjord only,
problems related to near non-identifiability were experienced in the case of fixed abun-
dances as well. Conditioning on the abundances, we observe that for the recruitment
prior (4.2), the number of free parameters exceeds the number of pairs (X;;, Z;;). Al-
though in principle no particular attention needs to be payed to this fact in a Bayesian as
opposed to in a frequentist setting, near non-identifiability might be experienced if the
priors are relatively vague. Therefore, the parameter J, was still kept fixed running the
model conditionally on the abundances. However, we also simulate another data set,
grouping the 12 sampling stations into two fjords, and estimate the model parameters
conditionally on the two sets of abundances. In this case, the convergence and mixing
are good for all parameters, including 4,, as illustrated in Figure 5.22.

Since the parameters seem to be easily identified given the true population sizes, we
conclude that the convergence and identifiability problems in the simulation based es-
timation are consequences of high correlations between some of the parameters and
the estimates of the population abundances, in particular for the adult cod for which
we have no data. As a consequence, a sampling based estimation approach where we
sample directly from the marginal posterior of the model parameters, estimating the
parameters only and not the abundances, is expected to improve convergence and mix-
ing. However, this requires integration of the joint posterior over the time series of
abundances for the 0-group, 1-group and adult populations. In Chapter 8 we describe
an approach to this problem using the Metropolis-Hastings algorithm.
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Figure 5.11: Trace plots for the parameters (3, v, , 8, ap and 7, for (from left to right) the
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Figure 5.12: Trace plots for aig, a1, azs, arag and asg for (from left to right) the original
model (Model I) and the re-parameterisations Model II, III and V.
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Figure 5.16: Trace plots for two sets of 0-group, 1-group and adult populations, for (from
left to right) the original model (Model I) and the re-parameterisations Model II, IIl and



106
60000

Estimated x
Estimated y
.
Estimated z

4105

20000

10000 30000 50000 70000

0
0

o 4*1075 10%6 0 20000 60000 10000 30000 50000 70000

True x Truey True z

10%6
60000

15000 25000 35000

Estimated x
Estimated y
.
Estimated z

4105
20000

5000

0
0

o 47105 1076 0 20000 60000 5000 15000 25000 35000

True x Truey True z

106
60000
30000

Estimated x
Estimated y
.
Estimated z

4105

20000
10000

0
0

o 4*1075 10%6 0 20000 60000 10000 30000

True x Truey True z

50000

Estimated x
10%6
Estimated y
60000
.
Estimated z
30000

4105
20000

10000

0
0

o 4*1075 10%6 0 20000 60000 10000 30000 50000

True x Truey True z

Figure 5.17: Estimated and true populations, for (from the top downward) the original
model (Model I) and the re-parameterisations Model 11, III and V. (The extreme values
for Z are due to initialisation effects).
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Figure 5.18: Estimated posterior means from Model 111, compared to the simulated data.
The full lines in the two upper panels show the posterior mean of the 0-group (top
panel) and the 1-group (middle panel). The simulated data, in terms of the total number
of sampled cod, up-scaled by the factors Q(f)/(Lnsy,) and Q(f)/(Lnsi,) respectively,
are added (dotted lines). In the bottom panel, the estimates for the 0-group (full line)
and 1-group (dotted line) cod are shown together, the latter being shifted one year back
and up-scaled by a constant to simplify visual comparison.
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Figure 5.19: Trace plots for the parameters 3, v, «, 8, a, 019 and 7, for Model 111, using
three different sets of initial values.
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Figure 5.20: Trace plots for two sets of 0-group, 1-group and adult populations for
Model 111, using three different sets of initial values.
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Figure 5.21: Trace plots for a selection of the model parameters, conditional on the true
populations using the simulated data for one fjord. The horizontal dotted lines indicate
the values used to generate the data.
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Figure 5.22: Trace plots for a selection of the model parameters, conditional on the true
populations, grouping the sampling stations of the simulation study into two fjords.
The horizontal dotted lines indicate the values used to generate the data.
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5.4 Sensitivity analysis

So far, we have fixed the parameters 1, and 1, of the likelihood, representing the prob-
ability of each individual being in the region covered by the beach seine at the time
of sampling. Because the abundances in the likelihood models (4.15) and (4.18) are
also unknown, the parameters ¢, and %, are in practice difficult to identify in the
current model without sufficiently informative priors, as we have experienced when
attempting to estimate these parameters as well. To check the sensitivity of the pa-
rameter estimates to the choice of values for 9, and 1,, we ran the estimation proce-
dure on the simulated data set for a set of different values of these two parameters.
Also, since the convergence of the parameters ¢ and o is slow due to high cross-
correlation, we fixed @ at three different values, but estimated oy. The sensitivity anal-
ysis was run for ¢, € {0.30,0.35,0.40,0.45,0.50}, ¢, € {0.050,0.075,0.100,0.125,0.150}
and 6 € {0.8,1.0,1.2}. The results are presented graphically in Figures 5.23, 5.24, 5.25
and 5.26, and the estimates and corresponding empirical standard deviations for the
model parameters are given in Tables B.1, B.2 and B.3 in Appendix B.

Since 1, and 1, represent the probability of being catchable at the time of sampling, in-
creasing these parameters should lead to decreasing estimates of the posterior mean of
the corresponding population abundances. This effect is illustrated in Figure 5.23. Here,
the estimated population abundances for all pairs of values of ¥, and v, are plotted for
each of the three selected values of §. The time series of abundances can be seen to be
grouped into five groups. For the 0-group cod (X), the groups correspond to the five
selected values of 1), with X decreasing as 1/, increases. Equivalently, the estimates of
the 1-group abundances (") are grouped according to the value of 1/, and decrease with
increasing v,. The effect of 1), on Y and ¢, on X are both small as compared to the cor-
responding within-age-group effect. The estimated abundances of the adult cod follow
the same pattern as for the 1-group cod, in accordance with the prior model (4.7), and
the effect of 1, on the estimated adult population abundance is small. We observe that
the juvenile abundances are independent of 6, while the number of adult cod decreases
when 0 increases such that the corresponding survival probability exp(—6) decreases.

The parameters oy; t = 1,...,n,; in (4.2) are constrained to sum to zero, and they are
therefore not expected to be much affected by the change in level of the 0-group and 1-
group abundances induced by varying 1, and v,. From Figure 5.24 we see that except
for the first few years, the values of o, are essentially unaffected by changing these two
parameters, as well as by changes in §. As shown in the bottom panels of Figure 5.24,
the uncertainty of the parameter estimates are relatively large for the first few years,
due to initialisation effects.

A similar result is obtained for the settling probability factors ¢;*; k& = 1,...,5 and
¥ k =1,...,5 of the likelihoods for the 0-group and 1-group data respectively, de-
fined in Table 4.2. These parameters represent the relative settlement preferences of the
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juvenile cod and as expected, these parameters seem not to be affected by the actual val-
ues of ¢,, ¥, and §. Exceptions are ¢ and ¢}?, but for these parameters, the estimates
are highly variable. This can be explained by the fact that the corresponding value of
the bottom vegetation code (1=no vegetation) is recorded for only a few stations and
years.

For the remaining population dynamics parameters governing the prior distributions
the results are displayed in Figures 5.25 and 5.26. In Figure 5.25 the results are displayed
as functions of 1), with each line representing a value of ¢, and in Figure 5.26 the same
results are displayed changing the role of ¥, and ¢,. To interpret the results, recall from
(4.1), (4.4) and (4.7) in Section 4.1 that the prior mean of the population abundances are
given by the expressions

E(X;, | past(t), Zps, 0, {ou}) = Zrpexp(ao+ o),
E(Yy. | past(t), 8,7,5) = Xpprexp(—k — Blog(Xyu—1) — v1og(Yye-1)),
E(Z;. | past(t),0) (Zgi-1+ Yyeo1) exp(—0).

The most noticeable effect of 6 is on the recruitment rate « in correspondence with the
high positive cross-correlation already experienced between these two parameters and
consistent with the results of Bjernstad et al. (1999a). This result is also in accordance
with the prior distributions, since a decrease in the adult survival rate exp(—¢) leads
to a decrease in the size of the adult population, which needs to be compensated by
an increase in the recruitment rate exp(ayg) to keep the O0-group abundances at the same
level. Moreover, we observe that the prior precision 7, of the a;’s seems to decrease
with increasing 6, but the absolute effect is very small.

From Figure 5.25 we observe that increasing 1, and thus decreasing the abundance of
0-group cod, has an expected negative effect on «y. Also, there is in general a slight
negative effect on 3 as well as  over the selected range of 1, but less pronounced than
for a. A reduction in 3 is supported by the expression for the prior mean of Y;,, and
we know from Section 5.3.4 that x and  are negatively correlated. There seems to be
little effect on 7, and +.

An increase in 9, has a positive effect on all parameters except for 7,, as illustrated in
Figure 5.26. The effect seems to be more consistent over the range of ¢, than for ¢,, but
direct comparison of the size of the effect is difficult because the actual values as well as
the relative step-wise increase in 1, and 1, are different. The positive effect on o can
be explained by the fact that increasing 1, and thus decreasing the abundance of the 1-
group cod will result in a decrease in the adult population, following the expression for
the conditional prior mean of Z,. For given values of X;;, we see from the conditional
prior mean that oy should increase to compensate for the decrease in the size of the
adult population. The effects of 1, on 3, 7 and x can be explained from the prior model
using similar arguments.
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Figure 5.23: Estimated posterior means of the population abundances of the 0-group
(three upper left panels),1-group (right panels) and adult (three bottom left panels) cod
for different values of ¢, and 1,, plotted for § € {0.8,1.0,1.2}. See the text for further
explanation.
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Figure 5.24: Estimated posterior means (three top rows) and empirical standard de-

viations (three bottom rows) of oy; t = 1,...,n; and the factors ¢;*; k =1,...,5 and

¥ k=1,...,5 for the 25 different combinations of ¢, and ¢, and for ¢ € {0.8,1.0,1.2}.
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Figure 5.25: Estimated posterior means of the time-independent parameters of the
prior model plotted as a function of 9, for the five different values of ¢, and for
# € {0.8,1.0,1.2} (see also Figure 5.26).
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Figure 5.26: Estimated posterior means of the time-independent parameters of the
prior model plotted as a function of 1, for the five different values of ¢, and for
# € {0.8,1.0,1.2} (see also Figure 5.25).
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5.5 Summary and discussion

Based on a set of simulated data we have explored the properties of the statistical model
and a sampling based approach to parameter estimation, focusing on the mixing and
convergence properties of the MCMC algorithm. We have shown that mixing is im-
proved by re-parameterisation, but that slow convergence remains a problem for sev-
eral parameters.

The only unknowns of the likelihood are the settling probability factors ¢;"; k=1,...,5

and ¢;; k =1,...,5. The estimated posterior means for these parameters are all close
to the true values, and the mixing is good and the convergence is fast for all parameter-
isations.

Re-parameterising the prior model for juvenile survival by centring the log-abundances
of the juvenile cod, is shown to improve the convergence and mixing of the parameters
B8, v and k. These parameters have well identified modes with empirical credibility
intervals including the true values.

Although the mixing is variable, the estimated posterior means of ay; ¢t = 1,...,n; re-
produce the true temporal structure of the log-recruitment rate well. The same is true
for the temporal structure of the abundances of the 0-group and 1-group cod, both for
which the mixing is satisfactory. The closest fit is obtained for the O-group, for which the
observed counts are most abundant. The estimated posterior means of the abundances
are very close to the true values for the 0-group cod. A close fit to the overall levels of the
abundances for the juvenile age-groups is in accordance with the fact that the sampling
probabilities of the likelihood model are fixed except for the modulations due to differ-
ences in the amount of bottom vegetation. A more general approach taken by Knight
et al. (2003) is to define a sufficiently informative prior on the parameters defining the
level of the probability, in our model ¢, and ,. We ran a sensitivity analysis varying
these parameters, and the results showed that the parameters representing relative ef-
fects are essentially unaffected by changes in the values of ¥, and 1, but that the choice
of values influences the other parameters, in accordance with the prior model.

An unsolved problem is the poor mixing and slow convergence of the adult popu-
lation abundances, for which we have no data, as well as the parameters a, and 6.
These parameters were shown to be negatively correlated to the adult abundances, and
correlations between population abundance and corresponding model parameters has
been identified as a general problem in modelling fish population dynamics (Millar and
Meyer, 2000b, and references therein). Moreover, estimating instantaneous mortality, in
our model represented by 0, is generally recognised to be a challenging task in fisheries
stock assessment (Gavaris and lanelli, 2002). As illustrated by Millar and Meyer (2000b)
in the case of a biomass dynamics model, identifiability might be improved by redefin-
ing the dynamics in terms of relative abundances. The results for Model V, presented in
Figure 5.10 indicate that sweeping the mean of the log-abundance to the log-recruitment
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rate ap, we arrive at the well-identified quantity of® = ag + log(Z)). Consequently, the
mean number of recruits to the population can be identified, but not the relative contri-
butions to this number from the number of adult cod and the recruitment rate.

In our model, we have included an over-dispersion parameter ¢, in the prior model
(4.2) for recruitment. In general, the model can be extended to include over-dispersion
in the priors for the 1-group and adult cod as well as in the Binomial likelihood models,
but this should be weighted against model parsimony, in particular in the light of the
convergence and identifiability problems of the current model.
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Chapter 6

Results for the Flodevigen data

In this chapter we apply the sampling based estimation approach to the Fladevigen
data set. We first present results for the subset of stations in the Riser area, plotted in
Figure 2.8. The stations belong in reality to two fjords, eight stations in Sandnesfjord
and four in Sendeledfjord, but we treat these twelve stations as belonging to one fjord.
In Section 6.2 the results using data for 13 fjords are presented. The results are in both
cases based on the re-parameterised model denoted Model III in Table 5.4.

6.1 Results for the Riser fjord

The results from the simulation study, running the algorithm on data from one fjord,
indicated that the strong interactions between the abundance of adult cod and the pa-
rameters § and og governing adult survival and recruitment made the identifiability of
these parameters difficult. We choose to fix the parameter § at the value # = 1 which is
in accordance with the results of Julliard et al. (2001). The over-dispersion parameter of
the recruitment prior (4.2) is kept fixed at the value ¢, = 10.

Trace plots for a selection of the parameters, based on 5.1 million iterations of the sam-
pler, are shown in Figure 6.1. The convergence and mixing seems to be reasonably
good for all parameters, and the mixing properties are similar for the parameters not
shown. The posterior marginal means and empirical standard deviations for the global
parameters, computed from every 1000th iteration after discarding the first 200000 iter-
ations, are given in Table 6.1. We observe that there seems to be evidence of a positive
within-group density-dependency (5 > 0), while the significance of the parameter
is more doubtful. The density-independent component of the juvenile survival rate,
represented by r, has a large variance. Further evidence of the significance or lack of
significance of v and x can be obtained by comparing the fit of models including or
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Parameter | Posterior mean | Empirical std.dev.
B 0.026 0.009
y 0.014 0.009
K 0.079 0.074
o 0.84 0.08
Ta 1.05 0.28

Table 6.1: Results for the main population dynamics parameters from running the
Metropolis-Hastings sampler on the Riser data.

not including these two parameters. The fit of a set of Bayesian hierarchical models
differing by the definition of the parameter vector  of the model can be compared by
using the deviance information criterion DIC (Spiegelhalter, Best, Carlin and van der
Linde, 2002). This is defined as a function of the estimated posterior mean 8 of 6 by

DIC = D(8) + 2pp = D(8) + pp, 6.1)
where D(6) is the Bayesian deviance

D(6) = —2log{f(y | 0)} + 2log(f(y)) 6.2)

and pp is a measure of the effective number of parameters. The functions f(y | 8) and
f(y) are the likelihood and a standardising functions depending only on the data, re-
spectively. Results from using this criterion on the likelihood as defined by our model
indicate that the model discarding v but keeping « gives the best fit to the Riser data
(Gunnhildur Hognadéttir Steinbakk, Norwegian Computing Center, personal commu-
nication).

Plots of the estimated posterior means of {a;};, the temporal fluctuation of the log-
recruitment rate, and the settling probability factors {c;*},, and {¢;*},, are given in Fig-
ure 6.2. For both juvenile age-groups, there seems to be no structure in the dependency
of the settling probability on the bottom coverage. For bottom coverage equal to 1,
the variance of the estimated parameter is large due to a small number of observations
within this category. From the plots of estimated posterior distributions and the corre-
sponding prior distributions for the parameters, shown in Figure 6.3, we observe that
the posterior distributions are more concentrated than the priors, confirming that there
is information on the parameters in the data.

Trace plots for the abundances, a selection of which are shown in Figure 6.4, indicate that
conditionally on ¢ and ¢, the mixing is good and convergence is achieved for all age-
groups. The estimated posterior mean of the abundances of the 0-group and 1-group
cod, discarding the first 200000 iterations, are given in the right panels of Figure 6.2. To
get an impression of the degree of fit to the data, we have added the observed counts
up-scaled by the factors Q(f)/(Lns,) and Q(f)/(Lnsip,) for the 0-group and 1-group
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respectively, in analogy to Figure 5.18 for the simulated data. The up-scaling represents
a guess of an overall mean abundance level based on a homogeneous fjord and assum-
ing no habitat preferences among the individuals of the juvenile age-group. The esti-
mates give a very close fit to the temporal structure of the 0-group cod and a reasonable
but not so good fit to the 1-group data. From the bottom right panel of Figure 6.2, where
we have plotted 1-group estimates shifted one year back together with the 0-group es-
timates, we see that the temporal structure of the 0-group and 1-group estimates are
essentially identical. This result indicates that the prior acts more strongly than the like-
lihood on the estimated abundances for the 1-group cod. This was also seen for the
simulated data, that were generated to contain a similar number of zero counts as in the
1-group data in the Riser area.

The parameters ¢, and 1, of the sampling process are fixed throughout the study, and
the chosen values will influence the level of the abundance estimates. To assess the
sensitivity of the estimated parameters on ¢, ¢, and 0, a sensitivity analysis was con-
ducted in a similar way as for the simulated data set, running the algorithm for 1.1
million iterations for each set of values. A summary of the main results is shown in
Figures 6.5 and 6.6. The results are similar to those reported for the simulated data set
in Section 5.4, but the effects of varying 1, and ¢, on the parameters 5 and  are more
profound, in particular the effects of ¢,. Estimated posterior means and corresponding
empirical standard deviations from the sensitivity analysis are given in Tables B.4, B.5
and B.6 in Appendix B.

6.2 Results using data from several fjords

Applying the estimation algorithm to the simulation study and to the Riser data, our
full model appeared to be near non-identifiable. In both cases, the model was speci-
fied for one fjord only. Using data from several fjords, the overall level of mixing and
identifiability is expected to be improved compared to the results from the single fjord
cases. We ran the algorithm based on Model III using data from a total of 49 stations
in 13 fjords, observed in the period 1956-1998. Plots of the 49 time series of counts for
the 0-group and 1-group cod are given in Appendix A. In Figures 6.7, 6.8 and 6.9 trace
plots resulting from running 5.1 million iterations of the sampling algorithm are shown.
The mixing is still not satisfactory for § and ¢,, but their modes seems to be reasonably
well identified. For the other parameters, the mixing properties are similar to the ones
observed for the Riser data, fixing §, and 6. The convergence for the abundances is now
considered to be reasonably good for all age-groups, although the mixing is slightly
poorer for the adult cod than for the juvenile age-groups. The parameters ¢ and §, are
highly correlated as well as dependent on the adult population abundance, as illus-
trated by the scatter plots of Figures 6.10 and Figure 6.11. The latter plot is given for one
fjord (fjord no. 8), but to different extents the pattern is similar for the other fjords. The
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parameters oo and § seem to behave independently when estimating all parameters of
the model.

Recall from Section 4.1.1 that we introduced the re-parameterisation §, = 4, + «y, where
exp(d,) is the over-dispersion of the Gaussian prior of the recruitment process. Studying
the scatter plots of Figure 6.10, we observe that the correlation between o and 6, is
much smaller than between oy and ¢, a fact that supports this re-parameterisation.

Estimated posterior means and empirical standard deviations for the global parameters
are given in Table 6.2, and the estimates of «; ¢t = 1,...,43 and the settling probability
factors {¢;*} and {¢;Y}, are given in Figure 6.12. As for the Risor data, the within-
group density-dependence is clearly significant (3 > 0), while the estimate of the pa-
rameter y provides no evidence of significant between-group density dependency. The
estimated value of the overall mean log-recruitment rate «y is relatively small, and the
variance is large. Studying the values of the a,’s plotted in Figure 6.12, we observe that
the recruitment rate of the year 1988 stands out as particularly low. This coincides with
the year of an algae bloom along the Skagerrak coast, believed to have had a profound
short term influence on the marine life in the affected areas (Smith et al., 2003; Johan-
nessen and Sollie, 1994). The low values for the first few years are due to initialisation
effects. In contrast to what was the case for the Riser data, there now seems to be a
structure in the settling probability factors for the 0-group cod. For the 1-group cod the
results indicate an increased sampling probability for a totally covered bottom, but there
is no similar overall pattern as for the 0-group cod. For these parameters, the mixing is
good and the convergence is fast. To check the significance of the differences, we study
the estimated posterior means and empirical 95% credibility intervals of the differences
& —¢"; k > | and corresponding values for the 1-group cod. The results are given
in Figure 6.13, and confirm that the differences for the 0-group cod are significant for
all but the differences ¢;* — ¢3*, ¢ — ¢ and ¢ — . Thus, we conclude that the
probability of settling seems to increase with increasing amount of bottom vegetation,
but with a slight decrease for a totally covered bottom. The indications of the presence
of habitat preferences related to bottom vegetation is consistent with results from other
studies (e.g. Fromentin et al., 2001; Fromentin et al., 1998; Johannessen and Sollie, 1994).

From the right panels of Figure 6.12, where we have plotted the estimated posterior
means of the 0-group and 1-group cod for one of the two fjords in the Riser area, we
observe that the general appearance of the estimated times series is as for the Riser
data. The fit to the temporal structure of the data is better for the O-group than the 1-
group data, and the similarity between the temporal structure for the two age-groups is
apparent from the bottom left panel. Estimated abundances for all age groups and all
fjords are shown in Figures C.1 to C.3 in Appendix C.

Plots of the estimated posterior marginal distributions of some parameters are given
in Figure 6.14, and plots of the prior distributions are added. As for the Riser data, the
results confirm that there is information in the data, since the posteriors are substantially
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more concentrated than the priors.

Parameter | Posterior mean | Empirical std.dev.

B 0.059 0.003

v 0.0014 0.0010

K 0.023 0.022

g 2.1 0.1

o 0.54 0.31

Ta 0.29 0.07

e 13.6 0.2

0y — 13.1 0.6

Table 6.2: Results for the main population dynamics parameters from running the
Metropolis-Hastings sampler on the data from all fjords.

6.3 Summary and discussion

We have estimated the parameters of our Bayesian hierarchical model for two subsets of
the Flodevigen data; the Riser data for which only one set of abundances was estimated,
and a data set consisting of observed counts from 13 fjords.

In contrast to the model-wise related studies in Stenseth et al. (1999), using the 0-group
data only, and Bjernstad et al. (1999a) using aggregated 0-group and 1-group data, we
use the data for both age groups at their original level of aggregation. In this way, the
uncertainty inherent in the original data is taken into account, and we have been able
to get an impression of the relative degree to which the two sets of data can inform on
the parameters of the model. The 0-group data are the most abundant, and was prior to
the study believed to be the subset of the data containing the most information on the
parameters of interest. Our results, e.g. as represented by the plots of abundances and
up-scaled observed counts in Figures 6.2 and 6.12, confirm the assumption. The fact
that the prior model seems to dominate the likelihood for the 1-group data can also be a
result of an unsatisfactorily specified likelihood model. The variance of the likelihood of
the 1-group cod might be increased by including an over-dispersion parameter to give
a more realistic representation of the sampling uncertainty.

Comparing Figure 5.18 for the simulated data set and Figures 6.2 and 6.12 for the
Fledevigen data, we observe that the magnitude of the estimated 1-group abundance
relative to the 0-group abundance is much larger for the real data than for the simu-
lated data set. This indicates that the relative values of the sampling probabilities of the
0-group and 1-group cod, as specified by the parameters in Section 5.1 might not reflect
the true relations to a satisfactory extent.
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The parameters {¢;“ }, and {¢;" };, of the likelihood were well identified and the mixing
and convergence good for both data sets. The temporal structure of log-recruitment
rate, represented by the parameters {«,},, were reproduced well using both data sets,
but the mixing and convergence were improved using data from 13 fjords as compared
to the results for the Riser data. The resulting estimated posterior means of {¢;"}
and {c¢;} indicated that the settling probability of the 0-group cod increases with the
degree of bottom coverage, but with a slight decrease for a totally covered bottom. This
latter fact might be due to a less efficient beach seine catch. For the 1-group cod, no
significant effect on the sampling probabilities of differences in bottom coverage was
found. For the a;’s, the estimated value corresponding to the year 1988 was particularly
low, coinciding with the algae bloom at the Skagerrak coast that year.

The mixing and convergence of the parameters 3, v and 6 of the prior for juvenile sur-
vival turned out to be satisfactory. For the Riser data, we fixed the parameters §, and ¢
to obtain satisfactory mixing and convergence. Running the algorithm on the data set
including observations from several fjords, the convergence properties were improved
compared to the results from estimating the abundances for one fjord only. However,
the mixing was still found to be relatively poor for 6 and slightly better but still not sat-
isfactory for §,, and these parameters are highly correlated as well as correlated to the
adult abundance. These parameters of the model should therefore be interpreted jointly
and with care.

Comparing the estimated parameters to the results of other studies, one should take into
account that not all parameters of the population dynamics are scale-invariant. Multi-
plying the population abundances for the three age-groups by a common factor c, the
dynamics will change, and thus parameters obtained by models defining the popula-
tion dynamics on the scale corresponding to the sampled data, will in general not be
directly comparable to estimates from a fjord level model as ours. To illustrate, let

X},t = Xf,t/C,
Yfl,t = Yf,t/C,
Z],”,t = Zf’t/C

where c is a positive constant. Substituting for X;,, Y, and Z;; in the prior models
(4.2), (4.5) and (4.7), we get

cX}’t | past(t), Z;, ap, {cu}, 0, ~ N(CZ}’t exp(ao + ay), cZ},t exp(d; + o)), 6.3)
CYf/,t | paSt(t)vﬁv Yok Bin(CX},t—h eXp(_H) (CX},t—l)_ﬂ(CYj{,t—l)_’y)v (64)
cZy, | past(t),0 ~ Bin(c(Zp,_ + Y, 1), exp(=0)). 6.5

Rewriting the conditional prior distribution of ¢Y} , as

Yy, | past(t), 8,7,k ~
Bin(cX}, 1, exp(—+ — clog(B) — clog(y) — Blog(X},_;) — vlog(Yf, 1)), (6.6)
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we see that the parameters § and « of the survival rate are scale-invariant, while the in-
tercept term exp(—« — clog(8) — clog(y)) will depend on the scaling factor. Although the
parameters ag and § will not be scale-invariant in the conditional prior variances of X},
and Z} , they are scale-invariant in the conditional prior means. The latter fact indicates
that using the results from other studies to fix the parameter § seems reasonable.

As was shown by the sensitivity analysis varying v, and v, the global parameters all
depend to different extents on the down-scaling from fjord level to station level inher-
ent in the sampling probabilities of the likelihood. Thus, even though § and +y are scale
invariant in the prior, differences in models for the sampling process will cause direct
comparison of absolute values of these parameters to be difficult. However, the pres-
ence or absence of within- or between group density-dependency applying different
models can still be compared by studying the significance of 3 and .

Keeping these comments in mind we can make rough comparisons of the estimated
posterior means to estimated values obtained from other studies on cod along the Nor-
wegian Skagerrak coast. Our estimated values of § and «, using data from 13 fjords,
are § = 2.1 and @y = 0.54, corresponding an adult survival rate of exp(—2.1) = 0.12
and a recruitment rate of exp(0.54) = 1.71. The estimated value of § is relatively large
and of «y relatively small compared to previous results. For example, § has previously
been estimated to 1.0 (Julliard et al., 2001), using a different set of data, and 0.56 (Chan
et al., 2003b), both smaller than our estimate of 2.1. Chan et al. (2003b) distinguish be-
tween natural mortality and fishing mortality, such that the estimate exp(—0.56) = 0.57
is interpreted as a baseline adult survival rate, with temporal fluctuations around this
level due to fishing mortality. In the study of Bjernstad et al. (1999a), four different esti-
mates of o in the range 1.93 to 2.73 were found, which are all larger than our estimate
of 0.54.

For both sets of data we estimated a significant within-group density-dependent effect
on the juvenile survival rate. This is in accordance with other studies (Fromentin et al.,
2001; Bjornstad et al., 1999a; Bjernstad et al., 1999b; Stenseth et al., 1999). The between-
group density dependency is smaller, and not significant in our study. In the light of
the discussion above regarding the information inherent in the 1-group data, this is
not surprising. Fromentin et al. (2001) found some evidence of between-group density-
dependence in north-eastern fjords, estimating a significant effect for a few fjords. Based
on aggregated data, Bjernstad et al. (1999a) estimated a significant density-dependency
between groups, but smaller than the within-group dependency. Stenseth et al. (1999)
also found evidence of between-group density dependencies, but they did not take the
stochasticity of the population dynamics into account. Taken together, the results of the
different analyses based on the Flodevigen data are not conclusive when it comes to the
between-group density-dependency.
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Figure 6.1: Trace plots for the Riser data, using Model III. The plots show every 1000th
of a total of 5.1 million iterations after tuning. The parameters denoted by cz(3) and
cy(3) are the settling probability factors ¢;* and ¢3" respectively.
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Figure 6.2: Estimated posterior means from Model Il based on the Riser data. The three
left panels show the settling probability factors {c;"} (top) and {c¢;*} (middle) and the
temporal structure of the log recruitment rate, {c,}, including two times the empirical
standard deviation of the updates. The three right panels show estimated abundances
compared to the real data. The full lines in the two upper panels show the posterior
mean of the 0-group (top) and the 1-group (middle). The dotted lines represent the
total observed catch of cod, up-scaled by the factors Q(f)/(Lnsy,) and Q(f)/(Lnsyy),
respectively. The bottom right panel shows the estimates for the 0-group (full line) and
1-group (dotted line) shifted one year back and up-scaled by a constant. The estimates

are means taken over every 1000th iteration.
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Figure 6.7: Trace plots for a selection of the model parameters based on data from all 13
fjords. Every 1000th of 5.1 million iterations is shown.
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Figure 6.9: Trace plots for the abundances of 0-group (left panels), 1-group (middle
panels) and adult (right panels) cod for fjord 13 for the years 1974-1978, using Model

II1.
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Chapter 7

A simulation study of the effect of
releasing 0-group cod

As described in Section 2.2, the data on which we base our study originated from a
discussion on the effect of releasing cod larvae on the population of cod within a fjord.
Having established a model for the population dynamics and estimated the model pa-
rameters, we are now able to simulate the behaviour of the populations of the different
age-groups after releasing young cod. The process of survival from the larval to the
0-group stage is not explicitly included in our model, but is defined as part of the re-
cruitment process. Consequently, we are not able to simulate the original experiment
releasing cod larvae, but we can study the effect on the future development of the pop-
ulation of any excess of 0-group juvenile cod resulting from a release of cod at the larval
stage.

We perform the study by sampling from the prior model using the parameters of Ta-
ble 6.2, estimated using the data from 13 fjords. Because of the Markov structure of the
model, conditional on current and past abundances the data are not informative on fu-
ture abundances. Consequently, we predict the future behaviour of the populations by
sampling from the prior model. As initial values for the population abundances, we use
the estimated posterior means of abundances of the final year for which we have data
(1998). The estimated over-dispersion of exp(13.1) leads to relatively large prior vari-
ance for the 0-group abundances, such that sampling from the Gaussian prior might
spuriously lead to negative values of X;;. To avoid this problem, we sample from a
truncated Normal distribution.

We first simulate the population dynamics using the prior model given by (4.2), (4.5)
and (4.7) for 10 years. Then we repeat the simulation procedure, using the same seed,
but add a number N, ; to the initial value X of the 0-group population abundance in
fjord f. The values of the parameters of the population dynamics are taken to be the
estimated posterior mean values except for the temporal structure oy; ¢t = 1,...,10 of
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the recruitment rate, which are generated by a; ~ N(0,7;'). We simulate two scenar-
ios, releasing an amount of 0-group cod corresponding to 50% and 100% of the initial
abundances respectively. That is, the initial abundances are increased to 15X 70 and
2X #,0- The results from the simulated experiment are shown in Figures 7.1 to 7.4, where
we have plotted the median population abundances over 100 iterations. There seems
to be an immediate effect of the release on the mature abundance for both amounts
of released cod, but to assess the significance of this effect as well as of any long-term
effects, the variability should be taken into account. To get an indication of the sig-
nificance of the results, we perform t-tests based on the 100 realisations of the future
mature abundances for each fjord and each year, testing for the differences in mean
abundance with and without release. For both amounts of released 0-group cod, the
differences for the second year after release, corresponding to the first year when the
enhanced year-class is assumed to contribute to the mature population, are significant
at the 95% level for all fjords. Releasing an amount corresponding to 100% of the ini-
tial populations, significant differences are also identified for year four after release in
seven of the twelve fjords. Otherwise, a total of three differences for years three and six
are the only ones that are found to be significant at the 95% level. The fact that there is
evidence of significant effects for years two and four but not for the intermediate year, is
in correspondence with the 2-2.5 year cycle for the Skagerrak cod population identified
in earlier studies (e.g. Stenseth et al., 1999). We conclude that based on our model and
the estimated parameters, there is evidence of a short-term effect of releasing 0-group
cod amounting to 50% or 100% of the natural population abundances, but no significant
long-term effects are found. These results are in correspondence with the main results
from a similar study conducted by Chan et al. (2003a), extending the scenario to include
several successive years of release. Although they identify statistically significant long-
term effects for some fjords, these effects are considered to be too small to have any
practical significance.

Using the estimated posterior means of the model parameters, we do not take into ac-
count the variability in the parameter estimates. If we conduct the simulation experi-
ment using different updated values of the model parameters at each iteration, the sim-
ulation variance will increase. Therefore, although the results regarding significance
of the short-term effect might be altered, taking the variability of the parameters into
account should not lead to different conclusions regarding the long-term effects.
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Figure 7.1: Results from the simulation study of the effect of releasing juvenile cod for
six of the fjords. Each panel show the median over 100 iterations with (dashed line)
and without (full line) releasing an amount of O-group cod corresponding to 50% of the
initial abundance.
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Figure 7.2: Results from the simulation study of the effect of releasing juvenile cod for
six of the fjords. Each panel show the median over 100 iterations with (dashed line)
and without (full line) releasing an amount of O-group cod corresponding to 50% of the
initial abundance.
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six of the fjords. Each panel show the median over 100 iterations with (dashed line) and
without (full line) releasing an amount of 0-group cod corresponding to 100% of the
initial abundance.
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without (full line) releasing an amount of 0-group cod corresponding to 100% of the
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Chapter 8

Sampling from the marginal posterior
distribution of the parameters

The results from estimating the parameters of the model using the simulated data, in-
dicated that the main estimation problems using single site updating are due to high
correlations between the adult abundance and related model parameters. However, in
many cases, the main interest is to estimate the model parameters governing the popu-
lation dynamics and sampling process, while the abundances are of secondary interest.
In this chapter we propose an alternative approach, were the parameters of the model
are estimated by sampling from the marginal posterior of the model parameters, inte-
grating over the population abundances. In Section 8.1 we give a description of the
approach, and in Section 8.2 we study its performance using a set of simulated data.

8.1 The marginal posterior sampling approach

We first describe the approach for a general discrete time state-space model, specified
in a Bayesian hierarchical model framework, before specifying the sampling procedure
for the population dynamics model for the cod.

Let V, denote the state vector of the model at time ¢. Further, let V' denote the vector
obtained by stacking the state vectors V;;¢ = 1,...,n; on top of each other, that is

Vi

Vs,

V= ) 8.1
Vo,

Similarly, let D, denote the observed vector quantity at time ¢, and D the corresponding
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stacked vector, such that

D,
D,
D= . . 8.2)
D,,
Finally, let
_( o
0= ( 9, ) , 8.3)

denote the vector of the unknown parameters to be estimated. Here, 8y and 8p are
the parameter vector of the system equation and the observation equation respectively,
specifying the distributional assumptions of the state-space model. In our population
dynamics model, the state vector V, the data vector D, and the unknown parameters
0 to be estimated are

V. = (Xt’Y;ﬁth)Ta 8.4)
D, = (({X73)", ({¥2})"), and ®85)
0 = (ﬁa77ﬁ79aa0a ({at}t)Ta(sfm ({CZ,Z}k)T’ ({Czyy}k)T)T~ (86)

Here, we have suppressed the fjord subscript f of the abundances.

We specify the system and observation equations in the framework of a Bayesian hi-
erarchical model, such that conditionally on the parameters 8, the system equation is
represented by the conditional priors

flog| v, 0v); t=2,...,n4

Flor | 6y), ®7)

utilising the Markov property of the state-space model, and the observation equation
by the likelihood

[17(d: | v 60). 8.8)
t=1
The model is completed by defining the prior f(@) of the parameter vector 8. A graphi-

cal description of the general model is given in Figure 8.1.

We will estimate the parameters 8 by sampling from the joint marginal posterior dis-
tribution of 8, given observations of the data vector D. Referring to Figure 8.1, this
corresponds to establishing direct edges between the nodes representing the data and
the parameters, eliminating the intermediate nodes representing the abundances. The
distribution is given by

f(0|d)= /vf(O,v | d) dv, (8.9)
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Figure 8.1: A graphical representation of the general state-space model, where n = n,.

integrating over all values of the population dynamics vector V. Using Bayes theorem,
the marginal posterior distribution can be expressed by

flv.01d) f(d]v,8)f(v]6)f(6)
flv]6,d) f(v]8,d) ’

This identity is similar to the “basic marginal likelihood identity” used by Chib (1995) to
compute the density of the marginal likelihood from the output from Gibbs sampling,
as well as an analogue to the formula for the Bayesian predictive density of a future
observation presented in Besag (1989). Sampling based estimates of 8 can be obtained
using the Metropolis-Hasting algorithm with (8.10) as the target distribution. Schemat-
ically, the algorithm for obtaining m samples using uniform proposal distributions can
be described as in Figure 8.2.

F(0]d) = (8.10)

For each proposal 8 of 8, we need to evaluate (8.10) in both the current and proposed
value of @ in order to compute the acceptance rate. Since the normalising constants
in general will depend on the parameters to be estimated, we need to evaluate nor-
malised densities, a fact that might increase the computational burden substantially.
In the nominator of (8.10) we recognise the likelihood and the joint prior distribution
of the population sizes v and the model parameters 8. These can be computed from
the model specification, as defined by the conditional prior distributions (4.2), (4.5) and
(4.7) and the likelihood given by (4.15) and (4.18), so we focus on the evaluation of the
denominator in (8.10).

Let d} denote the vector obtained by stacking the data vectors for all points in time up to
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Figure 8.2: A summary of the Metropolis-Hastings algorithm for sampling from the
marginal posterior for the parameters 8, using uniform proposal distributions.

and including time ¢, and let v represent the corresponding quantity for given values
of the state vector V. The denominator can be evaluated using the forward-filtering-
backward-sampling method (Frithwirth-Schnatter, 1994; Carter and Kohn, 1994), ex-
pressing the denominator in terms of the backward-sampling distribution

1
fi | di,0) = f(vn, | d7,0) T fvilvi,di,0) (8.11)
t=ns—1
where
floe | th,dﬁ,O) oc f(vy | dtpg)f(’vtﬂ | v4,8)). (8.12)

The forward-filtering distributions f (v, | d}, §) are given by

floe | dy,0) o fo | a7, 0)f(ve | ve1,0)f(dy | vi,0)dvy . (8.13)
Vi
This integral is not available in closed form, and some form of numerical approximation
is needed. We proceed by defining a discretisation of the state-space, and consequently
replacing the integral in (8.13) by a sum over all values v{_,, where we use superscript
d to denote discretised abundances. Thus, the integral (8.13) is approximated by

f(’Ut—l | dtl_ly O)f('Ut | Vi1, 9)f(dt | Uy, 9)d’0t—1

Vi1

~ > ffy | di0)f(ve | v, 0)f(di | v, 0)Av) . (8.14)

d
'vt—l

The sum (8.14) can in principle be evaluated for any discretisation of the state-vector.
However, even for small dimensions ¢ of the state vector V', the computational cost in-
creases rapidly with the resolution of the discretisation. For simplicity, we assume that

105

URN:NBN:no-3402



URN:NBN:no-3402

the grid size k is equal for all elements of the state vector, but in general, the discreti-
sation can be of different resolutions for the different elements. As shown in Table 8.1,
evaluation of the sum (8.14) requires an O(n;k*?) - algorithm, where n, is the number
of observations in time. The normalising constant has to be evaluated since it might
depend on the unknown parameter vector 6.

Source Original scale Virtual scale
Un-normalised FFBS distribution O(k9) O(k=0=D)
Normalisation O(k9) O(k9)

Time (no. of observations) O(ny) O(rny)

Total O(nk7) O(rn k2a=r=1)

Table 8.1: Computational cost of evaluating the sum (8.14) approximating the un-
normalised forward-filtering distributions (8.13) and of evaluating the normalising con-
stant. The cost is computed for the original and the virtual time scale.

To reduce the computational cost, we introduce a new time-scale, splitting the original
time step into sub-steps. The motivation is to define a sub-time scale utilising the struc-
ture of the conditional prior specification, such that only one or a few components of
the state vector are updated at each sub-step. The resulting virtual time scale using r
sub-steps is illustrated in Figure 8.3. Using this virtual time scale, the computational
cost is reduced from O(nk%?) to O(rn;k*~("~1), as shown in Table 8.1.

Vi1 = UVi_(p=1)fr 0 T Vi1 > Ut
t—1 t  (real)
r(t—1) rt—(r—1) --- rt—1 rt (virtual)

Figure 8.3: A virtual time scale using r sub-steps.

The effect on the summation (8.14) of introducing the virtual time scale is best illustrated
using an example, and we apply the above procedure to our state-space model for the
cod population dynamics. The original time step is split into three sub-steps, one for
each element of the state vector. The resulting updating scheme on the new virtual time
scale is illustrated in Figure 8.4. Depending on the sub-time-step ¢, the sum (8.14) is
taken over all values of the discretisation of Z,_; (the z-step), X;_; (the x-step) or Y;_;
(the y-step). The computational cost is reduced from O(n;k%) to O(3n.k*), as described
in Table 8.2.

Defining the abundances on the extended virtual time scale and denoting the virtual
time by s, the conditional priors f(v, | v,_1,8), entering into the summations (8.14), are
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zZ—step y—step x—step

Figure 8.4: Structure of sub-model, introducing a virtual time scale. The figure shows
one time-step in the real time scale, corresponding to three time steps in the virtual
scale. The virtual intermediate sub-steps are denoted ¢ — 2/3 and ¢ — 1/3. The full
lines represent a change of value, while the dotted lines indicate that the corresponding
variable is kept fixed.

given from (4.2), (4.5) and (4.7) by

z-step: f(’vs | ’1)5_1,0) = f(Zs | ys—l,Zs—l,O)I[acs=ws_1]1[ys=ys—1]7
y-step: flus [ vs-1,0) = f(ys | y3_17$5_17B)I[ms:Zs—l]I[zs:zs—1]7 (8.15)
x-step:  f(vs | vs—1,0) = f(s | 26-1, 02—z L1ya=y._1)-

The joint prior f(v | #) needed in the nominator of (8.10) is
3ne

f(v|0) = Hf(vslvs—lao)
= H f(Zs|Zs—17ys—1,9) H f(yslxs—l,ys—lyg) H f(-'rs|zs,0)

5;8%3=1 $;8%3=2 $;8%3=0

= [[f@:lves,0), (8.16)
t=1

where ¢ denotes the time steps of the real time scale. The likelihood is evaluated by

Ns Nt

fd|v,0) =TT F@ |z A DF@ | vie D), (8.17)

i=1 t=1

where the product is taken over all n, sampling locations 7 in the fjord, and all n, years
t. We assume independent priors for the parameters 8, so f(8) = [[; f(¢;)-
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Source Original scale Virtual scale
Un-normalised FFBS distribution O(k?) O(k)
Normalisation O(k®) O(k?)

Time (no. of observations) O(ny) O(3n:)

Total O(ntkﬁ) O(3ntk4)

Table 8.2: Computational cost of evaluating the sum (8.14) for the population dynamics
model. The cost is computed for the original and the virtual time scale.

8.2 An application of the approach to simulated data

To explore the properties of the sampling algorithm, we apply the method to a set of
simulated data. To reduce the computational burden, we use a shorter time series than
in Section 5.3. We simulate 10 years of data, but generate data for 20 stations, to com-
pensate in part for the reduced number of observations in time. Also, we do not use
observed values of the covariate d;;, but sample d;; at random, assuming a uniform
distribution over all possible values. This is done in order to reduce the variability in
precision of the estimates of the settling probability factor due to the sparsity in the
number of data points for extreme values of d;;. The parameters determining the sur-
vival rates as well as the log recruitment rate oy are equal to the parameters for the full
simulated data set, given in Table 5.3, while the over-dispersion parameter is increased
to 0, = 11.0. The temporal fluctuations in the log recruitment rate are specified by sam-
pling from the distribution given by oy ~ N (0,7, '), where 7, = 1.0, and adjusted such
that 3°;°, a; = 0. The resulting data set is illustrated in Figure 8.5.

A crucial step of the proposed algorithm is to choose a representative discretisation.
The discretisation should cover the range of possible sizes of the populations, and at
the same time, the resolution k£ should be kept at a minimum so as to reduce the compu-
tational cost, which was shown to be proportional to k*. The abundances are unknown,
but some guidance to the range of values can be given from the a rough up-scaling of
the data, and this can be combined with biological information on the order of mag-
nitude of the abundances. Referring to the considerations on sampling probabilities
in Section 4.2.2 and the corresponding prior specifications in Section 5.1, rough esti-
mates of the number of individuals of the juvenile age groups, relying on the data as
well as prior information on cod movement, can be obtained by up-scaling the mean
number of counts at each point in time by a factor Q(f)/(0.9¢, L) for the O-group and
Q(f)/(0.9¢,L) for the 1-group. For the adult population no data are available, so we
estimate the abundances sequentially in time by Z, = (Z,_, + Y;_1) exp(—#). The sur-
vival rate exp(—§) is unknown, and this quantity is sampled for each t. The values are
sampled uniformly over the interval [exp(—1) * 0.8, exp(—1) * 1.2], centred at the value
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Figure 8.5: Parameters (upper panels), simulated population abundances on fjord level
(middle panels) and sampled data as a total for all 20 stations (bottom panels) for the

simulated data set.

exp(—0) = exp(1). For the first year, we use equilibrium considerations, estimating Z;

by the value Z; = Y; exp(—0)/(1 — exp(—f)), assuming the mature population to be sta-
ble, and using the average rough abundance estimate of the 1-group cod as an estimate
of ¥;. Formally, we generate rough estimates of the abundances for each of the 10 years

by
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v exp(=0)
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The variability of the estimates (8.18) of the abundances is assessed in Appendix D.

The choice of discretisation based on the abundance estimates from the up-scaling as
given in (8.18) is illustrated in Figure 8.6. The spread of the abundance estimates for the
10 years gives an estimate of the range of probable values for the abundances. Studying
the empirical distribution of the estimates, we get an indication of how to choose the
discretisation such as to obtain highest resolution in the regions of the state space with
highest density. As illustrated in Figure 8.6, by plotting the sorted abundance estimates
for the 10 years we find that equal spacing in log scale for the 0-group and 1-group
abundances and in the original scale for the adult abundance seems appropriate. In the
bottom panels, discretisations in 10 intervals are shown, and for comparison, the true
simulated abundances are added as dotted lines.

To study the effect of varying the resolution, we evaluate the marginal posterior distri-
butions, ignoring priors, for each parameter in turn, keeping the remaining parameters
fixed at their true values. That is, for each parameter ¢; we evaluate

d | ve,0)f(ve | 0)
fve | 6,d)

in a selected value v.. Defining ¢, y? and z¢ to be the length k vectors of discretised
values of the 0-group, 1-group and adult abundances, we choose v, to be the value
(%4 2+ Yit /2 21j2)- The results are shown in Figures 8.7 and 8.8. For ag and 4, there is
hardly any effect of increasing the resolution of the discretisation, except for a small
shift in the distribution for o going from resolution 10 to resolution 20. This might in-
dicate that the data have limited information on these parameters, in accordance with
the near-identifiability problems experienced when estimating abundances as well as
model parameters based on data from one fjord only. The effect of increasing the res-
olution is much more pronounced for the parameters 5 and v, the density-dependent
effects of the juvenile survival, as well as for the density-independent survival parame-
ters # and «. From the plots we observe that the effect is large going from resolution 10
to resolution 20 and still substantial increasing the resolution to 30. By further increas-
ing the resolution the posteriors grow smoother, but the range of values with significant
posterior probability does not change much. Based on these results we conclude that
using a discretisation of resolution 30 seems sufficient to estimate the posterior range
of these parameters, but the resolution should be further increased if estimating the full
posterior distribution is an important issue.

7(6;1d,6_,) o L , (8.19)

We ran the sampling algorithm using K = 30, basing the discretisation on the results
presented in Figure 8.6. The computational cost is still relatively large; each iteration
took 6-7 seconds on a 2.8 GHz Pentium 4 computer. Estimating all parameters, the
convergence is slow, so in order to improve the convergence properties, we fix ¢, and
6 to the true values. Trace plots from running the algorithm for 520000 iterations using
the simulated data set are given in Figure 8.9. For comparison, in Figures 8.10 and 8.11
the trace plots are shown together with similar plots from applying the Metropolis-
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Hastings algorithm of Chapter 5 to the same data set. For o and the hyper-parameter
T, the algorithm is still not considered to have converged after the 520000 iterations,
and from Figures 8.10 and 8.11 the mixing is extremely poor as compared to the result
obtained when estimating the abundances as well. From Figure 8.8, the parameter 6
seems to be better identified than o such that fixing o and estimating § might be a more
reasonable choice using the marginal posterior sampling approach. The convergence
properties for the temporal random effects «, represented in the plots by the updates
of as, is better, and the levels are comparable to the ones obtained by the algorithm
of Chapter 5. However, we observe that the simulation variance is smaller than for
the other approach, and this might be related to the fact that the updates of the prior
precision 7, stay near the initial value 1. The range of the posterior distributions for
B, v and  as well as the parameters {¢”}; and {¢;"'}, are all well identified. These
parameters were also the best behaved parameters in our study in Chapter 6, and the
results confirm the initial findings presented in Figure 8.7.

8.3 Summary and discussion

We have presented an approach to sampling based estimation of the model parame-
ters, sampling from the marginal posterior distribution of the parameters. Using this
approach, we eliminate the need for updating the population abundances, which for
the mature cod were shown in Chapters 5 and 6 to be highly correlated with several
of the model parameters. The approach is based on specifying the marginal posterior
distribution in terms of the prior and likelihood models and the joint full conditional
distribution of the abundances, evaluating this full conditional distribution using the
forward-filter-backward-sampling method. The requirement of evaluation of the nor-
malising constants of the forward-filtering distributions leads to a substantial increase
in computational cost. By introducing a virtual time-scale, we obtained a reduction of
the cost of the sampling algorithm from O(n:k°) to O(3n:k*) for our hierarchical model
for the Skagerrak cod.

Applying the algorithm to a simulated data set, the ranges of the parameters related
to juvenile survival, as well as the parameters measuring relative effects, were well
identified, and comparable to results from using the Metropolis-Hastings algorithm es-
timating the abundances as well. However, slow convergence still remains a problem.
As we observed in Section 6.2, increasing the amount of data and the number of fjords
improved on the convergence and mixing of the Metropolis-Hastings sampler. Since the
fjord populations are assumed to be separate, the marginal posterior sampling approach
can in principle easily be extended to the case of several fjords of data by replacing the
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marginal posterior (8.10) by

flvy, 8] dy) df|'vfa flvs 1 0)1(8)
I;If(eld H o0 ds ];[ Fo 9.9, . (8.20)

However, the CPU time will be roughly proportional to the number of fjords, and al-
though we have made efforts to optimise the code such as to reduce the computational
cost, we are still left with a substantial number of evaluations for each iteration of the
sampler.

The choice of discretisation is obviously a crucial point. The resolution should be high
enough to avoid point masses in the prior distributions as defined on the discretised
abundances, at the same time as we need to focus on parsimony in the number of lev-
els to keep the computational cost down. We have used the same resolution for all
age-groups, but alternatively the resolution could be allowed to vary between the age-
groups. In light of the poor mixing of ay and 7,, a more dense discretisation for the
adult cod might be needed.

The results of the previous chapters indicated that the main convergence problems were
related to the mature population abundances. To reduce the computational burden of
the marginal posterior sampling algorithm, an alternative would be to marginalise over
the mature abundances only, and update the 0-group and 1-group abundances with the
model parameters. The cost of updating the mature abundance will be O(n;k?). The
prior model for juvenile survival (4.5) does not depend on the Z;,’s such that MCMC
updates for the 1-group cod can be generated by a Metropolis-Hastings step with the
full conditional as target distribution. However, the prior (4.2) of the 0-group cod does
depend on the mature cod. Marginalising the posterior distribution for X;; using an
analogue to expression (8.10) for integrating out the Z;;’s requires a O(n}k?)-algorithm
for each fjord, such that the cost of the algorithm will be proportional to the square of
the number of years of data.

Although poor mixing still remains a problem for several parameters, we have illus-
trated that the marginal posterior sampling approach is capable of capturing informa-
tion in the data on the parameters. We therefore consider the approach to have a po-
tential in the estimation of the parameters of the population dynamics model in cases
were the abundances are of secondary interest, but at present the approach has practical
limitations due to the large amount of CPU time required.
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values used to generate the data.
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Figure 8.10: Trace plots from the marginal posterior sampling approach (left panels)
and corresponding results from running the single-site Metropolis-Hastings algorithm
(right panels) for the simulated data set of 10 years and 20 stations. The horizontal
dotted lines indicate the values used to generate the data.
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Chapter 9

Discussion

We have illustrated how a model for the population dynamics of coastal cod can be
specified within the framework of a Bayesian hierarchical model, estimating the param-
eters using a fully Bayesian approach. The model represents an improvement compared
to other models applied to these data since stochastic variation is accounted for at all
levels of the model, including an explicit stochastic model for the sampling process.
Consequently, the population dynamics is specified for the fjord level populations and
not for populations proportional to the sampled counts of individuals.

Using a set of simulated data, we have studied the properties of the model in terms
of convergence and mixing of a Metropolis-Hastings approach to the estimation of the
model parameters and the abundances. Re-parameterising the model was shown to
improve mixing compared to the results for the model on its original form. However,
convergence problems persist due to high correlations between the adult abundance,
for which we have no data, and related model parameters, in particular the instanta-
neous mortality § and the level of the log-recruitment rate «. Increasing the number
of fjords, the problem is reduced, but slow convergence and unsatisfactory mixing re-
mains a problem for the adult abundance as well as the instantaneous adult mortality ¢
and the over-dispersion parameter J, of the prior model for recruitment. For the Riser
data, for which abundances for only one fjord were estimated, the parameters ¢ and 9,
were kept fixed.

The estimated marginal posterior distributions of the model parameters were shown to
be more concentrated than the priors, confirming that there is information in the data
on the parameters of the model. Moreover, the estimated temporal structure of the rate
of recruitment of new individuals to the population indicated a particularly low rate in
1988, recognising the algae bloom of that year. The results for the juvenile abundances
showed that the temporal structure of the estimated posterior means was reproduced.
The fit was better for the 0-group than of the 1-group abundances, confirming prior
belief that there is more information in the 0-group data than the 1-group data, a result
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that can be related to the larger fraction of zero counts in the 1-group data.

Of particular interest to biologists is to identify the presence or absence of density-
dependency in survival between the juvenile stages. The results from our study gave
clear evidence of a within-group density-dependency, in correspondence with other
studies. On the other hand, no evidence was found for a corresponding significant
density-dependency between the 0-group and 1-group cod.

The unknown parameters of the likelihood, relating the sampling probability to a cat-
egorical covariate representing the amount of vegetation on the bottom, were compu-
tationally well-behaved and well identified for all parameterisations of the model. The
results from using the data for 13 fjords indicated that the settling probability increases
with the degree of bottom coverage, but with a slight decrease for a totally covered
bottom, possibly due to a less efficient beach seine catch.

Running a sensitivity analysis varying the factors 1, and 1, of the sampling probabil-
ities, that were fixed based on biological information, posterior mean estimates of the
abundances, as well as for the population dynamics parameters that were not estimated
relative to a reference level, were shown to depend on the chosen values of these factors.
Moreover, not all parameters are scale-invariant. Therefore, care should be taken when
interpreting estimated values as well as comparing these values to the results from other
studies.

In our problem, estimating the population abundances is of secondary interest com-
pared to the estimation of the parameters of the population dynamics. We proposed
an approach to parameter estimation based on sampling from the marginal posterior
distribution of the model parameters, integrating over the population abundances. Al-
though the mixing turned out to be poor for several parameters, applying the approach
to a simulated data set it was shown that the method was able to capture information
on the parameters available in the data. Introducing a virtual time scale we obtained a
significant reduction of the computational cost, but the required CPU time is still large,
such that at present the approach has practical limitations.

An interesting extension of the model would be to estimate temporal trends in the pa-
rameters. Since the region of study is a popular region for leisure fishing, it would be of
particular interest to allow for temporal variability in the parameter # representing the
adult mortality, such that trends in the number of tourists visiting the area might be re-
flected in temporal fluctuations of the fishing mortality. In our model we consider only
total mortality, but as suggested by Chan et al. (2003b), we could distinguish between
natural and fishing mortality.

Another extension could be to allow the parameters to be fjord specific, in light of the
results of e.g. Fromentin et al. (2001), that indicated that the population dynamics is
somewhat different in the north-eastern and the south-western fjords. It is suggested
that the regional differences in the population dynamics, e.g. in the extent of predation
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and cannibalism, relate to differences in the amount of bottom vegetation. In Section 3.2
we pointed out that several studies indicate that abiotic factors like hydrography and
climate influence the population dynamics, and in general, incorporating more biotic
and abiotic covariates in the parameters of the Bayesian hierarchical model would be
an interesting direction for further work.

Finally, we return to the question initiating the monitoring programme that has gener-
ated the data on which our study is based. To imitate the experiment that was conducted
in the early 20th century to settle the dispute between G.M. Dannevig and J.Hjort on the
effect of releasing cod larvae, we performed a simulation study of the effect of releasing
juvenile cod on the abundance of the mature population. In the real word experiment,
the cod was released at the larval stage, but since our model does not distinguish be-
tween the rates of recruitment and of survival to the 0-group stage, we simulated the
release of juvenile 0-group cod. Consequently, in our simulated experiment we focused
on the effect on the mature population conditionally on the survival to the 0-group
stage. The results indicated that there seems to be an immediate effect on the size of the
adult population releasing amounts of 0-group cod corresponding to 50% and 100% of
the initial populations, but no significant long-term effect of releasing juvenile cod was
found.
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Appendix A

The data

| Fjord number

Fjord name

| Station number

Station name

1

Torvefjord

3

Rauskjeer

2

Topodalsfjord

12
15
16
17
18

Justnes
Borresholmen
Solbustad
Vigvold

Som - gst

Hovdg

31
33
36
37
39
41

Jakteviga
Steindalsfjord, Kvarsnes
Lusekilen indre
Lusekilen ytre

Ostervik - odde
Fjelldalsoya - ytre

Bufjord - Grimstad

56
57

Bufjorden - ytre
Bufjorden - indre

Flodevigen

65
66

Lillehavn
Kumkrogen

Table A.1: Fjords and stations used in the study.
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| Fjord number

Fjord name

| Station number

Station name

R) 7

Sandnesfjord, Riser

91
92
93
94
95
96
97
98

Laget - indre
Laget - ytre
H&holmen, odden
Haholmen, bukta
Amland - ytre
Amland - indre
Loekvik - indre
Lokvik - ytre

(R) 8

Sendeledfjord, Riser

111
112
121
122

Sundet, nord
Sundet, syd
QDymoen - ytre
Jymoen - indre

Riser skerries

141
142

Vargybukta
Varpysund

10

Stelefjord, Kragero

151
152

Stolefjorden - indre
Stolefjorden - ytre

11

Kilsfjord, Kragero

161
163
164

Langvarp - Eidskilen
Lyngdalen
Blankenberg

13

Soppekilen, Kragere

182
185

Soppekilen - ytre
Soppekilen - indre

16

Nottero - Tjome

231
232
233
235
238

Saltbu

Ordal

Sevik

Breivik - ost
Ar@ysundet - indre

20

Hvaler

341
342
343
344
345
348
349

Dypeklo, holmen
Dypeklo, fastland
Hellesvikskilen
Dragesund - vest
Dragesund - ost
Papperhavn, indre
Papperhavn, smalt sund

Table A.1 (cont.): Fjords and stations used in the study. The two fjords making up the

subset denoted the “Riser data” are marked with an (R).
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Figure A.1: Observed station specific counts of 0-group cod (left) and 1-group cod
(right).
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Figure A.2: Observed station specific counts of 0-group cod (left) and 1-group cod
(right).
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Figure A.3: Observed station specific counts of 0-group cod (left) and 1-group cod
(right).
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Figure A.4: Observed station specific counts of 0-group cod (left) and 1-group cod
(right). The stations in the Riser area are marked with an (R), and the subset of ob-
servations for the period 1957-1994 are enhanced.
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Figure A.5: Observed station specific counts of 0-group cod (left) and 1-group cod
(right). The stations in the Riser area are marked with an (R), and the subset of ob-
servations for the period 1957-1994 are enhanced.
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Figure A.6: Observed station specific counts of 0-group cod (left) and 1-group cod
(right). The stations in the Riser area are marked with an (R), and the subset of ob-
servations for the period 1957-1994 are enhanced.
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Figure A.7: Observed station specific counts of 0-group cod (left) and 1-group cod
(right).
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Figure A.8: Observed station specific counts of 0-group cod (left) and 1-group cod
(right).
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Figure A.9: Observed station specific counts of 0-group cod (left) and 1-group cod
(right).
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Figure A.10: Observed station specific counts of 0-group cod (left) and 1-group cod
(right).
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Appendix B

Results from the sensitivity analysis

e | o, | B [sd@ || 4 [sdm) [ & [sdw | & [sd@) | 7 |sd(ra)
0.30 | 0.050 || 0.109 | 0.034 || 0.071 | 0.036 || 0.381 | 0.301 || 2.39 | 0.11 092 | 0.23
0.30 | 0.075 || 0.129 | 0.033 || 0.074 | 0.035 || 0.485 | 0.389 || 2.78 | 0.07 | 0.96 | 0.22
0.30 | 0.100 || 0.143 | 0.038 || 0.075 | 0.035 || 0.591 | 0.451 || 3.07 | 0.08 | 0.97 | 0.23
0.30 | 0.125 || 0.154 | 0.035 || 0.084 | 0.039 || 0.572 | 0.484 | 3.22 | 0.07 | 0.93 | 0.22
0.30 | 0.150 || 0.167 | 0.039 || 0.085 | 0.042 || 0.583 | 0.475 || 3.39 | 0.07 | 0.93 | 0.23
0.35 | 0.050 || 0.105 | 0.026 || 0.060 | 0.025 || 0.397 | 0.322 || 225 | 0.09 || 0.95 | 0.23
0.35 | 0.075 || 0.124 | 0.032 || 0.074 | 0.034 || 0.446 | 0.355 || 2.68 | 0.07 | 0.97 | 0.23
0.35 | 0.100 || 0.140 | 0.032 || 0.078 | 0.030 || 0.449 | 0.384 || 290 | 0.08 | 0.95| 0.23
0.35 ] 0.125 || 0.144 | 0.038 || 0.079 | 0.037 || 0.631 | 0.489 || 3.16 | 0.05 || 0.99 | 0.23
0.35 | 0.150 || 0.155 | 0.034 || 0.094 | 0.040 || 0.551 | 0.415 | 3.30 | 0.09 || 0.97 | 0.23
0.40 | 0.050 || 0.102 | 0.027 || 0.058 | 0.031 || 0.348 | 0.267 || 2.12 | 0.07 | 0.96 | 0.23
0.40 | 0.075 || 0.114 | 0.035 || 0.078 | 0.040 || 0.439 | 0.374 || 2.57 | 0.08 || 0.97 | 0.23
0.40 | 0.100 || 0.128 | 0.034 || 0.081 | 0.040 || 0.460 | 0.337 || 2.78 | 0.07 | 0.96 | 0.23
0.40 | 0.125 || 0.145 | 0.031 || 0.076 | 0.030 || 0.550 | 0.417 || 3.04 | 0.08 || 0.98 | 0.23
0.40 | 0.150 || 0.157 | 0.035 || 0.076 | 0.036 || 0.564 | 0.419 | 3.17 | 0.07 | 0.98 | 0.23
0.45 | 0.050 || 0.088 | 0.027 || 0.063 | 0.028 || 0.307 | 0.249 | 2.01 | 0.09 || 0.98 | 0.23
0.45 | 0.075 || 0.121 | 0.031 || 0.055 | 0.028 || 0.396 | 0.341 | 2.37 | 0.08 | 0.97 | 0.23
0.45 | 0.100 || 0.129 | 0.032 || 0.073 | 0.034 || 0.424 | 0.353 || 258 | 0.07 || 0.91 | 0.22
0.45 | 0.125 || 0.136 | 0.034 || 0.084 | 0.037 || 0.511 | 0.406 || 2.92 | 0.07 || 0.97 | 0.23
0.45 | 0.150 || 0.146 | 0.035 || 0.079 | 0.037 || 0.566 | 0.447 || 296 | 0.11 089 | 0.22
0.50 | 0.050 || 0.088 | 0.022 || 0.056 | 0.025 || 0.296 | 0.239 || 1.87 | 0.08 | 0.98 | 0.23
0.50 | 0.075 || 0.111 | 0.032 || 0.059 | 0.029 || 0.400 | 0.349 || 2.27 | 0.09 || 0.97 | 0.23
0.50 | 0.100 || 0.125 | 0.037 || 0.072 | 0.037 || 0.426 | 0.370 || 2.59 | 0.09 || 0.97 | 0.24
0.50 | 0.125 || 0.141 | 0.036 || 0.072 | 0.035 || 0.495 | 0.403 || 2.83 | 0.08 | 0.97 | 0.23
0.50 | 0.150 || 0.138 | 0.036 || 0.079 | 0.035 || 0.602 | 0.493 || 296 | 0.07 || 0.97 | 0.23

Table B.1: Sensitivity of parameters to different values of ¢, and v, for § = 0.8, using

the simulated data set.
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e | o, | B [sd® || 4 [sdm) [ & [sd@ | & [sd@) [ 7 |sd(ra)
0.30 | 0.050 || 0.108 | 0.029 || 0.069 | 0.031 || 0.359 | 0.327 || 2.76 | 0.06 | 0.94 | 0.22
0.30 | 0.075 || 0.134 | 0.032 || 0.065 | 0.031 || 0.484 | 0.374 || 3.13 | 0.06 || 0.93 | 0.22
0.30 | 0.100 || 0.141 | 0.041 || 0.080 | 0.038 || 0.545 | 0.433 || 3.42 | 0.06 | 0.94 | 0.22
0.30 | 0.125 || 0.157 | 0.033 || 0.088 | 0.038 || 0.532 | 0.410 || 3.66 | 0.09 | 0.93 | 0.22
0.30 | 0.150 || 0.147 | 0.045 || 0.093 | 0.039 || 0.801 | 0.602 || 3.83 | 0.08 | 0.93 | 0.22
0.35 | 0.050 || 0.097 | 0.032 || 0.068 | 0.033 || 0.382 | 0.320 || 2.60 | 0.10 || 0.93 | 0.22
0.35 | 0.075 || 0.128 | 0.032 || 0.069 | 0.031 || 0.426 | 0.393 || 3.03 | 0.06 | 0.94 | 0.22
0.35 | 0.100 || 0.137 | 0.037 || 0.071 | 0.036 || 0.581 | 0.461 | 3.33 | 0.07 || 0.95| 0.22
0.35 | 0.125 || 0.146 | 0.038 || 0.086 | 0.040 || 0.520 | 0.428 || 3.47 | 0.10 | 0.93 | 0.22
0.35 | 0.150 || 0.166 | 0.031 || 0.078 | 0.032 || 0.539 | 0.394 || 3.65 | 0.07 | 0.94 | 0.22
0.40 | 0.050 || 0.092 | 0.029 || 0.066 | 0.033 || 0.371 | 0.320 || 2.48 | 0.08 || 0.92 | 0.22
0.40 | 0.075 || 0.115 | 0.037 || 0.074 | 0.039 || 0.394 | 0.336 || 2.82 | 0.06 | 0.91 | 0.22
0.40 | 0.100 || 0.136 | 0.033 || 0.073 | 0.036 || 0.484 | 0.389 || 3.16 | 0.10 | 0.92 | 0.22
0.40 | 0.125 || 0.145 | 0.034 || 0.083 | 0.035 || 0.493 | 0.399 | 3.39 | 0.07 || 0.95| 0.22
0.40 | 0.150 || 0.157 | 0.035 || 0.078 | 0.036 || 0.561 | 0.431 || 3.55 | 0.06 || 0.95| 0.22
0.45 | 0.050 || 0.094 | 0.026 || 0.059 | 0.028 || 0.299 | 0.252 || 2.28 | 0.09 || 0.84 | 0.21
0.45 | 0.075 || 0.116 | 0.031 || 0.065 | 0.033 || 0.352 | 0.314 || 2.71 | 0.08 | 0.93 | 0.23
0.45 | 0.100 || 0.129 | 0.036 || 0.074 | 0.037 || 0.421 | 0.350 || 3.04 | 0.08 | 0.95| 0.22
0.45 | 0.125 || 0.141 | 0.036 || 0.074 | 0.037 || 0.466 | 0.392 || 3.23 | 0.07 | 0.95| 0.23
0.45 | 0.150 || 0.151 | 0.036 || 0.081 | 0.039 || 0.496 | 0.399 | 3.42 | 0.07 | 0.94 | 0.22
0.50 | 0.050 || 0.092 | 0.023 || 0.054 | 0.025 || 0.233 | 0.184 || 2.21 | 0.09 || 0.91 | 0.22
0.50 | 0.075 || 0.118 | 0.029 || 0.064 | 0.033 || 0.304 | 0.262 || 2.69 | 0.07 | 0.95| 0.23
0.50 | 0.100 || 0.134 | 0.029 || 0.066 | 0.030 || 0.364 | 0.301 || 291 | 0.10 | 0.88 | 0.23
0.50 | 0.125 || 0.130 | 0.033 || 0.082 | 0.034 || 0.490 | 0.411 || 3.15| 0.08 | 0.93 | 0.22
0.50 | 0.150 || 0.146 | 0.034 || 0.082 | 0.034 || 0.467 | 0.388 || 3.31 | 0.09 || 0.93 | 0.22

Table B.2: Sensitivity of parameters to different values of ¢, and ¢, for § = 1.0, using

the simulated data set.
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=

e | o, | B [sdm ]| 4 [sdm [ & [sd@ [ & [sd@) [ 7 |sd(ra)
0.30 | 0.050 || 0.107 | 0.031 || 0.065 | 0.031 || 0.435 | 0.355 || 3.08 | 0.07 || 090 | 0.21
0.30 | 0.075 || 0.136 | 0.034 || 0.069 | 0.033 || 0.412 | 0.342 || 3.49 | 0.06 | 0.92 | 0.22
0.30 | 0.100 || 0.144 | 0.032 || 0.081 | 0.035 || 0.503 | 0.390 || 3.76 | 0.07 | 0.92 | 0.22
0.30 | 0.125 || 0.158 | 0.039 || 0.076 | 0.036 || 0.602 | 0.496 || 4.00 | 0.06 | 0.93 | 0.22
0.30 | 0.150 || 0.160 | 0.040 || 0.087 | 0.039 || 0.656 | 0.484 | 4.12 | 0.09 | 0.89 | 0.22
0.35 | 0.050 || 0.110 | 0.027 || 0.057 | 0.028 || 0.329 | 0.292 || 2.89 | 0.07 || 0.87 | 0.22
0.35 | 0.075 || 0.120 | 0.033 || 0.081 | 0.036 || 0.382 | 0.321 || 3.28 | 0.08 || 0.86 | 0.21
0.35 | 0.100 || 0.150 | 0.031 || 0.069 | 0.032 || 0.415 | 0.337 || 3.61 | 0.08 || 0.92 | 0.21
0.35 | 0.125 || 0.145 | 0.038 || 0.088 | 0.041 || 0.540 | 0.431 || 3.81 | 0.10 | 0.89 | 0.22
0.35 | 0.150 || 0.162 | 0.038 || 0.082 | 0.036 || 0.573 | 0.455 | 4.00 | 0.08 | 0.91 | 0.22
0.40 | 0.050 || 0.096 | 0.030 || 0.058 | 0.029 || 0.363 | 0.309 || 2.79 | 0.06 || 0.90 | 0.21
0.40 | 0.075 || 0.129 | 0.031 || 0.058 | 0.031 || 0.394 | 0.334 || 3.19 | 0.07 || 0.89 | 0.21
0.40 | 0.100 || 0.145 | 0.030 || 0.063 | 0.032 || 0.426 | 0.354 || 3.46 | 0.08 | 0.91 | 0.22
0.40 | 0.125 || 0.150 | 0.035 || 0.075 | 0.034 || 0.495 | 0.404 || 3.70 | 0.07 | 0.92 | 0.22
0.40 | 0.150 || 0.160 | 0.035 || 0.075 | 0.033 || 0.561 | 0.453 || 3.88 | 0.06 || 0.92 | 0.22
0.45 | 0.050 || 0.086 | 0.028 || 0.068 | 0.031 || 0.307 | 0.259 || 2.69 | 0.07 || 0.90 | 0.21
0.45 | 0.075 || 0.115 | 0.032 || 0.066 | 0.034 || 0.404 | 0.346 || 3.05 | 0.10 || 0.85| 0.22
0.45 | 0.100 || 0.132 | 0.031 || 0.068 | 0.031 || 0.448 | 0.354 || 3.31 | 0.12 || 0.86 | 0.22
0.45 | 0.125 || 0.152 | 0.031 || 0.067 | 0.033 || 0.434 | 0.357 || 3.61 | 0.08 | 0.93 | 0.22
0.45 | 0.150 || 0.148 | 0.038 || 0.085 | 0.038 || 0.511 | 0.430 || 3.73 | 0.10 | 0.88 | 0.23
0.50 | 0.050 || 0.096 | 0.022 || 0.050 | 0.024 || 0.253 | 0.218 || 2.56 | 0.08 || 0.89 | 0.21
0.50 | 0.075 || 0.114 | 0.027 || 0.066 | 0.029 || 0.327 | 0.284 || 3.00 | 0.07 || 0.91 | 0.22
0.50 | 0.100 || 0.133 | 0.033 || 0.063 | 0.034 || 0.371 | 0.322 || 3.24 | 0.09 | 0.91 | 0.22
0.50 | 0.125 || 0.137 | 0.034 || 0.077 | 0.038 || 0.452 | 0.356 || 3.49 | 0.07 | 0.92 | 0.22
0.50 | 0.150 || 0.150 | 0.032 || 0.079 | 0.037 || 0.456 | 0.375 || 3.64 | 0.09 | 0.89 | 0.23

Table B.3: Sensitivity of parameters to different values of ¢, and v, for § = 1.2, using

the simulated data set.
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G | o | B [sd@ ] 4 [sdm) [ & [sd) [ & [sd@) ] 2 |sd(ra)
0.30 | 0.050 || 0.011 | 0.006 || 0.011 | 0.005 || 0.060 | 0.055 || 0.26 | 0.10 || 1.14 | 0.31
0.30 | 0.075 || 0.025 | 0.008 || 0.015 | 0.009 || 0.082 | 0.075 || 0.52 | 0.09 || 1.14 | 0.30
0.30 | 0.100 || 0.045 | 0.010 || 0.017 | 0.010 | 0.094 | 0.087 || 0.76 | 0.11 1.06 | 0.29
0.30 | 0.125 || 0.058 | 0.013 || 0.019 | 0.011 || 0.124 | 0.119 || 096 | 0.07 | 1.06 | 0.28
0.30 | 0.150 || 0.073 | 0.012 || 0.019 | 0.011 || 0.112 | 0.103 || 1.10 | 0.07 1.03 | 0.27
0.35 | 0.050 || 0.008 | 0.006 || 0.008 | 0.006 || 0.051 | 0.063 || 0.20 | 0.13 || 1.21 | 0.34
0.35 | 0.075 || 0.020 | 0.008 || 0.012 | 0.008 || 0.078 | 0.076 || 0.43 | 0.09 || 1.20 | 0.33
0.35 | 0.100 || 0.036 | 0.009 || 0.015 | 0.009 | 0.080 | 0.071 || 0.60 | 0.08 || 1.11 | 0.30
0.35 | 0.125 || 0.049 | 0.012 || 0.018 | 0.011 || 0.107 | 0.098 || 0.82 | 0.09 | 1.09 | 0.29
0.35 | 0.150 || 0.061 | 0.014 || 0.020 | 0.012 || 0.120 | 0.118 || 0.98 | 0.08 || 1.05| 0.28
0.40 | 0.050 || 0.005 | 0.004 || 0.006 | 0.005 || 0.029 | 0.029 || 0.09 | 0.08 || 1.21 | 0.34
0.40 | 0.075 || 0.013 | 0.005 || 0.011 | 0.007 || 0.059 | 0.054 || 0.29 | 0.12 || 1.16 | 0.33
0.40 | 0.100 || 0.028 | 0.009 || 0.013 | 0.009 || 0.079 | 0.077 || 0.50 | 0.10 || 1.16 | 0.32
0.40 | 0.125 || 0.040 | 0.012 || 0.018 | 0.012 || 0.091 | 0.084 || 0.71 | 0.09 || 1.12 | 0.30
0.40 | 0.150 || 0.052 | 0.011 || 0.018 | 0.011 || 0.090 | 0.083 || 0.86 | 0.07 || 1.14 | 0.30
0.45 | 0.050 || 0.004 | 0.004 || 0.005 | 0.004 || 0.022 | 0.026 || 0.10 | 0.08 || 1.24 | 0.36
0.45 | 0.075 || 0.010 | 0.005 || 0.011 | 0.007 || 0.051 | 0.048 || 0.25 | 0.12 || 1.20 | 0.34
0.45 | 0.100 || 0.021 | 0.007 || 0.011 | 0.006 || 0.066 | 0.063 || 0.40 | 0.08 | 1.20 | 0.33
0.45 | 0.125 || 0.034 | 0.011 || 0.016 | 0.010 || 0.080 | 0.079 || 0.57 | 0.10 || 1.13 | 0.31
0.45 | 0.150 || 0.046 | 0.011 || 0.017 | 0.011 || 0.092 | 0.092 || 0.78 | 0.08 || 1.15| 0.31
0.50 | 0.050 || 0.003 | 0.002 || 0.003 | 0.003 || 0.018 | 0.020 || 0.08 | 0.07 || 1.34 | 0.39
0.50 | 0.075 || 0.008 | 0.004 || 0.008 | 0.005 || 0.043 | 0.039 || 0.13 | 0.10 || 117 | 0.34
0.50 | 0.100 || 0.015 | 0.006 || 0.011 | 0.006 || 0.055 | 0.047 || 0.20 | 0.13 || 1.07 | 0.31
0.50 | 0.125 || 0.028 | 0.009 || 0.014 | 0.008 || 0.078 | 0.072 || 0.49 | 0.09 || 1.17 | 0.33
0.50 | 0.150 || 0.037 | 0.011 || 0.017 | 0.010 || 0.097 | 0.097 || 0.68 | 0.08 | 1.16 | 0.32

Table B.4: Sensitivity of parameters to different values of ¢, and ¢, for § = 0.8, using

the Riser data.
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G | o | B [sd@ ] 4 [sdm) [ & [sd) [ & [sd@) ] 2 |sd(ra)
0.30 | 0.050 || 0.012 | 0.006 || 0.010 | 0.006 || 0.058 | 0.055 || 0.58 | 0.14 || 1.02 | 0.27
0.30 | 0.075 || 0.029 | 0.008 || 0.012 | 0.008 || 0.072 | 0.076 || 0.88 | 0.09 || 1.04 | 0.27
0.30 | 0.100 || 0.047 | 0.011 || 0.016 | 0.010 || 0.082 | 0.073 || 1.13 | 0.06 || 1.03 | 0.26
0.30 | 0.125 || 0.062 | 0.011 || 0.017 | 0.011 || 0.096 | 0.088 || 1.31 | 0.06 | 0.99 | 0.26
0.30 | 0.150 || 0.070 | 0.013 || 0.021 | 0.011 || 0.126 | 0.120 || 1.49 | 0.05 || 1.00 | 0.25
0.35 | 0.050 || 0.006 | 0.005 || 0.005 | 0.004 | 0.027 | 0.030 || 0.44 | 0.11 1.06 | 0.28
0.35 | 0.075 || 0.019 | 0.006 || 0.010 | 0.006 | 0.060 | 0.053 || 0.70 | 0.08 || 1.06 | 0.28
0.35 | 0.100 || 0.035 | 0.010 || 0.017 | 0.009 | 0.097 | 0.085 || 1.00 | 0.07 || 1.05| 0.28
0.35 | 0.125 || 0.049 | 0.012 || 0.017 | 0.011 || 0.101 | 0.091 || 1.17 | 0.07 || 1.01 | 0.26
0.35 | 0.150 || 0.061 | 0.013 || 0.020 | 0.012 || 0.110 | 0.099 || 1.35 | 0.07 || 1.02 | 0.26
0.40 | 0.050 || 0.005 | 0.004 || 0.007 | 0.006 || 0.038 | 0.037 || 0.49 | 0.12 || 1.12 | 0.31
0.40 | 0.075 || 0.013 | 0.006 || 0.009 | 0.006 || 0.053 | 0.046 || 0.62 | 0.11 1.07 | 0.29
0.40 | 0.100 || 0.026 | 0.009 || 0.014 | 0.008 || 0.073 | 0.065 || 0.82 | 0.08 || 1.03 | 0.27
0.40 | 0.125 || 0.041 | 0.010 || 0.016 | 0.009 || 0.094 | 0.088 || 1.01 | 0.07 || 0.99 | 0.26
0.40 | 0.150 || 0.053 | 0.013 || 0.019 | 0.011 || 0.109 | 0.109 || 1.24 | 0.07 || 1.03 | 0.27
0.45 | 0.050 || 0.004 | 0.002 || 0.004 | 0.003 || 0.025 | 0.027 || 0.38 | 0.11 1.08 | 0.30
0.45 | 0.075 || 0.010 | 0.005 || 0.008 | 0.004 || 0.042 | 0.036 || 0.54 | 0.08 || 1.08 | 0.30
0.45 | 0.100 || 0.023 | 0.009 || 0.013 | 0.008 || 0.070 | 0.064 || 0.81 | 0.08 | 1.09 | 0.29
0.45 | 0.125 || 0.036 | 0.009 || 0.012 | 0.007 || 0.079 | 0.076 || 0.93 | 0.06 || 1.07 | 0.28
0.45 | 0.150 || 0.046 | 0.012 || 0.016 | 0.010 || 0.090 | 0.086 || 1.04 | 0.08 || 0.97 | 0.26
0.50 | 0.050 || 0.003 | 0.002 || 0.003 | 0.003 || 0.016 | 0.022 || 0.34 | 0.10 || 1.08 | 0.30
0.50 | 0.075 || 0.006 | 0.004 || 0.006 | 0.004 || 0.035 | 0.033 || 049 | 0.09 || 113 | 0.32
0.50 | 0.100 || 0.017 | 0.007 || 0.011 | 0.006 || 0.062 | 0.061 || 0.64 | 0.11 1.02 | 0.28
0.50 | 0.125 || 0.029 | 0.009 || 0.014 | 0.008 || 0.077 | 0.069 || 0.85 | 0.09 || 1.04 | 0.29
0.50 | 0.150 || 0.039 | 0.011 || 0.016 | 0.010 || 0.086 | 0.082 || 1.03 | 0.08 | 1.08 | 0.29

Table B.5: Sensitivity of parameters to different values of ¢, and ¢, for § = 1.0, using

the Riser data.
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G | o | B [sd) ] 4 [sdm) [ & [sdw) [ & [sd@) ] 2 |sd(ra)
0.30 | 0.050 || 0.010 | 0.005 || 0.008 | 0.006 || 0.045 | 0.040 || 0.86 | 0.08 || 0.97 | 0.25
0.30 | 0.075 || 0.029 | 0.008 || 0.012 | 0.008 || 0.079 | 0.079 || 1.18 | 0.07 || 0.97 | 0.25
0.30 | 0.100 || 0.044 | 0.011 || 0.016 | 0.010 || 0.096 | 0.098 || 1.44 | 0.07 || 0.98 | 0.24
0.30 | 0.125 || 0.056 | 0.012 || 0.020 | 0.011 || 0.120 | 0.106 || 1.62 | 0.07 | 0.94 | 0.24
0.30 | 0.150 || 0.072 | 0.013 || 0.019 | 0.012 || 0.112 | 0.109 || 1.81 | 0.06 || 0.96 | 0.23
0.35 | 0.050 || 0.006 | 0.003 || 0.007 | 0.006 || 0.034 | 0.032 || 0.79 | 0.11 096 | 0.25
0.35 | 0.075 || 0.020 | 0.008 || 0.013 | 0.008 | 0.069 | 0.060 || 1.08 | 0.07 || 1.00 | 0.26
0.35 | 0.100 || 0.036 | 0.009 || 0.014 | 0.008 || 0.083 | 0.079 || 1.24 | 0.10 || 0.92 | 0.25
0.35 | 0.125 || 0.052 | 0.012 || 0.016 | 0.012 || 0.089 | 0.083 || 1.49 | 0.06 | 0.94 | 0.24
0.35 | 0.150 || 0.060 | 0.014 || 0.020 | 0.013 || 0.111 | 0.104 || 1.65 | 0.07 || 094 | 0.24
0.40 | 0.050 || 0.005 | 0.003 || 0.006 | 0.005 || 0.029 | 0.029 || 0.78 | 0.08 | 1.02 | 0.27
0.40 | 0.075 || 0.012 | 0.006 || 0.010 | 0.006 || 0.048 | 0.044 || 0.92 | 0.07 || 1.01 | 0.27
0.40 | 0.100 || 0.030 | 0.009 || 0.013 | 0.007 || 0.072 | 0.067 || 1.19 | 0.08 | 1.00 | 0.25
0.40 | 0.125 || 0.043 | 0.009 || 0.014 | 0.008 || 0.083 | 0.078 || 1.37 | 0.06 || 1.00 | 0.26
0.40 | 0.150 || 0.053 | 0.013 || 0.018 | 0.011 || 0.104 | 0.100 || 1.56 | 0.07 || 0.98 | 0.25
0.45 | 0.050 || 0.004 | 0.003 || 0.004 | 0.003 || 0.022 | 0.025 || 0.75 | 0.10 || 1.01 | 0.27
0.45 | 0.075 || 0.009 | 0.005 || 0.008 | 0.004 || 0.045 | 0.042 || 0.85 | 0.08 || 1.01 | 0.26
0.45 | 0.100 || 0.022 | 0.007 || 0.010 | 0.007 || 0.065 | 0.057 || 1.05 | 0.09 || 0.99 | 0.26
0.45 | 0.125 || 0.035 | 0.010 || 0.014 | 0.008 || 0.086 | 0.080 || 1.20 | 0.10 || 0.91 | 0.26
0.45 | 0.150 || 0.049 | 0.009 || 0.014 | 0.008 || 0.082 | 0.076 || 1.44 | 0.07 || 1.00 | 0.25
0.50 | 0.050 || 0.003 | 0.002 || 0.004 | 0.003 || 0.018 | 0.018 || 0.70 | 0.08 || 1.05| 0.29
0.50 | 0.075 || 0.006 | 0.004 || 0.006 | 0.004 || 0.035 | 0.031 || 0.78 | 0.10 | 1.02 | 0.28
0.50 | 0.100 || 0.016 | 0.006 || 0.010 | 0.006 || 0.053 | 0.047 || 097 | 0.09 || 1.01 | 0.27
0.50 | 0.125 || 0.029 | 0.007 || 0.011 | 0.006 || 0.071 | 0.065 || 1.15 | 0.08 || 1.02 | 0.27
0.50 | 0.150 || 0.040 | 0.011 || 0.015 | 0.009 || 0.082 | 0.080 || 1.32 | 0.08 || 0.98 | 0.26

Table B.6: Sensitivity of parameters to different values of ¢, and v, for § = 1.2, using

the Riser data.
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Appendix C

Estimated abundances for all fjords
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Figure C.1: Estimated abundances for the 0-group (left), 1-group (middle) and adult
(right) cod based on data from 13 fjords. The first 3 years are discarded for the adult cod
because of boundary effects.
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Figure C.2: Estimated abundances for the 0-group (left), 1-group (middle) and adult
(right) cod based on data from 13 fjords. The first 3 years are discarded for the adult cod
because of boundary effects.
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Figure C.3: Estimated abundances for the 0-group (left), 1-group (middle) and adult
(right) cod based on data from 13 fjords. The first 3 years are discarded for the adult cod
because of boundary effects.
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Appendix D

Assessment of the variability of the
discretisation for the marginal posterior
sampling algorithm

Here, we describe how the variability of the estimates (8.18), used to specify the dis-
cretisation of the abundances for the marginal sampling algorithm, can be assessed. We
draw 100 samples of data from the likelihood models (4.15) and (4.18) given the popu-
lation abundances of the simulated data set, and the time series of up-scaled estimated
abundances (8.18) are computed for each sample. In Figure D.1 the results are sum-
marised. The left panels show the up-scaled abundances and the middle panels the true
values for each of the three age groups. In the right three panels relative differences
between estimated and true abundances are shown. The differences are smaller for the
0-group than for the 1-group cod. This is as expected, since the data are more abundant
for the 0-group than the 1-group cod, for which the proportion of zeros in the station
specific data is large (46%). For the adult cod, for which we have no data, the deviations
are of about the same order of magnitude as for the 1-group. The large deviations of the
first year for the adult cod are due to the uncertainty in the equilibrium estimate of 7,
and could be discarded when choosing the discretisation.

The plots in Figure D.1 represent the variability of the sampled data generated from one
realisation of population abundances from the population dynamics prior model. To as-
sess the effect of the uncertainty of the simulated abundances, we repeat the procedure
described above, but generate the sampled data sets from 100 separate realisation from
the prior model. Similar results as presented in Figure D.1 for the one sample case are
given in Figure D.2. The variability of the population estimates increases with abun-
dance, which is in accordance with the prior model specification, and the pattern of the
deviances between up-scaled and true values are as for the single population sample
case.
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Upscaled abundances Simulated abundances Rel. difference
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Figure D.1: Simulated abundances and abundances estimated by up-scaling. The es-
timated abundances are generated from repeated samples of data generated from the
same realisation from the prior model.

150

URN:NBN:no-3402
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Figure D.2: Simulated abundances and abundances estimated by up-scaling. The esti-
mated abundances are generated from samples of data generated from different reali-
sations from the prior model.
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Part 11

Modelling spatial variation in disease risk using
Gaussian Markov random field proxies for
Gaussian random fields
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Modelling spatial variation in disease risk
using Gaussian Markov random field
proxies for Gaussian random fields

Turid Follestad and Havard Rue

Department of Mathematical Sciences
Norwegian University of Science and Technology

Abstract

Analyses of spatial variation in disease risk based on area-level summaries of
disease counts are most often based on the assumption that the relative risk is uni-
form across each region. Such approaches introduce an artificial piecewise-constant
relative risk-surface with discontinuities at regional boundaries. A more natural
approach is to assume that the spatial variation in risk can be represented by an un-
derlying smooth relative risk-surface over the area of interest. This approach was
taken by Kelsall and Wakefield (2002), who used an underlying Gaussian random
field (GRF) to derive a multivariate log-Normal distribution of the risk at the re-
gional level. The derivation rely on the approximation ), exp(x;) ~ exp(}_, x;),
which is frequently used in similar contexts in the geostatistics literature, but the
different sizes and shapes of the regions typically found in disease mapping appli-
cations indicate that the validity of the approximation is questionable.

We propose an approach to the modelling of a smoothly varying risk surface
based on aggregated data avoiding this approximation. We also derive computa-
tionally efficient block MCMC-algorithms using a re-formulation of the geostatisti-
cal GRF model using Gaussian Markov random fields (GMRFs). We make extensive
use of recent developments for GMREFs, including a method for fitting GMRFs to
Gaussian random fields and computationally efficient algorithms for GMRFs based
on numerical methods for sparse matrices. We demonstrate our approach on sim-
ulated data as well as a set of German oral cavity cancer mortality data from the
period 1986-90, which have been previously analysed in the literature.
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1 Introduction

Disease maps displaying the geographical variability of disease incidence or mortality
rates across a region of interest, are valuable tools in spatial epidemiology. By study-
ing a disease map, regions with particularly high or low rates can be identified, and
this information can be used as input to ethological studies as a guideline in defining
and validating hypotheses about a disease. For an overview of the history of disease
mapping, see e.g. Walter (2000). Disease incidence or mortality data can be available
as point data for which the exact location of each case is known, or more commonly as
aggregated or areal summary data, often due to confidentiality reasons. For rare and
non-infectious diseases, the aggregated incidence or mortality counts y;; ¢ = 1,...,m
in a set of m regions are commonly assumed to be conditionally independent given the
stratum-weighted relative risks R; of the regions, and to follow Poisson distributions
with mean given by E;R;. The value E; represents the expected number of cases in re-
gion i, typically given as a population-weighted sum of stratum-specific probabilities
of disease, computed from the data assuming uniform risk across the study area. The
maximum likelihood estimate of the relative risk in region i is the standardised mortal-
ity (or incidence) ratio SMR y;/E;. Figure 1 shows the observed aggregated counts and
SMR for a set of data on mortality from oral cavity cancer in Germany, that will be anal-
ysed in Section 6 (Knorr-Held and RafSer, 2000). From Figure 1 we observe that there is
a tendency toward high risk in the north-east and in the south-west and low risk in the
east. However, for small populations at risk and for rare diseases, the SMR as an esti-

Figure 1: The observed counts (left) and the standardised mortality ratio (SMR) (right)
for the German oral cavity cancer data.



mator of the relative risk can be highly variable. It can give rise to spurious estimates of
high risk in regions with low populations, masking the true spatial pattern of the risk
over the area of interest. Therefore, conclusions drawn from maps of the SMR can be
misleading. To overcome this problem, a number of authors have developed statistical
approaches to improve on raw estimates of disease risk. Reviews of statistical methods
for mapping disease risk are provided by e.g. Diggle (2000), Wakefield, Best and Waller
(2000) and Mollié (1996), the latter two focusing on Bayesian approaches.

Taking a Bayesian approach, the risk estimates of sparsely populated or low frequency
regions are smoothed toward an overall prior mean. Since it is often the case that the
relative risk tend to be similar in neighbouring regions, disease maps can also be im-
proved on by adding spatial correlation to the prior model. The estimates of the risk in
each region can then “borrow strength” from neighbouring regions. This can be accom-
modated by including a spatially structured component within a random effects model
for the disease risk, an approach first taken by Clayton and Kaldor (1987). A commonly
used approach, proposed by Besag, York and Mollié (1991), is to model the log relative
risk as

log(R;) = BTz + u; + v, 1)

where z; is a vector of covariates, including an intercept term, and u; and v; are spatially
structured and unstructured random effects, respectively. The spatially structured ran-
dom effect is assigned a Gaussian Markov random field prior, such that f(u;|lu_;) =
f(u; | us;), where u_; denotes all elements of the vector u except element 7, and (i) is
the set of neighbouring regions of region ¢. To specify the Markov random field prior,
we need to define which regions are neighbours. The level of aggregation of areal sum-
mary data is often defined by administratively specified regions, and therefore alterna-
tive definitions to the square neighbourhoods often used in the case of lattice data are
needed. An approach taken by many authors, e.g. Clayton and Kaldor (1987), Bernar-
dinelli, Pascutto, Best and Gilks (1997), Knorr-Held and Besag (1998) and Waller, Carlin,
Xia and Gelfand (1997), is to define two regions as neighbours if they share a common
boundary. This will work well if the regions do not differ much in size and shape, but
this is often not the case. An alternative to the adjacency approach is to specify the
joint distribution of the heterogeneity effects u;, defining spatial structure of the covari-
ance matrix as a function of differences between the region centres (e.g. Wakefield and
Morris, 2001; Wakefield and Morris, 1999). However, similar objections apply to this
method as to the adjacency based methods, as the size and shape of the regions are
still not taken into account, and in both cases the inference will depend on the level of
aggregation of the data.

The method of Besag et al. (1991) does not naturally allow for discontinuities in the
spatial structure of the risk. In a recent paper, Fernandez and Green (2002) present an
alternative approach, developing a spatially structured mixture model where GMRF
priors are specified for the weights in the mixture. Using a mixture of Poisson distri-
butions, the method is applied in a disease mapping context, and it is illustrated how
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the approach represents an improvement over the method of Besag et al. (1991) in cases
where the spatial pattern has step-like discontinuities. The approach is related to that
of Knorr-Held and Rafler (2000) identifying clusters of constant risk.

In general, spatial heterogeneity of the disease risk will be a confounder for unmeasured
spatially structured factors influencing the disease risk. In most cases, there is no rea-
son that these risk factors are region specific and discontinuous at region boundaries.
Thus, the relative risk is not expected to be constant within regions and disjoint across
regions. On the contrary, it seems reasonable to believe that the underlying risk sur-
face is varying continuously over the region of study. In cases where the observations
can be regarded as point data, a smoothly varying risk surface and the corresponding
hyper-parameters can be estimated using extensions of classical geostatistical or point
process approaches. Using data for which the exact locations are known, Diggle, Tawn
and Moyeed (1998) propose a model-based geostatistical approach embedding the clas-
sical linear geostatistical methods for Gaussian data within a framework analogous to
the generalised linear models (McCullagh and Nelder, 1989) for mutually independent
data. Consequently, they allow for data for which the stochastic variation is assumed
to be non-Gaussian. Another approach is taken by Best, Ickstadt and Wolpert (2000),
who specify a Poisson-Gamma random field model for the disease risk. The approach
is based on the methodological framework presented in Wolpert and Ickstadt (1998)
and extended in Ickstadt and Wolpert (1999) to include location-specific covariates mea-
sured at different levels of spatial aggregation and individual attributes like age and
gender. The point locations of individual cases and the corresponding attributes are
regarded as a marked point process, and the spatial structure of the residual risk sur-
face is represented by a kernel smoothed Gamma random field. The risk surface can be
estimated at any level of spatial aggregation.

When the disease incidence or mortality data are only available as aggregated counts,
the approaches to risk-surface estimation described above are not directly applicable.
Kelsall and Wakefield (2002) propose a geostatistical approach to modelling the joint
distribution of the area-level relative risks in such situations. They specify a model for
an underlying continuously varying risk surface R(s); s € A, assuming the log risk
surface S(s) = log(R(s)) to be a realisation of a Gaussian random field (GRF). Based on
this GRF model, area-level relative risks R; in a set of regions A;; ¢ = 1,...,m, forming
a partition of the study region A, are defined by

R, = | R(s)fi(s)ds, ()]
Ai

where f;(s); i = 1,...,m are weight functions depending on the stratum-specific pop-
ulation density distribution in region A4;. Conditionally on these relative risks, the data
are assumed to be independent realisations from a Poisson distribution with mean R; E;.
To allow for computational feasibility, they approximate the joint distribution of the
region-level risks R;; i« = 1,...,m by a multivariate log-Normal distribution with mo-
ments that are derived from the moments of the Normal distribution of S(s), using
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numerical methods to evaluate the integrals involved. The approximation is essen-
tially equivalent to approximating the distribution of S; = log(R;) by the distribution
of [, log R(s)fi(s)ds. As pointed out by the authors, the approximation is best when
the size of the regions are relatively small and the regions are of about the same shape,
and the log-Gaussian assumption is exact only in the limit when the regions are of the
same shape and size, and the size tends to zero. The parameters of the model, including
the log-risk surface at a set of locations s;, are estimated by Markov chain Monte Carlo
methods (Gilks, Richardson and Spiegelhalter, 1996), using Gibbs sampling in combi-
nation with adaptive rejection sampling.

We propose an alternative approach to the estimation of a smooth risk surface based on
aggregated count data, representing the Gaussian random field defining the prior for
the log-risk surface by a Gaussian Markov random field defined on a lattice. The basis
of the model formulation is as in Kelsall and Wakefield (2002), but while they use the
geostatistical model to derive an approximation to the joint distribution of the regional-
level log-risk, and base the inference on the resulting regional-level stochastic model, we
avoid the approximation by working directly on a lattice representation of the model.
We replace the integral expression (2) for the regional level relative risk R; by a sum
over the exponentiated values of the GMREF for the lattice nodes falling within A;. Due
to the conditional independence structure of the GMRE using a GMRF proxy to the GRF
allows for the use of computationally efficient algorithms for sampling based inference.
However, the spatial structure is often intuitively easier to specify and interpret using
a geostatistical GRF formulation than the conditional formulation represented by the
GMRE. Therefore, we specify the spatial structure of the random field in terms of the
correlation function for the GRFE, using the procedure in Rue and Tjelmeland (2002) to
fit the GMREF to the GRF. Thus, our approach relies on the assumptions that the smooth
relative risk surface can be represented on a lattice and that the GRF as defined on this
lattice can be well estimated by a GMRE.

Drawing on the routines for fast and exact simulation of GMRF implemented in Rue
and Follestad (2002), we develop an efficient block-sampling algorithm for estimating
the log-risk surface and the parameters of the model. For each block, the elements of the
lattice based log-risk surface are updated using a Metropolis-Hastings step, generating
a proposal from a Gaussian approximation to the full conditional distribution. This
can be done efficiently after re-formulating the problem of sampling from the proposal
distribution to a computationally convenient conditional sampling problem.

The report is organised as follows. In Section 2 we present the statistical model, and an
overview of our approach to estimating the log risk surface and the hyper-parameters is
presented in Section 3. More details on the estimation algorithm are given in Section 4.
In Section 5 we present results for a simulated data set, and results for the German oral
cavity cancer data are given in Section 6. The method and the results are summarised
and discussed in Section 7.
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2 The statistical model

The statistical model is based on disease incidence or mortality data available as ag-
gregated counts y; in a set of m disjoint regions denoted A;; ¢ = 1,...,m, such that
A = U, A; is the overall region of study. Following the approaches of Kelsall and Wake-
field (2002), Best et al. (2000) and Diggle et al. (1998) we assume that the geographical
variation in the risk of the disease can be represented by a smoothly varying surface
R(s); s € A. In this section we specify a lattice based model for the risk surface, first
presenting a Gaussian random field model, and then a Gaussian Markov random field
proxy to this model.

2.1 A Gaussian random field model on a lattice

The log-risk surface S(s) = logR(s) is assumed to be a realisation of a Gaussian random
field. The basis of our modelling approach is as in Kelsall and Wakefield (2002), but
we explicitly define the Gaussian random field model on a lattice overlaying the study
region A. Throughout our study, using simulated data as well as the real dataset, we
use the 544 districts of Germany for which the German oral cavity data are defined as
our region of interest. A map of the study region with an overlaying lattice consisting of
narr = 16824 nodes is given in Figure 2. For a better visual impression of the resolution
of the lattice, see the top right panel of Figure 6. The number of lattice nodes within
each region is in the range 1 to 136, with a median number of 29.

The multivariate Normal joint prior distribution of the log-risks S(s;); j = 1,...,ngrr
is given by the moments

E(S(sj) = ws
Var(S(s;)) = o7, @)
Corr(5(s;), S(sk)) = p(lsj — skl;8,).

The correlation function is assumed to be isotropic. The mean vector y, the marginal
variance o and the parameters 8, of the correlation function p are taken to be unknown
and are assigned prior distributions as described in Section 3. Thus, our prior model of
the risk surface and the corresponding hyper-parameters is the lattice analogue of the
geostatistical model of Kelsall and Wakefield (2002). Given the log-risk surface, the data
are assumed to be conditionally independent realisations from Poisson distributions
given by
where the regional level relative risks R; are computed from the underlying lattice-
based risk surface by

Ri= Y R(sj)u(s). (5)

j: 8;€A;

6



Figure 2: The map of Germany with its 544 districts, overlaid by the lattice for the GRE.

Here, the population density distributions f;(s) of the continuous surface analogue (2)
are replaced by a set of weights w(s;) which should satisfy the constraint

Z w(s;) = 1;Vi. (6)

j: 8;€A;

In the approach by Kelsall and Wakefield (2002), the GRF prior model for the log-risk
surface is used to generate a multivariate log-Normal approximation to the regional-
level relative risks. To avoid computing such an approximation, we base inference di-
rectly on the risk surface model as defined on the lattice. However, for the lattice model
to be a reasonable approximation to the smooth surface, the resolution should be rela-
tively high, and consequently the number of nodes of the lattice will typically be large.
Using the Gaussian random field representation of the prior model, estimation routines
will be computationally expensive since we need to perform matrix operations on the
nerrp X Nerp covariance matrix ¥, which in general is a full matrix. Moreover, using
MCMC methods with single-site updating, the convergence will be slow, due to the
high correlations inherent in the prior model. Similar problems arise when estimating
the hyper-parameters, because of the strong interaction with the elements of the risk
surface. On the other hand, due to the high dimensionality and the full structure of
the covariance matrix, updating all elements of the surface in one block will be pro-
hibitive. In the next subsection we describe how the GRF can be represented by a more

7
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Figure 3: The neighbours (x) of an arbitrary lattice node (o) using a 5 x 5 neighbourhood
scheme for the GMRFE.

computationally convenient Gaussian Markov random field on the lattice.

2.2 A Gaussian Markov random field proxy to the Gaussian random
field model

To reduce the computational cost of the inference, we propose to represent the log-risk
surface by a vector variable = {x;},=1, .. ngzr, Which is assumed to be a realisation of a
Gaussian Markov random field (GMRF). A GMRF is a GRF with the additional property
that the conditional distribution of the GMREF at lattice node j, given the values at all
other lattice nodes, only depends on the values at the nodes within a neighbourhood
8(7) of j. Different definitions of neighbourhoods are possible, but we choose to define
the neighbourhood 6(j) of node j to be an 5 x 5 square neighbourhood, as illustrated
in Figure 3. Since we are dealing with a finite lattice, the number of neighbours of the
lattice nodes along the boundary of the lattice will be different from the number given
by the 5 x 5 neighbourhood scheme, see Figure 4. To reduce the impact of any boundary
effects induced by using a finite lattice, we extend the support of the GMREF to include a
set of nodes outside the region of interest. We will denote the sub-vector corresponding
to the nodes falling within the region of interest by x 4, and the nodes external to this
region by @_ 4, such that z = (z’, 2 ,)”. The extended lattice, consisting of n = 31089
nodes, is shown in Figure 5.

For a general GMREF z, the joint distribution is given by
T ~ N(Hy Q_l), @)

where the mean vector p = p(0) and the precision matrix Q@ = Q(6) both may depend
on a set of unknown parameters 6. Because of the conditional independence structure
of the GMRE only the elements ();; of the precision matrix for which ¢ and j are neigh-
bours are non-zero. The nodes of the lattice can be re-ordered such as to minimise the
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Figure 4: The neighbouring scheme along the boundary of the study region. The neigh-
bours of a node (triangle) at the boundary are partly within the study region (x) and
partly outside the region (+).

bandwidth of the corresponding precision matrix (Knorr-Held and Rue, 2002), and due
to the band-structure of the matrix, working with a GMRF instead of a GRF can lead to
significant reductions in computational cost. This fact is utilised in our sampling based
estimation approach described in Sections 3 and 4. There, we make extensive use of
efficient algorithms for generating samples from joint and conditional distributions of a
GMREF as well as for generating samples conditionally on linear constraints. A sample
from the joint distribution of « can be generated by

x=L"'2+4p, (8)

where z is a vector of n independent realisation from the standard Normal distribution,
and L is the Cholesky factor of the precision matrix Q. For a banded symmetric positive
definite matrix @ with bandwidth b,,, the Cholesky factorisation

Q=LL" )

can be computed in O(nb?) flops (Rue, 2001), such that as long as the bandwidth is kept
small, efficient samples can be generated from the joint distribution. In our application,
we need to generate conditional samples for a subset of the lattice nodes, given the re-
alisation of the GMREF for the remaining nodes. The conditional distribution m(xs|z_s),
where S is a subset of A, is Normal with moments

E(@s |z s) = ps—QssQs_ s (x_s—p_g), (10
Var(zs | _s) = Qs amn

Here, Qs s is the ns x ns diagonal block of @ corresponding to the subset S, with
bandwidth less than or equal to the bandwidth of Q. Each element [ of the mean vector

9
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Figure 5: The map of Germany with its 544 districts, overlaid by the lattice GMRF model
including a boundary region.

ks_s = E(zs | z_s) will only depend on elements of z_s — p_g at the nodes within the
neighbourhood of node I.

We also need to generate samples from a GMRF z conditionally on a linear soft con-
straint Az = b + € for a p x n matrix A, a p-vector b and € ~ N(0,3). This constraint
can be interpreted as a generalisation of the hard constraint Az = b, where the quantities
representing the linear combinations defining the constraint are observed with noise. In
general, a sample conditionally on a soft constraint can be generated by first generating
an unconditional sample «,, for « from (7) and an € ~ N(0, X), and then computing the
conditional sample z. from

z.=x,— QTAT(AQ'AT + ) (Ax — € - b). (12)

In geostatistics, this result is referred to as conditional simulation using kriging (Cressie,
1993, Section 3.6.2) and the validity of (12) as a sample from 7 (z|Ax = b + €) follows
directly from Normal distribution theory, as shown in Appendix A.3. As long as the
number of constraints p is relatively small compared to the number of nodes in the

10



lattice, all computations involved in evaluating (12) can be done efficiently using the
Cholesky factorisation (9).

To fully specify the joint distribution (7) we need to specify the non-zero elements of the
precision matrix Q. However, based on prior information it is often intuitively easier to
specify a model for the correlation structure for a Gaussian random field than to specify
the elements of the corresponding precision matrix for the GMRE. Rue and Tjelmeland
(2002) show how the elements of the precision matrix @ of a GMRF can be estimated
from the covariance function that defines the elements of the covariance matrix 3 =
Q'. Let p(h;8,) be the correlation function specifying the correlation between two
points of distance h, where h is measured in lattice coordinates. Further, let

Q=7Q =rC™! (13)

where C is the correlation matrix of the GRF and 7 = 1/0? is the marginal precision.
For a given value of the parameter vector 8,, Rue and Tjelmeland (2002) estimate the
non-zero elements of the standardised precision matrix Q' by matching the correlation
function as defined by these elements to the correlation function p of a Gaussian random
field. For the exponential, Gaussian, spherical and Matérn classes of correlation func-
tions, they conclude that using a 5 x 5 neighbourhood the approach gives a good fit to
the target correlation function. Among these four classes of functions, the exponential
is the one with the best fit.

Using the GMRF prior model for the log relative risk surface, expression (5) for the
relative risk R; at the regional level is replaced by

R, = Z exp(z;) w(s;), (14)

JEA;

where the sum is taken over the n; nodes of the lattice falling within region A;. In what
follows we will assume that the weights are constants given by w(s;) = 1/n;; j € A;.
This corresponds to an assumption of uniform population density which is often made
in disease mapping applications. This does not represent any loss of generality, since
the method can easily be modified to allow for non-uniform population distributions
by replacing the GMRF z by another GMRF z’ with elements z; = x; + log(w(s;)). In
terms of the log-risk surface z, the Poisson likelihood model for the incidence counts

becomes
. Ei
yi | & ~ Pois (n—l Z exp(ay)) . (15)
JEA;
For notational convenience we define E; = E,/n;, such that in what follows, E! is to be
interpreted as the expected number of cases per lattice node falling within region A;.

Let 6 = (7,6} ,6,)" denote all unknown hyper-parameters of the model, including the

precision 7, the parameters 8, of the correlation function and any parameters 8, defin-
ing the mean vector u. We take a fully Bayesian approach to parameter estimation,

11
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and the Bayesian hierarchical model for the disease mapping problem is summarised in
Table 1. The prior distribution 7 (8) of the hyper-parameters is specified in Section 3.

Likelihood:  y; |® ~ Pois(E;) ;4 exp(z;))
GMRF prior: |68 ~ N(u(8),Q(0)™")
Hyper-prior: 0 ~ ()

Table 1: A summary of the Bayesian hierarchical model.

We end this section by pointing out some computational pitfalls that are still present
using the GMREF representation of the model in combination with an MCMC based ap-
proach to parameter estimation. In our approach to estimation of the risk surface and
the corresponding hyper-parameters we need to sample from the posterior distribution
of the log-risk surface « given count data y. In Knorr-Held and Rue (2002) it is illus-
trated how the use of block-sampling leads to substantial improvement in mixing for
MCMC updating schemes for a similar model, but where the GMREF prior for the log-
risk is defined on the same level of aggregation as the data, using a common boundary
neighbourhood specification. The observations are conditionally independent given the
regional risks and the hyper-parameters, and thus the conditional independence struc-
ture for the posterior is the same as for the GMREF prior. Since the data in our case are
aggregated in regions that in general extends over the size of the local neighbourhoods
of the GMRF model for &, conditioning on the data will destroy the computationally
convenient local neighbourhood structure inherent in the prior. For an illustration, con-
sider the plots in the bottom panels of Figure 6. There, we have visualised the condi-
tional independence structure of the prior model and of the posterior model condition-
ing on the data for a subset of the study region. The subset is given by the lattice nodes
within the shaded region in the top left panel, plotted in larger scale and overlaid by the
GMREF lattice in the top right panel. Consequently, to preserve computational efficiency,
alternative methods are needed.

We have pointed out the potential problem of slow convergence of the hyper-parameters
using MCMC methods with the Gaussian random field. Inference for the hyper-para-
meters will still be problematic using the lattice based GMRF modelling approach, un-
less we are able to update the hyper-parameters jointly with a subset of the GMRE. Fi-
nally, introducing the additional boundary region nodes to reduce the impact of bound-
ary effects, might slow down the convergence and mixing for the hyper-parameters.

In the next sections we present our sampling based approach to parameter estimation,
and discuss how the potential problems listed above can be handled within our sam-
pling algorithm. We first give an overview of the method, and then present the approach
in more detail in Section 4.

12



Conditional independence structure, Conditional independence structure,
prior model posterior model

Figure 6: A subset of the region of study (shaded region, top left), with the lattice nodes
added (top right). The bottom panels illustrate the conditional independence structure
of the prior model (bottom left) and when conditioning on the data (bottom right), for
the subset of lattice nodes corresponding to the shaded region.
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3 A sampling based estimation approach

In this section we present a sampling based approach to the estimation of the unknown
quantities of the model. These are the log risk surface represented by = and the hyper-
parameters 6.

Given the Poisson likelihood, the GMREF prior (7) of « and the joint prior distribution
7(0) of the parameters 6, the joint posterior distribution of « and 6 given the data y is
given by

w(@. 8| y) o [[{r(ui | 2. 6)}(a | 8)7(6). (16)

We will estimate the log risk surface and the hyper-parameters using Markov chain
Monte Carlo methods. As pointed out in Section 2, using single-site updating will typ-
ically lead to poor mixing and slow convergence due to strong correlations in the prior
model. On the other hand, updating  or  and @ in one block requires careful choice
of the proposal distribution to obtain a reasonably high acceptance rate. Knorr-Held
and Rue (2002) illustrate the use of block-updating in Markov random field models for
disease mapping applications where the relative risk is defined at the regional level. In
their case, the Poisson likelihood is given by (4) with R; = exp(xz;), where z; is the log-
risk of region i. The joint proposal of the log relative risks & conditional on a proposed
value of @ is generated by using a local quadratic approximation to the posterior. Util-
ising the band structure of the prior precision matrix  they obtain computationally
efficient samples from the proposal distribution. Applying the approach to a dataset
on Insulin dependent Diabetes Mellitus in 366 districts of Sardinia, it is shown that the
convergence and mixing of the hyper-parameters are greatly improved by blocking.
However, since the spatial model is specified on the regional level, the total number of
parameters to be updated are much smaller than in our application, where the Markov
random field is specified on a lattice of n = 31089 nodes. As a consequence, the ac-
ceptance rate of a joint proposal is likely to be reduced compared to the ones reported
in their study, and the computational cost of generating the sample is increased. Also,
the efficiency of the approach as applied to our problem is reduced because the level of
aggregation of the data typically extends the size of the neighbourhood of the GMRF
model, as discussed at the end of Section 2.

As a compromise between a full block sampler and the single site Gibbs sampler, we
update the hyper-parameters and a subset of the elements of  in one block. We split the
vector « in the two sub-vectors x4 and x_ 4, representing the lattice nodes within the
region of study A and in the boundary region respectively, and choose to block-update
the hyper-parameters jointly with the subset _,4. As we show in Section 3.3, this is
equivalent to updating the hyper-parameters by sampling from the marginal posterior
of 8 given z 4. Conditionally on _4 and 8, the elements of x4 are updated in sub-
blocks corresponding to the lattice nodes within one or more regions.
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In the following subsections we describe our approach to estimation of the log-risk sur-
face as well as the hyper-parameters, and discuss how the potential computational pit-
falls pointed out at the end of Section 2 can be handled.

3.1 Step 1: The log risk surface

The sub-vector x4 corresponding the elements of « falling within the study region for
which data are available, are updated conditionally on z_ 4 and the hyper-parameters
0. We update z 4 in blocks defined in terms of the regions corresponding to the level of
aggregation of the data, using a Metropolis-Hastings step for each block. In this section
we give an overview of the approach for a general likelihood, deferring a more detailed
description of the sampling procedure for the Poisson likelihood case to Section 4. Also,
we first describe the method in terms of m blocks, where each block is made up from the
elements of 4 falling within a single region. In Section 3.2 we describe the straightfor-
ward extension of the method to blocks made up of from several regions, and discuss
briefly considerations to be made by choosing the size of the blocks.

The full conditional distribution for the n; elements xz;;; j; = 1,...,n; within region A;
is given by
7T(‘B.Ai | m—Ai,g,y) X 7T(:B.Ai | :B—Awg)ﬂ(yi | "B.Awg)’ (17)

Here we denote by x_ 4, all elements of the vector & except for the elements within re-
gion A;. The posterior distribution is in general non-standard, and we use a Metropolis-
Hastings step to generate an update of z 4,. As a proposal distribution for x4, we use
a quadratic approximation to (17), and we illustrate below that by re-formulating this
quadratic approximation to the distribution of a conditional sampling problem, sam-
pling can be done efficiently.

The conditional prior distribution 7 (x 4, | T 4;, 0) of x 4, is Gaussian with mean p 4,5 "
depending on the values of z in the set of nodes given by 0.4, = Ujc4,6(j), and precision
matrix Q 4, given by the n; x n; diagonal block of @ corresponding to the nodes within
region A;. The matrix @ 4, = Q 4,(0) and the vector 45, = t 4,5, (6) will both in gen-
eral depend on 6§, but for notational convenience we suppress explicit reference to the
dependency on € in what follows. Thus, the log-posterior distribution corresponding
to (17) becomes

log(ﬂ(a:/li | :B—Awg,y)) =

1
- §($Ai - V’Ai|5,4i)TQA,~(‘BAi - /J’Ai|6Ai) + hi(x) + const, (18)

where h;(x) is the log-likelihood of the observed count for region 4;. Introducing the
vector d; givenby d; = Q 4, pt 4,5, and re-arranging terms, the log-posterior distribution
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(18) can be written in the form
1
log(m(za|®-a,,6,y)) = —iﬂﬂiQA,-fBAi +d @ + hi(z) + const. (19)

A Gaussian approximation to (19) can be found by replacing the term h;(x) by a quadratic
approximation
1

hi(z) ~ —§m£i3i$,4i +bza, (20)
where B; and b; in general depend on the observation y; and the parameters §. We use
a second order Taylor expansion of h;(x) to define the quadratic approximation, as will
be described in Section 4 for the Poisson likelihood case. Substituting (20) for h;(x) in
(19) and collecting terms that are linear and quadraticin x 4,, a quadratic approximation
to the full conditional density (19), which we denote by ny (2.4, |®_4,,¥y), is

1
log(mn (2, | ®-4,,0,y)) = _§$5i(QA,- + Bj)@ 4, + (d; + b)) @ 4, + const

—%mﬂi(QAi + B)x 4, + ¢l T 4, + const, 1)
where we have defined ¢; = d; + b;. This Gaussian approximation is to be used as
a proposal distribution in a Metropolis-Hastings step for updating x 4,. However, the
precision matrix @ 4, + B; of the Gaussian distribution defined by (21) is in general a full
matrix, such that the computationally convenient band structure of the prior precision
matrix @ 4, is lost. This effect of conditioning on the data was illustrated in Figure 6. If
the elements of & are updated for each region .4; in turn, this does not necessary imply
any significant loss of efficiency, since the number of lattice nodes within each region
is typically relatively small and not very much larger than the number of neighbours
of a lattice node. But in the general case when elements are updated in larger blocks,
preserving the band structure might lead to substantial computational savings.

The general idea of our sampling approach is to re-formulate the problem of sampling
directly from the Gaussian proposal distribution (21) to a conditional sampling problem
for which the band structure of the precision matrix @ 4, is preserved. The symmetric
matrix B; can be expressed by

B, =D, + AT A, (22)

where D; is a n; x n; diagonal matrix, possibly with zeros on the diagonal, and A, is a
1 x n; matrix. Substituting (22) for B; in (21) and re-arranging terms, we arrive at the
expression

1 1
log(mn(a; | T-4,,6,y)) = —§$5i(QAi + D)+ Ta, — §$5iA?’AiiBAi +const. (23)

As long as the matrix Q 4, + D; is positive definite, a requirement that is discussed in
Section 4.2, the first two terms on the right define the log-density of a Gaussian variable
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for which the precision matrix Q 4, + D; has the same bandwidth as @Q ,,. The last
term can be recognised as the log density, up to a constant, of a Gaussian variable with
mean A;x 4, and covariance matrix I, evaluated in 0. Sampling from (23) is shown in
Section 4.2 to be equivalent to sampling from the conditional distribution

7-‘—("'l:.»‘li | "B—Any,Z* = 0), (24)

where z* | €4, ~ N(A;xa,,I). In Section 4.2 we further illustrate that because of the
band structure of @ 4, + D;, sampling from (24) is computationally much more efficient
than sampling directly from the Gaussian approximation as defined by (21), for which
the precision matrix is in general a full matrix.

The proposed method for sampling from the full conditional distribution for x 4,, given
by m(x.4,|z_4;, 0, y) in (19), can be summarised in the following steps.

1. Approximate the likelihood part of the full conditional distribution by a quadratic
function in « 4,, obtaining a Normal approximation to the full conditional distri-
bution. The quadratic approximation is computed by Taylor expansion around
the conditional mode.

2. Re-formulate the problem of sampling from this Normal approximation as a con-
ditional simulation problem, where the band structure of the precision matrix is
preserved.

3. Generate a sample from the Normal approximation based on the re-formulated
problem. This can be done using efficient algorithms utilising the band structure
of the precision matrix, described in Section 2.2.

4. Use the sample from 3. as a proposed value for z 4, in a Metropolis-Hastings step,
compute the acceptance probability and accept or reject this value.

3.2 Updating blocks of general subsets of x

In Section 3.1 we described our approach to updating the elements of & for each region
separately. An equivalent approach can be taken to update larger subsets of = 4 or all
elements of x 4 jointly, given the parameters @ and the boundary elements z_ 4 of the
random field. The full conditional distribution of s for a general subset S of A given
x_g, the data y and the hyper-parameters 8, is given by

(s |2s,0,y) < m(ws | w-5,0) [[ 7(v: | zs,2s,6). (25)
it A;€S

In analogy to (19), the corresponding log-density can be written as

1
log(r(zs|z-s,y,0)) = —§m£Q3m5 +dixs + Z hi(x) + const, (26)
it A;ES
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where h;(z) is the log-likelihood of the observed count for region .4;, and the sum is
taken over the mgs regions corresponding to the subset S. By substituting a quadratic
approximation computed by a second order Taylor expansion for ), h;(x) in (26) and
re-arranging terms, it is shown in Appendix A.2, using a Poisson likelihood, that the
corresponding Gaussian approximation to (26) can be expressed by

log(ry(zs | x_s,0,y)) =

1 1
— §m§(Q3 + Ds)xs + chxs — §:B£A£A3£B3 + const, (27)
where Dj is a diagonal matrix and Ags a ms x ng matrix, with ns equal to the number
of lattice nodes within the subset S of regions. This Gaussian distribution is of the same
form as (23) for the single region case, and the approach for generating samples from
(27) to be described in Section 4.2 can be applied in the case of general subsets as well.

An extension of single region blocks to larger blocks can be generated by including the
lattice nodes corresponding to the neighbours of the region, where we define two re-
gions as neighbours if they share a common boundary, and further extensions can be
made by adding the neighbours of the neighbours and so on. In Figure 7 we illus-
trate the size of the blocks corresponding to different choices of the number of neigh-
bours to include in each block. We define the term 1. order neighbourhood to mean all
neighbours of a region, 2. order neighbourhood to mean all neighbours as well as all
neighbours of the neighbours and so on. The choice of the number of regions to be up-
dated in each sub-block is a trade-off between computational cost and the acceptance
probabilities of the Metropolis-Hastings steps. Using the sampling approach outlined
in Section 3.1, the problem of reduced computational efficiency due to the fact that the
band structure of the precision matrix was not preserved in the Gaussian approxima-
tion to the posterior, has been handled. Therefore, the computational cost is expected to
be reduced by increasing the size of the blocks and thus reduce the number of blocks.
On the other hand, although increased block size might improve mixing due to larger
differences between proposed and current values, increasing the number of elements
of each block will reduce the quality of the Gaussian approximation, such that the ac-
ceptance rate is typically reduced. This should be kept at a reasonable level to ensure
proper mixing of the MCMC algorithm.

3.3 Step 2: The hyper-parameters

The hyper-parameters 6 are updated jointly with the remaining elements x_4 of the
GMRE. As pointed out in the beginning of this section, updating all element of the
GMREF in one block will most likely lead to low acceptance rates, and therefore we block
the hyper-parameters with a subset of the elements of x.

Using the fact that _ 4 is conditionally independent of the data y given « 4 and 8, the
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single region
1.order neighbours
2.order neighbours

3.order neighbours

Figure 7: Different possible structures of the blocks for block-updating the log-risk sur-
face. The 1. order neighbours are additional nodes from the 1. order neighbourhood of
the single regions, 2. order neighbours are additional nodes in the 2. order neighbour-
hood and 3. order neighbours the nodes added to the 2. order neighbourhood from the
3. order neighbourhood.

full conditional distribution of (8, z_4) is
(@, 0 | ®a,y) = m(@_0,0 | ®a) X (XA, 24 | O)7(O). (28)

This distribution is in general a non-standard distribution, depending on the form of
the hyper-prior 7(8), and updates are generated using a Metropolis-Hastings step. First,
given the current value 6 of the hyper-parameters, a new parameter vector 8’ is sampled
from a proposal distribution ¢(@ — '), and then a proposed value ', is generated by
sampling from the conditional distribution w(z’_ 4|0,z 4,y) = 7(x’ 4|6',x ). Since the
joint distribution of « given @ is Gaussian, it follows that the conditional distribution
m(x’_ 4|0, x 1) is also Gaussian, with a precision matrix that has the same bandwidth as
Q. A proposed value can therefore be generated efficiently by sampling directly from
this distribution. The proposed value is accepted or rejected according to the acceptance
probability

m(x_ 4,0 |zay) m(®_u|0,24,y) ¢(0 — 9))

m(@_n,0 | Ta,y) m(x__4 | 0, 24,y) ¢(0 — )
(. ,0 |xa) 7(x_a|0,24) ¢(0 — 9)) 29)

(-, 0| xa) T(x 4 |0, 24) (0 —0))

e

a((z-4,0), (@4, 0)) = min (1,
1’

= min(
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again utilising the conditional independence between z_ 4 and y given x 4.

Recall the potential pitfall listed at the end of Section 2, pointing at the fact that the
inclusion of the boundary region will in general be expected to slow down the conver-
gence of the hyper-parameters. However, writing out the expression for the acceptance
probability, we can show that blocking the hyper-parameters and the boundary nodes
essentially eliminates this problem. There is still an effect of the boundary nodes on the
subset of ¢ 4 corresponding to the inner nodes close to the outer boundary of the study
region, but this effect is supposed to be minor. Expanding the distribution 7(2_ 4, 8|2 1),
(29) can be expressed by

/ / _ . 7T(:I}’_ ’01 | mA) ﬂ(m—fl | 0,:IZA) Q(ol - 0)
olfe-s (e8] = min (1 E e 7))
— min (17 m(x 4|0 x) 7(0 |Ta) (20| 0, 24) 9(0 > 9))
(

m(@_a|O,20) 7(0 | ) w(x_, |0 ,24) q(0 — )

w0 |24) a(8' = ) ) | 0

- o (G o
Consequently, sampling the hyper-parameters jointly with the elements of = outside
the region of interest is equivalent to sampling the hyper-parameters from the marginal
posterior distribution 7(8 | z.4,y) = 7(0 | x.4), integrated over the outer elements z_ 4.
In effect, using this approach the influence of the boundary nodes on the convergence
of the hyper-parameters should be insignificant.

4 Efficient sampling from the full posterior of the log risk
surface

In this section we describe in more detail our approach to the generation of samples
from the full conditional distribution of 4, given by (19), using the Poisson likelihood
(15). We describe the sampling routine in terms of blocks made up from sets of lattice
nodes corresponding to single regions, but as we pointed out in Section 3.2, the sam-
pling problem for the general case has the same structure. In Section 4.1 we compute
the quadratic approximation to (19) using Taylor expansion, and in Section 4.2 we de-
scribe the method for sampling from the resulting Gaussian approximation.

4.1 A Taylor expansion based Gaussian approximation to the poste-
rior

Here, we establish the quadratic approximation to the full conditional distribution of
x 4, analytically by computing the second order Taylor expansion of the log-likelihood
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part h;(x) of (19). For the Poisson likelihood (15), h;(z) becomes

hi(x) = y; log(E, Z exp;) — E; Z exp ;. (31)
jeA; jeEA;

The expansion is computed around a point x%, taken to be the mode of the full con-
ditional distribution (19), found numerically given the current value of 8. Expressing
hi(x) in terms of the gradient (first order derivative) g;(z4,) and the Hessian (second
order derivative) G;(x 4,) of the Taylor expansion, we get

1

hi(@) ~ g(@l) + gl (@l (@a —a%) — 5@ — o) (~Gilal) (@a — %) (D)
1
= 5@ (=Gi(al))wa + (9] (@) — (20)" Gi(@), ) w4, 33)

discarding terms not depending on x 4,. In terms of g;(¢%_ ) and G;(xY,), the matrix B;
and the vector b; in the quadratic approximation h;(z) = —iz’ Bz 4, +b] x4, are given
by B; = —G;(xY%,) and b; = g;(x%.) — Gi(z%, )%, such that the Gaussian approximation
(21) is

1
T—4A; evy)) = _émaz(Q.Az + (_Gz(m?zlz))mA, + C;IZI}Ai -+ const, (34)

with ¢; = d; + g,(x%,) — Gi(x%,)xo. Thus, the full conditional distribution for x4, is

log(mn (2.4,

approximated by a Gaussian distribution with mean p; and precision matrix Q;, given

by
Q = QA Gi(x3,) (35)
o= @ (di+gi(ah) - Gi(a%)xY,). (36)
As shown in Appendix A.1, the gradient g,(x) and the Hessian G;(z), evaluated in the

mode xY., are given by

(25 = Yi — E)) a;(x", (37)
(0 _ Yi _ Yi (220 VT (0
G’L(a:A,) (S (:1:94 ) E) dlag(al( )) Sz (:13941)20’1(:1:.4,)0’1 ("B.Az)7 (38)
where we have used the definitions
ai@a) = (exp(z;)iey (39)
Sifma) = Y explz) = Y au. (40)
JEA; k=1

The mean S;(x4,)/n; = an > jen €xP(z;) is equal to the relative risk in region A; condi-
tionally on .
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Observe that G;(x%,) is of the form
G,(:Bglz) = —(D,‘ + Hi) (41)

where D; is a diagonal matrix and H; a rank one matrix defined by

o Yi AT 0

D; = (Si(mgli) E}) diag(a(x},)) 42)
. = L (0 T (0 _ T 4

Hi = grupe@iel@l) = A4 43)

Here, we have introduced the 1 x n; matrix A, given by

VY 1o
A, = Si(w&i)ai (x4,)- (44)

Both D; and H; depend on the observed count y; and the point Y . Substituting the
sum —(D; + H;) for G (scgli) in (34) using the expression in (43) for H; and re-arranging
terms, we arrive at the expression (23) for the proposal distribution. As we will describe
in Section 4.2, this re-formulation can be utilised to reduce the computational cost of
sampling from (34).

4.2 Sampling algorithm

In Section 4.1 we re-formulated the problem of sampling from the Normal approxi-
mation (34) to the full conditional distribution (19) in terms of the general problem of
sampling from a distribution on the form

1 1
log(m(x)) = —§mT(Q +D)x+c'x - §:I3TATA£B + const, (45)

where Q + D is a band matrix. Here, we have suppressed the subscripts A; and i, the
dependency of 2% and the conditioning on x 4,, y and 6 for notational convenience.

The first two terms of (45) is the log-density function, up to a constant, of a Gaussian
vector variable * with mean an precision matrix given by

wo= Q) 'c (46)
Q" = Q+D. (47)
Rewriting the last term of (45) as
—%mTATAm = —%(0 — Az)TI(0 - Ax), (48)
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we observe that this term, up to a constant, is equivalent to the multivariate Normal
log-density of another vector variable z* with mean Az and covariance matrix I, that
is evaluated in the value z = 0. Thus, we have introduce two new variables * and z*,
with distributions given by

- ~ N, Q)™ (49)
zle*=x ~ N(AzI), (50)

where p* and Q™ are defined by (46) and (47). In terms of the variables * and z*,
the distribution (45) is equivalent to the conditional distribution of z* given z* = 0,
evaluated in * = . We denote this distribution by 7z« z+(2*|z* = 0), and it can be
expressed by

7T£B*|z* (.’Blz* = 0) X T+ (:13) 7Tz*|m* (Olaz* = :13), (5])

using a compact notation. Consequently, sampling from (45), and thus the Gaussian
proposal distribution (21), is equivalent to sampling from the conditional distribution
given by (51). Since

zt=Ax* —€; € ~N(0,I), (52)

conditioning on z* = 0 is equivalent to conditioning on Az* = €*. In our application,
we have that

Az = (Si(a%,)"/yi) Y explao,) @ (53)

JEA;

is a weighted sum of the lattice specific log relative risks z; within each region. Condi-
tioning on Az* = €* can be interpreted as generating samples for which E(Az*) = 0,
and where the elements of Az* should be independent Gaussian variables with com-
mon variance 1.

To generate a sample x. from the conditional distribution 7 (z*|Ax* = €*), we use the
approach given by equation (12) in Section 2.2. We first generate an unconditional sample
x, from 7(z*) and an €* ~ N(0, I'), and then compute x. by adjusting for the constraint
Az* = € using the expression

z. =z, — (Q)TAT(AQ) AT + ) (A, — €) 54

The precision matrix Q" has the same bandwidth as the prior precision matrix Q of x.
Utilising the band structure of Q~, samples from (51) can be generated efficiently using
the methods described and implemented in Rue and Follestad (2002).

To compute (54) we need to evaluate the matrix expression (A(Q*)"'A” + I')~!. The
matrix A(Q*)‘lAT + I is in general a full matrix, but it is of dimension m. by m,,
where m, is the number of rows in A. So far we have considered the sampling problem
updating one region at a time, for which m, = 1. But even for generalisations to larger
subsets of regions, we usually have that m. < n.
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As pointed out in Section 3, the matrix @ + D should be positive definite for the Gaus-
sian distribution defined by (46) and (47) to be proper. The matrix Q" is positive definite
iffz"Q*x > 0; Vo > 0. Substituting Q + D for Q" we get

2'Qx = 2"Qx+x"Dx
T _ Yi

Since all elements of a;(xY,) are strictly positive, the sign of the last term on the right is
determined by the sign of the factor

— E)a"diag(a;(z),))z. (55)

Yi
Si(x%,)

— B = (yi — Si(x%) E})/Si(%,) = (yi — Eys | €%,))/Si(2,)- (56)

This term can in general be of either sign, such that the precision matrix Q" is not guar-
anteed to satisfy the positive definiteness requirement. In the case where the prior vari-
ance 1/7 is large, such that 2”7 Q*z is small, the second term of (55) will dominate, and
the chance is higher that the positive definiteness requirement is not met. However, this
problem can in general be dealt with by a slight modification of our sampling algorithm,
replacing the diagonal elements d; ; of the matrix D by max(d;;,0.0). The correspond-
ing change in proposal distribution is corrected for by the acceptance probability of the
MCMC algorithm.

To summarise the sampling approach, a sample from the conditional distribution (45)
can be obtained by the following steps:

1. Sample a value x,, from the unconditional distribution (49).
2. Sample an €* ~ N(0,I).

3. Compute x. using (54). Then x. will be a sample from the posterior distribution
given by (51), and consequently from (45).

4.3 Some computational details

The sampling algorithm is implemented in C, and is based on the routines for fast and
exact simulation of Gaussian Markov random fields implemented in the library GMR-
FLib (Rue and Follestad, 2002). The library provides general algorithm for generat-
ing samples from a GMRE, including conditional samples for hard and soft linear con-
straints, and the algorithms are based on the Cholesky factorisation (9) of the precision
matrix Q (Rue, 2001).

When applying the C-routines to our problem, we have utilised the structure of the spe-
cific problem to further reduce the computational cost. Using the fact that the range of
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the correlation function is given for a set of discrete values, the normalising constant
of the posterior distribution of « can be computed once at the beginning of a run, and
stored for later use. Also, the sub-graphs representing the subset of nodes in each block
in the block-updates of the log-risk surface «, as well as the sub-graph representing the
boundary region nodes, are computed only once. A timing of the computer program,
running the program for 1000 iterations, reveals that 32% of the time is spent evaluating
the elements of the precision matrix Q, and 12% in evaluating the log-likelihood. Fur-
ther, about 21% of the CPU time is spent on setting up the algorithm, including specify-
ing the neighbourhood structure and computing sub-graphs. Consequently, more CPU
time is spent on setting up the problem than actually performing the computations gen-
erating the samples.

5 Simulation study

In this section we illustrate the performance of the method by applying the sampling
algorithm to two simulated data sets, both generated using the study region of the real
data. A plot of the study region made up from the 544 districts of Germany, overlaid
by a lattice consisting of n = 31089 nodes including boundary nodes, were shown in
Figure 5.

The simulated data as well as the real data set are standardised such that the overall
risk for the region of study is 1. Therefore, no intercept term is included in the model
for the log-risk surface, and the prior mean p of x is taken to be 0. The remaining
hyper-parameters of the GMREF prior are the precision 7 and the parameters specifying
the spatial structure of the random field. We model the spatial dependency using an
isotropic one-parameter exponential correlation function given by

p(h;r) = exp(—=3h/r). (57)

Here h is the distance between two nodes of the lattice, and r is the distance for which
the correlation is reduced to 0.05. In the simulated data sets, the range parameter of the
exponential correlation function (57) is set equal to » = 40 measured in lattice coordi-
nates for both data sets. The precisions are taken to be different, and the chosen values
are7 = 24 and 7 = 8, corresponding to standard deviations of 0.20 and 0.35 respectively.
For each data set, we first generate a realisation of the log-risk surface « from the GMRF
prior (7), and conditionally on x a set of regional count data is sampled from the Poisson
distribution given by the likelihood (15). We define the expected number of cases E; to
be the ones given in the data set used in Section 6, ranging from 3.0 to 393.1 and with a
median of 19. A summary of the two simulated data sets used in the study is given in
Table 2, and the realisations of (exp(z;)),_, , and the corresponding regional relative
risks, given by the mean () ied: exp(x;))/n; over the n; lattice nodes within region i, are
shown in Figure 8.
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Risk surface (r = 24)

Figure 8: The true risk surfaces and corresponding regional level relative risks for the
two simulated data sets.
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Aggregated counts (y;)

Dataset || 7 | r | Min. | 2.5% quantile | Median | 97.5% quantile | Max.
I 24140 0 3 19 87 403
I 8 140 1 2 18 111 461

Relative risk (R;)

Dataset | 7 | r | Min. | 2.5% quantile | Median | 97.5% quantile | Max.
I 24 | 40 | 0.50 0.61 0.98 1.43 1.85
II 8 |40 | 045 0.49 095 1.71 2.60

Table 2: The aggregated counts and the true relative risks of the simulated data sets.
The quantiles are given as the empirical quantiles of the simulated values.

The prior distribution for the precision 7 and the range parameter r are assumed to be
independent. To reduce the computational burden, we use a discrete prior distribution
for the range parameter r, such that the determinant of the precision matrix, needed for
the evaluation of normalising constants, can be computed once at the beginning of the
sampling procedure. The discretisation is done in n, = 2001 steps r; k = 1,...,n,,
where the range at step k is equal to r;, = (k — 1)0.05 measured in lattice coordinates.
The discrete prior distribution is defined on the indexes k, such that

ck=1,...,n,. (58)

The precision 7, which is constrained to be positive, is assigned a Gamma prior, 7 ~
Gamma(a,, §,). Based on the recommendations in Kelsall and Wakefield (1999) and the
discussion of prior sensitivity in Pascutto, Wakefield, Best, Richardson, Bernardinelli,
Staines and Elliott (2000), we choose the parameters of the Gamma(c,, 5,)-prior for 7
such that more weight is given to small variances than the Gammal(e, ¢)-prior for small
e frequently used in this type of applications. Specifically, we choose o, = 0.2 and
B = 0.0002. For the range parameter r we use the discrete prior (58) on the range
indexes k =1,2,...,2001 corresponding to the values 0.0,0.05,0.1,0.15, ...,100.0 of the
range, as measured in lattice coordinates.

The elements of x4, representing the log relative risk surface within the 544 regions,
are updated using the block-sampling approach described in Section 3.2. As pointed
out in that section, the optimal choice of block-size can be considered to be a trade-off
between computational cost and the acceptance probabilities of the Metropolis-Hastings
steps. To study the effect of changing the block-size on the acceptance probabilities, we
ran 11000 iterations of the sampler on data set I of Table 2 for four different choices of
blocks, keeping the hyper-parameters fixed at their true values. The blocks are made
up from single regions, 1. order neighbourhoods, 2. order neighbourhoods and 3. order
neighbourhoods respectively, using the neighbourhood definitions given in Section 3.2
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and Figure 7. The four different block sizes are also illustrated in Figure 9. In our
sampling algorithm, the blocks are slightly modified such that the different blocks of
one run of the sampler are disjoint, and such that regions with only one neighbour are
added to one of the adjacent blocks. This last modification applies to city regions, like
two regions within the 2. order neighbourhood block of Figure 9, as well as some of the
regions at the boundary. To avoid boundary effects between blocks, we generate the
blocks randomly, updating the partition into blocks at every 10th step of the sampler.

The resulting acceptance rates for the four different choices of the block structure are
displayed in Figure 10. We observe that the acceptance rates for the single region blocks
are very large, with a median acceptance probability of 0.95, indicating that the Gaus-
sian approximation is a good approximation to the posterior distribution (19). For the
blocks based on 1., 2. and 3. order neighbourhoods, the median acceptance probabilities
are gradually decreased, taking the values 0.66, 0.35 and 0.16 respectively. The accep-
tance probabilities seem to be independent of the size of the regions, represented by the
number of lattice nodes within the region, but they increase as the mean of the regional
level risk approaches 1.0. This result is as expected, since the Gaussian approximation
(27) to the posterior distribution (25) of x5 is expected to be better when the values of
xs are small, and thus the corresponding regional level relative risk close to 1.0. Based
on these results, we choose to use blocks made up from a region and its 1. order neigh-
bourhood.

The convergence of the MCMC algorithm is assessed by visual inspection of trace plots.
The total number of parameters of the risk surface is too large for an inspection of all
trace plots to be feasible. So in addition to the hyper-parameters 7 and r, we study
trace plots of the relative risk R; of a selected number of regions, and for a subset of the

corresponding elements of the log-risk vector . The values of the regional relative risks
(k).

at iteration %, denoted R;"’; ¢ = 1,...,m, are generated from the current values of x by
1
(k) _ (k)
R" = o Zexp(xj ), (59)
JEA;
where xgk) is the k’th update of z;. To get an impression of the behaviour of the algo-

rithm for the remaining regions, we compute the mean acceptance probability of the
Metropolis-Hastings steps for all regions.

In Figure 11, we show a subset of trace plots for data set I, after running the MCMC
algorithm for 101000 iterations. The convergence is fast and the algorithm mixes well for
the majority of the relative risk estimates, but the trace plots for region 16 indicate that
although the convergence seems to be fast, the mixing is relatively poor for this region.
The mean acceptance probability for the corresponding elements of  is 1.9%. The mean
acceptance probabilities for all regions are plotted in the top panels of Figure 12, and the
acceptance rate for region 16 is seen to be the lowest among the 544 regions, for which
the second smallest value is 8.9%. Region 16 corresponds to a region with a small true
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Single region 1. order neighbourhood

Figure 9: An illustration of the blocks used in the block-sampling of the log-risk sur-
face. The risk surface for the lattice nodes within the dark shaded regions are updated
conditionally on the nodes of all remaining regions as well as the boundary nodes.
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Figure 10: Histograms of the mean acceptance probabilities of the log-risk of the 544 re-
gions using the block-MCMC algorithm (left), the mean acceptance probabilities plotted
against the number of nodes within the region (middle), and the same values plotted
against the estimated log-risk (left). The plots are given for blocks of single regions and
for 1. order, 2. order and 3. order neighbourhoods (from the top and downward), and
are based on results from using data set I.
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(Rys = 0.61) as well as estimated (R, = 0.65) relative risk and a large aggregated count
(y16 = 202). From Table 3 we observe that the true risk is relatively similar for region
16 and its neighbours, but the expected and observed aggregated counts are an order
of magnitude larger. From Table 2 it is clear that the observed count of region 16 is in
the tail of the empirical distribution of the observed counts, and this might explain why
the Gaussian approximation is relatively poor for the elements of the log-risk within
this region. (Region 16 includes Hamburg, and since we use the expected counts of the
German oral cavity cancer data to generate our simulated data set, this explains the high
count of this region).

Regionno. (@) | v B; R; | SMR
16 202 | 3149 | 0.61 | 0.64
6 17 | 30.7 | 0.67 | 0.55
9 45 | 509 | 0.62 | 0.88
13 30 | 399 | 0.72 | 0.75
15 22 | 385 | 0.70 | 0.57
38 18 | 38.1 | 0.63 | 047
44 28 | 30.6 | 0.73 | 091

Table 3: The expected (E;) and observed (y;) aggregated counts, true relative risks (R;)
and SMR for region 16 and its neighbours for data set I.

The mixing for 7 and r is poorer, but the trace plot of 7 indicates that the algorithm has
converged for this parameter. For the range parameter r, the mixing is not uniform over
the range of possible values. The poor mixing for some neighbouring values for r is due
to larger differences between the corresponding neighbouring prior models than the
typical differences between neighbouring models over the range of values of r. Thisis a
result of the procedure used for fitting GMRFs to GRFs (Rue and Tjelmeland, 2002). The
additional constraint that the coefficients of the precision matrix of the GMRE, computed
for each value of the range, should also be near continuous with respect to the range,
is not accounted for in the fitting procedure. The effect could be reduced by increasing
the resolution for the range r in (58), but probably we need to add explicit smoothing
constraints of the parameters with respect to range in the fitting procedure.

To illustrate the effect of slow convergence and mixing of the hyper-parameters on the
estimates of the log-risk surface, we have plotted the updated values of some elements
of & against corresponding values for 7 and r. From the resulting scatter plots shown
in the top two rows of Figure 13, we observe that the posterior variance decreases for
increasing values of the precision 7, but the posterior means of the elements of & appear
to be stable despite the poor mixing of the individual parameters 7 and r. Therefore, we
proceed by presenting results for the relative risk surface based on estimated posterior
means, but the poor mixing of the hyper-parameters should be kept in mind.
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We discard the first 1000 iterations and use the remaining 100000 iterations to compute
estimated posterior mean values of the relative risk surface and the relative risks within
each region. The results for data set I are reported in Figure 14. From the top and
middle left panels we observe that the simulation algorithm reproduces the structure
of the simulated risk surface well. The corresponding true and estimated values of
the regional level risks are plotted in the top and middle right panels. Comparing the
estimated values to the standardised mortality ratio (SMR) added in the bottom right
panel, the algorithm is seen to smooth the disease map based on the SMR toward the
true risk surface. In the bottom left panel we have plotted the estimated probability that
the risk R; exceeds 1.

A selection of trace plots and the estimated posterior mean values for data set II are
given in Figures 15 and 16. The general pattern is similar to the results from data set
L. The mixing is relatively good and the convergence is fast for the log-risk surface for
most regions, but for the hyper-parameters, convergence is not achieved after the 101000
iterations. However, there are more regions for which the mixing for the corresponding
elements of « is relatively poor. In Figures 15, we have included trace plots for the
regional level relative risk and two corresponding elements of x for a region for which
the acceptance rate is extremely low (0.09%). This region is the same as the one with
lowest acceptance rate for data set I. In the sampling algorithm we have used the same
block-size as for data set I, producing the mean acceptance probabilities illustrated in
the middle panels of Figure 12. We observe that the acceptance rates are in general
lower than for data set I, and the lowest for the regions with the most extreme values
of the risk. This overall decrease in acceptance probabilities corresponds to the fact that
the Gaussian approximation is a better fit to the posterior distribution for the data set
with the smaller variance. To increase the average acceptance probability, the block-
sizes should be reduced to include single regions only for this simulated data set, and
in the further discussion of the results, the low acceptance rates for some of the regions
should be kept in mind.

As for data set I the posterior mean level of the elements of x seems to be stable de-
spite the convergence problems apparent for the hyper-parameters, as illustrated by the
scatter plots in the bottom two rows of Figure 13. For region number 16, there is some
indications of negative association between 7 and the estimated level of the log-risk, but
as we pointed out above, the acceptance rate is very low, and we know from Figure 15
that the mixing is poor for the elements of x within this region. Therefore, the results
presented below, based on estimated posterior means, are hoped to be representative
despite the poor mixing of the hyper-parameters.

Comparing the differences between the SMR and the estimated risk surface for the two
data sets, we observe from Figures 14 and 16 that degree of smoothing is less pro-
nounced for the case 7 = 8 than for the data set with 7 = 24. Thus, increasing the
prior variance of the underlying risk surface seems to reduce the degree of smoothing.
This effect is also illustrated in Figure 17, where we have plotted the differences between
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the estimated and true relative risks together with corresponding differences between
the estimated risks and the observed SMR. Some of the larger differences for data set II
correspond to regions for which the acceptance probabilities are small and the mixing
relatively poor, but comparing similar differences discarding risk estimates for which
the acceptance probabilities are all larger than 20%, the tendency is similar.

We end this section by an illustration of how we can assess the validity of the approxi-

mation ]
— Z exp(z;) = exp( Z z;), (60)
]E.Az JEAz
which is an analogue to the approximation log(R;) = [, log R(s) fi(s)ds, underlying the
geostatistical approach of Kelsall and Wakefield (2002) Let
~ 1
R, = exp(n—i Z z;), 61)
JEA;
be the approx1mat10n to the relative risk R, = L + 2 jea €xp(z;) of region A;, and let

further R, = R() and R; = R() be the corresponding posterior mean estimates based
on the updates Rfk) and Rik), k=1,...,100000 from the Metropolis-Hastings algorithm.
By Jensens inequality

1
exp(; Z z;) < — Z exp(z;), (62)

‘A M jea;
such that the estimated posterior means of R; should be smaller than or equal to the

corresponding values for R;. In Figure 18 we have plotted R against R; and R;/R; as a
function of the number of lattice nodes within each region, for data sets I and II as well
as for the oral cavity cancer data analysed in the next section. We observe that (61) is
a good approximation to R;. As expected, the approximation is better the smaller the
number of lattice nodes within the region, and in accordance with Jensens inequality,

R; < R;Vi. In the bottom panels of Figure 18, the variability of the updates of the

fraction Egk) / REk) is illustrated by plotting histograms of updated values for a region
with a relatively large number (53) of lattice nodes. We observe that the variability
is largest for data set II, with a minimum value of about 0.92. The mean acceptance
probabilities for the risk updates for this region are 0.56, 0.23 and 0.42 for data set I, data
set Il and the oral cavity cancer data respectively.

6 Oral cavity cancer data

We apply our estimation approach to a set of data on mortality from oral cavity cancer
for males in Germany, over the period 1986-1990. We do not intend to do a thorough
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analysis of these data, but include the analysis to illustrate the method as applied to a
set of real data. The data are given as counts for each of the 544 districts of Germany.
The counts range from 1 to 501, with a median count of 19, and the empirical 2.5% and
97.5% quantiles of the observed counts are 3 and 124. The standardised mortality ratios
(SMR) for the data were shown in the right panel of Figure 1. The data were analysed by
Knorr-Held and RafSer (2000) who identified clusters of elevated or lowered risk using
a Bayesian approach based on reversible jump MCMC.

From the bottom panels of Figure 19, we observe that as for the simulated data, the
mixing of the hyper-parameters is relatively poor. There is some evidence that the al-
gorithm has converged after about 40000 iterations, but more effort is needed to get
reliable estimates of the hyper-parameters using a reasonable amount of computational
effort. From trace plots of a selected number of elements of z, some of which are plotted
in Figure 19, we observe that the mixing is good despite the poor mixing of the hyper-
parameters, and the convergence is fast. The acceptance rates are reasonably high for
all but a few regions, as illustrated in the bottom panels of Figure 12. The data for the
regions for which the mean acceptance probabilities of the log-risk updates are less than
10% are listed in Table 4, and we observe that they all have a relatively large or small
SMR or a high observed count, one of which is the maximum observed count (501).

Region no. (@) || v E; | SMR
197 111 | 73.0 | 1.52
322 117 | 729 | 1.60
324 53 | 30.8 | 1.72
328 501 | 393.1 | 1.27
414 52 | 98,5 | 0.53
443 15 | 28.1 | 0.53

Table 4: The expected (E;) and observed (y;) aggregated counts SMR for the regions for
which the acceptance rates of the log-risk updates for the oral cavity cancer data are less
than 10%.

The results from applying our GMRF approach to the data, using blocks made up from
regions and their 1. order neighbours, are summarised in Figure 20. The estimated log-
risk surface and the corresponding estimated posterior means of the regional relative
risks are shown in the upper two panels. The results can be compared to the standard-
ised mortality ratios (SMR) shown in the bottom right panel. We observe that the overall
spatial pattern of the estimated relative risk and the SMR are similar, with elevated risk
in the north-eastern and south-western parts, but that the estimated spatial risk surface
is smoother. The estimated posterior mean relative risks at the regional level vary be-
tween 0.57 and 1.54. The results are similar to the ones obtained by Knorr-Held and
Rafier (2000). They reported estimated posterior median relative risks in the range 0.65
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and 1.42 using their Bayesian cluster detection approach, and between 0.56 and 1.56 us-
ing the method of Besag et al. (1991). The estimated spatial pattern is similar to theirs,
but their Bayesian clustering approach leads to a somewhat smoother map. However,
the smoothness of the map using our approach will depend on the range parameter r,
and since the convergence can be questioned, the result should be interpreted with care.

7 Discussion

We have presented an approach to estimation of a spatially varying risk surface based
on aggregated count data, using a Gaussian Markov random field prior defined on a
lattice. The method is exact in the sense that the posterior mean estimates are generated
on the basis of samples from a Markov chain that converges to the correct posterior
distribution. This represents an improvement over the geostatistical approach of Kelsall
and Wakefield (2002) using a log-Normal approximation to the regional relative risk, in
particular in applications for which the regions representing the level of aggregation
of the data vary substantially in size and shape. As illustrated in Section 5, for the
regions of our study the approximation gives very similar results, but in general the
approximation should be justified for the actual set of regions at hand.

We are still left with the problem of convergence of the MCMC sampling algorithm. For
the simulated examples and the data set analysed in Sections 5 and 6 the convergence
is fast for the elements of the log-relative risk surface x, and the mixing is good ex-
cept for elements of & corresponding to extremes within the range of the relative risks.
The acceptance rates for the Metropolis-Hastings sampler are increased by reducing the
size of the blocks in the block-MCMC algorithm, at the expense of increased compu-
tational cost. For the hyper-parameters, the mixing turned out to be relatively poor,
but the estimated posterior means of the elements of the log-risk surface seemed to be
stable despite the poor mixing of the individual hyper-parameters. Using a single site
Metropolis-Hastings sampling approach, convergence and mixing is often improved by
re-parameterisation, but this will have less effect in our case, since we already accept or
reject the proposed values of the range parameter r and the precision 7 jointly. We chose
to block the hyper-parameters with the boundary nodes, an approach that was shown to
be equivalent to sampling 7 and r from the marginal posterior distribution of (r,r), in-
tegrating over the boundary nodes. To study the effect of blocking on the mixing of the
hyper-parameters, other blocking strategies, like including the nodes corresponding to
a random sample of inner regions in the block, could be explored. We ran the sampling
algorithm including a randomly chosen inner region and it’s 1. order neighbourhood in
the block, but no improvement in mixing of r or 7 was gained.

We have illustrated our approach using the exponential correlation function to specify
the spatial correlation structure. This could be replaced by alternative, more flexible
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classes of models, like the Matérn class, based on Bessel functions. In Hrafnkelsson and
Cressie (2003) a simpler alternative approach to that of Rue and Tjelmeland (2002) is
proposed to fit a GMREF to a geostatistical GRF model using the Matérn class of correla-
tion functions.

The commonly used log-Gaussian random effects model for the regional level relative
risk, as given by (1), includes a spatially unstructured as well as spatially structured ef-
fect, such that the degree of spatial dependency can be assessed by studying the relative
values of the estimated precisions of the two effects. A spatially un-structured effect can
also be introduced our model, and the proposed sampling based approach to parame-
ter estimation can be applied to the resulting model after a re-parameterisation adding
another level to the hierarchical model (see Knorr-Held and Rue, 2002).

As the methods of Best et al. (2000), using a Poisson-Gamma model with identity link,
and Kelsall and Wakefield (2002) using similar distributional assumptions as in our
model, our method is aggregation consistent, such that the estimated spatial structure is
independent of the level of aggregation of the data. Also, the method can be extended to
include covariates observed at different non-nested levels of aggregation, using all co-
variates at their original level of aggregation. This is an appealing feature, since etholog-
ical studies often involves data observed at the individual level, as point observations
and as aggregated data.

The results from applying our approach to the German oral cavity cancer data turned
out to be very similar to those reported by Knorr-Held and RafSer (2000). A closer look
at the resulting risk surface displayed in the top left panel of Figure 20, reveals an ap-
parent difference between the general level of the risk in the former German Democratic
Republic (GDR), including Eastern Berlin, and Western Germany (BRD). This could be
due to different routines for reporting cases, and the effect could be taken into account
by including an indicator variable representing former country (GDR or BRD) as a co-
variate of the model.

We conclude that using GMRFs as proxies for GRFs on a lattice allows for the devel-
opment of an aggregation consistent approach to estimating a smoothly varying risk
surface based on aggregated count data. Applying the approach to simulated data as
well as a set of real data using computationally efficient block-MCMC algorithms for
parameter estimation, we have shown that the method reproduces the risk surface well.
Despite blocking the hyper-parameters with the boundary nodes, further work seems
to be needed to improve mixing and convergence of the hyper-parameters.
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Figure 11: Selected trace plots for the simulated data set I, with 7 = 24.
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Figure 12: The acceptance rates for the block-MCMC algorithm for (from the top down-
ward) data set I, data set II and the oral cavity cancer data. The left panels show his-
tograms of the acceptance rates of the log-risk « within each region, and in the right
panels the acceptance rates are plotted against the estimated risk.
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rows) and data set II (bottom rows). The numbering of the selected elements of « corre-
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True risk surface

SMR

Figure 14: Results for the simulated data set I, with 7 = 24 and r = 40. The true values
of the risk surface and regional risks, also shown in Figure 8, are added for reference.
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Figure 15: Selected trace plots for the simulated data set II, with 7 = 8. The five top
rows show trace plots of the regional risk R; for five regions (left) and of two elements
of x falling within each region (middle and right). Every 20th iteration is shown.
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True risk surface True R;

Figure 16: Results for the simulated data set II, with 7 = 8 and r = 40. The true values
of the risk surface and regional risks, also shown in Figure 8, are added for reference.
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Figure 18: Plots of the posterior mean estimates R; against R, (top panels) and R/ R,
as a function of the number of lattice nodes within the region for the two simulated
data sets and for the oral cavity cancer data. The bottom panels show histograms of the
fractions Eﬁ’f} / Rg’f]) for region 10, which has 53 lattice nodes.
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Figure 19: Selected trace plots for the oral cavity cancer data. The five top rows show
trace plots of the regional risk R; for five regions (left) and of two elements of « falling
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Figure 20: Results for the German oral cavity cancer data.
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A Computational details

A.1 The gradient and the Hessian of the Poisson log-likelihood

Define
ai(®a) = (exp(z)e, 63)
Siwa) = Y expla;) = Y au (64)
JEA; k=1

where z; denotes element j of the log-risk surface . We compute the gradient vec-
tor g;(x) and the Hessian matrix G;(z) of the Poisson log-likelihood function given by
hi(x) = y;log(E; > c 4, €xpxj) — B} ;c 4, €xpzj, which define the second order Tay-
lor approximation (33) of the conditional posterior distribution 7(x 4,|€_4,,80,y). The
elements of g,(z) and G;(z) are given by

Ohi(z) Yi

o, Sima) ) e an exp() (65)
Yi i Yi P

Ohi(x) ((Si(a;Ai) = E)ljken; = Wf[kexu] exp(z)) exp(zy) ifl =k o
Oz,0x L S ‘ y .
R i) keAinieal exp(x;) exp(2) 14k

Consequently, the vector g;(z%,) and the matrix G;(z,), evaluated in the mode z, of
the posterior distribution of x 4,, can be expressed by

Yi !
Yi ! . Yi
Gi(z%,) = (Si(m&,.) — E)) diag(ai(zY,)) — —Si(w&i)Qai(gB&i)aiT(moA")’ (68)

establishing the expressions (37) and (38) of Section 4.1.

A.2 A Gaussian approximation to the posterior of x5 for general sets
of regions S

Here, we establish the Gaussian approximation to the conditional posterior distribution
n(zs|z_s, 8,y) of the log-risk x s for blocks of lattice nodes corresponding to a set S of
several regions, given by equation (26) in Section 3.2. In analogy to expression (33) for
the single region block case, a Taylor expansion based quadratic approximation to the
log-likelihood part ), hi(x) of (26) is given by

1

Zhi(w) ~ —5ws(-Glas))ws + (9" (x5) - (25) G(xs))ws, (69)
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discarding terms not depending on zs. The vector g(z2) and the matrix G(z%) are
the gradient and the Hessian of ), h;(z) evaluated in the mode % of the posterior
distribution of xs.

We derive the Gaussian approximation using the Poisson likelihood (15). As for the
single region case in Appendix A.1, define

ai(xzs) = (exp(xj)I[jeAi)jes,and (70)
Si(zs) = Y (exp(x;)jean) Zazk @1
jes

Because of the conditional independence structure of the likelihood, the gradient and
the Hessian defining the Taylor expansion of ), h;(x) are given from (67) and (68) by
the sums

9(@8) = Dgamy ~ ) ailed) 72)

G(z3) = Xi:( Si(y:;:s)_El) diag(a;(z3)) s #3)al (x3),  (73)

such that the precision matrix —G(z%) of the quadratic approximation to Y, h;(x) is
block diagonal with blocks —G;(2%) corresponding to (68) for each block S. Define the

ms X ng matrix Ag by

Yi

AS = < \/_ a?(mo )> s (74)
Si(@§) ) Aies

where mg and ng are the number of regions and number of lattice nodes within the

block S, respectively. In correspondence with the quadratic approximation for the single

region case, the matrix G(z%) is of the form

G(z}) = —(Ds+ Hy) (75)

for a diagonal matrix Ds and rank one matrix H s given by

Ds = —Z(S (y;s) E!) diag(a;(x3)) 76)

Hs = ZS yl a;(z2)al (z%) = AfAs. (77)

Substituting (69) for ), h;(x) in the posterior distribution (26), using the expressions
for g(z2) and G(z%) derived above and collecting terms that are linear and quadratic
in xs, we arrive at the Gaussian approximation given by (27).
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A.3 Conditioning on a soft linear constraint

Here, we use Normal distribution theory to check the validity of equation (54) as a
sample from the GMRF z conditionally on a soft linear constraint. Let

z~ N(p,Q) (78)
and consider the general problem of sampling from the conditional distribution
T| Az =b+e, (79)
where € ~ N(0,X). This is equivalent to sampling from the distribution
x| z=0b, (80)

where z = Az — €. The sampling problem of Section 4 is a special case of (79) for which
p = p*and Q = Q" as defined by (46) and (47), and where ¥ = I and b = 0.

Let «,, be an unconditional sample for & from (78), and let
z, =z, — Q 'AT(AQ AT + )1 (2 - b), (81)

where z = Ax, — e. We will show that =, has the same distribution as a sample from
x|z = b, and thus from (79) by comparing the mean and variance of x, computed by
(81) to the moments of (80).

Using multivariate Normal distribution theory, the mean vector and covariance matrix
of the distribution x|z = b can be shown to be

E(zlz=b) = u+Q'AT(AQ AT + X)) (b— Ap)

Cov(z|z=b) = Q'+Q'AT(AQ AT + %)'AQ™!
(Q+ATEtA)7 (82)
The mean vector and covariance matrix of z = Az — € is
E(z) = Ap, and (83)
Cov(z) = AQ'AT +3, (84)
such that
E(z.) = p—-Q 'AT(AQ7AT + )7 (Ap—b)
= E(z|z=0b), (85)
and

Cov(z,) = Q'+Q'AT(AQ A" + )1 (AQ'AT + )(AQ AT + X)'AQ™!
= Q'+ QAT(AQ AT £ ) 1AQ!
= Var(xz|z =b). (86)
Consequently, . computed by (81) has the same first and second order moments as

a sample from (79), and since the corresponding distributions are both Gaussian, the
validity of (54) as an update of (45) follows.
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