

Interactive Process Models

Håvard D. Jørgensen
hdj@sintef.no

Department of Computer and Information Science

Faculty of Information Technology,
Mathematics and Electrical Engineering

Norwegian University of Science and Technology
Trondheim, Norway

January 7, 2004

ii

Til Anniken

iii

Abstract

Contemporary business process systems are built to automate routine procedures.
Automation demands well-understood domains, repetitive processes, clear organisa-
tional roles, an established terminology, and predefined plans. Knowledge work is not
like that. Plans for knowledge intensive processes are elaborated and reinterpreted as the
work progresses. Interactive process models are created and updated by the project
participants to reflect evolving plans. The execution of such models is controlled by
users and only partially automated. An interactive process system should
- Enable modelling by end users,
- Integrate support for ad-hoc and routine work,
- Dynamically customise functionality and interfaces, and
- Integrate learning and knowledge management in everyday work.

This thesis reports on an engineering project, where an interactive process environment
called WORKWARE was developed. WORKWARE combines workflow and groupware.
Following an incremental development method, multiple versions of systems have been
designed, implemented and used. In each iteration, usage experience, validation data,
and the organisational science literature generated requirements for the next version.

Design ideas for WORKWARE are the main contributions of this thesis. Semantic holism,
where the meaning of each model element depends on the rest of the model, makes the
language simpler, more flexible and user-oriented. Processes are modelled at the in-
stance level, to capture the unique structure of each project. Local models are harvested
into templates, which can be reused in similar projects. Multi-dimensional classification
structures are built incrementally, helping users to identify suitable models for their
work. Modelling, harvesting and reuse thus form an organisational learning cycle, an-
chored in practice.

Interactive process models will be evolving and incomplete. We define interactive
enactment semantics that automates well-defined parts of the model, and asks users to
handle ambiguous parts. Users may also override the default interpretation. A language
that explicitly models the decisions that control the flow of work, can be used for both
structured and ad-hoc processes. Structure may be added or removed throughout the
process, enabling users to plan their work with the level of detail that they find useful.

The WORKWARE prototype has been used by a number of projects, and integrated with
other tools for modelling, simulation and real-time collaboration. Data from interviews
and questionnaires show that the system is useful. Models developed by users illustrate
its practical application. Comparison with existing systems shows that the interaction
approach is novel, and that WORKWARE is simpler and more flexible than existing tools.
The analysis also demonstrates that the designs are useful for interactive models of
other domains as well. In addition to extending the concept of workflow to include
emergent processes, this work thus has resulted in general techniques for interactive
models that change while they are executed.

iv

v

Preface

This thesis is submitted to the Norwegian University of Science and Technology for the
degree of "doktor ingeniør". The work has been carried out under the supervision of
Professor Arne Sølvberg at the Information Systems Group, Department of Computer
and Information Sciences, during 1999-2003. I have also drawn upon preceding and
concurrent research projects at SINTEF, most notably AIS (Advanced Intranet Coop-
eration, sponsored by the Norwegian Research Council NFR, 1997-1999) and EX-
TERNAL (Extended Enterprise Resources, Network Architectures and Learning, EU
IST, 1999-2002). My studies were funded by the NFR project Living Knowledge.

The thesis would not have materialised had it not been for a number of talented col-
leagues, customers and supervisors. I wish to thank Arne Sølvberg for providing effi-
cient advice, especially concerning research methodologies and approach. He has
pointed me in the right directions without excessively detailed follow-up. Steinar Carl-
sen served as co-supervisor during the first year. He was instrumental in turning my
interest to workflow, process modelling, knowledge management and CSCW. The seeds
of many ideas presented here were sown during our collaboration around the WORK-

WARE prototype in the AIS project. In addition to his modelling language APM, Steinar
already had ideas for user involvement in workflow enactment, and he came up with the
term 'emergent workflow' for our first joint publication in 1998. When Steinar left
SINTEF, John Krogstie replaced him as my co-supervisor. John brought unique exper-
tise in conceptual modelling, and through our discussions my work also turned towards
modelling in general, and the human, social and organisational issues intertwined in the
modelling process. John's comments and careful reading also helped me structure and
shape this thesis.

Colleagues at SINTEF have contributed to the WORKWARE system. Rolf Kenneth Rolf-
sen originally proposed the integration of awareness and workflow, and implemented
parts of that component. Oddrun P. Ohren, Ole A. Brevik and Marit K. Natvig were
involved in the design of the document manager, while Svein G. Johnsen was responsi-
ble for the interface to EXTERNAL's modelling language and repository. The EXTER-
NAL infrastructure further required the efforts and imagination of Dag Karlsen, Stefano
Tinella, Jessica Rubart, Weigang Wang, Frode Thue Lie and others. Jörg Haake, Kristin
Strømseng, Kirsten Krokeide, Heidi Brovold, Manos Georgoudakis, Manolis Chrysos-
talis, Kostas Giotopoulos, Guido Scagno, Jarle Hildrum and many of the aforemen-
tioned applied and evaluated our technologies in use cases. I am also grateful to Frank
Lillehagen, whose notion of active knowledge models guided this work. Just as impor-
tant was perhaps his continuous regeneration of creative chaos in our projects.

vi

vii

Table of Contents

Chapter 1 Introduction...1

1.1 Problem: Knowledge Intensive Cooperation ... 2
1.1.1 Flexible Support for Projects and Virtual Enterprises.. 2
1.1.2 Integrating Support for Routine and Ad-Hoc Work .. 3
1.1.3 Integrating Knowledge Management in Everyday Work... 4

1.2 Approach: Interactive Process Models .. 4
1.2.1 The Potential of Interactive Process Models... 5
1.2.2 Research Objectives .. 6

1.3 Research Method ... 6
1.3.1 Research Approach ... 7
1.3.2 Research Context... 8
1.3.3 Cooperation in Interdisciplinary Projects... 8
1.3.4 Validation .. 9
1.3.5 Scope.. 10

1.4 Contribution... 10
1.4.1 Articulation.. 10
1.4.2 Activation... 10
1.4.3 Reuse.. 11
1.4.4 Workflow Concept ... 11
1.4.5 Interactive Modelling Design Principles... 11

1.5 The Structure of this Thesis ... 11

Chapter 2 Problem Setting...13

2.1 Basic Concepts... 13
2.1.1 Interactive Models in Workflow Management Systems ... 14
2.1.2 Background.. 14
2.1.3 Interactive Models are Socially Constructed .. 20

2.2 Articulation .. 21
2.2.1 Articulation Work .. 22
2.2.2 User Participation in Systems Development ... 22
2.2.3 Innovation by Users during Information Systems Operation 24
2.2.4 Requirements for Articulation Support.. 27

2.3 Activation... 28
2.3.1 Informating and Automating ... 28
2.3.2 Degrees of Formality... 28
2.3.3 Open and Closed Systems.. 29
2.3.4 Change and Evolution ... 30
2.3.5 Increasing the Functionality While Avoiding Featuritis 31
2.3.6 Emergent Interoperability ... 31
2.3.7 Requirements for Activation Support .. 32

2.4 Reuse and Organisational Learning ... 32
2.4.1 Practice and How We Describe It ... 32
2.4.2 Communities of Practice ... 34

viii

2.4.3 Models and Tacit Knowledge .. 35
2.4.4 Trust, Power and Participation ... 37

2.5 Process Models .. 40
2.5.1 The Importance of Processes... 40
2.5.2 User Participation in Workflow Articulation .. 40
2.5.3 Representations of Work.. 42
2.5.4 Processes, Plans and Situated Actions .. 42
2.5.5 Process Models and Practice .. 43
2.5.6 Process Diversity... 43
2.5.7 Interactive Process Model Reuse .. 43

2.6 Summary.. 47

Chapter 3 State of the Art ..49

3.1 Workflow and Process Modelling Languages ... 49
3.1.1 Transformational Process Modelling Languages ... 49
3.1.2 Conversational Process Modelling ... 52
3.1.3 Decision Making Processes... 53
3.1.4 Declarative and Constraint-Based Process Modelling ... 54
3.1.5 Roles and Their Interaction... 55
3.1.6 System Dynamics ... 55
3.1.7 Object-Oriented Process Modelling.. 56
3.1.8 Other Explicit Process Representations .. 58

3.2 Conceptual Modelling.. 58
3.2.1 Instance Modelling and the Tyranny of Classes.. 58
3.2.2 Property Modelling and the Tyranny of the Dominant Decomposition 58
3.2.3 Encapsulation or Semantic Holism? ... 59
3.2.4 Articulating Vagueness, Incompleteness and Uncertainty 60
3.2.5 Modelling Languages - Summary and Challenges.. 60

3.3 Activation: Workflow Enactment and Beyond.. 61
3.3.1 Static Workflow Management Systems .. 62
3.3.2 Adaptive Workflow Management Systems... 62
3.3.3 Case Management Systems.. 66
3.3.4 Towards Interactive Workflow Management... 67
3.3.5 Workflow Management Systems - Summary.. 71

3.4 Mechanisms for Harvesting and Reuse.. 72
3.4.1 Generalisation of Process Models... 72
3.4.2 Classification... 73
3.4.3 Inheritance... 74
3.4.4 Process Model Composition.. 77
3.4.5 Projection of Multidimensional Process Models... 78
3.4.6 Process Model Parameterisation .. 78
3.4.7 Process Patterns.. 79
3.4.8 Summary of Reuse Techniques .. 79

3.5 From Active to Interactive Process Models - Research Challenges 79
3.5.1 Articulation Support - Major Challenges.. 80
3.5.2 Activation Support - Major Challenges... 81
3.5.3 Process Model Reuse - Major Challenges... 81

Chapter 4 Interactive and Emergent Workflow ..83

4.1 Action Port Modelling Language (APM) ... 83
4.2 Interactive Modelling of Emergent Processes... 85

ix

4.2.1 Work Items... 86
4.2.2 Work Flows.. 86
4.2.3 Decisions ... 87
4.2.4 Expressiveness ... 87
4.2.5 Resources... 87
4.2.6 Customer, Responsible and Participant Actors... 89

4.3 Workflow Enactment as Interactive Activation.. 89
4.3.1 User Involvement in Enactment... 90
4.3.2 Activating Flows .. 90
4.3.3 Decision Making.. 90

4.4 Conceptual Design of an Interactive WMS .. 92
4.4.1 Groupware Coordination Complements Workflow Enactment 93
4.4.2 User Interfaces for Integrated Work Management and Performance 94

4.5 Detailed Activation Semantics.. 95
4.5.1 Workware Language Metamodel... 95
4.5.2 Activation by the Work Management Tool .. 96
4.5.3 Activation by Interactive Workflow Enactment ... 97
4.5.4 Combined Enactment Semantics.. 101
4.5.5 Metamodelling Interactive Languages with UML... 106

4.6 Extended Activation Semantics .. 107
4.6.1 Decomposed Decisions.. 107
4.6.2 Parameterised Decisions... 108
4.6.3 Timers .. 108
4.6.4 Workitem Automation .. 109
4.6.5 Reflection and User-Defined Activation Rules .. 110
4.6.6 Inconsistencies, Deviations and Rule Violations... 112

4.7 Activation by the Awareness Engine.. 112
4.7.2 Awareness Semantics... 114
4.7.3 Awareness Semantics for Flows .. 115

4.8 Model Driven Access Control... 116
4.8.1 Access Control Policies ... 117
4.8.2 Usage Examples .. 118

4.9 Concluding Remarks... 119

Chapter 5 Reuse ..121

5.1 Motivation... 121
5.2 Instances, Templates and Classes ... 122

5.2.1 Emergent Classification .. 123
5.2.2 Adaptive and Emergent Workflow Mutation ... 124

5.3 Inheritance... 125
5.3.1 Language Extensions for Reuse... 125
5.3.2 Dynamic Change Propagation .. 126

5.4 Reusable Aspects .. 127
5.5 Reuse Policies ... 127

5.5.1 Using Classification and Specialisation for Reuse.. 129
5.5.2 Decomposition Structures for Reuse ... 129
5.5.3 Resource Assignment for Reuse... 129
5.5.4 Reuse along the Flow of Work... 130
5.5.5 Property-Controlled Policies... 130
5.5.6 Mapping and Parameterised Reuse... 130
5.5.7 Delegation by Reference Copy .. 131

x

5.5.8 The Combination Problem of Multi-Dimensional Inheritance................................ 131
5.6 The Process Knowledge Management Interactor ... 132

5.6.1 User Interaction in Reuse .. 132
5.6.2 Organisational Policies for Process Knowledge Management............................... 133
5.6.3 Processes of Reuse... 133
5.6.4 Harvesting for Reuse ... 135
5.6.5 Towards Interactive Model Transformation.. 135
5.6.6 Utilising the Enactment Engine to Support Reuse Metaprocesses 137
5.6.7 Making Reuse Decisions.. 138
5.6.8 Summary .. 138

Chapter 6 Interactive Modelling Techniques ...139

6.1 Instance Modelling for Local Modifications .. 139
6.1.1 Exception Handling ... 140

6.2 Explicit Representation of Decisions.. 142
6.2.1 Reuse Decisions... 142
6.2.2 Resource Allocation Decisions.. 143
6.2.3 Product Design Decisions ... 145
6.2.4 Decisions in Classification According to Concept Ontologies................................ 145
6.2.5 User Interface Adaptation and Tailoring Decisions.. 145
6.2.6 Decision Making Processes... 145

6.3 Semantic Holism... 146
6.3.1 Semantic Holism in Philosophy, Linguistics and Informatics 146
6.3.2 Semantic Holism in Work Processes ... 147

6.4 Semantic Holism Simplifies Model Articulation.. 149
6.4.1 Limited Classification.. 150
6.4.2 Instances are Referential Terms .. 151
6.4.3 Properties Modularise Aspects of Meaning .. 151
6.4.4 Derived Properties Enable Contextual Semantics... 152
6.4.5 Constellations .. 152
6.4.6 Constructive Composition vs. Holistic Interdependencies 154
6.4.7 Summary .. 155

6.5 Semantic Holism in the Activation of Models.. 156
6.5.1 Interactive and Holistic Workflow Architecture.. 156
6.5.2 Holistic Interaction among Users.. 157
6.5.3 Holistic Interaction among Model Elements ... 157
6.5.4 Holistic Interaction among Model Interactors .. 159

6.6 Semantic Holism in Model Reuse... 160
6.7 Summary of Contributions.. 161

Chapter 7 Implementation ...163

7.1 WORKWARE Principles ... 163
7.1.1 Requirements ... 163
7.1.2 Design Principles .. 164
7.1.3 User Interface .. 164
7.1.4 Architecture ... 166

7.2 Implementation of the Language Metametamodel ... 166
7.2.1 Reflection... 167
7.2.2 Metamodelling ... 167
7.2.3 Assessment ... 168

7.3 Implementation of Interactive Activation ... 168

xi

7.3.1 Work Management... 168
7.3.2 Interactive Enactment.. 170
7.3.3 Awareness.. 170
7.3.4 Document Management ... 170
7.3.5 Access Control... 171
7.3.6 Summary and Assessment .. 171

7.4 The EXTERNAL Infrastructure... 172
7.4.1 Model Data Integration ... 173
7.4.2 User Interface Integration ... 174
7.4.3 Integrating Workflow and Real-Time Groupware... 174
7.4.4 Simulation of Ongoing Projects... 175
7.4.5 Summary and Assessment .. 175

7.5 The EXTERNAL Modelling Language ... 176
7.5.1 Basic Modelling Functionality in METIS .. 176
7.5.2 Multiple Views ... 176
7.5.3 Methods for Deriving and Computing Properties ... 176
7.5.4 Macros for Dynamic Visualisation.. 177
7.5.5 Semantic Holism in EEML... 177

7.6 Reuse... 178
7.6.1 Templates... 178
7.6.2 Classification for Reuse... 178
7.6.3 Utilising the Work Breakdown Structure for Reuse... 179
7.6.4 Reuse along the Flow of Work... 179
7.6.5 Resource Allocation and Personalisation ... 179
7.6.6 Parameterisation and Properties .. 179
7.6.7 Project Model Lifecycle Support ... 180

7.7 Summary... 180

Chapter 8 Usage Experience ..181

8.1 Extended Enterprise Requirements... 181
8.1.1 Planning... 182
8.1.2 Management and Coordination... 182
8.1.3 Work and Collaboration.. 182
8.1.4 Knowledge Management and Learning... 183
8.1.5 Infrastructure Management ... 183

8.2 Case 1: The EXTERNAL Project .. 183
8.2.1 Periodic Progress Reporting ... 184
8.2.2 Joint Project Planning... 186
8.2.3 Evaluation Results ... 188
8.2.4 Action Lists - Emergent Project Planning ... 190
8.2.5 Ad-hoc Applications in the EXTERNAL Project... 191

8.3 Case 2: The Business Consulting Project Cycle ... 192
8.3.1 Reuse of Project Templates ... 192
8.3.2 Security and Access Control.. 193
8.3.3 Experiences and Evaluation Results.. 193

8.4 Case 3: IT Consulting in an SME Network .. 193
8.4.1 Process Diversity and Model Diversity ... 194

8.5 Final Evaluation Results ... 195
8.6 Other Experiences... 197
8.7 Summary... 198

xii

Chapter 9 Related Work ..199

9.1 Process Modelling... 199
9.1.1 Process Modelling and Principles of Sociotechnical Job Design 199
9.1.2 Workflow and Process Modelling Standards .. 201
9.1.3 Transformational Modelling Languages ... 202
9.1.4 Modelling Varying Degrees of Specificity ... 203
9.1.5 Language Action and Conversational Process Models... 205
9.1.6 Decision Oriented Process Modelling... 206
9.1.7 Other Process Modelling Languages .. 206

9.2 Interactive Modelling Languages.. 206
9.2.1 Semantic Holism for Enterprise Modelling ... 206
9.2.2 Simplifying UML with Semantic Holism.. 207
9.2.3 Interactive Conceptual Modelling ... 209
9.2.4 Summary .. 209

9.3 Interactive Activation.. 210
9.3.1 Interactive Workflow Enactment ... 210
9.3.2 Adaptive Workflow Enactment .. 212
9.3.3 Extending Activation beyond Enactment ... 213
9.3.4 Towards Interactive Workflow Architectures .. 214
9.3.5 Other Activation Approaches .. 215
9.3.6 Summary and Assessment .. 216

9.4 Reuse and Process Knowledge Management.. 217
9.4.1 Metametamodels for Workflow and Other Modelling Domains.............................. 217
9.4.2 Process Knowledge Management.. 219
9.4.3 Multiple Models, Levels and Views ... 222
9.4.4 Composition of Process Model Fragments.. 222
9.4.5 Other Process Model Reuse Techniques ... 223

9.5 Evaluation Summary... 223

Chapter 10 Conclusions and Further Work ...225

10.1 Contributions... 225
10.1.1 General Approach: Interactive Models ... 226
10.1.2 Articulation.. 226
10.1.3 Activation... 227
10.1.4 Interactive and Emergent Workflow.. 228
10.1.5 Reuse and Process Knowledge Management .. 229

10.2 Limitations and Directions for Further Research.. 229
10.2.1 Validation .. 229
10.2.2 Methodologies ... 230
10.2.3 Design.. 231
10.2.4 Implementation .. 232
10.2.5 Generalisation ... 232

Appendix A Research Methodology ..233

A.1 Scientific Research... 233
A.1.1 Concepts.. 234
A.1.2 Holistic Reality and Formal Theories... 234
A.1.3 Interdisciplinary and Multidisciplinary Concepts .. 235

A.2 Information Systems Engineering.. 236
A.2.1 Engineering Research ... 237
A.2.2 Organisational Science ... 239

xiii

A.2.3 Computer Science and Software Engineering... 240
A.2.4 Information Systems Research .. 245
A.2.5 CSCW - Computer Supported Cooperative Work ... 245

A.3 Conclusions.. 246

Appendix B Implementation Details ...247

B.1 Architecture.. 247
B.1.1 Implementation Architecture... 247
B.1.2 Deployment Architecture... 248

B.2 Implementation of the Language Metametamodel... 249
B.2.1 Metamodelling Experience.. 249
B.2.2 Persistent Data Storage .. 250
B.2.3 Design Patterns for Flexible Data Management .. 250

B.3 Classes in a Default WORKWARE Installation.. 251
B.3.1 Data Management... 251
B.3.2 Process Modelling... 252
B.3.3 Service... 253
B.3.4 Service Management ... 254
B.3.5 User Interface Preferences ... 254
B.3.6 Awareness ... 256

B.4 Implementation of Interactive Activation .. 256
B.4.1 Dynamic Generation of User Interfaces ... 256
B.4.2 Technological Evolution ... 258
B.4.3 Work Management .. 260
B.4.4 Interactive Enactment ... 261
B.4.5 Document Management... 262
B.4.6 Access Control .. 264

List of Figures ..267

List of Tables..269

References ..271

xiv

1

Chapter 1
Introduction

The original objective of this research was to design a flexible information system for
planning, coordinating, managing, and performing knowledge intensive work. The sys-
tem was to be based on visual models of work processes. We also wanted to utilise
these models better for organisational learning and knowledge management.
 Requirements were gathered in workshops with prospective users, and from the
literature on information systems (IS), computer-supported cooperative work (CSCW),
organisational, social and human sciences. Case studies showed that although many
view process support systems as useful tools, most users complain about the rigidity of
software-controlled processes. Exceptions to modelled rules occur frequently, even in
seemingly routine processes in offices and factories [527, 547]. In knowledge intensive
work like engineering and consulting, changes to plans are expected throughout the pro-
jects.
 Faced with such evolving and incompletely understood work, most process sup-
port systems are still based on the closed world assumption, where model execution is
completely controlled by software. Models thus have to be formal, consistent and com-
plete. When exceptions or model evolution violate the closed world assumption, com-
plex algorithms are triggered in order to restore a consistent state.
 We decided to take the opposite approach, to design an open system. Seeing that
people dealt sophisticatedly with exceptions and change in everyday work, we aimed at
augmenting these capabilities with tool support. Closed systems need more detailed and
precise process models than most users are willing or capable to provide. If users can
resolve model ambiguities at the time of execution, they need not model so much detail
in advance. We called this approach "interactive models", because it follows the notion
of interaction as an extension of algorithmic computing [523].
 In this approach, process modelling is moved from the domain of process experts
and out into the work environment, to managers and work performers. Knowledge man-
agement and process improvement is given a foundation in models of individual cases,
which better reflect the way work is actually performed. The role of process experts is
to define templates that users can apply when needed in local models. In order to dem-
onstrate that this approach is feasible and useful, three engineering challenges must be
met:

1. How can an IS support end users in modelling their own work?
2. How can an IS utilise evolving models to provide contextual work support?
3. How can models be reused, adapted and combined in new settings?

We refer to these interdependent problems as model articulation, activation and reuse.

2

1.1 Problem: Knowledge Intensive Cooperation
This introduction seeks to justify two assumptions upon which this thesis is based:

1. Knowledge workers require more flexible IS than what is currently available.
2. Process models can be applied at runtime to achieve increased flexibility.

The term knowledge intensive work is a result of classification by dominant resource,
distinguishing it from labour and capital intensive. Knowledge intensive work requires
innovation by the workers to be successful [159]. Examples include consulting, engi-
neering, and other forms of professional work [445]. Knowledge is an intangible, evolv-
ing resource possessed by individuals. It is highly context-dependent. We use and de-
velop our knowledge in interplay with other people and objects in our environment. The
knowledge of each individual is a unique result of his or her experiences. Differences in
individual work experience, education, personality and social background enable teams
to attack problems from a multitude of viewpoints. The uniqueness of individual knowl-
edge is thus both the raison d'être and a main barrier to cooperation.
 This duality is evident in information systems development. Managers, user repre-
sentatives, business consultants, system analysts, designers, programmers etc. bring
unique knowledge to the joint project. All this knowledge is vital to reaching the objec-
tives. Communication, cooperation and problem solving across disciplinary boundaries
require mutual learning and openness to the perspectives of others. Users must develop
an understanding of technical opportunities and limitations, while developers must
grasp the local reality of the work environment. Through open dialogue and joint ex-
perience, the project group constructs shared understanding and frames of reference.
Conflicting goals, people working part time on the project, in different locations and
organisations, disrupt the process of establishing an effective team. Rigidity and lack of
interoperability among software tools constitute yet another barrier.

1.1.1 Flexible Support for Projects and Virtual Enterprises

Knowledge intensive work is frequently organised in projects. A project is a temporary
organisation established to handle a unique problem [400]. Projects exist outside of
conventional organisational units, bringing together people from different functions. In
a recent survey of 1000 companies in Norway, 69% reported that they commonly or-
ganise work in projects [248]. In knowledge intensive industries like IT, consulting, oil
and gas, around 90% of the companies are involved in projects. Another analysis con-
cludes that work is becoming more knowledge intensive [88]. Global competition, in-
creased and more diverse information needs, shortcomings of skill specialisation and
larger knowledge components in products and services, are among the main reasons for
this trend. Most future economic growth is expected to occur in the service sector.
 Inter-organisational projects are as common as internal projects [248]. Small and
medium sized companies, in particular, are frequently involved in inter-organisational
projects. The term 'virtual enterprise' (VE) often designate such arrangements. Accord-
ing to a recent white paper, VE process management tools are currently "obtuse and
inaccessible to the vast majority of knowledge workers" [126]. The Internet and other
information systems increasingly enable outsourcing, e-business, and globalisation. E-
Commerce frameworks [450], Internet portals, workflow management systems [12, 408,
553], groupware [404], supply chain management, and enterprise resource planning sys-

3

tems (ERP) [294] all contribute to this trend. While these systems automate routine
transactions, knowledge-based cooperation remains a challenge. Flexibility is thus an
important research topic in all of these areas, and alongside alignment with local proce-
dures it is the most important criteria for IS selection [160].
 Paradoxically, studies conclude, "simple and adaptable technologies enable more
complex virtual collaboration" [404]. Low level tools like email, are used far more fre-
quently than sophisticated coordination systems. A survey reports that 82% of the com-
panies "very often" use email for such purposes, while only about a third use a project
management system [248]. It also uncovers that knowledge intensive industries make
far more use of information technology than the less knowledge driven. This suggests
readiness as well as need for new technologies.

1.1.2 Integrating Support for Routine and Ad-Hoc Work

Figure 1 [192] shows the scope of current coordination systems with respect to different
organisational forms and relationships between collaborating partners. Where there is
high uncertainty about the actual content of the work (as in typical knowledge intensive
processes), projects are the dominating organisational form, and groupware the primary
coordination technology. In more stable and rule-based hierarchies, workflow manage-
ment systems dominate. Electronic commerce deals with the exchange of well-defined
goods and services, where there is typically low goal congruence among the cooperating
partners. Consequently, requirements for security and transaction support are strong.

eCommerce Workflow Groupware
Coordination

technologies

Market Project/TeamHierarchy

Low uncertainty
Low goal congruency

High uncertainty
High goal congruency

Socio-
economic

relationship

Figure 1. Coordination technologies for different forms of collaboration [192].

Few work processes reside completely in one of these categories, however. Many have
aspects of inter-organisational collaboration in that goods or services are exchanged;
most have routine aspects in administration, reporting and accounting; and all knowl-
edge intensive processes do by definition have creative, non-routine aspects. While pro-
cess support systems have proven useful in automating routine procedures, support for
the increasingly important knowledge intensive processes, the remaining 80% [126],
remains a challenge. A workflow industry benchmarking initiative thus concludes that
integrated coordination support across process types is the most important challenge
[390]. Realising that one size does not fit all, dynamic process diversity [314] is advo-
cated along this planning spectrum [56]. Users must be supported in selecting a suitable
degree of plan specificity for the current state of their project, balancing plan complex-
ity with the need for coordination, guidance, and control.

4

1.1.3 Integrating Knowledge Management in Everyday Work

Knowledge management (KM) is the collection of processes that govern the creation,
dissemination and utilisation of knowledge to fulfil organisational objectives. The term
is popular, but often misused [106]. This may in part be caused by the apparent contra-
diction in the term. After all, how can an intangible resource be managed? Many com-
panies recognise the value of knowledge only once it is gone, e.g. as a result of down-
sizing or process automation [122]. Although failure rates of above 50% have been re-
ported, 80% of large corporations have KM projects [301].
 Knowledge is defined as "justified true belief", or more precisely as "a relatively
stable and sufficiently consistent set of conceptions, possessed by single human actors"
[162]. A more dynamic view defines knowing as "an active process that is mediated,
situated, provisional, pragmatic and contested" [53]. Knowledge is not represented in
artefacts, though the data stored in computer systems have a potential for creating
knowledge, if a continuing dialogue between people and artefacts is nurtured, if the rep-
resentations are used actively in work, communication, and learning [527].
 Knowledge management tools “enhance and enable knowledge generation, codi-
fication, and transfer” [419]. Many approaches over-emphasise codification, seeking to
document experience [424]. Post-mortem analysis [52] by definition comes too late to
help the project. Such approaches emphasise the most manageable aspects of knowl-
edge, and separate knowledge management activities and roles from the core work. In-
creased focus on the social processes of learning, on knowledge management inter-
twined in work practice, is required [122, 441]. After all, knowledge is perhaps the only
resource that increases when used. Need-driven, just-in-time knowledge transfer has
thus been advocated [279]. In the area of process knowledge, such approaches currently
lack tool support.

1.2 Approach: Interactive Process Models
Models are defined as explicit representations of some portions of reality as perceived
by some actor [524]. A model is active if it influences the reality it reflects; if changes
to the representation also change the way some actors perceive reality. Model activation
is the process by which a model affects reality. Activation involves actors interpreting
the model and adjusting their behaviour to it. This process can be
� Automated, where a software component executes the model,
� Manual, where the model guides the actions of human actors, or
� Interactive, where prescribed aspects of the model are automatically interpreted and

ambiguous parts are left to the users to resolve, with tool support.
Fully automated activation implies that the model must be formal and complete, while
manual and interactive activation also can handle informal and evolving models. We
define a model to be interactive if it is interactively activated. The process of defining
and updating an interactive model is called articulation. In this thesis we are primarily
concerned with interactive models of work processes. By altering models of their own
work, users can control and customise the behaviour of an interactive system. The inter-
play of articulation and activation (Figure 2) keeps the models alive and up to date as
resources for learning, coordination and work support. The three engineering challenges
(articulation, activation, and reuse) all contribute to increasing the benefits of interactive
models and decreasing the efforts and learning required to use the system.

5

Articulation

Activation

Domain Interactive model

Figure 2. The interplay of articulation and activation.

1.2.1 The Potential of Interactive Process Models

The constantly changing nature of the competitive environment in the global network
economy [266] creates emergent organisations, where "every feature of social organi-
sation - culture, meaning, social relationships, decision processes and so on - are con-
tinually emergent, following no predefined pattern" [497]. This environment requires
evolving information systems, adapting their behaviour to updated models of the usage
environment.

Articulation: Simple and User-Oriented Process Modelling

Our approach relies on the assumption that end users must be actively involved in creat-
ing, updating and interpreting models of their own work, as part of the work. Local par-
ticipants are the only ones with sufficient knowledge of the process. Modelling by end
users has met scepticism from the workflow research community [46]. On the other
hand, studies of user participation in IS development, tailoring, knowledge management
and process improvement indicate that our approach is viable [19, 468, 527]. In work-
flow management, users also deal creatively with change and exceptions, often by tak-
ing the process out of the system and handling it manually [69]. Systems not designed
for user involvement thus present a barrier to local innovation, and are unable to capture
these contributions for further assessment and knowledge management. End user par-
ticipation remains primarily an organisational problem, involving trust, power and
community building, but simple, user-oriented, and adaptable modelling languages will
remove many barriers.

Activation: Customised and Integrated Software Support

Simple and useful tools motivate use. Information systems that offer a wide range of
functionality often become overwhelmingly complex and incomprehensible. Conse-
quently, only a small portion of the available functionality is utilised. This condition is
known as featuritis. We need role and task specific user interfaces, containing just what
is needed in the current context. Interfaces and semantics should also adapt to the local
needs of each project. Process models, articulating who performs which tasks when and
why, is a powerful resource for such customisation. Systems and processes should also
adapt to the skills and preferences of each individual. Personalisation fosters a sense of
ownership, further motivating active participation.
 In virtual enterprises, the unique nature of each project, and the changing set of
partners, seldom makes it economically viable to integrate information systems through
conventional development methods. Standardisation requires that the domain is static
and well understood, and is thus seldom appropriate for knowledge work. Conse-

6

quently, we need a flexible infrastructure that allows shared understanding and semantic
interoperability to emerge from the project, rather than being a prerequisite for coopera-
tion. Interactive models provide a simple, visual approach to capture shared understand-
ing as it unfolds.

Reuse: Process Knowledge Management

The gap between what people say and what they do, makes it difficult to use plans and
other official descriptions of work as input to KM [19]. Local articulation of process
models must thus be straightforward, but still some knowledge cannot be modelled and
will remain tacit [370]. Process models will thus be incomplete while they are used,
subject to an ongoing elaboration and interpretation. Models are completed only when
they are no longer in use. Interactive modelling allows the system to handle incomplete,
evolving descriptions of work, by involving users in resolving incompleteness and in-
consistencies during activation. The openness of the approach allows local process in-
novation to be captured, assessed and packaged for reuse in similar future projects.

1.2.2 Research Objectives

Interactive process models combine model-driven groupware and workflow support (cf.
Figure 1 on page 3), in order to support knowledge intensive work. Model-driven func-
tionality is already well established for handling routine procedures, so the remaining
challenge is to apply models to customise support for projects and virtual enterprises. In
addition to the engineering challenges outlined above, this work also seeks to

 Extend the concept of "workflow" to include ad-hoc, unstructured processes.

Most research in conceptual modelling has focused on system development and busi-
ness engineering. Some studies explore models in use, immersed in an organisational
setting, but seldom apply the insights to design new systems. We thus also aim to

 Develop generic design principles for models that evolve while they are executed.

These objectives guide the work towards more lasting contributions, turning what could
have been just a development project into research.

1.3 Research Method
This is an engineering thesis. The main objective of IS engineering is to improve the
methods and practice of IS development. Empirically oriented scientists currently chal-
lenge the position of engineering research in this area [463, 490, 545]. Appendix A pro-
vides an in-depth discussion on the methodological basis for this thesis, arguing that
there is a need for interpretive engineering research, that measurable, repeatable ex-
periments with well-defined hypotheses are insufficient for solving current IS problems.
 Development of an information system is a wicked problem [482] without a gen-
erally agreed upon formulation, which cannot be stated as well-defined hypotheses.
Wicked problems are unique and novel; require complex judgement; have no objective
measure of success or completion, no right or wrong solutions, and no given alternatives
[455]. To attack wicked problems, problem setting (understanding) and problem solving
must be intertwined in a process described as reflective practice [445]. The repertoires
of action that engineers have learned through practice and education are crucial both for
problem setting and problem solving [445]. These repertoires contain exemplary solu-

7

tions, design patterns, approaches and perspectives. Reflective engineering research cre-
ates new knowledge not by giving rise to general principles, but by adding to the practi-
tioners' repertoire.

1.3.1 Research Approach

Figure 3 illustrates the research method of this thesis. It is based on an incremental de-
velopment cycle, where requirements guide design and implementation, and prototype
use generates new requirements. The general approach of interactive models
� helps us to frame the problem,
� acts as a metaphor that generates design ideas,
� integrates the components of the implementation, and
� enables users to customise the system during operation.
The approach is thus validated in all phases of system development. This engineering
cycle integrates validation, in that the implementation shows that the designs are feasi-
ble, usage shows that the system fulfils needs etc. Experience from all phases is con-
tinuously utilised to improve the next release of the system.

Related
techno-
logies

Surveys,
interviews

Organi-
sational
science

Interactive
models

Implementation

Requirements

Use
Design

metaphor

Problem
frame

Integrator

Design
Customiser

Figure 3. Overview of the research approach.

The approach follows principles of reflective practice (Appendix A.2.1 [445]). In addi-
tion to the core cycle's reflection in action, a number of validation activities turn the
development project into research through reflection on action. The generality of the
requirements is validated by a theoretical grounding in organisational and social sci-
ences, while comparisons with previous technological research justify that the designs
are innovative and relevant. Surveys and interviews indicate that the approach, design
and implementation do meet user needs and expectations.

8

1.3.2 Research Context

To enable a rich understanding of a research project, its environment and background
should be described. This thesis continues previous work by Steinar Carlsen on flexible
workflow modelling [90], where organisational requirements were gathered [92] and
existing systems evaluated [96]. This led to the definition of the APM modelling lan-
guage [90, 91]. My work started as an attempt to build a runtime system for APM.
Three research projects have served as main arenas for user participation, conceptualisa-
tion, design, and experimentation:
� AIS (Advanced Intranet Cooperation, 1997-1999) explored the use of Internet tech-

nologies for information sharing and cooperation support. It involved two large user
organisations, an oil company (Saga) and a maritime classification, certification and
consulting company (DNV), an enterprise modelling tool vendor (Metis), a techno-
logical (SINTEF) and a social science (FAFO) research institute. I here developed
the first WORKWARE prototypes to help the customers to assess the usefulness of
Intranet process support systems. Users contributed requirements in a number of
workshops. Ideas and strategies from Metis, in particular the AKM (Active Knowl-
edge Model) metaphor [310], also guided our work.

� Living Knowledge (1999-2002) was a multi-disciplinary project investigating organ-
isational learning. The common perspective of this project emphasised knowledge in
use, within a particular context. Living knowledge has cultural roots; it is tacit, dis-
tributed and socialised. It is about how and why, more than what, and is not primar-
ily represented in computer systems. From this perspective, we investigated knowl-
edge management strategies and tools as well as the nature of knowledge work.

� EXTERNAL (Extended Enterprise Resources, Networks and Learning, 2000-2002)
[161] was a European project. It aimed to support the whole lifecycle of a virtual en-
terprise, from inception, planning, working, management and coordination, to de-
commission. In addition to the AIS partners DNV, Metis and SINTEF, the project
involved another technological research institute (Fraunhofer IPSI, Germany), and a
network of small and medium sized IT companies (Zeus EEIG, Greece). In
EXTERNAL, interactive process models were applied in three cases: business consult-
ing, software development, and research.

A wide range of perspectives from industry and research has thus influenced the ideas
presented in this thesis. My previous education (information systems engineering) and
work experience (developing software products) also probably oriented the work to-
wards practical aspects of systems development.

1.3.3 Cooperation in Interdisciplinary Projects

Research and system development are cooperative activities. By involving more people
in requirements collection, design, implementation and evaluation, the likelihood of
successful products and balanced validation increases. While cooperation brings
strength to validation, it makes individual's contributions harder to discern1. This thesis
draws heavily on joint work in validation, while its contribution centres on design ideas
and approaches proposed and systematised by the author. The EXTERNAL cases were
studied by sociologists [37], an anthropologist [426] and a political scientist [287, 312].

1 Acknowledgements of other people's contributions to this work are found in the thesis preface. In the
rest of the text, joint work and contributions from others is explicitly stated and/or referenced.

9

This thesis is thus part of a larger body of interdisciplinary research anchored in real
world settings. My role in these studies was to provide customisation and technical sup-
port, not to model, perform or evaluate the work. In addition to data gathered by others,
the discussion in this thesis reflects my interpretation of the findings, and my explora-
tion of the process models and customisation requests articulated by the users.

1.3.4 Validation

"Every human tool relies upon, and reifies, some underlying conception of the activity
that it is designed to support. As a consequence one way to view the artefact is as a test
of the limits of the underlying conception" [468]. Different contributions call for differ-
ent validation techniques. For contributions to modelling languages and concepts, proto-
type implementation and subsequent experimentation is adequate. However, as the next
section shows, the contributions of this thesis have a wide scope. A thorough data col-
lection on all relevant attributes of each technique, is a too overwhelming task for one
thesis. Hence, the central characteristics must be identified. This is the topic of the re-
mainder of this section.

Comparative Evaluation

Related work helps to identify innovative aspects of different contributions, and to ver-
ify that they indeed are novel. It also shows the relevance of these innovations to al-
ready studied problems. These criteria are applied:
� Simplicity, measured by the number of constructs in the modelling language, the

number of metametamodel concepts and operations, and the number of elements in
typical models.

� Flexibility, which changes the system can handle, the number of operations involved
in typical evolution patterns, and the range of exceptional scenarios that are toler-
ated without changing the model.

Sociotechnical systems [357, 495] is a relevant overarching theory for information sys-
tems. IS are sociotechnical, and process support systems influence job design, so socio-
technical job design principles are suitable for assessment of these technologies.

Gathering Usage Experience

The use cases of the EXTERNAL project [161] validate many features of the WORKWARE

prototype and the interactive modelling approach. Interviews and questionnaires com-
plement the more detailed comparative evaluation described above. The cases were se-
lected after many of the contributions were completed, so there is little risk of self-
fulfilling specialisation of the solution, e.g. that it is made specifically for the case, and
only performs well on this case. Differences among the cases further increase confi-
dence in this validation.
 Empirical studies of reusability and adaptability are inherently difficult and time-
consuming. There are generic problems of field studies (monitoring multiple persons in
different locations over time), but also additional complexities stemming from the fact
that the context and content of the work is expected to change when organisations apply
our tools. Such long-lasting field studies are doctoral projects in their own right. Positiv-
ist quantitative and controlled experiments, while offering scientific rigour, cannot accu-
rately reflect prolonged social processes of learning and cooperation. The complexity,
uncertainty and dynamics of this domain require interpretive methods. It is a more real-

10

istic objective to capture process models from the cases, and to look for occasions of
reuse and adaptation in their change histories.

1.3.5 Scope

Clearly, any solution includes organisational, social and human aspects of the usage
context. While engineering research must be based on a thorough understanding of the
usage environment, it provides new theories and experience primarily related to the de-
sign of computerised information systems. The key objective is to provide integrated
support for interactive process model articulation, activation and reuse. A complete so-
lution is beyond the scope of a single thesis. Instead, this work focuses on the core as-
pects of interactive process models, the modelling language (for articulation), semantics
(activation) and underlying framework (reuse).
 Although the work is focused in this direction, the wider picture still holds impor-
tant requirements for a complete solution, and our design has numerous extensions in
mind. For instance, the interactive architecture can integrate additional model-driven
software components, and the modelling framework limits the complexity of multi-
purpose models. Every aspect of the solution is designed with the premise that the de-
veloper only has an incomplete view of what users will need. Consequently, no compo-
nent assumes to be in complete control, and customisation and extension mechanisms
are essential. The system is designed to be open.

1.4 Contribution
The contributions of this thesis fall into different categories [166], including a general
approach, new explanations and perspectives, new functionality and new implementa-
tion techniques. They bring us closer to meeting the three engineering challenges and
the two research objectives.

1.4.1 Articulation

The feasibility of end users modelling their own work is contested. Some researchers
claim that end users cannot be trusted to change workflow models correctly. We survey
case studies where such innovations did occur, and our usage experience further adds to
the evidence. The WORKWARE process modelling language further illustrates that a
simple, flexible and user-oriented modelling languages can be based on semantic ho-
lism. Holism implies that the meaning of each model element depends on the rest of the
model. We identify holistic modelling techniques like properties, constellations and
context-sensitive semantics.

1.4.2 Activation

Customisable, contextual support for ad-hoc and routine processes, is enabled by
� Interactive activation, involving users in the interpretation and execution of incom-

plete and evolving models. This is achieved by representing, as model elements, the
decisions involved in interpretation.

� Holistic activation, where the interpretation of each model element depends on the
current states of surrounding elements, enabling a richer, more situated execution.

� Visual, domain-oriented tailoring. In an interactive model, domain and user oriented
concepts are applied for tailoring the system, not just system oriented terminology.

11

1.4.3 Reuse

A need-driven approach to process knowledge management is anchored in models de-
veloped locally in each project. Local models are harvested and packaged for reuse.
This is enabled by a modelling framework that supports
� Incremental classification with instances as primary objects, where instances locally

define their own structure and behaviour. Classification structures are not part of the
object definition, and can thus be built dynamically to reflect multiple perspectives.

� Generalised inheritance. Guided by requirements, we allow inheritance along any
relationship in the model, not just specialisation.

� Reuse policies, which control the propagation of reusable aspects along modelled
relationships, allowing users to customise the inheritance mechanism.

1.4.4 Workflow Concept

Where contemporary workflow management systems provide automatic activation of
process models, the interactive approach involves users in interpreting what the model
means in the current context. Bottom up articulation complements top down control,
integrating ad-hoc and routine processes.
� The difference between adaptive and interactive, emergent workflow is described,

clearing some of the confusion that has prevailed in this area [46, 274, 276].
� An interactive, multi-aspect workflow architecture integrates multiple model-driven

software components, each offering complementary interpretations of the model.
The components are called interactors, because they integrate articulation and acti-
vation, rather than separating them, as in contemporary architectures. The range of
model driven functionality is thereby extended beyond workflow enactment.

1.4.5 Interactive Modelling Design Principles

Interaction was introduced by Wegner [523] as a theoretical framework for understand-
ing computing. Here interactive models are proposed as a design metaphor for flexible
information systems. We elucidate the concept of interactive models, uncover require-
ments, and identify suitable modelling techniques, e.g. semantic holism, instance mod-
elling, and explicit representation of decisions.

1.5 The Structure of this Thesis
This thesis consists of ten chapters. The structure linearises the engineering research
method cycle (Figure 3). This introduction has outlined the central objectives, problem
definition, approach and contributions. Chapters 2 and 3 provide the background for the
work, while 4, 5, and 6 contain the contributions of this thesis. The validation of the
proposed designs is found in Chapters 7, 8 and 9.

Chapter 2 - Problem Setting elucidates basic concepts and differences between interac-
tive models and models for systems development. We then explore the social context in
which models are used. This survey leads to a list of requirements.

Chapter 3 - State of the Art. Here existing workflow and modelling approaches are ana-
lysed based on the list of requirements. This points to a number of limitations, espe-
cially with respect to simplicity, flexibility, and comprehensibility.

12

Chapter 4 - Interactive and Emergent Workflow defines a simple and user-oriented
modelling language, as well as its interactive activation semantics. We also present an
open, interactive architecture that combines workflow and groupware services.

Chapter 5 - Reuse specifies the modelling constructs and mechanisms that enable model
reuse. An instance-based metametamodel allows local modifications, while user defined
policies control inheritance along modelled relationships.

Chapter 6 - Interactive Modelling Techniques generalises the designs of the earlier
chapters, identifying techniques that are relevant for interactive modelling outside the
particular area of process models.

Chapter 7 - Implementation describes how the WORKWARE prototype implements the
interactive architecture and language formalisms. In the EXTERNAL project WORKWARE

was integrated with modelling, simulation, and real-time collaboration tools.

Chapter 8 - Usage Experience. The infrastructure from Chapter 7 has been applied in
virtual enterprises doing research, business consulting and software development. Ex-
perience from these studies demonstrates the usability of WORKWARE.

Chapter 9 - Related Work compares WORKWARE to existing modelling frameworks,
activation schemes and reuse mechanisms. The analysis shows the originality and rele-
vance of this work for different research areas.

Chapter 10 - Summary and Further Work gives an overview of the contributions and
point to interesting directions for further research into interactive models, emergent
workflow and process knowledge management.

13

Chapter 2
Problem Setting

Interactive models constitute the main problem frame of this thesis. Such models are
available to the users at runtime. They control the behaviour of the system, and thus
allow users to adapt it to local needs and changing environments. Interactive models are
immersed in day-to-day work. The development of such technologies requires in-depth
understanding of social organisations, work, cooperation and learning. This chapter sur-
veys organisational and social science literature in order to understand business and user
needs and derive system requirements that address these needs. We first establish the
basic terminology. The three engineering challenges, model articulation, activation and
reuse, are then discussed in turn. This discussion aims to justify that the following
propositions make sense:
1. Interactive models constitute a suitable problem frame for flexible IS (section 2.1).
2. Knowledge workers are capable of articulating, coordinating and reflecting on their

own work. Those who perform the work should be involved in modelling it (2.2).
3. Planning and performance of knowledge work is intertwined, plans evolve, and all

work has both routine and ad-hoc parts (section 2.3).
4. Evolving, incomplete and semi-formal models are needed in order to mediate work-

ers' knowledge (sections 2.3-2.5).
5. Knowledge management needs closer integration with work practice (section 2.4).
6. Social learning theories help us understand the process of modelling (section 2.4).
7. Motivating end user participation in modelling is a core challenge (section 2.4.4).
8. Processes are central to work and organisation (section 2.5).
9. Process knowledge management is not primarily about learning to follow rules; it is

about interpreting guidelines creatively in the situations that arise (section 2.5.7).

2.1 Basic Concepts
In section 1.2, the basic concepts of this thesis were introduced. A model is active if it
influences the reality it reflects. Model activation is automatic, manual or interactive.
That a model is interactive (interactively activated) entails a co-evolution of the model
and the domain. A model that does not change cannot reflect aspects of reality that
change, nor can it reflect evolution of an actor's understanding. Consequently, an inter-
active model that does not evolve will deteriorate. Fully automated activation in a
closed system can in theory avoid this problem, but cooperative IS are open systems.
Interactive activation involves autonomous human actors, so the models will need to
evolve. The process of updating an interactive model is called articulation [438]. The
interplay of articulation and activation reflects the mutual constitution of interactive
models and the social reality they reflect (Figure 2 on page 5).
 Reuse refers to applying a model or model fragment in a situation other than the
one it was originally defined for. Templates are model fragments especially adapted for

14

reuse. Harvesting refers to using the models and experience from one or more local
processes to generate a new template, a variant or a revision of an existing template.

2.1.1 Interactive Models in Workflow Management Systems

Let us illustrate these concepts with an example. Workflow management systems [532]
support coordination of work based on explicit process models. Such models reflect the
tasks that are part of the process, their interdependencies and the resources that are ap-
plied to perform them. Resources include personnel, information and tools. All work-
flow systems include an enactment service that activates the model. Most systems also
include a process definition tool that lets users articulate models. In static workflow,
process models are built by experts and not allowed to change while process instances
are being enacted. Supporting fully automatic activation, static workflow applies to
well-understood, stable, routine processes. Adaptive (or dynamic) workflow is an im-
portant research area [90, 276, 553]. Here the models are allowed to change, and change
will affect ongoing processes. In emergent workflow (Chapter 4), modelling is viewed
as an integral part of the work, performed by the process participants. The domain con-
sists of unique projects. Emergent workflow views enactment as an interactive process,
involving users in the situated interpretation of workflow models. This shift from auto-
mation to interactive activation enables the system to support incomplete and evolving
models, better matching the contingencies of work.

2.1.2 Background

Conceptual modelling research has concentrated on system development activities.
Models of work environments are applied to analyse the problem domain, to capture
and structure user requirements. Most approaches focus on referential aspects, on the
relationship between model elements and the real world objects that they represent. In-
dividual, social and situational aspects of model usage, and relational theories of mean-
ing [188], have had less influence upon mainstream information systems engineering
[224].
 There are notable exceptions. In 1986, Hewitt pointed out that offices are best de-
scribed as open systems, where people cope with conflicting, inconsistent and partial
information [218]. He showed the shortcomings of Turing based notions of computing
in analysing such systems, and forecasted that future information systems would acquire
more of the characteristics of human organisations, e.g. concurrency, decentralised con-
trol, indeterminacy, interconnectivity, and contextuality. Goguen [189, 190] point to the
situated, local, emergent, contingent, vague, and open nature of model domains, and
outline ramifications of this insight for requirements engineering. Like wicked problems
attacked with reflective practice (cf. Appendix A.2.1), he concludes that requirements
become clear only when a system is successfully operating [190]. Lillehagen [310] dis-
cusses the extension of enterprise modelling (articulation and manual activation) to ac-
tive knowledge models (AKM) with automated support. Willumsen [535] develop exe-
cution support for conceptual models in information systems development, including
users as actors contributing to the interpretation of the models.
 More recently, Chen et al. [102] points to active models as a major direction for
future research in conceptual modelling. Model execution, end user participation, and
interaction are highlighted among the main challenges. Greenwood et al. [198] argue

15

that active models enable systems to meet business needs that current technologies fail
to solve. They present a notion of active models similar to the one given above, but with
more emphasis on the active relationship between the domain and the model, and less
on articulation. Their work is directed at devising methodologies for active software
process support.

The most comprehensive approach to this field, however, is the interaction
framework proposed by Wegner [522-525]. This framework is motivated by a number
of current trends in computer science: The shift from standalone PCs to network com-
puting, from procedural to object oriented programming, from closed to open systems
etc. Its development was triggered by the realisation that machines involving users in
their problem solving can solve a larger class of problems than algorithmic systems
computing in isolation [523]. The primary characteristic that differentiates an interac-
tion machine from a conventional Turing machine is that it can pose questions to users
during its computation. As shown in Figure 4, computation is conventionally portrayed
as a user providing input to the machine, which then processes the request and provides
an answer (output). This stimulus-response model excludes interactions that could be
used to establish shared meaning [190]. Moving from a Turing machine to an interac-
tion machine, computation becomes a multi-step conversation between the user and the
machine, each being able to take the initiative. Hence, research should not solely be
concerned with the development of more powerful algorithms, we should also look at
new ways in which the computerised and human parts of the system can cooperate in
order to solve problems.

Figure 4. Turing machines and interaction machines.

Although researchers have pointed to aspects of interactive models, and put forward a
theoretical framework for interactive computing, there is a lack of engineering research
developing and validating interactive models as a design approach. Consequently, there
has been little investigation into what are the new challenges of interactive models, and
what modelling techniques are useful. The model quality framework of Krogstie, Sindre
and Lindland [284, 291] allows us to illuminate differences between requirements for
interactive models and requirements met by systems development models [289]. Such
an understanding is important for assessing the application of conventional modelling
techniques to interactive models. This framework is closely linked to linguistic and se-
miotic theory, and based on a social constructivist view (articulated below). The main
concepts of the framework are shown in Figure 5, including the following sets of state-
ments:

Turing
machine

Interaction
machine

Question

Answer

Conversation

16

� L, the language extension, all statements that can be articulated in the language.
� D, the domain, all possible statements about the situation at hand.
� M, the externalised model, all statements in the explicit representation.
� K, the relevant explicit knowledge of the modeller.
� I, the social actor interpretation, what the audience perceives the model to say.
� T, the technical actor interpretation, how software components interpret the model.

Participant
knowledge

K

Language
extension

L

Modeling
domain

D

Perceived
semantic

quality

Empirical
quality

Social
quality

Physical
quality

Pragmatic
quality

Semantic
quality

Syntactic
quality

Pragmatic
quality

Model
externalization

M

Social
actor

interpretation
I

Technical
actor

interpretation
T

Figure 5. Framework for analysing the quality of models.

Model quality types are determined by the relationships between the statement sets:
� Physical quality, involving

� Externalisability (articulation), that the relevant explicit knowledge of the par-
ticipants is reflected in the model.

� Internalisability, that the persons involved can make sense of the model.
� Empirical quality deals with error frequencies when a model is read or written by

different users, coding, and ergonomics of human-computer interaction.
� Syntactic quality is the match between the model and the language.
� Semantic quality is the correspondence between the model and the domain. The

framework contains two semantic goals:
� Validity, that all statements in the model are correct and relevant to the problem,
� Completeness, that the model contains all relevant statements about the domain.

� Perceived semantic quality is the match between the participants' interpretation of a
model and his or her current explicit knowledge.

17

� Pragmatic quality is the correspondence between the model and the audience's in-
terpretation of it.

� Social quality: The goal for social quality is agreement among different participants'
interpretations. Social quality affects communication among participants about the
contents of the model.

Since the domain D cannot be completely known, semantic quality can only be tested
indirectly through the participants' knowledge.

Interactive and Passive Models

A conventional model used during the early phases of systems development is most of-
ten passive during system operation. Interactive models are faced with a different set of
requirements than development models. A wider range of people are involved in the
modelling, amplifying the social, psychological and organisational aspects. These dif-
ferences have received little attention from active modelling research. Often solutions
developed for systems development are simply transferred to active modelling. The use
of UML (Unified Modelling Language) [229, 315, 335], or even programming lan-
guages [389, 541], for enterprise modelling and workflow, exemplifies this. Although
the quality framework captures most of the perspectives relevant for interactive models,
some adjustments are needed [256, 289]:
� An interactive model is immersed in its usage context. Model articulation and acti-

vation take place concurrently, and are mutually dependent upon each other.
Agreement among actors is vital for IS development, because it is costly to fix er-
rors late in the project. For an interactive model the costs of fixing errors is dimin-
ished. The goal of social quality for interactive models thus becomes to support so-
cial learning and construction of shared understanding.

� Similarly, semantic and syntactic correctness becomes less important because users
can be put in charge of resolving inconsistencies during interactive activation. For
learning, the ability to represent inconsistent points of view is crucial. A system
should thus not deny articulation of syntactically incorrect model fragments, but in-
stead capture inconsistent views so that they can be negotiated.

� Interactive activation implies that the goal of semantic completeness is replaced by a
goal of letting the users articulate their reality at the level of detail and specificity
that they find useful. Incompleteness can be resolved at the time of activation.

More fundamentally, the existing model quality framework embodies a static, structural
perspective. It discusses relationships between sets of statements about the world. Inter-
active modelling quality [256, 289] demands a more dynamic approach, focusing on
how these sets of statements interact and influence each other in the interdependent
processes of articulation, activation and reuse. This perspective is conceptualised below,
defining core processes as sequences of activities that transform statement sets in the
quality framework model. A focus on core processes rather than static quality parame-
ters emphasise interdependencies and trade-offs which designers of interactive systems
must resolve. Figure 6 summarises this perspective. The rest of this section elucidates
basic concepts in this framework. Below, capital letters refer to Figure 5.

18

Participant
knowledge

K

Language
extension

L

Modeling
domain

D

Model
externalization

M

Social
actor

interpretation
I

Technical
actor

interpretation
T

Articulation

Activation

Manual
activation

Manual
articulation

Automatic
articulation

Automatic
articulation

Metamodelling

Model
evolution

Change

Reflection

Figure 6. Interactive processes in the model quality framework.

Articulation (D→→→→M)

Articulation is the process where domain features are represented in the model (M) by
means of the modelling language (L). It should increase the semantic quality of the
model.

Manual Articulation (D→→→→K→→→→M)

Most articulation is manual, involving the externalisation of participant knowledge (K)
about the domain (D) into the model (M) using the language (L). In addition to empiri-
cal, physical and semantic quality, it depends on the quality of participant knowledge
about the domain, and the appropriateness of the language with respect to the domain
and participants' knowledge (comprehensibility and articulation appropriateness [90]).

Automatic Articulation (D→→→→T→→→→M)

Sensors are computerised components that capture information from the model domain,
through interfaces to external information systems or hardware devices.

Change (D→→→→D)

Changes in the domain (D) may become known to the participants of the project (K).
Known changes may become articulated into the model M.

19

Model Evolution (M→→→→M)

Model evolution may be triggered by change and reflected through articulation, or it is
motivated by the need to cause future domain change through activation.

Activation (M→→→→D)

Model activation involves model-guided actions that transform the domain (D).

Automatic Activation (M→→→→T→→→→D)

Automatic activation implies that the model is interpreted and acted upon by a comput-
erised component, in our terminology a model interactor. The executability appropri-
ateness of the modelling language [90] reflects its automatic activation potential.

Manual Activation (M→→→→I→→→→D)

Human actions based on an interpretation (I) of the model (M) constitute a manual acti-
vation process. The involved actors may also have created the model themselves (being
participants (K) in the modelling). Actions involve changing the domain D, and should
thus be reflected in the model M. While automatic activation is deducible from the
model and thus already captured, manual actions include elements of human model in-
terpretation, which should be captured in the model.

Interactive Activation (M→→→→I↔↔↔↔T→→→→D)

Interactive activation exists in different forms. In many workflow systems, it is the
technical component that tells the users what to do (e.g. by putting tasks in their in-
boxes). In other words, the modelled sequence of tasks is automatically interpreted, but
the tasks are performed manually (M→T→I→D). In graphical user interfaces, the op-
posite sequence (I→T→D) is more common. Here it is up to the user to select which
operation the system should perform next. If an action is the result of interactive or
automatic model activation, its effects should be automatically captured in the model.
This scheme increases the semantic quality without extra work for the users, completing
the cycle M→I↔T→D→M.

Reuse (M1→→→→I1→→→→K2→→→→M2)

Reuse involves the application of a model (M1 of D1) in a setting different from the one
where it was originally developed. Reuse thus involves an audience (I1) who have to
interpret and adapt a previously developed model to fit their local needs. The audience
becomes participants (K2) in the adaptation of the reused model (M2) to the new domain
(D2). Social pragmatic quality is crucial for reuse, especially if the people involved did
not participate in the articulation of the original model. Users often choose to copy plans
from their own previous projects if it is too difficult to comprehend a model developed
by someone else. Unlike primary activation, the people who reuse a model may not
have access to the domain (D1) it originally reflected. Developing and maintaining a
library of reusable model templates is one way of approaching this problem.

Metamodelling (K→→→→L)

Metamodelling involves changing the modelling language. It is typically carried out in
order to improve the comprehensibility of the language for human actors, or to make it

20

more suitable in the local domain. Metamodelling faces similar problems as reuse, but
may also benefit from the immediate domain availability, which characterises interac-
tive models. Local language adaptations should increase the pragmatic and semantic
qualities of the resulting models.

Reflection (L⊂⊂⊂⊂M)

In knowledge-based systems, the operational logic is stored as data rather than pro-
grammed in software, while reflective systems expose representations of their own logic
to their users, and allow modification of this logic [138, 268, 269]. Interactive models
combine behavioural reflection with user interaction through visual models. A model-
ling framework (M, L) is reflective if the language that is used to build models is itself
available and can be adapted as a model. Reflection enables us to view metamodelling
as articulation, and reuse as transfer of both the model and the language.

2.1.3 Interactive Models are Socially Constructed

Organisations and models can be viewed as socially constructed realities, as artefacts
that help shape people's perception of reality, of themselves and the world they live in.
As mentioned earlier, models are defined as representations of some part of reality as
perceived by some actor(s). Berger and Luckmann define reality as a quality: "Phenom-
ena that are real have a being independent of our volition" [43]. In their sociology of
knowledge, knowledge is defined as certainty that phenomena are real and that they
possess specific characteristics. Social construction of reality refers to the processes
whereby something becomes real and accepted knowledge.
 The classic definition of the term model creates a dichotomy between what is rep-
resented (reality) and the representation (model). A social constructivist perspective
sees the model also as reality, if it is accepted as such in the community where it is
used. Acceptance as reality is crucial for interactive models. For instance, a process
model will not serve its function if it is not accepted as a real depiction of past, present
and planned activities. Representations "become 'dead', (that is, bereft of subjective re-
ality) unless they are ongoingly 'brought to life' in actual human conduct" [43]. The in-
terplay of model articulation and activation (Figure 2) is thus a process of social con-
struction.

Language

Berger and Luckmann also describe the role of language in social processes. "As a sign
system, language has the quality of objectivity. I encounter language as a facticity ex-
ternal to me and coercive in its effect on me. Language forces me into patterns" [43].
The coercive effects of language increase with formality and specificity. Languages that
limit interpretive freedom [51] and range of expression are likely to be experienced as
constraining. This is the case with several information systems, especially those who
regard work as structured and well understood. It also offers an explanation why sys-
tems that structure conversations have met resistance from users [124, 469]. Systems
should thus not require that every part of an interactive model is formalised and inter-
preted by the computer. It should also allow humans to communicate freely through the
models and perform parts of the interpretation themselves.

21

Subjective and Objective Reality

Approaches to information systems engineering and conceptual modelling have been
categorised based on their ontological and epistemological stance [221, 442]. Ontologi-
cal realism assumes that reality exists independent from us, whereas ontological ideal-
ism (or nominalism) denies that position [442]. In the epistemological dimension it is
common to distinguish between objectivism (the position that objective knowledge is
possible) and subjectivism. Seeing reality as socially constructed allows us to connect
these perspectives in ways that are especially relevant for interactive models.
 Berger and Luckmann [43] integrates objectivity and subjectivity in an ongoing
dialectical process of articulation, objectivation and socialisation. Subjective reality af-
fects objective reality through articulation, and is affected by objective reality through
socialisation. This interplay is related to that of the domain (subjective realities) and an
interactive model (becoming objective reality) depicted in Figure 2. On the other hand,
models should also reflect the users' subjective realities, in order to support storytelling
[77, 387] and negotiation of meaning [527], the social processes whereby knowledge
becomes shared and objective.

Ambiguity is a Prerequisite for Meaning

Within a community of practice [77, 527], social learning takes place through negotia-
tion of meaning. This negotiation requires that people actively and legitimately partici-
pate in the working practices of the community, but also that they make their perspec-
tives tangible to others through reification [527]. Reification involves elucidation of
concepts and construction of artefacts embodying perspectives. It thus complements the
conceptual focus of articulation with a physical perspective. Interactive models, while
primarily conceptual, become tangible in the user interface of the information system.
 Participation and reification are intertwined, supporting and complementing each
other. Reification only makes sense through participation, and it is a medium for com-
munication and thus participation. Models can be analysed according to how the work
of negotiating meaning is distributed between reification and participation. A poem re-
quires much participation to be understood, while a software program does not require
human participation in its meaning [527]. The aim of conventional IS models is to reify
programs, while interactive models also aim to foster participation in an ongoing proc-
ess of social learning and reality construction.
 The duality of reification and participation has bearings on the suitable level of
specificity for a model: "When combined with history, ambiguity is not an absence or a
lack of meaning. Rather, it is a condition of negotiability and thus a condition for the
very possibility of meaning" [527]. Ambiguity is a catalyst for participation, because
reifications that only allow one interpretation, are not open to negotiation. Interactive
models must thus allow ambiguity rather than formalise one "correct" interpretation.

2.2 Articulation of Interactive Models
Interactive modelling is based on the assumption that end users are capable of creating
and adapting models of their own work. Several researchers doubt the feasibility of such
approaches [35, 45, 213]. This section therefore explores case studies of modelling and
articulation, demonstrating the need for interaction, but also uncovering a number of
requirements and remaining challenges.

22

2.2.1 Articulation Work

For interactive models, the term 'articulation' is preferred to 'modelling', 'representation',
and 'externalisation' because
� Articulation is a well-established concept in CSCW and applied e.g. in coordination

theories [178, 218, 220, 414, 438].
� Articulation is generally discussed as an integral part of work, not as a separate ac-

tivity, and articulation is itself regarded as a work activity that requires time and ef-
fort [438]. This matches the concept of interactive models created and maintained
by end users as part of their day-to-day planning and coordination of work.

� Unlike 'modelling', the term does not carry implicit connotations of graphical flow-
charting, formalisation, abstraction and generalisation. Interactive models should re-
fer to concrete objects and ideas.

2.2.2 User Participation in Systems Development

Interactive models and system development models differ with respect to who does the
modelling. Interactive models are constructed by ordinary users. "The generation of rep-
resentations can only be done successfully with the participation of the people who live
in the situations being represented" [537]. In systems analysis, users are often seen
more as sources of information than as model builders [221], and even participatory
design [150] involves a limited number of user representatives, not the whole commu-
nity immersed in their day-to-day activities. Hence, interactive models face stronger
requirements for language comprehensibility, both because some users initially lack
experience with modelling, and because evolution and learning will cause more frequent
updates to the models.
 The opportunity to rapidly update the IS is one of the main advantages with inter-
active models. In systems engineering agile, iterative and incremental development
[219] attempt to shorten the learning cycles, but they are still hampered with a long
time-span from learning to system-change. Users have more in-depth knowledge of
their domain than software developers. Consequently, the potential for high semantic
quality is greater, provided the language is simple, adaptable and user-oriented.
 The basic concepts of an information system are normally defined during devel-
opment. Most users thus encounter a terminology constructed without their participa-
tion. Though engineering methodologies generally highlight the importance of user in-
volvement, it is infeasible to involve all users. The experience that user representatives
gain through participation the social construction of the system, cannot be shared by all,
even if the representatives help in training and user support.

Users are Active Participants

The core principle of participatory design (PD) is to view users as contributing actors,
not just sources of information. The importance of mutual learning for both developers
and users is stressed [150, 267, 296]. Within this framework, a number of projects have
been carried out that illustrate the feasibility of active user participation. Bansler and
Bødker [33] surveyed the use of structured analysis with data flow diagrams. They
found that the techniques were applied pragmatically, and that prescribed methods were
not followed. The subjects however reported that diagramming was useful, and they
would apply them again in future projects.

23

Criticism of Categorisation

Participatory design has put more emphasis on tangible reifications directly comprehen-
sible for end users, like prototypes, scenarios and mock-ups [150], despite the tendency
of these representations to create a focus on superficial user interface concerns [296]. In
particular, the use of predefined modelling types has been widely criticised [124]. Such-
man [469] argues that encoding of intentions into explicit categories carries with it an
agenda of control over workers' actions. Categorisation makes actions more manageable
and communicable, while creating a danger of reducing the actions to its category, of
hiding aspects of work not captured in the categorisations. Textual scenarios, often
created in story-telling workshops, are thus preferred to models [272]. Other researchers
have noted that "integration of diagramming techniques and additional media facilitates
understanding and provokes discussions on organisational and technical issues" [215].
This research indicates that it is easier for users to understand details by looking at
screenshot prototypes, but also that users relate their input to the graphical models. With
an interactive model, these two media are linked together, complementing each other in
an even more direct way.

Intuitive Visual Languages

Other studies of end user participation in IS and enterprise modelling counters the
somewhat negative views presented above. Latour [300] shows the tremendous impor-
tance of graphical representations, maps, blueprints, and geometrical models, in the ad-
vance of science and technology. The intuitive power of iconic representations over
pure symbols with no similarity with what they represent has been elaborated [188]. It is
also pointed out that this stands in sharp contrast to formal computer science, where
new symbols are often introduced which are not used by any community of practitio-
ners, and most often are purely symbolic [188].

Modelling Language Complexity

The modelling conference is a method for participatory development of simple, process-
oriented enterprise models [181]. In a consulting firm, this method was applied to get
users involved in the development of a corporate Intranet portal. With a tangible model-
ling interface (yellow stickers on a whiteboard), groups of end users were able to build
quite elaborate models. Broad participation in modelling workshops did increase the
quality of the resulting models. A related study observed that IDEF0 is too complex for
this kind of modelling, and consequently simpler symbols were selected [182]. Flow-
charts were useful for the workers to pinpoint important issues, but a need for comple-
mentary visualisations of other perspectives was also identified. In one company, the
enterprise model was made operational, in that functionality was added to an online
model to ensure that it was used [182].

Modelling as an Ongoing Process

The SEEME modelling language is developed to support requirements negotiation, not
just rationalistic requirements capture [215]. Thus, SEEME allows users to explicitly
represent vagueness, incompleteness and contradictions in their models. In case studies,
researchers were surprised by how naturally the users adopted these concepts. While
models were originally built by analysts, end users, even those with very limited under-
standing of the diagrams, were able to add a wide variety of elements and to correct er-

24

rors in the models. Far-reaching discussions concerning too much sequencing in the
process models were triggered. In this situation, the original view of IS professionals
did not match that of the users.

Domain-Oriented Modelling

The formal languages applied in IS development have been described as foreign and
opaque to users [4]. New designs should evolve not in isolation but by adopting and
extending the languages that users are already familiar with. Instead of bringing user
representatives into development projects, participatory design in the workplace [509]
place developers within the usage context. While this solves some of the problems of
user participation, it is infeasible to place developers in every workplace. Methodolo-
gies are needed that empower users to control the system without the modelling expert
as a mediator. Reflective tools that enable the construction of domain-oriented lan-
guages, have experienced some success in this area [492]. Industry reports [345, 346]
claim order of magnitude productivity gains, shortened development cycles, and im-
proved learning curves for newcomers.

2.2.3 Innovation by Users during Information Systems Operation

The objective of an IS should not be to satisfy formalised user requirements, as user
needs and users' understanding of their needs will evolve [497]. Consequently, "the key
criterion of a system's usability is the extent to which it supports the potential for people
who work with it to understand it, to learn and to make changes" [4]. Facing exceptions,
users will not always abandon the system if they are able to change its configuration
[437]. A number of case studies report that users do indeed apply IS in ways not in-
tended by the designers, and that many are also capable of ad-hoc modification and in-
tegration of tools to meet their particular needs. The following subsections survey some
of the most relevant work in this area.

From Sub-Optimisation to Process Orientation

While industrial manufacturing is not typically thought of as knowledge intensive work,
automation is changing the nature of workers' responsibilities towards more planning,
monitoring and exception handling [547]. One study reported that workers usually op-
timise their own activities, but that they have neither the tools nor the knowledge of
what goes on earlier or later in the process [182]. Increased visibility and process orien-
tation is needed to avoid sub-optimisation. Experiences with user-led development dur-
ing the operation of the system, shows that this is feasible [509]. Various exceptions
caused workers to increase their horizon of visibility to include other parts of the busi-
ness processes. Workers also maintained a local complaint book where all issues regard-
ing the plant and its information systems could be collected. The rapid pace of product
innovation has caused some factories to de-automate, replacing robots with human
workers, because their intelligence and flexibility is needed, e.g. in mobile phones pro-
duction [122] and integrated car manufacturing [273]. Hence, user involvement in
manufacturing process improvement is feasible, provided appropriate tools are avail-
able.

25

Case Processing is also Knowledge Intensive

Case processing is often portrayed as the new factory work. Case processing industries
are among the key customers of workflow management [167, 187, 532]. Following
these perspectives, this work should be routine, and not require specialised skills. When
researchers look behind the scenes, however, they discover a rich variety of knowledge
intensive casework [387, 527]. Wenger [527] shows the importance of informal social
networks for dissemination of knowledge in insurance claims processing. Systems sup-
port this by allowing informal notes to be added to cases. Local jargon and sophisticated
domain terminology permeate the workplace. While newcomers are initially trained in
processing claims "the right way", it is informally understood by all that they need to
learn shortcuts to get the job done. Like Orr's study of copier repair [387], Wenger
shows that even seemingly unskilled people ongoingly reflect on their work processes.
The social features of learning, mediated by storytelling and problem-oriented inquiry,
is also common to these studies. Another study of seemingly routine computer-
supported work [176] observed that people knowingly input false data to obtain correct
results, and that manual systems are constructed as workarounds for inflexible comput-
erised IS.

Alienating Technologies

Zuboff [547] outlines the history of clerical work, highlighting how principles of scien-
tific management [485] created a focus on simplifying routines, automating coordina-
tion, and removing the need for communication. These theories have also influenced
workflow management [92]. A case study in the 1980s, reported that caseworkers felt
increasingly alienated from their work [547]. It had become impossible for them to put
their personal stamp on the interaction with the customer, and they wondered where the
material on their computer screens came from and where it went. The later study by
Wenger that we discussed above shows that with more user-friendly and flexible IS,
users share knowledge and innovate practices. Systems should thus be designed for in-
novation and empowerment.

Rationalisation and Multiple Points of View

Notions of office work that emphasise routine, canonical activities miss the rich mean-
ing of social action in an office [220]. By representing work as rational, deterministic
and overt, important political, cultural and cognitive problems are overlooked. From
this perspective Gerson and Star [178] propose that more emphasis should be put on
local, tacit knowledge and its transferability. When problems have no globally correct
answers, multiple competing and perhaps incommensurable proposals develop. Articu-
lation work is the social activity directed at reconciling incommensurate assumptions
and procedures [178]. In their case study, Gerson and Star identify nine groups with
different viewpoints, and describe how they interact in the changing of procedure defi-
nitions, insurance payments, fees and coverage rules. All viewpoints contribute to a
continuous evolution of the company's practice, and every single case involves a new
interpretation. No formal description of this practice can ever be complete, and every
real world system requires articulation to deal with unanticipated contingencies. It is
also pointed out that no piece of real information is simple, that categories always have
a complex context and history [178].

26

Tailoring Information Systems and Changing Organisational Practices

Flexibility has many aspects. It involves personalisation and local modifications as well
as far-reaching evolution of information systems. Flexibility is a requirement for several
components, from shallow adaptability of the user interfaces to deeper reconfiguration
and extension of functionality. Available hardware and software infrastructures change
all the time, constituting yet another evolution challenge. Tailoring is defined as adapta-
tion performed by end users as part of normal system use [488]. Interactive models are
visual domain representations for tailoring.
 Studies of human computer interaction have established that people are capable of
utilising a wide range of customisation services when the IS offer them [259, 363, 493].
Through informal collaboration, customisations spread from user to user in the organi-
sations [362], adding a knowledge management perspective to tailoring. Trigg and Bød-
ker [493] notice that users tend to modify and extend their work practices alongside tai-
loring the information systems. Their study shows how word processor users frequently
start by copying an existing document, reusing its structure and formatting. At first,
forms, macros etc. were developed and spread informally, but as the value of these ac-
tivities became evident, a more structured process with defined roles was put in place.
Studies of general-purpose hypermedia systems have also observed users building form
templates [452]. Noticing the difficulties users have with predefined formalisations, ap-
proaches for user-definable incremental formalisations are developed [453, 454]. Ex-
periments and case studies show many examples of incremental formalisation [451].

User Participation in Knowledge Management

An important motivation for interactive models, and in particular for model reuse, is the
need to support organisational learning and knowledge management. A number of dif-
ferent tools have been utilised for knowledge management [64, 258, 325]. Studies of
user participation in these systems are highly relevant for assessing the feasibility of
interactive model articulation by end users.
 One study shows the importance of knowledge connectivity (e.g. models with
many relationships), user connectivity, contextual dependence, and user idiosyncrasies
for knowledge capture, retrieval and discovery [344, 510]. Another noted that computer-
ised information systems lack the idea generation capability and serendipity of personal,
face-to-face conversations [343]. On the other hand, Clarke and Cooper [106] show that
introduction of intranets for knowledge distribution often is accompanied by the emer-
gence of new collaborative organisational structures, called 'networks', 'teams' or 'com-
munities'. The technology creates an opportunity for increased interaction, and users
seize that opportunity. Usefulness and relevance as perceived by end users, was identi-
fied as the most important success factor for organisational memory systems [13].
 A case study of the adoption and adaptation of groupware support for a virtual
team [324] shows both the potentials and limitations of using information systems to
transform organisational practice [307]. The technology in this case was an Internet-
based asynchronous groupware tool that provided a shared repository, with event notifi-
cation, conversation support, search and navigation services. In spite of commitment by
all parties involved, there were many barriers to changing work practice. Initially the
group tried to adjust their working practices to meet the vision of the technology, then
the focus shifted towards adapting the system to support a workable practice. Interest-
ingly, the one aspect that really did change was the group structures for communication

27

and decision making. A participative, interdisciplinary culture developed, where all pro-
ject members discussed aspects of each other's tasks. This led the group to question
some of the original requirements, which resulted in breakthrough innovations. In com-
plexity, reliability, and price the result represented orders-of-magnitude improvement.

Summary

The case studies surveyed in this section show that even seemingly unskilled workers
reflect sophisticatedly upon their work. Reflection is an integrated part of practice. This
evidence prompts us to view 'knowledge intensive work' more as a perspective on work,
than as a category of work. It is also evident that user communities discuss and share
their reflections, informally disseminating knowledge. Some studies show examples
where information systems enable user innovations to spread across the organisation in
an opportunistic manner. Other studies show systems that prevent local innovations and
informal communication. As a response to these systems, social networks arise to hu-
manise the workplace and maintain the smooth flow of work. It seems that the scepti-
cism some engineers have towards the feasibility of end user control [35, 45, 213] be-
comes self-fulfilling. Systems that are not designed to support tailoring create barriers to
innovation and learning. The usability of visual models is also disputed. While some
studies show barriers to end user participation in model articulation, others observe so-
phisticated structures being created ad-hoc to serve local purposes. There is also a large
body of research that identifies weaknesses and limitations of formal modelling tech-
niques, and the severe consequences of building overly simplistic assumptions about the
nature of work into the systems.

2.2.4 Requirements for Articulation Support

Articulation depends upon subjective comprehensibility and perceived utility of the
models and the modelling language. The requirement that languages should be formal
[115] must thus be balanced with a more pragmatic view. Ambiguity and uncertainty
are vehicles for professional learning, triggering open discussion of what the models
mean. This view of models as socially constructed in communities of practice, generates
a number of particular requirements for modelling languages:

R1: The language should be simple, with few basic concepts [7, 241]. We should
avoid overly detailed categorisations [254]. It should be straight-forward to de-
termine what a model element represents. Concrete examples provide common
ground for negotiation of meaning. Each real world object should have one and
only one model element representing it [385].

R2: The language should allow a visual, graphical depiction of the model, giving both
an overview of the whole process and details about its parts [89, 188, 241]. Multi-
ple dynamic views that extract the aspects of the model most interesting to a par-
ticular purpose or role should be available [241, 254, 418].

R3: Language constructs must map well to the conceptual world of those performing
the work [200, 254, 417]. Domain specific concepts should be utilised [399, 492].

R4: The meaning of a model element should not always be fixed. It should be able to
evolve as the negotiation of meaning unfolds [81]. Participants should be invited
to reflect upon their language and their process of negotiating meaning [527].

28

Articulation need not entail visual modelling. Any interface that allows users to alter
data is an articulation tool. One example is a spreadsheet that lists a task hierarchy with
responsible persons, deadlines and resource consumption. This spreadsheet is a process
model. In some cases, such textual interfaces correspond more directly to the way peo-
ple currently plan their projects.

2.3 Activation
While activation depends on the richness, detail and precision of the articulated repre-
sentations, is also motivates articulation by increasing the users' benefits of keeping the
models up to date. Compared to the rich literature on modelling, languages and repre-
sentation, the research on activation is limited. Directing the focus towards activation is
thus a major contribution of interactive modelling. In specialised areas like ontologies,
workflow, and product data management, model activation mechanisms are developed
for deduction [502], enactment [143] and cooperation support [163, 233]. Conceptual
modelling languages have been made executable in order to support verification and
validation during systems development [535]. Recently, virtual machines for the activa-
tion of Unified Modelling Language (UML) models have emerged as a research area
[411]. Most previous work however focuses on formal execution semantics for closed
systems. "It is usual for computational design methodologies to adopt a naively realist
stance toward their ontological analysis of human activities, as though the resulting
formal structures could be read straight onto the structures of human action without the
mediation of human action or interpretation" [9].

2.3.1 Informating and Automating

Zuboff [547] shows how information systems are used both to increase learning and the
capabilities of the workers, by informating them, as well as to automate local processes
and centralise decision-making. This duality is reflected in the separation between
automatic and manual model activation. Manual activation requires comprehensible,
flexible and user-oriented models [188, 217, 452]. Automation demands formally de-
fined operational semantics, and a complete model. Interactive activation must balance
these conflicting requirements, allowing users to switch between automation and man-
ual control depending on which best fits the situation at hand.

2.3.2 Degrees of Formality

The essence of IS design is the reconciliation of social and technical aspects [190]. The
gap between system-executable formalisms and domain languages is not easily bridged.
Using different sub-languages for automated and manual parts makes it difficult for us-
ers to grasp the combined behaviour, and difficult to move between ambiguity and for-
mality. Interactive modelling languages should thus integrate different degrees of for-
mality [16, 45, 116, 326]. Goguen [189, 190] apply a metaphor of humidity to discuss
the formality of a language, ranging from formal (dry) to informal (wet). As he points
out, information cannot be fully context sensitive (wet), for then it is only understood
when and where it is produced. Nor can it be fully context insensitive (dry, formal), for
then it could be understood by anyone anywhere at any time. In this framework, forma-
lisation is defined as the process of making information drier and less situated. The limi-
tations of formalisation include cognitive costs of learning the language, effort required

29

to make the model complete, conceptual gap between users' knowledge and the system,
enforcing premature structure before the group process has reached that far, and poor
support for situated social activities [338, 452]. Experience indicates that "features re-
quiring greater degrees of formality end up being less frequently used" [452].

2.3.3 Open and Closed Systems

Closed systems need modelling languages with formal semantics. When a model cannot
be elaborated during its execution, it must be predefined in a formally complete manner,
encoding all relevant details from the start. This perspective treats process models as
programs [389] and systems as mechanisms [41]. Open systems that support sharing of
model information between users, need not require a formal language. Here models are
treated as data and systems as media for communication and collaboration [41].

Incompleteness or Complexity

Interactive activation allows the input of model data to be delayed right up to the time
when that part of the model is executed. When the model does not tell the system what
should happen next, users are asked to decide. Consequently, the model may remain
incomplete throughout its lifecycle, and alternative paths that are not taken, need not be
defined. This simplifies the model. Research on formalising dynamic workflow models
show that ambiguity and flexibility can lead to exponential growth in model size when
all alternatives must be represented [7, 549]. This exponential growth makes the models
hard to comprehend. Where models in closed systems must define all potential patterns,
interactive models need only include the actually occurring patterns.

Uncertainty is Inevitable

Some degree of uncertainty is fundamental to social activities and our making sense of
them. It is thus recommended "that we turn our focus from explaining away uncertainty
in the interpretation of action to identifying the resources by which the inevitable uncer-
tainty is managed". "Interpreting the significance of action is an essentially collabora-
tive activity" [468].

Variation, Evolution and Reuse

Formal semantics simplify reuse. Once a complete model exists, it can be instantiated
over and over again. Large volumes and high costs may make the initial effort of de-
tailed formal analysis viable for routine, repetitive process. The more details are put into
the models, the less information is required as input in each individual case. However,
the rate of change and frequency of exceptions may make the model out of date, requir-
ing evolution. The need for personalisation, customisation and motivation through local
ownership, as opposed to alienation due to incomprehensible systems [547], further in-
dicate that the open systems approach is better suited for a wide range of work proc-
esses.

Organic Growth

An open system with interactive models allows IS to be grown organically [75, 497].
Starting with a rudimentary model of the main steps in a process, repeated executions of
similar processes capture different ad-hoc extensions and decisions by end users. By
combining several incrementally constructed process instances, a more general and

30

complete model emerges. This scheme entails immediate benefits without large initial
investment, and matches well an incremental, need and risk driven software lifecycle
[127].

2.3.4 Change and Evolution

Ability to change is an important competitive factor in most industries. Customers' re-
quirements change frequently and vary from case to case, creating a need for solutions
tailored to each client. Consequently, who your competitors and partners are, change.
We thus need systems that treat change as the rule of the game, not as exceptional.
Management of change is a main challenge for information systems [123]. In the termi-
nology defined in section 2.1, some changes follow the dynamics of the model, while
others require that the model evolve. Models evolve at two levels [550]:
1. Local modifications to the running model, leaving the generic definition unchanged.
2. General and long-lasting modifications to the generic definition, so that ongoing and

future instances are affected.
The degree of evolution required is also commonly used to distinguish among classes of
exceptions. Kammer et al. [261] distinguish among noise (not articulated in the models),
idiosyncratic (instance level) and evolutionary (class level) exceptions. Of course, not
all systems allow modifications. Workflow management systems seldom allow local
modifications, hardwiring process definition to the class level [532]. For interactive
models, on the other hand, this creates research issues in determining when updates
made to a running instance should be migrated to the generic level. This is a challenge
for model harvesting. During activation, we must handle both local modifications and
dynamic change (updates to local models caused by evolution of general models [153]).

Exception Handling

In closed systems, change is regarded as exceptions to predefined rules [103, 275, 320,
464]. An expected exception can be represented in a predefined model, but it captures a
deviation from the normal or desired course of events. Building excessive details of ex-
ception handling into the model makes it complicated, hard to comprehend and hard to
change. An unexpected exception is caused by a change in the system's domain that was
not anticipated at modelling time. Such exceptions require the closed system to be
opened up, to allow exception handling by users, model evolution, or the case to be
taken out of the system and handled manually [69, 140]. Strong and Miller [464] ana-
lyse different perspectives on exceptions and how they should be handled. The underly-
ing assumptions include
� Exceptions as unpredictable, random events,
� Exceptions as errors, as indicators of underlying problems,
� Exceptions as normal, as a part of necessary process flexibility.
Their case study indicates a need to move from manual intervention as a strategy for
exception handling in an otherwise automated process, to an interactive process super-
vised by humans. They advocate designing for evolution. Interactive models enable ex-
ceptions to be built in right up to the time when the model fragment is activated. Hence
a greater number of exceptions can be moved from the unexpected to the expected cate-
gory, due to the learning of the participants. By not requiring formally complete and
consistent representations, a wider range of exceptions can also be tolerated. The system
need not break down in the face of exceptions, it can just offer its best effort at interpret-

31

ing the model in the new situation, and rely on human actors to adjust the interpretation
if needed. This allows user organisations to decide the degree of exception handling
detail that should be articulated for each process.

Personalisation, Customisation and Ownership

Cooperative knowledge work relies heavily on the intangible skills of individuals. Or-
ganisational theories thus advocate decentralised decision-making and empowerment.
Empowerment requires end-user customisation of system features, enabling them to
create personalised workspaces. Personalisation fosters a sense of ownership. Owner-
ship, autonomy and responsibility motivate people. Appropriation, the process where a
general template is adapted and adopted into a particular work setting, converted to a
locally owned object, is thus a key challenge in model reuse. In addition to personal
preferences, cooperative knowledge work requires solutions that can be adapted to the
situated needs of the project community. Since interactive models capture important
aspects of this local setting, they are a vital resource for customisation. We refer to
model-driven customisation as contextualisation. Contextualisation depends on the se-
mantic quality of the model (how accurately it represents the domain). Local model evo-
lution is critical to achieve this, and improving the contextualisation capabilities of
modelling languages, is an important research challenge.

2.3.5 Increasing the Functionality While Avoiding Featuritis

Functional features sell systems and motivate use, but the complexity of choice among a
wide range of specialised functionality often becomes a severe usability problem. Simi-
larly, formal scientific research into process modelling emphasises expressiveness, often
at the expense of simplicity. The efficiency of a language is defined as its expressiveness
divided by its size (the number of primitive constructs) [82, 189]. Language efficiency
is increased if language elements can mean different things in different contexts [189].
Most approaches to model activation, e.g. in process support systems, apply each lan-
guage element for one specific purpose. Attempts at increasing the usefulness of such
systems have added conversation support [6, 124, 233], awareness [415], information
management [365], and other groupware services [16]. Most often, integration of addi-
tional functionality is accomplished by introducing new modelling constructs for each
service. This complicates the system. In order to improve language efficiency, simplic-
ity and usability, different perspectives should be combined within a single language.

2.3.6 Emergent Interoperability

When interorganisational cooperation moves beyond the buying and selling of well-
defined goods and services, there is a need for a flexible infrastructure that supports not
only information exchange, but also knowledge dissemination. We must be able to form
effective teams across organisational boundaries and local cultures. Also, the ability of
each organisation to learn from the experiences of the joint enterprise is crucial for long
term success. The transient and situated nature of each project, and the large and shift-
ing set of partners, seldom makes it economically viable to integrate information sys-
tems through normal development practices. Standardisation is often proposed, but re-
quire that the domain is static and well understood. This is seldom the case for knowl-
edge intensive work. Consequently, we need a flexible infrastructure that allows shared

32

understanding, process integration, semantic and technical interoperability to emerge
from the project, rather than being a prerequisite for cooperation.

2.3.7 Requirements for Activation Support

The value of an interactive model lies in the way it affects practice. During the perform-
ance of work, models can be utilised for automation and for guidance [143, 247]. Inter-
active activation combines the two. Viewing learning as a social process intertwined in
practice, our focus includes the evolution of models during activation, as users adapt
them to handle exceptions and changes, and to incorporate new experience.

R5: The language should enable local change to a particular model [115, 117, 417] to
match the local circumstances, preferences and knowledge of the users. The his-
tory of events and model changes should be accurately captured, including excep-
tions and violations of standard definitions [117, 247, 254]. This history is impor-
tant both for learning and for contextualising the activation mechanisms.

If the information system offers flexible support based on the current state of the proc-
ess model, the users will benefit more immediately from keeping the model up to date.
If these benefits are less immediate, e.g. input to a separate knowledge management
activity performed by someone else, end user motivation may suffer. Participants will
always have tacit skills and knowledge that is not externalised in the models [370]. It is
therefore unlikely that a knowledge intensive work can ever be completely prescribed,
rather

R6: The system must be able to interpret and activate incomplete models [58, 143]. It
must allow ambiguity and not enforce premature formalisation [452]. One should
not require models to be predefined, it should be possible to articulate models
from scratch as part of the work [308, 451, 493].

R7: Information systems should be contextual and personalisable [6, 143]. Models
should be utilised to provide contextual support, and users must be supported in
overriding predefined rules when the situation requires it.

2.4 Reuse and Organisational Learning
Interactive models aim to facilitate more productive and innovative behaviour in the
organisation. This requires learning. In the past, models have been used in quality con-
trol manuals and operating procedures. Often these documents end up in dusty binders
and are seldom activated. If models are to be a useful learning tool, they must relate to
the natural learning processes in an organisation, integrated in everyday work. What
people need is "not the partial, rigid models of the sort directive documentation pro-
vides, but help to build, ad hoc and collaboratively, robust models that do justice to
particular difficulties in which they find themselves" [77].

2.4.1 Practice and How We Describe It

Recent studies indicate that the ways people actually work differ fundamentally from
the ways organisations describe it [77, 387, 468]. Concepts like theories-in-use and
theories-espoused [19, 20], and talk, hypocrisy and action [80] refer to the fact that what
people say they do differs from what they really do. Case studies have shown that this
gap is a major barrier to organisational learning [19, 20]. Methods that create models of

33

work as input to design, have been criticised for biasing organisational, explicit views
and for obscuring the communicative practices, skills and knowledge that are crucial to
efficient working [31, 471]. Suchman [471] claims that "current wisdom in system de-
sign holds that the less of a user's behaviour a system encodes, the less functionality it
can provide". Interactive models offer a different perspective, enabling users to exter-
nalise and communicate about their practice, rather than encoding canonical models
(official accounts of work [77]) in software. This approach thus offers a great opportu-
nity for knowledge management anchored in practice.
 The immediateness of interactive models enhances their social pragmatic quality.
When both the real world and the model that reflects it are available and adaptable, the
connections between them are easier to understand. Simulation and training methods
can be developed that utilise this connection. Zuboff's study of industrial control rooms
[547] shows great benefits for users that are able to work both with the conceptual tools
and the physical environment of the factory. On the other hand, the study also highlights
the pitfalls of systems that isolate users inside the modelled world of the control rooms
without understanding what really goes on in the plant. Whenever a user discovers an
anomaly in an interactive model, it should be easy to correct it. This implies that model-
activating software components also should integrate articulation support.

Reflective Practice

Schön [445] describes professional work as reflection in action (cf. Appendix A.2.1),
integrating problem setting and problem solving in an ongoing conversation with the
current situation. Each new situation is treated as a unique whole. The wholeness of a
problem is not subsumed under categories, but features and elements of the situation
can be categorised [445]. This is important for understanding how knowledge devel-
oped in one situation can be used in a different setting. Similarly, Brown and Duguid
[77] note that learning theories have "rejected transfer models that isolate knowledge
from practice and developed a view of learning as social construction, putting knowl-
edge back in the contexts where it has meaning". Schön proposes that practitioners build
up repertoires of examples, images, understandings and actions. The practitioner makes
sense of a new situation through seeing similarities with patterns in his repertoire, by
using familiar situations as precedents or metaphors for the new, unique problem [445].
In addition to personal experience, the repertoire can include stories and examples that
we have read or heard about [77, 387].

Language of Practice

Communication in reflective practice employs the language of design (for reflection-in-
action) but also the language about designing (for reflection-on-action). Thus, if interac-
tive models are to be useful for reflective practice they must themselves be reflective;
they must facilitate conversation about the language, the work process and the problem
setting. As pointed out by Berger and Luckmann: "Language also typifies experiences,
allowing me to subsume them under broad categories in terms of which they have
meaning not only to myself but to my fellowmen." "Language becomes the depository of
a large aggregate of collective sedimentations, which can be acquired monothetically,
that is, as cohesive wholes and without reconstructing their original process of forma-
tion". [43]. Language helps us categorise and attribute meaning to our experience, in
short, to reflect on our actions. This property is crucial for learning from experience,

34

and creates the capability to transcend "here and now". Hence, the social processes of
language construction should be supported, and local language variants should be
treated as important sources of knowledge.

Models of Practice

Schön's model of reflective action offers fundamental insights into the processes where
models are constructed. Models represent problem setting descriptions, but also frag-
ments and aspects of solutions. Model articulation can thus be viewed as a conversation
with the situation. In this conversation each step is an experimental move that can bring
the practitioners closer to an understanding and a framing of the problem, and possibly
contribute to an acceptable solution. The knowledge that is available in this process in-
cludes the repertoires of actions possessed by the participants. Through harvesting and
reuse, interactive models become part of an explicit repertoire of action for the organisa-
tion. Model reuse is essential because it decreases the effort of modelling and increases
the potential value of each model. The anomalies and creative tension that comes from
using an old model as a metaphor for your current situation can foster learning and in-
novation [370].

2.4.2 Communities of Practice

Reflective practice describes how individual professionals learn and solve problems.
Community of practice is a social theory of learning, where learning is regarded an in-
herent part of everyday interaction with others [77, 527]. Wenger [527] outlines this
theory from four interrelated perspectives:
� Meaning, our changing ability to make sense of our life and the world.
� Practice, shared historical and social resources, frameworks and perspectives that

can sustain mutual engagement in action.
� Community, the social configurations in which our enterprises are defined as worth

pursuing and where our participation is recognisable as competence.
� Identity, how learning changes who we are and creates personal histories of becom-

ing in the context of communities.
From these perspectives, learning is viewed as experience, as doing, as belonging and as
becoming. Shared understanding is socially constructed inside a community through
perspective making [60]. Across communities, peripheral participants, multi-community
membership and boundary objects ([462], cf. Appendix A.1.3) enable learning through
perspective taking [60]. Boundary objects are ambiguous to foster participation in nego-
tiation of meaning inside a community, but maintain a clear identity so they can be
transferred across communities. They thus become structured through use, assigned dif-
ferent, but overlapping, meanings in different communities.
 In systems development, software engineers commonly lack a history of participa-
tion in the environments where the system is intended to function. Requirement specifi-
cations are boundary objects that often emphasise formal reification over ambiguity and
participation (cf. section 2.1.3). Participatory design (PD) thus trains developers in the
work that their systems are to support. PD has not been completely successful. This can
be attributed to political struggles and resistance of interest groups, but other weak-
nesses should not be ignored. Among them are large initial costs, difficulty in participat-
ing in another culture and semantic field [43], and downplaying the role of the software
professional as a reflective practitioner [337, 445]. Also, viewing learning as "becoming

35

a practitioner, not learning about practice" [77], user participation in software devel-
opment and developers participation in the users' practice can never fully enable them to
understand each others' reality.
 In contrast, interactive models delay decisions from design-time to runtime, and
aim to foster participation of whole user communities in adapting the system to fit local
practice. "The experience of end users cannot be effectively mediated by representation
of work or representatives of users, such as systems analysts or ethnographers. By such
mediation, experience with the work being supported is frozen at the level of explicit
understandings existing at the time when the representation of work is made or when
the user-proxy finishes his or her analysis" [296]. It can thus be argued that interactive
models have greater potential for producing user-friendly systems, but also that design
and usage of such systems is more challenging than for closed systems. Barriers to par-
ticipation will be discussed in section 2.4.4 below.

2.4.3 Models and Tacit Knowledge

Theories of knowledge creation and dissemination are highly relevant for the applica-
tion of interactive models to support learning and innovation. Models are a structured
kind of explicit knowledge, created through externalisation [370], and maintained with a
rich background of tacit knowledge [39, 402]. Tacit knowledge encompasses informal
skills and cognitive mental models, beliefs and perceptions, which have not been made
explicit in language. In this section we look at how interactive models can facilitate spi-
rals of knowledge creation [370], as shown in Figure 7.

Socialization Externalization

CombinationInternalization

Tacit
knowledge

Explicit
knowledge

Figure 7. Knowledge creation spiral [370].

Externalising Interactive Models

Articulation of tacit knowledge into interactive models was discussed above. Key ques-
tions include what aspects of work it makes sense to put into a model, at what degree of
specificity. Answers depend largely on the context. "Knowing refers to what is socially
defined as reality, not some extra-social criteria of cognitive validity" [43]. Externalisa-
tion can have negative consequences. The danger of misuse during power struggles is
discussed below. There is also the problem of trivialisation [43]. When something be-
comes explicit and accepted as part of the objective reality, it is often no longer the fo-
cus of discussion and negotiation. As reported by [39], it can have disastrous effects if
important problems become accepted without being properly dealt with. This is the op-
posite of how ambiguity, fluctuation, and creative chaos [370] supports learning and

36

innovation in communities of practice. Further research is needed to explore what kind
of externalisation is beneficial for learning in which contexts.

Combining Interactive Models

Combination refers to manipulation, composition, comparison, categorisation etc. of
explicit knowledge. This is the domain that information systems target, and where they
probably have the greatest potential. A technology for model-based knowledge man-
agement should satisfy these requirements:

R8: Generalisation of models should facilitate comparative analysis [241], and cost-
effective metrics [417].

R9: Languages should enable intuitive structuring of large model repositories [329,
541, 550]. The structures should be evolving, adjusting to improved understand-
ing by users, and capable of handling multiple viewpoints and dimensions of
models [461].

R10: Modelling languages should facilitate composition of models from parts [92, 516].

Nonaka and Takeuchi however caution designers against narrowly focusing on this
mode of knowledge conversion [370].

Internalising Interactive Models

Internalisation refers to conversion of explicit representations into tacit skills and capa-
bilities by groups and individuals [370]. If models are to be internalised, they must, as
all secondary realities, be vivid, relevant and interesting [43]. Relevance can be
achieved if the IS actively interprets the model to provide the information that is needed
in the current context. An interactive model can be vivid if the users see how changes to
the model affect the behaviour of the IS, and how they can use this capability to custom-
ise the system to their own preferences and local reality. Interest is created when the
system answers to real needs of its users in their everyday work, when they are the ones
that benefit from the introduction of the system [202].

Socialisation around Interactive Models

Social learning is facilitated by access to and membership of a target community [77].
Socialisation [43, 370] with people who are experts and have experience in exercising
the skills one needs to acquire, is often more important for knowledge dissemination
than explicit models. This does not mean that models have no role in facilitating sociali-
sation. Indeed, as user-created representations, interactive models can help us identify
the people who can give us a richer description of a particular problem. Hence, interac-
tive models can trigger storytelling [77, 387]. To do so, models must identify the users
that constructed them. To some extent, a personal touch to models and local language
constructs can also mediate the shared knowledge of a community. A shared action
context [547] for modelling can contribute to socialisation around the models. Such a
context is most easily established when modellers are in the same room and manipulate
the models together. Distributed action contexts also exist that are at least partially
shared, enabled by synchronous conversation support integrated into the modelling tools
[233]. In order to facilitate rich knowledge dissemination, the action context of a model
must to some degree be recreated in the new setting:

37

R11: A model should also capture the context and situation where it is suitable, e.g.
objectives, assumptions and resource requirements [146, 329]. The system should
maintain a link from each template to the instance(s) it was generalised from in
order to facilitate learning from examples [445].

2.4.4 Trust, Power and Participation

Trust and openness are crucial for organisational learning. According to Argyris and
Schön [20], most of the inhibitory loops that cause dysfunctional organisational learning
systems are related to unilateral withholding of information. Senge [447] describes par-
ticipative and reflective openness as core features of a learning organisation. Participa-
tive openness refers to willingness to speak your mind, while reflective openness con-
cerns the willingness to challenge your own interpretations. Information systems in-
crease transparency in the organisation [547]. Still, we cannot assume that information
circulates freely just because the technology to support circulation is available [77].
This section explores barriers to participation in interactive modelling.

Legitimisation and Motivation

That an activity is legitimate and accepted by the organisation is crucial for social learn-
ing [77, 527]. Thus management support is a commonly cited success factor for the in-
troduction of information systems [202]. Explicit management support is however not
sufficient. Attempts at open door management have failed because employees came to
realise that though the door is open, it is wiser not to cross the threshold [77]. It is thus
necessary to develop a richer view of legitimisation. According to Berger and Luck-
mann [43], legitimisation means integration of the meaning attached to institutional
processes to make them objectively available and subjectively plausible. Communities
of practice theories also demand both legitimisation and availability (legitimate periph-
eral participation [77, 527]).

Withdrawal Strategies

Problems of legitimisation can occur with information systems, if increased transpar-
ency is applied to centralise control [547]. Increased outside control can make the work-
ers take to protective measures, like withholding effort [334], and forming informal col-
lectives with norms of behaviour that limit productivity [321]. Such actions have devas-
tating effects on an IS that rely on people's willingness to model and share their insights.
There are however indications that these difficulties are diminishing [88]. With in-
creased education and job security, self-actualisation, self-esteem and social needs re-
place safety and security as main motivational forces according to Maslow's hierarchy
[264]. Representing your thoughts and ideas in models, and seeing other people use
your input in their work, can be a way of fulfilling these needs. Case studies offer a
multitude of examples of this kind of motivation [547]. Education, job security and a
sense of autonomy and personal mastery [447] are thus important success factors for
interactive models.

Accountability

Another motivation for externalising your work into a model can be to avoid unrealistic
workloads. One example is accountability as a reason for adopting workflow manage-
ment systems in healthcare [34]. The system keeps track of activities, documenting that

38

the work has been performed according to the rules [69, 140, 468], but also reflecting
the current workload. By pointing to a long list of scheduled work, individuals can
demonstrate e.g. that they are unable to handle more cases.

Social Integration

The degree of social integration between different occupational groups is an important
part of the societal context of an information system. Studies point to equality as a cen-
tral condition for identification with a group and formation of communities [321]. Com-
munity membership is essential for social learning [77, 527]. In a discussion of copy
machine repairers' communities, it is noted that their relationships are "surprisingly
egaliterian" [77]. Zuboff [547] reports from insurance claims processing that "a new
gulf had opened up between the clerks and their supervisors", as a result of information
technology that replaced mutual problem solving and information sharing with auto-
mated coordination of simple steps. The long-term effects of technology-induced social
disintegration can be devastating, both on community engagement and production
efficiency, as studies of coal mining show [496]. Thus, information technology is both
influencing and influenced by the degree of social integration in the organisation. This
is a factor that systems designers must pay attention to.

Trust in the Models, Facilitated by Experimentation and Redundancy

Zuboff [547] also discusses the problem of trusting symbolic representations. In her
studies, the disjuncture between symbols and actual experience was at first profound,
but with time the linkage between the physical and symbolic worlds became tightly
wrought. This problem thus seems to be temporary during system introduction, but still
it can be crucially damaging for a cooperative system if it prevents reaching a critical
mass of users. Reaching critical mass is a core challenge because the benefits of using a
cooperative system increase with the number of users [202].
 Trusting symbols that reflect abstract functions and systemic relationships is even
more difficult [188, 547]. According to Zuboff's informants, people will only trust a
machine when they really know how it works. Interactive models enable transparency
of the information system, but understanding requires more than just availability. The
establishment of training arenas, where users can experiment with the system without
interfering with actual operation, is thus a critical measure. To design in redundancy is
another useful technique. Redundancy allows users to double-check what the system is
telling them. It is also important that the impersonality of electronic texts is overcome,
e.g. by letting users add informal comments to the model elements both as a personal
stamp and as a way of communicating knowledge that they are unable to articulate in
the structured modelling language.

Mobility and Physical Barriers to Participation

Zuboff's [547] analysis shows how information technology can lead to the replacement
of bodily skills with intellectual ones. Experienced paper plant workers "were at first
overwhelmed with the feeling that they could not see or touch their work" [547] from
inside computerised control rooms. Mobility has also been reported as a limiting factor
on knowledge sharing in consulting firms [343]. Interactive models in mobile devices
can integrate the concrete world with the abstract data. If a model has a spatial dimen-
sion, and its elements are mapped to locations, the system can highlight the elements

39

that are close to the user's current position. Sensors or positioning systems (automated
articulation support) can notify handheld devices about the user's position. Users can
then combine the rich bodily knowledge they get from sense, sounds and smells with
contextual model information, available in the field. If sensors send input to the models,
we could create a highly interactive system where users can manipulate the physical
artefacts and immediately see hidden and distant effects through how the model
changes.

Power and Knowledge

Issues of power and knowledge underlie this discussion. The preservation of managerial
authority [519] often becomes an implicit goal of its own, and can be a key force behind
automation strategies. As one of Zuboff's informants (a manager) put it: "If we can build
intelligence into our controls, we will not be as dependent on the special knowledge of
our crew leaders" [547]. Employees can and do choose withdrawal strategies when
faced with increased managerial control of their work. This does not mean that IS de-
signers should not assume responsibility for whose interests they serve, as more subtle
forms of power still can turn their systems into instruments of domination [357]. Such-
man thus views representations of work "as interpretations in the service of particular
interests and purposes, created by actors specifically positioned with respect to the
work represented" [470]. Researchers must also pay attention to the 2nd and 3rd dimen-
sions of power in Lukes' framework [107]: Forces that restrict people from representing
their interests, and forces that influence on their interpretation of situations, their
thoughts and desires. The possibilities that interactive models create for strategic action
[300], to enrol others and to control their behaviour, is a key question here.

Language Definition Power, Pluralism and Innovation

The definition of the modelling language is one arena for such actions. Language influ-
ences how people in the organisation talk and think about phenomena. Conflicting in-
terests surface, e.g. when a company is seeking to define a small set of keywords for its
Internet site. In a hierarchy of terms "everybody" wants their keyword at the top level.
Language can contribute to turning certain points of view into implicit, objective facts,
and to render other aspects undiscussible. Here, the language becomes part of an ideol-
ogy, a particular definition of reality attached to a concrete power interest [43]. Many
people may not have the necessary skills to define their own languages, but language
evolution should be supported, because "pluralism encourages both scepticism and in-
novation, and is thus inherently subversive of the taken-for-granted status quo" [43].
System developers, being a social actor in the organisation, cannot completely free
themselves from questions about which interests they serve, thus

R12: Modelling languages should be extensible so that a community can co-construct
its own local dialect as part of the ongoing collaborative learning [417, 453, 451].

R13: Modelling languages should allow multiple perspectives and conflicting interpre-
tations to coexist and evolve [92, 204, 461], and the process of reconciling these
perspectives into a common understanding, should be supported and captured
[445]. Different viewpoints on each concept should be represented together, not as
disintegrated model elements. This is called perspective integration [385].

40

2.5 Process Models
So far we have investigated challenges and requirements for interactive models in gen-
eral. We now turn our focus to models reflecting work processes. The research surveyed
below highlights the importance of process models and process knowledge. The most
general definition of process just describes a forward motion, a course of events over
time [520]. More specifically, 'process' designates "a method of operation in the produc-
tion of something" [520]. Davenport expands on the latter perspective by defining 'proc-
ess' as "a structured, measured set of activities designed to produce a specified output
for a particular customer or market" [121]. He further emphasises that process deals
with how work is done, not what is produced. Several perspectives discussed above
challenge this definition. Social activities are polymotivated, influenced by multiple
goals. Different actors have different objectives, partially understood, partially explicit,
partially aligned and partially in conflict. We have also seen that the structure of activi-
ties is evolving and locally constructed, rather than predefined. Even with these adjust-
ments, process remains a goal-directed, operational and integrating view on activities.

2.5.1 The Importance of Processes

Organisational routines or ways of working have been described as the identifying char-
acteristic of an organisation [367]. Similarly, theories of social reality construction hold
that every institution has a body of transmitted recipe knowledge [43]. Connected to
these routines are roles that represent the institutional order. Routines are created and
changed through social processes, and they are central to organisational development
[307] and learning [19, 20, 444]. Nelson and Winter [367] distinguish between implicit
(tacit, informal) and explicit routines. Process models are explicit routines.

2.5.2 User Participation in Workflow Articulation

Workflow management systems (WMS) provide active coordination support based on
explicit process models. The trade press is full of workflow management success sto-
ries, claiming tremendous improvements in quality, costs, and service times [167, 532].
An overview of such studies [131] shows that several organisations experienced much
shorter case processing times and improved efficiency. In one case this resulted in staff
reductions, in another improved job satisfaction.

Rigid Workflow Management Systems

Severe limitations of WMS are also commonly pointed out [349, 350, 476]. One study
of a printing company [69] shows that a number of opportunistic, ad-hoc behaviours
allow workers to maintain a smooth flow of work. These include flexible prioritisation
of jobs, utilising time while one job is being printed to prepare the next, processing ur-
gent jobs before a confirmed order is received, emergent support of each others work,
enabled by attentiveness towards the state of others' jobs, and allocating interruptible
jobs to people who are working at the customer counter. When a workflow management
system was introduced into this setting, the explicit goals included recording worker
activity, supporting process management, centralised monitoring and enforcing quality
standards. The system caused proceduralisation, individualisation and serialisation of
work, disrupting the ad-hoc activities that had previously enabled a smooth flow. Enter-
ing data into the system created overhead, which was especially troublesome for short,

41

urgent jobs. To remedy these problems, some shops started to use manual records dur-
ing the workday and only used the WMS to record data at the end of the day. Bowers et
al. [69] propose the terms 'workflow from within' and 'workflow from without' to distin-
guish the naturally occurring ad-hoc coordination from coordination automated by the
WMS.
 Another study observes similar workarounds in the optronics industry [212]. The
process in this study is more distributed and multi-disciplinary than that of the printing
shops. Initially, paper-based checklists were used successfully. When a computerised
tool was built, a lot of data had to be filled in before an order could be passed on. Re-
ceivers of this information complained that much of what they got was incomplete and
unreliable. Over-serialisation and overly strict enforcement of constraints are major fac-
tors contributing to these problems. To make the situation tolerable, social networks
developed which facilitated informal coordination and conflict resolution. Hayes con-
cludes, "designers of workflow processes need to accept that uncertainty can never be
eradicated through the automation of procedures" [212].

Flexible Coordination Enables Process Improvement

A more successful application of automated coordination is described by Grinter [199].
In three software development organisations, structured coordination tools were per-
ceived as helpful. The benefits included automation of dull tasks and increased aware-
ness of the work of others. In one company the introduction of the system even led to
unplanned empowerment of the software developers. Originally, a special committee
controlled allocation of bug-fixing tasks to developers. When this committee became a
bottleneck in the process, developers were authorised to assign tasks to themselves.
Soon the developers started using the system to organise their own work, attaching pri-
orities, estimates, notes, and links to related problems, improving knowledge manage-
ment. Another study of software development observed that local innovations (e.g.
compile and build scripts) were spread informally across the organisation [331]. The
adoption and use of CASE (Computer-Aided Software Engineering) tools over time
have also been observed to cause changes in policies, practices and organisation [386].
For instance, developers began to spend more time with users, and began to see the po-
tential for systems spanning the boundaries of functional units.

Articulating Processes for Exception Handling

Twidale and Marty [499] developed support for packing of museum artefacts. They dis-
covered that the majority of the data recorded was not about which artefacts were placed
in which box. Instead between seven and ten times as much information was recorded
about the process of packing, detailing who packed, re-opened or moved boxes at dif-
ferent times. These process data were instrumental in diagnosing and remedying errors.
There were no a priori organisational procedures; the museum professionals were mak-
ing the process up as they went along, as each artefact was unique, each situation a pos-
sible exception. In this continuous process improvement, the focus was on detecting and
fixing errors, not on preventing errors through standardised procedures. Attempts at de-
signing error prevention mechanisms did not work. Some of these mechanisms evolved
with the practice and became used for error recovery instead [499].

42

2.5.3 Representations of Work

The problematic nature of process models is fundamental. Actions cannot be fully pre-
defined; they can only be "accounted for post hoc with reference to its intended effects"
[468]. Software designers should thus be cautious about trying to anticipate too much
about any work situation [414]. The scope and use of representations of work has been
a major issue within the CSCW community. This was the topic of the Suchman-
Winograd debate [469, 537] and [29], as well as a special issue of Communications of
the ACM [471]. The problem is not simply one of richer modelling notations, but more
fundamentally of what can appropriately be captured in any model of a work process
[31]. This view resonates well with our focus on the interactive use of models. Models
may be useful for some actor in a particular context, not true or false. The relationship
between a model and the reality that it represents is dialectic: Models do not just de-
scribe or abstract from reality, they reframe it, and shape they way we see the world [31,
445]. "The meaning of such representations is not fully determined but may be investi-
gated, elaborated, or revised through continued interaction with the actual work set-
ting" [296]. Sachs [427] summarises the differences between organisational views and
practice-oriented views on process design (Table 1). It is thus not surprising that infor-
mation systems seem to have led to a dual reorganisation: decentralisation of low-level
decision making and centralisation of power and control [9].

Organisational view Practice view
People produce human error People discover problems and solve them
Deskilling is desirable Skill development is desirable
Routine work and thinking is desirable Development of knowledge, understand-

ing, and deciphering is central to skills
Flexibility = interchangeable jobs Flexibility = skilled people
Standard operating environments are
necessary to the business

Collaboration and collaborative learning
take place in communities

Social interaction is non-productive Communities are funds of knowledge
Automation produces reliability Skills and learning produce reliability

Table 1. Design implications of underlying assumptions [427].

2.5.4 Processes, Plans and Situated Actions

Project planning is a major part of process articulation. In cognitive sciences, a plan is
defined as a sequence of actions designed to accomplish some preconceived goal. This
paraphrases the definition of process discussed above, reflecting that process manage-
ment deals with planned work. Suchman [468] notes that human actions are inherently
situated and ad-hoc, and that plans must not be confused with action. Post-hoc, plans
account for actions in a rational way. Pre-hoc, articulation of plans supports coordina-
tion and shared understanding. Plans are thus "resources for situated action, but do not
in any strong sense determine its course." "The organisation of situated action is an
emergent property of moment-by-moment interactions between actors, and between ac-
tors and the environments of their action. The emergent property of action means that it
is not predetermined, but neither is it random." [468].

43

2.5.5 Process Models and Practice

The gap between models and the reality they reflect has also been observed elsewhere
[143, 146]. Bandinelli et al. [28] give an overview of software process improvement
studies. One of their main conclusions is that process agents experience a discrepancy
between the quality manual and the actual process. This contributes to dysfunctional
organisational learning systems, as actual practice is hidden from discourse. In other
words, descriptive models of existing practice are crucial for process improvement
[417]. The software process community has thus identified the need for harvesting local
process models into a general format suitable for assessment and comparison. Feedback
from practice into process improvement needs to be extended from de-contextual met-
rics to rich descriptive models of process history.

2.5.6 Process Diversity

Studies of software development processes have lead researchers to conclude that dif-
ferent methods are needed for different projects [314]. Williams et al. [534] note that
simple, well-understood tasks like programming, should be distributed to individuals,
while complex and uncertain tasks such as analysis and design require close collabora-
tion. Cockburn [109] highlights criticality and size as the most important characteristics
of processes, defining a 4×7 matrix of methodologies. He also notes that all projects are
unique and that other characteristics are also important, insisting that the proposed 28
methodologies are just starting points for local adaptation. There is a trade-off between
the number of dimensions in a process classification scheme and the amount of local
adaptation needed. Cockburn [110] refers to other classifications with between 5 and 15
dimensions, and up to 37400 process types. Clearly it is infeasible to predefine methods
for every one of these types. An infrastructure where local models from existing pro-
jects are harvested for reuse in similar future cases, is needed if we are to approach the
complexity of this problem. Combination of elements and aspects from different meth-
odologies is also required if the large number of different types is to be adequately sup-
ported (requirements R8 and R10). The complexity of these classification schemes fur-
ther points to the need for flexibly combining different criteria when searching and
browsing for relevant templates in a process library (R9).

2.5.7 Interactive Process Model Reuse

Although actual practice differs fundamentally from explicit descriptions, organisations
rely on these descriptions to understand and improve their work [77]. Interactive models
cannot be detached from practice, their purpose is to help people plan, coordinate, per-
form and reflect upon their work. Hence interactive models are not as much in danger of
distorting or obscuring the intricacies of practice. Through reuse, interactive process
models support knowledge creation and dissemination anchored in everyday work. The
key challenge is how models developed for one situation can be applied in another set-
ting. Technically, this can either be done directly by copying a previous model, or we
can generalise models into templates. A template defines a starting point model and a
modelling language adapted for a particular use.
 Current applications of process modelling span several layers of abstraction, from
theoretical lifecycle models, via organisational models of best practice, to the plans of
actual projects. Layered reference models have been proposed both in the software pro-

44

process [241] and workflow literature [254, 528]. Aiming to support learning, our main
concern is to understand the mechanisms that enable integration of models at different
levels of abstraction. This is the objective of the process model lifecycle shown in
Figure 8. In this framework, process models are divided into two categories:
� Particular models, which aim to support performance of work in one project.
� General models, which abstract common properties from a number of actual proc-

esses, represent normative standards for the organisation, or are templates for reuse
and adaptation into particular models.

Performance

Improvement

HarvestingReuse

Appropriation

Identification

Selection Articulation

Activation

Generalisation

Classification

Adaptation
Evaluation

Analysis

Understanding

Template
management

Metamodelling

Particular models

General models

Figure 8. Lifecycle of process model evolution.

Applying a general process model to a particular situation is a case of reuse. Reuse may
also refer to copy and paste of a previously developed particular model into a new proc-
ess, i.e. reuse must not always occur via a general model. The process of generalising
one or more particular models is called harvesting. The goal of harvesting is to provide
templates that can be reused in the future, and to utilise practical experience as input to
assessment and improvement of the general models. Following conventional terminol-
ogy, the activity where people assess and update general models is called process im-
provement [28, 158, 355]. In process improvement and re-engineering, particular mod-
els are rarely used. For such initiatives to be cost-effective, they must target general
models that are applied repetitively.
 The activities of process performance, harvesting, improvement and reuse form a
learning cycle. If one activity is not performed, the others suffer. This does not imply
that all activities need to be explicit or encoded in software. A user may for instance
manually improve a template based on lessons learned in a project, even without soft-
ware support for generalising the particular project model. Similarly, a project model
may be a passive plan, influencing practice although automated enactment support is
not available. The following subsections discuss each of the four activities in turn.

45

Process Improvement

Although process improvement is outside the scope of this thesis, requirements from
this area should influence the design of an integrated process support system. Process
improvement and re-engineering has gained considerable interest as a methodology for
organisational change and e.g. for creating more mature software engineering practices.
A summary reports three directions of software process improvement [158]:
� Standard processes of best practice, e.g. ISO 9000,
� Assessment methods that evaluate the maturity of organisational processes, e.g. the

Capability Maturity Model (CMM),
� Methods that utilise quantitative measurement, e.g. Quality Improvement Paradigm.
Standard processes are highly generalised. Assessment is usually performed through
questionnaires with metrics concerning the efficiency and quality of each project [158].
Particular models are rarely available, so process improvement methodologies have fo-
cussed on the organisational level. Still, the need for local models is identified. For in-
stance, to reach level 3 in the Capability Maturity Model, standard processes must be
tailored to each project. The notion that best practice can be defined in general and ap-
plied universally, have caused a wide range of misfits with local cultures [460].

Legitimisation through Process Metrics

Organisational learning theories illuminate the role of process metrics. Argyris and
Schön [19, 20] distinguish between single and double loop learning. In single loop
learning, strategies for action are assessed when performance is not satisfactory. Double
loop learning, which is needed for long-term improvement, requires that the underlying
assumptions, norms and goals also be assessed. Metrics focus on efficiency or confor-
mance with standards, directing attention towards single loop improvements. Underly-
ing causes are obscured, inhibiting double loop learning. The many intangible differ-
ences between each particular process, implies that metrics should be treated pragmati-
cally. Still, metrics has a role in learning and improvement, e.g. as a vehicle for legiti-
misation. Metrics quantify benefits and enable management buy-in. As discussed in sec-
tion 2.4.4, it is important for social learning that a practice is legitimate and acknowl-
edged by the organisation.

Process Reuse

Reuse involves identification and selection of suitable model fragments to reuse, under-
standing and learning about the effective use of these components, and appropriation of
the component by the user community in the new context. The task of identifying a
template suitable for your process is often cumbersome, so you end up building a new
model from scratch, or using the same template for most of your processes. Identifica-
tion of templates requires general software support like searching and navigation, but
also structured template repositories (R9) and description of suitable usage context
(R11). If several candidate templates have been identified, you must select the one most
suitable for your particular project. Selection should be supported by qualitative and
quantitative analysis (R8). The match between the current project and the suitable situa-
tion for each candidate template, is particularly important here [247].

46

Process Models as Boundary Objects

Reuse is a learning process. It is a vehicle for the establishment of successful teams and
for individual competence building. Reuse may occur within and across communities of
practice (cf. sections 2.1.3 and 2.4.2), hence interactive process models serve as bound-
ary objects [462] between the subcultures of the organisation. You need to really under-
stand a model, its assumptions, strengths and weaknesses in order for knowledge reuse,
not just model copy, to take place. Among the techniques that can be included in a tool
for understanding and appropriation are conversation and negotiation, rich process visu-
alisations (R2), scenarios, model walkthrough, role play, analysis and simulation. Sim-
ple, user-oriented modelling languages (R1, R3) also facilitate comprehension.

Appropriation and Local Ownership

When a template has been selected, you have a starting point for the plan of your proc-
ess. Now the project group must appropriate the model, adapt it to the local reality of
their project, transform it from a general guideline to a locally used object. Local own-
ership of the models is essential for utilisation, adaptation and articulation of process
knowledge to take place. This appropriation can be analysed as perspective making [60],
the process of building and strengthening the common understanding of meaning, prac-
tice and identity within a team. Common understanding is essential for coordination and
communication. A language can support perspective making if it is extensible (R12) and
allows the representation of conflicting points of view (R13).

Reuse during Process Performance

During performance of the work, users need to add new details, remove irrelevant parts
etc. of a model, possibly applying more templates as components in the main model (cf.
Figure 9). Performance is the phase where the most intensive interplay of articulation
and activation goes on, in the context of local models, owned, manipulated and utilised
by the process participants. Tools and languages that support composition of models
from parts, specialisation of models, inheritance, and integration of other data sources,
facilitate this adaptation (R8, R10).

Process Model Harvesting

Local innovations are more readily available for reuse if they are generalised into tem-
plates. Although cases may exist where a particular model can be automatically con-
verted into a template, the creation and refinement of templates often is a process of re-
engineering. It involves manual adaptation of local models to make them suitable for
different contexts. Typically, KM or methodology experts perform such knowledge cap-
ture. A template may be a deep structure, including both specific language constructs
and an initial model. The system should include operations for generalisation and de-
contextualisation (R8), e.g. resetting attribute values to their initial state, removing de-
tails, replacing instances with classes [58, 241]. We should also be able to contrast and
compare different particular models, highlighting common patterns, as well as differ-
ences, and enabling the combination of different particular models into one template.
� Extending the requirement for personalisation (R7), the system should allow people

to put their personal touch on models. It should also identify the persons who have

47

contributed to templates and those who have experience with using it, in order to fa-
cilitate social interaction (as discussed in section 2.4.4).

� Following the requirement to capture the process history (R5), versioning and con-
figuration management should be supported [115]. The historical development of a
process model as work progresses helps us to gain an understanding of how the
model can function in another setting [90]. History enables humans to use ambiguity
as a resource for learning [527].

Original model
(template with

additions)

Process Instance Lifecycle
Work performance and planning

Process Template Lifecycles

Revised model

Final model,
work finished

Reuse of
template

Reuse of another
template as com-
ponent. The com-

ponent is adapted.

Harvesting

Original template
Another template A new or revised

template

….

Figure 9. Reuse with process templates.

2.6 Summary
Table 2 summarises the requirements for interactive process articulation, activation and
reuse. This list does obviously not capture every aspect of individual, social, organisa-
tional and situated needs that were discussed in this chapter. It pinpoints the major chal-
lenges at a level of detail suitable for assessing state-of-the-art and for evaluating the
proposals of this thesis. It should be cautioned that this list is only one of many catego-
risation schemes that can be applied to this complex topic, and one should not reduce
wicked, holistic problems to any such conceptualisation. A practical perspective also
dictates that we should focus on the mutual interdependencies among these require-
ments, as reflected in the learning cycle of process model evolution (Figure 8).

48

Requirement
R1 Simple language
R2 Visual, graphical language
R3 User- and domain-oriented language
R4 Evolving model semantics
R5 Local change, process history, versioning
R6 Incomplete models
R7 Personalisation and contextualisation
R8 Generalisation, analysis, metrics
R9 Structured template repository
R10 Composition of template fragments
R11 Description of suitable context of use
R12 Extensible language
R13 Multiple perspectives, interpretations and views

Table 2. Summary of requirements.

The requirements in this chapter focus on language and system features for interactive
process models. They do not include requirements for process improvement or re-
engineering detached from practice, and should thus not be considered a complete
analysis framework for process modelling. A number of such frameworks already exist.
Conradi and Jaccheri [115, 239] derive requirements for software process modelling
languages. Their framework is a meta-process with six phases: elicitation, analysis, de-
sign, implementation, enaction and assessment. This chapter complements their list of
requirements by looking in greater detail at the problem of integrating evolving models
at different levels of abstraction. Rombach and Verlage [417] require process models
that are natural, measurable, tailorable, formal, understandable, executable, flexible and
traceable. The absence of input from organisational learning theories is common to
these papers. Our previous work on the quality of process models [95, 96, 255] inte-
grates theories about knowledge creation and social reality construction. The interplay
between guiding (general, prescriptive) and tracing (particular, descriptive) process
models has generated an underlying model similar to the one presented here [247].

49

Chapter 3
State of the Art

In this chapter, existing process support systems are evaluated according to the require-
ments presented in Chapter 2. This analysis aims to justify that
1. A new framework for flexible process support is needed.
2. Current process notations are too rigid and complex for most end users (section 3.1).
3. Conceptual modelling techniques can remedy some of these problems (section 3.2).
4. Current process support is too rigid for knowledge work (section 3.3).
5. A new combination of inheritance, composition, parameterisation, patterns, and other

techniques is needed for process knowledge management (section 3.4).
Interactive models seem a suitable integrating scheme for currently fragmented research
into ad-hoc, evolving and human-centred workflow management. Existing problems in
workflow automation can be re-framed as interaction problems, and new challenges are
identified. Section 3.5 discusses differences between interactive and adaptive workflow,
and lists challenges for interactive workflow research.

3.1 Workflow and Process Modelling Languages
Models of work processes have long been utilised to learn about, guide and support
practice. In software process improvement [28, 133], enterprise modelling [71, 168] and
quality management, process models describe methods and standard working proce-
dures. Simulation and quantitative analyses are also performed to improve efficiency [2,
295]. In process centric software engineering environments [14, 117] and workflow sys-
tems [532], model execution is automated. This wide range of applications is reflected
in current notations, which emphasise different aspects of work. Carlsen [90] identifies
five categories of process modelling languages: transformational, conversational, role-
oriented, constraint-based, and systemic. The increased interest in modelling processes
with UML [87, 169, 241, 315, 335, 435] requires that object-oriented process modelling
also be discussed.

3.1.1 Transformational Process Modelling Languages

Most PMLs take a transformational (input-process-output) approach. Processes are di-
vided into activities, which may be divided further into sub-activities. Each activity
takes inputs, which it transforms to outputs. Input and output relations thus define the
sequence of work. This perspective is chosen for the standards of the Workflow Man-
agement Coalition (WfMC) [530, 532], the Internet Engineering Task Force (IETF) [61,
475], and the Object Management Group (OMG) [378] as well as most commercial sys-
tems [1, 167]. IDEF [234], Data Flow Diagrams [174], Activity diagrams [381], Event-
driven Process Chains [315, 443, 549], and Petri nets [553] are well-known transforma-
tional languages. In this section we explore languages within this paradigm, and assess
their suitability for interactive systems.

50

Workflow Management Coalition and the Object Management Group

WfMC [529, 532] defines standards e.g. for process definition interchange [530] be-
tween systems. Processes are modelled with hierarchical decomposition, control flow
structures for sequences, iteration, parallel (AND) and alternative (XOR) branching.
Organisational roles and actors, tools and applications can be associated to activities.
OMG defines workflow management as a common facility in the object management
architecture [378, 440]. The aim of this architecture is to support runtime interoperabil-
ity among business objects, components and legacy software. Its main focus is thus on
exchange of data about ongoing process instances, not on modelling processes. OMG's
workflow terminology is based on the WfMC (Figure 10).

Business Process

Process Definition

is defined in a

composed of

Manual Activities

(i.e.. what is intended to happen)

(a representation of what
 is intended to happen)

Sub-Processes

Activities

is managed by a

Workflow Management System

Process Instances

which may be

Automated Activities
(which are not managed as

part of the Workflow System)

(controls automated aspects
of the business process)

via

or

used to create
& manage

(a representation of what
is actually happening)

include one
or more

Activity Instances
during execution

are represented by
which
include

and/or

Work Items
Invoked

Applications

(tasks allocated to a
workflow participant)

(computer tools/applications
used to support an activity)

Figure 10. WfMC core terminology [532].

BPML - Business Process Modelling Language

BPML [21, 459] defines a formal web service choreography interface and description
language. Emphasising low-level execution, it contains several control flow primitives
for loops (foreach, while, until), branching (manual choice or rule-based switch, join),
decomposition (all, sequential, choice), instantiation (call, spawn), properties (assign),
tools (action), exceptions (fault), and transactions (compensate). These constructs
closely resemble block-structured programming. One strong point of the language is

51

that it allows both manually controlled choice and rule-driven branching. However, as
different primitives are used for the two cases, the automation border must be defined
during process design. BPML has weak support for local change and unforeseen excep-
tions. Activities are not instantiated before they start to execute. They are thus not avail-
able for process overview or local planning.

Process Interchange Format (PIF)

PIF [304] was designed to standardise process definition among a number of research
projects, including the Process Handbook [329], Virtual Design Teams [295], and
TOVE Enterprise Modelling [168]. Although none of these projects primarily empha-
sised enactment, Bernstein [45] later proposed the use of PIF for flexible workflow
management. PIF is a transformational language with constructs for modelling re-
sources. Based on coordination theory [328], it defines a rich vocabulary for the rela-
tionships between activities and resources (uses, creates, modifies), and several inter-
activity relations (successor, prerequisite, cannot-be-concurrent). PIF models also con-
tain decision objects that select among alternative paths. The language does not separate
among processes, activities and work items. It is thus simpler than the WfMC standards.

Petri Nets

Petri nets is a formal language for specifying dynamic behaviour. Petri nets are widely
used in academic research on workflow management and software process environ-
ments [7, 156, 553]. Petri nets have a small set of basic constructs: places (circles), tran-
sitions (rectangles), and arcs. During execution, tokens occupy places in the model, rep-
resenting the current state. Figure 11 shows an example Petri Net model. It demon-
strates the basic expressiveness of control flow patterns: A waterfall sequence, concur-
rency (in specification), synchronisation (before design) and choice (C or Java).

Start Finish

Specify
funct.
req.

Specify
techn.
req.

Analyse
problem

Imple-
ment
with
Java

Imple-
ment
with C

Design

Figure 11. Petri net model fragment.

The transformational PML category has been subdivided into task and state oriented
approaches [305], depending on which kind of element is represented as nodes in the
flow graphs. Both of these approaches can utilise Petri nets. Most systems apply the
state-oriented approach (tasks as transitions, as in Figure 11) [553], while UML activity
diagrams are task-oriented (tasks as places) [63, 420]. The mapping of user level tasks
and dependencies to formal constructs is thus not straightforward. While it may seem
intuitive that tasks, as the active concept, should be represented by transitions, tokens
spend their time in places during the performance of the tasks.
 The main strengths of Petri nets are simplicity, formality and the large number of
execution, simulation and analysis techniques that the research community has devel-

52

oped. Its most important limitations include theoretical, not user-oriented, constructs,
and scope limited to process aspects. Lack of flexibility, abstraction (decomposition),
and compositionality have also been highlighted [507, 533]. Hence user oriented visu-
alisations and complementary modelling perspectives, e.g. for resources [154], object-
orientation [297, 298, 354], and time, have been proposed [246].

Event-driven Process Chains (EPC)

EPC [434, 549] is a typical transformational process language applied in industrial sys-
tems. It is used in the ARIS modelling tool [433, 434] and the SAP ERP system [27,
443]. Extensions and variations of EPC have also been the subject of research [315],
e.g. to handle other domains (products, resources) and more flexible enactment [443]. In
EPC units of work are modelled as functions. Functions are enabled by pre-events, and
cause post-events. Relationships between events and functions are modelled by arcs,
AND, XOR, and OR connectors. As shown by van der Aalst [549], EPC models can be
transformed into Petri nets. However, OR-connectors, representing a degree of uncer-
tainty in the routing, are not well supported by the Petri net notation. Uncertainty gives
rise to an exponential growth in the complexity of formal, operational models, because
all combinations of alternatives must be explicitly represented.

Transformational Languages - Evaluation

Given the extensive use of transformational languages, most PML analyses focus on
this category [115, 119, 195, 305]. The expressiveness of these languages typically in-
cludes decomposition, control and data flow, while organisational modelling and roles
often are integrated. Aspects like timing and quantification [119], products and commu-
nication [115], or commitments [305] are better supported by other paradigms. User-
orientedness is a major advantage of transformational languages. Partitioning the proc-
ess into steps, match well the descriptions that people use elsewhere. Graphical input-
process-output models are comprehensible given some training, but you can also build
models by simply listing the tasks in plain text, or in a hierarchical work breakdown
structure. Hence, the models can be quite simple, provided that incomplete ordering of
steps is allowed.

3.1.2 Conversational Process Modelling

The language action perspective was brought into the workflow arena through the
COORDINATOR prototype [538], later succeeded by the ACTION workflow system [339].
This perspective is informed by speech act theory, which extends the notion that people
use language to describe the world with a focus on how people use language for coordi-
nating action and negotiating commitments. The main strength of this approach is that it
facilitates analysis of the communicative aspects of the process. It highlights that each
process is an interaction between a customer and a performer, represented as a cycle
with four phases: preparation, negotiation, performance and acceptance. The dual role
constellation is a basis for work breakdown, e.g. the performer can delegate parts of the
work to other people. Process models may thus spread out, as depicted in Figure 12.
 This explicit representation of communication and negotiation, and especially the
structuring of the conversation into predefined speech act steps, has also been criticised
[85, 124, 271, 469, 472]. Minimal support for situated conversations, the danger that
explication leads to increased external control of the work, and a simplistic one-to-one

53

mapping between utterances and actions are among the weaknesses. On the other hand,
it has been reported that the ACTION approach is useful when people act pragmatically
and don't always follow the encoded rules of behaviour [124], i.e. when the communica-
tion models are interactively activated.

Figure 12. Action workflow model example [339].

E-Business Orchestration in ebXML

The language action approach has recently found new use in electronic business transac-
tions and web services [270]. This has given rise to a range of standards dealing with
process integration of web services across companies. ebXML [500, 501] aims to create
a global electronic marketplace where enterprises of any size can meet and conduct
business through the exchange of XML messages. ebXML defines a standard for busi-
ness process definition that includes transactions, collaboration protocols, and simple
negotiation patterns. Focusing on well-defined business domains, processes are stan-
dardised, and made available in public libraries to facilitate service discovery. Process
evolution is not within the scope of ebXML, so for interactive models this standard is
mainly relevant for defining simple, pluggable steps.

3.1.3 Decision Making Processes

Louridas and Loucopoulos [317] have defined a modelling language for representing
the argumentation and rationale of a decision making process. Extending the vocabulary
of Issue Based Information Systems (IBIS [113]), they break down the decision making
process into goal (issue to be resolved), hypotheses (positions or solution alternatives),
justifications (arguments pro and contra the hypotheses), and finally the decision that
completes the loop. This is depicted in Figure 13.
 Decision-making loops can be decomposed by spreading out new loops for sub-
discussions, just like ACTION loops. The strength of this approach is that it combines an
intuitive language for representing argumentation (IBIS) with a process loop. The deci-

Customer Performer

Preparation Negotiation

Performance Acceptance

54

sions made and the rationale behind them are thus captured for later reference and learn-
ing. On the other hand, this notation does not fully cover the need for work process
modelling, rather it must be combined with other approaches. The WINWIN prototype
[67], extends design rationale and product models with negotiation around potentially
conflicting goals. In RAPCEE [401] rationale constructs are integrated with process
models. Here a plan context represents a strategy to fulfil a certain intention in given
situation. Plan contexts are decomposed into executive contexts, choice contexts and
other plan contexts. An executive context defines a process, which is automated by the
system. A choice context requires human involvement in selecting among alternatives.
Problems associated with explicating decision making rationale, e.g. the social barriers
to participation discussed in Chapter 2, are common to these approaches. Although the
languages reflect how people discuss rationally, experience indicates that many users do
not feel comfortable applying the notation [188].

Goal

Hypotheses

Decision, Action

Justifications

Problem analysis Evaluation

ResolutionProblem setting

Figure 13. Decision making rationale and process loop [317].

3.1.4 Declarative and Constraint-Based Process Modelling

Declarative workflow approaches have also been promoted. Constraint based languages
[142, 183] do not prescribe a course of events, rather they capture the boundaries within
which the process must be performed, leaving the actors to control the internal details.
Instead of telling people what to do, these systems warn about rule violations and en-
force constraints. Thus, common problems with over-serialisation are avoided [183]. On
the other hand, the resulting models are not very comprehensible. A graphic depiction is
difficult since it would correspond to a visualisation of several possible solutions to the
set of constraint equations constituting the model. The support for articulation of
planned and ongoing tasks is limited. Consequently, constraints are often combined
with transformational models [45, 142]. Constraints mainly capture outside control on
the workflow, not articulation inside the process group.

Goal-Oriented Process Modelling

Agent-based process support environments often use goal-oriented, declarative process
models [231, 303, 543]. Agents are assigned goals and constraint rules, but are left to
work out for themselves the details of how to reach these goals. ALLIANCE [11] provides
adaptivity, distribution and decentralised enactment for software-intensive processes.
ALLIANCE represents the work breakdown structure (reflecting goals and sub-goals) in
UML class diagrams, but does not define the ordering of the tasks. Scheduling of tasks
is done dynamically during process enactment, influenced by modelled pre-conditions,
inputs and outputs that reflect causal dependencies among tasks. ALLIANCE reflects the

55

vagueness of explicit process models by capturing all knowledge about the current state
as fuzzy statements. Fuzzy statements are assigned a probability between 0 and 1, going
beyond binary logic. This opens up a richer set of alternatives to the agents that interpret
and activate the model.

3.1.5 Roles and Their Interaction

Role-centric process modelling languages have been applied for workflow analysis and
implementation. Role Interaction Nets (RIN) [457] and Role Activity Diagrams (RAD)
[391] use roles as their main structuring concept. The activities performed by a role are
grouped together in the diagram, either in swim-lanes (RIN), or inside boxes (RAD).
The use of roles as a structuring concept, makes it very clear who is responsible for
what. RAD has also been merged with speech acts for interaction between roles [40].
The role-based approach also has limitations, e.g. making it difficult to change the or-
ganisational distribution of work. It primarily targets analysis of administrative proce-
dures, where formal roles are important.

3.1.6 System Dynamics

Holistic systems thinking [447] regards causal relations as mutual, circular and non-
linear (cf. Appendix A.1.2), hence the straightforward sequences in transformational
process models is seen as an idealisation that hides important facts. This perspective is
also reflected in mathematical models of interaction [524]. System dynamics have been
utilised for analysis of complex relationships in cooperative work arrangements [2]. A
simple example is depicted in Figure 14. It shows one aspect of the interdependencies
between design and implementation in a system development project. The more time
you spend designing, the less time you have for coding and testing, hence you better get
the design right the first time. This creates a positive feedback loop similar to "analysis
paralysis" that must be balanced by some means, in our example iterative development.
 System dynamic process models are used for analysis and simulation, but not for
enactment. Most importantly, system dynamics shows the complex interdependencies
that are so often ignored in conventional notations, illustrating the need for articulating
more relations between tasks, beyond simple sequencing.

Less resources for
Implementation

Need to get design
right first time

Much resources spent
on design

Risk assessment
of design
specificity

Iterative development

Figure 14. A system dynamic process model.

56

3.1.7 Object-Oriented Process Modelling

UML [381] has become the official and de facto standard for object-oriented analysis
and design. Consequently, people also apply UML to model business processes. Object
orientation offers a number of useful modelling techniques like encapsulation, polymor-
phism, subtyping and inheritance [315, 361]. UML integrates these capabilities with e.g.
requirements capture in use case descriptions and behaviour modelling in state, activity
and sequence diagrams. On the other hand, UML is designed for software developers,
not for end users. A core challenge thus remains in mapping system-oriented UML con-
structs to user- and process-oriented concepts [226]. To this problem no general solution
exists [315, 435, 467]. UML process languages utilise associations [238, 241], classes
[229, 335], operations [87], use cases [104, 245], interaction sequence [229], or activity
diagrams [104, 186, 381]. The lack of a standardised approach reflects the wide range of
process modelling approaches in business and software engineering.

Modelling Processes in Class Diagrams

Class diagrams is a core language in the UML framework [381]. These diagrams repre-
sent the object classes and relationships (associations, aggregation, composition, inheri-
tance) that form the static structure of a software system or application domain. Repre-
senting tasks and processes as classes thus enables the modelling of process structures
with work breakdown (decomposition) and control flow dependencies (associations).
Often, classes and associations are stereotyped as process model primitives [335]. A
stereotype is an additional classification for a UML primitive, and may add specialised
attributes, constraints and symbols.

Classes and Associations

Realising that the core knowledge represented in a process class diagram is captured by
the associations between classes, rather than by the classes themselves, Jaccheri et al.
[238, 241] focus on associations in their E3 process modelling language. In E3 associa-
tions are first class primitives that can be defined and specialised just like classes.

Classes and Operations

Carchiolo et al. [87] aim to support highly automated processes. They follow a pro-
gramming approach to process modelling [389], where behaviour is articulated as op-
erations in the process classes. An operation may include manual actions, and partial
specification of methods is allowed. This scheme thus extends the conventional seman-
tics of UML to include human involvement in execution, removing some of the rigidity
that a fully UML-compliant process class diagram entails.

Use Cases

Use case models are often the first step in a UML project [244, 245]. Use cases capture
the overall requirements on the system from the perspectives of various actors. When
use cases represent activities in a process, the limited expressiveness of associations
between use cases becomes a problem. While specialisation (extends) and composition
(uses) can be represented, there is no way of articulating logical precedence relations
(work and control flow). This makes use cases mostly suited for initial models, to be
elaborated later with other languages [229, 435].

57

Activity Diagrams

UML activity diagrams [63, 420] are specialised state transition diagrams. Activities are
distributed in swimlanes for different objects, similar to role-oriented PMLs. These
models have expressiveness and syntax similar to Petri nets. Some researchers have
found the fixed semantics of activity diagrams to be too rigid [435]. PROACTNET [104]
is a software process engineering environment aimed at supporting human control,
flexible scheduling, exception handling and incremental model definition. At the high
level, it uses extended use case diagrams to capture loose collections of related activi-
ties. At the low level, specialised and extended activity diagrams capture resource
needs, conditions, exceptions, inputs, outputs and products.

Integrating Approaches to UML Process Modelling

There are also a number of proposals for how different UML diagrams can be combined
to model multiple process perspectives. DYNAMITE [435] follows this metaprocess:
1. Use case diagrams capture knowledge about current work practice.
2. The structure of tasks and resources are modelled in class diagrams, one class for

each use case task. Associations capture control flow, data flow, and resource needs.
3. Concrete process specification class diagrams are elaborated. Task interfaces with

input and output parameters are separated from internal task realisation.
4. A generic set of methods for changing state and transferring data parameters is de-

fined for all tasks. State diagrams define the behaviour of task classes.
5. Event handlers that implement user level or model manipulation methods are as-

signed to task classes.
6. Based on the above models, an executable system is automatically generated.
Another integrating scheme is proposed by Hruby [229]. He uses class diagrams to rep-
resent structural aspects (organisations, business objects), use cases for dynamic aspects
(processes and workflows), interaction diagrams for detailed dynamics, state or activity
diagrams to model the process lifecycle, and also textual descriptions. Four models
(structure, interaction, lifecycle and description) are made of both the processes and the
objects, at five different levels (organisation, system, architecture, object, code). Each
level refines and realises the specification on the level above. In total this methodology
requires 28 different model views. Although the methodology is organised in repeating
patterns, and uses the same techniques at different levels, the size is overwhelming. Re-
searchers have thus criticised UML for separating rather than integrating different as-
pects (e.g. structure and process) [137].

Process Modelling in UML - Summary

The recent shift in OMG to focus on modelling (UML [381]), model driven architec-
tures, meta-objects [377], business object frameworks and workflow management [332,
378] indicate an interest in model-driven process support also from the technical side.
Whether these software-oriented approaches are transferable to interactive modelling,
remains to be investigated thoroughly. Potential problems include UML's complexity,
rigidity and system-oriented concepts [281, 137]. System-orientation also brings bene-
fits, in that the conceptual gap between process modelling and software implementation
is decreased. This is especially useful for workflow applications, where specialised so-
lutions are built from standard components complemented with customised forms and
business objects. In these applications, changes to the process model require recompila-

58

tion of the application software. Software development processes, where the end users
already know UML, is also especially suited for OO process modelling. As this section
has shown, numerous mappings of process concepts to UML have been proposed. Inte-
grating schemes combine several UML languages, but seem too complex for interactive
work process modelling by end users. The lack of first class process modelling primi-
tives is a major limitation of UML [137].

3.1.8 Other Explicit Process Representations

Numerous other textual, informal, or semi-formal process descriptions exist [119]. In
project management, temporal considerations are important. This is evident in the fre-
quent use of milestones and visualisations like Gantt diagrams. Ad-hoc inscriptions on
artefacts also carry process information, e.g. for coordination and error recovery [499].
There has even been some research on utilising programming languages for process
representation [115, 389, 541]. Process support systems are not the only area where
evolving, incomplete operational models are needed. In tailorable systems, user inter-
faces, groupware protocols, method engineering, domain specific modelling, agent in-
frastructures, dynamic ontologies, multi-perspective and reflective systems, similar
challenges are faced. The most important insights from these areas are discussed below.

3.2 Conceptual Modelling
Although suitable for articulating the aspects that users commonly want to share about
their work, existing process languages still have a number of shortcomings with respect
to the requirements uncovered in Chapter 2. Most notably, languages and models should
be simpler, more domain-oriented, and easier to change. This section thus investigates
general modelling techniques for solving these problems.

3.2.1 Instance Modelling and the Tyranny of Classes

Local modification of models is poorly supported in most languages. Instance model-
ling [5, 358, 393, 396] better represents particular situations (requirement R5). The
complexity of having to take into account all present and future occurrences, has pre-
vented dynamic change at the class level [213]. However, "rather pragmatic changes to
task instances are much more frequent than type evolution" [368]. It is also easy to de-
termine what a model element refers to, when it is a concrete individual (R1).

3.2.2 Property Modelling and the Tyranny of the Dominant Decomposition

The dynamic assignment of properties to object instances is an inherent feature of in-
stance-oriented modelling languages [358, 396]. The unique instantiation class condi-
tion [24] limits flexibility of many frameworks. Often instances are not allowed to
change class throughout their life span. State-dependent behaviour demands large
classes that contain all features potentially needed by an instance during its lifecycle.
The dynamic objects framework permits evolution of object structure and behaviour
[24]. It is also possible to refer to past and future states of the system, and express se-
mantic relations between time intervals. This allow us to capture the two-dimensional
evolution of the modelled world and the users' understanding of it.
 In order to accommodate multiple perspectives without increasing the complexity
of models (R1), some have advocated an even stronger focus on properties as the core

59

modelling construct. One such framework is developed by Opdahl and Sindre [385].
They argue that most modelling methods emphasise a few orientations at the expense of
others, e.g. transformation, information, objects or actors. The problems of such ap-
proaches include limited freedom for the users to choose what to represent (violating
R3), prescribed bias towards one methodology, reduced possibility of representing and
integrating multiple perspectives (violating R13), and poor language extension capabili-
ties (violating R4 and R12). To remedy these problems, objects are described through a
number of facets [385]. The facets that represent a particular perspective are connected
in a facet model. The language for a particular perspective thus becomes coherent and
reusable. In aspect-oriented programming, cross-cutting allows a block of code (the as-
pect) to control behaviour of a wide range of objects [157, 351]. From a modelling per-
spective, this corresponds to declaring behaviour for all objects that possess a certain
property. This is an interesting approach for integrating different viewpoints and soft-
ware components around one model (R7, R13).

3.2.3 Encapsulation or Semantic Holism?

Senge [447] proposes systems thinking as a foundation for learning organisations. This
paradigm replaces the linear causal relations of mechanistic thinking [357] with non-
linear and circular dependencies [194]. It also replaces reductionism with holism: Every
part in a system is related to every other to form a coherent whole. Though some re-
searchers have experimented with system dynamics, most process modelling languages
follow a reductionist approach. Their main building blocks are objects and binary rela-
tionships. Black box, closed system approaches seek to capture all dependencies be-
tween objects at the interface, hiding internal details [269]. While this approach is sen-
sible for constructive design of the computerised parts of an information system, it is
not self-evident that reductionism works equally well for requirements specification and
interactive models [189, 263]. Systemic models can for instance better analyse the ex-
pected effects and interdependencies of alternative solutions. Conventional models are
manageable, but the holistic perspective warns against approaches that assume, the in-
terface between two subsystems to be completely specified. Models constructed with
conventional languages, yet dominated by systems thinking perspectives, tend to be
very complex and messy, as illustrated in Figure 15 and by [172].
 For these models to be practical, we need multiple views that extract the features
that are relevant for a particular task, role or situation (R2, R13). These views should be
interactive, so that models can be edited through them. Views should also be customis-
able. Again a model-based approach is possible, i.e. to let interactive models control
what to include in each view. Recently, people have experimented with integrating sto-
rytelling and rich models, by writing a story of what the model represents, and linking
in model parts where they are relevant [292].
 Holistic perspectives have also influenced information systems research. Kangas-
salo [263] distinguishes between holistic, molecular and atomic languages. With atomic
semantics, the meaning of a model element is completely specified by that element
alone, while semantic holism lets the meaning depend on the other elements in the
model. Molecular semantics offers a compromise, where meaning is given by some
parts of the model. This relates to the discussion above on how to design simple, user-
friendly languages. A language with atomic semantics requires a lot of specific con-
structs, while holism allows meaning to be constructed by combining multiple elements,

60

like words in a sentence. Property models similarly define what a model element means
as a conjunction of all its properties. Holistic techniques are however poorly utilised in
modelling languages, which emphasise formal, well-defined and static atomic seman-
tics.

Figure 15: Snapshot of a reductionist enterprise model of a complex reality.

3.2.4 Articulating Vagueness, Incompleteness and Uncertainty

The SEEME modelling language contains elements for articulating the current state of
specificity in a model [214, 215, 217]. It contains symbols denoting that additional
knowledge is available but not modelled (or that it is articulated in another diagram),
that some elements are hidden, that the model is known to be incomplete, or doubted to
be complete, correct or appropriate. These symbols can be attached to any object or re-
lationship in the diagrams, enabling integration with most visual languages. They are
optional, and need not complicate the models. For an interactive model, incompleteness,
vagueness and uncertainty are assumed characteristics. Whether the default interpreta-
tion of a workflow model fragment should be that it is completely or partially specified,
depends on the context. Case studies are needed to investigate to what extent properties
like uncertainty and vagueness can and should be explicated, but our requirements indi-
cate a need for these mechanisms in articulation and negotiation of meaning.

3.2.5 Modelling Languages - Summary and Challenges

These two sections have provided an overview of languages for active process model-
ling. When faced with requirements for interactive process modelling, most current ap-
proaches share a number of weaknesses:

61

� Many languages are complex, containing numerous types and views not integrated
in a systematic manner. This is especially the case for UML.

� In many cases mathematical, logical or technical concepts are applied instead of
user or domain oriented. Petri nets and constraint based languages exemplify this.

� The languages that are precise and formal enough for automatic execution offer few
opportunities for human contributions to interactive activation. The languages do
not handle process models with varying degrees of specificity.

� The semantics of language elements is generally static and not easily adapted to lo-
cal contexts or multiple perspectives.

There are generic modelling techniques that can help us meet these challenges. Instance
and property modelling enable more flexible languages for local modification, multiple
views and concept evolution. Semantic holism is a promising, but poorly developed,
framework for designing simple and flexible languages.

3.3 Activation: Workflow Enactment and Beyond
Workflow is defined as "the automation of a business process, in whole or part, during
which documents information or tasks are passed from one participant to another for
action according to a set of procedural rules" [532]. This definition and most research
focus on automatic activation. Miers [349] categorise organisations and workflow tech-
nologies according to degree of empowerment and autonomy, the dominant coordina-
tion mechanism, and the depth of relationships between groups (Figure 16).

Figure 16. Miers' workware evaluation framework [349].

The top right corner is identified as the main challenge for further technology innova-
tion. The interaction perspective attacks this challenge by viewing workflow as "active
support for planning, performance and coordination of work based on an evolving,
more or less complete, explicit process model". This definition broadens the scope by
� Including groupware support for other forms of coordination (e.g. mutual adjust-

ment), not just standardised processes and automated sequencing of tasks,

Adhocracy

Professional
Bureaucracy

Divisional
Form

Super-
vision

Standard
processes

Standard
outputs

Standard
skills

Mutual
adjustment

Empowerment Position

Depth of
Relationship

 Coordination Mechanisms

Trusting

Controlling
Bounded

Unbounded

Data & transactions

Linked sub-processes

Dynamic process linkage
Knowledge sharing

Adjoined functions

Machine
Bureaucracy

Simple
Structure

62

� Allowing incomplete and evolving process models, managed by empowered users,
� Integrating process articulation (planning), as part of the process, facilitating knowl-

edge sharing and dynamic linking of process parts.

3.3.1 Static Workflow Management Systems

Static WMS [532] separate process definition (articulation) from process enactment (ac-
tivation), and do not handle changes to the definition during enactment. These activities
are supported by different tool components (Figure 17), and performed by different
roles. Process definition is the work of process experts, while process participants per-
form work through workflow clients and invoked applications. Managers administer
and monitor the work. This resembles the separation between conception and execution
in Scientific Management [73, 485]. Production workflow follows mechanistic princi-
ples, as indicated by the fact that the enactment service is called the workflow engine
[92, 357]. Static WMS aims to "increase efficiency by concentrating on the routine as-
pects of work activities" [177]. The core research challenges thus include transaction
processing, interoperability, reliability, performance and scalability, monitoring and
management of large numbers of routine, well-defined processes. These challenges are
clearly different from the ones uncovered here for flexible and interactive workflow, so
a detailed investigation of static WMS is of little relevance to this thesis.

Process
Definition Tools

Administration
& Monitoring

Tools

Interface 1

Interface 4
Interface 5

Workflow Enactment Service

Workflow API and Interchange formats

Other Workflow
Enactment Service(s)

Workflow
Client

Applications

Interface 3Interface 2

Workflow
Engine(s)

Workflow
Engine(s)

Invoked
Applications

Figure 17. Workflow reference architecture [532].

3.3.2 Adaptive Workflow Management Systems

Flexible workflow is a hot research topic [46, 274, 276]. Most work within this area
looks at how conventional systems can be extended, how static workflow systems can
be made adaptive and dynamic. Research challenges for adaptive workflow include:
� Controlled handling of exceptions [103, 152, 156, 165, 275, 320],

63

� Dynamic change, migration of instances from an old class schema to a new [7, 98,
152, 153, 550].

Most research in this area recognises that change is a way of life in organisations, but
still regards work as repetitive and prescribable. Within the community, an understand-
ing seems to have emerged that change requires process definition and process enact-
ment to be intertwined [152]. Most systems are however based on the premise that the
enactment engine is solely responsible for interpreting the workflow model. In other
words, users contribute by making alterations to the model, not by interpreting any part
of it. Thus, the model must be formally complete to prevent ambiguity and deadlock
from paralysing the process. This view of the engine as a Turing machine [523] compli-
cates the models, because all process variants must be included [276]. It makes excep-
tion handling controllable, but cumbersome. Hence, some researchers challenge the fea-
sibility of articulation by end users, arguing that they cannot be expected to change
models correctly [213]. Although this research targets closed system automation rather
than open interaction, many of its algorithms and design principles are relevant for in-
teractive workflow as well. An overview of adaptive WMS also helps us get a clearer
picture of what the innovative capabilities of interactive workflow is, and in which
situations these capabilities are needed.

Workflow Enactment in Petri Nets

Several approaches to adaptive workflow are based on the manipulation of Petri nets
[156, 553]. The execution of Petri nets is based on tokens moving along the arcs (flows)
of the model. Tokens reside in the places of the model, and the token population (the
marking) represents the current state of the process. Transitions are enabled when all of
their input places contain tokens. An enabled transition may fire, causing one token to
be removed from each input place and one token to be added to all of the output places.
In this way, each token can be viewed as a thread in the work process. Threads may
split and later merge at transitions.

Adaptive Enactment in Petri Nets

Exception handling is one area where the closed system assumption in adaptive work-
flow is temporarily relaxed, and human actors can influence the interpretation of the
model. A lot of research into adaptive WMS has focussed on ways in which the token
population in a Petri net can be altered in order to handle typical exceptions. The
CHAUTAUQUA system [156] includes operators for splitting threads, and conflicts be-
tween threads are resolved interactively in a merge operation. Exceptions are handled
by jumping to another activity. MILANO [6, 7] also allow user-controlled token jumps.
Organisational policies determine which users are authorised to make what kinds of
jumps. This technique can handle redo, loops, skipping an activity, parallelisation and
sequentialisation. MILANO applies an integrated conversation tool to support negotiation
in the exception handling process. These approaches handle simple changes to the exe-
cution order of tasks, partially meeting the requirement for local modification (R5).
More far-reaching changes, e.g. re-definition of a process model, are poorly supported.
Situated interpretation (interactive or manual activation) of incomplete models is not
allowed, so the models must be formally complete and consistent. Users are supposed to
react upon the arrival of tokens to tasks that they are responsible for, not to make proac-
tive decisions regarding the flow of work.

64

The Dynamic Change Problem

In most adaptive WMS there is an implicit assumption that workflows are modelled at
the class level (often called the schema), and that instances are enacted according to the
rules specified for the class. In this context changes must be dynamically propagated
from the class schema to ongoing instances [153]. Given the large number of instances
that follow the same model, manual transfer is expensive. Dynamic change may also
introduce deadlocks that halt some of the instances. Automated or semi-automated
change management is thus needed. In Petri net models, the dynamic change problem is
formalised as the search for a mapping of token markings from one model version to
another. Ellis et al. [153] propose a combination of immediate and delayed transfer of
instances to the new model. The model is partitioned into change regions. If a region is
not changed in the new version, or if the changes applied in a region represent an up-
sizing (the new version can do what the old one could and more), immediate transfer is
possible for all instances currently in the region. Instances that reside in a down-sized or
more complexly changed region, are not transferred until they leave the region (delayed
transfer). This approach, called synthetic cut over change, is also implemented in
MILANO [7]. While it ensures correctness, e.g. that no deadlocks are introduced in the
migration process, the method is complex, and only handles a few change scenarios.

Metaprocess Support for Workflow Evolution

Ellis and Keddara [155] claims that "a workflow change is a workflow" in itself, arguing
that metaprocess support for workflow change is needed. Neeb [366] makes a similar
proposition, discussing to which extent metaprocesses can manage unforeseen and an-
ticipated changes. In ML-DEWS (Modelling Language to support Dynamic Evolution
within Workflow Systems) [155], change can be modelled, enacted, analysed, and moni-
tored just like any primary process. ML-DEWS integrates the handling of instance and
schema changes, and provide predefined change process schemes for typical approaches
like abort, defer, edit, continue and synthetic cut over. Instance changes are handled as
temporary schema changes. ML-DEWS is based on UML, with all workflow constructs
represented as classes. Although their default change processes include an ad-hoc
scheme, it is not clear (from [152, 155]) to what extent this case is facilitated by their
implementation. The modelling language seems complex, rigid and system-oriented.
 Casati et al. [98] also propose a language for specifying the change management
metaprocess. A separate language is selected because it needs to be more flexible than
the basic process definition language, and the performance and scalability requirements
for change processes are not as strict as those for the core production processes. Casati
et al. use Event-Condition-Action (ECA) rules for change management. An ECA rule
declares what action should be performed when an event occurs and the condition
statement is fulfilled. They are also used to control transitions in state diagrams [209].
The NETS-IN-NETS prototype [554] allows dynamic model interpretation through recon-
figuration of the enactment rules at runtime. The enactment rules are represented as a
Petri net metamodel. In other words metaprocess modelling and process modelling is
done in the same language.

Exception Handling

In ADOME (Advanced Object Modelling Environment) [103], a WMS is built on top of
an active object oriented database system. Other approaches [12, 97], have also built

65

exception handling on top of transaction mechanisms in databases. ADOME was de-
signed to minimise the need for human intervention in resolving exceptions. Conse-
quently, trivial exceptions are handled by the system component where they arise. If the
component is incapable of handling it, the exception may be forwarded to automatic
exception handling. Exception handlers are defined declaratively with ECA rules or op-
erationally with metaprocesses. If no automatic handler exists, users are involved, either
interactively or with full manual control. If nothing works, the exception is regarded as
a failure. ADOME advocate an ongoing harvesting of user-defined exception strategies
into a repository for reuse. Defeasible workflow [319, 320] is a similar approach. Here
workflows are modelled by justified event-condition-action (JECA) rules. The justifica-
tion part describes the context in which the rule can be applied (R11).
 This perspective on exceptions as a source for learning is not shared by Klein and
Dellarocas [275], who define "an exception to be any departure from a process that
achieves the process goals completely and with maximum efficiency". They use a taxon-
omy of coordination mechanisms in the PROCESS HANDBOOK [329] to classify and di-
agnose failure situations. Cugola [117] argues that inconsistencies in process models
should be tolerated. This is partly implemented in the SENTINEL and PROSYT prototypes,
but mainly for temporal deviations from an otherwise complete model.
 Some designers of adaptive WMS thus suggest that designing exception handling
as an interactive process, works better than full automation. However, human involve-
ment is only triggered when no acceptable procedure is found. This approach applies
interaction in exception handling, but not in normal activation. Consequently, incom-
plete and evolving models are not adequately supported. Human involvement is reac-
tive, but not proactive.

MOBILE

The assumption that the workflow model is defined at the class level, underlies the de-
sign of the MOBILE workflow prototype [213, 228, 236, 366]. It distinguishes between
� Flexibility by selection, anticipated and modelled before enactment, and
� Flexibility by adaptation, modifying the workflow class definition.
Flexibility by adaptation can be implemented with or without dynamic change propaga-
tion to ongoing instances. Selection flexibility is achieved by advance modelling, where
alternative paths are modelled before execution starts, or late modelling, where parts of
the workflow class is left as a "black box" to be specified during execution. Interest-
ingly, of the four evolution scenarios Heinl et al. [213] discuss, the only one being ap-
propriately addressed by another solution than late modelling, is the error case, where
the modellers have made a mistake. This indicates that interactive (late) modelling is
more useful than conventional dynamic change and exception handling. The authors
claim that although ad-hoc changes will occur, ordinary end users cannot be trusted to
update models in an uncontrolled way. This claim is based on the view that workflow
modelling is difficult, time-consuming and requires expert knowledge. Given the em-
pirical evidence discussed in Chapter 2, the perceived impossibility of workflow articu-
lation by end users seems to be a result of the class-based approach rather than an inher-
ent feature of all workflow solutions. Instance modelling removes the great complexity
of having to deal with all instances of a class in one model.

66

INCONCERT

INCONCERT is a commercial WMS that incorporates flexible collaboration features [1,
429, 430]. The original design goals included mutable process models, allowing for
human judgement, and provision of a shared workspace for task performance. The sys-
tem works on workflow instances, rather than classes. Templates with varying degree of
structure are offered as starting points for local articulation by process participants. In-
stance-orientation also simplifies the modelling language. For instance, repetitive tasks
generate new instances for each repetition, so loops are linearised. Although
INCONCERT meets many of the requirements, it has some limitations. The system does
not allow collaborative tasks with more than one actor. It does include some groupware
features, like shared workspaces for documents, but not extensive support for e.g. nego-
tiations or project management.

ENDEAVORS and TEAMWARE

TEAMWARE FLOW includes user-oriented process models as a design goal [478, 542].
Collaborative planning of work is approached through divide and conquer, with indi-
viduals taking responsibility of their own parts of the process. The focus is complete
workflow models, not models consisting of more or less articulated fragments. Instance
level modifications are supported, as long as they are in compliance with the class
schema. ENDEAVORS [62, 222, 261] is the successor of TEAMWARE FLOW. It combines a
number of techniques for exception detection, avoidance, tolerance and handling [261]:
� Runtime dynamism, late binding of resources, data, process structure and behaviour.
� Configurable and partial execution. The engine can be reconfigured to enforce dif-

ferent rules for each instance. Users can also define new rules (R4, R6).
� Typed modelling, extensible typing (R12), generalisation (R8) and specialisation of

model elements.
� Reflexivity, changes to the model are allowed during enactment (R6).
� Instances can be promoted to templates, capturing local process improvement.
� A library of reusable (R9), composable (R10) model fragments.
Alongside INCONCERT, ENDEAVORS seems to be the WMS that offers the most support
for the requirements uncovered here. It combines conventional adaptive workflow tech-
niques with some interactive features, but support for local modification (R5) and in-
complete models (R6) is limited.

Adaptive Workflow - Summary

Adaptive WMS offers important flexibility compared to static systems. Changes to
workflow models affect running instances, and exception handling is supported. Adap-
tive workflow still shares the basic assumption of static WMS: that the process should
be completely predefined at the class level. As we have seen, the situated and contingent
nature of most project work demands local articulation in each project. New enactment
concepts should thus be investigated.

3.3.3 Case Management Systems

Case management systems [350] such as VECTUS [348] and FLOWer [551], recognise
the unique characteristics of each case. They facilitate manual handling of exceptions,
manual selection and scheduling of tasks subject to predefined constraints etc. Cases are

67

less complex than knowledge intensive projects and require fewer participants. Often
the objective is to enable as few persons as possible to deal with the whole case, mini-
mising hand-off overhead, speeding up the process and removing extra work in answer-
ing customer enquiries.

3.3.4 Towards Interactive Workflow Management

Workflow systems with less prescriptive models have been proposed as an alternative to
the mainstream adaptive workflow research. Concepts like human-centred [117, 164],
mixed-initiative [45], evolving [214], emergent [254], and free workflow [142] have
been elucidated. These approaches typically include some of the following features:
� Soft constraint enforcement,
� Supporting proactive users in controlling the work themselves,
� Allowing incomplete, ambiguous models to be enacted, and
� Flexible combination of reusable model fragments.
This area of research is currently fragmented, lacking a common terminology and a
well-defined set of problems [251].

Interaction as a Framework for Workflow Management

The interaction framework [523, 524] views computerised information systems as open.
It directs research into new ways in which computerised and human actors can cooper-
ate in order to solve problems. The notion of interaction machines (Figure 4 on page 15)
can be further extended to multi-stream distributed interaction machines [523], which
enable multiple users and software components to interact. Wegner and Goldin have
looked at what interaction means for the expressiveness of models [524], establishing a
domain and language-independent notion of interactive expressiveness and computabil-
ity. Workflow systems can benefit from this approach,
� Because it enables more powerful exception and change handling, flexibly combin-

ing the capabilities of users and algorithms,
� Because multi-user, distributed groupware systems are better described as open in-

teraction machines than as closed Turing machines,
� Because it provides a framework for reasoning about the use of models across dif-

ferent areas, and
� Because the expressiveness of interactively interpreted models better matches the

contingencies of real work processes.
If an information system is to act as a knowledge mediator [22, 41, 93, 258, 425] be-
tween its users, it must be able to represent their knowledge accurately. Interactive sys-
tems are needed in order to mediate the non-determinism, vagueness and uncertainty of
organisational realities [189]. A multi-stream interaction machine will appear non-
deterministic to its users, due to limited observability. Any one user cannot know every-
thing that occurs at all the interfaces to the system. Hence it appears non-deterministic.
Correctness of open systems can never be proven in general, only for specific situations
[524].

Interactive Workflow Enactment

A workflow engine activates a process model in order to support coordination. In most
systems activation manifests itself as automated sequencing of tasks, though some also
provide guidance based on modelled constraints [45]. The difference between auto-

68

mated and interactive enactment parallels that of Turing machines and interaction ma-
chines, as illustrated in Figure 18. In static and adaptive approaches enactment is com-
pletely controlled by the input workflow model. When change occurs, the model must
be altered and reloaded. Interactive enactment accommodates change by intertwined
user-controlled activation (re-interpretation) and model updates. Because user interac-
tion is allowed the model need not be 100% complete and consistent. It may instead
match the degree of specification currently found in user defined process models such
as project plans.

Algorithmic
engine

Interactive
engine

Workflow
model

Enactment

Articulation

Activation

Process expert

Work performer

Knowledge
workers

Figure 18. Algorithmic and interactive enactment.

Semantics of Models

The interaction framework includes a new look at how models are interpreted [524]:
� The Turing paradigm interprets models by induction, where every allowed behav-

iour must be modelled (or algorithmically deducible from the model).
� An interaction machine interprets models by co-induction, where everything is al-

lowed that is not prohibited by the model.
Declarative languages follow the interaction paradigm in this respect [142, 183], but
most operational approaches do not. This discussion is relevant for the ability of the
system to support processes with varying degrees of specificity [45, 254]. Classic model
interpretation assumes fully specified processes, hence the dynamic change problem.
Interactive systems assume that models evolve to reflect improved understanding of the
work. User involvement in activation is viewed as situated articulation, complementing
or overriding predefined rules. This allows models with no structure, just an unordered
list of tasks, and removes the common problem of system-required completeness that
leads to over-serialisation of the flow of work [183].

Reconsidering Formality

The rigidity of current WMS architectures have been attributed both to the formal na-
ture of the modelling languages and to the tight coupling of modelling and enactment.
Agostini and DeMichelis [7] argue that neither conception is accurate, that simple mod-
els, easy to change for process participants, can remain formal and tightly coupled to

69

enactment without causing rigidity. The real problem is not formality, but lack of inter-
action. Our perspective complements this view with the need for interaction also in
model interpretation and enactment. This provides guidelines for avoiding the problems
of formalisation while preserving the benefits. To enable automatic error checking, veri-
fication, deduction, simulation etc., the modelling language should have a formal defini-
tion with syntactic and semantic rules. This definition should however not prevent users
from re-interpreting the model in situations that arise. Models should not be required to
completely schedule all tasks, or always know which task is the next to be performed.
The formal interpretation of the model is just one of many alternatives; it is the one that
will be enacted if no further changes are made; it is the context-insensitive interpreta-
tion. What is needed is thus a language where complete models can be formalised but
incomplete models are also allowed.
 The interaction framework advocates holistic enactment semantics. It views the
model as a system of autonomous components [524]. Each component can be formal-
ised, but their interaction, controlled by users, cannot. Hence, the system exhibits emer-
gent behaviour. This behaviour is non-deterministic and irreducible to algorithms, as
shown by Wegner [523]. Thus, formality of components need not stop the system from
mediating the situated, local, emergent, contingent, vague, and open nature of its envi-
ronment [189]. This just requires interactive components and semantic holism. Most
WMSs today apply atomic or limited molecular semantics, not holistic. In Petri nets the
firing of a transition depends on the presence of tokens on its input places. Some mo-
lecular non-determinism can arise when overlapping token sets enables multiple transi-
tions. This is often automatically resolved, or even prohibited as in free-choice Petri
nets [549]. Some systems however let the users decide [535].

User Involvement in Enactment

A key question that the interaction paradigm puts to workflow designers is how users
can be involved in the enactment process. As with other interactive systems, user in-
volvement can be reactive or proactive. Reactive involvement means that the system
asks a user to resolve ambiguity in the model. The follow-up questions in this scenario
are: Which user(s)? When and how are they asked, and what support are they offered to
solve the problem? Proactively, users can involve themselves by complementing or
overriding the modelled scheduling of work. An example of this from the workflow lit-
erature is opportunistic involvement: That someone starts to work on a task although its
inputs are not yet ready [142]. Such proactive actions can be facilitated by awareness
notifications [415] and visualisations [253] of the current state of the process.

Shared Task Management

By not demanding that flow dependencies be included in the models, the interactive
workflow approach on one extreme corresponds to shared task management [283]. In
such a system no task interdependencies are articulated. Instead, information about tasks
is available to all, and scheduling is left to the users. Experience has demonstrated that
task management is useful on its own [283].

Linked Abstraction Workflows

Linked Abstraction Workflows (LAW) [164] implements an enactment framework that
combines enforced scheduling of tasks with freedom for the end users. LAW accom-

70

plishes this by explicitly modelling the participants' authority to change the model. The
authorisation scheme follows the work breakdown structure. For each task decomposi-
tion, these modification rights can be associated:
� CAN. The process is a recommendation, so the actors may use another method.
� STRICT. The specification is mandatory, and no changes are allowed.
� MUST. Specified steps must be performed, but new subtasks may be added.
This contribution is highly relevant for answering the question of which user to involve
in interactive enactment. It provides clear rules for when human intervention can be lo-
cal, and when it must be more centralised (pushed up in the work breakdown structure).

Guiding and Enforcing Constraints

As we discussed in section 3.1.4, constraint based reasoning has been applied to design
flexible WMS [142, 183, 192]. A constraint rule should be fulfilled throughout its exis-
tence, unlike a transformational task, which is only active during the short time when it
is executed. FREEFLOW components subscribe to notifications about events that occur in
other components, e.g. due to a task dependency [142]. Constraint rules control the flow
of work by determining whether a task can be completed or whether it must be per-
formed again. In GPSG (Generalised Process Structure Grammar) [192] the process
definition is open, so new constraint rules can be added dynamically during the execu-
tion of the process. Both document and task rules are supported. This interweaving of
task and document structures enhance the expressiveness of the language and the rich-
ness of the coordination functionality.

Designing for Different Degrees of Specificity

Bernstein [45] articulates the need for WMSs that handle varying degrees of specificity
in the process models, from unstructured to fully pre-specified. He shows how current
tools either support very loose ad-hoc collaboration or automate fixed processes (cf.
Figure 19). A case study is presented that highlights the need for integrating ad-hoc and
predefined process fragments in one system. He proposes to combine coordination the-
ory and soft constraints, enabling a flexible distribution of control between the system
and its users. His design focuses on model activation, but does not facilitate process ar-
ticulation by end users. No system prototype has been implemented.

Handling Vagueness and Uncertainty in Workflow

The SEEME modelling language was discussed in section 3.2.4. It allows users to ex-
plicitly state that they are uncertain about parts of a model, or that they have chosen not
to explicate all details. This language has also been proposed as a starting point for
"evolving workflows by user-driven coordination" [214]. The approach recognises that
user involvement is needed in learning organisations, whose processes cannot be com-
pletely predefined. No workflow prototype has been built, but the SEEME language has
been applied in a number of process modelling case studies [215, 216]. In these cases,
the researchers learned that incomplete models are simpler and easier to understand for
the process participants. For instance they discovered that the sequencing of activities
should be minimised to only represent unavoidable causal relations. Hermann concludes
that incremental structuration of a process by its participants is "hardly supported by
current groupware or workflow concepts" [214].

71

Figure 19. Different degrees of specificity in process models [45].

Extending the Scope of Model Driven Behaviour

Some WMS prototypes extend the scope of contextualised work support beyond work-
flow enactment. Several researchers have proposed to integrate groupware and work-
flow [18, 146]. MILANO [6] includes a multimedia conversation handler for negotiation
and communication. XCHIPS [233] integrates a hypermedia collaboration support infra-
structure and synchronously shared workspaces. ENDEAVORS [261] also includes a pro-
totype integration with a communication tool.
 Awareness servers notify users of a shared workspace about relevant events that
have occurred [141, 405]. By keeping users up to date with the current state of the
workspace, such a component supports coordination by mutual adjustment [352]. Inte-
gration of awareness and workflow has been proposed by a number of researchers [18,
415, 416, 428]. None of these proposals however have resulted in implementations or
detailed investigation of the interplay between workflow and awareness engines.
 INCONCERT (see above), INTERMEZZO [149] and some specialised systems [49,
68] have combined workflow with access control. Flexible configuration and reuse of
access control policies is however poorly supported. Project management functionality
has been prototyped in LAW [164], and INCONCERT is integrated with MICROSOFT

PROJECT. The design proposed by Bernstein [45] (above) however goes farthest in com-
bining model-activating components in a workflow architecture. This architecture is
however not implemented, so the complexities that arise from integrating several com-
ponents requiring specialised terminology (featuritis) is not dealt with.

3.3.5 Workflow Management Systems - Summary

This discussion has identified four main WMS categories: static, adaptive, interactive
and case-oriented. Static and adaptive systems view work as repetitive and model proc-
esses at the class level. They differ in support for exception handling and whether
changes to a class affect ongoing instances. Interactive and case-oriented systems view
each process as unique, and facilitate articulation at the instance level. Case manage-
ment systems deal with less complex processes, and the individual steps that each case
consists of are often prescribed. Interactive WMS target project work, which is harder to
structure in advance. Process learning is thus an integral part of the work. As we have
seen, interactive workflow management is a research area in its early phases, and the
most innovative proposals have not yet been implemented. The interaction framework
illuminates key discussions concerning user involvement, formality and varying degrees
of specificity.

72

Related Work

A number of different classifications of workflow management systems have been pro-
posed in the literature. Georgakopoulos et al. [177] offer a comprehensive overview,
refering to these alternative classifications:
� Ad-hoc, administrative, and production, distinguished by different degrees of human

control, repetitiveness, and predictability of the supported processes. Production and
ad-hoc roughly correspond to static and interactive in our framework, while admin-
istrative WMS resembles case processing.

� Mail, document and process centric, distinguished by different coordinative arte-
facts as primary elements in the workflow models. Abbot and Sarin [1] similarly
distinguish between mail and database driven architectures.

� Tightly and loosely coupled. In a tightly coupled system the model is directly input
into the workflow engine, while a loosely coupled workflow application is devel-
oped in a conventional software engineering project. Models are created in design
and later programmed into the application.

Similar classifications are also surveyed by Carlsen [90]. Willumsen [535] outline ap-
proaches to execution of conceptual models in CASE tools during software develop-
ment. The purpose of his approach is to validate the dynamic behaviour of the modelled
system, and to enhance communication with the users through live representations
(animation) and explanation of execution traces. Willumsen includes the user as an ac-
tor deciding what should happen next, pointing towards interactive models.

3.4 Mechanisms for Harvesting and Reuse
This section provides an overview of language constructs and operations that support
process model harvesting and reuse. Like in the preceding sections, it is an emphasis on
evolving, incomplete and ambiguous models that distinguishes this analysis from previ-
ous work [159, 406, 504, 540, 550]. The analysis is based on the organisational perspec-
tives surveyed in Chapter 2. Tacit knowledge, gaps between models and practice, inte-
gration of knowledge management in everyday work, and the relations between trust,
power and participation, provide core perspectives.

3.4.1 Generalisation of Process Models

The PKM reference model (Figure 8 on page 44) sees interaction between local and
global process models as a foundation for knowledge management. This interplay re-
quires that we understand what generalisation means with respect to process models. A
model is a generalisation of another if it represents a larger number of cases. In object-
oriented software, the meaning of superclass-subclass relationships is formally defined.
What makes a process model a generalisation of another is not so straightforward. The
main challenge is to generalise the dynamic and behavioural aspects.
 In the PROCESS HANDBOOK [329] and contemporary workflow systems, generali-
sation may be seen as adding details to the models, increasing the number of possible
paths through it [213, 540]. This approach assumes that the model contains every al-
lowed behaviour. It has been called the least-common-multiplier generalisation [550].
Here models are treated as prescription for action, rather than as resources for situated
adaptation [471]. Taken literally, this means that the root node in a specialisation hierar-
chy should include all the details of all other nodes in the tree. Such an approach will

73

make general models hard to comprehend and difficult to maintain. Some of these prob-
lems are remedied by treating decomposition as a specialisation operation [329].
 Models can also be viewed as socially constructed artefacts reflecting partially
shared understanding of work, created and used with a rich background of tacit knowl-
edge. From this perspective, adding details to a model means saying something more
about the work it reflects; it means narrowing the scope of behaviour, i.e. specialisation.
An empty model is viewed as a clean sheet, as full freedom, not as nothing-at-all. These
greatest-common-divisor approaches [550], have local change (R5) of incomplete mod-
els (R6) as a foundation, enable structured repositories (R9) and simpler models (R1)
that are easier to compare (R8) and manage configurations of (R5). The interaction
framework thus advocate co-inductive model semantics in line with this approach (cf.
section 3.3.4).

3.4.2 Classification

In section 3.2 instance modelling with dynamic properties was identified as a promising
technique for simple, flexible and comprehensible models. Classification is still useful,
helping actors to identify suitable templates in structured repositories (R9), allowing
incremental model definition through inheritance (R10), and facilitating process analy-
sis (R8). Classes improve cognitive economy (R1), and they are convenient in articula-
tion. It is simpler to declare that "this object is a person", than to say that "this object
should have the properties name, address, phone number and social security number".
 Inherent classification, the requirement that instances must be defined by a class,
is however problematic [396]. Classes are socially constructed; they are not essential
structures in the real world. Parsons [396] shows that major problems in information
management, including schema integration, evolution and interoperability, is a direct
result of class-orientation, The solution to these problems can be greatly simplified with
instance as a first order primitive. Multiple, dynamic classification allows different per-
spectives to coexist, be negotiated and represented within the same model (R13). Dis-
agreements about classifications are more frequent than disagreements about the iden-
tity of individual objects.

Intensional Classification

Parsons [393] draw upon these insights to define a dynamic classification model, where
objects belong to classes if and only if they posses all the defining properties of the
class. Using the conceptual framework of Bunge [81], this classification method is
called intensional. The CONCEPT D language [262] similarly utilise intensional con-
tainment relations to define new concepts through generalisation, specialisation, aggre-
gation and value transformation.

Extensional Classification

The extensional perspective on classification views a class as a set of objects (the exten-
sion) with something in common [395]. Conventional subtyping is extensional, in that
every object, which is in the extension of a subtype, also must be in the extension of the
supertype. The extension of a class includes all actual and potential objects to which the
class concept applies [81]. Extensional classification makes sense when you deal with
instances, as it makes class membership (the relation between class and instance) ex-
plicit and straightforward (R1).

74

Prototype/Instance Frameworks

Not all modelling languages apply a class concept, some make do with just instances.
Taivalsaari [483] discuss object or prototype inheritance as an alternative to class inheri-
tance. Here, types are initially defined by their exemplars or prototype objects, i.e. by
special instances rather than by class level constructs. New objects are created by clon-
ing a prototype rather than by instantiating a class, and individual instances can be
modified. The AMULET and GARNET user interface systems [358] are tailorable architec-
tures that use prototype/instance inheritance. In these systems any instance can serve as
a prototype for other instances, so any model element can be reused ad-hoc. Constraints
are used to define rules for the inheritance of features from prototype to instance. Ex-
perience indicates that single layer models are easier to learn, more intuitive, more flexi-
ble, and less error-prone than two-layer (class and instance) models [358].

3.4.3 Inheritance

Inheritance is as a core feature of object orientation, combining reuse with specialisa-
tion. Specialised descendants inherit structure, interface, and/or behaviour from general
ancestors. Inheritance thus simplifies models that are incrementally defined in a spe-
cialisation hierarchy. The detailed semantics of inheritance vary across languages.
Taivalsaari [483] provides an overview of these many differences:
� Single or multiple, can a descendant have more than one parent?
� Implementation reuse or interface subtyping, the first sharing behaviour (code), the

latter expressing specialisation. Subtyping assures automatic substitutability.
� Class or instance as primary object (as discussed above).
� Dynamic or static, is the descendant able to change ancestors during its lifetime?
� Selective or full, may descendants select which features should be inherited?
� Acyclic inheritance graph, or are cycles allowed?
� Lookup scheme, is the inheritance graph traversed top-down or bottom-up in order

to find a feature? Is just the first definition used, or are all composed?
� Creation copy or lifetime sharing, do descendants just copy the features of their an-

cestors when they are created, or are there some way of sharing dynamic changes.
� Deep or shallow copy, are objects or just references to them copied?
The level of compatibility between a class and its subclass can be strict (same semantic
behaviour), or non-strict at the levels of signature (full syntactic interface compatibil-
ity), name (operation signatures can be redefined), or cancellation (elements can be
added or removed freely). Behaviour compatibility seems the most straightforward in-
heritance scheme for processes and other behavioural elements, but strict inheritance is
of limited utility for evolving and complex systems [483]. Inheritance of process models
is more complicated than inheritance in object oriented programming languages for
these main reasons:
� Models consist of numerous objects, which are inherited together.
� Semantics (process behaviour) and not just syntax (blocks of code) is inherited.
� Models articulate human actions, possibly incompletely and incorrectly.
� Process models evolve during execution.
Numerous systems have applied inheritance to workflow and process models, trying to
meet these challenges.

75

Inheritance of Operations

Conventional inheritance has been applied to process modelling. Carchiolo et al. [87]
(cf. section 3.1.7) represent dynamic behaviour as operations, which are inherited from
class to subclass. Operation types define the event types that are part of the operation
(name compatibility), operation templates define the exact number and types of events
(signature compatibility), while operation defaults also assign values to attributes (be-
haviour compatibility). For a given object class somewhere in the specialisation hierar-
chy, any operation may be defined as a type, template or default.

Inheritance of Associations

E3 [238, 241] includes associations as first order primitives that can be defined and spe-
cialised just like object classes. Associations are also inherited from a class to its sub-
classes. E3 models are structured into three levels. The language is defined as a hierar-
chy of classes and associations at the creation level. This level includes both kernel and
user-defined classes, so the language is extensible (R12). At the definition level, general
process models are defined as subclasses of the creation level classes. At the instance
level, a particular model is generated according to the constraints of the template (fol-
lowing inherent classification).

Layered Policies

In OBLIGATIONS [58] an overhead transparency metaphor is utilised to combine multiple
layers of process models. Each layer holds a portion of the model, and when the layers
are put on top of each other (like transparencies), you get the total model. Similar to E3,
OBLIGATIONS has layers for general specification, local modifications and instance data.
Each of the layers can be presented and modified alone. A layer may delete, create, re-
place and modify objects from more general layers (cancellation inheritance). A layer
may include multiple templates, so multiple inheritance becomes a method for model
composition (R10). The binding of instances to templates may go through a surrogate.
Surrogates contain rules for which version of a template object to select, enabling late
binding.

Petri Net Inheritance

Van der Aalst [550] investigate different forms of inheritance in Petri net process mod-
els, and list a number of transformations that can be used to generate subclasses:
� Adding a new alternative path,
� Adding a new parallel path,
� Adding new tasks as long as they don't alter the order of the old tasks.
Strict behaviour compatibility of allowed execution traces for each model is used as
subtyping criteria. Two distinct forms of inheritance are proposed. With protocol inheri-
tance, the subclass would have the same behaviour as its superclass if all the added
tasks were blocked from use. With projection inheritance, the hiding of new tasks from
the execution trace of the subclass results in the same trace as the superclass. Lifecycle
inheritance is achieved if a combination of hiding and blocking can produce the same
behaviour as the superclass. Lifecycle inheritance is found to be suitable for aggregat-
ing, comparing and structuring process variants [550], however the approach targets
management of dynamic change and not organisational learning [541].

76

Requirements Met by Inheritance

Above four approaches to process model inheritance were described. Two started with
classic OO mechanisms, while the others took transformational languages as their start-
ing point, and derived inheritance mechanisms based on the dynamic behaviour of those
models. All of these approaches enable generalisation and merging of local variants into
a common schema for comparison and metrics (R8). Structured template databases (R9)
can utilise their specialisation hierarchies. A two dimensional navigation structure like
that of the PROCESS HANDBOOK [329] can be defined. (See Figure 20, where vertical
decomposition and horizontal specialisation are combined. Positioned at a process ele-
ment, you can move in four directions to explore related templates).

Figure 20. Process compass for navigating a template repository [329].

The languages of these systems vary from user-oriented (R3), simple (R1), graphical
(R2) and extensible (R12) like E3 and OBLIGATIONS, to programming-oriented. Petri
nets have an advantage in that formal analysis methods exist (R8). With respect to local
change (R5) and incomplete models (R6), OBLIGATIONS provides the most flexible solu-
tion. Both the OO approaches allow local change within predefined boundaries. The
strict inheritance scheme proposed for Petri nets is rigid, and mostly directed at top-
down control. E3 and OBLIGATIONS support multiple views (R13), and separate instance
data from local modifications, making it easy to reuse the specification part of any
model, even that of ongoing processes (R8). Inheritance can however not help us meet
the requirements most critical for social learning. The construction of a shared under-
standing among process participants should be better supported, by allowing representa-
tion, reasoning and reconciliation of different interpretations (R13). Other weaknesses
include limited support for incomplete instance models (R6), composition (R10), and
description of suitable contexts of use (R11). The following sections explore approaches
to these challenges.

3.4.4 Process Model Composition

Composition of models from smaller building blocks is an essential reuse technique. In
most projects, several templates must be combined in the work plan. This implies that
harvesting should produce template fragments that we can easily put together in a num-
ber of ways. Alternative solutions to similar problems can also be combined into one
template, encapsulating their differences into specific parts of the model. Model build-
ing involves both vertical and horizontal composition of fragments [313]. Vertical, or
hierarchical, composition involves connecting a process model as a decomposition of a
step in another model. Horizontal composition involves connecting fragments at the
same level of detail.

77

Problems with Black-box Components

Encapsulation hides complex models inside a component with a clearly defined inter-
face, so that it can be replaced by another model with the same interface. Encapsulation
is a reductionist approach. The holistic, non-linear causal relations between activities
imply that all dependencies cannot be captured by a simple interface [31, 71, 471].
Thus, there are pitfalls with encapsulation, e.g. that dependencies not captured by the
interface are overlooked, remain tacit and are lost in subsequent situations where the
components are reused.

Process Component Interfaces

The question is then what kinds of interface definitions are suitable for process models.
In transformational models the interface of an activity consists of input and output
flows. Some richer notations add resource roles [90]. Others define triggering events,
pre- and post-conditions [115]. From a knowledge perspective, the speech acts that
form the interface between a component and its environment, seem a suitable encapsu-
lation mechanism [130]. Rather than just simple commands, the interface then allows
negotiation across the boundary (R13).

Pluggable Actions for Vertical Composition

The Action Port Model (APM) [90] includes a novel approach to vertical composition
called pluggable actions. In APM, units of work are modelled as actions. In addition to
input and output flows, the interface of an action includes a resource signature, describ-
ing personnel, tools, information etc. needed to perform the action. Recurrent model
patterns can be specified as action clichés. A cliché has one or more undefined steps,
represented in its resource signature. In a particular process, local action definition are
plugged into the cliché to take the place of the undefined steps. This enables local adap-
tation (R5) without changing the cliché. A similar mechanism is included in MOBILE

[213], where abstract variants hide alternative sub-models from the main template (cli-
ché), and black boxes represent parts of the model that will be specified later.

Runtime Components - Reuse through Brokering

Open Process Components (OPC) [175] manage both organisational and personal
model fragments. A process component can start, suspend and abort execution, and tell
other components about its capabilities and current state. This enables distributed coor-
dination support. Relationships between components can be established dynamically
through a resource broker, which matches the needs of a project with the capabilities
reflected in personal process fragments. OPC even allows two components to have dif-
fering local semantics (R7, R12). Local change (R5) is facilitated by having compo-
nents delegate their interpretation to representation objects, rather than inherit. The
Internet workflow standard SWAP also support runtime components [61].

3.4.5 Projection of Multidimensional Process Models

Projection refers to taking a multi-dimensional model and removing some of its dimen-
sions, e.g. removing resources or information flow from a process model. This is a main
principle of reuse in the MOBILE environment [213, 236], where workflows are mod-
elled from different perspectives:

78

� Functional, what is to be done, the tasks.
� Behavioural, when each task is to be performed.
� Informational, which data are used, how does it flow.
� Operational, how is the work done, the tools.
� Organisational, who performs the work.
� Causal, why the process is performed, its objectives.
� Historical, what happened during the performance.
Each perspective can be modelled independently of the others. This means that you can
combine fragments from different perspectives to suit your particular process. The mul-
tidimensional approach enables simple models within each perspective (R1), guides
composition (R10), and structures the template database (R9). Different models should
be compared within each perspective (R8). This principle is applied in the PROCESS

HANDBOOK [329], where related specialisations are grouped in bundles. The variants in
a bundle typically differ with respect to one dimension only. For instance, a sales proc-
ess may have one bundle of operational specialisations ("sell how"), and another for
causal specialisations ("sell what"). For each bundle, a trade-off table captures the
strengths and weaknesses of each variant. While this reductionist view on process mod-
els may seem too idealised, the perspective oriented approach points to important as-
pects of processes that one can isolate and represent as a template fragment. Removing
a dimension from a model is a simple way of generalising it (R8).

3.4.6 Process Model Parameterisation

Dowson and Fernström [143] introduce the concept of process variables, which are
bound to values during enactment, enabling tailoring of templates into particular mod-
els. Variables can represent products, roles, constraints, tools, goals and model frag-
ments. Parameterisation resembles resource management in APM [90], where all of
these aspects are part of the resource signature interface of each action, and resources
can be allocated dynamically. APM's pluggable actions (described above), are similar to
variable process fragments. From this perspective, specialisation involves constraining
the range of values that can be bound to a variable, while generalisation eases con-
straints (R8). Binding of values can be predefined, rule-based or performed interactively
by users, enabling local change (R5). A major strength of this approach is its open na-
ture, that it can easily be combined with other techniques.

3.4.7 Process Patterns

Patterns of behaviour may be reflected in process models, and become evident when
comparing several instances of similar processes. In software engineering and architec-
ture [10, 130, 173], pattern languages have been developed for representing general so-
lutions to recurring problems. Workflow patterns [552] capture routing schema, and
show how they can be implemented in different languages. A great number of business
process patterns have also been specified [412]. In management, anti-patterns describe
troubling situations and how to avoid them [78]. Process pattern languages [130, 186,
467] add descriptions of the motivation, usage, range of application and underlying as-
sumptions of each pattern (R11). This requirement is poorly met by current PMLs.
 The NATURE project [201, 247] uses process modelling to describe methods and
trace actions in early phases of software development. Their process models focus on
decisions made in the process, in the context of a given situation to reach specified

79

goals (R5). Arguments that support or object to the decision, are also captured (R13).
The NATURE guidance mechanism is a pattern-matching engine that compares current
product parts to situation descriptions of reusable process fragments in the repository.
Telesius and Jaliniauskas [489] analyse a large number of business processes in gov-
ernment, banking and industry. Focusing on communication, they apply common ap-
proximation patterns to assess the reusability of workflow applications across these
domains. This technique enables assessment of reusability across different communities
of practice, bridging local dialects and frameworks of reference (R12).

3.4.8 Summary of Reuse Techniques

As this section has shown, no system currently meets all the requirements of integrated
process knowledge management. Inheritance mechanisms for generalisation, structure
and reuse must be complemented with components for knowledge combination and pat-
terns that describe the environment where a model is useful. In addition to reusing
model templates, the needs of knowledge intensive processes demand dynamic model-
ling languages, adaptable to the current vocabulary of each community (R12, R13).
Therefore, metamodelling is an important feature. This demands a suitable underlying
language model (metametamodel), capable of handling inconsistent vocabularies and
deep concept structures, evolving in the process modelling language lifecycle.

3.5 From Active to Interactive Process Models - Research Challenges
This chapter has analysed flexible workflow management. It shows that a number of
challenges remain, and that interaction is a key perspective for framing these problems.
From an interactive, open systems perspective, we define workflow as
� active support for planning, performing, managing, and coordinating work,
� based on an explicit process model, evolving and possibly incomplete.
Conventional approaches [177, 532] separate process definition (articulation) from en-
actment (activation) [153], and can thus be regarded as active systems, but not as inter-
active. The separation between dynamic (adaptive) and static (production) workflow
refers to whether changes to the definition of a workflow type can affect running in-
stances [153]. Adaptive workflow emphasises automation and top-down control from
classes to instances. Interactive workflow demands a bottom-up approach where the
focus is on planning and performing local work process instances. Process definition
(planning, articulation) is viewed as an activity that is part of the process it defines.
Process templates are resources for adaptation rather than prescriptions of action. A
clarification of the differences between these complementary approaches is needed.
Table 3 presents a summary of these differences. The following subsection lists the
main challenges for interactive workflow management systems.

80

 Static workflow Adaptive workflow Interactive workflow

Processes
supported

Capital- and labour-
intensive

Capital- and labour-
intensive

Knowledge-intensive,
creative

Process model Complete, specified in
advance

Complete, possibly with
special constructs for late
modelling of some parts

Incomplete, partially ordered
and partially decomposed

Process
instances

Several instances follow
the same class schema

Several instances follow
the same class schema

Instances are unique

WMS
architecture

Separated definition, moni-
toring and enactment com-
ponents

Most often separated defi-
nition, monitoring and
enactment

Integrated planning, perform-
ance, management and coordi-
nation support

Modellers Systems analysts and proc-
ess experts

Systems analysts and
process experts

End users (managers and
workers). Experts facilitate
knowledge management

Local changes
during
enactment

Not supported Exception handling for
changes like delegation and
rescheduling

Changes are normal, handled
at the instance level

General changes
during
enactment

Not supported The dynamic change prob-
lem, for which many algo-
rithms exists

Interactive dynamic change
algorithms are simpler, rely
more on human control

Activation Automated enactment Mostly automated. Some
interaction at the model
level (altering the model)

Interactive. Interaction at
model and enactment level
(manual re-interpretation)

Coordination Automated sequencing of
tasks

Automated sequencing of
tasks

Automated sequencing and
groupware services for mutual
adjustment

Reuse Through instantiation (fully
automatic, but sometimes
with initial parameterisa-
tion)

Through instantiation.
Some copy and paste.
Some allow ad-hoc addi-
tion of predefined tasks

Combinable templates avail-
able as resources for situated
planning. Harvesting of local
models into new templates

Research
challenges

Transaction management,
scalability, security, distri-
bution, systems integration
etc.

Dynamic change,
exception handling

Articulation by end users,
model reuse, enactment of
incomplete models, extension
of model-driven functionality

Table 3. Differences among static, adaptive and interactive WMS.

3.5.1 Articulation Support - Major Challenges

The limitations of current PMLs concern flexibility, simplicity and user-orientedness,
all crucial for social learning through negotiation of meaning. Research into interactive
process modelling languages should thus investigate:
1. How the basic premise that models are incomplete, partial representations of some-

one's understanding at a given time, can be better handled.
2. How can language efficiency be improved? How can we make simple representa-

tions whose meaning adapts to the current context, whose usefulness transcends
specific situations without enforcing an idealised view?

3. How can the language facilitate flexible and ongoing articulation by end users? How
can local modifications be straightforward?

4. How can domain and user-oriented concepts be utilised? What kind of reflection,
extensibility and viewing mechanisms can enhance comprehensibility of the models,
utilising the ongoing interaction between domain and model?

81

3.5.2 Activation Support - Major Challenges

Interactive activation extends the capabilities and adaptability of fully automated activa-
tion, which have dominated process support systems so far. Although a number of
commercial systems and research prototypes involve users in exception handling, fully
interactive activation semantics has not been implemented. These issues should be the
subjects of further research in this direction:
1. How can we involve users in model interpretation? Which users should be asked to

resolve which ambiguities in the models, and what support can they be offered?
2. How can the automated interpretation of process models be made more contextual?
3. Which model-driven functionality can we usefully integrate without complicating

the models too much? Which services are most useful for different processes?
4. How can we make customisation of process support infrastructures simple, straight-

forward and user-friendly? How can we move from end-user programming to end-
user modelling?

3.5.3 Process Model Reuse - Major Challenges

Section 3.4 gave an overview of the rich variety of mechanisms for process model re-
use. While inheritance and composition dominates, patterns, parameterisation and pro-
jection also make significant contributions. Most of these approaches, with the excep-
tion of some pattern languages, focus on automating reuse. An interactive reuse frame-
work could increase flexibility and usability by meeting these challenges:
1. How can interaction be utilised to simplify model reuse, making it more compre-

hensible to the users?
2. Can inherent classification be replaced by incremental, need-driven classification

mechanisms, where templates and past models are classified based on the features of
the current situation, rather than the long term management of the template library?

3. How can we customise the reuse mechanisms to fit organisational and user prefer-
ences as well as situated project needs?

4. What role can metaprocesses play in the reuse framework? Is it possible to offer
active process support for reuse, adaptation, harvesting and improvement?

82

83

Chapter 4
Interactive and Emergent Workflow

This chapter introduces emergent workflow management [94, 254]. This approach util-
ises interactive modelling to meet the requirements outlined in Chapter 2. The term
'emergent' signifies that the process structure emerges from the work rather than being
prescribed by outsiders. The core idea is thus to replace closed system automation with
open system interaction as the fundamental design principle. Our prototype is called
WORKWARE because it integrates workflow and groupware functionality.
 The introductory section briefly describes the Action Port Modelling language
(APM) [90, 91], which was our starting point. Section 4.2 outlines how APM has been
refined to meet the requirements for process articulation by end users. The refined lan-
guage is simpler, and it narrows the conceptual gap between planning and performance.
Since the models are evolving and incomplete, the support environment is based on in-
teractive workflow enactment. Section 4.3 introduces the enactment semantics of
WORKWARE models, while the design of an interactive workflow architecture is out-
lined in section 4.4. After this overview, the second half of the chapter provides a for-
malisation of the design. UML class diagrams, state diagrams, and interaction sequence
diagrams define the detailed activation semantics. This chapter thus describes how
WORKWARE addresses articulation and activation, while Chapter 5 describes our solu-
tion to process model reuse. In Chapter 6 we show that the approach and techniques
developed here are generalisable to other kinds of interactive models. The implementa-
tion of the WORKWARE prototype is described in Chapter 7.

4.1 Action Port Modelling Language (APM)
As the state of the art survey showed, there is a multitude of languages for work process
modelling. The main problems addressed in this thesis do not require yet another mod-
elling language. Instead continuity with existing approaches is sought. The APM lan-
guage [90, 91] (Figure 21), is based on a conceptual modelling framework for informa-
tion systems development, called PPP (Process, Phenomena, Ports) [206, 535]. The
formal modelling framework of PPP includes execution and simulation [535], automatic
generation of textual explanation from models [205], and specification of simplified
model views [446]. PPP has also been extended with methods for performance analysis
of information systems [384, 505] and organisations [72], and with versioning and con-
figuration management in model repositories [15]. By basing our work on this founda-
tion, we can thus integrate a rich set of useful techniques.
 PPP process models are extended data flow diagrams [174], adding rigorous con-
trol flow semantics. APM simplifies the PPP flow interfaces (called ports, see Figure
21b), and offers a large set of constructs for modelling who performs the work (actors
filling roles) as well as the resources (tools, materials, information) that they apply
(Figure 21d).

84

Figure 21. APM notation overview [91].

Timer

+

&

OR

XOR

AND

c) Flow Splitters
and Combiners

d) Resource Modeling

APM
Resource

Actor Tool Object

Organizational
Actor Agent

Manual
Tool

Software
Tool

Invoked
Software

Tool
Software

Agent

Material
Object

Information
Object

Active
Information

Object

Pluggable
Action

Definition
role concrete

Invoked
vs.

available

software
resource

composite
resource

Detailed resource properties

Ax

Name
S1

Action Store
External

actor Flow

a) The basic components of APM

O
ut-port

In-port

Condition

Resource
signature

A singular flow

repeating flow

conditional flow

a

b

c

d

T T

b) The properties of ports and flows

Triggering and Termination

A

Mutual exclusivity of ports
Input: a xor b, Output: c and d

a

b

c

XOR

85

APM also includes innovative features for compositional reuse, and interaction patterns
from the language action approach (cf. section 3.1.2). It is thus a transformational lan-
guage with features from other paradigms (roles, objects, and conversations). APM
processes are connected series of actions. Actions may be decomposed. Control flow
signals that arrive at an input port trigger the execution of the action, while the flows
attached to output ports may be triggered when the action is completed. Each port may
be attached to any number of flows. All of the flows from one port are triggered to-
gether. Each action can have multiple input or output ports. Multiple ports signify alter-
native flow paths, hence for each instance only one of the input and one of the output
ports will be used. APM primarily models control flow, not data flow. Data items and
information objects are represented as resources, removing the spaghetti of data flows
that make the models hard to comprehend.
 The expressiveness of APM with respect to control flow patterns (sequence,
choice, concurrency and synchronisation [552]) is similar to that of Petri nets [549,
553]. As in other transformational languages, work breakdown is the primary structure.
Although decomposition is fundamental to most process modelling languages, some
categories use different primary structures (e.g. roles or conversations). While role
structures are important, work breakdown seems more fundamental, as project groups
most often articulate what to do prior to deciding who should do it. The distribution of
work among roles frequently changes without corresponding change to work break-
down, e.g. through delegation or re-assignment. Changes to the work breakdown, on the
other hand, also entails changes to the work to be performed by some role/actor. The
work breakdown structure thus seems more fundamental than the role structure.
 As discussed in section 3.1, the aspects of work processes that conversational lan-
guages emphasise, depend more heavily on the political and cultural usage context, and
the articulation of these aspects are thus more likely to meet resistance, increasing the
gap between models and reality. Such languages do not seem the best starting point for
facilitating end user articulation. Constraints and goal-based languages employ formal,
textual notations, alienating many users. They are better suited for defining the con-
straints that the environment put on the process, than for supporting the process group in
planning their own work.
 Object-oriented schemes, e.g. various UML notations, also offer an integration of
different modelling perspectives. However, the core concepts in UML are software-
oriented. This demands extra effort in mapping user concepts to the software domain, as
evident e.g. in the many different representation of "process" (e.g. as class, use case,
activity, operation, or package). Continuity in methods and techniques is important to
lower thresholds for adoption, and transformational languages are the most common-
place process modelling paradigm. Consequently, APM is a suitable starting point for
emergent workflow modelling.

4.2 Interactive Modelling of Emergent Processes
Most languages used in workflow management and business process engineering are
designed for analysts and experts who receive extensive training in modelling. For ordi-
nary end users, we must simplify the language. To bridge the semantic gap between
process articulation and enactment, we must make the mapping between modelling con-
cepts and the users' environment (including IS and user interface entities) straightfor-
ward. While APM is a highly expressive language for business process modelling, it

86

lacks interactive activation semantics and seems overly complex in some areas. Conse-
quently, we decided to take a fresh perspective when adapting it to emergent workflow.
The main contribution of this thesis is however not the changes made to the modelling
language, but the activation semantics and the reuse framework.

4.2.1 Work Items

Avoiding unnecessary classification, the most basic concept in WORKWARE is the
workitem, which correspond to actions in APM. A workitem represents a unit of work at
any level of granularity or specificity. It may be decomposed into a process of sub-
items. In the life-cycle of a workitem, such a work breakdown structure might be
� Added by actors planning their own work,
� Modified, capturing re-planning,
� Replaced by another process model,
� Removed, or
� Reported as performed, ignoring the advisory decomposition.
This means that whether a workitem is atomic or not, reflects its current state, and may
change during its lifecycle. A system that does not include separate classes for atomic
and composite workitems, can more easily accommodate this evolution. There is no
need to change the class of the item alongside the instrumental change of adding or re-
moving sub-items. The lack of a predefined, system-enforced classification of
workitems into processes, tasks, activities, actions etc. thus makes the language simpler
and more efficient. Users can express the same statements, but need not know about as
many different language constructs.

4.2.2 Work Flows

Composite workitems are either collections, which have an unordered list of sub-items,
or workflows where some sub-items are interconnected. Collections and workflows thus
refer to models with different degree of structure. The interconnection network of a
workflow is made up of two types of objects:
� Flows, representing dependencies between workitems, the sequence of work.
� Decision connectors, either joining or splitting a set of flows. We have three types

of connectors, Unspecified (empty circle), XOR, and AND. The type refers to the
logical relation between multiple input or output flows.

These three concepts, workitem, flow, and decision, constitute what is needed for en-
actment of workflows, which is the subject of the next section. A graphical notation for
the workflow language is presented below. Each workitem has one input and one output
decision connector, corresponding to starting and completing work on the item.

Workitem

AND
Flow

Decision connectors. Both Join and
Fork variants exist for all types.

Workitems have resource signa-
ture, input and output decisions

XOR

Figure 22. The WORKWARE process modelling language.

87

4.2.3 Decisions

WORKWARE's modelling language follows APM in most aspects. The decision connec-
tors represent an exception. They are a generalisation of the APM constructs Port,
Timer, Condition, Flow Combiner, and Flow Splitter (Figure 21) [90, 91]. By generalis-
ing these constructs into a single class, we simplify the language without compromising
on expressiveness. The rationale for unifying these constructs is that they all represent
decisions regarding the flow of work. They fill similar roles in model activation, and
need similar semantics. By unifying them into a common construct we thus also sim-
plify the semantics. As we discuss below, the differences between the APM constructs
can be derived from the relationships and properties of individual decisions in process
models. For instance, decision connectors used as inputs and outputs in a workitem,
correspond to APM ports.

4.2.4 Expressiveness

An example WORKWARE model is depicted below. It demonstrates, at least partly, the
expressiveness of the language:
� Sequence/Precedence, W1 before W2 etc. (articulated by flows).
� Choice, in W1 we decide whether to go to W2 or W3 (XOR fork connector).
� Parallelism, W4 and W5 in parallel, either may start before the other (AND fork).
� Synchronisation, both W4 and W5 should finish before W6 starts (AND join).
More complex routing patterns [552] can be modelled by combinations of these ele-
ments and specialised decision connectors that will be introduced in section 4.6.

Test new
version

W6

Handle Change Request "Improve delegation support"

XOR

AND XOR

XOR

AND

Evaluate
request

W1

Reject
request

W2

Prepare
changes

W3

Implement
client

changes
W4

Implement
server

changes
W5

Figure 23: Example WORKWARE model.

4.2.5 Resources

Workitems are performed by actors utilising other resources, typically tools and infor-
mation objects. WORKWARE uses the APM resource taxonomy (Figure 21d). The actors,

88

tools, objects etc. required for a workitem constitute its resource signature. The inter-
face of a workitem consists of the input and output decision connectors and the resource
signature. Properties distinguish among different kinds of resources. Objects in the re-
source signature of a workitem are initially resource roles. Roles must be filled by con-
crete resources when the item is performed. Concrete resources may be allocated to
roles dynamically through integrated resource broker applications. For instance, we
treat information as a shared resource. Flows may include information objects, but pri-
marily reflect flow of work. Coordinating access to information is the duty of an infor-
mation resource broker working in cooperation with the enactment engine. This solu-
tion helps us to simplify the process models by limiting superfluous data flows [90].
 As shown in Figure 21d, properties are also used for distinguishing composite
from atomic resources, mandatory (invoked) from optional, and software from material.
The figure does thus not contain the complete hierarchy of APM resources. This
framework can be used for modelling actual resources existing independently of
workitems and for roles attached to workitems. Carlsen [90] shows how the actor con-
structs can be used to model organisational structures. However, when integrated within
an enterprise modelling framework, the actual resources are typically modelled outside
of the process domain, e.g. in employee databases or corporate directories. For WORK-

WARE we therefore added a relationship called is-filled-by between roles and concrete
resources. Concrete resources in this case refer to any object that represents the actual
resource. When a resource role is filled, it becomes concrete itself. This means that the
resource symbol always tells users whether the role is filled or vacant. The is-filled-by
relation can also be used between resource roles, facilitating indirect allocation. An ex-
ample is shown in Figure 24 where the Project Manager on the main workitem fills
roles in each of the three sub-items.

Figure 24. Simple model example with indirect personnel allocation through roles.

This use of the is-filled-by relation facilitates easy re-allocation, e.g. if the project man-
ager is replaced by another person. It also supports the integrated modelling of work

89

breakdown structures and role responsibility structures in reusable process templates. In
APM, the is-filled-by relation was implicit. When two roles on an action and a sub-
action had the same name, they were identical. The addition of an explicit is-filled-by
relation for WORKWARE is caused by the shift in focus from process engineering to in-
teractive work support. Usage experience also indicates that people often want to name
roles differently to make them more meaningful in the context of each workitem.
 The requirement that WORKWARE should support incomplete and evolving models
(R6), implies that the system allows use of the generic resource classes in Figure 21d
(Resource, Actor, Tool, Object). This is useful when modellers are uncertain of the spe-
cific characteristics of the resource, e.g. whether a meeting place will be real or virtual.
Often the detailed characteristics of the resource are specified at the time of resource
allocation, i.e. when one or more concrete resources fill the role.

4.2.6 Customer, Responsible and Participant Actors

Another WORKWARE extension to APM allows better-organised collaborative
workitems. A collaborative workitem has more than one actor in its resource signature.
Recognising the power of the ACTION customer/performer loop in supporting negotia-
tion of incompletely specified work (cf. section 3.1.2), WORKWARE differentiates be-
tween these actor resource role types:
� Responsible, the main performer of the work, e.g. the project manager of a project.
� Customer, the actors ordering or paying for the result of the work, or an agent repre-

senting them.
� Participant, other actors involved in the team performing the work.
These concepts allows us to mimic the typical work breakdown structure of ACTION
workflow, where the responsible performer of the main work item automatically be-
comes the customer for its sub-items. Below we will see how these role types are util-
ised by the components of the WORKWARE architecture.

Figure 25. Symbols for actor roles with different role types.

APM, not primarily concerned with model activation, could leave concepts like role
type implicit, allowing users to specify them through naming conventions, without extra
modelling constructs. In interaction pattern clichés in APM [90], customer and per-
former roles were defined by naming.

4.3 Workflow Enactment as Interactive Activation
As we have seen, viewing the workflow engine as an interaction machine, generates
new research challenges. We need to design an engine, which involves users in inter-
preting the model and bringing the workflow forward in the situations that arise.
WORKWARE's engine is based on state transition models for workitems, decisions and

90

flow elements. Some transitions are triggered automatically, while others are the result
of events caused by users. The detailed activation semantics will be presented in section
4.5. WORKWARE models represent planned and ongoing, partially connected workitem
instances. At any time, users may alter the model, changing the future interpretation of
events by the enactment software.

4.3.1 User Involvement in Enactment

A key question that the interaction paradigm puts to workflow system designers is how
users should be involved in the enactment process, both reactively and proactively.
Situated interactive interpretation of an evolving, incomplete model requires that these
challenges be solved:
� How is the responsibility for interpretation and action distributed between the system

and its user in different scenarios?
� Which users should be allowed to, or responsible for, handling which situations?
� How can we separate mandatory from optional and advisory model fragments?
� When and how should users be asked to contribute, and how do we monitor that the

process is not delayed unnecessarily?
� What support can users be offered to resolve enactment issues?
� How should conflicts between different users' interpretation and activation decisions

be discovered and handled?
� How can all of these questions be addressed without complicating the modelling lan-

guage, making it harder to comprehend and use?

4.3.2 Activating Flows

In WORKWARE's enactment semantics, work is progressed by activating flows and deci-
sion connectors. Activation may be triggered by users, or by the enactment engine in-
terpreting effects of other events. Each flow represents one instance of a past or antici-
pated future signal. This view simplifies the handling of loops and repetition in the lan-
guage. Every repetition involves a unique set of workitem, flow, and/or connector in-
stances, i.e. we linearise the loops. This simple enactment model makes it easy to
graphically depict the current status of a workflow, by marking all the elements that
have been activated. We have applied a visualisation scheme where the workitems have
different colour based on their states: red for not ready to start, yellow for ready, green
for ongoing, grey for finished etc.

4.3.3 Decision Making

Decision connectors play an important role in the interactive enactment framework. A
decision connector represents an issue to resolve regarding the flow of work. Some de-
cisions may be straightforward to prescribe during the early planning of a process, while
others must be made by human actors during work performance. Some connectors are
easily interpreted by the enactment software, like an AND split or an XOR join, other
decisions may not even be identified before they emerge as critical issues.
 The default connector type is Unspecified, which doesn't say anything about the
relationship between multiple inputs or outputs. Altering the type to AND or XOR adds
constraints to the workflow, but needn't make the interpretation of what to do straight-
forward. What the engine does know, however, is that it should act when a connector is

91

ready to be activated. If it is not able to determine which output(s) to activate, it must
ask a user what to do next. We call this the fallback mechanism.
 The position of a decision connector influences the interpretation of the model. If
manual decision making is required, the engine asks the actor responsible for the
workitem that surrounds the decision. Input and output decisions are thus left to the per-
son responsible for the local workitem, while other decisions are to be made by the one
responsible for the parent workitem. In the model in Figure 26a, the decision whether to
prepare or reject changes is to be made locally in W1, while in Figure 26b the decision
is part of the parent process.

Figure 26. Modelling decision-making authority and responsibility.

This constitutes a simple and powerful mechanism for assigning responsibility and au-
thority for decision making during the integrated planning and performance of a work
process. The term 'decision' signifies that these objects capture decisions regarding the
flow and scheduling of work. For a workitem, the input connector captures the decision
to start the work, and the output reflects the completion decision. This is a unifying
mechanism for interactive enactment, since both automated and manual decision mak-
ing is supported. In addition to reactive fallback, proactive users can make unscheduled
decisions without having to resort to modelling, e.g. when faced with exceptions. Over
the whole range of activation modes, there is thus no need to take the process "out of the
system", a well-known problem in the cases surveyed in Chapter 2. Every decision can
be captured in the workflow trace. Which activation mode to apply, is handled in the
situations that arise. Consequently, WORKWARE can handle any degree of specificity in
the model, from unstructured (no flows, decisions left completely to the users) to com-
pletely predefined (all decisions automated).
 The usefulness of automated enactment increases with the degree of specificity in
the models. When flows connect workitems, the engine reasons about workitem state
changes, automatically activating flows and enabling the next items. If a model contains
no flows, just a workitem collection, the engine offers little active support. In this case,
the users have full control of the process, and they have to do all the work of updating
workitem states themselves. Since all model elements are instances, there is no concep-
tual gap between process definition and enactment. Unlike conventional systems (Fig-
ure 17 on page 62), the model editor and the work performance tools provide comple-
mentary interfaces to one, integrated model of concrete work.

a) Local decision in W1. b) Higher-level decision.

XOR
Evaluate
request

W1

Reject
request

W2

Prepare
changes

W3

XOR

Evaluate
request

W1

Reject
request

W2

Prepare
changes

W3

92

4.4 Conceptual Design of an Interactive WMS
So far we have seen that interactive models can guide the design of workflow languages
and enactment semantics. We will now look at how interaction gives a fresh perspective
on system architectures, bridging the gap between articulation and activation. An inter-
active WMS architecture is depicted in Figure 27. It has three layers:
� A repository containing the workflow models, which are articulated and activated in

the system.
� A number of model interactors that utilise the models to provide contextual func-

tionality. A typical interactor integrates activation and articulation services.
� An integrated user interface that enables personalisation in addition to the contextu-

alisation provided by the workflow models.

etc.

User interface

Model interactors

Model repository

Interactive
enactment

engine

Model-
driven
work

manager

Modelling
and

visuali-
sation

Model-
driven

awareness
engine

Model-
driven
access
control

etc.

Figure 27. Logical architecture of an interactive WMS.

Figure 27 shows a few model interactors, but the set is extensible. Any software that
uses the models can be thought of as a model-interpreting component, whether interpre-
tation is performed automatically, interactively or manually. Research should investi-
gate the utility of workflow models in supporting different functions of the system, i.e.
which interactors we can usefully include in the architecture. Examples include:
� Personal work organisation through worklists and workspaces for each workitem,
� Coordination through interactive enactment,
� Articulation integrated with rich visualisations in the model editor,
� Coordination through awareness, notifying users about the actions of others,
� Access control, so that each user's assignment to tasks influence which information is

made accessible, on a need-to-know or a need-to-hide basis, subject to local policies,
� Communication support for collaborative tasks and negotiations, for informal han-

dling of unforeseen situations etc.,
� Warnings when modelled rules are violated,
� Guidance for novice users, taking them step by step through unfamiliar procedures,
� Information management and workspaces for document-centric collaboration,
� Enterprise resource management integrated with workflow personnel allocation,
� Project management functionality, monitoring progress, time, money, and resources.
For each of these components the distribution of work between the system and its users
needs to be studied. It is unlikely that one solution fits all processes, hence we need to

93

develop customisable policies. Though adding details about access control, communica-
tion and resource management can make the model more complicated, these difficulties
can be helped with visualisations that filter out dimensions from the model. Also, tem-
plate policies can be offered for different process classes, and in many cases reused with
little or no modifications. Anyway, the utilisation of workflow models to provide a
wider range of context-sensitive functionality, removes the overhead of having multiple
representations, and increases the users' benefits of keeping the models up to date.

The interactive architecture makes no separation between build time and run
time. This follows the shift from input and output strings (Turing) to interactively gen-
erated streams [524]. Each component is seen as contributing to an integrated stream of
model articulation and activation events, not as an input or output device. Though the
model editor and the enactment engine are separate components, they have the same
position in the system, that of using and updating the model. The modelling editor's
visualisation capabilities can be a powerful activation tool, supporting manual coordina-
tion by giving users an overview of the current state of the process. In other words, the
component conventionally thought of as the process definition tool [532], also plays a
role in model activation. Conversely, users can articulate a process structure through a
textual worklist, so conventional activation tools are suitable for process definition as
well. Model interactors thus integrate articulation and activation. Figure 28 shows how
the core concepts of interactive models (articulation and activation) extend those of
workflow management, bridging the gap between modelling/definition and enactment1.

Articulation Activation

Modelling Enactment

Figure 28. Core concepts in workflow management and interactive models.

4.4.1 Groupware Coordination Complements Workflow Enactment

When a workflow is loosely specified, the enactment engine provides little support. In
these cases other interactors take over. Shared worklists [283] allow the users to com-
municate information about their work in the context of particular projects. The reposi-
tory ensures that when one user e.g. declares a workitem finished, the updated status
immediately becomes available to everyone else.
 The awareness engine is another conventional groupware component [415, 428].
It provides information about the actions of others to each user within the context of her
workitems. Since flows represent dependencies that must be coordinated, they are im-
portant channels for event notifications. The awareness engine thus utilises models to
provide environmental feedback [207], propagating event notifications through the
workflow structure. Only events relevant for the workitems that the user works on are
forwarded. Presenting awareness information within the context of a workitem de-
creases the cognitive burden of interpreting this information. This also reduces the in-

1 The figure shows the extension of phenomena referred to by the concepts [81].

94

formation overload problem often associated with asynchronous awareness mechanisms
[141]. The detailed semantics of the awareness engine is presented in section 4.7.
 Awareness, shared worklists and process visualisations may trigger opportunistic
involvement [142], where users override the prescribed flow of work, e.g. to speed up
the process or handle exceptions. For instance, a user may decide to start a workitem
although not all of its required inputs are ready. When you are provided with informa-
tion about the progress of work, you are better equipped to make such decisions. Al-
though these actions violate the prescribed process rules, they may in some cases be
tolerated by the system.
 These groupware components support manual coordination through mutual ad-
justment, which Miers [349] pointed out as the main challenge for workflow research
(cf. Figure 16 on page 61). Enactment and awareness engines both utilise the model to
support coordination, the first by automated scheduling according to standard proce-
dures, the latter by forwarding and presenting event notifications in the contexts where
they are useful [416]. These interactors complement each other, handling different sce-
narios (sequential vs. concurrent work).

4.4.2 User Interfaces for Integrated Work Management and Performance

In WORKWARE, workitems are available from the work management tool. A worklist
may present all items belonging to a project, or only the ones allocated to the current
user. Meeting requirements for customisation, a query language lets users define their
own worklists. Typically workitem status (new, ongoing, finished etc.), personal re-
sponsibilities (my tasks, other peoples tasks, tasks I participate in), project or work-
package connection, and time considerations (overdue, deadline within the next week
etc.) are utilised in these queries.

Each workitem is accessed through its worktop, which contains attributes that
describe the item and links to relevant resources (tools, people, information etc.). A
worktop is configured according to the particular workitem and the preferences of the
user. Through this interface the users have access to a customisable selection of
workitem services for planning and articulation (modelling, define new items), coordi-
nation (make decisions, change status), communication (email and real-time collabora-
tion) and work performance (document management, desktop tools etc.). Services cor-
respond to commands the user can invoke on the workitem. What each worktop in-
cludes is controlled by the interactive process model in a number of ways:
� Communication channels are included for all people participating on the workitem,

as individuals as well as groups (e.g. mailing lists). When the users discover that
more people need to be involved, they can add new roles to the process models and
the communications channels will be automatically updated.

� Information modelled as resources to the workitem, are immediately available in the
worktop. If a user adds a new document or an updated version, this is automatically
reflected in the model, and available to other people.

� The description of a workitem shows all the properties that are currently defined.
Each workitem can have local, user-defined properties.

� Navigation structures are generated based on the structures of the process models,
e.g. to show sub-items or browse to the other end of a flow.

95

4.5 Detailed Activation Semantics
We will now look into the detailed definition of the modelling language and of the se-
mantics that different interactors apply to the models. The work management tool pro-
vides basic means for users to articulate and share process models, but the automatic
support that this interactor offers is minimal. The interactive enactment engine provides
more automation, and the enactment rules fill a major portion of this section. But first,
we formalise the syntax of the modelling language.

4.5.1 Workware Language Metamodel

Figure 29 shows the modelling concepts of WORKWARE in a UML class diagram. The
attributes, operations and relations that influence upon the enactment semantics are in-
cluded. Other attributes and relations are left out to improve readability. The interaction
framework manifests itself through the introduction of users, roles and user interface
components in the language meta-model. These concepts are needed to formalise the
interactive operational semantics of the models. In addition to the modelling concepts
Workitem, Decision, and Flow, we have included Person (users who fill roles as Cus-
tomer, Responsible or Participant on a Workitem), as well as Worklist (a user interface
component).

 Ongoing work

Attributes:
State

Operations:
ready()
start()
suspend()
terminate()
finish()

Workitem

Attributes:
Relation
Activated

Operation:
activate()

Decision
Connector

Attributes:
Activated

Operations:
activate()

Flow

From Out

To In

Output

Input

PersonWorklist
New work

Child Parent

Participant
0,1*

1

1

1

0,1

0,1

0,1

0,1

0,1

Owner

Owner

Owner

1

1

1

*

*

Responsible
Customer

0,1

Figure 29. WORKWARE metamodel.

Each person has access to a number of worklists with different selection criteria. Here
we have included the standard lists New work and Ongoing work. The operations in the
metamodel are triggered by other objects or by users invoking services. Figure 29
shows that each workitem has one input and one output decision connector, as described

96

above. Decisions have access to their surrounding workitem through the Owner role.
Each flow relates exactly one source (from) and one destination (to). Both are decisions.
Flows to and from workitems are connected to their input and output decisions.
 The relationships Responsible, Customer and Participant refer to types of roles
that persons can play in a workitem (section 4.2.6). In the graphical modelling editor
these role assignments are done through actor resources (Figure 21 on page 84), but in
WORKWARE the relationships are traversed and short-circuited so that only the resulting
relations (which person fills which role) are represented. This simplification better
matches the immediate nature of work performance, while indirect relationships in the
model editor provide better support for planning, reuse and resource management. Each
workitem has one responsible, at most one customer, and any number of participants

4.5.2 Activation by the Work Management Tool

The work management tool provides worklist and worktop user interfaces, giving ac-
cess to services provided by the system or integrated from other tools. This section de-
scribes the semantics of the workitem lifecycle as it is controlled through these inter-
faces. The component can function independently of the enactment engine. Since it of-
fers no automatic support, users must trigger all state transitions through coordination
services. In the metamodel, these services manifest themselves as operations of the
workitem class. Figure 30 shows this interpretation, involving the following states:
� New, not yet started. These items are put in the New work worklist of the responsible

user (as defined by the invariant rule of the state).
� Ongoing, work is being done on this item. These items are put in the Ongoing work

worklist of the responsible user.
� Suspended, signalling e.g. that the work is pending some input in order to be re-

sumed. At any time, the participants may resume the work.
� Finished, signifying normal completion.
� Terminated, representing abnormal termination or deletion of a workitem. Any

workitem not already finished can be terminated.

Figure 30: Work items interpreted by the work management interactor.

97

The worktop of an item gives the users access to a different set of coordination services
in each state. Coordination services invoke state-changing methods on the workitem, so
the outgoing transitions from each state define which coordination services are avail-
able. For instance, when a workitem is ongoing, users may suspend, finish or terminate
it. Figure 31 shows the scope of interactive model activation, from fully automated to
manual schemes. Interactive schemes occupy the middle ground between these two ex-
tremes. As we have already discussed, user involvement can be reactive (triggered by
the software) and proactive (triggered by the users). Past research [283] shows that a
work management tool that enables personal work organisation and sharing of work-
related information can be useful by itself even without enactment support. This scheme
demonstrates the utility of manual model activation. But it has the disadvantage of re-
quiring users to do all the scheduling and status reporting manually, hence we included
more automated coordination support through interactive enactment.

Full automation Full manual controlReactive user
involvement

Proactive user
involvement

Work
Management

Tool

Figure 31. The work management tool in the interactive activation spectrum.

4.5.3 Activation by Interactive Workflow Enactment

In WORKWARE the flow of work is propagated by updating the status of workitems, and
by activating flows and decision connectors. While the work management tool left all of
these tasks up to the users, the engine also automates a number of enactment rules. The
model below shows the enactment state transitions for workitems2. The states and tran-
sitions defined by the work management tool are shown in normal font, while the rules
introduced by the enactment engine are printed in bold. Comparing this diagram to
Figure 30, we see that the state New has been split in two:
� Waiting means not ready to start due to pending input flows. Users can override this

rule by explicitly declaring the item ready or started. Items in this state are not shown
in the responsible user's New work list.

� Ready to start. Users must still explicitly start the work manually. Items in this state
are shown in the responsible user's New work list.

The rationale for requiring manual start of workitems is given by [142]. This scheme
allows us to separate the tasks that really are ongoing from the ones that the system says
are ready to start. This information is important for a number of reasons. A ready task
may be more easily re-allocated to another person than one where the work has already
started. Items that remain ready for a long time without being started, may point to a

2 Conditions are placed in [] parentheses. Triggered actions follow after the /. This syntax follows the standard UML

Object Constraint Language OCL [517]. A complete UML model would also include mappings between messages,
operations, methods etc., here hidden for readability. When operation names are used as events triggering transi-
tions, they refer to the effect of the operation. When an operation name is used in an action triggered by a transi-
tion, it refers to the invocation of the operation.

98

large backlog of the person responsible, and thus inform later allocation decisions.
UML Action Semantics [382] model distributed, concurrent and abstract execution be-
haviour. Noting that traditional programming languages over-specify sequence, compli-
cating a flexible assignment of actions to components in a distributed execution envi-
ronment, the UML action lifecycle also includes both Waiting and Ready states. In addi-
tion to these new states, enactment rules connect the behaviour of the workitem with its
inputs and outputs:
� When the input decision is activated, the item goes from Waiting to Ready.
� When a suspended item receives an in flow through its input, it is restarted.
� When the output decision of an item receives all the flows it is waiting for, the item

finishes automatically.

terminate()/
Child->forAll(terminate())

Waiting

Ready
Responsible.
New->
includes (self)

Ongoing
Responsible.
Ongoing->
includes (self)

Suspended

Terminated

Finished

[not (Input.inputEnabled and
Parent.state=#Ongoing)] ready()

start()/Child->
forAll (

if Input.inputEnabled
then ready() endif)

suspend()
resume()

finish()

terminate()/
Child->forAll(terminate())

terminate()/
Child->forAll(terminate())

start()/Child->forAll(
if Input.inputEnabled then ready() endif)

terminate()/
Child->forAll(terminate())

Input.
activate()

Input.In.
activate()

Output.In.activate()
[Output.inputEnabled]

[Input.inputEnabled and
Parent.state=#Ongoing]

Child.start()

Child.start()

Child.ready()

Figure 32: Workitems interpreted by the enactment engine.

Workitem Decomposition

There are also a number of rules that follow the work breakdown structure. They define
how children affect their parents and vice versa. These operational rules are generally
implemented in order to ensure that children are performed as parts of their parents.
This is a basic assumption in the engine's interpretation of the models, but users may
invoke coordination services that violate this constraint, causing an exception.
� When a child of an item becomes Ready, the parent also becomes Ready.
� When a child is started, the parent is automatically started as well.
� When a parent is started, all children not waiting for input flows are made Ready.
� When a child finishes, and activates a flow to the output of the parent, if the output

has received all necessary flows, the parent automatically finishes as well.
� When a parent is terminated (e.g. withdrawn), all its children are terminated as well.

99

These rules enable users to articulate different scenarios for the work breakdown struc-
ture: If they want the parent to finish automatically when all children are finished, they
must add flows from the sub-items to the output decision of the parent item (as in Pro-
ject A in Figure 33 below). If there is some work to do that is not articulated as sub-
items, or if the person responsible wants to control the scheduling of work herself, the
output should be left without input flows (as in Project B in Figure 33). Note also that
while in Project A the enactment engine will trigger the sub items in a waterfall se-
quence, Project B gives the engine very little to do, as the sequencing of work is left to
the users utilising the work management interfaces.

Figure 33. Two process models with different degrees of structure.

Workitem Lifecycle

The initial state transition diagram only referred to the enactment phase of the lifecycle
of a workitem. The planning, articulation, or definition, of a work item model, is not
represented in Figure 32. For emergent workflows, definition and enactment are inter-
twined. For plan changes, we use this simple state transition rule:
� When a new workitem is added, its default state is Waiting, unless its parent is ongo-

ing and the input of the new item is enabled (defined below), in which case the new
item is set to ready.

Rules and mechanisms for extending the enactment scheme are discussed in section 4.6.

Decisions

A decision connector represents an issue to resolve regarding the flow of work. Some
decisions are automated while others are resolved by users. The position (owner) of a
decision connector defines which user is responsible for making the decision. A detailed
model of the dynamic behaviour of a Decision is presented in Figure 34. The two main
states are activated and not activated. They are reflected by the Boolean attribute acti-
vated. In addition, there are two states that arise from the interactive nature of the en-
actment scheme. Both represent situations where the decision cannot be automated, and
human involvement is needed. Through the fallback mechanism, these decisions are

100

added to the worklist of the user responsible for the owner work item. This mechanism
thus implements the user involvement scheme presented in Figure 26:
� For join decisions, the problem is when to proceed (activate the decision).
� For fork decisions, the problem is which alternative(s) to choose.

Inputs not activated

Uncertain decision
pending inputs

Owner.Responsible.
Ongoing->includes
(self)

Not activated

Activated

In.activate()
[inputEnabled and not

(outputEnabled or outputSelected)]

In.activate()
[Relation='' and not

inputEnabled]

Decision pending
output selection

Owner.Responsible.
Ongoing->includes
(self)

Out.activate()
[outputSelected]

In.activate()
[inputEnabled and outputEnabled]

/Out->forAll(activate())

Invariant rules for Decision (derived attributes):
fork = Out->size >1
join = In->size >1
inputEnabled = (In->forAll(Activated)) OR ((Relation = 'XOR') AND (In->exists(Activated)))
outputEnabled = (Relation = 'AND') OR (NOT fork)
outputSelected = (Out->forAll(Activated)) OR ((Relation = 'XOR') AND (Out->exists(Activated)))

activate()
/ if (outputEnabled) then

Out->forAll(activate()) endif

activate()

Owner.finish() [Owner.Output = self
and not outputEnabled]

Owner.finish()
[Owner.Output = self
and outputEnabled]

/Out->forAll(activate())

Figure 34. Decisions interpreted by the enactment engine.

A special decision making form facilitates user interaction with individual decisions.
Some decisions, e.g. AND-forks and XOR-joins, can always be automated. In order to
make the model readable, we have defined a number of derived attributes:
� fork, whether the connector has multiple output flows,
� join, whether the connector has multiple input flows,
� inputEnabled, whether the required input flows have been activated,
� outputEnabled, whether the engine is able to automatically decide which outputs

should be selected,
� outputSelected, whether the maximum number of allowed outputs have been selected

(one for alternative selections, all for concurrent branching).
All these properties are derived from the structure and states of surrounding model ele-
ments. This enables users to easily add and remove both input and output flows without
concerning themselves whether the connector was originally defined as a join or a fork.
Not only does this enable a simplification of the language (no need for separate con-
structs for joins and forks); it also increases the fluidity of process articulation. In addi-
tion to the flow activation actions triggered in Figure 34, Figure 32 defines the effects of
a decision connector upon its owner workitem.

101

Flow

The state transition diagram for flows is depicted in Figure 35. Similar to decisions,
flows go from not activated to activated. In the simple case, a flow can be activated ex-
plicitly be the user. In addition to human intervention, the enactment engine automates
some state transition rules (mostly defined in the diagram for decisions, Figure 34):
� When a decision with one output flow is activated, the output flow is also activated.
� When an AND decision is activated, all output flows are also activated.
� When the target decision (to) is activated before the flow, a flow violation may occur.

Here we have an exception where the model does not match what is actually happen-
ing. For now we just capture the exception, later we will look at how the flow de-
pendency can be coordinated by the awareness engine in this situation.

A flow violation may be the final state of a flow if the exception is never resolved (e.g.
by the activation of the flow or its origin). A flow may also end up never being acti-
vated at all, e.g. because another flow triggers its destination connectors, making this
flow superfluous. Another case is when the source decision is made, but another alterna-
tive is selected (another flow is activated).

Not activated Activated

activate()

From.activate()[From.outputEnabled]

Flow violation

To.activate()
[not To.inputEnabled]

activate()

From.activate()

To.Owner.start()
[To.Owner.Input = To and

not To.inputEnabled]

To.activate()
[To.inputEnabled]

From.Owner.finish()

From.activate()
[not From.outputEnabled]

Figure 35. Flows interpreted by the enactment engine.

Figure 36 shows the scope of the interactive workflow enactment engine in the activa-
tion spectrum presented in Figure 31. It illustrates that different distributions of decision
making between the engine and the users are supported, depending on the current state
of the workflow model and the actions of the users.

4.5.4 Combined Enactment Semantics

Now that we have explored the basic enactment rules associated with workitems, flows
and decision connectors, we can look at how these rules interoperate to support typical
workflow scenarios. Such scenarios can be represented as UML interaction sequence
diagrams, involving users playing roles on the workitems as well as the modelled ob-

102

jects. The scenarios illustrate that WORKWARE's activation mechanisms are capable of
handling models with varying degrees of structure.

Full automation Full manual controlReactive user
involvement

Proactive user
involvement

Work
Management

Tool

Opportunistic
manual
decision
making

Automatic
decision
making

Fallback
decision
making

Figure 36. The workflow enactment tool in the interactive activation spectrum.

Workitem Creation, Start and Suspend

Figure 37 shows a fragment of the interaction among a user, a workitem with input de-
cision connector and two input flows. The user creates the workitem, which is then
made ready by the activation of an input flow (In1). Later the user suspends the item,
and finally the activation of another input flow causes it to restart. This diagram is sim-
plified in a number of ways. It does not show the user interface components through
which the user interacts with the modelled objects, and it only reflects some aspects of a
short segment of the lifecycle of a typical workitem. The sequence also involves just
one user. The enactment of a complete W0ORKWARE model, involving multiple users,
user interfaces (worklists and worktops), and modelled objects (workitems, flows, deci-
sions etc.), would be too large an arrangement to present this way.

Figure 37. Interaction between user and model in starting and suspending a workitem.

103

Workitem Completion

Figure 38 shows the interaction involved in starting, carrying out the work, and finish-
ing a typical workitem with one input and one output flow. Two alternative completion
scenarios are included, one where the user decides to activate the output flow before the
workitem is finished, and another where the output flow is automatically invoked when
the task is declared finished by the user. The details regarding what happens during the
actual performance of the work, is only represented by a single example message in the
in the model.

Figure 38. Interaction in two typical workitem activation cycles.

Unstructured Workitem Collections

The process enacted in this scenario is "Software development project B" from Figure
33. In this model the parent workitem has three sub-items, but there are no flows that
determine their sequence. This means that the users must control the sequence of the
sub-items. In the depicted scenario, requirements are completed before design and im-
plementation starts, but the two latter are performed partially in parallel. In order to
make the diagram readable all decision connectors are hidden.

104

Figure 39. Enactment of unstructured workitem collection.

Structured Workflows

The process enacted in this scenario is "Software development project A" from Figure
33. The diagram in Figure 40 looks very much like the one in Figure 39, but the se-
quence of the signals are a bit different, and the automated support increased:
� The sequence specify→design→implement is triggered by the enactment engine,
� The project is automatically finished when the last sub-item is finished.
The flows and connectors that make these automatic actions happen, have been left out
of the diagram to make it readable, but they follow the state diagrams shown earlier in
this chapter and the more detailed interaction scenarios of Figure 37 and Figure 38.

Dynamic Replanning

Figure 41 shows a variation of the structured software development scenario (Figure
40). During requirement specification, the participants decide to add a separate Test
workitem after the implementation. After the implementation, however, the users dis-
cover that sufficient testing has already been done as part of the implementation work,
and thus the Test item is terminated. Since termination is an abnormal action, it does not
result in activating the out flow. Consequently, the project does not auto-finish as it did
in Figure 40, rather in this situation we require the responsible user to manually verify
and declare the overall project as finished.

105

Figure 40. Enactment of structured workflow.

Figure 41. Dynamic replanning of a structured workflow.

106

4.5.5 Metamodelling Interactive Languages with UML

Most conceptual modelling languages are specified in a formal, symbolic manner, e.g.
in a logic notation or Backus-Naur form [482]. Over the past couple of years, flexibility
requirements have led to the development of systems that allow their languages/meta-
models to change [138, 492]. Such reflective systems often apply a graphical notation in
their metamodelling, in order to increase user-friendliness. This trend has spread also to
UML [381] and to workflow management [551], where languages are specified in UML
class diagram metamodels. These approaches to language definition primarily deal with
the syntax used for articulation. With interactive models, we are also interested in the
activation semantics. Therefore we have added state transition and interaction diagrams
to our metamodels. Workflow standardisation efforts [532] have also used state dia-
grams, but not with as much detail. Another approach is to use Petri Nets for integrating
metamodelling into process modelling [554]. However, some innovative features in
WORKWARE have lead to a different use of UML for metamodelling:
� Interactive enactment, hence users and user interface concepts are included in the

language models and interaction sequences. Partially structured models and addition
of new objects illustrate the open and evolving nature of interactive models.

� Multiple model interactors, hence there is a need for multiple, incomplete diagrams
reflecting the semantics imposed by each of the components, and mechanisms for in-
tegrating these views. UML tools are currently weak in this area. The presentation
used here was an incremental one, e.g. the enactment engine semantics (Figure 32)
for completeness were presented alongside the work management semantics from
Figure 30. This effort revealed the close interdependencies among the interactors.
For instance, we saw that the enactment engine increased the usability of the work
management tool by separating new workitems into ready and waiting.

� Holistic enactment semantics implies that the interpretation of a model element de-
pends on the other elements in the model. Here the navigation constructs from OCL
[517] proved valuable. By browsing relations, complex interdependencies can easily
be defined, e.g. Owner.Responsible.Ongoing work->includes(self) to declare that this
item should be part of the worklist of the person responsible for it. Interaction se-
quence diagrams also illustrate the many interdependencies among model elements
in typical activation scenarios. These diagrams quickly become too large, even for
very simple examples. Consequently, some aspects of the models had to be left out.
To enable this kind of metamodelling, constructive composition and complexity re-
duction (simplified view definition) of interaction sequence diagrams should be bet-
ter supported in UML modelling tools.

The open and holistic character of the semantics also makes it difficult to define any
model completely. For instance, in Figure 32, the interdependencies along the work
breakdown structure just refer to children, not to parents. The influence of the parent is
modelled in that parent's state transition diagram (the same diagram for another object
instance). So in a "complete" model of the workitem state transitions, you would model
every one of these transitions twice, once as actions triggered by a transition and once as
transitions in their own right. Such duplication makes the model cumbersome to main-
tain, so we decided to model everything once, with all references to children and none
to parents. In all, the use of UML class and state transition diagrams with OCL rules has
worked reasonably well for metamodelling in this basic specification. As we move on to

107

instance-specific and property-controlled behaviour, the class-oriented foundation of
UML becomes more problematic.

4.6 Extended Activation Semantics
The enactment semantics of the WORKWARE language can be enriched in a number of
ways. Although this thesis focuses on the process aspects of the models, other aspects,
e.g. resources, products, information and organisational structures, can also be activated.
In the process domain, we can increase the automated support by enlarging the vocabu-
lary of decisions.

4.6.1 Decomposed Decisions

When the ports in APM were generalised into the decision concept for WORKWARE we
lost the ability to model multiple entry points to a workitem. While each action in APM
could have multiple input and output ports, we simplified this to only one for
workitems. The special case of multiple entry points could be easily handled by deci-
sion decomposition, as shown in Figure 42.

Figure 42. Decomposed decision.

Decomposition also caters for more complex triggering rules, for instance regarding the
logical relations represented by the decision connectors. An example is shown in Figure
43, representing the rule: When i2 is activated, if i1 has been activated, trigger o1, else
trigger o2.

Figure 43. More complex rules for automated decision making.

i1

i2

o1

o2

i1

i2

o1

o2

decomposed into

i1

i2

o1

o2 AND

AND

NOT

AND

AND

108

The NOT decision connector is introduced here to facilitate such rules. The output
flow(s) of a NOT decision is active until the input is activated, at which time it becomes
inactive. This connector also handles the escalation pattern [531], invoking a process in
case a constraint is not met. We do not expect all end users to articulate such detailed
enactment rules. In many cases it is simpler just to make the decision manually. The aim
of these mechanisms is to provide powerful constructs that allow process experts to cre-
ate reusable process templates with higher degrees of automation.

4.6.2 Parameterised Decisions

Data driven enactment rules allow different paths to be chosen depending on the input
data. This requires that flows can carry data values. WORKWARE's metametamodel (pre-
sented in Chapter 5) allows flows and other objects to carry user-defined properties. An
example use of such a scheme is presented below.

age <1

>60

XOR 1-15

16-59

Figure 44. Parameterised decision connector.

4.6.3 Timers

Timing and scheduling of workitems are important aspects of project management. The
default properties of each workitem include a due date and expected start date. These
properties are used by the work management tool to identify delayed tasks, and e.g. pre-
sent them in separate worklists or with special symbols. But WORKWARE also offers
constructs that allow users to model time-dependent processes. Timers are decisions that
trigger their output flow(s) at a given point in time. Timer was included as a first class
primitive in APM. Figure 45 shows that timers can be absolute or relative.

Sept. 4, 2002, 16:15

Absolute timer set to
calendar time.

Relative timer
(delayed output)

7 days

Figure 45. Absolute and relative timers.

Timers can serve a multitude of purposes, including:
� Scheduled tasks, whose input decisions are timers. Typical examples are meetings

and reporting workitems.
� Milestones, signifying that a set of workitems contributing to a joint deliverable,

should be finished before a given date. Milestones are typically major assessment
points for progress and resource consumption in a project. A template for milestone
decisions is shown in Figure 46. It gathers all the inputs, and produces one output

109

when the inputs are finished, and potentially another output that trigger exception
handling if the milestone is delayed.

� Exception handling and corrective actions can be triggered by the absence of some
flows (NOT connector) at a given time. The degree of detail put into modelling such
exception handling, is left to the user organisations to decide. As we have seen,
WORKWARE offers a number of standard mechanisms for keeping users informed
about the progress of workitems, so detailed exception handling can also be left to
the users' discretion.

Flows to next
items

AND

Flows from
tasks that
produce
the deliverable

NOT Flows to delay
handling items

AND

Figure 46. Milestone as a timer with exception handling.

The case studies surveyed in Chapter 2 show many examples of explicit representation
of work processes, but the processes of managing the work is seldom articulated. It has
been noted that workflow systems can serve as "instruments of domination" [92], ena-
bling some actors to control the work of others. This could be part of the explanation
why some managers are reluctant to articulate their own work processes, but eager to
articulate the processes of their subordinates. However, in knowledge intensive indus-
tries, management by direct supervision and standardisation of processes is often re-
placed by coordination through mutual adjustment, hence management/coordination is
an integral part of the performance of work. In the case studies of the EXTERNAL project
(presented in Chapter 8), we discovered that management and exception handling proc-
esses were easier articulate as generic templates than the core, knowledge intensive
tasks.

4.6.4 Workitem Automation

In addition to coordination and work management support, most workflow systems pro-
vide some means of full or partial automation of atomic workitems For instance, web
services can be integrated in a process in this manner [99]. In APM invoked software
tool and software agent resources signify that the action is performed entirely by an
external software component. WORKWARE utilises the presence of such resources to
simplify the enactment semantics of the work item:
� Start() triggers the invocation of the tool and sets the status of the work to ongoing.
� Fully automated items, that require no human interaction during their performance,

are automatically started when they become ready, and finish automatically upon
completion of the invoked tool service. This is articulated by adding the property
AutoStart to the workitem in question and by adding a flow from the input connector
to the output connector so that it automatically finishes. In the state diagram of the

110

enactment semantics for workitems (Figure 32 on page 98), this cause the addition of
a transition from ready to ongoing conditioned by [AutoStart].

Figure 47. Partially and fully automated work items.

4.6.5 Reflection and User-Defined Activation Rules

Although the model activation semantics presented in this chapter handles a multitude
of different scenarios ranging from loosely defined evolving processes to completely
structured and automated ones, the case studies from Chapter 2 warns against assuming
that a mechanism for process enactment can ever be complete. Consequently, the re-
quirements state that the modelling language and its semantics should be able to evolve
and support different interpretations. This subsection looks at various ways of enabling
users (primarily process experts) to extend, alter and complement the activation rules.

Extensible State Sets

A first step towards user-defined activation semantics is to allow the state sets of the
basic constructs to be altered. This is supported by WORKWARE's metametamodel,
which will be presented in the next chapter. Allowing users to define new states is suffi-
cient for manual activation, but not for automated support. Rules for how these states
can be reached and left must also be defined. The enactment state diagrams presented
above document the implementation of WORKWARE components, but they are not ac-
tively used during execution. In the future, UML virtual machines [411] might remedy
this situation, but for now we are left with simpler means.

Event Condition Action (ECA) Rules

The transitions among states in the activation state diagrams are directly represented as
Event-Condition-Action rules. By adding the guard condition
 State = #FromState
and the action
 State = #ToState
to these rules we capture the whole semantics of the transition. Previous research has
shown that ECA rules yields inadequate performance for high-volume production work-
flow [98]. Consequently these rules have been utilised to control exception handling
rather than normal enactment in adaptive WMS [98, 319, 320]. For emergent, knowl-
edge intensive processes this scalability problem is not as severe, and ECA rules seem
feasible for normal enactment as well. Indeed, emergent workflow is about treating ex-
ceptions and evolution as the rule of the game, rather than infrequent accidents.

111

Enactment Policies

In order to utilise ECA rules in WORKWARE, we need a rule-editing interface for process
experts in the organisation. End users may utilise simple customisation functionality,
e.g. selecting among a set of possible behaviours (policies), for entire processes as well
as for single elements. Enactment policies provide users with a simple way of configur-
ing the semantics of model elements. Autostart as described above is one such policy.
Policies are attached to workitems and other objects as properties. Table 4 shows some
sample enactment policies and their representation in ECA rules (in OCL syntax).

Enactment policy ECA Rule
Autostart [state=#Ready]/start()
Autostart children [state=#Ongoing]/Child.forAll(

if input.inputEnabled then start() endif)
Repetitive (restart) [state=#Finished] : services->includes(start)3
Repetitive as new instance [state=#Finished] : services->includes(clone)
Loop as cloning of workitem
(rule for input connector)4

activate()[state=#Activated and
Owner.state=#Finished] /Owner.clone()

Loop as restart of existing
workitem

activate()[state=#Activated]
/Owner.setState(#Ongoing)

Once only (automated items) [state=#Ongoing]/finish()5

 Table 4. Enactment policies.

Deontic Rules

Rule modelling in APM [90, 91] is supported by the deontic rule modelling language
DRL [284]. DRL rules have this syntax:

when trigger if condition it is deontic for role/actor
 consequence else another consequence

The trigger, condition and consequence parts of these rules correspond to event, condi-
tion and action in ECA rules. The deontic operator determines the strength of the rule. It
is either obligatory, forbidden, recommended, discouraged, or permitted. Deontic op-
erators thus allow human judgement in model interpretation. Deontic operators have a
role in rules, but also in other model elements. For instance, it makes sense to denote a
flow dependency as obligatory or recommended. The flow violation state in Figure 35
should not be allowed for obligatory flows. In model interpretation, deontic operators
are most useful in general templates and organisational procedures, but they may also
articulate the local commitments of process participants. In order to support models
with varying degree of structure, the framework also needs to reuse deontic operators.
For instance, a default deontic operator can be specified for a process, and applied to all
of its components. The designation of role/actor for which a rule applies, can also be
derived from the process model. A rule that is applied to a workitem by default applies
to the responsible person for that item. Operationally, deontic rules should be activated

3 Services here refer to the set of services available in the user interface for this object.
4 Here the arrival of a flow to the input of an already finished workitem, generates a new copy (iteration) of the item.
5 An alternative way of articulating "Once only" was shown in Figure 47.

112

by a guiding and warning engine in cooperation with the enactment service. This engine
should guide users when they are working on a task, and issue warnings to various ac-
tors when rules are violated. Forbidden and obligatory rules may cause access privileges
to be revoked.

4.6.6 Inconsistencies, Deviations and Rule Violations

A general concern when applying rules, is what rule violations should result in, how and
whether violations should be prevented. This also relates to the nature of the rules. In a
formal framework for analysing inconsistencies in human-centred systems (consisting
of a real-world process and a model mirroring it), two types of inconsistencies were
pinpointed [118]:
� Domain-level inconsistencies, where a domain rule like "all checks drawn should be

registered in the check notebook" is violated, and
� Environment-level inconsistencies, where the model no longer mirrors the real proc-

ess adequately.
Conventional workflow systems avoid domain-level inconsistencies. This is achieved
by forcing the user to follow a "correct" process, which ensures that all explicit rules are
satisfied. Domain-level inconsistencies that are not avoided, will on the other hand be
very hard to capture and handle, because they will also lead to an environment-level
inconsistency, (unless the domain-inconsistent behaviour is modelled in the workflow).
The extra degree of freedom emergent workflow offers the users may cause new do-
main-level inconsistencies. On the other hand, a flexible workflow system increases the
likelihood of capturing the human behaviour that caused the rule violation. It needn't be
done "outside the box" of the system, like in a conventional workflow setting. So, in-
consistencies that are not avoided by enforcement can be captured by the system and
then resolved by the users or automatically by the system. Because of this, emergent
workflow combined with a business rule system might actually serve quality control
better than rigid workflow solutions, relying on the skills of workers rather than process
standardisation (cf. Table 1 on page 42). Human involvement in the resolution of do-
main inconsistencies means that advisory rules can be applied, whereas the enforcement
paradigm of static workflow only handles absolute rules.

4.7 Activation by the Awareness Engine
In order to coordinate cooperative work, we need to comprehend the actions of others.
Comprehension requires that information of what has happened is available. In the
CSCW community, workspace awareness has been a topic of research since the early
nineties [141]. Awareness is defined as “having perception, knowledge or realisation”
[196]. Dourish and Bellotti [141] distinguish between awareness as a product and as a
process: The process is the continuous cycle of extracting information from the envi-
ronment, the product the state of understanding about others' interaction with the work-
space. Awareness lowers the overhead of working together, creates new opportunities
for serendipitous collaboration, and provides people with a larger context for their ac-
tions. Awareness information supports the collaborative assembly to achieve inter-
subjective comprehension of the purpose and conditions for the collaboration [30].
 Thus, there are two main objectives of awareness services, to help participants to
comprehend the collaboration (the knowledge level), and to coordinate activities (the

113

relationship level) [436]. These levels are closely interrelated. Awareness relates to ar-
ticulation work [32, 439, 468]. Articulation overhead (extra work associated with noti-
fying others of what you are doing) and information overload are emphasised as critical
factors for awareness and coordination. Thus, we need to balance information overload
with the participants' needs for continuously interpreting the meaning and context of
their work. Mediation of the contextual meaning of awareness information is especially
challenging. Interactive models are useful for attacking all these challenges. Models
provide a context for awareness information, making it easier to filter and interpret it.

Workitems Provide Context for Awareness Information

The worklists in WORKWARE present all items belonging to a project, group, or individ-
ual. The worktops of individual workitems gather all the information needed for per-
forming the work. The work management tool is thus a natural candidate for integration
with an awareness service, where the awareness information can be presented alongside
the other information about the workitem. This remedies some of the problems often
associated with awareness mechanisms, e.g. information overload and the lack of con-
text for notification messages.

Collaborative Workitems

If multiple people are assigned to an atomic workitem and they have not found it
worthwhile to articulate a detailed plan with separate responsibilities, they need to co-
operate closely. The workflow engine does not support such coordination. The aware-
ness engine, on the other hand, keeps the participants informed of what the others do
with the shared information, facilitating coordination by mutual adjustment. This sup-
port is enhanced when the awareness mechanism also monitors events related to docu-
ments and other shared artefacts referenced by the workitems.

Partially Structured Processes

The enactment engine can handle coordination of fully connected workflows. For col-
lections and partially structured workflows, awareness services help the users to control
the work. Being notified of the progress and status of other work items, users are in-
formed to make their own decisions about when to do what.

Flexible Resource Allocation

A wide range of techniques has been proposed for flexible allocation of organisational
resources to workitems. Some organisations have job queues that contain workitems in
need of specific personnel resources. Such queues may be split into role queues, based
on skill requirements. While this solution allows people to pick ready tasks, it requires
maintenance of organisational role models. This approach shares some of the inflexibil-
ity of role restrictive systems, e.g. rigidity, vague role definitions and inability to utilise
existing skills due to a normative use of organisational roles. A contextual and person-
alisable awareness mechanism may be a better solution for the personnel allocation
problem. The context given by the work process definition, coupled with the possibility
for each user to customise which kind of work they are interested in as well as compe-
tent for, can be used for filtering which incoming items each user should be informed
about.

114

Coordinating Interdependent Workitems

A WORKWARE process model is perceived as a plan that can be adapted to the situation
at hand. One typical exception to the planned sequence of work, involves early start of
workitems that according to the process model are not ready; i.e. an opportunistic in-
volvement that departs from the model in order to speed up the process. Consider the
situation in Figure 48b. Someone has started item B although item A has not signalled
that it is ready (it has not activated the flow). The flow will thus enter the state flow vio-
lation (in Figure 35). In this case, multiple workitems, modelled as sequential, are active
in parallel, and need to be coordinated. If the users choose to remove the flow, consis-
tency is restored. But if the flow is not removed, a new situation arises in which it is re-
interpreted. It is still regarded as a dependency that must be coordinated, but the coor-
dination is supported by the awareness engine, not the enactment engine. Until the flow
is activated, the awareness engine should thus inform the actors of A of what happens
inside B and vice versa. This means that the flow becomes a channel for event notifica-
tions.

Figure 48. Different interpretations of a flow depending on the context.

Collaborative Planning

In an emergent workflow a partial and evolving model articulates knowledge about the
work to be performed. During project planning, the awareness engine disseminates ar-
ticulation events helpful for maintaining a shared understanding. With the coupling of
workflow and awareness services, the vision of collaborative planning [477] can be
extended to cover collaboration in planning, not just divide and conquer where each
participant takes responsibility for one part of the overall process. For the workflow
participants, notification of changes to either the overall plan or the sub-plans related to
their work, is vital for maintaining shared understanding.

4.7.2 Awareness Semantics

A generic awareness model has been applied to facilitate the above services in WORK-

WARE. The model was developed by Rolfsen [416]. It sees the workspace as consisting
of artefacts and inhabited by actors. There may be dependency relationships between
artefacts, and actors may participate in the processing of artefacts. Events are generated
by actors' work on an artefact. All events relevant for an artefact are presented alongside
the artefact. For WORKWARE, workitems are treated as artefacts. We also added a cus-

A
Ongoing

B
Waiting

A
Ongoing

B
Ongoing

Awareness:
Flow = Channel for
event notifications

a)

b)

Enactment:
Flow ⇒ When A finishes,

B is set to "Ready"

115

tomisable event propagation service, where artefact dependencies are channels for
events to flow along. These WORKWARE relationships are used as dependencies:
� Flow,
� Is-filled-by, for document events,
� Decomposition.
Participation relationships between actors and artefacts follow responsible, participant,
and customer relationships in the process model. The whole awareness workspace
model is thus just a view on the existing process model, and no extra articulation is
needed. The awareness service is personalised and customised by adding lenses [50,
518] to the dependencies. Each lens filters out some of the events while allowing others
to pass through. In order to reach a user, an event notification must travel through the
process structure without being filtered out by any of the lenses it encounters. The
lenses currently defined in the WORKWARE prototype include:
� Event type lens, which filters out events of a certain type, e.g. read events, write

events, create events or document events.
� Relative time lens, which filters out all events older than a given number of days.
� Absolute time lens, which stops all events that occurred before a fixed time. This

kind of lens is created when the user triggers the Catch up service.
� User lens, filtering out all events caused by a given user (e.g. myself),
� Event list lens, removing all the events that are listed.
Two sibling workitems are related indirectly through their parent. They may also be
more strongly related through a flow, and in most filter configurations this stronger rela-
tion increases the notification flow between them. This scheme is holistic. Any object or
relationship may be part of a path between any other pair of objects, and thus influence
the flow of awareness between them. Consequently, the addition or removal of an ele-
ment may potentially influence all other elements in the model. Since the awareness
propagation is based on a general graph structure, it can easily be adapted to other inter-
active models, similar to the AETHER awareness engine [428].

4.7.3 Awareness Semantics for Flows

WORKWARE's awareness engine utilises the process structure to inform people, in a con-
textual manner, about the actions of others. In doing so, it provides an interpretation and
activation of the flow concept that complements that of the enactment engine. The latter
coordinates the flow dependency by automated sequencing of tasks, while the aware-
ness engine helps users to mutually adjust concurrent tasks. Figure 49 shows the inter-
pretation of a flow by the awareness and enactment engines. The awareness engine han-
dles one typical exception to the basic flow interpretation, that of opportunistic in-
volvement (someone starts work on the receiving end before flows that they were sup-
posed to wait for were activated). The flow violation state of Figure 35 is thus replaced
by a new state, that of the flow as a channel for awareness notifications. This activation
is performed:
� When two tasks connected by a flow are active simultaneously, the people working

on either task are informed about what the people in the other tasks have been doing.
� A real flow violation now happens only in the case where the receiving task

(Flow.To.Owner) finishes before it has received its input from the origin task.

116

Not activated Activated

activate()

From.activate() [From.join]

Awareness
Channel

To.activate()
[NOT To.enabled]

activate()

From.activate()

To.Owner.start()

Flow violation

To.Owner.finish()

To.activate()
[To.enabled]

From.activate()
[From.fork]

Figure 49. Flow interpreted by the awareness engine.

4.8 Model Driven Access Control
Access control is about deciding and enforcing who has access to perform which opera-
tions on what information. In an emergent workflow system, access control plays two
vital roles:
� Controlling flexibility, limiting the default full freedom of users to violate the mod-

elled flow of work, to change assignments etc.,
� Controlling access to resources, information, tools, and services.
Access control policies in operating systems and repositories are typically defined with
system-oriented terms like files, directories, users etc. A typical example, the standard
for Distributed Authoring and Versioning on the web (WebDAV [235]), defines access
control policies with five main components:
� Who is given access (subjects),
� What are they given access to (objects),
� What operations are they given access to (actions), e.g. read, write, execute, manage

access rights,
� Whether access is granted or denied (negative),
� Whether the access privilege is also valid for components of the object (inherited).
As a component in a process support system, an access controller can utilise the infor-
mation articulated in the process models. This information includes who works on
which workitems (in what type of role), what information and tool resources they use,
and how different items of work depend on each other (through decomposition and
flows). By utilising this information the access controller can support:

117

� Access control policies with user-oriented (model) concepts,
� Changes to the model that are automatically reflected in access privileges. For in-

stance, when a person is assigned to a workitem she is also given access to the tools
and information needed for performing the work.

The access controller thus becomes a model interactor, activating the process models for
a specific purpose that complements the functionality offered by other components.
Previous research on access control in workflow environments focuses on static systems
[49], and to a limited degree on adaptive systems [68]. Conventional mechanisms were
found to be insufficient for dynamic workflow environments [68]. Their major objective
is to enforce a strict least privilege policy where users are only allowed to do what their
role on the current workitem allows in the current state. In an emergent WMS, other
policies, e.g. "need to hide" may also be applied. Where existing approaches rely on
static organisational structures, WORKWARE also activates dynamic process structures.

4.8.1 Access Control Policies

The WORKWARE access controller provides a mapping between modelled objects and
WebDAV access control policies. In addition to modelled individuals and groups, the
subjects recognised by the system include:
� All participants on a workitem,
� The responsible of a workitem,
� The customer of a workitem,
corresponding to the different person role types defined in section 4.2.6. Access rights
can also be assigned to a specific role by name, e.g. "Project manager" or "Reviewer".
In order to further structure the access control policies, we introduce the concept of a
project, which includes every workitem that is part of a single work breakdown struc-
ture. The project is thus identified by its root task. The aggregate groups project partici-
pants and project customers, include every person that fills participant or customer roles
on any of the workitems in the project. The project responsible is the person responsible
for the root task (most often the project manager). Since the system is based on an open
standard, user groups and units in organisational models may also be used to structure
the subjects. The objects that users are given access to include:
� Information objects (documents etc.),
� Workitems,
� Projects,
� Information about persons,
� Process models.
For workitems and projects, users can be given specific access rights to certain aspects
of the objects, including Description, Person roles, Information resources, and Sub-
items. More detailed policies can grant access at the level of single properties, e.g. al-
lowing outsiders to read the name of the document but not the content. The actions that
subjects may perform on the objects in principle include every tool or service defined in
the models. For convenience, actions are grouped into these levels: Add, Read, Execute,
Write, and Manage. Add means that new objects can be added but existing objects can-
not be read, while Execute allows read and the alteration of state properties of the ob-
jects. Manage involves the right to grant others access to the object. With the exception
of Read and Add, these access levels are hierarchical, so that Execute implies Read,
Manage implies all other rights etc. The access policies control what the work manage-

118

ment tool shows in worklists and worktops. Secondary effects through the enactment
engine are however not restricted. When someone finishes their workitem, the next item
becomes ready even though the user does not have execute privileges on that item.

4.8.2 Usage Examples

The access controller can be utilised for a number of different purposed. Here are some
detailed examples.

Controlled Flexibility

The LAW prototype (cf. section 3.3.4) supports varying degrees of empowerment by
attaching access rights to work decompositions [164]. The WORKWARE access control-
ler supports the configuration of LAW in this manner:
� CAN: Workitem responsible (and perhaps the participants) has write access.
� STRICT: Workitem performers are denied write access, but have execute rights.
� MUST: Like STRICT, but add is allowed for sub-items and person roles.
But a wide variety of other schemes can also be supported, e.g.
� Customer controls the workitem model (write access), so responsible must negotiate

changes with her.
� Responsible has full control over the item, but is not allowed to delegate it to some-

one else (denied write access to the responsible role).
� Each workitem can only have one person working on it (the responsible), and no-

body is allowed to see the items allocated to other people (deny access to participant
roles for everyone, grant read and execute access only for the responsible of each
task). This configuration mimics the behaviour of static workflow systems, trying to
relieve users of the burden of manual coordination.

The access control scheme is designed to meet all degrees of empowerment, from full
autonomy of all users to centralised control with very limited user rights. Policies like
"need to know" or "need to hide" can be defined as high level rules and inherited. Such
inheritance is implemented as reuse, and will be dealt with in more detail in Chapter 5.

Anonymous Users

In some cases, the identity of who plays a specific role should be hidden to the other
participants. In anonymous review processes, the reviewers should not know who the
authors are and vice versa.

Virtual Enterprises

Virtual enterprises span organisational boundaries. Although they are involved in a co-
operation, partners often want to hide some of the details regarding their ways of work-
ing from the others. Defining access control policies based on an organisation model
can support this. As the cooperation matures, becomes more formalised, or mutual trust
increases, one may find it useful to increase the sharing of information. A dynamic ac-
cess control infrastructure, where general privileges can be inherited, simplifies this
process.

Dynamic Access Control

When the state of a workitem changes, the access rights may also need to change. If the
organisation wants to prevent early start of workitems (in general or for some particular

119

items), they can decide that write and execute access is not active until the item be-
comes ready. Another use of dynamic access policies is to declare that all finished
workitems or information objects are locked. Rules that couple the state of the workitem
to access control policies enable this functionality. Chapter 5 describes a dynamic clas-
sification scheme that supports this.

Visual Representation of Access Rights

APM adds a lock symbol to actions that the users are not allowed to alter, but does not
provide a scheme for visualising more complex access rules. Clearly objects that the
current user is not allowed to read, should be hidden from the visual process model, but
in some contexts it would also be convenient to view and alter the access policies in the
model editor. A visual model provides overview of the whole process and is thus a suit-
able interface for locating unintended security holes etc. Users with manage rights
should thus be allowed to view the model as it would appear to other users and user
groups. In Figure 50 different access rights are visualised with different colour on the
top right icon (red=read, yellow=execute, green=write). We may also attach icons to
actor roles to articulate the rights if people filling those roles.

Figure 50. Visualisation of access rights.

4.9 Concluding Remarks
The WORKWARE modelling language combines a number of different perspectives.
Striving for simplicity and user-orientedness, we have taken a transformational (input-
process-output) starting point. APM and WORKWARE also include a rich set of primi-
tives for modelling the resources of each work item. Organisational, material, informa-
tion and tool resources can be modelled. Further, some aspects of language action are
integrated (interaction patterns, customer-performer roles), as well as constraints (add-
ing details means narrowing the scope of behaviour) and role modelling (graphical con-
tainment represents areas of authority and responsibility). System dynamic perspectives
[2] of emergent behaviour, mutual and non-linear causal relations are reflected in the
holistic and situated enactment rules. This reuse of tried and tested techniques further
support the claim that the interaction framework is feasible and relevant for workflow
management. We have also shown in this chapter how the interaction framework can
guide systems design. The WORKWARE prototype is one of few current attempts at re-
interpreting the workflow concept to include processes with emerging structure. The
main contributions are

120

� To allow ambiguities in the models and to resolve them interactively in the situations
that arise, without having to resort to modelling,

� To facilitate dynamic interpretation of model elements,
� To integrate multiple model interactors, complementing the enactment engine.
Though rudimentary in some aspects, the system shows how a number of different per-
spectives can be integrated in a rather simple language. Mappings between process
models, workspace models and directory structures enable generic awareness notifica-
tion and access control functionality to be utilised without complicating the core lan-
guage. Reuse of interactor policies, for enactment, user interfaces, access control and
awareness, is a core challenge for the next chapter.

121

Chapter 5
Reuse

This second part of the WORKWARE design deals with reuse. Model reuse is a funda-
mental problem often overlooked in languages for IS development. While object-
oriented languages support syntax inheritance of single object classes, what it means to
inherit, specialise and compose models (fragments with several objects, relationships
and behaviour included) is not that straightforward. In this thesis a pragmatic approach
based on user requirements is chosen. Because of the ad-hoc nature of most work, reuse
is seen as an interactive task, which seldom can be fully automated. The role of inheri-
tance is to simplify articulation by providing default values that users may change later.
Emphasising the uniqueness of each process, WORKWARE's metametamodel allows lo-
cal language extensions and dynamic classification structures. All models are articulated
at the instance level.

5.1 Motivation
In Chapter 2 a number of requirements for model reuse were presented. The foundation
of our approach was outlined in the lifecycle of process model evolution in section
2.5.7. For this approach to work, end user articulation must be facilitated, and motivated
by the usefulness of the activation mechanisms. It is thus impossible to view reuse as
independent from articulation and activation. The requirements for articulation and acti-
vation must thus be kept in mind also for the reuse framework. Section 2.5 presented a
number of specific needs for model reuse, including
� Structured template repositories, facilitating incremental definition, identification and

selection of suitable templates,
� Mechanisms for generalisation, comparison, qualitative and quantitative analysis,
� Description of suitable usage context and previous experience for each model,
� Representing and facilitating the reconciliation of conflicting perspectives, and
� Composition of templates as part of ongoing process articulation and adaptation.
The state of the art survey in Chapter 3 showed that although numerous techniques have
been proposed to solve each of these problems, a combination that is simple, flexible,
and effective for end users could not be found. In particular, most approaches focus on
automated reuse semantics, rather than making models available as resources for situ-
ated adaptation. An interactive reuse approach better matches the contingency of
knowledge intensive work. As pointed out by a number of studies [122, 441], knowl-
edge management must be integrated with everyday work to be successful.
 In current research, there also seems to be a focus on high-overhead documenta-
tion approaches, where models are made especially for the purpose of reuse (pushed
onto the projects). This approach should be complemented by need-driven mechanisms
(pulled by the projects). Where conventional wisdom regarding software reuse states
that reuse must be planned for, interaction allows need-driven reuse of models that were

122

designed to meet local problems. After all, in most tools commonly used by process
participants today, reuse by copy-and-paste is more frequent than structured inheritance,
delegation or composition. Our aim in this chapter is to present a reuse framework that
integrates these schemes, combining their strengths. As always with interactive models,
the degree of automation is an important question. We find that a single solution will
not fit all usage situations, and present a customisable framework where the degree of
software support can be adapted based on the availability of templates and the knowl-
edge of the process participants.

5.2 Instances, Templates and Classes
In order to support local modifications, fluent articulation, and flexible activation,
emergent workflow models represent instances. A prototype/instance mechanism is thus
applied in WORKWARE. The concept of a template is essential. A template is an initial
definition of an object instance. A template (prototype) is itself an instance, thus the
mechanisms we design for template reuse can also be applied to ordinary models. This
results in a simple and general reuse approach.
 In fact, the class concept was introduced to the WORKWARE metametamodel
(Figure 51) purely with the aim to simplify reuse. In this scheme, a basic class is just a
template with a name. The template may be especially designed and adapted for reuse,
but it can also be an ordinary model element promoted to the rank of template. The ba-
sic constructs of the modelling language (Figure 29 on page 95), e.g. Workitem, Deci-
sion, Flow, Person, are defined as basic classes. All specification of structure, behaviour
and other features, are defined in a uniform way at the instance level. Class features are
thus defined in the template. Each instance has a set of properties represented as attrib-
utes. An attribute is a name-value pair. Attributes and objects (instances) are typed, but
in order to enable flexible modelling, the typing is advisory. An object may alter its type
at any time during its lifecycle. The type of an object refers to a class. Attributes types
are relational, i.e. refer to another object, or simple data values (numbers, texts, dates
etc.). Relational attributes are used for encoding the associations of the process model-
ling language, e.g. Owner, Source, Target, Customer and Responsible.
 This metametamodel may look quite complicated, with a large number of con-
structs. The end users, however, only encounter a few of these constructs when they
define language extensions (through metamodelling). In normal operation, the user only
has to care about individual objects and attributes. Types are needed when a new attrib-
ute is defined. Normally, classes are just used as selection criteria for presenting alterna-
tive attribute values to users, and for attaching behaviour to a range of objects.
 The self-containment of object instances is a core feature of this architecture. Mul-
tiple meta-levels is one of the most challenging modelling concepts to grasp for end
users, thus a simple, interactive system should apply as few levels as possible. In a
WORKWARE object (instance), the data are grouped together with their metadata (attrib-
ute definitions). In most infrastructures, e.g. UML [377, 381], Java, and Smalltalk,
metadata are stored at a higher level (the class object) than the data they describe (the
instance object). With WORKWARE's instance-oriented framework users need not worry
about the differences between classes and instances when they are modelling. Classifi-
cation becomes a method for managing templates in the repository. It is not something
that must be determined when models are first constructed. This simplifies local modifi-
cations and removes conceptual complexity. The aim of this chapter is to show how

123

WORKWARE's reuse mechanisms utilise this simple framework, making it also more
flexible and powerful than the more complex conventional infrastructures.

Object Attribute

has properties

Class

Extension
class

Basic class

gener-
alises

defined by
template

has type

Simple value
type

Class
reference

has type

Intension
class

Type

defined by property expression

1

11

*

*

*

*

*

*

1 1

1

1

*

1specialises

Figure 51. The WORKWARE metametamodel.

5.2.1 Emergent Classification

In the WORKWARE implementation, all instances keep a pointer to its basic class as a
type property. The type relation is originally inherited from the template during instance
creation, but may be altered. In addition to basic classes, generalisations and specialisa-
tions can be defined incrementally by their
� Intension [81]. Specialisations and property-defined classes [393] are defined by se-

lecting a class and defining the criteria (property values) that members of the new
subclass must fulfil.

� Extension [81]. A superclass is defined by listing the classes that it generalises.
These schemes were not originally part of the framework. They were added when it
became evident that they would meet practical requirements. For instance, classification
by intension allows us to separate fork connectors from join connectors (as discussed in
the preceding chapter), while retaining one basic class for all connectors. The separation
between join and fork were needed for the implementation of the interactive enactment
semantics, as defined in section 4.5. Generalisation by extension was added so that
common properties and behaviour, e.g. user interface components, could be defined for
a range of similar classes.
 In pure instance frameworks, classes are not used at all [358, 483]. The conceptu-
ally cleanest way of expressing classes [81, 393, 394, 396] would be without reference
to other classes. Instead we could define classes by listing the properties required for
membership (by intension), and dynamically scan all objects to see if they fulfilled
these requirements. Extensional sets could be defined by explicitly listing all their
member objects. But this conceptually correct scheme would not be as scalable as the
more pragmatic one chosen here. Scanning every object in the system to see if they

124

meet intensional requirements would not be computationally efficient. Aiming to sup-
port users in incrementally building classification structures, we offer mechanisms that
refine the existing hierarchies by adding specialisations and generalisations. This design
is thus a direct result of viewing the modelling language as evolving, incomplete and
semi-formal.

Extensional generalisation makes it simple to attach behaviour to a wide range
of different objects, e.g. all objects which should have event logging enabled. We found
it more convenient to do this at the level of basic classes than at the level of instances.
The basic classes represent essential features of an object, e.g. it is seldom relevant to
change the type of an object from workitem to person. The ability to attach behaviour to
intensional subclasses also makes classification structures less rigid, rendering the bene-
fits of the theoretical approach less relevant for customisation.

5.2.2 Adaptive and Emergent Workflow Mutation

As we discussed in section 3.3.2, several approaches to adaptive workflow are based on
the assumption that models define workflow classes (schemas), and not instances. Some
researchers [45, 213] also claim that interactive modelling by process participants is not
feasible, that although ad-hoc changes will occur, they cannot be handled by ordinary
users updating the models in an uncontrolled way. This claim is based on the view that
workflow class modelling is difficult and time consuming, and requires expert knowl-
edge not possessed by an average user. The WORKWARE approach circumvents these
problems, by not hardwiring process definition to the class level. Our basic objective is
to support the planning, articulation, coordination and performance of unique workitem
instances. We thus enable modelling of instances as well as classes. In doing so, we
remove the great complexity of having to look at all past, present and future instances of
a class whenever you modify a model. The claimed impossibility of ad-hoc modelling
stem from a paradigm that does not separate modelling from class definition. It is not a
fundamental problem of all process support technologies. The case studies in Chapter 2
and Chapter 8 support our claim that process modelling by end users is feasible.
 In WORKWARE class template changes do not automatically update running in-
stances. This is a logical consequence of treating every instance as unique. We will in
the following sections describe propagation services, which update instances with ge-
neric changes. Such dynamic changes are however interactively controlled, and not a
mandatory step. The key feature is that WORKWARE does not require consistency be-
tween the instance and its template. They are assumed to be different, the template is a
resource for adaptation, a starting point for creating new instances6. Figure 52 summa-
rises the difference between WORKWARE's metametamodel and the class-oriented ap-
proaches that dominate static and adaptive workflow management systems. It shows
that while conventional approaches have a linear relationship from class to instance,
interactive approaches supports interplay between the general and the local, facilitating
learning and improvement anchored in practice.

6 Access control may of course prevent users from making local changes, thus enforcing more conventional class-

instance relationships (cf. section 4.8).

125

Class

Instance

Class template

Instance

instantiation

Class

Instance

a) Static workflow b) Adaptive workflow c) Emergent workflow

instantiation
Dynamic change

to class
affects instance

harvesting
(instance
becomes
template)

reuse by copy

Change propagation
according to

reuse policies

instantiation
(template copy)

Figure 52. Relationships between classes and instances.

5.3 Inheritance
This section describes how dynamic changes are reused in WORKWARE models, ena-
bling incremental model definition. Inheritance is conventionally defined as reuse cou-
pled to specialisation [483]. For enactment, specialisation relationships played no part,
but for reuse, they are crucial. For instance, the PROCESS HANDBOOK uses specialisation
in its model repository, both for navigation, selection and incremental definition of tem-
plates [329]. This does not imply that specialisation is the only kind of relationship rele-
vant for reuse. The handbook also utilises de- and re-composition [47]. Similarly, soft-
ware engineers have discovered that reuse mechanisms involving delegation can com-
plement inheritance [173]. Access control mechanisms support inheritance along de-
composition hierarchies. Roles are also powerful reuse structures [149], as well as the
history reflected in persons' assignments to tasks. Personal preferences should be reus-
able along this trace. Thus, our reuse strategies does not rely solely on conventional
inheritance, rather it allows reuse along any model structure where it is useful. This rep-
resents a holistic approach, where all elements may recursively contribute to each
other's definition.

5.3.1 Language Extensions for Reuse

A few extensions must be made to the modelling language in order to support the reuse
mechanisms of WORKWARE. These changes are defined in Figure 53. This vocabulary
enables us to define and control the semantics of instance creation and dynamic change
propagation from templates to instances.

Operations:
isTemplate()
clone()

Attributes:
Id
Type
Name

Instance

Template
1

*

Figure 53. Language extensions for reuse.

126

The generic attributes for all objects include a unique identifier, a user-oriented name
and the type of the object. Each object also has a connection to its template, the object it
was originally cloned from. The template is itself an ordinary object. Template is a role
that every object potentially can be assigned. Figure 53 also shows two new methods,
clone and isTemplate. The latter returns a true if this item is declared a template for its
type. The method clone generates a copy of the object and any objects whose existence
depends on it, e.g. the input and output decision connectors of a workitem. All
workitems, flows, decisions, resources, roles and other process model elements inherit
the attributes and associations defined in Figure 53.

5.3.2 Dynamic Change Propagation

So far we have seen how WORKWARE implements classification and instance creation.
The final component in our foundation for interactive reuse manages dynamic change.
The problem we deal with here is how a change to a general class should affect the ob-
jects that already exist when the change occurs. Delegation and lookup schemes are
common solutions to this problem. At runtime, requests for inherited features are dele-
gated to the element that defines it, e.g. up the inheritance hierarchy. Such schemes al-
low incremental definition, where each feature is defined in one place. However, multi-
ple inheritance requires well-defined lookup methods, in case there are conflicting defi-
nitions of some features.
 Interactive instance models face a different usage environment than conventional
OO frameworks. Here general dynamic change occurs far less frequently than local
modifications. In order to ensure flexibility, cancellation inheritance, where instances
and subclasses may remove inherited features, is required [483]. Also, as we have dis-
cussed, many dimensions of process models may be utilised for reuse, resulting in mas-
sively multiple inheritance. Interactive interpretation of incomplete, semi-formal models
requires human involvement in the lookup process. In such environments, delegation
and lookup approaches are less suitable. Emphasising simplicity and situatedness, we
have based our approach on self-contained instances, where all feature definitions are
stored locally. General changes must thus be propagated to all the instances they should
apply to. Given that the model may be incomplete, human decision making may be re-
quired in determining the scope of a dynamic change. Human involvement is often eas-
ier at the time of change than at the time of access.
 Change propagation is a pre-computation of lookup results. Such pre-computation
is efficient if the update rate is lower than the access rate. We expect this to be the case
for most general changes to interactive models. However, replication complicates gen-
eral change. In section 5.5.7 we therefore discuss how delegation and reuse by reference
copy rather than object copy can help us decrease replication.
 Change propagation is managed by the Observer pattern [173] (implemented in
the Java standard PropertyChangeListener interface [191]). Each object subscribes to
notifications about change events in the objects it inherits from. This scheme works re-
cursively through an inheritance hierarchy, because when a template copies changes
from its superclass, change notifications are triggered and sent to all subclass observers.
Changes should only be propagated when the old value corresponds to the value cur-
rently in the observer item (i.e. when the property is not redefined locally). This scheme
also supports multiple inheritance, where the latest change wins conflicts unless priority
policies are defined. The design is easily generalised, so that any relationship between

127

two objects can be the reason for establishing change propagation inheritance. Below
we look at how reuse policies can control the propagation of reusable aspects along
different relations utilising this design.

5.4 Reusable Aspects
Our reuse approach is modular, and the modules that can be reused are called aspects.
An aspect is a group of related features. In WORKWARE models, features are linked to
objects as attribute values. We use these terms because they fit well with previous work
on aspect-oriented systems [157, 351] and multi-dimensional workflow models [213].
The WORKWARE modelling language contains these aspects related to workitems:
� Properties

The attribute values that describe a workitem or another object.
� Workflow interface

The input and output decision connectors and their input and output flows.
� Decomposition

The work breakdown structure of sub-items and their interconnection network of
flows and decision connectors.

� Resource roles
The various objects, tools and persons needed in order to perform the work that the
workitem represents.

� Policies
A mechanism is a generic capability of some software component, whereas a policy
defines the use of such a capability [1]. In connection with an interactive model,
policies are sets of rules or preferences that control the activation of model frag-
ments. Policies are themselves model elements, and should be reusable. Enactment,
awareness, access control, user interface, and reuse policies are typical examples.

Although these are the basic aspects as defined in the current language, users may add
new aspects not included in this general list, e.g. through metamodelling. These are also
made reusable in this framework. New aspects are automatically defined for:
� Each relational attribute (e.g. Children which gives the decomposition),
� Each type of relational attributes (e.g. all persons associated with a workitem),
� Each type of policies (e.g. all access control policies).
Aspects are also used in access control (cf. section 4.8). In this scheme there is a hierar-
chy of aspects, from "everything about this object" by way of sets of related features to
individual attributes.

5.5 Reuse Policies
The vocabulary needed for defining flexible reuse strategies is defined in Figure 54. In
addition to aspect, policy is the primary concept. A policy is a customisation specifica-
tion for a model interactor. A reuse policy customises the reuse tool. It defines which
aspects are propagated along which model structure. Each policy applies to one object,
but as policies themselves are reusable, they can be propagated to other items according
to the reuse policies for reuse policies.

128

Aspect

Reuse-of

Applies-to
Reuse-along

Object Relation

Specialisation

Reuse policy

Policy
Model

element

Classification

* *
*

*

*
*

Attribute

Figure 54. Constructs for flexible model reuse.

A reuse policy specifies the object it applies to, the relation along which it propagates,
and the aspect that is reused along this link. Policy attributes control the priority of this
policy compared to others; and whether the aspect is cloned, or just the reference to it
(deep or shallow copy). The framework allows both instances and classes to be the ob-
ject of reuse policies. Reuse policies for basic classes are attached to the template, while
extensional and intensional classes are defined as metaobjects. Specialisation is a rela-
tion between classes. It is automatically computed from class definitions.
 In WORKWARE models, reuse among workitem objects and classes are most im-
portant. For workitems, classification, specialisation, decomposition (attribute children),
flows (attributes in and out), and resource roles (attributes of type person, tool or docu-
ment) are the most important relations along which reuse occurs. In addition to
workitem attributes, decomposition and interfaces, policies for enactment, access con-
trol, user interface customisation and awareness propagation, are often reused. In the
following subsections, we look at which aspect should be reused along which relations.
The discussion is guided by reuse rules in existing process support environments, and
by requirements uncovered during use of WORKWARE's modelling language. The set of
workitem relations relevant for reuse is summarised in Figure 55.

Work-
item

Parent

Children
(decomposition)

Class membership,
specialisation

Input flows Output flows

Resources
in roles

User-defined
attributes

Figure 55. Inheritance relations for a single workitem.

129

5.5.1 Using Classification and Specialisation for Reuse

As described is section 3.4.3, specialisation inheritance of process models is an estab-
lished reuse method. Many different specialisation schemes have been proposed, utilis-
ing e.g. object oriented constructs to represent dynamic behaviour. For transformational
models, generalisations are either unions or intersections of the sets of behaviour of the
subclasses [540, 550]. In these examples, specialisation is typically utilised for reuse of
process models (decompositions), but the hierarchy clearly has a role to play in the re-
use other aspects as well. Workitems of a particular class, e.g. "Write presentation", can
be allocated a specific user interface configuration that emphasise the particular needs
of such tasks. Default access rights to the presentation file can also be defined at the
class level. Enactment policies and components in the model of the workitem, e.g. that
the item has an invoked software tool, would typically be shared among items of the
class "Write something", and be further specialised for "Write presentation" items. On a
higher level, different types of projects require different access and enactment policies,
e.g. there may be special rules that apply to projects for specific customers.
 In order to facilitate recursive inheritance, all classes must be configured to reuse
reuse-policies along specialisation relations. Due to reflection the users only have to
specify this for the top node of the inheritance tree, and it is automatically reused by all
subclasses. Multiple inheritance is allowed, and managed by reuse policies, which allow
users to define what aspects are inherited through which specialisation relation. A
"Write presentation" item that is also a "Top secret" item could thus inherit user inter-
face and enactment policies from the first and access control policies from the latter.
Priority attributes order reuse policies in case of multiple inheritance conflicts.

5.5.2 Decomposition Structures for Reuse

As discussed above, standard access control mechanisms utilise inheritance along de-
composition structures. When a user is given access to a directory in a file system, she
is also by default given access to all the files inside that directory. Similarly, we can
utilise decomposition inheritance to define enactment policies for a project, and through
reuse along recursive children links make them apply to all the workitems in the project
(unless overridden by local policies). In addition to enabling general policies for pro-
jects or work packages, decomposition inheritance has a role in resource management.
Resource decompositions, e.g. organisations into departments and information objects
into parts, are suitable structures for reusing access control policies. Although reuse
down decomposition hierarchies seems most important, there are also cases where the
whole should reuse features added to a part. One relevant policy is that the resource
signature of a parent workitem should include all the roles of its sub-items. This can be
supported by bottom-up reuse along parent links.

5.5.3 Resource Assignment for Reuse

WORKWARE's reuse policies allow user communities to deal with trade-offs and integra-
tion of personal preferences with group, organisational, and process-specific configura-
tions. Since customised policies can be reused, adapted and distributed among users,
this framework can also support the social processes of tailoring [493, 363], the spread-
ing of local innovations throughout formal and informal networks.

130

 By utilising is-filled-by links for reuse, customisations attached to person objects
in the model can be applied to all workitems that the individual participates in. When
multiple people with conflicting preferences cooperate on larger tasks, the reuse policies
allow users to articulate the result of negotiations regarding which preferences and poli-
cies should be applied in the joint work. Users may articulate their own preferred ways
of working as personal process templates or enactment policies (e.g. "I normally treat
deadlines as something that requires a response when they are not met, so the system
should notify me when one of my workitems is delayed"). The primary motivation for
articulating these policies would be to get more useful support from the system, but the
fact that such assumptions are made explicit also enable other users to understand your
expectations towards the collaboration.
 Skill-dependent procedures allow organisations to benefit from personalisation.
Recognising that experts and novices have different needs, different process models can
be selected based on who is allocated to a workitem. While novices may need a detailed
description of what to do, experts could be given more freedom and subjected to less
monitoring. For harder problems, novices may be required to consult an expert before
they start the work.

5.5.4 Reuse along the Flow of Work

Flows control the sequence of work (enactment), represent dependencies that should be
coordinated (awareness), and may carry information or other resources (shared work-
spaces and resource brokers). An interesting potential for reuse along flows is the con-
text-preserving work sequence. Here, instead of modelling separate resource signatures
to each workitem, roles are propagated along the flows, so that all the steps apply the
same resources. Changes made to the signature during the performance of one workitem
are immediately propagated to the next, including added documents etc. Such a policy
simplifies articulation in cases where tight collaboration is needed in a structured proc-
ess and one wants a familiar context throughout the process. In our case studies we have
encountered this need in administrative procedures associated with project proposals.

5.5.5 Property-Controlled Policies

Every property assigned to an object in a WORKWARE model can be utilised to control
reuse. Classification by intension defines classes whose members are all objects that
possess a set of properties. This enables us to attach e.g. enactment policies to proper-
ties. Properties denoting vagueness and uncertainty (e.g. "I am not quite sure about this"
or "We will add more here later") should make the enactment engine apply more human
involvement than it otherwise would (e.g. for items with a property saying "this is fully
specified"). Likewise, a workitem labelled "urgent" should apply different rules than
other items. Section 4.6 contains a number of examples of enactment policies that are
associated with workitems through properties, e.g. Autostart and Repetitive.

5.5.6 Mapping and Parameterised Reuse

The reuse framework defined in Figure 54 does not say much about the way reused as-
pects are applied in the descendant. By default, a direct mapping is assumed, i.e. that the
aspects appear in the same way in the target and the source of the reuse link. There are
however circumstances where this rule does not meet the requirements. In order to make

131

WORKWARE behave like ACTION workflow [339] when it comes to person roles in de-
compositions, we can define a reuse policy that makes the person who is responsible for
the parent workitem the customer of the sub-item, i.e.

 Self.Customer = Parent.Responsible

This kind of reuse policy requires a mapping definition, which connects the reused fea-
ture of the source to another feature of the target. Such parameterisation is especially
relevant for reuse of property values. For instance, if a generic project model contains a
workitem for writing a report about the project, its name can be specified like this:

 Self.Name = "Write experience report on " + Parent.Name

As we saw in the previous chapter, the UML Object Constraint Language [517] is suit-
able for expressing such interdependencies.

5.5.7 Delegation by Reference Copy

WORKWARE represents relationships as attributes pointing to other objects. When inher-
iting relationships, we are faced with a choice between reference and object copy. De-
pendent objects, such as the resource roles, input and output decisions of a workitem
should be copied alongside the workitem that contains them. Independent objects such
as interactor policies and actual resources filling roles, should however not be repli-
cated. Our framework supports both these solutions, and lets the users decide which one
to use in each context. Although general rules can be defined and reused, there are cases
where the local context influences which method should be applied. For instance, while
some cases require a recursive deep copy of a process model, others just need a shallow
copy of the top-level process.
 Interactor policies customise the behaviour of model elements without modifying
the elements themselves. The architecture thus separates the syntax from the semantics.
By delegating the control of semantics to policy objects, and by dynamically and explic-
itly articulating the binding between model data and behaviour, flexibility is ensured.
By copying references to interactor policies rather than replicating the policy objects,
WORKWARE increases the manageability of system configurations. Reuse policies are
themselves model objects, so attribute values may be inherited among them. For in-
stance a default rule could be defined that reuse policies for policies (an intensional sub-
class of reuse policies) should use shallow reference copy.

5.5.8 The Combination Problem of Multi-Dimensional Inheritance

Multiple inheritance is problematic because the inheritance structure can become com-
plex and unmanageable. This is called spaghetti inheritance. In software engineering,
aspect oriented programming (AOP) aims to manage code complexity, reuse and evolu-
tion by structuring code based on separation of concerns [157, 351]. Each concern is
implemented by an orthogonal aspect that crosscut class hierarchies, implementing
similar functionality for a number of classes. Aspects thus constitute a structure for re-
use independent of specialisation hierarchies or other dominant decomposition struc-
tures for code. In programming, typical aspects deal with security, memory manage-
ment, resource sharing, dynamic business rules, error and exception handling [351]. In
WORKWARE, each interactor implements one aspect.

132

 Aspect orientation reflects the fact that most software problems are multi-
dimensional and holistic. From the principle of requisite variety [357], solutions and
model structures should thus also be multi-dimensional. Rather than attempting to bring
the order and structure of a software program to social organisations, we therefore de-
sign systems and models that reflect the complexity of their environment. This approach
demands interaction, both in articulation and activation of models. The closed system
problem of automatically ensuring that inheritance always works correctly and com-
pletely, becomes less important when users are involved in model interpretation and can
correct false assumptions made by the software. To develop tools that facilitate user
understanding and control of process model inheritance, is thus a core problem, and the
topic for the rest of this chapter.

5.6 The Process Knowledge Management Interactor
WORKWARE's reuse scheme addresses the challenges of a wide variety of work proc-
esses, roles, and users with different knowledge and experience. Ordinary end users
most concerned with getting their work done will probably prefer reuse by copying a
template or model fragment (typically a workitem and its decomposition). For many,
the additional benefits of propagation after instantiation complicate more than it helps.
Project managers are given the opportunity to define local standards for repetitive tasks,
like administration and reporting. They may also utilise some of the reuse features to
simplify the modelling of project tasks, e.g. sharing of resource signatures between
workitems. Process experts and analysts can model company standard procedures and
best practices, and utilise the propagation features to make sure that all instances follow
the updated procedure. The width of this usage spectrum is depicted in Figure 56.

Full automation
(centralised

control)

Full manual control
(by end users)

Organisational
standards and
best practices

Project level
reuse

Copy existing
model or
template

Copy
project

templates

Full
propagation
from class to

instance

Partial
propagation

along various
relations

Figure 56. The model reuse tool supporting varying degrees of centralisation.

5.6.1 User Interaction in Reuse

Though the reuse framework is not primarily intended for novice users, project partici-
pants may encounter it in some situations:
� When defining a new workitem, users select among a set of available templates.

They may also choose to simply copy an existing object.
� Users may harvest their own personal templates, through a "Save as template" ser-

vice.
� Default values are provided for new workitems according to the defined reuse poli-

cies and the context the item is placed in. For instance you are by default responsible

133

for new items you create, and the responsible of the parent item is by default cus-
tomer of the new item.

� Project policies for enactment, access control, and user interfaces are automatically
applied to new items.

A reuse service can ask users whether change propagation should occur, and add poli-
cies when the user selects the "Don't ask me about this again" option. Knowledge man-
agers, process experts, and designated super users will more often customise reuse. The
provision of template reuse policies for typical scenarios would simplify their job, espe-
cially in the early phases. In the following subsections we will explore different means
of making reuse customisation more straightforward. Reuse is followed by appropria-
tion of the template into the new environment through adaptation and extension. Hence
for an interactive model, the aim of reuse is not to provide a complete solution, but to
simplify the articulation work by providing useful starting points.

5.6.2 Organisational Policies for Process Knowledge Management

Organisational control and knowledge management are central reasons for process
model reuse. By combining reuse from class to instance with restrictive access control,
organisations can customise WORKWARE to function like a conventional WMS. The
core benefits of WORKWARE however lie in its ability to support more organic and de-
centralised organisational structures. It allows organisations to e.g.
� Assign different enactment, access control and user interface policies to different

types of tasks and projects (through classification, specialisation and properties).
� Assign different rules for different employees, allowing experienced workers a lot of

leeway while requiring personnel in training to follow more elaborate procedures.
Reuse of reuse policies is a key mechanism in the support of organisational policies.
This allows the organisation to define global defaults.

5.6.3 Processes of Reuse

One way of attacking the multitude of challenges involved in process model reuse is to
look at the metaprocesses involved. The process model lifecycle presented in section
2.5.7 provides the framework for an investigation of reuse processes. The steps
(workitems) involved in reuse are:
� Creation of a new model element based on an existing object, possibly including the

identification of candidate templates and selection among them,
� Change propagation according to reuse policies,
� Template management,
� Metamodelling, defining the vocabulary for articulation, and
� Harvesting of local innovations, which is the topic of the next subsection.

Model Element Creation

When a model element, e.g. a workitem, is created, it copies default properties, compo-
nents and policies from its template. It also becomes member of the same classes as its
template. By adaptation (alteration of properties and policies), the new object becomes
customised. During adaptation new reuse policies may be activated, e.g. when a
workitem is placed in a work breakdown structure, it may inherit features from its new
parent. Default reuse links may also be broken, e.g. the alteration of a property can re-
move the object from intensionally defined classes. This implies that the users can do a

134

great deal of customisation simply by articulating the properties of the new object,
without caring about the implementation details that follows.

Change Propagation

Based on the principle that all objects are unique and self-contained, the default inter-
pretation (with no reuse policies) is that aspects are copied during creation, but not
shared throughout the lifetime of the objects. If a reuse policy is defined, aspects are
propagated along the link that the policy applies to as long as the aspect has not been
changed in the dependent object. Users may also explicitly declare that a particular
change they made should be propagated along some relation. For instance when a user
adds a property to an object, she can choose among a number of different scopes for the
change:
� Only this object (this is the default),
� All objects of the class that this object is template for,
� All objects of one of the classes that this object is a member of,
� All components of this object (through decomposition),
� All objects that this one is part of,
� All objects that the current user has a role in, e.g. "all my workitems",
� This object and all that follows (or precedes) it in the flow of work.
Through user involvement we are thus able to customise change propagation in each
individual case.

Template Management

The reuse framework provides a number of means for maintaining and structuring large
template repositories. Reuse links (classification, specialisation, (de)composition, re-
source allocation, and work flow) act as structuring mechanisms for the set of templates.
Personal templates should also be separated from group, project and organisational
ones. We expect more extensive use of change propagation in template repositories than
in local models.

Metamodelling

Metamodelling implies addition, removal or changes to the set of available language
primitives. Classes constitute the vocabulary for process model articulation. The
framework presented here facilitates incremental metamodelling in that users can define
new classes based on existing ones by simply copying a template and making the neces-
sary changes. Since templates are themselves instances, this corresponds to "metamod-
elling by example", where metamodelling uses the same means as ordinary modelling.
When users want to attach behaviour to groups of objects that have not yet been defined
as a class, they may utilise the mechanisms for specialisation by intension (properties)
or generalisation by extension (by explicitly selecting subclasses from the set of avail-
able classes). As these constructs relate classes to each other in a specialisation hierar-
chy, changes to some aspect of one class should in most cases be automatically propa-
gated to its subclasses. Metamodelling may also take place locally in an instance model,
to meet situated requirements. If these changes are of a general or lasting nature, they
can be harvested and included in the template repository.

135

5.6.4 Harvesting for Reuse

The processes involved in harvesting include (cf. Figure 8 on page 44):
� Generalise an instance model into a template, reset its dynamic properties (state) etc.,
� Analyse, evaluate, and classify templates, in relation to each other, and
� Trace and utilise model evolution histories to gain a deeper understanding.
Like the reuse processes discussed above, all steps in harvesting can be carried out in-
teractively.

Instant Generalisation

The transformation of an instance into a template can often only be partially automated.
The enactment metamodels presented in section 4.5 shows the initial states of the dif-
ferent model elements; hence it is straightforward to reset the state of a model fragment
by resetting each of its components. Other aspects are more difficult to manage:
� Resources, in which cases should allocation be removed, and in which cases should it

be preserved in the template? This depends on the scope of the template. If it is a
personal one, the user may want to keep herself as the default responsible, but re-
move the other participants. For project level templates, allocation of workitem roles
to project roles may be kept, but allocation of individual performers could be re-
moved. For organisational templates the basic assumption may be that all roles
should be made vacant. Similarly, information resources that are used as input should
in most cases be kept as part of the template, while information objects that have
been produced in the item should be replaced by a vacant role.

� Granularity, should the template use shallow or deep copy? Are we talking about a
single workitem as a template, or also its decomposition? The decomposition hierar-
chy structures large process models into fragments suitable for reuse.

� Parameterisation, where should actual values in a given object instance be replaced
with parameterisation rules? Can we utilise natural language processing to deduce
connections between property values?

From these examples we see that full automation of instance generalisation is seldom
feasible. Instead, the services mentioned above should be offered in the user interface
for harvesting. One should also note that instant generalisation is needed for reuse-by-
copy as well. For such reuse the default solution should be simple for ordinary users.

Evolution Traces

The history of an instance model contains a wealth of input to harvesting, e.g.
� Which template was this model (and its components) originally based on. This is

input to the classification process, e.g. a model that is based on another could by de-
fault be regarded as a specialisation.

� What additions, removals and changes were made as part of the local articulation of
the work? This information is useful for describing the specific aspects that are
unique to the new template.

5.6.5 Towards Interactive Model Transformation

More fundamentally harvesting and reuse can be seen as model transformations [375]. It
is acknowledged that model transformations can seldom be fully automated [421]. The
interaction perspective is a suitable framework for integrating transformation tech-

136

niques. Interaction bridges the gap between fully automated and fully manual transfor-
mation. How this perspective applies to the problem of model transformation is illus-
trated in Figure 57.

Interaction: Both
automated and

manual mapping
steps

Flexible
automation

Explicit
mapping at the
instance level

Manual
transformation
with implicit

mapping

Automatic
transformation
with complete
mapping rules

Model (input)

Model (output)

Model (input)

Model (output)

Model (input)

Model (output)

Model (input)

Model (output)

Model (input)

Model (output)

Figure 57. Spectrum from fully automated to fully manual transformation.

The figure shows varying degrees of transformation automation, from full to none. In
between we find various forms of interactive transformation, where some support is
offered by software tools but the user still influences mapping decisions. For reuse the
input model is the template and the output model is the instance model contextualised to
fit the local environment. For harvesting the input is the original instance model and the
output is the new or updated template. Fully manual transformation means that the tool
offers no support for capturing mappings between model elements in different views. A
very simple automated support is thus to add the explicit capture of such relationships,
enabling reuse when the input is altered. The simplest form of interactive transformation
is to define rules for typical mappings at the class level, e.g. "Each use case is modelled
by a number of interaction sequence diagrams". The next degree of automation is to add
services that automatically perform some of the mappings from one diagram to another,
but still rely on manual transformations of other model fragments. Users may also over-
ride the default mappings provided by the tool. The final form of interaction involves a
tool that controls the transformation, resolving incompleteness by asking its users.
Flexible automation means that the transformation is fully automated, but the users are
offered a rich set of modelling constructs (properties, parameters or stereotypes) that
they can use to control how the mappings are made. By inspecting the outcome, users
can then adjust the input model so that they get what they want [375]. The practical util-
ity of this framework includes:
� Integration of a variety of perspectives on model transformation, illustrating how

they complement each other.
� Ability to handle transformations of incomplete models with incomplete mapping

rules through human involvement in the transformation process.
� Discussing different requirements for different applications of model transformation,

ranging from formal specification (full automation) to simple, informal flexibility
(manual transformation). Trade-offs between simplicity and automation are central.

� Discussing different transformation techniques according to their scope in the inter-
action spectrum, and pointing to directions for further development and adaptation of
existing techniques to increase their scope of use.

137

5.6.6 Utilising the Enactment Engine to Support Reuse Metaprocesses

We will now look at how the processes of reuse are integrated. Since reuse and harvest-
ing involves a number of interactively controlled steps, they can be articulated as proc-
ess templates (Figure 58 and Figure 59), reused, adapted and activated.

Figure 58. Process model of the reuse work.

The models depict workitems and information resource roles (templates, instances and
the template repository). When instantiated, these models will also become populated
with persons. They only provide an overview of the steps involved in typical reuse and
harvesting processes, and more detailed decomposition or specialised tool support (ser-
vices for each step) are needed. The metaprocess approach does however yield a num-
ber of benefits:
� The models guide novice users, taking them through the necessary steps,
� Reuse and harvesting are here modelled just like ordinary workitems, i.e. there is no

conceptual gap between the metaprocesses and the primary processes,
� Metaprocesses are enacted with the same flexibility as normal processes; they can be

customised to the problem at hand etc.

Figure 59. Process model of the harvesting work.

138

5.6.7 Making Reuse Decisions

In Figure 60 we see a specialisation hierarchy for different kinds of research project
templates. Specialisation relations are articulated as XOR decisions. This implies that
for each step down the hierarchy the users must select one of the alternatives. When a
leaf node is reached, or when the user does not find any of the available specialisations
useful, a template is selected for the project at hand. Depending on the template, the
users may in the next step select templates for the sub-items of the overall template. In
this way we model template browsing in the PROCESS HANDBOOK [329] as a series of
selection decisions. Specific tools, e.g. for discussions, can be made available to support
this selection process. Since the decisions are captured in the trace of the reuse process,
we also have a starting point for classifying the resulting model instance, should the
users want to add that to a template repository later. In this way WORKWARE is able to
support a growing repository while minimising the extra effort required by end users to
do classification etc.

Figure 60. Template specialisation hierarchy as reuse selection decisions.

5.6.8 Summary

This chapter has described the design of an interactive tool for process model reuse,
aimed at integrating simple services for novices and more sophisticated support for des-
ignated PKM groups and experts. The main features are:
� Simple, instance-oriented metametamodel,
� Mechanisms for incremental classification (by intension or extension),
� A customisable inheritance framework, which work along any modelled link, and
� Metaprocesses for reuse and harvesting supported just like ordinary work.
More details about the use of these techniques will be presented in Chapters 6, 7 and 8.

139

Chapter 6
Interactive Modelling Techniques

This chapter generalises the designs presented earlier. It identifies techniques for inter-
active modelling that are relevant outside the particular area of process models. Instance
modelling, interactive activation, semantic holism and explicit representation of deci-
sions are highlighted. As discussed in Chapter 2, active and interactive models have
been identified as a major direction for future research [102]. In addition to work proc-
ess support, a wide variety of interactive models are appearing in the research literature:
� Product models for cooperation support [86, 163].
� Conceptual models for database and document management and retrieval [70, 301].
� Enterprise and process models for document management [365].
� Dynamic ontologies for deduction and inference [260].
� Multimedia classification and retrieval (image, video and speech) [23, 511].
� Social network models for making and managing contacts [364].
� Organisational structure models, e.g. for access control [68].
� Conversations visualised in order to gain overview and understanding [136].
These examples represent separate areas of research, but the approach of interaction
around evolving, incomplete models creates several common concerns. Although the
main objective of this thesis is to show how interactive process models can support
knowledge intensive project work, the conceptualisation and most of the requirements
presented in Chapter 2 apply to other types of interactive models as well.

6.1 Instance Modelling for Local Modifications
WORKWARE supports local modifications by instance modelling [254, 396]. This
scheme limits the scope of a change in the first place to the local situation, removing
much of the complexity that has prevented modelling by end users at the class level.
Instance modelling is a prerequisite for establishing an immediate connection between
the interactive model and the domain that it represents. As shown by Parsons [393,
396], a modelling framework based on instances removes problems in schema evolu-
tion, integration and interoperability. The framework presented in Chapter 5 comple-
ments Parsons' with incremental classification and dynamic change propagation, thus
preserving many of the benefits of class-oriented approaches. There is nothing in this
design that is specific to process models. Reuse policies that control the sharing of as-
pects along modelled associations, can be applied to any structured model. As pointed
out above, this scheme is a generalisation of conventional inheritance mechanisms,
which are applied in a wide range of modelling languages. Here are some examples of
situations where the extended functionality of the reuse framework can be useful:
� In an organisational model, rules like "Every manager has access to all that his sub-

ordinates have access to" can be operationalised by reuse up the reporting hierarchy.

140

� In a product model, a relationship like can-be-replaced-by between different compo-
nents should be transitive (but not always symmetric). Transitive relations are reused
along themselves, e.g. if A can-be-replaced-by B and B can-be-replaced-by C, the
latter relationship is reused along the first so that A can-be-replaced-by C as well.
However, relations are often contextual, i.e. although A can-be-replaced-by B in one
product, the relation may not hold for all other products. Semantic holism and the
priority attributes of reuse policies allow these problems to be captured.

� In a concept model or ontology, synonyms and homonyms are typical relationships
that could be operationalised for reuse. If a document contains a term and the user is
searching for a synonym of that term, the document may be included in the search
result if reuse along the synonym relation is enabled. The opposite is true for docu-
ments that contain the search term but where the meaning of the term is different
(homonyms).

It can be argued that mass production of products and services does not require the level
of local flexibility offered by instance modelling. On the other hand, there are still a
large number of cases where such flexibility is needed, e.g. during product design. In
manufacturing industries mass customisation involves assembly of different compo-
nents for each product instance. While it is possible to represent the wide variety of cus-
tomisation options in a class hierarchy with multiple inheritance, the size of such a
model would make it difficult to maintain. The number of leaf classes would equal the
product of number of options for each customisable feature. Instance modelling with a
predefined set of available properties and components would only require the sum of
customisation options to be represented as property primitives. A framework based on
object instances and properties thus simplifies such languages.

6.1.1 Exception Handling

Interactive instance models enable exceptions to be built in right up to the time when
the models are activated. Compared to completely prescribed models, a greater number
of exceptions can be captured and managed, due to the learning of the participants. Cap-
turing exceptions are important for knowledge management, as it increases the accuracy
of the model. Instance modelling facilitate exception handling for all the perspectives
outlined in Strong and Miller's general overview [464] (section 2.3.4). Exceptions as
unpredictable, random events create a need for human interpretation of models in the
situation that arise. Unpredictable events occur at the time of activation, hence close
integration of articulation and activation is needed. By overriding the expected behav-
iour of the models, users contribute to articulation of unpredicted events. One example
is when someone decides to start a workitem early when faced with delays in the pre-
ceding items. Bernstein [45] shows examples where reuse mechanisms are utilised to
find alternative solutions in the face of exceptions, e.g. a strike among airport workers
forces the project participants to look for other means of transportation. Here exceptions
are normal parts of process flexibility, to some degree anticipated in the predefined
model templates. Another example is when new items (process and/or product compo-
nents) are added dynamically, e.g. because of changing user requirements in a software
engineering project. These three examples illustrate three different degrees of exception
handling facilitated by interactive models:
� Simple exceptions like rescheduling are handled by manual activation,
� Exceptions that have more far-reaching effects may lead to ad-hoc articulation,

141

� Templates provide alternative solutions. By allowing any model to be reused, the set
of alternatives includes all previously developed solutions, not just those recognised
and promoted by organisational knowledge management.

The final perspective, exceptions as errors, represents situations where the template
should be modified based on experiences captured in an instance model. This is handled
by the harvesting process outlined in section 5.6.4. Unpredictable events, normal varia-
tion and errors are different perspectives on exceptions, they do not constitute a taxon-
omy that one can classify events according to. It is often difficult to separate errors from
local, unpredictable events, and variation just refers to events for which we have estab-
lished exception handling mechanisms. From the perspective of interactive models, we
separate exceptions into these categories:
1. Exceptions that were not articulated prior to their occurrence, but are tolerated by

the activation mechanisms (model interactors) without changes to the local model,
2. Exceptions that are articulated in the local model as alternative solutions (e.g. alter-

native workflow paths or product configurations),
3. Exceptions that are not included in the local model but where templates exists for

their handling,
4. Exceptions that were not articulated prior to their occurrence, and require changes to

the local model, and
5. Errors that cause changes to one or more templates.
These categories are ordered according to expected frequency of occurrence. Figure 61
depicts exception levels 2 (to the left) and 3. In both cases item A is followed by either
(XOR) B1 or B2, but in model 1 this selection is modelled directly as part of the local
process, while in model 2 the selection is modelled as alternative templates for item B
(similar to the specialisation hierarchy in Figure 60).

Figure 61. Equivalent models for exception levels 2 and 3.

Both models have their strengths and weaknesses. Model 1 shows the two alternatives
as a straightforward decision, while model 2 appears simpler, especially if the selection
can be automated. However, the main point is that the language allows users to handle
these exceptions is a uniform way, by making decisions. Reuse (template selection) and
activation (workflow routing) is integrated. Decision-making will be elaborated in the

142

next section. This discussion is based on a description of exception handling in informa-
tion systems in general. Exceptions may occur more frequently in process and product
models than in e.g. concept, social network or organisation models, but from the discus-
sion in Chapter 2 we can argue that models immersed in day-to-day work practice are
always faced with exceptions.

6.2 Explicit Representation of Decisions
Explicit representation of decisions regarding the flow of work was one of the few ad-
justments made to the APM language in order to make it suitable for interactive enact-
ment. In the previous chapter we also saw that specialisation hierarchies for process
templates reflect reuse decisions. In this section we explore other cases where this tech-
nique facilitates interactive activation. We thus propose decision modelling as a general
technique for converting conventional languages into interactive ones.

6.2.1 Reuse Decisions

Figure 60 shows reuse decisions among alternative templates in a specialisation hierar-
chy. The relation between decisions and templates in this hierarchy is called candidate,
since the various templates are candidates for filling a role in the local instance model.
In the specialisation hierarchy the decisions were modelled as XOR-decisions, because
the users have to select one of the candidates. Along the decomposition relations (work
breakdown structure), on the other hand, we find AND-decisions: When you select a
template, you select a workitem decomposition, including all of its components. On the
next level, for each sub-item, alternative candidate templates may exist. The PROCESS

HANDBOOK supports this selection process [47, 329]. In WORKWARE, these dimensions
of reuse are integrated through the decision construct, simplifying the overall frame-
work while increasing the flexibility (allowing other relations that XOR and AND).
WORKWARE also adds a process perspective. The process of appropriating a template
model to your local process is thus an unfolding sequence of:
� Reuse decisions, the selection of template models at ever finer levels of detail,
� Adaptation by adding and removing model elements. These elements may also have

template specialisation hierarchies.
By representing this as a process, we capture the current state of reuse decision making.
All decisions need not be made at the start of the project, instead the selection among
candidate templates can be postponed right up to the time when these items are to be
activated. This framework is thus far more flexible than full-template-copy approaches.
There is nothing in this design that is special for process models. Reuse of product
structures, organisational models, and conceptualisations can also be handled in this
way. However, the metaprocesses are especially useful for structures that evolve while
they are operational, e.g. product models during design, organisation structure models
during reorganisation, and dynamic domain ontologies [260].
 Explicitly modelled reuse decisions also create opportunities for automated selec-
tion of templates, e.g. based on properties of the current model. For instance, a selection
among more and less detailed procedures can be made automatically depending of the
skill levels of the persons allocated to perform the work. In product models, dependen-
cies between components and the environment can also be utilised for automatic com-
ponent selection. For instance, if a product is to be placed outdoors, non-corroding ma-

143

terials are chosen. In complex, multi-dimensional selection tasks such as design, simple
hierarchies of alternatives will not suffice. The interplay of many aspects demands mul-
tiple, overlapping and evolving structures.

6.2.2 Resource Allocation Decisions

The decision tree involved in template selection has a parallel in resource allocation.
Tools, personnel, information and material objects must be selected among a number of
candidate role fillers. In some cases, the allocation decisions can be made during initial
process modelling. Other decisions, e.g. personnel allocation, are more contextual, and
must often be resolved at runtime. Figure 62 shows fragments of an organisation model.
The company SINTEF has a number of institutes (3 shown). Each institute has depart-
ments (3 departments of the Telecom and Informatics institute is shown), and the de-
partments may have groups (Systems technology, CSCW and HCI shown). Employees
have a role in a group. Figure 62 shows the default resource allocation of SINTEF per-
sonnel to the EXTERNAL project. The CSCW group is the one participating in the pro-
ject, and four of the five people of that group play roles in the project. In the model,
activated candidate relations are visualised with thicker lines than those not selected.
For inter-organisational projects, this yields a number of benefits:
� A common organisational model is reused. Placed in a decision-making context, the

organisational units become "typecasted" as OR decisions.
� Partners see where the people they collaborate with are located, and get an overview

of the rest of the organisation's capabilities.
� When a workitem is assigned to SINTEF in the context of this model, it is by default

interpreted as "one of the people at SINTEF allocated to EXTERNAL". This is
achieved through reuse of the model in Figure 62 for all items inside the project.

� The final assignment to a workitem is represented as selecting one of the activated
candidates. Such a selection deactivates the candidates not chosen, leaving only the
actually allocated personnel.

� In the case of exceptions, e.g. if the project needs expertise not possessed by the allo-
cated people, or if they do not have time to do all the required work, the model pro-
vides an overview of alternative resources. For instance, someone from the HCI
group could be involved in requirement specification, and someone from the Systems
Technology group might be called upon to solve technical problems. Such excep-
tions are handled by activating more candidate relationships.

� Policies of personnel allocation often rely on organisational hierarchies, in that each
manager is responsible for the allocation of employees reporting to her. The organ-
isational model reflects this by making local colleagues alternatives at the nearest
level. Exceptions in resource allocation are thus treated as backtracking along the de-
cision steps in the organisation hierarchy. The structure is also useful for defining re-
source allocation policies, who has the rights to assign which persons to what kind of
work.

Other types of resources may also be allocated along decision trees. For software tools,
personal preferences are important. If the objective of a workitem is to produce a web
page, which HTML editor tool to apply should be selected based on the preferences of
the person responsible. This implies that a predefined decision tree regarding software
tools preferences of the individual is reused along personnel resource allocation rela-
tionships. A user interface for defining such preferences can be dynamically generated

144

based on available alternatives. Similar solutions may also be applied for managing and
selecting information resources and document templates.

Figure 62. Organisational model with allocation decisions for a particular project.

Although these composite decisions are rooted in multi-layered models of candidates, it
is easy to limit the user interface for decision making to the current level. For instance,
when a new task is allocated to "SINTEF" in Figure 62, the user interface could present
a list of the four candidate individuals, for the users to select among. In addition, a but-
ton for widening the scope of candidates (moving up one layer at a time, backtracking
the latest decision) could be included. When the allocation decision is made, the result

145

is just an attribute, e.g. "Responsible = Håvard D. Jørgensen", of the workitem in ques-
tion. Rich models thus need not result in overly complex user interfaces.

6.2.3 Product Design Decisions

So far we have seen that process, organisation, tool and information structures can be
activated using decision constructs. Products seem no different. During design, produc-
tion and maintenance, selections must be made between alternative components, and
various exceptions can arise that requires the current selection to be re-assessed. Ex-
plicit representation of decisions thus has a role in product modelling as well. This is
exemplified by the existence of tools for capturing design rationale and decision proc-
esses in information systems engineering (cf. section 3.1.3).

6.2.4 Decisions in Classification According to Concept Ontologies

Brasethvik and Gulla [70] utilise concept models for document classification and re-
trieval. Document classification involves tagging documents with metadata (e.g. key-
words) so that they can be more easily retrieved. This classification is semi-automatic,
in that a natural language processing component selects candidate keywords from the
text. Users can then add new keywords, remove those that do not fit or add more spe-
cialised terms. Classification can thus be seen as a decision process that utilises the con-
cept model. Specialisation relations are treated as OR-decisions, AND represents syno-
nyms, while antonyms and homonyms can be modelled as XOR decisions.

6.2.5 User Interface Adaptation and Tailoring Decisions

Alternative configurations of user interfaces constitute another domain where decision
modelling can play a part. A user interface consists of a number of components. Some
are containers that include other components. Again we may support user interface cus-
tomisation as a combination of AND (container content) and XOR (alternative compo-
nents) decisions in a tree. WORKWARE presents model content through customisable
user interfaces. A list interface may include one container for each object, each contain-
ing one component for each attribute. The user interface customisation process thus
becomes a selection of which components to use for which attribute. An example of
how this can be implemented is presented in Chapter 7.

6.2.6 Decision Making Processes

Underlying all of the examples discussed in this section is a common model of how the
decision making process can be captured. This model is rather simple and does not cap-
ture the human and social complexities of actually arriving at a decision. The model
results in structures similar to decision trees, which have a long history in management
and computer science [482]. Briefly summarised, the decision making process as cap-
tured by these elements is a modular one, which for each decision object, include the
following states7:
1. Decision not made, none of the output candidate relations are active.
2. Candidates identified, some of the output candidates are active, but the decision is

not final (the decision object is not activated itself).

7 These states are compatible with the state transition diagram for workflow decisions (Figure 34 on page 100).

146

3. Decision is made (decision object and the selected output candidate(s) are activated).
This step causes the state of the not-selected candidates to be set to not activated.
When a decision is made, all previous decisions on the path leading down to it may
also be marked as activated.

4. Backtracking may occur. This corresponds to increasing the scope of alternatives by
undoing a previous decision. Backtracking is needed for exception handling.

For resource allocation and template selection decisions, an active candidate relation-
ship, which comes out of an activated decision connector, is treated as an is-filled-by
relationship for that resource role. The discussion in section 4.6 on rules, decomposi-
tion, timers, and metamodelling for decision automation can be generalised from work-
flow decisions to other kinds of decisions. It is also possible to go one step further and
model decision making processes with the WORKWARE PML. This can be captured as
decomposing a decision into a process of workitems, or by simply including workitems
as part of a decision graph or tree. Typical examples include resource allocation
workitems and product design workitems.

6.3 Semantic Holism
The gap between the real and the virtual, between phenomena and their representations,
is a fundamental problem in computer science [190, 480]. Situated, contingent, uncer-
tain, open and complex social reality is hard to capture in formal, computerised models
[189, 455]. The discussion of research methodologies in Appendix A points to a similar
gap between reflective practice and the linear, formal models of science. Because we
cannot observe everything that goes on in a system, causal relations appears uncertain,
circular and non-linear [447, 524]. In Chapter 2 we saw that these problems by no
means are limited to scientific models. Outsiders' articulation of work processes often
does not capture the complexities of actual work performance [468].
 This section shows that some of these limitations stem from the conventional no-
tion of atomic semantics, that each model element should be defined by itself. Semantic
holism is thus proposed for making computerised representations more user-oriented.
With semantic holism, the meaning of each model element may depend on all the other
elements in the model [55, 242]. This concept underlies most of the modelling tech-
niques proposed in this thesis. Since semantic holism is quite new in computer science
[263], we start with an exploration of its roots.

6.3.1 Semantic Holism in Philosophy, Linguistics and Informatics

In analytic philosophy the challenges of understanding the real world and how we talk
about it, has spurred the development of semantic holism [55, 242, 243]. The Routledge
Encyclopedia of Philosophy defines semantic or mental holism as

"The doctrine that the identity of a belief content (or the meaning of a sentence
that expresses it) is determined by its place in the web of beliefs or sentences
comprising a whole theory or group of theories" [55].

Molecularism determines meaning and content in terms of small parts of this web, while
atomism defines elements independently of the rest of the web. Atomism thus claims
that sentences have meaning independently of their relations to other sentences or be-
liefs. It has been argued that holism has a number of weaknesses [55]:

147

� It makes generalisation difficult, because sentences cannot be fully understood out-
side of their context.

� It makes it difficult for multiple theories to share any sentences or beliefs, because
the meaning of those beliefs are contextualised in each theory,

� It makes logical reasoning, agreement, and translation difficult,
� It makes the semantics unstable, in that any change in one's attitude towards a sen-

tence will change the meaning of the terms contained in it. This is called the instabil-
ity thesis [243].

These arguments have been met by replacing the dichotomy between agreement and
disagreement with a gradient of similarity of meaning. In a holistic perspective the de-
gree of similarity of meaning can have multiple dimensions. Two-factor theory is an-
other interesting approach [55]. Here the meaning of a sentence consists of an internal
holistic factor and an external referential factor that relates terms to real world entities.
Jackman [243] further proposes a moderate version of holism to avoid instability. In his
framework the mapping from beliefs to meaning of a sentence is many-to-one. This
implies that although a change in beliefs potentially can alter the meaning of a sentence,
every belief change need not actually affect the meaning.
 Semantic holism is evident in a number of areas. Social construction of meaning
in communities of practice [43, 527] emphasise the local meaning of terms inside a
community and the role of boundary objects in cross-community relations. Boundary
objects have a common identity across communities but also a specific local meaning
inside each community [462]. Boundary objects thus reflect the two-factor theory. Psy-
chology teaches that conceptualisations arise not out of individual sensory perceptions
but emerges from the whole history of the individual's experiences [55]. In biology,
ecosystems and genomes are described in holistic terms [194].
 Most IS modelling languages are formal or semi-formal, and atomic semantics
dominate. Typically one tries to identify model elements with a clearly defined interface
that captures all the element's relations to its environment. This constructive approach
results in a division of the problem into smaller sub-problems so that when all the parts
are solved, so is the whole. Holism challenges the feasibility of a constructive approach
when faced with messy and complex realities. Interactive models, immersed in practice,
are especially vulnerable to this critique. There are also some aspects of holism in con-
ventional IS languages. Inheritance causes the meaning of one element (the subclass) to
depend on other elements (superclasses). The reuse framework presented in Chapter 5
goes one step further in the direction of semantic holism by enabling inheritance along
all links.

6.3.2 Semantic Holism in Work Processes

Let us illustrate semantic holism with a simple work process example. Figure 63 shows
a model of a work process with only one step, Write project application, carried out by
a research scientist. In order to improve the quality of proposals and limit the legal li-
abilities of the company, the organisation in question later decided that a manager must
review all applications. The new procedure is depicted in Figure 64. Interpreting these
models with atomic semantics, one would claim that the task of writing the application
has not changed, as both its definition and its interface remains the same. If, on the other
hand, we were to interpret the models from a holistic perspective, the semantics of the
writing workitem is altered, because it is put in a new context.

148

Figure 63. A simple work process: Writing a project application.

Figure 64. A revised work process, involving an additional review.

The holistic interpretation seems to better match the view of human actors. When the
application you write does not go directly to the research council, but first to an internal
review, this influences the way the application is written. For instance you have to com-
plete the application some days before the deadline of the council, in order to allow time
for the review. You may also choose to discuss the application more with your manager,
so that you are sure she understands and will accept it, or to make sure to include any
details that the manager expects. These tacit dependencies extend beyond direct neigh-
bour elements.
 Later, the model in Figure 64 was revised yet again, decomposing the review into
two sub-items, Assess budget, performed by the finance director, and Assess risks, per-
formed by the head of the department (Figure 65). Although these sub-items are internal
to Review application, and thus due to encapsulation should not affect Write project
application at all, semantic holism allows them to. Again, this reflects more accurately
the interpretation of the procedure by the people involved. They know that nowadays
they should discuss the application with the finance director as well before submitting
it. A conventional automated interpretation of this model, e.g. by a workflow system,
would follow atomic semantics. Focused at relieving users the burden of coordination,
such systems do not discriminate two identical workitems put in different contexts.
From an automation perspective, it is beneficial to divide the process into steps with
well-defined interfaces capturing all interdependencies. From a human perspective, in-
formation about the context of work is crucial for sense-making, motivation, and coor-

149

dination. Since the model does not capture everything that may be relevant, semantic
holism gives a richer, more accurate interpretation of what the model represents.

Figure 65. Revised model for project proposal review.

6.4 Semantic Holism Simplifies Model Articulation
Semantic holism also more closely reflect the meaning of natural language than formal,
atomic approaches. This is reflected in Functional Grammar (FG) [83], which captures
the meaning of natural language statements in a structured way. In FG a sentence is
made up of a number of elements, each contributing with different aspects to the mean-
ing of the sentence [83]:
� Predicates denote entities, properties and relationships. Predicates have semantic

functions in sentences, e.g. agent, positioner, force, processed, state, possessor, goal,
or argument.

� Predications instantiate the predicates into a spatiotemporal location (location, time,
duration, frequency). They may also describe participants, means and manner, con-
sequence, purpose, motivation, cause, explanation, polarity (negative or positive),
tense (past, present, future), epistemic (certain, possible, impossible) and deontic
modality (obligatory, permissible, forbidden).

� Propositional content adds modalities (subjective, evidential, or objective) and atti-
tudes (personal evaluations of the statement).

� Clauses, denoting the illocutionary speech acts implied by the statement (declarative,
interrogative, imperative, or exclamative), as well as pragmatic functions relating to
the process of communication.

The meaning of a sentence is thus expressed by a combination of all its elements, and
the meaning of each element depends on the others in sentence holism [397]. FG also
deals with inter-sentence relationships in discourse analysis and rhetorical structures
[83]. The referents of predicates often rely on other sentences to be resolved. In IS re-
search, both Klein [273] and Kangassalo [263] note that translation from one language
to another requires a holistic understanding of sentences as well as whole texts and their
cultural context. Ricœur [410] describes how literature, by creating an imaginary world,
expresses meaning through connotation rather than denotation and reference. Commu-
nication must establish relations between two worlds, the sender's and the receiver's. In
small groups, interactive two-way communication establishes such relations. One-way

150

broadcasting relies more on established conventions and shared reality in a common
culture.
 Reality as we observe it, natural language and communication have clear holistic
features. Semantic holism thus seems a promising strategy for human-oriented model-
ling languages. By combining the meaning of different terms and clauses, users can
articulate more nuance knowledge than with atomic formalisms. Through adding and
removing parts of a sentence, flexibility, ambiguity and uncertainty can be captured.
Natural language, made up of just a few tens of letters and other symbols, can express
far more knowledge than UML's more than 200 constructs [281]. Although some degree
of structure and formalism is needed for automation support, we can still learn a lot
from natural language when it comes to increasing the efficiency of modelling lan-
guages. In this section we therefore investigate techniques that make languages more
holistic.

6.4.1 Limited Classification

To simplify the modelling language by limiting the classification of primitives, was a
design principle that WORKWARE inherited from APM [90]. In these languages we only
have one construct that represents a unit of work (workitem or action). In most work-
flow management systems, there exist a wide variety of concepts for units of work. For
instance, the WfMC standard includes these variants [531, 532] (Figure 10 on page 50):
� Process, a non-atomic class concept,
� Activity, an atomic class concept, which is further specialised into

� Manual activities, and
� Automated activities,

� Process instance,
� Activity instance,

� Work item, instances of manual activities,
� Invoked application, instances of automated activities.

Such a large vocabulary is useful in order to create a precise standard for process defini-
tion interchange. As a modelling language for business users, it is unnecessarily com-
plex. In WORKWARE all of these concepts are represented as workitems, and the mean-
ing expressed by the specific constructs of the WfMC, is derived from the context in
which each item is placed:
� Processes are workitems that are decomposed, while activities are not,
� Workitems that are part of a template are "class" models, while items placed in a

local model are instances,
� Automated and manual items are separated by whether the resource signature in-

cludes an invoked software tool or not.
� Further specialisation of workitems can be expressed by adding new properties, e.g.

controlling the enactment rules.
In addition to greatly simplifying the modelling language, WORKWARE's scheme is also
more flexible. In a typical lifecycle of a workitem, decompositions may be added or
removed. When we separate processes from activities, these typical evolution patterns
require the objects to change class. Such migration is difficult in many class-oriented
systems [24], since classification is an inherent part of the definition of the object [393].
Conversely, the lack of any inherent separation between templates and instances enables
WORKWARE to use the same mechanism for reuse-by-copy as for reuse-by-instantiation.

151

Conceptual simplicity is crucial for the usability of reuse. Even trained software engi-
neers sometimes have problems sorting out multiple meta-levels, and for end users it is
even more difficult.
 Even though the basic language does not require the detailed vocabulary of the
WfMC to be explicit, it may be convenient for articulation if templates are offered for
different kinds of workitems. Such templates would be defined as a constellation of a
few objects, e.g. an automated activity template includes a workitem with an invoked
software tool resource role. If the user later changes his mind and decides that he must
do the work manually instead, he just has to remove the tool resource, and need not re-
define the whole workitem.
 Decisions are another area where the principle of limited classification was ap-
plied in the design of WORKWARE. APM ports, conditions, timers, combiners, and split-
ters were grouped together into one construct, based on the realisation that they all rep-
resent decisions regarding the flow of work. Here context (input, output or neither),
properties (e.g. deadline for timers) and relations (number of flows in and out) allow us
to separate among different subtypes. Any concrete WORKWARE model can thus be
translated into larger languages such as the WfMC standard [532].

6.4.2 Instances are Referential Terms

The two-factor theory of semantic holism points to an interesting feature of instance
modelling: Instances are referential terms; their aim is to directly identify real world
entities or phenomena. In the case of workitems, flows, resources, and decisions, we are
not talking about physical entities, but rather of concrete work that the users involved
(hopefully) assign meaning to. At the very least, a meaningless workitem has a context
where the process of negotiating its meaning can be performed. For instance, the model
identifies other stakeholders that can be contacted in order to discuss what the work
involves. Instance modelling thus facilitates human and social interpretation of the
meaning of the model. When modelled instances have a direct representation in the user
interface of software tools, the reference from model element to the online workspace
should also be straightforward to grasp for most users.

6.4.3 Properties Modularise Aspects of Meaning

Similar to the way predications, propositional content, and clauses are added to predi-
cates in Functional Grammar, dynamic addition of properties to modelled objects al-
lows users to articulate facts and meanings in a flexible manner, ranging from very de-
tailed and precise (long) sentences to ambiguous and contextual (short) statements.
Variations in the degree of model specificity seems simpler to articulate through adding
(or removing) properties than by reclassifying instances according to a new understand-
ing of what they represent. Properties thus simplify model evolution compared to class-
oriented approaches.
 One example of how this can be utilised is the modelling of resources. Resource
roles are abstract as long as they are not filled, i.e. as long as the role-filler property is
not set. When the property is set, the abstract resource role becomes a concrete assign-
ment. Properties are also utilised to separate among different kinds of objects. For in-
stance, in section 5.5.5 we saw how different enactment policies could be applied to
workitems depending on their properties. Another example would be to let properties

152

denoting uncertainty, vagueness and incompleteness (as in SEEME, cf. section 3.2.4)
affect the way workitems and decisions are managed.

6.4.4 Derived Properties Enable Contextual Semantics

Derived properties constitute a simple mechanism for contextual semantics. A derived
property is automatically computed from values in the model object's environment. The
various types of workitems discussed in section 6.4.1 are separated by properties like
composite/atomic, generic/specific, and automatic/manual, which can be derived from
the context of each individual item. All roles that are (possibly recursively) filled by a
resource, represent this link as a derived property. This means that if the role Responsi-
ble on item Design is filled by the role Chief designer on the workitem Software devel-
opment project, and the role Chief designer is filled by Tom, both the roles have a de-
rived property called filled-by pointing to the person Tom. These derived properties are
utilised, e.g. in the user interface, where users during enactment normally just cares
about who fills the role and not about how this was achieved in the model. By mixing
derived and articulated properties, we also allow users to say directly who fills a role
(by assigning a value to the filled-by property) as an alternative to modelling a resource
allocation process. Elaborate schemes thus co-exist with simple, direct mechanisms.
Through derived properties any model element can, in principle, influence any other
element. This constitutes true semantic holism. The reuse framework presented in
Chapter 5 can implement derived properties.

6.4.5 Constellations

Sentences can be articulated by grouping objects together in a constellation (or assem-
blage [466]). A workitem is a constellation of resources, input and output flows and
possibly sub-items modelled in a workflow. The workitem itself corresponds to the
predicate part of a sentence, while the resources are the subjects and objects involved.
Flows denote temporal order, and possibly goals or reasons. The more objects one adds
to such a constellation, the more precise its meaning becomes. Generalising this princi-
ple, one could also view an object as a constellation of properties (treating properties as
first class primitives). Property modelling thus becomes a particular kind of constella-
tion modelling.
 The individual objects in a constellation can also derive meaning from the whole.
Figure 66 shows person objects placed in a number of different constellations. The up-
per line shows generic roles (with no filled-by property). Placed on its own a person
object denotes a generic individual. Placed inside a workitem the same object denotes a
role in that item. Inside an organisation, the generic person object represents a position,
and multiple persons put together denote a group. You may also place a person role on a
flow, denoting that the source should allocate resources for the target. For all of these
different constellations, generic roles can be filled by concrete individuals, as shown in
the lower line in Figure 66. Modelling by constellation thus facilitates a systematic ap-
proach to personnel management across domains.

153

Figure 66. Different uses of Person objects.

Many modelling languages employ separate concepts for every one of these uses of
person objects [347]. While this makes sense when different features are needed for
each of the contexts, it also makes the modelling language larger and less flexible. The
resource modelling framework of APM (Figure 21 on page 84), contains a multitude of
variants of actor (organisational, external agent, or software agent), tool (manual or
software), and object (material, information, active information object, or pluggable
action) resources. Most of these resources can be either role or concrete, invoked (man-
datory) or available, and composite or atomic depending on their properties. The total
number of resource variants include 9 basic and 4 generic types, times 8 (2 by 2 by 2)
property variations, in total 104. Clearly all of them cannot be represented as primitive
classes. The number of primitive properties required to articulate the same amount of
information, is by contrast 8. The number of primitives is thus decreased from equalling
the product of the number of property values (for classification) to becoming the sum of
different values (properties and constellations).
 Each different person object in Figure 66 may require specific features that are not
needed for the other cases. For instance, while positions may have salary codes, roles
have hourly rates. But there will also be a number of common aspects, for instance
those concerned with allocation (as shown by the two lines in the figure) or related to
the person who fills the role. Semantic holism dictates that the object definition (in this
case the person object's set of properties) may depend on the context in which the object
is placed. The reuse framework presented in Chapter 5 allows users to define policies
that inherit properties from the context (e.g. workitem, organisation or group) to the
person objects, implementing this form of semantic holism. The dynamics of model
evolution further dictates that the object definition should depend on the states of the
elements in the model, For instance, while generic person objects may have skill re-
quirements, individuals have skills. Figure 67 shows an example where the semantics of
the person role depends on indirectly associated elements (work processes and organisa-
tions respectively). Both parallels and differences between these two model fragments
were discussed above.

154

Figure 67. Personnel allocation to organisations and work processes.

Styhre [466] discuss concepts in organisations and management science. He notices that
concepts interrelate with practice in unstable and ambiguous ways, and emphasises con-
cepts that are multiplicities, conjunctive synthesis of singularities (AND-combinations
of instances). Such concepts get their meaning from relationships between the elements.
Styhre shows that concepts such as human resources and total quality management
should be understood in terms of a wide range of singularities (such as flexibility, skill,
process) from different disciplines [466]. Some process and enterprise modelling lan-
guages similarly have emphasised relationships as the central modelling construct [241,
309].

6.4.6 Constructive Composition vs. Holistic Interdependencies

In software development, constructive decomposition of systems into subsystems is a
fundamental technique. In a constructive structure, overall system properties can be
computed when subsystem properties are known. Only constructive structures can be
validated [482]. Development proceeds through recursive divide and conquer of each
subsystem, until a set of implementable basic components are defined. Constructive
approaches also emphasise separation of concerns in decomposition structures [392],
maximising the internal cohesion and minimising external couplings of each part.
Available systems and components are reused through bottom-up synthesis.
 Open, interactive systems are different. As Wegner [523] points out, correctness
of an open system cannot be validated in general, only with respect to a well-defined set
of inputs. Interactive models reflect wicked, incompletely understood problems, which
has not yet been tamed, framed and solved. They support the problem solving process,
not just the documentation of its outcome. Constructive composition yields control, but
complex and changing social environments makes it impossible to predefine all connec-
tions between subsystems. Several researchers find that maximum adaptability is
achieved on the "edge of chaos" [194]. Black-box, closed, constructive structures should
thus be replaced by open, reflective implementations [139, 268] and semantic holism.
On the other hand, social conventions, laws, contracts, standards, and technological de-
cisions also close subsystems with respect to features that clients rely on, allowing sim-
pler systems [299]. The degree of subsystem openness thus involves a trade-off between
simplicity and flexibility. Kizcales et al. [269] list different types of open interfaces:

Allocate
people

Main
organisation

Human
resource

department

The
main

project

155

� The environment may declaratively describe its intended use of the component so
that it can select a matching implementation strategy. With semantic holism, these
domain properties can be derived from the surrounding model. We call this contextu-
alisation.

� The environment may explicitly decide among a set of implementation strategies
offered by the component, such as WORKWARE's interactor policies. This is called
parameterisation [41] or customisation [488].

� Extension [488]: The environment may itself define parts of the subsystem imple-
mentation strategy, e.g. user-defined enactment rules.

� Adaptation and specialisation [139]: Strategies may also be incrementally redefined.
In WORKWARE, property and constellation modelling support incremental articula-
tion, while cancellation inheritance allows existing strategies to be replaced.

The core challenge for open implementations is to manage complexity. In our case,
complexity is managed interactively, allowing different roles (users, process experts,
software engineers) to adapt the system through the interfaces listed above. Scope con-
trol should be natural and sufficiently fine-grained [269], which instance modelling and
explicit inheritance policies facilitate. Meta interfaces should be orthogonal to primary
interfaces, and default policies should make tailoring optional [269]. The aspect-
oriented WORKWARE architecture consists of orthogonal interactors, and default activa-
tion policies have been implemented. However, in an interactive model the separation
between domain and implementation strategies is fuzzy. Semantic holism thus violates
the orthogonality requirement. Process models are especially ill suited for constructive
approaches. Based on experience that most changes affect several of the process steps,
Parnas [392] concludes, "it is almost always incorrect to begin the decomposition of a
system into modules on the basis of a flowchart". Our architecture with multiple model
interactors thus decomposes code by concerns rather than by processes.

6.4.7 Summary

This section has shown a number of aspects of semantic holism in interactive modelling
languages, using practical examples from WORKWARE. Semantic holism gives rise to
these principles for modelling language design:
1. Limit the use of classification to encode information.
2. Let instances establish direct links between model elements and what they represent.
3. Allow properties to be dynamically assigned to objects.
4. Allow constellations of objects to be manipulated as an entity.
5. Allow inheritance and derivation of properties along any link.
6. Never explicitly state facts that can be deduced from other parts of the model.
Combined, these techniques generates modelling languages that are simpler (with fewer
primitives), more flexible (accommodating typical model evolution scenarios), and
richer (allowing a larger, extensible set of nuances of meaning). We have also seen that
semantic holism better matches natural language and the way human actors perceive the
world. Thus semantic holism should be suitable for model articulation by end users.
Table 5 summarises the many gaps between the way users perceive the world and how
this is normally represented in information systems.

156

Reality as observed by users Objectives of IS models
Partially understood Complete
Holistic causality Linear causality
Non-deterministic Deterministic
Contextual, holistic meaning Constructive composition, well-defined interfaces
Open system Closed system
Emergent, decentralised order Designed, central control
Satisficing, adequate solutions Optimisation, "best practice"

Table 5. Gaps between real world semantic holism and IS modelling reductionism.

6.5 Semantic Holism in the Activation of Models
Holistic activation semantics view a model as a system of autonomous components
[524]. Each component can be formalised, but their interaction, controlled by users,
cannot. Hence, the system exhibits emergent behaviour, which is non-deterministic,
decentralised, and incompletely predefined [194]. However, order and stable patterns
also emerge from the interaction of autonomous components in open, self-organising
systems [357]. Even though each individual component has a simple, formal definition,
interaction and openness yields a rich system behaviour. Semantic holism, employing
contextual interpretation rules, combining the states of all elements to decide the situ-
ated meaning of a model, amplifies and balances emergent behaviour.

6.5.1 Interactive and Holistic Workflow Architecture

The enactment semantics of WORKWARE interconnects the state transition behaviour of
multiple model elements. Each element offers interaction capabilities so users can trig-
ger state transitions that complement or override rule-based interpretations. Users may
also add or remove elements as the enactment progresses. Hence, a WORKWARE model
is an open system of interacting, semi-autonomous elements. Semantic holism is evident
in a number of features:
� State transition rules refer to other objects, often through multi-step navigation, thus

the interpretation of the current object depends on related objects. By triggering ac-
tions and state changes in other elements, the indirect consequences of a transition
can potentially reach through the whole process structure.

� Interaction sequence diagrams (cf. section 4.5.4) reflect that the overall semantics of
a model emerges from the interaction of simple, independent rules for each element.

Figure 27 (on page 92) presented a logical architecture of an interactive workflow sys-
tem, consisting of a shared workflow model, a number of model interactors, and an in-
tegrated user interface. In Figure 68 this architecture is revisited. It shows multiple users
interacting with multiple model elements. Similarly, the system contains several coop-
erating model interactors, each offering a partial interpretation of the model. The holis-
tic interaction metaphor thus applies to all three levels of Figure 68.

157

D
C

B
A

Multiple users

Multiple model interactors
with complementary
interpretations

Multiple model elements

Work
manage-

ment

Enact-
ment Aware-

ness

1 2 3

Figure 68. Holistic activation semantics.

6.5.2 Holistic Interaction among Users

An information system can be viewed as a medium for human interaction, communica-
tion and knowledge dissemination. Among systems that support cooperation, those that
offer basic support for human interaction without sophisticated automation, e.g. email,
chat, and shared workspaces, are most widely used [42]. When a user is looking for a
solution to a problem, it is not important whether the answer comes from a computer-
ised component, a database (or another asynchronous communication medium), or di-
rectly from another user. The Turing test, whether a user is able to distinguish answers
from a computer from answers from a human being, is of little practical relevance [523].
Instead we need a system that supports the social processes of knowledge creation, dis-
semination, codification and learning. Joint sense-making, articulation of reference
frames and contexts, are important aspects of these processes. This requires interpreta-
tive flexibility of the knowledge representations. Hence formal languages without con-
textual meaning are not appropriate.

6.5.3 Holistic Interaction among Model Elements

An interactive model consists of elements that are directly and indirectly connected.
When users interact with model elements in manners not narrowly rule-restricted, each
element becomes partially autonomous with respect to the rest of the model. Since users
can add and remove objects and relationships, the population of model elements is
evolving. By utilising as much as possible of the knowledge that is articulated in the
model, holistic activation mechanisms can better provide contextualised support. The

158

many different interaction scenarios that can be generated from the state transition mod-
els in section 4.5, illustrate the potential for a system of simple components to exhibit
and mediate complex behaviour.
 Comparing WORKWARE's enactment semantics with that of Petri nets [553], we
see clear differences. In Petri nets only the transitions that currently have tokens on all
of their input places are candidates for activation [535]. The rest of the model is not
utilised in any way to contextualise the interpretation. The example presented in section
6.3.2 illustrates the need for such contextualisation, as does the case studies surveyed in
Chapter 2. Petri net semantics works well for formally correct, complete, static models,
but cannot handle incompleteness or openness. Petri net model evolution requires com-
plex mechanisms that are hard to understand for end users [7, 152, 153, 548, 553].
Table 6 and Table 7 illustrate these differences. It is based on a simple model with two
workitems A and B planned to occur in sequence (A before B). The rows show the
states of A, while columns show the states of B. Neighbouring cells thus show possible
state transitions. In the Petri net example there is only one way through this model. All
empty cells are illegal. (Basic Petri nets do not separate Ready from Ongoing).

 State of B →→→→
State of A↓↓↓↓ Waiting Ready Ongoing Finished
Waiting Input place of A

receives token

Ready ↓
Ongoing All input places

of A have to-
kens

Finished Transition A
fires when user
is finished

→ Input place of
B receives
token

Transition B
fires

Table 6. Petri net enactment of model with two workitems A and B in sequence.

 State of B →→→→
State of A↓↓↓↓ Waiting Ready Ongoing Finished
Waiting Input flow

activated
Ready All input

flows acti-
vated

B declared
ready before
A, exception

User starts B
before A, early
start exception

Ongoing User declares
A started

Flow is manu-
ally activated,
so B becomes
ready before A
finishes

Opportunisti-
cally increased
concurrency

B finishes
before A, vio-
lation of mod-
elled se-
quence. Strong
warnings
should be is-
sued

Finished User declares
A finished

Flow from A
to B activated

User declares
B started

User declares
B finished

Table 7. WORKWARE enactment of model with two workitems A and B in sequence.

159

For WORKWARE all of the cells are filled. Although we planned to perform A before B,
exceptions may reschedule the work. Such exceptions are tolerated; thus they are cap-
tured inside the system and can be the subject of later reasoning and learning from ex-
perience. The system also supports the users in managing these exceptions, e.g. the
awareness engine helps the performers of A and B to maintain an overview of what
goes on in the other task. But even in the normal case of operation, WORKWARE allows
more situations to occur than Petri nets. Users may for instance trigger an outgoing flow
(from A to B) before the item (A) is finished, if all that is needed for the start of B is
already produced in A. Languages that attempt to handle the scenarios above based on
closed system atomic semantics, need a lot of different flow relationships [183]. They
must separate B-must-finish-after-A from B-cannot-start-before-A-finishes etc. Interac-
tion and semantic holism, on the other hand, allows us to handle all the cases with a
rather simple language, and it lets users delay the decision of detailed flow semantics
until the situation arises. If users want to predefine detailed flow semantics, they may
add specialised enactment or access control policies to the flows.
 The notion of model activation as holistic interaction among model elements ap-
plies to other kinds of interactive models as well. Between product components or con-
cepts in a corporate ontology the relationships are many, and probably incompletely
articulated. The Gossip awareness engine for software product models [163] is one ex-
ample where this is implemented

6.5.4 Holistic Interaction among Model Interactors

The third level of activation which can be described as a system of interacting compo-
nents, consists of the interactors that mediate user interaction with model elements and
activates the rules of their concern. In Chapter 4 we saw how the interactors of WORK-

WARE provide complementary coordination support controlled by process models. Dif-
ferent interactors support different scenarios. We also saw how changes to the model
made by one component affected the others. This flexibility is achieved because no in-
teractor assumes it has full control of the model.
 This design is extended in the EXTERNAL infrastructure (Chapter 7), where
WORKWARE is integrated with a model editor, a real-time cooperation tool and a process
simulator. In such an environment all of the components become more useful than they
are in isolation. The model editor not only visualises static models of typical work proc-
esses, it can also show overviews of the current state of actual processes. Similarly, the
simulation tool now can use data from ongoing projects to adjust its parameters and
provide more accurate forecasts. The integration of more model interactors, offering a
richer set of functionality customised by the current state of work, is an important direc-
tion for further research. This integration also increases the utility of the interactive
models as a medium for knowledge transfer among users. By integrating different tools
around a common model, we also create an arena where different work practices can
meet (management, knowledge workers, accounting, quality control etc.). At the same
time this integration is problematic because different communities of practice assign
different meaning to the same terms (e.g. boundary objects as discussed in Chapter 2).
Precisely because different communities (and their tools) assign different, yet partially
overlapping meaning to the elements of a shared model, we need open and contextual
semantic holism. Semantic holism allows shared model fragments to change meaning
depending on the context (e.g. local practice-specific views) in which they are placed,

160

and can thus accommodate different uses by different communities. By allowing these
complementary interpretations to co-exist and interact, semantic holism allows models
to fill the role of boundary objects, facilitating communication and learning within and
across communities of practice. Instance modelling creates a global identity for each
element, maintained across all communities. Property modelling and incremental classi-
fication allow different communities to articulate their own local aspects of these ob-
jects in an integrated manner [385]. Additional objects with a local meaning may influ-
ence the interpretation of shared elements through derived properties and reuse policies.
This implies that e.g. the human resources (HR) department in Figure 67 can have a far
more elaborate model of the personnel recruitment process than the main organisation,
but nevertheless the effects of the HR activities on the shared model are available to all.

6.6 Semantic Holism in Model Reuse
The model reuse component from Chapter 5 can be regarded as just another model in-
teractor. By handling inheritance along any modelled relationship, it extends the degree
of semantic holism offered by conventional systems. By assuming that models are
evolving and incomplete, the framework also follows open systems perspectives. Rather
than supporting a single, centrally controlled inheritance hierarchy, WORKWARE recog-
nises that decentralised emergence better matches the needs of end users, as illustrated
by the examples in Chapter 5. The lifecycle of model evolution (section 2.5.7), points to
a number of roles for semantic holism:
� Adaptation and appropriation of a template fragment into a local model can be par-

tially automated if the meaning of the template is influenced by the new context (the
local model) in which it is placed. Through derived properties and reuse policies a
template fragment can automatically adapt to its new situation, increasing the poten-
tial for reuse without the need for tedious adaptation by the end users. For instance if
we add a Review template workitem to a local process, it could automatically inherit
all the document resources of the local process, which are the basis for the review.

� Generalisation similarly benefits from semantic holism. Derived properties are
automatically reset when a model fragment is moved from its local context and into
the template repository. By inheriting features from the template context, e.g. states
set to initial values, resources roles not filled etc., generalisation gets a head start.
Different contexts for organisational, group, project and personal templates allow
different generalisation rules to be applied.

� Classification of templates involves a mix of predefined hierarchies and need-driven
structures that emerge from the properties of local models. Classification structures
help users see similarities and differences among candidates. The mere experience of
seeing such structures may influence the users' understanding of each template. The
context that classification provides can also enhance this process, e.g. highlighting
differences among a current set of candidate templates, pointing to common features
etc. When a user makes a partial selection, e.g. "I like these features in the template,
but these other features do not fit our project", such functionality would be especially
useful. The context utilised by semantic holism in this case is the selection process
represented in Figure 58 and Figure 60 (pages 137-138).

� Analysis and evaluation of the reusability of a model could similarly be supported by
specialised tools, reusing quantitative properties associated with model elements, e.g.
time and resource consumption, costs, perceived quality ratings etc.

161

6.7 Summary of Contributions
Chapters 4, 5, and 6 have described the contributions of this thesis, encompassing a
general approach for flexible IS design (interactive models), and specific ideas for proc-
ess support environments and other interactive, model-driven solutions. The table below
maps the contributions to the core challenges uncovered in Chapters 2 and 3. It shows
that the new design ideas presented here address the challenges. The validation in Chap-
ters 7-9 indicates that these design ideas are indeed feasible, useful and innovative.

Research challenge Contributions that meet the challenge
Incomplete models Interactive activation, explicit decisions
Language efficiency (simplicity) Semantic holism, instance modelling
Flexible articulation Semantic holism, property modelling
User-oriented language Metamodelling, instance modelling, holism
User involvement Interactive activation, location of decisions
Contextual model interpretation Holistic activation semantics
Rich functionality Multi-interactor architecture, semantic holism
Customisation Policy models, contextualisation
Reuse as an interactive process Reuse processes and decisions interactively

enacted
Need-driven reuse Emergent classification (by intension and ex-

tension) in the metametamodel
Customisable reuse Reuse framework with policies and aspects,

generalised inheritance
Metaprocess support for reuse Reuse processes and decisions integrated in

practice, removing the "meta" character

Table 8. Research challenges and the contributions that meet them.

162

163

Chapter 7
Implementation

The WORKWARE prototype has been developed and experimented with in a number of
research projects since 1997. It implements most designs from Chapters 4 and 5, serving
as proof of concepts. The original objective of WORKWARE was to support planning,
performing, coordinating, and managing ad-hoc work, as well as learning from practice.
As the work progressed, it was recognised that ad-hoc processes also have substantial
routine parts, and that structure emerges as the work progresses. Discussions with users
and the previous research surveyed in Chapter 2 showed that seemingly routine work
also has strong ad-hoc and knowledge-intensive characteristics. Consequently it became
important to integrate the support for routine and emergent workflows within one
framework.

7.1 WORKWARE Principles
In addition to the research-oriented requirements presented in Chapter 2, WORKWARE

had to satisfy a number of detailed user needs, technical as well as functional require-
ments. These additional requirements are presented first in this section. We then outline
core design principles, user interface and system architecture, to provide an overview of
the system's functionality and services.

7.1.1 Requirements

The next chapter describes usage experience with WORKWARE and the integrated infra-
structure of the EXTERNAL project. The most important requirements put forward by
these cases are:
� The system should help each user organise his work. When organisations install

groupware tools, early adopters often discover that real benefits only can be reaped
when most of the people they work with also use the tool [202]. By providing ser-
vices that users need individually, we can overcome this critical mass problem.

� Different aspects of work should be integrated, not separated. Planning, coordination,
management and reporting are integrated in, not external to, knowledge work.

� The system should support visual modelling, but not require it. Users should also be
able to articulate their work inside the work environment, e.g. in textual forms.

� Simplicity and ease of use is a primary concern, especially for novice users. Migra-
tion from novice to expert should be facilitated.

� Customisation is needed to allow individual user preferences, variation in organisa-
tional routines etc.

� Evolution should be handled and facilitated, both of work practices and technological
support. The system should easily adapt to new platforms. Different client access de-
vices, software, and network bandwidths must be supported.

� It should be easy to start using the tools. Client installation should be straightforward,

164

and the system should be useful even without a detailed process model.
� Information should be shared among users, in a groupware manner, not distributed

and hidden from others, as in personal mailboxes.
� Standards should be used to integrate external services and tools. Cooperation with

partners that are not using the system should be supported.
� Information should be stored and transferred in a secure manner, preventing un-

wanted disclosure to external as well as internal actors.
� Performance should be satisfactory, matching user expectations to similar technolo-

gies.
In addition, a number of requirements would be important for a stable software product,
e.g. scalability, locking and versioning. WORKWARE was however designed as an ex-
perimental prototype, so these requirements were not prioritised.

7.1.2 Design Principles

Based on the requirements, these principles were early on articulated for the software
architecture and development process:
� The system should be web-based. The client should run in a web browser and not

require installation of extra software. The system should not use proprietary features.
� The user interface should be dynamically generated in order to facilitate personalisa-

tion and model-driven customisation.
� The system should be component-based. A strong separation of concerns should ex-

ist between the components.
� Available standard and open source components should be utilised. Built-in browser

capabilities should be utilised for desktop application integration.
� The implementation process should be incremental to provide early benefits for the

users. Basic services like information sharing and task management, should be the
first objectives, while more powerful features could follow later.

Based on these principles, Java Servlets [474] were selected as the main implementation
technology. At the time, it offered the most comprehensive framework for dynamic web
applications. The user interface consists of dynamically generated HTML forms and
documents, available across HTTP from the web server that runs the servlets.

7.1.3 User Interface

In Chapter 4 the user interface components of WORKWARE were briefly introduced. The
two main forms for interacting with models of work, are the worklists and the worktops.
Worklists presents overview of workitems according to selection criteria specified by
the user organisation, including:
� Who fills roles (as responsible, participants, or customer) on the item? These criteria

are used to separate personal and group worklists.
� Which project, work package or parent workitem does the item belong to (derived

from the work breakdown structure)?
� What is the state of the item (e.g. separating new items from ongoing ones)?
� Is the item delayed?
� Time. What is the (planned and actual) start and finish date for the item? Is it sched-

uled for this week of far into the future?
� Any additional property defined by the user organisations can also be used.

165

In addition to criteria for searching the database of workitems, a user may explicitly add
or remove items from a list, overriding the search selection. Each worklist displays a
customisable selection of properties for each item. Figure 69 shows an example.

Figure 69. WORKWARE worklist.

By clicking on the name of a workitem in the list, the user opens the worktop of that
item. Figure 70 shows an example. The worktop includes a description of the item,
communication links to the people that fill roles, links to document resources, and a
worklist containing sub-items. The users also have access to three types of services:
� Planning services (articulation), including process modelling,
� Performance services, providing access to tools and information,
� Coordination services, reporting on work progression, e.g. changing the state of a

workitem or selecting output flows.
Services correspond to commands that the user can invoke on the workitem. They are
work steps so fine-grained that we do not represent them as workitems by themselves.
The classification into planning, performing and coordination services refers to the use
of a service in a particular context; the same service may be used for planning, perform-
ing or coordination in different work items. A planning service like "Process modelling"
can for instance be used to perform the workitem "Adjust project plan".
 In addition to these components for interacting with workitems, the system also
includes general forms and services for manipulation of other types of objects, as well
as specific interfaces for some types, e.g. decision-making forms for user involvement
in the activation of decision connectors. All of these forms, and all the components and
services they contain, can be customised according to organisational policies and user
preferences. The WORKWARE Explorer fills a separate frame to the left of the main
forms. It is a menu-structure that organises services hierarchically according to the pref-
erences and access rights of the individual users. Menu configurations can also be

166

shared (reused) among users. More details about how services are selected and custom-
ised to meet local needs, are provided in section 7.3.1.

Figure 70. WORKWARE worktop.

7.1.4 Architecture

Below, the architecture of WORKWARE is described at three levels. The logical architec-
ture (section 7.3) shows the main components, the implementation architecture (Appen-
dix B.1.1) defines packages of code, while the runtime deployment architecture (Appen-
dix B.1.2) contains servers, clients, and related software systems. At the logical level,
the prototype currently integrates five model interactors, a work management tool, a
workflow enactment engine, an awareness engine, a document manager and an access
controller. WORKWARE is further integrated with tools for visual modelling, simulation,
and real-time collaboration in the EXTERNAL infrastructure (section 7.4). The implemen-
tation is divided into 4 layers of Java code, for user interface, interaction control, data
management, and persistent data storage. At runtime the WORKWARE Java servlets are
connected to a web server. The servlets build HTML forms and documents dynami-
cally. These interfaces are returned to the web client, via the web server, using http. The
set of user interface forms and components has evolved throughout the lifetime of the
system. Appendix B.4.2 shows five generations of WORKWARE user interfaces, starting
with rudimentary HTML forms and ending with a multi-frame, iconic interface con-
trolled by style-sheets. We have also applied different server operating systems and web
servers. The architecture has handled this technological evolution well.

7.2 Implementation of the Language Metametamodel
At the data management layer, each WORKWARE server has one DataCatalogue, which
gives access to all modelled objects. This layer implements the metametamodel defined
in Chapter 5:
� Classes. For each class, clients can get a list of all the members. Classes are identi-

167

fied by a unique name.
� Templates. (One for each class). New objects are created as clones of templates.
� Objects. Object instances are identified by a unique id.
In addition to the DataCatalogue, the main implementation class of WORKWARE's data
management layer is the DataObject. It contains operations for access to the name, type,
implementation (a Java class), help text, and attributes of a model object. Relationships
between objects are encoded as attributes that has a DataObject class as its type. List-
DataObjects allow multi-valued attributes. Each list has a default element type.

7.2.1 Reflection

WORKWARE's data management scheme applies reflection to simplify user interaction
and increase flexibility. Classes are treated as objects. The class Type has all classes as
its members, and thus serves as a metaclass. Type can fill all the roles of ordinary
classes. This implies e.g. that attributes can have classes as their values. This feature is
useful for customisation, e.g. when one wants to define policies for all objects of a cer-
tain class. The object that defines one such policy typically has an attribute denoting its
scope, and its value may refer to a class. Attribute is another metaclass. It is e.g. useful
for defining user interface policies for how individual attributes should be displayed.
Table 9 shows a policy that defines how the Description attribute of Workitems is to be
displayed for a particular user.

Attribute name Attribute type Example value
Profile for type Type Workitem
Profile for attribute Attribute Description
Profile for user Person Håvard
User interface component Component Text input field (3 lines)

Table 9. User interface policy that utilises WORKWARE's reflection mechanisms.

These mechanisms are highly useful for configuring the general functionality of the
system. For instance, the general form for editing objects, enquires what attributes the
current object contains, and what their types and values are. This information is then
used to select customised user interface components for each attribute.

7.2.2 Metamodelling

WORKWARE's reflection capabilities are also used for metamodelling. Since classes
themselves are treated as objects, defining a new class is just a specialised way of defin-
ing a new object. WORKWARE currently support these kinds of classes:
� Basic classes are defined with an existing object as their template. The template is

edited and manipulated just like other objects.
� Extensional classes are defined by normal objects. The extension template is a List-

DataObject with Type as its element type. Users add subclasses just like they add
elements to other lists.

� Intensional specialisations are also defined by ordinary objects. The template has
attributes that contain the selection criteria to be applied.

� Enumerations are defined by a ListDataObject template.

168

Class metamodelling is most useful at the group and organisation levels. For most end
users, metamodelling at the instance level is more appropriate. Since the set of attributes
(names and value types) are defined locally for each object instance, users may add (or
remove) properties as they see fit (subject to access control policies). The case studies
presented in Chapter 8 include several examples where this has been utilised.

7.2.3 Assessment

As shown in Appendix B.2.3, this implementation utilises most design patterns for
flexible data management [173]. The detailed design thus seems to be well aligned with
state of the art. The metametamodel has been in operation since 1997, and has proved
capable of handling a number of scenarios beyond those it was originally defined for.
Examples are provided below.

7.3 Implementation of Interactive Activation
The model interactors are the components that activate process models in WORKWARE's
architecture. Typically such a component includes the following parts (Figure 71):
� User interface components that allow users to participate in model interpretation,
� Model access through DataObjects that the interactor uses and updates.
� Event subscription interface where the interactor registers with the objects that it

works on. Whenever an object is created, deleted or changed, interactors are notified
and react according to their interpretation of the current state of affairs.

� Policy models (ordinary DataObjects) that control the behaviour of the interactor.

Integrated personalisable and model-driven user interface (HTML)

Data Management Layer

Enact-
ment

engine

Work
manage-
ment core

Aware-
ness

engine

Document
manager

Access
controller

User
interface
policies

Enact-
ment

policies

Aware-
ness

policies

Docu-
ment

metadata

Access
control
policies

Process models

Figure 71. WORKWARE interactor architecture.

7.3.1 Work Management

This core component of WORKWARE implements generic mechanisms for sharing model
data among distributed users, providing simple, customisable forms for viewing, edit-
ing, listing and searching the modelled data. The core thus supports generic articulation

169

and manual activation of models of any kind. Specialised interfaces (worklists, work-
tops, decisions making forms) have been implemented for process models. The work
management tool controls most of the user interface to the system, integrating compo-
nents and services from other interactors where appropriate.

Multi-Level Configuration of Services

WORKWARE models units of functionality as service objects. In addition to the system's
own services, external web services and desktop tools can be integrated. The set of ser-
vices included in each user interface is determined dynamically by combining Service-
Configurations for several aspects that describe the current situation:
� The classes of the current object,
� The operation mode, e.g. edit or view, list or single object,
� The current user, enabling personalisation, and
� The current object instance.
ServiceConfigurations may exist for each of these aspects and for some combinations.
The configurations are applied in sequence, starting with the most general (superclass)
and ending with the most specialised (instance and user). Each configuration can both
include and exclude services, implementing cancellation inheritance [483]. Such multi-
level customisation has proven very flexible, enabling both general evolution and local
preferences. Figure 72 illustrates the application of this scheme. Here three different
projects have customised the explorer menu to include the services that they need.

Figure 72. WORKWARE Explorer menus for different usage contexts.

The configuration to the left is the default, while the second one is tailored to support
management and coordination of action items in a project. Actions are ordinary
workitems, but presented here under a different name to fit the local vocabulary of the

170

users. The organisation of the project into work packages (WP) and cross-functional
teams, is mirrored in the menu structure. It was also chosen to highlight delayed actions,
and to use the customer role to denote follow-up responsibility. Lack of follow-up was a
reported problem in current practice. In the third example, the language has been
changed to Norwegian (by renaming the service objects). Meetings have been added as
a special subclass of workitem (defined by intension), and different categories of docu-
ments are distinguished by a local, user-defined property. These examples thus show
both the metamodelling, modelling and service configuration aspects of customisation.
More cases will be presented in Chapter 8.

7.3.2 Interactive Enactment

The interactive enactment engine subscribes to change events on all workitems, decision
connectors and flows. When the state attributes of these objects change, the engine up-
dates related objects according to the rules defined in Chapter 4. The engine is mainly
an automation tool, but it also includes some specialised user interface components. The
CoordinationServiceList lets users update the state property of workitems. It includes
services for triggering the state changes that are allowed in the current state, determined
by the outgoing transitions in the state transition diagrams. Figure 69 on page 165
shows CoordinationServiceLists for each workitem under the heading Status. This en-
actment component is included in the work management interface because it is the de-
fault view style for attributes of type Workitem status according to modelled user inter-
face policies.

7.3.3 Awareness

Rolf Kenneth Rolfsen originally developed the awareness interface for the SEASPRITE
infrastructure, which allows organisations to share lifecycle information about ships,
structured by product models [374]. For WORKWARE we mapped process structures to
his generic awareness model [416]. We also added the use of filtering lenses [50, 518]
to customise holistic awareness mediation along the relations of the process model (cf.
section 4.7). The awareness engine is built with standardised interfaces for event capture
and propagation, and is thus not limited to work process models. All objects that have
event logging enabled, are members of the extension class "Objects with event log".
Policies define that awareness related services are included when members of this class
are displayed.

7.3.4 Document Management

The principle behind this interactor is to utilise process models to classify documents, in
order to simplify retrieval, management and contextual interpretation of the information.
The component was originally designed as an example of ontology-driven information
workspaces [365]. It is thus extensible to other kinds of interactive models as well. A
simplified version was implemented in WORKWARE, utilising open source software. The
example menu to the right in Figure 72 shows that the metametamodel of WORKWARE

can support and utilise other forms of metadata on documents as well. In this case a
document category attribute was used for separating documents in the menu. However,
WORKWARE is not a full-fledged document management system. Lack of versioning and
a cumbersome user interface, are among the limitations of the current implementation.

171

7.3.5 Access Control

The overall concept and services of the model-driven access control component were
presented in section 4.8. The access controller remedies some of the information man-
agement problems mentioned above by integrating an open source content management
system called JAKARTA SLIDE [17]. This system supports distributed authoring and ver-
sioning according to the WebDAV standard [235]. In addition to storage, retrieval and
access control, locking and versioning are also supported by SLIDE. These services were
integrated into WORKWARE through a component that listens for changes on all the
model objects, and makes sure that these changes are reflected in the access control
structures. We also provide an interface for defining access control policies with user-
oriented concepts (the modelled projects, workitems, users, groups, and documents).
SLIDE supports inheritance of access rights in the directory hierarchy. More details
about how this feature is utilised for reuse are presented below.

7.3.6 Summary and Assessment

Unlike object-oriented frameworks, WORKWARE's architecture separates behaviour from
data. Even features commonly thought of as inherent to the data structures, e.g. inheri-
tance, is managed by model interactors and not by the data management layer. The mo-
tivation for this design is to allow user interaction and customisation. The design groups
related behaviour rules in a manner similar to aspect oriented programming (cf. section
5.5.8) [157, 351]. For interactive process models aspects include enactment, awareness,
access control, resource management, data management, visualisation, and user interac-
tion. The mismatch between aspect and object oriented perspectives is evident in the
UML models of activation semantics in Chapter 4. Here the behaviour rules managed
by one interactor are spread across a large number of modelled objects, even for very
simple scenarios. Aspect-oriented modelling frameworks [193, 385] that support behav-
ioural as well as structural modelling could solve some of these problems.

Like join points or weavers [193, 473] integrate code for different aspects into a
running system, the model objects and their event notification interface integrates dif-
ferent interactors in WORKWARE. Communication through data structures creates a
loosely coupled system where each of the interactors can work in isolation. The interac-
tors do not directly invoke operations from one another [48]; they are orthogonal [44].
This pluggability has been utilised to support different system configurations, e.g. with
or without the EXTERNAL infrastructure tools. Many user benefits however arise from
the integration of previously independent services around a common model, so techni-
cal flexibility should not be over-emphasised. Integration of many different aspects into
one model can make it complex and unmanageable. WORKWARE includes a number of
remedies for this problem.
� Each interactor need only care about the objects, classes and attributes that it uses.

Other features can be ignored and hidden from function-specific user interfaces.
� Each interactor typically defines some specific object classes (policies) for customi-

sation. Other interactors need not bother with those. Of the 100 classes installed with
a standard WORKWARE server, 10 deal exclusively with service customisation, 31
with user interface configuration, 10 controls awareness mediation, and 16 support
reflection and data management. The remaining interactors typically apply a few pol-
icy classes each, while less than 20 core classes are shared among the interactors.

172

Since WORKWARE is an interactive system, our aspects also include user interface com-
ponents. User interface integration thus becomes a key problem. The generic user inter-
face layer of WORKWARE does not solve the problems of integrating different technolo-
gies. As the next section shows, such integration was difficult across the tools of the
EXTERNAL infrastructure. This thesis does not address problems of technical interopera-
bility, but shows the potential for model driven user interfaces to integrate functionality
from different interactors in a contextual and customisable manner, provided that tech-
nical interoperability is in place.

7.4 The EXTERNAL Infrastructure
The EXTERNAL project [161] aims to facilitate inter-organisational cooperation in
knowledge intensive industries. It is the hypotheses of the project that interactive proc-
ess models form a suitable framework for tools and methodologies for dynamically
networked organisations. The EXTERNAL infrastructure (Figure 73) integrates a number
of tools for articulating and activating process models:
� METIS [309], an open, general purpose enterprise modelling and visualisation tool,
� XCHIPS [233], a hypermedia tool with process and real-time collaboration support,
� SIMVISION [295], which simulates processes and resource allocation,
� WORKWARE,
� UEPS [491] (User Environment Portal Server), a general environment for Internet

and Intranet portals,
� FRAMESOLUTIONS [93], a framework for automated workflow applications.

HTTP(S)

Metis XCHIPS
Sim

Vision

Frame

Solution

WorkWare

Repository Server

HTTP(S)

HTTP(S)

User Environment Portal Server

Remote

Client

Figure 73. The EXTERNAL Infrastructure [491].

METIS, FRAMESOLUTIONS, UEPS and SIMVISION are commercial tools, while XCHIPS
and WORKWARE are research prototypes developed over several years. The interactive
process models are the core means of integration. They are stored in a WebDAV reposi-
tory residing on a web server. For the representation and interchange of models, an
XML DTD is defined. METIS is used for building and visualising rich, up-to-date mod-

173

els of the joint project, fostering common understanding and enabling the participants to
plan their joint work. XCHIPS has weaker visualisation capabilities, but allow for real-
time collaborative modelling and focused collaboration in the context of particular
workitems. XCHIPS provides contextual support for synchronous collaboration, and
WORKWARE for asynchronous collaboration. FRAMESOLUTIONS automates standard
procedures.
 The open service model of WORKWARE proved valuable in facilitating control
integration. Since all the other tools could be invoked from a webpage, they could easily
be modelled as WORKWARE services. Such services may be parameterised, e.g. with
values defining which file to open in METIS or which process to execute in FRAMESO-

LUTIONS. As Figure 73 shows, WORKWARE thus became the glue that allowed other
tools, web pages and the UEPS portal to invoke EXTERNAL functionality. In the current
version, WORKWARE runs on a separate server, but a re-implementation of WORKWARE
as part of a commercial UEPS release has been initiated [491].

7.4.1 Model Data Integration

The infrastructure tools activate process models. However, each tool had its own lan-
guage and metalanguage, adapted to its specific purpose. A common metamodel called
EEML (Extended Enterprise Modelling Language) was therefore designed to enable
syntactic and semantic interoperability. EEML follows WORKWARE in most areas:
� Workitems (called tasks), decision connectors, flows, resources, resource roles, is-

filled-by and candidate relationships form the core of EEML.
� EEML objects and relationships are instances.
� A generic scheme for defining new classes and properties is included.
EEML makes few commitments to specific metametamodel features, since all the tools
have different, hardcoded metametamodels. WORKWARE's extensional and intensional
classification mechanisms are thus not supported by EEML. Classification is left to each
individual tool. The metamodel lays down some rules, but the repository does not ac-
tively enforce them. Instead they must be implemented in each system. As the following
discussion shows, the tools implement EEML quite differently.

METIS

METIS is an open enterprise modelling tool [71, 309, 311, 312]. It allows user organisa-
tions to define their own local languages, but comes with a set of predefined templates.
METIS is mainly a tool for articulation and visualisation, not for automated activation.
The metametamodel of METIS posed some constraints on EEML. Its basic constructs are
object, property and relationship. Relations are binary, and connect objects only. Prop-
erties can take simple data values and user-defined enumeration types, but may not refer
to other objects.

XCHIPS

XCHIPS [233] is built on top of a generic infrastructure for cooperative hypermedia.
Like most hypermedia systems, the basic constructs are nodes (objects) and links (rela-
tionships). Links are first class constructs, so both nodes and links are typed and possess
properties. Like WORKWARE, but unlike METIS, XCHIPS allows addition of properties to
local instances. The system supports metamodelling by examples, where new classes are
defined by prototype instances. While METIS users typically view or edit the whole

174

model, XCHIPS users work on a small portion at a time. The work breakdown structure
is used for dividing the model into manageable chunks. This design is chosen because
real-time collaboration across the Internet requires limited data sets to yield acceptable
performance.

SIMVISION

SIMVISION [295] simulates the expected course of events in a process model. A wide
range of quantitative parameters tunes SIMVISION to different contexts. We also have to
articulate the amount of work involved in each task, the percentage of a person's time
allocated to the project, the skills of each participant etc. SIMVISION includes some addi-
tional constructs like meetings, coordination relationships between concurrent tasks, and
reporting hierarchies among persons. These were included in EEML. SIMVISION limits
the depth of the work decomposition. No more than two levels can be simulated. This
implies that for typical EEML models, the work breakdown structure has to be col-
lapsed prior to simulation.

WORKWARE

The metametamodel in WORKWARE differs from the rest of the tools in that it is not
primarily designed for graph visualisation, but for textual viewing and editing. Conse-
quently it does not contain a relationship construct. Instead attribute values can refer to
other objects. Conversion between these representations was not always straightfor-
ward, due to the tools' different purposes. For instance, reusability and the need for reas-
signing roles, requires indirect resource allocation, where one resource role is-filled-by
another recursively. In WORKWARE, we are in a work performance mode, and mostly
concerned with who is filling the role, not the details of resource management. Conse-
quently resource allocation is represented in WORKWARE as attributes that have the role
name as their name and the actual resource who is at the end of recursive is-filled-by
relations as its value, following the metamodel (Figure 29 on page 95).

7.4.2 User Interface Integration

Since the EXTERNAL tools were originally implemented with different technologies, it
was not feasible within the constraints of the project to provide a fully integrated user
interface. Instead all tools implemented some means by which they could be started
from a web page, and WORKWARE conducted the service invocations.

7.4.3 Integrating Workflow and Real-Time Groupware

XCHIPS provides a wide range of real-time collaboration services. These services are
included in the context of particular items of work, the worktops in WORKWARE:
� Chat and NETMEETING for synchronous communication, complementing the

asynchronous email integration of WORKWARE.
� Collaborative modelling, where participants jointly manipulate an EEML model.
� Distributed meetings where synchronous collaborative editing, modelling, drawing

and gesturing services may be utilised. The resulting artefacts are automatically in-
cluded as document resources attached to the meeting workitem.

� Various education-assisting features that allow people to experiment, learn, and teach
each other, e.g. collaborative model browsing and test-runs through the processes.

175

� Resource management through a visualisation interface, where tasks are grouped by
who performs them, and filtered according to a wide range of criteria.

In total, these services facilitate close collaboration, cooperative management and learn-
ing in the process support environment.

7.4.4 Simulation of Ongoing Projects

The core benefit that the infrastructure brings to SIMVISION is the potential for more
realistic models. The gap between real and modelled processes is decreased when the
models are enacted. Flexibility and ease-of-modelling enables process participants to
change models to reflect improved understanding and capture unforeseen events. Cur-
rently SIMVISION has weak support for dealing with ongoing processes, but the system
can simulate a wide range of scenarios of the same model with different parameters.
These features can be utilised manually to tune the simulation model as the work pro-
gresses, building on the configurations that have forecasted most accurately so far. This
fosters quality and trust in the estimates of the project.

7.4.5 Summary and Assessment

EXTERNAL serves as a proof of concept implementation for loosely coupled interactive
process model architectures. It shows that systems with different purposes and underly-
ing metametamodels can interoperate on the level of process models. The simplicity of
EEML, for instance achieved through limited classification of constructs, facilitates this
integration, not requiring tools to deal with specialised constructs that are not needed for
their purpose. EEML has also influenced the Unified Enterprise Modelling (UEML)
standardisation project [546].
 The purpose of a tool influences its language, meta-language and implementation.
An integrated framework for interactive models should thus provide multiple access
mechanisms. EEML was a pragmatic design subject to resource constraints. Metameta-
model plurality may be required due to such practical limitations, but it caused prob-
lems. WORKWARE's metametamodel is designed to meet challenges of interactive mod-
els in general. As a further demonstration of its suitability, section 9.2.1 shows how this
metametamodel can make enterprise modelling in METIS simpler and more flexible.
While the current infrastructure supports data, control and user interface integration,
some issues remain to be solved:
� Locking and versioning of models.
� The shared model repository has no change notification service, though WORKWARE

and XCHIPS have implemented a protocol for change notifications during enactment
� The granularity of model access is fixed to the file level and references across files

are not managed. This scheme is satisfactory for modelling, but not for enactment.
� More modelling constructs should be shared among the tools, and metamodelling

should be supported in an integrated manner.
� User interfaces should be integrated, combining components from different tools.
� Services should be better integrated across tools through a standardised interface, e.g.

based on web services.
These limitations mainly reflect the current state of the implementation and do not in-
validate the quality of the proposed designs. However, in extending the infrastructure to
meet remaining challenges and provide a stable commercial product, we could be faced

176

with practical difficulties that require rethinking of the basic designs. The implementa-
tion thus backs the claim of feasibility, but it is incomplete.

7.5 The EXTERNAL Modelling Language
Since WORKWARE does not provide a visual modelling interface, the models in this the-
sis have been built with METIS1. The METIS EEML template implements some of the
proposals from this thesis, utilising a number of features in the tool. This section dis-
cusses strengths, weaknesses and potentials for further improving the EEML template.

7.5.1 Basic Modelling Functionality in METIS

METIS is an open modelling tool. Through metamodelling, users can define new object
and relationship types. In order to make the large set of available modelling constructs
manageable, related types are grouped in domains. EEML includes domains for process,
resource and goal modelling. Domains that are used together for a specific purpose are
grouped in a metamodel. A template is a starting point for new models. Templates in-
clude a metamodel with domains and possibly some initial content (model objects and
relationships). EEML is defined as a template and a metamodel. In the context of a par-
ticular model, users may dynamically include new domains that were not originally part
of the template metamodel.

7.5.2 Multiple Views

METIS separates modelled data from visualisation. This implies that different selections
of model objects can be visualised with different layouts, and that each model element
may be shown in a number of different views. Different symbols can be used for the
same object in different views. This allows users performing different roles to have their
own customised perspective on the model. Models may be edited through any view, and
METIS offers a wide range of services for generating new views based on user-defined
selection criteria. Rich and complex models can thus be accessed though simplified,
personalised and contextualised views.

7.5.3 Methods for Deriving and Computing Properties

METIS also allows property values to be computed from other values in the model. This
is achieved though the method construct. Methods are implemented in a programming
language, packaged in dynamically linked libraries, and access model data through the
METIS API. Standard methods exist for extracting values from related objects, also
through recursive navigation along modelled relationships, and for basic computation
and string manipulation. This scheme allows derived and computed properties, increas-
ing the degree of explicit semantic holism in models. For instance, an EEML resource
role has a derived property that points to the object that fills the role, traversing is-filled-
by-relations recursively through indirect allocations, similar to the way WORKWARE
collapses these structures.

1 The first implementation of EEML was made by the author in METIS 2.2, while the version used in EXTERNAL is

implemented by Dag Karlsen in METIS 3.2.

177

7.5.4 Macros for Dynamic Visualisation

Users may also draw symbols for viewing objects and relationships in METIS. The
graphical building blocks of symbols can be named, and their properties (colour, size,
visibility etc.) can be controlled dynamically by macros. This enables objects with dif-
ferent properties to be visualised differently. Macros were utilised in a number of ways:
� Workitem colours depend on states,
� Connectors and flows change colour when they have been activated,
� Resource properties are utilised in macros to visualise the APM resource modelling

vocabulary (Figure 74).

Figure 74. Resource properties that can be visualised with macros.

7.5.5 Semantic Holism in EEML

In some ways EEML violates the principles of semantic holism proposed in Chapter 6.
Often, the reason is limitations of the tools' metametamodels. In other cases, EEML
simply reflects state of the art modelling approaches. Many of the proposals in Chapter
6 were triggered by discussions concerning the design of EEML. There are two versions
of EEML, and the second [286] fixes some of the problems of the first [285]. For in-
stance, different kinds of decisions were originally separated into different classes, but
in version 2, properties were used to a greater extent, simplifying the language. In both
versions, resource modelling is defined in a rather atomic manner. EEML has separate
class hierarchies for roles and concrete resources. This reflects the need for a clearly
defined vocabulary. For interactive models, on the other hand, section 6.4 argues that
the difference between abstract roles and concrete resources is one of state and not of
substance, and thus should be encoded by a property. EEML thus doubles the number of
primitives needed for resource modelling. Since there are many dimensions resources
can be classified according to (cf. Figure 74), this weakness should not be ignored.
 In addition to simplifying the language, semantic holism makes resource model-
ling more flexible. If concrete and abstract resources had the same class, one could for
instance model resource allocation simply by placing concrete resources in the resource
signature of a workitem. In EEML today you must first define and name a resource role,
then the concrete resource, and finally draw the is-filled-by relationship between them
to accomplish the same. This is illustrated in Figure 75.
 Another feature of semantic holism is that it allows the same objects to be used in
different contexts, and adapt its meaning to the context. In Chapter 6 we exemplified
this feature with person objects in standalone mode as well as workitem, organisation,
group and flow contexts. In EEML version 1 roles were only allowed to appear within
workitems. During initial use, it was recognised that standalone roles helped make the
models more reusable, representing standard project roles independent of workitems, so
this constraint was relaxed.

178

Figure 75. Resource allocation simplified by semantic holism.

7.6 Reuse
The incremental development of WORKWARE started with basic services for information
sharing and work management. Then coordination, enactment and modelling were
added. Process knowledge management was the third step, and time did not allow all
parts of the reuse framework to be implemented. Above the implementation of the
metametamodel was described. Policy-controlled inheritance of dynamic changes was
not fully implemented. It however represents a generalisation of some specific reuse
mechanisms that were implemented in order to meet requirements from EXTERNAL us-
ers. This section describes some of these functions.

7.6.1 Templates

Both METIS and WORKWARE support creation of new models based on templates, as
well as copy-and-paste reuse. METIS creates new models from templates, while WORK-

WARE creates new objects. Combined, these tools thus support both initial reuse during
the early planning of a new project and ongoing plug-in of templates for specific tasks
in the project. There is currently no template management component in the EXTERNAL
infrastructure, so users must manually organise their template repositories. As more
cases are performed and the set of available templates increase, users do require ex-
tended support in this area. Despite these limitations, the case studies in Chapter 8 show
that manual model reuse does take place.

7.6.2 Classification for Reuse

Classification structures reuse in a number of ways in the current implementation of
WORKWARE. As described in section 7.3.1, user interface policies and service configu-
rations can be defined at the class level and inherited along specialisation relationships.
When deciding what user interface component to use for a property of an object, the
system looks up policies for the particular property inside the given object's class. If no
special policy is defined for that property, policies for the type of the property are ap-
plied. In both of these cases conventional inheritance is used, so that superclass policies
also apply to subclasses. Through metamodelling, users can redefine class hierarchies,
add or remove classes etc. Most of the extensional superclasses defined in the basic in-
stallation of WORKWARE are motivated by the need for defining common policies for
various interactors. General classes like Process modelling, Data management, User
interface preferences, Service management, and Objects with event log exemplify this.

179

The classification structures are also utilised in local metamodelling. For instance, when
a user adds or removes an attribute, she chooses the object instance or one of its classes
as the scope of change.

7.6.3 Utilising the Work Breakdown Structure for Reuse

Currently WORKWARE makes little use of work breakdown or other decomposition
structures for reuse. The work management interfaces provides links to parent and child
resources for each workitem, so that users easily can browse e.g. parent documents from
the document folder of the worktop for the child workitem. The access controller, how-
ever, utilises inheritance along decomposition structures. This implies that users can
define general access rights for a project, which applies to all its tasks, documents etc.
Similarly, access rights to objects are inherited by all the properties of the object. Pro-
ject user groups (Participants, Customer, Responsible) are inherited from the workitems
that are part of the project (up the hierarchy).

7.6.4 Reuse along the Flow of Work

The flow relations between decision connectors (and indirectly between workitems) are
also activated as navigation links in the user interfaces of WORKWARE. From the docu-
ment folder of a worktop users may navigate to the workitems that the current item re-
ceives flows from or sends flows to. Although navigation mechanisms do not automate
reuse, they help participants identify resources that may be of interest to the current
work, thus fostering manual reuse.

7.6.5 Resource Allocation and Personalisation

In WORKWARE, the current user's preferences control the user interfaces, not which user
is responsible for the item. In the awareness engine, however, person role relations are
utilised for reusing event notification filters. When a user invokes the catch up service, a
time filter that stops all old events, is added to the global set of filters for that user. The
next time the user asks to see event notifications, this global profile is reused to all rela-
tions that the user has to workitems. Another example is access control policies, which
are reused along the relations between workitems and information resources. Through
links from the workitem directory to where the documents are stored, workitem access
rights are inherited.

7.6.6 Parameterisation and Properties

In section 7.5.3 we saw that methods and relationship traversal schemes were applied to
support derived properties in METIS. WORKWARE also implements a few parameterised
reuse rules. When users model their processes visually, they seldom bother to name
objects like decision connectors and flows. When the same models later is accessed in
the textual interface of WORKWARE, however, names are needed. Currently unnamed
decision connectors are named after their owner workitem, e.g. "Input to <workitem
name>", or "Output from <workitem name>". Flows are named after their target con-
nector. Similarly, user interface policies and service configuration objects are automati-
cally named based on the situation that they apply to; e.g. "Services for <workitem
name>" or "Attribute edit style for <class name>s". In some cases values are extracted

180

from the context of the request, e.g. when a user defines a new workitem, she is by de-
fault responsible for it.

7.6.7 Project Model Lifecycle Support

There is currently no specialised support for model-driven processes of reuse and har-
vesting in the EXTERNAL infrastructure. In order to enact meta-processes like the ones
defined in section 5.6, general mechanisms are utilised. However, since such meta-
processes are quite static and system-oriented, a more automated solution would be
preferable, guiding users through the steps of e.g. defining a new project. Specialised
interfaces for project definition have thus been built both in XCHIPS and UEPS. These
solutions utilise the parameterised services of WORKWARE and other tools to perform
tasks like define new project, model the project, start performing the project (import to
WORKWARE) etc.

7.7 Summary
This chapter has documented the implementation of the proposed designs in the
WORKWARE prototype and the EXTERNAL infrastructure. This implementation work has
involved a number of people from software companies, research institutes and user or-
ganisations. Any such implementation effort requires pragmatic trade-offs between ideal
research objectives and feasible practical solutions. In EXTERNAL, particular emphasis
has been put on providing the industrial cases (Chapter 8) with tools that they are will-
ing to put into operation, tools they can use to build customised solutions for their proc-
esses. Most of the designs presented in Chapters 4, 5, and 6 have been implemented,
except enactment policies, extended decision semantics, user-defined enactment rules,
and the reuse policy framework. Detailed designs and usage experience should be suffi-
cient to show that the proposals are implementable. The survey of related work (Chapter
9) also pays particular attention to the feasibility of the remaining implementation work.

181

Chapter 8
Usage Experience

The EXTERNAL infrastructure has been applied in a number of projects. These cases
constitute a representative selection of knowledge intensive virtual enterprises. One is a
business consulting firm interacting with its customers. The second is a network of
small software companies. The third is an international research project (EXTERNAL
itself). Interaction between users and developers has ensured an ongoing practical vali-
dation. This process started during the development of WORKWARE in the AIS project
[254]. In addition to the EXTERNAL case studies, this chapter also discusses ongoing use
of WORKWARE in other settings. In-depth model examples are complemented by formal
evaluations with interviews and questionnaires.

8.1 Extended Enterprise Requirements
A virtual enterprise consists of a number of organisations collaborating across a net-
worked IT infrastructure. In EXTERNAL, the term 'extended enterprise' (EE) refers to
virtual enterprises integrated by active model-driven infrastructures. This introductory
section outlines how interactive modelling can meet the challenges of EE planning, op-
eration, and management. An extended enterprise is typically established ad-hoc to
reach certain goals, by uniting forces from several organisations. Process models depict-
ing how to reach these goals are therefore natural EE integrators. A collection of re-
quirements have been extracted from the three cases, pointing to a number of core chal-
lenges:
� Knowledge sharing: Create and maintain a shared understanding of the scope and

purpose of the enterprise, as well as viewpoints on how to fulfil the purpose. Lan-
guage barriers and cultural differences are among the obstacles here [336]. Hence it
is not sufficient to support communication with a technical infrastructure, there is
also a need to support communication on a semantic level, through a common termi-
nology, agreed-upon descriptions of work practice, etc.

� Dynamically networked organisations: The dynamic nature of an extended enterprise
represents technical as well as social challenges. During one EE, replacements, re-
movals and additions to the network might occur. For such a body to operate effec-
tively, it is vital that knowledge about ways of working is readily available to all.

� Heterogeneous infrastructures: Different organisations have different IS infrastruc-
tures, connected by email and publish-oriented extranets, but seldom by work sup-
port environments. In such infrastructures, knowledge sharing is often reduced to in-
formation dissemination. Common practice across locations is poorly facilitated.

� Process knowledge management: Business processes may be described on several
levels of abstraction, from abstract models defining the core process logic, to execu-
table models with all necessary details [254]. Advanced process model management
is required to integrate these levels of abstraction.

182

Interactive EE models centred on process perspectives can help organisations meet
these challenges. Such models capture a rich set of relationships between the organisa-
tions, people, processes and resources of the virtual enterprise. Through analysis and
activation, the models become applied as sources of knowledge, providing the basis for
learning. Communication is supported by the infrastructure tools, and the terminology
of the modelling language. Joint modelling of the enterprise facilitates common under-
standing, and the extensibility of the modelling language allows local perspectives to be
expressed and utilised. Detailed requirements from EXTERNAL users [465], deal with
project planning, management and coordination, work execution, knowledge manage-
ment, and infrastructure management. This practical input helps to validate the general
requirements from the literature survey in Chapter 2.

8.1.1 Planning

For project planning, this support was required:
� Simple, visual articulation of all parts of the project from different perspectives, in-

cluding scheduling, resource planning, budget, organisation, roles, quality assurance,
tasks and work descriptions (cf. requirements R1, R2, R3 in Chapter 2).

� Template models for generic processes, and domain specific building blocks (R9).
� Negotiation and merging of heterogeneous corporate procedures (R13).
� Simulation of ongoing and planned processes (R8).
� Easy navigation in the work breakdown structure (R1, R9).
� Scalable methodology, tools and languages suitable for small, simple projects as well

as large and complex (R3, R11).
� Easy retrieval of past project plans, performance and change histories (R5, R9).
� Resource management across multiple projects.
� Adding, replacing and removing partner companies to/from the project (R6).

8.1.2 Management and Coordination

For work management these services were prioritised:
� Easy and not time-consuming project monitoring and progress follow-up.
� Deviation detection and notification, with subscription to specific event types.
� Risk management, identifying, assessing, and managing uncertainties (R8).
� Role management, with role descriptions, skill requirements, competence, role as-

signment and history of re-assignments (R3).
� Definition and management of shared resources.

8.1.3 Work and Collaboration

The infrastructure must provide the easiest and most rewarding way of performing the
work, otherwise other tools will be chosen (R1, R7). Work execution requires:
� Highlighting of urgent and high-priority work.
� Cooperation support such as communication, shared workspaces, collaborative mod-

elling, problem solving, decision support, distributed brainstorming etc.
� Work performance support, e.g. task automation.
� Automated information flow between tasks, also ad-hoc for information that was not

originally included in the model.
� Implementation of standard problem solving procedures.

183

8.1.4 Knowledge Management and Learning

For knowledge management and learning these services were requested:
� Management of continuously accumulated knowledge.
� Access to experts, e.g. modelling experts.
� Metamodelling (R12).
� Cooperative model browsing, enabling teaching and mentoring.
� Separate repository areas for different teams (R9).
� Automatic generation of role-dependent views on visual models (R2).
� Models provided as learning resources, with background and explanations (R11).
� Animation, role-play, and guided tours of enactment scenarios and history (R5).
� Methodologies based on actual project experiences (R8).

8.1.5 Infrastructure Management

Infrastructure management deals with system integration, configuration and customisa-
tion, and requires:
� Simple user interface, intuitive and based on accepted standards (R1).
� Intuitive, self-instructed installation and start-up.
� Quick and easy establishment and configuration of a starting point infrastructure for

a new project, before the project is completely defined and all partners known (R6).
� Different levels of interoperability, from email and a web portal to rich process inte-

gration, allowing increased interoperability as the collaboration matures (R4).
� Different technical infrastructures, both regarding software and hardware. For in-

stance, the IT consulting case is set in a low-bandwidth environment.
� Integration with current infrastructures in the user organisations, e.g. compatibility

with industry standards.
� Differentiated access control according to project roles. High security on some of the

information. Single logon for all tools in the infrastructure.
� Integrated user environment (portal) to all tools, with integrated help system.

8.2 Case 1: The EXTERNAL Project
EXTERNAL took its own medicine as an early experimentation arena for EE methodol-
ogy, tools, and infrastructure. Experiences from this arena were fed into the further de-
velopment process for the benefit of the industrial cases. The project plan was thus ar-
ticulated in early prototype versions of EEML, and later imported to the work execution
environments (WORKWARE and XCHIPS). Due to resource limitations and the instability
of an evolving infrastructure, it was decided to put particular emphasis on supporting
two typical process examples rather than the whole project:
� Periodic progress reporting, a mandatory, routine administrative procedure, where

reports are written for each work package each quarter, and then collected and sent to
the customer twice a year.

� Joint project planning, an ongoing knowledge-intensive activity where work package
plans are elaborated. Often, planning takes place after reporting, in order to accom-
modate deviations and provide more detailed plans for the next period.

In addition to these planned case studies, which were carefully evaluated, ad-hoc utilisa-
tion of EXTERNAL tools also took place in some groups in the project. The following
subsections summarise lessons learned from these cases, focusing on the aspects most

184

relevant for evaluating the interactive modelling approach, the language, and tool sup-
port from WORKWARE. More details are available in [232].

8.2.1 Periodic Progress Reporting

The main activity in this case is quarterly progress reporting (QPR). An excerpt of a
model for this process is presented in Figure 76. For each of the nine work packages
(WP), the WP manager writes a separate report. The report template and actual report
are modelled as information resources to these workitems. The project manager is re-
sponsible for coordinating and following up the reporting process. In the model, an op-
tional meeting is included for coordination purposes.

Figure 76. Model of quarterly progress reporting.

In Figure 76 relationships between resource roles have been hidden for readability.
Though this process is quite simple, it shows that the interaction perspective helps to
limit the complexity of the model. For instance, we need no flows from the start of the
main process to the concurrent sub-items. The lack of input flows means that no con-
straints prevent the items from starting. Another simplification is evident in the location
of the workitem "Evaluate need for meeting". This is something that all nine WP man-
agers must do. In systems that only allow one person per workitem, you would thus
need nine items. Here all WP managers are allocated to one collaborative item. This
allocation is made indirectly through the actor roles on each of the "Write WP progress
report" items, so if one of the managers delegates the task to someone else, that person
is automatically involved in the meeting as well. (In this example indirect resource allo-
cation does not follow the work breakdown structure). There are more examples where
resource allocation captures dependencies that needn't be duplicated to the process di-

185

mension. One is the use of information resources to represent the report document parts
produced by each WP manager. They are put together in a workitem not shown here,
but since the parts are modelled as information resources, we needn't model the infor-
mation flow as well. The architecture of multiple model interactors, here the document
manager in addition to the workflow engine, thus simplifies the models. Another inter-
active feature utilised in Figure 76, is that the decision whether to have a meeting or not
is to be made locally (it is modelled at the output of the evaluation workitem). If the
project manager wanted more control, she could, as responsible for the whole process,
have moved the decision out of the sub-item. Now any participant can make the deci-
sion that a meeting is required, completing the evaluation item and triggering "Set up
meeting".
 The tasks of the project manager (PM), are supported by the services of the infra-
structure, and need thus not be articulated in detail. WORKWARE worklists provide over-
views of the current state of the process, helping the PM to see which WP managers
have not yet written their report. Through the Mail to all service on the worktop, the
project manager sends reminders to the WP managers when it is time to write a new
report, and again when the deadline approaches. The PM role was however reassigned
five times throughout the project, so there was need for explicit coordination routines
that the new manager could reuse. This was modelled as a process around the core work
(Figure 76), as depicted in Figure 77.

Figure 77. Management procedures in quarterly progress reporting.

Progress reporting is a routine, administrative procedure that recurs throughout the pro-
ject at regular time intervals. This model was thus reused a number of times. When the
process was first articulated, the support for reuse was limited to copy-and-paste in

186

METIS. Since the infrastructure was not ready, it was not used for the first reporting pe-
riod. A lot of the initial learning and alignment of reporting practices across organisa-
tions and countries was thus already captured in the first version. However, an updated
procedure was implemented a year later, taking into account experiences with working
together as well as increased understanding of the capabilities of the model-driven infra-
structure. The new version
� Changed the work breakdown structure to make individual responsibilities clearer,
� Made resource allocation more explicit in order to handle re-assignment better,
� Added output flows so that "Write QPR" automatically finishes when all of its sub-

items have been completed, and
� Added previous reports from each WP as resources for the "Write WP progress re-

port" items.
Another occasion of end user innovation in the reporting case involved metamodelling.
The process in general, and the management work in particular, is time-driven. As
shown in Figure 77, the participants decided to model timers, a decision connector sub-
class not part of the EEML at that time, but one that they needed in order to handle ex-
ceptions (delays) and coordination. As WORKWARE did not support timers, the project
manager herself had to remember to do these things, but at least she was reminded by
the presence of the objects in the model. The timers were thus manually activated. For
process knowledge management and IS evolution, this information was highly relevant,
as it pointed to requirements that were not expressed in the specification documents
[465], but emerged during use. The reuse framework presented in this thesis could im-
prove such process knowledge management in a number of ways, including
� Local modifications and metamodelling (adding a trigger-time property to the deci-

sions) supported by the instance-oriented metametamodel.
� Propagation of dynamic change so that updated definitions are used in all instances.
� Parameterisation of model properties. Most of these workitems' names refer to WPs

or the current time period, and could easily be generated from parameterisation rules.
� A specialised, semi-automated reuse metaprocess called "Create new periodic pro-

gress report" could be included as a service in WORKWARE. Based on some property
values from the user, e.g. the name and deadline of the current period, as well as the
current project plan (showing what work packages exists and who their manager is),
the reporting process model could be automatically generated.

End users' evaluations of the reporting application are discussed below.

8.2.2 Joint Project Planning

Project planning was selected as the second case from the EXTERNAL project because its
characteristics complemented the reporting case. Planning is a more knowledge-
intensive, ad-hoc activity, and it utilises modelling tools for work performance. While
the emphasis of reporting was activation and reuse, planning primarily concerns model
articulation. It was also expected that the need for coordination between different work
packages would require the collaborative modelling services of XCHIPS. The first im-
plementation included the plan (a process model) as well as the planning process (meta-
process), but not the operation of the plans. WORKWARE was not to be used.

187

Figure 78. Model of joint project planning in XCHIPS.

The planning process was modelled in EEML and enacted in XCHIPS. An excerpt of the
model is shown in Figure 78. XCHIPS supports closer collaboration than WORKWARE.
When two people work on the same item, they immediately see the effects of each oth-
ers' actions. The interface provides real-time awareness of who is currently working (dk
and haake in Figure 78), and shows the current status of the tasks by colour coding (as
in METIS and WORKWARE). The use case report contains an example of how these fea-
tures were utilised for defining a template [232]:

"Once the joint planning (JPL) process model was finished, one designer created
a work package model template in the METIS modelling environment and made
the template available by using the shared repository" [...] "Subsequently, she put
a link to the template into the JPL process model. Now, another designer used
that template to create a sample work package model for WP 4, by using model-
ling services. This model was reviewed by the first designer and improved during
a number of iterations. The final example model was made available in the shared
repository and linked to from the JPL process model. This mixture of largely

188

asynchronous work and some synchronous discussions was greatly facilitated by
the shared repository, collaboration, and modelling."

The template produced here is typical. It includes a basic structure for objects, with
separate folders for tasks, inputs, outputs, organisations and people, as well as a project
document archive. Some elements, e.g. parts of the archive and the organisational struc-
ture, are shared among the work packages. The inputs to one WP in many cases are the
outputs of another.
 This example shows how (meta)process support can facilitate knowledge man-
agement. XCHIPS was also used for enacting the process of defining new projects in this
version of the infrastructure, invoking METIS to let users define the first plan of the pro-
ject and then forwarding it to WORKWARE. However, real-time collaboration met tech-
nical difficulties with firewalls and limited bandwidth across the Internet to the project
partner in Greece. The full collaboration infrastructure was not as easy to start using as
e.g. WORKWARE. Consequently, for version 2 of the infrastructure, a web-based solution
replaced XCHIPS for project definition.

8.2.3 Evaluation Results

The QPR and JPL cases were subject to a formal evaluation where 10 people answered
a questionnaire [105, 287, 312, 431]. The author of this thesis was not involved in this
evaluation. It is thus partially independent. The same questions were asked after the first
period, when none of the EXTERNAL tools had been used, and then again after the sec-
ond period, during which the infrastructure had been installed. For the reporting case,
time spent, perceived quality of results, and the need for outside help or documents,
showed great improvement [431]. Part of this improvement could be due to learning
that would occur anyway from the first to the second cycle. However, a baseline survey
of the similar process of "Summary Cost Statements", showed less improvement than
QPR. Some participants proposed to use WORKWARE for future cost statements as well.
 For the planning case, opinions were more mixed. Some of the respondents felt
quality and effectiveness had improved, while others claimed the opposite. A clear ma-
jority however thought the plans had become more accurate. When asked what was the
most important problem in planning, half the respondents originally said lack of col-
laboration. After having tried the tools, however, all but one chose "identify dangerous
delays". It was also reported that "initial experience shows that the current EE Infra-
structure and Tools are too rigid" [232]. While the numbers from this survey clearly are
too small to draw scientific conclusions, the relative results of the two cases, and also
for different criteria, are interesting. The opinions by the participants were more clearly
articulated (both positive and negative) after tools were applied. Apparently real-time
cooperation was not as important as we thought, while simple enactment support
seemed more useful. For the further experimentation, it was thus decided to add more
work performance orientation to the planning case as well. Experiences from this en-
deavour are reported below.

In addition to this detailed evaluation of the two case processes, a larger study of
the whole project involved another questionnaire complemented with interviews of key
participants. This study was carried out by Jarle Hildrum [287, 312]. Again question-
naires were sent out before and after the introduction of the infrastructure. A literature
survey highlighted technical viability, cost effectiveness, functionality, and impact on
business processes, as key dimensions for this evaluation. Ease of use, easy access to

189

tools, effective communication, learning, and trust were regarded as critical enablers for
these objectives. A number of statements were used as indicators for how well each
issue was handled, and users were asked to rate to which degree they agreed to the
statements. Table 10 summarises the results from the questionnaires.

Number of people who agree Number of people who disagree
Criteria Before After Before After
Access 2,8 9,3 13 5,6
Useability - 8,7 - 6,6
Communication 6 12 10 4
Learning 2,4 8,8 13 7
Trust 8 12,8 8 3

Table 10. Summary of evaluation results (average scores) [287].

There are a number of limitations related to these results, including potential bias (re-
spondents were participants in EXTERNAL), and lack of control group. Still, a number of
lessons can be learned from the rating of statements and interviews. For instance, cus-
tomisation was the area within usability that had the lowest score, but the respondents
were polarised on this issue. Most people said they "agree a little" that tailoring is easy,
while some "strongly disagree". This may reflect the fact that the customisation services
had not been made available to all participants, as no specialised customisation user
interface exists (other than general editing of policy data objects). Feelings were also
mixed regarding simplicity and ease of use, but here the interviews uncovered that while
web-based tools (e.g. WORKWARE) were rated high, some other tools were not. Within
communication and coordination, WORKWARE-related statements concerning overview
of tasks and feedback to information showed the greatest improvements, while real-time
communication seemed not to meet the expectations.

As an early assessment of EXTERNAL, a learning history [37, 426] was written
by a social anthropologist based on interviews with the project participants. The objec-
tive of a learning history is to capture a wider multitude of perspectives and subjective
views than formal evaluations can. The story clearly demonstrates that different people
held widely different views regarding key aspects of the project, e.g. what were the
driving forces behind its initiation, what were the key concepts, and what was the mean-
ing of key terms. The experiences of the researcher as an outsider to the project group
was valuable in uncovering a local tribal language being developed in the project. Shar-
ing this language was important for team spirit. This story indicates that modelling lan-
guage extensibility, e.g. through metamodelling, has a key role if interactive models are
to facilitate the formation of effective communities of practice in virtual enterprises.
Although the general criteria investigated in this study match well the concerns from
Chapter 2 of this thesis (learning, communication, trust), the statements seldom were
detailed enough to assess individual design ideas. More detailed discussions about ac-
tual usage are thus needed to complete the usability evaluation. Some examples were
provided above, and more follow in the rest of this chapter.

190

8.2.4 Action Lists - Emergent Project Planning

The first implementation of the joint planning process took a top-down perspective,
where managers were responsible for planning the work inside their work package.
Such plans, however, seldom are detailed enough to cover all the tasks that are to be
performed. Consequently, the EXTERNAL project also had a web-based action list lo-
cated at the project web server. This solution had a number of limitations, typical of
publish-oriented web environments:
� Only the project manager could change the list, update status, add new actions etc.,
� The actions lacked context, and were often hard to comprehend,
� The actions were not explicitly connected to project plans,
� Actions were not linked to a work environment, documents or tools,
� Although the list could be sorted on different attributes and filtered according to cer-

tain criteria (e.g. one list for each person), it was not possibly to add new criteria.
The action lists were consequently not actively used by many of the project participants.
During the spring of 2002, it was thus decided to replace them with the EXTERNAL in-
frastructure. WORKWARE had the central role in this application, managing the actions
as workitems. It took just a few hours of work to customise a WORKWARE installation
for action lists. The WORKWARE Explorer menu for this case was shown in Figure 72 on
page 169. It organises actions according to these criteria:
� Status, e.g. most lists contain only ready and/or ongoing actions,
� Delay,
� Work packages,
� Teams that are responsible for coordinating interrelated tasks across work packages,
� Persons and roles, separating the actions which the current user is responsible for

from the ones where she is just a participant,
� Follow-up lists, containing all tasks that the current user is customer of. Lack of fol-

low-up was reported as a major problem with the previous system.
The increased access to edit actions should make the list more up to date. Although the
structure for the actions was not connected to a full project plan, teams and work pack-
ages provided increased context for the work. Explicit assignment of follow-up respon-
sibility and the ability to look in the event log to see who created the action, made each
item easier to understand. The old, static action lists contained 288 actions after two and
a half years of operation, while WORKWARE contained 131 after just two months, even
though it was installed during the summer holidays. It thus seems safe to claim that the
second application was experienced as an improvement by the users. After the action
lists had been available in WORKWARE for a while, however, usage frequency dropped
significantly. This happened although a general consensus was articulated that the ap-
plication was useful and should be utilised. A number of factors may have contributed
to this decline:
� Lack of management commitment and contractual obligations to use the system.
� Since WORKWARE allows everyone to define new tasks and themselves mark their

actions as finished, the project manager no longer had to put these updates into the
system himself. Although this relieved him of some duties, it also gave him less re-
sponsibility for following up all the actions. For instance, at project meetings, no-
body was assigned the responsibility of recording the new actions.

� A number of major deliverables were completed, e.g. final versions of the tools, in-
frastructure, and methodology. Several of the most eager users thus no longer par-

191

ticipated actively in the project.
� There were technological limitations, e.g. cumbersome document upload. User inter-

faces and enactment policies for tasks in general, are perhaps too complicated for
simple actions. Instability and poor performance of servers may also have discour-
aged some users. Performance suffered when the action model grew large.

� For a number of situations, email still remained the simplest and most used commu-
nication and coordination tool. In spite of its web and email integration, some may
see WORKWARE as yet another tool adding to a complex user environment.

During the main period of use, however, it was noted on a number of occasions that
people sent out emails referring to tasks, and pointing to documents uploaded to
WORKWARE. This did not occur with the previous application. Also, the fact that project
participants chose to use the system in a later project, the writing of the MAESTRO
proposal, also suggest that it solved real problems. When the users made demonstrators
(videos and online applications) at the end of the project, WORKWARE played a role in
six out of seven demos, while the other tools were used in one or two cases each.
 This case shows how quickly and easily WORKWARE can be customised to a par-
ticular usage need by defining an overall process model (in this case the WP structure),
a menu structure, and some specialised worklists and services. After people started to
use the application, further customisation was made based on their experience. The case
also shows how bottom-up, emergent process articulation can complement top-down
project planning and give the organisation a truer picture of what is really going on in
the project.

8.2.5 Ad-hoc Applications in the EXTERNAL Project

In addition to reporting and action lists, WORKWARE has been used opportunistically in
a few other activities in EXTERNAL. Dissemination activities, especially related to publi-
cation and conference participation, were planned and coordinated. During the first full
installation of the infrastructure, WORKWARE was used for documenting the installation
process. Some installation tasks were planned in advance, but most emerged as response
to unforeseen difficulties. Short comments about these problems and how they were
fixed were captured as properties of the tasks, while installation guides, readme-files
etc. were uploaded as documents. The installation consisted of a number of different
tools, and in order to make them work together, several concurrent discussions were
carried out, mainly on email. Using the Outlook Web Access mail client integrated as a
service in WORKWARE, we could store email messages as HTML files, and include them
as documents resources on the tasks they referred to. Once the installation was com-
plete, the WORKWARE server contained a knowledge base that was highly relevant for
refining installation processes and guidelines, as well as for diagnosing and fixing errors
on different client and server platforms. This case demonstrates that for knowledge
management, the system may actually have an important role even if only one person is
using it to articulate his work.
 WORKWARE is also used in other projects. The document archive and email links
that each worktop includes seem to be the initial motivation for using the system. But
we have also noticed that people use the hierarchical ordering of workitems, so the basic
functionality can serve as a door opener for the workflow functionality as well. The
results from the QPR case support this expectation. Feedback from users indicates that
for some people, especially in the initial phases, process models are still too compli-

192

cated. Here it is important that the system can be used without any graphical models at
all, by just defining items through web-based work management forms. Although this
textual interaction enables you to represent the work in a hierarchical structure with
people, milestones, and documents assigned, it does not seem reasonable to model flow
relationships this way. But for establishing an initial lo-fi collaboration infrastructure, it
is sufficient. As mentioned above, this is a key requirement from EXTERNAL's users.

8.3 Case 2: The Business Consulting Project Cycle
The business consulting case involved primary users outside of the EXTERNAL project.
The company in question was supported by process modelling experts from one of the
EXTERNAL partners. The company had already defined a procedure for how their pro-
jects should be executed. This procedure was available on the corporate Intranet, in the
form of textual descriptions and informal visualisations. One of the first tasks for the
EXTERNAL consultants was thus to model this procedure, known as the project cycle, in
the EEML language. Local requirements were then collected, and a customised version
of the EXTERNAL infrastructure was installed. The users in this case were novices with
respect to process modelling and groupware systems, so they selected WORKWARE as
their primary tool.

8.3.1 Reuse of Project Templates

The top-level process in the project cycle template is shown in Figure 79. In addition to
the process model, the template also includes an organisational model with typical pro-
ject roles, as well as the firm's tools, information repositories and document templates.
The template contains optional items, that are only needed for certain types of projects,
e.g. those with a budget larger than a certain amount. These options are currently mod-
elled as normal decisions. However, since many decisions can be made at project start-
up, modelling them as reuse decisions, would simplify the local models (cf. Figure 61
on page 141). Many of these decisions are controlled by properties of the project, so the
potential for automated reuse decisions is substantial.

Figure 79. Top level of the project cycle template process.

193

It is interesting to note that the project cycle mainly defines the administrative work.
The actual performance of the project is to be included inside the item "Project work", a
sub-item of "Project execution" at level three in the work breakdown structure. This
pattern can be expected in a model, which represent management perspectives rather
than work perspectives, a typical bias in process modelling. It also reflects the fact that
administrative procedures are easy to define and reuse without change across all pro-
jects, while the core work is more situated. However, if knowledge management and
process improvement are to really create a competitive advantage for the company, the
core work must be targeted as well.

8.3.2 Security and Access Control

Improved security and multi-level access control was an absolute requirement from the
business consulting company. This was the main reason why access control was priori-
tised for implementation in WORKWARE. A typical project in this company requires
these default access rights:
� Only internal participants should be allowed to read and update all documents,
� Employees not working on a project may not have access to project information,
� Only the project manager should be allowed to grant access rights,
� Participants and customers from other organisations should be allowed to read and

change documents and plans within their part of the project, but not the others. In
some cases different customers in the same project should not even know about each
other. Different customers may have partially conflicting agendas, leading to less-
than-full disclosure of information.

The access control interactor of WORKWARE allowed these policies to be articulated at
the general level and reused across projects.

8.3.3 Experiences and Evaluation Results

Based on his previous experience with Internet tools, the pilot user in this case regarded
WORKWARE primarily as a document repository. The concepts of enactment, work man-
agement, and status reporting was not useful to him because in the first project, he was
the only participant. Consequently, the system was regarded as too complex and cum-
bersome to use. This initial reaction indicates that simpler user interface components
and enactment policies should be the default for novice users. Though some simplifica-
tions were made as part of the customisation process for this case, they were insuffi-
cient. The EXTERNAL process modellers were able to reconstruct the project cycle tem-
plate using the available constructs in EEML. In some cases, however, limitations of the
tools and errors in the documentation prevented them from achieving what they wanted.
One example was the modelling of template actor roles. The documentation, based on
atomic semantics, said that resource roles could only be modelled inside workitems, but
they wanted to model the roles independently. When this confusion was cleared up and
the semantic holism of the modelling language described, the template was adjusted.

8.4 Case 3: IT Consulting in an SME Network
The final case study in EXTERNAL aimed to support a network of small and medium-
sized IT companies located in different countries, mainly in eastern and southern

194

Europe. Many of these companies are owned by the same group, and have cooperated
on a number of projects. Three cases with different characteristics were selected [180]:
1. Proposal submission for government funding, a simple and well-defined procedure.
2. Software development subcontracting, a case of medium complexity.
3. Management of a LeonardoDaVinci project, a complex and unstructured activity.
An overview of the characteristics of these scenarios is presented in the table below.

Property Proposal
submission

Software
sub-contracting

Project
management

Main objective Flexibility Maintainability,
reliability

Reliability,
adaptability

Duration Single unit Long term alliance Temporal
Topology Fixed structure Dynamic Mixed
Participation Single alliance Multiple alliances Multiple alliances
Coordination Tree structure Tree structure Star structure
Visibility Single level Multiple levels Multiple levels
Collaboration Activity

coordination
Distributed process
management

Joint resource man-
agement, co-
supervision

Table 11. Characteristics of different SME network scenarios [180].

8.4.1 Process Diversity and Model Diversity

It is interesting to see how these differences manifest themselves in the process models.
Table 12 shows the number of primary objects of each category in the models of the
three cases in this study. For the first two cases, we clearly see that the increased com-
plexity of the cases is reflected in the size of the models. The project management case,
however, has a rather simple model. The reason for this is partly that more work has
been devoted to studying the two simpler cases, but it may also reflect that project man-
agement is harder to articulate than administrative work. For case 3, just the manage-
ment activities were articulated, and not the core work.
 Following the history of these cases, it was interesting to note that software sub-
contracting, the most elaborate case, originally was modelled as a copy of the project
cycle from the business consulting use case (Figure 79). This template was generic
enough to be transported to another country and application domain. The fact that the
participants in the SME networks had limited previous experience with process model-
ling also helps to explain why they would rather start with a template than from scratch.
Over a couple of months, however, the software subcontracting model evolved, new
items were added to all levels of the work breakdown structure, and existing items were
renamed to fit the local terminology. Here we saw the process of template appropria-
tion in action.
 The project management case was modelled as two separate processes, one for the
work before the project actually started, and another for the management activities to be
carried out during the project work. This modularization makes it easier to reuse the
latter process, as management is an ongoing activity that recurs many times throughout
the lifecycle of the project.

195

Property Funding pro-
posal

Software sub-
contracting

Project man-
agement

Number of workitems 25 80 10
Depth of work breakdown 3 4 1
Number of actor roles 4 25 9
Number of object/tool roles2 0 19 18

Table 12. Statistics for models of different SME network scenarios.

8.5 Final Evaluation Results
One year after the survey discussed in section 8.2.3, all the three EXTERNAL cases were
subjected to a joint evaluation [105]. A questionnaire was sent by email to 19 users,
including managers and project participants. They were asked to rate how much they
agreed to statements (both positive and negative) on a 7 point Likert scale. Jarle Hil-
drum also carried out in-depth interviews of some of the participants.
 Frequency of use, user-friendliness and the usefulness of provided functionality
were assessed. In general, inexperienced users responded neutrally to all categories of
questions. People who had used the tools, were typically slight positive, giving average
ratings between 4.8 and 5.6, where 4 is neutral and 7 is maximum. It was thus suggested
that "the user threshold of EXTERNAL is not prohibitively high" [105].
 There were some interesting differences among the responses. Figure 80 shows
that WORKWARE was by far the most widely used tool. The evaluation report states, "it
is paradoxical that the tool most widely used is a prototype while the tool that has been
used to the least extent is a globally available commercial tool" [105]. Asked why they
did not use the other tools, most people responded either that the tools were not relevant
for their work, that they had never learned to use the tool, or that they prefer to use tools
that they are more familiar with. Poor integration among the tools, especially at the user
interface, was also reported as an important shortcoming. One respondent said, "the only
aspect of tool integration that he had experienced was accessing WORKWARE on the
Internet" [105]. The problem of reaching critical mass, that the people you collaborate
with must also use the tools, was also highlighted, and in particular the need for a re-
pository of useful templates. Our emphasis on motivating input to the repository by end
users thus seems justified.
 Among user-friendliness issues, the highest score (5.8) was awarded to the ease
with which tools could be updated according to changes that take place in the project.
15 out of 19 informants agreed that the security of the infrastructure was satisfactory,
indicating that the access control interactor fulfils requirements. But there were also
negative remarks. "A manager from one of the case study companies reported that he
once tried to convince a group of employees in his company to use WORKWARE to sup-
port collaboration in a distributed project, but that the attempt failed because the em-
ployees simply did not have the time to learn how to use the tool" [105]. The following
section shows that such opportunistic use of WORKWARE has occurred in other settings,
so this clearly is not just a technical problem.

2 This number refers to the roles modelled as separate objects. In addition, all cases included roles on each task.

196

Diagram 1: Degree of use

4

3

1

12

9

6

4

3

7

12

15

Sim Vision

Xchips

Metis

Workw are

Participants (N=19)

Never

1-9 times

From 10
times to
several times
a week

Figure 80. Frequency of use for EXTERNAL tools [105].

More disturbingly, an inexperienced user from the business consulting case reported
that he had problems with the logic of WORKWARE: "Every time I log on, I spend some
time trying to remember how to use the system. I keep asking myself what the logic is
because it is not self-explanatory. For us, the main purpose of the tools is guiding peo-
ple through project work, but this is difficult because the graphical interface and the use
of symbols are not intuitively easy to understand. This can probably be helped without
incurring very high costs." [105]. System appropriation, involving users in customising
terminology, structures, visual interfaces and processes, must thus be paid more atten-
tion to. As this user grasped, WORKWARE's capabilities for customisation, configuration
and extension has a potential for bridging the gap between local domains and system
logic.

Diagram 7: Perceived degree of service provision

0 1 2 3 4 5 6 7

Support for project
execution

Learning support

Communication
support

Average score

Experienced
users

Less
experienced
users

Weak Strong

Figure 81. Perceived degree of service provision [105].

197

When assessing the functionality offered by the system, users who had some prior ex-
perience appreciated WORKWARE's execution environment (cf. Figure 81). One respon-
dent noted that "WORKWARE is a good tool for mapping project work, but that it should
be complemented with a functionality that notifies users when several people are work-
ing on the same document" [105]. Others noted that the tool should be more closely
integrated with email, while one participant required support for financial aspects of
project management. After having experimented with the tool, users thus contribute
with clear requirements for addition of more interactors.
 In general the hypotheses that task management with simple, interactive enact-
ment services is useful seems to be backed by the evaluation results. Comparatively
favourable results have been achieved in spite of technical problems with firewalls that
prevented access, poor performance and cumbersome integration. In many cases, the
organisational and management commitment to use the infrastructure was limited. It is
however also clear that more long-term field studies with a stable infrastructure are
needed.

8.6 Other Experiences
In addition to the case studies in EXTERNAL, other projects have used WORKWARE as
well. This usage is largely opportunistic and experimental, and has not been supported
by any organisation.
� Advanced Intranet Cooperation (AIS) was the project where WORKWARE was origi-

nally conceptualised, designed and implemented. Users participated in ongoing re-
quirement specification, and experimented with the tool in some simple tasks.

� Learning in the workplace (LAP) is a Norwegian research project that involves a
number of research institutions, software companies, service providers, and users. A
customised version of WORKWARE was used in this project. The menu for this appli-
cation was shown in Figure 72 on page 169. Since the project had limited funding for
its first year, most of the work was done in meetings. Consequently, meetings were
added as a new class (specialisation of workitem) for this case.

� MAESTRO is a project proposal that builds on EXTERNAL. WORKWARE was used to
coordinate discussions, marketing, and exploration of related projects.

� MONESA is a Norwegian research project where partners from AIS and EXTERNAL
(Computas, DNV and SINTEF) continue the collaboration. In MONESA, international
quality certification by DNV, and the IT department of the Norwegian Defence will
be supported by interactive process models.

� Students at the Norwegian University of Science and Technology (NTNU) in Trond-
heim, whose supervisors have been located in Oslo, have also used the system to ar-
ticulate plans for their projects and share drafts of their reports with the supervisors.

� The implementation of EEML in METIS has been used in student exercises in two
courses at NTNU. More than 200 students have participated in these exercises, mod-
elling 20 different processes [356].

These cases demonstrate interest in the concepts of interactive process modelling from
different domains. The continued active participation by industrial partners (DNV and
Computas) since 1996 testify to the practical relevance of the approach. Recently, how-
ever, some of these projects have stopped using WORKWARE actively. In part, this is due
to technical difficulties, but it also seems there is a minimum degree of collaboration
needed to sustain system usage.

198

8.7 Summary
This chapter has summarised experiences and evaluation related to the application of
WORKWARE and the EXTERNAL infrastructure. Although not all attempts have been
completely successful, the cases indicate:
� That the requirements, social and organisational issues discussed in Chapter 2 are

important and recognised in real world cases.
� General usability of interactive process modelling. According to the evaluation,

WORKWARE seems to have performed better than other tools.
� Usability of the process modelling language. Users have been capable of articulating

rather large and complex models, and examples have illustrated the practical useful-
ness of semantic holism and instance modelling.

� The enactment support and other model interactors, e.g. work management, aware-
ness and access control, meet requirements and were appreciated by end users.

� Model templates have been created, reused, appropriated and adapted.
� Metamodelling has also been utilised to enable more specialised support, and the

customisation services have been applied to construct tailored applications in just a
few hours.

Combined, the cases have shown practical use of most of the contributions presented in
Chapters 4, 5, and 6. Process knowledge management has been demonstrated in the
cases, even though the automated support is limited in the current infrastructure. The
full potential for organisational learning anchored in practice can only be realised when
a significant number of processes have been articulated and performed, and reusable
local innovations have been harvested. More long-term field studies are thus needed.
The cases have also uncovered a number of limitations in the current implementation.
Although most people seem to agree that WORKWARE is simple to use, even simpler
enactment policies and user interfaces should be defined. It is also evident from some of
the cases that social and organisational factors heavily influence the success of collabo-
ration and knowledge management tools. These lessons motivate the emphasis put on
such factors in this thesis, particularly reflected in Chapter 2.

199

Chapter 9
Related Work

In addition to the practical validation of the preceding chapters, comparisons with exist-
ing technologies are presented here. This analysis shows the originality and relevance of
this work for research areas such as workflow management, tailorable groupware,
knowledge management, and conceptual modelling. The main hypothesis is that the
techniques of instance modelling, semantic holism, explicit decisions, and multiple
model interactors yield significant benefits compared to the state of the art. Throughout
the analysis, limitations are identified that demand further research and development.

The first section compares WORKWARE's modelling language to existing process
modelling frameworks. We then analyse the application of interactive modelling princi-
ples to UML and enterprise modelling. These analyses show that the modelling princi-
ples in general enable simpler and more flexible articulation. Section 9.3 compares
WORKWARE's activation mechanisms to the most relevant commercial process support
systems and research prototypes. Section 9.4 provides a similar analysis for the reuse
framework. The whole evaluation is then summarised, showing how the various analy-
ses complement each other and cover the whole scope of contributions.

9.1 Process Modelling
WORKWARE combines ideas from all the process modelling paradigms surveyed in sec-
tion 3.1. This section compares the language to the most innovative as well as the most
representative and widely used notations for work process modelling. The requirements
for simple, flexible, user- and domain-oriented models guide this analysis.

9.1.1 Process Modelling and Principles of Sociotechnical Job Design

A computerised information system and its community of users constitute a dynamic
sociotechnical system [495, 496]. Models of work processes is a form of job design. It
thus makes sense to investigate the principles of sociotechnical job design [495]:
1. The work system should be the basic unit of analysis, rather than individual jobs

We thus need to focus on processes, more than individual steps. WORKWARE gives
participants overview of the whole process, and interprets the model holistically.
Static and adaptive WMS violate this guideline by emphasising the separation of the
process into steps with clearly defined interfaces. This leaves coordination to the
automated engine, while users should focus on just their own tasks.

2. The workgroup, rather than the individual as central unit
Emphasising automated coordination, many WMS allocate only one person per task
[360]. WORKWARE allows several people filling different roles on each workitem,
though the support for teams is limited in the current implementation.

3. Internal regulation, rather than external control
Conventional WMS automate the sequencing of tasks based on externally defined

200

models. Interactive systems also facilitate coordination through mutual adjustment,
by letting users share plans and status information [283, 349]. The EXTERNAL infra-
structure includes awareness and communication tools. Such services are also in-
cluded in some other WMS prototypes [12, 124].

4. Redundancy of functions, rather than parts
This requires that the WMS utilises process models for learning and competence de-
velopment. The need for allocating personnel to tasks based on competence devel-
opment plans, not just current competence profiles, is recognised in our work [93].
This enables development of new skills, not just specialisation in a few roles.

5. Value discretionary rather than prescribed part of work roles
As discussed in Chapter 2, prescribed process models often end up biasing official
theories over actual practice. Emergent workflow leaves the detailed planning and
coordination to those who perform the work, with user-controlled degrees of plan
specificity. It is a core principle for interactive models that no syntactic or semantic
rule should prevent the users from articulating the most accurate reflection of their
practice that they are able or willing to provide. Prescribed process models should be
minimum critical specifications only [357]. Such a perspective dominates our work
on model harvesting, abstracting practical models into reusable templates. Con-
versely, adaptive workflow [274] propagates change from generic, prescribed models
onto every process occurrence. Hence where conventional WMS enforce strategic
change in a top-down process, WORKWARE also supports bottom-up learning from
experience.

6. Individual as complementary to the machine, not as an extension of it
Static and adaptive workflow see the automated engine as the force driving the proc-
ess forward, and users as agents performing predefined steps. Interactive enactment
allows the users to complement and control the enactment. Users may proactively
override system rules. Rules are also made explicit and can be redefined locally by
informed users. In this way the users and the system cooperate in interpreting the
model in the situations that arise. From a technical point of view, interactive enact-
ment is needed because one cannot assume that the model is complete. This is a gov-
erning principle for the automated reasoning made by the enactment engine: It must
always be open to the possibility of something else happening that is not part of the
model. If such anomalies can be captured by the system, the resulting model will be a
richer source for learning than in a system where it is impossible or cumbersome to
represent exceptions and situated process innovation. Our emphasis on modelling
languages with simple, user-oriented concepts that can be tailored to local contexts
further illustrates the focus on users as active, knowledgeable agents.

7. Variety-increasing both for the organisation and the individual
While production workflow aims to build standardised (variety-decreasing) solutions
for repetitive processes, this thesis targets knowledge work, where each process is
unique.

The rationale behind interactive process modelling thus reflects the job design princi-
ples. This shows that the overall approach of this thesis is well aligned with sociological
theories about what creates a good working environment. The discussion also pinpoints
several important flaws in conventional workflow thinking.

201

9.1.2 Workflow and Process Modelling Standards

In section 6.4.1, we saw that the standards of the Workflow Management Coalition
[530, 532] employ a large number of constructs for modelling items of work, while not
providing much increased expressiveness over WORKWARE or APM. We also saw how
WORKWARE models can be transformed into the WfMC standard with holistic mapping
rules. There are however some areas where constructs in WORKWARE have no transla-
tion in WfMC. In particular, user involvement, incompleteness and uncertainty are not
handled by the coalition. While they use AND and OR (actually meaning XOR) splits
and joins, they cannot represent the uncertainty and need for user involvement if the
unspecified decision. WORKWARE's decision connectors can be used to represent a num-
ber of different WfMC constructs, including split, joins, pre- and post-conditions for
workitems, as well as transition conditions for flows.
 There are also areas where the WfMC standard has been criticised for lacking
precision, e.g. in the semantics of an AND split followed by an OR join [237]. These
cases typically deal with scenarios where the whole model, not just individual objects or
relationships, must be interpreted. There thus is a need for semantic holism in standardi-
sation efforts as well. Most such problems related to semantic correctness, avoiding
deadlocks and ensuring termination, are important for fully automated systems, but
handled by user involvement in interactive systems. As pointed out by Jablonski [237],
research on semantic correctness [548] only deals with control flow aspects, whereas
e.g. resource availability is more important in practice. He therefore advocates more
pragmatic approaches to these problems.

OMG and UML Process Modelling Profiles

OMG's Workflow Management Facility targets automation, and is thus mainly relevant
for integration with the EXTERNAL infrastructure, where FRAMESOLUTIONS partially
follows these standards. Such integration has so far been implemented at a very rudi-
mentary level. Further extension should be feasible, since the standards fit well with our
language. Although they are far more detailed and complex, and extend the expressive-
ness in the area of automation and business object integration, OMG's basic constructs
are transformational, and the state transition semantics match ours. The only differences
are:
� OMG/WfMC does not differentiate Waiting from Ready tasks.
� OMG/WfMC has one state called aborted and one called terminated. These states

involve different rules for subtasks.
� OMG/WfMC allows tasks that have never been active/ongoing to finish.
OMG also has standardised UML [381], where a number of profiles for process model-
ling has been proposed, e.g. a business modelling profile for UML [381], a Software
Process Engineering Metamodel (SPEM) [380], and the Enterprise Distributed Object
Computing (EDOC) process profile [379]. Focusing on documenting methodologies in
a useable manner, SPEM targets simplicity rather than power of expression, and does
not produce executable process definitions. SPEM does not articulate resources and
model management, but include a rich vocabulary for modelling units of work. Lifecy-
cles are decomposed into phases, which may have iterations, further decomposed into
some levels of activities, before steps finally denote atomic workitems. Most of these
concepts are declared by stereotyping. Through packaging, further classification of

202

workitems into processes and disciplines is possible. Semantic holism with less classifi-
cation would make this language more flexible and extensible.

BPML - Business Process Modelling Language

BPML [21] defines a formal model for low-level executable processes with web ser-
vices. Although most BPML control flow structures are also easily modelled in EEML,
WORKWARE does not currently support all the constructs. One reason is that low-level
automation is left to FRAMESOLUTIONS in EXTERNAL. In particular, BPML transactions
and exceptions do not have direct equivalents in EEML. Decision connectors can be
used for representing transaction semantics in workitem templates, and the extensibility
of the language enables separation of exception handling items from main items, e.g. by
adding a property to all exceptional items. BPML supports reuse through contexts hold-
ing property values. Context decomposition follows the work breakdown structure.
Contexts inherit all properties from their surrounding context, similar to namespaces in
structured programming. BPML thus exemplifies reuse along decomposition relations.
WORKWARE's reuse framework supports this kind of reuse, but is more flexible and
powerful.

Standardisation

All of these standards use classification as the primary means for encoding information.
This generates larger and more rigid languages, compared to semantic holism. The em-
phasis on classification is to some extent justified by the need to precisely define the
core concepts in a direct manner. By listing the classes of a standard, the required ex-
pressiveness is immediately available. Expressiveness achieved through combining
classes with properties, constellations and contexts, requires additional description of
the different combinations that should be handled. In EXTERNAL we experienced this
situation when defining EEML. Although an early agreement defined all the modelling
constructs (as object and relationship classes), conflicting implicit assumptions regard-
ing what constellations were allowed, surfaced throughout a long period of time. Flexi-
bility and evolution is also poorly handled by most of these standards because inter-
change of models is the primary objective. Propagating changes to an ongoing, already
transferred, model is outside the scope.

PIF [304] is an exceptional process modelling standard. Aimed at supporting
evolution of both models and languages, PIF utilises partially shared views for interop-
erability. With partially shared views, an element not found in the target language is
translated into the nearest ancestor (superclass) that has a corresponding class in the
target language. Unknown attributes are converted into generic formats, e.g. textual
comments. This enables local language extension through specialisation without de-
stroying interoperability. PIF is thus much simpler (measured in number of primitives)
than the other standards. In EEML we similarly defined generic extension mechanisms
at the metametamodel level. Instance objects may have locally defined properties, and
generic classes may thus be specialised intensionally.

9.1.3 Transformational Modelling Languages

WORKWARE's modelling language integrates multiple perspectives. Striving for simplic-
ity and user-orientedness, we take the transformational (input-process-output) starting
point (as discussed in section 4.1). In addition to the various standards discussed above,

203

a number of other transformational languages have enjoyed widespread adoption in in-
dustry and scientific communities. Carlsen [90] compares INCONCERT, TEAMWARE,
ACTION and OBLIGATIONS to APM, so they are not included in this analysis.

Petri Net Process Modelling

Petri net is a widely used formal process modelling language. As discussed in Chapters
2 and 3 formality enables automatic activation, syntactic and semantic analysis, but re-
lies on closed system semantics, often resulting in complex models. Van der Aalst [549]
provides a formalisation of Event-driven Process Chains by mapping their constructs to
Petri nets. WORKWARE's language can be formalised in a similar manner. As van der
Aalst shows, OR-connectors (further generalised in this thesis to unspecified decisions),
result in an exponential growth in model complexity. This example illustrates, that un-
certainty can only be represented in formal languages by modelling all the alternative
combinations. Consequently, an incomplete model quickly becomes complex and un-
manageable. Open system semantics, on the other hand, does not require complete pre-
scription of all alternatives, and may thus articulate uncertainty and vagueness by sim-
ple constructs such as WORKWARE's unspecified decision connector.
 Other examples of incompleteness, like partially connected workitem collections,
are also not allowed in Petri nets. "Although a finite automaton or Petri net can analyze
change from state to state, reachability, and deadlock, it has no mechanisms to analyze
the addition of new states nor the alteration of the state structure" [153]. Consequently,
flexibility is generally achieved through other means than process articulation, e.g.
manipulations of token configurations [98, 553]. MILANO [6, 124] allows users to model
partially connected workitem collections, where the sequencing of items is not
completely predefined [7]. Compared to the modelling language of WORKWARE, how-
ever, their low-level Petri nets will generate larger models [246], e.g. since state enact-
ment semantics are part of the process model. Standard Petri nets do not support modu-
larisation and abstraction through decomposition either.

Event-driven Process Chains

The function and event constructs of Event-driven Process Chains (EPC) [434] are simi-
lar to the workitems and decisions of WORKWARE. However, EPC does not include
states of functions and events [479], and thus require more detailed modelling. Event
conditions can be modelled as decision connectors in WORKWARE. EPC models thus
tend to be slightly larger, but they also more directly map the enactment semantics than
WORKWARE does.

9.1.4 Modelling Varying Degrees of Specificity

A number of languages seek to articulate both completely predefined and semi-
structured, evolving processes. The ability of SEEME [214, 215] to represent vagueness,
uncertainty and availability of more information in the models is needed for creative
processes of articulation, negotiation and social reality construction. SEEME's solution,
to attach secondary symbols denoting vagueness etc. to primary model elements, en-
ables integration with any graphical language, including that of WORKWARE. This can
be an optional feature; it need not complicate the models. In WORKWARE, incomplete-
ness, vagueness and uncertainty are assumed characteristics of all models. This means
that we currently cannot differentiate between fixed and changing parts of the model,

204

they are all interpreted the same way. Linking enactment policies to vagueness and un-
certainty properties could make the enactment of predefined procedures more straight-
forward. Further case studies are needed to investigate to what extent such properties
can and should be explicated. Experience shows e.g. that making it explicit that some
information is not articulated, increases interest in that which is hidden, contrary to the
objectives of the modellers [216]. It is not evident whether the default interpretation of a
workflow fragment should be that it is completely or partially specified. Often this
property should be reused, e.g. from the surrounding process.
 Herrmann [214] present concepts for evolving workflows that utilise SEEME for
"user-driven coordination of incompletely-prescribed, non-anticipatable business proc-
esses", stating that such support can "only be successful if those employees who actually
perform the tasks of the processes, regularly make contributions". This concept closely
resembles interactive and emergent workflow, however it has not resulted in detailed
designs or implementations. On the other hand, numerous case studies that utilise the
SEEME modelling environment support claims made in this thesis [215-217]. For in-
stance, it was discovered that people are able to articulate their own work in process
models, provided initial training and some starting point models. Sequencing of activi-
ties, a cornerstone in conventional workflow management, was also studied. It was
found that process experts often artificially construct sequences by "projecting the se-
quence of an interview onto real work situations or by assuming logical dependencies
which do not correspond with reality" [214]. Their research thus complements the work
presented here with independent case studies, leading to similar conclusions and re-
quirements.

Constraint-Based Process Modelling

As outlined in section 3.1.4, constraint based PMLs have been proposed to increase the
flexibility of process articulation. Constraint specifications define a space of allowed
behaviour, which collapses onto one chosen solution only when the time for action ar-
rives. In GPSG [183], constraints are used for expressing "soft dependencies" among
tasks. GPSG aims at supporting the whole spectrum from unstructured work facilitated
by groupware, via semi-structured to fully structured processes. Open process defini-
tions allow rules to be added and removed. By defining declarative rather than opera-
tional rules, GPSG is able to express the organisational context within which a work
process is situated. A variety of rules handle task interdependencies, e.g. whether a flow
from A to B means that B starts when A finishes, that B should not finish before A, that
B starts after A starts etc. In this way, a flow from A to B may influence both A and B.
Tang and Hwang [484] extends the set of task dependencies to include transaction sup-
port (abort and commit). However, declarative constraints offer little support for process
participants to jointly articulate how they are going to perform their work, their project
plan. Consequently, GPSG also supports decomposition, conditional and parallel
branching and operational triggering of activities. GPSG models are used in a separate
design step that provides input to automatic generation of an executable plan by con-
straint solvers. However, users may also alter the executable models.

Compared to GPSG WORKWARE offers simpler, visual articulation support and
user involvement in enactment. We are aware of no other operational PML that provides
the same level of flexibility. Often users find it easier to articulate what they intend to
do, rather than all the contextual rationale behind it. This is evident in the current prac-

205

tice of project planning. Constraint-based languages are most suited for modelling the
external influences on the project. These approaches thus emphasise process modelling
by outsiders. Since the cost-benefit trade-offs involved in process articulation may re-
sult in under-constrained models, and the conflicting interests of stakeholders can result
in over-constrained models, constraint-based approaches should be complemented with
negotiation tools and interactive process support. GPSG could function as a model in-
teractor in WORKWARE, reminding users about constraints from the organisational con-
text (e.g. approaching deadlines), and supporting them in resolving these constraints.

System States and User States

FREEFLOW [142] also applies constraints. Its task enactment metamodel allows some
user-control of enactment through the separation of system and user state. The system
state (disabled, enabled or pending) is the result of causal dependencies among tasks,
while the user state (inactive, active, done) defines temporal states caused by user ac-
tions. In WORKWARE, system states are represented by the input and output connectors
of workitems. User states are reflected in the states of the workitem. WORKWARE sup-
ports the state set of FREEFLOW, adding abnormal termination. This allows us to handle
early start of the work (opportunistic involvement), where the user state becomes active
although the system state is still disabled.

Goal-Oriented Process Modelling

Goal-oriented, declarative process models [231, 303, 543] assign goals and constraints
to agents, but leave them to work out for themselves the details of how to reach these
goals. In WORKWARE, decisions represent conditions, and although the current proto-
type has not implemented a full rule language, section 4.6 shows how rules can be mod-
elled. WORKWARE's operational syntax also defines what should happen when rules are
violated. Such rules are more transparent, since the users see the consequences of the
rules as well as the conditions. Transparency is important in an interactive system. AL-

LIANCE [11] reflects the vagueness of explicit process models by capturing all knowl-
edge about the current state as fuzzy statements with truth probabilities between 0 and 1.
Fuzzy logic opens up a richer set of alternatives to the agents that interpret and activate
the model. WORKWARE currently lacks this feature, so uncertainties must be handled
manually.

9.1.5 Language Action and Conversational Process Models

The COORDINATOR [538] and its successor, the ACTION workflow system [339], focuses
on articulating and supporting communication and negotiation among the actors of a
work process (cf. section 3.1.2). Their work breakdown structure influenced WORK-

WARE templates and reuse policies to include customer and performer roles. Carlsen
[90] show how such conversations can be modelled in APM with pluggable actions.
WORKWARE allows us to simplify the modelling of conversation steps by representing
them as decisions, and typical conversation patterns [339] have been operationalised by
WORKWARE's standard enactment semantics. By modelling decision-making responsi-
bility, the roles of customer and performer become more clear, similar to role-oriented
modelling. Interactive enactment with holistic enactment rules also avoids some of the
criticism towards the language action approach (cf. section 3.1.2). WORKWARE adopts

206

information sharing, as opposed to a message-oriented approach, and does not control
or constrain the communication between users.

9.1.6 Decision Oriented Process Modelling

Explicit representation of decisions is a key enabler for the interactive activation
mechanisms described in this thesis. Decision oriented process modelling have been
proposed in some research prototypes. In section 3.1.3 we saw how issues, positions and
arguments capturing the rationale behind decisions could be captured in decisions-
making loops. Such approaches could complement WORKWARE, e.g. to capture the ar-
gumentation and reasoning behind key decisions, for instance in selecting which tem-
plate to reuse. By modelling decision-making loops as a decomposition of WORKWARE
decision connectors, the context of issue, alternatives (outputs) and related resources
would be available as a starting point for the argumentation articulation. RAPCEE [401]
models form a generic work breakdown structure with AND (executive, automatic) and
XOR (manual choice) contexts, similar to the reuse decisions presented in section 6.2.1.
Although RAPCEE supports both manual and automated enactment, WORKWARE is
more flexible in allowing situated automation boundaries, letting users override execu-
tive plans and partially automate choices. Unspecified decisions allow partial articula-
tion of uncertain process fragments.

9.1.7 Other Process Modelling Languages

From role-oriented PMLs WORKWARE has adopted the technique of using graphical
containment to denote responsibility. The main difference between e.g. RAD [391] and
WORKWARE is the primary structure for organising models: roles or work breakdown.
WORKWARE models could however be visualised in a role-oriented manner. For some
processes, e.g. communication, negotiation and administrative routines, the work break-
down and role structures are well aligned. For more flexible and knowledge intensive
work, we find that work structures are more basic and stable than roles.
 Object oriented process modelling (cf. section 3.1.7), utilise a large number of
different diagrams, reflecting the need to provide suitable dialects for different model-
ling perspectives. EXTERNAL facilitates this through different views and interfaces to
one integrated model, thus substantially simplifying the conceptual framework. This
solution obeys principles of semantic holism and perspective integration.

9.2 Interactive Modelling Languages
In this section we turn from process modelling to the application of interactive model-
ling principles to software and enterprise modelling. The aim is to show that the pro-
posed principles enable simpler and more flexible articulation in these domains as well.

9.2.1 Semantic Holism for Enterprise Modelling

The METIS Generic Enterprise Modelling (GEM) template [347] reflects 10 years of
experience in utilising an open enterprise modelling tool [71, 309]. METIS allows user
organisations to add their own constructs to the generic ones in the template, and the
elements of GEM have been harvested from a number of different industries. The open-
ness of the METIS tool also facilitates in-depth studies. GEM consists of 19 modelling
domains, reflecting different aspects of an enterprise.

207

The domains contain a total of 73 object types. Here we investigate to what ex-
tent semantic holism can help us reduce this number. 30 of the object types can be de-
composed. Mostly, GEM utilises semantic holism to limit classification along decom-
position relations, so there are no separate types for composite and atomic objects.
There are however 4 exceptions to this in the product, competence and information do-
mains. Objects and relationships in METIS models are instances. This means that sepa-
rate modelling constructs for classes are not included, cutting the number of constructs
in half. There are however 3 exceptions to this rule as well. So far the GEM template
still seems to utilise semantic holism quite well.

When we examine the set of constructs more closely, however, a different pic-
ture emerges. In process modelling, three different schemes are available, the flow logic
language based on IDEF0, a workflow language for operational models, and the IPM
domain which integrates concepts from the two others. By integrating these dialects, we
can remove at least 17 types.

For the 4 document types, properties could replace classification as encoding
scheme, making the language more flexible. In other cases the separation between two
types can be derived from the context. Online and offline documents are stored differ-
ently, catalogue parts are external product items, machines and tools are just systems in
a different context, organisational positions reflect similar relations as process roles etc.
Goals/intensions and requirements could also be combined, since their difference is ex-
pressed by relationships to other objects. There are also generalisations that exist for the
purpose of articulating common roles of a number of different types, e.g. Work unit.
While these generalised types may be useful for expressing uncertainty, this can also be
achieved through other means. Finally, reflection would allow concept, property, infor-
mation element, and label to be represented by metametamodel constructs.

This analysis shows that semantic holism allows us to remove at least 36 of the
73 types in GEM, without loosing expressiveness. All the principles from Chapter 6
were applied. There may of course be pragmatic reasons for including all of these dif-
ferent types in GEM; e.g. that it should be simple for users to understand what they can
express with the language. Templates with different default properties, could however
achieve this in a more flexible manner.

9.2.2 Simplifying UML with Semantic Holism

UML is a standard for visualising, specifying, constructing, and documenting software
systems and applications [381]. An analysis of UML is a suitable means for evaluating
the generality of the modelling approaches proposed in this thesis. As we discussed in
Chapter 3, UML is also applied for enterprise and process modelling. The current ver-
sion of UML suffers from a number of weaknesses that are especially important for in-
teractive modelling, including:
� Size and complexity. The UML core (version 1.4) defines more than 200 different

primitives [281] and 9 diagram types [137, 342].
� Rigidity. UML is class-based, making local instance modifications and conceptual

evolution cumbersome. While an object may be instance of more than one class, all
behavioural and structural features must be defined at the class level.

� System-oriented. UML and its predecessors were primarily developed to make it easy
for programmers to document their code and designs. Consequently most primitives
mimics those of object-oriented programming [137].

208

The primary aim of this section is to show that semantic holism can be utilised to fix
some of these problems.

Simplicity

The context where a model element is placed should influence its semantics. In UML
[381] a number of contexts are defined for structural modelling, including class dia-
grams, instance diagrams, role and collaboration diagrams, stereotypes, templates, and
implementation diagrams. In these contexts we find alternative ways of denoting ob-
jects (Class, Instance, ClassifierRole, Stereotype, Component, ComponentInstance),
relationships (Association, Link, AssociationRole, Binding, Deployment), relationship
endpoints (AssociationEnd, LinkEnd, AssociationEndRole), properties (Attribute, At-
tributeLink, TagDefinition, TemplateParameter) and values (InitialValue, Value, Tag-
gedValue, TemplateArgument).
 Here the lack of holistic and contextual semantics requires a large set of primi-
tives and duplicate encoding. It is however interesting to note that the constructs for
extensibility, evolution and incomplete models, utilise semantic holism to a greater ex-
tent than the rest of UML. For instance, Templates are not defined atomically as first
class constructs, rather any element that includes TemplateParameters is a template.
Stereotypes and TemplateParameters can both be attached to any ModelElement, e.g. to
classes, associations, roles and instances. Another proposal for extensibility in UML lets
different packages describe separate perspectives on the same elements (e.g. with dif-
ferent attributes) [144]. In order to define domain specific profiles, modellers extend
standard packages as whole, not every individual element. This holistic, contextual
technique produces simpler models than conventional subclassing.
 The 3C (Clear, Clean, Concise) proposal for UML version 2 [170, 383], takes an
even more holistic approach. With 15 primitives, 3C support the full richness of UML,
with improved extensibility. The proposal views model elements as representations of
individual, observable phenomena, not as specifications of general system components.
Consequently, the basic model elements object, association, and action are defined as
instances. A generic type definition applies to all three basic elements, and classification
is not inherent. Attribute is defined as a special kind of association, and class as a spe-
cial kind of template. 3C also separates inheritance (of implementation classes) from
specialisation (of classification types). Although 3C aims at defining a precise, formal
notation, their perspective is far better aligned with interactive models than the existing
standard. Their work shows that semantic holism also has a role to play in more conven-
tional modelling frameworks.

Comprehensibility

In UML version 1.5, the semantics of the relationships between the class and the in-
stance context are dispersed among the definitions of Instance, Link, LinkEnd etc. Such
inter-context relationships should be defined in one place, holistically for the whole
context, rather than separately for each construct. A more principled definition would
enhance readability of the specification and make it easier for novices to grasp the ba-
sics. The separation also creates a need for a lot of specialised well-formedness rules to
ensure consistency [342], where general principles could suffice.

209

Flexibility

Inherent classification, where the class defines all features that instances may possess,
makes typical lifecycle development more difficult. During initial modelling, it may not
be easy to determine whether something should be represented as a class, a template, a
stereotype, or a role. Migration between these metaclasses should thus be supported.
Currently, the semantic holism evident in the contextual and dynamic definition of
Template allows migration between class and template, but the other transitions require
more work. With increased holism, automatic transformation of model fragments be-
tween contexts, e.g. a class diagram to a role diagram, could be achieved by simply
moving it to another context. Similarly, a scenario model (instance context) could be
automatically generalised into a class diagram.

Expressiveness

By removing some of the differences between e.g. instance and class, new capabilities
are automatically included, without making the language more complex. For instance,
features (attributes and methods) could also be declared locally for individual instances.

Summary

This brief investigation of structural modelling in UML shows that semantic atomicism
makes the language complex and poorly structured. As with many standardisation ef-
forts, direct expressiveness is highlighted, while flexibility and simplicity, seems not to
have influenced the UML design to the same extent.

9.2.3 Interactive Conceptual Modelling

The modelling framework proposed in this thesis combines a number of techniques
from previous research, including instances with dynamic property sets [385, 393, 396],
semantic holism [263], and interaction [524]. These frameworks are compared to the
WORKWARE metametamodel in section 9.4. As the discussion above shows, none of
these techniques have been in widespread use in process modelling. Our original per-
spective of incomplete, evolving, operational models has also extended these theoretical
frameworks. Instances have been combined with incremental classification to meet
practical requirements for customisation and reuse, while property modelling has been
coupled to semantic holism with contextually derived properties. Identifying practical
techniques for semantic holism is a further contribution of this thesis.

9.2.4 Summary

Sections 9.1 and 9.2 have shown that WORKWARE provides extended flexibility in a
simple language compared to other process support environments. The approach goes
beyond current systems in facilitating partial, and evolving articulation of work proc-
esses. The language includes the most interactive features from a variety of process
modelling paradigms. It shows that transformations, language action, roles, rules, and
objects can be integrated without making the language overly complex. This integration
is enabled by interactive and holistic semantics. The foundation of tried and tested mod-
elling techniques is an argument in favour of the feasibility of the approach.
 We have also shown that instance modelling with flexible assignment of proper-
ties is relatively new in process support. This technique solves some of the requirements

210

that previous approaches could not meet, most notably simplicity, local modification,
and conceptual evolution. Languages that support incomplete workflow specifications
are rare, and no operational language was found that integrates the whole spectrum from
unspecified to fully predefined. The implications of allowing incomplete models are
substantial, removing problems of over-serialisation, disintegration, external control,
and lack of discretion reported in the literature. The weaknesses of the WORKWARE lan-
guage include a sometimes too heavy reliance on user participation, and that the general
language may be too complex in early phases of modelling. Reuse and alternative visual
representations of models are needed to remedy these problems.
 By exploring the application of holistic techniques in UML and enterprise mod-
elling, general applicability is assessed. This approach reflects a fundamental trend in
conceptual modelling to focus more on the pragmatic utilisation of models and less on
their linguistic and referential aspects [102, 221, 224]. Most work that compare process
modelling languages look at expressiveness [115, 119, 195, 265, 305, 479]. Other as-
pects like flexibility, simplicity and user-orientation are seldom considered. Large,
complex languages benefit from such comparisons, where it is generally considered
correct to have separate classes for each concept that one would like to articulate. A
more general approach for assessing process support systems were proposed by Carlsen
et al. [96]. They extend the model quality framework discussed in Chapter 2, including
e.g. pragmatic and social aspects in addition to expressiveness. In this thesis our focus is
the integrated articulation and activation of interactive models, thus the requirements are
directly in conflict with the conventional assessment method. Instead, a case-by-case
comparison between WORKWARE and other languages have been performed. A similar
shift from formal studies of expressiveness to pragmatic engineering simplification was
experienced in programming language research around 1970 [521].

9.3 Interactive Activation
In the workflow literature, process model activation mainly deals with fully automated
enactment. This thesis proposes interactive enactment of incomplete, evolving models
as an alternative perspective. In addition to increased flexibility, WORKWARE aimed at
integrating a larger set of model driven functionality.

9.3.1 Interactive Workflow Enactment

Bernstein [45] combines coordination theory and soft constraints, enabling a flexible
distribution of control between the system and its users, handle varying degrees of
model specificity (cf. section 3.3.4). While our focus has been end user articulation and
model interactors, Bernstein relies on model reuse and constraint-based advice. While
targeting many of the same problems, his work assumes that end users are capable of
selecting among alternative predefined processes, but cannot be expected to model their
own work. Bernstein's architecture complements WORKWARE with a different set of
model interactors. Our work goes further in implementation and use, and we have de-
signed one modelling language for all degrees of specificity.

Computational coordination mechanisms in ARIADNE [135] can be incompletely
defined. When some information is lacking, users are asked to provide it at runtime,
similar to WORKWARE's fallback mechanism. However, Divitini and Simone claims that
significant user contributions at runtime "is in general not reasonable" [135]. Conse-

211

quently, the modelling in their case studies are performed by the researchers themselves,
and the language makes few concessions towards end user participation. There is no
construct similar to WORKWARE's decision, which facilitates and focuses fallback ques-
tions.

On the other hand, some designers of process support systems [214, 340], stress
the potential of visual models to enable user involvement. ECHOES [340] utilise instance
modelling to support local modifications. However, users participate in model articula-
tion, and not in unfolding activation of the models. On the other hand, ECHOES offer
better means for process automation, e.g. service modelling, user interface content and
layout definition [340]. The EXTERNAL infrastructure needs extensions in this direction,
filling the gap between WORKWARE's flexibility and FRAMESOLUTIONS hard-coded
automation.
 Antunes et al. [16] argue that the separation between workflow support for formal
procedures and groupware support for informal processes is artificial. Their ORCHESTRA
engine identifies situations where formalised solutions do not exist. When such an ex-
ception occurs, the ORCHESTRA MATCHER selects the most appropriate group interaction
technique, tools and actors to solve the problem. The system thus includes interaction in
its model activation portfolio. Its group interaction support (e.g. brainstorming, cogni-
tive maps, and deal-making negotiation) could be a useful interactor in the EXTERNAL
infrastructure. However, ORCHESTRA relies on models built by external experts, and
does not support articulation of ad-hoc tasks.

Linked Abstraction Workflows (LAW) [164] allow explicit modelling of process
participants' authority to change the model during enactment. Our use of the graphical
location of connectors to denote decision-making authority seems simplistic by com-
parison to LAW's sophisticated mechanisms. But simplicity is also the strength of our
approach. We achieve rudimentary support without complicating the modelling lan-
guage. More sophisticated support is given by the access control interactor. Case studies
are needed to investigate what level of detail should be put into explicit representations
of authority, as this can be a highly political issue.

OBLIGATIONS [59, 58] supports ad-hoc evolving webs of interdependencies
among tasks. Any state transition in one task can be related to any transition in another
task. New obligations, where one person or group commits to performing work re-
quested by another, can be dynamically added at any time, but once they have been as-
signed to a performer, they can no longer be modified. While it contains a richer vo-
cabulary for coordination than WORKWARE, the system is thus not quite as flexible. Op-
posite to this and most workflow research, we started with ad-hoc processes and added
support for routine procedures later. This lead to a different design, e.g. with a simpler
modelling language and more manual control.
 INCONCERT [1, 429, 430] stands out among commercial workflow management
systems when it comes to supporting ad-hoc processes. INCONCERT models process
instances, enabling process design by discovery, starting the work with a rudimentary
template and elaborating it as the work progresses. The modelling language may be ex-
tended with user-defined subclasses and attributes. INCONCERT also provides generic
and customised task user interfaces similar to WORKWARE's worktops. When exceptions
occur in the execution of automated tasks, reactive user involvement is applied. How-
ever, proactive decision making appears not to be facilitated. In 1994, Abbot and Sarin
outlined a number of challenges for the next generation workflow systems, based on

212

early experiences with INCONCERT [1]. WORKWARE brings contributions to integrating
procedural and non-procedural work, utilising general mechanisms in customised poli-
cies, access control integrated with process models, evolutionary process development,
and a library of reusable templates based on experience. The EXTERNAL infrastructure
also supports external activities and meetings. Change management, configuration and
version control is the only challenge not yet met by our work.
 HIERASTATES [486] is a formalism for model-driven, state-dependent object be-
haviour, which uses STATECHARTS [209] actively at runtime, e.g. to present alternative
actions to the user. The language is refined with non-atomic transitions that interact
with users during their activation, enabling users to stop the transition or select among
alternative targets. The TACTS workflow prototype is built on top of HIERASTATES in
order to support a mix of structured and unstructured activities, taking a clearly interac-
tive perspective [487]. TACTS' support range from no explicit process, via the process
model as a guide, to partially and fully automated processes. In order to make STATE-

CHARTS interactive HIERASTATES adds constructs for exception handling and allows
partially structured models. Processes are modelled at the instance level. WORKWARE

goes beyond TACTS in providing a full-scale work support system, not just a prototype
dealing exclusively with the process dimension (tasks and flows). Consequently, we
have developed richer modelling languages and dealt more with the problems of end
user articulation. The enactment semantics of WORKWARE involves users to make deci-
sions directly without having to change the model, while TACTS just relies on user in-
volvement in modelling. WORKWARE's enactment engine does not make active use of
the state transition model, which is hard-coded into the system. A more open, rule-based
enactment engine is thus a primary objective for our further development efforts. HIER-

ASTATES also provide flexible reuse mechanisms, which are discussed in section 9.4.

9.3.2 Adaptive Workflow Enactment

A few adaptive workflow systems have also applied interactive techniques. In MILANO
[7] exceptions are handled by user-controlled jumps, policies control users access to
make jumps, and negotiation support is integrated in the exception handling process.
Differences between adaptive and interactive workflow are however evident in how
models are interpreted. MILANO requires that all allowed paths be computed from the
workflow model. WORKWARE recognises that the set of paths cannot be predetermined
in an open system. Instead the chosen path unfolds in step-by-step situated activation.
Users may override the current model, by explicitly making a decision, activating a
flow, or starting a work item.

Reflection in Adaptive Workflow Enactment

ENDEAVORS [261] and NETS-IN-NETS [554] are examples of reflective workflow sys-
tems, which enable dynamic model interpretation. They allow the engine to be config-
ured at runtime, selecting which set of enactment rules should be enforced. WORKWARE
complements this with implicit recongifuration. It integrates several enactment rules
into the basic enactment policy, and allow different rules to be applied in different situa-
tions. Situation patterns are recognised from a holistic view of the model. Hence, users
need not explicitly switch to another execution policy. They just change the model or its
elements' states to reflect the current situation. For instance, a user clicking on the
"Start" button of a not-yet-ready workitem causes opportunistic involvement, and a re-

213

interpretation of the violated flows. Experience indicates that this domain-oriented ap-
proach is simpler to use than explicitly changing execution strategies [1].

RECONFIGURABLE NETS [26] is a class of Petri nets that can dynamically modify
its own behaviour by rewriting some of its components. For such nets, boundedness and
soundness can be determined, i.e. it is a primary objective to guarantee that the model
can be enacted in a closed system. However, since the flow relations in the model de-
pend on the whole marking (set of tokens in the model), a form of dynamic semantic
holism is achieved. This enables e.g. routing decisions of process instances to be made
depending on the amount of work currently queuing in different parts of the process.
The ROK framework [148] utilises reflection through a metaobject protocol [269] to
support programmers in ongoingly adapting workflow definitions to changing business
needs. In a design for extending the flexibility of the BAAN workflow engine [341],
shoot tip activities trigger meta-activities for defining the next steps of the process. The
shoot tips are growing points for the process model, allowing ad-hoc modelling at pre-
defined places. In the EXTERNAL project we have similarly modelled the meta-process
of project planning, but here changes are allowed at any place in the model. We allow
any task to become a shoot tip, by supporting concurrent modelling and execution.
Similarly, planning tasks are modelled just like ordinary tasks. BAAN also jumps to the
meta-level when exceptions arise, providing transaction support, which is not imple-
mented in the EXTERNAL infrastructure.

Exception Handling in Adaptive WMS

Exception handling (cf. section 3.3.2) is the area where adaptive WMSs most com-
monly utilise interaction with end users [66]. Emergent processes cause frequent excep-
tions in such systems. Cugola [117] argues that deviations and inconsistencies should be
tolerated and supported in process models, but his systems only handle temporal devia-
tions from an otherwise complete model. WORKWARE treats exceptions as the rule of
the game, but lacks sophisticated mechanisms for controlling the handling of rule viola-
tions. An exception handling interactor would be a useful extension to the EXTERNAL
infrastructure. The work of Borgida and Murata [66] is relevant in this respect. They
define dynamic classes for each of the states that a task may have, and define exception-
handling rules based on these primitives. A similar dynamic classification scheme (in-
tensions) is already available in WORKWARE. The state transition model of [66] also
matches ours, so integration should be straightforward, at least on the conceptual level.
WORKWARE's framework also handles reuse of exception handling rules and procedures.

End User Customisation of Workflow Interfaces

Dangelmaier et al. [120] highlights the importance of accommodating both personal
preferences and domain nuances in workflow systems. They develop a multi-level pref-
erence model, where customised instances of system components are selected for differ-
ent workflow states. WORKWARE's customisation features utilise more dimensions of the
current state, and its reuse framework also is more general. On the other hand, Dangel-
maier et al. have put more work into user interfaces for end user tailoring. WORKWARE
just provides raw data object editing facilities for policies, so a more specialised, proc-
ess-driven interface is needed.

214

9.3.3 Extending Activation beyond Enactment

Other tools provide more complete collaboration support than the WORKWARE proto-
type. For instance ORCHESTRA [16], OBLIGATIONS [59, 58], XCHIPS [233] and MILANO
[6] provide a richer integration with conversation tools and shared workspaces. The
strength of WORKWARE lies in its alignment with email and Internet technology (sim-
plicity), and the service concept, which allows uniform configuration of and access to
internal and external functionality. The integration with XCHIPS in the EXTERNAL infra-
structure has also provided more sophisticated communication support in the context of
workitems and processes.

Integration of workflow and awareness notification is proposed by a number of
researchers [415, 416, 428]. Our work goes further in elaborating the detailed usage
scenarios where such a component plays a role, and in articulating the interplay of
awareness and enactment. WORKWARE's awareness customisation approach is inspired
by TVIEWS [518], but utilises holistic event propagation through complex structures to a
greater extent. INCONCERT, INTERMEZZO [149] and some specialised approaches [49,
68] have combined workflow with access control, although not with the same flexibility
and reusability as our implementation. Project management has also been prototyped in
LAW [164], and INCONCERT is integrated with MS PROJECT. Time, resource and project
management have been designed, but not yet implemented in WORKWARE.

9.3.4 Towards Interactive Workflow Architectures

There are many layered workflow architectures, and as the previous section shows,
WORKWARE is not the first system to extend active support beyond enactment. The nov-
elty of the WORKWARE architecture lies in the interactor concept. It captures the inte-
gration of process articulation and activation. Another key feature is that an interactor
never assumes to have complete control of the model. Instead different interactors com-
plement each other in a context-dependent manner. The architecture separates function-
ality from the model objects, following the strategy design pattern [173]. The assign-
ment of functional features to model objects is determined by policies. This flexible
binding enables personalisation and contextualisation. ENDEAVORS [62] similarly de-
couples object data from the handlers that control behaviour. Less flexible environ-
ments, e.g. FRAMESOLUTIONS and E3 [238, 241], directly map model elements to soft-
ware components.
 Software agents [372] also distribute functional support among semi-autonomous
components. An agent has some degree of autonomy and adaptability, and it interacts
with the environment [458]. A number of research prototypes have applied agents for
flexible process support [230, 282, 513]. In the COORDINATION LANGUAGE FACILITY
(CLF) multiple agents interact to facilitate distributed enactment in virtual enterprises
[65, 192]. ALLIANCE [11] provides similar malleability, distribution and decentralisation
for software-intensive processes, utilising fuzzy logic to reason about uncertain and
incomplete models. The ALLIANCE architecture includes agents for user interaction, tool
integration, enactment, timing, monitoring, process change and decision making.
Agents are dynamically assigned to tasks in the process model, but activation is
separated from articulation, so these agents are not designed as model interactors.

The current WORKWARE implementation has a number of limitations. It lacks
rich, model-driven integration with external systems based on standards for object man-

215

agement and web services. The utilisation of such interfaces should not be a major prob-
lem, given the conceptual alignment between the standards and our modelling language.
Scalability is another key problem. The flexibility of an instance-based metametamodel
may cause performance problems. In the EXTERNAL case studies, we experienced poor
performance when large models were stored in files on a web repository. File storage
fits the access patterns of modelling tools, but work performance demands more fine-
grained access. While it is straightforward to define a relational database schema for
WORKWARE's metametamodel, experimentation is needed to verify how many model
objects a typical server configuration can support.

Another shortcoming of the current EXTERNAL infrastructure, is the poor support
for distribution of functionality across multiple servers. This is especially important for
inter-organisational cooperation, where ownership to sub-processes is distributed among
the partners. A number of commercial systems and research prototypes for distributed
workflow enactment have been developed [147, 175, 177, 261, 318, 408]. Our work has
concentrated on the logical architecture of the system, not the physical level. However,
it is evident that the two are interdependent, in that local autonomy may demand both
physical and logical distribution. Alignment of our infrastructure with the research in
this area is thus a major challenge for further work.

9.3.5 Other Activation Approaches

Workflow management is not the only area investigating model- or data-driven flexibil-
ity. This section gives a brief overview of flexible groupware and information systems.

Reflection

In knowledge-based systems, the operational logic is stored as data rather than pro-
grammed in software. Reflective systems expose representations of their own logic to
their users, and allow modification of this logic. Reflection has been applied at the im-
plementation level of groupware toolkits [138], increasing application programmers'
control. In our approach, reflection is applied at the modelling level. Through metaob-
ject and metamodel interfaces, users can add and remove properties on instances and
classes, update classes in the modelling language etc. Interactive models thus bring
flexibility to users like metaobject protocols bring flexibility to programmers [269].
Reflection at the implementation level would however be a useful extension in increas-
ing the level of automation in our infrastructure.

Customisation

A number of tailorable information systems apply techniques described in this thesis
[259]. In AMULET and GARNET [358] instances are the primary objects, and Teege [488]
shows the utility of feature composition for customisation, configuration, and extension.
Feature composition allows properties and behaviour features to be added dynamically
to objects. But while these systems apply software-oriented terms in their customisation,
interactive modelling utilises a domain-oriented language.
 DIVILAB [399] defines a framework for domain-specific visual languages with
operational semantics. Their hypertext metametamodel consists of objects and relation-
ships. For each object type, users can define model, view, and controller aspects. HY-

PEROBJECT SUBSTRATE (HOS) [453, 454] is another flexible hypertext system. It facili-
tates incremental formalisation by end users. Starting with an unstructured model, users

216

may add visual and textual features as they see fit. As the work progresses, text can be
converted into lists, then further into objects with attributes, relationships and even in-
heritance. HOS uses prototype inheritance to facilitate this. EXTERNAL does not support
incremental formalisation in modelling with the same level of sophistication, but
WORKWARE's metametamodel has the same capabilities as HOS. These techniques have
been thoroughly validated [451, 452, 454].

OVAL [330] is another framework for cooperative applications. Its basic con-
structs are objects, views, agents and links. Usage experience with OVAL shows that
nearly every time a user wants to perform a schema operation such as adding an attrib-
ute or setting default values, he is already in the context of a specific instance. This
caused OVAL to include reflection operations on the instances, while remaining to
separate class schemas from instance data. WORKWARE supports objects with links as
attributes, and the user interface policies control dynamic composition of views. Its pure
instance-based metametamodel simplifies customisation compared to OVAL.

Policies, Media and Mechanisms

In groupware design, mechanisms that directly support existing work practices in many
cases become too inflexible. Instead media that can be tailored to suit each participant's
needs, making the cooperation policies and protocols adaptable at runtime, have been
proposed as an alternative metaphor [1, 41, 149]. Following this scheme, each model
interactor in WORKWARE is controlled by a set of policies. Policies are themselves
model objects and their scopes are determined by reuse policies. Conventionally, poli-
cies are more system oriented than primary model elements. This language problem has
been recognised as a general limitation for deep tailorability (below the user interface)
[41]. While a number of organisational and social issues interplay in overcoming the
barriers to end user customisation [493], designs that integrate customisation with work
performance are found to be important [41].

Dynamic Object Models

Dynamically interpreted and active object models have been utilised for adaptive work-
flow systems [280, 333]. Experience indicate that such designs work better with intel-
lectual processes than in manufacturing [333]. Like WORKWARE, these dynamic object
models (DOM) use the property, strategy, metadata and visual builder design patterns
[173]. However, by allocating strategies to types rather than instances, DOM becomes
more complex and rigid. WORKWARE's reuse and access control mechanisms can be
configured to mimic DOM, but support more flexible schemes as well.

9.3.6 Summary and Assessment

WORKWARE extends conventional techniques for customisation, integration, and exten-
sion with model-driven contextualisation. A visual model where domain knowledge is
articulated influences the operation of the system. Powerful reuse mechanisms and se-
mantic holism are further contributions of this work to the design of evolving and tai-
lorable information systems. A number of the systems above provide better support for
automation than the current WORKWARE prototype. However, the interactive enactment
concept improves the support for emergent, ad-hoc processes. Such support is seldom
prioritised in existing designs, although it is often mentioned as a requirement. The

217

complexity and rigidity of modelling infrastructures effectively hinders end-user par-
ticipation in articulation and activation.
 While research projects in adaptive WMS have proposed human intervention, e.g.
in the handling of exceptions, this is commonly a last resort, when all else fails. Utilis-
ing user involvement to simplify the languages and mechanisms of the WMS, and inte-
grating support for manual interpretation, is a new research topic for the workflow
community. Widening the scope of model-driven support, is another reassessment that
this thesis contributes to.

9.4 Reuse and Process Knowledge Management
This section explores how WORKWARE generalises current model reuse mechanisms,
and points out the increased applicability that this entails. Most PKM methods focus on
documenting experience (articulation). Some reuse and activation methods exist, but
most lack flexibility. WORKWARE's integrated PKM solution is need-driven and an-
chored in practice. By emphasising both accurate capture of processes and situated
search, selection, and appropriation of templates into each project, a solution better
matching the nature of knowledge intensive work emerges.

9.4.1 Metametamodels for Workflow and Other Modelling Domains

Features and qualities of different meta-languages for process support have surfaced
during the preceding discussions. Here our focus is harvesting and reuse. Few workflow
researchers emphasise metametamodels when publishing their designs. This is in part
because many use conventional languages like Petri nets or UML, where the semantics
are already defined. The rigidity, system-orientation and complexity of these techniques
motivate a fresh look also at the underlying metametamodels.

ENDEAVORS [62] is one of the most adaptive workflow systems on the market.
Its metametamodel includes multiple inheritance, dynamic definition of properties and
behaviour, enabling "better support for reuse than the traditional class-instance model"
[62]. Both ENDEAVORS and WORKWARE separate object data from behaviour, facilitat-
ing reuse of one aspect at a time [222]. Harvesting is accomplished by category promo-
tion, where an instance model is elevated to the process specification level as a new
template. However, attributes and methods can not be defined at the instance level in
ENDEAVORS [542]. WORKWARE thus has a simpler metametamodel, allows more local
modifications and more general inheritance. Both systems use change propagation
rather than delegation for dynamic change.

HIERASTATES [486] defines all behaviour at the class level, but instances are dy-
namically added and removed from classes. Each property is defined as a class, so mul-
tiple inheritance is needed to combine the features of an object. Since all properties are
classes, any modelled aspect can be utilised for inheritance, similar to WORKWARE. The
separation of classes from instances makes HIERASTATES less comprehensible [453].
The lack of mechanisms for lifetime sharing (propagation) from classes to instances, is
another limitation.

In method engineering [74, 371], metamodelling is a means for adapting general
methodologies to particular projects. METAEDIT [322, 492] is a commercial CASE
(computer aided software engineering) shell that has performed successfully in adapting
IS modelling to a number of domains [346, 345]. METAEDIT uses OPRR (Object, Prop-

218

erty, Role, Relationship) as its metametamodel. OPRR is conceptually on a more ab-
stract level than the instance-oriented metametamodel of WORKWARE. It is suitable for
defining modelling languages as a set of classes, but offer limited support for instance-
level modifications and extensions.

Instance Modelling

In conceptual modelling, the work of Parsons and Wand [393, 396] on instance models
and classification theory has been an important source of ideas for this thesis. However,
their work on criteria for good classifications, is based on the assumption that a com-
plete object population can be specified [393, 394]. For complete models, criteria for
theoretically sound classification structures are defined. In an open and evolving model
we must also allow under-specified classes that represent properties known to the users
but not yet articulated in the model [383]. As discussed in section 5.2, the need for in-
cremental, evolving classification structures motivates intensional and extensional
classes in WORKWARE.
 OPJ (Operational objects) [5] is another instance-based modelling approach. The
models are operational, and have been used for workflow modelling [79]. OPJ targets
software development for runtime flexibility rather than interactive operation. Instance
models are used at the system level, based on class level domain models. Reuse of pa-
rameterised building blocks is facilitated at both levels. WORKWARE facilitates local
modifications at the domain level as well.

Semantic Holism

Kangassalo [263] introduced semantic holism to conceptual modelling in order to cap-
ture problems with global understanding, concept creation processes, subjective points
of view, and conceptually closed information systems. His CONCEPT D language [262]
defines new concepts incrementally from primitives and existing concepts by inten-
sional containment relations. Such relations express specialisation, composition, proper-
ties and other associations. Concepts are thus not classified into e.g. objects, properties
and relationships, making the metametamodel extremely simple. Niinimäki [369] dis-
tinguishes between extensional (members), intensional (properties), and hybrid model-
ling languages. CONCEPT D is purely intensional, while WORKWARE is a hybrid. Ni-
inimäki concludes that while intensional languages map well to the semantics of data-
bases, hybrid languages are more suited for real world, dynamic semantics. WORKWARE

also allow cycles in the classification hierarchy (with cancellation inheritance this can
be meaningful [483]). Intensional containment (IC) in CONCEPT D is said to be asym-
metric (acyclic). Niinimäki [369] notes that this may not be the case, due to the many
kinds of relations that IC represents. The other containment structures in CONCEPT D
(properties, relations, and composition), provide a theoretical foundation for the gener-
alised inheritance scheme (reuse along any relations) proposed in this thesis. By allow-
ing reuse along property, part and other relations, semantic holism is achieved in both
frameworks.

Summary

This section has shown that the WORKWARE metametamodel compares favourably to
existing modelling frameworks. The evolving, ambiguous and incomplete nature of in-
teractive models motivates the differences between our approach and previous research.

219

The survey also shows that most of the individual techniques applied in WORKWARE are
applied and tested in other systems as well.

9.4.2 Process Knowledge Management

WORKWARE's policy-controlled framework for lifetime sharing of reused features is
here compared with previous research into process model inheritance.

Layered Policies

The state of the art survey in section 3.4 identified OBLIGATIONS' layered policies [58,
59] as the solution most relevant for interactive process models. Like WORKWARE this
system implements multiple cancellation inheritance. However, multiple layers of
metaobjects make the framework more complex and rigid (e.g. objects at the same layer
cannot inherit from one another). OBLIGATIONS bind templates to instances dynami-
cally according to surrogate rules. Rule based, semi-automated reuse is feasible in
WORKWARE's approach as well (as reuse decisions), but require a number of features
not currently implemented (mapping and parameterisation rules, reuse policy priorities
defined by rules). On the other hand, our interactive approach allows greater user con-
trol of reuse, which would require interactive surrogates in OBLIGATIONS. WORKWARE's
aspect-oriented scheme also modularises reuse, e.g. so that users can reuse the work
breakdown structure but nothing else from a template.

The PROCESS HANDBOOK

The PROCESS HANDBOOK (PH) project [329] is probably the most comprehensive ap-
proach to process knowledge management to date. Here a library of process models is
organised in two dimensions, specialisation and decomposition, to support alternative
ways of working. The project has developed rules for specialisation [540], composition
[47], exception handling [275], and flexible workflow [45]. PH is based on coordination
theory [327, 328], and its taxonomy of different coordination mechanisms is heavily
utilised [47, 275]. Its language (PIF, cf. section 3.1.1) fit well with EEML. An integra-
tion of PH tools and repository into the EXTERNAL infrastructure thus seems feasible.
 The PROCESS RECOMBINATOR [47] is an add-on tool to the handbook which pro-
vides interactive support for generating new process variants. It lets the users combine
alternative specialisations of the sub-activities in a process, and select different coordi-
nation mechanisms for the flow dependencies in the model. The approach is based on
the existence of a rich repository of process templates (about 5000 in 1999). End user
articulation and harvesting of local modifications is not within its scope. Bootstrapping
in a new organisation thus requires large initial effort to build critical mass, unlike the
low-fidelity early support provided by the EXTERNAL infrastructure. WORKWARE's dy-
namic, multi-dimensional classification structures could further situate the navigation
structures and alternative generation of the handbook. Based on characteristics of the
current situation, ad-hoc classification structures could be generated, both increasing the
number of combinations (important in early phases) and meeting the current needs more
accurately.

Process Model Specialisation

The specialisation rules for the PROCESS HANDBOOK [540] follow closed system seman-
tics, where the model represents everything that can happen. Specialisation is defined as

220

a subset relation on the range of behaviours articulated in the model. Users specialise
models by removing alternatives from a large general template. Interactive, open sys-
tems follow conventional object oriented semantics for incremental definition, where
specialised models add details to what they inherited. This makes the general models
simpler and easier to understand, capturing what the specialised templates have in
common, not accumulating every detail. Interestingly, the current handbook seems to
follow a more open approach than its original design [540], utilising decomposition and
object specialisation more than object removal. WORKWARE's generalised inheritance
can define both greatest common denominator (GCD) and least common multiplier
(LCM) generalisations (cf. section 3.4.3), as inheritance down and up the specialisation
hierarchy, respectively.
 Similar transformation rules have been proposed for Petri net inheritance [84,
550] (section 3.4.3). These rules however allow addition of new elements in subclasses.
It is a limitation of WORKWARE's cancellation inheritance that automatic substitutability
cannot be guaranteed. But for evolving, interactive models, this property is not that im-
portant, as users are expected to control to the combination and adaptation of process
models anyway. Automatic model assembly from specialised parts is in attractive vi-
sion, but unrealistic for knowledge intensive work. It seems more feasible to let users
combine model fragments locally in their own projects than expect them to model gen-
eral fragments in a strict specialisation hierarchy. This is supported by Taivalsaari's as-
sessment that strict inheritance is of limited utility for complex and evolving systems
[483], and by case studies that show limitations of strict inheritance for process model-
ling [298]. For automated processes, however, formal subtyping rules can play a role.
 The SOFTWARE PROCESS GENERALISER [227] semi-automatically generates gen-
eralised models from a set of particular models. Generalisations can have different de-
grees of "genericity", defined as the threshold fraction (from 100% to 0%) of individual
processes (or subclasses) that must contain each of the elements in the general model.
The strict PROCESS HANDBOOK scheme approaches 0% in this range, while strict object-
oriented inheritance is at 100% (nothing can be deleted in a subclass) [483]. The GEN-

ERALISER opens up for other degrees of template specificity, and is thus well aligned
with our framework. Usage experience from software development indicates the useful-
ness of generalised models with around 50-60% commonality [227], illustrating the
potential of situated, interactive decision making over global formal criteria.

Object Oriented Process Model Reuse

E3 [241, 238] is an object oriented process framework that was favourably evaluated in
Chapter 3. A class in E3 inherits the attributes, methods and associations of its super-
class. It is straightforward to define this inheritance rule as a reuse policy in WORK-

WARE. E3 places particular emphasis on the definition and management of associations,
hence associations are organised in an inheritance hierarchy just like object classes.
WORKWARE encodes links as properties or reified as objects. This means that links can
be inherited alongside an object, or by itself, just like in E3. The difference between the
two schemes is that E3 has stricter rules for what kind of inheritance is allowed, e.g. ar-
ity may not be changed in the inheriting association, and the classes related by the asso-
ciation must be compatible (substitutable subtypes). Taking into account the discussion
above, WORKWARE provide a simpler and more flexible association inheritance scheme,
more suited for incomplete and evolving models.

221

Rule-Driven Process Configuration and Individualisation

PROVE [418, 423] is an object-oriented framework for capturing and disseminating en-
gineering process know-how. From a perspective of engineering processes as "innova-
tive, individual, dynamic, interdisciplinary, strongly interrelated, strongly parallel, it-
erative, communication intensive, anticipatory, planning intensive, uncertain, risky etc."
[422], the approach is based on articulation by process performers, rather than external
experts. Reference process models are individualised into project specific instance mod-
els. Individualisation is partially automated by construction rules, which relate con-
straints about the application context to process building blocks. This framework is
more flexible than the PROCESS HANDBOOK and more aligned with interactive model-
ling. However, like the handbook it requires detailed process models, and thus would
not be sufficient in new domains. WORKWARE's support for articulation by process per-
formers goes beyond PROVE's, e.g. in supporting project specific metamodels and local
definition of object attributes, types and relations. PROVE's modelling language also is
more complex, utilising semantic holism to a lesser extent. Its construction rules capture
the process design rationale through traces of which construction rules were applied as a
result of which constraints. This construction meta-process extends the reuse metaproc-
ess and decision modelling proposed in section 5.6.6 with constraint-based advice.
These approaches are conceptually and technically well aligned, and could be inte-
grated.

Inheriting and Identifying Exception Handling Alternatives

In ADOME [103], exception conditions and handlers are reused along work and organ-
isational decomposition, resource roles and classification structures. This design moti-
vates WORKWARE's multi-dimensional inheritance framework. Ad-hoc, emergent proc-
esses require flexibility for all aspects of the process, not just exceptions, and thus our
framework is more generic.

NATURE - Process Model Guidance and Reuse

NATURE [201, 247] supports situated guidance and execution of requirements engineer-
ing processes. Process improvement is anchored in practice by using process traces as
input to template modelling. A guidance engine performs pattern matching of the cur-
rent context against a set of "reusable process chunks" in the repository, suggesting al-
ternatives to the users. The engine thus supports situated composition of processes from
templates, and allows deviations from the intended process (ad-hoc decisions). Chunks
that together accomplish a common goal are grouped together in clusters. Clusters thus
represent AND relations between templates, while the bundles in the PROCESS HAND-

BOOK represent XOR relations. Clusters may be associated with different modes that
determine the sequence of the chunks, e.g. depth-first or breadth-first. Both could be
expressed as reuse decisions in WORKWARE. WORKWARE does not separate descriptive
traces from prescriptive models, because an integrated representation of process history,
future plans, and the current state is useful for planning, coordination, and learning. NA-

TURE on the other hand emphasises selection among predefined alternatives and capture
of underlying rationale. WORKWARE captures the histories of events on modelled ob-
jects, but does currently not utilise this information for reuse customisation. Like the
PROCESS RECOMBINATOR and PROVE's individualisation support, NATURE offers ex-
tended support for automated reuse compared to WORKWARE's meta-process with inter-

222

actively resolved reuse decisions. On the other hand, poor support for end user articula-
tion of new ways of working is a common weakness of these other systems. Further
work on integrating a process repository into the EXTERNAL infrastructure should ex-
plore these approaches.

9.4.3 Multiple Models, Levels and Views

Within the ARIS (Architecture of Integrated Information Systems) framework [433,
434], event driven process chains (EPC, cf. section 3.1.1) are used to integrate process
engineering and knowledge management, planning and control, workflow enactment,
and work item performance. Similar to the EXTERNAL infrastructure, but contrary to
much workflow research [237, 528], ARIS uses one modelling language at all levels,
bridging the gap between business process engineering and workflow enactment. Some
proposals for UML 2 [145, 342] similarly advocate the use of a simple, integrating core
model rather than the current separation of primitives by diagram types, claiming that
this is needed for tool interoperability and activation beyond model editing and visuali-
sation.

Weske et al. [528] advocate a separation between business process (analysis)
and workflow (design) models, because the two focus on different aspects. At the same
time their case studies report lack of integration between organisational and technical
aspects as an important problem. Of their six cases, two decided not to use a workflow
management system at all due to severe difficulties. Three were still in the design or
testing phase, all with severe delays, while the sixth, which used SAP R/3 (ARIS), was
the only one ready for operation. The approach to separate analysis and design is thus
not supported by the empirical data. An integrating scheme that supports different views
of a common process model for analysis and design, combines specialised support with
integration of organisational and technical aspects. Although fully automatic translation
from analysis to design seldom is feasible [528], interactive translation, where some
steps are automated and some performed manually, is useful. Manual mappings should
be explicitly captured so that they can be maintained when the process evolves [237], cf.
section 5.6.5. A single modelling language with multiple views, fulfils these require-
ments [385]. WORKWARE's flexible metametamodel allows multiple levels and views to
be added when needed, with new properties, relations and classification structures.
Compared to ARIS, our approach is simpler because instances defines structure, proper-
ties and behaviour at all levels of abstraction.

9.4.4 Composition of Process Model Fragments

Technically, the major contribution to process knowledge management in this thesis is
the inheritance framework and the metametamodel. Composition of process models is
enabled by the interfaces (connectors and resource roles) developed for the predecessor
APM [90, 91]. Our language has preserved most of these features. WORKWARE extends
APM with semantic holism. This implies that a richer automatic adaptation of model
fragments can take place when they are put together. For instance, derived properties
implemented by reuse policies may cause each fragment to be customised according to
the context in which it is placed. The Open Process Components (OPC) [175] prototype
allows locally encapsulated semantics of each component. WORKWARE by default takes
an open systems approach, in that every component can see every detail of every other
component. Access control policies may however be defined to ensure encapsulation

223

and partial sharing, e.g. between the process components performed by different part-
ners in a virtual enterprise. Compared to OPC, WORKWARE's strengths include simpler
models and language, e.g. propagation of reused features instead of delegation, as dis-
cussed above.

Warboys et al. [515, 516] have developed protocols for interaction between re-
lated tasks. They discovered that coordination constituted an important fraction (up to
50%) of typical process models, and sought to isolate coordination into connectors
separate from the content of the work. Recognising that "an effective architecture needs
to deal as much with connectors as the components being connected" [515], their ap-
proach enables reuse through re-composition of tasks and connectors. Coming from the
software process community, Warboys et al. follow the closed system assumption, and
compile the process code, thus limiting runtime flexibility. On the other hand, decision
connectors in WORKWARE would also benefit from richer interaction protocols, e.g. for
rule driven coordination of concurrent tasks.

9.4.5 Other Process Model Reuse Techniques

The multi-dimensional process models of the MOBILE prototype [213, 236] motivated
the separation of reusable features into aspects in WORKWARE's reuse framework. While
MOBILE supports composition of models for each aspect, the semantic holism of
WORKWARE captures inter-aspect dependencies better. For instance, the organisational
structure for a process may be reused along the work breakdown structure (the func-
tional aspect), and the operational aspect (tools) may be derived from the informational
aspect (which data are manipulated). Through interactive enactment, WORKWARE al-
lows execution of processes even though not all the aspects are fully predefined. Other
relevant techniques for process model reuse include case-based reasoning [179], and
patterns. Configuration management and version control of model templates is another
feature not dealt with in this thesis. However, APM [90] outlines an approach to these
problems that can be applied to WORKWARE as well.

9.5 Evaluation Summary
This part of the thesis has reported on three different forms of evaluation:
� The implementation of modelling language, metametamodel, and activation seman-

tics in the WORKWARE prototype and the EXTERNAL infrastructure demonstrates that
the proposed concepts and designs are feasible.

� The application of these prototypes in case studies shows general usability, and ex-
amples from process models developed by users indicate that the more specific tech-
niques are applicable. Experience from the cases also demonstrates the relevance of
the requirements presented in Chapter 2.

� Finally, detailed comparative analysis of WORKWARE with existing solutions for
workflow modelling, enactment and reuse demonstrate the originality of the ap-
proach.

However, the evaluation has also identified a number of limitations to be addressed in
further research and development. Some elements of the design, e.g. customisable en-
actment and reuse policies, have not been fully implemented, and in a number of areas
further studies are needed to examine the relative merits of competing approaches. Us-
age experience also shows the need for non-technical contributions in modelling meth-

224

odologies, and organisational measures to establish and sustain user participation in
articulating work processes.

225

Chapter 10
Conclusions and Further Work

The root problem of this work was to design a model-driven information system for
planning, coordination, cooperation, management and performance of knowledge inten-
sive project work. Previous research in workflow management, conceptual modelling,
social and organisational learning directed our efforts towards designing an open, trans-
parent system. Here users actively participate by articulating the plans of their work and
by interpreting and elaborating these plans in the situations that arise. In previous work,
researchers have tried to improve communication and coordination in ambiguous, un-
certain, situated and contested social environments with formal, precise models. We
have taken the opposite approach. Rather than bringing the language of computers to
human interaction, interactive modelling requires that computerised models approxi-
mate human languages. Rather than treating processes like software [389], we treat
software as interactive processes. This leads to three research objectives:
� Articulation: Develop modelling languages that are simple, flexible, and user-

oriented, that allow varying degrees of specificity.
� Activation: Develop a process support system that activates user-oriented, evolving

and incomplete models, providing useful, contextual, customisable functionality.
� Reuse: Develop a framework that enables interplay of local modifications and proc-

ess improvement, anchoring knowledge management in practice and experience.
Seeking to frame the problem more precisely as a set of requirements, a literature study
explored the organisational contexts in which such systems should function. Theories
concerning social construction of reality, reflective practice and communities of practice
helped us understand that ambiguity is necessary for learning, communication, coordi-
nation and the construction of shared understanding. The unavoidable gap between the
complexities of practice and any process representation was also highlighted. Case stud-
ies showed that there are barriers to articulation, but also that end user participation in
workflow management, process modelling, knowledge management, and information
systems development, has been successfully achieved in a wide range of industries. The
approach should thus be feasible.

10.1 Contributions
Following Schön's [445] agenda for reflective research, this thesis first of all contributes
to repertoire building. Interactive models are an exemplary problem frame and solution
that has received little attention within information systems engineering. We have also
looked at the differences between conventional IS development, participatory design,
and interactive model construction, contributing to frame analysis of how designers
attack problems. The contributions of this thesis fall into different categories [166], in-
cluding general approaches, new explanations and perspectives, new functionality and
new implementation techniques. Such a wide variety can be expected from engineering

226

projects that span from understanding user organisations and their requirements, by way
of technological challenges and methods, to actual implementation. The drawback of
such vertical studies is of course their limited horizontal breadth. It is beyond a realistic
scope to investigate all relevant areas in all levels. Consequently, while aspects of these
contributions have been proposed in other areas, they are new in the areas of interactive
models and workflow management, and their application in these particular areas point
to new considerations and combinations, bringing a clearer understanding of their bene-
fits and limitations.

10.1.1 General Approach: Interactive Models

Conventional IS, built for low maintenance and long life span, often become obstacles
to organisational change and innovation. They become too rigid for dynamic work and
too general to meet the unique local challenges. Consequently, only a minor portion of
the functionality is ever used, as powerful and specialised features encode assumptions
about the usage environment that are seldom fulfilled. Current techniques for building
more flexible systems "include prototyping, end user development and open systems
connectivity. But these are inadequate because they are not connected through a coher-
ent framework that focuses on the emergent character of organisations" [497]. This
thesis argues that interactive models can function as such a framework. By facilitating
end user participation in modelling, and allowing users to contribute also to the interpre-
tation of models, a flexible, evolving system is feasible. The behaviour supported by the
system is no longer fixed to what is prescribed in program code. An open, interactive
architecture allows customisable software services to be added when needed. The mod-
els provide a context for software services, defined in user- and domain-oriented terms.
 IS engineering relies heavily on conceptual modelling [101]. This thesis contrib-
utes with an elucidation of the concept of interactive models. Interaction was introduced
by Wegner et al. as a theoretical framework for computing [523] and conceptual model-
ling [524]. This thesis points to interactive models as a design metaphor for flexible,
user-friendly information systems. It defines interactive models as models that are
available to end users and that control the behaviour of the system, and point to the es-
sential duality of articulation and activation. The project further uncovered interactive
modelling requirements and challenges, and identified suitable modelling techniques.
To my knowledge, no such practical exploration of interactive models has previously
been carried out. The interaction framework is highly contested by some scientists be-
cause it does not really say anything new, theoretically that is. What it provides is a new
perspective, a different way of framing, describing, analysing and solving problems.
Demonstrating its practical utility in design is thus essential.

10.1.2 Articulation

In order to facilitate process modelling by end users, simple, user-oriented, and flexible
languages are needed. This thesis identifies a number of techniques for this purpose.

Semantic Holism

Semantic holism expresses meaning through combined interpretation of all the elements
in a model. Popular modelling languages today provide limited degrees of holism, and
rely mostly on atomic semantics, where the meaning of a model element is defined by

227

that element alone. While the concept was introduced elsewhere [263], this work con-
tributes with the identification of holistic modelling techniques like
� Property modelling, where properties can be dynamically attached to object in-

stances,
� Constellation modelling, where meaning is expressed by constellations of objects,

each affecting the interpretation of the others, and
� Context-sensitive semantics, where model elements change meaning according to the

context where they are placed.
The modelling framework designed and implemented in WORKWARE demonstrates how
these techniques result in simpler, more flexible language, meeting requirements of
multiple views, domain specificity, and evolution of models, semantics, and modelling
languages. A study of related work show that these techniques have a wide range of
application.

Explicit Decisions Enable Interactive Activation

Decisions control the interpretation of the model. By explicitly articulating decisions as
model elements, manual and automatic activation can be integrated. Many elements in
existing languages implicitly capture decisions, so conventional modelling languages
can be transformed into interactive ones. Decisions also simplified the process model-
ling language APM. In WORKWARE, the location of decision objects defines decision-
making authority and responsibility. In addition to workflow and scheduling, reuse and
resource allocation decisions have been modelled. Case studies show that these con-
structs are useful. This technique helps us view modelling as a process, where meaning
is negotiated.

Feasibility of Articulation by End Users

Some researchers [35, 213] claim that end users cannot be trusted to change workflow
models correctly. This thesis refutes this claim by identifying a number of case studies
where end users did change such models. Another explanation of this phenomenon is
thus offered, that the complexity of changing models at the class level, where you have
to take into account all past, present and ongoing processes that follow the same model,
prevents end user modelling in adaptive workflow. Consequently, this problem need not
apply to emergent workflow, where users model their unique project. Our usage experi-
ence supports this claim.

10.1.3 Activation

The activation of interactive models to support knowledge work has generated some
new design perspectives. These contributions primarily deal with the behaviour seman-
tics of interactive models and the information systems architecture.

Interactive Activation

Interactive activation was introduced in order to allow incomplete and evolving models.
In this scheme users and software components cooperate in interpreting the models in
the situations that arise. Software can activate fully articulated model fragments, while
human involvement is needed for ambiguous parts. Humans can also override pre-
scribed behaviour when faced with unforeseen exceptions, through in situ articulation.
This is exemplified by interactive workflow enactment, which allows workflow instance

228

models to evolve past different degrees of preciseness and detail. Interactive enactment
has been implemented and used in case studies. Compared to related work, it offers a
simpler, more comprehensible model, since in an open system, we need not predefine
every potential enactment pattern.

Holistic Activation

The realisation that semantic holism is a core feature in interactive activation, is another
contribution. When the interpretation of model elements depends on the current states of
surrounding elements, richer, more situated functionality is enabled. The activation
emerges from the local interpretation of individual elements, better matching the con-
tingencies of work. The ability of holistic activation to handle more complex scenarios
than conventional atomic solutions has been demonstrated.

Tailoring with User-Oriented Concepts

With an interactive model, domain and user-oriented concepts are applied for tailoring
the system. Most tailorable languages contain system-oriented primitives, allowing us-
ers to assemble components and combine features. In WORKWARE, interactive models
are utilised for contextualising the system. System-oriented customisation policies are
introduced only where such a solution is more simple and straightforward. Semantic
holism enables implicit reconfiguration of the activation, controlled by the current state
of the model. Policies allow explicit reconfiguration, while interactive models facilitate
implicit, partial and dynamic reconfiguration. WORKWARE integrates these techniques.

Integrating Multiple Model Interactors and Aspects

A model interactor is a software component that interactively activates parts of a model.
This thesis shows how multiple interactors, offering complementary interpretations of
the same model, can be combined in an interactive architecture. Property modelling and
semantic holism facilitate integration of multiple perspectives without complicating the
language. This is demonstrated by the WORKWARE architecture, which combines work-
flow and groupware components to provide richer coordination functionality.

Semantic Completeness and Correctness Revisited

With interactive model activation, the notions of model completeness and correctness
are revisited. Rather than dealing with formal semantics, we emphasise real world se-
mantics, what the model says about the real objects it refers to. An interactive model is
complete only when it is no longer in use, when all the work it represents has been per-
formed. Only then is it no longer subject to the interplay of articulation and activation.
No more exceptions and further planning need to be articulated. Similarly, process his-
tory is the only part of the model that is fixed. Formal semantic correctness is no longer
a prerequisite for activation, as users can handle ambiguities, incompleteness and incon-
sistencies.

10.1.4 Interactive and Emergent Workflow

The difference between adaptive (dynamic) and interactive, emergent workflow is de-
scribed, clearing some of the conceptual confusion that has prevailed in this area [45,
46, 274, 276]. While adaptive systems aim at making top-down workflow control more
powerful, emergent workflow supports bottom-up articulation of work, enabling em-

229

ployee empowerment and partial group autonomy. This conceptualisation also points
out new directions for further research, outlined below.

10.1.5 Reuse and Process Knowledge Management

In this thesis, reuse of process models is viewed as an interactive process. The aim is
not to provide complete generic models but to facilitate articulation and composition of
template fragments by the process participants. Most KM strategies take a post-hoc
documentation approach, asking "what have we learned from this project". Their goal is
to make components reusable at the time of their production. We argue that need-driven
reuse asking, "what past experience is relevant for this situation", better matches the
open, situated nature of cooperative knowledge work

Incremental Classification with Instances as Primary Objects

In order to allow local modifications, WORKWARE defines all structure, behaviour and
other features of model elements at the instance level. Any model element can be re-
used. Classification structures are dynamically constructed to meet local, evolving re-
quirements, they are not an inherent part of the object definition. Their main purpose is
to help process participants identify relevant past experience and model fragments suit-
able for the current situation. Experience shows that meta-levels are among the most
difficult modelling concepts to grasp [298], so this is an important simplification.

Generalising the Concept of Inheritance

Inheritance conventionally couples reuse to specialisation. In our framework, reuse may
also take place along (de)composition, work flows, and other relations. The realisation
that some model aspects should propagate along other relations was triggered by spe-
cific user needs in our projects. A detailed design shows how this scheme can be im-
plemented without destroying the one-to-one domain to model correspondence that in-
stance modelling facilitates.

Reuse Policies

Policies control the dynamic binding of behaviour rules to model elements, e.g. for en-
actment, user interfaces and access control. Reuse policies define how reusable aspects
are propagated along modelled relations, allowing user organisations to customise the
semantics of inheritance. Basic reuse policies have been defined based on the require-
ments from different case studies. In e.g. user interface customisation and access con-
trol, several reuse policies have been implemented.

10.2 Limitations and Directions for Further Research
According to reflective practice, engineering research generates new problems as well
as solutions. This work has implications for further research into usage, evaluation,
methodologies, design and implementation of model-driven process management.

10.2.1 Validation

This thesis concentrates on the technical component of a sociotechnical information
system. Organisational, social and human sciences have been surveyed in order to estab-
lish requirements for the IS, but long-term studies of interactive models in real organisa-

230

tions have not been carried out. Following the discussion in Appendix A, we propose
case studies instead of controlled experiments to capture the complex and incompletely
understood realities of new work practice. Subjective storytelling and interpretive field-
work are more appropriate than positivist studies with formalised hypotheses. From the
point of view of an IS designer, these questions should be investigated:
� How can we motivate initial and sustained user participation in articulating and shar-

ing interactive models?
� What are the barriers to user participation and how can we overcome them?
� To what extent can we expect end user innovation in model articulation, process im-

provement and language evolution?
� What are the characteristics of organisations that are able to capitalise on interactive

models as opposed to those that are not?
� How does the introduction of interactive modelling influence cooperation, communi-

cation and culture of different organisations? In which cases is openness increased
and when do people withdraw from articulation and sharing of work descriptions?

� What aspects of work are suited for articulation in different organisational settings
and what aspects are better handled informally? For what aspects will the gap be-
tween models and reality be too wide for models to be useful? What level of detail
and preciseness is most useful?

� Are project plans as process models the most useful kind of interactive models, or are
other aspects, e.g. product or information models, more suitable in some settings?

� What kinds of model-driven functionality are most useful in different situations?
� What roles must be performed in the introduction and use of interactive models?

When do we need system experts that help users to customise their solutions, and
process experts that facilitate articulation work? How can the software system best
accommodate these roles?

� How can interactive models be utilised in organisational change processes?

10.2.2 Methodologies

Methodologies for interactive modelling depend closely on the social and organisational
settings where models and systems are applied. Although the EXTERNAL project has
developed a general methodology [286], customised methods are needed for:
� Integrating project management, monitoring and resource control methods with in-

teractive models,
� Solution provision, enabling IS consultants to help organisations customise and ex-

tend their interactive modelling systems, emphasising end user participation.
� Business consulting, introducing interactive models as a way of transforming organ-

isational structures, processes and cultures.
� Modelling by novice users, a simplified tutorial.
These and other methodologies must go beyond user guides, also designing learning
material and workshop formats. The modelling conference approach [181, 182] is an
interesting starting point. It has been successfully applied to process models, but needs
extensions to sustain participation in articulation after the workshops are closed. Finally,
interactive models offer a unique opportunity to operationalise methodologies as proc-
esses. By utilising the process knowledge management features, we may grow method-
ologies from the practical experiences of project managers, consultants and users. A
duality of community building and repository building is needed.

231

10.2.3 Design

Design ideas have been put forward as the main contributions of this thesis. Current
development of WORKWARE is directed at further situating the interpretation of models,
without adding too much complexity to the language. This includes extending the auto-
matic support of decisions to include constraints and operational rules, and to utilise
temporal considerations (milestones, timers, delays etc.). These model elements must
currently be manually activated. Other approaches that can help to further situate the
interpretation include explicit representation of vagueness, uncertainty [215] and
changeability [164] of model elements. Other promising extensions and refinements to
the architecture and modelling framework include:
� An open model editor that fully utilises semantic holism and instance modelling.

METIS does not adequately support properties, constellations or contextual semantics.
� Improved process visualisations, e.g. to manage and coordinate large projects. The

SUPREME visualisation tool [253] is a starting point.
� Textual model explanations [205] and textual articulation should be investigated.

Text and visual models should be integrated in interactive hypermedia.
� Integration with organisational resource planning systems, utilising competence skill

profiles and training plans to allocate the most suitable people to each project.
� Integration with document and information management systems, e.g. utilising proc-

ess structures for information retrieval.
� A more dynamic and fine-grained utilisation of available software components, e.g.

through alignment with web services and business object standards.
� Integration of time and project management functionality, utilising up to date repre-

sentations of the current state of the project.
� The capability to refer to past and future states of the system, and express relations

between them [24] could further contextualise model interpretation.
� Improved conversation and negotiation support, integrated with standard email so

that users needn't install yet another communication tool.
� Support for process analysis, metrics and assessment methods, including simulations

that take the process history into account, and system dynamic models that capture
holistic interdependencies among tasks, products and resources.

� Improved support for model-driven task automation, utilising detailed enactment
rules. The current language does provide the expressiveness of workflow manage-
ment systems, but detailed automation is not adequately supported.

� Guiding and warning systems that monitor the enactment process and provide feed-
back to users about rule violations, exceptions etc. Process models should be utilised
to decide who needs to know about which situations. Deontic rules, as integrated in
APM, would help us approach this objective.

� Interactive multi-level and multi-user undo functionality for intertwined model ar-
ticulation and activation. Transaction support should also be added.

� Template management, configuration, versioning and change control. Interactive
meta-process approaches to these problems seem promising.

� Utilising interactive enactment and other WORKWARE components in existing IS in-
frastructures that were not originally designed for interactive models.

Most of these designs deal with developing new model interactors. The principles of
semantic holism at the model, interactor and user levels should guide these designs, in
order to provide simple and flexible solutions.

232

Process Knowledge Management

Process model management and reuse is the area where the current designs most needs
extensions. In particular, WORKWARE needs a model repository that allows fine-grained
access to model objects with acceptable performance.
� Experience from search tools, classification systems and library science should be

utilised to support the identification and selection of suitable model templates [223].
� Process model patterns should be investigated as an approach to capture the suitable

usage context for different models, and for defining general, reusable structures that
can be contextualised (via inheritance) into local models.

� The application of case based reasoning in a semi-automated template selection in-
teractor should also be looked into.

� Storytelling is a key process for informal knowledge dissemination in organisations.
Case studies show that this can complement explicit organisational procedures.

Knowledge management in general can benefit from the interactive models perspective,
in that organisational improvement based on explicit models can be integrated with pro-
ject and group level models that capture situated experience. Interaction is currently
replacing automation in several KM tools.

10.2.4 Implementation

WORKWARE is a prototype, and although it has survived 5-6 years of experimentation, a
re-implementation is needed for full commercial utilisation. The challenges involved in
implementing a commercial product include:
� Improved performance in model data management. Experiments are needed to verify

e.g. that WORKWARE's metametamodel can be handled by a relational database sys-
tem. Transaction support and undo-services are also needed.

� Distribution of functionality and processes to different servers should be supported.
� The user interface should better utilise XML and stylesheets, and a user interface for

defining new forms and components should be developed.
� Integration with external tools and web services must be improved.
Tinella has started to attack some of these challenges in Computas UEPS [491].

10.2.5 Generalisation

While this thesis has concentrated on interactive models of work processes, we have
also briefly looked into interactive use of product models, organisation structures, on-
tologies etc. Investigating the applicability of the contributions from this thesis to other
domains, is thus also a major challenge for further research. The application of interac-
tive modelling during systems development should also be explored. Interactive model
execution and translation are promising validation techniques. Interactively executable
prototypes should be more easy to generate than fully automated ones. As we have seen,
interactive principles can contribute to simplify systems modelling in UML. After all,
the core problems of this thesis are quite general: Motivating end user participation,
providing simple, transparent systems that the users can control and not be alienated by,
supporting the essential activities of knowledge work as well as automating its routine
parts. The common approach of bringing the language of computers to human interac-
tion, should be replaced by research aiming to make computer languages more human.

233

Appendix A
Research Methodology

Research aims to produce knowledge that is original, grounded, tested, systematised
into theories and practically useful. These objectives have given rise to a number of
different methods [545]:
� Science, developing theories that give rise to hypotheses, which are then tested.
� Engineering, developing, testing and refining solutions to problems.
� Empirical methods, where data are collected to verify hypotheses, but unlike in sci-

ence the hypotheses are not derived from theory.
� Analytical methods (or formal science [81]), where a formal theory is deduced from

axioms by application of the laws of logic [208].
This is an engineering thesis. Empirically oriented scientists currently challenge the
position of engineering research in software engineering and computer science (CS)
[463, 490, 545]. This appendix argues that the following assumption is reasonable:
� There is a need for engineering research. The fundamental problems of software de-

velopment cannot be solved by science alone.
The core of this argument is a practitioner's perspective, emphasising management of
complexity as the key challenge [521].

A.1 Scientific Research
It is the method that distinguishes science and scientific knowledge from ordinary prac-
tice and knowledge. Scientific knowledge can be considered "truer" because the scien-
tific method tests it, identifies its shortcomings and corrects them [81]. A coarse depic-
tion of the scientific method is given in Figure 82. It shows the generative characteris-
tics of the process, that new knowledge and new problems are both starting points and
outcomes. The core activities include hypothesis development, testing and evaluation.
Though not all research disciplines assign equal importance to each step in this process,
it seems to be a suitable framework for discussion.

Figure 82. Scientific method [81].

Test
techniques

New body
of available
knowledge

New
problems

Hypo-
theses

Testable
consequences

Evidence

Evaluation

of
hypotheses

Available
knowledge

Problems

234

A.1.1 Concepts

Scientific knowledge takes the form of symbolic, conceptual representations. Concepts
(units of thought) are thus the primary medium of science [81]. The scientific process
deal with formation, elaboration and manipulation of concepts. Empirically, concepts
are tools for identifying and grouping objects. Concepts can have a linguistic represen-
tation as terms in a language, and refer to objects and properties in the physical world,
as summarised in the table below.

Level Unit Links
Linguistic 'Term' Term designates concept
Conceptual "Concept" Concept references thing
Physical Thing, property, phenomenon

Table 13. Semiotic levels.

The meaning of a concept is determined by its reference set, the physical and ideational
objects it refers to, and its intension. The intension specifies the properties that apply to
the concept [81]. Two concepts are synonyms if both their reference set and their inten-
sion are equal. Concepts can be categorised according to logical strength (ability to ex-
press facts precisely) into individual (definite or indefinite), class, relation (comparative
or not), and quantitative concepts.

A.1.2 Holistic Reality and Formal Theories

Due to our limited capacity to observe what goes on in the world, reality will always
seem holistic [524]: Causal relations appear as mutual, circular and non-linear (every
observable cause has an indefinite number of effects) [194, 447]. This is illustrated in
Figure 83. As an example, let us look at the apparently linear causality that "users par-
ticipating in modelling their work" (A) increases "visibility of work" (B). Organisa-
tional factors and software tools, e.g. access control mechanisms, may however prevent
this straightforward causality. The mere fact that work becomes visible may also bring
counter-measures (users withdraw from modelling because they fear that increased ex-
plication will lead to increased organisational control and micro-management), or moti-
vate participation (sharing your experience brings prestige and self-actualisation). Net-
work effects and peer pressure among colleagues, are also known to influence user par-
ticipation. Such descriptions of complex and contingent organisational realities are in-
complete and generalised. More issues regarding user participation and visibility of
work is elaborated in Chapter 2. No model of the real world can ever be complete in the
sense that it captures everything that may be relevant for a phenomenon.

Reductionist scientific concepts (A, B)
precisely related by a definite mechanism (m)A B

A B

m

Holistic real world concepts (A, B) related by
mutual, non-linear and circular causal relations

Figure 83. Holistic and scientific concepts.

235

Science on the other hand, tries to see the world from the eyes of an omni-present, non-
interfering, objective observer [524]. If scientific hypotheses are to be testable, all vari-
ables cannot be holistically related to all other variables [81]. Thus, hypotheses are gen-
erally formulated with linear cause-effect relations, as in conventional logic [208]. This
implies that scientific concepts are fundamentally different from ordinary concepts, as
clarified in Figure 83. Scientific concepts can be linearly related, but they cannot at the
same time be directly observable, because no experiment can ever assume the position
of an objective, omnipotent observer. "In real situations, the relevant variables are sel-
dom adequately known and precisely controlled. Real situations are much too complex
for this, and effective action is much too strongly urged to permit a detailed study" [82].
Through controlled experiments in a laboratory we can observe phenomenon that ap-
proximates the scientific concepts, but they can never be observed directly. Even in the
most thoroughly controlled experiments, unknown factors such as the limitations of
measuring devices can cause non-determinism. This implies that scientific concepts and
theories never capture the whole of the real world objects they refer to, but only a subset
of its characteristics [81]. Hence, practice-oriented social scientists have used concepts
of duality rather than classes (dichotomies) in their theory building [466, 527]. The ten-
sion between holistic and scientific worldviews [38, 194] is evident in most of the areas
that are relevant for information systems engineering. The disciplines of experimental
research reflect different approaches to this issue:
� Empirical research deals with observable concepts, and in some cases even requires

that all concepts should defined by the way they are measured (operationalism).
� Factual science builds systems of reductionist theories, but tests them in the labora-

tory (and to a limited extent in the real world). Scientists must thus derive observable
consequences of their theories, as shown in Figure 82.

� Formal science builds systems of logical concepts, interrelated in a linear way. The
laws of logic are universal. Because no empirical data can contradict logically proven
facts, formal models cannot say anything about the real world.

� Engineering attacks a holistic problem situation. Due to the limited scope of any
theoretical principle, personal skills, intuition, social dialogue, folk wisdom, rules of
thumb, and analogies are also valued techniques [111].

From this perspective, engineering research has to find a suitable balance, attacking the
holistic problem at hand, while at the same time documenting and validating the solu-
tion in manner which approaches science. In the following, we investigate how this bal-
ance is kept in the research disciplines most relevant to this thesis. First, we briefly dis-
cuss the potential for interdisciplinary research based on scientific or holistic concepts.

A.1.3 Interdisciplinary and Multidisciplinary Concepts

Interdisciplinary research and practice require some degree of shared language, con-
cepts and meaning across disciplines. Science and practice require different properties
of a language, as illustrated above. Scientific concepts are interconnected in systematic
theories, indirectly validated by experiments. Experiments require operational concepts,
defined by how they can be tested. Although operationalism can be criticised for con-
fusing meaning with testability [81], operational concepts and hypotheses permeate both
scientific and non-scientific empirical research. Both theoretical (formal) and opera-
tional concepts aspire to be unambiguous and objective, to act as immutable mobiles
[300], incapable of being translated into something else. Immutable mobiles, aimed at

236

preserving paradigms, reflect the controlling aspects of the term 'discipline'. Scientific
concepts thus lead to multidisciplinary research where each community has its own lo-
cal, well-defined vocabulary, and there is no common language.
 Practice-oriented concepts have a different role. They are to facilitate communi-
cation and participation in an ongoing negotiation of meaning across disciplines and
communities [527]. Such concepts act as boundary objects [462]. They should maintain
their identity across disciplines while having the potential for becoming differently
structured by use inside each community. Ambiguous concepts invite participation in
the process of negotiating their meaning [527], hence practical, interdisciplinary con-
cepts should act as mutable mobiles. The role of metaphors in innovation [370] is an
example of conceptual boundary objects. Holistic concepts thus allow interdisciplinary
research with a partially shared language. Concepts may however have specialised local
meaning within each community, reflecting particular problems, theories and methods.
While scientific paradigms [293] are maintained by immutable mobiles, creative and
revolutionary science needs more dynamic concepts. Thus, Bunge [81] notes that the
conventional rule that all concepts should be defined prior to scientific study, should be
replaced by a requirement that all the objects of study are identified (like boundary ob-
jects). Scientific knowledge is conceptual, so scientific progress requires conceptual
evolution.

A.2 Information Systems Engineering
The main objective of information systems engineering is to improve the methods and
practice of system development. Research in this field thus utilises a mix of methods
from mathematics, computing, social and human sciences, but also a wide range of
technological design principles, paradigms and processes developed through industrial
practice. The figure below gives an overview of research paradigms. It follows the cate-
gorisation above, but adds a separation between interpretive fieldwork and controlled
experiments. This is a key separation in social sciences [273]. Interpretive, qualitative
methods like ethnography and case studies have also been accepted in information sys-
tems research [25]. Engineering combines interpretive understandings of reality with
normative propositions to further professional development [337].

Human, social, and
organisational focus

Empirical science Interpretive fieldwork

Technical
solution focus

Computer science Engineering

 Well-defined problems
(reductionist, positivist)

Wicked problems
(holistic, interpretivist)

Figure 84. An overview of research relevant for information systems.

Investigating the role of knowledge in software development, Robillard [413] notes that
formal methods are mainly applicable to well-defined (tame) problems. The notion of
"wicked problems" is attributed to Horst Rittel [482]. To such problems, no exact solu-
tion exists, rather a satisficing [334] compromise of conflicting goals must be sought.

237

Wicked problems have no definite, generally agreed upon formulation, rather an under-
standing of the problem is developed alongside the solution [112]. Every wicked prob-
lem is unique and novel; requires complex judgement about the suitable level of ab-
straction; has no objective measure of success or completion, no right or wrong solu-
tions; has no given alternatives; requires iterative problem solving; and often has strong
moral, political or professional dimensions [455].

A.2.1 Engineering Research

While the canonical objective of science is the generation of new, tested knowledge,
technology's main objective is the design of solutions (technological artefacts) to a
problem. "The questioning of distinctly technological ideas has a different content than
the questioning of scientific ideas. The assumption among technologists is not that the
technological ideas are true but that they work, and that the works to which they give
rise are good or useful" [353].

Reflective Practice

The often-observed gulf between theory and practice [19, 387, 445] and the conceptual
and methodological differences outlined above, indicate that engineers learn more from
colleagues and from interacting with the problem situation, than they do from science
and scientists. Even a philosopher of science states that "a practical man is one who
acts in obeyance to decisions taken in the light of the best technological knowledge - not
scientific knowledge because most of this is too remote or even irrelevant to practice"
[82]. "You can't research or test your way to good design; you can only design your way
there" [376]. Thus, there are calls for engineering education rooted in design, rather
than mathematics and science [403, 445]. A survey of experienced software engineers
[306], identified methods, design, processes, professionalism and ethics as the most
important knowledge, while mathematics, science and hardware were ranked lowest.
 Schön [445] gives an excellent account of how engineers think and act. He de-
scribes professional work as a reflective dialogue with the problem situation, where new
designs (solution hypotheses) are continually developed and tested. To attack wicked
problems, problem setting (framing, analysis, understanding) and problem solving must
be intertwined. Each new proposal may contribute to solving the current problems, but
also to building an understanding of the problem, trigger new perspectives and ideas for
solution. Social dialogue, rules of thumb, tacit and personal knowledge are paramount
for testing and assessment. Subjective valuations of aesthetics and harmony among the
parts of the solution are also important [273]. The technological process is thus less ex-
plicit and formal than the scientific method (Figure 82), and its problem-hypotheses-
testing-evaluation cycles are more rapid. The creative phases of science, those con-
cerned with hypothesis generation, seem to have a lot in common with reflective prac-
tice. Idea formation and hypothesis creation are the most overlooked aspects of the sci-
entific process [81], and in some empirical disciplines, speculation is disregarded.

Repertoires of Action

Crucial, both for framing the problem and for generating new designs, are the reper-
toires of action that the designers have learned [445]. These repertoires contain exem-
plary solutions, approaches and perspectives gained through practice, education and
interaction with other practitioners. In software engineering, design patterns [173] ex-

238

plicitly represent action repertoire elements. Reflective practice creates new knowledge
not by giving rise to general principles, but by adding to the practitioners' repertoire.

Reflective Research

From this perspective, Schön identifies four areas for practice-oriented reflective re-
search [445]:
� Frame analysis, concerned with which ways of framing problems, which paradigms

[293] of reality construction [43] that dominate a profession, and the discussion of al-
ternative frames, values and approaches within the professional community.

� Repertoire building, accumulating and describing exemplary solutions in ways useful
to reflection in action. Case methods in business and medical education exemplify
this form.

� Fundamental methods of inquiry, the theories that practitioners apply to make sense
of new situations, which commonly do not fit the theories in an objective way.

� Research on the process of reflection in action involves inquiry into learning, cogni-
tive, affective and group dynamic aspects.

Following this description, it makes sense to view engineering research as complemen-
tary to and interrelated with the factual sciences. Engineering research takes a more
pragmatic approach. Its main criteria are utility and usability of results, not that the
claims are scientifically tested. The main objective is to contribute to the repertoire of
action of a profession, not to deliver new scientific theories.

Science and Engineering

In debates between scientists and engineers, it is commonly stated that a mature profes-
sional discipline must be firmly based on science, rather than tacit skills, intuition and
individual creativity [463, 490, 545]. Stable rules should replace ad-hoc solutions. Sci-
entists ask "are we ready to uncover our eyes and look at the software problem from a
scientific standpoint?" pointing out that "without measures from repeatable experi-
ments, software is not science" [302]. Knowledge that is not scientifically based is thus
disregarded. Some even view engineering as applied science [514], and see scientific
inquiry as the path towards establishing software development as an engineering disci-
pline.
 The discussion above challenges this view. Studies of design, innovation and
invention [370, 398, 503], show that science offers little assistance in managing com-
plexity and generating new ideas. Distinctly technological concepts have developed, not
rooted in underlying sciences, including "machine", "efficiency", "information", and
"network theory" [353]. The development of new technology is an important object for
diverse fields such as philosophy [82, 353], history [398], economics [503], sociology
[51, 300], and organisational science [370]. It is thus not a well-defined area of analysis.
 Mitcham [353] investigates the philosophy of technology. It is found to deal
with ethics and practice, while the philosophy of science is more associated with logic
and epistemology. The etymological roots of 'technology' are found in ancient Greek
[353], combining techne (art, craft, skill) and logos (words, speech, reason). Techne is
separated from habits based on just experience (empeiria) in that they are explicitly rea-
soned about. To Plato, techne and episteme (systematic, scientific knowledge) are
closely related. Techne in the classical understanding is "fundamentally oriented toward
particulars instead of toward the efficient production of many things" [353]. The origin

239

of technology is thus more concerned with design and problem solving than rationalis-
ing mass production, and a clearly separate concept from science and empiricism.
"There is at the heart of technical activity" "an irreducible nonlogical component"
[353].
 The sociological study of technology [51] emphasises social construction of in-
novative concepts and artefacts, moving away from the individual inventor, the genius,
as the central explanatory concept. Historical studies seem to justify this perspective
[398]. In current practice, it is argued that science and engineering have become inter-
mixed, that both disciplines discover as well as apply knowledge. The division between
science and technology is seen as a social construction. Interpretative flexibility of em-
pirical data [51] is emphasised as an important aspect of revolutionary, paradigm-
shifting science [293]. Normal science on the other hand, seeks to minimise the inter-
pretative flexibility of empirical data. A similar distinction is found in technology,
where revolutionary inventions cause the construction of new systems, and conservative
inventions improve components in existing systems.
 Some economic studies emphasise the interplay of product and process innova-
tion in technological evolution. In the Abernathy-Utterback model [503], an early fluid
phase, in which many product designs compete and the level of product innovation is
high, is followed by a transitional phase where product variety decreases and dominant
designs emerge, possibly even becoming standardised. Now innovation of manufactur-
ing processes speeds up. When the potential for efficiency and quality improvement is
exerted, industries may enter the specific (or mature) phase, where cost, volume and
capacity matters, and innovation makes small, incremental steps. Empirical analysis of
product features becomes feasible and appropriate once a dominant design is estab-
lished. Clearly, some products of the software industry have entered this phase, e.g. op-
erating systems and relational databases. While workflow systems for automating rou-
tine procedures seem to be in the transition phase, flexible workflow management cur-
rently is dominated by product innovation.

A.2.2 Organisational Science

Engineering research shares its orientation toward practical problems with organisation
and management science [20, 39, 334, 357]. While engineers traditionally have applied
knowledge from mathematics and natural sciences, organisational theory is based on
human and social sciences. However, this distinction is blurring, e.g. in information and
computer science [38, 129]. Information systems and organisational design are interde-
pendent, especially in cooperative and process oriented systems [307, 407]. Because of
its root in mathematics, there has been a tendency to relate computing to the natural
sciences [490], but for information systems, the relationship with organisation science is
more relevant [129].

Case Studies

In order to capture the holistic reality of a situation, case studies of real organisations
and groups have a prominent place in organisation science and education [19, 39, 370,
387, 445, 468]. Based on various theoretical perspectives, the development or organisa-
tion of one particular company is described. This kind of research is mostly qualitative,
since few theories in the social sciences are quantitative. A major problem for case stud-
ies is to what extent their findings can be generalised to other organisations, and further

240

to theory [81]. Finding the right case, the "representative sample of one" [38], is thus
paramount. For these reasons, multiple cases are often combined in a comparative field
study, but still a great number of cases are needed to verify even the most low-level
empirical hypothesis. From a practical point of view, however, these studies are impor-
tant because they contribute to the discipline's repertoire of action. Attempts at increas-
ing the scientific content of this work has lead to empirical paradigms that accept as
meaningful only what is directly observable in the data and criticise attempts at theory
building [81]. This leads to less applicable results.

Action Research and Interference Problems

Another important problem in organisational science, is the interference of the research-
ers upon the domain of study. Action research [25, 38, 307] accepts interference as un-
avoidable. Interpretive approaches [273] sees interaction between researchers and the
subjects as the best way to gain insights into the practice that is studied. Active partici-
pation also allows the researchers' hypotheses to be tested. In an overview of the action
research approach to information systems, Baskerville [38] discusses how attempts to
introduce scientific methods "too often disconnected theory from reality, making the
research results largely irrelevant". He also points to the lack of generally agreed crite-
ria for evaluating action research as a major problem. These concerns also apply to en-
gineering research, which shares both the intervention and complex problem orientation
with action research. Some people classify engineering projects as action research [25].
A core difference between the two however remains, that action research uses action to
seek understanding and knowledge, while engineering applies and develops knowledge
with action and invention as the ultimate objective [337].

Recognising the situatedness, complexities and contingencies of organised activ-
ity, multi-perspective approaches that draw from a variety of sciences are also fre-
quently applied [273, 357]. Integrative schemes like sociotechnical systems [495] have
developed as organisation theoretical concepts, not derived from underlying factual sci-
ences. Such concepts have also been imported into computer science [215].

A.2.3 Computer Science and Software Engineering

Denning [129] gives a structured overview of computer science. He challenges the view
that "what can be efficiently automated" is the fundamental question of the discipline,
arguing that it overlooks the full richness of the human, social and historical contexts
which computer science also deals with. Algorithmic thinking, representation of data
and knowledge, programming and design are the basic skills of the discipline. Design
connects the other skills to the concerns of users. It is a commonly held position that CS
should be both engineering and science, and more [128, 171, 210, 316, 539]. The field
is interdisciplinary. In addition to the mathematics, engineering and science woven into
the discipline itself, it is formed by relationships with library science, management sci-
ence, economics, medicine, biology, psychology, linguistics, philosophy and other hu-
man sciences.

Software Engineering

More than 35 years after the term was first coined, the nature of software engineering
still is the subject of debate between practitioners who deal with the complexities of real
world systems, and scientists who find answers in formal methods and empirical re-

241

search [56, 184]. These groups were established as early as the second conference on
software engineering in 1969 [151]. Though such debates can be counter-productive,
they may also lead to improved understanding, shared values and better research [211].
Positivist theoreticians emphasise that software development should be made rational
[151], systematic, disciplined [114], "automatable and easy" [184], technically determi-
nistic and empirically testable. Some argue that "anything other than strictly mathe-
matical terms" should be forbidden, especially human analogies [111].
 Practitioners see the essential challenges [76] in software engineering as wicked
problems, requiring reflective practice. There are several strategies for taming wicked
problems prematurely [112], e.g. locking the problem definition, disallowing changes to
requirements; specifying the problem by objective and measurable parameters; treating
the problem as just like a previous one, ignoring contradictory evidence; simply declar-
ing the problem to be solved; giving up looking for solutions and just follow orders; or
pretending there are just a few alternative solutions, and cast the problem as a selection
process. While such strategies are appealing in the short run, they tend to fail [112].
 "Rationalising software processes involves standardising intellectual work,
which is historically difficult and most likely counter-productive" [151]. Nevertheless,
research into software process improvement has aimed to "increase precision and speed
by repeating the events, reduce the dependency of experts and generally improve con-
trol" [240]. This illustrates that "the automatable-and-easy people seem unaware of the
significance of what the complexity people have said" [184]. Terms like 'software fac-
tory' and 'empirical software engineering' [490] illustrate that some scientists do not
relate to wicked problems.

The Push Towards Empirical Computer Science

That the empirical, positivist perspective is currently gaining ground, is shown by stud-
ies of published papers [545], funding agencies' strategies [57], and professional certifi-
cation schemes [278, 494]. The risk of computer science becoming increasingly theo-
retical is thus imminent. The tendency to favour basic and technology-oriented research
over applied and user-oriented, lead practically inclined researchers to "toe the line or
leave the academy" [132]. People who argue in favour of more experimental research
commonly criticise the poor quality of testing in contemporary publications [490, 545].
To compare the contributions of empirically oriented computer science to the more en-
gineering oriented, is a too wicked problem for scientific study.
 Practical utility of results and the interdisciplinary nature of most problems, are
reasons for adopting a less empirical approach. Wicked problems should not be attacked
with thinking, tools and methods useful only for tame problems [112]. A typical exam-
ple is to measure conformance with requirements as the criterion for good design [129].
Striving to provide precise evidence, some scientists reduce their problems to what can
be tested with the available resources. What they disregard are the wicked, not articu-
lated and poorly understood aspects, the very parts of the problem most challenging in
practice. Practitioners' response to such research will often be "but my project is differ-
ent" which "really is a valid response" [185]. "When we are concerned with matters of
the real world, theoretically-based critiques are simply not a sound enough basis for
rejecting contributions that might be useful" [448]. An ethnography of software practice
similarly noticed that little importance is ascribed to arguments based on empirical evi-

242

dence [449]. "The complexity people rarely dignify the pronouncements of the automat-
able-and-easy people by referring to them at all" [184].

While engineering research should deal with problems that the researcher is
uniquely qualified to attack, scientific research aims to gather data that are independent
of the researcher's subjective interpretation. Stewart claims it would be excellent if
questions like "can an experienced practitioner duplicate this work from the text and
references?" "became standard in computer science refereeing" [463]. Such calls for
improved empirical quality make it difficult to publish new ideas for attacking wicked
problems. New ideas must first be thoroughly tested and compared to existing ap-
proaches, which is challenging because they often include new ways of framing the
problem, incommensurable with previous work. Given a finite amount of resources
(knowledge, time and money), an empirical study of an existing approach, with a hy-
pothesis firmly rooted in previous research, will therefore easily achieve much higher
scientific rigor than a project that has developed new ideas. Deciding funding for new
research programmes based on publications and peer review of applications [526], fur-
ther amplifies this trend. This motivates views that CS should replace "publish or per-
ish" with "demo or die" [210].

Computer Science History and Experience

In 1976, Wegner [521] summarised the historical development of computer science re-
search. He showed how empirical research into the nature of computing in the 50s, was
replaced by formal analysis of computing concepts in the 60s, before the increased
complexity of software lead to engineering research, developing tools and methodolo-
gies for practical management of this complexity. Average software costs were 5% of
total system costs in the 40s, 70% in 1973, and estimated 90% by 2000 [521], indicating
the growth of software's importance, size, and complexity. The speed of this develop-
ment distinguishes computer science from other disciplines, and the co-existence of pre-
scientific empirical research, formal science and engineering has increased the tempera-
ture of meta-scientific discussions.
 Mathiassen [337] summarises the history of software development practice into
three eras. Until the mid 70s, it was mainly a technical discipline, applying automation
to improve productivity. The second era lasted until the late 80s, and emphasised effec-
tiveness, integration and support. Analysis and design replaced programming and man-
agement as the core skills. In the third era global networks, collaboration, process orien-
tation and knowledge management are key enablers, and domain knowledge becomes
increasingly important. Variety, complexity, social dependence and multiplicity of skills
have increased, and with them the need for interpretivist, practice-oriented research.
 Tichy [490] and Ledgard [302] both make a point of the fact that object oriented
programming never has been experimentally proven to improve productivity or quality
of software, other than in case studies, which they disregard. They do not ask why these
approaches have become popular with practitioners despite the lack of conclusive evi-
dence in their favour. Wegner postulated in 1976 that while programming languages
were critical to overall software development in the 50s and 60s, they may have become
non-critical in the 70s, because further improvements would be of marginal importance
for the whole software lifecycle [521]. Later development has supported this hypothesis
[337]. Nevertheless, programming techniques are regarded as an important research area
for empirical software engineering [490], perhaps because programming is more easily

243

subjected to controlled experiments than problem framing or design? Since empirical
studies have not yet been able to establish the best paradigm for programming, it seems
premature to award them a monopoly on software engineering research in general. Even
if it may in the future be possible to separate software design from implementation [151,
323], analysis and design will still require an engineering approach.
 Voas [506] provides an interesting account of what can happen when empirical
and scientific approaches take over a research area. He describes how the software qual-
ity community has moved from an enthusiastic arena for discussing ideas to becoming
complacent with the state of practice, even though none of the major challenges have
been conquered. At current conferences, very few new ideas are presented, and Voas
blames a number of proposed silver bullets that did not work for this state. Among them
are process improvement, formal methods, new languages and object orientation, met-
rics and measurement, software standards (especially process standards), testing, com-
puter-aided software engineering, and total quality management. He advocates less
over-selling, increased participation of practitioners in research and validation on real
systems, not toy laboratory examples, to remedy these problems.
 Both theoreticians and practitioners seem to blame the other camp for promoting
breakthrough silver bullets [76]. Scientists point out that the proposed silver bullets
have not been empirically validated as silver bullets [302]. Practitioners think that silver
bullets could exist only if the work can be made rational [151], deterministic and em-
pirically testable like scientists claim. Another study of software quality management
concluded: "Although the people we spoke to appeared to be well acquainted with the
quality management literature, and accepted the principles in theory, our analysis of
the data indicates that these principles have not been taken up in practice. However it is
also possible that theory does not reflect practice, and the software quality literature
does not adequately attend to the practical issues people face" [449].
 An assessment of usability research in human-computer interaction (HCI) makes
similar observations. Noting that he has been astounded at the amount of bad and irrele-
vant research, Olsen [376] requests more practical case studies and less laboratory re-
search. He blames a lack of holistic thinking, e.g.
� ignoring that "a change here almost always affects something elsewhere" [376],
� becoming "hypnotised by the fetish of efficiency, unwilling to consider competing

factors" [376],
� "you don't want to listen to closely to your customers" [376] because they often con-

fuse symptoms with underlying needs.
He refers to an analysis that found the most usable web sites to be produced by experi-
enced designers without formal usability training and without user-centred techniques
as recognised by the HCI research community. On the other hand, companies that chose
to employ a separate usability specialist, involved in analysis and testing but not design,
did not produce usable sites. Olsen thus criticise the unwillingness of usability research-
ers to look beyond the boundaries of their own community, e.g. to recognise that re-
quirement specification techniques are user-centred even though they do not use the
same terms as usability specialists.
 An ethnography of software practice [449] note the frequent use of the term
'paradigm' as an indication of rapid pace of apparent revolutionary change. This obser-
vation points to other fundamental differences between evolutionary science, and engi-
neering with frequent revolutionary paradigm shifts [293]. Schön's 'problem frames'

244

[445] might be a more appropriate term in the engineering context, but though 'para-
digm' is often misused, it reflects a lack of established scientific frameworks for soft-
ware development. Without such a framework, evolutionary science seems premature.

Software Engineering as Reflective Practice

Various new software development methodologies have been coordinated under the
umbrella of agile methods [219]. Following the approach of reflective practice [445],
these methods highlight the interaction of analysis and design rather than the establish-
ment of stable requirements prior to design, thus emphasising [219]
� Individuals and interaction over processes and tools,
� Working software over comprehensive documentation,
� Customer collaboration over contract negotiation, and
� Responding to change over following a plan.
Reflective systems development (RSD) [337] explicitly acknowledges its foundation in
Schön's work. The approach shares roots with participatory design (PD), emphasising
the role of users as active participants in software development. However, unlike PD,
RSD also deals with the practice of software engineers.

What Makes Software Different?

A number of features makes software less suited for scientific enquiry than other
branches of engineering:
� Human users influence information systems more than other engineering products.

In technical terms, humans are "variable and highly non-linear components" [108].
Positivist scientific methods can test information systems as purely technical arte-
facts, verifying whether the system conforms to its specification. Interpretive ap-
proaches are needed to understand complex and evolving sociotechnical systems,
validating to what extent an IS meets real user needs.

� Software is not controlled by laws of nature [210] which can be used for deriving
principles that determine "the boundary of what is safely possible" [514].

� Software is tangible mathematics, uniquely suited for rapid, incremental build-and-
test approaches. This explains why mathematics is so unimportant to the practitio-
ner, and why the engineering approach works so well [514].

� Software is not manufacturing. New units of software have negligible cost, "soft-
ware is pure design" [151]. Portraits of engineering as rational, formal, and science-
driven [4, 114, 151, 323] does not fit software development. While industrial engi-
neers rationalise production processes, software engineers shape the processes of
use. This outsider perspective, sometimes articulated as a dichotomy between craft
and engineering or even engineering and design, is thus not shared by software en-
gineering professionals [306, 449]. Experience has shown that methodologies based
on precisely defined processes and quantitative tools, is far less effective for design
than for manufacturing [151].

� Software enjoys a more rapid pace of innovation than most other industries [114],
and time-to-market is of greater concern [219].

� Information systems based on scientific theories like language action [124, 469,
536] and issue-based argumentation [113, 190, 452] have failed in practice. Reality
was more complex then these theories derived from empirical analysis could ac-
count for. The step from scientific analysis to practical design is thus problematic.

245

� Many portray software as the most complex artefacts ever designed [353]. "Indeed,
the more complex the problem and its analysis, the more readily we can fall into the
trap of focusing so intently and narrowly on the results of the analysis that we forget
the fundamental assumptions upon which the analysis was based" [398]. Formal
science proofs are just the logical consequences of their assumptions.

Glass' study of videotapes of system analysts [184] is a rare scientific attempt to under-
stand the nature of software engineering. Triggered by a chance encounter, he observed
that 80% of the time, the analysts were just sitting there, doing nothing. These long pe-
riods were interrupted by short moments where the subjects wrote down what they had
been thinking. Creative activities thus seem to take up most of the time. However, since
it was impossible to agree on a measurable definition of creativity, more in-depth scien-
tific studies could not be pursued. Hence, the most important aspects of software devel-
opment do not seem to be empirical testable.

A.2.4 Information Systems Research

IS research deals with both development (engineering) and use. Some see IS as a social
science, not an engineering discipline [3, 38, 359]. This perspective gives rise to re-
search similar to organisational science. Both positivist and interpretive approaches
have been applied in the study of information systems [273]. Interpretive perspectives
assume that knowledge about reality is gained through social constructions such as lan-
guage, shared meanings, documents, tools and artefacts. They focus on the complexity
of human sense-making, attempt to understand phenomena through the meanings that
people assign to them, and aim to understand the context of an IS and the processes
whereby the system influences and is influenced by its context [273].

IS engineering is about the design of systems for information processing in an or-
ganisational context. Hence, a grounding of requirements in organisational, social and
human sciences is paramount. Fekete [166] discusses what kind of contributions IS re-
search can make. Categories of contributions include new (better) ways to provide
known functionality, new (better) functionality, explanation of a phenomenon, theo-
rems, general techniques, and reflective historical accounts of a project. Most of these
categories are examples of repertoire building [445], though historical accounts may
help research on the process of reflection. Explanations and general techniques can in-
clude new paradigms for framing problems.

A.2.5 CSCW - Computer Supported Cooperative Work

CSCW is the inter-disciplinary study of how people use information technology to
communicate, coordinate and collaborate in groups [203]. CSCW occupies the middle
ground between single-user-computer-interaction (HCI) and organisational IS. CSCW
has been influenced from both sides, but a number of specialised concepts and research
themes have also emerged for CSCW [414]. Ethnographic workplace studies [407, 448]
have enjoyed a special standing among social science approaches to CSCW. Portrayed
as naturalistic inquiry, refusing any ontological commitments [407], ethnomethodology
takes an anti-theoretical starting point, arguing that the scientists should avoid using
theories as lenses for their perception, that theorising should come after the study. Labo-
ratory experiments cannot capture the prolonged, situated and contingent nature of so-
cial activity. Theoretically guided workplace studies ignore important aspects not per-
taining to the hypotheses to be tested, and thus can not as easily inform design [407].

246

These views have met criticism from competing disciplines, claiming e.g. that the open-
ness to impressions due to lack of hypotheses is illusionary, as well as the claim to be
void of strategic opportunity [448]. Hybrid approaches that combine ethnomethodology
with more theoretically oriented methods are thus advocated, on the basis that the rela-
tionship between practice and theory will change as science progresses.
 The status of experimental methods in CSCW has also been assessed [277]. Here
wicked aspects were identified, e.g. that "cultural and organisational issues affect the
ability to evaluate cause and effect" [277]. CSCW thus still need interdisciplinary and
design-oriented research. Dewan [134] provides a promising approach, combining de-
sign and evaluation of collaborative systems. The research plan he proposes is not based
on scientific methods, but on engineering, combining applications and infrastructure
research. Dewan also shows that infrastructure research derive its problems from pre-
ceding engineering work, indicating the role of engineering in providing new practical
problems for science.

A.3 Conclusions
In an engineering project the main objective is to solve wicked real world problems.
Engineering research provides new design patterns for the discipline's repertoire of ac-
tion, and new understanding of the reflective design dialogue with problem situations.
By performing system development we gain different insights than by observing the
development practices of others. A study that integrates organisational requirements,
design, implementation, and usage surveys, may not reach the same level of scientific
rigour as more narrowly focused work, but the potential practical utility should increase.
The wide scope means that there may be parts of this thesis that appear naïve to experts
of particular domains, and other parts that are not explored scientifically to their full
conclusion. Engineering research will be more open-ended than science directed at in-
cremental contributions to a specific sub-discipline. Ideas may be useful even though
they are not proven or fully empirically validated.
 The research methodology, problem framing and solution proposals of this thesis
are all based on a view of knowledge intensive work as reflective practice [445] in
communities of practitioners [527] where shared understanding, identity, meaning and
repertoires of action are socially constructed. The core concepts of this thesis include
models, interaction, openness, process, incompleteness, evolution, holism, emergence,
reflection, multiplicity, learning, and social construction. These concepts help us to se-
lect research methodologies, frame organisational needs, and design information sys-
tems. The three levels are thus consistent, coherent, and form a harmonious whole. This
work thus exemplifies the notion that problem framing and problem solving are insepa-
rably intertwined [445]. There is of course a danger that this harmonious whole be-
comes a self-guarding, self-fulfilling system of beliefs. This problem is met by ongoing
interaction with real world situations, and the application of the solution to problems
other than the ones it was originally designed for. Generalisation of design principles
and recognition of similar approaches in other domains should also help us to avoid
closure.

247

Appendix B
Implementation Details

B.1 Architecture
The architecture of WORKWARE is described at three levels:
� Logical architecture of main components (Chapter 7),
� Implementation architecture with packages of code, and
� Runtime architecture with servers, clients, and related software.
The two latter are described below.

B.1.1 Implementation Architecture

The WORKWARE implementation is divided into 4 layers of Java code, as pictured to the
left in Figure 85.

Figure 85. WORKWARE implementation architecture.

Each layer has its own Java package.
� The Presentation layer defines elements of the user interface. The presentation pack-

age contains general classes for user interfaces and customisation.
� The Interaction layer interprets requests from the user and decides how to answer

them.

248

� Data Management handles all model data at runtime. The generic package contains
implementations of data objects and attribute properties, as well as generic structures
like lists, enumerations, extensional and intensional classes.

� The Data Store contains classes for persistent model storage.
The figure also shows extension packages that commit the general techniques to particu-
lar technological decisions, i.e. HTML user interface objects, client-server interaction
across HTTP, the specific types of the WORKWARE PML, and two different persistent
storage schemes.

B.1.2 Deployment Architecture

At runtime the WORKWARE code is running inside a Java Servlet container connected to
a web server. The Java code builds complete HTML user interfaces dynamically ac-
cording to general, organisational and user preference policies. These interfaces are then
returned to the web client, via the web server, as an HTML document, using HTTP.
This runtime architecture is depicted in Figure 86, which also shows the open nature of
the system. Web pages and applications (e.g. corporate portals) can link directly to spe-
cific interfaces in WORKWARE, and WORKWARE can include links to other pages as ser-
vices or information objects in the work process models. In this manner, WORKWARE
may itself form the basis of a simple, process-oriented portal environment.

Figure 86. WORKWARE deployment architecture.

Each web server may contain several independent WORKWARE instances, e.g. for differ-
ent projects or departments. These servers work on different sets of objects, and may
have different services, configurations and language constructs. Over the lifetime of the
prototype, we have used different operating systems on the server (WINDOWS 95, NT4,
2000, and ME), and a wide range of web servers (JAVA SERVLETRUNNER, MICROSOFT

INTERNET INFORMATION SERVER, LIVESOFTWARE JRUN 2.2, later ALLAIRE JRUN 3.2,
and finally APACHE TOMCAT 4.0). The basic architecture has handled this evolution
well, though some migration problems have occurred (mainly to do with encoding of
URLs and HTTP parameters). The open source TOMCAT web server currently in use
offers standard WebDAV functionality, and has thus also been used as a lightweight

249

model repository for the EXTERNAL infrastructure. We have also installed a WIKI serv-
let, which allows users to dynamically edit web pages, to add and remove pages. WIKI
functionality is included as services in WORKWARE. Together, the two systems provide
a rich set of functionality for project portals.

B.2 Implementation of the Language Metametamodel
The DataCatalogue is the access point to all modelled objects in the WORKWARE sys-
tem. Each WORKWARE server instance has one DataCatalogue. In addition to the Data-
Catalogue, the main implementation class of WORKWARE's data management layer is
the DataObject. This object implements interfaces for access these features of an object:
� Identifier,
� Name,
� Type (referring to a basic class),
� Java class that implements the object in the runtime system,
� Attributes (extensible set),
� Relationships to other objects, implemented as attributes whose values point to the

other object,
� Help text that describes the object to the users.
All objects have a basic class that represents their primary classification. The basic class
refers to a property of the object that is not expected to change. The modelling language
constructs proposed in this thesis are implemented as basic classes. While the underly-
ing data model separates basic classes from extensions, intensions, and enumerations,
this is not visible in the ordinary user interface, where all are shown and manipulated in
the same way (as classes). Every class has a membership (set of objects) and a template
used for creating new objects.

Attributes are defined locally for each object instance, and stored in a Hashtable.
Attributes have a definition that contains name (unique within each object) and expected
value type (name of a class). ListDataObjects are used for multi-valued attributes. Each
list has a default element type and an explicit set of elements. Lists are DataObjects, and
may thus have additional attributes. More details on the use of lists are presented below.

B.2.1 Metamodelling Experience

The implementation architecture of WORKWARE (Figure 85) includes a package for spe-
cific data types. Originally we expected that the primitives of the modelling language
would require specific functionality implemented in separate Java classes. Experience
showed that such implementations were indeed needed for a few concepts (WorkItem,
Decision, Flow), mainly for managing consistency of the workflow models within strict
performance constraints. For most of the originally designed types, however, it became
evident that the generic implementation classes were sufficient. Most of the functional-
ity is anyway implemented as model interactors separate from the data management
layer. The current basic installation of WORKWARE includes 100 modelling classes im-
plemented by 5 generic and 8 specific Java classes. The mechanisms for reflection and
metamodelling have thus greatly simplified the implementation itself.

250

B.2.2 Persistent Data Storage

The Data Store layer implements persistent storage of data objects (and classes). By
default, each object is stored in a separate XML file on the WORKWARE server. When
the server is started, all objects are read from file, and the system works on DataObjects
in memory during its operation. When changes are made to the objects, updated files are
written to disk. This scheme was chosen because it was the simplest to implement for a
prototype. The interfaces are however generic and enables other storage mechanisms
(e.g. databases) to be utilised in a future, more scalable version. For the EXTERNAL in-
frastructure, DataObjects are stored together in a model file with a different XML for-
mat. The model files can be stored locally or on a repository web-server.

B.2.3 Design Patterns for Flexible Data Management

Design patterns [173] provide a framework for assessing the quality of the WORKWARE
design. In particular with respect to flexible data management, a number of design pat-
terns have been proposed. By following these patterns WORKWARE thus conforms to
state-of-the-art in software design. For object creation, Gamma et al. [173] defines these
patterns:
� Prototype creates new objects by copying prototype instances rather than instantiat-

ing a class. This pattern is implemented as templates in WORKWARE. The DataCata-
logue works as a prototype manager. Prototypes allow classes to be specified at run-
time, and simplify the class hierarchy.

� Abstract factory is an interface for creating families of related or dependent objects
without specifying their concrete classes. In WORKWARE the abstract interface Da-
taStore is implemented by two concrete classes FileDataStore and WebDataStore
that create objects at system start-up based on different persistent storage formats.

� Factory methods are abstract interfaces for creating objects that allow subclasses to
decide which class to instantiate. DataCatalogue implements a parameterised fac-
tory method for creating new objects based on a parameterised class name. This
method is used by the DataStore when creating new instances at start-up, and as a
first step in the template cloning method for DataObjects.

� Builders separate the construction of a composite object from its representation, so
the same construction process can create different representations. This scheme is
utilised in WORKWARE for creating the structure of properties (including lists for
multi-valued attributes) for each new object. Since each object may have a unique
property structure, the construction process cannot be hard-coded.

� Singleton provides a global point of access, and is conventionally implemented as a
class that has only one instance. Since multiple WORKWARE server instances can run
inside the same namespace, each has its own Context object, which provides refer-
ences to other singletons, such as the DataCatalogue, for the server in question.

� Composites implement tree structures, letting clients treat individual objects and
compositions uniformly. In WORKWARE, this is exemplified by extensional super-
classes also being classes.

� Bridges de-couple an abstraction from its implementation so that the two can vary
independently. Parsons and Wand have argued object classes in analysis and domain
modelling should be representational, not implementational [395]. In WORKWARE,
this is achieved through bridges between user level and Java implementation classes.

251

� Iterators are implemented by ListDataObject in WORKWARE. These lists are used
whenever access to a set of components is needed, whether the components are rela-
tionships, attributes, objects, or classes.

In addition to these patterns for data management, WORKWARE also utilises other pat-
terns in other layers of its architecture.

B.3 Classes in a Default WORKWARE Installation
This section describes the full metamodel that is installed alongside the program code.
Some of these classes are mandatory for the system to work properly. We briefly de-
scribe each class, how it is implemented and its most important relationships. Since no
general graphical notation has been defined yet for metamodelling in WORKWARE, and
UML is poorly suited, we just provide a textual description. Class names are printed in
bold (or in a heading) when they are first introduced, and in italic when they are re-
ferred to later.

B.3.1 Data Management

The classes below are all members of the Data Management extension. They may be
regarded as metaclasses.

Object

All objects are members of this system-defined class. Objects are identified by their
unique ID, and contain Name, Type, Implementation (name of Java class) and Help text
attributes.

Class

All classes are members of this class. They are identified by their name, so in individual
objects, the value of an attribute with type Class is just a Text.

Attribute

Attributes are identified by their name, just like classes. This metaclass is typically used
in a context where a specific object or class is identified by other attributes. It allows
customisation at the attribute level. An attribute instance also defines value and type.

List

A list contains a number of Elements. The Element type attribute points to a Class.

Extension

An extension is a list whose elements are Classes. (The Element type attribute's value
equals Class). It also identifies the default subclass that is used for instantiation. The
Extension template is used for creating new Extension classes. New subclasses may be
added at any time, just like new elements are added to any other list.

Intension

An intension identifies one or more (through a list) classes that it specialises. An attrib-
ute called Query defines the criteria that members must fulfil. The criteria compare at-

252

tributes to values defined statically as part of the Intension object. A template is used for
creating new Intension classes.

Simple Data

This Extension groups all the classes whose values are not objects, but values, i.e:
� Character
� Number (integer)
� Number (real)
� Date
� Text
� URL
� Yes or no (boolean)
Attributes with these types all have data values stored directly in attribute definitions.

Enumeration

Enumerations are lists that have simple data (any subclass) as their element type. The
enumeration template is used for creating new enumeration classes. The element set
may be altered at any time, just like new elements are added to an ordinary list.

UserData and SystemData

These extensions separate classes that are used by solution providers from those used by
end users as part of normal operation.

B.3.2 Process Modelling

The classes used for process modelling are all part of this extension.

WorkItem

The WorkItem template contains a range of attributes, such as Status, Description, Due
date, Parent, Responsible, Customer, Services, Documents etc.

Project

A project has a Name, a Model (filename) and a Root workitem.

Flow

A flow connects two connectors (From and To). During enactment, the boolean Acti-
vated attribute defines its state.

Decision Connector

A decision connector has a list of Input flows, a list of Output flows, a reference to its
Owner workitem, and a logical operation that relates numerous inputs or outputs. The
Connector type attribute defines whether the relation applies to multiple inputs or out-
puts. Like flows, connector states are defined by the Activated attribute.

LogicalOperator

This enumeration has three values, "AND", "XOR" and "" (unspecified).

253

ConnectorType

This enumeration has two values "Join" and "Fork".

Connector - Join

This intension contains all connectors whose Connector type equals "Join".

Connector - Fork

This intension contains all connectors whose Connector type equals "Fork".

Resource

This extension groups all objects that may appear as resources on a workitem, i.e. Per-
son, Document and Service (for tools).

Person

A person is both a potential role-filler on workitems and a potential user of the system.
A number of attributes are associated, e.g. username, full name, password, email ad-
dress, phone number, web page etc.

Document

Documents contain a logical name and (if it exists) the URL of the real document.

Status

This enumeration contains all the statuses that a workitem may have, i.e. Planned, Wait-
ing, Ready, Ongoing, Suspended, Finished, Terminated.

Document Status

This enumeration may be used to classify documents based on their status.

B.3.3 Service

This extension contains all objects that represent pieces of functionality in the system. It
is itself a subclass of Resource, and indirectly of Process Modelling. It has three basic
subclasses.

Worklet

A worklet is a piece of WORKWARE's internal functionality. Typically, it invokes one of
the system-defined operations in a parameterised manner. Parameter values may be
extracted from the request (the data contained in the current user interface).

URLService

A URLService is a piece of external functionality, which is performed by opening up a
URL. Desktop tools are also modelled as URLServices. They are opened by returning
an empty document with the appropriate MIME type.

254

Menu

A menu object is an internal node in the WORKWARE Explorer menu structure. It con-
tains a submenu as a list of services. The menu may however also contain other objects,
e.g. Projects, ItemLists and WorkItems.

B.3.4 Service Management

A number of classes are used for controlling which services are made available in each
user interface. Two extensions, Global Service Management and User Service Man-
agement group the concrete classes.

ServiceConfiguration

ServiceConfigurations contains a list of Included services and another list of Excluded
services. They may also contain other attributes that define the scope of the configura-
tion. Any configuration may thus be overridden by more local configurations, through
cancellation inheritance.

ClassServiceConfiguration

These objects define the services that should apply to all objects of a specific class.

UserClassServiceConfiguration

These objects add or remove services for particular persons. For instance, novice users
do not see the services "Add attribute" or "Remove attribute" on WorkItems.

ObjectServiceConfiguration

These objects define the services that should apply to a specific object, e.g. tools needed
to perform a workitem.

OperationServiceConfiguration

These objects define which services should be available in different modes of operation.
The service "Save" is for instance available in EditObject mode, but not in ViewObject.

UserOperationServiceConfiguration

Some persons may have access to extra services, such as system administration.

B.3.5 User Interface Preferences

User interfaces are controlled by policy objects. They are grouped into three subclasses
(extensions): User Interface Components, Global Preferences and User Preferences.
All user interface components are members of the basic class GUIComponentClass.
Experience has shown that this class should have been specialised, e.g. to separate
forms from images and fields. GUIComponentClass objects contain a reference to the
Java class that implements this user interface component or container (typically an
HTML element), and possibly some parameters for customisation (e.g. size, font, col-
our) stored as ordinary attributes.

255

Global Preferences

These policies define the default look, feel and content of the user interface. Three dif-
ferent subclasses (extensions) group the policies into different levels (the whole form,
each object, and each attribute).

Form Preferences

These policies define which container GUIComponentClass is used for displaying ob-
jects of a certain class in a given operation mode. These concrete subclasses exist:
� ObjectEditStyle
� ObjectViewStyle
� ObjectSearchStyle

List Preferences

List preferences control the default content and appearance of list interfaces. ListEdit-
Style and ListViewStyle define which containers (GUIComponentClass) are used for
displaying the whole list of objects, while AttributeList contains the attributes (col-
umns) to display for each object. The appearance of each attribute is controlled by at-
tributeviewstyles (see below). The set of objects to show may be given as result of a
Search operation, but it may also be defined as an ItemList.

ItemList

ItemLists are objects that define a dynamic grouping of other objects. A Type attribute
defines the class of objects to search among, and Query defines the criteria that objects
must fulfil. In addition, objects may be explicitly added to or removed from the list, by
placing them in the Included items or Excluded items lists. Itemlists are used to define
worklist, where users may add or remove workitems. Such lists may also have extra
attributes, such as Owner (a Person), which defines their scope.

Attribute Preferences

Attribute preferences define what user interface component is used for displaying the
value of each attribute. AttributeEditStyle and AttributeViewStyle define general
policies for all values that have a given class, while SpecialAttributeEditStyle and
SpecialAttributeViewStyle define more local policies for individual attributes of a
given class, such as "WorkItem.Status".

User Preferences

Personal preferences may be defined for any of the above mentioned general user inter-
face policies:
� User Form Preferences (extension)

� UserObjectEditStyle
� UserObjectViewStyle
� UserObjectSearchStyle

� User List Preferences (extension)
� UserListEditStyle
� UserListViewStyle

� User Attribute Preferences (extension)
� UserAttributeEditStyle

256

� UserAttributeViewStyle
� UserSpecialAttributeEditStyle
� UserSpecialAttributeViewStyle

There is also an additional class, UserMainContainerStyle, which allows a user to se-
lect among alternative components for the main interface, e.g. between multi-frame and
single-frame containers.

B.3.6 Awareness

The awareness notification and event logging services are customised by a number of
classes, grouped under the common extension Awareness. The simple value class Event
defines which persons caused which operation (read, write, update etc.), on which parts
(attributes) of which object, at which time. Classes that log events (e.g. WorkItem) are
members of the extension ObjectsWithEventLog.

Awareness Profiles

A basic AwarenessProfile contains two lists of event filtering Lenses, Included lenses
and Excluded lenses. A Lens belongs to one of the following classes:
� EventListLens, removing all events explicitly listed,
� EventTypeLens, removing all events of a given type, e.g. all "Read" events,
� EventUserLens, removing all events caused by a given user, e.g. myself,
� TimeLens, removing all events that happened before a given point in time,
� RelativeTimeLens, removing all event older than a given duration.
Each user may have a personalised UserAwarenessProfile, which is applied to all ob-
jects, and local User2ArtifactAwarenessProfiles, which apply to a single object (e.g. a
workitem) only.

B.4 Implementation of Interactive Activation
The model interactors are the components that activate process models in WORKWARE's
architecture. The core components of WORKWARE implement generic mechanisms for
sharing model data among distributed users. This includes simple, customisable mecha-
nisms for viewing, editing, listing and searching the modelled data. The core thus sup-
ports generic articulation and manual activation of models of any kind. This section
gives a brief overview of the core functionality in the system, as most of the interactors
reuse both the overall design as well as generic interfaces for data access, event notifica-
tion, user interfaces and customisation.

B.4.1 Dynamic Generation of User Interfaces

Figure 87 shows the core components involved in generating and controlling the user
interface of WORKWARE. When a parameterised request is received from the client (via
a web browser and a server as shown in Figure 86), the parameters are inspected in or-
der to identify the operation that the user wants performed. After the operation is per-
formed (e.g. the changes supplied by the user are sent to the Data Management layer),
the WORKWARE core servlet asks its PresentationCatalogue which user interface con-
tainer should be used to reply to this request. This container typically is an HTML form
or table. Which container the PresentationCatalogue selects, depends on the user inter-
face profile for the current user. User interface profiles are ordinary model objects.

257

Figure 87. Core WORKWARE components for user interaction.

The next step is for the core servlet to notify the container object about the detailed pa-
rameters and model data of the request. This is done through a set of standard interfaces
that different component classes may implement:
� UserSpecificComponent, adjusting its presentation to the current user (e.g. depending

on access rights),
� OperationComponent, adjusting to the current operation. For instance the same con-

tainer may be used both for viewing and editing some piece of information. Depend-
ing on the operation of the current request, different user interface components (for
view or edit) will be selected for the various data to be presented.

� ObjectListComponent, for displaying a list of objects, thus it takes the list of objects
to display, the attribute to sort by etc. as input.

� ObjectComponent, for working on a single object, taking the object in question as
input parameter.

� TypeComponent, adjusting to the type (class) involved. The type is often derived
from the object(s) involved, but in cases where the object belongs to a number of
classes, different behaviour may be needed in different contexts, depending on which
class the object currently is typecasted as.

� Selector, able to group the content and show only parts of it (the currently selected
group) at a time. One example is the tabfolder used for worktops.

Workware
Core Servlet

User interface (HTML)

generates

Service
Catalogue

Presentation
Catalogue

Data Catalogue
with Data
Objects

UI components Services

Model dataobjects

Model and
service
configuration
dataobjects

Model and UI
configuration
dataobjects

Container Component

request
parameters

258

� ContainerWithServices, capable of including a customisable set of services that the
user may invoke.

� TailorableComponent, a generic interface that allows more extensive customisation,
e.g. according to user-defined parameters. TailorableComponent takes an ordinary
model object (e.g. a profile) as input, and can be customised by any property of that
object.

After the container has been parameterised through these interfaces, it is capable of re-
turning the resulting HTML code. Typically it contains a number of components for
different parts of the data involved, e.g. one component for each attribute of an object.
The container ensures that the components are customised through the interfaces listed
above. These components may themselves be containers, e.g. a TableRow for each ob-
ject in a Table acting as an ObjectListComponent. Containers are themselves able to
integrate all of these components. In the case of the HTML interface, this integration is
achieved by concatenating the HTML code for each of the components, adding element
separator tags (e.g. separating table rows) when needed. In addition to components for
viewing or editing the data from interactive models, a user interface in WORKWARE in-
cludes components for invoking services. Which services should be included for each
request, is dynamically controlled by the ServiceCatalogue, and subject to user-defined
ServiceConfiguration models.

B.4.2 Technological Evolution

The available set of HTML containers and components has increased throughout the
lifetime of WORKWARE. The general scheme for dynamic user interface generation and
customisation presented above has proven capable of handling this evolution. Although
specific interfaces like Selector has been added, the core customisation interfaces as
well as the modelled policy objects that controls the user interface, have been relatively
stable throughout the period. Figure 88-Figure 92 shows the evolution of the WORK-

WARE user interface.

Figure 88. WORKWARE user interface, version 1, 1997.

259

The first version included only basic HTML elements like Form, Anchor, Button, Text,
and various Input fields. Version 2 (Figure 89) added images with anchors, greatly im-
proving the look and feel of the system, without interfering much with the underlying
container layouts.

Figure 89. WORKWARE user interface, version 2, 1998.

Version 3 (Figure 90) added the tabfolder interface (implemented as a table with differ-
ently coloured cells) because the core objects (WorkItems) as well as the menu struc-
tures were getting to complex to be shown in all together.

Figure 90. WORKWARE user interface, version 3, 1999.

260

The menu structure (consisting of hierarchically grouped services) was getting increas-
ingly larger, so for version 4 (Figure 91) it was decided to move away from the single-
frame interface and add a separate frame for the menu structure, called the WORKWARE
Explorer. While this change was highly appreciated among users, it complicated the
interface and made it less portable. However, all the old components are still available,
so that e.g. for mobile devices, we are able to configure the system to use the older in-
terface.

Figure 91. WORKWARE user interface, version 4, 2001.

Finally, version 5 introduced stylesheets, making the interface look more up to date and
enabling user organisations to user their own colours, fonts, sizes etc. Figure 92 shows
another key feature of the WORKWARE user interface, its capability to integrate with
other web applications and HTML pages. Since all functionality of the system can be
invoked as URLs and the whole user interface is HTML, it is simple to integrate it into,
e.g. a corporate portal. In Figure 92 the header frame of WORKWARE is replaced by that
of the UEPS portal [491]. The UEPS menu is included in a minimised frame to the left
of the WORKWARE Explorer, so users easily can switch between them.

B.4.3 Work Management

The work management tool is more tightly integrated with the core components than the
other model interactors. This reflects the nature of the services it provides, which allows
users to share updated descriptions of their work and report on progress through updat-
ing the state property of the items. The component thus does not provide any automated
services, and consequently it is the specialised user interface components that constitute
the work management tool. As described previously, these components are the worktops
for editing and viewing single workitems, and worklists providing overviews of items
that satisfies user-defined search criteria. Each form can be customised further as de-
scribed in the previous subsection. Users may for instance select different HTML com-

261

ponents for interacting with the various properties of workitems, and include a custom-
ised (modelled) set of services for each item. For worklists, users may also decide
which properties should be shown for the items.

Figure 92. WORKWARE user interface, version 5, 2002.

B.4.4 Interactive Enactment

The interactive enactment engine is mainly an automation tool, although it involves
users in situating the interpretation of the model through a few specialised user interface
components. The enactment engine contains these components:
� EngineCore, which subscribes to change events on all modelled workitems, decision

connectors and flows. If the state or activated property of these objects is changed,
the enactment engine sees to it that related objects are also updated according to the
rules and state transition diagrams presented in Chapter 4. The engine may also add
decisions to the worklists of responsible users in the case when reactive manual deci-
sion making is required.

� EngineServlet is responsible for replying to coordination services (state change) in-
voked by the users. It delegates the interpretation and activation of secondary effects
to the EngineCore, and invokes the main Workware servlet to return the work man-
agement interface when it is done.

� CoordinationServiceList is a user interface component for editing the state properties
of workitems. It displays the current state and includes other components for invok-
ing the coordination services that applies to the current item in this state (buttons in
Figure 91, images in Figure 92). Coordination services may alter the state of the
item, or explicitly activate an outgoing flow. Which services are included is deter-
mined by the outgoing transitions from each state in the diagrams presented in Chap-

262

ter 4. This user interface component is used both in worktops and in worklists (so us-
ers can quickly report on state changes without having to open the full worktop).

� FormForDecisionMaking, a specialised interface for resolving ambiguously mod-
elled decisions, e.g. because there are multiple inputs and/or outputs that can be acti-
vated at different times. The form includes a field for discussing the issues involved
and components that lets the user activate output flows.

 Figure 93. Coordination services for workitems with different states.

Figure 93 shows different instances of CoordinationServiceList for different workitems.
The buttons next to the state have different colours depending on the state the item
changes to when the service is invoked, and ToolTip help that explains the service. All
items that are not finished or terminated have Terminate as their last service. Ongoing
and Suspended items also include Finish, and services for moving between ongoing and
suspended. Ready and Waiting items here allows Start (even though it in the case of
waiting items corresponds to violating the modelled sequence of work). Item 2 and 4
have an invoked tool (service) attached to them, and thus have the tool service included
(icon with lightning across the workitem symbol). Item 5 has an output flow that keeps
item 6 from becoming ready. This flow can be activated from the CoordinationService-
List. The sorting order is by name for objects that are not ordered in sequence by flows
(most of them), but item 6 is placed last because it is modelled in sequence after item 5.
Note that the whole user interface is generated by work management, and that the Co-
ordinationServiceLists are the only components from the enactment interactor. This
exemplifies user interface integration of the interactors in the system.

B.4.5 Document Management

The basic principle for WORKWARE's document management interactor is to utilise pro-
cess structures to classify and group documents, simplifying retrieval, management and
contextual interpretation of the information. The component was originally designed as
an example of ontology-driven information management in Intranets. In another
example from in the same project, enterprise models were used to define Intranet
navigation structures [365]. This design and information workspace metamodel is thus

263

extensible to other kinds of interactive models. A simplified version was implemented
in WORKWARE, using open source software. The interface between this component and
the rest of the system is managed by a WorkspaceManager object (utilising the façade
design pattern [173]). This object makes sure that changes to the document base are
reflected in the process models. The component further includes servlets for uploading
documents, defining links to existing documents (URLs), and the following user inter-
face components:
� DocumentList, showing all the documents that satisfy current selection criteria, e.g.

all document resources assigned to workitem,
� UploadForm, for selecting local documents and uploading them,
� URLUploadForm, for defining new document model objects based on existing

documents somewhere in the World Wide Web.
Figure 94 shows how these components are included in the work management user in-
terface of a workitem (Develop D6). First the document list shows all the documents on
the item (External Methodology.doc), with services, then the upload forms for adding
new documents to the task are shown below. The leftmost WORKWARE Explorer exam-
ple in Figure 72 on page 169 shows that the flexible metametamodel of WORKWARE can
support and utilise other forms of metadata on documents as well, in this case a specific
document category is used for separating documents into submenus. In all, the docu-
ment management component presented here is a simplified proof-of-concept prototype
that has been used in some cases. It is not a full-fledged document management system,
but such a system could be integrated into the framework. Lack of versioning, a cum-
bersome user interface, and access control, are among the limitations of the current im-
plementation.

Figure 94. Document management interface for the workitem "Develop D6".

264

B.4.6 Access Control

The overall concept and services of the model-driven access control component were
presented in section 4.8. With respect to document management the implementation of
access control remedies some of the shortcomming, in that an open source content man-
agement system (JAKARTA SLIDE [17]) is integrated. SLIDE supports distributed author-
ing and versioning according to the WebDav standard [235]. In addition to storage, re-
trieval and access control, locking, and versioning are also supported by SLIDE. These
services were integrated into WORKWARE through these classes:
� WorkwareACLUpdater, a component that listens for changes to all the involved

model objects (workitems, documents, persons, projects), and makes sure that these
changes are reflected in the access control structures.

� WorkwareACLServlet, controlling user interaction in access control, and implement-
ing the mapping between process structures and access control structures.

� ACLForm, a user interface for defining and viewing current access control policies,
in a vocabulary consisting of process model terms rather than files and directories
(wherever possible). Figure 95 shows an example access control form.

� ExternalACLInterface, encapsulating and providing a single point of access from
WORKWARE to all the various SLIDE objects.

Figure 95. User interface for access control to a project.

The mapping between process structures and access control structures (files and directo-
ries) is central in this design. For instance, reuse of access rights by inheritance is sup-
ported down the directory hierarchy of SLIDE. Table 14 shows this mapping as it is cur-
rently implemented.

265

Model Object Slide Object Slide Example
Person In Slide's directory for users /users/Haavard
Project Project model url (xml file), /Projects/model1.xml
All project content Inside directory whose name

is the project-url without ex-
tension

/Projects/model1/

Document (full text) Document url /Projects/model1/Documents/
thisdocument.doc

Workitems Unique id of workitem inside
project model file, below pro-
ject content directory

/Projects/model1/oid23

Persons assigned to
project/workitem

Separate directories for each
role type below the directory
of the project or workitem,
contains links to persons

/Projects/model1/oid23/
Responsible

/Projects/model1/Participants

Information resources The Documents directory
below the directory of the
workitem, contains links to
full text documents

/Projects/model1/oid23/
Documents/thisdocument.doc

Properties Directory named like the at-
tribute, in the object's direc-
tory

/Projects/model1/oid23/Name

Table 14. Mapping between model objects and access control objects.

266

267

List of Figures

Figure 1. Coordination technologies for different forms of collaboration [192]........................... 3
Figure 2. The interplay of articulation and activation. .. 5
Figure 3. Overview of the research approach.. 7
Figure 4. Turing machines and interaction machines.. 15
Figure 5. Framework for analysing the quality of models .. 16
Figure 6. Interactive processes in the model quality framework... 18
Figure 7. Knowledge creation spiral [370].. 35
Figure 8. Lifecycle of process model evolution. ... 44
Figure 9. Reuse with process templates. ... 47
Figure 10. WfMC core terminology [532]. ... 50
Figure 11. Petri net model fragment.. 51
Figure 12. Action workflow model example [339]. .. 53
Figure 13. Decision making rationale and process loop [317].. 54
Figure 14. A system dynamic process model.. 55
Figure 15: Snapshot of a reductionist enterprise model of a complex reality. 60
Figure 16. Miers' workware evaluation framework [349]... 61
Figure 17. Workflow reference architecture [532].. 62
Figure 18. Algorithmic and interactive enactment. ... 68
Figure 19. Different degrees of specificity in process models [45]... 71
Figure 20. Process compass for navigating a template repository [329]..................................... 76
Figure 21. APM notation overview [91]. .. 84
Figure 22. The WORKWARE process modelling language. ... 86
Figure 23: Example WORKWARE model. .. 87
Figure 24. Simple model example with indirect personnel allocation through roles. 88
Figure 25. Symbols for actor roles with different role types... 89
Figure 26. Modelling decision-making authority and responsibility. ... 91
Figure 27. Logical architecture of an interactive WMS. ... 92
Figure 28. Core concepts in workflow management and interactive models.............................. 93
Figure 29. WORKWARE metamodel. ... 95
Figure 30: Work items interpreted by the work management interactor.....................................96
Figure 31. The work management tool in the interactive activation spectrum. 97
Figure 32: Workitems interpreted by the enactment engine. .. 98
Figure 33. Two process models with different degrees of structure. .. 99
Figure 34. Decisions interpreted by the enactment engine.. 100
Figure 35. Flows interpreted by the enactment engine.. 101
Figure 36. The workflow enactment tool in the interactive activation spectrum. 102
Figure 37. Interaction between user and model in starting and suspending a workitem...........102
Figure 38. Interaction in two typical workitem activation cycles. .. 103
Figure 39. Enactment of unstructured workitem collection. ... 104
Figure 40. Enactment of structured workflow... 105
Figure 41. Dynamic replanning of a structured workflow. ... 105
Figure 42. Decomposed decision. ... 107
Figure 43. More complex rules for automated decision making... 107
Figure 44. Parameterised decision connector.. 108

268

Figure 45. Absolute and relative timers. ... 108
Figure 46. Milestone as a timer with exception handling. .. 109
Figure 47. Partially and fully automated work items. ... 110
Figure 48. Different interpretations of a flow depending on the context. 114
Figure 49. Flow interpreted by the awareness engine. .. 116
Figure 50. Visualisation of access rights... 119
Figure 51. The WORKWARE metametamodel.. 123
Figure 52. Relationships between classes and instances. .. 125
Figure 53. Language extensions for reuse... 125
Figure 54. Constructs for flexible model reuse. .. 128
Figure 55. Inheritance relations for a single workitem.. 128
Figure 56. The model reuse tool supporting varying degrees of centralisation. 132
Figure 57. Spectrum from fully automated to fully manual transformation. 136
Figure 58. Process model of the reuse work. .. 137
Figure 59. Process model of the harvesting work. .. 137
Figure 60. Template specialisation hierarchy as reuse selection decisions............................... 138
Figure 61. Equivalent models for exception levels 2 and 3. ... 141
Figure 62. Organisational model with allocation decisions for a particular project.................. 144
Figure 63. A simple work process: Writing a project application... 148
Figure 64. A revised work process, involving an additional review. .. 148
Figure 65. Revised model for project proposal review. .. 149
Figure 66. Different uses of Person objects. ... 153
Figure 67. Personnel allocation to organisations and work processes. 154
Figure 68. Holistic activation semantics. .. 157
Figure 69. WORKWARE worklist. .. 165
Figure 70. WORKWARE worktop... 166
Figure 71. WORKWARE interactor architecture. .. 168
Figure 72. WORKWARE Explorer menus for different usage contexts. 169
Figure 73. The EXTERNAL Infrastructure [491]. ... 172
Figure 74. Resource properties that can be visualised with macros.. 177
Figure 75. Resource allocation simplified by semantic holism... 178
Figure 76. Model of quarterly progress reporting. .. 184
Figure 77. Management procedures in quarterly progress reporting... 185
Figure 78. Model of joint project planning in XCHIPS. ... 187
Figure 79. Top level of the project cycle template process... 192
Figure 80. Frequency of use for EXTERNAL tools [105]. .. 196
Figure 81. Perceived degree of service provision [105].. 196
Figure 82. Scientific method [81].. 233
Figure 83. Holistic and scientific concepts. .. 234
Figure 84. An overview of research relevant for information systems. 236
Figure 85. WORKWARE implementation architecture. .. 247
Figure 86. WORKWARE deployment architecture.. 248
Figure 87. Core WORKWARE components for user interaction... 257
Figure 88. WORKWARE user interface, version 1, 1997.. 258
Figure 89. WORKWARE user interface, version 2, 1998.. 259
Figure 90. WORKWARE user interface, version 3, 1999.. 259
Figure 91. WORKWARE user interface, version 4, 2001.. 260
Figure 92. WORKWARE user interface, version 5, 2002.. 261
Figure 93. Coordination services for workitems with different states. 262
Figure 94. Document management interface for the workitem "Develop D6". 263
Figure 95. User interface for access control to a project. .. 264

269

List of Tables

Table 1. Design implications of underlying assumptions [427].. 42
Table 2. Summary of requirements. .. 48
Table 3. Differences among static, adaptive and interactive WMS. ...80
Table 4. Enactment policies. ... 111
Table 5. Gaps between real world semantic holism and IS modelling reductionism................ 156
Table 6. Petri net enactment of model with two workitems A and B in sequence....................158
Table 7. WORKWARE enactment of model with two workitems A and B in sequence. 158
Table 8. Research challenges and the contributions that meet them. ..161
Table 9. User interface policy that utilises WORKWARE's reflection mechanisms.................... 167
Table 10. Summary of evaluation results (average scores) [287]. .. 189
Table 11. Characteristics of different SME network scenarios [180]....................................... 194
Table 12. Statistics for models of different SME network scenarios.. 195
Table 13. Semiotic levels. ... 234
Table 14. Mapping between model objects and access control objects. 265

270

271

References

1. Abbot, K. R. and Sarin, S. K. Experiences with Workflow Management: Issues for The Next Genera-
tion, ACM CSCW Conference, 1994.

2. Abdel-Hamid, T. K. and Madnick, S. E. Lessons Learned from Modeling the Dynamics of Software
Development, Communications of the ACM, vol. 32, no. 12, 1989.

3. Adam, F. and Fitzgerald, B. The Status of the Information Systems Field: Historical Perspective and
Practical Orientation, Information Systems Research, vol. 5, no. 4, 2000.

4. Adler, P. S. and Winograd, T. A. Usability - Turning Technologies into Tools. Oxford University
Press, New York, USA, 1992.

5. Agarwal, R., Bruno, G. and Torchiano, M. Instance Modelling - Beyond Object-Oriented Modelling,
3rd International Conference on Information Technology, Bhubaneswar, India, 2000.

6. Agostini, A., De Michelis, G. and Grasso, M. A. Rethinking CSCW systems: the architecture of
MILANO, ECSCW Conference, Lancaster, UK, 1997.

7. Agostini, A. and DeMichelis, G. A Light Workflow Management System Using Simple Process Mod-
els, Computer Supported Cooperative Work, vol. 9, no. 3-4, 2000.

8. Agostini, A., Michelis, G. D. and Loregian, M. Undo in Workflow Management Systems, in Business
Process Management 2003, LNCS 2678, Springer, Berlin, Germany, 2003.

9. Agre, P. Accountability and Discipline: A Comment on Suchman and Winograd, Computer Sup-
ported Cooperative Work, vol. 3, no. 1, 1995.

10. Alexander, C. The Origins of Pattern Theory: The Future of the Theory, and the Generation of a
Living World, IEEE Software, vol. 16, no. 5, 1999.

11. Alloui, I., Cimpan, S., Oquendo, F. and Verjus, H. A Software Framework for Software-Intensive
Process Modelling, Enactment and Fuzzy Control, Transactions of the Society for Design and Proc-
ess Science, vol. 5, no. 4, 2001.

12. Alonso, G., Fiedler, U., Hagen, C., Lazcano, A., Schuldt, H. and Weiler, N. WISE: Business to Busi-
ness E-Commerce, International Workshop on Research Issues on Data Engineering, Sydney, Aus-
tralia, 1999.

13. Althoff, K.-D., Nick, M. and Tautz, C. Improving Organizational Memories Through User Feed-
back, Workshop on Learning Software Organizations, Conference on Software Engineering and
Knowledge Engineering (SEKE), Kaiserslautern, Germany, 1999.

14. Ambriola, V., Conradi, R. and Fuggetta, A. Assessing Process-Centered Software Engineering Envi-
ronments, ACM Transactions on Software Engineering and Methodology, vol. 6, no. 3, 1997.

15. Andersen, R. A Configuration Management Approach for Supporting Cooperative Information Sys-
tem Development, PhD-thesis, The Norwegian Institute of Technology, Trondheim, Norway, 1994.

16. Antunes, P. and Guimaraes, N. Beyond Formal Processes: Augmenting Workflow with Group Inter-
action Techniques, ACM Conference on Organizational Computing Systems (COOCS), Milpitas,
California, USA, 1995.

17. Apache Software Foundation Jakarta Slide homepage, http://jakarta.apache.org/slide, 2002.
18. Araujo, R. and Borges, M. Extending the Software Process Culture - An Approach Based on Group-

ware and Workflow, in PROFES Conference, LNCS 2188. Springer, Berlin, Germany, 2001.
19. Argyris, C. and Schön, D. Organizational Learning: A Theory of Action Perspective. Addison

Wesley, Reading, MA, USA, 1978.
20. Argyris, C. and Schön, D. Organizational Learning II: Theory, Method and Practice. Addison

Wesley, Reading, MA, USA, 1996.
21. Arkin, A. Business Process Modelling Language - BPML 1.0 Working Draft, BPMI.org, 2002.
22. Armour, P. G. The Case for a New Business Model, Communications of the ACM, vol. 43, no. 8,

2000.
23. Atnafu, S., Chbeir, R. and Brunie, L. Efficient Content-Based and Metadata Retrieval in Image Da-

tabases, IKNOW Conference, Graz, Austria, 2002.

272

24. Augeraud, M. and Freeman-Benson, B. N. Dynamic Objects, ACM Conference on Organizational
Computing Systems (COOCS), Milpitas, California, USA, 1993.

25. Avison, D., Lau, F., Myers, M. and Nielsen, P. A. Action research, Communications of the ACM,
vol. 42, no. 1, 1999.

26. Badouel, E. and Olivier, J. Reconfigurable Nets, a Class of High Level Petri Nets Supporting Dy-
namic Changes within Workflow Systems, Technical Report 3339, INRIA, Rennes, France, 1998.

27. Bancroft, N. H., Seip, H. and Sprengel, A. Implementing SAP R/3: How to Introduce a Large System
into a Large Organisation. Manning, 1998.

28. Bandinelli, S., Fuggetta, A., Lavazza, L., Loi, M. and Picco, G. P. Modeling and Improving an In-
dustrial Software Process, IEEE Transactions on Software Engineering, vol. 21, no. 5, 1995.

29. Bannon, L. Editorial: Commentaries and a Response in the Suchman-Winograd Debate, Computer
Supported Cooperative Work, vol. 3, no. 1, 1995.

30. Bannon, L. and Bødker, S. Constructing Common Information Spaces, ECSCW Conference, Lancas-
ter, England, 1997.

31. Bannon, L. J. The Politics of Design: Representing Work, Communications of the ACM, vol. 38, no.
9, 1995.

32. Bannon, L. J. and Schmidt, K. CSCW: Four characters in search of a context, ECSCW Conference,
Gatwick, U.K., 1989.

33. Bansler, J. P. and Bødker, K. A Reapprailsal of Structured Analysis: Design in an Organisational
Context, ACM Transactions on Information Systems, vol. 11, no. 2, 1993.

34. Bardram, J. E. Plans as Situated Action: An Activity Theory Approach to Workflow Systems,
ECSCW Conference, Lancaster, England, 1997.

35. Barlow, C. M. Exploring a Human Centered Perspective on Collaboration and Knowledge Man-
agement Systems, SSGRR Conference, Rome, Italy, 2001.

36. Barnard, P., May, J., Duke, D. and Duce, D. Systems, Interaction, and Macrotheory, ACM Transac-
tions on Computer-Human Interaction, vol. 7, no. 2, 2000.

37. Barth, T. and Eriksen, T. H. Embodiment and Time: Inventions of Time in Sensory, Instrumental and
Semiotic Technologies, 2nd Nordic Baltic Conference on Activity Theory and Socio-Cultural Re-
search, Rönneby, Sweden, 2002.

38. Baskerville, R. L. Investigating Information Systems with Action Research, Communications of the
Association for Information Systems, vol. 2, no. 19, 1999.

39. Baumard, P. Tacit Knowledge in Organizations. Sage, London, UK, 1999.
40. Benson, I., Everhard, S., McKernan, A., Galewsky, B. and Partridge, C. Mathematical Structures for

Reasoning about Emergent Organization, ACM CSCW Workshop: Beyond Workflow Management,
Philadelphia, USA, 2000.

41. Bentley, R. and Dourish, P. Medium versus mechanism: Supporting collaboration through customi-
sation, ECSCW Conference, Stockholm, Sweden, 1995.

42. Bentley, R., Horstmann, T., Sikkel, K. and Trevor, J. Supporting collaborative information sharing
with the World-Wide Web: The BSCW Shared Workspace system, WWW Conference, Boston, 1995.

43. Berger, P. L. and Luckmann, T. The Social Construction of Reality. A Treatise in the Sociology of
Knowledge. Penguin Books, USA, 1966.

44. Bergmans, L. and Aksit, M. Composing Crosscutting Concerns Using Composition Filters, Com-
munications of the ACM, vol. 44, no. 10, 2001.

45. Bernstein, A. How Can Cooperative Work Tools Support Dynamic Group Processes? Bridging the
Specificity Frontier, ACM CSCW Conference, Philadelphia, USA, 2000.

46. Bernstein, A. and Jablonski, S. Workshop: Beyond Workflow Management: Supporting Dynamic
Organisational Processes, ACM CSCW Conference, Philadelphia, USA, 2000.

47. Bernstein, A., Klein, M. and Malone, T. The Process Recombinator: A Tool for Generating New
Business Process Ideas, ICIS Conference, Charlotte, NC, USA, 1999.

48. Berre, A.-J. An Object-oriented Framework for Systems Integration and Interoperability, PhD-
thesis, The Norwegian Institute of Technology, Trondheim, Norway, 1993.

49. Bertino, E., Ferrari, E. and Atluri, V. Specification and Enforcement of Authorization Constraints in
Workflow Management Systems, ACM Transactions on Information and System Security, vol. 2, no.
1, 1999.

50. Bier, E., Stone, M., Pier, K., Buxton, W. and DeRose, T. Toolglass and Magic Lenses: The See-
Through Interface, SIGGRAPH Conference, Anaheim, California, 1993.

273

51. Bijker, W. E., Hughes, T. P. and Pinch, T. The Social Construction of Technological Systems. MIT
Press, Cambridge, Mass., 1987.

52. Birk, A., Dingsøyr, T. and Stålhane, T. Postmortem: Never Leave a Project without It, IEEE Soft-
ware, vol. 19, no. 3, 2002.

53. Blackler, F. Knowledge, Knowledge Work and Organizations: An Overview and Interpretation,
Organization Studies, 1995.

54. Blauner, R. Alienation and Freedom. The University of Chicago Press, Chicago, 1964.
55. Block, N. Holism, Mental and Semantic, in Routledge Encyclopedia of Philosophy. Routledge, New

York, Ny, USA, 1998.
56. Boehm, B. Get Ready for Agile Methods, with Care, IEEE Computer, vol. 35, no. 1, 2002.
57. Boehm, B. and Basili, V. R. Gaining Intellectual Control of Software Development, IEEE Computer,

vol. 33, no. 5, 2000.
58. Bogia, D. P. and Kaplan, S. M. Flexibility and Control for Dynamic Workflows in the wOrlds Envi-

ronment, ACM Conference on Organizational Computing Systems (COOCS), Milpitas, California,
1995.

59. Bogia, D. P., Tolone, W. J., Kaplan, S. M. and Tribouille, E. Supporting dynamic interdependencies
among collaborative activities, ACM Conference on Organizational Computing Systems (COOCS),
1993.

60. Boland, R. J. J. and Tenkasi, R. V. Perspective Making and Perspective Taking in Communities of
Knowing, Organization Science, vol. 6, no. 4, 1995.

61. Bolcer, G. and Kaiser, G. SWAP: Leveraging the Web to Manage Workflow, IEEE Internet Comput-
ing, vol. 3, no. 1, 1999.

62. Bolcer, G. A. and Taylor, R. N. Endeavors: A Process System Integration Infrastructure, Interna-
tional Conference on Software Process (ICSP4), Brighton, U.K., 1996.

63. Booch, G., Jacobson, I. and Rumbaugh, J. The Unified Modeling Language User Guide. Addison
Wesley, Reading, Massachusetts, 1999.

64. Borghoff, U. M. and (Editors), R. P. Information Technology for Knowledge Management. Springer
Verlag, Berlin, 1998.

65. Borghoff, U. M., Bottoni, P., Mussio, P. and Pareschi, R. Reflective Agents for Adaptive Workflows,
Practical Aspects of Knowledge Management (PAKM) Conference, Basel, Switzerland, 1996.

66. Borgida, A. and Murata, T. Workflows as Persistent Objects with Persistent Exceptions - A Frame-
work for Flexibility, ACM CSCW Workshop: Towards Adaptive Workflow Systems, Seattle, 1998.

67. Bose, P. and Zhou, X. WWAC: WinWin Abstraction Based Decision Coordination, ACM Work
Activities Coordination and Collaboration Conference (WACC), San Francisco, USA, 1999.

68. Botha, R. A. and Eloff, J. H. P. A Framework for Access Control in Workflow Systems, Information
Management and Computer Security, vol. 9, no. 3, 2000.

69. Bowers, Button and Sharrock Workflows from within and without, ECSCW Conference, Stockholm,
Sweden, 1995.

70. Brasethvik, T. and Gulla, J. A. A Conceptual Modelling Approach to Semantic Document Retrieval,
CAiSE Conference, Springer LNCS 2348, Toronto, Canada, 2002.

71. Brathaug, T. A. and Evjen, T. Å. Enterprise Modelling, Technical Report STF 38 A96302, SINTEF,
Trondheim, Norway, 1996.

72. Brataas, G. Integrating Management of Human and Computer Resources in Task Processing Or-
ganizations: A Conceptual View, PhD-thesis, Norwegian Institute of Technology, Trondheim, Nor-
way, 1996.

73. Braverman, M. Labor and Monopoly Capital. The University of Chicago Press, Chicago, USA,
1974.

74. Brinkkemper, S. Method Engineering with Web-Enabled Methods, in Information Systems Engineer-
ing - State of the Art and Research Themes, S. Brinkkemper, E. Lindencrona, and A. Sølvberg, Eds.
Springer, Berlin, Germany, 2000.

75. Brooks, F. P. jr. The Mythical Man-Month (20th Anniversary Edition 1995). Addison-Wesley, 1975.
76. Brooks, F. P. jr. No Silver Bullet.: Essence and Accidents of Software Engineering, Information

Processing Conference, 1986.
77. Brown, J. S. and Duguid, P. Organizational Learning and Communities-of-Practice: Toward a Uni-

fied View of Working, Learning and Innovation, Organization Science, vol. 2, no. 1, 1991.
78. Brown, W. J., McCormick, H. W. Jr. and Thomas, S. W. Anti-Patterns in Project Management. John

Wiley & Sons, USA, 2000.

274

79. Bruno, G., Torchiano, M. and Agarwal, R. Instance modeling - beyond object-oriented modeling,
Conference on Information Technology (CIT), Bhubaneswar, India, 2000.

80. Brunsson, N. The Organization of Hypocricy, Talk, Decisions and Actions in Organizations. John
Wiely and Sons, New York, 1989.

81. Bunge, M. Philosophy of Science - Vol.1 From Problem to Theory, Revised edition, Transaction
Publishers, New Brunswick, USA, 1998.

82. Bunge, M. Philosophy of Science - Vol.2 From Explanation to Justification, Revised edition, Trans-
action Publishers, New Brunswick, USA, 1998.

83. Burg, J. F. M. Linguistic Instruments in Requirements Engineering, PhD-thesis, Vrije Universiteit,
Amsterdam, NL, 1997.

84. Bussler, C. Process Model Inheritance, CAiSE Conference, Springer LNCS 2348, Toronto, Canada,
2002.

85. Button, G. What's Wrong with Speach Act Theory, Computer Supported Cooperative Work, vol. 3,
no. 1, 1995.

86. Cameron, J. Configurable Development Processes, Communications of the ACM, vol. 45, no. 3,
2002.

87. Carchiolo, V., D'Ambra, S., Longheu, A. and Malgeri, M. Object-Oriented Approach in Production
Flow Modeling, Workflow Management Conference, Münster, Germany, 1999.

88. Carlsen, A., Syed, J. and Välikangas, L. Emerging Characteristics of Knowledge Intensive Work,
Report D99-2184, SRI Consulting, Business Intelligence Program, Menlo Park, CA, USA, 1999.

89. Carlsen, S. Comprehensible Business Process Models for Process Improvement and Process Sup-
port, CAiSE Doctoral Consortium, Heraklion, Greece, 1996.

90. Carlsen, S. Conceptual Modeling and Composition of Flexible Workflow Models, PhD-thesis, Nor-
wegian University of Science and Technology, Trondheim, Norway, 1997.

91. Carlsen, S. Action Port Model: A Mixed Paradigm Conceptual Workflow Modeling Language,
CoopIS Conference, New York, 1998.

92. Carlsen, S. and Gjersvik, R. Organizational Metaphors as Lenses for Analyzing Workflow Technol-
ogy, ACM GROUP Conference, Phoenix, Arizona USA, 1997.

93. Carlsen, S., Johnsen, S. G., Jørgensen, H. D., Coll, G. J., Mæhle, Å., Carlsen, A. and Hatling, M.
Knowledge re-activation mediated through knowledge carriers, MICT Conference, Copenhagen,
Denmark, 1999.

94. Carlsen, S. and Jørgensen, H. Emergent Workflow: The AIS Workware Demonstrator, ACM CSCW
Workshop: Towards Adaptive Workflow Systems, Seattle, 1998.

95. Carlsen, S., Jørgensen, H. D., Krogstie, J. and Sølvberg, A. Process Models as a Knowledge Crea-
tion Arena, EURAM Conference, Stockholm, Sweden, 2002.

96. Carlsen, S., Krogstie, J., Sølvberg, A. and Lindland, O. I. Evaluating Flexible Workflow Systems,
Hawaii International Conference on System Sciences (HICSS-30), Maui, Hawaii, 1997.

97. Casati, F. A Discussion on Approaches to Handling Exceptions in Workflows, ACM CSCW Work-
shop: Towards Adaptive Workflow Systems, Seattle, 1998.

98. Casati, F., Ceri, S., Pernici, B. and Pozzi, G. Workflow Evolution, ER Conference, Cottbus, Ger-
many, 1996.

99. Casati, F. and Shan, M. C. Dynamic and Adaptive Composition of e-Services, Information Systems
Journal, vol. 26, no. 3, 2001.

100. Castel, F. Theory, Theory on the Wall ..., Communications of the ACM, vol. 45, no. 12, 2002.
101. Chen, P. P., Akoka, J., Kangassalo, H. and Thalheim, B. Conceptual Modeling. Current Issues and

Future Directions. Springer LNCS 1565, Berlin, Germany, 1999.
102. Chen, P. P., Thalheim, B. and Wong, L. Y. Future Directions of Conceptual Modeling, in Concep-

tual Modelling, P. P. Chen, J. Akoka, H. Kangassalo, and B. Thalheim, Eds. Springer LNCS 1565,
Berlin, Germany, 1999.

103. Chiu, D., Li, Q. and Karlapalem, K. A Logical Framework for Exception Handling in ADOME
Workflow Management System, in CAiSE Conference, Springer LNCS 1789, B. Wangler and L.
Bergman, Eds., Stockholm, Sweden, 2000.

104. Chou, S.-C. ProActNet: Modelling Processes through Activity Networks, International Journal of
Software Engineering and Knowledge Engineering, vol. 12, no. 5, 2002.

105. Chrysostalis, M., Hildrum, J., Krogstie, J., Scagno, G. and Strømseng, K. Use Case Evaluation Re-
port, Deliverable 9-93-S-2003-01-2, The EXTERNAL Project, 2003.

275

106. Clarke, P. and Cooper, M. Knowledge Management and Collaboration, Practical Applications of
Knowledge Management (PAKM) Conference, Basel, Switzerland, 2000.

107. Clegg, S. Frameworks of Power. Sage, London, UK, 1989.
108. Cockburn, A. Characterizing People as Non-Linear, First-Order Components in Software Develop-

ment, Systemics, Cybernetics and Informatics (SCI) Conference, Orlando, Florida, 2000.
109. Cockburn, A. Selecting a Project's Methodology, IEEE Software, vol. 17, no. 4, 2000.
110. Cockburn, A. People and Methodologies in Software Development, PhD-thesis, University of Oslo,

2003.
111. Colwell, B. Ground Bounce, IEEE Computer, vol. 36, no. 3, 2003.
112. Conklin, J. Wicked Problems and Fragmentation, in Dialog Mapping: Defragmenting Projects with

Shared Understanding. cognexus.org, 2003.
113. Conklin, J. and Begeman, L. gIBIS: A Hypertext Tool for Exploratory Policy Discussion, ACM

Transactions on Office Information Systems, vol. 6, no. 4, 1988.
114. Conradi, R. and Fuggetta, A. Improving Software Process Improvement, IEEE Software, vol. 19, no.

4, 2002.
115. Conradi, R. and Jaccheri, M. L. Process Modelling Languages, in Software Process: Principles,

Methodology and Technology, Lecture Notes in Computer Science, Springer LNCS 1500, 1998.
116. Corbett, J. M. Work at the Interface: Advanced Manufacturing Technology and Job Design, in Us-

ability - Turning Technologies into Tools, P. S. Adler and T. A. Winograd, Eds. Oxford University
Press, New York, USA, 1992.

117. Cugola, G. Tolerating Deviations in Process Support Systems via Flexible Enactment of Process
Models, IEEE Transactions on Software Engineering, vol. 24, no. 11, 1998.

118. Cugola, G., Nitto, E. D., Fuggetta, A. and Ghezzi, C. A Framework for Formalizing Inconsistencies
and Deviations in Human-Centered Systems, ACM Transactions Software Engineering and Method-
ology, vol. 5, no. 3, 1996.

119. Curtis, B., Kellner, M. I. and Over, J. Process Modeling, Communications of the ACM, vol. 35, no.
9, 1992.

120. Dangelmaier, W., Hamoudia, H. and Klahold, R. F. Domain Preferences for End-User Tailoring in
Shared Workflow Interfaces, CRIWG Workshop, Darmstadt, Germany, 2002.

121. Davenport, T. H. Process Innovation. Harvard Business School Press, Boston, Massachusetts, 1993.
122. Davenport, T. H. and Prusak, L. Working Knowledge. Harvard Business School Press, Boston, Mas-

sachusetts, 1993.
123. De Michelis, G., Dubois, E., Jarke, M., Matthes, F., Mylopoulos, J., Pohl, K., Schmidt, J., Woo, C.

and Yu, E. Cooperative Informations Systems: A Manifesto, in Cooperative Information Systems:
Trends and Directions, M. Papazoglou and G. Schlageter, Eds. Academic Press, 1998.

124. De Michelis, G. and Grasso, M. A. Situating Conversations within the Language/Action Perspective:
The Milan Conversation Model, ACM CSCW Conference, Chapel Hill, North Carolina, USA, 1994.

125. Dehli, E., Smith-Meyer, H. and Lillehagen, F. Metis LEARN - Leveraging Enterprise Architecture
Repository, Concurrent Engineering (CE) Conference, Madeira, Portugal, 2003.

126. Delphi Group BPM 2001 - In Process. The Changing Role of Business Process Management in To-
day's Economy, Whitepaper, 2001.

127. DeMarco, T. and Boehm, B. The Agile Methods Fray, IEEE Computer, vol. 35, no. 6, 2002.
128. Denning, P. Computing the Profession, in Computer Science and Engineering Education, T. Green-

ing, Ed. George Mason University, Fairfax, VA, 1998.
129. Denning, P. Computer Science: The Discipline, in Encyclopedia of Computer Science, A. Ralston

and D. Hemmendinger, Eds. George Mason University, Fairfax, VA, 2000.
130. Denning, P. and Dargan, P. A. Action-Centered Design, in Bringing Design to Software, T. Wino-

grad, Ed. Addison-Wesley, New York, 1996.
131. Denning, P. and Medina-Mora, R. Completing the Loops, ACM Interactions, vol. 25, no. 3, 1995.
132. Denning, P. Flatlined, Communications of the ACM, vol. 45, no. 6, 2002.
133. Derniame, J. C. Software Process: Principles, Methodology and Technology. Springer LNCS 1500,

Berlin, Germany, 1998.
134. Dewan, P. An Integrated Approach to Designing and Evaluating Collaborative Applications and

Infrastructures, Computer Supported Cooperative Work, vol. 10, no. 1, 2001.
135. Divitini, M. and Simone, C. Supporting Different Dimensions of Adaptability in Workflow Modeling,

Computer Supported Cooperative Work, vol. 9, no. 3-4, 2000.

276

136. Donath, J. A Semantic Approach to Visualizing Online Conversations, Communications of the ACM,
vol. 45, no. 4, 2002.

137. Dori, D. Why Significant UML Change is Unlikely, Communications of the ACM, vol. 45, no. 11,
2002.

138. Dourish, P. Developing a Reflective Model of Collaborative Systems, ACM Transactions on Com-
puter-Human Interaction, vol. 2, no. 1, 1995.

139. Dourish, P. Utilising Metalevel Techniques in a Flexible Toolkit for CSCW Applications, ACM
Transactions on Computer-Human Interaction, vol. 5, no. 2, 1998.

140. Dourish, P. Process Descriptions as Organizational Accounting Devices: The Dual Use of Workflow
Technologies, ACM GROUP Conference, Boulder, USA, 2001.

141. Dourish, P. and Bellotti, V. Awareness and Coordination in Shared Workspaces, ACM CSCW Con-
ference, Toronto, Canada, 1992.

142. Dourish, P., Holmes, J., MacLean, A., Marqvardsen, P. and Zbyslaw, A. Freeflow: Mediating Be-
tween Representation and Action in Workflow Systems, ACM CSCW Conference, Boston, USA,
1996.

143. Dowson, M. and Fernstrom, C. Towards Requirements for Enactment Mechanisms, 3rd European
Workshop on Software Process Technology, 1994.

144. D'Souza, D., Sane, A. and Birchenough, A. First Class Extensibility for UML - Packaging of Pro-
files, Stereotypes, Patterns, UML Conference, Springer LNCS 1723, Fort Collins, USA, 1999.

145. Duddy, K. UML2 Must Enable a Family of Languages, Communications of the ACM, vol. 45, no.
11, 2002.

146. Dustdar, S. Collaborative Knowledge Flow - Improving Process-Awareness and Traceability of
Work Activities, PAKM Conference, Springer LNCS 2569, 2002.

147. Eder, J. and Panagos, E. Towards Distributed Workflow Process Management, ACM WACC Work-
shop: Cross-Organisational Workflow Management and Co-ordination, San Fransisco, USA, 1999.

148. Edmonds, D. and ter Hofstede, A. H. M. Achieving Workflow Adaptability by Means of Reflection,
ACM CSCW Workshop: Towards Adaptive Workflow Systems, Seattle, 1998.

149. Edwards, W. K. Policies and Roles in Collaborative Applications, ACM CSCW Conference, Bos-
ton, Mass, 1996.

150. Ehn, P. Scandinavian Design: On Participation and Skill, in Usability - Turning Technologies into
Tools, P. S. Adler and T. A. Winograd, Eds. Oxford University Press, New York, USA, 1992.

151. Eischen, K. Software Development: an Outsider's View, IEEE Computer, vol. 35, no. 5, 2002.
152. Ellis, C. and Keddara, K. ML-DEWS: Modeling Language to Support Dynamic Evolution within

Workflow Systems, Computer Supported Cooperative Work, vol. 9, no. 3-4, 2000.
153. Ellis, C., Keddara, K. and Rozenberg, G. Dynamic Change Within Workflow Systems, ACM Confer-

ence on Organizational Computing Systems (COOCS), Milpitas, CA, USA, 1995.
154. Ellis, C. and Nutt, G. Workflow: The Process Spectrum, NSF Workshop on Workflow and Process

Automation in Information Systems, Athens, Georgia, USA, 1996.
155. Ellis, C. A. and Keddara, K. A Workflow Change is a Workflow, in Business Process Management,

W. v. d. Aalst, J. Desel, and A. Oberweis, Eds. Springer LNCS 1806, Berlin, Germany, 2000.
156. Ellis, C. S. and Maltzahn, C. The Chautauqua Workflow System, Hawaii International Conference on

System Sciences (HICSS-30), Maui, Hawaii, 1997.
157. Elrad, T., Filman, R. E. and Bader, A. Aspect Oriented Programming - Special Issue, Communica-

tions of the ACM, vol. 44, no. 10, 2001.
158. Emmerich, W., Finkelstein, A., Fugetta, A., Montanegro, C. and Derniame, J.-C. Software Process -

Standards, Assessment and Improvement, in Software Process: Principles, Methodology and Tech-
nology, Lecture Notes in Computer Science, Springer LNCS 1500, 1998.

159. Eppler, M. J.-v. , Seifried, P. M. and Röpnack, A. Improving Knowledge Intensive Processes
through an Enterprise Knowledge Medium, ACM SIGCPR Conference, New Orleans, USA, 1999.

160. Everdingen, Y. v., Hillegersberg, J. v. and Waarts, E. ERP Adoption by European Midsize Compa-
nies, Communications of the ACM, vol. 43, no. 4, 2000.

161. EXTERNAL EXTERNAL - Extended Enterprise Resources, Networks And Learning, EU Project,
IST-1999-10091, New Methods of Work and Electronic Commerce, Dynamic Networked Organisa-
tions. Partners: DNV, GMD-IPSI, Zeus E.E.I.G., METIS, SINTEF Telecom and Informatics,
http://www.external-ist.org/, 2000-2002.

277

162. Falkenberg, E. D., Hesse, W., Lindgreen, P., Nilsson, B. E., Oei, J. L. H., Rolland, C., Stamper, R.
K., Assche, F. J. M. V., Verrijn-Stuart, A. A. and Voss, K. A Framework of Information System
Concepts - The FRISCO Report, IFIP WG 8.1, 1996.

163. Farshchian, B. A. Integrating Geographically Distributed Development Teams through Increased
Product Awareness, Information Systems Journal, vol. 26, no. 3, 2001.

164. Faustmann, G. Configuration for Adaptation - A Human-centered Approach to Flexible Workflow
Enactment, Computer Supported Cooperative Work, vol. 9, no. 3-4, 2000.

165. Faustmann, G. and Wikarski, D. Exception Handling in Petri-Net-Based Workflow Management,
Practical Aspects of Knowledge Management (PAKM) Conference, Basel, Switzerland, 1996.

166. Fekete, A. Preparation for Research: Instruction in Interpreting and Evaluating Research, ACM
SIGCSE Conference, Philadelphia, USA, 1996.

167. Fischer, L. Excellence in Practice IV - Innovation and Excellence in Workflow and Knowledge Man-
agement. Workflow Management Coalition, Future Strategies Inc., Florida, USA, 2000.

168. Fox, M. S. and Gruninger, M. Enterprise Modelling, AI Magazine, 2000.
169. Franch, X. and Ribo, J. M. Using UML for Modelling the Static Part of a Software Process, UML

Conference, Springer LNCS 1723, Fort Collins, CO, USA, 1999.
170. Frank, W. and Tyson, K. P. Be Clear, Clean and Concise, Communications of the ACM, vol. 45, no.

11, 2002.
171. Freeman, P. A. Effective Computer Science, ACM Computing Surveys, vol. 27, no. 1, 1995.
172. Fuggetta, A. and Jaccheri, M. L. Dynamic Partitioning of Complex Process Models, Information and

Software Technology, vol. 42, 2000.
173. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns - Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading, MA, 1994.
174. Gane, C. and Sarson, T. Structured Systems Analysis: Tools and Techniques. Prentice Hall, 1979.
175. Gary, K., Lindquist, T. and Koehnemann, H. Automated Process Support for Organizational and

Personal Processes, ACM GROUP Conference, Phoenix, Arizona USA, 1997.
176. Gasser, L. The integration of computing and routine work, ACM Transactions on Office Information

Systems, vol. 4, no. 3, 1986.
177. Georgakopoulos, D., Hornick, M. and Sheth, A. An Overview of Workflow Management: From Pro-

cess Modeling to Workflow Automation Infrastructure, Distributed and Parallel Databases, vol. 3,
1995.

178. Gerson, E. M. and Star, S. L. Analyzing Due Process in the Workplace, ACM Transactions on Office
Information Systems, vol. 4, no. 3, 1986.

179. Ghannouchi, S. A., Jamel, L. and Ghezala, H. H. B. Contribution of Case-Based Reasoning to Soft-
ware Processes, Systemics, Cybernetics and Informatics (SCI) Conference, Orlando, Florida, 2000.

180. Giotopoulos, K., Vassiliadis, B. and Scagno, G. WP6 Worktop specification, Deliverable 6-63-W-
2001-01-1, The EXTERNAL Project, 2001.

181. Gjersvik, R. The Modelling Conference: Participation and Visualization for a Process Oriented
Intranet, Technical Report STF38 S00910, SINTEF, Trondheim, Norway, 2000.

182. Gjersvik, R. and Hepsø, V. Using Models of Work Practice as Reflective and Communicative De-
vices: Two Cases from the Norwegian Offshore Industry, Participatory Design Conference, 1998.

183. Glance, N. S., Pagani, D. S. and Pareschi, R. Generalized Process Structure Grammars (GPSG) for
Flexible Representation of Work, ACM CSCW Conference, Boston, USA, 1996.

184. Glass, R. L. A Story about the Crativity Involved in Software Work, IEEE Software, vol. 18, no. 5,
2001.

185. Glass, R. L. Searching for the Holy Grail of Software Engineering, Communications of the ACM,
vol. 45, no. 6, 2002.

186. Gnatz, M., Marschall, F., Popp, G., Rausch, A. and Schwerin, W. Towards a Living Software Devel-
opment Process Based on Process Patterns, EWSPT Conference, Springer LNCS 2077, 2001.

187. Goebl, W., Gruber, R., Messner, K., Schwarzer, B., List, B. and Quirchmayr, G. Introducing Work-
flow Management Systems in Insurance Companies, Systemics, Cybernetics and Informatics (SCI)
Conference, Orlando, Florida, 2000.

188. Goguen, J. A. On Notation, University of California, San Diego, Computer Science and Engineering
Department, http://www-cse.ucsd.edu/users/goguen/pubs/, USA, 1993.

189. Goguen, J. A. Formality and Informality in Requirements Engineering, Fourth International Confer-
ence on Requirements Engineering, 1996.

278

190. Goguen, J. A. Towards a Social, Ethical Theory of Information, in Social Science Research, Techni-
cal Systems and Cooperative Work: Beyond the Great Divide, G. Bowker, L. Gasser, L. Star, and W.
Turner, Eds. Erlbaum, 1997.

191. Gosling, J., Joy, B. and Steele, G. The Java Language Specification. Addison-Wesley, 1996.
192. Grasso, A., Meunier, J.-L., Pagani, D. and Pareschi, R. Distributed Coordination and Workflow on

the World Wide Web, Computer Supported Cooperative Work, vol. 6, 1997.
193. Gray, J., Bapty, T., Neema, S. and Tuck, J. Handling Crosscutting Constraints in Domain-Specific

Modeling, Communications of the ACM, vol. 44, no. 10, 2001.
194. Green, D. A. and Newth, D. Towards a Theory of Everything? - Grand Challenges in Complexity

and Informatics, Complexity International, vol. 8, 2001.
195. Green, P. and Rosemann, M. Integrated Process Modeling: An Ontolocial Evaluation, Information

Systems, vol. 25, no. 3, 2000.
196. Greenberg, S. and Johnson, B. Studying Awareness in Contact Facilitation, ACM CHI Workshop:

Awareness in Collaborative Systems, Atlanta, Georgia, 1997.
197. Greenwood, R. M., Balasubrmaniam, D., Kirvy, G., Mayes, K., Morrison, R., Seet, W., Warboys, B.

and Zirintsis, E. Reflection and Reification in Process Systems Evolution: Experience and Opportu-
nity, EWSPT Conference, Springer LNCS 2077, 2001.

198. Greenwood, R. M., Robertson, I., Snowdon, R. A. and Warboys, B. C. Active Models in Business,
Conference on Business Information Technology (CBIT), 1995.

199. Grinter, R. E. Doing Software Development: Occasions for Automation and Formalisation, ECSCW
Conference, Lancaster, UK, 1997.

200. Grinter, R. E. Workflow Systems: Occasions for Success and Failure, Computer Supported Coopera-
tive Work, vol. 9, 2000.

201. Grosz, G., Rolland, C., Schwer, S., Souveyet, C., Plihon, V., Si-Said, S., Achour, C. B. and Gnaho,
C. Modelling and Engineering the Requirements Engineering Process : An Overview of the NA-
TURE Approach, Requirements Engineering, vol. 3, no. 2, 1997.

202. Grudin, J. Groupware and Social Dynamics - Eight Challenges for Developers, Communications of
the ACM, vol. 37, no. 1, 1994.

203. Grudin, J. and Poltrock, S. E. Computer-Supported Cooperative Work and Groupware, in Advances
in Computers, M. Zelkowitz, Ed. Academic Press, Orlando, 1997.

204. Grundy, J. C., Hosking, J. G. and Mugridge, W. B. Inconsistency Management for Multiple-View
Software Development Environments, IEEE Transactions on Software Engineering, vol. 24, no. 11,
1998.

205. Gulla, J. A. A General Explanation Component for Conceptual Modeling in CASE Environments,
ACM Transactions on Information Systems, vol. 14, no. 3, 1996.

206. Gulla, J. A., Lindland, O. I. and Willumsen, G. PPP - An Integrated CASE Environment, CAiSE
Conference, Trondheim, Norway, 1991.

207. Gutwin, C., Greenberg, S. and Roseman, M. Workspace Awareness in Real-Time Distributed
Groupware: Framework, Widgets, and Evaluation, HCI Conference, 1996.

208. Hamilton, A. G. Logic for Mathematicians. Cambridge University Press, New York, NY, USA, 1978
(revised 1988).

209. Harel, D. Statecharts: A Visual Formalism for Complex Systems, Science of Computer Program-
ming, vol. 8, 1987.

210. Hartmanis, J. On Computational Complexity and the Nature of Computer Science, Communications
of the ACM, vol. 37, no. 10, 1994.

211. Hartmanis, J. Responses to the Essays "On Computational Complexity and the Nature of Computer
Science", ACM Computing Surveys, vol. 27, no. 1, 1995.

212. Hayes, N. Work-arounds and Boundary Crossing in a High Tech Optonics Company: The Role of
Co-operative Workflow Technologies, Computer Supported Cooperative Work, vol. 9, no. 3-4, 2000.

213. Heinl, P., Horn, S., Jablonski, S., Neeb, J., Stein, K. and Teschke, M. A Comprehensive Approach to
Flexibility in Workflow Management Systems, ACM Work Activities Coordination and Collabora-
tion Conference (WACC), San Francisco, USA, 1999.

214. Herrmann, T. Evolving Workflows by User-driven Coordination, DCSCW Conference, München,
Germany, 2000.

215. Herrmann, T., Hoffmann, M., Loser, K.-U. and Moysich, K. Semistructured models are surprisingly
useful for user-centered design, COOP Conference, Sophia Antipolis, France, 2000.

279

216. Herrmann, T. and Kunau, G. Costs and Benefits of Structuration, COOP Conference, München,
Germany, 2002.

217. Herrmann, T. and Loser, K.-U. Vagueness in models of socio-technical systems, Behaviour & Infor-
mation Technology, vol. 18, no. 5, 1999.

218. Hewitt, C. Offices are Open Systems, ACM Transactions on Office Information Systems, vol. 4, no.
3, 1986.

219. Highsmith, J. and Cockburn, A. Agile Software Development: The Business of Innovation, IEEE
Computer, vol. 34, no. 9, 2001.

220. Hirschheim, R. A. Understanding the Office: A Social-Analythic Perspective, ACM Transactions on
Office Information Systems, vol. 4, no. 4, 1986.

221. Hirschheim, R. A. and Klein, H. K. Four Paradigms of Information Systems Development, Commu-
nications of the ACM, vol. 32, no. 10, 1989.

222. Hitomi, A. S. and Lee, D. Endeavors and Component Reuse in Web-Driven Process Workflow, Cali-
fornia Software Symposium, 1998.

223. Hofmann, A. Development of a library of reusable workflow objects, SIGGROUP Bulletin, vol. 18,
no. 1, 1997.

224. Holm, P. and Karlgren, K. Theories of Meaning and Different Perspectives on Information Systems,
Conference on Information System Concepts (ISCO), Marburg, Germany, 1995.

225. Holt, A. W., Ramsey, H. R. and Grimes, J. D. Coordination System Technology as the Basis for a
Programming Environment, ITT Technical Journal, vol. 57, no. 4, 1983.

226. Hommes, B.-J. and Reijswoud, V. v. The Quality of Business Process Modelling Techniques, Con-
ference on Information Systems Concepts (ISCO), Leiden, Nertherlands, 1999.

227. Hong, W. K. and Madhavji, N. H. The Role of a Software Process Generaliser in Managing a Line
of Products, 10th International Software Process Workshop, Dijon, France, 1996.

228. Horn, S. and Jablonski, S. An Approach to Dynamic Instance Adaptation in Workflow Management
Applications, ACM CSCW Workshop: Towards Adaptive Workflow Systems, Seattle, 1998.

229. Hruby, P. Structuring Specification of Business Systems with UML (with an Emphasis on Workflow
Systems), OOPSLA Business Object Workshop, 1998.

230. Huhns, M. N. and Singh, M. P. Workflow Agents, IEEE Internet Computing, vol. 2, no. 4, 1998.
231. Hull, R., Llirbat, F., Simon, E., Su, J., Dong, G., Kumar, B. and Zhou, G. Declarative Workflows

that Support Easy Modification and Dynamic Browsing, ACM Work Activities Coordination and
Collaboration (WACC) Conference, San Francisco, USA, 1999.

232. Haake, J., Ohren, O. and Krogstie, J. EXTERNAL WP4 - D13. Prototype: Use case - External Pro-
ject, Deliverable 4-00-D-2002-01-0, The EXTERNAL Project, 2002.

233. Haake, J. M. and Wang, W. Flexible Support for Business Processes: Extending Cooperative Hy-
permedia with Process Support, ACM GROUP Conference, Phoenix, Arizona USA, 1997.

234. IDEF-3x Process Modeling Language Specification, Standard NA-94-1422B, Rockwell Interna-
tional, 1993.

235. IETF WebDAV standard, http://www.webdav.org/
236. Jablonski, S. MOBILE: A Modular Workflow Model and Architecture, Conference on Dynamic

Modelling and Information Systems, Noordijkerhout, Netherlands, 1994.
237. Jablonski, S. Workflow Management between Formal Theory and Pragmatic Approaches, in Busi-

ness Process Management, W. v. d. Aalst, J. Desel, and A. Oberweis, Eds. Springer LNCS 1806,
Berlin, Germany, 2000.

238. Jaccheri, M. L. Reusing Software Process Models in E3, University of Torino, Italy, 1999.
239. Jaccheri, M. L. and Conradi, R. Techniques for Process Model Evolution in EPOS, IEEE Transac-

tions on Software Engineering, vol. 19, no. 12, 1993.
240. Jaccheri, M. L., Conradi, R. and Dyrnes, B. H. Software Process Technology and Software Organi-

sations, EWSPT Conference, Springer LNCS 1780, Kaprun, Austria, 2000.
241. Jaccheri, M. L., Picco, G. P. and Lago, P. Eliciting Software Process Models with the E3 Language,

ACM Transactions on Software Engineering and Methodology, vol. 7, no. 4, 1998.
242. Jackman, H. Holism, Relevance and Thought Content, Proceedings of the Ohio Philosophial Asso-

ciation, 1999.
243. Jackman, H. Moderate Holism and the Instability Thesis, American Philosophical Quarterly, vol. 36,

no. 4, 1999.
244. Jacobson, I. Object-Oriented Software Engineering: A Use Case Driven Approach. Addison-Wesley,

Wokingham, 1993.

280

245. Jacobson, I., Ericsson, M. and Jacobson, A. The Object Advantage: Business Process Reengineering
with Object Technology. Addison-Wesley, Wokingham, 1994.

246. Janssens, G. K., Verelst, J. and Weyn, B. Techniques for Modelling Workflows and Their Support of
Reuse, in Business Process Management, W. v. d. Aalst, J. Desel, and A. Oberweis, Eds. Springer
LNCS 1806, Berlin, Germany, 2000.

247. Jarke, M., Pohl, K., Rolland, C. and Schmitt, J.-R. Experience-Based Method Evaluation and Im-
provement: A Process Modeling Approach, IFIP WG 8.1 Conference, Maastricht, Netherlands, 1994.

248. Julsrud, T. E. and Akselsen, S. Projects as Business-to-Business Collaboration, Telenor Research
and Development, Oslo, Norway, 2001.

249. Jørgensen, H. D. Software Process Model Reuse and Learning, Process Support for Distributed
Team-based Software Development (PDTSD), Systemics, Cybernetics and Informatics (SCI) Con-
ference, Orlando, Florida, 2000.

250. Jørgensen, H. D. Supporting Knowledge Work with Emergent Process Models, ACM CSCW Work-
shop: Beyond Workflow Management, Philadelphia, USA, 2000.

251. Jørgensen, H. D. Interaction as a Framework for Flexible Workflow Modelling, ACM GROUP Con-
ference, Boulder, USA, 2001.

252. Jørgensen, H. D. Interactive Process Models for Knowledge Intensive Project Work, CAiSE Doc-
toral Consortium, Toronto, Canada, 2002.

253. Jørgensen, H. D. Model-driven work management services, Concurrent Engineering (CE) Confer-
ence, Madeira, Portugal, 2003.

254. Jørgensen, H. D. and Carlsen, S. Emergent Workflow: Integrated Planning and Performance of
Process Instances, Workflow Management Conference, Münster, Germany, 1999.

255. Jørgensen, H. D. and Carlsen, S. Writings in Process Knowledge Management, Technical Report
STF40 A00011, SINTEF, Oslo, Norway, 2000.

256. Jørgensen, H. D. and Krogstie, J. Active Models for Cooperative Information Systems, Norwegian
Computer Science Conference (NIK), Tromsø, Norway, 2001.

257. Jørgensen, H. D., Krogstie, J., Ohren, O. P. and Johnsen, S. G. Interactive Models for Tailorable and
Evolving Information Systems, accepted by guest editors, Journal of Applied Systems Studies, 2003.

258. Jørgensen, H. D., Paulsen, T., Storvik, J. and Carlsen, S. Living Knowledge and Knowledge Tools,
Technical Report, SINTEF, Oslo, Norway, 1999.

259. Kahler, H., Mørch, A., Stiemerling, O. and Wulf, V. Special Issue on Tailorable Systems and Coop-
erative Work, Computer Supported Cooperative Work, vol. 9, no. 1, 2000.

260. Kahng, J. and McLeod, D. Dynamic Classificational Ontologies: Mediation of Information Sharing
in Cooperative Federated Database Systems, in Cooperative Information Systems: Trends and Di-
rections, M. Papazoglou and G. Schlageter, Eds. Academic Press, 1998.

261. Kammer, P. J., Bolcer, G. A., Naylor, R. N. and Bergman, M. Techniques for Supporting Dynamic
and Adaptive Workflow, Computer Supported Cooperative Work, vol. 9, no. 3-4, 2000.

262. Kangassalo, H. Conceptual Description for Information Modelling Based on Intensional Contain-
ment Relation, Knowledge Representation meet Databases, KRDB, Budapest, Hungary, 1996.

263. Kangassalo, H. Are Global Understanding, Communication and Information Management in Infor-
mation Systems Possible?, in Conceptual Modeling. Current Issues and Future Directions, P. P.
Chen, J. Akoka, H. Kangassalo, and B. Thalheim, Eds. Springer LNCS 1565, Berlin, Germany,
1999.

264. Karlsen, T. K. Innføring av samarbeidsteknologi. Prosjektnotat fra AIS - Avansert Intranett Samar-
beid (In Norwegian), FAFO Institue of Applied Social Science, 1998.

265. Katzenstein, G. and Lerch, F. J. Beneath the Surface of Organizational Process: A Social Represen-
tation Framework for Business Process Redesign, ACM Transactions on Information Systems, vol.
18, no. 4, 2000.

266. Kelly, K. New Rules for the New Economy, Wired, September, 1997.
267. Kensing, F. and Blomberg, J. Participatory Design: Issues and Concerns, Computer Supported

Cooperative Work, vol. 7, 1998.
268. Kiczales, G. Beyond the Black Box: Open Implementation, IEEE Software, vol. 13, no. 1, 1996.
269. Kiczales, G., Lamping, J., Lopes, C. V., Maeda, C., Mendhekar, A. and Murphy, G. Open Implemen-

tation Design Guidelines, International Conference on Software Engineering (ICSE), Boston, 1997.
270. Kimbrough, S. O. and Moore, S. A. On Automated Message Processing in Electronic Commerce

and Work Support Systems: Speech Act Theory and Expressive Felicity, ACM Transactions on In-
formation Systems, vol. 15, no. 4, 1997.

281

271. King, J. L. SimLanguage, Computer Supported Cooperative Work, vol. 3, no. 1, 1995.
272. Kjær, A. and Madsen, K. H. Participatory Analysis of Flexibility, Communications of the ACM, vol.

38, no. 5, 1995.
273. Klein, H. K. and Myers, M. D. A Set of Principles for Conducting and Evaluating Interpretive Field

Studies in Information Systems, MIS Quartely, vol. 23, no. 1, 1999.
274. Klein, M. Workshop: Towards Adaptive Workflow Systems, ACM CSCW Conference, Seattle, 1998.
275. Klein, M. and Dellarocas, C. A Knowledge-based Approach to Handling Exceptions in Workflow

Systems, Computer Supported Cooperative Work, vol. 9, no. 3-4, 2000.
276. Klein, M., Dellarocas, C. and Bernstein, A. Special Issue on Adaptive Workflow Systems, Computer

Supported Cooperative Work, vol. 9, no. 3-4, 2000.
277. Knutilla, A. J., Stevens, M. P. and Allen, R. H. Workshop on Evaluating Collaborative Enterprises,

WET-ICE, Gaithersburg, Maryland, USA, 2000.
278. Kolawa, A. Certification Will Do More Harm Than Good, IEEE Computer, vol. 35, no. 6, 2002.
279. Koma-Sirviö, S., Mäntyniemi, A. and Seppänen, V. Towards a Practical Solution for Capturing

Knowledge for Software Projects, IEEE Software, vol. 19, no. 3, 2002.
280. Konstantas, D., Morin, J.-H., Barziv, O., Koumpis, A. and Kobel, C. Active Business Objects

(ABOs): A Novel Paradigm for Building (and Using!) Business Information Systems, in Internet Ob-
jects, D. Tsichritzis, Ed. Centre Universitaire d'Informatique, Genéve, Switzerland, 2000.

281. Korbyn, C. UML 2001: A Standardization Odyssey, Communications of the ACM, vol. 42, no. 10,
1999.

282. Kosoresow, A. P. and Kaiser, G. E. Using Agents to Enable Collaborative Work, IEEE Internet
Computing, vol. 2, no. 4, 1998.

283. Kreifelts, T., Hinrichs, E. and Woetzel, G. Sharing To-Do Lists with a Distributed Task Manager,
ECSCW Conference, 1993.

284. Krogstie, J. Conceptual Modeling for Computerized Information Systems Support in Organizations,
PhD-thesis, The Norwegian Institute of Technology, Trondheim, Norway, 1995.

285. Krogstie, J. et al. EE Methodology, Deliverable D2, The EXTERNAL Project, Oslo, Norway, 2001.
286. Krogstie, J. et al. EE Methodology version 2, Deliverable D6, The EXTERNAL Project, Oslo, Nor-

way, 2002.
287. Krogstie, J., Hildrum, J., Chrysostalis, M. and Hestvik, R. Enterprise Methodology Evaluation Re-

port, Deliverable D19, The EXTERNAL Project, 2002.
288. Krogstie, J. and Jørgensen, H. D. Flexible Support of Work Processes - Balancing the Support of

Organisations and Workers, CAiSE Conference Panel, Springer LNCS 2068, Interlaken, Switzer-
land, 2001.

289. Krogstie, J. and Jørgensen, H. D. Quality of Interactive Models, ER Workshop on Conceptual Mod-
eling Quality (IWCMQ), Tampere, Finland, 2002.

290. Krogstie, J., Jørgensen, H. D. and Lillehagen, F. Active Models for Digitally Enabled Creative Net-
works, IFIP World Computing Conference, Montreal, Canada, 2002.

291. Krogstie, J., Lindland, O. I. and Sindre, G. Defining Quality Aspects for Conceptual Models, IFIP8.1
Conference on Information Systems Concepts (ISCO), Marburg, Germany, 1995.

292. Kruschwitz, N. and Roth, G. Inventing Organizations of the 21st Century: Producing Learning
through Collaboration, Report CCS WP 207, Massachusetts Institute of Technology, Cambridge,
USA, 1999.

293. Kuhn, T. S. The Structure of Scientific Revolutions, 2nd ed. University of Chicago Press, USA, 1962.
294. Kumar, K. ERP Experiences and Evolution: Introduction to Special Issue, Communications of the

ACM, vol. 43, no. 4, 2000.
295. Kuntz, J. C., Christiansen, T. R., Cohen, G. P., Jin, Y. and Levitt, R. E. The Virtual Design Team: A

Computational Simulation Model of Project Organizations, Communications of the ACM, vol. 41,
no. 11, 1998.

296. Kyng, M. Making Representations Work, Communications of the ACM, vol. 38, no. 9, 1995.
297. Lakos, C. From Coloured Petri Nets to Object Petri Nets, Conference on the Application and Theory

of Petri Nets, Torino, Italy, 1995.
298. Lakos, C. Pragmatic Inheritance Issues for Object Petri Nets, TOOLS Pacific Conference, Mel-

bourne, Australia, 1995.
299. Larman, C. Protected Variation: The Importance of Being Closed, IEEE Software, vol. 18, no. 3,

2001.
300. Latour, B. Science in Action. Open University Press, Milton Keynes, 1987.

282

301. Lawton, G. Knowledge Management: Ready for Prime Time?, IEEE Computer, vol. 34, no. 2, 2001.
302. Ledgard, H. F. The Emperor with no Clothes, Communications of the ACM, vol. 44, no. 10, 2001.
303. Lee, J. Goal-Based Process Analysis: A Method for Systematic Process Redesign, ACM Conference

on Organizational Computing Systems (COOCS), Milpitas, CA, USA, 1993.
304. Lee, J., Gruninger, M., Jin, Y., Malone, T., Tate, A. and Yost, G. The PIF Process Interchange For-

mat and Framework, version 1.1., Standard, MIT Center for Coordination Science, 1996.
305. Lei, Y. and Singh, M. P. A Comparison of Workflow Metamodels, ER Workshop on Behavioral

Modeling, Springer LNCS 1565, 1997.
306. Lethbridge, T. L. What Knowledge is Important to a Software Professional?, IEEE Computer, vol.

33, no. 5, 2000.
307. Levin, M. Technology Transfer is Organizational Development, International Journal of Technology

Management, vol. 14, no. 2/3/4, 1995.
308. Li, D. and Patrao, J. Demonstrational Customisation of Shared Whiteboard to Support User-Defined

Semantic Relationships among Objects, ACM GROUP Conference, Boulder, USA, 2001.
309. Lillehagen, F. Visual Extended Enterprise Engineering Embedding Knowledge Management, Sys-

tems Engineering and Work Execution, IFIP International Enterprise Modelling Conference, Verdal,
Norway, 1999.

310. Lillehagen, F. The Foundations of AKM Technology, Concurrent Engineering (CE) Conference,
Madeira, Portugal, 2003.

311. Lillehagen, F., Dehli, E., Fjeld, L., Krogstie, J. and Jørgensen, H. D. Active Knowledge Models as a
Basis for an Infrastructure for Virtual Enterprises, IFIP Conference on Infrastructures for Virtual
Enterprises (PRO-VE), Sesimbra, Portugal, 2002.

312. Lillehagen, F., Krogstie, J., Jørgensen, H. D. and Hildrum, J. Active Knowledge Models for Support-
ing eWork and eBusiness, International Conference on Concurrent Enterprising (ICE), Rome, Italy,
2002.

313. Lindert, F. and Deiters, W. Modelling Inter-Organizational Processes with Process Model Frag-
ments, Enterprise-Wide and Cross-Enterprise Workflow Management Workshop, Paderborn, Ger-
many, 1999.

314. Lindvall, M. and Rus, I. Process Diversity in Software Development, IEEE Software, vol. 17, no. 4,
2000.

315. Loos, P. and Allweyer, T. Process Orientation and Object-Orientation - An Approach for Integrat-
ing UML with Event-Driven Process Chains (EPC), University of Saarland, Germany, 1998.

316. Loui, M. C. Computer Science Is a New Engineering Discipline, ACM Computing Surveys, vol. 27,
no. 1, 1995.

317. Louridas, P. and Loucopoilos, P. A Generic Model for Reflective Design, ACM Transactions on
Software Engineering and Methodology, vol. 9, no. 2, 2000.

318. Ludwig, H., Shan, M.-C., Bussler, C. and Grefen, P. Cross-Organisational Workflow Management
and Co-ordination - WACC'99 Workshop Report, SIGGROUP Bulletin, 1999.

319. Luo, Z. and Sheth, A. Defeasible Workflow, its Computation and Exception Handling, ACM CSCW
Workshop: Towards Adaptive Workflow Systems, Seattle, 1998.

320. Luo, Z., Sheth, A., Kochut, K. and Miller, J. Exception Handling in Workflow Systems, Applied
Intelligence, vol. 13, no. 2, 2000.

321. Lysgaard, S. Arbeiderkollektivet (In Norwegian). Universitetsforlaget, Oslo, 1960.
322. Lyytinen, K. and Zhang, Z. A Framework for Component Reuse in MetaCASE Based Software De-

velopment, in Information Systems Engineering - State of the Art and Research Themes, S. Brink-
kemper, E. Lindencrona, and A. Sølvberg, Eds. Springer, Berlin, Germany, 2000.

323. Maginnis, T. Engineer's Don't Build, IEEE Software, vol. 17, no. 1, 2000.
324. Majchrzak, A., Rice, R. E., Malhotra, A., King, N. and Ba, S. Technology Adaptation: The Case of a

Computer-Supported Inter-Organizational Virtual Team, MIS Quarterly, vol. 24, no. 4, 2000.
325. Malhotra, Y. Role of Information Technology in Managing Organizational Change and Organiza-

tional Interdependencies, http://www.brint.com/, 1996.
326. Malone, T. W. Commentary on Suchman Article and Winograd Response, Computer Supported

Cooperative Work, vol. 3, no. 1, 1995.
327. Malone, T. W. and Crowston, K. What is Coordination Theory and How Can It Help Design Coop-

erative Work Systems, ACM CSCW Conference, 1990.
328. Malone, T. W. and Crowston, K. The Interdisciplinary Study of Coordination, ACM Computing

Surveys, vol. 26, no. 1, 1994.

283

329. Malone, T. W., Crowston, K., Lee, J. and Pentland, B. Tools for inventing organizations: Toward a
handbook of organizational processes, IEEE Workshop on Enabling Technologies Infrastructure for
Collaborative Enterprises, Morgantown, USA, 1993.

330. Malone, T. W., Lai, K.-Y. and Fry, C. Experiments with Oval: A Radically Tailorable Tool for Co-
operative Work, ACM Transactions on Information Systems, vol. 13, no. 2, 1995.

331. Man, J. D. A Lightweight Process-Centered Project Support Environment: Motivation, Implementa-
tion and Experience, Process Support for Distributed Team-based Software Development
(PDTSD'00), SCI Conference, Orlando, Florida, 2000.

332. Manola, F., Georgakopoulos, D., Heiler, S., Hurwitz, B., Mitchell, G. and Nayeri, F. Supporting
Cooperation in Enterprise-Scale Distributed Object Systems, in Cooperative Information Systems:
Trends and Directions, M. Papazoglou and G. Schlageter, Eds. Academic Press, 1998.

333. Manolescu, D. A. and Johnson, R. E. Dynamic Object Model and Adaptive Workflow, OOPSLA
Workshop on Metadata and Active Object Models, 1999.

334. March, J. and Simon, H. Organizations. John Wiley, New York, 1958.
335. Marshall, C. Enterprise Modeling with UML. Addison-Wesley, 1999.
336. Massey, A. P., Huang, Y.-T. C., Montoya-Weiss, M. and Ramesh, V. When Culture and Style aren't

About Clothes: Perceptions of Task-Technology "Fit" in Global Virtual Teams, ACM GROUP Con-
ference, Boulder, USA, 2001.

337. Mathiassen, L. Reflective Systems Development, Dr. Techn. Thesis, Aalborg University, Denmark,
1998.

338. Mathiassen, L. and Munk-Madsen, A. Formalization in Systems Development, Behaviour and In-
formation Technology, vol. 5, no. 2, 1986.

339. Medina-Mora, R., Winograd, T., Flores, R. and Flores, F. The Action Workflow Approach to Work-
flow Management Technology, ACM CSCW Conference, 1992.

340. Mehandjiev, N., Bottaci, L. and Phillips, R. User Enhancability for Fast Response to Changing
Office Needs, 27th Annual Hawaii International Conference on System Sciences (HICSS-27), 1994.

341. Meijler, T. D., Kessels, H., Vuijst, C. and le Comte, R. Realising Run-time Adaptable Workflow by
means of Reflection in the Baan Workflow Engine, ACM CSCW Workshop: Towards Adaptive
Workflow Systems, Seattle, 1998.

342. Mellor, S. J. Make Models be Assets, Communications of the ACM, vol. 45, no. 11, 2002.
343. Mentzas, G. and Apostolou, D. Managing Corporate Knowledge: A Comparative Analysis of Ex-

periences in Cosulting Firms, Practical Aspects of Knowledge Management (PAKM) Conference,
Basel, Switzerland, 1998.

344. Merlyn, P. R. and Välikangas, L. From IT to KT - but Don't Forget the User, Report D98-2180, SRI
Consulting, Business Intelligence Program, Menlo Park, USA, 1998.

345. MetaCase MetaEdit+ Revolutionized the Way NOKIA Develops Mobile Phone Software, MetaCase
Consulting, Jyväskyla, Finland, 1999.

346. MetaCase ABC to MetaCase Technology, MetaCase Consulting, Jyväskyla, Finland, 2000.
347. METIS GEM Template Reference Guide - Version 1.9.1, J. Høyte, Ed. NCR METIS, Horten, Nor-

way, 1997.
348. Miers, D. Vectus Version 3, Evaluation Report 1-Oct-1998 1:1, Enix, UK, 1998.
349. Miers, D. and Hunt, R. Process Product Watch - Work Management Technologies Report - Evalua-

tion Framework Process Support Systems, Enix, UK, 1995.
350. Miers, D. and Hutton, G. The Business Case for Case Handling, Enix, UK, 1996.
351. Miller, S. K. Aspect-Oriented Programming Takes Aim at Software Complexity, IEEE Computer,

vol. 34, no. 4, 2001.
352. Mintzberg, H. A Typology of Organizational Structure, in Readings in Groupware and Computer-

Supported Cooperative Work. Morgan Kaufmann, San Mateo, USA, 1993.
353. Mitcham, C. Thinking through Technology. The University of Chicago Press, Chicago, 1994.
354. Moldt, D. and Valk, R. Object Oriented Petri Nets in Business Process Modeling, in Business Proc-

ess Management, W. v. d. Aalst, J. Desel, and A. Oberweis, Eds. Springer LNCS 1806, Berlin, Ger-
many, 2000.

355. Montanegro, C., Derniame, J.-C., Kaba, A. B. and Warboys, B. The Software Process: Modelling
and Technology, in Software Process: Principles, Methodology and Technology, J.-C. Derniame, Ed.
Springer LNCS 1500, Berlin, Germany, 1998.

356. Moody, D. L., Sindre, G., Brasethvik, T. and Sølvberg, A. Evaluating the Quality of Process Mod-
els: Empirical Testing of a Quality Framework, ER Conference, Springer LNCS 2503, 2002.

284

357. Morgan, G. Images of Organization. Sage, Beverly Hills, 1986.
358. Myers, B. A., McDaniel, R., Miller, R., Ferrency, A. S., Faulring, A., Kyle, B. D., Mickish, A., Kli-

movitski, A. and Doane, P. The Amulet Environment: New Models for Effective User Interface Soft-
ware Development, IEEE Transactions on Software Engineering, vol. 23, no. 6, 1997.

359. Myers, M. D. Qualitative Research in Information Systemsin MISQ Discovery,
http://www.isworld.org/, 2001.

360. Mühlen, M. z. Resource Modeling in Workflow Applications, Workflow Management Conference,
Münster, Germany, 1999.

361. Mühlen, M. z. and Becker, J. Workflow Management and Object-Orientation - A Matter of Perspec-
tives or Why Perspectives Matter, OOPSLA Workshop on Object-Oriented Workflow Management,
Denver, USA, 1999.

362. Mørch, A. and Mehandjiev, N. Tailoring as Collaboration: The Mediating Role of Multiple Repre-
sentations and Application Units, Computer Supported Cooperative Work, vol. 9, no. 1, 2000.

363. Mørch, A., Stiemerling, O. and Wulf, V. Tailorable Groupware: Issues, Methods and Architectures,
Workshop Report in SIGGROUP Bulletin, vol. 19, no. 1, 1998.

364. Nardi, B. A., Whittaker, S., Isaacs, E., Creech, M., Johnson, J. and Hainsworth, J. Integrating Com-
munication and Information through ContactMap, Communications of the ACM, vol. 45, no. 4,
2002.

365. Natvig, M. K. and Ohren, O. Modelling shared information spaces (SIS), ACM GROUP Conference,
Phoenix, Arizona USA, 1999.

366. Neeb, J. Supporting Dynamic Organisational Processes by Administration Workflows, ACM CSCW
Workshop: Beyond Workflow Management, Philadelphia, USA, 2000.

367. Nelson, R. R. and Winter, S. G. An Evolutionary Theory of Economic Change. The Belknap Press of
Harvard University Press, Cambridge, Massachusetts and London, England, 1982.

368. Nguyen, M. N., Wang, A. I. and Conradi, R. Total Software Process Model Evolution in EPOS,
ACM ICSE Conference, Boston, USA, 1997.

369. Niinimäki, M. Intensional and extensional languages in conceptual modelling, 10th European-
Japanese Conference on Information Modelling and Knowledge Bases, Saariselkä, Finland, 2000.

370. Nonaka, I. and Takeuchi, H. The Knowledge Creating Company: How Japanese Companies Create
the Dynamics of Innovation. Oxford University Press, New York, 1995.

371. Nuseibeh, B., Finkelstein, A. and Kramer, J. Method Engineering for Multi-Perspective Software
Development, Information and Software Technology, 1996.

372. Nwana, H. S. Software Agents: An Overview, Knowledge Engineering Review, vol. 11, no. 3, 1996.
373. Ohren, O. P., Jørgensen, H. D., Johnsen, S. G. and Krogstie, J. Process Models as a Framework for

Knowledge Sharing and Reuse in Extended Enterprises, IKNOW Conference, Graz, Austria, 2002.
374. Oldevik, J. SEASPRITE Project homepage, SINTEF, Oslo, Norway, 1999,

http://www.informatics.sintef.no/DistributedInformationSystems/projects/seasprite.html.
375. Oldevik, J., Solberg, A., Elvesæter, B. and Berre, A. J. Framework for Model transformation and

Code Generation, Enterprise Distributed Object Computing (EDOC) Conference, 2002.
376. Olsen, G. The Emperor has no Lab Coat, ACM Interactions, vol. 9, no. 4, 2002.
377. OMG Meta-Object Facility (MOF) Specification v 1.3, OMG - Object Management Group, 2000.
378. OMG Workflow Management Facility v. 1.2, Object Management Group, 2000.
379. OMG Enterprise Distributed Object Computing (EDOC) Process Profile, Object Management

Group, 2001.
380. OMG Software Process Engineering Metamodel (SPEM), Object Management Group, 2001.
381. OMG UML Specification v. 1.4, Object Management Group, 2001.
382. OMG UML Specification v. 1.5, Object Management Group, 2002.
383. OMG and 3C Unified Modeling Language 2.0 Infrastructure Proposal (revised submission), Version

2.0.13, Object Management Group, 2002.
384. Opdahl, A. L. Performance Engineering during Information Systems Development, PhD-thesis,

Norwegian Institute of Technology, Trondheim, Norway, 1992.
385. Opdahl, A. L. and Sindre, G. Facet Modelling: An Approach to Flexible and Integrated Conceptual

Modelling, Information Systems, vol. 22, no. 5, 1997.
386. Orlikowski, W. J. CASE Tools as Organizational Change: Investigating Incremental and Radical

Changes in Systems Development, MIS Quarterly, vol. 17, no. 3, 1993.
387. Orr, J. Talking about Machines. Cornell University Press, Ithaca, New York, 1996.

285

388. Ossher, H. and Tarr, P. Using Multi-Dimensional Separation of Concerns to (Re)Shape Evolving
Software, Communications of the ACM, vol. 44, no. 10, 2001.

389. Osterweil, L. J. Software Processes are Software too, ICSE Conference, 1987.
390. Ouksel, A. M. and Watson, J. The Need for Adaptive Workflow and What is Currently Available on

the Market, ACM CSCW Workshop: Towards Adaptive Workflow Systems, Seattle, 1998.
391. Ould, M. A. Business Processes - Modeling and Analysis for Re-engineering and Improvement. John

Wiley & Sons, Beverly Hills, 1995.
392. Parnas, D. L. On the Criteria to be Used in Decomposing Systems into Modules, Communications of

the ACM, vol. 15, no. 12, 1972.
393. Parsons, J. An Information Model Based on Classification Theory, Management Science, vol. 42, no.

10, 1996.
394. Parsons, J. and Wand, Y. Choosing Classes in Conceptual Modeling, Communications of the ACM,

vol. 40, no. 6, 1997.
395. Parsons, J. and Wand, Y. Using Objects for Systems Analysis, Communications of the ACM, vol. 40,

no. 12, 1997.
396. Parsons, J. and Wand, Y. Emancipating Instances from the Tyranny of Classes in Information Mod-

eling, ACM Transactions on Database Systems, vol. 25, no. 2, 2000.
397. Perry, J. Davidson's Sentence Holism and Wittgenstein's Builders, Proceedings and Addresses of the

American Philosophical Association, vol. 68, no. 2, 1994.
398. Petroski, H. Invention by Design. Harvard University Press, Cambridge, USA, 1996.
399. Pinkwart, N., Hoppe, U. and Grasser, K. Integration of Domain-Specific Elements into Visual Lan-

guage Based Collaborative Environments, CRIWG Workshop, Darmstadt, Germany, 2001.
400. PMBOK The Project Management Book of Knoweldge. Project Management Institute, Newtown

Square, Pennsylvania, 2000.
401. Pohl, K., Dömges, R. and Jarke, M. Decision Oriented Process Modelling, International Software

Process Workshop, 1994.
402. Polanyi, M. The tacit dimension. Routledge and Kegan Paul, London, 1966.
403. Pour, G., Glass, M. L. and Lutz, M. The Push to Make Software Engineering Respectable, IEEE

Computer, vol. 33, no. 5, 2000.
404. Qureshi, S. and Zigurs, I. Paradoxes and Prerogatives in Global Virtual Collaboration, Communi-

cations of the ACM, vol. 44, no. 12, 2001.
405. Ramduny, D., Dix, A. and Rodden, T. Exploring the Design Space for Notification Servers, ACM

CSCW Conference, Seattle, USA, 1998.
406. Ramesh, B. Process Knowledge Management with Traceability, IEEE Software, vol. 19, no. 3, 2002.
407. Randall, D. and Rouncefield, M. The Theory and Practice of Fieldwork for Systems Development,

Tutorial Notes, ACM CSCW Conference, Seattle, USA, 1998.
408. Reichert, M., Bauer, T. and Dadam, P. Enterprise-Wide and Cross-Enterprise Workflow-

Management: Challenges and Research Issues for Adaptive Workflows, Enterprise-Wide and Cross-
Enterprise Workflow Management Workshop, Paderborn, Germany, 1999.

409. Ribo, J. M. and Franch, X. Building Expressive and Flexible Process Models Using a UML-Based
Approach, EWSPT Conference, Springer LNCS 2077, 2001.

410. Ricœur, P. Metaphore et reference, in La methaphore vive. du Seuil (Norwegian edition "Eksistens
og hermeneutikk", Aschehoug, 1999), Paris, France, 1975.

411. Riehle, D., Fraleigh, S., Bucha-Lassen, D. and Omorogbe, N. The Architecture of a UML Virtual
Machine, ACM OOPSLA Conference, Tampa, USA, 2001.

412. Roberts, D. and Hanmer, R. Pattern Languages of Programming (PLoP) homepage,
http://jerry.cs.uiuc.edu/~plop/, 1997.

413. Robillard, P. N. The Role of Knowledge in Software Development, Communications of the ACM,
vol. 42, no. 1, 1999.

414. Robinson, M. Computer Supported Co-operative Work: Cases and Concepts, Groupware Confer-
ence, Utrecht, Netherlands, 1991.

415. Rodden, T. Populating the Application: A Model of Awareness for Cooperative Applications, ACM
CSCW Conference, Boston, USA, 1996.

416. Rolfsen, R. K. Distribuert Samarbeid- Hva skjer? (Distributed Work - What's happening?), M.Sc.-
thesis, Department of Informatics, University of Oslo, Norway, 1997.

417. Rombach, H. D. and Verlage, M. Directions in Software Process Research, Advances in Computers,
vol. 41, 1995.

286

418. Rose, T. Visual Assessment of Engineering Processes in Virtual Enterprises, Communications of the
ACM, vol. 41, no. 12, 1998.

419. Ruggles, R. L. Knowledge Management Tools. Butterworth-Heinemann, Boston, USA, 1997.
420. Rumbaugh, J., Jacobson, I. and Booch, G. The Unified Modeling Language Reference Manual. Ad-

dison Wesley, Reading, Massachusetts, 1999.
421. Runde, R. K. and Stølen, K. What is Model Driven Architecture?, Research Report 304, Department

of Informatics, University of Oslo, Norway, 2003.
422. Rupprecht, C., Fünffinger, M., Knublauch, H. and Rose, T. Capture and Dissemination of Experi-

ence about the Construction of Engineering Processes, CAiSE Conference, Springer LNCS 1789,
Stockholm, Sweden, 2000.

423. Rupprecht, C., Rose, T., Halm, E. v. and Zwegers, A. Project-Specific Process Configuration in
Virtual Enterprises, Design of Information Infrastructure Systems for Manufacturing (DIISM) Con-
ference, Melbourne, Australia, 2000.

424. Rus, I. and Lindvall, M. Knowledge Management in Software Enginering - Special Issue Introduc-
tion, IEEE Software, vol. 19, no. 3, 2002.

425. Röpnack, A., Schindler, M. and Schwan, T. Concepts of the Enterprise Knowledge Medium, Practi-
cal Aspects of Knowledge Management (PAKM) Conference, Basel, Switzerland, 1998.

426. Røyrvik, E. EXTERNAL Learning History, The EXTERNAL Project, Trondheim, Norway, 2000.
427. Sachs, P. Transforming Work: Collaboration, Learning and Design, Communications of the ACM,

vol. 38, no. 9, 1995.
428. Sandor, O., Bogdan, C. and Bowers, J. Aether: An Awareness Engine for CSCW, ECSCW Confer-

ence, Lancaster, UK, 1997.
429. Sarin, S. Flexible Workflow Architectures: The New Adaptive Workflow, Workflow Conference,

San-Jose, USA, 1995.
430. Sarin, S. K., Abbott, K. R. and McCarthy, D. R. A Process Model and System for Supporting Col-

laborative Work, ACM Conference on Organizational Computing Systems (COOCS), 1991.
431. Scagno, G. Evaluation of the EXTERNAL Tools Applied to EXTERNAL Use Case, Deliverable from

the EXTERNAL Project, Patras, Greece, 2002.
432. Scheer, A.-W. and Haberman, F. Making ERP a Success, Communications of the ACM, vol. 43, no.

4, 2000.
433. Scheer, A.-W. and Hoffmann, M. From Business Process Model to Application System - Developing

an Information System with the House of Business Engineering (HOBE), CAiSE Conference,
Springer LNCS 1626, 1999.

434. Scheer, A.-W. and Nuttgens, M. ARIS Architecture and Reference Models for Business Process
Management, in Business Process Management, W. v. d. Aalst, J. Desel, and A. Oberweis, Eds.
Springer LNCS 1806, Berlin, Germany, 2000.

435. Schleicher, A., Westfechtel, B. and Jäger, D. Modeling Dynamic Software Processes with UML,
Technical Report AIB 98-11, RWTH, Aachen, Germany, 1998.

436. Schlichter, J., Koch, M. and Bürger, M. Workspace Awareness for Distributed Teams, Coordination
Technology for Collaborative Applications Workshop, Singapore, 1997.

437. Schmidt, K. Of maps and scripts - The status of formal constructs in cooperative work, ACM
GROUP Conference, Phoenix, Arizona USA, 1997.

438. Schmidt, K. and Bannon, L. Taking CSCW Seriously - Supporting Articulation Work, Computer
Supported Cooperative Work, vol. 1, no. 1, 1992.

439. Schmidt, K. and Simone, C. Coordination Mechanisms: Towards a Conceptual Foundation of
CSCW Systems Design, Computer Supported Cooperative Work, vol. 5, 1996.

440. Schmidt, M.-T. Building Workflow Business Objects, OPPSLA Business Object Workshop, Vancou-
ver, Canada, 1998.

441. Schneider, K. What to Expect from Software Experience Exploitation, IKNOW Conference, Graz,
Austria, 2002.

442. Schuette, R. Architecture for Evaluating the Quality of Information Models - A Meta and Object
Level Comparison, ER Conference, Paris, France, 1999.

443. Schuler, C., Schuldt, H., Alonso, G. and Schek, H.-J. Workflows over Workflows: Practical Experi-
ence with the Integration of SAP R/3 Business Workflows in WISE, Informatik Workshop, Pader-
born, Germany, 1999.

444. Schön, D. A. Organizational Learning, in Beyond Method, G. Morgan, Ed. Sage, Beverly Hills,
1983.

287

445. Schön, D. A. The Reflective Practitioner. Ashgate Publishing Ltd., Aldershot, UK, 1983.
446. Seltveit, A. H. Complexity Reduction in Information Systems Modelling, PhD-thesis, The Norwegian

Institute of Technology, Trondheim, Norway, 1994.
447. Senge, P. The Fifth Discipline: The Art and Practice of the Learning Organization. Century Busi-

ness Publishers, London, 1990.
448. Shapiro, D. The Limits of Ethnography: Combining Social Sciences for CSCW, ACM CSCW Con-

ference, Chapel Hill, NC, USA, 1994.
449. Sharp, H., Robinson, H. and Woodman, M. Software Engineering: Community and Culture, IEEE

Software, vol. 17, no. 1, 2000.
450. Shim, S. S. Y., Pendyala, V. S., Sundaram, M. and Gao, J. Z. Business-to-Business E-Commerce

Frameworks, IEEE Computer, vol. 33, no. 10, 2000.
451. Shipman, F., Airhart, R., Hsieh, H., Maloor, P., Moore, J. M. and Shah, D. Visual and Spatial Com-

munication and Task Organization Using the Visual Knowledge Builder, ACM GROUP Conference,
Boulder, USA, 2001.

452. Shipman, F. M. and Marshall, C. C. Formality Considered Harmful: Experiences, Emerging
Themes, and Directions of Use of Formal Representations in Interactive Systems, Computer Sup-
ported Cooperative Work, vol. 8, no. 4, 1999.

453. Shipman, F. M. and McCall, R. J. Supporting knowledge-base evolution with incremental formaliza-
tion, ACM Human Factors in Computing Systems Conference, Boston, MA, 1994.

454. Shipman, F. M. and McCall, R. J. Incremental formalization with the hyper-object substrate, ACM
Transactions on Information Systems, vol. 17, no. 2, 1999.

455. Shum, S. B. Representing Hard-to-Fomalise, Contextualised, Multidisciplinary, Organisational
Knowledge, AAAI Spring Symposium on Artificial Intelligence in Knowledge Management, Stan-
ford University, Palo Alto, USA, 1997.

456. Simone, C., Divitini, M. and Schmidt, K. A notation for malleable and interoperable coordination
mechanisms for CSCW systems, ACM Conference on Organizational Computing Systems (COOCS),
Milpitas, CA, USA, 1995.

457. Singh, B. and Rein, G. L. Role Interaction Nets (RINs); A Process Description Formalism, Techni-
cal Report CT-083-92, MCC, Austin, Texas, 1992.

458. Singh, M. P. Conceptual Modeling for Multiagent Systems: Applying Interaction-Oriented Pro-
gramming, in Conceptual Modelling, P. P. Chen, J. Akoka, H. Kangassalo, and B. Thalheim, Eds.
Springer LNCS 1565, Berlin, Germany, 1999.

459. Smith, H. A System Integrator's Perspective on Business Process Management, Workflow and EAI,
Infoconomy Agile Business Conference, 2002.

460. Soh, C., Kien, S. and Tay-Yap, J. Cultural Fits and Misfits: Is ERP a Universal Solution?, Commu-
nications of the ACM, vol. 43, no. 4, 2000.

461. Sorenson, P. G., Findeisen, P. S. and Tremblay, J. P. Supporting Viewpoints in Metaview, ACM
SIGSOFT Workshop, San Fransisco, CA, USA, 1996.

462. Star, S. L. and Griesemer, J. R. Institutional Ecology, 'Translations' and Boundary Objects: Ama-
teurs and Professionals in Berkeley's Museum of Vertebrate Zoology, 1907-39, Social Studies of
Science, vol. 19, 1989.

463. Stewart, N. F. Science and Computer Science, ACM Computing Surveys, vol. 27, no. 1, 1995.
464. Strong, D. M. and Miller, S. M. Exceptions and Exception Handling in Computerized Information

Processes, ACM Transactions on Information Systems, vol. 13, no. 2, 1995.
465. Strømseng, K., Olsson, N., Haake, J. and Scagno, G. EE Requirements, Deliverable 3-31-D-2000-

01-1, The EXTERNAL Project, Oslo, Norway, 2000.
466. Styhre, A. Thinking with AND: Management Concepts and Multiplicities, Organization, vol. 9, no. 3,

2002.
467. Störle, H. Describing Process Patterns with UML, EWSPT 2001, Springer LNCS 2077, 2001.
468. Suchman, L. Plans and Situated Actions. Cambridge University Press, New York, 1987.
469. Suchman, L. Do Categories Have Politics?, Computer Supported Cooperative Work, vol. 2, no. 3,

1994.
470. Suchman, L. Making Work Visible, Communications of the ACM, vol. 38, no. 9, 1995.
471. Suchman, L. Representation of Work - Introduction to Special Issue, Communications of the ACM,

vol. 38, no. 9, 1995.
472. Suchman, L. Speech Acts and Voices: Response to Winograd et al., Computer Supported Coopera-

tive Work, vol. 3, no. 1, 1995.

288

473. Sullivan, G. T. Aspect-Oriented Programming Using Reflection and Metaobject Protocols, Commu-
nications of the ACM, vol. 44, no. 10, 2001.

474. Sun Microsystems Java Servlets, http://java.sun.com/products/servlet/, 1996.
475. Swenson, K. SWAP - Simple Workflow Access Protocol, IETF, 1998.
476. Swenson, K. Workflow for the Information Worker, in Workflow Handbook 2001, L. Fischer, Ed.

Workflow Management Coalition, Future Strategies Inc., Lighthouse Point, Florida, USA, 2000.
477. Swenson, K. D., Irwin, K., Matsumoto, T., Maxwel, R. J. and Saghari, B. Collaborative Planning:

Empowering the User in a Process Support Environment, Interdisciplinary Workshop on Informatics
and Psychology, Schaerding, Austria, 1994.

478. Swenson, K. D., Maxwell, R. J., Matsumoto, T., Saghari, B. and Irwin, I. A Business Process Envi-
ronment Supporting Collaborative Planning, Journal of Collaborative Computing, vol. 1, no. 1,
1994.

479. Söderström, E., Andersson, B., Johannesson, P., Perjons, E. and Wangler, B. Towards a Framework
for Comparing Process Modelling Languages, CAiSE Conference, Springer LNCS 2348, Toronto,
Canada, 2002.

480. Sølvberg, A. Data and What They Refer to, in Conceptual Modeling, P. P. Chen, J. Akoka, H. Kan-
gassalo, and B. Thalheim, Eds. Springer LNCS 1565, Berlin, Germany, 1999.

481. Sølvberg, A. and Brasethvik, T. The Referent Model Language, Technical Report, Norwegian Uni-
versity of Science and Technology, Department of Computer and Information Science, 1997.

482. Sølvberg, A. and Kung, D. C. Information Systems Engineering - An Introduction. Springer, Berlin,
Germany, 1993.

483. Taivalsaari, A. On the Notion of Inheritance, ACM Computing Surveys, vol. 28, no. 3, 1996.
484. Tang, J. and Hwang, S.-Y. Handling Uncertainties in Workflow Applications, ACM CSCW Confer-

ence, Boston, USA, 1996.
485. Taylor, F. W. The Principles of Scientific Management. Dover Publications, Inc. (this edition 1998),

Mineola, New York, USA, 1911.
486. Teege, G. HieraStates: Flexible Interaction with Objects, Report TUM-I9441, Technische Univer-

sität München, 1994.
487. Teege, G. HieraStates: Supporting Workflows which Include Schematic and Ad-Hoc Aspects, Practi-

cal Aspects of Knowledge Management (PAKM) Conference, Basel, Switzerland, 1996.
488. Teege, G. Users as Composers: Parts and Features as a Basis for Tailorability in CSCW Systems,

Computer Supported Cooperative Work, vol. 9, no. 1, 2000.
489. Telesius, E. and Jaliniauskas, A. The Analysis and Implementation of Ad-hoc Business Processes

Based on Common Approximation Patterns, Workflow Management Conference, Münster, Ger-
many, 1999.

490. Tichy, W. F. Should Computer Scientists Experiment More?, IEEE Computer, vol. 31, no. 5, 1998.
491. Tinella, S., Karlsen, D., Lillehagen, F. and Smith, M. W. Model-driven operational solution, Con-

current Engineering (CE) Conference, Madeira, Portugal, 2003.
492. Tolvanen, J.-P. and Lyytinen, K. Flexible Method Adaptation in CASE: The Metamodelling Ap-

proach, Scandinavian Journal of Information systems, vol. 5, 1993.
493. Trigg, R. H. and Bødker, S. From Implementation to Design: Tailoring and the Emergence of Sys-

tematization in CSCW, ACM CSCW Conference, Chapel Hill, North Carolina, USA, 1994.
494. Tripp, L. L. Benefits of Certification, IEEE Computer, vol. 35, no. 6, 2002.
495. Trist, E. L. The Evolution of Socio-Technical Systems, Issues in the Quality of Working Life, no. 2,

1981.
496. Trist, E. L. and Bamforth, K. W. Some Social and Psychological Consequences of the Longwall

Method of Coal-Getting, Human Relations, vol. 4, no. 1, 1951.
497. Truex, D. P., Baskerville, R. and Klein, H. Growing Systems in Emergent Organizations, Communi-

cations of the ACM, vol. 42, no. 8, 1999.
498. Trætteberg, H. Model-based User Interface Design, PhD-thesis, Norwegian University of Science

and Technology, Trondheim, Norway, 2001.
499. Twidale, M. B. and Marty, P. F. Coping with Errors: The Importance of Process Data in Robust

Sociotechnical Systems, ACM CSCW Conference, Philadelphia, USA, 2000.
500. UN/CEFACT and OASIS ebXML Business Process and Business Information Analysis Overview v.

1.0, 2001.
501. UN/CEFACT and OASIS ebXML Business Process Specification Schema v. 1.01, 2001.

289

502. Uschold, M. and Gruninger, M. ONTOLOGIES: Principles, Methods and Applications, Knowledge
Engineering Review, vol. 11, no. 2, 1996.

503. Utterback, J. Mastering the Dynamics of Innovation. Harvard Business School Press, Boston, USA,
1994.

504. Vanhoenacker, J., Bryant, A. and Dedene, G. Creating a Knowledge Management Architecture for
Business Process Change, ACM SIGCPR Conference, New Orleans, USA, 1999.

505. Vetland Measurement-Based Composite Computational Work Modelling of Software, PhD-thesis,
Norwegian Institute of Technology, Trondheim, Norway, 1993.

506. Voas, J. Software Quality's Eight Greatest Myths, IEEE Software, vol. 16, no. 5, 1999.
507. Voorhoeve, M. Compositional Modelling and Verification of Workflow Processes, in Business Proc-

ess Management, W. v. d. Aalst, J. Desel, and A. Oberweis, Eds. Springer LNCS 1806, Berlin, Ger-
many, 2000.

508. Voss, A., Procter, R., Herrmann, T. and Jørgensen, H. D. Structure and Process: The Interplay of
Routine and Informed Action, ECSCW 2001 Workshop, Bonn, Germany, 2001.

509. Voss, A., Procter, R. and Williams, R. Innovation in Use: Interleaving day-to-day operation and
systems development, Participatory Design Conference, New York, USA, 2000.

510. Välikangas, L. Corporate Renewal in a Knowledge Network, Report R843, SRI Consulting, Business
Intelligence Program, Menlo Park, CA, USA, 1997.

511. Wactlar, H. D. Extracting and Visualizing Knowledge from Film and Video Archives, IKNOW Con-
ference, Graz, Austria, 2002.

512. Wand, Y. and Weber, R. On the Deep Structure of Information Systems, International Conference on
Information Systems, Copenhagen, Denmark, 1990.

513. Wang, A. I. Using a Mobile, Agent-based Environment to Support Cooperative Software Processes,
PhD-thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2001.

514. Wang, W.-L. Beware of the Engineering Metaphor, Communications of the ACM, vol. 45, no. 6,
2002.

515. Warboys, B. C., Balasubramaniam, D., Greenwood, R. M., Kirby, G. N. C., Mayes, K., Morrison, R.
and Munro, D. S. Instances and Connectors: Issues for a Second Generation Process Language,
EWSPT Conference, Springer LNCS 1487, Weybridge, UK, 1998.

516. Warboys, B. C., Balasubramaniam, D., Greenwood, R. M., Kirby, G. N. C., Mayes, K., Morrison, R.
and Munro, D. S. Collaboration and Composition: Issues for a Second Generation Process Lan-
guage, European Software Engineering Conference (ESEC), Springer LNCS 1687, Toulouse,
France, 1999.

517. Warmer, J. and Kleppe, A. The Object Constraint Language. Addison-Wesley, 1999.
518. Wasserschaff, M. and Bentley, R. Supporting Cooperation through Customisation: The Tviews Ap-

proach, Computer Supported Cooperative Work, vol. 6, 1997.
519. Weber, M. Makt og Byråkrati (Norwegian edition, Gyldendal, Oslo, 1971), 1922.
520. Webster The New International Webster's Comprehensive Dictionary of the English Language. Tri-

dent Press, 1996.
521. Wegner, P. Research Paradigms in Computer Science, ICSE Conference, San Francisco, CA, USA,

1976.
522. Wegner, P. Interaction as a basis for empirical computer science, ACM Computing Surveys, vol.

27, no. 1, 1995.
523. Wegner, P. Why interaction is more powerful than algorithms, Communications of the ACM, vol.

40, no. 5, 1997.
524. Wegner, P. and Goldin, D. Interaction as a Framework for Modeling, in Conceptual Modeling, P. P.

Chen, J. Akoka, H. Kangassalo, and B. Thalheim, Eds. Springer LNCS 1565, Berlin, Germany,
1999.

525. Wegner, P. and Goldin, D. Mathematical Models of Interactive Computing, Brown Technical Report
CS 99-13, Computer Science Department, Brown University, Providence, RI, USA, 1999.

526. Weingarten, R. Government Funding and Computing Research Priorities, ACM Computing Sur-
veys, vol. 27, no. 1, 1995.

527. Wenger, E. Communities of Practice. Learning Meaning and Identity. Cambridge University Press,
Cambridge, UK, 1998.

528. Weske, M., Goesmann, T., Holten, R. and Striemer, R. A Reference Model for Workflow Application
Development Processes, ACM Work Activities Coordination and Collaboration Conference
(WACC), San Francisco, USA, 1999.

290

529. WfMC The Workflow Reference Model, Version 1.1, Standard TC00-1003, Workflow Management
Coalition, 1994.

530. WfMC Workflow Management Coalition, Interface 1: Process Definition Interchange. Draft 5.0,
Issued on February 03, 1996, Workflow Management Coalition, 1996.

531. WfMC Terminology & Glossary, Standard TC-1011, Issue 3.0, Workflow Management Coalition,
1999.

532. WfMC Workflow Handbook 2001. Workflow Management Coalition, Future Strategies Inc., Light-
house Point, Florida, USA, 2000.

533. Wikarski, D. An Introduction to Modular Process Nets, Technical Report 96-019, International
Computer Science Institute, Berkeley, CA, 1996.

534. Williams, L., Kessler, R. R., Cunningham, W. and Jeffries, B. Strengthening the Case for Pair Pro-
gramming, IEEE Software, vol. 17, no. 4, 2000.

535. Willumsen, G. Executable Conceptual Models in Information Systems Engineering, PhD-thesis,
Norwegian Institute of Technology, Trondheim, Norway, 1993.

536. Winograd, T. A Language/Action Perspective on the Design of Cooperative Work, Human-Computer
Interaction, vol. 3, 1987.

537. Winograd, T. Categories, Disciplines and Social Coordination, Computer Supported Cooperative
Work, vol. 2, no. 3, 1994.

538. Winograd, T. and Flores, F. Understanding Computers and Cognition. Addison-Wesley, 1986.
539. Wulf, W. A. Are We Scientists or Engineers?, ACM Computing Surveys, vol. 27, no. 1, 1995.
540. Wyner, G. M. and Lee, J. Applying Specialization to Process Models, ACM Conference on Organ-

izational Computing Systems (COOCS), Milplitas, CA, USA, 1995.
541. Yang, G. Towards a Library for Process Programming, in Business Process Management. Springer

LNCS 2678, Berlin, Germany, 2003.
542. Young, P. S. C. Customizable Process Specification and Enactment for Technical and Non-

Technical Users, PhD-thesis, University of California, Irvine, USA, 1994.
543. Yu, E. S. K. and Mylopoulos, J. Using Goals, Rules, and Methods to Support Reasoning in Business

Process Reengineering, Hawaii International Conference on Systems Sciences (HICCS'27), Maui,
Hawaii, US, 1994.

544. Zanchi, M., Su, X. and Gulla, J. A. Modelling with APM in ERP projects, Open Enterprise Solutions:
Systems, Experiences, and Organizations Conference, Rome, Italy, 2001.

545. Zelkowitz, M. V. and Wallace, D. R. Experimental Models for Validating Technology, IEEE Com-
puter, vol. 31, no. 5, 1998.

546. Zelm, M. Towards User Oriented Enterprise Modelling - Comparison of Modelling Languages,
Concurrent Engineering (CE) Conference, Madeira, Portugal, 2003.

547. Zuboff, S. In the Age of the Smart Machine. Basic Books Inc, USA, 1988.
548. Aalst, W. M. P. v. d. The Application of Petri Nets to Workflow Management, The Journal of Cir-

cuits, Systems and Computers, vol. 8, no. 1, 1998.
549. Aalst, W. M. P. v. d. Formalization and Verification of Event-driven Process Chains, Information

and Software Technology, vol. 41, no. 10, 1999.
550. Aalst, W. M. P. v. d. and Basten, T. Life-cycle Inheritance: A Petri-net-based approach, in Applica-

tion and Theory of Petri Nets, P. Azema and G. Balbo, Eds. Springer LNCS 1248, Berlin, Germany,
1997.

551. Aalst, W. M. P. v. d. and Berens, P. J. S. Beyond Workflow Management: Product-Driven Case
Handling, ACM GROUP Conference, Boulder, USA, 2001.

552. Aalst, W. M. P. v. d., Hofstede, A. H. M. t., Kiepuszewski, B. and Barros, A. P. Workflow Patterns,
Distributed and Parallel Databases, 2003.

553. Aalst, W. v. d., Desel, J. and Oberweis, A. Business Process Management. Springer LNCS 1806,
Berlin, Germany, 2000.

554. Aalst, W. v. d., Moldt, D., Valk, R. and Wienberg, F. Enacting Interorganizational Workflows Using
Nets in Nets, Workflow Management Conference, Münster, Germany, 1999.

