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Abstract

This work concentrates on the force-network of dry granular materials. The dynamical
and static properties of the force-network are studied through simulations and experi-
ments.

We study the structural properties of two-dimensional granular packings prepared
by random deposition from a source line. We consider a class of random ballistic de-
position models based on single-particle relaxation rules controlled by a critical angle,
and show that these local rules can be formulated as rolling friction in the framework
of dynamic methods for the simulation of granular materials. We find that the packing
prepared by random deposition models is generically unstable, and undergoes dynamic
rearrangements. As a result, the dynamic method leads systematically to a higher solid
fraction than the geometrical model for the same critical angle. We characterise the
structure of the packings generated by both methods in terms of solid fraction, contact
connectivity and anisotropy. Our analysis provides evidence for four packing regimes as
a function of solid fraction, the mechanisms of packing growth being different in each
regime.

Using the Contact Dynamics method, the stick-slip response of an pushed granular
column is analysed and a power law is found for the distribution of slips with exponent
value 1.8. The exponent is invariable to perturbations of the different physical param-
eters. Two velocity regimes were found: stick-slip and steady state. These two regimes
could be observed for very simple systems, making a detailed analyses possible.

An experiments on narrow granular columns to test the validity of the Janssen law
under such conditions has been done. The weight at the bottom of the cylinder and
the compression and movement of the packing have been measured. The apparent
mass dependence on height is not in good agreement with the Janssen law using a one-
parameter fit. A two-parameter fit yilded good results for the apparent mass during
upwards and downwards movement at constant velocity of the granular column inside
the enclosing cylinder. The necessity of two parameters has its origin in rotational
frustration. The dependence of the apparent mass on the diameter of the column does
not follow the Janssen law. Rather, it depends strongly on details of the packing.
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1 Introduction

This thesis is about the properties of the force-network of dry granular materials. The
main results of the research performed are presented in three papers. This introduction
to the thesis will therefor give the theoretical framework for the papers. It is, among
others, the complexity of the force-network which makes the field of granular materials
such a rich one. The direct observation of the force-network is interesting itself, but the
manifestation of it can be just as fruitful to study. One example of this is the stick-slip
behaviour for granular material which is slowly sheared. Usually the correlation lengths
are very long, and minor changes at one place can change the macroscopic properties of
the material significantly.

The field of granular materials combines different classical fields like mechanics,
material physics and statistical physics. One aim of the scientists of this field is to
predict macroscopic properties from microscopic properties. It is an ongoing debate
whether this will be possible, as it is not proved that fluctuations seen for small samples
will disappear for larger samples. These facts open a possibility for numerical algorithms
to play a crucial role in the study of granular materials. Quite simple rules implemented
for the interactions between the particles can result in surprisingly complex macroscopic
behaviour. For the simulations done in this thesis, a numerical model called the Contact
Dynamics method [1, 2, 3] is used. It is a rather rapid algorithm. Even though the
equations describing the friction and collision forces are simple, the numerous particle
interactions give rise to a complex behaviour.

1.1 Background and motivation

One important feature of granular materials, as well as other materials, is the geometrical
structure. Therefore it is of interest to try to model the creation of structures. One
example is the modelling of sintering, another example can be the modelling of the
filtering cake during filtration. Most algorithms developed so far have been purely
geometrical due to the large number of particles involved. In the first paper of this
thesis it is shown how Contact Dynamics can be used to develop more physical realistic
models of packings. The combination of the Contact Dynamics’ rather rapid execution
together with the growth of computational power has made this field a mature one. The
same Contact Dynamics program is used in the second paper to analyse the behaviour
of a quasi-static pushed column of granular material. Interesting stick-slip patterns
are seen, and the simulations allow us to study thoroughly different properties of the
dynamics during the translation.

Many fundamental properties of the granular materials are poorly understood, and
a quite simple experiment performed by pushing a column with equal-sized beads and
measuring the force, has given quite surprisingly results. This is described in the third.

1
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1.2 Organisation of the introductory section

The rest of the introductionary section shortly introduces the relevant theoretical back-
ground. In addition, short summaries of the papers are presented where they fit in.
Chapter two presents the theory of packing of granular materials. Studies of the ge-
ometry of packings and algorithms for creating them are presented. The third chapter
presents the properties of the force-network in granular materials and different theo-
ries explaining them. The fourth chapter presents different numerical models which are
common in this field. As Contact Mechanics is used in two of the papers, this algorithm
is described more in details. The fifth chapter focuses on the Stick-slip properties of
granular materials, and Self-Organised Criticality is mentioned.

2 Packing of granular materials

In the first paper we present a method for creation of two-dimensional packings by
using the Contact Dynamics algorithm. In the following some fundamental properties
of packings are described.

2.1 Properties of packings

The structural properties of granular packings are many and complex, there are dif-
ferent ways of describing them. Here, I will mention a few properties and give their
mathematical descriptions.

The solid fraction is defined as:

sf =
V olume occupied by the grains

Sample volume
(1)

In two dimensions the most dense packing has a solid fraction equal to 0.906··· and in
three dimensions is it 0.74048···.

When doing simulations on granular packings, it is possible to find the contact angle
which is defined as the angle between the horizontal and the line defined by the centres
of the two particles in contact. It is therefore of use to define a probability for a contact
angle θ [4]. Let this probability expanded in a Fourier series with three terms around
its principal axis:

P (θ) =
1

2π
(1 + γ cos(θ − θc) +A cos(2[θ − θc])) . (2)

By claiming that P (θ) should have a period π, it is found that γ = 0, and we can
write:

2
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P (θ) =
1

2π
(1 +A cos(2[θ − θc])) . (3)

The contact angle tensor is written φ =< niin
j
i >, where i is the contact number, and

i, j denotes the components of the normal vectors. Expanded into a matrix form, the
tensor is written:

φ =
1
c

[
Σ cos2 θi Σ sin θi cos θi
Σ sin θi cos θi Σ sin2 θi

]
, (4)

where c is the number of contacts, and the sum goes over all the contacts. This
tensor can be represented by an ellipse, with a major axis and a minor axis. If the axis
are rotated an angle θc such that the Σ cos2(θ− θc) term in the tensor is maximum, this
defines the direction of the principal axis. In this case it follows from the properties of
an ellipse, that the off diagonal terms are zero. Hence, by diagonalisation the tensor,
the principal axis of the contact network are found.

An expression for A in eq. (3) can be found by putting in eq. (3) into the matrix
and integrating over all angles. The result is:

1
2
A cos(θc)2 − 1

4
A+

1
2

1
2
A sin(θc) cos(θc)

1
2
A sin(θc) cos(θc)

1
2
− 1

2
A cos(θc)2 +

1
4
A

 (5)

The eigenvalues of this matrix are:{
λ1 = 1

2 + 1
4A

λ2 = 1
2 −

1
4A.

(6)

We see that the measure of anisotropy is A = 2 ∗ (λ1 − λ2).
Another property of packing structures is the coordination number. This is the

average number of contacts per particle. In two dimensions for mono-sized disks the
maximum coordination number is six. A coordination number equal to six is equivalent
to a perfect packing. Only small displacements in the structure can give a rapid decay
in the coordination numbers. The correlation length of faults is very long for high
coordination numbers [5]. For a a infinite chain of particles the coordinate number is
equal to two.

Another property of the the packing is the density-density correlation function [6].
Given a particle at the origin (r=0), the probability for a particle to be at the position
r is given by the density-density correlation function G(~r):

G(~r) =< ρ(0)ρ(~r) > (7)

The Fourier transform of this function is the Structure factor S(~q) measured in
diffraction experiments (light scattering, neutron scattering, electron diffraction etc.).

3
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2.2 Packing structures

In two dimensions the most dense packing is the hexagonal packing as shown if Fig. 1.
The solid fraction for this structure is:

sf =
1
2
πr2

√
3r2

= 0.9068··· (8)

Figure 1: The most dense packing in 2D, the hexagonal packing. The solid fraction is
0.9068···.

In three dimensions there are two structures with the maximum solid fraction for
mono-sized beads. These are the body-centered cubic and the hexagonal closest packing,
illustrated in Figs. 2 and 3.

However, the most dense packing structures are difficult to reach, unless the particles
are manually set at their right position. Therefore another limit is defined, the Random
Closest Packing (RCP). There is no exact definition of the Random Closest Packing.
RCP is achieved when mono-sized beads are packed together and allowed to reorganise to
achieve as close packing as possible. It is assumed that there are no walls restricting the
packing. For two dimensions the solid fraction of RCP is found to be around 0.82±0.005
[7]. The limit was found by the help of simulations, using a random deposition model.
In three dimensions the solid fraction of RCP was found to be around 0.635 ± 0.0005
[8]. The solid fraction was found by filling up different-sized cylinders with mono-sized
beads, and measuring the solid fraction. The solid fraction was then extrapolated and
found for infinite cylinders. The Random Loose Packing (RLP) has not been studied

4
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Figure 2: The cubic close packing. It can be formed by putting groups of three and
three layers on the top of each other. All the three layers in one group have the same
structure, but they are all displaced a little relative to each other. [9]

Figure 3: The hexagonal closest packing. It can be formed by putting groups of two
and two layers on the top of each other. Each layer in the group has the same structure,
but they are slightly displaced relative to each other. [9]

5
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as extensively as the RCP limit. What is meant by RLP has not been well defined.
A frequently used definition is the lowest stable packing solid fraction under external
load. The smallest external load is the weight on the packing itself. Hence, the RLP
limit depends on the gravity constant. This makes it reasonable to define the RLP in
the limit when g goes towards zero. This limit has been measured experimentally to
be sf = 0.555 [10] for 3D. These experiments were done by studying the densities of
the packings which were immersed into liquids with different densities. The result was
then found by extrapolating towards g = 0. In two dimensions this limit has been found
using random deposition model, a simulation model. Beads are dropped onto a line and
sticks on whatever it hits first, the line or an already deposited bead. It has been found
in [7] at estimate of this limit: sf = 0.3586 ± 0.0001.

2.3 Packing generating models

There are several models for the study of generation of random packings using hard
particles and spheres. They have been used for the study of liquids [11] , amorphous
materials [12], electrical conductivity [13], filtering and porous media [14], cohesive pow-
ders [15, 16, 17] and other mechanical properties.

The different models may be classified into two main categories:

• Those using only geometrical aspects of the particles and the packing environment.

• Those trying to model forces on and between the particles during the packing
process.

Sequential models and collective reorganisation models must be sorted under the
first category. The sequential models may again be divided into two sub-categories: In
the first sub-category, particles are dropped one and one onto the packing structure, and
following certain rules, remain stuck on the place where they first hit, or slide downwards
until required condition is fulfilled [18]-[23]. In the other sub-category the particles grow
around one center particle. [24]-[26]. For the method using collective reorganisation [27]-
[34], the particles are first placed randomly in space. Second, a relaxation step follows,
adjusting the diameters and the centres, until a stable configuration without overlap
between the particles is achieved. Of the second main category few models exists,
mainly due to the demand for computational power. Recently there have been some
simulations done on packing where Van der Waals forces have been included.[15][16].

It is of high interest to be able to create packing of different porosities. Often a
simple geometrical model like Random Ballistic Deposition has been used for this[17].
This is often good enough for some cases but no studies seem to exist of the differences
between a geometrical model without dynamic rearrangementss, and a more physical
complete model including this. With dynamic rearrangement is meant a rearrangment

6
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of many particles in the packing due to the increased load during the packing process. It
is of interest how the dynamic rearrangements influence on the properties of the packing.
This is the aim of the first paper.

2.4 Using Contact Dynamics to study the two-dimension granular
packings

In the first paper we study the structural properties of two-dimensional granular pack-
ings prepared by random deposition from a source line. We consider a class of random
ballistic deposition models based on single-particle relaxation rules controlled by a crit-
ical angle, and we show that these local rules can be formulated as rolling friction in the
framework of dynamic methods for the simulation of granular materials. We find that
the packing prepared by random deposition models is generically unstable, and under-
goes dynamic rearrangements. As a result, the dynamic method leads systematically
to a higher solid fraction than the geometrical model for the same critical angle. We
characterise the structure of the packings generated by both methods in terms of solid
fraction, contact connectivity and anisotropy. Our analysis provides evidence for four
packing regimes as a function of solid fraction, the mechanisms of packing growth being
different in each regime.

3 The force-network in a granular media

In the second and third paper, the properties of the force-network of the granular ma-
terial are studied. This section will give the reader an introduction to the different
theories of the force-network in granular material, which will be necessary to under-
stand the context and the idea behind the work presented in these papers. In Fig. 4 a
visualisation of the forces in a granular packing can be seen [35]. There is a network of
forces, or a collection of paths which carries forces. The amount of force carried by each
of the paths varies. In Fig. 4b the distribution of forces between the contacts is shown.
The visualisation of inter-granular forces was presented already in 1957 by Dantu [36].
It is widely believed that the existence of force chains is a major property of a granular
material. There exists a range of theories which tries to explain this [35, 37, 38, 39, 40].
Numerical simulations have also been carried out, trying to recreate the force-network
[41].

3.1 Continuum models

Even though the granular medias are a collection of discrete particles, it has been put
an effort in trying to describe it as a continuum. The basic assumption is that there is
a high correlation of the properties at a mesoscopic range making local averages valid

7
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Figure 4: 3 mm Pyrex spheres are surrounded by a mixture of water and glycerol that
matches the index of refraction of the Pyrex. A force is exerted on a piston that covers
the top surface of the container. The stress-induced birefringence makes those beads
under stress visible as the bright regions. The distribution of forces P versus force f
were measured at the bottom of a cylindrical container filled with spheres. The bottom
of the container was lined with carbon paper and a force was applied to the top surface.
The line is an exponential fit to the data: P (f) = exp−f/f0. After Liu et al. (1995)
[35] and [42].

8
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and representative for the state of the bulk. This permits us to write up the equation of
force balance using the stress tensor σij . The stress tensor is an average of the contact
forces in the neighbourhood.

3.1.1 The stress tensor

The stress tensor has two principal axis, the principal axis along where the principal
stress propagates, and the minor axis along where the minimum stress propagates. The
general stress tensor in 2D for axis x and y ⊥ x may be written like:

σij =
[
σxx σyx
σxy σyy

]
(9)

By imposing rotational equilibrium ,σxy = σyx, it is possible to represent the stress
tensor by a what is called the stress quadratic. In two dimensions, this will take the
form of an ellipse. Now, by changing the coordinate system to (m,n) which is rotated
a certain angle compared to (x, y) it is possible to set σmn = 0. In other words, it is
always possible to diagonolise the stress tensor by choosing the appropriate axis.

σ =
[
σmm 0
0 σnn

]
(10)

3.1.2 The Mohr Circle

Consider a box of granular media which has a vertical stress σv and horizontal stress
σh, Fig. 5. No shear forces are working on the four side walls. Consider a plane inside
the box at an angle α to the horizontal, see Fig. 6. The shear stress Tα and the normal
stress σα are found imposing force equilibrium:

σα = σh sin2 α+ σv cos2 α (11)

Through the relations cos2 α = (1 + cos 2α)/2 and sin2 α = (1− cos 2α)/2 one gets:

σα =
σv + σh

2
+
σv − σh

2
cos (2α) (12)

τ =
σv − σh

2
sin (2α) . (13)

This equation is visualised by the Mohr Circle [43], Fig. 7. The first axis is σα, the
second axis is τα. We can see that the shear stress is largest for α = 45◦.

The Coulomb criteria for slip for the plane α can be written:

|τα| > tan(φ)σα (14)

9
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This condition should hold for all angles in the granular media. This can be visualised
by a straight line, see the bold dashed line in Fig. 7. If the line crosses the Mohr circle,
there will be a slip. Through geometric considerations, see Fig. 7, the Coulomb criteria
can be written:

Υ ≡ R

Psinθ
≤ 1, (15)

where R is the radii of the Mohr circle, and P is the horizontal displacement of the
centre of the circle.

σ σ

σ

h

v

h

v

σ

Figure 5: Illustration of the setup for the calculation of shear stress in bulk

3.1.3 The force balance in the continuum model

For equilibrium on a segment ∆x, ∆z gives the following equations:

δzσzz + δxσxz = ρg
δzσzx + δxσxx = 0

(16)

where z is the vertical axis, x is the horizontal axis, ρ is the density of the granular
media and g is the gravity. As already shown, the following symmetry property for the
shear stress is:

σzx = σxz. (17)

10
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σ

σ
σ

v

h

α

τα

Figure 6: The normal- and shear-force working at a plane in the bulk

2α

τ

σ

τα

σα

σ = σ1 v

σ = σ2 h

φ

Figure 7: The Mohr stress circle, illustrating the normal and shear stress for a plane
tilted an angle α relative to the active direction inside a bulk.

Now we have a system of three unknowns σxx, σxz, σzz, but only two equations. This
problem can be resolved by introducing elasticity into the system. However, there are
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many models which solve the systems in other ways by introducing constitutive laws
between the components of the stress tensor. One example of this is the the assumption
made by Janssen [44] as we will study in the following section.

3.1.4 The Janssen equation

In the experimental paper, (paper number three), the Janssen equation is tested for its
validity for small systems, and for dynamic situations. In this section we will shortly go
through the assumptions done by Janssen and present the results of the third paper.

The Janssen equation was found empirically and published in 1895 [44]. This equa-
tion is still used today when constructing silos[45, 46]. The theory is based on on the
idea that the vertical stress is proportional to the horizontal stress.

The assumptions are:

• The granular material is considered as a continuum.

• The average pressure in the radial direction is proportional to longitudinal pres-
sure:

σ22 = Kσ11, (18)

1 symbolise the vertical direction, and 2 the radial direction, K is a positive con-
stant less than one.

• The contacts forces from the walls on the particles are pointing upwards and the
friction force are at the Coulomb limit.

The forces are balanced in the vertical direction:

(σ+
11 − σ−11)πD2/4 + πDKµσ11dz = πD2gcρdz/4, (19)

where σ+
11 is the pressure under the horizontal layer, σ−11 is the pressure over the

layer, D is the diameter of the column, g is the gravitational constant, c is the solid
fraction and ρ is the mass density of the beads. This is written for a column:

dσ11

dz

D

4Kµ
+ σ11 =

Dρcg

4Kµ
. (20)

We rearrange and get:

dσ11
dz

D
4Kµ

gρcD
4Kµ − σ11

= 1. (21)

12
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A integration is made from the top to the bottom assuming zero pressure at the top:

ln
(
gρc

D

4Kµ
− σ11(h)

)
− ln

(
gρc

D

4Kµ

)
= −h4Kµ

D
, (22)

which gives:

−σ11(h)
4Kµ
Dgρc

+ 1 = e−
4kµ
D
h, (23)

isolating σ11:

σ11(h) =
Dgρc

4Kµ

(
1− e−

4Kµ
D

h
)
. (24)

The apparent mass after directing the contact force from the wall on the particles up-
wards is:

Mapp = M∞app (1− exp(−h/λ)) , (25)

where
M∞app = λπD2gcρ/4. (26)

Here we have introduced the screenig length λ:

λ = D/4Kµ (27)

For two dimensions it can be shown that:

λ =
L

2Kµ
(28)

and
M∞app = λLgcρ (29)

where L is the width of the two dimensional cylinder. In the third paper we describe
an experiment which has been done to check the validity of the Janssen equation for
small systems. We filled a vertical glass column with equal sized ball bearing beads. We
measured the weight at the bottom of the cylinder, the compression and the movement
of the packing meanwhile the packing was moved up and down. This allowed us to
test the Janssen equation for a very small number of beads. The apparent weights’
dependence of height was found not to give a satisfactory fit with the Janssen law. This
may be explained by the discreteness of the system. Consider figure 8. There is only a
finite number of points which are in contact with the cylinder wall. In the following we
will derive equations for the force at the bottom of this setup assuming that the beads
only slides upward along the wall due to rotational frustration.

13
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Ni

Fi

l

Figure 8: A two dimensional packing used for the derivation of an alternative to the
Janssen equation. l is the height of one unit cell. In the derivation, the particles are
supposed to not rotate due to rotational frustration.
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Assume the coefficient of friction against the wall to be µ for all the bead-wall
contacts. One unit cell in this structure is marked, and consists of one centered bead
below two beads confined to the wall. The vertical force balance for one such cell is:

Fi = 2Niµ+ 3w + Fi−1, (30)

where Fi is the vertical force working upwards on the centered bead in unit cell i , w is
the weight of one bead and Ni is the contact force between the wall and the confined
particles in unit cell i. It is assumed that the contact force is the same on the left and
right hand side. Now we introduce the Janssen equation for the discrete system:

Ni = KFi, (31)

where K is the Janssen coefficient. This gives:

Fi = 2FiKµ+ 3w + Fi−1, (32)

which can be rewritten as an discrete recursive equation:

Fi = AFi−1 +B (33)

where A = 1
1−2Kµ and B = 3w

1−2Kµ . We note that F0 = 0. By substitution it can bee
seen that:

FN−1 = BΣi=N−1
i=0 Ai = B

1−AN
1−A (34)

We subsitute back the physical parameters:

1
1−A =

3w
1− 2Kµ− 1

= − 3w
2Kµ

= −3gρS/
2Kµ

, (35)

where ρ is the mass density of the beads, S is the volume of one bead, and g is the
gravitational constant. Now we introduce the solid fraction for a unit cell c, and the
width of the cylinder l and the height of one unit cell l, which allows us to write

1
1−A = −ρcglL

2Kµ
(36)

The height h is given by h = Nl. We rewrite the exponential:

AN = exp(ln(AN )) = exp(h/l lnA), (37)

and get:
Fi = λ1ρcL (1− exp(−h/λ2)) , (38)

15

URN:NBN:no-3475



where
λ1 = − l

2Kµ
, (39)

and

λ2 = −l/ ln
(

1
1− 2Kµ

)
(40)

As an example we find for Kµ = 0.1 gives λ1/λ2 = 1.1. We conclude that the
discrete model gives a different equation than the continuous case, and that for small
systems this could be important. In the experiments we find that λ1 is alwas larger than
λ2, which is in accordance with this theory.

3.1.5 The Oriented Stress Linearity (OSL) models

A central model for force distribution in granular materials is the OSL ( Oriented Stress
Linearity ) model [37]. This model represents an attempt to explain the screening of
forces which has been seen in both cylindric packings and piles. Many experiments have
measured the hydrostatic pressure at the bottom surface of a pile. It has been reported
that the stress at the centre is lower than the one further out [47]. A dip in the pressure
is seen at the centre.

Here we will present the OSL model: Consider Fig. 9. A pile of sand is illustrated.
The slope of the pile is φ. The stress lines in the model are directed along the vector m,
defined by the angle ψ. The normal vector of this is n. The direction of the stress lines
can vary with the position. The shear stresses along these lines are set to be limited by
the following rule:

σnn = Kσmm. (41)

Equation (41) can be written in the Cartesian coordinate system:

σxx = ησzz + sign(x)µσxz. (42)

The sign function is due to the discontinuous change at the symmetry axis in the stress
function. By combining the static equilibrium equations (16) with the assumption in
equation (41) and the symmetry condition eq.(17), it is possible to formulate a wave
equation.

(δz + c+δx)(δz + c−δx)σij = 0. (43)

This is an hyperbolic wave equation which has two directions of propagation. The
directions are given by the equations x− c+z and x− c−z. The depth parameter z has
the role of time in this wave equation. One direction of propagation is outwards, giving
rise to the arching effect. The other direction is inwards.

Three other important assumptions in the OSL model are:
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• The macroscopic properties of the granular medium are independent of length
scale. This makes it possible to write:

σmn = σmn(z/Z, x/cZ), (44)

where c = cotan ψ, see Fig. 9, and Z is the height of the pile. Hence, it is
convenient to use the reduced radius: S = x/cZ.

• The unknown stresses in chunks of material element only depend on the known
stresses in that element. This makes it possible to write:

σxx/σzz = C(σxz/σzz, S) (45)

• A principle called perfect memory is introduced. It is assumed that the constitutive
relations do not change with time. At once a chunk of material is deposited at
the surface of the pile, the relations between the stresses are set. This is at the
surface, so the parameter S is equal to one. As the pile is growing, S for the same
chunk of material is decreasing. Hence, for the assumption of perfect memory to
be valid, the function C must be independent of S:

σxx/σzz = C(σxz/σzz) (46)

The FPA model postulates that the major principal axis of the stress tensor has a
fixed angle of inclination to the downward vertical:ψ(x) = ψb. The thought direction of
the stress lines is defined forever in the moment the material is deposited at the surface
of the pile. By assuming that the stress goes towards zero when approaching the surface,
and using Mohr-Coulombs equation eq. (14), it is found that the angle of the principal
axis in the stress tensor must be: ψb = (π − 2φ)/4. Since the FPA model assumes that
ψ is a constant, this is the direction of the principal axis for the whole bulk. The FPA
is a special case of the OSL model. As already mentioned, the hydrostatic pressure on
the bottom surface of a pile of granular materials has been measured. It is often found
that there is a minimum of the pressure in the middle of the surface, and the maximum
is localised on a ring around the centre. This surprising result can be explained by the
FPA theory. The forces from the mass in the centre are carried away by stress lines
pointing outwards, away from the centre line of the pile.

Another special case of the OSL theory is the so called BCC model [48]. The name is
after the authors Bouchaud, Cates and Claudin. This assumes that there is a constant
relation between the radial stress and the vertical stress:

σxx
σzz

= η (47)
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It is easy to see that this is a special case of the OSL theory, when compared to equation
(42).

This is related to the work of Janssen [44] who assumed that the stress tensor was only
a function of the depth, and that the vertical stress was proportional to the horizontal
stress The difference between these two theories is that the stress tensor in eq.(47) for
the BCC model is also a function of the horizontal position: σ = σ(z, r), while for
Janssen σ = σ(z).

Another special case is the IFE (Implicit Failure Everywhere). The IFE theory
assumes that the bulk is at the Coulomb point all the time. This is expressed mathe-
matically by setting Υ = 1 in equation (15). Fig. 10 illustrates the calculation of the
stress under a pile for the different special cases mentioned. It is shown that the FPA
model is the only one that manages to recreate minimum property in the centre of the
surface.

ψ
φ

Figure 9: An illustration of the Oriented Stress Lines model. The parameter Ψ represents
the orientation of the principal axis of the stress tensor while φ is the slope of the surface
of the pile. The stress tensor is represented by the ellipse, with major axis along the
angle ψ. The direction of the principal axis is a function of position.

3.2 The quasi-elastic model

Evesque and de Gennes[49] have suggested a theory based on what they call a quasi-
elastic principle. It is inspired by a experiment done by Boutreux [50]. He studied
avalanches in a silo where sand was poured from a small slit. The final slope of the
pile was found always to be below the critical point where the sand is just about to
flow. Hence, there should be no instability in the shear, and the sample should be under
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FPA

IFE
BCC

r=0r=1

Stress

Figure 10: The stresses for the different models inside the OSL model. It should be
noted that the FPA (Fixed Principal Axis) is the only one that recreates the minimum
property of the stress field in the centre of the bottom surface.
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compression everywhere. Experiments [51] have shown that for a granular material
a macroscopic bulk modulus can be defined, and is shown to be around K ∝ p1/2,
where p is the hydrostatic pressure. The increasing bulk with the pressure is due to the
increased contact surface between the particles. For two spheres and Herztian contacts
the modulus is expected to be K ∝ p1/3. In the quasi-elastic theory the columns are
supposed to collapse under their own weight, creating a continuous displacement field.
By taking into account the whole sample history and assuming a smaller displacement
near the walls, they come up with a Janssen equation where the kj is dependent of the
Poisson ration ρp of the material:

kj =
σp

1− σp
. (48)

Provided that σp is independent of the pressure, this supports the Janssen equation.

3.3 Critique of the models

The FPA model has received critique from Savage [52, 53] and Goddard [54]. The
following summary of the article is based on the review paper of de Gennes[40]. The
FPA model is based on the following assumption of what is happening during the filling
of a container: as the particles fall into a 2D box they will form a slope tan θs. The
relation between the shear stress and the normal stress on the surface can be written.

τ = σn tan θs. (49)

Now it is assumed that this relation also holds when the piles are covered of other
layers of grain. Once buried, the stresses and the structure freeze. This model recreates
the dip which has been observed under a pile. Savage claims the three following points:

• For two-dimensional heaps (“wedges”) with a rigid support plane, there is no dip
in the experiment.

• If the support is (very slightly) deformable, the stress field changes deeply, and a
dip occurs.

• For the 3D case (“cones”), the results are extremely sensitive to the details of the
deposition procedure.

Savages has also done a finite-element calculation where the inner part of the pile is seen
as quasi-elastic and the surface is set to obey the Mohr-Coulomb conditions. With a
rigid support no dip is found, while for an deformable support he finds a dip.

As an answer to this critics Cates claims that there is always a chance for some
particle contact forces to be at critical point. Hence it is not assured that it is possible
to define a bulk compressibility.
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D

D+1

D+2

(i,D)

(j,D+1)

Figure 11: Illustration of the two-dimensional q-model. The particles in the D layer
distribute the forces to their neighbours in the D + 1 layer.

De Gennes responds to this by saying that shear test can be done, the bulk com-
pressibility can be defined [40].

As a summary of the debate we see that there is on one hand a classical picture
of the granular material which claims that the material can be described by continious
elastic equations, and on the other hand a modern picture which claims that the critical
state governs the properties.

3.4 q-model

Liu and co-workers [35] have presented a model, the q-model, where the vertical forces
are spread from one particle to the particles below. The model was developed further
by Coppersmith and co-workers [39]. In general, see Fig. 11, the equation of forces may
be written:

w(j,D + 1) = 1 + Σiqij(D)w(i,D), (50)

where w(j,D + 1) is the weight on the bead in column j and row D + 1, qij is the part
of vertical force transmitted from the bead in column i to the bead in column j. The
tensor qij is assumed to be independent of the row number. The conservation of forces
gives:

Σqij = 1 (51)

In the most simple case in 2D, one particle transmits half of its vertical force plus its
own weight to each of the two neighbours below. In more refined models the coefficients
of force transmission qij can be represented by distributions. The q distribution must
reflect the disorder of the packing. Consequently, even for a regular crystal, very complex
force-networks can be modelled.
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4 Numerical models

The first and second paper use Contact Dynamics to simulate granular materials. In this
section the mathematical basis for the Contact Dynamics method is presented. Other
numerical methods widely used to simulate granular materials are also presented.

4.1 Hard spheres

There are several regimes which are interesting to simulate. Some regimes are believed
to be little influenced by elastic effects. The collisions are often described by the help
of restitutional coefficients, which describe the relation between the impulses before and
after a collision. Hence, the hard sphere term also includes elastic balls, as long as the
kinetics of the system is the governing factor. Typically this is a system with a quite
long mean free distance. In this regime it is popular to use event-driven algorithms or
Contact Dynamics. In this category one should also add the geometrical algorithms
used for constructing large packings.

4.2 Soft spheres

In the soft sphere regimes, the interaction force depends on the penetration length,
and the particles have a low mean free distance. In some setups it is almost the same
contact network throughout the whole simulation. Here the important physics is in the
penetration effects. Molecular Dynamics is a popular tool in this regime.

4.3 The evolution of time

One question when doing numerics is what is the most rational way to split up the time.
The answer to this must be the method which manages with least iterations in coming
from time t0 to time t1. Hence, if a system is easily extrapolated in time, except for at
certain events, the event driven algorithm is a good choice. The idea is to calculate the
values of the system only for the events. Typically for a granular media this would be
change of direction of one sliding contact, the breakage of one contact, the creation of
one contact, a collision or a transition of one contact between sliding and non-sliding
status. The event-driven algorithm will certainly work best for systems with a low rate
of events. When the number of events become too high, numerical tricks must be done
to avoid slow progress in the simulation.

4.4 Molecular Dynamics

Molecular dynamics is an extensively used method in many branches of science and
engineering. There exists a large body of theory and a lot of software for this method,
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and is comfortable to use as such. The time is divided into equal time steps, and for
each time step the physical parameters are calculated. This can be written:

∆p = ∆(mv) = mv −mv0 =
∫ tc

0
Fcmdt, (52)

and

∆(Iω) = Iω − Iω0 =
∫ tc

0
(r × F )dt, (53)

where I is the moment of inertia, r × F is the torque on the particle, ω is angular
velocity, m s the mass of the particle, Fcm is the force at the centre of mass,v is the
velocity f the particle and p is the impulse of the particles.

The elastic forces as a function of penetration are of major importance when simu-
lating a particle system using MD. This is an active field of research. It is a complex
task to define the contact forces during a collision, and approximations must always be
done.

4.5 Collision models in MD

As already mentioned the physics of colliding spheres is hard to grasp and numerical
models are based on approximations. For two overlapping spheres, it is of interest to
find the force due to the overlap. A simple approximation is to assume a linear spring:

Fr = kd, (54)

where Fr is the restitutional force, k is the spring constant, and d is the overlap. However
Herzts law is assumed to be a more realistic model:

Fr = kd3/2. (55)

This is a very common assumption in the simulation of granular materials, and
specially for the propagation of sound in granular materials. A simple derivation is
proposed by de Gennes. Assume that the volume represented by the calott defined by
the overlap h is compressed, and assume h << R where R is the radius of the sphere.
The area illustrated in Fig. 12 is proportional to 2Rh. Next it is assumed that the
depth of the sphere which is influenced by the overlap, is the same as the radii of the
contacts circle,

√
2Rh. Using Youngs modulus the force is found:

F ≈ AE h√
Rh

= E
√

(2R)h3/2. (56)

Hertz law is an elastic model which does not loose energy during the collision. To
introduce dissipation, different models can be used. One of the simplest models is to
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h

R

Figure 12: Illustration of the geometry for a collision. A basis for understanding the
Hertz equation.

assume a viscous force proportional to the relative velocities. This dissipative force can
be split into one normal component and one tangential component:

fdn = −dn ∗mijvijn , (57)

and
fdt = −dt ∗mijvijt , (58)

where mij is the reduced mass, i,j are the two particles, vt is the tangential velocity and
vn is the normal velocity. Experiments have shown that for partially elastic collision,
the rate of energy in the two particles before and after the collision can be written in
terms of an restitutional coefficient:

ε =
√

(
E1

E0
), (59)

where E0 and E1 are the kinetic energy of the two particles [55] before and after a
collision. The restitutional coefficient should be independent of the velocity and the
initial separation between the particles. However, for very close initial separation, less
than the penetration depth, the effective restitutional coefficient will be too large. The
collision will be simulated more elastically than what it really is. This problem is called
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the detachment effect, and shows that the method has problems in the regime of dense
ensembles.

4.6 The Contact Dynamics algorithm

This algorithm was developed by Moreau and Jean [1, 2, 3]. The time is divided into
equal intervals. The dynamic of each particle is characterised by the velocity of the
centre and the rotational velocity. For each time step, the algorithm finds the pairs of
particles which will collide in the next time step. The particles which overlap define the
contacts of the system. Each contact is described by a normal force impulse, a tangential
force impulse and a spin transfer. The collisions are described through restitutional
coefficients. In the following sections I will describe the mathematical modelling of the
collisions as it is used in this algorithm.

4.6.1 Modelling of frontal collisions

For two particles which collide and have no tangential relative velocity, a total elastic
collision is written:

v+
ij = −v−ij , (60)

where the v+
ij is the relative velocity after the collision and v−ij is the relative velocity

before the collision. During the collision there is almost always some energy loss. Some
loss may be due to plastic deformation, and some due to generation of vibrations in the
packing. For non-elastic collisions experiments have shown that it is possible to write:

v+
ij = −ρnv−ij (61)

where ρn is Newtons restitutional coefficient. The velocities after the collisions can be
found by using the equations:

miv
+
i = miv

−
i +R, (62)

and
mjv

+
j = mjv

−
j −R, (63)

where R is the impulse transfer during the collision. Now there are three equations with
three unknowns. The relative energy loss for a collision ∆E can be calculated:

∆E
E

= 1− ρ2
n, (64)

where E is the energy before collision. What appears, is that ρn is a measure of the
relative energy dissipation for a collision.
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A tangential restitutional coefficient is used for collisions where there is also a relative
tangential velocity. It takes the form:

vt+ij = −ρtvt−ij (65)

where ρt is the tangential restitutional coefficient, vt+ij and vt−ij is the relative tangential
velocity of the contact point after and before the collision. This is also an empiric
law and should be used carefully. The restitutional coefficient ρt can be both negative
and positive. During a collision the particles will either slide and/or roll against each
other. The ρt should be connected to the frictional loss, and the elastic effect during the
collision. This raises the question how the Coulomb laws for friction should be connected
to this restitutional equation. We will come back to this later.

4.6.2 The normal force and the Signorini graph

The Signorini equation gives us the normal force as a functon of the overlap between two
particles. For the Contact Dynamics method it is necessary to adopt a similare concept,
but as we will see the Signorini condition is not sufficient. To get an easy start, let us
consider only the normal forces. The normal force moments working on the particles i
and j during a time step gives a change in the velocity:

vn+
i − vn−i =

∑
k 6=j

Rikn̂ijn̂ik
mi

+
Rij
mi

(66)

and
vn+
j − vn−j =

∑
l 6=i

Rjln̂jin̂jl
mj

− Rij
mj

, (67)

where n̂ij is the normal unity vector pointing from the contact point between particle
i and particle j towards the centre of particle i, m is the mass of the particle, Rij the
normal force moment transfer from neighbour j on i. The normal velocity is defined:

v
n+/−
i = (~v+/−

i )n̂ij , (68)

where ~vi is the velocity vector of one particle, and n̂ij is the normal vector between
the particles marked i and j. The plus and minus sign are marks for the time after
and before the time elapse dt. Assuming N particles and C contacts and N equations
of the type (66), we need C equations more, and these equations are the restitutional
equations, eq. (61). Now there are enough equations. In the CD method, for each
contact, Rij is calculated from equations (66,67).
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Rij = mn
ij

(vn+
ij − v

n−
ij −

∑
k 6=j

Rikn̂ijn̂ik
mi

+
∑
l 6=i

Rjln̂jin̂jl
mj

 (69)

where

1
mn
ij

=
1
mi

+
1
mj

. (70)

It might happen that Rij comes out negative, which indicates that there is no colli-
sion, equation (61) is not valid anymore. What we need, is a new definition of the term
contact for the calculations. Even if two particles are geometrically in contact, it might
happen that the contact is not transmitting force. A parallel to the Signorinis law is
introduced. The Signorinis law is a relation between the distance between two particles
and the interstitial force: {

d = 0 ⇒ R > 0
d > 0 ⇒ R = 0

(71)

where d is the distance between the two contact surfaces, and R normal opposing
force between the two particles. In our case, we must instead use:{

R > 0 ⇒ R > 0
R <= 0 ⇒ R = 0

(72)

In practise it means that if a normal force is calculated to be negative, the contact is
removed from the set of equations. To express this non-smooth limitation in a diagram
similar to a Signorini graph, we may introduce a formal velocity v̄nij :

v̄nij = vn+
ij + ρnv

n−
ij (73)

Now we may express the new Signorini condition as follows:{
v̄ij = 0⇒ Rij ≥ 0
v̄ij 6= 0⇒ Rij = 0

(74)

We can rewrite equation (69) using the normalised velocity:

Rij = mn
ij v̄ij +Kij, (75)

where

Kij = mn
ij

−∑
k 6=j

Rikn̂ijn̂ik
mi

+
∑
l 6=i

Rjln̂jin̂jl
mj

− v−ij(1 + ρn)

 (76)
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In figure(14) we have plotted the force moment as a function of the formal velocity.
The bold line represents the condition expressed in equation(74). The axis along the
formal velocity represents different relations between the velocities. Only for v̄ = 0 the
relation correspond to the restitutional relations.

4.6.3 The tangential velocities

Now we introduce the tangential velocities during the collisions. As mentioned, the
relations between the tangential velocities before and after the collisions are described
by restitutional equations as well. The equations for the change of the tangential velocity
during a time step are:

(vt+i − v
t−
i )mi =

∑
k

Tik t̂ij t̂ik +
∑
k

Rik t̂ijn̂ik +
∑
k

Tik
r2
i

Ii
(77)

and

(vt+j − vt−j )mj =
∑
l

Tjl t̂jit̂jl +
∑
l

Rjlt̂jin̂jl +
∑
l

Tjl
r2
j

Ij
, (78)

where t̂ij is the tangential unity vector in the contact between particle i and j pointing in
the counterclockwise direction. Ii and Ij are the moments of inertia. Tij is the tangential
force moment during the collision. Using the tangential restitutional equation, we isolate
Tij and Tji = −Tij by subtracting the equations from each other:

Tij = mt
ij

(
vt+ij − v

t−
ij −

∑
k 6=j Tik t̂ij t̂ik

mi
+
∑
l6=i Tjl t̂jin̂jl

mj

−
∑
k Rikn̂ij n̂ik

mi
+
∑
l Rjl
mj

n̂ijn̂jl −
∑
k 6=j Tik

r2i
Ii

mi
+
∑
l6=i Tjl

r2j
Ij

mj

 (79)

where

1
mt
ij

=
1
mi

+
1
mj

+
r2
i

Ii
+
r2
j

Ij
(80)

We may write equation(79) as an equation with one velocity dependent term and one
force moment dependent term:

Tij = v̄tijm
t
ij + Lij . (81)

where we have defined the tangential formal relative velocity as:
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v̄tij = vt+ij + ρtv
t−
ij (82)

and Lij is:

Lij = mt
ij

(
−
∑
k 6=j Tik t̂ij t̂ik

mi
+
∑
l6=i Tjl t̂jin̂jl

mj

−
∑
k Rikn̂ij n̂ik

mi
+
∑
l Rjl
mj

n̂ijn̂jl −
∑
k 6=j Tik

r2i
Ii

mi
+
∑
l6=i Tjl

r2j
Ij

mj
− vt−ij (1 + ρt)

 (83)

4.6.4 Coulomb law

The equation above is valid if the tangential restitutional equation (61) is valid. However,
if |Tij | is large enough, one would expect the restitutional equation to become unvalid
because the two particles would then only slide against each other during the collision
obeying a Coulombian friction law. The mechanics during a collision is complicated, but
as an approximation, the following extended Coulomb rule is used for the CD program.{

µRij > |Tij | → Sliding
µRij <= |Tij | → Non Sliding ,

(84)

where µ is the friction coefficient. This equation is reasonable as it is the relation you
will get assuming Coulombs criteria valid for all the time during the collision, integrating
the terms in the Coulombs criteria over the collision period. Equation(79) holds only as
long as the tangential restitutional equations hold. To be able to draw the non-smooth
equation (84) as a function of one parameter, the formal tangential velocity as defined
in equation (82) is used. Note that the equation (84) is only valid for v̄t = 0. The formal
tangential velocity is a measure of the relation between the relative velocities before and
after a time step, and only when it is equal to zero this relation is equivalent to the
restitutional equation. Hence, when vtij 6= 0 we must have Tij = sign(vtij)µRij. We also
need to know what the sign of v̄tij means for the sign of Tij . So far we only know the
amplitude. Assume v−ij = v−i − v−j > 0, and assume ρt > 0. The Tij for the time step is
negative as long as the restitutional coefficient holds, because v+

ij < 0. If the magnitude
of Tij is calculated to be larger than the Coulombian friction limit µRij, the magnitude
of Tij must be decreased and the new value be set to −µRij. This means that the new
calculated v+

ij will be less negative. This again implies that T̄ tij = v+
ij + ρtv

−
ij > 0 will go

positive. Likewise we can analyse when Tij > 0. The arrows in figure 13 illustrates this
analyses. If Tij is outside the Coulomb limit, it will be mapped as the arrows indicates
onto the bold line. The crossing between the straight line and the stair-case like line
gives us the correct value of Tij . This graph also indicates that there will be one unique
solution.
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Figure 13: The Coulomb graph and the tangential force moment transfer as a function
of the tangential normalised velocity, v̄t. If v̄t 6= 0, we are outside the Coulomb limit,
the tangential force moment during the collision must be T = ±µR. If we are inside the
Coulombs limit the force moment transfer is given by the point of intersection of the
inclined line and the vertical line.

4.6.5 Introducing frictional force moment in the normal force equations

After introducing tangential forces into the normal force moment equations, we get the
following equations:

(vn+
i − vn−i )mi =

∑
k

Rikn̂ijn̂ik +
∑
k

Tikn̂ij t̂ik, (85)

(vn+
j − vn−j )mj =

∑
l

Rjln̂jin̂jl +
∑
l

Tjln̂jin̂jl. (86)

Using Rij = −Rji and isolating for Rij we may write:

Rij = mn
ij

(
−v̄ij(1 + ρn)

ρn

)
+Kij , (87)

where

Kij = mn
ij

− 1
mi

∑
k 6=j

Rikn̂ijn̂ik −
1
mi

∑
k 6=j

Tikn̂ij t̂ik +
1
mj

∑
l 6=i

Rjln̂jin̂jl +
1
mj

∑
l 6=i

Tjln̂jit̂jl − vn−ij (1 + ρn)


(88)

30

URN:NBN:no-3475



Vn

R ij

Figure 14: The Signorini graph is plotted together with the force moment transfer as
a function of the formal velocity v̄n. The restitution equation(66) is only valid when
v̄n = 0, and only in this case R will be larger than zero. If v̄ 6= 0, we have an open contact
and R = 0. The inclined line represents the normal force moment during the collision
as a function of the normalised velocity. Hence, the intersection point between the bold
graph and the inclined line will give the normal force moment during the collision.

Again we see that if not the formal normal velocity is zero, the contact is inactive,
because this implies that the restitutional relation fails. This gives us the same kind of
Signorini graph as already shown is fig. 14.

4.7 The spin transfer

We also implemented a spin transfer, allowing a force moment to work on the two
particles in contact during the collision. This pure spin transfer is useful when e.g.
modelling porous packings. A Coulombian friction law is not enough to stop one bead
from moving over another because it can simply roll. Now let us assume that one
neighbour particle transmits an amount of spin ∆S to one of it’s neighbours. Due to
the geometry and adhesion there is an upper limit for ∆S, rs. Next, the spin transfer
is calculated in the following manner:
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• 1. Calculate the spin transfer ∆S′ necessary to stop the relative rotation.

• 2. Use the following condition:{
∆S′ > rs ⇒ ∆S = rs
∆S′ ≤ rs ⇒ ∆S = ∆S′.

(89)

If the amount of spin transfer necessary to stop the relative rotation between two
particles is larger than rs, the relative rotation after the collision will not be zero, but
only reduced.

4.8 The spin equations

The equations for the spin change of the particles i and j are:

Iiω
+
i − Iiω

−
i =

∑
k 6=j

Tikr
2
i + ∆S (90)

Ijω
+
j − Ijω−j =

∑
k 6=i

Tjlr
2
j −∆S, (91)

where ∆S is the transfer of spin from particle j to particle i. Next, we divide by the
moments of inertia, and solve for ∆S given that ω+

i − ω
+
j = 0:

∆S = m̄s(−ω−i + ω−j −
∑
k

Tikr
2
i +

∑
k

Tjlr
2
j , ) (92)

where

1
m̄s

=
1
Ii

+
1
Ij
. (93)

If we define the formal rotational velocity as

ω̄sij = ω+
i − ω+

j , (94)

then we can represent the non-smooth condition on ∆S as the step-like function in Fig.
15.
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∆S

Vs
-r

rs

s

Figure 15: One plot is the non-smooth condition eq. (89) as a function of v̄s. The inclined
line represents the spin transfer as a function of v̄s. The parameter rs represents the
limit of the spin transfer. The spin transfer during the collision is found in the crossing
of the non-smooth spin condition function and the inclined line.
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4.8.1 Numerical approach

Now there are enough equations to solve the system by setting up a matrix and inverting
it. However, it is also possible to iterate towards the solution.

The equation for the solution of the normal force moment can be written:

Rij = mn
ij v̄

n
ij .+Kij (95)

The first term on the right hand side is the force moment transfer in contact (ij), while
the second term contains the indirect force moment transfer between the two particles.
The solution for the tangential force moment can be written in the same manner:

Tij = mt
ij v̄

t
ij .+ Lij, (96)

where the first term contains the properties of the contact (ij), and the other term
contains properties of all the other contacts. A similar equation is also written for the
spin:

∆Sij = ms
ij v̄

s
ij .+Mij . (97)

Then, by initially guessing the sets ({K}, {L}, {M}) = ({K0}, {L0}, {M0}), one can
find the first approximation of ({R}, {T}, {∆S}) by using the equations above and
the non-smooth conditions connected to each equation. Then again, a new estimate
({K1}, {L1}, {M1}) is found. For each iteration the contact network must be updated.
If one normal force moment is found to be negative, the contact must be removed from
the system. The tangential force moments, {T}, must be checked if they are inside the
Coloumb limit or outside, and the equations in the iterator must adapt to the changes.
Likewise, the normal forces and the spin transfers must be checked for their validity and
the equations changed if necessary. By repeating the iterations, a solution is found.

4.8.2 The Non-Smoothness in Contact Dynamics

In the CD algorithm, the contact forces are subject to non-smooth conditions. This is in
accordance with the formulation of the laws, the Coulomb friction law and the Signorini
Condition. In Molecular Dynamics it is not possible to introduce non-smooth conditions
as the algorithm is based on a integration of the parameters[2, 19, 20].

5 Stick-slip and Self-Organised Criticality

The second paper focuses on the stick-slip behaviour of a sheared granular column. This
section contains a brief introduction to the topic.

The propagation of stress in granular media presents a complex problem which has
been the subject of extensive study[56]-[58]. An applied external stress results in the
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development of an internal structure, resisting the stress. The contact forces are not
distributed uniformly[35]. The network of forces is believed to be the reason for jamming
and fragility observed [59]-[60].

On characteristic of granular matters is a stick-slip behaviour when it slowly sheared
[61, 62, 63]. The statistics of the stick-slip motion may reveal important properties of
the force network. A large span in the stick and slip forces reflects a large span in the
distribution of contact forces. It is also interesting to compare the statistics with other
physical systems like the Gutenberg-Richter law for earth quake [64]. It is believed that
simple systems can be used to describe complex processes [65]. In the second paper we
investigate the stick-slip behaviour of particles in a two-dimensional column which is
pushed at a constant velocity upwards, using the Contact Dynamics (CD) method. As
a result, a very rich system is found.

In the headline of this section the Self-Organised Criticality is mentioned. Even
though we can not claim that we have found evidence of SOC in the simulations, this
field is so related that it should be commented. In [66] we can read that “Self-organised
criticality is based upon the idea that complex behaviour can develop spontaneously in
certain many-body systems whose dynamics vary abruptly. Researchers have observed
characteristic general behaviour in systems as diverse as earthquakes, sand piles, and
even biological evolution” In a famous paper Bak, Tang and Wiesenfield [67] claimed
that complex systems which were driven by an external force could in some cases be
characterised by quite general rules. General refers here to the aspect that the rules could
be used to describe widely different systems. They are complex because the total system
description is complex, and simple because different distributions can be described by
the help of power laws. The term Self-Organised comes from the claim of Bak et al. [67]
that complex systems turn into SOC states without tuning. The term Criticality comes
from the claim that these systems behaved like equilibrium systems at the critical point.

In [66] it is claimed that there must be an evidence of power law both in time and
in space before it is possible to speak about SOC. This must be so, because temporal
fluctuations should reflect the spatial fluctuations. In our simulations, we have not been
able to find more than one power law. This does not mean that no other power laws
exist, but that they can be difficult to find due to the noise. One problem which occurred
in the analyses of the stick-slip pattern was the presence of step-like functions, these
functions have a very wide bandwidth, which disturbed the spectrum analysis.

6 Summary

One of the aims of this study was to test the Contact Dynamics method on different
fields. We have shown how it can be used to produce more realistic structures of two-
dimensional packings. Collective reorganisations can be significant, and could be the
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topic for a separate study. Anyway this simulation work makes it possible for scientists
in the field of packings to compare simple models with a more physical realistic model. In
the other simulation work, we studied the steady-state flow of a granular column inside a
narrow pipe. The finite stiffness of the pushing mechanism entailed a strongly irregular
intermittent flow when the contacts were governed by a velocity weakening friction law.
We found the following: 1) A transition to constant flow occurs for a driving velocity
vt = (m/k)1/2g involving no internal length and times scales; 2) The mean static driving
force was correctly predicted by the Janssen model; 3) The distribution of force drops
during slip events fell off as a power law over three decades with an exponent which did
not seem to depend strongly on system parameters; 4) The slip events were preceded
by creep motion leading most of time to an increase of the solid fraction, whereas slip
events generally involved a dilation of the material. The origin of the broad distribution
of event sizes remains an open question.

The third paper describe an experimental study: The apparent mass and the height
of the packings have been measured for dynamic as well as static situations. For an
upward motion the observations are consistent with a compactification front. The top
did not start to move before this front reached the top. After the top started to move,
the packing continued to compactify and the apparent mass increased monotonically
until reaching a regime of stick-slip behaviour.

A creeping relaxation was observed in the static regime (regime 2) that may be
explained by a combined ageing effect of the friction force, and a collective effect due to
internal restructuring of the contact points.

For downward motion, we observed a de-compactification of the packing. The ap-
parent mass decreased almost linearly before reaching a steady state. After the top had
started to move for the downward motion, the height of the packing remained almost
constant. This was not so for the upward motion so the process of translation up or
down are not reversible.

Even for very small diameters, the apparent mass after directing the shear forces
from the wall at the packing has an exponential decay. But the Janssen law does not
fit satisfactory, and we argue for a two-parameter fit for small systems. The necessary
condition for a exponential decay is shown to be rotational frustration and that the
frictional forces are directed due to translation of the packing. The exponential decay
is not observed for a column so narrow that each bead has only two neighbours. The
two parameter Janssen law is observed to hold for the static case, which is the common
setting. It also holds for upward movement and downward movement as well. For the
narrow cylinders as was used in this experiment, it is not possible to fit the Janssen
law’s dependence on the diameter. The packing structure is the dominant factor for
such small diameters.
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Dynamic rearrangements and packing regimes in randomly deposited two-dimensional
granular beds
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We study the structural properties of two-dimensional granular packings prepared by random deposition
from a source line. We consider a class of random ballistic deposition models based on single-particle relax-
ation rules controlled by a critical angle, and we show that these local rules can be formulated as rolling
friction in the framework of dynamic methods for the simulation of granular materials. We find that a packing
prepared by random deposition models is generically unstable, and undergoes dynamic rearrangements. As a
result, the dynamic method leads systematically to a higher solid fraction than the geometrical model for the
same critical angle. We characterize the structure of the packings generated by both methods in terms of solid
fraction, contact connectivity, and anisotropy. Our analysis provides evidence for four packing regimes as a
function of solid fraction, the mechanisms of packing growth being different in each regime.
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I. INTRODUCTION

Random ballistic deposition~RBD! is a well-known
method for layer-by-layer construction of random packin
of hard particles such as granular beds and colloidal ag
gates@1,2#. This method is based on a simple and intuiti
procedure. The particles~mainly monodisperse spheres
disks! are allowed to fall sequentially along randomly po
tioned vertical lines over a horizontal substrate. Upon con
with the substrate or the first~already deposited! particle, the
particle either sticks or is further moved to a more favora
position according to a relaxation~or restructuring! rule. The
RBD method can be efficiently implemented in a compu
code for generating very large two- and three-dimensio
packings. Elaborate large-scale simulations based on this
proach have been used to investigate the geometrical p
erties of random packings~packing regimes, distribution
functions, growth, etc.! @3,4#.

It is obvious that the random deposition of particles c
also be simulated by means of dynamic methods, such
molecular dynamics@5,6# and contact dynamics@6–9#, in the
spirit of a real experiment where the grains are poured in
box. Such simulations require, however, substantially m
computation time@10#. This difficulty has been inhibiting
enough to discourage for a long time systematic invest
tion of deposited beds following dynamic methods. But,
situation is far better today due to the fast increase of av
able computer power and memory during the last deca
There is now a considerable scope for dynamic simulati
that can be exploited in order to study a number of hig

*Present address: Fysisk Institutt, Universitetet i Oslo, Postb
1048 Blindern, N-0316 Oslo, Norway.
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interesting issues in the field of random packings.
The objective of the present paper is to apply a cont

dynamics algorithm to investigate randomly deposited gra
lar beds in a two-dimensional~2D! geometry. The geometri
cal texture~coordination number, solid fraction,. . . ) of a
granular bed depends on several physical parameters~par-
ticle properties, contact interactions, inertia of deposited p
ticles! which can be tuned in a dynamic simulation in ord
to characterize the impact of each parameter on the text
We propose here an approach that allows to bring out so
interesting features of granular beds in comparison to R
models. We consider a generalized RBD model in which
relaxation of the falling particle upon contact with the su
strate is controlled by the direction of the contact normalu ~a
single angle in 2D! @11#. Depending on whetheru is below
or above a critical angleuc , the particle either simply sticks
or is allowed to rotate until it reaches a local minimum p
sition or forms a new contact belowuc . Hereafter, we refer
to this model as the critical angle~CA! model. The central
feature of this model is that it allows to control the sol
fraction r by varying the critical angle@11#. The approach
we propose consists in performing dynamic simulations
random ballistic depositionas closely as possible to the C
model.

This requires that we transcribe the above geometr
relaxation rule into a contact law that is reduced to the g
metrical rule for the random deposition process. We fi
show that this requirement is met if the particles inter
through arolling friction law ~similar to the Coulomb sliding
friction! in which a contact torque is mobilized to resist rel
tive rotation of two particles. We implement this law within
contact dynamics~CD! algorithm. Then, we perform two se
ries of simulations both with the CA model and the C
method. In the first series, we use the granular beds prep

ks
©2002 The American Physical Society03-1
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according to the CA procedure as initial configuration fo
CD simulation. We show that, although local stability~stick-
ing due to rolling friction or, alternatively, particles sup
ported by two underlying contacts! is fulfilled for each par-
ticle added to the bed, the latter still undergoes collect
rearrangements leading to a higher solid fraction. This
plies that a granular packing prepared by geometrical rule
globally unstable. We study the extent of dynamic rearran
ments and the structural properties of the CA and CD pa
ings as a function of the critical angle.

In a second series of simulations, we characterize
packings in terms of the average coordination number, st
tural anisotropy, and contact connectivity as a function of
solid fraction. We show that the trends are globally simi
for the CD method and the CA model~the same packing
regimes are observed!. We distinguish several packing re
gimes where different mechanisms~screening, chaining
branching, piling, jamming, and ordering! are active and
control the packing fraction.

II. NUMERICAL APPROACH

A. Critical-angle model

Figure 1 shows the geometry of a contact formed b
falling particle i with a particlej of the substrate. The two
particle centers define a line inclined at an angleu i j to the
vertical. For disks,u i j is also the direction of the contac
normalni j , unit vector directed from the center of particlej
to the center of particlei. For brevity, we will refer tou i j as
the ‘‘contact direction.’’

The CA model is defined as follows@11#. If uu i j u is below
a critical angleuc , defined in the range between 0~vertical
direction! andp/2 ~horizontal direction!, the particlei simply
freezes by sticking to particlej. On the other hand, ifuu i j u
exceedsuc , particle i is allowed to rotate around particlej
until a second contact is formed with another particlek of the
substrate. Then, there are three possible alternatives:~1! If
uu iku,uc , particlei freezes as in the first case;~2! if the new
position of particlei is a local minimum position, again pa

FIG. 1. Geometry of a contact formed by a falling particlei with
a particlej from the substrate. The contact angleu i j is measured
from the vertical.
03130
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ticle i freezes;~3! if neither of the two latter conditions is
fulfilled, particlei is again allowed to rotate around particlek
until a new contact is formed with another particle of the b
and the three alternatives are examined again with this
contact. This procedure is iterated until particlei is stabilized
either by sticking or by reaching a local minimum positio

Two limits are of particular interest. Whenuc590°, all
particles stick irreversibly to the substrate wherever th
land. This limit corresponds to the random sequential adso
tion model@12–15#. Whenuc50°, all particles relax and the
model is reduced to the steepest descent model@1,16#. In
Ref. @12#, the solid fraction was found to bermin50.3568
60.0001 in the no-restructuring limit. The solid fraction fo
the steepest descent model is expected to come clos
rmax50.906 corresponding to a triangular packing. Ho
ever, to achieve a structure with long-range ordering,
initial conditions are very important. In practice, the botto
line must initially be covered by an array of contiguo
disks. Otherwise, simulations using the steepest descen
gorithm have shown that the solid fraction will not exce
r50.82, which is the characteristic density of 2D monod
perse random close packing where long-range order is
ken by defects in the packing@12–17#.

In the CA model, the solid fractionr of the granular bed
is a function of the critical angleuc as shown in Fig. 2. In
this figure, the solid fraction for each of the anglesuc
50°,1°,2°, . . . ,90° is an average over 30 independent ru
The bottom line was covered by a layer of 32 contiguo
particles and 1000 particles were deposited in each run
order to avoid wall effects, periodic boundary conditio
were implemented in the horizontal direction. Let us no
that CA simulations are possible at much larger scales. N
ertheless, we restrict here the size and the number of
simulations to those reasonably accessible to dynamic si
lations since the results will be compared between these
methods below. Figure 2 shows that the solid fraction
creases monotonously fromrmax to rmin as uc is increased
from 0 to 90°. One can distinguish several regimes on t

FIG. 2. Solid fractionr as a function of critical angleuc ~in
degrees! for the CA model.
3-2
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curve, which will be discussed below in connection w
dynamic simulations.

The CA model is a geometrical model that meets the
overlap condition between hard particles but involves a nu
ber of physical approximations about the stability of t
packing and its growth. By nature, this model neglects ine
effects. The substrate is frozen and the relaxation step
volves only the deposited particle. Moreover, the two sta
ity criteria ~local minimum position and sticking condition!
for the deposited particle have alocal nature. In other words
the model assumes that the whole packing remains in s
equilibrium as long as all particles are sequentially stabiliz
by either of these conditions.

In order to examine the validity of these assumptions,
approach followed in this paper is to perform dynamic sim
lations as closely as possible to the CA model and to co
pare the resulting packings. This implies that the partic
should be released sequentially and they should hit
granular bed with negligibly small inertia. Moreover, upo
contact with the substrate, the falling particle should dyna
cally stick or roll down depending on the value of the cont
angle with respect to the critical angle, until one of the tw
stability conditions is fulfilled. There is no difficulty in tun
ing the inertia in a dynamic simulation. But, we need
define a dynamic version of the relaxation rule.

B. Rolling friction

The dynamic content of stability due to a local minimu
position is clear. The weight of a particle can obviously
balanced by the reaction forces exerted by two underly
particles; see Fig. 3~a!. But the sticking condition require
both a contact forceF i j and a ‘‘contact torque’’Mi j so as to
counterbalance, respectively, the weightmig of the deposited
particle and its moment with respect to the contact po
Figure 3~b! illustrates this condition. The balance equatio
are

F i j 1mig50, ~1!

migrisinu1Mi j 50, ~2!

wherer i is the particle radius andg is the gravity.
Let Ni j and Ti j be the components of the reaction for

F i j along and perpendicular to the contact normalni j . From
Eq. ~2! one gets

FIG. 3. The two local stability conditions in the CA model:~a!
local minimum position,~b! sticking.
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Ni j 5mig cosu, ~3!

Ti j 5mig sinu, ~4!

Mi j 5r iNi j tanu. ~5!

The normal forceNi j is positive ~as it should! as long as
2p/2,u,p/2 ~the angles are measured from the vertica!.
On the other hand, the relative sliding is inhibited
uTi j u/Ni j ,ms , wherems is the coefficient of~sliding! fric-
tion ~or equivalently,u,us , whereus5tan21ms is the angle
of friction!.

Now, if we require that particlei rolls only if u>u r , then
from Eq. ~5! we arrive at the following no-rolling condition

uMi j u
r iNi j

,tanu r5m r , ~6!

wherem r is a coefficient ofrolling friction. Let us further
assume thatMi j remains equal to its threshold valu
6m r r iNi j when rolling occurs. This condition is similar t
the sliding conditionTi j 56msNi j .

The rolling friction law, as defined here, and the mo
familiar Coulomb~sliding! friction law are shown in Fig. 4
in the form of graphs@8,18#. The rolling friction law relates
the relative rotation velocityv i j 5v i2v j of the two par-
ticles to the contact torqueMi j , whereas the sliding friction
law relates the sliding velocityv i j

s to the tangential forceTi j .
In fact, although for the sake of clarity we derived the co
dition ~6! by considering the particular case of a deposi
particle touching a particle of the bed, the application
rolling friction to a contact between two arbitrary particles
a packing is rather straightforward when formulated in t
form of the graphs shown in Fig. 4. The torque transmit
through a contact to a particle in static equilibrium, for e
ample, is the torque necessary to balance the sum of all f
moments and other contact torques acting on the particl
the same way as the mobilized torqueM in Eq. ~6! counter-
balances the momentrmg sinu of the particle weight.

The prescription of rolling friction in a dynamic metho
follows the same steps as the sliding friction. The relat
between the contact torque and the relative rotation velo
@Fig. 4~a!# cannot be represented as a monovalued funct
Hence, in the framework of the molecular dynamics meth
based on explicit integration of the equations of motion, t
friction law has to be replaced by an approximatefunction
@8,10,19#. This ‘‘regularization’’ of the friction law is not

FIG. 4. The graphs representing~a! sliding friction law and~b!
rolling friction law; see text.
3-3



e-

I. BRATBERG, F. RADJAI, AND A. HANSEN PHYSICAL REVIEW E66, 031303 ~2002!

URN:N
FIG. 5. ~a! An example of a
CA packing. ~b! The static pack-
ing obtained by the CD method
starting with the CA packing in~a!
as initial condition,~c! CD pack-
ing obtained by using the same s
quence of falling particles as in
~a!.
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necessary within the contact dynamics method that was
ployed for the present investigation@7–9#.

Using either of these dynamic methods, the sticking c
dition can be achieved ifms is set to infinity~no sliding for
no contact direction! and the angle of rolling frictionu r is
interpreted as the critical angleuc . This was implemented in
our contact dynamics simulations. Alternatively, one may
m r to infinity ~no rolling for no contact direction! using the
angle of sliding frictionus as the critical angle. It is also
possible to use a combination of these two conditions. Th
conditions are not equivalent, but we will not discuss t
differences in this paper. In all cases, the condition of sti
ing upon collision requires also a zero coefficient of resti
tion.

To summarize, the following conditions allow to perfor
a dynamic simulation of random particle deposition in clo
analogy with the CA model:~1! u r5uc , ~2! no sliding (us
590°), ~3! weak inertia,~4! zero coefficient of restitution
The important difference is that, while in the CA model a
degrees of freedom in the substrate are kinematically froz
in our dynamic simulations only contact sliding is frozen
settingus590°. All other degrees of freedom are active a
the rolling friction governs all contacts: the contact betwe
the deposited particle and the bed, as well as all contac
the bed. Since the particles are not frozen in the granular
sequential particle deposition may thus lead to rearran
ments in the granular bed.

C. Simulation parameters

The CD simulations involve a number of parameters t
should be adjusted so as to minimize inertia effects with
losing numerical efficiency. The largest inertia effects a
produced by the largest head-on velocityvmax between col-
liding particles. LetDt be the time step. The contact forc
due to inertia produced by a collision ismvmax/Dt. This
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force should be compared to the weightmg of one particle.
Hence, the dimensionless parameter characterizing the
of inertia to weights is

a5
vmax

gDt
. ~7!

The influence ofa on the solid fraction and restructurin
is an interesting subject in itself, but it will not be invest
gated in this paper. As emphasized previously, the focus h
is put on those effects~equilibrium states, rearrangement!
that arise from thegeometrical configuration. Hence, we
should use a low value ofa. However, lower values ofa
mean slower simulations. Hopefully, the framework of t
CD method allows for large time stepsDt up to the limita-
tions related to the procedure of contact detection. On
other hand, the value ofvmax can be imposed for the falling
particles, but further relaxation inside the packing may p
duce large impact velocities. In particular, at low solid fra
tions, where large voids exist in the bed, the free fall o
particle over distances compared to the system heighH
.60r can give rise to impact forces far larger than t
weight of a column of particles of the same height.

In order to avoid such strong uncontrolled inertia, w
implemented a ‘‘velocity barrier’’ trick that limits the particle
velocities tovmax50 –3 ms21. With this choice, we can use
a time step as large asDt50.003 s. Then, settingg
5100 ms22, we geta51. This means that the largest im
pact force is just equal to the weight of a single particle. T
choice is both reasonable and compatible with numer
efficiency.

III. DYNAMIC REARRANGEMENTS

A. Stability of CA packings

How stable are the granular beds prepared by mean
the CA model? We have seen that the CD method, equip
3-4
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with rolling friction together with suitable values of the p
rameters reducing inertia effects, meets thesingle-particle
stability criteria of the CA model in the course of depositio
namely~1! the sticking condition as a function of the rollin
friction angleu r ~identified with the critical angleuc) and~2!
the local minimum position where the weight of a particle
balanced by the reaction forces at the two underlying c
tacts. Now, if we start a CD simulation using a packing co
structed according to the CA model as the initial configu
tion, then one of the two following alternatives may occur.
the single-particle stability criteria used in the course
deposition provide a sufficient condition for theglobal sta-
bility of the packing when the deposition is over, then t
packing will remain in static equilibrium and the calculat
forces will exactly balance all particles. Otherwise, the pa
ing will be unstable and the CD simulations allow to calc
late the particle rearrangements until a relaxed stable c
figuration is obtained.

FIG. 6. Solid fraction as a function of critical angle~in degrees!
for the CD and CA models.

FIG. 7. Coordination numbersz as a function of critical angle
~in degrees!.
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Our simulation data confirm rather the second alterna
for nearly all values of the critical angle. One example
shown in Figs. 5~a! and 5~b! for a packing of 500 particles
with uc540°. The rearrangements occur in the whole b
but they are much more hindered in the bulk than in
vicinity of the free surface. For this reason, the displa
ments appear mostly in the uppermost layers. The rela
configuration has a larger packing fraction. The solid fract
is still larger when the CD simulation is performed by ra
dom deposition of the same sequence of particles~as in the
CA simulation! for the same value ofuc ~and the same
boundary conditions!, instead of using the CA configuratio
as the initial condition. The resulting packing is shown
Fig. 5~c!. In this latter case, the hindering effect related to t
bulk density, which was active in the case@Fig. 5~b!#, disap-
pears since the CD rearrangements occur naturally in
course of deposition for each deposited particle. This me
that the degree of instability of the CA packing shown in F
5~a! is more keenly reflected in the increaseDr of the solid
fraction from Figs. 5~a! to 5~c! than from Figs. 5~a! to 5~b!.

Figure 6 displays the solid fractionr as a function ofuc

FIG. 8. Anisotropiesa as a function of critical angle~in de-
grees!.

FIG. 9. Polar diagram of the distributionp(u) of contact angles
in a CD packing withuc50. The zero angle refers to the vertic
direction. The angles are in degrees.
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for packings prepared by CD sequential random deposit
The solid fraction for each value ofuc is an average over 10
independent CD runs. The CD simulations were perform
for 40 different angles. The curve ofr as a function ofuc
corresponds thus to 410 CD simulations of 1000 partic
Figure 6 shows that, as expected, the solid fraction is ev
where larger for the CD method than for the CA mod
except atuc50 where a dynamic method requires an exc
tionally high precision to reach a perfect triangular packin
Indeed, in this limit, tiny fluctuations in particle position
around a particle due to numerical overlaps are exponent
amplified in space as a result of long-range order@20#. Dis-
regarding this pathological limit, the differenceDr is negli-
gibly small for uc,20° anduc.80°. The largest variation
Dr of the solid fraction, representing the largest dynam
rearrangements in the packing, occurs atuc.50°, wherer
increases from 0.45 for the CA packing to 0.6 for the C
packing.

FIG. 10. The major principal directionsu f of the fabric tensor as
a function of critical angle. The angles are in degrees.

FIG. 11. Coordination numbers as a function of solid fractionr.
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B. Influence on the packing structure

The coordination numberz ~average number of contac
particles around a particle!, shown in Fig. 7 as a function o
uc , follows the same trends as the solid fraction. It is s
tematically larger in a CD packing than in the correspond
CA packing~for the same value ofuc) except in theuc50
limit. A coordination number close to 2 reflects the predom
nance of particle ‘‘chains’’ in a highly porous packing. Th
coordination number increases from 2 to 3 due to ‘‘bran
ing,’’ and from 3 to 4 due to a growing interplay of chain
The increase ofzbeyond 4 requires long-range ordering@21#.
This transition occurs only in the CA packing where t
numerical precision is less stringent than in dynamic simu
tions.

Due to dynamic rearrangements in CD random depo
tion, the CA and CD packings show also very different a
pects as to the directional order of the contact network. T
nonuniform distribution of contact directions can be char

FIG. 12. Anisotropiesa as a function of solid fraction.

FIG. 13. The major principal directionsu f ~in degrees! of the
fabric tensor as a function of solid fraction.
3-6
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FIG. 14. The connectivity
numbersP1 , . . . ,P6 as a function
of solid fraction.
t

cu-
terized by means of the fabric tensorf defined from contact
normalsnk5(sinuk,cosuk) by @22,23#

fab5
1

Nc
(
k51

Nc

na
k nb

k , ~8!
03130
BN:no-3475
where Nc is the total number of contacts, andna
k ~respec-

tively nb
k ) is thea ~respectivelyb) component of the contac

normalk. When the probability distribution functionp(u) of
contact directions is known, the fabric tensor can be cal
lated from the integral
3-7



b
-
-

s
is
ly
n

op

i

a
ic
.
fo
se
i-
s
ra
k

n

n

b

l
ac
n

ry
n
s
o
o

n

e
at

I. BRATBERG, F. RADJAI, AND A. HANSEN PHYSICAL REVIEW E66, 031303 ~2002!

URN:N
fab5E
2p/2

p/2

nanbp~u! du. ~9!

By construction, we havef11f25tr(f)51, wheref1
and f2 are the eigenvalues. The mean contact direction
the packing is given by the major principal directionu f of f.
The structural anisotropy of the packing is represented
a52(f12f2). The factor 2 is introduced in order to iden
tify this value of a with that appearing naturally in a sinu
soidal distributionp(u)5(1/p)$11a cos 2(u2uf)% @24#.

Figure 8 shows the anisotropy of our granular beds a
function ofuc . We see that the anisotropy of CD packings
systematically below that of CA packings. This is main
because collective rearrangements tend to destroy colum
structures in a CD packing. In both cases, the anisotr
comes very close to zero foruc50. This effect is mainly
related to the presence of a great number of particles w
five and six contacts. In fact, using Eq.~8!, it can be shown
that the anisotropy for the set of six contacts around a p
ticle is zero, and for a set of five contacts around a part
cannot exceed a threshold imposed by steric exclusions

The largest anisotropy in the CD packings is reached
uc590°, whereas the anisotropy of the CA packing pas
through a maximum atuc.50°. The anisotropy can be est
mated analytically atuc590°, where the packing growth i
governed by sticking. Since the particles are released at
dom horizontal positions, the probability that a particle stic
at a contact angleu ~with respect to the vertical! is p(u)
5 1

2 cosu. Note that the latter is a normalized probability de
sity function over the range@2p/2,p/2#. Using Eq.~9! with
this expression forp(u), we finda(uc590°)52/3, which is
consistent with both CD and CA results atuc590° shown in
Fig. 8.

Sincep(u) is an even function ofu „p(u)5p(2u)…, the
major principal direction of the fabric tensor is vertical (u f
50). However, this is only a consequence of symmetry a
it does not imply that the distributionp(u) is peaked onu
50. In fact, within each of the half intervals@2p/2,0# and
@0,p/2#, the contacts have preferred directions. This can
seen in one example ofp(u) for uc50 shown in Fig. 9. We
observe a local maximum atu50, but there are loca
maxima also in each of the half intervals. In order to extr
the useful information about the direction of contacts, o
can calculate the fabric tensorf by restricting the definition
to one of the above two half intervals.

The major principal directionu f for the interval@0,p/2#
as a function ofuc is displayed in Fig. 10. Atuc50 and
uc590° both methods give the same direction, but eve
where else the contacts are more biased to the horizo
direction in CD simulations compared to CA simulation
This is an indication that the collective rearrangements re
ganize contact directions. As for the anisotropy, the value
u f can be calculated analytically in the limituc590° over
the interval@0,p/2# from the fabric tensor. The distributio
function normalized over this interval is given byp(u)
5cosu and the integral in Eq.~9! is calculated over the sam
interval. We findu f(uc590).32°, in agreement with the
simulation result shown in Fig. 10.
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FIG. 15. The connectivity diagram of CA and CD packings
three different values of solid fraction:~a! r50.5, ~b! r50.7, and
~c! r50.8.
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The existence of a local minimum in the evolution ofu f
for the CA model atuc.30° or the changing of behavior i
the CD curve at the same point can be understood as a
sequence of competition between sticking and rolling. Asuc
is increased from zero, an increasing number of partic
stick to the substrate at an angle in the interval@0,uc#. These
include both the ones sticking to the bed upon the first c
lision ~whose number increases as*0

uccosu du5sinuc) and a
number of the relaxed particles. On average, this subse
contacts tends to decreaseu f as long asuc is not too large.
This explains the decrease ofu f from 45° atuc50 to .28°
at uc.30°. But, the inclination of the contacts to the vertic
increases at the same time following the increase ofuc . This
trend dominates clearly the evolution ofu f beyond uc
530°.

IV. PACKING REGIMES

The results presented in the preceding section show
for a given value of the critical angleuc , the solid fraction
and the structure of the packing differ considerably from
CA model to the CD approach~excepted in the two limits of
very loose and very dense packings!. We attributed these
differences to dynamic restructuring in CD packings as
particles are added to the substrate. However, in this sec
we will show that the structure of a CA packing is qui
similar to that of a CD packing if they are compared at t
same solid fractionr ~and thus, for different critical angles!.
This means that the structural properties of CA packings
quite realistic~close to CD packings! when they are consid
ered as a function of the solid fraction rather than the criti
angle.

A. Fabric

Figure 11 shows the coordination numberz as a function
of solid fractionr for CA and CD packings. In both cases,z
increases withr. The two curves almost collapse forr
,0.6. For 0.6,r,0.8, the CD packings show only
slightly larger coordination number than the CA packing
For 0.8,r, the CD packings show a slightly lower coord
nation number than the CA packings. The solid fractionr
50.8 corresponds toz.4 in both methods.

The anisotropya of the packings as a function ofr is
displayed in Fig. 12. The anisotropy decreases as a func
of r for both methods except in the loosest CA packin
where it increases a bit withr and passes through a pea
before decreasing. The relatively low rate of decrease in
ranger,0.6 suggests that sticking is the dominant mec
nism of growth in this regime, whereas rolling~or relaxation!
is far more efficient in the subsequent range.

Figure 13 shows the major principal directionu f of the
fabric tensor restricted to the interval@0,p/2# ~as defined in
the preceding section! as a function ofr. In CD packings,
the directionu f , representing the average direction of co
tact normals in the interval@0,p/2#, increases quite slowly
for r,0.6 and much faster beyond 0.6. In CA packings,
anisotropy decreases forr,0.6, passes through a minimu
at r.0.6 and increases in the subsequent range. Howe
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let us remark that, as for the anisotropy, the difference in
value of u f between the two methods as a function ofr is
quite small as compared to the differences as a function
the critical angle~see Fig. 10!.

B. Connectivity

The coordination numberz is an average over all particle
in a packing. But, the number of contact neighborsq varies
in a packing from particle to particle. In a monodisperse p
q can vary from 1 to 6. This ‘‘connectivity disorder’’ charac
terizes the disposition of the particles as ‘‘nodes’’ of the co
tact network. The connectivity of a packing is given by t
fraction Pq of particles havingq contact neighbors.P1 cor-
responds to the ‘‘dead ends’’ of particle chains. The larg
P1, the stronger is the ‘‘screening’’~the dead ends did no
grow because they were screened by faster growing st
tures!. P2 and P3 are related to chaining and branching, r
spectively.P4 corresponds to ‘‘piling,’’ i.e., a natural situa
tion where a particle is supported by two underlying partic
and supports two others.P5 and P6 define ‘‘jammed’’ and
ordered configurations.

Figure 14 shows the connectivity numbersPq as a func-
tion of solid fraction forq varying from 1 to 6. The trends ar
globally similar in CA and CD packings and the differenc
for the two methods are quite small. All connectivity num
bers vary monotonously with solid fraction exceptP3 that
first increases to reach a maximum atr.0.7 and decrease
rapidly afterwards. In the ranger,0.6, P3 andP4 increase
at the expense ofP1 and P2 which decrease.P5 and P6
begin to increase significantly only atr.0.7 andr.0.8,
respectively.

The connectivity diagramPq is shown for three different
solid fractions in Fig. 15. The largest connectivity number
2 for r,0.6, 3 for 0.6,r,0.7, and 4 for 0.7,r. Interest-
ingly, the screening effect is more important in CD simu
tions ~the CD curve forP1 stands above the correspondin
CA curve!. Chaining (P2), branching (P3), and ordering
(P6) are slightly less important in CD simulations, whi
piling (P4) and jamming (P5) are enhanced.

The above data show that the morphology of a CA pa
ing is very close to that of a CD packing at the same so
fraction. Both methods suggest four packing regimes cha
terized by the properties of the packing structure as a fu
tion of solid fraction:

~a! r,0.6: This regime corresponds to loose rando
packings characterized by chaining~i.e., P2 is the largest
connectivity number!, branching (P3 increases as a functio
of r and becomes dominant atr50.6), and screening (P1 is
large!.

~b! 0.6,r,0.7: This is the regime of moderate rando
packings characterized by the largest value ofP3 ~branching!
at the expense of chaining (P2) that decreases rapidly as
function of r.

~c! 0.7,r,0.8: This regime corresponds to dense clo
packings where piling is the main mechanism of growth a
P4 is larger than other connectivity numbers.

~d! 0.8,r: This is the well-known dense ordered packin
regime@18# characterized byz.4.
3-9
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The transition densities (0.6, 0.7, and 0.8) appearing
this classification are approximate values. A more refin
evaluation of these specific densities requires a consider
more computation time and a deeper insight into the mec
nisms at play during the packing growth.

V. CONCLUSION

We investigated the structure of a class of randomly
posited granular packings whose density is controlled b
geometrical parameter, referred to as the critical angle.
used both a random ballistic deposition model with sim
relaxation rules~the CA model!, and a contact dynamics a
gorithm ~the CD method! that incorporates those relaxatio
rules through a rolling friction law. The CD approach nat
rally leads to stable packings following dynamic rearran
ments while in the CA model the packing is kinematica
frozen after each single-particle relaxation.

The following results were shown by means of extens
simulations:

~1! The packings prepared according to the CA model
generically unstable. When fed into the CD algorithm as i
tial configuration, the CA packings undergo dynamic re
rangements. As a consequence, the solid fraction is large
CD packings than in CA packings for the same critical an
~implemented as the angle of rolling friction in the fram
work of the contact dynamics method!.

~2! The structural properties~anisotropy, connectivity! are
quite comparable in CA and CD packings for the same s
fraction, even though significant differences were obser
in packing anisotropies.

@1# R. Jullien, P. Meakin, and A. Pavlovitch, inDisorder and
Granular Media,edited by D. Bideau and A. Hansen~North-
Holland, Amseterdam, 1993!, p. 103.

@2# D. Houi, in Hydrodynamics of Dispersed Media, edited by J.P.
Hulin, A.M. Cazabat, E. Guyon, and F. Carmona~Elsevier Sci-
ence B. V., Amsterdam, 1990!.

@3# R. Jullien, P. Jund, and D. Caprion, Phys. Rev. E54, 6035
~1996!.

@4# R. Jullien and P. Meakin, Europhys. Lett.6, 629 ~1988!.
@5# M.P. Allen and D.J. Tildesley,Computer Simulation of Liquids

~Oxford Science Publications, New York, 1997!.
@6# S. Luding, inPhysics of Dry Granular Media, Vol. 350NATO

Advanced Studies Institute, Series E: Applied Science, edited
by H.J. Herrmann, J.-P. Hovi, and S. Luding~Kluwer Aca-
demic, Dordrecht, The Netherlands, 1998!, p. 285.

@7# J.J. Moreau, Eur. J. Mech. A/Solids13, 93 ~1994!.
@8# M. Jean, inMechanics of Geometrical Interfaces,edited by

A.P.S. Selvaduri and M. J. Boulon~Elsevier, Amsterdam,
1995!, p. 463.

@9# F. Radjai, Comput. Phys. Commun.121-122, 294 ~1999!.
@10# J. Scha¨fer, S. Dippel, and D.E. Wolf, J. Phys. I6, 5 ~1996!.
@11# P.K. Watson, H. Mizes, A. Castellanos, and A. Mizes, inPow-

ders and Grains 97, edited by R.P. Behringer and J. T. Jenki
~Balkema, Rotterdam, 1997!, p. 109.
03130
BN:no-3475
in
d
ly

a-

-
a
e

e

-
-

e

e
-
-
in

e

d
d

~3! Both methods reveal four packing regimes as a fu
tion of solid fraction, the prevailing mechanism of grow
being different in each regime.

An important outcome of this work is to show that th
dynamic rearrangements are quite weak in the very loose
very dense limits where the structural properties are ne
the same. This means that the random sequential adsor
model ~irreversible sticking without relaxation! leading to
very loose packings, and the steepest descent model~no
sticking! leading to very dense packings, can be used w
confidence in these two limits.
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