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Abstract

The work presented in this thesis is devoted to studying aberration in ultrasound medical imaging,
and to provide methods for correcting aberration of ultrasound signals in order to obtain optimum
image quality. The thesis is composed of five chapters. All chapters may be read individually.
The presented results are generated from simulations.

Chapter 1 presents a description of the aberration phenomenon, and a brief discussion of its
medical and practical implications. A mathematical description of aberration is introduced by
modelling the Green’s function for propagation in a heterogeneous medium.

In Ch. 2, aberration from a point scatterer in the focus of an array is studied. Aberration
is generated by two body wall models, generating weak and strong aberration, emulating the
human abdominal wall. The results show that if correctly estimated, aberration can be close
to ideally characterized by arrival time and amplitude fluctuations measured across the receive
array. Using the arrival time and amplitude fluctuations in a time-delay and amplitude transmit
aberration correction filter, produce close to ideal correction of the retransmitted beam. A point
source represents a situation which is rarely found in medical ultrasound imaging.

A method for estimating aberration from random scatterers is developed in Ch. 3. The method
is based on a cross-correlation analysis, and may in general estimate aberration at each frequency
component of the received ultrasound signal. Due to the results from Ch. 2, the method is only
investigated for a time-delay and amplitude estimate at the center frequency of the signal. The
same aberrators as in Ch. 2 are used. The results show that the method does not produce
satisfactory estimates of the arrival time and amplitude fluctuations for both aberrators.

The backscatter in ultrasound imaging is determined by the width of the focused transmit
beam used to obtain the image. Aberration widens the transmit beam, and the back-scattering
region may become quite large. Since the human body wall has a certain thickness, the body
wall itself generates interference of the signals propagating from different scatterers to the array.
This smoothens aberration parameters such as arrival time and amplitude fluctuations, making
proper estimation of these unfeasible.

Aberration correction is performed as a filter process prior to transmit of the ultrasound beam.
This means that aberration estimation/correction methods model aberration as a filter, that is,
all effects of aberration are assumed to be fully described in an infinitely thin layer at the array
surface. For a point source, this assumption is fulfilled since the signal received on different array
elements originates from the same spatial point. For a large scattering region this is generally
not true, and the aberration described on a specific array element is dependent of the sum of
aberrations generated along different propagation paths from each contributing scatterer. It is
then impossible to obtain ideal aberration correction for a specific point in space (usually the
focus of the array).

A solution to this problem may be sought by iteration of transmit-beam aberration
correction (transmit-beam iteration). Transmit-beam iteration is described as a process where
an uncorrected transmit-beam is used for an initial estimate of aberration parameters. A new
beam with correction is then transmitted, generating a new estimate of the parameters. This
process is repeated until some convergence criterion is met. The goal of this process is to reduce
the width of the transmit beam, in order for the aberration on a specific receive element to be
independent of the scatterers spatial position.

Transmit-beam iteration is studied in Ch. 4. Now, eight different aberrators are used, all



emulating the human abdominal wall. Here, the estimator developed in Ch. 3 is compared with
a similar type of estimator. New insight into the equalities and differences between the estimation
methods are provided through transmit-beam iteration considerations. The results show that
using a time-delay and amplitude aberration correction filter, both algorithms provide close to
ideal aberration correction after two to three transmit-beam iterations for all aberrators. In
addition, an earlier developed focus criterion proves to give accurate description of the point of
convergence, and the accuracy of the correction.

The aberration estimation method described in Ch. 3, was developed in the frequency domain.
In Ch. 5, a time domain implementation is introduced. Necessary assumptions made in
the time domain implementation makes the algorithm different from the frequency domain
implementation.

Since the receive signal in ultrasound imaging is a stochastic variable, estimation of arrival
time-delays and amplitudes at the array, is connected with uncertainty. A variance analysis of
both the time and frequency domain implementations is performed.

There exists only minor differences between the two implementations with respect to variance.
The variance in the estimates proved to be highly dependent upon the aberrator. Results also
indicate that a transmit-beam iteration process converges, even if the variance in the initial
estimate for the iteration process is very high.

In appendix A, a brief discussion of aberration as a function of frequency is provided.
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Chapter 1

Introduction
S. Måsøy
Department of Circulation and Imaging, NTNU.

Ultrasound imaging has been the largest growing medical imaging modality the last 15 years.
Reasons for this are that many disorders can be diagnosed efficiently with ultrasound, the
equipment has relatively low cost, and do not require special building adaptations. One can
even see portable ultrasound imaging equipment being introduced in the market. Ultrasound
imaging is also widely used for guidance of tissue biopsies and other minimally invasive
procedures. However, ultrasound images are for many individuals severely degraded in quality
due to the spatial variations of the acoustic propagation parameters in the tissue (spatial tissue
heterogeneity). This phenomenon is called aberration, and reduces the clinical value of the
images. The image degradation also limits the use of ultrasound for guidance of procedures.
Hence, improving the image quality and resolution in the ultrasound images will greatly increase
the clinical potential of ultrasound imaging in many applications. An example is screening of
selected groups of the population for early detection of tumors. Early detection of cancers may
increase the survival rate, and simple detection methods hence opens for screening of selected
groups of the population with ultrasound imaging. The low cost and portability of ultrasound
equipment makes such screening easier, compared to using more heavy and expensive X-ray and
MR equipment.

The benefits of aberration correction may be summarized as follows:

• sharper images will be obtained over a wide group of patients, facilitating a more accurate
diagnosis of diseases for all categories of patients and illnesses

• improved diagnosis of cancer tumors

• improved focusing quality of ultrasound minimally invasive surgery tools (High Intensity
Focused Ultrasound - HIFU) for treatment of localized cancer tumors

• provide better detection of blood flow, improving contrast agent imaging methods as well
as Doppler methods

Aim of thesis:
The work presented in this thesis is devoted to studying the aberration phenomenon, and to
provide methods for correcting ultrasound signals in order to obtain optimum image quality.
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I Soft tissue factors determining image quality in ultrasound imaging

I Soft tissue factors determining image quality in ultra-
sound imaging

The quality of the ultrasound image is described by the spatial resolution determined by the
beam focusing, and the contrast resolution which is given by the side lobes in the beam. Soft
tissue limits both the spatial and the contrast resolution that is obtained with current ultrasound
imaging systems through the following three phenomena:

1. Absorption of ultrasound energy represents conversion of pressure waves to heat. For
tissue, this effect increases with the ultrasound frequency, and limits the highest frequency
f , and thereby the shortest wavelength λ = c/f (c is the ultrasound propagation velocity),
that can be used at a given depth. Assuming a rectangular aperture, the spatial resolution
of ultrasound instruments is approximately 2λF/D. Here, F is the focal point of the array
and D the array size. Aberration reduce the spatial resolution. By performing aberration
correction the resolution can be improved. The wavelength can be reduced by improving
the sensitivity so that higher ultrasound frequencies can be used. The sensitivity can be
improved by increasing the aperture so that more of the scattered energy is collected, and
also by reducing power losses in the ultrasound transducer and the signal transmission
between the transducer and imaging instrument.

2. Aberration (also known as phasefront aberration) due to spatial variations in the
ultrasound propagation velocity in tissue, destroys the focusing of the ultrasound beam
and increases the sidelobe level. This leads to a reduction of both the spatial and contrast
resolution, blurring the image. Aberration is mainly generated in the human body wall,
which is composed of skin, fat, muscle and connective tissue. Typical velocities for tissue
in the human body wall is 1448 m/s for fat, 1547m/s for muscle, and 1613 m/s for skin
and connective tissue.1 These constitute the largest sound speed differences in the human
body.

3. Strong spatial heterogeneity also creates acoustic noise through multiple scattering known
as pulse reverberations. The reverberations produce a tail added to the propagating
pulse, and is observed as additive noise in the image. This effect is strongest when imaging
through the body wall, as this is composed of irregular mixtures of muscles, fat, and
connective tissue. Note that the effect is also important with strongly heterogeneous objects
like the breast and other fatty glands.

Aberration and reverberation may be viewed as acoustic noise or distortion introduced in
the image by the inherent inhomogeneous structure of soft tissue. The absorption and acoustic
noise effects are linked. The spatial heterogeneity limits the practical aperture in relation to
the wavelength, as long as no corrections for the aberration are performed, and hence lowers
sensitivity and the frequency. The effect of aberration also increases with frequency, because the
propagation variations in the wave front is related to the wavelength of the transmitted signal.
Pulse reverberations are currently reduced by using 2nd harmonic imaging, a method that has
less sensitivity than 1st harmonic imaging, and hence requires use of lower imaging frequencies.

Efficient corrections of aberration and pulse reverberation improve the focusing of the
ultrasound beam, hence improving both the spatial and contrast resolution. Further, aberration
correction allow the use of larger apertures with improved sensitivity. Higher ultrasound
frequencies may then be used, further improving the spatial resolution. There is therefore a
large international research activity to study and provide methods for correction of aberration
and pulse reverberations in medical ultrasound imaging.

Absorption and reverberations are not considered in the work presented here.
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Chapter 1. Introduction

Figure 1.1: Ultrasound images of a tissue mimicking phantom. The left pane shows an image with no
aberration. The right pane shows an image with phase aberration generated by a 5 mm thick silicon aberrator.

II Examples of aberration

Some examples of how aberration affects the ultrasound signal are provided here. The examples
illustrate the possibilities for improvement by correcting aberration.

Ultrasound images of a tissue mimicking phantom containing objects of different sizes, are
presented in Fig. 1.1. The phantom is imaged at 2.5MHz, with a 2 cm cardiac probe focused at
7 cm. In the figure to the left, the phantom is imaged with no aberration of the signal. In the
middle of the image, two anechoic regions of size 6 and 8 mm are visible together with two strong
scattering regions (15 dB stronger than the background) of the same size. One millimeter sized
point scatterers are also visible to the left, and below these regions.

The image to the right is of the same phantom, using a 5 mm thick silicon slab in front of the
probe to generate aberration. The aberration is produced by slots which are milled out in the
slab. Slots of different thickness across the array, generate propagation time-delay differences in
the transmitted and received signals. The time-delays generated by the slab emulates the time-
delay differences observed in the human abdominal wall.2 Due to the thickness of the silicon
slab, the objects in the phantom are not in the exact same location in the two images.

The aberrated image appears quite different compared to the unaberrated image. The
contrast resolution is severely reduced, and it is difficult to observe the anechoic regions as
well as the strong scattering regions. The strong point scatterers are smeared laterally, and the
point scatterers visible in the near-field of the unaberrated image, are not visible in the aberrated
image.

Figure 1.2 displays a grayscale image of an ultrasound beam as a function of range (depth),
with and without aberration. The images are obtained from simulations using a 2 cm array
with focus at 6 cm. The unaberrated beam has a well defined focal depth around the focus
point. For the aberrated beam, the focal region is stretched in range, and the contrast resolution
(determined by the sidelobe level) is strongly reduced.

Figure 1.3 display temporal grayscale pictures of the received waveforms from a point source
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III Clinical aspects of aberration correction
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Figure 1.2: Beam profiles for a 2 cm ultrasound array with focus at range depth 6 cm. The vertical axis
represents the array axis, and the horizontal axis represents range (depth). The top pane shows a beam with
no aberration. The bottom pane shows a beam with aberration from a 2 cm thick body wall model, emulating
the human abdominal wall. The center frequency of the pulse is 2.5MHz. The images are plotted with a
20 dB dynamic scale.

in the focus of an array. Geometric focusing has been removed. The array size is 2 cm with a
focus at 6 cm. A pulse with 2.5 MHz center frequency and 2.5 periods is used as the temporal
signal. The left pane shows a signal without aberration, and the right pane shows a signal with
aberration using the same aberrator as in Fig. 1.2. The phasefronts of the aberrated signal are
distorted, and there also exists amplitude variations of close to 8 dB in the picture. These do
not show properly since a dynamic scale of 40 dB is used. Beamforming in ultrasound imaging
consists of summing the signals over the array to form a receive beam from a specific focusing
direction. It is obvious from Fig. 1.3 that the receive beams from the unaberrated and aberrated
signals will be very different.

III Clinical aspects of aberration correction

In this section, some clinical examples are presented where aberration correction can prove to
become an important contribution for an improved diagnosis.
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Chapter 1. Introduction
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Figure 1.3: Receive signals from a point scatterer in the focus of an array. Geometric focusing is removed.
The left pane shows a signal with no aberration. The right pane shows a signal with aberration from a 2 cm
thick body wall model, emulating the human abdominal wall.

III.A Diagnosis of breast cancer

A very relevant example of the necessity of aberration correction methods, is screening of the
female breast for tumors. The breast is a mixture of fat, glandular tissue, muscle tissue, and
connective tissue and constitutes an object which is highly heterogeneous. Imaging of the breast
is performed at relatively high frequencies (7-12 MHz) and is especially sensitive to aberration
due to the short wavelength at these frequencies. In many western countries screening of the
female population for breast cancer is normal, and in almost 40% of the cases of women between
40 and 50 years, a tumor is found.3 When a tumor is detected from mammography screening, the
follow-up investigation is often done by ultrasound imaging. Diagnosing a tumor as malignant or
benign is associated with uncertainty, and leads to a number of unnecessary biopsies and surgical
procedures. This means that a large portion of women who are treated for breast cancer today,
may not need treatment because the diagnosed tumor will never develop to become malignant.
In a recent study performed on the female population in Norway and Sweden, this portion is
expected to be 30-50%.4 Overcoming aberration problems in this situation could lead to a more
certain diagnose of the malignancy of the tumor with ultrasound. It would also lead to a more
precise definition of the biopsy hot-spot, improving the biopsy investigation and reducing the
number of unnecessary surgical procedures and the trauma following diagnosed cancer. Different
techniques could also be applied to improve the diagnosis, e.g. imaging of the vascularization of
tumors using contrast agent.

III.B HIFU treatment of cancer

Ultrasound is not limited to imaging and diagnosis, but can also be used for treatment and non-
invasive surgery. There is an intensive research activity going on in the field of High Intensity
Focused Ultrasound (HIFU). When using ultrasound for imaging, a strong limit is set on the
allowed intensity in order not to damage tissue. When increasing the intensity of the transmitted
focused ultrasound beam, it can be used to create lesions in tissue. The application of HIFU
induces tissue coagulation necrosis by a sharp temperature increase inside the tissue.5 The
formation of such lesions is widely described by Fry et al. in 1970, Frizzel et al. in 1988, ter
Haar et al. in 1989, and Chapelon et al. in 1990.5 The physical explanation of the creation of
lesions is assumed to arise from two principal phenomena:
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IV Practical aspects of aberration correction

1. a thermal effect linked to absorption of ultrasound waves,

2. and cavitation, which is formation of bubbles which collapse.

The combination of these effects is responsible for the slightly conical form of the elementary
lesions caused by each ultrasound shot.5 Gelet et al.5 has used HIFU to treat 102 patients with
prostate cancer, and has shown an overall success rate of 66%, which is comparable to results
from treatment with radio therapy. The benefit of using HIFU compared to radio therapy is that
there is no maximum dose, and the treatment can thus be reapplied as many times as needed.

HIFU is not limited to treatment of prostate cancer but can also be used on the breast, the
brain; in general everywhere ultrasound is used.

For breast treatment, aberration correction of the treatment beam becomes an important
issue. HIFU treatment of cancer tumors is dependent on very narrow point like focused beams
in order to know exactly where the treatment is being administered. As discussed in the previous
section, the female breast is highly heterogeneous and offers strong challenges for detailed
imaging, and thus also for HIFU treatment. If HIFU is successfully implemented for cancer
treatment of the breast, a large part of small ”uncertain” tumors can be treated with minimal
side effects for the patients

At Laboratoire Ondes et Acoustiqe in Paris, France, experiments of aberration corrected
HIFU treatment through sheep scull6 has been successfully demonstrated without having to
open the scull. In the future, this could become a very important area for treatment of tumors
in the brain.

IV Practical aspects of aberration correction

Three basic practical aspects can be devised concerning implementation of aberration correction
in an ultrasound scanner. These are:

• ultrasound arrays

• frequency

• computational requirements

All three points are somewhat connected.

IV.A Ultrasound arrays

For aberration correction to be properly estimated, 2D ultrasound matrix arrays with fully
programmable elements are necessary. A 2D matrix phased array needs elements as small as λ/2
in order to avoid grating lobes when direction steering the beam. Such an array may contain
3000 elements for a 2.5 MHz probe used for cardiac imaging.

In order for a 2D array with 3000 elements to be tractable to the physician, the cable
connecting the probe to the ultrasound scanner has to be of reasonable size. To overcome
this problem, the 2D matrix arrays now on the market group elements together by beamforming,
and normally reduce the number of cables to 256. This means that radio frequency data is only
available for the 256 grouped elements, which may not be sufficient for aberration estimation. In
general, estimation of aberration requires the elements to be smaller than the correlation length
of the aberration parameters to be estimated. Usually, this requirement is much larger than
standard beamforming requirements.

14



Chapter 1. Introduction

(a) Annular array (b) Sectioned annular array

Figure 1.4: Illustration of an annular array and a possible sectioning of such an array.

Based on the latter discussion, it is plausible to conclude that aberration correction should be
performed in the probe, reducing the size of the cable. This generates a demand for development
of small sized dedicated hardware.

Rigby et al.7 used a 1.75D array for in vivo testing of an aberration correction scheme. Such
an array has fewer elements, overcoming to some extent the problem discussed above, and allows
for larger apertures in real time aberration correction.

IV.B Frequency

As described earlier, imaging of the female breast is performed at frequencies ranging from 7-
12 MHz. Now, fulfilling the λ/2 requirement for direction steering of the beam becomes difficult
as the number of elements increase to an unwieldy number. A solution to this could be to use
annular arrays where the annular piezoelectric rings are sectioned into smaller elements (see
Fig. 1.4). Such an array may be placed on a rotating motor, giving the desired direction steering
of the beam. This remains a topic for future research.

IV.C Computational requirements

Aberration correction methods typically involve cross-correlation. Using the example above,
cross-correlating a total of 3000 elements for each transmitted beam becomes an expensive
computational task for a real time imaging system. This means that research must be performed
on fast implementation of aberration estimation algorithms, in order to reduce computation time.

As an example, the aberration estimation algorithms presented in this thesis use an average
of complex cross-correlations between a specific element, and a number of neighboring elements.
This number, which varies with the strength of the aberration, could be in the order of 10.
For a 2D array, this means that aberration estimation on a single element requires 100 complex
multiplications. The total number of complex multiplications is then in the order of 300 000 for
each transmitted beam.
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V Basic theory

V Basic theory

This section gives a brief introduction to basic wave equation analysis. It introduces
a mathematical description of aberration through modeling the Green’s function for a
heterogeneous medium. A heterogeneous medium is defined by variable bulk compressibility
and mass density, producing a spatial variable speed of sound. A homogeneous medium is given
by a constant speed of sound.
The derivations in this section follows Angelsen.8,9

In the presented analysis of the wave equation, the medium is assumed to constitute a
continuum. Shear waves are neglected, and a linear relation between relative volume compression
and pressure is assumed via the bulk compressibility. Absorption and non-linear propagation
effects are not included.

V.A The homogeneous wave equation and Green’s function

Propagation of pressure waves in a homogeneous medium is described by the wave equation given
as

∇2p(r, t)− 1
c2

∂2p(r, t)
∂t2

= 0 , (1.1)

where p denotes pressure, r represents a field-coordinate, and t time. Here, c denotes the speed
of sound and is given as

c =
1√
ρκ

, (1.2)

where ρ is the mass density, and κ the bulk compressibility of the medium. The left side of
Eq. (1.1) is often referred to as the d’Alembert operator.

Introducing a source q(r, t), the nonhomogeneous10 wave equation may be written as

∇2p(r, t)− 1
c2

∂2p(r, t)
∂t2

= −q(r, t) , (1.3)

A particular10 solution of this equation can be found by considering a source limited to a small
volume V , dwelling in infinite space. This solution can be found by the use of the Fourier
transform of Eq. (1.3), and is given as

p(r, t) =
∫

V

dr3
0

∫ ∞

−∞
dt0 gh(r− r0, t− t0)q(r0, t0) , (1.4)

where the integration is over the volume V , and r0 denotes the position of the source. The
function gh represents the Green’s function for the homogeneous wave equation in infinite space
and is given as

gh(r, t) =
δ(t− r/c)

4πr
, (1.5)

where r = |r|.
The homogeneous Green’s function is the solution of the wave equation when the source term

is given by an impulse in both space and time. It describes the propagation of a crest wave in a
medium with constant speed of sound. Equation (1.4) thus describes the pressure at the point r
in space and time t, which emanated from the source q at time t0 (situated in r0 ).

In a heterogeneous medium, the speed of sound varies with the spatial coordinate, and the
homogenous Green’s function is no longer a particular solution of the wave equation. Still, the
analogy is strong, and similar expressions as above may be adopted for the solution of the wave
equation with a varying speed of sound; the heterogeneous wave equation.

16



Chapter 1. Introduction

Skin Fat Muscle

Figure 1.5: Schematic drawing of the body wall.

V.B The heterogeneous wave equation and Green’s function

Heterogeneous tissue has a spatial fluctuating mass density ρ and bulk compressibility κ. As
described earlier, aberration is mainly generated in the body wall while the organs produce little
aberration. A schematic drawing of the human body wall is presented in Fig. 1.5. It is composed
of the skin, a subcutaneous fat layer and a muscle layer.

In Ref. 11, it is shown that large tissue interfaces, approximately normal to the propagation
direction, as e.g. between the subcutaneous fat layer and muscle layer, do not contribute
significantly to overall distortion of the ultrasound signal. It is shown that large scale time-
delay variations mainly are generated in the muscle layers. Rapid small scale fluctuations of
both time-delays and amplitudes are generated in the subcutaneous fat layer.

The thickness of the subcutaneous fat layer in humans commonly varies from approximately
0.5-6 cm.12 It is highly heterogeneous, and is composed of small ovoid or spherical lobules of
fat of size ranging from 2.5-7.5 mm. They are held together by thin fibrous connective tissue.
The speed of sound for fat is 1448 m/s, and for connective tissue 1613 m/s, constituting the
largest difference in soft tissue. The muscle layer often contains large marmorized regions of
fat (as illustrated in the figure). The muscle layer is also in many cases much thinner than the
subcutaneous fat layer, especially for obese patients. The fatty regions introduce large scale
time-delay differences in the propagating wave. A detailed description of body wall anatomy,
and its implications on aberration is provided in Ref. 12.

Spatial variations in the mass density and compressibility may be modeled as

ρ(r) = ρa(r) + ρf (r)

κ(r) = κa(r) + κf (r) .
(1.6)

Here, ρa and κa represents slow spatial variations around an average background with rapid
fluctuations ρf and κf across tissue interfaces. The slow varying components typically represents
scales of size larger than the wavelength, while the rapid fluctuations express scales less than the
wavelength.

Writing the wave equation with variable mass density and compressibility gives

∇
{

1
ρ(r)

∇p(r, t)
}
− κ(r)

∂2p(r, t)
∂t2

= 0 . (1.7)
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Inserting Eq. (1.6) into Eq. (1.7), and rearranging terms, the heterogeneous wave equation may
be written as

∇2p(r, t)− 1
c2(r)

∂2p(r, t)
∂t2

=
β(r)
c2(r)

∂2p(r, t)
∂t2

+∇{γ(r)∇p(r, t)} . (1.8)

Now, the speed of sound is given as

c(r) =
1√

ρa(r)κa(r)
, (1.9)

and the parameters β and γ are defined as

β(r) =
κf (r)
κa(r)

, γ(r) =
ρf (r)
ρ(r)

. (1.10)

To obtain Eq. (1.8), the assumption of ∇ρa(r) ≈ 0 was used. Note that for β, it is κa which
enters into the denominator, while for γ it is the total mass density ρ.

Equation (1.8) can be interpreted as a wave equation with a source term

∇2p(r, t)− 1
c2(r)

∂2p(r, t)
∂t2

= −q(r, t) , (1.11)

where

q(r, t) = − β(r)
c2(r)

∂2p(r, t)
∂t2

−∇{γ(r)∇p(r, t)} . (1.12)

The heterogeneous wave equation in Eq. (1.11) is linear with derivatives of the pressure. This is
also true for the source term. It can therefore be solved in the same manner as Eq. (1.3), i.e. the
total field can be described by an integral solution involving a Green’s function and the source
term. This solution is conveniently found via the Helmholtz-Kirchoff’s formula [Ref. 8 (Ch. 4.3)],
again assuming a limited source volume dwelling in infinite space.

Due to the varying speed of sound, the Green’s function is no longer only a function of the
distance between the source position r0 and the field point r.

In analogy with Eq. (1.4), a solution of Eq. (1.11) may be written as

p(r, t) =
∫

V

dr3
0

∫ ∞

−∞
dt0 g(r, r0, t− t0)q(r0, t0) , (1.13)

where g(r, r0, t) now represents the heterogeneous Green’s function. Note that this Green’s
function is dependent on both the field-point and the source point, and satisfies the wave equation

∇2g(r, r0, t− t0)−
1

c2(r)
∂2g(r, r0, t− t0)

∂t2
= −δ(r− r0) δ(t− t0) . (1.14)

Fourier transforming Eq. (1.13) in time, produce the Helmholtz solution of the heterogeneous
wave equation as

p(r; ω) =
∫

V

dr3
0 g(r, r0; ω)q(r0; ω) , (1.15)
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Figure 1.6: Plane wave analysis of two homogeneous materials with different mass density and compressibility.

Interpretation of the source term in the heterogeneous wave equation

The source term in Eq. (1.8) will produce both forward and back scattering of the propagating
wave. This is due to the fluctuations in compressibility and mass density given by β and γ. For
the purpose of analysis, assume a plane wave situation between two homogeneous materials with
different mass density and compressibility as shown in Fig 1.6. Assume an incoming wave in
Material 1 on the form p0(z, t) = p0(t− z/c1). In the Born approximation regime, it is shown in
Ref. 9 (Ch. 7.3) that the first order scattered field p1 from the interface may be written as

p1(z, t) =
1
2

∂p0(t− z/c1)
∂z

∫ z

−∞
dz0 νf (z0)−

νb(z)
4

p0(t− z/c1)

− 1
4

∫ ∞

z

dz0 p0(t + z/c1 − 2z0/c1)
∂νb(z0)

∂z0

.

(1.16)

The functions νf and νb are given as

νf (z) = β(z) + γ(z) , νb(z) = β(z)− γ(z) , (1.17)

and represents the forward and backscatter density.
The two first terms of Eq. (1.16) represents forward scattered waves which adds to the

incoming transmitted wave. The last term is a backwards propagating wave and represents
reflections at the interface. The total forward field after the interface is then

pf (z, t) = p0(t− z/c1) +
1
2

∂p0(t− z/c1)
∂z

∫ z

−∞
dz0 νf (z0)−

νb(z)
4

p0(t− z/c1)

= Tp0(t− z/c1) +
1
2

∂p0(t− z/c1)
∂z

∫ z

−∞
dz0 νf (z0) ,

(1.18)

where T = 1− νb(z)/4, and represents a transmission coefficient for the incoming field.
In Eq. (1.16), the back scattered field is dependent on the gradient of the backscatter density,

while the forward scattered field is dependent on the integral of the forward scatter density. The
modeling of ρ and κ in Eq. (1.6) allows for some flexibility in how to chose the variations of the
slow and rapid changing functions.

An example for the compressibility is shown in Fig. 1.7. Here, κa has a slow and linear
variation over a defined transition region of length L. The fluctuating term, represented by β,
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Figure 1.7: Slow and rapid variations of compressibility.

has in impulse like form over the transition region. The variation of the parameters in the transit
region may be chosen to be symmetric in β and γ. For a symmetric transit region, the integral
over the fluctuating term will be zero. This results in a transmitted wave p0, but no forward
scattering is generated. The backscatter is dependent on the gradient of the fluctuating terms
and is not zero. Note that, in the Born approximation regime, this choice of parameters produce
a small time-delay error in the back scattered field. Assuming a transit region of L = 2λ, it is
shown in Ref. 9 (p. 7.22) that the error for the reflected wave between fat and muscle tissue, is
only ∼ 4% of the pulse period. This is highly acceptable.

The above discussion shows that the source term in the heterogeneous wave equation may
be interpreted to only represent back scattering of an incoming wave. That is, choosing
appropriate values for the slowly varying and rapid fluctuating parts of the mass density and
bulk compressibility, no forward scattering is generated by the source term. This leads to
the recognition that all modification of the forward propagating field is incorporated in the
d’Alembert operator, i.e. the part of the wave equation describing propagation of the field.
In addition, this modification is generated by the slow variation of the mass density and
compressibility, defined by the speed of sound c(r) in Eq. (1.11).

V.C Modeling of the heterogeneous Green’s function - the concept of
the screen

The solution of the homogeneous wave equation with a source term in Eq. (1.4), is analog to
the solution of the heterogeneous wave equation given in Eq. (1.13). The difference is in the
construction of the Green’s function, which for a homogeneous medium only is a function of the
distance from the source position to the point of observation (the field point). The heterogeneous
Green’s function also varies in each spatial position due the changing speed of sound in the
medium. Since the solutions are conceptually equal, the difference is conveniently modeled using
the concept of the generalized frequency-dependent screen.

The heterogeneous Green’s function is then written in the frequency domain as

g(r, r0; ω) = s(r, r0;ω) gh(r− r0; ω) , (1.19)
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that is, the difference between the homogeneous and heterogeneous situation is modeled by a
linear filter equation. Here, s(r, r0; ω) denotes the generalized frequency-dependent screen, from
now on denoted as the screen, and represents the frequency response of a filter which produces
a modification of a homogeneous propagating field. The modification is given by a frequency
dependent phase and amplitude factor, and is interpreted as aberration of the wave introduced
by tissue inhomogeneities. Based on the discussion in the previous section, such a modelling is
justifiable since aberration is generated by the d’Alembert operator of the wave equation.

Writing the screen with an amplitude and phase as

s(r, r0;ω) = a(r, r0; ω)eiθ(r,r0;ω) , (1.20)

it is seen that non-linear variation of the phase with frequency produce stretching of the wave.
Allowing a complex valued amplitude, may be interpreted as an additive frequency dependent
phase factor, which again can be incorporated into θ. Thus for all practical purposes, the
amplitude is assumed to be real valued.

Assuming a point impulse source exists in the focus rf of an array, it is seen from Eq. (1.13)
that the field received on the array is directly given by the Green’s function. The aberration of
the medium can then be explicitly found through the screen. Filtering the transmitted field on
each array element with the complex conjugate of the screen, is in this case equivalent to time
reversal13 and reproduces the diffraction limited impulse field in rf . Results corroborating this
statement is provided in Ch. 2 of this thesis.

The complex conjugate of the screen thus defines an ideal aberration correction filter h for
the focus point of an ultrasound array

h(ra; ω) = s∗(ra, rf ; ω) , (1.21)

where ra denotes the array coordinate.
The main object of the work presented in this thesis, is to devise algorithms to determine

the screen, and to use this as an aberration correction filter. In the literature, the most common
investigated method for correcting aberration is to use a simple time-delay filter, or a time-delay
and amplitude filter. Such filters are defined in the frequency domain as

h(ra;ω) = eiωτ(ra) (1.22)

h(ra;ω) = a(ra)eiωτ(ra) , (1.23)

and represent approximations to the ideal correction filter given by the screen.
A correction filter using a simple time-delay cannot correct for non-linear phase variations

with frequency. In Ch. 2, it is shown that a time-delay and amplitude filter produce close
to ideal aberration correction when estimated from a point source. This indicates that non-
linear variations of the phase of the screen with frequency can be neglected for low-frequency
ultrasound imaging (1-3 MHz). The results were obtained using a transmit pulse with 2.5 MHz
center frequency. The same conclusion was found by measurements performed at 3 MHz.14

V.D The receive signal model: Scatterer independent aberration

Inserting the model of the heterogeneous Green’s function in Eq. (1.19) into Eq. (1.15) gives

p(r; ω) =
∫

V

dr3
0 s(r, r0;ω)gh(r− r0; ω)q(r0; ω) . (1.24)

This equation can be analyzed with respect to the size of the source volume V .

21



V Basic theory

Body wall

V

(a) Scatterer dependent aberration

Body wall

V

(b) Scatterer independent aberration

Figure 1.8: Receive scatterer dependent and independent situations.

Figure 1.8 depicts an ultrasound array with a body wall in front of it. Assume the medium
from the body wall to the source volume V to be homogeneous. In the general case, the field
received on a point r on the array is dependent on the sum of the contribution of sources, each
with its specific Green’s function. This is what Eq. (1.24) describes. For this case, a separate
screen function must be applied to each contributing source due to their different propagation
paths as show in Fig. 1.8 (a).

Similarly to Eq. (1.24), the received signal on an array element y can be written as

y(r;ω) =
∫

V

dr3
0 2s(r, r0; ω)gh(r− r0; ω)qts(r0; ω) . (1.25)

Here the source term qts incorporates the transmitted field and scattering from the volume, and
may hence be viewed as a scattering term. Equation (1.25) describes a situation which here is
termed receive scatterer dependent aberration and abbreviated scatterer dependent aberration.

If the focused transmit beam insonifies a small scattering volume, so small that the
propagation path is approximately the same for each scatterer contribution, the screen is
independent of scatterer position and the received signal can be approximated as

y(r;ω) ≈ s(r; ω)
∫

V

dr3
0 2gh(r− r0; ω)qts(r0;ω) ≡ s(r; ω) f(r; ω) . (1.26)

This situation, depicted in Fig. 1.8 (b), is here denoted receive scatterer independent aberration
and abbreviated scatterer independent aberration. The screen is now referred to as the scatterer
independent screen. A volume of scatterers fulfilling this requirement is denoted an isoplanatic
patch, a term coined in astronomy where similar effects are considered when the light from distant
stars pass through the atmosphere. Note that if the array is focused in a different direction, the
source distribution and propagation path change, giving a different screen. This means that the
screen generally is a function of the focus rf of the array.

If all aberration is concentrated in an infinitely thin layer at the array surface, the screen also
becomes independent of the focusing position of the array and

s(r, r0; ω) = s(r, rf ;ω) ≡ s(r; ω). (1.27)

Note that for an infinitely thin aberrating layer situated some distance from the array, the
assumption of scatterer independent aberration does not hold.
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In general aberration correction must be performed by filtering the transmitted signal with a
correction filter of some sort. This means that the assumption of scatterer independent aberration
should be fulfilled to a certain extent for proper estimation of aberration characteristics.

V.E The Van Cittert-Zernike theorem

Scatterers contributing to an ultrasound image, are randomly distributed in space. The receive
signal is therefore a stochastic variable. Note that for a specific beam, the screen is deterministic.

The van Cittert-Zernike theorem15 was developed for propagation in a homogenous medium.
The theorem describes the spatial covariance in the received signal when the scattering is
incoherent. Using the assumption of scatterer independent aberration, the theorem remains
valid and may be written as [Ref. 9 (p. 11.55)]

F (ξ; ω) =
σ2

ν

4π2

∫

Sa

dr2 s(r + ξ; ω)s∗(r;ω)o(r + ξ)o∗(r) , (1.28)

where F is the covariance of f . Here σ2
ν is the scattering intensity, the integration is performed

over the array surface Sa, and o(r) denotes the array apodization function.
Equation (1.28) shows that the covariance in the received signal is limited by the aberration

as well as the apodization of the array.
If aberration correction is performed by using the complex conjugate of the screen, the

theorem becomes

F (ξ; ω) =
σ2

ν

4π2

∫

Sa

dr2 |a(r + ξ;ω)|2|a∗(r; ω)|2 , (1.29)

where a is the amplitude of the screen as defined in Eq. (1.20), and the screen has been used as
an apodization function. This means that the covariance of the received transmit corrected field
is given by the correlation of the aberration amplitude squared.

V.F Aberration as a function of frequency

Aberration is an interference phenomenon. Interference is highly dependent on frequency. This
strongly suggests that aberration also depends on frequency. This is mathematically stated by
the generalized frequency-dependent screen, and van Cittert-Zernike theorem as described by
Eq. (1.28). Very little research (or any at all) has been devoted to study the relation between
frequency and aberration.

When imaging at high frequencies (7-15 MHz) the wavelength is in the order of 0.1mm-0.2 mm
(for water), compared to 0.6mm at 2.5 MHz. This means that a specific time shift between two
signals has a much more drastic effect when using higher frequencies. For example, a time-delay
of 100 ns produce a shift of 0.15 mm. This represents 1/4 of a wavelength for a 2.5 MHz pulse,
and 3/4 of a wavelength for a 7.5 MHz pulse. Strong time-delays between signals also introduce
a non-linear varying phase with frequency. A discussion of aberration as a function of frequency
is given in Appendix A.

VI Assumptions for the work presented in this thesis

All the results presented in this work are generated from simulations. Using simulations, pure
aberration effects can be studied by eliminating factors such as reverberations and absorption. All
phenomena occurring, can then be described uniquely by propagation effects linked to aberration
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Figure 1.9: Basic simulation setup.

of the ultrasound signals. This again shows the maximum potential of aberration estimation and
correction methods.

In a practical situation, reverberations, absorption, and electronic noise may affect both
estimation and correction of aberration. Such effects, and their implications upon aberration
estimation/correction are discussed in the following chapters of this thesis.

The simulations are carried out in two spatial directions and time. Acoustic absorption,
reverberations and electronic noise are not included in the simulations.

The basic simulation setup is illustrated in Fig. 1.9. An ultrasound array with size D, is
placed directly onto a body wall model of thickness d. The array is focused at position rf . The
array elements are assumed to be point like in size, which means that element directivity is not
accounted for.

The body wall is modeled using a distributed aberrator composed of successive time-delay
screens. Note that only aberration from a body wall is studied, and not aberration from totally
heterogeneous objects like the female breast.

For propagation, an angular spectrum method was used. A description of the propagation
operator, and the aberration modeling, is provided in Ch. 2.

Random scattering is simulated using uniformly distributed scatterers with a Gaussian
reflection strength. This means that scattering from objects or structures such as strong
scattering or anechoic regions, is not investigated.

The simulations are implemented in Matlab, and a package of functions has been
created (over the past four years) for this purpose. This package is available free at
www.ntnu.no/∼sveinmas/.

VII Overview of thesis

The thesis is composed of four chapters (in addition to this chapter). The chapters are written
in the form of separate articles, and may hence be read individually. Due to this composition,
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some aspects concerning basic theory, simulation setup, and data processing are repeated but all
chapters introduce new theoretical considerations and simulation results. Chapters 2 and 3 are
published as articles in the Journal of the Acoustical Society of America (JASA), and they are
in the following referred to in their published form. Chapter 4 has been accepted for publication
in JASA, and is scheduled for publication in December 2004, or January 2005. The last chapter
is also planned for publication.

There are some changes in the presented material compared to the already published work.
The changes are related to erroneous statements concerning basic assumptions for the aberration
estimation methods presented. This only concerns a few phrases in each of the articles.
Other aspects are not changed. These are connected to an increased theoretical and physical
understanding of the estimators, and is meant to show an improved scientific understanding
throughout the thesis. Hopefully, this will also become clear to the reader.

Minor changes in notation has been introduced in order to make it consistent throughout the
presented work. There are also some corrections of spelling errors and phrasing.

Chapter 2 and 3, were accompanied with an errata with correction of minor calculation errors
in the articles. These corrections are included here.

In Ch. 2,16 aberration is estimated from a point source in the focus of an array. The basic
result from this work shows that, if properly estimated, aberration can be corrected using a
simple time-delay and amplitude filter applied on transmit. This is an approximation to the
generalized frequency-dependent screen as given in Eq. (1.23).

Chapter 3,17 presents an algorithm for determining the generalized frequency-dependent
screen. The method is developed in the frequency domain. Based on the results from Ch. 2,
the screen is approximated by a time-delay and amplitude filter. The main result shows that
a single transmit beam may not be sufficient for determining the aberration correctly. This is
due to the width of the aberrated transmit beam, which generally is larger than the isoplanatic
patch. For this case, the assumption of scatterer independent aberration, which is fundamental
for aberration correction, does not hold. With a back scattered signal from a region larger than
the isoplanatic patch, the received signal is severely distorted due to the thickness of the body
wall, creating strong aberration generated interference in addition to scatterer interference. This
effect smoothens aberration parameters and they cannot be properly estimated.

A solution to this problem may be sought by iteration of transmit-beam aberration
correction (transmit-beam iteration). Transmit-beam iteration is described as a process where
an uncorrected transmit-beam is used for an initial estimate of aberration parameters. A new
beam with correction is then transmitted, generating a new estimate of the parameters. This
process is repeated until some convergence criterion is met.

Iteration of transmit-beam aberration correction is studied in Ch. 4.18 Two developed
algorithms for estimating aberration are here compared, where one of them is described in
Ch. 3, and the other in Ref. 19. Transmit-beam iteration offers new theoretical insight into
the similarities and differences between the algorithms. The results show that using a time-delay
and amplitude aberration correction filter, both algorithms provide close to ideal aberration
correction after two to three transmit-beam iterations. In addition, an earlier developed focus
criterion20 proves to give accurate description of the point of convergence, and the accuracy of
the correction.

Both the aforementioned aberration algorithms are based on a cross-correlation estimation
process. Different methods of averaging the cross-correlation can be applied to improve its
estimate. For example, imaging a large artery provides moving scatterers which are replaced
within a brief period of time. Transmitting several beams with the same focus and amplitude
then yields statistically independent receive signals, which can be used to ameliorate the cross-
correlation estimate. Alternatively, neighboring beams with multiple focusing in a sector/linear
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scan may be used for the same purpose.7,14,21

Since the receive signal in ultrasound imaging is a stochastic variable, estimation of arrival
time-delays and amplitudes at the array, is connected with uncertainty. In Ch. 5, a variance
analysis of arrival time and amplitude fluctuation estimates is performed. The variance is
investigated with respect to averaging the cross-correlation estimate over a varying number
of independent receive signals. In addition, a time domain implementation of the estimation
algorithm developed in Ch. 3 is given, and the differences between the two implementations
are examined. The results show only minor differences between the two implementations with
respect to variance. The standard deviation of arrival time and amplitude fluctuation estimates
decrease, when the number of independent signals used increase. Using only one signal produces
a relatively high standard deviation, but the results indicate that an iterative transmit-beam
aberration correction scheme still converges to a properly corrected focus beam profile.
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Chapter 2

Correction of ultrasonic wave
aberration with a time-delay and
amplitude filter
S. Måsøy, T. F. Johansen, B. Angelsen
Department of Circulation and Imaging, NTNU.

2D simulations with propagation through two different heterogeneous human body
wall models have been performed to analyze different correction filters for ultrasonic
wave aberration due to forward wave propagation. The different models each produce
most of the characteristic aberration effects such as phase aberration, relatively strong
amplitude aberration and waveform deformation. Simulations of wave propagation
from a point source in the focus (60 mm) of a 20 mm transducer through the body wall
models were performed. Center frequency of the pulse was 2.5 MHz. Corrections of
the aberrations introduced by the two body wall models were evaluated with reference
to the corrections obtained with the optimal filter: a generalized frequency-dependent
phase and amplitude correction filter.1 Two correction filters were applied, a time-
delay filter, and a time-delay and amplitude filter. Results showed that correction with
a time-delay filter produced substantial reduction of the aberration in both cases. A
time-delay and amplitude correction filter performed even better in both cases, and
gave correction close to the ideal situation (no aberration). The results also indicated
that the effect of the correction was very sensitive to the accuracy of the arrival time
fluctuations estimate, i.e., the time-delay correction filter.

I Introduction

Wave distortion in medical ultrasound imaging originates from inhomogeneities in the tissue,
especially in the human body wall. Distortion of an ultrasonic wave, also known as aberration,
leads to poorer resolution in the obtained images.

In the literature it is possible to deduce three different methods for correction of ultrasonic
wave aberration.

1. A focusing and apodization method, where arrival time and amplitude fluctuations are
corrected in the focusing and apodization of the transmitted signal. In this article this
method will be denoted in the general case as a correction filter, or more specific as a
time-delay correction filter alone or in combination with an amplitude correction filter.
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II Theory and method

Flax and O’Donnel2 introduced a cross-correlation method for estimation of arrival time
fluctuations in the received aberrated signal. This represents the classical method for
estimation of arrival time fluctuations and has been extensively used in the literature on
ultrasonic wave aberration.

2. Fink3 introduced the time reversal mirror, which incorporates information about the pulse
form in addition to arrival time and amplitude fluctuations. This method requires a point
reflector in the insonified medium, which rarely is the case.

3. The back-propagation method introduced by Liu and Waag4 propagates the signal
homogeneously backwards in time in order to obtain an optimal situation for estimation of
aberration parameters. For the case of estimating a time-delay correction filter, it is not yet
completely understood if back-propagation followed by arrival time estimation works better
than arrival time estimation at the transmitting array, for correction of the retransmitted
wave.5,6

The objective of the work presented in this article was to find how well a time-delay
correction filter, or a time-delay and amplitude correction filter, corrects for ultrasonic wave
aberration. There has been performed much research on time-delay and amplitude correction of
ultrasonic wave aberration2,7–10, but all of this work has used a very simple aberration model
consisting of a single pure time-delay screen placed just in front of, or some distance from
the transmitting/receiving array. The work done by the ultrasound group at the University
of Rochester,11–16 has given valuable insight into how the inhomogeneities in the human body
wall affect aberration of ultrasonic waves. This has been crucial in the understanding of this
phenomenon, and possible corrections. Their work have also shown that a single time-delay
screen model is to simple, and cannot adequately model ultrasonic wave aberration.

Berkhoff and Thijssen6 introduced a number of successive time-delay screens to model
ultrasonic wave aberration, but gave no characterization of the total accumulated effect of these
successive screens. In the present article, the concept of successive time-delay screens have been
further developed as a model of the human body wall, although this has been criticized not to
be an appropriate method to model aberration introduced by propagation through the human
body wall.16 The main reason to create such a model was to simulate ultrasonic wave aberration
with a relatively simple and non-expensive method. This method can be used to evaluate various
techniques of estimation and correction of wave aberration. The work presented here shows that
if care is used in designing the aforementioned wall model, it produces most of the reported
aberration phenomena introduced by the human body wall.

A correction method using a generalized frequency-dependent phase and amplitude correction
filter1, was used as a reference for the best possible aberration correction. Such a filter comprises
spatial and frequency dependency of both amplitude and phase fluctuations at the receiving array.
Approximations of the generalized frequency-dependent correction filter with a time-delay filter
alone, or in combination with an amplitude filter, was then evaluated from simulations of point
sources placed in the focus of a focusing array. Simulations with point sources in the focus of
an array provides the optimal situation for estimation of wave aberration. Six different methods
were evaluated for the estimation of the time-delay correction filter. Absorption, reverberations,
or electronic noise were not included in the simulations.
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Figure 2.1: Simulation setup.

II Theory and method

II.A Simulation setup

The simulation setup is illustrated in Fig. 2.1. The figure depicts a simulation setup of a point
source placed in the focus rf of an array. A pulse was propagated from the point source through
a body wall model of thickness d to the receiving array. A correction filter was estimated from
the received signal and applied on transmit of a focused pulse. This pulse was propagated back
to the focal plane for evaluation of the applied correction filter.

II.B Body wall modelling

The human body wall was modelled with different sets of several time-delay screens, in order to
simulate various cases of aberration. A time-delay screen only introduces a shift in the phase
of the ultrasonic signal with a pure time-delay. The time-delay screen was defined only in a
plane (Fig. 2.2), and thus had zero thickness. The propagation through the body wall model
was performed by homogeneous propagation with an angular spectrum operator (described in
section II.C) between each time-delay screen.

In order to create different cases of aberration, 8 sequences of random numbers with a
standard normal distribution were generated. These sequences were then low-pass filtered to
obtain reported correlation lengths for the time-delays produced by the human abdominal wall.11

Four different configurations containing 2, 4, 6 and 8 sequences were selected in order to
generate different aberration conditions. Various aberration situations could now easily be
simulated by multiplying each configuration with an individual time-delay amplitude (given in
seconds), thus turning the configuration into a set of time-delay screens. Note that in this article,
all the time-delay screens in a specific configuration were multiplied with the same time-delay
amplitude. The time-delay screens in a configuration, were uniformly spaced over a depth-range
d with a distance ∆z = d/(number of screens) between them. The first time-delay screen was
placed a distance ∆z from the array, and the last was placed at the distance d from the array (see
Fig. 2.2). To summarize: a given model of a body wall consisted of one of the above mentioned
configurations, multiplied with a defined time-delay amplitude given in seconds, and distributed
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II Theory and method

Figure 2.2: Body wall model with time-delay screens.

uniformly in space over a depth d.
Two categories of human body wall models were created, representing cases of weak and

strong aberration. These two categories were not rigorously defined, but different created body
wall models were placed into these categories after several selection criterions. The criterions
were body wall statistics (correlation lengths and rms values of arrival time and energy level
fluctuations), the level of waveform deformation (calculated by a waveform similarity factor),
visual inspection of received arrival time and amplitude fluctuations, visual inspection of received
waveforms, and visual inspection of aberrated beam profiles in the focal plane.

A first crude selection criterion was that the maximum peak to peak difference in the arrival
time fluctuations should be less than half the period of the transmitted pulse for the weak
aberration case. For the strong aberration case this value should be higher than half the period
of the transmitted pulse. Based on this crude selection rule, four different body wall models
with 2, 4, 6 and 8 time-delay screens respectively, were generated in both the weak and strong
aberration category. Both categories thus contained all four sequence configurations, multiplied
with a different time-delay amplitude.

One body wall model was then chosen from each of the two categories. The reason for
this was to find the body wall model that produced the ”worst” aberration in each category
respectively. In this procedure the additional selection criterions were applied subjectively. The
most important measures of aberration from these criterions were side lobe level in aberrated
beam profiles, width of main lobe in aberrated beam profiles, shape distortion and shape
deformation of received waveforms, and finally comparison of body wall statistics with measured
statistics for human abdominal wall.11

The two selected body wall models were denoted w6 and s6, w6 representing the weak
aberration category and s6 the strong aberration category. The number indicating that both
body wall models contained 6 time-delay screens. The s6 body wall model was intended to
represent a case of severe ultrasonic wave aberration. A main point for the s6 wall, was that
in addition to all the other selection criterions, the received waveform should be severely shape
deformed and the body wall statistics should be very ”tough”. This means that the rms values
of the arrival time and energy level fluctuations should be well above the mean of those reported
in Ref. 11, and the correlation lengths in the low region of the reported values.
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To summarize: this elaborated process was carried out in order to secure that the two final
selected body wall models, w6 and s6, generated aberration comparable to what is observed in
ultrasonic imaging. These were also chosen because they represented the worst aberration in
their respective categories. Note that simulation results with correction filters from only these
two selected body wall models are presented in this article.

II.C Linear angular spectrum propagation operator

The propagation operator used in the simulation program was obtained by the solution of the
linear homogeneous wave equation given as

∇2p− 1
c2

∂2p

∂t2
= 0 , p = p(x, z, t) , (2.1)

where p is the pressure and c is the constant speed of sound. The spatial coordinate x defines
the array direction and z the propagation direction (see Fig. 2.1). The Fourier transform with
respect to time t and the spatial coordinate x gives the equation of the form

∂2ptx

∂z2
+ kz

2ptx = 0 , kz =

√(ω

c

)2

− k2
x , (2.2)

where the indices indicate which coordinate that is Fourier transformed. The wave number in
the propagation direction is defined as kz, and kx represents the wave number in the x-direction.
The solution of this equation, with z as the positive propagation direction, can be expressed as

ptx(kx, z, ω) = ptx(kx, z0, ω) e−ikz(z−z0) , (2.3)

where ptx(kx, z0, ω) is the pressure given at z = z0, which represents the array surface in the
simulations. The propagation operator is given as e−ikz(z−z0), where z is the propagation
distance. Note that the propagation operator propagates a two dimensional plane defined by
the spatial coordinate x and the time coordinate t, in the propagation direction z. It should
also be noted that kx marks the limit for propagation in the propagation direction. If ω/c > kx,
the operator is complex and represents propagation in the direction of z. If ω/c < kx the
operator becomes real valued and represents a damping of the wave, but no propagation. This
phenomenon is known as evanescent waves.

II.D Correction filters and the generalized frequency-dependent screen

The solution of the wave equation with a point impulse source for an inhomogeneous medium,
can be modelled in the frequency domain as1

g(r, rs;ω) = s(r, rs; ω) gh(r− rs; ω) , (2.4)

where g is the free-space Green’s function in the inhomogeneous medium as a function of the
field coordinate r, the source location rs, and the angular frequency ω. The free-space Green’s
function for the homogeneous medium gh is given as

gh(r− rs; ω) =
e−ik|r−rs|

4π|r− rs| , (2.5)

where k is the wave number. Here, s(r, rs; ω) is the frequency response of a filter producing
distortion of the ultrasonic wave as it propagates through the inhomogeneous medium. This
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filter is referred to as the generalized frequency-dependent screen, and is composed of a frequency
dependent amplitude and phase screen defined as1

s(r, rs; ω) = a(r, rs; ω) eiθ(r,rs;ω) , (2.6)

where a and θ are the frequency dependent amplitude and phase screen respectively.
The generalized frequency-dependent screen can be used for correction of the wave distortion

from a body wall as a time reversal mirror.3 Assume that a signal from a point impulse source
at rs, is measured over an array with limited aperture. Because of the reciprocity of the
wave equation, retransmitting the time reversed signal received at each point on the array
will reproduce the diffraction limited impulse field at rs. Time reversal of a real signal gives
a complex conjugation of the signals temporal Fourier transform. This means that filtering a
transmitted signal from an array on each channel with a filter s∗(ra, rs;ω), ra denotes the array
coordinate, is identical to time reversal and will reproduce the diffraction limited impulse field
at rs. The complex conjugate of the generalized frequency-dependent screen thus represents the
ideal correction filter for wave distortion.1

In the present paper the complex conjugate of the generalized frequency-dependent screen
was used as an aberration correction filter along with two approximations of this defined as

h1(ra, rs) = eiωτ(ra,rs) (2.7)

h2(ra, rs) = a(ra, rs) eiωτ(ra,rs) ,

where h1 is a pure time-delay correction filter, and h2 is a time-delay and amplitude correction
filter.

III Simulation parameters and data processing

The simulation area was 10.24 cm in the x-direction, with a grid size of 0.1mm. The sampling
frequency was 62.4 MHz providing a time window of 16.4 µs. Center frequency of the pulse was
2.5MHz with a -6 dB bandwidth of 1.6 MHz. The pulse was filtered on transmit with a 4 MHz
band pass filter centered around the center frequency of the pulse. An array aperture size of
20mm with point-like elements was chosen. The focal depth of the array was set to 60 mm
(distance rf in Fig. 2.1). Water at 37oC was used as the propagation medium. On receive, all
signals were corrected for geometric focusing for the homogenous medium before processing of
results.

The generalized frequency-dependent screen was estimated by filtering the received signal y
with a Wiener-like filter hW in the frequency domain given by

s(ra, rf ;ω) = hW (ra, rf ; ω) y(ra, rf ; ω) , (2.8)

where ra represents the array coordinate and rf the focus of the array (see Fig. 2.1). The transfer
function for the filter was

hW (ra, rf ; ω) =
y∗t (ra, rf ; ω)

|yt(ra, rf ;ω)|2 + max( |yt(ra,rf ;ω)|2 )
SN

, (2.9)

where yt is the transmitted frequency dependent signal from the point source. The factor SN
represents a signal-to noise-ratio parameter in the filter.

The time-delay correction filter approximation of the generalized frequency-dependent screen,
defined in section II.D, is identical to the arrival time fluctuations in the received signal, after
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correction of geometric focusing for the homogenous medium. Six different methods were used for
estimation of arrival time fluctuations. Three of the techniques calculated the angle of the cross-
correlation function of the complex envelope at zero lag in the received signal.17 The difference
between them being in the choice of a reference for the calculation of the cross-correlation. The
different methods are labeled a, b, c, d, e, f, and this notation will also be used in the presentation
of results later in the article.

(a) Phase front tracking: A phase front tracking algorithm was developed as an arrival time
fluctuation estimator. In essence the phase front tracking algorithm determined the peak
of the first period of the received waveforms. The tracking was then performed on each
channel, and the time-delay between two channels was defined as the difference in time
between the two peaks of the respective channels.

(b) Neighbor cross-correlation: Cross-correlation technique (as described above) which
calculated the cross-correlation of the complex envelopes, at zero lag, between neighboring
channels in the receiving array. The total arrival time fluctuations was calculated as the
cumulative sum of the time-delays between each neighbor channel, starting from the first
channel in the array.

(c) Beamsum cross-correlation: Cross-correlation technique which used a reference signal
and calculated the cross-correlation of all the channels at zero lag in the receiving array,
with respect to the reference signal. The reference signal was the beamsum of the received
signal. The beamsum was defined as the received signal summed over all channels in the
array direction, resulting in a time dependent signal only.

(d) Reference channel cross-correlation: Same as (c), but the reference signal was now
chosen as the signal at channel nr. 1 in the receiving array.

(e) Frequency mean: Arrival time fluctuations across the receiving array were determined by
taking the Fourier transform in time of the received signal on each channel. The time-delay
on each channel of the array was calculated as the arithmetic mean of the phase, of the
now frequency dependent signal, over a band of frequencies ranging from 2-3 MHz and
divided by the center frequency of the transmitted pulse (2.5 MHz). This band was chosen
empirically as it produced satisfactory estimates in the weak aberration case.

(f) Ray delays: The last estimator was used as a comparative measure of the performance of
the latter described estimators. Since the time-delay of each time-delay screen was known,
arrival time fluctuations were calculated by summing the time-delay along a straight line
from the focus to a channel on the receiving array.

Amplitude variations across the receiving array were determined in the same fashion as the time-
delay estimator (e). The received waveform was Fourier transformed in time. The amplitude
on each channel of the array was calculated as the arithmetic mean of the frequency dependent
amplitudes over the same band of frequencies.

For the characterization of the different body wall models, leading to the selection of the two
generating the most severe aberration, rms values of arrival time and energy level fluctuations
were determined along with correlation lengths of these. A linear fit was subtracted from the
arrival time fluctuations before the calculation of the correlation lengths and rms values, in order
to remove direction steering of the beam by the body wall. The energy level fluctuations were
simply defined as the square of the amplitude variations across the receiving array. Correlation
lengths were defined as the full width between the half maximum points of the auto-correlation
function.
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In addition to these measures a waveform similarity factor was determined in order to quantify
the extent of waveform deformation in the received signal. Waveform deformation severely
complicates time-delay estimation due to low correlation in the received signal. Two similar
versions of such a waveform similarity factor4,18 has been proposed independently. In this
article the approach of Liu and Waag4 was chosen. The similarity of N received waveforms
y1(t), y2(t), . . . , yN (t) is defined to be maximum if

yi(t) = ai y(t− τi) , i = 1, . . . , N , (2.10)

where N is the number of elements on the receiving array. From the definition in Eq. 2.10,
yi(t + τi) = ai y(t), must also be true, so that

N∑

i=1

yi(t + τi) =
N∑

i=1

ai y(t) . (2.11)

Squaring and integrating this equation over time gives

∫ +∞

−∞

(
N∑

i=1

yi(t + τi)

)2

dt =

(
N∑

i=1

ai

)2 ∫ +∞

−∞
y2(t)dt . (2.12)

Equation (2.10) gives

a2
i =

∫ +∞

−∞
y2

i (t)dt

/∫ +∞

−∞
y2(t)dt . (2.13)

Substituting (2.13) into (2.12) gives

∫ +∞

−∞

(
N∑

i=1

yi(t + τi)

)2

dt =

(
N∑

i=1

√∫ +∞

−∞
y2

i (t)dt

)2

. (2.14)

This leads to the definition of the waveform similarity factor r as

r =

√∫ +∞
−∞

(∑N
i=1 yi(t + τi)

)2

dt

∑N
i=1

√∫ +∞
−∞ y2

i (t)dt
. (2.15)

Mallart and Fink18, who independently proposed a focusing criterion C, showed that for a point
source the value of C lies between 0 and 1. This also holds for r, but note that r can only be 1
if the τi’s are selected properly.

Beam profiles in the focal plane of the array were calculated as the rms value in time of each
spatial position. These profiles were used as visual characterization of the aberration caused by
the two established body wall models. They were also used for the visual evaluation of the effect
of the different aberration correction filters.

Additional evaluation of the aberration correction was performed by analysis of the focus
quality of the transmitted aberration corrected beam. Liu and Waag19 have developed a method
for evaluation of the focus quality of a transmitted beam. This method was also used here. A brief
explanation of this method, as described in Ref. 19, is given here. As described in section II.C,
the signal that is propagated has a spatial (array direction) and temporal dimension. The method
calculates the envelope of the analytic signal in the focal plane, thus obtaining a two dimensional
matrix of positive numbers which can be used for various focal quality measures. A first measure

36



Chapter 2. Correction with a time delay and amplitude filter

(a) w6 case (b) s6 case

Figure 2.3: Received waveforms after correction of geometric focusing for the homogenous medium. Each
pane shows a temporal logarithmic gray scale picture of the waveforms at the receiving array. The dynamic
range of the logarithmic scale is 40 dB. The horizontal axis represents time and spans 4.8 µs and the vertical
axis represents the receiving array and spans 20 mm. The left pane shows the waveform received after
propagation through the w6 body wall model and the right pane shows the waveform from the s6 body wall
model.

is obtained by projection of the maximum value of the analytic envelope amplitudes in both
the array and time direction. This provides one-dimensional amplitude profiles in both these
directions. Effective widths of these profiles were found at -10 dB below the peak value. The
effective width of such a profile was defined as the square root of the product of the radius in
each direction of the profile, at the -10 dB level from the peak. A measure denoted the effective
diameter was then calculated as the square root of the product of the effective widths in each
direction. The effective diameter is hence the diameter of a circle with the same area as an
ellipse defined by the effective widths in space and time. This provided a measure of the size of
the focus at -10 dB from the peak value. The effective widths were also used in the evaluation
of the -10 dB peripheral energy ratio. An ellipse was specified with axes equal to half of the
effective widths in space and time, defining a central and peripheral region of the signal. The
-10 dB energy ratio was then calculated as the energy outside the ellipse to the energy inside it.
These measures, in combination with visual inspection of the beam profiles in the focal plane,
gave substantial information of the focus quality of the corrected beam.

IV Results

Figure 2.3 shows the received waveforms after correction of geometric focusing for the
homogenous medium. The left pane shows the weak aberration case and the right pane the
strong aberration case. Shape distortion of the waveform is clearly visible, and in the strong
aberration case deformation of the waveform also occurs in several places. This was, as earlier
described, one of the main selection criterions for the strong aberration body wall model as
a case of severe aberration. Since the waveforms are pictured with a logarithmic scale and a
dynamic range of 40 dB, amplitude variations do not show. Table 2.1 shows the statistical
properties and the waveform similarity factors for the four body wall models in each class (weak
and strong), where the w6 and s6 wall are shown in boldface. The values for the arrival time
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Table 2.1: Body wall models statistics and waveform similarity factors (WSF).

Arrival time fluctuations Energy level fluctuations WSF
Wall rms value Corr. len. rms value Corr. len.
model (ns) (mm) (dB) (mm) (*1e-3)

w2 36.0 2.8 2.9 1.6 971
w4 37.5 2.8 2.4 1.6 984
w6 49.4 3.0 3.1 1.8 975
w8 47.7 3.0 2.5 2.2 992

s2 39.6 2.8 3.6 2.0 957
s4 54.5 3.4 4.0 2.0 924
s6 53.7 2.4 4.1 1.4 914
s8 69.8 4.0 3.8 1.8 949

fluctuations are based on the phase front estimation method (a). The rms values of the arrival
time fluctuations for the w6 and s6 wall are well above the mean value of those reported by
Hinkelman et al.11 Especially the energy level fluctuations for the s6 wall model are higher than
any of the reported values. Correlation lengths for the arrival time and energy fluctuations are
well below the mean of the reported values for both w6 and s6. The waveform similarity factors
have been calculated after correction for geometric focusing and aberration correction with the
phasefront tracking algorithm. If compared to the received waveform, the phase front tracking
method shows a very accurate representation of the time-delay variation of the wavefront. For
the w6 wall the waveform similarity is quite high, indicating low level of wave deformation which
also can be seen in Fig. 2.3 (a). The waveform similarity for the s6 wall on the other hand
is quite low quantifying the amount of waveform deformation clearly visible in Fig. 2.3 (b).
Figure 2.4 shows the estimated arrival time fluctuations for the weak aberration case (w6 body
wall model). Figure 2.4 (a) shows the arrival time fluctuations as determined by the phase front
tracking algorithm. This has been used as a reference in the other plots, indicated by a dotted
line, for comparison of the estimated arrival time fluctuations to the actual time-delay variation
of the phase front. The figure shows that the different estimation methods produce very similar
results for the weak aberration case.

Table 2.2 shows the normalized L2-norm between the arrival time fluctuation estimation
methods, where the phase front tracking method (a) serves as the reference. The table shows
that there are some deviations between the frequency mean method (e), the different cross-
correlation techniques (b), (c), (d) and the time-delay variation of the phase front, but they are
relatively small. The ray delays method (f) and the arrival time fluctuations of the phase front
are almost identical in this case. It must be emphasized that (f) is not an estimation method,
but is merely used as a qualitative measure of the arrival time fluctuations.

In Fig. 2.5 the arrival time fluctuation estimates from the strong aberration case is presented.
In this case several of the arrival time fluctuation estimation methods fail to estimate the time-
delay variation of the phase front of the received waveform. The neighbor cross-correlation
method (b) and the frequency mean method (e), show large deviations in the estimates and the
L2-norm is large. The beamsum cross-correlation method (c) shows ”jumps” in the estimates.
By closer inspection these deviations and ”jumps”, all occur in the shape deformed region of the

38



Chapter 2. Correction with a time delay and amplitude filter

−10 −5 0 5 10
−150

−100

−50

0

50

100

150

(a)
−10 −5 0 5 10

−150

−100

−50

0

50

100

150

(b)
−10 −5 0 5 10

−150

−100

−50

0

50

100

150

(c)

−10 −5 0 5 10
−150

−100

−50

0

50

100

150

(d)
−10 −5 0 5 10

−150

−100

−50

0

50

100

150

(e)
−10 −5 0 5 10

−150

−100

−50

0

50

100

150

(f)

Figure 2.4: Arrival time fluctuation estimates from the w6 wall model. The notation (a), (b) etc. in
the different panes of the figure follows the notation introduced for the different arrival time estimators in
Section III. The horizontal axis represent the array direction (mm), and the vertical axis the time-delays (ns).
For the horizontal axis, zero represents the center of the array and -10mm the first channel in the array,
which was used as reference for the reference channel cross-correlation method (d), and starting point of the
cumulative summation in method (b). In each figure the solid line represents the estimate, and the dotted
line the arrival time fluctuations of the phase front method (a), which is only plotted as a reference.

Table 2.2: Normalized L2-norm. The L2-norm between the phase front tracking method (a) and all the
other methods for both the weak and strong aberration case, where the L2-norm is normalized with respect
to (a).

w6 case s6 case
Method L2 Method L2

(a) 0.0 (a) 0.0
(b) 0.34 (b) 0.98
(c) 0.40 (c) 0.45
(d) 0.39 (d) 0.28
(e) 0.42 (e) 1.43
(f) 0.17 (f) 0.33
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Figure 2.5: Arrival time fluctuation estimates from s6 wall. The same notation as in Fig. 2.4 is used.
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Figure 2.6: Amplitude variations across the receiving array for the weak and strong aberration cases. The
horizontal axis represent the array direction (mm) and the vertical axis the amplitude (dB).

received waveform. The reference channel cross-correlation method (d), estimates the time-delay
variations very well, but also here the estimates shows smaller ”jumps” in the shape deformed
region of the received waveform. There are only smaller variations in the L2-norms for method
(c), (d), and (f).

Amplitude variations across the receiving array for the weak and strong aberration cases are
presented in Fig. 2.6. In the strong aberration case amplitude variations of approximately 18 dB
are observed.

Figure 2.7 shows beam profiles corrected with the generalized frequency-dependent correction
filter for both the weak and strong aberration case. This is the best correction obtainable with a
transmit correction filter of any kind, and the correction is very close to the ideal case. Table 2.3
presents the results of the focus quality calculations as described in Section III. These values
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Figure 2.7: Beam profiles corrected with generalized frequency-dependent correction filter. Left pane shows
the weak aberration case and the right pane the strong aberration case. The horizontal axis represents
the focal plane (mm) and the vertical axis the energy (dB). The solid line represents the aberrated profile,
the dashed line the corrected profile and the dotted line the profile with no aberration, which serves as a
reference. The zero point on the horizontal axis denotes the center axis of the transmitting array. All profiles
are normalized to their maximum value.

give a more detailed description of what is observed in the beam profiles as time [which is the
same as depth in the z-direction (see Fig. 2.1] is also included. It must be stressed that the
focus quality variables in Table 2.3 can not be directly linked to the presented beam profiles, as
they are calculated in a different way. After correction with the generalized frequency-dependent
correction filter, the peripheral energy ratios are almost identical to the ideal case even if the
effective widths are slightly higher.

Beam profiles in the focal plane after correction with a time-delay correction filter for the
weak aberration case are shown in Fig. 2.8. The aberrated profiles show side lobe level of -5 dB
from the peak value, and the profile is quite wide. Since the arrival time fluctuation estimates
for the weak aberration case are very similar, only small differences in the different corrected
profiles are visible. By visual inspection of the beam profiles, a general reduction of about 10 dB
in the strongest side lobes is obtained with the time-delay correction filter. Further away from
the central axis the correction is less substantial. The effective widths at -10 dB in space and
time is identical to the ideal case, but the peripheral energy ratio is relatively high, because the
side lobe level is still high in comparison to the ideal case. Note that the ray delays method (f)
gives the poorest correction.

Beam profiles corrected with a time-delay and amplitude correction filter for the weak
aberration case, are presented in Fig. 2.9. Now the strongest side lobes are reduced to the
side lobe level of the non-aberrated profile, and a strong reduction in the side lobe level further
away from the central axis can be noticed. Also here the effective widths in Table 2.3 at -10 dB are
very close to the ideal case. The -10 dB peripheral energy ratios with time-delay and amplitude
correction are very close to the ideal case, and almost half the value of time-delay correction
only. The peripheral energy ratios for the phase front tracking method (a) and the ray delays
method (f), are somewhat higher than for the other methods.

Figure 2.10 shows beam profiles with time-delay correction for the strong aberration case.
Now the aberrated profile is severely distorted and very wide. As shown in Fig. 2.5, the estimation
neighbor cross-correlation method (b) and the frequency mean method (e), fail to predict the
arrival time fluctuations of the wave front, and they produce little or no correction at all.
The other methods perform rather well, especially the beamsum and reference channel cross-
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Figure 2.8: Beam profiles in the focal plane corrected with a time-delay correction filter for the weak aberration
wall model. Same notation as in Fig. 2.7.
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Figure 2.9: Beam profiles in the focal plane corrected with a time-delay and amplitude correction filter for
the weak aberration wall model. Same notation as Fig. 2.7.
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Figure 2.10: Beam profiles with time-delay correction for the strong aberration wall model. Same notation
as Fig. 2.7.

correlation methods (c) and (d), but it is quite obvious that this is a more difficult case. From
table 2.3 the -10 dB peripheral energy ratios are somewhat higher for this case than for the weak
aberration case, even if the effective widths have not increased much. It should be noted that
there is great uncertainty about the focus quality parameters of method (b) and (e) as there is
no clearly defined main lobe. This poses problems for the calculation of the effective widths.
The same argument holds for the aberrated profiles. It should also be pointed out that even if
there is only a small difference in the L2-norm between method d) and the ray delays method
(f), the difference in the -10 dB peripheral energy ratio is large.

Beam profiles with time-delay and amplitude correction are shown in Fig. 2.11. Now the
correction is quite substantial with all methods except (b) and (e). The focus quality parameter
in table 2.3 show that the beamsum cross-correlation and reference channel methods (c) and (d),
perform very well also for the strong aberration case. With time-delay and amplitude correction
the peripheral energy ratios with these methods are very close to those for the weak aberration
case (and thus the ideal case), indicating their robustness. Notice that even if method (c) has
”jumps” in the arrival time fluctuations estimates, it still performs quite well. Notice also that
the peripheral energy ratio for method (f) is almost double the value of method (d), even if the
differences in the estimated arrival time fluctuations are relatively small (see Fig. 2.5). This
indicates the sensitivity of the arrival time estimate and illustrates the importance of a proper
estimate.

V Discussion

Several studies have modelled the human body wall with single or multiple time-delay
screens.4,6,8–10 Some of these have used measured or estimated human body wall statistics
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Figure 2.11: Beam profiles with time-delay and amplitude correction for the strong aberration wall model.
Same notation as Fig. 2.7.

as a basis for a realization of a simple random distribution, used as a time-delay aberration
screen. Usually the statistics are rms values and correlation lengths of arrival time and amplitude
fluctuations. In Ref. 16, such models are criticized on the basis that even if they produce wave
distortion with statistics similar to the human body wall, they are not truly able to reproduce
human body wall aberration. This is simply due to the fact that a body wall does not represent
a true random medium, and that it is the tissue structure of the wall that introduces the
aberration. An example of this is connective tissue aligned close to the propagation direction
in the subcutaneous fat layer. As demonstrated by Mast et al., this structure causes scattering
of energy and generates arrival time fluctuations that increase cumulatively with propagation
through the fat layer.16 The use of time-delay screen models are thus criticized not to account
for aberrations created by the subcutaneous fat layer, and that they are more appropriate for
describing aberration caused by muscle layers.16 Mast et al. show that muscle layers mainly
introduce phase distortion and weak amplitude distortion, and that amplitude distortion basically
originates from the inhomogeneities in the subcutaneous fat layer.16

In this article the body wall statistics has only been one of several criterions in the making
of the body wall models. A selection of eight normally distributed random sequences were
combined, filtered and tuned to obtain eight different body wall models. Then a careful selection
of two specific wall models among the eight was performed. The selection criterions were
visual inspection of gray scale pictures of received waveforms, calculation of body wall statistics
and waveform similarity factors, visual evaluation of arrival time fluctuations and amplitude
variations, and evaluation of aberrated beam profiles in the focal plane. The body wall statistics
were compared with similar statistics as measured correlation lengths for the human abdominal
wall.11 This evaluation was performed in order to select two body wall models that produced
weak and strong aberration respectively. As seen from Table 2.1 the w6 body wall model has the
toughest body wall statistics in the weak category even if the waveform similarity is somewhat
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Table 2.3: Table of focus quality with respect to applied correction method. The peripheral energy ratio
(PER) and all effective widths have been calculated at -10 dB level from the peak. The two column headings
refers to the weak and strong aberration cases respectively. The first column indicates which time-delay
fluctuation estimation method that is used. The second column specifies the type of correction where τ
denotes time-delay correction, and τ&a time-delay and amplitude correction. The parameters de, wa, and wt

denotes the effective diameter, the effective width in the array direction, and the effective width in the time
direction respectively. The three lowest rows have no value in the second column. The first of these rows
show the correction with the generalized frequency-dependent correction filter, the second show the aberrated
case and the third show the ideal case with no aberration.

w6 case s6 case

PER de wa wt PER de wa wt

(mm) (mm) (mm) (mm) (mm) (mm)

(a) τ 0.486 1.84 2.70 1.26 (a) τ 0.797 1.84 2.80 1.21
(b) τ 0.446 1.84 2.70 1.26 (b) τ 2.370 3.16 4.70 2.13
(c) τ 0.426 1.84 2.70 1.26 (c) τ 0.575 1.91 2.90 1.26
(d) τ 0.426 1.84 2.70 1.26 (d) τ 0.579 1.88 2.80 1.26
(e) τ 0.426 1.84 2.70 1.26 (e) τ 0.850 3.51 5.90 2.13
(f) τ 0.518 1.84 2.70 1.26 (f) τ 0.932 1.91 2.90 1.26

(a) τ&a 0.301 1.84 2.70 1.26 (a) τ&a 0.393 1.91 2.90 1.26
(b) τ&a 0.264 1.88 2.80 1.26 (b) τ&a 1.140 3.31 6.00 1.82
(c) τ&a 0.242 1.88 2.80 1.26 (c) τ&a 0.288 1.91 2.90 1.26
(d) τ&a 0.242 1.82 2.80 1.26 (d) τ&a 0.273 1.91 2.90 1.26
(e) τ&a 0.242 1.88 2.80 1.26 (e) τ&a 1.170 2.50 3.70 1.69
(f) τ&a 0.331 1.84 2.70 1.26 (f) τ&a 0.544 1.94 3.00 1.26

filter 0.220 1.87 2.70 1.30 filter 0.210 1.84 2.70 1.26
abb 1.220 2.58 4.50 1.47 abb 1.430 3.68 6.50 2.08
ideal 0.227 1.84 2.70 1.26 ideal 0.227 1.84 2.70 1.26

higher than the w2 wall. When comparing all the above mentioned criterions the w6 model
still came out as the worst in its category. In the strong category, the s8 wall has very high
rms value of the arrival time fluctuations, but a relatively high correlation length and waveform
similarity factor. This makes arrival time estimation easier, and this in combination with the
other criterions is why the s6 wall was preferred as a case of severe aberration.

A close inspection of arrival time fluctuations for the weak and strong aberration case (Fig. 2.4
and Fig. 2.5), show variations that can be interpreted as cumulative time-delays resulting from
propagation through larger or smaller structures. A comparison of the time-delay screens
for these two cases with the arrival time fluctuations obtained with time-delay estimator (f),
i.e. summing the time-delay along a straight line from the focus to a channel on the receiving
array, showed that the specific variations did not stem from a single strong time-delay screen
alone. Large variations were results of high correlation between all six time-delay screens in the
direction of summation, smaller variations were results from lower correlation. These observations
indicate that the w6 and s6 model walls do model correlated structures of different sizes. A
structure such as connective tissue aligned close to the propagation direction in the subcutaneous
fat layer, would result in a large drop in amplitude level over a small region on the receiving
array. The amplitude variation of the s6 model wall [Fig. 2.6 (b)], show this type of amplitude
variation. An amplitude drop of about 18 dB is observed, which is close to what observed in
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Ref. 16.
The waveform similarity factor was only used to quantify the amount of waveform deformation

in the received signals. As explained in Section IV, the waveform similarity factor was calculated
after correction for geometric focusing and aberration correction with the phasefront tracking
algorithm. Since the factor is dependent on the selected time-delays τi [see Eq. (2.15), Section III],
it is dependent of the arrival time estimation method. In this article simulations were performed
with point sources without noise, and the phase front tracking algorithm will in this situation
always give a reliable estimate of the time-delay variation of the wavefront since it is clearly
defined. The method proved to give an accurate estimate of the time-delay variation of
the received wavefront, giving a very good focusing of the received signal. This means that
variations in the waveform similarity factor in Table 2.1 is only due to the difference in waveform
deformation of the received aberrated signal, and thus gives an accurate quantification of the
waveform deformation. Note that in a more realistic situation, with interference from multiple
scatterers and acoustic and electronic noise, the phasefront tracking method will probably be
less accurate since there no longer exists an evident wavefront.

A weakness in the simulations was that absorption effects were not included. Mast et al. have
shown that both absorption and scattering effects makes a significant contribution to the total
insertion loss in the human body wall.16 They suggest that estimation of attenuation by the
human abdominal wall for correction of amplitude aberration, should consider both scattering
and absorption effects. They indicate that scattering accounts for about 36% of total insertion
loss in the human abdominal wall at 3.75 MHz.16 Attenuation of the amplitudes by absorption
would probably deteriorate the amplitude correction.

In both the weak and strong aberration case, correction with a generalized frequency-
dependent correction filter produced very close to ideal correction. For the weak aberration case
the different arrival time fluctuation estimators all performed well. In the strong aberration case
both neighbor cross-correlation method (b), and the frequency mean method (e), failed severely.
This is obviously due to the waveform deformation in this case, which also caused problems for the
beamsum and reference channel cross-correlation methods [(c) and (d)]. In Fig. 2.5, it is clearly
visible that the reference channel cross-correlation method encounters problems in the same
region as the cross-correlation beamsum method, but they are less severe. This indicates that
the choice of reference is of importance in cross-correlation techniques, where strong waveform
distortion and deformation occurs. On the other hand these methods perform rather well despite
of the problems. This can be explained by comparing the ”jumps” in the estimates with the
methods (c) and (d), and the amplitude variation for the strong aberration case [Fig. 2.6 (b)].
The large drops in the amplitude variation corresponds with the regions where the waveform is
deformed [Fig. 2.3 (b)]. The ”jumps” in the arrival time fluctuation estimates occurs in the exact
same places as the amplitude drops, due to the waveform deformation. Therefore the ”jumps” in
the arrival time fluctuation estimates do not influence the correction, because the amplitudes are
negligible in these regions on transmit. It is also worth commenting that arrival time fluctuations
obtained with the phase front tracking algorithm do not produce the best aberration correction,
although this could be expected intuitively since this method gives the actual time-delay variation
of the wavefront. This is just a statement of the difficulty of properly defining the time-delay
between two signals in ultrasonic imaging.

The peripheral energy ratios, after correction with the generalized frequency correction
filter, are actually somewhat better than the ideal non-aberration situation for both body wall
models. This is probably due to the Wiener-like filtering process that is performed to obtain the
generalized frequency correction filter. When the filter is applied on transmit, it slightly changes
the transmitted pulse, and in this case this results in lower peripheral energy ratios than the
ideal situation.
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The differences in the L2-norms should also be commented further. For the weak aberration
case, the ray delays method (f) has more than half the L2-norm compared to beamsum cross-
correlation method (c), but the peripheral energy ratio is higher. For the strong aberration case
there are only smaller differences in the L2-norms between method (c), (d) and (f). Still the
peripheral energy ratio of the ray delays method (f), is almost double the value of both method
(c) and (d). This indicates that in some cases, the effect of the correction can be very sensitive
to how the arrival time fluctuations are estimated. Relatively small differences in the arrival
fluctuation estimates can give large variations in the focus spot size of the corrected beam.

VI Conclusions

Different correction filters for ultrasonic wave aberration have been investigated. The results in
this article indicate that correction of aberration of the transmit beam with a time-delay and
amplitude correction filter, produce substantial correction of the focus quality. Correction with a
time-delay filter alone performed poorer than correction with a time-delay and amplitude filter,
but improved focus quality considerably. Two cases were studied, a weak and strong aberration
case, were the strong aberration case represented a case of severe wave aberration. For both
cases correction with a time-delay and amplitude filter gave results close to the ideal unaberrated
case, indicating that this correction method is very robust. The main criterion for this method
to work, was that the arrival time fluctuations were estimated correctly. Six different arrival
time estimation methods were investigated. The best result was obtained with a method that
calculated the cross-correlation at zero lag of the complex envelope of the received signal, with
a reference signal. Two reference signals were tested: the beamsum and a signal from a channel
on the transducer. The two different references produced approximately the same aberration
corrections, even if there were some differences in the estimated arrival time fluctuations.
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A method for estimating waveform aberration from random scatterers in medical
ultrasound imaging has been derived and its properties investigated using two-
dimensional simulations. The method use a weighted and modified cross-spectrum
in order to estimate arrival time and amplitude fluctuations from received signals. The
arrival time and amplitude fluctuations were used in a time-delay, and a time-delay and
amplitude aberration correction filter, for evaluation of the re-transmitted aberration
corrected signal. Different types of aberration have been used in this study. First,
aberration was concentrated on the plane of the transmitting/receiving array. Second,
aberration was generated with a distributed aberrator. Both conditions emulated
aberration from the human abdominal wall. Results show that for the concentrated
aberrator, arrival time and amplitude fluctuations were estimated in close agreement
with reference values. The reference values were obtained from simulations with a point
source in the focal point of the array. Correction of the transmitted signal with a time-
delay, and a time-delay and amplitude filter produced approximately equal correction as
with point source estimates. For the distributed aberrator, the estimator performance
degraded significantly. Arrival time and amplitude fluctuations deviated from reference
values, leading to a limited correction of the re-transmitted signal.

I Introduction

Aberration in medical ultrasound imaging, mainly due to the inhomogeneities in the human body
wall, enlarges the insonified scatterer region because of a defocusing of the transmitted beam.1–6

This effect blurs the ultrasound image and reduces the physicians ability to make an accurate
diagnosis.

There are two main objectives of this article.

1. Investigate a method developed for estimating arrival time and amplitude fluctuations using
signals from random scatterers.

51



I Introduction

2. Test the estimator under two different aberration situations. First, a concentrated aberrator
where all aberration is concentrated to a plane on the transmitting/receiving array. Second,
a distributed aberrator with a specified thickness. Both aberration situations emulated the
human abdominal wall.

Aberration correction is often based on estimating arrival time, or arrival time and amplitude
fluctuations, which are used as a correction filter on transmit of the ultrasonic signal.1,3,6–12 This
method is here referred to as a time-delay, or a time-delay and amplitude aberration correction
filter.

The time reversal mirror introduced by Fink et al.,13 requires a point source in the insonified
medium, which rarely is the case in an imaging situation. Liu and Waag introduced a back-
propagation method which propagates the signal homogeneously backwards in time in order
to obtain an optimal situation for estimation of a time-delay screen.14 It is not yet sure if this
method performs better for transmit correction than time-delay correction estimated at the array
surface.15 In Ref. 12 it was shown that if arrival time and amplitude fluctuations in the received
signals are accurately estimated, they will produce close to ideal aberration correction when used
as a time-delay and amplitude correction filter on transmit.

Aberration correction is a filter process which inherently assumes the receive aberration,
on a given array element, to be independent of the spatial position of the reflecting scatterer.
The aberration correction filter thus assumes all aberration of the heterogeneous medium to be
concentrated in a plane on the array surface. An approximation to this situation would be for
the aberration to be generated in a thin layer just in front of the array.

Assuming all aberration to be concentrated in a plane, is often denoted a concentrated
aberrator or an aberrating screen in the literature. For a concentrated aberrator at the array
surface this notation is not precise enough. In this article, the situation where a concentrated
aberrator is situated at the array surface is denoted receive scatterer independent aberration, or
simply scatterer independent aberration. The reason for this is that placing an aberrating screen
some distance from the array, would not lead to a situation where aberration at a receive array
element is independent on the scatterers position in space.

Scatterer independent aberration is an approximation to the more general and physical case
where the aberrated receive signal, on a given array element, is expected to be dependent on the
scatterers spatial position. This is because different types of aberration is generated in different
parts of the human body wall, that is, over the whole thickness of the body wall.5,16 Since body
wall thickness and anatomy varies strongly between humans, this also implies that the degree to
which aberration on receive will be scatterer dependent, also varies.

There exists a region of scatterers, for which the aberration (at a given array element) in
a signal received from any scatterer inside this region, is practically the same. This region is
termed an isoplanatic patch, a term coined in astronomy where aberration effects occur when
light from stars pass through the atmosphere. By the definition of the isoplanatic patch, focusing
the transmitted beam to the inside of the patch, leads to receive scatterer independent aberration
even for a thick or extended aberrator. Remark that the isoplanatic patch size change with a
change in the location of the array focus.

Based on the previous discussion, the results in this article show the difference of scatterer
independent and scatterer dependent aberration. This information is important in understanding
how these different aberration situations influence the estimation of arrival time and amplitude
fluctuations.

Three simulation situations were studied to evaluate the developed estimation method for
arrival time and amplitude fluctuations, and the performance of the time-delay, and the time-
delay and amplitude aberration correction filter:
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1. Scatterer independent aberration (SIA): Simulations have been performed were
all the aberration is concentrated in a plane on the transmitting/receiving array.
This represents a situation were the simulated data concurs with the aberration
estimation/correction method.

2. Scatterer dependent aberration (SDA): This represents a realistic aberration
situation. Now the underlying assumption for the correction method is not fulfilled, and
the object is to test its validity.

3. Scatterer dependent aberration with a corrected transmit beam (CSDA): This
is the same situation as in (2), but now the transmitted beam is corrected with a time-
delay and amplitude filter estimated from a point source. The motivation for this was to
show that a well estimated time-delay and amplitude correction filter leads to scatterer
independent aberration, because the energy of the corrected retransmitted beam is focused
to the inside of the isoplanatic patch.

Absorption effects and electronic/acoustic noise were not included in the simulations.

II Theory

II.A The generalized frequency-dependent screen and the time-delay
and amplitude correction filter

In Ref. 12 the Green’s function for a heterogeneous medium was modeled in the frequency domain
as

g(r, rs;ω) = s(r, rs; ω) gh(r− rs; ω), (3.1)

where g is the Green’s function in the heterogeneous medium as a function of the field coordinate
r, the source or scatterer location rs, and the angular frequency ω. Here gh is the Green’s function
for the homogeneous medium.

Propagation in an heterogeneous medium generates interference, which results in an aberrated
signal. Interference is a frequency dependent phenomenon. The function s(r, rs; ω) is therefore
the frequency response of a filter, that produces a distortion of the amplitude and phase of a
frequency component of the wave, as it propagates through the medium.

This filter is denoted the generalized frequency-dependent screen, and is composed of an
amplitude screen and a phase screen defined as

s(r, rs; ω) = a(r, rs; ω) eiθ(r,rs;ω) . (3.2)

The generalized frequency-dependent screen is dependent of the scatterers spatial position.
Variation of the amplitude and phase with frequency of this filter, is a result of the aberration
generated interference. Note that variation of the phase screen with frequency generates shape
deformation (stretching) of the wave.

If a point impulse source is placed in the focus rf of the array, it is shown in Ref. 17 (Ch. 11),
that filtering the transmitted signal on each array element with the complex conjugate of the
generalized frequency-dependent screen, is equal to time reversal,13 and will reproduce the
diffraction limited impulse field in rf .

This filter, defined as
h(ra; ω) = s∗(ra, rf ; ω) , (3.3)

where ra is the array coordinate, represents an ideal diffraction limited aberration correction
filter for the focal point of the array.
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If the aberration is scatterer independent, the generalized frequency-dependent screen is
independent of the scatterer position, and

s(ra, rs; ω) = s(ra, rf ; ω) ≡ s(ra, ω) , (3.4)

where s(ra, ω) is denoted the generalized scatterer independent screen, or simply, the scatterer
independent screen. For this case, the ideal aberration correction filter is

h(ra; ω) = s∗(ra, ω) . (3.5)

The scatterer independent approximation is valid inside the isoplanatic patch, and ideal
aberration correction with s∗(ra, ω) will be obtained inside the patch. In Ref. 12 it was shown that
correction with the complex conjugate of the generalized frequency-dependent screen, produced
almost ideal aberration correction (no aberration) to a level of -25 dB from the maximum value
of beam profiles in the focal plane of the array, for both a weak and strong aberration situation.

In the work presented here, aberration correction was performed with a matched time-delay,
and a time-delay and amplitude correction filter on transmit. This is an approximation of
s∗(ra, rf ; ω), and the aberration correction filter is now given as

h(ra; ω) = eiωτ(ra)

h(ra; ω) = a(ra) eiωτ(ra) ,
(3.6)

where both time-delays and amplitudes are assumed to be independent of frequency.
The discussion in this section shows that a time-delay, or a time-delay and amplitude

aberration correction filter, represents a two-level approximation to aberration from an extended
aberrator such as the human body wall. First, aberration is assumed to be scatterer independent
[s(ra, rf ; ω) = s(ra, ω)]. Second, aberration parameters (arrival time and amplitude fluctuations)
are assumed to be independent of frequency.

II.B Aberration estimation

The developed estimation procedure is based on estimating the generalized frequency-dependent
screen, s(ra, rf , ω), from back-scattered random signals using cross-correlation. Frequency
independent arrival time and amplitude fluctuations are then determined from s(ra, rf , ω). The
method assumes scatterer independent aberration, and Eq. (3.4) is thus valid.

In order to improve the cross-correlation estimate, averaging is performed. In general, two
methods of averaging can be used. First, range averaging, that is, dividing the received signal
in range segments and averaging cross-correlations for each segment. Second, using multiple
transmit beams to generate backscatter from different scatterer volumes.

Assume the scatterers to constitute a statistical ensemble. Each outcome of the ensemble
represents a spatial distribution of the scatterers ν(rs), where rs denotes the scatterers spatial
position. If the scatterer distributions are independent, averaging over the ensemble results in a
δ-correlation of the scatterer distribution given as

E[ν(rs1)ν(rs2)] = σ2
ν(rs1) δ(rs2 − rs1) , (3.7)

where σ2
ν is the variance parameter of the distribution. This is valid if the correlation length

of the scatterer distribution is much smaller than the wave length, and is normally denoted an
incoherent medium. In a practical situation it is difficult to obtain δ-correlated scatterers due
to tissue structures, which in most cases are larger than the wave length. A solution may be
envisaged by imaging moving scatterers, like the heart or blood. Using consecutive transmit
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beams with the same focus and amplitude, separated in time to ensure all scatterers in the
observation volume to be replaced for each beam, the received signals will represent independent
realizations of the ensemble.

Otherwise, neighboring transmit beams and multiple focusing may be used for stationary
objects.18,19 In this situation, some correlation between beams may exist, and the improvement
in the correlation estimate is directly linked to the degree of correlation between the different
receive signals used in the averaging process.

Development of the estimation procedure

The received signal y, can in the scatterer independent aberration situation be written in the
frequency domain as [Ref. 17 (p. 11.55)]

y(ra; ω) = s(ra, rf ; ω) f(ra;ω) = s(ra; ω) f(ra;ω) , (3.8)

where f(ra; ω) represents the unaberrated signal on receive. The function f(ra; ω) thus contains
aberration on transmit, but not on receive.

The received signal can be written in a discrete form as

yp = spfp , p = 1, . . . , N , (3.9)

where subscript p indicates the element number, and N the total number of elements on the
array. Frequency dependence has now been dropped for notational convenience.

The cross-spectrum between element p and n on the receiving array is defined as

Rpn = E[yp y∗n] , (3.10)

where E[·] denotes an expectation operator. Inserting from Eq. (3.9) gives

Rpn = E[spfp(snfn)∗]

= sp s∗n Fpn ,
(3.11)

where Fpn = E[fp f∗n].
In the rest of the development, the magnitude of Fpn is assumed to be a known variable. The

basis for this is discussed in the next section.
Solving for sp gives

sp = ap eiθp =
Rpn

Fpn

eiθn

an
, (3.12)

where both sp and sn has been written with an amplitude and a phase. In the general case,
Fpn can have a phase due to a refraction of the transmit beam introduced by the body wall
[Ref. 17(p. 11.57-11.59)]. This phase is unknown and is incorporated into the phase of sp as

sp =
Rpn

|Fpn|
ei(θn−∆pn)

an
≡ Rpn

|Fpn|
eiθn

an
=

Rpn

|Fpn|
1
s∗n

, (3.13)

where ∆pn is the phase of Fpn, and θn −∆pn has been renamed θn. This has been done since
∆pn cannot be determined, and will not affect the calculation of sp.

An estimate for Rpn was calculated as

R̃pn =
1
K

K∑

k=1

ykp y∗kn , (3.14)
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where K denotes the number of measurements from different realizations of the scattering region.
In Ref. 20 (p. 703) it is shown that the variance of the amplitude and phase of R̃pn is given

as

Var[ |R̃pn| ] ∼ 1
2K

|Rpn|2
(

1
|wpn|2 + 1

)

Var[ ∠ R̃pn ] ∼ 1
2K

(
1

|wpn|2 − 1
)

,

(3.15)

where the coherence wpn is defined as

wpn =
Rpn√

Rpp Rnn

. (3.16)

Equation (3.15) shows that the variance of R̃pn is high when |wpn|2 is low. This motivates a
weighted mean estimate of sp as

s̃p =
N∑

n=1

Wpn
R̃pn

|Fpn|
1
s̃∗n

, p = 1, . . . , N . (3.17)

Here, Wpn is a weight function defined as

Wpn = |w̃pn|2
/

N∑
n=1

|w̃pn|2 , (3.18)

where w̃pn is an estimate of wpn based on R̃pn.
Equation (3.17) is an implicit equation, and was solved by iteration. An iterative scheme was

set up as follows

s̃p,q+1 = s̃p,q + µ

{
s̃p,q −

[
N∑

n=1

Wpn
R̃pn

|Fpn|
1

s̃∗n,q

]}
, (3.19)

where q is the iteration parameter, and µ is a constant convergence parameter. Zero phase and
unity amplitude across the array was chosen as initial values for s̃p in the iteration scheme.

After convergence of Eq. (3.19), phase and amplitude estimates were defined as

θ̃p = ∠ s̃p, ãp = |s̃p| . (3.20)

Up to this point, the estimation procedure is still dependent on frequency, and Eq. (3.19) can
be solved independently for all frequencies in the signal. As described in Section II.A, aberration
correction was in this article performed with a frequency independent time-delay, and time-delay
and amplitude filter [Eq. (3.6)]. This was done by estimating the cross-spectrum from Eq. (3.14),
at the center angular frequency ω0 of the transmitted signal. In addition, R̃pn was assumed to
be a smooth function around ω0, and additional averaging around ω0 was performed to reduce
the variance in the estimate.

To obtain a pure time-delay estimate, the phase estimate in Eq. (3.20) was assumed to be
linear with the center angular frequency ω0 of the transmitted pulse. The phase estimate θ̃p is
an absolute phase, and to obtain a relative phase estimate, the reference value for all θ̃p was
taken to be the arithmetic mean of the estimated values. The arrival time fluctuations estimate
was then calculated as

τp =
1
ω0

[
θ̃p − 1

N

N∑
n=1

θ̃n

]
. (3.21)
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Analysis of estimator

In the development of the estimator in Eq. (3.17), |Fpn| was assumed to be a known variable. In
Ref. 17 (p. 11.55) it is shown that for an incoherent medium (δ-correlated scatterers), Fpn can
be calculated as

Fpn =
∑

l

sl s∗l+n−pol o∗l+n−p , l = 1, . . . , N . (3.22)

The function o denotes the excitation momentum amplitude of the array. Equation (3.22) is
equivalent to the van Cittert-Zernike theorem which states that for propagation in a homogeneous
medium, the receive spatial covariance from incoherent scatterers is the auto-covariance of the
transmitted array function.21 In this case, the array function is the product of the scatterer
independent screen and the excitation momentum amplitude. Note that Fpn is frequency
dependent due to the frequency dependence of the scatterer independent screen.

The magnitude of the scatterer independent screen can be normalized to a function that
varies between 0 and 1. This means that

|Rpn| ≤ |Fpn| , (3.23)

with equality if, and only if |s| = 1. Because of the previous result, the ratio R̃pn/|Fpn| in
Eq. (3.17) will be dominated by R̃pn, and little sensitive to variations in |Fpn|. As a result of
this, Eq. (3.19) was solved with the value of |Fpn| obtained from Eq. (3.22) with |s| = 1 and
|o| = 1, which results in a correlation of a rectangular function with itself.

The estimate of the cross-spectrum [Eq. (3.14)] can be showed to be unbiased.

E[R̃pn] = E

[
1
K

K∑

k=1

ykpy
∗
kn

]
=

1
K

K∑

k=1

Rpn = Rpn . (3.24)

Inserting ãn = an and θ̃n = θn into Eq. (3.17) and calculating the expectation gives

E[s̃p] =
N∑

n=1

Wpn
E[R̃pn]
|Fpn|

eiθn

an
=

N∑
n=1

Wpn
Rpn

|Fpn|
1
s∗n

= sp

N∑
n=1

Wpn . (3.25)

In this case the estimate is unbiased if
∑

n Wpn = 1, which by the definition of the weights Wpn

in Eq. (3.18) is fulfilled.
If ãn 6= an and θ̃n 6= θn, it is difficult to calculate the expectation of s̃p, since it requires

solution of a set of implicit equations. In Ref. 12 it was shown that estimates of arrival time and
amplitude fluctuations in the signal from a point source, provided close to optimal correction
of the transmitted focused beam when used in an aberration correction filter. This leads to
the recognition that estimates of arrival time and amplitude fluctuations from point sources are
qualified estimates of the screen sp, and can be used as reference values for quantifying the
quality of the developed estimation procedure. This was done here.

Inserting Eq. (3.14) into Eq. (3.17) leads to

s̃p =
N∑

n=1

Wpn
1
K

K∑

k=1

ykpy
∗
kn

1
|Fpn|

1
s̃∗n

=
1
K

K∑

k=1

ykp b̂∗kp , (3.26)

where

b̂kp =
N∑

n=1

ykn

Wpn

|Fnp|
1
s̃n

. (3.27)
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The estimate s̃p can hence be viewed as a correlation of the received signal on element p with a
modified beamformer output of the signal received over the whole array. The beamformer output
b of a received signal is defined as

b =
N∑

n=1

yn . (3.28)

The modification consists of a weight term and an aberration correction term.

III Method

III.A Modeling of aberration

To generate realistic aberration, two body wall models were created. These are the same two
body wall models which were used in Ref. 12, where a weak aberrating body wall model was
denoted w6, and a strong aberrating body wall model was denoted s6. In this article these two
body wall models are denoted the weak, and strong aberrator respectively. In Ref. 12 a thorough
description of the generation of the body wall models, and their justification, is given.

III.B Simulations

After creating suitable body wall models for generating aberration, 2D simulations were
performed. A homogeneous angular spectrum operator, described in Ref. 12, was used to
propagate the signals. All simulations were performed for 20 different realizations of the
scattering region, and for both the weak and strong aberrators. The simulation setup in Fig. 3.1
was used in three different situations as described below.

Point source simulations

In order to estimate the general frequency-dependent screen [Eq. (3.1)], and to estimate reference
values for the arrival time and amplitude fluctuations, point source simulations were performed
according to the setup in Fig. 3.1. No scattering region was now present in the setup.

A point source was simulated in the focus rf of an array of size D. The array was situated
directly onto the distributed body wall models of thickness d. A pulse was generated at the
point source and propagated homogeneously with the angular spectrum operator to the body
wall models, and then through the wall models as described in Ref. 12, to the receive array.

A point source simulation provides the ideal situation for estimation of the generalized
frequency-dependent screen. It was determined by filtering the received signal y from the point
source with a Wiener-like filter hW in the frequency domain given by the equation

s(ra, rf ;ω) = hW (ra, rf ; ω) y(ra, rf ; ω), (3.29)

where ra represents the array coordinate and rf the focus of the array (see Fig. 3.1). The transfer
function for the filter was

hW (ra, rf ; ω) =
y∗t (ra, rf ; ω)

|yt(ra, rf ;ω)|2 + max( |yt(ra,rf ;ω)|2 )
SN

, (3.30)

where yt is the transmitted frequency dependent signal from the point source. The factor SN
represents a signal-to-noise ratio parameter in the filter which was determined empirically.
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Figure 3.1: Simulation setup.

Scatterer independent aberration simulations

In the general case, the generalized frequency-dependent screen is dependent on the source
position in space (in this case the focus point of the array rf ). As explained in the introduction,
scatterer independent aberration was created by concentrating all distortion of the heterogeneous
medium into a plane on the transmitting/receiving array. This is equal to assuming scatterer
independent aberration as in Eq. (3.4).

Scatterer independent signals could then be generated without using the extended aberrator
in Fig. 3.1. These were round-trip simulations.

On transmit, the focused signal from the array was filtered with s(ra, rf ; ω) as estimated in
Eq. (3.29), to create scatterer independent aberration. The aberrated signal was propagated
homogeneously to the scattering region, where it was scattered according to the Born
approximation, i.e. only first order scattering was considered. The scattered signal was
propagated back to the array, where it again was filtered with s(ra, rf ;ω) to generate receive
aberration.

Scatterer dependent aberration simulations

Scatterer dependent aberration was created by using the distributed body wall models, as for
the point source simulations. These were also round-trip simulations and the same setup was
used for scatterer dependent aberration with a corrected transmitted beam.

The transmitted signal was propagated through the body wall models, and then homoge-
neously to the scattering region. Here it was scattered according to the Born approximation,
and propagated back to the array through the body wall models.
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IV Simulation parameters and data processing

The simulations were implemented in Matlab, and the FFTW algorithm for calculation of
the angular spectrum was used. The simulation area was 10.24 cm in the lateral direction (x-
direction in Fig. 3.1) with a resolution of 0.2 mm. To avoid wrap-around effects from the FFT,
the signal was tapered to zero over 2.54 cm region at each edge of the simulation area in the
x-direction. The tapering was performed for a sufficient number of propagation steps in order to
keep the noise level from the wrap-around effects sufficiently low. The sampling frequency was
35.1MHz providing a time window of 58.3µs. Center frequency of the pulse was 2.5 MHz with
a -6 dB bandwidth of 1.6 MHz. The pulse was filtered on transmit with a 3.7MHz band-pass
filter centered around the center frequency of the pulse. An array aperture size of 20mm with
point-like elements was chosen. The focal depth of the array was set to 60 mm. Water at 37oC
was used as the propagation medium. All receive signals were corrected for geometric focusing
for the homogenous medium before processing of results.

To generate a realistic speckle signal, an area of 30.5 mm (time window of 20 µs), 15.25 mm
to each side of the focal plane (see Fig. 3.1), was used as a scattering region. The scatterer
density was approximately 1600 scatterers per square centimeter. The scatterers were uniformly
distributed in the x and z-direction, and had a Gaussian distributed reflection strength. Twenty
different independent realizations of the scatterer region were produced.

The cross-spectrum (Sec. II.B) was calculated by taking the Fourier transform of the received
signal on each array element over the entire range of the scattering region. The cross-spectrum
between all elements on the receiving array was then calculated according to Eq. (3.14), and this
process was performed and averaged for the twenty generated statistically independent signals.
The cross-spectrum was assumed to be a smooth function around the parameter frequency (in
this case the center frequency of the signal) and was averaged over a small band of frequencies
with equal weight. This band ranged from approximately 2.4MHz to 2.6 MHz, which constituted
eleven frequencies with the resolution used in the simulations.

Estimation of arrival time fluctuations from point source simulations was performed with
a phase front tracking algorithm. In essence, the phase front tracking algorithm determined
the peak of the first period of the received waveform from the point source. The tracking
was then performed on each element, and the time-delay between two elements was defined as
the difference in time between the two peaks of the respective elements. For all arrival time
fluctuations estimates presented in this article, a linear fit was subtracted in order to remove any
refraction of the beam.

Arrival amplitude fluctuations across the array from point source simulations, were
determined by taking the Fourier transform in time of the received signal on each element. The
amplitude on each element of the array was calculated as the arithmetic mean of the amplitudes,
of the now frequency dependent signal, over a band of frequencies ranging from 2-3 MHz. This
band was chosen empirically.

Beam profiles in the focal plane of the array were used for visual evaluation of the effect of
different aberration correction filters. All aberration corrected signals were propagated through
the distributed body wall models as in Fig. 3.1. The profiles were calculated as the rms value in
time of each spatial position.

Additional evaluation of the correction filters in the focal plane were performed by calculation
of focus quality parameters. These were effective widths in the array and range direction, and
calculation of a peripheral energy ratio. Details of the definition of these parameters are given
in.1
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(a) Point source, weak aberrator.
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(b) Point source, strong aberrator.
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(c) Random scatterers, weak aberrator.
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(d) Random scatterers, strong aberrator.

Figure 3.2: Received waveforms from point sources in the focus of the array and from one realization of the
random scatterers for the SDA situation. Each pane shows a temporal logarithmic gray scale picture of the
waveforms at the receiving array. The dynamic range of the logarithmic scale is 40 dB. The horizontal axis
represents time, and for the point source simulations it spans 2.9 µs. For the random scatterer results the
time axis spans 5.7 µs. The vertical axis represents the receive array elements and spans 20 mm. The left
panes shows the waveform received after propagation through the weak aberrator and the right panes shows
the waveform from the strong aberrator.

V Results

Figure 3.2 shows received waveforms from the point source simulations, and from one realization
of the random scatterers for the SDA situation. For the point source simulations, shape distortion
of the waveforms is clearly visible, and in the strong aberration case deformation of the waveform
also occurs in several places. Since the waveforms are pictured with a logarithmic scale and
a dynamic range of 40 dB, amplitude fluctuations do not show. For the signal from random
scatterers strong decorrelation of the signals is visible.

In the expression for the variance [Eq. (3.15)] of the amplitude of the cross-spectrum, the
absolute value of the cross-spectrum squared, and the inverse of the coherence squared enters.
The variance of the phase of the cross-spectrum is given by the inverse of the coherence squared.
Figure 3.3 displays contour plots of the absolute value of the cross-spectrum and coherence,
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between all elements on the receiving array for the weak aberrator. The diagonal from bottom
left to top right of the cross-spectrum matrices displays areas of high and low correlation in the
signal due to variations in receive amplitudes. In Fig. 3.3 (a) (SIA), such variations are clearly
visible. For the SDA situation (c), cross-spectrum values are in general higher compared to the
scatterer independent case indicating a higher variance and a poorer amplitude estimate. There
is also a stretching of the high amplitude areas in the matrix, resulting in a reduced pinpointing of
amplitude peaks. In the CSDA case the same variations in the cross-spectrum as in the SIA case
are visible, but the width of the diagonal amplitude band is wider, indicating higher variance.

The coherence is the cross-spectrum normalized according to Eq. (3.16). In the SIA case, the
coherence displays a diagonal band indicating high correlation along the whole of the receiving
array. The width of the band (rows in the matrix) indicates how other elements of the array
correlates with a specific element. For the SIA case, the width of the band is approximately
constant which means that the same amount of information is used in estimation of the phase
and amplitude for each element. In the SDA situation, the width of the band is generally
narrower and varies along the diagonal resulting in an increased variance of the phase estimate.
Results for the CSDA situation show increased coherence along the diagonal resulting in reduced
variance for the phase estimate in comparison to the SDA situation.

Figure 3.4 shows contour plots of the absolute value of the cross-spectrum and coherence for
the strong aberrator. These results depict the same situation as for the weak aberrator. Note
that the width of the coherence band for the SIA situation [Fig. 3.4 (b)] is reduced in comparison
to the weak aberrator, which shows that the correlation is reduced for the strong aberrator.

Arrival time and amplitude fluctuation estimates for the weak aberrator are presented in
Fig. 3.5. The figure shows that estimates of arrival time fluctuations for the SIA [Fig. 3.5 (a)],
and CSDA situation [Fig. 3.5 (e)], are approximately identical and very close to point source
estimates. In the SDA case, estimates deviate from point source estimates, which is a direct
result of the lowered correlation in the estimated cross-spectrum as shown in Fig. 3.3.

Figure 3.6 shows arrival time and amplitude fluctuation estimates for the strong aberrator.
These results show the same trend as for the weak aberrator. In the SDA case, estimated arrival
time fluctuations strongly deviates from point source estimates due to lowered correlation in the
received signal. Note that for the SIA and the CSDA, discontinuities occur in the estimates.
These discontinuities are due to the wave deformation clearly visible in Fig. 3.2 (b). The wave
deformation is also visible in Fig. 3.4, where the coherence is close to zero in the region of pulse
deformation. This effect cause the variance of phase estimates to be very high, resulting in poor
arrival time fluctuation estimates.

Arrival amplitude fluctuation estimates for both the weak and strong aberrators, show the
same trend as estimates for arrival time fluctuations. Amplitude estimate in the SIA situation is
approximately identical to point source estimates for both body wall models. Estimates for the
SDA are very poor for both body walls respectively. This is an effect of the reduced variation in
the cross-spectrum as shown in Figs. 3.3 (c) and 3.4 (c). In the CSDA situation, estimates are
not as good as point source estimates, but compared to the SDA situation they have improved
substantially.

Beam profiles corrected with a time-delay, and a time-delay and amplitude filter for the
weak aberrator, are presented in Fig. 3.7. The beam profiles, together with the focus quality
parameters given in Table 3.1, show the efficiency of the aberration correction filter. Note that
the focus quality measures in Table 3.1 cannot be directly compared to the presented beam
profiles, as they are calculated in a different way. But they do portray the same effects visible
in the beam profiles. It should also be stressed that focus quality measures of the aberrated
beam profiles are uncertain since there is no clearly defined mainlobe. For the SIA, and CSDA
situation, time-delay corrected profiles are almost identical and very close to the point source
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(c) SDA
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(d) SDA
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(e) CSDA
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Figure 3.3: Contour plots of the absolute value of the cross-spectrum and coherence between all elements on
the receiving array, for the weak aberrator. The values are stacked in a matrix form. The left column shows
absolute values of the cross-spectrum and the right column absolute values of the coherence. The cross-
spectrum is normalized to the largest value in the matrix. Both the horizontal and vertical axes represent
array elements. The labels explains the aberration situation. SIA - scatterer independent aberration, SDA -
scatterer dependent aberration, CSDA - corrected scatterer dependent aberration.
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(c) SDA
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(d) SDA
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(e) CSDA
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Figure 3.4: Contour plots of the absolute value of the cross-spectrum and coherence between all elements on
the receiving array for the strong aberrator. The values are stacked in a matrix form. The left column shows
absolute values of the cross-spectrum and the right column absolute values of the coherence. The cross-
spectrum is normalized to the largest value in the matrix. Both the horizontal and vertical axes represent
array elements. Same labeling as in Fig. 3.3.
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Figure 3.5: Arrival time and amplitude fluctuation estimates for the weak aberrator. The left column shows
arrival time fluctuations and the right column amplitude fluctuations. The horizontal axis in both rows
represents array elements. The vertical axis for arrival time fluctuations is displayed in (ns), and the vertical
axis for amplitude fluctuations is in (dB). The dotted line represents estimates from point source simulations
and serves as a reference. The solid line shows estimates from the random scatterer region. Same labeling
as in Fig. 3.3.
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Figure 3.6: Arrival time and amplitude fluctuation estimates for the strong aberrator. The left column
shows arrival time fluctuations and the right column amplitude fluctuations. The horizontal axis in both rows
represents array elements. Same notation and labeling as in Fig. 3.5.
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Figure 3.7: Beam profiles in the focal plane for the weak aberrator. The left column shows beam profiles
corrected with a time-delay correction filter. The right column shows beam profiles corrected with a time-
delay and amplitude correction filter. The horizontal axis represents the focal plane (mm) and the vertical
axis energy (dB). The zero point on the horizontal axis denotes the center axis of the transmitting array. The
solid line represents the aberrated profile, the dashed-dotted line the profile corrected with estimates from a
point source, the dashed line shows the profile corrected with estimates from the random scattering region,
and the dotted line the profile with no aberration, which serves as a reference. All profiles are normalized to
their maximum value. Same labeling as in Fig. 3.3.
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corrected profile. Note that there is a slight refraction of the beam to the right of the center axis
of the array. The effective widths from Table 3.1 are identical to the ideal case for these two
cases, but the -10 dB peripheral energy ratio is higher due to generally higher sidelobe level. In
the SDA situation, estimates of arrival time fluctuations deviated from point source estimates
resulting in a less focused beam profile with a relatively high side lobe level. The beam profile for
the SDA situation has a turning point at approximately -10 dB, and makes the -10 dB peripheral
energy ratio measure unreliable. The effective width at -10 dB is, on the other hand, very large
in the array direction portraying poor correction.

Beam profiles corrected with a time-delay and amplitude filter show a further reduction in
sidelobe level for the SIA and CSDA situations. Note also that correction of the beam profile has
improved further away from the central axis of the array. This again leads to reduced peripheral
energy ratios, and for both cases they are now close to the ideal situation. For the SDA situation,
amplitude estimates were very poor and do not change the corrected beam profile significantly.
There is some reduction in the effective width in the array direction, and the peripheral energy
ratio.

Corrected beam profiles for the strong aberrator are shown in Fig. 3.8. Also in this case,
correction with a time-delay filter for the SIA and CSDA situation, improves the beam profiles.
Note that refraction of the beam is stronger for this aberrator than for the weak. Introducing
amplitude correction in addition to time-delay correction, improves beam profiles substantially
for both these cases. This is also shown in the focus quality variables where the -10 dB peripheral
energy ratio is reduced. For the SDA situation, correction with a time-delay filter is very poor.
Introducing amplitude correction does not change the beam profile, and there is almost no
difference in the peripheral energy ratio.

VI Discussion

The aberration in the scatterer independent aberration simulations, were performed by filtering
the signal on transmit and receive with an estimate of the generalized frequency-dependent screen
[Eq. (3.29)]. This means that the resulting aberrated beam profiles for the SIA and SDA situation
are not identical. The results of the estimated arrival time and amplitude fluctuations for these
cases (Fig. 3.5 and Fig. 3.6), show that the differences are negligible.

As explained in Section IV, the cross-spectrum was assumed to be a smooth function around
the center angular frequency, and averaged over eleven neighboring frequencies. Averaging over
a number of M frequencies is analogous to averaging in range, that is subdividing the signal in
M range segments for each channel and estimating the cross-spectrum of each segment. This
results in a smoothing of the frequency spectrum. The band of frequencies for averaging was
chosen empirically.

The scatterers were modeled as uniformly distributed in space with a Gaussian distributed
reflection strength. This constitutes an ideal set of scatterers with no interference from strong
scatterers, or strong scattering regions within the scattering region itself. Absorption and
electronic/acoustic noise (e.g. reverberations) were not included in the simulations. In a practical
situation, all of these effects would exist and probably deteriorate the estimate of the cross-
spectrum. One of the purposes of this article was, on the other hand, to demonstrate the basic
differences between scatterer independent aberration (which forms the general assumption for
aberration correction) and scatterer dependent aberration. Thus having a receive signal as ideal
as possible was in the interest of the analysis.

The range of the scatterer region was chosen to be well inside the 3 dB depth of focus of the
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Figure 3.8: Beam profiles in the focal plane for the strong aberrator. The left column shows beam profiles
corrected with a time-delay correction filter. The right column shows beam profiles corrected with a time-delay
and amplitude correction filter. Same notation and labeling as in Fig. 3.7.
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Table 3.1: Table of focus quality parameters. The peripheral energy ratio (PER) and all effective widths
have been calculated at -10 dB level from the peak. The parameters de, wa, and wt denotes the effective
diameter, the effective width in the array direction, and the effective width in the time direction respectively.
The two column headings refers to the weak and strong aberration aberrators. The first column indicates
the aberration situation and the notation follows the notation in Fig. 3.3. The notation PS in this column
denotes correction with estimates from the point source. The second column specifies the type of correction
where τ denotes the time-delay correction filter, and τ&a the time-delay and amplitude correction filter.
The two last rows has no value in the second column. The first of these rows shows the ideal situation with
no aberration, and the second the aberrated situation.

Weak aberrator Strong aberrator

PER de wa wt PER de wa wt

(mm) (mm) (mm) (mm) (mm) (mm)

SIA τ 0.427 1.84 2.70 1.26 SIA τ 0.645 1.88 2.80 1.26
SDA τ 0.420 2.68 5.70 1.26 SDA τ 1.060 2.34 3.70 1.47
CSDA τ 0.418 1.84 2.70 1.26 CSDA τ 0.554 1.88 2.80 1.26
PS τ 0.477 1.84 2.70 1.26 PS τ 0.763 1.88 2.80 1.26

SIA τ&a 0.287 1.84 2.70 1.26 SIA τ&a 0.363 1.94 3.00 1.26
SDA τ&a 0.362 2.63 5.50 1.26 SDA τ&a 1.080 2.03 2.80 1.47
CSDA τ&a 0.253 1.88 2.80 1.26 CSDA τ&a 0.315 1.91 2.90 1.30
PS τ&a 0.300 1.84 2.70 1.26 PS τ&a 0.439 1.91 2.90 1.26

IDEAL 0.228 1.84 2.70 1.26 IDEAL 0.228 1.84 2.70 1.26
AB 1.230 2.58 4.50 1.47 AB 1.440 3.68 6.50 2.08

array. The 3 dB depth of focus can be calculated as [Ref. 22 (p. 1.14)]

Lf (3 dB) ≈ 7.2λ(FN)2 , (3.31)

where λ is the wavelength of the transmitted pulse and FN the f-number defined as FN = rf/D
(see Fig. 3.1). In the simulations performed in this article, the wavelength was λ = 0.6 mm and
the f-number FN = 3, which gives Lf (3 dB) ≈ 39 mm. A scattering region of 15.25 mm in range
to each side of the focal point, is thus well inside the 3 dB focal depth of the transmitting array.

The wavefront tracking algorithm used to estimate arrival time fluctuations from the point
source simulations is dependent on a clearly defined wavefront, which is the case for a wave
emanating from a single point source. The speckle signal created in this article represents the
sum of signals from many point sources, and has not a clearly defined wavefront. This would
also be the case for tissue images in ultrasound imaging systems, and this method for arrival
time estimation is only suited for ideal situations. Since the method tracks the front of the wave,
it is little sensitive to waveform deformation, and for the point source simulations performed,
this method proved to give very accurate estimates of arrival time fluctuations in the received
wavefront.

Results in this article show that for scatterer independent aberration, arrival time and
amplitude fluctuations are estimated in accordance with results obtained from point source
simulations. When introducing a body wall model of thickness two centimeters, the quality
of estimates of arrival time and amplitude fluctuations are significantly reduced compared to
point source estimates. This is mainly due to the increased aberration interference in the signal,
caused by the distributed aberrator, which results in a reduced spatial coherence (see Figs. 3.3
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and 3.4).
There is some improvement in the beam profiles for the scatterer dependent aberration,

especially for the weak aberrator. This leads to the notion of an iterated estimation/correction
procedure. In an iteration procedure, arrival time and amplitude fluctuations could be estimated
as in this article, and a corrected signal would be transmitted for the purpose of performing a
new estimation of the same parameters. The process would be repeated until some convergence
criterion is achieved. This is also known as adaptive imaging. The optimum convergence would
be obtained when the estimates are equal to those obtained from a point source. The corrected
scatterer dependent aberration situation presented in this article, displays the ideal last stage
of such an iteration process. The results show that if the transmitted signal is corrected with
an ideal time-delay and amplitude filter, aberration in the received signal is indeed scatterer
independent, and arrival time fluctuations are very well estimated. Amplitude variations are not
as well estimated as from the point source simulations, but this does not affect the corrected
beam profiles noticeably, and the peripheral energy ratios in this case are even better than for
the point source estimates (see Table 3.1).

VII Conclusions

A method for estimating arrival time and amplitude fluctuations from random signals has been
developed. The method can also be used to estimate phase and amplitude aberration for all
frequency components in the received signal. It was tested on different situations of aberration,
scatterer independent aberration and scatterer dependent aberration. Results obtained with
signals from random scatterers were compared with estimates from point source simulations.

For the SIA and CSDA situation, arrival time and amplitude fluctuations estimates were very
close to point source estimates for both the weak and strong aberrator. Used in a time-delay,
and time-delay and amplitude aberration correction filter, they produced equivalent correction of
transmitted beam profiles as correction with point source estimates. For both the SIA and CSDA
situation, a time-delay and amplitude filter corrected significantly better than a time-delay filter
alone.

In the SDA situation, arrival time fluctuations differed significantly from point source
estimates. With the strong aberrator, estimates were poor, yielding a limited correction of the
beam profile. The method was only able to estimate arrival amplitude variations of about 4 dB
for both aberrators, while for the strong aberrator, variations of up to 18 dB was estimated from
the point source. The difference between a time-delay, or a time-delay and amplitude correction
filter was negligible for the strong aberrator. This was mainly due to the poor estimates of both
arrival time and amplitude fluctuations. For the weak aberrator, correction of the beam profile
was observed (there is some correction also in the strong case) and the time-delay and amplitude
filter corrects better than the time-delay filter.

The results presented here demonstrate the difficulty of estimating and correcting ultrasound
aberration with a time-delay, or a time-delay and amplitude aberration correction filter. This
is due to the fact that aberration is generated over an extended part of the human body wall.
Aberration correction with a time-delay, or a time-delay and amplitude aberration correction
filter assumes all aberration to be concentrated on the transmitting/receiving array. On the
other hand, the results show that if the receive aberration is scatterer independent, the developed
estimation method for arrival time and amplitude fluctuations from random signals works well.

For the distributed body wall models (scatterer dependent aberration), the estimation method
does not produce satisfactory results, even with 20 independent realizations of the received
signals. Some correction is still obtained, and estimates could possibly be improved by iteration.
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VII Conclusions

This work also demonstrates that, if correctly estimated, a time-delay or a time-delay and
amplitude correction filter produce receive signals with aberration that is independent of the
scatterers spatial position. This indicates that such a correction filter can focus the aberrated
transmitted beam to the inside of the isoplanatic patch, the necessary condition for obtaining
receive scatterer independent aberrated signals from randomly distributed scatterers.
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Simulations of iterative transmit-beam aberration correction using a time-delay and
amplitude filter have been performed to study the convergence of such a process.
Aberration in medical ultrasonic imaging is usually modeled by arrival-time and
amplitude fluctuations concentrated on the transducer array. This is an approximation
of the physical aberration process, and may be applied to correct the transmitted signal
using a time-delay and amplitude filter. Estimation of such a filter has proven difficult
in the presence of severe aberration. Presented here is an iterative approach, whereby
a filter estimate is applied to correct the transmit-beam. This beam induces acoustic
backscatter better suited for arrival-time and amplitude estimation, thus facilitating
an improved filter estimate. Two correlation-based methods for estimating arrival-time
and amplitude fluctuations in received echoes from random scatterers were employed.
Aberration was introduced using eight models emulating aberration produced by the
human abdominal wall. Results show that only a few iterations are needed to obtain
corrected transmit-beam profiles comparable to those of an ideal aberration correction
filter. Furthermore, a previously developed focusing criterion is found to quantify the
convergence accurately.

I Introduction

Aberration in medical ultrasound imaging is observed as reduced resolution in the images.
It is mainly produced by spatial variation of acoustic parameters (mass density and bulk
compressibility) in the human body wall. The loss of resolution may, in many situations, render
a reliable diagnosis based on these images difficult to obtain. Extensive research has therefore
been carried out in order to solve this problem.

Iteration of transmit-beam aberration correction is defined as a process where a set of
aberration parameters is estimated; the estimated parameters are used for correcting the
transmitted ultrasound beam; and a new estimate of the same parameters is calculated. This
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process is then repeated. The parameters are typically arrival-time or arrival-time and amplitude
fluctuations. Iteration of transmit-beam aberration correction is sometimes referred to as
adaptive imaging or auto-focusing, but these terms are also used to denote aberration correction
in general.

In the presented work, iteration of transmit-beam aberration correction is studied. This
process is abbreviated transmit-beam iteration in the remainder of the article.

Flax and O’Donnell1,2 studied transmit-beam iteration using estimated arrival-time
differences between neighbor elements on the receiving array. They considered aberration from
a thin phase-screen just in front of the array. Using such aberration, a transmit-beam iteration
process for correcting the phase of the transmit signal using time-delays estimated from neighbor
correlation, was argued to be a process that inherently converges to an ideal transmit-focus.

In Refs. 3 and 4 the morphology of the abdominal wall was studied. It was found that a single
time-delay or phase-screen is not adequate for modeling aberration of the ultrasound wave. This
is due to the fact that aberration consists of both phase and amplitude aberration, and that these
effects occur throughout the whole thickness of the body wall.4 In this situation, the arguments
of Flax and O’Donnell2 are not sufficient. In Ref. 5 it was shown that an appropriate time-delay
and amplitude filter can produce close-to-ideal correction. It has yet to be shown that iterative
transmit-beam aberration correction based on estimating a time-delay and amplitude filter from
random scatterers will yield a similar correction.

In Refs. 6–8 transmit-beam iteration was performed using different methods for aberration
correction, but no consistent measure of convergence was introduced. In Ref. 6 several iterations
were performed in order to estimate phase aberrations only. The efficiency of the correction
was evaluated using the root-mean-square (rms) difference between the estimated phase and a
reference phase, where the reference was obtained from a beacon signal (point source). In many
practical situations such a beacon signal is not available. This metric is therefore not useful for
evaluating convergence of transmit-beam iteration in most imaging situations.

Rigby et al.9 performed in vivo transmit-beam iteration using time-delays with a 1.75D array.
They used a beamsum-channel correlation method for estimating arrival-time fluctuations and
found the algorithm to converge after three or four iterations. The results obtained showed
improved image quality, but it is not certain to what the algorithm converged as no reference
values could be obtained from the subjects investigated.

Other authors have also described transmit-beam iteration,10–14 but only performed
aberration correction on either the received signal, or on the transmitted and the received signal.
No further iterations were carried out.

In order to obtain qualitative data concerning the convergence of a transmit-beam iteration
process, two aberration estimation methods are compared in this article. Both methods estimate
arrival-time and amplitude fluctuations using signals from random scatterers. The estimated
arrival-time and amplitude fluctuations are then used as a matched filter for time-delay and
amplitude aberration correction.

The first estimation method correlates each element signal with a reference signal. The
reference signal is a weighted and modified beamformer output of the received signal.15 The
second method uses an eigenfunction decomposition of the cross-spectrum to maximize the
expected energy in the received signal.16

In order to evaluate the quality of an aberration correction method, Mallart and Fink
developed a focusing criterion based on the van Cittert-Zernike theorem.11 An analogous criterion
was developed by Liu and Waag.10 Lacefield and Waag14 discuss the utility of this focusing
criterion since the van Cittert-Zernike theorem is only valid for propagation in a homogeneous
medium. The width of the average receive coherence function at different levels was suggested
as an alternative measure to evaluate an aberration correction method. A monotonic relation
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between the coherence widths and the effective widths of point spread functions was observed in
single-transmit images.

Both of these measures are used in this article, in order to evaluate the convergence of the
transmit-beam iteration process. The process is also evaluated by comparing arrival-time and
amplitude fluctuation estimates to those obtained from point source simulations. A simulation
with a point source in the focus of the array provides an optimal situation for observing aberration
of the ultrasound wave, and serves as a good reference.

Absorption effects, electronic noise and acoustic reverberation noise were not included in the
simulations.

II Theory

II.A Signal and aberration correction modeling

Following Angelsen [Ref. 17 (Ch. 11)], the aberration is modeled by relating the Green’s function
for the wave equation with constant coefficients to the Green’s function for the wave equation
with spatially variable coefficients using a filter denoted the generalized frequency-dependent
screen. The frequency response of this filter describes the aberration introduced to each frequency
component of the signal.

If the generalized frequency-dependent screen is independent of the position in space at which
the backscatter was created, the signal received at array coordinate ra can be written as15

y(ra; ω) = s(ra; ω) f(ra;ω) . (4.1)

The function f(ra; ω) is an integral over a volume containing scatterers distributed in space,
and represents the unaberrated acoustic backscatter signal. It does, however, depend on the
transmitted beam, and is thus a function of the transmit aberration.

The situation where aberration on an array element satisfies the assumption of being
independent of the spatial position of the scatterer, is denoted scatterer-independent aberration.15

This can be viewed as concentrating all aberration of the inhomogeneous medium to a layer at
the array surface. For an extended aberrator of varying thickness, this assumption is generally
not satisfied, but may be a good approximation inside a region surrounding the focal point;
the isoplanatic patch. A received signal according to Eq. (4.1) is thus obtained by focusing the
transmitted beam to the inside of the isoplanatic patch.

The two aberration estimation methods employed in this article perform aberration correction
using a time-delay and amplitude correction filter with transfer function

h(ra;ω) = a(ra) eiωτ(ra). (4.2)

The time-delay τ , and amplitude a, are functions of the array coordinate ra, but do not depend on
frequency. This approximation of the correction filter is valid for band-limited signals assuming
scatterer-independent aberration.

It has been shown that a time-delay and amplitude filter produces close-to-ideal correction
(no aberration), if correct estimates for the arrival-time and amplitude fluctuations are obtained,
even in the case of severe aberration.5

II.B Scatterer-independent aberration and the van Cittert-Zernike
theorem

When the scatterers are randomly distributed in space, the backscatter signal is a stochastic
variable. Assuming scatterer-independent aberration, the cross-spectrum between the received
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signal at location rp and rn on an array may be expressed using Eq. (4.1)

R(rp, rn) = s(rp)s∗(rn) F (rp, rn). (4.3)

Here F (rp, rn) is the cross-spectrum of the backscatter signal without aberration. Dependence
on frequency has been omitted for notational convenience.

In Ref. 18 the van Cittert-Zernike theorem was developed for incoherent acoustic backscatter
and propagation through a homogeneous medium. If the aberration is scatterer-independent,
the van Cittert-Zernike theorem may be applied. In this case, F (rp, rn) = F (rp − rn) ≡ F (ξ) is
computed as [Ref.17 (p. 11.55)]

F (ξ) =
σ2

ν

4π2

∫

Sa

s(r + ξ)s∗(r)o(r + ξ)o∗(r)dr. (4.4)

Here σ2
ν is the scattering intensity, the integration is performed over the array surface Sa, and

o(r) denotes the array apodization function.
Equation (4.4) shows that the coherence in the received signal is limited by the aberration as

well as the apodization function. This has been experimentally observed,14 although it was not
compared to an explicit theoretical prediction.

III Estimators

In this article two previously developed estimators15,16 are employed to study transmit-beam
iteration. For the convenience of the reader and to introduce notation, the rationale behind both
estimators is briefly reviewed. Then the two methods are compared, and new insight into the
similarities and differences between them is provided.

Both estimators are based on the cross-spectrum of the received acoustic backscatter. For
the purpose of this study, the received signal is assumed to be a Gaussian stochastic process
with zero mean value. This implies that all statistical information is contained in the covariance
function, or equivalently, the cross-spectrum. For a time-delay and amplitude correction filter as
in Eq. (4.2), it is sufficient to consider the cross-spectrum at a single frequency.

For a given frequency ω, the cross-spectrum between the element signals yp(ω) and yn(ω),
received at element p and n respectively, is defined as

Rpn = E[yp y
∗
n] . (4.5)

Frequency-dependence has been dropped for notational convenience.
For the comparison to be useful, both estimation methods use the same estimate of the

cross-spectrum. In order to obtain a proper estimate of the cross-spectrum with low variance,
an average over statistically independent backscatter signals is used. In a practical situation,
statistically independent signals can be obtained by imaging scatterers which are replaced
between each consecutive transmit-beam, e.g. blood or contrast agents. Alternatively, non-
overlapping regions of the scatterer distribution may be utilized by combining beams in a
linear/sector scan.6,19

The estimate of the cross-spectrum is a cross-periodogram given as

R̃pn =
1
K

K∑

k=1

ykpy
∗
kn , (4.6)

where k denotes received backscatter signals from different random scatterer realizations, and
K is the total number of such realizations. To further lower the variance of the estimate in
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Eq. (4.6), additional averaging over a small band of frequencies is performed which results in a
smoothed cross-periodogram.

Reference 20 (p. 703) shows that the variance of the cross-spectrum estimate in Eq. (4.6)
may be found as

Var[ |R̃pn| ] ∼ 1
2K

|Rpn|2
(

1
|wpn|2 + 1

)

Var[ ∠ R̃pn ] ∼ 1
2K

(
1

|wpn|2 − 1
)

,

(4.7)

where the coherence wpn is defined as

wpn =
Rpn√

Rpp Rnn

. (4.8)

This implies that the variance of the cross-spectrum is high when the coherence is low and vice
versa.

Modified beamformer output - MBFO

This section offers a brief description of the modified beamformer output (MBFO) estimator,
which was presented in Ref. 15.

The basic premise for this method is that the received signal can be written as in Eq. (4.1),
that is, scatterer-independent aberration is assumed. Applying the same discrete notation as in
Eq. (4.5) to denote elements p and n in Eq. (4.3), and solving for sp leads to

sp =
Rpn

Fpn

1
s∗n

. (4.9)

In order to use all possible correlation information to estimate the phase and amplitude of
sp, a weighted average ŝp is defined

ŝp =
N∑

n=1

Wpn
R̃pn

Fpn

1
ŝ∗n

, (4.10)

where N is the total number of elements on the array. Here Wpn is a set of weights and R̃pn is
the estimate for Rpn.

In this article the weights are chosen as

Wpn = |w̃pn|2
/

N∑
n=1

|w̃pn|2 , (4.11)

where w̃pn is an estimate of the coherence wpn [Eq. (4.8)] based on R̃pn. Thus the estimates of
Rpn with low variance are emphasized. Furthermore, the phase of Fpn is not known, and Fpn is
therefore replaced by its absolute value. The MBFO estimator s̃p is then

s̃p =
N∑

n=1

Wpn
R̃pn

|Fpn|
1
s̃∗n

. (4.12)

An estimate for |Fpn| can be found from the van Cittert-Zernike theorem as formulated in
Eq. (4.4).15
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The estimator in Eq. (4.12) is a set of N coupled nonlinear equations which has to be solved,
that is, for p ∈ {1, · · · , N}. An iterative solution method as described in Ref. 15 was utilized
for this purpose. The initial estimate for sp in the iterative solution method was chosen as zero
phase and unity amplitude across the array.

Eigenfunction estimator - EFE

The eigenfunction estimator (EFE) was presented in Ref. 16. Thus, only a short description of
the method is provided here.

Consider the stochastic vector of receive signals at a particular frequency ω and transducer
elements indexed from 1 to N

y = [y1 y2 · · · yN ]T. (4.13)

Given a vector h = [h1 h2 · · · hN ]T, a stochastic linear functional Lh may be defined on y as

Lhy = hHy =
N∑

p=1

yph
∗
p, (4.14)

where H denotes the Hermitian of the vector.
The quantity Lhy from Eq. (4.14) is the temporal frequency result when a filter with transfer

function hp(ω) is applied to the signal received at transducer element p before the standard
beamforming procedure is executed. It is a stochastic variable with associated variance expressed
as

||Lhy||2 ≡ E
[
Lhy (Lhy)H

]

= hHE
[
yyH

]
h

= hHRh.

(4.15)

Here R is the cross-spectrum matrix of the receive signal at the frequency ω.
The variance is the expected energy for Lhy at this frequency. Since the matrix R is Hermitian

the expected energy, subject to the constraint hHh = 1, is maximized when h is an eigenvector
associated with the largest eigenvalue of R (see Ref. 21, Ch. 6.5).

Through finding the eigenvector which maximizes the expression in Eq. (4.15), a match filter
which maximizes the speckle brightness,22 is constructed. The normalization hHh = 1 for each
frequency ensures that the correction filter does not alter the frequency distribution for the
energy of the aberration-corrected transmit-beam.

The eigenvector h̃ associated with the largest eigenvalue of R̃ is calculated and used as an
estimate of the filter h.

Comparison of the estimators

Both methods estimate aberration from the cross-spectrum of stochastic backscatter. The MBFO
estimator also assumes the aberration on a receive element to be independent of the spatial
position of the scatterers, i.e., a signal model according to Eq. (4.3). The EFE estimator makes
no such assumption.
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The MBFO estimator has been shown to be equivalent to correlating the received signal with
a correlation reference;15 a modified beamformer output

s̃p =
1
K

K∑

k=1

ykpb
∗
kp

bkp =
∑

n

Wpn
1

|Fpn|s̃n
ykn.

(4.16)

The modified beamformer output, bkp, is formed by using a weight term Wpn and a correction
term 1/|Fpn|sn for each element signal ykn.

The same interpretation is possible for the EFE

h̃p =
1
K

K∑

k=1

ykpβ
∗
k (4.17)

βk =
∑

n

1
λ

h̃∗nykn. (4.18)

Equal weight, 1/λ, is placed on all element signals when forming the modified beamformer output
βk. The correction term in this case is h∗n.

A major difference between the two estimators is that the correction term for the MBFO
estimate is obtained by applying the aberration correction filter as an inverse filter, while the
correction for the EFE is obtained by matched filtering. In addition, the MBFO estimator utilizes
a different set of weights for each transducer channel p, thus obtaining a different correlation
reference signal for each channel. The EFE estimator makes use of the same correlation reference
for all channels.

To compare the estimators further, it is instructive to consider the case where Fpn = |Fpn|.
This will be the case when for example the scattering medium is incoherent and all phase
aberration of the transmitted beam has been corrected.

Let S be the diagonal matrix

S =




s1

. . .
sN


 . (4.19)

Equation (4.15) is then reformulated as

||Lhy||2 = hHRh

= hHSFSHh,
(4.20)

where F is the cross-spectrum matrix for the unaberrated acoustic backscatter. Therefore, SHh
must be an eigenvector of F . Now, since F is real, then the eigenvector SHh is real as well.
In this case the phase of hp is equal to that of sp; the phase estimated by the EFE will be an
unbiased estimate for the phase of the screen.

Furthermore, it is easy to see that if h is an eigenvector of R with eigenvalue λ, then

hp =
1
λ

∑
n

Rpnhn =
∑

n

|Fpn||hn|2
λ

Rpn

|Fpn|
1
h∗n

. (4.21)
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The EFE therefore satisfies an equation of the same type as Eq. (4.12) for the MBFO, with
weights Wpn = |Fpn||hn|2/λ.

If the weights Wpn in Eq. (4.12) are required to satisfy
∑

n Wpn = 1, then the MBFO will by
construction be an unbiased estimate for the screen.15 However, for the EFE this requirement is
not necessarily fulfilled. The result is a biased estimate of the amplitude.

Express the amplitude bias in a multiplicative fashion

hp = αpsp, (4.22)

where αp is real and positive, and sp, as previously, denotes the screen. Inserting this into
Eq. (4.21) yields

sp =
∑

n

|Fpn||sn|2αn

λαp

Rpn

|Fpn|
1
s∗n

. (4.23)

The fact that a normalized set of weights will obtain an unbiased estimate for the screen implies
that the amplitude bias may be expressed as a solution to

αp =
N∑

n=1

|Fpn||sn|2
λ

αn. (4.24)

Because of the Toeplitz structure of F , and the fact that |Fpn| decreases off the main diagonal,
any solution αp of Eq. (4.24) will decrease as a function of p when p moves towards the edges
of the array. If |Fpn| decreases monotonically, then αp will also decrease monotonically from a
maximum in the central region of the array. The filter amplitude is therefore an estimate for an
apodized version of the screen amplitude. This apodization has previously been discussed,16 but
the expression for the apodization is new.

In general, when F is not real, the relationship between hp and sp is more complicated. It is,
however, possible to show that an iterative transmit-beam aberration correction procedure will
converge to a hp which has a phase that concurs with the screen.16 Applying the correct phase
for aberration correction will result in a F which satisfies Fpn = |Fpn|. The preceding argument
may then be used to assert that an apodized amplitude estimate is also obtained.

By omitting the phase of Fpn, an error is introduced in the MBFO estimate of the screen.
Equation (4.10) can be written as

ŝp =
N∑

n=1

Wpn
R̃pn

|Fpn|
e−i∆pn

ŝ∗n
, (4.25)

where ∆pn is the phase of F . Neglecting this phase will therefore, in general, contribute both to
a phase and an amplitude error in the estimation of s̃p from Eq. (4.10). Assuming the transmit-
beam iteration process converges to the true phase of sp, as discussed above, F will be real valued
and ŝp becomes by definition equal to s̃p.

Arrival-time and amplitude estimates

After obtaining an estimate at the center angular frequency, ω0, for the scatterer-independent
screen sp and the energy maximizing filter hp, using the MBFO and the EFE estimator
respectively, arrival-time and amplitude fluctuations were calculated in a standard way.15

Note that although in the presented work only arrival-time and amplitude fluctuations were
used, both the MBFO and the EFE may be employed to estimate a phase and amplitude
aberration correction filter for all frequency components in the signal.
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Figure 4.1: An ultrasound pulse was propagated from the transducer (xd), through a body wall to a scattering
region. Scattering was computed according to the Born approximation and propagated back through the body
wall to the transducer.

IV Simulations

The simulations presented in this article were performed using the two-dimensional (2D)
simulation setup shown in Fig. 4.1. An angular spectrum operator was used for homogeneous
propagation of the simulated signals.5 A beam was propagated from the transducer through
a body wall model to the scattering region. There it was scattered according to the Born
approximation and propagated back to the transducer.

Eight body wall models were generated using equally spaced time-delay screens, filtered and
tuned to obtain characteristics according to abdominal wall measurements.23 The body wall
models were also used in Ref. 5. A thorough description of the body wall models is offered in
this reference.

The point source simulations were of a one-way nature: a point source was situated at the
position of maximum energy of the transmitted beam in the focal plane for each of the aberrators.
An emitted pulse from the source, identical to the transmit pulse from the array, was propagated
to the array and processed to obtain a reference for the arrival-time and amplitude fluctuations.

IV.A Simulation parameters and data processing

The simulations were implemented in Matlab. The simulation domain was 10.24 cm in the
lateral direction (x-direction in Fig. 4.1) with a resolution of 0.2mm. To avoid reflections at
the edges of the spatial domain due to the FFT being periodic, the signal was tapered to zero
with a raised cosine window over a 2.54 cm wide band. The sampling frequency was 35.1 MHz
providing a time window of 58.3µs. The transmitted pulse had a center frequency of 2.5 MHz and
a −6 dB bandwidth of 1.5 MHz. An array aperture size of 20 mm with point-like elements was
chosen. The focal depth of the array was set to 60 mm. The medium through which the signals
were propagated had a speed of sound equal to that of water; 1523 m/s. Geometric focusing was
removed from all received signals prior to further processing of the results.
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To generate a realistic speckle signal, an area of 30.5 mm (time window of 20 µs), centered
with 15.25 mm to each side of the focal plane was used as a scattering region (see Fig. 4.1). The
scatterer density was approximately 1600 scatterers per square centimeter. The scatterers were
uniformly distributed in space, and had a Gaussian distributed reflection strength.

For each transmit-beam iteration, scattering from twenty independent realizations of the
scattering region were simulated for the purpose of cross-spectrum estimation.

Estimation of arrival-time fluctuations for the point source simulation was performed with
a phase front tracking algorithm.5 The method has proved to yield accurate estimates of the
wavefront, and is not sensitive to waveform deformation which occurs behind the wavefront.

For all arrival-time fluctuation estimates presented in this article, a linear fit was subtracted
in order to remove refraction steering of the beam.

Amplitude fluctuations from the point source simulations were determined by taking the
Fourier transform of the received signal on each element as a function of time. The amplitude
on each element of the array was calculated as the arithmetic mean of the amplitudes of the now
frequency-dependent signal, over a band of frequencies ranging from 2-3 MHz. This band was
chosen empirically.

In order to evaluate the accuracy of the estimation methods, the relative L2 distances between
arrival-time and amplitude estimates and their respective references obtained from the point
source simulations were calculated. The L2 distance was normalized with respect to the L2

norm of the reference, and was thus calculated as

d(x, xref) =

√√√√
N∑

i=1

|xi − xi,ref |2
/√√√√

N∑

i=1

|xi,ref |2 . (4.26)

Here x is the arrival-time or amplitude estimate, and xref is the reference value obtained from
the point source simulations. The mean value was subtracted from all estimates prior to the
calculation of the L2 distance.

For the comparison to be useful, the amplitude estimates and the point source reference
need to have equal power. Assuming the estimated values for the amplitude fluctuations are
proportional to the reference, a gain factor α may be defined as

â = αa. (4.27)

Here â is the estimate and a the point source reference. The gain factor was determined by
minimizing the error between the reference and the estimate

α =
âT a
aT a

. (4.28)

To ensure equal power, the estimated arrival amplitudes were then scaled using the gain factor,
prior to the calculation of the relative L2 distance.

The focusing criterion was calculated according to the derivations by Mallart and Fink.11

They defined a focusing criterion as

C =

∫ +∞
−∞

(∑N
p=1 yp(t− τp)

)2

dt

N ·∑N
p=1

∫ +∞
−∞ y2

p(t)dt
, (4.29)

where N is the number of elements on the receiving array. Liu and Waag10 independently
proposed a similar criterion denoted the waveform similarity factor.
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For a point source, the value of C lies between 0 and 1. For an incoherent medium Mallart
and Fink showed that the maximum value of C is 2/3. Note that C can only attain its maximum
value if τp is properly estimated.

The focusing criterion was, as earlier described, used to evaluate the convergence of the
iterative aberration correction procedure, along with the widths of the average receive coherence
function introduced by Lacefield and Waag.14

The average coherence function for the received signal, from now on denoted coherence
function, was calculated as

wp−n =
1

N∆

∑

N∆

w̃pn =
1

N∆

∑

N∆

R̃pn√
R̃pp R̃nn

, (4.30)

where N∆ denotes the number of element pairs with separation p− n. Note that the coherence
function was only calculated for the center frequency of the signal. The magnitude of the
coherence function was interpolated to a resolution of 0.05 mm sampling, before the width of
the magnitude of the coherence function was calculated at levels 0.6 and 0.4.

All received data were corrected using arrival-time fluctuation estimates, obtained by the
estimators, prior to the calculation of the focusing criterion C and the coherence function. For
the focusing criterion, the linear fit of the arrival time estimates was not subtracted prior to
receive correction.

Beam profiles in the focal plane of the array were acquired as the rms value of the temporal
signal at each spatial position. These profiles were used for the visual evaluation of the effect of
the different aberration correction methods.

V Results

Simulations were performed using eight different aberrators. To limit the amount of presented
data, detailed results are only offered for two of the aberrators; w6 and s6. The w6 and s6
aberrator represent weak and strong aberration respectively, and are representative for overall
performance of the iterative transmit-beam aberration correction. Only the parameter C is
presented for all aberrators, as this proved to be the best criterion by which to quantify the
transmit-beam iteration results.

In all the results presented, MBFO and EFE denote results obtained using the corresponding
method for estimating arrival-time and amplitude fluctuations.

All results in this section are labeled with an iteration number. The iteration number is
defined according to the transmit-beam. One transmit-beam iteration is defined as consisting
of an estimation of arrival-time and amplitude fluctuations; an application of these estimates
to a transmit-beam in order to obtain a corrected transmit-beam profile; and finally receiving
scattering generated by the corrected transmit-beam. In this labeling scheme, iteration 0 refers
to the initial transmit-beam, where no aberration correction is applied. The arrival-time and
amplitude fluctuations estimated using scattering created by the transmit-beam from iteration
0 are used to form the first truly corrected transmit-beam. These arrival-times, amplitudes, and
the resulting beam profiles are thus labeled iteration 1, and so on.

Figure 4.2 shows beam profiles in the focal plane of the array. For the w6 aberrator, the
corrected beam profiles appear to converge after two iterations for both methods. The resulting
beam profiles are very well corrected and close to the unaberrated profile. In the case of the s6
aberrator, one additional iteration is required for MBFO to obtain the same results. Since only
minor changes occur from iteration 2 to iteration 5 for the w6 aberrator, and from iteration 3 to
iteration 5 for the s6 aberrator, only results from iterations 0, 1, 2 and 5 are presented.
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(a) w6 aberrator (MBFO)
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(b) s6 aberrator (MBFO)
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(c) w6 aberrator (EFE)
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(d) s6 aberrator (EFE)

Figure 4.2: Beam profiles in the focal plane for the w6 and s6 aberrators. Zero on the horizontal axis
represents the center axis of the array. All profiles are normalized to their maximum value. The reference
profile represents the situation with no aberration, and the profile denoted ps shows correction using the point
source reference. The numbers in the legend refer to the iteration number of the correction procedure, where
the 0-iteration profile is the uncorrected transmitted profile.

The estimated time-delay and amplitude fluctuations used to produce the corrected beam
profiles in Fig. 4.2 are shown in Figs. 4.3 and 4.4. The visual impression of convergence for the
estimates is the same as for the beam profiles. It is worth noting, however, that the time-delay
estimate is also very accurate after two iterations for MBFO applied to the s6 aberrator. The
amplitude improves significantly at the third iteration. The improvement between iterations 2
and 3 for the beam profile is thus mainly explained by an improved amplitude estimate.

The relative L2 distance between the estimated arrival-time/amplitude and the respective
references was computed for each iteration. Figure 4.5 shows how the distance decreases for
the first two iterations. In the case of the w6 aberrator the distances level out after the second
iteration. For the s6 aberrator, the distance for the amplitude levels out in the same manner
as for the w6 aberrator. The distance for the arrival-time, however, increases after the second
iteration. This is related to the discontinuities in the arrival-time estimates observed in Fig. 4.3.
The value at which the L2 distance levels out for the EFE amplitude estimate is significantly
higher than for the MBFO estimate. This is explained by the fact that the EFE amplitude is
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Figure 4.3: Arrival-time fluctuations for the w6 and s6 aberrators. The horizontal axis is given in array
elements. The curves denoted ps are the references obtained from the point source simulations. The
numbering of the arrival-time curves in the legend corresponds to the iteration number of the corrected
transmitted beam in Fig. 4.2. Arrival-time curve number 1 was thus used to obtain beam profile number 1
in Fig. 4.2.

apodized relative to the screen, while the MBFO is not.

The magnitude of the coherence functions, and the coherence widths for the received
scattering, are presented in Figs. 4.7 and 4.6. The coherence widths at different levels increase
gradually with iteration, demonstrating an increased degree of spatial coherence in the receive
signal.

The focus quality parameter for all aberrators is presented in Fig. 4.8 as a mean value and
a standard deviation. These were calculated using the twenty independent receive signals for
each iteration. In concurrence with the theoretical foundation for the parameter,11 the strong
increase in the focus quality parameter C corresponds to the improved focus apparent in the
beam profiles in Fig. 4.2. With the exception of s8, convergence was obtained after 1-3 iterations
using either algorithm.

87



VI Discussion

0 20 40 60 80 100
−14

−12

−10

−8

−6

−4

−2

0

[d
B

]

Element Number

ps
1
2
5

(a) w6 aberrator (MBFO)

0 20 40 60 80 100
−20

−15

−10

−5

0

[d
B

]

Element Number

ps
1
2
5

(b) s6 aberrator (MBFO)

0 20 40 60 80 100
−14

−12

−10

−8

−6

−4

−2

0

[d
B

]

Element Number

ps
1
2
5

(c) w6 aberrator (EFE)

0 20 40 60 80 100
−20

−15

−10

−5

0

[d
B

]

Element Number

ps
1
2
5

(d) s6 aberrator (EFE)

Figure 4.4: Amplitude fluctuations for the w6 and s6 aberrators. The horizontal axis is given in array elements.
The curves denoted ps are the references obtained from the point source simulations. All amplitude fluctuation
curves are normalized to their maximum value. The numbering in the legend is the same as in Fig. 4.3.

VI Discussion

As shown in this article, both the MBFO and EFE algorithm use an average of element signals
as the reference value in a correlation process, in other words, a beamforming correlation
process. This is conceptually similar to the speckle brightness method,22 speckle look-back,12 the
beamsum-channel correlation method,9 and the scaled covariance matrix algorithm24 for phase
estimation. The principal difference is that both methods presented here can estimate both phase
and amplitude aberration at all frequency components, and thus represents a generalization of
the above described methods.

In order to obtain a correlation based estimate, a stable reference signal is needed. The
variance of the estimate will be as low as possible when the reference signal is coherent with the
backscatter signal. In the case of the MBFO estimator, a separate reference bkp is used for each
element p. The EFE, on the other hand, uses the same reference, βk, for all elements.

The MBFO estimate utilizes the signal model to create signals of equal strength at each
element by factoring out the effect of the aberration amplitude. It then forms a reference which
is coherent with the signal at element p by explicitly applying the coherence function as weights
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Figure 4.5: Relative L2 distance between point source reference and estimate for w6 and s6 aberrators. The
top row shows the L2 distance for arrival-time fluctuations, and the bottom row for amplitude fluctuations.
The horizontal axis indicates the iteration number according to Figs. 4.3 and 4.4.

in a weighted average.
The weight function works as a sliding window which efficiently implements a subaperture

processing, automatically selecting an appropriate subaperture for the beamformer output from a
variance perspective [confer Eq. (4.16)]. The weighting also ensures that the beamformer output
is highly correlated with the element signal where the estimation occurs. Since the subaperture
slides across the array, it is desirable with an inverse amplitude filtering in order for the reference
signal to attain the same average energy level for each subaperture.

The EFE constructs one signal which is utilized as a common correlation reference for all
element signals across the aperture. To this end no signal model is employed directly. Instead
the reference signal is formed as a weighted coherent sum of the element signals. Assuming no
amplitude damping due to absorption, a backscatter signal of large amplitude is the result of
constructive interference. A low-amplitude backscatter signal, on the other hand, is the result of
destructive interference. As a result, high-amplitude signals will resemble each other more closely
than low-amplitude signals. The accuracy with which the aberration correction filter may be
estimated, is directly connected to the degree of coherence between an element signal and the
reference. In order to form a good estimate, it is therefore of importance to form a reference
signal which is highly correlated with the element signals. Furthermore, because signals of high
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Figure 4.6: Coherence widths for the w6 and s6 aberrators at levels 0.6 and 0.4. The horizontal axis shows
the iteration number as explained in Fig. 4.7.

amplitude contribute more to the overall focus quality than low-amplitude signals, it is most
important to obtain an accurate estimate for the correction of high-amplitude signals. The
weighted coherent sum of element signals should emphasize element signals of large amplitude in
order to achieve this. To what degree high amplitudes should be emphasized over low amplitudes
is determined by the L2 norm used when maximizing the expected energy of Lhy in Eq. (4.14).

As described in Sec. IV.A, for each transmit-beam iteration, scattering from twenty new
realizations of the scattering region were simulated. The objective of this article was to study
iteration of transmit-beam aberration correction. For this purpose, a proper estimate of the
cross-spectrum [Eq. (4.6)] was desired. For practical purposes, using twenty transmit-beams for
each estimate is unfeasible in a real-time scanning environment. However, if only a time-delay
and amplitude aberration correction filter is sought, appropriate model-based averaging of the
cross-spectrum over a wider frequency band will yield a similar effect to acquiring independent
realizations. In this situation the number of independent realizations may therefore be greatly
reduced. An important issue for implementation will be to determine the number of receive-
signals necessary to obtain an adequate estimate.

The transmit-focus of an ultrasound beam may be quantified by measuring the width of the
transmit-beam profile. The beam profiles shown in Fig. 4.2 display a significant improvement
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Figure 4.7: Absolute value of the average coherence function for the w6 and s6 aberrators. The numbering
of the curves corresponds to the iteration number, i.e. coherence functions for the received signals obtained
using a transmit-beam with the same number in Fig 4.2. The curve denoted vCZ indicates the theoretical
upper bound for the coherence based on the van Cittert-Zernike theorem for a homogeneous medium. All
received signals were corrected using the estimated arrival-time fluctuations prior to calculating the coherence
function.

in focus quality as a result of the iterative transmit-beam correction process. Furthermore, the
convergence towards an almost-ideal beam profile width is rapid. There is, however, a slight
offset in the peak of the beam profiles.

This shift, particularly noticeable for the s6 aberrator, is produced by a refraction of the
transmitted beam. In this two-way imaging system, where reciprocity implies that the back-
scattered beam will experience the same refraction as the transmitted beam, the associated shift
of the beam profile is not observed from the transducer array. Dealing with refraction of the
beam due to aberration through the body wall remains an issue for further research.

For the w6 aberrator, both estimation methods yield transmit-beams with the same degree
of focus after two transmit-beam iterations as those obtained using the point source reference for
aberration correction. Beyond two iterations, no significant improvement of the beam profiles is
achieved. In the case of the s6 aberrator, three iterations are required for the MBFO estimate
to achieve as good a correction as the point source reference. Beyond this point, no significant
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Figure 4.8: Mean value and standard deviation of the focus quality parameter C computed for all wall models.
The horizontal axis shows the iteration number as explained in Fig. 4.7. The error bars display the standard
deviation. All received signals were corrected using estimated arrival-time fluctuations prior to calculation of
the focusing criterion.
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improvement can be found in the transmit-beam profiles. The EFE estimate does not improve
the beam profile significantly after the second iteration.

Convergence for the beam profiles is accompanied by an apparent convergence also for the
time-delays and amplitudes shown in Figs. 4.3 and 4.4. After approximately two iterations,
no essential change occurs in the phase estimates for either method. Amplitude estimates are
improved with further iteration for the MBFO algorithm, but for the EFE estimate more than
two iterations are not required.

In the weakly aberrated case, the time-delays obtained using both estimation methods are
very close to the point source reference. For the s6 aberrator, the estimated arrival-times
exhibit discontinuities, while the pointsource reference does not. The discontinuities are linked
to waveform deformation in the received signals for the s6 aberrator.15

Waveform deformation results in low signal amplitudes, and causes discontinuities in the
arrival times between adjacent element signals.4,5

The MBFO algorithm produces amplitude estimates which are close to the point source
reference both for the w6 and s6 aberrators. For the s6 aberrator the corrected beam profile is
improved significantly for the third iteration using MBFO, even if the time-delay estimate does
not change much from the second to the third. This improvement must therefore be the result
of the improved amplitude estimate.

This observation is in accordance with the predicted amplitude error as a result of omitting
the phase of Fpn in Eq. (4.12). Transmitting with a correct phase filter will, according to Eq. (4.4)
produce an Fpn which is real. The amplitude error will therefore not be introduced in the MBFO
estimate based on the corrected backscatter, resulting in a good amplitude estimate.

Due to the discontinuities of the arrival-time estimates, and the apodization of the EFE
amplitude relative to the screen, the L2 distance remains large also after iteration (see Fig. 4.5).
Therefore, the L2 distance does not adequately reflect the aberration correction capabilities of
the associated correction filter.

Rigby et al.9 obtained convergence after three or four iterations, but the convergence quality
of the estimates is not certain as no reference could be provided for the subjects used in the
study.

The number of independent signals used for estimating covariance or cross-spectrums will
influence the accuracy with which arrival-times and amplitudes are estimated. This will affect
the convergence rate. In Ref. 5 it was shown that introducing amplitude correction in addition to
time-delay correction was of vital importance for the side-lobe level of the beam profiles. Proper
amplitude correction will thus increase the spatial coherence in the received signal, and reduce
the number of iterations required for the aberration correction algorithm to converge. Both of
the aforementioned issues could be the catalyst for the overall improved convergence rates in this
work compared to the results obtained in Ref. 9.

Based on the van Cittert-Zernike theorem, the width of the coherence function for the receive
signal may be used to determine the width of the associated focus. Figure 4.7 clearly shows an
increasing overall width of the coherence functions as a result of iteration for both aberrators and
both estimation methods. The visual impression is that performing two iterations is sufficient to
obtain almost maximum coherence widths. Beyond this, only minor improvements occur. Thus
the coherence functions do give the correct impression of the converging beam profiles for the
iteration process. However, the difficulty herein is determining at which level the width of the
coherence function should be measured. As seen in Fig. 4.6, the choice impacts on the width
curves dramatically. This renders the coherence width less attractive for determining the point
of convergence.

The parameter C was originally introduced as a measure to quantify the degree of focusing for
a given transmit-beam based on the backscatter signal. When applied to the iterative transmit-
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beam correction procedure, the value for C is observed to increase initially, and then level off at
the point beyond which no practical improvement of the beam profile is achieved. (See Figs. 4.2
and 4.8.) The point of convergence can therefore be found by identifying the point where this
curve levels off. Furthermore, the theoretical upper bound for this parameter may be used as
an indication of how close the corrected beam profile is to an ideal transmit-beam profile. The
iteration may therefore be set to terminate when a given threshold for C has been reached.

Based on the beam profiles presented for the w6 and s6 aberrator, it is clear, from the focus
quality parameter, that the beam profiles for the rest of the aberrators were very well corrected.
This was confirmed by visual inspection of the profiles. Further, the results indicate that for
C > 0.4, aberration correction of the transmit beam is close to the correction obtained with the
point source reference for these aberrators.

An added advantage of using the parameter C to determine convergence, is the relatively
low computational complexity involved. This, combined with the fact that it is computed from
information readily available in the backscatter signal, without requiring knowledge of a point
source/scatterer, may therefore enable the parameter C to be implemented in an aberration
correction procedure without much additional effort.

For the s8 wall, the MBFO algorithm requires five iterations for proper convergence. For
this aberrator, the uncorrected beam profile had very high side-lobe levels, where one side-lobe
was higher than the main lobe. This caused the MBFO algorithm, initially, to focus on this
side-lobe. Through transmit-beam iteration, the beam profile was improved and a linear slope
was detected at iteration 3. Removing the linear component of the arrival time estimate then
focused the beam correctly (observed from the point source simulations). For the EFE, this effect
is avoided by choosing the eigenvector associated with the second largest eigenvalue because this
had a smaller linear component in the phase.16

In the presented results the acoustic scatterers are δ-correlated. This ensures that the acoustic
backscatter is a Gaussian stochastic process, at least asymptotically, and is a natural assumption
in many imaging situations. Furthermore, the scattering intensity was the same everywhere.
This is a good approximation when imaging homogeneous organs such as liver and spleen. The
derivation of the MBFO shows that a spatially variable scattering intensity will affect the estimate
in the form of a different cross-spectrum for the unaberrated backscatter, Fpn. In this situation an
estimate for Fpn may not be obtained using the van Cittert-Zernike theorem unless the scattering
intensity is known. An alternative approach would be to utilize the fact that, according to the
signal model, the magnitude of the coherence is proportional to |Fpn|. The EFE will focus the
corrected beam also in the situation with spatially variable scattering intensity. However, the
focus will be determined by a product of the scattering intensity and the intensity of the transmit-
beam, and not the transmit-beam alone. A combination of selecting the eigenvector with lowest
linear component and removing the remaining linear slope will focus the aberration-corrected
transmit-beam at the right location. An aberration correction filter may therefore be obtained
by either estimation method also in the case of variable scattering intensity. As a consequence
of iterative transmit-beam correction the focal zone will narrow. The assumption of a constant
scattering intensity will thus be increasingly better.

In this article, theory and simulations have been presented for ultrasound propagation in
a non-absorbing medium. If the medium exhibits absorption which is homogeneous, i.e., the
absorption is the same everywhere in the medium, it can still be shown that a match filter is ideal
for aberration correction [Ref. 17 (Ch. 11)]. In the presence of heterogeneous absorption, however,
the aberration contributed by the absorption should be corrected using an inverse filter.25,26 In a
practical situation, where both heterogeneous absorption and heterogeneous speed of sound are
contributing factors, a combination of an inverse filter and a match filter, e.g. a Wiener filter,
would probably result in best overall performance.
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The results presented here were obtained by simulating sound propagation in 2D. This
represents a simplification in that out-of-plane aberration/scattering effects are not included.
However, combined experimental and simulation studies of wavefront aberration through the
abdominal wall have concluded that important aspects of wavefront aberration are observed also
in 2D simplified models.27 Although details may vary, the qualitative aspects of the results are
expected to hold, also in a real-world situation.

Although 2D simulations are assumed to give an accurate picture of the aberration correction
process, in order to perform aberration correction in a real-world setting certain issues such as
element size and directivity must be taken into account.

The array elements must be smaller than the correlation length of the aberration. In the
azimuth direction this requirement will generally be much weaker than standard beamforming
requirements. However, the same requirement must also hold in the elevation direction. In
practice, this means that either 1.75D or 2D arrays are needed.

For large apertures, element directivity could reduce the signal-to-(electronic)-noise ratio
(SNR) along the edges of the array.14 This will, in turn, lead to a reduced spatial coherence in the
measured signal, and thus a less accurate estimate of the correction filter. Since the correlation
length of the aberration generally is much larger than the standard beamforming requirement,
element signals may be combined in subapertures prior to aberration correction, thereby
increasing the SNR. It is also noted that standard apodization will reduce the contribution
from the elements along the edges of the array. The reduced accuracy of the filter estimate will
therefore only have a limited impact.

Noise was not introduced to the signals used in this study. Both algorithms used here average
an aberration corrected signal over a subaperture, or the entire aperture, to create a stable
reference for the correlation process. Since electronic noise is uncorrelated between elements,
averaging over a subaperture will reduce the noise level in the reference signal.12 Furthermore,
the SNR in standard ultrasound imaging is generally high. Walker and Trahey28,29 showed that
an SNR greater than 15 dB had little effect on the error of correlation-based phase estimates.

The effect of acoustic reverberation noise also represents a challenge, mainly because it is
highly correlated both in the temporal and spatial directions. It is beyond the scope of this
article to study reverberation noise.

VII Conclusion

Iteration of transmit-beam aberration correction with a time-delay and amplitude filter has
been investigated. Two correlation-based algorithms for estimating arrival-time and amplitude
fluctuations from random scatterers were employed. The resulting estimates were used to
construct a time-delay and amplitude filter for aberration correction.

Results from simulations using eight aberrators, emulating the human abdominal wall,
indicate overall convergence for both estimation methods after 1-3 iterations. Corrected beam
profiles obtained after convergence were close to the unaberrated profiles. Transmit-beam
iteration thus produced substantial improvements for all investigated aberrators.

In order to quantify the convergence, the focusing criterion C developed by Mallart and
Fink,11 and the width of the average coherence function14 were calculated for the acoustic
backscatter at each iteration.

Both the focusing criterion C and the coherence functions gave the correct impression of
convergence for the transmit-beam profiles. However, there is an inherent problem of selecting
an appropriate level at which to measure the width of the coherence function.

The focusing criterion C, on the other hand, is not associated with such difficulties. It is shown

95



VII Conclusion

to determine accurately when convergence of the aberration correction procedure is achieved.
The theoretical upper bound for C may be used as a criterion for termination of the transmit-
beam iteration process. It is therefore the most attractive criterion for studying transmit-beam
iteration. Furthermore, as it is inexpensive to compute, C may readily be implemented in an
aberration correction scheme without much additional overhead.
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Chapter 5

Variance analysis of arrival time
and amplitude fluctuation
estimates from random speckle
signal
S. Måsøy1, T. Varslot2, B. Angelsen1
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2)Department of Mathematical Sciences, NTNU.

An aberration estimation algorithm, previously developed in the frequency domain,
is implemented in the time domain. The algorithm is used to estimate arrival time
and amplitude fluctuations with signals from random scatterers. The method is based
on a correlation process. The correlation is averaged using signals from independent
realizations of the scatterers.
Simulations have been performed to investigate the variance of the estimates. Stability
differences between the frequency and time domain implementation are also explored.
Eight body wall models, emulating the human abdominal wall, were used for this
purpose. The variance was investigated as a function of the number of independent
scatterer realizations, used to obtain an estimate. Such signals may be acquired by
imaging moving scatterers, e.g. blood or contrast agent. Alternatively they can be
obtained by using different non-overlapping beams from a sector/linear scan.
The results show only minor differences between the two implementations with respect
to stability. The standard deviation of arrival time and amplitude fluctuation estimates
decrease, when the number of independent signals increase. Using only one signal for
estimation produces a relatively high standard deviation, but an iterative transmit-
beam aberration correction scheme still converges to a properly corrected focus.

I Introduction

The back-scattered signal in ultrasound medical imaging is dependent on the scatterers spatial
position. The scatterers are randomly distributed in space, and the distribution changes for each
direction of the beam. Tissue contains smaller or larger structures, and the received signal is
therefore correlated between each direction of the transmitted beam. The degree of correlation
varies in different types of tissue due to variation in size of the tissue structures.
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I Introduction

In Ref. 1, a method for estimating arrival time and amplitude fluctuations using backscatter
from random scatterers was developed. The estimated arrival time and amplitude fluctuations
were used in a time-delay and amplitude aberration correction filter. The method used cross-
spectrum information to perform the estimation. The cross-spectrum estimate was obtained by
averaging a number of statistically independent receive signals. The signals were acquired from
independent realizations of the insonified scattering region. The result of this study indicated
that for a distributed aberrator, using twenty independent signals did not produce satisfactory
estimates of the aberration. The results indicated that an iterative transmit-beam aberration
correction process was necessary to obtain proper aberration correction of the ultrasound beam.

Iteration of transmit-beam aberration correction (transmit-beam iteration) was studied in
Ref. 2. Here, the same estimation method as in Ref. 1 was investigated. Results showed that using
a sufficient number (20) of independent receive signals in order to estimate the cross-spectrum,
the transmit-beam iteration process converged for eight different aberrators representing cases
of weak and strong aberration. After convergence, the quality of corrected focus beam profiles
were close to the correction with estimates obtained from a point source.

Employing a transmit-beam iteration process using twenty receive signals for correction of
each transmit beam, is unfeasible for real-time imaging. It is therefore important to investigate
the number of independent signals necessary, to obtain a stable and adequate estimate for
a transmit-beam iteration process to converge. How the stability affects the quality of the
converged aberration corrected transmit beam profile, is also important.

There are two main objectives of the work presented in this article:

1. Introduce a time domain implementation of the aberration estimation algorithm presented
in Ref. 1, and explore the difference between the time and frequency domain implementa-
tion.

2. Investigate the variance of arrival time and amplitude fluctuation estimates as a function
of the number of independent receive signals used for averaging cross-correlations (time
domain) and cross-spectra (frequency domain).

Necessary assumptions made in the time domain implementation make the algorithm different
from the frequency domain implementation, and a sub-goal of the presented work is to study
how these differences affect the variance in the obtained estimates.

In a practical situation, statistically independent signals can be obtained by scanning a region
containing moving scatterers, e.g., the heart or a large blood vessel. When ensuring all blood
cells to be replaced for each transmitted beam, the received signal can be assumed to be spatially
totally incoherent (δ-correlated) due to the small size of blood cells. Ultrasound contrast agents
can be used to enhance such a signal.

Alternatively, it is possible to use signals from different regions in a sector scan.3–5 By choosing
beams which do not overlap, each received signal can be assumed to be independent. If the beams
are overlapping, e.g., if neighboring beams are used, the signals will not be totally independent,
and some correlation will exist between them.

In Ref. 3, a sum of absolute differences (SAD) method was developed for estimating relative
phase errors between adjacent array elements. The variance of the estimator was investigated
by using signals from 5 different nonadjacent scan angles, and two different focusing depths, in
a scattering phantom. The obtained estimates were used in an iterative adaptive aberration
correction scheme, and the variance of the estimates decreased sharply between the first and
second iteration. Only smaller changes were observed when more iterations were performed.

Walker and Trahey6,7 derived the Cramér-Rao lower bound for correlation based time-delay
estimation from speckle signals. They investigated the limit as a function of several parameters
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such as correlation coefficient, window length, signal to noise ratio, bandwidth, and frequency.
Their results showed that the lower bound for the variance of a time-delay estimate increased
rapidly with a reduced correlation coefficient.

Ng et al. 8 compared the neighbor correlation method introduced by Flax and O’Donnell9

with a partial array reference correction method, and showed that the latter method was more
stable in the presence of noise. Overall the partial array reference correction method performed
better than neighbor correlation and had a lower variance in the estimates as a function of signal
to noise ratio.

Rigby et al. 4 performed in vivo adaptive aberration correction with a time-delay filter using
a 1.75D array. In order to reduce image artifacts due to strong off-axis scatterers, they averaged
time-delay estimates over 5 transmit-beams in a linear array scan. The beamsum channel-
correlation method used for estimating time-delays proved to adaptively converge to a stable
estimate, producing improved image quality in most of the investigated subjects.

Lacefield and Waag10 investigated estimates of the coherence using a 2D array. They found
that the coherence of data acquired on neighboring elements was not changed by time-delay
correction of transmit and receive beams. On the other hand, time-delay correction improved
the coherence in signals received over larger element separation, supporting the use of several
array elements for correlation estimation. Coherence is an important measure of the accuracy
of correlation-based time-delay estimation methods. It is directly linked to the lower bound
of the variance of such an estimate,11 and to the variance of the magnitude and phase of the
cross-spectrum.12

Varslot et al. 5 estimated cross-spectra using independent measurements obtained from
different focal points inside the isoplanatic patch with a 2D array. The purpose was to use
the estimated frequency dependent phase and magnitude of the cross-spectrum for aberration
correction. Increasing the number of independent measurements from 13 to 75 gave a significant
improvement of the spectral estimates. It reduced the 95% confidence intervals, thus improving
the stability of the estimate. Their results also showed that the major part of the frequency
dependent phase constituted of a pure time-delay, corroborating the results from simulations
performed by Måsøy et al.13

Viola and Walker14 investigated eight commonly used time-delay estimators used in medical
ultrasound, and compared their variance to the Cramér-Rao lower bound for the same parameters
as in Refs. 6 and 7. Their simulations showed that correlation methods outperformed all other
methods with respect to stability (variance).

In the present article a variance analysis of estimated arrival time and amplitude fluctuations
is performed in order to quantify the number of independent receive signals needed to obtain
an adequate and stable estimate. As stated earlier, this information is important when using
a method which is dependent upon several transmit and receive signals. In addition, transmit-
beam iteration is also necessary. This is time consuming and will lower the frame rate in a
real-time imaging system. High frame rate is very important for imaging of moving objects like
the heart. When imaging stationary objects like the liver, a lower frame rate is acceptable.

A stable estimate can be defined as an estimate that provide some correction of the
retransmitted aberration-corrected beam, compared to the aberrated beam. If iterative transmit-
beam aberration correction is to be used, the first corrected transmit beam needs to provide some
correction (compared to the aberrated beam) for this process to converge. If the variance is high,
the initial correction could in some cases increase the aberration, making the correction scheme
unstable.

The variance analysis is performed by simulating scattering of ultrasound waves from
a random scattering region, uniformly distributed in space and with a Gaussian intensity
distribution. Absorption or electronic noise is not included in the simulations.
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II Theory

In Ref. 1 the modified beamformer output (MBFO) method was developed for estimating arrival
time and amplitude fluctuations from random signals.

The MBFO estimator was developed in the frequency domain. It was based on calculating the
cross-spectrum between all elements on the receiving array and a modified beamformer output,
in order to determine the time-delay and amplitude of the received signal. The beam former
output b of the received signal is simply defined as

b =
N∑

n=1

yn (5.1)

where yn is the received signal on element n, and N represents the total number of elements on
the array. Frequency dependence has been dropped for notational convenience.

In general, the MBFO estimation can be performed for each frequency component of the
signal, thus determining the specific aberration of each frequency. In Ref. 13, it was shown that, if
correctly estimated, a time-delay and amplitude for each array element produced approximately
ideal aberration correction of the retransmitted beam. The MBFO algorithm was thus only
implemented at the center angular frequency of the received signal, in order to determine a
time-delay and amplitude in the received signal for each array element.

When calculating the MBFO, correlation information between all elements on the receiving
array is used. The correlation information is weighted with the coherence of the cross-spectrum
squared, a measure of the variance in the estimate of the cross-spectrum. An important issue is to
obtain a reliable estimate of the cross-spectrum. This was done, as explained in the introduction,
by averaging the estimated cross-spectrum from several realizations of the scattering region, that
is, from several statistically independent receive signals.

The current aim is to investigate how the stability of the estimator is affected by varying the
number of independent realizations.

II.A Time domain implementation of the MBFO algorithm

The MBFO algorithm is based on cross-correlation estimation. In addition, a model of the
received signal is used. In Ref. 1, the received signal y was written in the frequency domain as

y(ra;ω) = s(ra; ω) f(ra;ω) , (5.2)

where ra is the array coordinate, and f(ra;ω) represents the unaberrated receive signal. The
function f(ra;ω) thus contains transmit aberration, but not receive aberration. The function
s(ra;ω) is the frequency response of a filter producing distortion of the amplitude and phase
of the signal as it propagates through the heterogeneous medium. This filter is denoted the
generalized frequency-dependent screen.

In Eq. (5.2), aberration of the received signal on a specific array element, is assumed to be
independent of the spatial position of the scatterer. This is a general assumption for aberration
correction as it is performed at the array surface as a filter process, and is here denoted scatterer
independent aberration. In this situation, the generalized frequency-dependent screen is denoted
the scatterer independent screen.

In Ref. 1, a thorough discussion of the generalized frequency-dependent screen, and the basis
and limitations of the receive scatterer independent aberration assumption is given.

Transforming Eq. (5.2) to the time domain yields

y(ra, t) =
∫

s(ra, t− ξ)f(ra, ξ)dξ , (5.3)
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where ξ is a convolution variable and the integration is taken over all time. This type of model
can be solved with a blind system identification method,15 but a different approach is chosen
here.

Based on the investigations in Ref. 13 described above, the scatterer independent screen filter
is modeled as a simple time-delay and amplitude screen at the array. The scatterer independent
screen is then approximated as

s(ra, t) ≈ a(ra)δ(t− τ(ra)) , (5.4)

where a(ra) is an amplitude and τ(ra) is a time-delay, both only a function of the array
coordinate. This approximation introduces a loss of generality compared to the frequency
implementation of the MBFO algorithm as described in Ref. 1.

Using Eq. (5.4) in (5.3) gives

y(ra, t) = a(ra)f(ra, t− τ(ra)) . (5.5)

It is convenient to introduce the analytic signal defined as

ŷ(ra, t) = y(ra, t) + i H{y(ra, t)} , (5.6)

where H{·} denotes the Hilbert transform. For a band limited signal, the analytic signal can also
be written as [Ref. 16 (p. AII.40)]

ŷ(ra, t) = ye(ra, t)eiω0t , (5.7)

where ye(ra, t) represents the complex envelope, and ω0 is the center angular frequency.
Introducing the narrow-band approximation,

ŷ(ra, t− τ) ≈ ye(ra, t)eiω0(t−τ) = ŷ(ra, t)e−iω0τ , (5.8)

a time-delay τ of the envelope is assumed to be negligible compared to the same time-delay of
the carrier signal. Using this approximation in Eq. (5.5) gives

ŷp(t) = apf̂p(t− τp) = ape
−iω0τp f̂p(t) ≡ spf̂p(t) , (5.9)

where the signals are written in spatial discrete form with p indicating the element number on
the array. Here, sp is the complex equivalence of the simple model of the scatterer independent
screen in Eq. (5.4).

The signal model in the time domain as given by Eq. (5.9), is analogous to the frequency
model in Eq. (5.2). The derivation of the estimation method in the time domain thus equals the
derivation in the frequency domain as given in Ref. 1. It is briefly revised here for the purpose
of continuity.

The definition of the spatial cross-correlation between signals on elements p and n is

Rpn = E[ŷp ŷ∗n] , (5.10)

where E[·] denotes an expectation operator and time-dependence has been dropped for notational
convenience. Inserting Eq. (5.9) gives

Rpn = sps
∗
nFpn , (5.11)

where Fpn = E[f̂p f̂∗n].

103



II Theory

Solving for sp gives

sp =
Rpn

Fpn

1
s∗n

≡ Rpn

|Fpn|
1
s∗n

. (5.12)

Now, Fpn can have a phase due to refraction or aberration of the transmitted beam. Assuming
that Fpn = |Fpn| introduces an error in the estimates as discussed in Ref. 2.

In order to use all correlation information in the signal, a weighted mean estimate of sp is
introduced as1

s̃p =
N∑

n=1

Wpn

Rpn

|Fpn|
1
s̃∗n

, (5.13)

where Wpn is a weight function. The average is taken over all elements N on the array.
In Ref. 1, |Fpn| was assumed to be a known variable and was calculated using the van Cittert-

Zernike theorem for an incoherent homogeneous medium. By defining the weight function Wpn

properly, this is not necessary and |Fpn| is here assumed to be an unknown variable.
The correlation coefficient at zero lag is defined as

ρpn = Rpn/
√

RppRnn. (5.14)

By defining Wpn as

Wpn = |ρpn|2
/

N∑
n=1

|ρpn|2 ≡ |ρpn|2 /Cp , (5.15)

the weight factor removes areas of low correlation, which contains little information of the phase
and amplitude estimate. Krishnan et al. 17 showed that the variance of the phase estimate
between to identical signals with a time shift, is inversely proportional to the magnitude of the
correlation coefficient squared. A high correlation coefficient means a low variance in the phase
estimate.

Taking the magnitude of the correlation coefficient and inserting the signal model from
Eq. (5.9) gives

|ρpn| =
|Rpn|√
RppRnn

=
|sps

∗
nFpn|√

|sp|2|sn|2FppFnn

=
|eiω0(τn−τp)Fpn|√

FppFnn

=
|Fpn|√
FppFnn

.

(5.16)

Assuming Fpn to be scaled such that Fpp = 1, and inserting Eq. (5.15) and (5.16) into (5.13)
gives

s̃p =
1

Cp

N∑
n=1

|ρpn|Rpn

1
s̃∗n

. (5.17)

By choosing the weight factor Wpn as in Eq. (5.15), no assumptions need be made on |Fpn|.
Using the ergodic hypothesis,12 an unbiased estimate of the cross-correlation is defined as

R̃pn =
1
K

∑

k

1
T

∫

T

ŷkp(t)ŷ
∗
kn(t) dt , (5.18)

where k denotes different realizations of the received signal ŷ, and K the total number of
realizations. Note that the integral part of Eq. (5.18) represents the general cross-correlation
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calculated at zero lag. This is sufficient for determining a time-delay in the signal due to the
introduction of the complex envelope and the narrow band approximation.

Using the estimate of the cross-correlation R̃pn, the final expression for s̃p is

s̃p =
1

Cp

N∑
n=1

|ρ̃pn|R̃pn

1
s̃∗n

. (5.19)

where ρ̃pn is an estimate of ρpn based on R̃pn.
Equation (5.19) is an implicit equation and is solved with an iteration scheme as outlined

in Ref. 1. Zero time-delay and unity amplitude across the array is used as initial values for the
iteration scheme. Estimates of arrival time and amplitude fluctuations are then calculated from
s̃p as the magnitude and time-delay of the phase as defined in Eq. (5.9).

II.B Comparison of frequency and time domain implementation

Using Parseval’s theorem, the integral in Eq. (5.18) gives
∫ ∞

−∞
ŷp(t)ŷ

∗
n(t) dt =

1
2π

∫ ∞

−∞
ŷp(ω)ŷ∗n(ω) dω . (5.20)

The index k has now been dropped for notational convenience.
The Fourier transform of the analytic signal is given as [Ref. 18 (p. AII.40)]

ŷ(ω) = 2h(ω)y(ω), (5.21)

where h(ω) is a Heaviside unit step function in the frequency domain. Using Eq. (5.21) in (5.20)
gives ∫ ∞

−∞
ŷp(t)ŷ

∗
n(t) dt =

2
π

∫ ∞

0

yp(ω)y∗n(ω) dω . (5.22)

Writing the Fourier transform of y(t) with an amplitude and phase on the form A(ω)eiθ(ω), gives
∫ ∞

−∞
ŷp(t)ŷ

∗
n(t) dt =

2
π

∫ ∞

0

Ap(ω)An(ω)ei{θp(ω)−θn(ω)} dω . (5.23)

Equation (5.23) shows that the time domain implementation of the MBFO estimation algorithm,
produce a weighted estimate of both the phase and amplitude between the signals on elements
p and n over all the frequency components. This is different from the frequency domain
implementation which only use the phase and amplitude at the center frequency.1

As in Ref. 1, by inserting Eq. (5.18) into Eq. (5.19), s̃p can be shown to satisfy the relation

s̃p =
1

Cp

1
K

∑

k

1
T

∫

T

ŷkp(t)b̂
∗
kp(t) dt , (5.24)

with

b̂kp(t) =
N∑

n=1

ŷkn(t) |ρ̃pn|
1
s̃n

. (5.25)

This relation is the time domain MBFO.
By using the magnitude of the correlation coefficient as a weight term in the beamformer

output, the estimation process inherently performs an efficient sub-aperture correlation process.
The magnitude of the correlation coefficient is unity for n = p, and falls quickly in value as the
distance between n and p increase. The weight function |ρpn| thus performs as a sliding window
(following the element p where the estimation occurs) selecting a suitable sub-aperture for the
beamformer output, from a correlation perspective.
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Figure 5.1: Simulation setup.

III Simulations

The same simulation setup as in Ref. 1 was used (see Fig. 5.1). An array of size D was placed
onto a body wall model of thickness d. The signal was propagated with an angular spectrum
operator13 through the body wall model and to the scattering region of depth h, centered around
the focal plane of the array in the range direction. Here the signal was scattered according to
the Born approximation and propagated back to the array through the body wall model.

Eight body wall models, emulating the human abdominal wall, were used. Details of the body
wall modelling, properties of the wall models, and a discussion of their validity can be found in
Ref. 13. The names of the body wall models are the same as in Ref. 13.

For the purpose of estimating the variance of the arrival time and amplitude fluctuations
estimates, 400 realizations of the scattering region was generated. The scatterers were uniformly
distributed in the x and z-direction, and had a Gaussian distributed reflection strength. A
simulation, as described above, was then performed for all of the scatterer realizations generating
400 statistically independent receive signals.

In order to obtain reference values for arrival time and amplitude fluctuations for both body
wall models, one way point source simulations were performed. A point source was simulated in
the focus rf of the array. A pulse, equal to the transmit pulse from the array, was emitted from
rf and propagated through the body walls to the array.

III.A Simulation parameters and data processing

The simulation setup is the same as in Ref. 1 and is reiterated here for the convenience of the
reader.

The simulations were implemented in Matlab. The simulation area was 10.24 cm in the
lateral direction (x-direction in Fig. 5.1) with a resolution of 0.2 mm. To avoid reflections at
the edges of the spatial FFT-region (x-direction), the signal was tapered to zero over 2.54 cm at
each edge with a raised cosine window. The tapering was performed for a sufficient number of
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propagation steps in order to keep the noise level low.
The sampling frequency was 35.1MHz providing a time window of 58.3µs. The center

frequency of the pulse was 2.5 MHz with a -6 dB bandwidth of 1.5 MHz. The transmitted
pulse was filtered with a 50% fractional bandwidth bandpass filter, centered around the center
frequency of the pulse. An array aperture size of 20 mm with point-like elements was chosen.
The focal depth rf of the array was 60mm. The thickness of the body walls was 20mm. The
medium through which the signals were propagated had a speed of sound equal to that of water
(1523 m/s).

The scattering area had a range depth h of 30.5 mm (time window of 20 µs), 15.25 mm to
each side of the focal plane (see Fig. 5.1). This range was chosen to be well inside the -3 dB
focal depth of the array.1 The scatterer density was approximately 1600 scatterers per square
centimeter.

Geometric focusing was removed from all received signals prior to processing of results.
For the time domain implementation, the cross-correlation was calculated according to

Eq. (5.18). Trapezoid integration was used to calculate the integral.
The cross-spectrum for an element p was estimated by averaging the spectrum from

overlapping segments of the signal (Welch’s method). The element signal was separated into
64 segments (0.9 µs) with 50% overlap. Each segment was weighted with a Hanning window
before calculation of the FFT.

A wavefront tracking method13 was used to estimate arrival time fluctuations of the wavefront
from the point source simulations. This method proved to give accurate description of the time-
delay variation of the received wavefront. Arrival amplitude fluctuations for each array element
from the point source simulations were calculated as the arithmetic mean of the magnitude of
the frequency spectrum over a band of frequencies ranging from 2-3 MHz. This band was chosen
empirically.

Beam profiles in the focal plane of the array were calculated as the rms value in time of each
spatial position. These profiles were used for the visual evaluation of the effect of the different
aberration correction filters.

To analyze the variance of estimated arrival time and amplitude fluctuations, the standard
deviation σ of the estimate for an array element p was calculated as

σp =

√√√√ 1
M − 1

M∑
m=1

(xmp − x̄p)2 , (5.26)

where x denotes either an arrival time or amplitude fluctuation estimate, x̄ is the mean value of
the estimate, and M is total number of estimates used for calculating the standard deviation.
In all the simulations, twenty estimates (M = 20) were used to calculate the mean and standard
deviation. Thus when the number of independent measurements K varied, M remained constant
equal to twenty. The simulations were carried out for K = {1, 3, 5, 10, 15, 20}.

In addition, the average value of the standard deviation (average standard deviation) across
the array was also calculated. This is defined as

σ̄ =
1
N

N∑
p=1

σp , (5.27)

where N is the total number of array elements.
To evaluate the mean value of obtained estimates, as a function of the number of independent

measurements used to obtain an estimate, the normalized L2 difference between this value and
the reference was calculated.2
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IV Results

For estimates of arrival time and amplitude fluctuations, and beam profiles, only selected data
for the w6 and s6 aberrator are presented for K = 1 and K = 3. These data are representative
for all aberrators in the simulation study.

Average standard deviation curves, as a function of the number of independent receive signals
(K) used for estimation, are presented for all aberrators.

In all the figures presented here, t-domain denotes the time domain implementation and
f -domain represents the frequency domain implementation.

Figure 5.2 shows mean arrival time fluctuation estimates with standard deviation for the
w6 and s6 aberrators. The curves are plotted both for the time and frequency domain
implementation of the MBFO algorithm. The mean value of estimates in the time and frequency
domain are quite similar for both aberrators. There is clearly a higher standard deviation for
the s6 aberrator compared to w6. The standard deviation is reduced when the number of
independent signals is increased from K = 1 to K = 3. There is also a minor improvement in the
mean estimate compared to the reference when K is increased. There are very small differences
in the standard deviation between the time and frequency implementation.

Mean arrival amplitude fluctuation estimates with standard deviation are shown in Fig. 5.3.
Here the standard deviation also decrease when K increase, but this does not seem to improve
the mean value of the estimates. The mean estimate is poor compared to the reference. The
above comments are valid for all aberrators investigated here. Here also, there are marginal
differences between the time and frequency domain implementation.

Figure 5.4 shows the mean value of aberration corrected beam profiles, with standard
deviation, in the focal plane of the array. As for the arrival time fluctuation estimates, there
is some improvement in the corrected beam profiles for the w6 aberrator when K is increased.
This is mainly due to the small improvement in the mean value of the arrival time fluctuation
estimates. There are also minor improvements for the s6 aberrator. Note that for the s6 aberrator
and K = 1, the side-lobe level of the standard deviation curve is higher than the uncorrected
beam in some parts of the profile.

In Fig. 5.5 the normalized L2 difference between the mean estimate and the reference is
presented. The figure shows that for the arrival time fluctuations, there is a small improvement
in the mean estimate when K is increased from 1 to 3, and then the difference stabilizes. For
the amplitude fluctuations, this improvement is less visible. For the other aberrators, such an
improvement was not observed, and the L2 difference remained approximately constant as a
function of K.

Figure 5.6 presents the average standard deviation as a function of the number of independent
signals for the w6 and s6 aberrators. The results for both arrival time and amplitude fluctuation
estimates are given. The average standard deviation for amplitude estimates is normalized
with the mean value of the amplitude estimate for the point source reference. For the arrival
time fluctuation estimates, the difference in average standard deviation between the w6 and s6
aberrator is approximately a factor two. For both aberrators, there is little difference between the
time and frequency implementation. In the case of arrival amplitude fluctuation estimates, there
is also a substantial difference in average standard deviation between the aberrators. There
is almost no difference between the implementations. In general (and as expected) for both
arrival time and amplitude fluctuation estimates, the average standard deviation decreases with
increasing K.

Figures 5.7 and 5.8 presents the average standard deviation for the rest of the aberrators.
These are only been presented for K = {1, 3, 5}, since this is where the major changes occur. The
general trend is that the average standard deviation decreases with increasing K, and that there
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Figure 5.2: Mean arrival time-delay fluctuation estimates with standard deviation for the w6 and s6 aberrators.
Here, K measurements per estimate are used. The reference curve denotes the arrival time fluctuations
estimate from the point source. The solid line is the mean value of the estimate, and the dashed-dotted line
shows the standard deviation of the estimates.
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Figure 5.3: Mean arrival amplitude fluctuation estimates with standard deviation for the w6 and s6 aberrators.
Same notation as in Fig. 5.2.
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Figure 5.4: Mean value of beam profiles in the focal plane of the array, with standard deviation, for the
w6 and s6 aberrators. The vertical axis displays energy in decibels, and the horizontal axis displays the
focal plane in millimeters. The curve abb. denotes the uncorrected transmit-beam, unabb. denotes the
unaberrated transmit-beam, ref. is the transmit-beam corrected with the point source reference, MBFO
shows the mean value of the beam profiles corrected with the MBFO estimator, and the dashed-dotted line
MBFO std represents the standard deviation. The legend is the same for all figures as for figure (a).
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Figure 5.5: Normalized L2 difference between mean value of estimated arrival time and amplitude
fluctuations, and the point source reference. The L2 difference is plotted as a function of K for the time and
frequency domain implementation. The top row displays the difference for arrival times, and the bottom row
for amplitudes.

exists only smaller differences between the two implementations. For the s8 aberrator, there are
some differences visible for the arrival time fluctuation estimates.

V Discussion

As seen from the results in the previous section, there are only small differences between the time
and frequency domain implementation. In general, the mean value and standard deviation of
arrival times and amplitude fluctuations are approximately equal for all investigated aberrators.

As expected, the average value of the standard deviation across the array is reduced when
increasing the number of independent measurements K. Increasing this number from K = 1
to K = 3, reduced the average standard deviation of arrival time fluctuation estimates by
42.1±3.8 % for the time domain implementation, and for all aberrators. For the amplitude
estimates the reduction is 39.1±3.7%. The reduction from K = 3 to K = 5 is approximately
20% for both arrival time and amplitude fluctuation estimates. This very closely matches a
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Figure 5.6: Average standard deviation for arrival time (σ̄τ ) and amplitude (σ̄A/Āps) fluctuations as a
function of the number of independent measurements (K) used in the estimation for the w6 and s6 aberrator.
The average standard deviation for the amplitude is normalized with the mean value of the amplitude estimate
(Āps) from the point source simulation.

1/
√

K reduction, which is 42.3 % for K increasing from 1 to 3, and 22.5 % for 3 to 5.
There is a small improvement in the L2 difference between the mean arrival time fluctuation

estimate, and the point source reference for the w6 and s6 aberrators as K was increased from 1
to 3. For K > 3, no change was observed. This shows that sufficient averaging of the estimates
was performed for K = 1.

An important point is that the standard deviation varies quite strongly between the
aberrators. For K = 1, using the time domain implementation, the variation in average
standard deviation for arrival time fluctuations between the eight investigated aberrators ranged
from approximately 8-43 ns. For amplitude fluctuations, there is a 42% difference between the
maximum and minimum average standard deviation. These results show that the stability of
the estimation is highly dependent on the aberration. The aberration corrected beam profile for
each estimate was therefore investigated for all aberrators. The general trend showed that all
estimates produced an improvement of the corrected beam profile. This result was independent
of K.
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Figure 5.7: Average standard deviation (σ̄τ ) for arrival time fluctuations as a function of the number of
independent measurements (K) used in the estimation for the w2, w4, w8, s2, s4, and s8 aberrator.
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Figure 5.8: Average standard deviation (σ̄A/Āps) for amplitude estimates as a function of the number of
independent measurements (K) used in the estimation for the w2, w4, w8, s2, s4, and s8 aberrator. The
average standard deviation is normalized with the mean value of the amplitude estimate (Āps) from the point
source simulation.
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Figure 5.9: Mean value of the focus quality parameter C as a function of iteration number, using the time
domain implementation with K = 1. The solid line represents the mean value of C for the twenty different
estimates of arrival time fluctuations. The error bars are standard deviation.

For the s6 aberrator, using K = 1, many of the estimates yielded very little correction of
the beam profile. This is clearly demonstrated by the standard deviation of the beam profiles
in Fig. 5.4 (e) and (f). If the transmit-beam is not sufficiently corrected, an iterative transmit-
beam aberration correction process may not converge, and such a process was investigated for
the w6 and s6 aberrator for K = 1. The simulations were only carried out for the time domain
implementation since there exists only minor differences between the two. Note that a new
independent realization of the scattering region was generated for each iteration. In Ref. 2, it
was shown that using the frequency domain implementation and K = 20, the transmit-beam
iteration process converged to properly corrected focus beam profile for both these aberrators.

The quality, and convergence, of the correction was quantified by the focus quality parameter
C introduced by Mallart and Fink.19 This parameter has proven to be suitable for this purpose.2

The mean value of C for the twenty different estimates, with standard deviation, is plotted as
a function of iteration number in Fig. 5.9. Iteration number 0 refers to the initial uncorrected
transmit beam. The figure shows that for the w6, convergence is obtained after two iterations.
This is the same result obtained in Ref. 2 using K = 20. For the s6 aberrator, the process
converged after three iterations, which is the same result as obtained in Ref. 2 using K = 20.
The results suggest that only minor improvements of the first corrected beam profile is necessary
for a transmit-beam iteration process to converge rapidly with good quality. Also, the results
indicate that using one receive signal is sufficient.

For the frequency domain implementation, a Welch method with 50 % overlap of segments
was used to estimate the cross-spectrum. Each segment was windowed with a Hanning window.
The number of segments used was 64, which corresponds to a segment kernel length of 0.9 µs.
The transmit signal was a 2.5 period pulse with 2.5 MHz center frequency, which gives a pulse
length of 1 µs. The kernel length of each segment then corresponds to approximately 2.25λ, where
λ represents the wavelength. This is a relatively small kernel length. In Ref. 14, the Cramér-
Rao lower bound of a neighbor correlation estimation method was investigated as a function
of different parameters. A small kernel length produced a relatively high lower bound on the
standard deviation. In order to investigate the dependency of the estimates on the kernel length of
the segment, additional simulations were carried out using 32 and 16 segments. This corresponds
to 4.5λ and 9λ respectively. For the s6 aberrator and K = 1, increasing the segment length from
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2.25λ to 4.5λ produced minor improvements in the mean value of both arrival time and amplitude
fluctuations. The average standard deviation, on the other hand, was increased by 31% for the
arrival time fluctuations and 14 % for amplitude fluctuations. Examining aberration corrected
beam profiles, showed a marginal improvement of the mean value of the profiles. The standard
deviation increased, yielding an overall poorer result. For the w6 aberrator there were minor
changes in the mean value of the estimates. The average standard deviation increased by 4% for
arrival time fluctuations, and 17 % for amplitudes. Since estimates of amplitude fluctuations are
poor, the increased kernel length had no visible effect on the corrected beam profiles. Using 9λ
increased the same results by 53 % and 56% for the s6 aberrator, and 48 % and 46% for the w6
aberrator. The MBFO algorithm averages the correlation between several elements selected by
the correlation coefficient or the coherence function. Averaging the correlation over a number of
coherent elements reduces the variance in the estimate. The results presented here then shows
that a smaller kernel length is tolerated, and is preferable, due to the total reduction of variance
in the estimates.

The cross-correlation in the time domain [Eq. (5.18)] proved to yield an average of the cross-
spectrum over all frequency components. For the frequency implementation, arrival times and
amplitude fluctuations were estimated at the center frequency of the signal.1 With a narrow
band signal, and a linearly varying phase with frequency, the obtained estimates with the time
domain implementation should yield approximately the same result. In Ref. 13, it was shown
that using a time-delay and amplitude aberration correction filter estimated from a point source,
produced close to ideal aberration correction for the w6 and s6 aberrator. This is also true for the
rest of the aberrators. Therefore, the phase of the aberration is adequately modeled with a pure
time-delay for the presented results, and both implementations produced the same results. If the
phase of the aberration [as described by the generalized frequency-dependent screen in Eq. (5.2)]
varies non-linearly with frequency, the two implementations may produce different results due
to the averaging process.

The difference in computational cost between the time and frequency implementation, may be
explored by identifying the number of complex multiplications necessary to calculate an estimate.
The iterative solution scheme used to solve the MBFO equations, is assumed to converge equally
fast for both implementations. Assume further an element signal with P time samples. By
dividing the signal into L segments, each of length J , the Welch method with 50 % overlap gives

2L
J

2
log2(J) = P log2(J) (5.28)

number of complex multiplications for one element signal. Here, L = P/J , 2L is the number
of Fourier transforms, and J/2 log2(J) is the number of complex multiplications in an FFT
of length J (assuming the radix-2 FFT algorithm). In addition to the 2L number of Fourier
transforms, there are J 2L = 2P additional multiplications required for windowing the data.
The MBFO algorithm then calculates the correlation between each element signal and a modified
beam former output for a single frequency component. Assuming the number of independent
realizations K = 1, this gives one additional complex multiplication for each element on the
array. The total number of multiplications for the frequency implementation is then

N [2P + P log2(J)] , (5.29)

where N is the total number of elements on the array.
In the time domain, the analytic signal is used and a Hilbert transform is required. Such a

transform can be approximated with a π/2 phase shift of the time signal, and may in hardware
be implemented by a simple time shift. As seen in Eq. (5.24), the time domain implementation
of the MBFO algorithm calculates an auto-correlation of the element signal and the modified
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beamformer output. This gives P complex multiplications per element and NP in total for the
whole array. The relative difference between the frequency and time implementation is thus
given as

2 + log2(J) . (5.30)

The difference is only determined by the segment length used in the Welch averaging method. As
an example, in the presented simulations the segment length was 32 time samples, which means
that using the time domain implementation reduces the number of complex multiplications by
a factor of 7. If a transmit-beam iteration process is required, the computational savings are
multiplied with the number of iterations necessary for convergence.

The simulations presented here were performed using scatterers with a spatial uniform
distribution. Averaging over a sufficient number of independent scatterer realizations (receive
signals), produce a totally incoherent medium. This will not be the case in practical ultrasound
imaging. Here, tissue structures of different size are present in the receive signal which introduce
regions (of varying size) with high spatial correlation. This may render the correlation estimation
less efficient than for uniform scatterers. To study this is beyond the scope of this article.

As shown by Rigby et al.,4 image artifacts due to strong off-axis scatterers may be a problem
in a transmit-beam iteration procedure. A strong off-axis scatterer can dominate the receive
signal and affect the estimation of arrival time and amplitude fluctuations. The result is that
the corrected retransmitted beam ”locks” on to the strong scatterers, producing image artifacts.
For the purpose of the analysis presented in this article, such cases were not studied.

VI Conclusions

In this article the MBFO algorithm,1 previously developed in the frequency domain, is
implemented in the time domain. The MBFO method use an average of cross-spectrum
components (frequency domain), or cross-correlations (time domain) between neighboring
elements. The number of neighbor elements used in the averaging process is determined by
the spatial coherence function in the frequency domain, and the cross-correlation coefficient in
the time domain.

The time domain implementation introduce a loss of generality. In the frequency domain,
individual frequency dependent amplitude and phase correction could be performed on each
frequency component in the signal. In the time domain implementation presented here, only a
simple time-delay and amplitude correction (independent of frequency) is possible. On the other
hand, the time domain implementation reduce the computational cost of estimation. This is
important for fast implementations.

In order to improve the cross-spectrum or cross-correlation estimates, a method of averaging
the correlation over independent receive signals was proposed in Ref. 1. The number K of
independent signals used in the averaging process, affects the stability of arrival time and
amplitude fluctuation estimates. How this stability varied for K = {1, 3, 5, 10, 15, 20} was
investigated for eight different aberrators, emulating the human abdominal wall.

The results show that the time and frequency domain implementation of the MBFO algorithm
yields close to equal estimates of arrival time and amplitude fluctuations, independent of K.
The standard deviation of these estimates is approximately the same for both implementations.
Increasing K reduce the standard deviation with approximately 1/

√
K.

There is a strong variation in standard deviation between the different investigated aberrators.
Still, aberration corrected beam profiles are improved for all aberrators and all K.

Iterative transmit-beam aberration correction converged using just one receive signal for the
w6 and s6 aberrators. The convergence rate, and quality, was approximately equal compared to
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using 20 independent signals for averaging the correlation process.
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Appendix A

Aberration as a function of
frequency

Very little is known about the frequency dependence of aberration. But since aberration is an
interference phenomenon, which is inherently frequency dependent, physical reasoning suggests
that aberration also is frequency dependent.

In this thesis, the heterogeneous Green’s function has been modelled as

g(r, rs;ω) = s(r, rs; ω) gh(r− rs; ω) , (A.1)

where r is a field-coordinate and rs represents a source coordinate. The generalized frequency
dependent screen s(r, rs;ω) is expressed as

s(r, rs; ω) = a(r, rs;ω) eiθ(r,rs;ω) . (A.2)

The representation of aberration through the generalized screen, incorporates a frequency
dependent aberration amplitude and phase. In Chapter 2 it was shown that aberration correction,
using the complex conjugate of the frequency dependent screen as a correction filter, gave very
close to ideal aberration correction. It was also shown that a simple time-delay and amplitude
filter, independent of frequency, gave approximately equal correction even when strong waveform
deformation was observed in the received signal. Based on these results, the investigations in
Chapter 3 and 4 was performed with a time-delay and amplitude filter.

In the frequency domain implementation of the MBFO algorithm, the receive signal is written
as

y(ra; ω) = s(ra; ω) f(ra;ω) , (A.3)

where ra represents the array coordinate. Here, the generalized frequency dependent screen is
approximated with the scatterer independent screen, given as

s(ra; ω) = a(ra; ω) eiθ(ra;ω) . (A.4)

Now, a pure time-delay as a function of the array coordinate is expressed in the frequency
domain as e−iωτ(ra), where τ is a time-delay. The phase of the screen, for a specific array
coordinate, may be written as an L-order orthogonal basis on the form

θ(ω) =
L∑

l

τlφl(ω) (A.5)

123



Table A.1: The parameter β as a function of center frequency f0 for τ =100 ns.

f0 1.25 MHz 2.5 MHz 5.0 MHz 7.5 MHz 10.0 MHz 12.5 MHz
β 0.125 0.25 0.5 0.75 1 1.25

where τl represents the coefficients of the basis functions φl(ω).
The results from Chapter 2 and from Ref. 1 indicate that the higher order coefficients in the

basis representation of the phase θ are small, and contribute little to the aberration correction
of the signal. For both of these studies, the center frequency of the signal has been relatively low
(2.5 MHz and 3.0 MHz), and the question is how the magnitude of the higher order coefficients
change with increasing center frequency.

A simple exercise can be performed to illustrate this. Let

y1(t) (A.6)
y2(t) = α y1(t− τ) , (A.7)

represent two typical ultrasound pulse signals as a function of time. Here, α is a scaling amplitude
factor and τ is a time-delay, that is, y2 is a scaled and time-delayed version of y1.

Now, the period of the pulse is given as

T = 1/f0 , (A.8)

where f0 is the center frequency. Let
τ = β T , (A.9)

where β is a scaling factor of the period. Then

β =
τ

T
= τf0 . (A.10)

For a given time-delay τ , the value of β will increase with increasing center frequency of the
pulse. That is, as the frequency increases the two signals are shifted a larger and larger portion
of the period.

Assume y(t) = y1(t) + y2(t). This constitutes the simplest form of interference and the task
is to investigate the phase of y(t) as a function of frequency for a specific τ .

Using reported values of arrival time fluctuations for the abdominal wall,2 a typical time-
delay difference at the array in ultrasound aberration could be in the order of 100 ns (average
time-delay difference at the array in Ref. 2 is 131.5 ns). Table A.1 shows β as a function of center
frequency for typical ultrasound frequencies, and for τ =100 ns.

The table shows that e.g. at 7.5 MHz, y2 is shifted three quarters of a period from y1. This
constitutes a rather dramatic shift, and will have a drastic consequence for the phase of y.

Frequencies ranging from 7.5 to 12.5 MHz are typical frequencies for female breast imaging.
The breast is highly heterogeneous giving time-delay differences in the order of 200 ns.3

Figure A.1 (c) shows y for τ = T/4 and α = 0.7. The pulses y1 and y2 are 2.5 period pulses
with f0 = 2.5MHz, bandpass filtered to a -6 dB bandwidth of 1.45 MHz. Very little inference is
observed in y. In Fig. A.2, the magnitude and phase of the frequency spectrum of y is given.
The left column shows the spectrum over a relatively wide band, and the right column shows
the spectrum in the -6 dB band. For the phase, a linear fit has been subtracted in order to show
the non-linear variations of the phase with frequency. The figure shows that for β = 1/4 there

124



Appendix A. Aberration as a function of frequency

0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Time [µs]

(a) y1(t)

0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Time [µs]

(b) y2(t) = α y1(t− T/4)

0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Time [µs]

(c) y(t) = y1(t) + α y1(t− T/4)

Figure A.1: Pulse with 2.5MHz center frequency. The time delay between y1 and y2 is T/4, and α = 0.7.
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Figure A.2: Magnitude and phase of the Fourier-transform of y. For the phase, a linear fit has been
subtracted. The time delay between y1 and y2 is T/4, and α = 0.7. The left column shows the specter in
the frequency band from 1-4 MHz. The right column shows the specter within the -6 dB band.
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Figure A.3: Pulse with 2.5MHz center frequency. The time delay between y1 and y2 is T/2, and α = 0.7.

is a very weak non-linear component in the phase. Within the -6 dB bandwidth it is almost not
detectable.

In Figs. A.3 and A.4, β is increased to 1/2. Now there is a strong interference in y, there
is dramatic change in the spectrum around the center frequency of the pulse giving a highly
non-linear phase. Within the -6 dB bandwidth, the maximum deviation in the phase is close to
1 radians.

Figures A.5 and A.6 shows y for β = 3/4. Here also, the phase is highly non-linear, but in
the -6 dB band is approximately linear. There is a shift in the maximum value of the magnitude
of the spectrum, and it is now centered around 2.7 MHz.

Reducing or increasing the factor α, reduce or increase the non-linearity of the phase
respectively. This is shown in the figures below. For α = 0.9, there is a strong non-linearity in
the region where the magnitude of the spectrum drops. Inside the -6 dB bandwidth, the phase
is approximately linear.

As this simple example show, different values of β produce different non-linear effects of the
phase of the signal y. This means that the higher order coefficients in the orthogonal basis will
vary with the degree of interference. In addition, the degree of interference yields a different
weighting of the phase as the peak of the spectrum is shifted to lower or higher values.

In a real situation, the receive ultrasound signal will be a sum of many signals with time delay
differences and different amplitudes, and the effects explained here will then be more complex.
Nonetheless, the presented example illustrates some challenges for future research, to understand
the relation between frequency and aberration, and how to efficiently correct for it.
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Figure A.4: Magnitude and phase of the Fourier-transform of y. For the phase, a linear fit has been
subtracted. The time delay between y1 and y2 is T/2, and α = 0.7. The left column shows the specter in
the frequency band from 1-4 MHz. The right column shows the specter within the -6 dB band.
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Figure A.5: Pulse with 2.5MHz center frequency. The time delay between y1 and y2 is 3T/4, and α = 0.7.
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Figure A.6: Magnitude and phase of the Fourier-transform of y. For the phase, a linear fit has been
subtracted. The time delay between y1 and y2 is 3T/4, and α = 0.7. The left column shows the specter in
the frequency band from 1-4MHz. The right column shows the specter within the -6 dB band.
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Figure A.7: Pulse with 2.5MHz center frequency. The time delay between y1 and y2 is T/4, and α = 0.5.
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Figure A.8: Magnitude and phase of the Fourier-transform of y. For the phase, a linear fit has been
subtracted. The time delay between y1 and y2 is T/2, and α = 0.5. The left column shows the specter in
the frequency band from 1-4 MHz. The right column shows the specter within the -6 dB band.
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Figure A.9: Pulse with 2.5MHz center frequency. The time delay between y1 and y2 is T/4, and α = 0.9.
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Figure A.10: Magnitude and phase of the Fourier-transform of y. For the phase, a linear fit has been
subtracted. The time delay between y1 and y2 is T/2, and α = 0.9. The left column shows the specter in
the frequency band from 1-4MHz. The right column shows the specter within the -6 dB band.
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Appendix B

The MBFO estimator in the
frequency and time domain: A
comparison

In this appendix, a summary of the MBFO estimator in the time and frequency domain
implementation is given.

Frequency domain

In the frequency domain implementation of the MBFO algorithm, the receive signal was written
as

y(ra; ω) = s(ra; ω) f(ra;ω) , (B.1)

where ra represents the array coordinate. Here, the generalized frequency dependent screen is
given as a frequency dependent amplitude and phase:

s(ra; ω) = a(ra; ω) eiθ(ra;ω) . (B.2)

Writing the receive signal as a function of array element p, dropping frequency dependence for
notational convenience gives

yp = spfp . (B.3)

The definition of the cross-spectrum between element p and n is defined as

Rpn = E[yp y∗n] , (B.4)

By using the correlation information between all elements on the receiving array, the MBFO
algorithm was developed to be

s̃p =
N∑

n=1

Wpn
R̃pn

|Fpn|
1
s̃∗n

, p = 1, . . . , N . (B.5)

The estimate R̃pn of the cross-spectrum was enhanced by averaging the cross-spectrum over K
independent realizations of the received signal. In a general form, this may be written as

R̃pn =
1
K

K∑

k=1

ykp y∗kn , (B.6)
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where ykp denotes the frequency spectrum of receive signal k.
The coherence is defined as

wpn =
Rpn√

Rpp Rnn

. (B.7)

This gives

|wpn| = |Rpn|√
Rpp Rnn

=
|Fpn|√
Fpp Fnn

. (B.8)

Based on the above results, the weight function Wpn was chosen as

Wpn =
|wpn|2∑N

n=1 |wpn|2
=
|wpn|2

Cp
=
|wpn||Fpn|

Cp
, (B.9)

where Fpp has been set to identity.
Inserted into Eq. (B.5) this finally gives

s̃p(ω) =
N∑

n=1

|w̃pn(ω)| R̃pn(ω)
1

s̃∗n(ω)
, p = 1, . . . , N . (B.10)

where w̃pn is an estimate of wpn using R̃pn. The frequency dependence has here been
reintroduced.

Time domain

Taking the inverse Fourier transform of Eq. (B.1) gives the time domain receive signal as

y(ra, t) =
∫ ∞

−∞
s(ra, t− λ)f(ra, λ)dλ , (B.11)

Now, approximating the generalized screen as a simple time-delay and amplitude filter on the
form

s(ra, t) ≈ a(ra)δ(t− τ(ra)) , (B.12)

and inserting this into Eq. (B.11), gives

y(ra, t) = a(ra)f(ra, t− τ(ra)) . (B.13)

This approximation assumes a linearly varying phase and a real valued amplitude.
Using the narrow band approximation this filter was given as

s(ra) = a(ra) e−iωτ(ra) . (B.14)

The narrow band approximation also lead to a signal model in the same form as in the frequency
domain

ŷp = spf̂p , (B.15)

where the ŷ now denotes the complex analytic signal, and time dependence has been omitted.
Using these approximations the derivation of the MBFO time domain algorithm is equivalent to
the frequency domain derivation and is given as

s̃p =
N∑

n=1

Wpn
R̃pn

|Fpn|
1
s̃∗n

, p = 1, . . . , N . (B.16)

132



Appendix B. The MBFO estimator in the frequency and time domain: A comparison

The basic difference is in the estimation of the cross-correlation R̃pn. Using the ergodic
hypothesis, a non-biased estimate of the cross-correlation at zero lag is defined as

R̃pn =
1
K

∑

k

1
T

∫

T

ŷkp(t)ŷ
∗
kn(t) dt . (B.17)

The correlation coefficient at zero lag is defined as

ρpn =
Rpn√

RppRnn

, (B.18)

which equivalent to Eq. (B.8) yields

|ρpn| =
|Rpn|√
RppRnn

=
|Fpn|√
FppFnn

, (B.19)

The weight function is now chosen as

Wpn =
|ρpn|2∑N

n=1 |ρpn|2
=
|ρpn||Fpn|

Cp
, (B.20)

and the MBFO algorithm in the time domain becomes

s̃p =
N∑

n=1

|ρ̃pn| R̃pn

1
s̃∗n

, p = 1, . . . , N . (B.21)

Since all time dependence is integrated, this equation is not dependent on time.
Parseval’s theorem states

∫ ∞

−∞
ŷp(t)ŷ

∗
n(t) dt =

1
2π

∫ ∞

−∞
ŷp(ω)ŷ∗n(ω) dω . (B.22)

The signal can be assumed to be infinite in time (e.g. a windowed part of an infinite signal).
Dropping the integration period, and using the result from Parseval’s theorem in Eq. (B.17)
yields

R̃pn =
1
K

∑

k

1
2π

∫ ∞

−∞
ŷkp(ω)ŷ∗kn(ω) dω

=
1
2π

∫ ∞

−∞

1
K

∑

k

ŷkp(ω)ŷ∗kn(ω) dω

=
1
2π

∫ ∞

−∞
R̃pn(ω) dω .

(B.23)

The time domain implementation uses the integral of the cross-spectrum estimate over all
frequency components.
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