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Summary

The contributions of this thesis are in the area of control of systems with
nonlinear dynamics. The thesis is divided into three parts. The two first
parts are similar in the sense that they both consider output feedback of
rather general classes of nonlinear systems, and both approaches are based
on mathematical programming (although in quite different ways). The third
part contains a state feedback approach for a specific system class, and is
more application oriented.

The first part treats control of systems described by nonlinear difference
equations, possibly with uncertain terms. The system dynamics are repre-
sented by piecewise affine difference inclusions, and for this system class,
piecewise affine controller structures are suggested. Controller synthesis in-
equalities for such controller structures are given in the form of Bilinear Ma-
trix Inequalities (BMIs). A solver for the BMIs is developed. The main con-
tribution is to the output feedback case, where an observer-based controller
structure is proposed. The theory is exemplified through two examples.

In the second part the output feedback problem is examined in the setting
of Nonlinear Model Predictive Control (NMPC). The state space formulation
of NMPC is inherently a state feedback approach, since the state is needed
as initial condition for the prediction in the controller. Consequently, for
output feedback it is natural to use observers to obtain estimates of the
state. A high gain observer is applied for this purpose. It is shown that
for several existing NMPC schemes, the state feedback stability properties
“semiglobally” hold in the output feedback case. The theory is illuminated
with a simple example.

Finally, a state feedback controller for a class of positive systems is pro-
posed. Convergence of the state to a certain subset of the first orthant,
corresponding to a constant “total mass” (interpreting states as masses) is
obtained. Conditions are given under which convergence to this set implies
asymptotic stability of an equilibrium. Simple examples illustrate some prop-
erties of the controller. Furthermore, the control strategy is applied to the
stabilization of a gas-lifted oil well, and simulations on a rigorous multi-phase
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dynamic simulator of such a well demonstrate the controller performance.
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Chapter 1

Introduction

The contributions of this thesis are within the area of control of systems
described by nonlinear state-space models. Three separate problems are
treated: Synthesis of observer-based output feedback controllers for a class
of piecewise affine difference inclusions, the output feedback problem for
nonlinear predictive control, and the control of a special class of positive
systems.

Most control approaches require a model of the system that should be
controlled. In many situations it is hard to obtain accurate models. There-
fore, control approaches that can guarantee closed-loop stability for models
with uncertainties are of practical value.

It is also important to be able to control a system even if the whole
system state is not available to the controller. In this situation, it is a
common approach to use an observer to reconstruct the state, such that a
stabilizing controller can use the information in the observer as if it were
the real state (certainty equivalence). While this approach can guarantee
global stability in the linear case (by the separation principle), there is no
such general conclusion for nonlinear systems. To conclude more than local
stability, one must in general analyze the nonlinear system with the observer.
This is the outset for the first part of this thesis; Chapter 2 and 3.

In the process industry, model predictive control (MPC) has become an
important control strategy, mainly due to its ability to optimize performance
under constraints for rather large scale processes. Especially MPC using
linear models for prediction has found widespread application. However,
nonlinear models and constraints become more important as tighter product
quality specifications, increasing productivity demands and tougher environ-
mental regulations require processes to be operated closer to the boundary of
the admissible operating region. In Part IT, Chapter 4 and 5, we look at how
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the use of state observers affects stability of MPC schemes using nonlinear
models.

While the first chapters treat rather general system classes, the last part
of the thesis, Chapter 6, proposes a set-stabilizing controller for a special
class of nonlinear systems with positive state variables. Set-stabilizing means
that rather than stabilizing an equilibrium, the controller aims at stabilizing
a set. The specific example that inspired the theoretical contribution of this
chapter is the stabilization of a gas-lifted oil well.

Nonlinear control aims at shaping the dynamic behavior of nonlinear
dynamical systems. Hence, qualitative concepts and tools from nonlinear
dynamical systems theory are crucial for nonlinear control. Some relevant
definitions and theorems for the contributions of this thesis are briefly re-
hearsed in the first part of the introduction. Thereafter, some comments are
given on how these tools often are used in nonlinear control, before some
issues related to output feedback control of nonlinear systems are discussed.
The main contributions of the thesis are pinpointed in Section 1.4, and an
outline of the thesis is provided in Section 1.5.

1.1 Some qualitative concepts and tools

The main purpose of this section is an attempt to present the stability con-
cepts used in this thesis, and place them in a broader context. The list of
qualitative concepts and tools is by no means exhaustive, and several impor-
tant concepts and tools in the theory of nonlinear dynamical systems and
nonlinear control are omitted.

The system class considered in this chapter, is described by a (possibly
time-varying) ordinary differential equation (ODE),

i = f(t,x) (1.1)

(or, in the discrete time case, a time-varying difference equation zj1; =
fr(xg)). In general, f : [0,00) x D — R™, where the domain D C R" contains
the origin z = 0. We will often assume that the origin is an equilibrium,
which means f(¢,0) = 0. With a slight abuse of notation, we refer to a
solution of (1.1) starting from an initial condition x(¢y) € D at time tg, by
x(+). The solution at a specific time ¢ > ¢y > 0 is, when it exists, called z(t)
and satisfies

d
Za(t) = f(t,2(0).

We assume that f is piecewise continuous in ¢ and locally Lipschitz in x,
which guarantee existence and uniqueness of z(-), at least in a short in-
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terval. Uniqueness and existence in the discrete time case is automatically
guaranteed by fj being a function.

The most important references for the material in this section, are Khalil
(2002), Rouche, Habets and Laloy (1977), Teel (2001) and LaSalle (1960).

In what follows, « : [0,00) — [0,00) is class K («a € K) if « is continuous,
strictly increasing and «(0) = 0. Further, § : [0,00) X [0,00) — [0,00) is
class KL if it is continuous, strictly increasing in the first argument, non-
increasing in its second argument, and lim, g+ B(r, s) = lims_.o B(r, s) = 0.
A region is the union of an open, connected set with some, none, or all
its boundary points. A domain (open region) is a region with none of the
boundary points included (Khalil, 2002, p. 649).

The most important stability concept, at least if rated in terms of pub-
lications, is that of asymptotic stability (in the sense of Lyapunov).

“It is never possible to start the system exactly in its equilibrium
state, and the system is always subject to outside forces not
taken into account by the differential equations. The system
is disturbed and is displaced slightly from its equilibrium state.
What happens? Does it remain near the equilibrium state? This
is stability. Does it remain near the equilibrium state and in
addition tend to return to the equilibrium? This is asymptotic
stability.” (LaSalle, 1960)

If the asymptotic stability is independent of the initial time, then it is uni-
form:

Definition 1.1 (Uniform asymptotic stability) If there exists a f € KL
and a b > 0, independent of to, such that the solution of (1.1) satisfies

[zl < Bll=(to)ll 1),  VE=to =0, V|z(to)]| <b (1.2)
then the origin is uniformly asymptotically stable.

If b can be taken arbitrarily large, then the origin is uniformly globally
asymptotically stable.

Note that normally, uniform asymptotic stability is defined in terms of the
solution being uniformly stable and uniformly attractive, which is equivalent
to Definition 1.1:

Theorem 1.1 The origin is uniformly asymptotically stable if and only if

e The origin is uniformly locally stable: Given € > 0, there exists § > 0,
independent of to, such that ||z(to)]| < 0 = ||z(t)|| <€, YVt >ty > 0.
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e The origin is uniformly attractive: For all ||x(tg)| < b, where b is
independent of tg, limy_,o z(t) = 0.

There exist a number of methods for showing uniform asymptotic stabil-
ity, but the most widely used is Lyapunov’s second method (also known as
Lyapunov’s direct method):

Theorem 1.2 (Lyapunov) Let D C R"™ be a domain containing the origin.
Let V : D — [0,00) be a continuously differentiable function. If there exist
class K-functions oy, 1 € 1,2,3 such that

(o) < V(@) < as(e]) (1.32)
L (t,) < ~as(]) (1.3)

for all t > tg and for all x € D, then x = 0 is uniformly asymptotically
stable.

Instead of finding a KL-bound on the trajectories as is required in Defini-
tion 1.1, by this theorem it suffices to look for an auxiliary function V with
some desired properties. In many cases, this turns out to be easier. The
proof of the Lyapunov theorem consists of showing that the properties of V'
imply that there exists a class KL-function as in Definition 1.1.

Mere asymptotic stability, as given in Definition 1.1, is often of lim-
ited value, since it might be valid only in a small neighborhood of the ori-
gin (LaSalle, 1960). It is of interest to know how far away from the origin
convergence to the origin still holds. This region of initial conditions is
called region of attraction, R4. From Theorem 1.1, we see that the stability
property is a local property, so in this respect only attractivity is important.

If the conditions of Theorem 1.2 are fulfilled, an estimate for R4 can
be found as the largest Lyapunov level set contained in D, determined by
the largest ¢ such that Q. := {z | V() < ¢} C D. If all the conditions in
Theorem 1.2 are satisfied for all x € R” and «;(||z]|) — oo when ||z| — oo,
then Theorem 1.2 implies global asymptotic stability (that is, convergence
holds for all initial values in R™).

Remark 1.1 Theorems 1.1 and 1.2 (appropriately rephrased) also hold if
one 1instead of the origin considers stability of a compact subset A of R™.
The norm || - || should then be substituted with the distance from the set A,
|z| 4 = infyca |l —y|. If [ is time invariant, then (1.8b) can be taken as
%—‘;f(m) < 0, and the bound on the Lyapunov function provided by aw(-) is
not needed.
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An important sub-case of Definition 1.1 is when we take 5(r, s) = kre=7°.
This defines (uniform) ezponential stability. If we take a;(||z|) = k;il|z||? for
positive k; and d, then the conditions of Theorem 1.2 imply exponential
stability. As a special case, if the Lyapunov function is quadratic, V(z) =
z! Pz and %—‘;f(t,x) < —z'Qz for some positive definite P and Q, the
stability is sometimes referred to as quadratic stability (Corless, 1994). The
fact that quadratic stability implies exponential stability is clear.

For discrete-time systems, conditions corresponding to the above theo-
rems and definitions can be given. We do not detail this, but we include the
following definition for quadratic stability of discrete time systems:

Definition 1.2 (Discrete time quadratic stability) The system x;, 1 =
fr(xk) has a quadratically stable equilibrium at the origin if there exists pos-
itiwe definite matrices P and @ and a domain D containing the origin such
that

fe(x) " Pfi(x) — 2" Pz < —2"Qx Yz € D and Yk > 0.

Akin to this definition is the stability definition used in Part I of the thesis.
Sometimes, finding a Lyapunov function with negative definite derivative
is hard. It can also be that a natural Lyapunov function (often related to

energy or mass) is not positive definite. In these cases, LaSalle’s invariance
principle (LaSalle, 1960, Khalil, 2002) can be useful:

Theorem 1.3 (LaSalle) Let I' C D be a compact set that is positively
invariant with respect to & = f(x). Let V : D — R be a continuously
differentiable function such that V(m) <0 T. Let E be the set of all points
in T where V(z) = 0. Let M be the largest invariant set in E. Then every
solution starting in I' approaches M as t — oo.

Note that in this case, the Lyapunov function does not have to be definite.
However, if V(z) is positive definite, and the only solution that can stay in
the set V(z) = 0 is 2(t) = 0, then attractivity of the origin follows from
LaSalle’s invariance principle, and stability holds since V(z) < 0. Thus
asymptotic stability can be concluded by Theorem 1.1'. Some stability re-
sults for V(x) positive semidefinite can be found in Chabour and Kalitine
(2002).

Also noteworthy is the fact that LaSalle’s principle only holds for time-
invariant (non-autonomous) systems. In the non-autonomous case, one must

!This corollary, known as the Theorem of Barbashin and Krasovskii, was proved in-
dependently much earlier.
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resort to weaker alternatives, such as Matrosov’s Theorem or the LaSalle-
Yoshizawa Theorem, see for example Rouche et al. (1977), Khalil (2002).
The proof of the latter is based on Barbalat’s lemma:

Lemma 1.1 (Barbalat’s lemma) Let ¢ : R — R be a uniformly continu-
ous function on [0,00). Suppose that lim; fg o(T)dT exists and 1is finite.
Then,

o(t) =0 as t— oc.

In a typical use of the lemma, ¢ is an (implicit) continuous function of the
(norm of the) state, ¢(t) = ¢(||z(t)])), and ¢(a) = 0 = a = 0. In this
case, the lemma can be used to show asymptotic convergence, but further
arguments are needed to conclude stability.

In many cases, convergence to the origin does not hold. For instance,
it can be that we want to analyze a nonlinear system subject to norm-
bounded perturbations that do not vanish at the origin, © = f(¢,z)+ g(¢t, z),
llg(t,z)|| < g. Then, x = 0is in general no longer an equilibrium, and asymp-
totic stability cannot hold (in general?). The appropriate concept to look for
is then, for a given set of initial conditions, that ||z(t)|| becomes small (where
“small” may be related to the size of the perturbation) after some period of
time. There exist several closely related definitions of this concept, for in-
stance the uniform ultimate boundedness concept, see for example LaSalle
and Lefschetz (1961), Khalil (2002):

Definition 1.3 (Uniform ultimate boundedness) The solutions of & =
f(t,x) are said to be uniformly ultimately bounded if there exist positive con-
stants b and c, and for every o € (0, c) there is a positive constant T = T ()
such that

lz(to)l| < @ = |lz(t)]| < b, VE>to+T. (1.4)

They are said to be globally uniformly ultimately bounded if (1.4) holds for
arbitrarily large a.

Related to this concept are the notions of practical stability (LaSalle and Lef-
schetz, 1961), total stability (stability under persistent disturbances) (Hahn,

2For a system subject to control, it is possible to design controllers such that the closed
loop becomes asymptotically stable even in the presence of (matched) non-vanishing per-
turbations. One example of this, is Lyapunov Min-Maz controllers (Gutman, 1979, Cor-
less, 1994); however, these controllers are discontinuous. Another, very related, example is
switching controls, which leads to wariable structure systems that eliminate disturbances
by introducing sliding modes (Utkin, 1992). Note that a continuous implementation of
Lyapunov Min-Max controllers leads to uniform ultimate boundedness (Corless and Leit-
mann, 1981).
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1967) and semiglobal practical stabilizability (Teel and Praly, 1995). Total
stability /practical stability describe the property where b in the above def-
inition can be chosen arbitrarily small, for small enough initial conditions
and small enough perturbations (small enough g).

“Practical stability is a uniform boundedness of solutions relative
to the set of initial conditions Qg and the class of perturbations
P. Tt is, however, not merely that the bound exists but that the
bound be sufficiently small; the solutions starting in (g are to
remain in Q.” (LaSalle and Lefschetz, 1961)

The semiglobal practical stabilizability property of Teel and Praly (1995)
is a property of a controlled nonlinear system that also takes the “region of
attraction” into consideration. For an arbitrarily large set of initial conditions
(which may be within a maximal set), and an arbitrarily small set containing
the origin, this property implies the existence of a (dynamical) controller
that make the closed loop state enter, and stay within, the small set. The
corresponding stability property, semiglobal practical stability, is used in
Chapter 5.

The notion of practical stability can pertain to other terms than size of
perturbations. For example, under a sample-and-hold implementation of a
continuous time control law, it cannot in general be guaranteed that the
state converges to the origin. Instead, the size of the set (containing the
origin) that the state converges to, typically depends on the sampling rate:

“...since sampling is involved, when near the origin it is impossible
to guarantee arbitrarily small displacements unless a faster sam-
pling rate is used...” (Clarke, Ledyaev, Sontag and Subbotin, 1997)

As in the tools for showing stability, Theorem 1.2 and 1.3, the means
for showing practical stability properties are typically the application of an
auxiliary scalar function of the state.

1.2 Finding a Lyapunov function

As shown in the previous section, the tools used for proving system stability
properties, usually amount to finding an auxiliary scalar function of the
state with some desired properties. Often, this auxiliary function is called a
Lyapunov function, even when the desired properties are not the same as in
Lyapunov’s second method.

In a control setting, one typically wants to find a control law in addition to

the Lyapunov function. For a controlled dynamical system, & = f(¢,x,u),
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a general state® feedback control law can be written u = x(t,2), and the
challenge is to find both a control law and a Lyapunov function such that
the Lyapunov function has the desired properties for the closed loop system

T = f(t,x,k(t,x)) = f(t,x).

We claim that there are two main approaches on finding Lyapunov func-
tions (and corresponding control laws). We refer to these as the analytical
approach and the numerical approach. Of the approaches in this thesis,
the two first parts use the numerical approach, while the last part uses the
analytical approach.

Analytical approach System models may be obtained from first princi-
ples, for example energy or mass balances. In this case, a good candidate
for a Lyapunov function is the system’s total energy or mass, or some re-
lated property. Important concepts in this regard are energy-based control,
passivity, dissipativity, and the consideration of special system classes, for
example Hamiltonian systems, Euler-Lagrange systems and thermodynamic
systems. There is a vast amount of literature on these topics, see for ex-
ample Desoer and Vidyasagar (1975), van der Schaft (2000), Ortega, Van
Der Schaft, Mareels and Maschke (2001), Ydstie and Alonso (1997).

Some systems possess first integrals, that is, a function of the state that
is constant under the system dynamics. These can in some cases be used to
construct Lyapunov functions (Rouche et al., 1977).

Numerical approach The invention of effective interior point methods
for solving linear matrix inequalities* (LMIs) (Nesterov and Nemirovskii,
1994, Boyd, El Ghaoui, Feron and Balakrishnan, 1994, Wolkowicz, Saigal
and Vandenberghe, 2000), has over the last decade lead to a large number
of publications on using these methods for finding Lyapunov functions for
a number of system classes. The structure of LMIs implies that most of
the system classes that are treated are linear, in some form. However, un-
certainty and nonlinearity can be handled as long as they have a “linear”
description, for example, linear parameter-varying (LPV) systems, linear
differential /difference inclusions (LDIs) and piecewise linear/affine (PWA)
systems. Some of the more important results that have appeared, are on
Hoo-methods (Gahinet and Apkarian, 1994, Iwasaki and Skelton, 1994), sys-
tems with (structured) uncertainties (Boyd et al., 1994, Doyle, Packard and
Zhou, 1991, Scherer, 2001), and robust MPC methods (Kothare, Balakrish-
nan and Morari, 1996, Kouvaritakis, Rossiter and Schuurmans, 2000). A

3For comments on output feedback, see the next section.
4 Also known as semidefinite programming (SDP).
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good introduction to LMIs in control can be found in Scherer and Weiland
(1999).

Other numerical approaches also exist, for example methods based on
gridding the state space to find a (suitably parameterized) decreasing Lya-
punov function, see e.g. Johansen (2000).

A third option, related to the numerical approach, is often used in ap-
proaches based on online optimization (for instance, model predictive con-
trol). In these approaches one online minimizes a function of the state, the
objective function, which measures in some sense the system performance.
The value function is obtained by inserting the “real” state trajectory into
the objective function. The value function will often serve as a Lyapunov
function (Mayne, Rawlings, Rao and Scokaert, 2000).

1.3 Output feedback

As the approaches in Part I and IT of this thesis treat output feedback, some
remarks on this problem is appropriate.
Given a (time-invariant, for simplicity) dynamical system

T = f($7U)7
y=g(z)

where x € R", y € R™ and m < n. Stabilization by output feedback means
finding an algorithm using the information contained in y(-) to (causally)
generate u(-) such that #(t) = f(x(t),u(t)) is asymptotically stable. Im-
portant specializations are static output feedback, where u = k(y) for some
mapping &, and dynamic output feedback, where the control input in ad-
dition to y, depends on the state of a dynamic system driven by y (as in
u = k1(2,y), 2 = Kk2(z,y)). An important sub-case of dynamic output feed-
back is observer-based output feedback.

In general, stabilization by output feedback is harder than stabiliza-
tion by state feedback, since less information is available. For linear (time-
invariant, unconstrained) systems, most aspects of state feedback stabiliza-
tion are known by now (see for example Wonham (1985)). On the other
hand, the general problem of finding a static linear output feedback (equiv-
alent to finding a reduced order dynamic output feedback), is still an open
problem (Apkarian and Tuan, 1999, Blondel and Tsitsiklis, 1999). Even
though several good algorithms exist by now, see e.g. El Ghaoui, Oustry and
AitRami (1997), no known algorithms can in general find a stabilizing static
output feedback in polynomial time, even in the case where there might ex-
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ist one. Since this problem has received considerable attention, one might
suspect the problem to be NP-hard, but this has not been proven.

The full order dynamic output feedback problem (for linear systems), on
the other hand, can as the state feedback problem be formulated as a convex
optimization problem. The full order case (which means that the dimension
of the dynamic part of the controller is the same as the dimension of z)
includes observer-based output feedback as a special case.

An important rationale for using observer-based state feedback is that
this allows us to use a state feedback controller, which by design often has
desirable features related to system performance. Also important is the no-
tion of a separation principle. In the case of linear systems, using linear state
feedback coupled with a linear state observer result in (global) asymptotic
closed-loop stability if the observer-error dynamics and the closed-loop pro-
cess under pure state feedback are both asymptotically stable (Luenberger,
1966). The assignment of the closed loop eigenvalues can be carried out as
separate tasks for the state feedback and observer problems, hence the sep-
aration principle holds. The practical implication is that one can design the
state feedback without having the observer in mind, at least as long as only
stability is considered.

For nonlinear systems, this “certainty equivalence” approach is not guar-
anteed to work (see e.g. the counterexample in Krsti¢, Kanellakopoulos and
Kokotovi¢ (1995, p. 285)). Hence, in general system stability should be
analyzed by including the observer dynamics in the closed loop. This is the
approach taken in Chapter 3. However, recent developments show that for
rather general classes of nonlinear systems, it is possible to establish a non-
linear separation principle. These results say that it is possible to design fast
observers such that the state feedback performance (including stability, re-
gion of attraction and trajectories) is approximately recovered in the output
feedback case (Teel and Praly, 1994, Atassi and Khalil, 1999). In Chapter 4
and 5, a similar angle of attack is used within the context of nonlinear model
predictive control.

1.4 Contributions

The main contributions of this thesis are as follows:
Part I Observer-based piecewise affine output feedback

e Synthesis inequalities in the form of bilinear matrix inequalities
for piecewise affine observer-based output feedback for a class of
piecewise affine difference inclusions (Section 3.3).
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e A separated synthesis procedure for the controller structure in
Section 3.3 (Section 3.4).

e Adapting a solver for the class of synthesis inequalities (Section 2.4).
Part II Output feedback Nonlinear Model Predictive Control

e Robust stability results for instantaneous NMPC (Section 4.5).

e Practical stability for NMPC using high gain observers (Section 5.4).

e Under some additional assumptions, also convergence to the origin
is achieved (Section 5.5).

Part TIT State feedback control of a class of positive systems

e A new stabilizing state feedback controller for a class of positive
systems (Section 6.3).

e Application of the state feedback controller to the stabilization of
a gas-lifted oil well (Section 6.6).

1.5 Thesis outline

Chapter 2 contains a recapitulation of the main theorem of Slupphaug, Ims-
land and Foss (2000) (which builds on Slupphaug (1998), Slupphaug and Foss
(1999)). Briefly, it states synthesis inequalities in the form of bilinear matrix
inequalities (BMIs) for synthesizing (piecewise affine) controller structures
that stabilize a class of systems that can be represented by piecewise affine
difference inclusions. It is a slight generalization of Slupphaug et al. (2000),
allowing a more general closed loop. A solver for the BMIs, adopted from
the solver in Fares, Apkarian and Noll (2001), is also suggested.

In Chapter 3, the result in Chapter 2 is used to develop synthesis in-
equalities for an observer based piecewise affine controller structure. First, a
combined synthesis is developed that searches for the observer output injec-
tion and the (observer) state feedback simultaneously. Second, a separated
procedure is developed, where the state feedback synthesis is performed as
in Slupphaug et al. (2000), and then the observer synthesis equalities ensure
total closed loop stability. Although less general, the separated approach
is shown to possess some favorable properties. Two examples demonstrate
some of the features of the controller structure. The results of this chapter
are presented in Imsland, Slupphaug and Foss (2001c,d,e).

In Chapter 4, the output feedback problem for NMPC is approached us-
ing observers for state estimation. It is assumed that a instantaneous (time

11
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continuous) version of NMPC is used, that is, the NMPC open loop opti-
mization problem is solved at all times. The state estimation is performed
with a high gain observer. It is pointed out that under a continuity assump-
tion on the solution of the NMPC optimal control problem, the separation
principle of Atassi and Khalil (1999) still holds. This means that for a rather
general system class, there exist observers such that output feedback asymp-
totic stability holds. In addition, the trajectories (and hence performance
and region of attraction) of the state feedback NMPC can be retrieved to
any desired degree of accuracy in the output feedback case. Further, it is
demonstrated that this still holds for a class of unknown (unmodeled) input
nonlinearities. An example illustrates the procedure. The results of this
chapter are published in Imsland, Findeisen, Bullinger, Allgéwer and Foss
(2001a,b).

The assumption of an infinitely fast sampling rate is dispensed with in
Chapter 5. It is established that a practical stability property holds for
the NMPC closed loop with a high gain observer. That is, for a fast enough
sampling rate and fast enough observer, the state ultimately enters, and stays
within, a (small) set containing the origin. Furthermore, convergence to the
origin is shown under some stronger assumptions. A preliminary version
of some of the results in this chapter is presented in Findeisen, Imsland,
Allgéwer and Foss (2002a), and the results of Section 5.4 are submitted for
journal publication (Findeisen, Imsland, Allgéwer and Foss, 2002b). The
results of Section 5.5 can be found in Imsland, Findeisen, Allgéwer and Foss
(2002).

In Chapter 6, we propose a state feedback controller for a class of posi-
tive systems. The approach is inspired by the controller proposed by Bastin
and Praly (1999), but a substantially larger system class is treated, includ-
ing systems with more than one input, systems with controlled outflow and
systems with saturated inputs. The controller stabilizes a subset of the state
space, corresponding to a certain mass configuration in the system. Condi-
tions are given under which the stability of this set implies an asymptotically
stable equilibrium. Moreover, it is shown that the controller possesses some
robustness properties. Some aspects of the controller are illustrated through
simple examples. The particular example that inspired the development of
the controller, stabilization of a gas-lifted oil well, is treated in more detail.
The results of this chapter are being prepared for publication.
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Piecewise Affine Robust
Output Feedback






Chapter 2

A Synthesis Result for
Piecewise Affine Difference
Inclusions

This chapter presents a synthesis result for a class of uncertain non-
linear discrete time systems, represented in the form of a piecewise
affine difference inclusion. The synthesis is based on solving a set
of bilinear matriz inequalities (BMIs), hence a solver for the BMI
problem is also presented.

The synthesis result is based on Slupphaug et al. (2000), with some
limited extensions. The solver (based on a solver in Fares et al.
(2001)) was presented in Imsland et al. (2001c) (see also Imsland
et al. (2001d)). The synthesis result of this chapter forms a basis for
the output feedback synthesis results of Chapter 3.

2.1 Introduction

Piecewise affine systems have been studied for some time. The main mo-
tivation seems to be, at least originally, the use of piecewise affine systems
as approximations for nonlinear systems, see e.g. Sontag (1981). Later, also
modeling hybrid systems as piecewise affine systems has been an object for
research, see e.g. Bemporad, Ferrari-Trecate and Morari (2000), Johansson
and Rantzer (1998) for some recent contributions.

From the use of piecewise affine systems as models for nonlinear systems,
the idea of implementing nonlinear control by piecewise affine controllers
follows naturally. Piecewise affine controller structures have recently gained
considerable interest, in particular as explicit solutions of linear MPC (Bem-

15
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porad, Morari, Dua and Pistikopoulos, 2002, Johansen, Petersen and Slup-
phaug, 2002), but also more generally, e.g. Hassibi and Boyd (1998).

In this chapter, quite general piecewise affine difference inclusions are
considered, and a synthesis result for synthesizing general (piecewise affine)
controller structures for this system class is given.

The main result in this section, Theorem 2.1, is a slight generalization of
the result in Slupphaug et al. (2000), in that a more general system class is
allowed. The system class considered in Slupphaug et al. (2000) is then a spe-
cial case of the one considered here, apart from the fact that the closed loop
system in Slupphaug et al. (2000) can have parameters that enter quadrat-
ically in the equations. For simplicity, this is not considered here, although
the approach used in Slupphaug et al. (2000) for this could be used for the
system class considered herein as well.

In Section 2.4, an algorithm for solving the matrix inequalities is devel-
oped, based on an algorithm given in Fares et al. (2001) for solving simi-
lar matrix inequalities. The algorithm makes use of general purpose LMI-
solvers.

2.2 Model class

2.2.1 Piecewise affine difference inclusions

The system dynamics is represented by affine (in the state) difference inclu-
sions on subsets X; of the state space (model validity set) X,,, X; C X,, C
R™, hence we call the model class piecewise affine difference inclusions. The
subsets X; (the local model validity sets) may be overlapping, and the union
of all N subsets cover all of X, X C Uieqr,.. .My Xi-

The difference inclusion on local model validity set Xj is

Tr41 € ./\/ll(xk,@;Kl), Vk e N,z € X;. (2.1)

Here, K is a set of parameters that should be found for the difference in-
clusion to be stable. This will be elaborated on later. As indicated, the
set-valued mapping M; is affine in the state,

My(zg, ©; K1) = {2 [ 30, € 0,27 = A'(O); K )ap + d(06; K} (22)

where for the X; which contains the origin in its closure, ¢ (fx; K') = 0.



MODEL CLASS

Further, A'(6; K;) and ¢ (6; K') are affine,

Ny
Al(Or; K1) := AG(K) + ) ALK
j=1

Ny
(O K'Y = ch(K') + > (Ko,
j=1

in the elements of the (possibly) time-varying parameter vector 0y = (0 1, ..., 9k7N9)T,
and Ny is the number of parameters. The parameter vector is assumed to
be in a hyper-rectangle (or parameter box)

0= {e = (601,...,05,)" | V)€ I, 0; €0, 1]} — [0, 1],

It may seem restrictive to allow all the parameters only to be in the interval
[0,1] but a simple scaling argument shows that this can always be obtained
(assuming, of course, that the parameter is indeed partially unknown with
known upper and lower bounds). The same scaling argument implies of
course that the parameters’ bounds can be made equal to © in all the local
model validity sets.

The functions defined above are also assumed affine in the controller
parameters K!. In general, K! should be taken as a set of matrices, and will
be defined according to the specific stabilization problem that is considered.

The above difference inclusion could for instance be a description of closed
loop nonlinear and/or uncertain systems with known equilibrium input, with
some piecewise affine controller structure. The state feedback (and the out-
put feedback, if linear output is assumed) closed loop from Slupphaug et al.
(2000) fits this setup, as does the output feedback closed loop of the next
chapter. Also, certain classes of hybrid systems can fit this system descrip-
tion (Slupphaug, 1998).

2.2.2 Set approximations

We have not said anything about the shape of the X;s, and we make no
assumptions about them other that the union of the X;s should cover X,,.
However, we have to outer approximate the X;s to cover them in the synthesis
inequalities to come. This is done in the same manner as in Slupphaug and
Foss (1999).

When formulating the conditions for affine quadratic constrained stabi-
lization, it is sensible to approximate the X;s and the model validity set

17
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(state constraints) X, using polytopes or ellipsoids'. The X;s containing
the origin in their closure are outer approximated by unbounded polytopes,
and are indexed with [ € 1,..., N° the X;s not containing the origin in their
closure are outer approximated either by possibly bounded polytopes and in-
dexed in {N°+1,..., NP} or by ellipsoids and indexed in {N? +1,... , N}.
Note that N¢ is the number of intersection sets containing the origin in their
closure, while NP? is the number of intersection sets outer approximated by
polytopes, and N is the total number of non-empty intersection sets.
Thus, for [ € Ino the polytope

{z | Bz <0} D X (2.3)
is used as an outer approzimation of X;. For [ € {N°+1,..., NP} assume
that the polytope

x
{z| [ B el][l}go}gxl (2.4)

is used, and, finally, for [ € {N? +1,..., N}, assume that the ellipsoid

N ERIHEEE 25

is used.

Often, the sets to be covered will be given as polytopes. If we consider the
sets not containing the origin in their closure, they can be covered by either
polytopes or ellipsoids. Using polytopes will in general be less conservative;
however, more variables are needed when including the polytopic coverings
using the S-procedure, as will be seen. Also, the resulting covering will
in both cases be an ellipsoid. Using ellipsoids as coverings can be seen
as forming them beforehand, saving variables in the synthesis procedure.
Further details on this can be found in Johansson (1999).

Furthermore, assume that the state-space model validity- and constraint
set X,, is inner approzimated as follows?

0Oe N {z[flz- ielll,, <1} C X, (2.6)

Ngz

i.e. by an intersection of ellipsoids where x; . are the centers of the ellipsoids,
and Ny, is the number of ellipsoids.

'If tighter approximations are needed, one can use unions of polytopes or ellipsoids.
This extension is trivial (Slupphaug, 1998).

*||z||y == VaTHz, H > 0.
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Note that any of the outer approximations (2.3), (2.4) and (2.5), exists
for any set, and that they are the natural outer approximations to choose
when formulating LMI problems for piecewise linear (and affine) systems
(Hassibi and Boyd, 1998, Johansson, 1999).

The inner approximation (2.6) exists for any X,,, with the origin in the
interior, and the origin can and should be placed in the interior of each of
the intersections.

2.3 Affine stability and synthesis inequalities

2.3.1 Stability definition

We will use the following stability notion; see e.g. Slupphaug and Foss (1999)
and Scherer and Weiland (1999) for similar definitions.

Definition 2.1 (Affine quadratic stability) Given the system
Tyl = A(Qk, xk)xk + C(Qk, xk), (27)

where k € N, 2, € X,,, C R", xg given and c(0y,0) = 0 for all 6, € © C RNo,
Define the (affine) Lyapunov matriz function P(0x) = Py + Zj\f:el Ok, Pj.
The origin is an affinely quadratically stable equilibrium for the system
(2.7) if there exists a domain D C X,, and symmetric matrices M > 0,
Py, Py, ..., PN, such that for all x;, € D, 0,041 € O

(A(Gk, xk)xk + C(@k, xk))TP(GkH)(A(Qk, .%'k).%'k + C(@k, .%'k))
— x) P(Op)zy < —x) Mxy, (2.8)
P(0y) > 0. (2.9)

If, in addition, there exist scalars ap, o, ..., an, defining the affine function
a(f) == ag + Z;V:‘gl Oja; > 0 for all 0 € © such that for a given set Ry,

RacC {xEIG €0,z  P0)r < a(@)} c D,

then the origin is said to be an affinely quadratically stable equilibrium for
the system (2.7) with a region of attraction associated with R4 of at least
{z|30 € ©,2TP(0)z < a(0)}.

19
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2.3.2 Synthesis inequalities

Next we derive LMIs subject to a spectral radius constraint on the prod-
uct of two positive definite matrices (a specially structured BMI) for affine
quadratic stabilization of the origin of (2.1). We use a quadratic parameter
dependent Lyapunov function, which is more general than using a quadratic
Lyapunov function that does not depend on the parameters. This will
make the current approach less conservative (in the state-feedback case)
than Slupphaug and Foss (1999) where a parameter independent Lyapunov
function was used. This theorem is a slight generalization of Theorem 3.1
presented in Slupphaug et al. (2000).
In the following result we will need the affine functions:

Ny
who) =Wl +> o,W!
j=1

Ny
7H(0) =1L + Z HjT]l-
j=1

Ny
B80) =0+ 0;8;

J=1

Ny
p(O) =ph+ Y O
j=1

The st are symmetric matrices whose dimension are the row dimension of
the corresponding Ejs, named ng,. The T]l-S, Bjs and ,ué-s are scalars. The
smallest acceptable region of attraction is specified by the positive definite
matrix R4, such that this region is given by the ellipsoid ||z||z, < 1. In the
following (and in Chapter 3), the symbol R4 will refer to both the matrix
and the region. The meaning should follow from the context.

Theorem 2.1 Let ©y be the corners of the parameter box ©, i.e. Oy =
{0, l}N". Then, if AM > 0 symmetric matrices {Pj}jy:eo, S, matrices of ap-

Ny Y VP Ng YN
- - - A A NN
propriate dimensions {{W]} } , {{Tj} ' } and {K'};, such
J=0)1=1 3=0J 1=Npr41
that V1l € Ino,0 € O

>0 (2.10)

S AL9; K
[ *x P0)—M—E'W'0)E, }
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Vie {N°+1,...,NP},0 € O

S ALG; KY d(; K
x PO)—M—E'WYOE, —E'W'0)e, | >0 (2.11)
* * —e] W' (0)e

Vie {NP+1,...,N},0 € ©g

S AL0; K (0; K
x PO)—-M+7H0)E 740)e | >0 (2.12)
* * 7H(0)¢
Vo € O
0< PO <S! (2.13)

and ¥l € Inp,0 € Og
W) e R (2.14)

then the origin is an affinely quadratically stable equilibrium for the closed-

loop system. If, in addition, there exist reals {aj}jy:eo and {ﬁj}jy:eo such that

Vo € ©g

P6) — B(O)R4 0 ]
<0 2.15
05 8(6) — (o) | = (215)
Ve
and reals 1% such that Vvl € Iy _,0 € O
J jZO lEIN qac
qx
l l
w(0)H; . — P(0) —u (0)Hy oz e
’ ’ bl < .

[ * ,ul(H)(acICHl,xxl’C —1D+a®) | — 0, (2.16)

then the origin is an affinely quadratically stable equilibrium for the closed-
loop system with a region of attraction associated with {z| ||x|\?%A <1} of at

least {30 € ©,2 T P(0)x < a()}.

All x are to be induced by symmetry. The proof of this Theorem is simi-
lar to and along the same lines as the proof of Theorem 1 in Slupphaug and
Foss (1999), the main differences being that we have a parameter depen-
dent Lyapunov function and S-procedure variables, and use multi-convexity
arguments (Gahinet, Apkarian and Chilali, 1996). The proof is essentially
the same as the proof of Theorem 3.1 in Slupphaug et al. (2000), but there
Al(Oy; KY) and ¢! (0y; K') were also allowed to depend on ) quadratically.

21
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Proof. By Definition 2.1, the origin is an affinely quadratically stable
equilibrium for the closed loop if IM > 0, {Pj}jy:go and {K'} |, such that
VI € Ino,xp € Xl,Hk,HkH €06

.
{Al(Gk;Kl):ck} P(Oys1) % —z] P(O)zx < —a) May (2.17)
Vi e {No—i-l,...,N},.%'k S Xl,Hk,HkH €0

{[ A0 KN (O K') | [ xlk HTP(%H)*

[ 0 2l = (3T T 3] e
and V0, € © - o19)

Next, by using the S-procedure to cover the different X;s (see Slupphaug
(1998) for details, we here extend the S-procedure in a natural way by us-
ing parameter dependent S-procedure variables), we get that (2.17 )-(2.19)

N Ny 1V Ny VN
are implied by 3IM > 0, {P;}.” Wt 7t and
i ' PR Hi=0) 1 7 i=0}i=nr 1

{Kl}{il, such that VI € Ino, a € R™, 0,01 € ©
T
{Al(ek; Kl)a} P(Oyi1) % —a  P(0p)a+a' Ma+a" Ef W' (0,)Ea < 0
Vi€ {N°+1,...,NP},a € R" 0,004 € O

{[ A0 KV (0 KY) ] [H}Tp(o,m)*
R IHEHEEIN
+[§L}T[EZTT}WZ(91€)[E1 61][?]§0

€
andVlE{Np+1,...,N},aE]R”,Hk,ﬁkﬂ €0

{[ Ay K (O KY) ] [”}Tp(o,m)*
R IHEHEEIN
i

SILEBIRE
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Vo, € ©
P(ek) >0
Vie Inv, 0, € ©
w(6;) € R}
and VI € {NP +1,...,N},0, € ©
Tl(Gk) >0

Usingthefauctthat[,zT 1]@[ T 1] >0 z@Q>0 this is

equivalent to 3IM > 0, {P; }j o {{ } { } and
I=NP41
{KW |, such that VI € Iyo, 0k, 041 € O

.
(Al(ek; Kl)) P(O1) % —P(0y) + M + E WY 0,)E, <0 (2.20)
Vi e {N0+1,...,Np},9k,9k+1 €0
[ A6 K (0 K1) ] P(Ogia)*

[ [ [ et wico e

and VZE{NP+1,...,N},9k,9k+1 €0

[ A6y K'Y (0 K1) ] P(Ori)*
- [ P®) 0 } + [ M0 } — 763 [ Er e } <0 (2.22)

0 0 0 0 € €
and V0, € ©
P(ek) >0
VI € Invp, 0, €6
w(6y) e R

and Vi€ {NP +1,...,N}, 0, €0

Tl(Gk) >0

By applying Schur complements on equations (2.20)-(2.22) (note that
necessarily 7/(0)) > 0 since P(6;) > 0 and ¢ > 0), introducing a new sym-
metric matrix variable S, and noting that (see Horn and Johnson (1991,
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Corollary 7.7.4)) 0 < S < P(041) ! & 0 < P(0ky1) < S71, this is equiva-

N Ny 1N N VN

lent to IM > 0, {P;} 7,5, {{W;} } , {{T;} } and {K'}Y,
J=0) =1 J=0) —Np41

such that VI € Ino, § € ©3

S Al(ﬁk;Kl)
[ x P0)— M- E'W'0)E, 20 (2:23)
Vie {N°+1,...,NP},0 €O
S AL0; K (0; K
x P@O)—M—-E'WY{0)E, —E/W'@)e, | >0 (2.24)
* * —e] W (0)e
Vie {NP+1,....N},0 €©
S Al(0; K (9; K
x PO)-M+7HOE 10 | >0 (2.25)
* * ()¢
Vo € ©
0<P@B) <S! (2.26)
and that VI € In»,0 € ©
wl(o) e R (2.27)

Now, all these matrix inequalities are parameterized in the continuous
set ©. To get a finite number of matrix inequalities, we find conditions that
allow us to replace © with the finite set ©¢. One such condition is that the
matrix inequalities are multi-conver® in the parameters (Gahinet et al., 1996,
Lemma 3.1), (Apkarian and Tuan, 2000a). Multi-convex essentially means
“convex in each of the parameters” in our case, where O is a hyper-rectangle.

If the matrix inequalities are affine in the parameters, then they are
always multi-convex, meaning that we can replace © with ©y without con-
servatism, and the first part of the theorem follows.

The last part follows from Slupphaug and Foss (1999) and a similar
argument (based on affinity in the parameters and multi-convexity) as above.
]

3Since the equations containing both 6 and 6,1 now become decoupled, we replace
O € © and 0,41 € O with § € ©. It is also noteworthy that this is the step where
one looses the possibility to exploit explicitly given bounds on the parameters’ rate-of-
variation.

4Here, we need that the matrix inequalities are multi-concave. The conditions for this
are obtained by reversing the signs in the conditions for multi-convexity.



SOLVING THE BILINEAR MATRIX INEQUALITIES

In the state feedback synthesis result of Slupphaug et al. (2000), the
affine difference inclusion in local model validity set | was on the form

Tpr1 = A Op)z + B0y )ur + & (0)
with the affine state feedback
Up = IN(lxk + l%l,

and A'(; K') and ¢/(0; K') becomes

with K = {K' k'}.

The reduced order output feedback synthesis matrices in Slupphaug et
al. (2000) are more involved (also due to the fact that when we have only
output information, we cannot in general be sure which local model validity
set the state is in, see Section 3.3), and are omitted.

With the exception of (2.13), the inequalities in Theorem 2.1 are LMIs,
which means they are convex. However, (2.13) introduces non-convexity,
but this non-convex part has much smaller dimension than the convex part,
which can be exploited when developing solvers. A global solver for this
type of inequalities (BMIs) is developed in Tuan, Apkarian, Hosoe and Tuy
(2000), and implemented in Slupphaug (1998) on a very similar synthesis
problem as herein. However, solving a non-convex optimization problem
globally rapidly becomes intractable as the number of optimization variables
increases, which is why in many cases, resorting to local solvers is the only
viable choice.

Some (local and global) solvers reported in the literature, are El Ghaoui
and Balakrishnan (1994), Goh, Safonov and Papavassilopoulos (1994), El Ghaoui
et al. (1997), Tuan et al. (2000), Apkarian and Tuan (2000b), Fares et al.
(2001). Here we present an adaption of the solver in Fares et al. (2001) to
the synthesis inequalities given in Theorem 2.1.

2.4 Solving the bilinear matrix inequalities

The non-convex synthesis problem presented herein is very similar in struc-
ture to the problem of rank minimization subject to LMI (convex) con-
straints, which has received substantial attention the last few years. There
are reported both local and global solvers to this problem (see e.g. Apkar-
ian and Tuan (2000b) and the references therein), and most of them have
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in common that they are based on efficient algorithms for solving semidefi-
nite programming (SDP) problems (for instance, Nesterov and Nemirovskii
(1994)).

The local solver we will utilize, is a slightly modified version of the one
presented in Fares et al. (2001). The optimization problems therein are on
the form

min-y
st. P=Q! (2.28)
T € Xpmr

where z = (v, P,Q) and x € Xy mean that x should satisfy some LMI
constraints involving = (that is, X7 is convex). These optimization prob-
lems occurs in e.g. fixed order H.,-synthesis, various robust quadratic per-
formance problems, and gain-scheduling, see e.g. Gahinet and Apkarian
(1994), Scherer (2001). A non-exhaustive list is provided in Apkarian and
Tuan (1999).
The non-convex part of the synthesis inequalities presented herein, is on
the form
VOc O, 0<P) <SS (2.29)

which is similar to (2.28). Since P is affine in 6, this is equivalent to

P(6y) S -

P:: < = S_l
P(Oyn,) S

where 01, ...,0,n, are the “corners” of the hyper-rectangle ©. This can be
made an equality constraint by adding a “slack™variable® A > 0,

P+A=5"1

Having established this, we can adapt the method in Fares et al. (2001).
They call this method sequential semi-definite programming (SSDP), and
it enjoys many similarities with sequential quadratic programming (SQP),
see e.g. Nocedal and Wright (1999). The key idea is to form an augmented
Lagrangian function for the BMI problem in Theorem 2.1:

A ~ C A ~
e, A) =7+ D Mi((P+A)S = D)ij + 5 Y (P+A)5 -1
i i

=y +trA(P+A)S — 1) + gtr [((P +AS - DT((P+A)S 1)

A should be taken as block-diagonal, with the same structure as P.
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and minimizing this function with respect to x = (15, S,A,v) subject to
x € Xppr. Here, Xpasr is the convex set given by the LMI constraints speci-
fied in Theorem 2.1. The minimization is done by sequentially approximating
the augmented Lagrangian function by a second-order Taylor expansion and
minimizing this by solving an SDP-problem in z, while updating the La-
grange multiplier A and the penalty parameter ¢ in a “smart” way at each
iteration.

At each step (), the next step (1) is found by use of a (backtracking)
line search method (see e.g. Nocedal and Wright (1999)),

where a € [0,1] is a scalar step-size, and p@ is the search direction at
iteration ¢. The search direction is found from the following SDP problem,
corresponding to a minimization of a quadratic approximation of ®. at 2@

mint
t— VP, (z, AD)Tp) ()"

p® (V20,5 (2, AD)) -1
2@ +p e Xpyy.

>0

s.t.

Note that since X/t is convex, 2+ ¢ X1 since 2 e Xy, x(i)—i—p(i) S
Xryvr and a € [0,1]. The expressions for the gradient and Hessian are
developed similarly to Fares et al. (2001), see Appendix A.

The SSDP method has good convergence properties. For a discussion of
these, we refer to Fares et al. (2001).

2.5 Discussion and some concluding remarks

Synthesis inequalities for synthesizing controller structures (which typically
are piecewise affine) for affine quadratic stability of systems described by
piecewise affine difference inclusions are given. In addition to making the
closed loop robust for the modeled uncertainties, the synthesis procedure
can take constraints into consideration by adding some extra LMIs. This
can be done as in Slupphaug (1998), Slupphaug et al. (2000), and will be
used in the next chapter.

The proposed synthesis method has some drawbacks related to conser-
vativeness. Firstly, the uncertainty description might be conservative (take
non-existing dynamics into account). However, the representation allows for
tighter bounds than linear (or piecewise linear) uncertainty descriptions.
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But the main drawback is that the approach relies on finding a com-
mon quadratic Lyapunov function that decreases in all local model validity
sets. That is, the procedure does not exploit the fact that the dynamics on
these known sets might be significantly different. Methods that do take this
into account exist, see for example Johansson (1999) in the analysis case,
and Rantzer and Johansson (2000), Ferrari-Trecate, Cuzzola, Mignone and
Morari (2001) in a control setting. These control approaches do, however,
only consider piecewise linear state feedback.

In addition to this comes the non-convexity of the resulting synthesis
inequalities, which also can lead to conservativeness since a solution might
not be found, even when one exists.

A solver for the synthesis bilinear matrix inequalities is given, as an
adaption of a solver presented in Fares et al. (2001). The solver is of sec-
ond order, which means that it uses the (exact) Hessian of the augmented
Lagrangian function. Our experience is that the solver behaves well when
starting reasonably close to an optimum and that it finds solutions to some
problems where first-order solvers fail. A first-order solver based on Apkarian
and Tuan (2000Db) is used for providing a good starting point for the second-
order solver. This concave-programming based gradient-algorithm converges
quickly (often only one iteration is required) to a solution relatively close to
an optimum, but it requires a large number of extra LMI-variables. As is
common for gradient-methods, it is prone to zigzagging when approaching
the optimum.



Chapter 3

Robust Output Feedback Using
Piecewise Affine Observers and
Controllers

The synthesis result presented in Chapter 2 is used to develop synthe-
sis inequalities for a piecewise affine observer-based controller struc-
ture. Two approaches are presented: First, a rather direct application
15 given as a combined synthesis of controller and observer. Second, a
separated approach is adopted to split the synthesis problem into two
smaller synthesis problems. It is shown that the separated approach
can handle a larger system class.

A large part of the contents is based on Imsland et al. (2001c,d). An
early version of the content in Section 3.4 was presented in Imsland
et al. (2001e).

3.1 Introduction

A common approach to the output feedback stabilization problem is to design
an observer to obtain an estimate of the state, and then (independently)
design a state feedback controller using the estimated state. This certainty
equivalence approach, using an estimate of the state instead of the real state,
is a successful approach in the case of linear systems. This follows since using
linear state feedback coupled with a linear state observer results in global
asymptotic closed-loop stability as long as the observer-error dynamics and
the closed-loop process under pure state feedback are asymptotically stable.
In this case the separation principle is said to hold (Khalil, 1996), since the
assignment of the closed loop eigenvalues can be carried out as separate tasks
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for the state feedback and observer problems.

For nonlinear systems, it is possible to establish separation principles that
either gives (only) local stability (see e.g. Scokaert, Rawlings and Meadows
(1997)), or obtains regional results for specific classes of systems. As an
example, Atassi and Khalil (1999) shows that the performance (including
asymptotic stability and region of attraction) of a globally bounded state
feedback control of a certain class of nonlinear systems can be recovered
using a sufficiently fast high-gain observer. Despite this, the lack of a global
separation principle for general nonlinear systems suggests that designing
state feedback for use with a state observer for a nonlinear system, should
not be done independently, but one should analyze the nonlinear system with
the (nonlinear) observer as one system.

In Slupphaug et al. (2000), the authors approached the output feedback
problem using a (reduced order) piecewise affine static output feedback (and,
by augmenting the state, also dynamic output feedback) for constrained
nonlinear discrete-time systems. The associated bilinear matrix inequality
feasibility problem has proved hard to solve, thus motivating us to con-
sider an observer-based controller structure - more specifically, a piecewise
affine observer-based controller structure. Besides the well-proven success of
observer-based output feedback, an additional motivation is that structuring
the dynamic part of the controller this way, can be viewed as limiting the con-
troller parameter search-space in comparison to the approach in Slupphaug
et al. (2000).

A similar approach as the one herein is presented in Rodrigues and How
(2001), where observer-based control of piecewise affine continuous time sys-
tems is considered. However, constraints and robustness to model uncer-
tainty are not directly considered therein. The approach taken to solve the
resulting BMIs is the so-called V-K algorithm, which essentially splits the
non-convex optimization problem into two convex parts, and iterates between
the two.

The (first) approach taken herein is to simultaneously search for a piece-
wise affine observer-state feedback and a piecewise affine observer output
injection that stabilize the composite system, taking constraints into consid-
eration. For a general class of uncertain nonlinear discrete-time systems and
a general class of observers (Section 3.2), Section 3.3 develops synthesis ma-
trix inequalities (based on Theorem 2.1) whose solution gives gain matrices
used in the controller and the observer. The resulting matrix inequalities in
this combined synthesis are rather complex, hence it is shown in Section 3.4
how to split the synthesis problem into one state-feedback and one observer
synthesis problem. This separated synthesis reduces the overall complex-
ity considerably. As could be expected, a straightforward separation gives
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only local stability guarantees. It is shown that by using information from
the state feedback synthesis in the observer synthesis, regional closed loop
stability is obtained.

In Section 3.5 the approach is illustrated with a simple example. A
slightly more realistic example is also included, to illustrate further features
of the output feedback structure.

In the following, variables with superscript s (or no superscript) are as-
sociated with the description of the nonlinear system to control. Variables
with “hat” or superscript o are tied to the observer.

3.2 System and observer models

We will consider quite general nonlinear state space models and observer
models, that will be represented by a piecewise affine difference inclusion in
order to fit the synthesis framework to be presented later.

3.2.1 System class and piecewise affine encapsulation

The system to control is a discrete time uncertain nonlinear system with an
uncertain output mapping, described by

Trpy1 € .7:($k,uk,\11) C R" (31)
Yk € g(l‘k,\lj) - RT,

where

F(z,u,¥) :={z" |zt = f(z,u, ) for some ¢ € ¥}
G(z, V) :={yly = h(x, ) for some ¢ € ¥} .

We will assume that the system is constrained, that is, the allowed values for
the inputs and states are up € U C R™ and zp € X C R”, respectively. We
will also call these sets the model validity sets, and they contain the origin
in their interiors. We assume that f(0,0,-) = 0 and A(0,-) = 0, thus the
equilibrium input is assumed known. This, in principle, excludes systems
for which integral control is needed, but by way of example, we will see that
integral-like controllers in some situations still can be synthesized with this
procedure.

The above system class is large, but will be restricted by the class of
uncertainty models that will be used. However, it should be noted that
discontinuities are allowed except at the origin, where both f and h should
be Lipschitz continuous. We will assume that the dynamics of this uncertain

31



3. RoBusT OuTtruT FEEDBACK USING P-A OBSERVERS AND CONTROLLERS

32

system can be encapsulated by a difference inclusion of local affine models,
ie.

F(x,u, V) C My (7,u,0%), Vo € X,u e U (3.3)
G(x,¥) C Hiy)(z,0%), Vo € X.

Here, i(z) := {i € Iy, |r € X}F} with Iy := {1,...,N}. The set X} is local
model validity set i, which is the part of the state-space in which uncertainty
model i is valid. The local model validity sets will without loss of generality
be taken as non-overlapping (hence i(x) is a singleton). Further, they shall
exactly cover X, ie. X = Uiern, XiL, where N7, is the total number of local
uncertainty models (and associated validity sets). The M;s and H;s are
defined by

M;(z,u,0%) = {2730 € ©°, 2" = A'(O)z + B (O)u+ ()}  (3.5)
Hi(z,0%) = {y|30 € ©%,y = C*(O)z + d'(0) } , (3.6)

where the involved matrices are affine in the parameter 6, i.e. A'(f) :=
Al + Zjvjl A;Gj, and analogously for Bi(6), ¢/(9), C*() and d*(f). The
parameter i denotes in which subset (local model validity set) of the state-
space the matrices are valid. Further, § = (64, ... ,HNg)T € ©° is the possibly
time-varying parameter vector and N is the number of parameters. The
parameter vector is assumed to be in a hyper-rectangle

0% = {9: (01, On;) | Vi € Ing.0; € [0,1]}.

A procedure for obtaining this uncertainty description from a given non-
linear ODE with uncertain parameters is given in Slupphaug et al. (2000).
If the uncertainty description is obtained by upper and lower bounding each
element of the uncertain state transition map, F, and output mapping, G,
see Figure 3.1, then typically the number of parameters is Nj = n +r, i.e.,
the dimension of the state and output vector. But note that if some elements
of F or G are linear, Ny will be smaller, as will be illustrated in the examples.

For the Npg < Np local model validity sets that contain the origin in
their closure, the “affine terms” (c(6) and d*(6)) are identically zero. This
ensures a well defined equilibrium at the origin, and is possible since it is
assumed that f(0,0,v) =0 and h(0,) =0 for all ¢ € V.

We also define non-overlapping local output sets, YjL, J € In,. These
partition the output space Y, and are used for defining the piecewise affine
observer output injection structure. By assuming that output constraints
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Figure 3.1: Illustration of the uncertainty modeling. The shaded area is ac-
counted for in the controller synthesis. e and ¥, should be taken
as the “extreme” values of the uncertainty parameter, i.e something like

Ymaz (T, u) = argmaxypew f(z,u, ).

are mapped to the state space, there is no loss of generality in construct-
ing VY = UjeIMLYjL = R". This automatically ensures that the piecewise
affine observer output injection to be constructed is well defined. Also define
Mo < My, the number of local output sets with the origin in their closure.

3.2.2 Observer class and piecewise affine encapsulation or
representation

We assume a full state model-based observer with an “observer correction
term” vy,

Tpy1 = [O(Th, ur) + vk
Uk = 9°(ZTx),

defined for 4, € X C R"”, wu, € U and v, € R™ A natural choice for the
observer model is a nominal nonlinear model of the system to be controlled,
e.g. for,u) = f(z,u, ¥nom) and ¢°(x) = g(x, Ynom) Where Yo, is a nom-
inal value of the uncertain parameter vector ¢, since a small model error is
a good basis for observer design. It should be noted, however, that there is
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no assumption that requires the observer model to be within F(z,u, ¥) and
Gz, 0).

To develop the synthesis inequalities, we need to represent the dynamics
of the observer using local affine parameter-varying models. This can be done
by encapsulating the dynamics (as done for the nonlinear system equations
above) by an affine difference inclusion

fo(,u) € Ma(@)(i’,w@o), Vie X,uelU
9°(%) € Hys)(2,0°), Vi € X.

The i(2), Iy, X'ZL, Ai(0), ©° etc. should be defined as for the system, see
section 3.2.1.

By encapsulating the nonlinear dynamics of the observer using this differ-
ence inclusion, we implicitly take into consideration “non-existing” observer
dynamics (since we in principle know the observer dynamics exactly). De-
pending on how many local model validity sets we choose to use, and how
close the encapsulation is, this will introduce a varying degree of conservatism
and complexity (i.e, synthesis problem size).

If we choose a piecewise affine observer model,

fo(&,u) = A@ g 4 B@)y, 4 @)
§°(#) = C'Dg + 7@

we can account for the exact observer dynamics, and the resulting complex-
ity will be significantly reduced. This observer model can for instance be
obtained by an piecewise affine approximation of a nominal model. Note
that an approximation can be made arbitrarily accurate by using many local
model validity sets. This observer model can be viewed as the special case
of the above with Ny = 0.

3.3 Output feedback controller synthesis

Based on the models above, we will develop synthesis inequalities parame-
terized by matrices defining a piecewise affine observer-state feedback and
an observer output injection. Feasibility of the inequalities will imply that
the feedback and observer correction structure will exponentially stabilize
the given uncertainty class for the defined uncertainties.

Let j(y) := {j €Iy, lye YJL} When the dependence on the arguments

is understood from the context, we will write 7, 2 and j for i(z), (%) and
j(y), respectively.
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3.3.1 Feedback and observer injection structure

The control u; and observer correction term v, are chosen to be affine func-
tions of the observer state Z; and the system and observer output y; and

Uk

up = Klig + kL (3.7)
v = K (yk — ) + K (3.8)

The feedback matrices (K and k) are chosen based on which subset XZL the
observer state &y is in (hence superscript 7 = i(#y)). The observer matrices
can be based on which of the local output sets YjL, j € Iy, , the output yy

is in, or by choosing them based on which subset XZL ; 1 € INo the observer
state % is in (i.e. replace j with 7). The latter approach can be seen as
the most natural, and will, as will be seen, typically simplify the procedure
of constructing the synthesis inequalities considerably. Nevertheless, the
synthesis inequalities will be presented using the former approach, since this
is the most general, and to keep notational compatibility with Slupphaug et
al. (2000).

For the XZLS and the YjLs containing the origin in their closure, k! and
k3 (or k1) are zero.

Note that other feedback /observer structures that are affine in yy, 25 and
yr. can be chosen, and will result in similarly structured matrix inequalities.

3.3.2 Closed-loop dynamics

To guarantee closed-loop stability, we need to consider the closed-loop dy-
namics consisting of both the real state and the observer state, or equiva-
lently, the real state and the observer error.

Inserting the feedback and observer correction terms into the affine parameter-

dependent “open-loop” equations describing the system and the observer, we
obtain the closed-loop dynamics, for xj, € Xl-L7 Iy € XiL and yi € Y].L, and
for some 67 € ©° and 07 € ©°,

[ Tkt ] —A (Kg,f(g;ek) { Tk ] +c(k§,Kg,kg;0k) (3.9)
Tk+1 T
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with
o = (e,;)T )7 1"
(o) [ 1000 T4

0’770

¢ (K, K3, k5504) 1= | & (0;) } + [ B0
(6 K

? } K7 (di(eg) - d“@(eg)) + [ ? } k.

Importantly, these matrices are affine in both the uncertainty parameters,
and the feedback/injection matrices. Note that the same is true for the
dynamics when using the state and observer error as the composite state,

since
T . I 0 Tk
T, | | I I T |-

3.3.3 The subsets of the state-space with the same observer
and feedback

For use in the stability analysis, we need to identify subsets of the total
state-space where the same observer and feedback matrices are used.

We have the local model validity sets XiL,z' € In,, the local observer
model validity sets X'ZL,i € In¢ and the local output sets YjL,j € Iy,
covering the state-space, X, observer state-space, X and output-space, Y,
respectively. We will define subsets X;;; on X x X such that, loosely speaking,
the closed-loop dynamics on Xj;; is associated with open loop dynamics M;,
observer dynamics M,; and observer state feedback i and observer output
injection j. These subsets will be called intersection sets, and the union of
all of them will exactly cover X x X since Y covers all the possible outputs
from X. The intersection sets may be overlapping.

Formally, the intersection sets Xj;; are given as

Xy = (Xf N {xyae € 0% s.t. O (9)z + d'@ () € Yf}) x XE.

This is illustrated in Figure 3.2. Note that these intersection sets will in
general not be “nice” (polytopic, or convex, or both) even if the local validity
sets are “nice”. This is due to the multiplication of the states and parameters
in the output model.
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Figure 3.2: Illustration of the intersection sets

When choosing observer matrices based on the observer state instead of
the output (i.e, using K, k! instead of K3, kJ), the desired subsets are no
longer intersections, but simply defined as

_ vL oL
Xii = XZ X X’Z )

which typically are much simpler to handle (X;; will have the same properties
as X} and XZL)

In the rest of this section, we will call these subsets intersection sets
and refer to them with Xj;; (for reasons explained above), but they can
everywhere be replaced by X;;. These sets will form the basis for using the
S-procedure when deriving the stability conditions for the closed-loop.

3.3.4 Set approximations

To represent the sets X;;; in an appropriate way in the synthesis inequalities
to come, we need to outer approximate them with either ellipsoids or poly-
topes. This is done as in Slupphaug and Foss (1999), but we briefly repeat
it here for completeness. The Xj;;s containing the origin (i.e, the origin of
both the state space and the observer state space) in their closure are outer
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approximated by unbounded polytopes! {¢|E;¢ < 0}, and are indexed with
[ € Ino, the Xj;;s not containing the origin in their closure are outer approx-
imated either by possibly bounded polytopes {{|Ei§ + e¢; < 0}, and indexed
in {N°+1,..., NP}, or by ellipsoids {¢| [ €T 1] [ le : } [ ’f ] < 0}, in-
dexed in {NP+1,..., N}. With this indexing, for eac}l1 [ there exists a unique
triple (4,7, j) which will be called (i, 7, j;), thus intersection set number [ is
Xi,3,5,- Note that N is the number of intersection sets containing the origin
in their closure, while NP is the number of intersection sets outer approxi-
mated by polytopes, and N is the total number of non-empty intersection
sets.
The total state-space X x X is inner approzimated as follows?

0 N {E]llE—&ellfy, <1} c X x X, (3.10)
l€lN,, <

i.e. by an intersection of ellipsoids where §; . are the centers of the ellipsoids,
and Nge is the number of ellipsoids. Similarly, we assume

0 N {ulllu—upl} <1} cCU, (3.11)
PEING, pou

where U is the control model validity- and constraint set, u, . are the centers
of the ellipsoids, and Ny, is the number of ellipsoids.

3.3.5 Combined synthesis based on quadratic stability

Our goal is to specify matrix inequalities whose feasibility imply that the
origin of the closed-loop system is affinely quadratically stable, see Defini-
tion 2.1. Briefly, it means that a quadratic, affinely parameter-dependent,
Lyapunov function V(z) = 2z P()z (z is the composite state, see below)
exists, and that the region of attraction is larger than a given ellipsoid R4.
Note that the affine quadratic stability of (3.9) implies that the origin of the
nonlinear system (3.1) with observer based output feedback is exponentially
stable.

It is common in observer design to use the error variable xy := x;—2; and
design an observer for convergence of Ty, T — 0 (i.e., ) — x). Stability of
the origin in the variables z = [ xg icg ]T is equivalent to stability of the

. . T 1T . . . .
origin in the variables z = [ xg xg ] , since there is a (linear) non-singular

'In this section, ¢ will be denoting a variable in the combined state/observer state-
space, £ € X x X.

*||z||y == VaTHz, H > 0.
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transformation between the two representations. The synthesis inequalities
can be specified for both choices. Note that even though the stability analysis
might be performed in the (z,Zy)-variables (i.e., the Lyapunov level sets
are subsets of the (xy, Zj) state-space), it is sensible to cover the subsets X;;;
in (z, &)-coordinates, since the models and the intersection sets typically
are specified in these coordinates.

In the following result we will need the affine functions defined by

Ny

a(f) :=a, + ZHjaj , a € {P,a,Wl,Tl,ﬁ,ul}.
j=1

The W]l-s are symmetric matrices whose dimension are the row dimension of
the corresponding Ejs, defined by ng,. The ays, le.s, Bjs and uzs are scalars.

Further,
1 0 I 0
Q:[OI]OTQ:[I —I]

depending on if Ry is given in the (zy,&x)-coordinates, or in the (xy,Zy)-
coordinates, respectively. We will use 6 for 65, € © := ©° x ©° C RN,
Np := Nj + Ng.

Theorem 3.1 Let ©g be the corners of the parameter box ©, i.e. Oy =
{0,1YY¢ . Then, if IM > 0, symmetric matrices {Pj}jyz"o and S, matrices

of appropriate dimensions {Ksi}ﬁizl, {ké}ij\ENgOH; (KD (k)M

Jj=1 J=Mpo+1’
N, ) N7 N, YN
{{WJZ}G } , {{T]l}e } such that ¥l € Ino,0 € ©g
J=0) =1 J=0) j=Npr41
s QA (Kgl’Kgl; 9) >0 (3.12)
x QTPO)Q— M — EfWYOE | — '

Vie {N°+1,...,NP} .0 €O

S OA (ng,Kgl; 9) Oc (kgz,Kg'l, el 9)
x QTPOQ—-M—E W (O)E,  —E W 0)e >0 (3.13)
* * —e] W (0)e

Vie {NP+1,...,N},0 € O

S QA (Kgl,Kgl; 9) Oc (kgz,Kgl, el 9)
x QTPO)Q— M+ (0)E, ()¢, >0 (3.14)
* * (0)¢
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Vo € O
0< P <SSt (3.15)

and ¥l € Inp,0 € O
wl() e RT

then the origin is an affinely quadratically stable equilibrium for the closed-
loop system (implied by (3.12) and (3.15)), and the Lyapunov functzon is
decreasing everywhere in X X X. If, in addition, there exist reals {ozj}

and {f3; }j:“’o such that V8 € O

PO) - B@Rs 0
[ 0 8(6) - a(0) ] =0 (3.16)

N,
and reals {{,ué }]j } such that Vi € Iy, ,0 € ©g
- lEIng

[ p(0)Hye — QT P(0)2 — ' (0)Hy ¢ 0
* pH(0) (& Higbie — 1) + a(0)

then the origin is an affinely quadratically stable equilibrium with a region
of attraction containing {z| HzH%A < 1} of at least {z|30 € ©,2" P(0)z <

a(6)}. -

All % are to be induced by symmetry. Note that these matrix inequalities
are all LMIs, with the exception of (3.15).

The proof is a special case of Theorem 2.1, noting that the model has only
affine terms in # and the matrices specifying the feedback and the observer
injection, and is therefore omitted.

Theorem 3.1 considers (quadratic, regional) stability. However, perfor-
mance can be improved by LMI (convex) optimizations after a feasible solu-
tion to the above inequalities is found. Removing S as a variable (by inserting
S from the first solution), one can maximize (the smallest eigenvalue of) M
improving the speed of the closed-loop exponential convergence.

} <0,  (3.17)

3.3.6 Input constraints

It is rather straightforward to extend Theorem 3.1 to take input constraints
into consideration. This is done by inner approximating U by intersections
of ellipsoids (see Section 3.3.4), and provide conditions that ensure that
up = K!2p + k! is inside these intersections. These conditions can be posed
as LMIs (Slupphaug, 1998, Slupphaug et al., 2000) that can be added to the
inequalities in Theorem 3.1.
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We have to satisfy the control constraints, U, in all the XzLS For this to
be the case, it is sufficient that V(p,i) € In,, x Ing,0 € ©

N N 2
(2 2
[+ k= e

p,u

<1, &eXF (3.18)

>

When outer approximating the XZLS for formulating LMI conditions for
satisfying control input constraints in this manner, it is only sensible to use
ellipsoids (or unions of ellipsoids, not considered herein, see Slupphaug and
Foss (1999). Thus, we assume that

@ [1]'[8 5)1]smo

€

Using the S-procedure and Schur complements on (3.18), we get that the
LMI conditions: ¥(p,1) € In,, x In 37/

Tl7E1‘7E1 Tliél (KT
E - 0 T
*x  l+roa (K —upe) >0
—1
* * H,,
TlvEI; 2 0

imply the sufficient condition (3.18) for satisfying control input constraints,
and can be added to the LMIs in Theorem 3.1. Note that these conditions
imply that the constraints are satisfied for all T3 € X , not only the & inside
the resulting region of attraction.

3.3.7 Reducing conservatism

The synthesis inequalities guarantee a decreasing Lyapunov function in all
the subsets X;;; of X x X. This will introduce unnecessary conservatism and
computational complexity in the cases when some of the X;;; are completely
outside the resulting estimate of the region of attraction, since the Lyapunov
decrease-condition will be ensured for subsets of no relevance for the final
result. The result may be a non-successful termination of the algorithm in
the sense that no feasible solution is found. In this case we may omit subsets
Xy;; that are completely outside the Lyapunov level set. This situation is
sketched in Figure 3.3 (for simplicity, the local output sets are ignored). A
practical consequence of leaving out some subsets X;;; is a reduction of the
number of LMIs.

The argument above can be made irrespectively of which space ((x, Zx)
or (zk,Zx)) the Lyapunov function maps from. Informally, it says that we
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|

AN J AN J/

p

Lyapunov level set

Figure 3.3: Illustration of one combination of X} and XZL which can be
excluded.

may omit LMIs that imply checking Lyapunov function decrease when the
observer state is far from the real state.

Since the estimate of the region of attraction is not known in advance,
one must make an assumption about the size of it and check the assumption
afterwards. However, R4 will give an indication of what it will look like.
One can continue the process by reducing the size of those X;;; that are not
expected to be entirely contained in the Lyapunov level set.

3.4 Separate synthesis of observer and state
feedback

The combined synthesis in the previous section implies that a Lyapunov
function for a system with 2n states must be found. Since the computational
complexity grows exponentially with the number of states, it is important
to investigate whether it is possible to separate the designs, meaning that
instead of solving a problem with 2n states, we solve two synthesis problems
with n states each.

3.4.1 Local results

The first attempt at a separate synthesis consists of two steps:
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1. Synthesize a piecewise affine state-feedback, using the techniques in
Slupphaug et al. (2000). This results in matrices K?, k% for each lo-
cal model validity set i in the state-space. Call the piecewise affine
state-feedback p(zy), and the resulting Lyapunov function Vi (zy; 0y) =
z] Ps(0r)y. The state feedback region of attraction is larger than the
ellipsoid R%.

2. Use this state-feedback as observer state-feedback, with the observer
state-space divided the same way as the system state-space. Then,
inserting this into the closed-loop (3.9), use Theorem 3.1 to design an
asymptotic observer, using ) = [ I —I } This results in matrices

Kg , k3 for each local output set j (or, alternatively, matrices K g, kf)
for each local observer model validity set i.) The resulting Lyapunov
function? is called V,(Zx;0k) = i‘gPo(Gk)i‘k. The “region of attraction”
is larger than the ellipsoid R9.

If input constraints are added to the state feedback synthesis, then the output
feedback controller will respect the input constraints as long as 23 € X.

Using the above observer synthesis procedure, the LMIs for the intersec-
tion sets X;;; which has the origin in the interior, may not be strictly feasible
due to the specific structure of these matrices. Most solvers for bilinear ma-
trix inequalities are based on LMI-solvers that require strict feasibility for
the matrix inequalities. Hence, the problem cannot be solved directly as
stated using these solvers.

To overcome this problem, one can approximate these intersection sets by
bounded polytopes or ellipsoids. Note that these approximating sets cannot
contain the origin, so they cannot cover these intersection sets fully. This
approach is not entirely satisfactorily, since the stability guarantees then are
lost.

The Lyapunov function V,(Zy;0y) found for the observer error in step 2
above, will always be decreasing as long as the sequence (xy, Z) stays within
X x X. But the procedure does not guarantee that this will continue to be
the case, even if the initial state is within the region of attraction for the
state feedback. Hence only local asymptotic stability can be concluded, that
is, convergence holds if the initial observer error and state are small enough.

These issues together make the direct separated approach outlined above
unsatisfying. The aim of the next section is therefore to investigate if we

3Note that the parameter vector 0 in general will have a higher dimension for the
observer synthesis problem than for the state feedback synthesis problem. However, the
parameter vector in the state feedback synthesis problem will be a subset of the parameter
vector of the observer synthesis problem since the latter must consider both the observer
and the system, hence no new notation to distinguish these will be introduced.
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can find synthesis inequalities that give regional stability results, and do not
have the implementational problems described above.

3.4.2 Regional results

The point of using piecewise affine models, is to obtain regional stability
results. If only local asymptotic stability was of interest, one could resort
to local (piecewise, parameter dependent) linear models, in which case the
synthesis inequalities could be formulated as LMIs. Hence, it is of interest to
see what can be done to obtain non-trivial guaranteed regions of attraction
using the separated procedure.

An approach to obtain regional results using additional input uncertainty
in the state feedback synthesis, is outlined in Imsland et al. (2001e). However,
because of the conservative nature of this approach, in addition to a rather
involved implementation, it is not pursued in further detail here.

A more appealing option to get regional results, is to use the Lyapunov
function (i.e, Ps(f) and S;) from the state feedback synthesis to ensure that
the output feedback control law is always making this Lyapunov function
decrease. A naive implementation of this is adding LMIs to the observer
synthesis to ensure that the state feedback Lyapunov function decreases for
all intersections sets X;;;. However, these LMIs turn out to be infeasible by
structure.

A better and less conservative approach is to use one Lyapunov function
for the composite system, much like the approach in Section 3.3. By making
the Lyapunov matrix block diagonal, we can choose the first block to be the
state feedback Lyapunov matrix. That is, choose the Lyapunov function as

V(xg, iy, 0) =z Ps(0)zy, + ) Po(0)dy,

(or, alternatively, substitute Zj with ). Since Ps(f) (and Ss and M) are
given from the state feedback synthesis, it then remains to find P,(6) of
dimension n x n, compared to the 2n x 2n Lyapunov matrix in Section 3.3.
In the theorem below, 2, = [ I 0 ] and Q, = [ 0 I ] or Q, = [ 1 —I]
depending on if R4 is given in the (zy, Zx)-coordinates, or in the (xy,Zy)-
coordinates, respectively. Other definitions are as given in Section 3.3.5.

Theorem 3.2 Let Ps(0), Ss, Ms, {Kg}ij\izl, {k;}iJ\ENZOH be feasible variables
from a state feedback synthesis (Slupphaug et al., 2000). Let ©q be the corners
of the parameter bor ©, i.e. Oy = {O,I}N“’. Then, if IM, > 0, symmetric

matrices {(Po)j};-vﬁo and S,, matrices of appropriate dimensions {Kg}]ﬂiﬁ,

NP N
JMr, e AR Ino 0
{ko}j:MLO+17 {Wj}; ; {Tj}; such that ¥l € Ino,0 €
J=0)1=1 J=0) 1=Np+1
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©o
S, 0 QA (KU, K71:0)
* S, QoA (KU, K71;0) >0 (3.19)
x x QN(P(0)— Mg)Q+Q1(Py(0)— M,)Q— E WH0)E,

Vie {N°+1,...,NP},0 € O

Ss 0 QA (KL K71 0) Qe (K2, K3t ki 0)
* S, QA (K2, K75 0) Qoc (K, K2, k350) |
x % QNP(0)— M)Qs+Q[(Po(0) — M) — E WHO) E, —EWY(0)e, =
* ok * —e W)
(3.20)
Vie {NP+1,...,N},0 € ©g
Sy 0 QA (KU, K13 0) Qe (K2, K2, K] 0)
xS, QA (KU, KJ150) Qoc (K, K7, k5 6) 0
x  x QJ(Ps(9)—M )Qé—i—QT( (9) My)Qp+7H0)E; Tl(H)el
x * H(0)€
(3.21)
Vo € Oy
0< Py(f) < 5,° (3.22)

and ¥l € Inp,0 € Og

1 nNg, XnNg
Wi o) e R,
then the origin is an affinely quadratically stable equilibrium for the closed-
loop system (implied by (3.19) and (3.22)), and the Lyapunov functwn is
decreasing everywhere in X X X. If, in addition, there exist reals {ozj}

and {f; };V:GO such that V8 € Og

QI P(0)Q,+Q] P, (0)2%—B(0)R A 0 ]
s o <0 3.23
[ 0 B(O)-a(b) | = (3.23)
Ny
and reals {{ué} } } such that VIl € Iy .,0 € Og
7=0) 1er
{ ,ul(e)Hl,f_QZPs(G)Qs_QZPo(G)Qo _’ul(e)Hl,ggl,c ] <0
* pH(0) (& Higkre —1)+a(@) | =7
(3.24)

then the origin is an affinely quadratically stable equilibrium with a region
of attraction containing {z| Hz||§%A < 1} of at least {2|30 € ©,2T P(A)z <

a(0)}. -
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A full proof would use the same steps as the proof of Theorem 2.1, and is
hence omitted. The Schur complement step makes use of the equivalence
(under the correct assumptions on the matrices involved)

Ly — M N My + Ly — My Ny ' My >0

)
Ny 0 M
0 Ny M, >0,
M M| L+ Ly

which is used for notational convenience.

Remark 3.1 The variables Ps(0) and Mg can be taken as (free) LMI vari-
ables in Theorem 5.2, provided the LMIs

0 < Py(0) <S;1
(in addition to Ms > 0) are added. Also, {K! ij\g and {ki}i]izNgo+

taken as free LMI variables. This will make the optimization problem larger,
but could be less conservative.

, can be

As for the procedure in Section 3.4.1, if input constraints are included in
the state feedback synthesis, then the output feedback controller will respect
the input constraints as long as Zr € X. One could, alternatively, add the
input constraint LMIs to the second step similarly to Section 3.3.6, but this
will not be pursued in further detail. The same steps as in Section 3.3.7 can
be taken to reduce conservatism.

The advantage of this formulation compared to Theorem 3.1 is the reduc-
tion of parameters in the Lyapunov function (which are the “complicating
variables”, i.e. the variables in the non-convex matrix inequalities (3.15)). In
Theorem 3.1, the number of complicating variables is growing quadratically
in 2n, while in Theorem 3.2, it is growing quadratically in n. This reduc-
tion is of advantage for both local but especially global BMI solvers, which
typically use “branch and bound” in a space of the same dimension as the
number of complicating variables. However, in both approaches, the number
of LMIs grow exponentially in Ny.

Systems with direct feed-through

Since the state feedback parameters and the observer injection parameters
are calculated in two different steps, these parameters can be allowed to
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enter bilinearily in the closed-loop system equations. This fact can be ex-
ploited to expand the system class to systems with “direct feed-through”,
that is, systems where the measurement mapping (3.2) depends on ug, yi €
G(p, ur, ¥) C Higg,)(zr, up, ©°) = {y|30 € ©°,y = C*(O)xy + D' (O)uy, + d'(0) },
and corresponding observer. The closed loop equations can still be written

as in (3.9) with

A (K K2:0.) = [ G ) ] + [ B

+[ ? ] K[ Cigy) —C(6y) +I[ ?_ ] (Di(e,i) —f)f(eg)) Ki[o 1]

; c'(63) 3' (0

(k Ko,k0,9k> I: 62(92) ] + I: Bi(eg)

0 j irpsy _ Pi(go 7 0 g (7 D 0 J

vt (oron - Drep) e | ] | w (o - dop)+| ] |k
which can be used in Theorem 3.2.

3.5 Examples

3.5.1 An unstable nonlinear system

Consider the uncertain constrained nonlinear system

@1(t) = (t)ﬂfl(t)ﬂz(t)
@o(t) = sin(w1 () — Swa(t) + ult)
y(t) = xl(t)
a(t) € [-.1, 3]
lz1 (1) <2, [z2(t)] < 20
lu(t)] < 100

which has an unstable equilibrium at the origin. The objective is to find a
piecewise affine controller/observer structure using the techniques developed
herein that robustly stabilizes the origin for all allowed values of a(t) and
give the closed loop system a region of attraction R4 of at least [:cT :ET] Te
{z|z" diag(1.4,12,.8,5)z < 1}. To this end, the system is discretized using
the forward Euler method and a sample interval h = 0.01. The nonlinearity
is upper and lower bounded by piecewise affine functions for use in the system
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description, while a piecewise affine approximation is used in the observer.
See Figure 3.4.

The derivation of such bounds and an uncertainty model based on them,
is described in Slupphaug et al. (2000). Together with the uncertain param-
eter a(t) this gives models with Ny = 2, in four local model validity sets,
given by

Xkt = {z|0 <z <1}

Xy ={z]-1<2 <0}
X3L ={z]1 <z <2}
Xf:{m\—Qle < —1}.

sin(x)

Figure 3.4: Piecewise affine bounding and approximation.

Combined synthesis

Using the algorithm in Section 2.4, the controller and observer parameters
shown in Table 3.1 are found. Simulated phase trajectories of the closed
loop are shown in Figure 3.5. Note that though it may seem like the state
trajectory is not entering smaller Lyapunov function level sets at all times,
the total Lyapunov function is in fact decreasing. The apparent contradiction
stems from the fact that only a projection of the four-dimensional total state
trajectory (xp,Zj) and the Lyapunov level set is shown.
In Figure 3.8 we see that the input is within its constraints.

Separated synthesis

The separated synthesis of Section 3.4.2is used for the same system (with
the same R4 specified) as in the previous section.
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” Uk Vg
0<dp<1 [~ 36.6967, —2.6470]2, 8:‘1)?1;1 (e — i)
1<, <0 [ 36.3622, —2.6245%, 8:%% (e — i)
1<di,<2 | [-39.3421,-0.9139]2) — 2.9621 8:;22; (e — i) — 8:8823
“2< i < —1 || [-39.4195, —0.9026)F; + 3.0488 8;(1)2 (e — §2) + 8:8822

Table 3.1: Controller and observer matrices - combined synthesis

25

20+ b

151 b

101 b

5L 4

-10F 4

~15}F 4

—20F 4

-25 I I I I I I I I I
-2.5 -2 -15 -1 -0.5 0 0.5 1 15 2 25

Figure 3.5: The state phase trajectory. The inner ellipsoid is the projection
of Ry, the outer ellipsoid is the projection of an estimate of the region of
attraction based on the computed Lyapunov function.

The first iteration in the combined synthesis case uses 85 seconds*. For
the separate synthesis case, the first iteration of the observer synthesis uses
17 seconds, while the feedback synthesis uses 5 seconds.

In addition, for this example, the separated observer synthesis terminates
after the first iteration; while the combined synthesis uses 22 iterations (a

4The later iterations are about 10 times faster, since information from the previous
iterations can be used. All computations were carried out on a PC with an AMD Athlon
Thunderbird 1.4GHz processor with 768MB RAM, using Matlab under Linux.
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log V(x,.%,)
|

Figure 3.6: The value of the Lyapunov function versus time.

smaller R4 will reduce the number of iterations for the combined synthesis).

One would expect that the achievable region of attraction would be larger
for the combined synthesis, since the separated procedure has less degrees
of freedom in the observer synthesis. This example indicates the opposite,
but no conclusions can be drawn from this, since the synthesis problems are
non-convex optimization problems.

The controller matrices for the separated synthesis are given in Table 3.2.
A simulation is shown in Figures 3.9 and 3.10.
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X, (9 and %, (5

Figure 3.7: The state and the observer state simulated with the ob-
server/controller synthesized using the combined synthesis, with initial con-
ditions = = (.5,10) and 7 = (.2, 15).

60

Time

Figure 3.8: The input, uy, combined synthesis. Note that |uj| < 100.
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Uk Vg,
0< @y <1 [-40.4731, —2.1144)3, 8:85192(7) (e — i)
1< A <0 [~40.6318, —2.1110]%), 8:82?2 (e — G0
L<ig<2 || [-30.2835 ~0.8226)5 — 14940 | | V1S [ — i)+ | ) iom
—2 <y < —1 || [-39.2824, —0.8181)y, + 1.6127 (1):(1);)2; (g — ) + *0%%(;21

Table 3.2: Controller and observer matrices - separated synthesis

Time

10

o

X, () and X, (5

1
o

|
i
o

Figure 3.9:

The state and the observer state simulated with the ob-

server/controller synthesized using the separated synthesis, with initial con-
ditions = = (.5,10) and 7 = (.2, 15).
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60

Time

Figure 3.10: The input, uy, separated synthesis. Note that |ug| < 100.
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3.5.2 Wheel slip control

In the second example, we will consider wheel slip control for use in anti-lock
brake systems (ABS brakes) on cars. This example will illustrate that the
proposed feedback scheme in some cases can have the effect of an integral
controller, and additionally, it can be used in a gain-scheduled way. The
purpose of this section® is to illustrate how the controller can be applied, not
to present a fully realistic output feedback ABS controller.

The dynamics of a single wheel (quarter car), see Figure 3.11, is assumed
described by

mo = —F, (3.25)
Jw =rF, — Tysign(w), (3.26)

taken from Petersen, Johansen, Kalkkuhl and Liidemann (2001). The sym-
bols are explained in Table 3.3.

Fz:mg

“@)

F,=—mv

Figure 3.11: Velocities, forces and torque on quarter car

A common assumption in tire friction models is that the tire friction

coefficient p,
F,  Friction force

o= F.  Vertical force’ (3.27)
is a nonlinear function (see Figure 3.12) of the tire slip A (only®),
v—wr
A= . 3.28
. (3.28)

SIdar Petersen is acknowledged for his helpful comments on this Section.
TIn addition, p will depend on the friction coefficient prr between tire and road, and
the side-slip angle « of the wheel, both assumed constant herein (uz = .8 and o = 0).
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‘ symbol ‘ explanation ‘ value ‘
v car’s horizontal speed
w wheel angular speed
F, vertical force on wheel mg
F, tire friction force
T brake torque
r wheel radius 32 m
J wheel inertia 1 kg m?
m mass of quarter car 450 kg
g acceleration of gravity | 9.81 m/s?

Table 3.3: Parameters in quarter car model

0.9

0.8

0.7

0.6

05F

=

04r

0.3

0.2

0.1

0

I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
A

Figure 3.12: The friction p(\) corresponding to a friction coefficient of g =
.8 (dry asphalt) and side-slip angle oo = 0.

Hence, F, = F,u()), with F, = mg (assumed constant). Introducing the
slip as a state, we find for v > 0, w > 0 that

: 1 /1 2 T
A=—|—(0 =N+ —= | FouN) + =T 2
s (m =0+ %) P + 57 (3.20)
The dynamics of the speed of the car,
1
)= ——F,u(\ 3.30
b= ——Fou()) (330

will be much slower than the slip dynamics, and hence we will look at v
as a “disturbance” to the slip dynamics. We will design a slip controller
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for the car speed in a (small) interval. The manipulated variable is Ty,
ignoring actuator dynamics. The total controller will consist of a range of
these controllers, covering the possible values of v, i.e. gain scheduled on
v. Our control objective is to return to zero velocity as quickly as possible,
and this is achieved by keeping the slip as close to the maximum point on
the friction curve (Figure 3.12) as possible. The optimal slip value \* is
assumed constant (independent of v), which is a good approximation in a
limited velocity range. The brake torque is upper and lower constrained,
Tgm'n < Tb < Tgnax‘

Combined synthesis

To get zero slip as equilibrium, we introduce the deviation variables y; =
A — A" and u =Ty, — T with

ﬁ%:(%;u—AU+r>EuMﬂ (3.31)

(note that the equilibrium control is independent of the velocity) and get
that the deviation slip dynamics is described by

1/1 r2 F r
= —(—(1-))+=)F M) — (A== N) e —
X1 ( ( )+ J> [(x1 + A") — u( )]+mv><1u(><1+ )+JU

u.
v \m
(3.32)
with an unstable equilibrium at y; = 0.
The measured variable is the angular velocity of the wheel, w:
w=—(1—\). (3.33)

r

If we knew v exactly, A would be completely determined from w, and we
could control the slip using state feedback (with the slip as the state). This
is the approach taken in e.g. Petersen et al. (2001), where integral control
is used to compensate for not knowing the equilibrium input due to un-
known slip coefficient. The velocity (and slip) is assumed estimated online
using an extended Kalman filter based on wheel speed (w) and acceleration
measurements.

In this example, we will assume that we know the (assumed constant)
slip coefficient py and hence the equilibrium input 7}, but that the velocity
v is not known. We will therefore use an observer to estimate the slip (and
the velocity). Assuming that we obtain a good slip controller, the (slow)
dynamics of the velocity will be closely approximated by (taking xo = v)

. 1 .
X2 = ——=F.u(A\)x2 = —nx2 (3.34)

—_L'z
muv
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i || A% (61) ci(61) X7

1 |[ 1.0080 + .00600, a0 <xi <2

2 || 1.0078 — .00316, [x1] - 03 < x1 <0}

3 || 1.0024 — .00106; | .0019 + .00150, {X1|.2 <x1 < .86}

4 || .9838 —.00396, —.0007 + .0000267 | {x1] — .06 < x1 < —.03}
5| 8228 — 07536, | —.0134+.00136; | {x1| — .14 < x1 < —.06}

Table 3.4: The piecewise affine bounding functions

for velocities close to ©. The measurement equation can now be written as

v 1 N
WZ—;X1+;(1—)\ ) X2 (3.35)

where v in the first part is regarded as model uncertainty.

The system equations are discretized with forward Euler, using a step
size h = 0.001. Note that the stiffness of the system does not introduce
problems, since we are interested in the fast dynamics. For the purpose
of this example, we will look at the speed interval v € [18,20] 2, using
A* = .14. As mentioned earlier, the total controller will consist of controllers
for a number of velocity ranges covering the possible values for the velocity.
These ranges should overlap to account for the uncertainty in the estimate
of v.

The discretized model with state x = [ X1 X2 }T can be written on the
form

X1 = AY(0)xk + B'(0)uy + ()

[0 e PO e [0

ye = C(O)xk +d'(0) = [ C{(2) +(1 -\ | xa

which is on the desired form. The functions Bi(fy) = 1.6e+.18¢ 505 and’
C%(03) = —62.5+ 6.2503 are found in a straightforward manner, and are the
same in all local model validity sets, i.e. independent of 7. More involved,
A% (01) and ¢} (01) (see Table 3.4) are found using the methods of Slupphaug
et al. (2000) by upper and lower the part of (3.32) that depends on x1, see
Figure 3.13.

"In the interval we look at here, 1/v can be regarded as affine in v with good accuracy,
and hence we can take 62 = 63 to save some computational complexity.
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Figure 3.14: The piecewise affine approximating functions
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The observer is of the form

— >

e[

with B} = 1.7e~* and C%; = 59.375 for all i. The values for A%, and & are
found in Table 3.5, see also Figure 3.14.

Due to the non-symmetry of the state-space and that the resulting region
of attraction will be given as a symmetric ellipsoid, we will "artificially”
expand the dynamics for negative slip values to get a region of attraction
including large slip values. This will not have any practical influence on
the closed loop, since we are braking and not accelerating, the slip cannot
become negative (Petersen et al., 2001, Proposition 1).

L TAlL o B

~ — A B Al 11

Xk+1 Xk + Dug + ¢ [ 0 1_hn}Xk+[ 0
w=Cx+d=[Ci 1Q

r

=) Xk

The controller and observer found by the combined approach are given
in Table 3.6. Note that we used “process knowledge” in the optimizations,
by forcing K(1,2) = 0.

| [ ur | o
0< fuk < 2 (4276, 0] oot | =)
—03< X1, <0 [—10385, 0]« B%%ﬁl (yr — )
2< fup < .86 [51.28, 0] — 1054 *0%11983 (e — 1) + *0%%21%7
—.06 < X1k < —.03 || [~7561,0]%% + 854.5 _0(.’(')%22%6 (yr — 9x) + _0%%22538
—14 <1k < —.06 || [~13686,0]xx + 1466 _0%%12;9 (yr — Jr) + 8:832;

Table 3.6: Controller and observer matrices, combined synthesis

The simulations in Figure 3.15 show that even though the system using
this controller is stable (since the synthesis equations are feasible, see also
the Lyapunov function in Figure 3.16), the performance is not acceptable,
at least for some initial conditions. In the time-scale of the slip dynamics it
looks like a steady state error, even though the observer error (yp — ) is
approximately zero already after 5 ms. This behavior can be seen as a result
of poor observability due to the multiplicity in the output mapping. Feeding
further information into the observer (like acceleration measurements), will
probably make the observer convergence better.
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Figure 3.15: The state and observer state, combined synthesis
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Figure 3.16: The Lyapunov function, combined synthesis
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Figure 3.17: The piecewise affine bounding functions

Separated synthesis

In the separated synthesis, we will exploit that it is possible to add mea-
surements with “direct feed-through”, to improve the performance of the
controller /observer-structure of the combined synthesis in the previous sec-
tion.

The system has two states, as in the previous section, but we now include
& as a measurement, w = L F,u(\) + 1T;,. Corrected for zero offset at the
equilibrium, it becomes yo = & — LFFu(A*) — %Tg‘ = SFu(x1 +A°) —
ZF.pu(X*) + u. We see that the measurement is a function of the input,
and hence output models of the class in Section 3.4.2 must be used:

Y = C'(0)xx + D' (0)uy, + d'(0)

Ci(69) 1(1—)\*)] [ 0 ] [ 0 ]
= g T + ) + )
Cly(03) 0 XeT L pi [T di(6s)
i A 5 Ci, fa-x 7. 0 0
= (" Dt dt = J11 N e
I = C'X + D'uy, + [Ciz 0 ]Xk+[m]uk+[d22]

with C7,(03) and C?, as in section 3.5.2. Further, Di = D! =1 and C},,
db, and C%,(03), di(63) is found using the same methods as before, see Fig-
ures 3.17 and 3.18 and Tables 3.7 and 3.8.

State feedback matrices and the observer matrices found from a feasible
solution of the synthesis inequalities, can be seen in Table 3.9. In the simula-
tion in Figure 3.19, we see that the convergence of the slip estimate is better
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Figure 3.18: The piecewise affine approximating functions

C51(05)

d(03)

XL

QU W N | =

747.96 + 284.5603
—230.51 — 220.9163
—58.75 — 69.0965
1132.8 — 116.7003
13928 — 3061.105

—189.29 + 71.9665
40.87 + 3.5503
808.67 + 12.4603

{x1l0 < x1 < .2}

{x1] —.03 < x1 <0}
{x1]-2 < x1 < .86}

{X1| — .06 S X1 S —.03}
{x1| —.14 < x1 < —.06}

Table 3.7: The piecewise affine bounding functions

CA’§1Xl + db

Xk

—730.34x;

{x110 < x1 < .2}

—291.061

1104.8x1 + 45.25
128401 + 906.18

QU W N ==

—103.00x; — 154.21

{x1] —.03 < x1 <0}
{x1]-2 < x1 < .86}

{x1| —.06 < x1 < —.03}
{x1] = .14 < x1 < —.06}

Table 3.8: The piecewise affine approximating functions
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compared to Figure 3.15, and that the output feedback controller structure
has acceptable performance.

| X! | uy v |
0<Rus<.2 (4288, 0] s 000 | )
—.03< X1, <0 [—51858, 0] X% 70(.)(')%{,)%5 :8:888; (Y —Ur)
ey FETTTRrTY g ) PR

—06< f1p<—.03 [[-10159, 0], +10226 _()(?i%%zl 8:8882 (ys— )+ 8:885

i Com | [ o ]

Table 3.9: Controller and observer matrices, separated synthesis

3.6 Discussion and concluding remarks

A mathematical programming-based approach for synthesizing observers and
observer-state feedback for discrete-time constrained uncertain non-linear

o
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Figure 3.19: The state and observer state, separated synthesis
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Figure 3.20: The Lyapunov function, separated synthesis

systems is presented. The observer-state feedback and observer output injec-
tion has a piecewise affine structure. An estimate of the region of attraction
larger than a prescribed minimum region of attraction is given as a Lyapunov
level set. The region of attraction can be given in the state and observer-
error variables, or the state and observer-state variables. In addition to the
combined synthesis of observer output injection and state feedback controller
parameters, a synthesis procedure based on separation was developed. This
procedure reduces computational complexity and is applicable to a larger
class of systems than the combined synthesis, while giving the same stability
guarantees. The separate synthesis is more conservative in theory since a
block diagonal Lyapunov matrix is used, compared with the full Lyapunov
matrix of the combined design. However, due to the non-convex structure
of the synthesis inequalities, and the lower complexity of the separated syn-
thesis, this conservatism might not be apparent in examples.

An advantage of using observers compared to the approach in Slupphaug
et al. (2000), is that uncertainty (or nonlinearity) in the output mapping
in Slupphaug et al. (2000) results in a closed loop system with parameters
that enter quadratically. This is handled conservatively in the synthesis
inequalities, while for the approach herein, uncertainties (or nonlinearities)
in the output mapping does not present any problem regarding conservatism
of the synthesis inequalities. Both here and in Slupphaug et al. (2000),
uncertainties (or nonlinearities) in the output mapping can make it harder
to find the sets (the Xj;;s in the notation used herein) with the same closed
loop dynamics.
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In the first example, a parameter dependent Lyapunov matrix was used.
However, doing the synthesis with a parameter independent Lyapunov ma-
trix, achieved the same region of attraction. This might indicate that nothing
much is gained using parameter dependent Lyapunov functions. However,
such a conclusion would merely hold for this example. In addition comes the
added complexity of using parameter dependent Lyapunov matrices which
could affect the chosen solver’s possibility to exploit the extra flexibility. In
the second example, a parameter independent Lyapunov matrix was used.

In addition to what is discussed here, the issues discussed in Section 2.5
apply to the approach of this chapter as well.

A major issue is the growth in computational complexity that makes
the presented approach prohibitive as the number of states and local model
validity sets grow. If parts of the system are linear and known, however,
this can be exploited and may significantly reduce the size of the feasibility
problem.

Finally we note that the procedure developed herein can be used for an-
alyzing and synthesizing observer-state feedback with robust stability guar-
antees for an a priori given observer, since it allows for a general nonlinear
observer.
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Part 11

Output Feedback Nonlinear
Predictive Control






Chapter 4

Output feedback Nonlinear
Model Predictive Control -
Stability, Performance and
Robustness in the
Instantaneous Case

The contents of this chapter has been presented in Imsland et al.
(2001b,a). The nominal results can be viewed as a preparation for
the next chapter.

4.1 Introduction

Model predictive control (MPC), also referred to as moving horizon control
or receding horizon control, has become an attractive feedback strategy, es-
pecially for linear or nonlinear systems subject to input and state constraints.
In general, linear and nonlinear MPC are distinguished. Linear MPC refers
to a family of MPC schemes in which linear models are used to predict the
system dynamics, even though the dynamics of the closed loop system is
nonlinear due to the presence of constraints. Linear MPC approaches have
found successful applications, especially in the process industries (Qin and
Badgwell, 1996). By now, linear MPC theory is fairly mature. Important
issues such as the online computations, the interplay between modeling, iden-
tification and control as well as system theoretic issues like stability are well
addressed.
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Linear models are widely and successfully used to solve control prob-
lems. However, many systems are inherently nonlinear. Higher product
quality specifications, increasing productivity demands, tighter environmen-
tal regulations and demanding economical considerations require systems to
be operated closer to the boundary of the admissible operating region. Often
in these cases, linear models are not adequate to describe the process dy-
namics and nonlinear models must be used. This motivates the application
of nonlinear model predictive control.

Model predictive control for nonlinear systems (NMPC) has received con-
siderable attention over the past years. Many theoretical and practical issues
have been addressed. Several existing schemes guarantee stability under full
state information, see Mayne et al. (2000), Allgower, Badgwell, Qin, Rawl-
ings and Wright (1999), De Nicolao, Magni and Scattolini (2000) for recent
reviews. In practice, however, not all states are directly available by mea-
surements. A common approach is to still employ state feedback NMPC
and to use a state observer to obtain an estimate of the system states used
in the NMPC. If this approach is used, in general little can be said about
the stability of the closed loop, since no universal separation principle for
nonlinear systems exists.

Different approaches addressing the output feedback problem in NMPC
exist. In Michalska and Mayne (1995) a moving horizon observer is pre-
sented, that together with the so-called dual-mode NMPC scheme (Michal-
ska and Mayne, 1993) lead to semiglobal closed loop stability if no model-
plant mismatch and disturbances are present. Semiglobal stability in this
context means that for any subset of the region of attraction of the state
feedback there exists a set of parameters (in Michalska and Mayne (1995)
the sampling time and the enforced contraction rate of the observer error)
such that this subset is contained in the region of attraction of the output
feedback controller. However, for the results in Michalska and Mayne (1995)
to hold it is required that a global (dynamic) optimization problem can be
solved. In Magni, De Nicolao and Scattolini (1998), see also Scokaert et al.
(1997), asymptotic stability for observer based discrete-time nonlinear MPC
for “weakly detectable” systems is obtained. However, these results are of lo-
cal nature in the sense that stability is guaranteed only for a sufficiently small
initial observer error. While the region of attraction of the resulting output
feedback controller in principle can be estimated from Lipschitz constants of
the system, observer and controller it is not clear which parameters in the
controller and observer must be changed to increase the resulting region of
attraction of the output feedback controller.

This chapter is based on Imsland et al. (2001a), and considers the use of
high-gain observers in conjunction with instantaneous NMPC. Instantaneous



INTRODUCTION

NMPC in this context means that the solution to the open loop optimal
control problem is assumed to be immediately available and implementable
on the process at all time instances. Hence, the optimal input is not employed
in a “sampled” fashion, as is often done in NMPC. We show that for a special
MIMO system class, the resulting output feedback NMPC scheme does allow
performance recovery of the state feedback NMPC controller as the observer
gain increases. Performance recovery in this context means that the region
of attraction and the rate of convergence of the output feedback scheme
approach that of the state feedback scheme. Under additional technical
conditions the resulting output feedback controller is robust with respect to
static sector bounded nonlinear input uncertainties. The results are based
on recently derived separation principles for the considered class of nonlinear
systems (Atassi and Khalil, 1999, Teel and Praly, 1994, Esfandiari and Khalil,
1992).

The chapter is structured as follows: In Section 4.2 the class of systems is
specified. Section 4.3 contains the description of the possible NMPC schemes
for state feedback and presents the high-gain observer. In Section 4.4 the
results on closed loop stability and performance for the nominal system are
derived. Section 4.5 shows under some additional technical assumptions that
the output feedback scheme is robust with respect to static sector bounded
nonlinear input uncertainties. Some of the properties and practical implica-
tions of the presented approaches are discussed in Section 4.6. The proposed
output feedback controller is applied in Section 4.7 to the control of an in-
verted pendulum on a cart.

In the following, || - || is the Euclidean vector norm in R™ (where the
dimension n follows from the context) or the associated induced matrix norm.
The matrix blockdiag(Ay, ..., A,) defines a block diagonal matrix with the
matrices Ap,..., A, on the “diagonal”, while diag(a,...,a;) is a diagonal
matrix with the scalars ay,...,a;, on the diagonal. Whenever a semicolon
“" occurs in a function argument, the subsequent arguments are additional
parameters, i.e. f(z;7) means the value of the function f at x with the

parameter set to 7.

71



4.

INSTANTANEOUS OUuTPUT FEEDBACK NMPC

72

4.2 System class

This chapter considers the stabilization of nonlinear MIMO systems of the
form

1 = Ax1 + Bo(x,u) (4.1a)
To = YP(z,u) (4.1b)
yzrzﬂ (4.1c)

with z(t) = (z1(¢), z2(t)). The system state consists of the vectors z1(t) € R"
and x2(t) € R' | and the vector y(t) € RP*! is the measured output. The
control input is constrained, i.e. u(t) € U C R™, where

Assumption 4.1 U C R™ 4s compact and the origin is contained in the
interior of U.

The r x r matrix A, r X p matrix B and the p x r matrix C have the following
form

rO1 0 -0
00 1.0
A = blockdiag [A1, Ag, ... Ap], A= |: .
[\ JET 01
L URTENETENEES 0 T3 XT5
ro
B = blockdiag [B1, Ba, ..., By], B, =|:
-(1) rix1
C:blockdiag [01,02,...,Cp], Cz: [10... 0]1><ri’

i.e. the z; dynamics consists of p integrator chains of length r;, with r =
r1 4+ -+ -+ rp. Furthermore, the nonlinear functions ¢ and ) satisfy

Assumption 4.2 The functions ¢ : R xU — R and WP Rt iy —
R! are locally Lipschitz in their arguments over the domain of interest with

#(0,0) = 0 and ¥(0,0) = 0. Additionally ¢ is bounded as function of 1.

One example of systems of this class are input affine nonlinear systems
of the form

(=FQ)+9(Qu,  y=h(C)

with full (vector) relative degree (r1,ra,...,7,), thatis, > %, r; = dim(. For
this system class, it is always possible to find a coordinate transformation
such that the system in the new coordinates fits the structure (4.1a) and
(4.1c), see Isidori (1995).



NMPC OUTPUT FEEDBACK CONTROLLER: SETUP

4.3 NMPC output feedback controller: Setup

The proposed output feedback controller for the stabilization of the origin
consists of a high-gain observer for estimating the states and an instanta-
neous state feedback NMPC controller.

4.3.1 State feedback NMPC

In the framework of predictive control, the value of the manipulated variable
is given by the solution of an open loop optimal control problem. Herein,
the open loop optimal control problem that defines the system input is given
by

State feedback NMPC open loop optimal control problem:

Solve

win J(x(t),u(-); Tp) (4.2)
subject to:
T1=AT +B¢(_,ﬂ), %1(0):x1(t) (4.3&)
B2 = P(@@), 2(0) = 2a(t) (4.3b)
a(r)eU, T€(0,T)] (4.3¢)
z(Tp)e€ (4.3d)

with the cost functional
TP
J(z(t),u(-); Tp) == /0 F(z(r),u(r))dr + E(z(T})). (4.4)

The bar denotes internal controller variables and Z(-) is the solution of (4.3a)-
(4.3b) driven by the input u(-) : [0,7,] — U over the prediction horizon T,
with initial condition x(¢). The stage cost F'(Z,u) satisfies

Assumption 4.3 F : R xU — R is continuous in all arguments with
F(0,0) =0 and F(z,u)>0 Y(z,u) # (0,0).

The constraint (4.3d) in the NMPC open loop optimal control problem forces
the final predicted state to lie in the terminal region called £ and is thus often
called terminal region constraint. In the cost functional J, the deviation
from the origin of the final predicted state is penalized by the terminal state
penalty term E.

Notice that for simplicity of exposition, only input constraints are con-
sidered (besides the terminal state constraint).
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The optimal input signal resulting from the solution of the optimal con-
trol problem (4.2) is referred to by @*(-;x(¢)). The input applied to the
system is given by

u(z(t)) :=aw*(r=0;x(t)). (4.5)

Thus the solution to the NMPC open loop optimal control problem must
be available instantaneously at all times without delay. Such instantaneous
NMPC formulations are often used (Mayne and Michalska, 1990, Mayne et
al., 2000) for system theoretic investigations. However, obtaining an instan-
taneous solution of the dynamic optimization problem (4.2)-(4.3) is often
not possible in practice. Instead, a sampled-data NMPC approach is often
employed. The open-loop optimal control problem is only solved at discrete
sampling instants and the resulting input signal is applied open loop until
the next sampling instant. If the sampling intervals are short compared to
the system dynamics, one would expect the trajectories of the sampled-data
formulation to be close to the instantaneous implementation.

If T}, E, F are suitably chosen, the origin of the nominal state feedback
closed loop system with the input (4.5) is asymptotically stable and the
region of attraction R C R"*! contains the set of states for which the open
loop optimal control problem has a solution. In the following it is assumed,
that

Assumption 4.4 The instantaneous state feedback u(x) is locally Lipschitz
in x and asymptotically stabilizes the system (4.1) with a region of attraction

R.

In principle this setup allows to consider a whole variety of different NMPC
schemes (e.g. Chen and Allgéwer (1998b), Jadbabaie, Yu and Hauser (2001),
see also Mayne et al. (2000) for a review). In this sense, the results described
in the next sections can be seen as a special “separation” principle for NMPC
using high-gain observers. The main restriction is the requirement that the
optimal input must be locally Lipschitz.

4.3.2 High gain observer

The proposed (partial state) observer for the recovery of x; is a standard
high-gain observer (Tornambeé, 1992) of the following form

.%;'1 =A% + Bé((.@l,.%'g),u) + I{(yg[;1 — C.@l),

where H =blockdiag [Hy,. .., Hp] with

)

H' = agi)/e, a;i)/e2,...,a£ii)/e”
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and the ay)s are such that the roots of

s”—i—ozgi)s”_l—i----+a£j)_1s+a§,i):0, i=1,...,p
are in the open left half plane. The vector y,, is the first part of the measure-
ment vector related to the states xi, i.e. y,, = Czq, and % is the high-gain
parameter. A, B, C and qg are the same as in (4.1).

Only an observer for the z; states of the integrator chain is used, since
the x4y states are assumed to be directly measured.

Remark 4.1 Notice that the use of an observer makes it necessary to define
a (bounded) input also for estimated states that are outside the feasibility
region R of the controller. One possible choice is to fix the open loop input
for x € R to an arbitrary value uy € U: u(x)=uyr, VrgR.

4.4 Nominal output feedback NMPC using
high-gain observers

In this section the nominal stability results for the proposed output feedback
controller are derived, i.e. it is assumed that the plant and the model coincide
(é = ¢). It is shown that the performance of the state feedback controller
can be recovered to any precision (see Definition 4.1) and that asymptotic
stability can be achieved for a sufficiently small value of € in the observer.

Consider the closed loop system given by (4.1a)-(4.1c) with the control
given by the NMPC controller using the observed state Z; from the high-gain
observer. In the following, recovery of the performance of the state feedback
controller by the output feedback controller for the nominal system and for
sufficiently small € is established. We distinguish between the state trajectory
resulting from the application of the state feedback controller and the state
trajectory resulting from the application of the output feedback controller
using the high-gain observer. Specifically, x4f(-; o) is the trajectory result-
ing from the application of the state-feedback NMPC controller starting at
x45(0) = x0. The trajectory resulting from the application of the NMPC
controlled based on the state estimates Z; starting from z.(0) = z¢ and ini-
tializing the observer with #1(0) = Z19 € Q is denoted by z(+; xo, £19). Here
Q is an arbitrary but fixed compact set of possible observer initial conditions.
The suffix € denotes the dependence on the value of the high gain parameter
e. Using this notation, the desired recovery of performance means:
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Definition 4.1 [Performance recovery with respect to €] Assume that x(t; xo)
and xs7(t; o, T10) start from the same initial state xo. Then, recovery of per-
formance with respect to € means that for any § > 0 there exists an €* such
that for all 0 < € < €*,

er(t; xo,.@lo) — acsf(t; xo)H < (5, YVt > 0, Vi’lo € 0.

Given this definition of performance recovery, the following theorem holds
for the system controlled by the output feedback NMPC controller:

Theorem 4.1 Assume that Assumptions 4.1- 4.4 hold. Let S be any com-
pact set contained in the interior of R. Furthermore, the observer initial
condition satisfies T1(0) = T19 € Q with Q arbitrary but fized and compact.
Then there exists a (sufficiently small) €* > 0 such that for all 0 < € < €*
the closed loop system is asymptotically stable with a region of attraction of
at least S. Moreover, the performance of the state feedback NMPC' controller
18 recovered in the sense of Definition 4.1.

Outline of Proof. The asymptotic stability follows from the proofs of
Theorems 1, 2 and 4 in Atassi and Khalil (1999). The application of these
theorems is possible due to the local Lipschitz property of the state feedback
combined with the closed loop asymptotic stability. This make it possible
to use converse Lyapunov arguments to assure the existence of a Lyapunov
function for the state feedback closed loop, which is used in the proofs of the
theorems. Theorem 1 in Atassi and Khalil (1999) guarantees boundedness
of solutions starting in S if € < €}, with €] sufficiently small. Theorem 2
guarantees that the solutions starting in S will enter any ball around the
origin in finite time if € < 3!, where ¢} is sufficiently small with €} < €.
Positioned in such a (small) ball, one can establish asymptotic stability for
an €3 < €, as long as € < €5, under the assumption ¢y = ¢. Furthermore,
Theorem 3 in Atassi and Khalil (1999) shows that the trajectories of the
controlled system using the observed state in the controller, converge uni-
formly to the trajectories of the controlled system using the true state in the
controller, as € — 0. Hence, for € small enough, the trajectories (and hence
the performance) of the state feedback NMPC are recovered. m

The stability result derived is semiglobal, since for any compact subset
S of R such a maximum value €* exists. In general, the closer the set S
approximates the set R the smaller €* is. Note that the performance recovery
of Theorem 4.1 also implies recovery of the rate of convergence of the state
feedback controller for sufficiently small € and convergence of the state and
output feedback trajectories.

"Note that €5 depends on the size of the ball.



ROBUSTNESS TO INPUT UNCERTAINTIES

In the next section, the result on performance recovery will be expanded
to systems having unknown but sector bounded nonlinear static input un-
certainties.

4.5 Robustness to input uncertainties

The results derived so far are only valid in the nominal case. In this section
we show that the proposed output feedback controller is robustly stable with
respect to unknown but sector bounded input nonlinearities. The result uses
the robustness of the separation principle presented in Atassi and Khalil
(1999). To use this result it is necessary that the state feedback controller
robustly exponentially stabilizes the system under the uncertainty. Thus
in a first step, similarly to Magni and Sepulchre (1997), we show that the
state feedback NMPC controller leads to exponential stability in the case of
unknown static input uncertainties.

The uncertainty we consider consists of that the input applied to the sys-
tem is subject to a static (unknown) input uncertainty ua = A(u) as shown
in Figure 4.1, where A : R™ — R"™ has the structure A(u) = diag(d1(u1), ...,

Om (Uum)).

output feedback
NMPC controller

system

Yy 0 memmm e e e ——

Figure 4.1: Closed loop with unknown static input nonlinearity

4.5.1 Nominal system class and assumptions on the NMPC
state feedback controller

To derive the result we limit the considered system class and strengthen the
conditions on the state feedback NMPC controller used. The system class
considered in this section consists of input affine systems of the form:
i1 = Az + Bo(z)u (4.6a)
&y = 1 (@) + da(@)u. (4.6b)

The matrices A and B have the same form as in Section 4.2, and ¢~), 1;1 and
19 have to satisfy similar assumptions as in the nominal case:

uncertain system

7
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Assumption 4.5 The functions ¢ R — R™m oy R R and
Pyt R™H — RX™ gre locally Lipschitz in x over the domain of interest with

$(0) = 0 and 1 (0) = 0. Additionally ¢ is bounded as function of 1.

System (4.6) will be referred to? by
&= f(z) +g(x)u,

where f(z) = [(Az1)T, (%1(2)) 1|7 and g(z) = [(B&()) T, (a(x))T]T. With
respect to the stage cost used in the NMPC controller we assume that

Assumption 4.6 The stage cost in the NMPC controller is of the form
F(x,u) =(z) +u' R(x)u, (4.7)

where 1(x) +u' R(x)u > cp||(z,u)|3, V(r,u) € R™ x U with cp > 0, and
R(z) = diag (ri(z),...,rm(x)).

Nominal exponential stability is guaranteed (see e.g. Jadbabaie et al. (2001))
by the following slightly strengthened assumption on the terminal region and
terminal penalty term

Assumption 4.7 Assume E € C' is a proper F-compatible control Lya-
punov function (CLF), i.e.

E
g—xf(x, k(z)) + l(x) + k(x) T R(z)k(z) <0, Ve e & (4.8)
for some locally Lipschitz control law k(x), and

cig|zl)? < E(z) < capllz|?, Vr e &. (4.9)

for some cop > c1g > 0.

This assumption can for example be satisfied using the quasi-infinite horizon
NMPC scheme (QIH-NMPC) as described in Chen and Allgéwer (1998b).
As will be shown, this assumption is essential for robust exponential stability
of the state feedback NMPC controller.

Since inverse optimality results are used to derive the robustness, it is
necessary (Magni and Sepulchre, 1997) that the nominal open loop optimal
control problem for the NMPC controller satisfies

*We have to consider the system class (4.6) since we use the high-gain observer outlined
in Section 4.3.2. The robust exponential stability of the NMPC controller holds for general
input affine systems.
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Assumption 4.8 The optimal control for the nominal system (4.6)
u(z(t)) == (r=0;x(t)).

is unconstrained in a (compact) region of interest. Further, the control is
continuously differentiable, and the value function, defined by the optimal
solution of the NMPC open loop optimal control problem

V(e Tp) == J(@,u" (5 2(t)); Tp)
18 twice continuously differentiable.

Conditions ensuring that the value function is C? for unconstrained NMPC-
controllers can (for example) be found in Jadbabaie et al. (2001).

4.5.2 Robust exponential stability of the state feedback
NMPC controller

As stated in the following lemma the nominal state feedback NMPC con-
troller robustly exponentially stabilizes the system if the input nonlinearity

A(u) maps into the sector (%,00) in the sense?

1
§ST8 < 5" A(s) < o0, Vs € R™. (4.10)

1

That is, the system has a sector margin (5,00) (Sepulchre, Jankovi¢ and

Kokotovi¢, 1997).

Lemma 4.1 Let the assumptions of Theorem 4.1 and Assumptions 4.5-
4.8 hold. If the input to the system is A(u*(t = 0,x)), and if A(-) satis-
fies (4.10), then the origin of system (4.6) under the state feedback controller
15 exponentially stable.

Proof. The proof is similar to the proof given in Sepulchre et al. (1997,
Proposition 3.34) for asymptotic stability for general nonlinear optimal feed-
backs, see also Glad (1987). For NMPC robust asymptotic stability results
of this form have been derived in Magni and Sepulchre (1997) and in Chen
and Shaw (1982). Thus, we have to show that under the given assumptions
also robust ezponential stability is achieved.

Under equivalent assumptions as used here, Magni and Sepulchre (1997)
shows that the NMPC control law is inverse optimal, i.e. it is also optimal

% As the proof will reveal, more general R(x) and A(-) satisfying u ' R(x) [A(u) — Fu] >
0 can be tolerated. This is not elaborated on here.
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for a modified optimal control problem spanning over an infinite horizon with
the cost function

J(z,u(-);00) = /00<> l(x(1)) + UT(T)R(ﬁ(T))u(T)dT

where

- 0
l(z)=1(x) — 6—TpV(x,Tp).
Also the NMPC value function is the value function for the infinite horizon
problem, i.e. V(z;T,) = V(z;00) where V is the value function associated
with the cost J. Due to this inverse optimality in the nominal case the
NMPC state feedback control scheme has the same (asymptotic) robustness
properties (stability margins) as infinite horizon optimal control (Magni and
Sepulchre, 1997).

As noted in Magni and Sepulchre (1997), the optimal control can be

written as u*(7 = 0;x) = y(x), where
1 __
V(@) = —5R7 (@) Vag()] ",

with V,, := %(m;ﬂ,). Furthermore, the nominal system satisfies

Vi f (@) + Vag(2)y(z) = ~I(z) — 7" (2)R(x)y(2).

For the “real” system with the unknown static input nonlinearity, V is given
by

Since R(z) and A(x) are diagonal it follows that

V(z;Tp) < —l(z) = —l(z) + 0 V(z;Tp).

aT,

Additionally, we know (Magni and Sepulchre, 1997) that %V(w;Tp) <0.
Thus, using Assumption 4.6 yields

V(m;Tp) < —l(z) < —cp|z|?. (4.11)
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Consequently, V is strictly decreasing along solution trajectories. Further-
more, for V' to be a Lyapunov function showing exponential stability, it is
required that V' can be quadratically lower and upper bounded. Using As-
sumption 4.7 and Assumption 4.6 it is not hard to show that there exist
constants ¢; > 0, c3 > 0, r > 0 such that for all = with ||z| <,

allz[* < V(2 T) < eol2l?,

This, together with (4.11) implies that V' (x;T),) is a valid Lyapunov function
showing exponential stability. m

Call the region of attraction for the state feedback closed loop with A(-)
for R. In general, R will be different from R, the nominal state feedback
region of attraction. Any level sets given by V(z) < ¢, ¢ > 0 contained in R
is an inner estimate of R since by the proof of the above lemma, V(z) < 0
for all x € R.

4.5.3 Robust output feedback stability

Using Lemma 4.1, and the robustness of the observer to modeling errors in*

¢, one can adapt Theorem 5 in Atassi and Khalil (1999):

Theorem 4.2 Assume that the assumptions of Theorem 4.1 and Assump-
tions 4.5- 4.8 hold. Then for any compact subset S C R and for any observer
initial condition that satisfies ©1(0) = &10 € Q with Q arbitrary but fized and
compact there exists an €* such that for 0 < e < €* the system

i1 = Azy 4+ Bo(z)A(u)
iy = P1(x) + o () A(u)
y' = [(Cz1)" 23]

with )
§STS < 5" A(s) < o0, Vs € R™,

controlled by the output feedback NMPC scheme using the model given by
(4.6) in the controller and observer and the cost (4.7) is exponentially stable
and has a region of attraction of at least S. Further, the performance of the
state feedback NMPC controller is recovered in the sense of Definition 4.1.

Proof. Using Lemma 4.1 the proof follows from Atassi and Khalil (1999,
Theorem 5). m

4The modeling errors in v are not important for the estimation part, since the zo-states
are measured.
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4.6 Discussion of results

The presented results are based on the assumption that the NMPC controller
is time continuous/instantaneous. In practice, it is of course not possible to
solve the nonlinear optimization problem instantaneously. Instead, typically,
the open loop optimal control problem will be solved only at certain sampling
instants. The first part of the obtained control signal is then applied to
the system until the next sampling instant. Also some time is needed to
compute the solution of the optimal control problem, thus the computed
control is based to some degree on old information, introducing delay in the
closed loop. In practice this requires that the dynamics of the process is
slow compared to the NMPC sampling interval and to the time needed to
solve the optimization problem. A sampled data version of the given result,
corresponding to the more “usual”, sampled NMPC setup is given in the next
chapter.

As a consequence of the high-gain observer, in a transient phase the ob-
served state may be outside the region where the NMPC optimization prob-
lem has a feasible solution (the peaking phenomenon). In this case the input
should be assigned some fall-back value, as specified in Remark 4.1. The
structure of the high-gain observer and the bounded inputs ensure (Atassi
and Khalil, 1999) that ¢ can be chosen small enough so that the observer
state converges to the true state before the true state leaves the region of
attraction (and hence the feasibility area) of the NMPC controller. This fol-
lows from the assumption of bounded controls (Esfandiari and Khalil, 1992),
which separates the peaking of the observer variables from the system.

It is assumed that the optimal control is Lipschitz in the initial state.
In general, the solution of an optimal control problem (and hence, the state
feedback defined in Assumption 4.4) can be non-Lipschitz in the initial val-
ues. In particular, it is known that NMPC can stabilize systems that are
not stabilizable by continuous control (Fontes, 2000).

4.7 Illustrating example - control of an inverted
pendulum

This section considers the control of an (unstable) inverted pendulum on a
cart. The parameters and model equations of the cart-pendulum system are
taken from Dussy and El Ghaoui (1996). Figure 4.2 schematically shows the
inverted pendulum on a cart system. The angle of the pendulum with the
vertical axis is z;. The input to the system is given by the force u which acts
on the cart’s translation and is limited to —10N < u(¢) < 10N. The control
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Figure 4.2: Inverted pendulum on a cart.

objective is to stabilize the angle z; = 0 (upright position) while the cart’s
position is not limited (and thus not modeled and controlled). It is assumed
that only the angle 2z; but not the angular velocity can be measured directly.
The model of the system is given by the following equations:

21 = 29
ml cos z1 sin 2123 — g(m + M) sin 21 + cos z1yu
mlcos? 21 — 3(m+ M)l

zZ9 =

y=z

where zo is the angular velocity of the pendulum. The parameters M = 1kg,
m = 0.2kg, [ = 0.6m and g = 1OISn—2 are constant, whereas the “input gain”
is uncertain (but constant) and satisfies v € [1,2]. The nominal value of ~ is
1. This model fits in the model class considered in Section 4.5 (x1 = [21, 22],
no ).

The stage cost is quadratic and unit weights are chosen on the states
and input, i.e. F(z,u) = 2" [}9]2 +u?  As state feedback QIH-NMPC
is used. A quadratic upper bound E on the infinite horizon cost and a
terminal region £ that satisfy the assumptions of Chen and Allgower (1998a)
and with this the assumptions made in Section 4.3.1 are calculated using
LMI/PLDI-techniques (Boyd et al., 1994). The piecewise linear differential
inclusion (PLDI) representing the dynamics in a neighborhood of the origin is
found using the methods described in Slupphaug et al. (2000). The resulting
terminal penalty cost E is quadratic:

[ 31131 66.20
EBz) =z [66.20 34.99 |

and the terminal region £ is given by & = {z € R*|E(z) < 20}. The con-
trol horizon T, is 0.5s. In Figure 4.3 the region of attraction and the con-
tour lines of the value function of the state feedback NMPC controller are

83



4.

INSTANTANEOUS OUuTPUT FEEDBACK NMPC

84

unfeasible

—4 unfeasible

Figure 4.3: Level sets of the quasi infinite horizon state feedback NMPC
controller value function.

shown.  These results are obtained solving the open loop state feedback
NMPC problem for different initial conditions of z; and z. In the output
feedback case, whenever the state estimate leaves the region of attraction of
the state feedback QIH-NMPC scheme (i.e. there is no solution to the open
loop optimization problem) the input is set to 0, compare Remark 4.1.

The states z; and 29 are estimated from y using the described high-gain
observer. The observer parameters a; and «g are chosen to ay = 2 and
as = 1. For all subsequent simulations the observer is started with zero
initial conditions, i.e. 21 = 2o = 0.

Figure 4.4 shows the phase plot of the system states and the observer
states of the closed loop system for different values of € for v = 1 (nominal
system). As expected, for decreasing values of € the trajectories of the state
feedback control scheme are recovered. Figure 4.5 shows the corresponding
trajectories of the observer states. Comparing both plots one sees that for
e = 0.1, when the observer state and the real state are at the boundary of the
region of attraction of the state feedback controller, a small estimation error
does lead to infeasibility of the open loop problem and thus to divergence.
For smaller values of e the correct state is recovered faster and infeasibil-
ity /divergence are avoided. However, for smaller values of € a bigger (but
time-wise shorter) peaking of the observer error at the beginning occurs, see
Figure 4.5. This is also evident in the time plot of the states and inputs as
shown in Figure 4.6 and the time plot of the observer error, see Figure 4.7.
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Figure 4.4: Phase plot of the nominal system states for v = 1.

Notice also that in the state feedback case for the initial conditions shown
the input constraints are not hit, while for all output feedback cases the
NMPC controller hits the input constraints.

To show the robustness with respect to sector bounded input nonlinear-
ities, Figure 4.8 shows the trajectories of the closed loop system for a value
of v = 2. In this case, the observer and NMPC controller use the nominal
value of v,0m = 1. The controller is still able to stabilize the system despite
the gain uncertainty, however the performance degrades.

The given example underpins the derived results on the recovery of the
region of attraction and performance as well as the robustness for the high-
gain observer based NMPC strategy. As shown, for a too slow high-gain
observer the closed loop trajectories may diverge from a given initial condi-
tion. However, sufficiently small values of ¢ do lead to closed loop stability
and satisfying recovery of performance.

4.8 Conclusions

Nonlinear model predictive control has received considerable attention dur-
ing the past decades. However, no significant progress with respect to the
output feedback case has been made. The existing solutions are either of
local nature (Scokaert et al., 1997, Magni et al., 1998) or difficult to imple-
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Figure 4.5: Phase plot of the observer states for v = 1.

ment (Michalska and Mayne, 1995). By using results from Atassi and Khalil
(1999), it is demonstrated that semiglobal stability results on a bounded re-
gion of attraction and recovery of performance can be achieved using NMPC
and a suited high-gain observer for a class of systems. Furthermore, it is
shown that the proposed output feedback NMPC controller is robust with
respect to sector bounded input nonlinearities. The main restrictions of the
scheme are the special system structure assumed, that the NMPC controller
must be implemented instantaneously, and that the optimal input of the
NMPC controller must be locally Lipschitz as a function of the state. How-
ever, note that in Chapter 5 the system class is expanded, and the same
expansion is in principle valid for the results in this chapter. From a prac-
tical perspective, one should additionally note the inherent problem of high
gain observers with respect to measurement noise, which may restrict the
applicability.
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Figure 4.7: Trajectories of the observer error.
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Figure 4.8: Trajectories z1, 2o and u in case of input uncertainty (v = 2).

88



Chapter 5

Output Feedback Nonlinear
Model Predictive Control -
Stability and Performance

While the previous chapter used an instantaneous implementation
of NMPC, this chapter considers the more usual sampled-data im-
plementation. A preliminary version of some of the results of this
chapter is contained in Findeisen et al. (2002a). The main result
(the practical stability result, Section 5.4) is submitted for journal
publication (Findeisen et al., 2002b), while the convergence result of
Section 5.5 can be found in Imsland et al. (2002).

5.1 Introduction

This chapter is concerned with the output feedback stabilization problem
for uniformly completely observable continuous time systems where the con-
trol is given by a nonlinear model predictive control (NMPC) scheme. To
obtain an output feedback control scheme that achieves semi-global practi-
cal stability, we propose to use a (fast enough) high-gain observer for state
recovery in combination with a sampled-data NMPC controller. While the
high-gain observer operates continuously, the sampled-data state feedback
NMPC controller delivers a new optimal input trajectory only at discrete
sampling instants. This input is then applied open-loop until the next sam-
pling instant.

Model predictive control for systems described by nonlinear ODEs or
difference equations has received considerable attention over the past years.
Several schemes that guarantee stability in the state feedback case exist by
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now, see for example Mayne et al. (2000), Allgéwer et al. (1999), De Nicolao
et al. (2000) for recent reviews. Fewer results are available in the case when
not all states are directly measured. To overcome this problem, often a state
observer is used together with the stabilizing state feedback NMPC con-
troller. However, due to the lack of a general nonlinear separation principle,
care has to be taken regarding the stability of the resulting closed loop.

Several researchers have addressed the output feedback problem in NMPC.
In Michalska and Mayne (1995) an optimization based moving horizon ob-
server combined with the NMPC scheme proposed in Michalska and Mayne
(1993) is shown to lead to (semi-global) closed-loop stability. For the results
to hold, it is assumed that no model-plant mismatch and no disturbances are
present, and a global optimization problem for the moving horizon observer
must be solved. The approach in de Oliveira Kothare and Morari (2000) de-
rives local uniform asymptotic stability of contractive NMPC in combination
with a “sampled” state estimator. In Magni et al. (1998), Magni, De Nicolao
and Scattolini (2001), see also Scokaert et al. (1997), asymptotic stability
results for observer based discrete-time NMPC for “weakly detectable” sys-
tems are given. For these approaches (Magni et al., 1998, 2001, Scokaert et
al., 1997) it is in principle possible to estimate a (local) region of attraction
of the resulting output feedback controller from Lipschitz constants of the
system, controller and observer. However, it is in general not clear which
parameters in the controller and observer should be changed to increase the
region of attraction, or how to recover (in the limit) the region of attraction
of the state feedback controller. This problem has been addressed in Imsland
et al. (2001a) (see Chapter 4) and in Findeisen et al. (2002a). In Imsland
et al. (2001a) semi-global practical stability of instantaneous NMPC using
high-gain observers has been established. These results where expanded
in Findeisen et al. (2002a) to sampled-data NMPC.

The main difference to the results presented in Imsland et al. (2001a) lies
in the fact that we consider NMPC schemes that implement open-loop input
signals between the sampling instants instead of an instantaneous implemen-
tation. Furthermore, we expand the system class. The systems considered
in this chapter are assumed to be uniformly completely observable, whereas
in Findeisen et al. (2002a) we assume the system to have full vector relative
degree and to be in Byrnes-Isidori normal form.

With respect to the general output feedback stabilization problem for
nonlinear systems, significant progress has been achieved recently. Based on
output feedback results for fully input-output linearizable systems (Esfandi-
ari and Khalil, 1992) different versions of the so-called nonlinear separation
principle for a rather wide class of systems have been established, see for
example Teel and Praly (1995), Atassi and Khalil (1999), Maggiore and
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Passino (2001). All these approaches use a high-gain observer for state re-
covery. High-gain observers have the advantage that one “tuning-knob”; the
so-called high-gain parameter, for speed of convergence of the observer error
exists. Decreasing the high-gain parameter allows to achieve any desired rate
of convergence and to reach any desired bounded set for the observer error
in finite time. The observer error is then considered as a disturbance in the
state feedback controller and stability of the closed loop can be established.
While the initial results covered control laws that are locally Lipschitz in the
state, recent advances (Shim and Teel, 2001b,a) have achieved output feed-
back stabilization using discontinuous control laws for systems that are not
uniformly completely observable and that cannot be stabilized by continuous
feedback.

In deriving the results, we are inspired by the nonlinear separation prin-
ciples presented in Teel and Praly (1995), Atassi and Khalil (1999), that is,
we propose to use continuous time high-gain observers in combination with
NMPC. The main difference to these results lies in the fact that we want to
employ an NMPC controller that only recalculates the optimal input signal
at sampling instants, as is customary in the NMPC literature. Between the
sampling instants, the input signal is applied open-loop to the system. We
show that for uniformly completely observable nonlinear MIMO systems we
can achieve semi-global practical stability using this approach. This means,
that for any desired subset of the region of attraction of the state feedback
NMPC and any small region containing the origin, there exists a sampling
period and an observer gain such that in the output feedback case, all states
starting in the desired subset will converge in finite time to the small region
containing the origin and remain there. Moreover, under some restrictive as-
sumptions, we show that the states will converge to the origin. To prove the
results we will use the decrease-property of the value function of the NMPC
state feedback controller, since we cannot make use of standard converse
Lyapunov results for continuous time systems.

Our results differ from the general nonlinear separation principle results
presented in Shim and Teel (2001a,b) in the sense that the input signal
between the sampling instants is defined by the NMPC controller and is not
fixed to a constant value. On the other hand, we do not consider systems that
can be stabilized only by discontinuous feedback or that are not uniformly
observable, as done in Shim and Teel (2001a,b).

The results are not focused on one specific NMPC approach. Instead,
they are based on a series of assumptions that in principle can be satis-
fied by several NMPC schemes, such as quasi-infinite horizon NMPC (Chen
and Allgéwer, 1998b), zero terminal constraint NMPC (Mayne and Michal-
ska, 1990) and NMPC schemes using control Lyapunov functions to obtain
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stability (Jadbabaie et al., 2001, Primbs, Nevisti¢ and Doyle, 1999). One
drawback is that for the full state estimation input derivatives might appear
in the observer equations. Then the NMPC state feedback must be modified
to provided sufficiently “smooth” inputs. If no input derivatives appear in
the observer, no changes in the state feedback NMPC controller are neces-
sary and it can be argued that in this case, the derived results are a special
separation principle for NMPC.

The chapter is structured as follows: In Section 5.2 we briefly state the
considered system class and the observability assumption. Section 5.3 con-
tains a description of the proposed output feedback NMPC scheme. It con-
sists of an NMPC state feedback controller and a high-gain observer for
state recovery. In Section 5.4 we present the main results. First we show
boundedness of the states, then we prove semi-global practical stability of
the closed loop system states. Under strengthened assumptions and for a
limited system class, convergence of observer error and system states to the
origin is shown in Section 5.5.

In the following || - || is the Euclidean vector norm in R™ (where the
dimension n follows from the context) or the associated induced matrix norm.
The operator blockdiag(Aj, ..., A,) defines a block diagonal matrix with the
matrices Ap,..., A, on the “diagonal”’, while diag(aq,...,qa;) is a diagonal
matrix with the scalars aq,..., @, on the diagonal.

5.2 System class and observability assumptions
We consider nonlinear continuous time MIMO systems of the form

T = f(x,u), (5.1a)
y = h(z,u) (5.1b)

where z € X C R" is the system state constrained to the set X, and the
measured output is y € RP. The control input « is constrained to u € U C
R™. We assume that the functions f : R” x U — R" and h: R" x U — RP
are smooth, and that f(0,0) = 0 and h(0,0)=0, that is, the origin is an
equilibrium.

The control objective is to derive an output feedback control scheme
that (practically) stabilizes the system while satisfying the constraints on
the states and inputs. With respect to X and U we assume that

Assumption 5.1 U C R™ is compact, X C R" is connected and (0,0) €
X xU.
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NMPC requires full state information for prediction. Since not all states
are available via output measurements, we use a high-gain observer to re-
cover the states. The assumed observability properties of the system (5.1)
are characterized in terms of the observability map H, which is defined via
successive differentiation of the output y:

_ " _ r h1(x,u) -
1 .
yl wl,l(i:,u,u)
ygrl) 'Lﬂl,rl(m,u,ql,“"u(rl))
ho (2,1
v = A — H(a,U).
yp hp(.’E,u)
Yp Yp1(x,u, )
S0 :
. —wpﬂ"p (xv U, U,y . .. ,u(rp))_
Hore ZI;:l(ri i 1) =M and U = [ulaula . 7U(1m1)7u27u27 . ,Umauma ey

u%n m)]TE R™U where m; is the number of really necessary derivatives of

input ¢ and where my := >_." | (m; + 1). The v; ;s are defined via successive
differentiation of y

¢i70($,U) :hi(xau)v i = 15---3p (52&)
; 0Y; 51 g 0Y; 51 i=1,...
. @y — »J . »J L, (k) ) » Dy
bt ) < B g o S B
(5.2b)

In general, not all u; derivatives up to order max{ry,...,r,} appear in t; ;.
For example if hj(x) = =z, 91,1 can only depend on w and not on the
derivative of u. Given these definitions we can state the uniform complete
observability property that we assume in this chapter (Tornambe, 1992, Teel
and Praly, 1994).

Assumption 5.2 (Uniform Complete Observability) The system (5.1)
18 uniformly completely observable in the sense that there exists a set of in-
dices {r1,...,rp} such that the mapping defined by Y = H(z,U) is smooth
with respect to x and its inverse from Y to x is smooth and onto for any U.

The inverse of H with respect to x is written H~'(Y,U), that is z =
H-L(Y,U).
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Remark 5.1 In general the set of indices {r1,...,rp} is not unique, differ-
ent H might exist. One can use this degree of freedom to find a H such that
only a minimum number of derivatives of u, possibly none, are mecessary.
This is desirable, since all inputs u and all the derivatives of u that appear
i U must be known. This is discussed in more detail in Section 5.3.2.

No explicit stabilizability assumption is required to hold. The stabilizability
is implicitly ensured by the assumption on the NMPC controller to have a
non-trivial region of attraction (see Section 5.3.1).

5.3 Output feedback NMPC controller

The output feedback control scheme consists of a state feedback NMPC
controller and a high-gain observer for state recovery. While the optimal
inputs are only recalculated at the sampling instants and are applied open-
loop in-between, the high-gain observer operates continuously.

5.3.1 NMPC “open-loop” state feedback

In the framework of predictive control, the input is defined by the solution of
an open-loop optimal control problem that is solved at the sampling instants.
In between the sampling instants the optimal input is applied open-loop. The
sampling instants t; satisfy ¢t; — t;_1 = 9, 0 being the sampling period. For
a given t, t; should be taken as the nearest sampling instant t; < t. The
open-loop optimal control problem solved at any ¢; is given by:

%1(151 J(u();x(t:)) (5.3a)
subject to: z(1) = f(z(r),u(r)), z(r=0)=x(t;) (5.3b)
a(r)eU, z(r)e X 17€l0,T)] (5.3c)
z(Tp) € €. (5.3d)

The cost functional J is defined over the control horizon T, by

Ty

J(a(-);z(ts)) ::/0 F(z(r),u(r))dr + E(z(T})).

The bar denotes internal controller variables, Z(-) is the solution of (5.3b)
driven by the input a(-) : [0,T,] — U with the initial condition z(¢;). The
solution to the optimal control problem is written @*(-;x(¢;)). This input is
open-loop applied to the system until the next sampling instant ¢;,

u(t;:r:(ti)) = ﬂ*(t — 153 .%'(ti)), t e [ti,ti + (5) . (5.4)
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The control u(t; z(t;)) is a feedback, since it is recalculated at each sampling
instant using new state measurements.

Remark 5.2 The cost minimized over the control horizon T, is defined by
the stage cost F' and the terminal penalty E. Both are in general contin-
wous functions of their arguments and positive definite. The terminal con-
straint (5.3d) in the NMPC open-loop optimal control problem forces the
final predicted state at time T = Tp to lie in the terminal region £. The end
penalty E and the terminal region constraint are typically added to the state
feedback NMPC problem to enforce stability of the closed loop.

We do not go into any details about the different existing state feedback
NMPC schemes that guarantee stability, see for example Mayne et al. (2000),
Allgéwer et al. (1999) for recent reviews. Instead we state the set of as-
sumptions we require to achieve semi-global practical stability in the output
feedback case.

Assumption 5.3 There exists a simply connected region R C X C R"
(region of attraction of the state feedback NMPC) with 0 € R such that:

1. Stage cost is lower bounded by a K function:
The stage cost F': R xU — R is continuous, satisfies F'(0,0) =0, and
18 lower bounded by a class IC function ap

ap([|z|| + |u]) < F(z,u) V(z,u) € R xU.

2. Optimal control is uniformly locally Lipschitz in terms of the
initial state:
The optimal control w*(T;x) is piecewise continuous and locally Lip-
schitz in x in R, uniformly in 7. That is, for a given compact set

QCR
Hﬂ*(’r;l’l) — ’U,*(T; acg)H < Lu”-%'l — 1‘2“ VT e [O,Tp), T1,T9 € €,

where Ly, is the Lipschitz constant of u*(T;x) (as a function of x) in

Q.

3. Value function is locally Lipschitz:
The wvalue function, which is defined as the optimal value of the cost
for every x € R
V(z) = J(u (s 2); 7)

is Lipschitz for all compact subsets of R and V(0) =0, V(x) > 0 for
all z € R/{0}.
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4. Decrease of the value function along solution trajectories start-
ing at sampling instants t;:
Along solution trajectories starting at a sampling instant t; at x(t;) €
R, the value function satisfies
ti+1
V(z(t; +7)) —V(z(t:) < — [ F(z(s),u(s;z(s;)))ds, 0<r.

L

Agsumptions 5.3.1 and 5.3.4 are satisfied by various NMPC schemes, such
as quasi-infinite horizon NMPC (Chen and Allgéwer, 1998b), zero terminal
constraint NMPC (Mayne and Michalska, 1990), and NMPC schemes us-
ing control Lyapunov functions to achieve stability (Jadbabaie et al., 2001,
Primbs et al., 1999). Assumption 5.3.1 is a typical assumption in NMPC, of-
ten quadratic stage cost functions F' are used. Assumption 5.3.4 implies that
R is invariant under the state feedback NMPC for all trajectories starting at
t; in R. It also implies convergence of the state to the origin for ¢ — oo (Chen
and Allgéwer, 1998b, Chen, 1997) and allows the use of suboptimal NMPC
schemes (Mayne et al., 2000, Scokaert, Mayne and Rawlings, 1999). The
strongest assumptions are Assumptions 5.3.2 and 5.3.3. For existing NMPC
schemes Assumption 5.3.2 is often satisfied near the origin. In words, this
(quite frequently made) assumption requires that two “close” initial condi-
tions must lead to “close” optimal input trajectories. This does not exclude
piecewise continuous input signals as is often used in NMPC. However, for
example, it excludes systems that can only be stabilized by discontinuous
feedback (as state feedback NMPC can stabilize (Fontes, 2000)). Checking
Assumption 5.3.2 and 5.3.3 a priory is in general difficult.

To establish the stability results of this chapter, it is necessary that for
any compact subset S C R we can find a compact outer approximation
Q.(S) that contains S and is invariant under the NMPC state feedback.

Assumption 5.4 For all compact sets S C R there is at least one compact
set Q.(S) = {z € R|V(x) < ¢} such that S C Q.(S).

In general, more than one such set exists, since ¢ can be in the range
sup,er V(z) > ¢ > max,cs V(x). The existence assumption of such a set
Q.(S) for all compact sets S of R is strong. If it is not fulfilled, the results
are limited to sets S that are contained in the largest level set Q. C R.

5.3.2 State recovery by high-gain observers

The NMPC state feedback controller requires full state information. We
propose to recover the state from output (and input) information via a high-
gain observer. We briefly outline the basic structure of the high-gain observer
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used. Furthermore, we present two possibilities to avoid the need for analytic
knowledge of the inverse of the observability map, H~1(Y,U), for which an
analytic expression is often difficult to obtain. Since explicit knowledge and
boundedness of the u derivatives that appear in the observability map is
necessary, we also briefly comment on this issue at the end of this section.

Basic high-gain observer structure

Application of the coordinate transformation ¢ := H(x, U) to the system (5.1)
leads to the system in observability normal form in ¢ coordinates

(= A+ Bo((,U),
y = CC¢.

The matrices A, B and C have the following structure

e
A = blockdiag [A1, Aa,... Ap], A =
0 oo 01
((JEETRTRT 0 T3 XT4
B = blockdiag [B1, Ba,..., B)], Bi=[0 -~ 0 1]
C = blockdiag [C1,Cs,...,Cpl, C;= [1 0o --- 0]1><r’

and ¢ is given by

wlﬂ“l-l—l(Hil(C, U), U, ... ,u(rl+1))
o(¢,U) = : . (5.6)
Vprp1 (UG U) o ule D)

The functions 9,41, j = 1,...,p are defined analogously to (5.2). The vec-
tor U contains, similarly to U in the mapping H, the input and all necessary
derivatives. It is necessary to distinguish between U and U, since, as can be
seen from (5.6), U might contain more v derivatives than U. Note that ¢ is
locally Lipschitz in all arguments since f and h are locally Lipschitz and H
is smooth. The high-gain observer!

= AC + Hoy — C8) + BH(C,0) (5.7)

allows recovery of the states ¢ from y(t) (and U) (Tornambe, 1992, Atassi
and Khalil, 1999). The function qg is normally given by the nominal model
of ¢, i.e. in principle gﬁ = ¢ if ¢ is known exactly. If ¢ is not known exactly,
one could also take ¢ = 0. The key assumption we make on gZS in comparison
to ¢ is that

'Tn the following * denotes variables and functions used in the observer.
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Assumption 5.5 45 18 globally bounded.

Ideally one would like to use 45 = ¢, if ¢ is bounded and known, since one can
expect good observer performance in this case. If ¢ is not globally bounded
one can generate a suitable 45 by bounding ¢ outside a region of interest. In
the extreme case, i.e. if ¢ is not or only very roughly known, Assumption 5.5
also allows to choose qg = 0.

The observer gain matrix H, is given by Hc=blockdiag [Hc 1, ..., Hepl,
with HGTZ = [agz)/e, ozg)/eg, cee oz,(fi)/e”], where € is the so-called high-gain
parameter since 1/e goes to infinity for ¢ — 0. The ajz s are design parame-
ters and must be chosen such that the polynomials
(4)

sirallsi iy pal) stal =0, i=1,...,p

are Hurwitz. Assuming that the system state is bounded, and that Assump-
tion 5.5 holds, it is possible to show that for any desired maximum observer
error there exists a sufficiently small € such that the observer error starting
in any compact set satisfies in finite time the desired bound (Atassi and
Khalil, 1999). Note that global boundedness of g?) can always be achieved by
saturating 45 outside a compact set of interest.

The state estimate used in the NMPC controller is obtained at the sam-

pling instants t¢; by
B(t:) == H (), Utz #(ti1))). (5.8)

Here U(t;; &(t;—1)) contains the input and its derivatives obtained by the
NMPC controller at time t;_; for the time ¢;. The variable ¢, denotes the
left limit of the corresponding trajectory for ¢;. It is necessary to distinguish
between the left limit ¢, and the value at ¢; since H depends on u and
its derivatives leading to possible discontinuities in the state estimate, as
discussed in some more detail in Section 5.3.3. The high-gain observer allows
to recover the full state information. However, the inverse mapping H ™!
must be known explicitly. Furthermore the expanded input vector U must
always, not only at sampling instants, be known.

Avoiding explicit knowledge of H~!

One way to avoid explicit knowledge of H~! and U is to set gZS = 0. The
observer is then given by

E=AC+ Ho(y — CO).

In this case the observer error still converges to any desired bound for a
sufficiently small e. However, the performance for a fixed ¢ might degrade
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significantly. The key advantage is that the inverse of the observability map
H, as well as information on U is only necessary at (just before) the sampling
instant. Moreover, the explicit usage of the inverse can be avoided altogether.
Rewriting equation (5.8) leads to

~

C(ti) = H(Z(t:), U(ts; 2(ti-1)))- (5.9)

In principle this equation, together with the known values of ¢ (t;1) and
U(ti; &(ti—1)), can be added to the dynamic optimization problem (5.3) that
is solved in the NMPC controller at time ;. This does not change the solution
of (5.3), since the value of %, due to the uniform complete observability
assumption, is uniquely defined by (5.9). Thus, instead of using the inverse
explicitly, we let the optimization software solve for Z.

Another possibility to avoid explicit information on H ™! is to rewrite the
observer equations in terms of the original coordinates (Ciccarella, Dalla Mora
and Germani, 1993, Maggiore and Passino, 2001). The high-gain observer (5.7)
for ¢ = ¢ (no mismatch between the estimator and the real system) in x
coordinates is given by:

OH

-1
%(i, U)} H(y — h(z,u)). (5.10)

T = f(&,u)+ [
In Maggiore and Passino (2001) an additional projection of the observer state
into the observable part of the state space is required since systems that are
not uniformly completely observable and control laws that are not globally
bounded are considered. This projection is not necessary here, since the
input resulting from the NMPC controller is bounded, and since we limit
ourselves to uniformly completely observable systems.

If [0H /0x(2,U)] " is not known, one can left-multiply (5.10) by &H /0.
The resulting system can be efficiently solved using index one DAE integra-
tors. This is advantageous, since OH /Jx is rather easy to acquire from H via
differentiation. The disadvantage of this approach and the basic high-gain
observer is that U must be known all times.

Obtaining the necessary u derivatives

To obtain a state estimate via the high-gain observer the applied input and
the derivatives appearing in U must be known. Furthermore, if derivatives
of u appear they must be bounded. Since the input is determined via an
open-loop optimal control problem at the sampling instants, the NMPC
setup can be modified to provide the necessary information and guarantee
the boundedness. Different possibilities to achieve this exist: One can a)
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augment the system model used in the NMPC state feedback by integrators
at the input side, or b) parameterize the input w(t) in the optimization
problem such that the input is sufficiently smooth with bounded derivatives.
In the approach a), adding the integrators leads to a set of new inputs and
the NMPC controller must be designed to stabilize the expanded model.
Furthermore, to guarantee boundedness of the inputs and its derivatives,
constraints on the new inputs must be added. While this does not change
the local stabilizability property (Isidori, 1995), nothing can be said about
the global properties in general. In the case of no input constraints the
integrator backstepping lemma (Krsti¢ et al., 1995) provides that the global
stabilizability is not influenced. However, this result cannot be used, since
constraints on the inputs are present.

In the following we assume that the NMPC controller is designed such
that it guarantees that the input is sufficiently often differentiable and that
it provides the full U vector.

Assumption 5.6 The input obtained by the NMPC controller is continuous
over the first sampling interval, sufficiently often differentiable, bounded and
known, i.e. the NMPC open-loop optimal control problem provides the con-
tinuous “input” vector U(t; +1;x(t;)) € Uy, T € [0,0) with Up, = U X Upq C

R™MU where Upg C R™ is a compact set and 1y is the number of deriva-
tives that appear in U.

In the special case that no input derivatives appear in H no change in the
NMPC controller is necessary. This is for example the case for systems
having full vector relative degree.

5.3.3 Overall output feedback setup

The overall output feedback control is given by the state feedback NMPC
controller and a high-gain observer. The open-loop input is only calculated at
the sampling instants using the state estimates of the observer. The observer
state f is initialized with g:() which, transformed to the original coordinates,
satisfies £g € Q. The set Q@ C R™ with 0 € Q is a compact subset of possible
observer initial values. The closed-loop system with the observer specified
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in observability normal form can be described by

system: z(t) = f(z@),u(t;2(t:))), x(0)==x0
h(z( (t

observer:  C(t) = AC(t) + BO(C(1), Ut d(tin))) + Holy(t) — CE(1)),
with 6<ti>={A SR i

NMPC: defined by (5.3), provides u(t; &(t;)), U(t;2(t;)), U(t; 2(t;))
using  #(t;) = H™N((t;), U(ti; &(ti_1))) as state estimate.

Remark 5.3 While the observer itself operates continuously, it might be
necessary to reinitialize the observer state ( at the sampling instants, as de-
fined in equation (5.11). This is a consequence of the fact that H in general
depends on u and its derivatives. Thus, since u and its derivatives might
be discontinuous at the sampling instants (compare Assumption 5.6), the ob-
server state might jump at the sampling instants. While at a first glance the
reinitialization seems to be unnecessary, it avoids that the observer “initial”
state &(t;) = H_l(f(t;),U(ti;i"(ti,l))) at the sampling instant, due to the
possible discontinuity in u, is outside the compact set Q. Note that either way
the discontinuities of u at the sampling instants in general make ¢ discontin-
uous, which means the analysis has to take the discontinuities in the observer
error into consideration. This is also the reason that one must differentiate
between t;, which denotes the left limit of the corresponding trajectory for
ti, and the value at t;, i.e. the ¢ values for t; and t; might differ.

Figure 5.1 shows the time sequence of the overall output feedback scheme.
The arrows in Figure 5.1 pointing from the trajectories of y to f illustrate
that the high-gain observer is continuous time and thus continuously updated
with the output measurements in between sampling instants. In contrast,
the NMPC open-loop optimal control problem is solved only at the sampling
instants ¢; and the input is open-loop implemented in between.

Note that the observer estimate is not bounded to the feasibility region
R of the NMPC controller. Since the open-loop optimal control problem will

not have a solution outside R, we have to define a valid input in this case.

Assumption 5.7 The open-loop input must also be defined outside the feasi-
ble region R of the NMPC controller. For simplicity we assume that the input
is fized to an arbitrary value uy € U for allx & R: u(r;x) = uyp, T € [t, t+0).

Thus u(7; %) is defined and bounded for all & € R™.
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&(t;) = HTH(C(]), Ultys @(ti—

t

Figure 5.1: Time sequence of the overall output feedback control scheme.

5.4 Practical stability

In this section semi-global practical stability of the closed-loop system state
is established. In the first step we show that for any compact subset of R for
the initial states x and any compact set of initial conditions of the observer
initial states, the closed-loop states stay bounded for small enough e and
0. Furthermore, at the end of each sampling interval the observer error has
converged to an arbitrarily small set. In a next step it is established that
for a sufficiently small € the closed loop system state trajectories converge in
finite time to a (arbitrarily) small region containing the origin. In principle
we use similar arguments as in Atassi and Khalil (1999). However, since we
consider a sampled-data feedback employing open-loop input trajectories be-
tween the sampling instants, we cannot make use of standard Lyapunov and
converse Lyapunov arguments. Instead we utilize the decrease-properties of
the NMPC state feedback value function along solution trajectories. More-
over, we only establish that the observer error stays bounded and converges
to a small region at the end of each sampling interval. Due to the necessary
reinitialization, the observer state might, however, leave this small region.
For the practical stabilization of the system this is not a problem, since the
state estimate is only needed at the end of each sampling interval to calculate
a new feasible optimal input.

In the following we suppress most of the time the (known) “input” U (¢; z(;))
and U(t;z(t;)) in the notation, e.g. H(z) should be read as H(z,U). Fur-

thermore, it is convenient to work in scaled observer error coordinates based
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on the observability normal form. The scaled observer error 7 is defined as

~

Gij — CU

n= [nu,---,nm ----- Mplyess nprp]7 with Nij =

Hence we have that 6 = ¢ — D with D, = blockdiag [De 1, De 2, ..., Dep),
D.; = diag [6”_1, e 1]. The closed-loop system in between sampling in-
stants is then given by

#(t) = f(x(t), ut; 2(4:)))
en(t) = Aon(t) + eBg(t, x(t), 2(t:), n(t), n(t;))

where the matrix Ag = D1 (A — HC)D, is independent of € and where the
function g is defined as the difference between ¢ and ¢,

g(t x(t), (t:),n(t),n(t;) = d(C(E), Ut #(t:))) — SC(1), Ut & (1))

Here the estimated system state 2(¢;) and (, f are given in terms of 1, z and
u by

We often compare, over one sampling interval, the state trajectories of the
output feedback closed loop with the trajectories resulting from the appli-
cation of the state feedback NMPC controller starting at the same initial
condition. The state feedback trajectories starting at z(t;) are denoted,
with slight abuse of notation, by Z(¢; z(¢;))

Tt x(t) = f@EG o), ult;2(t:))), T(tiso(t)) ==(t), te [titi+0]

(5.12)
For simplicity of presentation we assume, without loss of generality, that
0 < e < 1. This implies that || D, < 1.

5.4.1 Preliminaries

Before we move to the practical stability and boundedness results we estab-
lish some properties of the observer and controller. We show that for an
observer initial condition & starting in a compact set Q, the scaled observer
error can be brought in any desired small time to any small set around the
origin and remain in this set, as long as the system state stays in a compact
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region (and the input U is continuous). Moreover, we will derive a bound on
the difference between the state feedback and output feedback trajectories
for a given observer error.

In the following the set Q C R” is a fixed compact set for the observer
initial state 29, whereas T'c := {n € R"|W(n) < pe?} defines a set for the
scaled observer error 7 that directly depends on e. The constant p is specified
in the proof of the following lemma and W (n) is defined by W (n) = n' Pyn,
where Py is the solution of the Lyapunov equation PyAg + AJPO =—1.

The following Lemma is similar to a result obtained in Atassi and Khalil
(1999).

Lemma 5.1 (Convergence of the scaled observer error) Given any
time 0 < T such that U is continuous over [0,T], two compact sets Q. C R
and Q@ C R"™, and let Assumptions 5.2 and 5.5 hold. Furthermore suppose
that the system state satisfies ©(1) € Q., 0 < 7 < T. Then there exists an
€], a constant p, and a finite time To(e) < T such that for any &y € Q and
for all 0 < e < €] the scaled observer states n(7) are bounded for 7 € [0,T]
and that n(t) € T, 7 € [To(e),T].

Proof. First note that
ow .

on

- %%_:/(Aon(t) +eBy(t, x(t), x(t:), n(t),n(t;))). (5.13)

“Invariance” of I'.:  We first show that there exists a constant p such that
for all # € Q. and 1 € {n € R*"|W(n) > pe?} the right hand side of (5.13) is
smaller than zero, thus establishing that as long as 7(t) is continuous, 7(t)
will not leave T'c once inside. To establish this we utilize that for x(t) € Q.
there exists a constant k, such that:

[1Bg(t, x(t), x(t:), n(t), n(t; NI = lg(t, x(t), z(t:), n(t), n(t; )|l < kg,  Va € Qe.

(5.14)
The existence of such a constant follows from the local Lipschitz property
of ¢ (as a result of the smoothness of f and H, compactness of Uy and the
compactness of 2.) and the global boundedness of qg Hence

W< =nll? + 2lnll | Pollkg.

We rewrite this as

. 1 1
W< ——|nll2 = =|In|I* +2 Pyllk,.
< 26H77|| 26H77|| + 2|l || Po | kg
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If we can find a p such that the last two terms are bounded by zero as long as
W (n) > pe?, then we know that if n reaches I, it will stay there.To achieve
this consider the boundary of I'. defined by " Pyn = pe? where p > 0. Using

2 2
L 2 < _pe .
||P0|| S HUH S /\min(PO) we thus require:

< Py VP )||P0Hk:g>e§0, for W (n) = pe?.
0

2||P0|| - )\min(P
Choosing
1Poll* 2
=16—————k 1
P 6)\min(P0) g (5 5)
satisfies this condition and leads to
. 1
W< -l for W) > pe (5.16)

Thus, once n enters I'c it will not leave it again, as long as 7 is continuous
which is guaranteed on [0,7] since U is continuous on this interval. Note
that (5.16) also guarantees boundedness of 7(t) on [0, T'.

Finite convergence time of the scaled observer error to I'.:  Consider
now that z(7) € Q,, 7 € [0,T] and 29 € Q. Since Uy, Q. and Q are
compact and H is smooth, we know that there exists a constant kg such
that [|¢(0) — C(0)|| < ko. Thus it follows that ||n(0)|| < kg/e™=~1, where
max = max{ry,...r,}. By (5.16) W (n) is strictly decreasing as long as
W(n) > pe?. Let T be the time when n enters I'c. Integrating from ¢t = 0 to

t = T results in

W) o 1 4
W(n(T)) — 2¢| Bl
(

Solving for T' and setting W (n(T)) = pe? we obtain in the limit

~ W
T < 2| Pyl In ( (Z°)> .
pE

In

We know that ||no| < kg/e™™=~1. Considering the worst case leads to

5 Py ||k
T < To(e) := 2¢| Py In <H ol Q) ,

p62rmax

where the time Tg(€) is an upper bound for T. Choosing €] sufficiently
small, we know that for all e < e}, Tg(e) <T. The existence of such an €}
is guaranteed since the right hand side of the inequality tends to zero as ¢
tends to zero. Thus we can reach the set T'c = {n € R"|W(n) < pe®} in less
than any given time 7. m
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Remark 5.4 Note that the size of the set T'c and the time Tg(e) depend on
€. Decreasing € leads to a shrinking T'c while also shrinking the time Tg(€)
needed to reach I'c. Furthermore, note that an upper estimate of the error in
the original coordinates for n € T'c is given by:

lz = &) = |H'(¢,U) = H G U))
< Luxli¢ =

< Lune|| Dell Il
< kre formel,,

where kr is a constant that depends on the Lipschitz constant Ly of H™!
(and hence on Uy, Q. (a compact set for the states) and Q). Thus decreasing
€ also decreases the observer error in the original coordinates after the time
To(e). This, together with robustness properties of the state feedback NMPC
controller are the key elements in the output feedback stability results.

The next Lemma establishes a bound on the difference between the tra-
jectories resulting from the NMPC controller with exact state information
and the NMPC controller using an incorrect state estimate. From now on,
Q. will denote level sets of V(z) defined by Q. := {z € R|V(z) < ¢}, and
the set §.(S) denotes a level set 2. that contains the (assumed compact)
set S C R, ie. ¢ > max,es V(z).

Lemma 5.2 (Bound on distance between state and output feed-
back trajectories) Let Assumptions 5.1-5.4 hold, and let three compact
sets @ C R", S C R and Q.(S) C R with S C Q.(S) be given. Con-
sider the system (2.1) driven by the NMPC open-loop control law (5.4) using
the correct state xo (state feedback) and the state estimate &g € Q (output
feedback)

(1) = f(a(r),u(t;d0)), () = f(2(7),u(r;70)), 2(0) =2(0) = 0.
(5.17)

Then there exists a time Ts < T, such that for all 2o € Q, xo € S, we have
z(7),Z(1) € Q(S) and

quLu
Ly,

l2(r) = z(7)|| < lzo = @oll ("7 = 1), 7 €[0,Ts].

Here Ly, and Ly, are the Lipschitz constants of f in Q.(S) xU, and L, is
the “Lipschitz constant” of u as defined in Assumption 5.3.2.
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Proof. Since S C 2.(S), u piecewise continuous and bounded there always
exists a time Ts < T}, such that z(7), z(7) € Q.(S) for all 7 € [0,Ts] and
that the solutions are continuous. This follows from the fact that for z(-) in
Q.(S),

(7 —930H</ 1f (2(s), u(s))||ds < ko,

(and the same for Z(7)) where kq is a constant depending on the Lipschitz
constants of f and the bounds on w. The solutions to (5.17) for any 7 €
[0,Ts] can be written as:

—$0+/ f(x (s;20))ds, & —:C0+/ f(z (s;x0))ds.
Thus
|z(7) — 2(7)|| </ 1f(2(s), u(s; 20)) — f(Z(s), u(s; z0))||ds.

Since f is locally Lipschitz in R (and hence in Q.(S)) and u(7; x) is uniformly
locally Lipschitz in x we obtain

o) =) < [ (Lsallols) = a(o)] + LyuLull - ol ds
< LpuLullzo = ollr + [ Lyslla(s) = 2(s)ds,
0

where Ly, Ly, are the Lipschitz constants of f in Q.(S) x U, and L, is
the “Lipschitz constant” of u as defined in Assumption 5.3.2. Using the
Gronwall-Bellman inequality we obtain for all 7 € [0, Ts]

Ly¢,L .

lao(r) = 2(r)]| < == o — doll (47 1),
fx

which proves the Lemma. m

In the following we make use of the following fact that gives a lower
bound on the first “piece” of the NMPC state feedback value function:

Fact 1 For anyc >0, ¢ > a >0, T, > 0 > 0 the following lower bound
Viin(c, @, 8) exists and is non-trivial for all zg € Q./Qq:

0 < Vmin(c, @, 0) min / F(z(s;x0),u(s;xp))ds < oo.
Z'OEQC/Qa
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5.4.2 Boundedness of the states

In this section we establish that the closed-loop states remain bounded for
sufficiently small € and 9.

Theorem 5.1 (Boundedness of the states) Assume that the Assump-
tions 5.1-5.7 are fulfilled. Let the compact sets Q, S and Q.(S) with Q@ C R"
and S C Q.(S) C R be given. Then there exists 65 > 0 such that for
0 < 6 < 85, there exists €5 > 0 (dependent on &), such that for all 0 < e < €}
and all initial conditions (zo,%o) € S x Q, the observer error n(T) stays
bounded and converges at least at the end of every sampling interval to the
set T'c. Furthermore, x(7) € Q.(S) V7 > 0.

Proof. The proof is divided into two parts. In the first part it is shown that
there exists sufficiently small § and € such that the observer error converges
to the set I'. at least at the end of the first sampling interval, starting with
Z(tp) € Q and x(0) € S, and that x(¢) in this interval does not leave Q.(S).
In a second step we establish that x(¢) will remain in Q.(S) while n(t) stays
bounded and converges (at least) at the end of each sampling interval (t;)
to I'c. Note that n might jump at the sampling instants ¢; due to the discon-
tinuities in U and the possible reinitialization (5.11). This is the reason why
we can not establish that n enters the set I'c and stays there. However, this
is not a problem for controlling the state, since the state estimate is only
needed at the end of each sampling interval.

We denote the smallest level set? of V that covers S by Q.,(S). The
constant ¢; < ¢ is given by ¢; = max,es V(z).

First sampling interval, existence of €, 0 such that n(t7) € T'c and x(1) €
Q.(S), 7 €[0,t4]:

Since S is strictly contained in .(S), there exist a time T, such that tra-
jectories starting in S do not leave Q.(S) on the interval [¢t,t + T.]. The
existence is guaranteed, since as long as x(t) € Q.(S),

[[(t) = wol| < /0 [1f(x(s), u(s))llds < kat.

We take T, as the smallest possible (worst case) time to reach the boundary
of Q.(S) from a point z¢g € Q., D S, allowing u(s) to take any value in U.
Due to the compactness of Q we know from Lemma 5.1 that n(t) € T'c for
t1 >t > To(e). Since Tg(e) — 0 as € — 0, there exists an €; such that for
all 0 < € < €1, Tg(e) < L. Let 65 be such that for all 0 < § < 83, the first

*Figure 5.3 illustrates some of the sets.



PRACTICAL STABILITY

sampling instant ¢; = § satisfies Tg(€) < t; < Z=. Choose one such § for the
rest of the proof. Then (z(t1),n(t;)) € Q(S) x I'¢, and the same hold for
the next sampling instant (since we used T¢/2 for choosing 03).

We will in the following refer to the smallest level set covering all points
that can be reached from points in Q. (S) in the time 7,./2 applying any
admissible control by Q. , (S). Note that by the arguments given above,
z(t1) € Qey, ,(S), with er, o < c.

Invariance of Q. for z at sampling instants, convergence of n to I'c for each
tr

Consider a sampling instant ¢; (e.g. ¢1) for which we know that z(t;) €
Qcy, ,(S) and that z(t; + 7) € Qc(S) for 0 < 7 < § and 7(t; ) € .. Note
that we do not have to consider the case when x(¢; + 7) € Q,(S) for some
0 < 7 < 4§, since the reasoning in the first part of the proof ensures in this
case that the state will not leave the set {2, ,(S) in one sampling interval
(considering the worst case input). Hence we assume in the following that
x(ti +7) € Q(S) /e, (S).

Now consider the difference in the value function between the initial state
x(t;) and the developing state xz(t;+7),

V(i + 7)) = V(x(ti))
S V(@ + 75 a(ti) = V(w(t) + [V(e(ti + 7)) = V(@ + 7520(:)))]

IN

ti+1
- /t F(z(s,z(t:)), u(s; z(t:)))ds + [V (x(ti + 7)) = V(2 + 752(8)))]-
Z (5.18)

Since V' is Lipschitz in compact subsets of R D .(S) we obtain:

Vi(z(ti + 7)) — V(x(ti))
ti+T1
< — i F(z(s;x(t;)), u(s;x(t;)))ds + Ly ||z(t; + 7) — Z(t; + 75 2(8:))]],

where Ly is the Lipschitz constant of V' in 2.(S). The integral contribution
is only a function of the predicted open-loop trajectories of the NMPC state
feedback controller. Using Fact 1 and Lemma 5.2 this leads to:

V(x(ti+6)) = V(x(t:))

LyuLy )
< ~Vanin(e, @,0) + Ly == a(ts) — a(t:)| (eLM - 1) (5.19)
f

xT
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for any fixed o < ¢; and z(t;) € Q. From Remark 5.4 we know that there
exists an 0 < ey such that for all 0 < € < €9,
1

V(z(t; +9)) — V(z(ty)) < —§Vmin(c,a,(5) = —Ki,
where k1 > 0 is a constant given by the right hand side of (5.19). Hence
the state at the next sampling instant is at least within Q., ,(S) again,
and thus also in Q.(S). Since z(ti+1) € Q¢ ,(S), it will by the reasoning
in the first part not leave Q.(S) during the next sampling interval, and
hence the arguments in the second part holds for this interval as well. By
an induction argument, the state will not leave .(S), and setting €} :=
min{e, €2} concludes the proof. m
Figure 5.2 is an attempt to sketch the main ideas of the proof.

corresponds to S
o

[l 4 corresponds to S X Q

Figure 5.2: Sketch of the main ideas behind the proof of Theorem 5.1.

5.4.3 Semi-global practical stability

In this section we show that the output feedback scheme can achieve practical
stability of the system states. It is established that for any small ball around
the origin, there exists an observer gain and a sampling period such that the
state trajectory converges to the ball in finite time and stay inside the ball.

Theorem 5.2 (Practical stability) Let the compact sets Q, S and Q.(S)
with @ C R™ and S C Q.(S) C R be given. Furthermore, let the Assump-
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tions 5.1-5.7 hold. Then, for any set Qo with ¢ > o > 0, there exists 65 > 0
such that for a 0 < 6 < 03, there exists €5 > 0 (dependent on &), such that
for all 0 < € < €5 and all (z9,%0) € S x Q, the observer error n(T) stays
bounded and the state x(T) converges in finite time to the set Q. and remains
there.

Proof. First we show that there exists an e sufficiently small, such that for
any 0 < 8 < «, Qg C Q, trajectories originating in {13 at a sampling instant
do not leave Q,3. Then we establish that the states starting at &y € Q and
xo € S enter (15 in finite time. In the first part we consider any fixed § < d5.
“Invariance” of Qo for x(t;) originating in Qg:

For z(t;) € Qg and 7 < 0, by Lemma 5.2, the state feedback and output
feedback trajectories satisfy the bound

\V(x(t; +7)) = V(z(t; + 7m52(L)))]
< Lyla(t +7) — Z(t; + 73 2(t:)) |
< LvL%fLuHx(ti) —z(t)| (eLf“ -1).

xT

(5.20)

Furthermore, the state feedback trajectory satisfies z(t; + 7;x(t;)) € Qg
for 7 € [0,0] by Assumption 5.3.4. So one can choose an €; such that for
0<e<e, V(x(ti+ 7)) < aformel0,6], for all z(t;) € Q3. Thus the
trajectory x(t; + 7) does not leave the set Q for 7 € [0, J].

Now we define an additional level set 2, inside of {23 given by 0 < v < 3.
We proceed considering two cases, z(t;) € Q and x(t;) € Q3/5,.
x(t;) € Qg/8,: Similar to equation (5.19) in the proof of Theorem 5.1, we
can establish that for all z(t;) & Q,,

V(@(ti+0) =V (2(t:) < —Vimin(c, 7, 5)+Lv%||x(ti)—@(ti)|| (ewaS — 1) .

fx

By Remark 5.4, we can choose e such that for 0 < € < eo,

V(a(t +8)) = V(x(t) < —%Vmin(c,%é) . (5.21)

Hence z(t; + 0) € Qg for z(t;) € Qp/Q. Additionally, we know from the
first part of the proof that also the states between the sampling instants ¢;
and t; + ¢ do not leave Q. The bound (5.21) implies that x(¢;) reaches the
set 2, in finite time, for which (5.21) is not valid anymore.

z(t;) € Qy: To show that we can find e such that z(t; + 7) € Qg, we use

3See Figure 5.3 for a clarification of the occurring regions.
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again equation (5.20) and note that the state feedback trajectory satisfies
z(t; + 15 2(t;)) € Qy for 7 € [0,6]. Choosing an €3 < min{ey, €2} sufficiently
small, we know that for all 0 < € < e3, V(z(t; + 7)) < 8 for 7 € [0,0], and
for all x(t;) € €.

From the given arguments it follows that x(t;+6) € Qg for all z(t;) € Qg
and z(t; + 7) € Qg for all 7 € [0,6]. Thus it is clear that once x(t;) enters
the set (g, the trajectories stay for all times in 2, D Q3.

Finite time convergence to Qg:

It remains to show that for any (zg,m0) € S x Q, there exists a (finite)
sampling instant ¢,, with z(¢,,) € Q3. We know from Theorem 5.1 that for
sufficiently small § and €, 2(7) € Q.(S) Vr > 0. Set §5 = 65, and choose a
d < 05. Set €5 = min{es, 3}, where €5 (dependent on ¢) is specified as in
Theorem 5.1.

Theorem 5.1 guarantees boundedness of n(7) V7 > 0. To show conver-
gence to Qg, note that (5.21) is valid for all z(t;) € Q./Q,. Therefore, for
any initial condition in S the state enters the set €0 in a finite time less than
or equal to =25, m

K2
Figure 5.3 clarifies some of the regions occurring in the proof.

|

:Ii’(tl

2 .
5\ o

Figure 5.3: Regions involved in the practical stability proof.

Remark 5.5 Theorem 5.2 implies practical stability of the system state z(t).
Choosing o and € small enough, we can guarantee that xr converges to any
set containing a neighborhood the origin. Together with Theorem 5.1, this
establishes that the closed-loop system state is semi-globally practically stable
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with respect to the set R, in the sense that for any S C R and any ball
around the origin there exists an observer gain and a sampling period such
that the system state reaches the ball from any point in S in finite time and
stays therein afterwards. Note, however, that with the given arquments we
can only guarantee that the observer state stays bounded and converges at the
end of each sampling interval to T'c, n(t;) € I'..

5.5 Convergence to the origin

In this section we show that under some strengthened assumptions, conver-

gence to the origin holds. We use the results of Theorem 5.2, in that we

place ourselves in a region 2, x I'c (where the size of I'¢ is decided by €} < €3

to be defined in Theorem 5.3) at a sampling instant. Thus in this section we

consider a fixed sampling period ¢ < 43, and € < €3, where €3 depends on .
We make the restrictive assumption that:

Assumption 5.8 The mapping H does not depend on the input (or the
input derivatives).

This assumption ensures that the observer state trajectory is time continuous
over sampling instants since the jumps in the input does not affect the states
in observability normal form directly and the observer is not dependent on
the input derivatives. Also, as we will see, it is not necessary to reinitialize the
observer as in the previous section, since we can show that the scaled observer
error will not leave I'.. Hence the output feedback scheme we consider in
this section is as specified in Section 5.3.3, but without the reinitialization
in (5.11).

Essentially, Assumption 5.8 means that we in this section consider full
relative degree systems, similarly to Chapter 4. Larger system classes can
be considered if continuity of the observer states is ensured, for instance by
adding input integrators to the model as outlined in Section 5.3.2. This is
not considered in further detail.

We can now show that T'. is “invariant”:

Lemma 5.3 Under Assumption 5.8, n(t;) € T'c implies that n(t) € T'c for
all t > t;.

Proof. From the proof of Lemma 5.1, n(t) will not leave T, the first sampling
interval after ¢;. Since 7(t) is continuous, 7(t;+1) € I'e. The result hold by
an induction argument. m

Combined with the result of Theorem 5.2, we conclude that €, x I'¢ is
invariant, and we confine us to this set for the rest of this section.
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In this section, we need a stronger bound on g(t, z(t), z(t;),n(t),n(t;))
than merely the upper bound in (5.14):

Assumption 5.9 For (x(t),n(t)) € Qo X Ues, there ewists a Ly > 0 such
that
lg(t, (t), x(t:),n(t), n(E DI < Lglln(@)]-
The above is true if the observer (5.7) is used, and the observer nonlinearity
is the same as in the real system®. Note that it is crucial that the states and
observer error are confined to the compact set 2, X I'ex, since Assumption 5.9
can only hold (with a fixed Ly) on a given compact set.
We also need to strengthen Assumption 5.3.1:

Assumption 5.10 In addition to fulfilling Assumption 5.3.1, the stage cost
18 locally Lipschitz in both its arquments.

The following lemma says that if the observer error is nonzero at a sam-
pling instant, it will not become zero in the following sample interval. This is
used to show that the Lipschitz continuity of the control in the observer error
at sample instants (which follows from Assumption 5.3.2) can be replaced
with Lipschitz continuity of the control in the “present” observer error.
Lemma 5.4 Let Assumption 5.9 hold. For (x(t;),n(t;)) € Qo % T¢, and for
T E [ti,t“_l],

()l = Lyln(t:)l

for some L, > 0.
Proof. By the definition of P,

—— Agn = —||n||%.
o Aon ==

Because of this,
ow 1 5 OW _
= —Z||n(t ——Bg(t, z(t), z(t;),n(t), n(t;
G0 = ~ZIn(OI + G Ba(t. (0. 2(0).0(0). (1)
which by Assumption 5.9 means that
. 1
W= —(— +2[|PollLg )HnH2

> ( + 2[Rl Lg) 757 W (0)

HP I
= —kW(n)

‘By Assumption 5.5, this implies that ¢ must be globally bounded. However, this
is not a real limitation. Since Assumption 5.9 only needs to hold on a compact set, the
nonlinearities only need to be equal on this set, and therefore we can bound the observer
nonlinearity outside a compact set of interest.
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for k = (|| Pylle)~! + 2L,. By the Comparison Lemma (Khalil, 1996), this
implies that for ¢ > ¢;,

W(n(t)) = W(n(t:)) exp [-k(t —t;)] .
Thus, for 7 € [ti’tiJrl];

1
()] > mW(W(T))
1

> ———=W(n(t:)exp [=k(T — ;)]
| Poll
)\min(P)
> HTOHOHn(ti)H exp [—k(ti+1 — 4)] .

Choosing L, = )‘"T‘]‘]“D(()ﬁ)o) exp [—kd] completes the proof. m

The following lemma is a refinement of Lemma 5.2 which holds due to
the added assumptions and Lemma 5.4, and since we know that the states
and observer error stay in a bounded set:

Lemma 5.5 Consider the system (5.1) driven by the NMPC open-loop con-
trol law (5.4) using the correct state xo (state feedback) and the state estimate
2o = H Y (H(xg) — Deno) (output feedback)

#(r) = fx(7),u(r;d0)), (1) = f(2(7),ulT;20)), () = 2(t) = x0,

with (x(7),n(7)) € Qo X Tc and (1) € Qq for allt < 7 < t+T, for some
T < T,. Then, under the assumptions made, there exist constants L1 and
Lo such that

t+T t+T t+T
| tF(.’E(T),u(T; Zo))dT — /tF(E:(T),u(T; xo))dr| < Ly ) In(m)||dr (5.22)

and

t+T
V(x(t+T)) = V(@ +T))| <Ly t [n(7)lldr. (5.23)

Proof. First note that the results of Lemma 5.2 holds on [0, 7] since the
state trajectories are confined to €2,. This implies that

lzo — ol (™7 —1), T e[t,t+T].

[z(7) = 2(7)|| <

xT

By Lemma 5.4 and Remark 5.4, we conclude that for L, = Li.L,

lz(r) = 2(1)|| < Lalln(r)ll, 7 € [t,t +T]. (5.24)

Ly LuLyn (eszT _ 1)
)
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From Assumption 5.3.2,
u(r; 20) — w(T;zo)|| < Lulldo — zoll, 7€ [t,t+Tp),

which similarly implies (by Lemma 5.4 and Remark 5.4) that there exists a
L, such that

lu(rs 20) — u(rszo)|| < Lulln(r)ll, 7 € [t,t+T5). (5.25)
For (5.22) to hold it suffices to note that
|F(2(7), u(7; %0)) — F(2(7), u(T;20))| < Lalln(7)[| V7 € [t, ¢+ T1,

for some L; > 0, which follows from (5.24) and (5.25) and Assumption 5.10
(note that z(7) and Z(7) stay within compact sets). Similarly, (5.23) follows
from (5.24) and that V is locally Lipschitz (Assumption 5.3.3). =

We are now ready to state the convergence result:

Theorem 5.3 (Convergence) Let the compact sets Q, S and Q.(S) with
QCR" and § C Q(S) C R be given. Let the Assumptions 5.1-5.10 hold.
Then there exists 05 > 0 such that for a 0 < 0 < o}, there exists €, > 0
(dependent on 6) such that for all 0 < € < €}, and all (xg,n0) € S x Q, the
trajectories (x(t),n(t)) stay bounded and converge to the origin.

Proof. Let 0 < €4 be such that

Lg|| P < 1 .
\/ )\min(PO) N 4€4 V ||P0||

Let t/, €3 and 53 be given according to Theorem 5.2 such that fora 0 < § < 53,
there exist 0 < € < €3 such that the trajectories are confined to a set {0, C S
for t > t'. Set €} := min(€és, &), and set §f = b3. Below, we consider the
sampling instant ¢; > t' closest to ¢’. First, we want to get an estimate for
the decrease of the observer error on integral form. It will be convenient to
express this by the square root of W. It follows that

Ly + Ly +

d ow |1 _ 1
T W(n(t)) = N ;Aon(t) + Bg(t, z(t), =(t:), n(t),n(t; ) W(U(t))
1

< 5 =l

+ 2 Bolllin() g, x(t), x(ti), n(t),

- 1
M AT

LollPoll_

\V4 )\min (PO)

— =IOl +
2¢e /|| Poll
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where both terms on the right hand side are linear in [|n(¢)|. Integrating
this, we get that for any finite 0 < T < §,

VWt +T)) — VW (n(

< o v p——1 L] B
t; \/ HPO \/ min PO

We define a “Lyapunov function” for the system with the observer, V(a:, n) =
V(x) +/W(n), which by the properties of V' and continuity in time of x(t)
and 7(t) is time continuous. Let Z(t) be the state feedback trajectory, as in
Lemma 5.5. Then, for some 0 < T < §,

V(a(ti +T),n(t; +T)) = V(a(ti), n(t:))
= V(a(t; +T)) = V((t) + VW n(ti + T)) — VW (n(t:))
<Vt + 1)) = V(et) + [V(xt: + T)) = V(z(ti + T))|
+ VWt +T)) = VW (L))

From Assumption 5.3.4, it follows that

V(@ (ti + T),n(t; + T)) = V(x(t:),n(t:))
ti+T
< = | F@(r),ulr;20))dr

+ \V(w(ti + 1)) = V(@(t; + 1))l + VW (n(ti + T)) = VW (n(t:))
ti+T
F( (1), u(T; o)) dr

t+T ti+T
—H/ u(T;20))dr — i F(z(r),u(t;x0))dT|
+ |V (@(ti +T)) = V(@(ti + T))| + VW (n(ti + T)) — VW (n(t:))
ti+T
i F(x(r),u(r; &0))dr
Z t;+T ti+T

+ Ly [ n(m)lldr + Lo | [In(7)|dr
t;

. o In()l + =Bl s
ti €/ ‘PO \/ min PO

where Lemma, 5.5 is used in the last transition®.

*Note that since z(7) stays within Q,, so will also Z(7). This follows from the “worst
case” approach of the proof of Theorem 5.2.
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By the definition of €}, we have that for 0 <e <e€}, 0 <T <4,

Vi((ti +T),n(ti +T)) = V(x(ti), n(t:))

ti+T tLi+T
s—/F@mmvmmw—/————mmwr
ti t; 4e\/|| Po|

In particular this holds for T = §. Since, by Theorem 5.1 and Lemma 5.3,
we will not leave the set Q, x I'¢, the above holds for all remaining sample
intervals (using the same €). This shows that V is non-increasing. Together
with continuity and the fact that V is bounded from below, this implies that
the limit V ((c0),7(c0)) exists. By adding all sample intervals together, we
obtain in the limit

V(@(00),m(00)) — V(x(t:), n(t:))

<~ [Pz~ [l

IN

0 1
—Laﬂmmm+£—ﬁmwmwr

This implies that the infinite integral on the right hand side exists and is
finite. Noting the continuity (in time) of the involved functions, convergence
of (z(t),n(t)) to (0,0) follows from Barbalat’s Lemma (Khalil, 1996). m

5.6 Discussion

The presented results allow application of state feedback NMPC for the
output feedback stabilization problem. The derived results are mainly based
on the fact that NMPC is to some extent robust to measurement errors. This
robustness is restricted by the integral contribution on the right hand side of
equation (5.18). Using this robustness in the output feedback case has some
direct consequences. For example the level sets of the value function are
invariant in the state feedback case, but are in general no longer invariant
in the output feedback case. Trajectories starting in a level set might leave
the level set between sampling instants, as is sketched in Figure 5.3 (see the
proof of Theorem 5.1).

A generalization of this robustness is pursued in Findeisen (2002).

The outlined approach satisfies the state and input constraints. Satisfac-
tion of input constraints is guaranteed by the NMPC scheme and bounded-
ness of the input for & ¢ R, see Assumption 5.7. The state constraints are
satisfied since S C R C & and since a sufficiently high observer gain and a
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sufficiently small sampling period is chosen such that even initially, the state
does not leave the set R C X. Compare also Figure 5.3.

Note that in the presented approach, the sampling period must only
be small enough to guarantee that the trajectory during the initial phase,
for which the observer error is often significant, does not leave the region
Q.(S). Beyond this, only e must be further decreased to achieve the practical
stability, while § can be kept constant. This is a consequence of the usage of
a predictive control scheme that uses a system model. The open-loop input
signal applied to the system (which in general is not fixed to a constant value)
corresponds to the predicted/desired behavior. In comparison, the general
output feedback approach presented in Shim and Teel (2001b,a) requires a
sufficient decrease in the sampling period to achieve practical stability. This
stems from the fact that the input during the sampling interval is fixed to the
constant value u(t) = k(z(t;)) given by the state feedback controller k(z).

In the general case, the approach requires knowledge of the inverse of
the observability mapping. Finding this inverse can be hard in practical
examples. An approach is outlined where the inverse is not explicitly needed.

In the proof of practical stability, the properties of the observer is only
needed at the sampling instants. Hence, it seems natural that other observers
with similar convergence properties also could be used, possibly for more
general classes of systems. One obvious choice would be the moving horizon
observer with enforced contraction rate of Michalska and Mayne (1995), but
this observer needs global optimization in the general case.

In the general case, we only establish that the observer error stays bounded
and converges at the end of each sampling interval to I'.. This limitation is
a direct result of the fact that we allowed a general observability map which
depends on w and its derivatives. Since in NMPC the implemented input in
general is discontinuous at the sampling instants, the scaled observer error
n will also be discontinuous. Furthermore, even though the observer states
will not be discontinuous, when transformed back to the original coordinates
(z), discontinuity will in general appear at the sampling instant. Since &(¢;)
can be outside of Q, and n might “jump” out of I'¢ at the sampling instant,
we have to ensure that Z(t¢;) is inside of Q to guarantee that n converges
again to the set T'c for ¢;_ ;. This is the key reason making the reinitializa-
tion of the observer state necessary if Z(t;) ¢ Q. It should be noted that
the scaled observer error 7 will in general be discontinuous independently
of this reinitialization, hence the observer has to be analyzed repeatedly at
each sampling instant anyway.

When H is independent of u (as is assumed in Section 5.5), or when the
inputs do not have discontinuity, e.g. due to some added integrators at the
input side, the reinitialization is not necessary, and n becomes continuous.
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In this case, as is apparent from the proof of Lemma 5.1 (see Lemma 5.3),
the observer error converges after one sampling interval to I'c and stays
there indefinitely, thus the whole closed loop including the observer states
is practically stable. The case where H does not depend on u appears for
example if the system has a full vector relative degree.

The example (the inverted pendulum, nominal case) of the previous chap-
ter (Section 4.7) can also be taken as an example of the approach of this
chapter, since sampling (more or less inevitably) was used in the simulation.
The system class and observer used in that example satisfies the assumptions
of Section 5.5.

5.7 Conclusions

It is a widespread intuition that NMPC, which inherently is a state feedback
approach, can be applied to systems where only output measurements are
available, if an observer with “good enough” convergence properties is used.
In this chapter, a new output feedback NMPC scheme for the class of uni-
formly completely observable systems is derived, using a high-gain observer
to obtain “fast enough” estimates of the states. It is shown that under certain
assumptions on the NMPC controller, the approach confirms the intuition.

The state estimates are used at sampling instants to calculate an open-
loop input signal that is applied to the system during the next sampling
interval. Feedback is achieved since updated information is used at each
sample instant. The output feedback scheme obtains semi-global practical
stability of the system states, that is, for a fast enough sampling frequency
and fast enough observer, it recovers to a desired accuracy the NMPC state
feedback region of attraction (semi-global) and steers the system state to
any (small) compact set containing the origin (practical stability).

The semi-global stability result obtained are the key difference to previous
output feedback NMPC schemes, delivering direct tuning knobs to increase
the resulting region of attraction of the closed loop.

No specific state feedback NMPC scheme is considered during the deriva-
tions. Instead a set of assumptions are stated that the NMPC scheme must
fulfill. In principle these assumptions can be satisfied by a series of NMPC
schemes, such as quasi-infinite horizon NMPC (Chen and Allgéwer, 1998b),
zero terminal constraint NMPC (Mayne and Michalska, 1990) and NMPC
schemes using control Lyapunov functions to obtain stability (Jadbabaie et
al., 2001, Primbs et al., 1999). Still a series of open questions for output
feedback NMPC remain. For example one of the key assumptions on the
NMPC controller is that the applied optimal open-loop input is locally Lips-
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chitz in terms of the state. This assumption is in general hard to verify. Thus
future research should focus on either relaxing this condition, or to derive
conditions under which an NMPC scheme does satisfy this assumption.

If the input does not appear in the observability map, the NMPC con-
troller need not be modified to guarantee that the input is sufficiently smooth.
Thus, in this case the derived results can be seen as a special separation prin-
ciple for NMPC.

The derived results should be considered as conceptual rather than di-
rectly applicable in practice. Many open questions remain for a successful
application. For example the influence of measurement noise, which certainly
plays an important role in practical applications, has not been considered.
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State Feedback Control of
Positive Systems






Chapter 6

A State Feedback “Total Mass”
Controller for a Class of
Positive Systems

6.1 Introduction

Positive systems are dynamical systems that are described by ODEs where
the state variables are confined to the first orthant, that is, the state variables
are non-negative. Such systems have been studied for a long time, see for
instance Luenberger (1979) for an introduction. It appears linear positive
systems have gained most interest, see for instance Bru, Caccetta, Romero,
Rumchev and Sanchez (2002), Farina (2002) for two recent overviews. Phys-
ical systems subject to control will often be described by nonlinear positive
systems from first principles modeling.

Since mass is an inherently positive quantity, systems modeled by mass
balances (Bastin, 1999) are perhaps the most natural example of positive
systems. Another example is the widely studied class of compartmental sys-
tems (Godfrey, 1983, Jacquez and Simon, 1993), used in biomedicine, phar-
macokinetics, ecology, etc. Compartmental systems, which are often derived
from mass balances, are (nonlinear or linear) systems where the dynamics
are subject to strong structural constraints. Each state is a measure of some
material in a compartment, and the dynamics consists of the flow of mate-
rial into (inflow) or out of (outflow) each compartment. If these flows fulfill
certain criteria, the system is called compartmental.

Similar to compartmental systems, we will assume that each state can be
interpreted as the “mass” (or measure of mass; concentration, level, pressure,
etc.) of a compartment. However, we do not make the same strong assump-
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tions on the structure on the flows between the compartments. Instead, we
make other (strong) assumptions related to the system being controllable
according to the control objective under input saturations.

We assume that the compartments that constitute the state can be di-
vided into groups of compartments, which we will call phases. Each phase
will have a controlled inflow or outflow associated with it. The control ob-
jective will be to steer the mass of each phase (the sum of the compartment
masses in that phase) to a constant, prespecified value.

The developed state feedback controller is similar to (and to a degree
inspired by) Bastin and Praly (1999). However, a larger class of systems
is treated, multiple inputs are allowed, and the inputs can be saturated.
Similar to Bastin and Praly (1999), the input is positive, and aims to achieve
a constant total mass. The controller in Bastin and Praly (1999) (recently
expanded in the direction of compartmental systems in Bastin and Provost
(2002)) can be viewed as a special case of the controller herein.

The approach in De Leenheer and Aeyels (2002) considers systems where
the uncontrolled system has first integrals, that is, functions of the state that
remain constant as the state changes. A typical example of a first integral is
the total mass of a mass-balance system with no external flows. In De Leen-
heer and Aeyels (2002), general first integrals H(z) are considered. The
controller developed in De Leenheer and Aeyels (2002) aims at controlling
the first integral to a level set of the first integral, that is, H(z) = C for
some C' > 0. Since the aim herein is to stabilize (in the case of one phase)
the total mass (M (x)) at M(z) = C, some similarities are inevitable. For
example, the Lyapunov function is essentially the same, and the same tool
(LaSalle’s invariance principle) is used. However, the system class is differ-
ent (the system class herein does not in general have first integrals) and the
controller is different; in particular the controller in De Leenheer and Aeyels
(2002) can take both positive and negative values.

In Sontag (2001), the structure of a certain class of positive nonlinear sys-
tems occurring in the analysis of chemical networks is studied, and results on
stability, robustness and stabilization are given. The (uncontrolled) system
class, “deficiency zero chemical reaction networks with mass-action kinetics”
has first integrals, and the controlled version can be contained in the sys-
tem class herein. However, Sontag (2001) only considers inflow-controlled
systems affine in the control, but (as is stated in Sontag (2001)) “bilinear
control action is arguably more interesting in reaction systems”. The ap-
proach herein covers this, as demonstrated by an example considering the
Van der Vusse reaction scheme.

The chapter is structured as follows: In Section 6.2 the system class
is presented, while the controller and a convergence result from a general
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invariant domain of attraction are presented in Section 6.3. Some possible
regions of attractions are also presented. Section 6.4 gives some remarks on
stability of equilibria and sets, and a robustness property is demonstrated.
Some simple examples are presented in Section 6.5, while the example that
inspired the development of the controller is presented in Section 6.6.

In the following, Ry = [0,00) and R} = {z = (21,20, .. @] |25 €
Ry }. Further, blockdiag(A,...,A,) defines a block diagonal matrix with
the matrices Ay,..., A, on the “diagonal”.

6.2 Model class
We consider positive systems
&= f(x,u), (6.1a)

that is, the state is positive (z € R’}), and the input is positive and upper
bounded, u € U := {u € R | 0 < u; < 4 }.
The system class has the following structure:

flx,u) = ®(x) + ¥(z) + B(z)u. (6.1b)

Each state can be interpreted as the “mass” (amount of material, or some
measure of amount) in a compartment'. Loosely speaking, ®(x) represents
the “interconnection structure” between compartments, W(x) represents un-
controlled external inflows to and outflows from compartments and B(x)u
represents controlled external inflows to and outflows from compartments.

Furthermore, we will assume that the state can be divided into m different
parts, which will be called phases. Phase j will consist of r; states, and have
the control u; associated with it, corresponding to either controlled inflow
or outflow to compartments of that phase. The states in phase j is called
2, such that = [(z1) T, (22)T,...,(2™)7]T, and it follows that necessarily,
> jeyrj = n. Corresponding to this structure, the vector functions (),
U(x) and the matrix function B(z) are on the form

2(0) = [0 @) @) o))

W) = [P @) @)@ ]
B(z) = blockdiag (b' (z),b*(2),...,b™ ().

!The word compartment does not imply that the system class we look at is compart-
mental (Jacquez and Simon, 1993). However, it enjoys strong similarities with compart-
mental systems.
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Note that element j is (in general) function of z, not (only) 2z/. Also note
that the partitioning into phases need not be unique.

We will state the assumptions on these functions on the set D C R’}. In
the case of global results, D = R’}.

Al. (Interconnection structure) The function ® : D — R" is locally
Lipschitz, ¢!(z) > 0 for z/ =0, and

T
Zgbg(x):o, j=1,...,m.
=1

A2. (Controlled external flows) The block diagonal matrix function
B(x) : D — R™ "™ is locally Lipschitz and satisfies:

a. Phase j has controlled inflow:

bl (z) >0 for all z € D

bg(m) > 0 for all z € D for at least one i

b. Phase j has controlled outflow:

bl (z) <0 for all z € D
if 3z € D such that zi =0, then zf =0= bi(x) =0
bz(x) < 0 for all z € D with zzj # 0, for at least one 7

The uncontrolled external flows must satisfy some “controllability” as-
sumption in relation to the controlled flows. Before we define this, it is
convenient to define the “mass” of each phase, being the sum of the compart-
ment masses of that phase:

Ty
M;(x) = Z z.
=1

Our control objective will be to control M;(x) to some prespecified desired
mass of phase j, denoted M7, from initial conditions in D. For the control
problem to be meaningful, the intersection of the set where M;(z) = M7
and D should be nonempty.

A3. (Uncontrolled external flows) For given M* = [M{, My, ... M
U(z) : D — R" is locally Lipschitz and satisfies that ¢} (z) > 0 for
z] =0, and in addition, if:
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a. Phase j has controlled inflow:
1. For z € {x € D | Mj(z) > M}, Z:]:lwf(m) < 0 and the

set {r € D| Y7, Q,Z)Z](x) = 0 and M;(z) > M;} does not
contain an invariant set.

2. Foraz € {z € D | M(x) < M}, =02 ¢l (x) < Y2, bl ().

b. Phase j has controlled outflow:
1. For z € {x € D | Mj(z) < M}}, 72, ¢! (z) > 0 and the

set {z € D| Y7, wi(x) = 0 and M;(z) < M7} does not
contain an invariant set.

2. Forz € {w € D| My(x) > My}, YL, ol (w) < = 72, b ().

We briefly note that the upper saturations ; can be state dependent, with-
out affecting the main results. The chosen notation will not reflect this.

Remark 6.1 The system class considered in Bastin and Praly (1999), is a
sub-case of the system class considered herein with D = Ry, one phase, con-
trolled inflow and no upper bound on the input. The function V(z) = —Ax =
— [a1x1,. .. ,an:cn]T, A diagonal with nonnegative (at least one positive) di-
agonal elements and, further, B(x) = b, a constant nonnegative vector with
at least one positive element. Assumption A3 (which in this case amounts
to A3.a.1) is replaced by the system being zero state detectable through the
output ', a;x;, which has the same effect as Assumption A3.a.1. The
results of Bastin and Praly (1999) are expanded in the direction of compart-
mental systems in Bastin and Provost (2002).

Remark 6.2 The uncontrolled external flows might (partly or wholly) be
flows between compartments in different phases, but the controlled external
flows of one phase cannot (by the assumptions made) be flows in another
phase.

However, the approach could also cover this, by choosing one phase which
is controlled by this flow, while in the other phase(s) this flow (which will
given by the controller of the first phase) should be treated as an uncontrolled
external flow (and assumptions corresponding to Assumption A8 should hold).

Proposition 6.1 (Positivity) For x(0) € R"}, the state of the system (6.1)
fulfilling A1-A8 with D = R}, satisfies z(t) € R, t > 0.

Proof. If suffices to notice that for x; =0, £; > 0. m
The system class is illustrated in Figure 6.1.
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bfll (:C)ujl bjl (x)ujl

—b72 (x)uj, 072 (x)uj,

Figure 6.1: Ilustration of the system class. Phase j; has controlled inflow,
phase jo has controlled outflow. The uncontrolled external flows may be
between phases.

6.3 State feedback total mass controller

In this section, the state feedback controller is defined, and a general conver-
gence result is given for a general invariant set D that the assumptions hold
on. The set D could then be considered a region of attraction. Corollaries
of the main result specifies different set D that could be chosen, for instance
D =R7.

6.3.1 The state feedback controller and a general

convergence result

As mentioned in the previous section, our control objective is to control the
total mass M;(x) of each phase to a prespecified value M;.
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To this end, the following constrained, positive state feedback control is
proposed:

0 ifd) <0
Uj if ﬂ](.’E) > Uj

where

Zi:l bg (z)

and A; is a positive constant.

This controller can be seen as a generalization of the controller in Bastin
and Praly (1999) to more general MIMO-systems, to systems with controlled
outflow and to systems with upper constraints on the input. Apparently,
we can run into situations where the control is not defined if phase j is
outflow controlled, since the term > ;7 | b/(z) then might be zero. However,
the continuity of the involved functions and the upper bound on the control
ensures that the control in these cases unambiguously are defined by u;(z) =

uj(r) = % (- > wl(x) + (M~ Mj(ﬂﬁ))) (6.3)
=1

Uj.
Define the set

Q={z R | My(z) = M;,..., Myp(x) = M}, (6.4)

Assumption 6.1 There exists a set D that is invariant for the dynam-
ics (6.1) under the closed loop with control (6.2), and has a nonempty inter-
section with §2.

Assumption 6.2 Forz € QN D, 0 < u;(x) < 4;.

Under the given assumptions, the convergence properties of the controller
are summarized in the following Theorem:

Theorem 6.1 Under Assumption 6.2 and 6.1, the state of the system (6.1),
Assumptions A1, A2 and A3 holding, controlled with (6.2) and starting from
some initial condition x(0) € D, stays bounded and converges to the positively
wmwvariant set QN D.

Proof. The set D is by Assumption 6.1 invariant, hence Assumptions A1-A3
hold along closed loop trajectories.
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Define the positive semidefinite function

T

Ml(x)—Mik Ml(x)—Mik
1| Ma(x) — M3 My(z) — M;

V(x) = 5 . .
M, (x) — M}, M, (x) — M

V(z) =Y [Mj(x)— M) M;(z)

= [Mj(x) — M;] (Z $i(x) + Y i)+ bﬁ-(%)%(fﬂ))
1=1 i=1

=1

S (M) - ] (z 43 b;’-<x>uj<x>) |
=1 =1

For M;(z) # M, we have one of the following cases:

1. If 0 < @j < 4y, summand j is

My (o) — 17 (z @)+ Y b;’-<x>uj<x>> ~ L M) — M <
=1 =1

2. If 4 <0, then u;j(z) = 0 and summand j is

[Mj(2) = M;] Y ().
=1

We check the negativity of this for phase j being both inflow and

outflow controlled:

a) If phase j has controlled inflow, then if M;(z) — M; > 0 by

Assumption A3.a.1 Y17, ¢;($) < 0, and

[Mj() = Mj] Y _wj() <0,
=1
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If Mj(x)—M; <0, then from @;(z) < 0 we see that S w;(x) >
=) [Mj(x) - M;‘] and we conclude

- M;] > vi(z) < = [Mj(2) - M) < 0.
=1

b) If phase j has controlled outflow, then if M;(z) — M7 < 0 by
Assumption A3.b.1 Z Z () > 0, and

— M;] qu;l(x) <0
=1

If Mj(z)—M; > 0, then from @;(z) < 0 we see that S ¢;(:E) <
—Aj [M](x) — M;‘] and we conclude

rj
; 2
— MY hi(x) < =\ [M(z) — M7]” < 0.
i=1
3. If @ > u;, then uj(x) = u; and summand j is

[M;(z) — M;] (Z V() + Z b;l(x)uj> .
=1 =1

a) If phase j has controlled inflow, then if M;(z) — M7 < 0 by
Assumption A3.a.2 — Y17, w;(x) >3 bé»(x)ﬂj, and

i=1 i=1

If Mj(z) — M; > 0, from @; > u; we see that Z:J:ﬁb;(x) +

il 162( T)iUj < —A; [Mj(x) — M;‘} and

[M;(z) — M;] <i¢ +Zbl > <=\ [M. (ge)—Mj]2 <0.
=1

b) If phase j has controlled outflow, then if M;(z) — M} > 0 by
Assumption A3.b.2 — Y7, ¢i(x) > Y11, bl (x)a, and

[M;(z) — M] (Z V() + Z b;i(x)aj) <0
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If Mj(x) — M; < 0, from @; > u; we see that S ;(x) +
S b @)y > = [ My(w) — My and

[M;(z) — M] (Z V() + Z b;'-(x)uj) < =) [Mj(z) - M;‘]2 <0.
=1 =1

We conclude that © N D is invariant, since for x € QN D, V(z) = 0 and
by Assumption 6.2 and the above, V(z) < 0 in the intersection between a
neighborhood of 2 N D and the invariant set D.

Moreover, since V(z) < 0, V(z(t)) < V(x(ty)) along system trajectories.
From the construction of V(z) and invariance of (D C)R™, it is rather easy?
to see that for x € R, ||z|| — oo if and only if V(x) — oo, hence V(z(t))
bounded implies that ||z(¢)|| is bounded. This allows us to conclude from
LaSalle’s invariance principle that z(t) converges to the largest invariant set
contained in {z | V(z) = 0} N D. By the above and Assumption A3.a.1
and A3.b.1, there is no other invariant set for which V(z) = 0 other than
QND. m

Remark 6.3 By inspecting the proof, we see that Assumption A3 can be
made slightly weaker; A8.a.1 and A3.b.1 need only hold when u; = 0, and
A8.a.2 and A3.b.2 need only hold when t; = u;. However, conditions like
these are harder to check.

Remark 6.4 Since the mapping f is assumed locally Lipschitz, LaSalle’s
Theorem in the form stated in Khalil (2002) can be used directly. However,
under a uniqueness assumption on (Filipov) solutions of © = f(x,u), the

result holds for general nonsmooth f by the nonsmooth version of LaSalle’s
Theorem (Shevitz and Paden, 1994).

6.3.2 Regions of attraction

The global result follows directly as a corollary of Theorem 6.1, with D = R}

Corollary 6.1 (Global convergence) Under Assumption 6.2, the state of
the system (6.1), Assumptions A1, A2 and A8 holding with D = R}, con-
trolled with (6.2) and starting from some initial condition x(0) € R, stays
bounded and converges to the positively invariant set Q.

Corollary 6.1 achieves global results by assuming that Assumptions Al-
A3 hold globally. However, (at least for A2 and A3) this will often not be the

2See Section 6.4.3.
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case. In particular, to require A3.a.2 and A3.b.2 to hold globally is strong.
For instance, controller saturations are typically designed to cope only with
flow in a nominal operating range.

We note that (under Assumptions A1l and A2) as long as the control is un-
constrained (that is, u; = @;(z)) and stays unconstrained along the closed
loop trajectories, convergence to  will trivially hold since then M;(z) =

—Aj (M - Mj(x)>2. This in itself can be interpreted as a “local” conver-
gence result. Further, by inspecting the proof of Theorem 6.1, we see that
convergence also holds when constraints are active as long as the conditions
of Assumption A3 hold along system trajectories. However, the question
remains, how to specify which initial conditions this is true for?

One answer is to let the assumptions hold on the (closed loop) invariant
set D. Below, we give two choices of D that can be checked in applications.

Firstly, we let D be a “tube” (hyper-rectangle) containing 2. Let ¢; and
¢; be positive constants, and define

Dy:={z € R} | Mj —¢; < Mj(x) < Mj +¢, j=1,...,m}.  (6.6)

Corollary 6.2 Under Assumption 6.2, the state of the system (6.1), As-
sumptions A1, A2 and A3 holding with D = D1, controlled with (6.2) and
starting from some initial condition x(0) € Dy, stays bounded and converges
to the positively invariant set 0 C D1.

Proof. Invariance of Dy (which by construction contains §2) can be shown
using the same steps as in the proof of Theorem 6.1. Hence Assumption 6.1
holds, and the result follows from Theorem 6.1. m

Remark 6.5 The above is similar to taking a Lyapunov level set as region

of attraction. Indeed, if ¢; = c; = c;j, then Dy can be specified as {x €

2
R% | Vj(z) < %, j=1,...,m}. See also Section 6.4.3, where it is shown
that V' can be interpreted as a Lyapunov function.

The above relaxation does not help in many cases, as it can happen that
the assumptions do not hold on all of Q. Consider (for example) the outflow
controlled (b(x) < 0) example

i1 = ¢(z) +P(z)
Ly = —¢(x) + b(z)u,
and assume 2 C D. Now, Assumption 6.2 cannot hold, since x5 can be zero

on 2, which implies u = @. Also, the set of functions v (z) that satisfies
Agsumption A3 in this case is very restricted.
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However, the control law might still work for some initial conditions, if
the (closed loop) dynamics keep the trajectories away from the regions where
the assumptions do not hold. This is in general hard to specify.

Realizing that it will often be the “extreme” cases on {2 that causes prob-
lem (z; close to 0 or M), the following can work in some situations: Define
Da,

Do ;:{xeRi|§§§z;§E§, t=1,...,r; and
MJ*—QjSMj(-T)SM;‘f‘Ej, jzlv--'am}

and assume

Assumption 6.3 The following holds for x € Dy:

2=z =%>0 (6.7)
2 =7 =2 <0. (6.8)

Corollary 6.3 Under Assumption 6.2 and 6.3, the state of the system (6.1),
Assumptions A1, A2 and A3 holding with D = Dy, controlled with (6.2) and
starting from some initial condition x(0) € D, stays bounded and converges
to the positively invariant set QN Do.

Proof. Under Assumption 6.3, D> is invariant. The result then follows from
Theorem 6.1. =

The sets Dy and Dy are sketched in Figure 6.2 in the two-dimensional
case.

Remark 6.6 Note that for a pair i, j, 53 can be zero, and/or 53 can be oco.
In this case, Assumption 6.3 (eq. (6.7) and/or (6.8)) does not have to hold
for the pair i, j.

6.3.3 Conservatism

The proof of Theorem 6.1 uses Assumption A3 to show that V(z) is always
decreasing. However, this is conservative in the sense that for some systems,
there are initial conditions which do not fulfill the conditions of Assump-
tion A3, but the closed loop trajectories will still converge to 2. This can
be explained by that the total mass goes further away from (2 initially, but
after some initial time period the mass has “reconfigured” in the system to
a state where the conditions of Assumption A3 holds along the (rest of the)
trajectory.
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Figure 6.2: The sets D1 and Ds.

x1

Robustness and stability properties

Stability of equilibria

Convergence to the set () does not imply that the state converges to an
asymptotically stable equilibrium, as we shall see by example. However, as
other examples will show us, it often turns out that the only positive limit
set in 2 4s an equilibrium. This must in general be examined in each specific
case, which can be a non-trivial task.

Since Theorem 6.1 implies that the positive limit set of every solution
of the system (6.1) with feedback (6.2) is in €, it is tempting to conclude
that that the dynamic behavior on €2 decides the asymptotic behavior of the
original system. However, this is not true in general?.

3The following example was provided by Robert Israel, which illustrates the issue (see
also Iggidr, Kalitine and Outbib (1996) for a similar two-dimensional example). Consider

(jj:

—yz, § = xz, 2 = —z°. It is clear that all solutions converge to z = 0. The

dynamics on the set z = 0 is £ = y = 0, that is, the positive limit set is isolated points
given by the initial conditions. However, the solutions of the full system are of the form

(for z(to) > 0) z(t) = Asin(v2t+ C) + Beos(vV2t+C), y(t) = —Acos(v2t+C) +
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On the other hand, in the case of one equilibrium on €2 that is asymp-
totically stable and attractive for all initial conditions in 2, the positive
semidefiniteness of V(x) in the proof of 6.1 implies that this equilibrium is
also asymptotically stable for all initial conditions in D. This can be proved
in exactly the same manner as Theorem 5 in De Leenheer and Aeyels (2002),
we therefore state this theorem without proof:

Theorem 6.2 Let the conditions of Theorem 6.1 hold. If the closed loop (6.1)
has a single equilibrium in the interior of QN D that is asymptotically stable
with respect to initial conditions in QN D and attractive for all initial con-
ditions in QN D, the equilibrium s asymptotically stable for the closed loop
with a region attraction (of at least) D.

We refer to De Leenheer and Aeyels (2002) for a full proof, here we only
briefly mention that local asymptotic stability follows (almost) directly from
the theory of semidefinite Lyapunov functions, see e.g. Chabour and Kalitine
(2002, Theorem 2). However, to prove more than a non-trivial region of
attraction, the argument of Lemma 1 in De Leenheer and Aeyels (2002) must
be used. Theorem 6.1 together with Lemma 1 in De Leenheer and Aeyels
(2002) proves that the equilibrium is attractive for initial conditions in D,
and together with the stability from the semidefinite Lyapunov function (see
e.g. Chabour and Kalitine (2002, Theorem 1), or Iggidr et al. (1996, Theorem
1)), this implies asymptotic stability.

Since the closed loop on () has a first integral in each phase given by
M;(x) = :’:1 z = M, one state of each phase can be determined by the
other states of that phase. Therefore, the dynamics on €2 can be represented
by a lower dimensional system, which might make the analysis easier. Let
the dynamics on 2 be parameterized by

y=g9(y), yel (6.9)

where I' C R!,™™ is compact, and assume g € C'. As discussed above, if g
has an asymptotically stable equilibrium, then so does the closed loop system
itself. See also Chabour and Kalitine (2002, Section 5.1). If in addition this
is the single equilibrium on I' and and this equilibrium is attractive for all
y € I', then Theorem 6.2 can be used.

In the case the dynamics on €2 can be parameterized by a two-dimensional
ODE (dim(y) = 2), there exists some criteria for ruling out or establish the
existence of periodic orbits. The following sufficient result is cited from Perko
(1996):

Bsin(v2t +C), 2(t) = ﬁ where A, B and C are positive constants given by the

initial conditions. The trajectories converge to circles in the plane z = 0, with fixed radius

VA2 + B2
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Lemma 6.1 (Dulac’s Criterion) Consider (6.9), and let T be a simply
connected region in R2. If there exists a function B : R> — R, B € C!, such
that V(Bg) is not identically zero and does not change sign in T', then (6.9)
has no closed orbit lying entirely in I.

This is proved using Green’s Theorem. The case with B = [11] gives
Bendixson’s Criterion, which amounts to checking the sign of the divergence
091/0y1 + Oga /Oy of the vector field g.

The Poincaré-Bendixson Theorem (Perko, 1996) is a tool for telling if
there 4s a periodic orbit on 2. More suitable for our purpose, we cite the
corollary in Khalil (2002):

Lemma 6.2 (Poincaré-Bendixson’s Criterion) Consider (6.9) and let
I" be a closed bounded subset of the plane such that

e I' contains no equilibrium points, or contains only one equilibrium point
such that the Jacobian at this point has eigenvalues with positive real
parts.

e FEvery trajectory starting in I' stays in I' for all future time.
Then T' contains a periodic orbit of (6.9).

The (generalized) Poincaré-Bendixson Theorem also tells us that in the two-
dimensional case, the only possibilities for trajectories confined to a compact
set, is convergence to an equilibrium, a periodic orbit or a graphic (a com-
pound separatrix cycle).

Since a graphic never appears in practice, if Lemma 6.1 is used to rule
out a periodic orbit on the whole of Q, then “globally” (relative to Q) at-
tractive equilibria are the only possibility. If there is only one equilibrium
that in addition is stable, we can conclude closed loop asymptotic stability
by Theorem 6.2. On the other hand, Lemma 6.2 can only be used as an
indication that there might be closed loop periodic orbits.

In the case that dim(y) = 1, the following simple lemma can imply closed
loop asymptotic stability by Theorem 6.2:

Lemma 6.3 If g(ys) = 0 for some ys in the interior of T, and (y—ys)g(y) <
0 for y # ys, then ys is an asymptotically stable equilibrium with region of
attraction T'.

This follows directly from Lyapunov theory (take as Lyapunov function (y —
ys)?). Note that (for instance) g(y) strictly decreasing everywhere in T' (or
monotonically everywhere, strictly at y = y,) implies (y — ys)g(y) < 0 for

Y F Ys-
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Assume now that the system trajectories do converge to an (asymptot-
ically stable) equilibrium in Q. Then, at this equilibrium, «; will have a
constant value, a steady state control input u; In many applications, the
intersection of the system equilibria (parameterized by u;) and the set Q is
a singleton. In this case, one can use the M ]’-*s to choose the desired equilib-
rium.

6.4.2 Robustness

The proposed feedback scheme is independent of the interconnection struc-
ture and hence robust? to model uncertainties in ®(x) (as long as Assump-
tion A1 holds). As mentioned in Bastin and Praly (1999), the interconnection
terms are in practical examples often the terms that are hardest to model.

However, the unconstrained controller also has robustness-properties with
respect to bounded uncertainties in ¥(x) and B(z).

Assume in the following that the input saturations are not met, that is,
uj(xz) = @;(z). In the nominal case, the feedback (6.3) then linearizes the
dynamics of the mass of phase j,

M;(z) =\ (M} — M;(z)). (6.10)

Assume further that the modeling errors in ¥(z) and B(z) are bounded.
Mark the “real” values of the terms involved in the controller (6.3) with
a tilde, and assume that there exists norm-bounded A;ﬂ = Af(:ﬂ,t) and
A;’- = A?(m, t) (the dependence on x and t is sometimes suppressed for nota-
tional simplicity in the following) such that the nominal values (used in the
controller) are related to the real values as

Ty

S i) =S i) + AV, Y bie) = (1+AY) Y bi(a).
=1 =1 =1

=1

“Robust in the sense that convergence to Q still holds. Note that changes in ®(x) will
typically move the equilibria on €.
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The real dynamics of phase j can then be written

=D dje) + Y bi(x)uy()
; i=1

+(1+Ah Zbl ( ZW M Mj(x))>

z 1 z
= N\(M; — Mj(z)) + AV + Al (- > (@) + M (M — Mj(x))>
=1

The last part is in general not bounded in terms of z. However, we assume
that we can define

6;(t) = A (x(t),£) + Af(a( ( ZW Aj (M5 — M;(x ())))

such that §;(¢) is norm-bounded, §;(t) < &;. This requires either that
A?(m(t),t) = 0, or that we know that z(¢) is bounded (which is guaran-
teed by initial conditions in a bounded, invariant set).

The mass dynamics can under the above assumptions be written

N (@(8) = =N (M (1) — M7) +65(2). (6.11)
Since this is linear, it is easy to solve this to find
t
Mj(x(t)) = MJ’»* + e—Aj(t—to)(Mj(x(tO)) _ thk) +/ B—Aj(t—r)gj(T)dT
to
where the last element is bounded,
—Aj(t=to) _

Aj

1_
¥ N5 () dr| < 5

u>./|h» !

We see that Mj(x(t)) converges to the set {M; | [M; — M7| < f\—fj} which
can be made arbitrarily close to M7 by choosing A; large. Of course, in
choosing A; large, the system might become more vulnerable to the influence
of measurement noise and unmodeled dynamics.

The above analysis is only valid as long as the input is not saturated.
What happens when the input is saturated can be (conservatively) analyzed
by examining if the “Lyapunov function” of Theorem 6.1 is still decreasing
under the allowed perturbations. This can be done by checking if assump-
tions similar to Assumption A3 hold for the perturbed flows.
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6.4.3 Asymptotic stability of (2

Theorem 6.1 does not guarantee stability (as is well known, convergence
(attractivity) does not imply stability in general). However, V(z) can be
used as a Lyapunov function to show that the (compact) set € is (uniformly)
asymptotically stable. Let |z|q := infycq ||z — y|| be the distance from z to
2, and assume for simplicity that Q C D (the conclusions will hold for if we
consider 2N D as well). We know from the Theorem 6.1 that 2 is attractive
(from some set containing ), and® V(x) < 0 in a neighborhood of Q. If
we can show that V(x) is positive definite with respect to Q (implied by
V(z) > k- ||} for some positive constant k), then € is locally stable. The
fact (see e.g. Teel and Praly (2000, Proposition 3) for a general statement)
that for time-invariant differential equations, uniform asymptotic stability
of a compact set is equivalent to (uniform) local stability plus attractivity
then gives us the desired conclusion.

It remains to show that V(x) is positive definite with respect to €2. For
a given x # (., let y*(x) denote the element in Q closest to z, y*(x) :=
arginfycq || — y||. For simplicity, we initially assume only one phase and let
a=1[1,1,..., 1]T, such that a'y*(x) = M*. Then,

la’ (z = y*(2))] = llal - |z —y*(2)]| - | cos ]
=/n-|z|q - |cosh|.

The typical case is # = 0 (or # = =), since the shortest distance is when
x — y*(x) is perpendicular to the hyperplane a'z = M*, which has a as

normal.
Given an 7 in R'}, not in €

o If a'% < M*, then it is always possible to make a line through &
parallel to a that intercepts 2. To see this, note that it is always
possible to find a positive (scalar) v such that® y =  +vya € Q. Since
the line is parallel to a, which is normal to €2, the line is also normal
to 2, and hence the shortest distance between ¥ and 2 is along this
line. From T —y = —~a, the angle § = m.

®Strictly speaking, we only proved V(x) < 0 in the proof of Theorem 6.1. However, as
long @;(z) > 0 close to Q (as Assumption 6.2 actually implies by a continuity argument),
by the proof of Theorem 6.1 V(z) < 0 close to . Anyway, this is not important since
by V(z) < 0, the positive definiteness (to be shown) of V() with respect to Q together
with the attractivity proved by LaSalle’s invariance principle in Theorem 6.1 also implies
asymptotic stability.
5By choosing v = M*; Ti, we see that a'y = M*. Since v is positive and & € R%,
then also y € R%, which shows that y € Q. Positive v only holds if a" < M*. If
a"# > M*, we have to choose 7 negative, and then y is not guaranteed to be positive,
that is, y is not necessarily in 2.
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e If o' % > M*, then it might happen that the point y on the hyperplane
a'x = M* that makes & — y parallel to a does not satisfy y € €.
However, note that for ' > M*, all elements of & — y*(&) is always
positive”. Then the following 1nequahty holds: a' (Z—y*(%)) = Y. (Z;—
yr(Z)) > ||z —y*(Z)| (by the relation between the 1-norm and 2-norm.
Equality occurs when & is on an axis). The angle then satisfies

T - y*(w)) 1

NG

A\

=

Since a' (x —y*(z)) =a'x —a'y*(x) = M(z) — M*, we see that

This means that we can take 6 € {0 |6 =7 or cosf >

%I

V(z) = g xff - cos? 6,
or (since ﬁ <lcosf| <1),

1 n
slele < V(@) < Slalo. (6.12)

In the case of more than one phase, the same argument shows that for each
phase,

1 N Ti s
SR, < 5(Msa) — M} < DI,
(where Qj :=={w e RY | Y17 w; = M:}), which, since

m

m
2 _ . 2 . ; P12 2
zls = inf ||z — = E inf ||z —w||* = E 2.
|2 JE0 [ yll L ien, [ | =~ ’ ’0]7

by summation implies that

manGL m ’I“j

1
Slaf < V(w) < BT 2. (6.13)

6.5 Simple examples

In this section, the theory will be illuminated by some simple examples. In
the next section, the example that inspired the development of the theory
will be presented.

TAs above, the closest point on a'x = M* can be written y = & + va, now with
negative. If y € Q, then the positivity of the elements of & — y follows directly. If y is not
in ©, then y*(Z) is equal to y with the negative elements set to zero, hence the elements
of £ — y*(Z) are positive.

143



6. ToTaL MASS CONTROLLER

144

6.5.1 Tanks in series

Consider a system with three tanks in series,

i‘l = U1 — 14/ 21 (6.14&)
i‘z = 1A/ T1 — 24/ X9 (6.14b)
i‘g = 24/ T2 — X34/ T3U2, (6.14(3)

where the states are the level (or mass, or pressure) in each tank. The inflow
to the first tank and the outflow of the third thank can be controlled, and
are bounded, 0 < u; < ;. The system is obviously positive. See Figure 6.3.

U1

! w

giB % a3+/T3u2

Figure 6.3: Tanks in series.

According to the assumptions in Section 6.2, there are several different
control structures that can be chosen, depending on how we divide the state
into phases, and which inputs we choose to control.

i) Choosing u; as control, setting ug = w3 > 0 constant, and total mass
M(z) = x1 + xo + x3 gives

Uy = ag\/.%'_gu; + )\1(M* — M(ac)) (6.15)
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ii)

iii)

The (single) phase is inflow controlled. Assumption A3.a.1 obviously
holds globally, and Assumption A3.a.2 (which translates to az/zzu3 <
iy for M(z) < M*) holds on R if M* is chosen such that agv/M*uj <
@1. Then, by Corollary 6.1, the state converges to Q = {x | M(z) =
M*} from any (positive) initial condition.

Choosing ug as control, setting u; = u] > 0 constant, and total mass
M(z) = x1 + x2 + x3 gives

iy — ag_;@ ] + Ao (M* — M(x))]. (6.16)

The single phase is outflow controlled. Assumption A3.b.1 holds glob-
ally, but Assumption A3.b.2 (u] < asz./x3ts for M(x) > M*) does not
hold globally for any combination of M* and w9 (consider e.g. an initial
condition with 23(0) = 0 and M (z(0)) > M*).

Let Dy = {x € Ri | 21 > a,x9 > b,z > ¢} with a, b and ¢ positive
2 2 2
constants satisfying a < (Z—i) ,b< (ﬂ) a and ¢ < (%) b. Assump-

a2 [e %)
tion A3.b.2 hold on Dy if uy satisfies uj < as+/ctg. Since Do satisfies
Assumption 6.3, convergence to € (if the intersection between 2 and Do

is nonempty) from initial conditions in Dy follows from Corollary 6.3.

Phase 1 consist of 21 and z (M1 (x) = 21+ 22), phase 2 of x5 (Msy(z) =
.1‘3):

Uy = 042\/27_2 + )\1(Mik — Ml(l?)), (617&)
s = —— [~asy/Es + (M — My(2)]. (6.17h)

34/T3

Phase 1 is inflow controlled. Assumption A3.a.1 holds, and Assump-
tion A3.a.2 (ao\/Z2 < @ for Mi(x) < M7) holds globally if az\/M; <
u1. Phase 2 is outflow controlled. Assumption A3.b.1 holds globally,
but Assumption A3.b.2 (ag\/T2 < agy/x3ls for My(x) > My) does not
hold globally. However, since aa./ZT2 < ag\/T3ts for My(x) > My holds

2
when x5 < (ﬁ) M3 tg, we can have Dy = {z € Ri |0 < a1 429 <

a2

2 2
<%> Mius} (obviously, with M7 < (ﬁ) M5 1s) and convergence to

(e %] a2
Q) is guaranteed from initial conditions in D; from Corollary 6.2.
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iv) Phase 1 consist of z1 (Mj(xz) = x1), phase 2 of zy and z3 (Ma(z) =

x9 + x3):
= 061\/1‘—1+ Al(Mf — Ml(x)), (6.18&)
iy = —— [—a1 /a1 + Aa(M; — Ma(a)]. (6.18b)

a34/3

Phase 1 is inflow controlled. Assumption A3.a.1 holds globally, and
Assumption A3.a.2 (a1/z1 < @y for M;(z) < M7) holds if al\/ﬁl* <
#1. Phase 2 is outflow controlled. Assumption A3.b.1 holds globally,
but Assumption A3.b.2 (oq/z1 < az/Z3ty for Ma(x) > M) does not
hold globally.

Suppose we specify that initial conditions for x; should satisfy ¢; <
z1(= Mi(x)) < ¢ . Similarly as in ii), there exists b and ¢ such that
Dy ={c; <z1(= Mi(x)) <C1,29 > b,z > c} is (closed loop) invariant.
Suppose that a1y/C; < agy/ciis holds, then Corollary 6.3 guarantees
convergence to €2 from initial conditions in D.

Simulations indicate that the regions of attractions given in iii) and iv)
are rather conservative. The reasons for this (as discussed in Section 6.3.3),
is that Theorem 6.1 requires the time derivatives of V;(z) to be negative
at all times. In both cases, if there is a large amount of mass in the first
phase compared to the second phase, due to the saturation of the outflow,
it is impossible to avoid the situation where the mass in the second phase
increases. However, since the inflow to the first phase is also restricted, after
a while the mass is distributed such that the masses in both phases decrease.

Let us analyze the dynamics on € in i) above (when the input u; =
asz./x3u3). First, note that there is a unique equilibrium on €2. The dynamics
on §) can be parameterized by x; and zs, with x3 = M* — 21 — x3:

1 = ag\/ M* — x1 — zous — an/x1 =: fi(x) (6.19a)
.%"2 = 061\/.7]_1 — 042\/@ = fg(x) (6.19b)
We have that

Oh [ Of: ez a2 (6.20)
Or1  Oxa 2VM* —xy —x9  2\/T1  2\/12
has the same sign for all 21, 9 such that M* — z1 — x5 > 0 (that is, on Q).
Then, we conclude by Bendixon’s Criterion (Lemma 6.1) that no periodic
orbits can exist in 2. From this and the discussion in Section 6.4.1, we
conclude that all trajectories that enter €2 converge to the (unique) stable
equilibrium on €.
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The same analysis holds for case ii) above.

In case iii) (and case iv)), the dynamics on €2 can be parameterized by
By = a1/ M{ — 29 — g\ /T2 (X2 = al\/ﬁl* — ap/T2) with unique equilib-
rium 2o = o2 M; /(a2 + a3) (v2 = Mja}/a3). In both cases, i@ is strictly
decreasing in x9, and Lemma 6.3 applies.

6.5.2 Food-chain systems

Consider the food-chain system (normalized second order prey-predator sys-
tem with Lotka-Volterra predation mechanism, see Ortega, Astolfi, Bastin
and Rodriguez-Cortes (1999))

T1 = T1T2 — T1

To = —T1T2 — T2 + U,

where the positive input u > 0 corresponds to creation of preys. This system
is clearly positive, and fits in the considered model class. Since any equilib-
rium corresponding to a constant input is globally asymptotically stable, the
control objective is (as in Ortega et al. (1999)) to stabilize the system at an
equilibrium with a prespecified amount of “predators” z; = x]. The amount
of preys will be Zo = 1.

Defining M* = z7 + 1, the (unconstrained) state feedback controller
becomes

u=max{0,z1 +x2 + A\(M* —x1 — x2)}.

where X\ specifies how fast the total mass converges (which notably is not
the speed of the convergence of x1). At , the dynamics is parameterized
by &1 = z1(2] — 21 + 1) — z1. The Lyapunov function V(z) = 21 — 2} In
satisfies V = — (2 — 7%)?%, showing that the equilibrium on €2 is globally
asymptotically stable.

As in Ortega et al. (1999), the approach can be generalized to general
food-chain systems of the form

T1 = T1T2 — T1

Tg = —T1T2 + ToT3 — T2
T3 = —ToT3 + T3Ty — T3
Ty = —T(p_1)Tn — Tp T U

where again the objective is to stabilize an equilibrium with a desired z7.
Defining M* = Za7% + n for n even, and M* = 2% +n — 1 for n odd, the
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(still unconstrained) controller

u=max{0, Yz + AM* = 2;)} = max{0, (1 = \) Y _a; + AM*}
=1 =1 =1
(6.21)

achieves this. The unique (in the interior of R"}) equilibrium is given by
T =[z],1,2] + 1,2,27 + 2,...] where the ith element is given by z; = 5 for
i even, and @; = 2} + 5E for i odd®.

Analyzing the dynamics on € did not succeed in general. The classical
Lyapunov function for Lotka-Volterra ecologies, V(x) = ¢;(>_ x; — ZiIn ),
does not work for the dynamics on §2 for n > 3.

Choosing A > 1, the total mass will converge before the states converge to
their equilibrium values. Choosing A = 1 corresponds to a constant input.
Figure 6.4 shows a simulation of a 4th order food-chain system with the
controller parameters A = .5 and z] = 5.

4l 4
<
2l 4
0 ! I I I I
0 2 4 6 8 10 12
10 T T T T T
N5 4
0 I 1 1 I
0 2 4 6 8 10 12
10 T T T T T
<> 5F i
0 I I I I I
0 2 4 6 8 10 12
10 T T T T T
< 51 4
0 I I I I I
0 2 4 6 8 10 12
Time

Figure 6.4: The state trajectory of 4th order predator-prey system with
A=.5and z] = 5.

8We see that the choice of M* in this example only influences on the equilibrium
values of z; for 7 odd.
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The total mass and the input is shown in Figure 6.5, where it is compared
with the controller of Ortega et al. (1999). The approach taken herein is a
state-feedback approach (except in the case A = 1), while the controller
in Ortega et al. (1999) is an output feedback approach (u = xjx4 + 3), so
comparing the two approaches is not entirely fair. However, Figure 6.5 shows
that the total mass controller converges faster with less control effort.
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Figure 6.5: The total mass and the input, compared with the output feedback
controller of Ortega et al. (1999) (dotted).

6.5.3 System with limit cycle

As an illustration of that (global) convergence to 2 does not imply con-
vergence to an equilibrium, consider the following system, slightly different
from an example in Maeda, Kodama and Ohta (1978) (see also Jacquez and
Simon (1993)):

1 =—x1+3x2 —23+u (6223)
o =21 — ((v2 — 6)* +5) 29 — 322 + 273 (6.22b)
i3 = ((x2 — 6)* +5) z2 — 2x3. (6.22¢)

The system has one phase, and we take @ = 50 and M* = 34. The conditions
of Corollary 6.1 is fulfilled, which means the system converges to Q = {z €
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R3 | M(z) = M*} from any positive initial condition, with the control (6.2)
with @ = x3 + A(M™* — 21 + 9 + x3).

Since the constraints are not met on Q, v = 3 on Q°. The system
dynamics (6.22) on ) can be parameterized by x1 and x5 by substituting
.’E3:M*—$1—$2:34—$1—$2,

1 = —x1 + 3x9 (6.23&)
i = —x1 — (29 — 6)% +10) x5 + 68. (6.23b)

The Jacobian of (6.23) at the single (real) equilibrium (12,4),
-1 3
=)

has eigenvalues , that is, the equilibrium is unstable.

By Theorem 6.1, the positive limit set of (6.22) is in 2. Since there is no
asymptotically stable equilibrium on €2, the positive limit set cannot be an
equilibrium.

1+v3
2

Let us analyze the dynamics on 2, where the dynamics is represented
by (6.23). Since € is bounded, the states stay bounded on Q. If the trajectory
did not start in the unstable equilibrium at (12,4), the trajectory will stay
away from (12,4). By Lemma 6.2 the system (6.23) has a periodic orbit in
Q). This is an indication (but no proof) that the closed loop system also has
a periodic orbit, which is confirmed by simulations.

A state trajectory illustrating this is shown in Figure 6.6. The periodic
orbit is a limit cycle.

6.5.4 Van der Vusse reactor

We consider the van der Vusse reaction kinetic scheme

A—B—C
2A — D

taking place in an isothermal CSTR. We consider two cases: First we assume
perfect temperature control, and control the inflow rate of the reactant A
based on the mass balance. The setup is taken from Doyle, Ogunnaike and
Pearson (1995). Thereafter, we consider a model consisting of both mass
balance and energy balance (the two phases) taken from Chen, Kremling
and Allgéwer (1995), and control heat removal in addition to inflow rate.

9From this it is seen that on Q, u cancels the “dissipative” element —z3, giving the
same dynamics as the original example in Maeda et al. (1978).
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Figure 6.6: A state trajectory and (a part of) the set Q.

Mass balance

A mass balance for components A and B (on a concentration basis) are given
by

éa = —kica — kach +u(cay — ca) (6.24a)
¢ = kicqg — kocp — ucp (6.24b)

where the involved constants are given in Table 6.1. The purpose of the
controller is to regulate the concentration of component B (the product)
by manipulating the inlet flow rate. An interesting property of the above
equations, is that the reactor exhibits a change in gain at the maximum
conversion level, and displays non-minimum phase behavior for operation
to the left of this peak. This makes traditional PI control for this reactor
impossible at this operating point.

k1 50 h=!

ko 100 h=!

ks 101mol !t h~!
CAf 10 mol 171

Table 6.1: Kinetic parameters, taken from Doyle et al. (1995)
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The desired operating point in Doyle et al. (1995) is ¢¥ = 3.0 and c¢j; =
1.12 (given by steady state input u* = 34.3). This gives M* = 4.12. We
take u = 250.

For this system, we note that Assumption A2 holds for cq4 + cp <
caf. Assumption A3.a.1 holds, and Assumption A3.a.2, ksc) + kacp <
% (caf —ca —cp), holds for ¢4 + cp < 7 (at least). Consequently, we con-
clude by Corollary 6.2 that for initial conditions satisfying 0 < c4 +c¢p <7,
the controller given by

i v \
= ———(k3ch + kacp + ANM* — M))

(6.25)
CAf —CA —CB

makes the state converge to c4 + cg = M*. Figure 6.7 shows a simulation
with A = 100, where the setpoint of cp is changed to 1.2 (M* = 6.74)
after 1h. A higher value of A makes the response faster, but increases the
non-minimum phase phenomena (inverse response).

6
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Time [h]

Figure 6.7: Simulation of van der Vusse reactor, with setpoint change in cp
after .1h.

The dynamics on €2 can be characterized by cg4,

. CAf — CA
éqa = —kicq — kgci + - /

2 6.26
e (6.26)

(kgC?A + kQ(M* — CA)) .
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Since éale,=0 > 0, ¢ale,=7 < 0 and fli—‘: < 0 for 0 < ¢y < 7, the only
equilibrium on €2 is asymptotically stable with respect to initial conditions
in Q by Lemma 6.3. By Theorem 6.2, the equilibrium is asymptotically stable
and attractive for initial conditions in 0 < ¢4 + cg < 7. Calculations show
that this equilibrium (¢4 = 0) is at ¢4 = 3.0, giving cg = M™* —cyq = 1.12.
We see that the choice of M* decides the equilibrium.

The above analysis is made under the assumption that the system dy-
namics is perfectly known. If some of the “real” parameters (k;) are different
from the nominal ones, the equilibrium will be different than the desired one.
This is also true for ki, however in this case the system will still converge
to Q. For (small enough) uncertainties in ko and ks, by Section 6.4.2, the
distance to €2 after convergence can be specified by .

However, since the equilibrium can be decided in terms of M*, it is
possible to add ad hoc “integral control” to arrive at the desired density of
cp, by letting

S = (e — ), (6.27)
for a “small” u. We will not analyze this further. It should be noted that, as
for “ordinary” PI control, this controller will not work at the point of optimal
yield.

Mass and energy balance

The purpose of this section is to show that also models based on energy
balances can be used. The energy balance describes the cooling that is
caused by the cooling jacket. The states are the temperatures in the reactor,
T and in the cooling jacket, T . Energy is removed from the cooling jacket by
means of a heat exchanger. The rate of energy removal is the second input
to the system. The mass and energy balance constitutes the two phases
according to the setup in Section 6.2, the first phase being inflow controlled,
the second outflow controlled. The model taken from Chen et al. (1995) is

Cp = —kl(T)CA — kgCA(T)2 + ul(cAf — CA) (6.28&)
¢ =k1(T)ca — ka(T)ep — uicp (6.28b)
. 1 kwARr
T = To—T) - —AFE T —T 2
(T ~T) =~ AEa(e) + 2 (T = ) (6.280)
. 1
T = ——(— kwAr(T —Tk)), .28d
K mKCPK( U + kyApr( x)) (6.28d)

where

AER(x) = k1(T)caAHp,, + ko(T)cpAHp,. + k3(T)4AHR,, (6.28¢)
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and the reaction kinetics are given from the Arrhenius law
ki(T) = kieP/T, i =1,2,3. (6.28f)

Nominal values of the physical and chemical parameters in the model (6.28)
can be found in Chen et al. (1995).

Since the reactor and the cooling jacket have different heat capacities,
the transfer of energy between the two leads to asymmetric temperature
changes. This means that the energy transfer does not fulfill the intercon-
nection assumption Al. This is avoided if we instead take as states the
energies pCpVRT and mxCprTk .

The control problem (from Chen et al. (1995)) is to stabilize the system
at the working point c4 = 2.147”701, cg = 1.09m701, T = 387.2K and T =
386.1K. This is a more challenging control problem than in the previous
section, since this working point is closer to the point of optimal yield. On
the other side, we now have two degrees of freedom.

The input is then defined in terms of (6.2) and

= k(TR + ka(T)es + M (M — Mi(z)))  (6.29a)
CAf —CA —CB

’l~1,2 = ’U,l(TO - T)pCpVR - VRAER(QT) - )\2(]\45< - MQ(QT))), (629b)

with saturations at @; = 35h~! and g = 9000%, and My (x) = pCp,VRT +
m KC P KTK-

The “controllability properties” (related to Assumption A3) for the first
phase is approximately the same as for the case when only mass the balance
is considered. Assumption A3'0 related to the second phase, holds only for
a rather small operating range around the desired equilibrium. The reason
for this is related to the exothermic nature of the reaction - for some initial
conditions close to the desired equilibrium, the energy produced by the re-
action is larger than the cooling jacket manages to take away, such that the
total energy is increasing. A symptom of this, is that the energy production
AFER(z) changes very fast (exponentially) with the reactor temperature at
this operating point. A remedy for getting a larger guaranteed region of
attraction could be to choose another equilibrium, with lower temperatures.
This could also be seen an choosing an operating point with better control-
lability. However, simulations indicate that the controller still works well
even outside the region where the controllability assumptions for the second
phase holds.

"Note that the input u; in (6.28c) is taken as a function of state while checking
Assumption A3 for phase 2.
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Figure 6.8: Simulation of Van der Vusse reactor showing the states, from
initial condition c4 = 3.0, cg = .70, T' = 400 and Tx = 390. Nominal
parameter set is shown with whole lines, set 1 is dashed, set 2 is dash-dotted.
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Figure 6.9: Simulation of Van der Vusse reactor showing the masses of the
phases. Nominal parameter set is shown with whole lines, set 1 is dashed,
set 2 is dash-dotted.
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Figure 6.10: Simulation of Van der Vusse reactor showing the inputs. Nom-
inal parameter set is shown with whole lines, set 1 is dashed, set 2 is dash-
dotted.

The simulations in Figures 6.8-6.10 show that the controller is robust
to the two “extreme” cases of parameter uncertainty taken from Chen et al.
(1995) in the sense that stability and convergence to close to 2 is preserved.
However the desired equilibrium is only approximately preserved. Note that
for parameter set 2, the second input reaches its upper saturation at conver-
gence, such that the theory does not really cover this case. Physically, the
saturation says that heat removal is not necessary at this working point, for
these parameters. Also the controller in Chen et al. (1995) saturates for this
parameter set.

From that the “mass” of phase 2 is increasing initially (Figure 6.10), we
see that the controllability assumptions A3 are not fulfilled for these initial
conditions. The controller still works well.

6.6 Stabilization of flow in gas-lifted oil wells

6.6.1 Gas-lifted oil wells

The use of hydrocarbons is essential in modern every-day life. In nature,
hydrocarbons are typically found in petroleum-bearing geological formations
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(reservoirs) situated under the earth’s crust, and to produce hydrocarbons
from these reservoirs, one must often make an oil well.

An oil well is made by drilling a hole (wellbore) into the ground. A metal
pipe (casing) is placed in the wellbore to secure the well, before “downhole
well completion” is performed by running the production pipe (tubing), pack-
ing and possibly valves and sensors into the well and perforate the casing
to make the reservoir fluid flow into the well. Detailed information on wells
and well completion can e.g. be found in Golan and Whitson (1991), see
also Figure 6.11.

If the reservoir pressure is high enough to overcome the back pressure
from the flowing fluid column in the well and the surface (topside) facili-
ties, the reservoir fluid can flow to the surface. In some cases, the reservoir
pressure is not high enough to make the fluid flow freely, at least not at the
desired rate. A remedy is then to insert gas close to the bottom of the well,
which will mix with the reservoir fluid. See Figure 6.11, the gas is trans-
ported from the topside through the gas lift choke into the annulus (the
space between the casing and the tubing), and enters the tubing through the
injection valve close to the bottom of the well. The gas will help to “lift” the
oil out of the tubing, through the production choke into the topside process
equipment (separator).

This is the type of oil well we will consider herein. A problem with these
type of wells, is that they can become (open loop) unstable, characterized
by highly oscillatory well flow. The flow regime of the well (tubing) in this
case is called slug flow. Slugging is undesirable since it lowers production
and creates operational problems for downstream processing equipment.

If the instability is caused by dynamic interaction between the annulus
and the tubing, this situation is called casing heading. The two main factors
that induce casing heading, is high compressibility of gas in the annulus, and
gravity dominated pressure drop in the two-phase flow in the tubing.

The reason for this instability can be outlined as follows: Consider an
(open loop) situation where there is no (or low) flow in the tubing. The
bottom hole pressure is high due to the weight of the fluid column in the
tubing. Gas is inserted into the annulus, but because of the high bottom hole
pressure, it does not enter the tubing initially. After a while, a sufficiently
large amount of gas has been compressed in the annulus to overcome the
bottom hole pressure, and gas starts to enter the tubing. This leads to
higher production of the well, which reduces bottom hole pressure (since
the pressure drop is gravity dominated), which makes more gas enter the
tubing, leading to even higher production, and so on. This continues until
there is no more gas (of sufficient pressure) in the annulus. Hence, no gas
is injected into the tubing and the production decreases again to the well’s
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Figure 6.11: A gas-lifted oil well.

natural production (which might be zero). The cycle repeats itself.

The oil production for a typical oscillating well can be seen in Figure 6.12.
Here, the behavior of the multiphase flow simulator OLGA 2000 (Bendik-
sen, Malnes, Moe and Nuland, 1991, Scandpower, 2000) is compared to the
behavior predicted by the simple model developed in Section 6.6.2 and Ap-
pendix B.

This problem is industrially important, as a considerable amount of such
wells today are operated in an unstable condition. This (or similar) control
problem is considered in e.g. Jansen, Dalsmo, Ngkleberg, Havre, Kristiansen
and Lemetayer (1999), Eikrem, Foss, Imsland, Bin and Golan (2002). Both
of these use PID controllers for stabilization.

Table 6.2 describes the parameters and the variables of the well we will
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Figure 6.12: Comparison of open loop (gas lift choke is 50% open, produc-
tion choke is 80% open) behavior between simple model and the rigouros
multiphase flow simulator OLGA 2000.

use as a case study. For simplicity, we will assume that the reservoir con-
tains only oil, which is a good approximation if the fraction of gas and
water is low. However, the same procedure as taken herein can be taken
for wells with higher gas production and watercut, assuming the amounts
are (approximately) known. Further, we assume constant boundary condi-
tions, that is, topside separator pressure, topside gas injection pressure and
reservoir pressure (and well production index).

The chosen setup represents a realistic case. The purpose of the example,
is to show that the well flow can be stabilized (become steady) using the
production choke and the gas lift choke as control input. We will see that a
mass balances model satisfying the assumptions of Section 6.2 will describe
the dynamics of the well satisfactorily. In addition to simulations based on a
simple mass balance model, also simulations using the rigorous multi-phase
flow simulator OLGA are performed.

6.6.2 A model of a gas-lifted oil well

As discussed above, the mechanisms that makes the well produce in slugs,
are related to the mass of gas in the annulus (compressibility) and the mass
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Symbol Explanation Value Unit
Ly length of tubing 2048 m
Dy diameter of tubing 124 m
L, length of annulus 2048 m
D, (equivalent) diameter of annulus 0.2 m
L, length from reservoir to gas injection point 100 m
D, diameter of above 0.2 m
Pr reservoir pressure 150e5 N/m
Ds separator pressure 15e5 N/m
De COmMpressor pressure 130e5 N/m
M molar weight of gas 0.0229 kg kmol~!
R gas constant 8.314510/M kJ kg ! K1
f friction factor .003
Po oil density (constant) 768.64 kg/m3
Pe gas density upstream (constant) 107.47 kg/m3
T, temperature annulus 326 K
T; temperature tubing 394 K
C, production index 1.9992e-006 kg s~ Pa!
Cye Valve constant gal lift choke 8.86e-5 m?
Civ Valve constant injection valve 2.14e-4 m?
Chpe Valve constant production choke 1.88e-5 m?
C. Valve constant production choke 1.75e-1 sm!

Table 6.2: Parameters in model of gas-lifted well

of fluid in the tubing (gravity). Consequently, it is reasonable to believe that
an ODE based on mass balances will give a good description of the dynamic
behaviour of the well,

T = f(x,u), (6.30)

where © = [x1, x9, x3] are the mass of gas in the annulus, mass of gas in tubing
and mass of oil in tubing, respectively, and u = [u1,uz] are the opening of
the gas lift choke and the production choke.

As control volume, we take the tubing and the annulus. The in- and
outflows (and flow between annulus and tubing) are given by the pressures
on each side (the pressure difference) of the orifices, hence we need to be
able to calculate these pressures as a function of the masses in the system.
This is the main challenge of the modeling. Assume that these relations are
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Symbol  Explanation Unit
j pressure top of tubing N/m?
Db pressure bottom of tubing N/m?
Da pressure top of annulus N/m?
Dab pressure bottom of annulus N/m?
Pyt gas density in top of tubing kg/m3
Pm mixture density top of tubing kg/m?
Dab gas density bottom of annulus kg/m?
Wigy gas flow from annulus into tubing kg /s
Wge gas flow into annulus kg /s
Wy reservoir fluid (oil) flow into tubing  kg/s
Wpg gas flow from tubing to separator kg/s
Wpo oil flow from tubing to separator kg/s

x1 (mg) mass of gas annulus kg

x2 (mg) mass of gas tubing kg
x3 (my¢) mass of oil tubing kg
Uy opening of gas lift choke
Ug opening of production choke

Table 6.3: Variables in model of gas-lifted well

known:
bt = Pt(% U)
Py = ptb(x) u)
Pa = pa(x, u)

Pab = Pab(% u)

An approach to find these relations is given in Appendix B. The relations
found there are used in the simulations based on the mass balance model,
and in (parts of) the analysis.

Based on simple valve characteristics (see e.g. Dvergsnes (1999)), the
flows are assumed given as

Pab (pab - ptb)

ww x ul) Civ Pec (pc _pa)ul

wy(z) = ( — Ptb — PogLy)
wpg(x7u2) Mog + m thc pm(pt - ps)u2
0 g
Mot Wpg
) = — C.
Wyo (T, U2) m— Pm (e — Ds)u2 P

where the square root functions are defined to be zero for negative pressure
differences. The “boundary conditions” p,, ps and p. are assumed constant.
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We will find p, and pg (and pgp) from the mass of gas in annulus as in
Example B.1. In doing this we ignore the flow effects (acceleration and
friction) in the annulus. An alternative could be to use the same approach
as in Section B.2, taking the mass quality x = 0. Further, p; and py, (and
pgt and py,) are found from g, and the mass of gas and oil in the tubing as
in Section B.2.

This gives us the following mass balances describing the dynamics of the
gas lifted well:

&1 = —Wge(T) + Wi (2, u1) mass of gas, annulus
Ty = Wiy (T) — Wpg(z, uz) mass of gas, tubing
&3 = wy(T) — Wpo(x, uz) mass of oil, tubing

6.6.3 State feedback control

The controlled flows fulfill Assumption A2 (considering Remark 6.2). How-
ever, as the expressions for the flows are rather inaccurate (especially for the
multiphase flow through the production choke) we will assume that the flow
of gas through the gas lift choke and the flow of oil through the production
choke are measured, and that fast control loops control these measured vari-
ables. The setpoints for these loops will be the new manipulated variables.
This will, in addition to being a more sensible engineering approach, simplify
the equations. It also allows us to include rate saturations on the opening of
the chokes in the simulations.
The dynamic model with the manipulated flows as controls, is

T1 = —wip(x) + v1 (6.31a)
&g = Wiy () — Wpg(z, uz(x)) (6.31b)
&3 = wp(x) — vy (6.31c)

The upper saturations on both v; and ve (the maximum flows through
the gas lift choke and the production choke) depends on the state (through
the pressures). Noting that the maximum flows are always obtained when
the chokes are maximally open, Assumption A3 can be checked for these
saturations. These maximum flows will be referred to as v1(z) and vy(z),
which are given by inserting u; = us = 1 into the expressions for w;,(z,u;)
and wpo(x, ug).

Then, for j € {1,2},

0 if 3;(x) < 0
vj(r) = 0;(z) if 0<vj(z) <v;(x) (6.32)
vj(x) if vj(z) > v;(x)
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where
U1 = wpg(w, ua(z)) + A (Mg — x1 — 12) (6.33)
and
U = wy(x) — Aa(M) — x3). (6.34)

Remark 6.7 If a mass transfer term woq(x) describing mass transfer be-
tween the phases (flashing) in the tubing is known, it can be included into
the above setup by choosing

31 = g (1, 1z (1)) — wog () + M (M — M(2))

Up = wp(x) — Wog(x) — A2 (M) — x3).

According to Theorem 6.1, the behavior on the invariant set {2 could be
a limit cycle where the distribution of the (constant) total mass of gas can
oscillate. Considering the physics of the oil well, this situation is not very
likely, since it is hard to imagine a situation where the mass of gas in the
tubing can vary while the mass of oil stays constant. This intuition will be
confirmed in the analysis below.

6.6.4 Analysis

We choose My = 4400 kg and Mg = 4600 kg.

For the gas phase (phase 1), Assumption Al is fulfilled with ¢l(x) =
—wip(x) and @3(z) = wge(z). The phase has controlled inflow, and As-
sumption A2 holds for b'(z) = [1,0]T. The “uncontrolled” external flow is
—wpg(x, uz(x)). Assumption A3.a.1 obviously holds, while Assumption A3.a.2
needs more consideration.

The upper saturation of ve corresponds to the gas lift choke being fully
opened, and the assumption can be written

Wpg (T, u2(x)) < wip(x,1), Yo € DN {x | 21 + x2 < 4400}. (6.35)

The oil phase (phase 2) has no interconnection terms, and Assumption A1l
is trivially satisfied. The phase has controlled outflow, and Assumption A2
holds for b?(x) = —1if 0 ¢ D. The “uncontrolled” external flow is —w,(z).
Assumption A3.b.1 holds as long as the tubing pressure py, < pogL, + pr,
which can be translated into a upper limit on z3, the amount of oil in the
tubing.

Assumption A3.b.2 can be written

wyp(z) < wpo(z,1), Vo € DN {x | x3 > 4600}. (6.36)
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This means we have to find a set D that is invariant, and that for this set,
the conditions (6.35) and (6.36) holds. By gridding and checking numerically,
using the model in Appendix B, we find that

D = {z | 3640 < 1 < 4240,510 < 29 < 590, 4550 < x3 < 4650}

satisfies the demands. This D is not maximal in any way, most likely other
choices of My and M, and other combinations of the upper and lower limits
on the x; can lead to considerably larger guaranteed region of attraction.
By Theorem 6.1, we know that x3 — M/} and that x; + 29 — M;, and
that the set Q@ = DN {z | z3 = M, and 21 + 22 = M} is invariant. To
analyze the dynamics on €2, we parameterize the dynamics on 2 with x5,

Ly = wye(T) — wpg(x),

where x3 = M and x1 = My — z9 is substituted. Since wge(x) decreases
as the amount of gas in the tubing (x2) increases, and wyq(x) increases, we
conclude that o is decreasing in xo. See!! Figure 6.13. We see that there
is one equilibrium on €, and by Lemma 6.3 this is stable. We conclude that
the closed loop system has one asymptotically stable equilibrium satisfying
r1 + w2 = M (x1 = 3852.7 kg, x9 ~ 547.3 kg) and x3 = M}, with region of
attraction at least D.

—4 L L L L L I I I
300 350 400 450 500 550 600 650 700 750

)

Figure 6.13: The scalar dynamics @3 = f(x2) on the invariant set.

"'The “kinks” in Figure 6.13 is due to the that the gas lift choke is a check valve, and
that the production choke does not have counter-flow (is also a check valve).
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6.6.5 Performance

Maximizing the performance of a gas-lifted well can be summarized as maxi-
mizing oil production w,, keeping wj, at an acceptable level (may be decided
by topside production limitations).

In maximizing wy, we must also keep it stable, to maintain a high pro-
cessing ability topside. Also, a stable flow gives higher production (Hu,
Eikrem and Imsland, 2001), as illustrated in Figure 6.14.

Unstable Stable
-
Optimal operating
Theoretical region

production ’_ -

—_—

Surface oil rate

\

Open loop
production

Gas injection rate

Figure 6.14: Oil production as a function of gas injection rate. The dotted
line is production calculated by steady state simulations assuming stable
operation. The solid line is generated by dynamic simulations.

Using the developed model (or a more sophisticated model), one can
calculate My and M; which maximizes oil production under the given con-
straints. These constraints must incorporate that the steady state flows
should be feasible flows with respect to the choke saturations. Also, these
flows should not correspond to saturated (fully opened) chokes. However,
for most wells fully opened chokes will not be a optimal production condi-
tion. Keeping the desired operating point away from saturations will also
give better controllability and robustness.

Simulations show that the real region of attraction is larger than the one
found above, but not global. For instance, if the system is started in a “no
production” state (tubing filled with oil), the system must be brought to a
producing condition before the controller is turned on. This is due to the
saturation of the chokes. If the tubing is filled with oil, the casing can be
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filled with enough gas such that z; +z2 = M, without gas being inserted
into the tubing. The “oil controller” tries to decrease the amount of oil,
but is non-successful since the well cannot produce oil with no gas inserted.

Increasing M (temporarily) might be a solution.

6.6.6 State feedback simulation results using simple model

Using the model in Section 6.6.2, we simulated the closed loop. The controller
used Mg = 4400 kg, M, = 4600 kg and Ay = Ag = .001.

We included simple choke dynamics that consists of an integrator from
commanded opening to real opening, with saturation and a 5 minutes time
constant that should mimic rate saturation. The desired flow trough the
chokes are obtained by closing this loop with a P-controller. In the simula-
tion, the controller is turned off after 3 hours, and turned on again after 8
hours. In Figure 6.15 we see that the equilibrium is unstable with constant
inputs, but that the controller stabilizes the flow. Figure 6.16 shows the in-
puts. The choke movements are not excessive, and should be implementable
by real chokes. Figure 6.17 shows the desired (calculated by the controller)
flow and the “real” flow. Since these are rather similar, it shows that the
fast inner control loops are working well, at a speed much faster than the
dominating system dynamics.
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Figure 6.15: The states, simple model simulation
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6.6.7 OLGA simulations

Using the OSI'? link between OLGA and Matlab, the controller, imple-
mented in Matlab, was used on a well (modeled in OLGA) similar to the
one studied with the simple model. The simulation results are shown in
Figures 6.18-6.21. Note that these are state feedback simulation results, the
masses and flows were assumed measured.

In the simulations, the well is operated open loop the two first hours.
In this period, the well is stabilized by using a high opening of the gas lift
choke (u; = 0.7) and a low opening of the production choke (us = 0.4).
Then, the controller (with M = 3450 kg and M, = 9400 kg) is switched on,
and remains on for three hours. We see that the controller stabilizes the well
at a higher production, and with a significantly lower use of injection gas.
The controller is switched off after 5 hours, keeping the inputs constant. It
is seen that this operating point is open loop unstable.

The simulations confirm the results from using the simple model. How-
ever, there are some remarks that should be made.

12000

11000 - H

10000 |-

=x,

9000 -

M ()

8000 -

7000 B

6000 I I I I I I I
0 1 2 3 4 5 6 7 8

Time [h]

Figure 6.18: Mass of oil vs. setpoint, OLGA simulation

In Figure 6.18 and 6.19, we see that the controller does not quite reach the
mass setpoints. This is due to that the OLGA simulator includes flashing,
hence there is mass leaving the oil phase which enters the gas phase, which
the controller does not account for. This can be interpreted as errors in the

120LGA Server Interface (OSI) toolbox, for use with Matlab, developed by ABB Cor-
porate Research.
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external flows, which the controller is robust to, in the sense of Section 6.4.2.
The influence is largest in the gas phase, since the external flows in the oil
phase is larger than in the gas phase. Simulations indicate that larger \’s (like
for the simple model, \; = A2 = 0.001 was used in the simulations shown)
reduces the steady state error. Choosing too high \’s leads to problems with
saturations, and also numerical problems may occur. However, increasing the
A’s by, say, a decade do not introduce problems. Another remedy for reducing
this offset is by including an estimate of the flashing, as in Remark 6.7.

Another point that is not revealed by the simulations shown is that the
closed loop does not reach a steady state. After an initial time period, the
choke openings start to (slowly) drift. This effect is believed to be caused by
the fact that both “local” choke controllers have integral action. At a steady
state, the inflow of gas through the gas lift choke is at a constant rate to the
outflow of oil through the production choke. Hence, at the steady state, the
choke controllers essentially control the same variable, and can as such be
considered parallel controllers. As is well known, two integral controllers in
a parallel control structure cannot lead to a steady state in the presence of
disturbances (Balchen and Mummeé, 1988, p.35). The effect is barely visible
in the short time simulations shown, but longer simulations would show it
more clearly. Attempts were made to circumvent the problem by introducing
a P-controller with high gain in stead of the PI-controllers used. This was



STABILIZATION OF FLOW IN GAS-LIFTED OIL WELLS

unsuccessful, since the high gain leads to numerical problems in OLGA.

6.6.8 Discussion of gas-lift stabilization controller

Both analysis on the simple model, and simulations on the multiphase flow
simulator OLGA as well as the simple model, confirm that the developed
controller stabilizes the flow in the gas-lifted well.

The controller calculates the desired inflow of gas to the annulus, and the
desired outflow of oil from the tubing. It was chosen to use inner control loops
to obtain these desired flows, which means the total control structure could
be seen as a cascaded design. Because of choke rate saturation (the choke
stroke time in the OLGA simulations was 7 min.), these inner control loops
cannot be infinitely fast, but simulations show that the delays introduced
by these rate saturations does not have a significant influence on the closed
loop behavior. These inner control loops cannot both be integral controllers,
since the steady state value of the controlled variables are dependent.

Note that the developed state feedback controller is independent of the
flow through the injection valve, w;,(z), and hence is robust to modeling
errors in this flow. This is in contrast to the fact that the system can be open
loop stabilized (or destabilized) by the characteristics of this valve. In some
cases this valve is designed to be always in a critical flow condition, effectively
decoupling the annulus dynamics from the tubing dynamics. Even though
this takes care of the instability problem, operational degrees of freedom are
lost compared to the approach herein since it implies a constant, given at
the design stage, gas injection into the tubing.

In the controller, the states (masses) and expressions for the external
flows are needed. For a real well, these are not easily obtained by mea-
surements. However, in modern oil industry there is a development towards
advanced production systems, where these variables are kept track of by
some means. Another alternative is to design a nonlinear state observer
based on the simple nonlinear model developed in Appendix B, for example
an extended Kalman filter.

Much work remains on the connection between the mass setpoints (Mg
and M) and the performance of the well. In the simulations shown, an
unsatisfactorily “trial-and-error”-method was used to find these values.

An approach where the oil and gas are treated as a single phase can also
be developed by the theory in this chapter. In such a setup, the production
choke must be used to control the (total) outflow of mass. Simulations (not
included herein) show that this control strategy also stabilizes the well. Such
a control strategy can be advantageous, since there can be situations where
the gas lift choke is not available for control, for example due to that the
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amount of available lift gas topside can be given by production constraints.
Other advantages are that the controller is independent (and hence robust)
to mass transfer between the oil and gas phase in the tubing, and that
tuning (in terms of total mass setpoint) is significantly easier. The expected
disadvantages are a smaller region of attraction, and that the achievable
performance of the well (the oil production) is lower.

6.7 Discussion and concluding remarks

A controller for a class of positive systems is suggested leading to closed loop
stability of a set. The main restriction of the system class is the assumptions
(Assumption A3) that ensure that the “Lyapunov function” used in the proof
of the main result is decreasing when the input saturates. The way these
assumptions are used in the proof of Theorem 6.1, indicates that is should
be possible to get less conservative conditions, at least if a specific system is
considered.

The closed loop convergence holds independently of the rate-of-conver-
gence parameter \;. This means that this parameter (at least nominally)
can be used to shape the closed loop performance in terms of the convergence
of the mass of each phase, without affecting stability.

The closed loop system has some robustness properties, as outlined in
Section 6.4.2. Most important is the robustness to unmodeled interconnec-
tion terms, since these in practice typically are the terms that are hardest
to model, as for instance in the gas-lift case in Section 6.6. The examination
of robustness to bounded perturbations in the controlled and uncontrolled
flows, is done under an assumption of unconstrained inputs. Further in-
vestigations are necessary to state what robustness is present (under which
conditions) when the constraints are taken into consideration.

The suggested approach leads to stability of a compact set. The ap-
proach does not give any guarantees pertaining to the behavior on this set,
apart from boundedness. However, if the set contains an equilibrium that is
asymptotically stable with respect to the set, the equilibrium is also asymp-
totically stable in the original state space.

Each control input is connected to a subset of the state, called a phase.
In the closed loop, this input is controlling the mass of that phase. Hence,
the approach could be interpreted as a distributed approach. However, each
of the inputs could in general depend on the total state.



Chapter 7

Conclusion

This thesis has presented contributions within three different areas in the
field of nonlinear control. The aim of this chapter is to briefly sum up the
contributions, and mention some of the main issues. The reader is referred
to the end of each chapter for further discussion and conclusions.

7.1 Piecewise affine output feedback

In Chapter 3, synthesis inequalities are developed for observer-based output
feedback for a class of piecewise affine difference inclusions, by using a result
presented in Chapter 2. The approach is rather general in the sense that a
large system class can be handled, but its application is of course limited to
those problems where it is possible to find a feasible solution to the synthesis
inequalities. The non-convex nature of the inequalities can make it hard to
find solutions even when there exist feasible solutions, but the non-convexity
has structure and the number of variables and equations involved in the
nonconvex part is small compared to the total problem size. A solver is
developed that exploits the structure of the non-convex equations.

Another drawback adding to the conservatism is that the piecewise affine
structure is not exploited in the parameterization of the Lyapunov function.
Since both model and controller has a piecewise affine structure, it is a
natural next step to also consider Lyapunov functions with a “piecewise”
structure (for example piecewise quadratic). However, the structure of the
matrix inequalities given herein does not easily generalize to such Lyapunov
functions.
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7.2 Output feedback NMPC

In Chapter 4, it is established that by assuming a continuous implementation
of the NMPC control law and considering a special system class, the non-
linear separation principle of Atassi and Khalil (1999) also holds for NMPC
state feedback laws under a continuity assumption on the solution of the
NMPC open loop optimization problem. Further, the closed loop also has
some robustness properties.

This work is continued in Chapter 5, where the more usual “sampled-
data” implementation of NMPC is considered. It is shown that under a
strong observability assumption and under similar continuity conditions as
in Chapter 4, a closed loop with the NMPC state feedback and a high gain
observer is semiglobally practically stable. It is also shown, under some
stronger assumptions, that the state and observer error actually converge to
the equilibrium.

The results are close to a special separation principle for NMPC since
state feedback NMPC can be used in the normal fashion. However, this
cannot be called a nonlinear separation principle for NMPC in general, since
the NMPC state feedback controller in the general case in addition to the
control signal must deliver (bounded) input derivatives. In the case where
the observability mapping is independent of the input derivatives (which is
the case for the system class in Chapter 4), it can be argued that this is a
nonlinear separation principle for NMPC for the considered class of systems.

7.3 State feedback control of a class of positive
systems

A state feedback controller for a class of systems with positive state vari-
ables is proposed. The controller achieves set stabilty, that is, with initial
conditions in a region of attraction, the state converges to the compact set.
Furthermore, the set is stable, which together with the convergence imply
asymptotic stability of the set. If the compact set contains an equilibrium
that is asymptotically stable with respect to the set, the equilibrium is also
asymptotically stable with the same region of attraction as the set.

The controller has some robustness properties. In particular, it is com-
pletely independent of parts of the system model. Some initial results on
robustness to uncertainties of other parts of the system are also given, but
further investigations should be performed.

The controller is evaluated on several examples. In particular the stabi-
lization of a gas lifted oil well is treated in detail, and demonstrates several
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properties of the controller. However, further work on the relation between
system performance and controller parameters is needed, in addition to the
consideration of uncertainties and observers.
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Appendix A

The Gradient and Hessian of
the Augmented Lagrangian
Function

Consider the scalar function
B.(P,S,A) = trace |A(PS + AS — I) + %(PS +AS—D)T(PS+AS - 1)]

where P, S and A are symmetric matrices, and I is the identity matrix of
the same dimension. The first derivatives of this function can be computed
to

®.(P,S,A)  T?
Coseer = g o (Ms )

+ 5T svee (P +8) 8+ 52 (P + A) - 25)

0P.(P,S,A)  T? n 77 T
m = 7SV6C (AP+PA ) +7SV6C(AA+AA )

-I—gTstec (5(P+A)2+(P+A)25—2(P+A))

®.(P,S,A) T
Cneen = g o (Ms )

+ 5T svee (P +A) 82+ 82 (P+ 4) - 28) .
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Further, the second and mixed derivatives can be computed to:

92%.(P, S, A)

e P — TS @DT
% — o ((P+AP®I)T
% =cT(S?*® )T
(asajeq;ﬁ;;éis) =TA®@I+c((P+A)S-D)&®I)
+c(P+A)®9)|T
@ sifiéi}ivfz ny = T(SFenT
(8fv2ei)i€()]?8§vigm =TA@I+c((S(P+A)-D@I)

+e(S® (P+ A))T.

In the above, the symmetric Kronecker product (Alizadeh, Haeberly and
Overton, 1998, Fares et al., 2001) is used, which is defined by

1
(U ® V)T svec X = T svec §(UXVT +VXUT),

where svec is a linear operator S™ — R™"+1)/2 defined by
svec X = [X11, X2, .., Xin, Xo2, Xo3, ..., X |

basically mapping the upper right half of the symmetric input matrix into a
vector. The diagonal matrix

T =diag[1,v2,...,v2,1,v2,...,1]"

is defined accordingly with ones on the places corresponding to the elements
on the diagonal of a symmetric matrix mapped with svec, and /2 on the
above-diagonal corresponding places.
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Appendix B

A Simple Model for Pressure
Drop in a Vertical Well with
Two-phase Flow

B.1 Introduction

To illustrate the background for the modeling, consider a vertical volume
(see Figure B.1) with oil and gas entering at the bottom with mass rates
Wgq,in and W, ;p, and leaving at the top with mass rates wy our and wy pue. In
general, we might have mass transfer between the phases, denoted w,,. The
mass of gas and oil is denoted m, and m,,.

On this basis, we write a mass balance for each phase:

Mg = Wg,in — Wq,out + Wog (B.1)

Mo = Wo,in — Wo,out — Wog- (BQ)

We see that we need an expression for the flows.

The flow is entering and leaving the volume through some kind of orifice,
typically a valve or a choke. For single phase flow, the flow can (typically)
be a function of the pressure on each side of the orifice, and the density of
the inflow. For instance, the flow w through a valve can be given by

w = Cyvy pi(pz' - po)’ (B3)

where C, is a valve constant, p; and p; are the density and pressure upstream
the valve, while p, is the pressure downstream.

When both phases are passing through the same orifice, the situation is
more complex. However, vendors of valves typically give equations for this.
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Wo,o0 Wgq, 0

)

|

Wo,i Wq,i

)

Figure B.1: Control volume

Nevertheless, the flow also in this situation is typically depending on the
pressure difference between upstream and downstream the valve, and the
densities upstream the valve.

Hence we need to calculate the pressure and density in the control volume
as function of the masses of the phases, and the aim of this chapter is to
get a simple relation for this based on a momentum balance for the control
volume.

All parameters and variables describing the two-phase flow, are cross-
sectional. The parameters and variables and variables are listed in Table B.1.
Throughout the chapter, subscript g relates the property to the gas phase,
and subscript o to the liquid (oil) phase. Subscript m means the property is
related to the “mixture” of the two phases.

The height, which under homogeneous cross-sectional conditions parame-
terizes the variation of the variables of the well, is denoted with z. We assume
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Symbol Explanation Unit
m mass kg
w mass flow kg s7!
q volume flow m?3 s7!
g acceleration of gravity m s 2
p density kg m~3
v specific volume m? kg~!
P pressure Pa
Im mass flux kgm 25!
U superficial velocity ms !
x mass fraction
@ void fraction
Re Reynolds number
f friction coefficient
o viscosity kgm~! s7!
Tw friction force with wall kg m™! s~2
S circumference of m?
D (equivalent) diameter m
A cross-sectional area m?

Table B.1: Parameters and variables describing the two-phase flow

that the pressure is the same for each phase at the same height, p(z). The
densities at height z are given as py(2) and p,(z), while the mixture density

is pm(2)-

B.2 Pressure drop and hold-up

The flows entering and leaving the control volume will be a function of the
properties of the fluid/gas at the control volume boundaries. In our case, we
take the flows to be functions of the pressure, and in the out-flow case, also
the density. We will take the density of the gas to be proportional to the
pressure (which is true under the ideal gas law, for constant temperatures),
and the oil/liquid to be incompressible. Since we use a mass-balances mod-
eling approach, these pressures and densities must be found as a function of
the masses in the control volume.
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B.2.1 Solution approach: An illustrating example

The approach we will take to calculate the pressures is to set up a relatively
simple ODE for the pressure/density profile for the control volume. To use
this ODE, “initial conditions” must be found. The integral of the density
profile over the volume equals the mass. If we assume we know the mass,
the initial condition can in principle be solved from this equation.

To illustrate this, we consider a pipe filled with gas and ignore the flow
effects (i.e., friction and acceleration):

Example B.1 Gas only, friction and acceleration ignored Consider
a volume filled with gas only, and disregard friction and acceleration. Un-
der the ideal gas law (assuming constant temperature along the pipe), the
momentum balance is

dp _ p
B . B.4
dz ~ RTY (B.4)
This ODE can (by separation of variables) easily be solved to
—9(2—20)
p(z) = p(zo)e™ mT (B.5)

where z, 1s the height at the lowest point in the pipe. To calculate this pressure
profile, we need the pressure at zg. This will be obtained from the mass of
gas in the pipe, assumed known:

L
mg:/vpng:A/ pg(2)dy
20
L —9(z—20)
— Apyz0) [ ey
20

RT —9(L—z9)
= Apg(zo)7 (1 —e” RT ) .

This can be inverted, to obtain

polz0) = =2 :
g ART | _ =0

which by the ideal gas assumption gives

mgg 1
p(z0) = pg(20) RT = — TR (B.6)
1—e  rRT
Using (B.5), this gives
mMgg 1
p(L) = = —— (B.7)
A . g(}gT o) 1



PRESSURE DROP AND HOLD-UP

The equations (B.6) and (B.7) give the pressure at the bottom and top of the
pipe, and can be used to calculate the flow in to and out of the pipe.

In the gas lift example, the above equations can be used for the annulus
(Section 6.6).

B.2.2 Basic variables and assumptions

For the multiphase case, when the volume is filled with both oil and gas, we
will use simplified “homogeneous flow” equations (Taitel, 2001), summarized
below. In doing this, we make a number of assumptions that typically do
not hold true. Also, these assumptions “hold more” in a stable flow situation
than in an unstable flow situation (for example, slug flow). It is important
that a model reflects the dynamic effects that create these unstable flow
situations, but the pressure profile needs not be calculated with a high degree
of accuracy. It is useful, however, that it gives a good estimate in the stable
flow situation.

Assumption B.1 For calculating the pressure drop, we assume
1. cross sectional homogeneous conditions
2. the gas and the liquid has the same velocity

3. the mass fraction (x) and the mass fluz (g, ) is constant in z, dz/dz =

dgm/dz =0
4. the ideal gas law holds
5. incompressible o1l

6. constant temperature in the volume

The momentum (force) balance for the mixture can be written (Taitel,
2001)

dp(z) S dum, (2)
= —Tw(z z
dz ATw( )+ 9m(2) dz
assuming the spatial coordinate z positive upwards'. In words, the pressure
loss is given by the friction loss (first term), acceleration loss (second term)
and hydrostatic pressure loss (gravity, last term). For the applications con-
sidered herein, the acceleration loss can be disregarded, but it is kept for

+ pm(2)g (B.8)

'If the gravity term is written as p.m,gsin 3, this holds for both vertical and inclined
pipes (3 inclination angle).
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completeness. The momentum balance will be used to calculate a pressure
profile at a given time, assuming the column “frozen in time”, making it an
ODE.

Before we develop (B.8) further, we introduce some central terms. The
background material used on multi-phase flow modeling, are found in Taitel
(2001).

Void fraction The composition of the mixture will vary along the volume.
Define the (cross sectional) void fraction at height z (the mass fraction of
gas) as a(z) (the hold-up is then 1 — a(z)). The mixture density at a given
height is then given as

pm(2) = a(2)pg(2) + (1 — a(2))po(2)  [kg/m?]. (B.9)

Friction At this level of modeling, we must use a correlation for the friction
Tw (shear stress) with the wall. Widely used is

2

T = fpm;m (B.10)

where the constant f is a function of the Reynolds number for the mixture,

D
f = f(Rey,) where Re,, = 220m= (B.11)

Hm

where p,, is the mixture viscosity.

Superficial velocity For both the friction part and the acceleration part,
we need to obtain the superficial velocity u,,. The velocity at height z,
denoted u,,(z) is the sum of each of the phases (cross sectional) volumetric

flow rate
1

um(2) = 7 (4o(2) +44(2))  [m/s]. (B.12)
Mass fraction Denote the (cross sectional) mass fraction (or quality) at
height z with x(z). It is defined as

- wy(2)
x(z) = w2 + wy(7) (B.13)

Under the assumption that the velocity of the gas and the oil is the same,
the following holds:

2(2) = a() 22Z) 1 Z gL (B.14)
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From this, we deduce?

and

a=zr— = = (B.15)

pg  w(vg—vo)+vo w+(l—u)kt

where vy, v, are the specific volumes. Since dz/dz = 0, we can find z(2) =
from the total mass fraction. From equation (B.13), we have that

pm(2)z = apy(2)

(@(2)pg(2) + (1 = a(2))po) & = a(2)pg(2)
L

L
v [ 4@ + (- o) dz = [ Aalalpy()iz

20 20

xz(mg +my) = my

which shows that m
r=—3— (B.16)
Mg 4+ Mo

The assumption dz/dz = 0 can in the steady flow situation be interpreted
as “‘no mass transfer between phases”.

Mass flux The mass flux g,, (assumed constant) is defined by

Wo + Wy

g =2 g/ )] (B.17)
The superficial velocity is given from the mass flux as
Uy = i—m = gm (x(vg — Vo) + 15) . (B.18)

Note that even though we assume dg,,/dz = 0, du,,/dz # 0 in general.

The mass fraction x can be found from the masses, see (B.16). The mass
flux g, can be found from the flows, see (B.17), but the flows are (typically)
not known until the pressure is calculated. However, the mass flux enters
only the friction and acceleration part of the ODE (B.8), which are typically
much smaller than the gravity part. Therefore, we will use the following,
very approximate, formula for computing the mass flux:

Wo,nom
= B.1
9m 1(1 ) ( 9)

We drop the dependence on z from here onwards, when the dependence can be
concluded from the context.
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where w, pom is a nominal oil flow (production). This means that g,, will be
correct (under the assumptions made) under “nominal conditions” (a desired
stable flow condition), but wrong under non-nominal conditions.

B.2.3 Density/pressure profile ODE

By using the above variables, we will formulate (B.8) as an ODE for given
x and g,:

Ay S dun
dz_ATw Grm dz pmd
S

9

d
2 _ 2 & _ N
f o (x(vg = Vo) + Vo) + g, dz (@(vg = vo) + o) + (Vg — Vo) + Vo

T 24
Here, we will assume that the ideal gas law holds, which implies that the
pressure is proportional to the gas density under constant temperature, p =
pgRT. We have several choices of which variable we want to represent the
spatial (one-dimensional) pressure profile. Obvious choices are p(z), py(2)
and vy(z) = 1/pg(2). As a first try we will, however, look at using v, (z) :=
x(vy(2) — Vo) + Vo = 1/pm(2) (for reasons that will become apparent), and
try the same procedure as in Example B.1.

Noting that

dp dpg
£ RTS8
dz dz
d T
R
dz vy — Vo(1 — )
—xRT dVm,

(Vm - Va(l - $))2 dz ’
the ODE becomes

x dv, S dv, g
RT m_ o2 2 rmey J
(I/m - 1/0(1 — x))2 dz 2Afgml/m - Im dz * Um
x dv, S g
RT A [ O Y.
( (]jm . ]jo(l . {L‘))Q gm) dZ 2Afgm m Z/m
Rearranging, this gives us a quadrature type (an integral in disguise) ODE,
dv,
d—;n =F, (vm). (B.20)

This ODE can be solved numerically by e.g. ODE solvers in MATLAB like
ode23.m, but is not easily solved symbolically. However, the ODE can of-
ten (specifically, for the well considered in Section 6.6) for typical flowing
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conditions be approximated with an ODE of the form

dvy,

dz

3
= av,, + bvy,,

for given a and b. This ODE is easily solved symbolically using software like
Maple. Writing the solution as

Um(2) = vm(2;00),
we can find the “initial condition” v}, by integrating

T

mg—A/ pg dZ—A/Ode.

However, even though this integral is solvable (again using Maple), it is not
possible to find a closed form solution for the initial condition v/,,.

We therefore try a slightly different approach, using the mixture density
as variable, p,, = 1/ (2(vy — ) + ). The pressure gradient is then

dp dpq
X _ pT2te
dz R dz

dz 1—vo(1 —2)pm
B zRT dpm
(1 —wo(l— x)Pm)2 dz’

and the ODE becomes

RTx dpm 7 1 dpp,
(1= vo(1 —2)pm)? dz fg Im p2, dz T 9pm
—RTx o 1\ dpm 9 1
m o | 3. — oAilImT + m:-
((1 — V(1 - fC)Pm)Q p%n) dz Afg Pm 9p

The “dynamic” parameters (parameters that changes in time and character-
izes the solution of this ODE) is apparently x and g,,,. However, in addition
to  we must also consider my (or m,), that will enter through the initial
conditions as explained above?.

Solving the above ODE numerically for different g,,, z and m, for a
typical well?, reveals that for large (relevant) ranges of these parameters,
pm/(2) is close to linear in z. The following approximations are good as long

30f course, in stead of gm, = and mgy/m,, one can use gm, mg and M.
4The same that will be considered in Section 6.6
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as this linearity property holds approximately. Since the “bias” for the linear
approximation is found from the (known) mass, it can also be view as an
averaging approach.

Writing the ODE as

dpm

a linear approximation (at the point 2’) is straightforwardly given as

pm(2) = Fp, (pm(2); 2, 9m) (2 = 2) + pim(2).

However, it remains to find p,,(2’) (and choose z’). This is obtained by
integrating

my = A/L a(2)py(2) dz = Az /L (22 (1)) 2

zZ0 20
L

A EFW (b(2); 2, 9m) 72 + (o) = Fp (o) 9m) ) 2

20
which, in taking 2’ = é and zg = 0,
=2 ALpp (7).
This gives
pm() = xTZgL
This is (of course) nothing else than the average mixture density of the

column, py,(2') = pm = (mg + m,)/V. The mixture density at the top and
bottom of the column, is by the linearity assumption found as

pm(0) = pin (=) = Fp,, (pm (2); w,gm)g
plL) = pin() + By (o). 90) .

and we find gas density and pressure

po(0) = 1()_95(1_@, p(0) = py(0)RT,
pm (0 °

poll) = ——— Tl p(L) = py(L)RT
PM(L) °

These are the expressions used in the simple model in Section 6.6.



