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We present a literature survey and research gap analysis of mathematical
and statistical methods used in the context of optimizing bids in electricity
markets. Particularly, we are interested in methods for hydropower produc-
ers that participate in multiple, sequential markets for short-term delivery of
physical power. As most of the literature focus on day-ahead bidding and
thermal energy producers, there are important research gaps for hydropower,
which require specialized methods due to the fact that electricity may be
stored as water in reservoirs. Our opinion is that multi-market participation,
although reportedly having a limited pro�t potential, can provide gains in
�exibility and system stability for hydro producers. We argue that managing
uncertainty is of key importance for making good decision support tools for
the multi-market bidding problem. Considering uncertainty calls for some
form of stochastic programming, and we de�ne a modelling process that con-
sists of three interconnected tasks; mathematical modelling, electricity price
forecasting and scenario generation. We survey research investigating these
tasks and point out areas that are not covered by existing literature.

Keywords: Short-term physical bidding, Multi-market, Hydropower

1 Introduction

Wholesale electricity markets have, over the last 20 years, become a cornerstone in mod-
ern power systems. While the speci�cs of market arrangements vary around the world
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Li et al. (2011), pool-type markets where supply and demand is matched by auctions is
the norm. In Europe, the electricity market is organized as day-ahead auctions where
producers and consumers submit a set of price-volume bids indicating their willingness to
sell and buy power for the next operating day. The day-ahead market seeks to arrange a
balance between supply and demand well ahead of the operating hour, allowing thermal
plants with long start-up times to be ready when needed. In other regions of the world,
the primary energy market might have a shorter time horizon, e.g. 2 hours before the
delivery hour, but still have the aim of arranging most of supply and demand prior to
operations due to safety or technical considerations. As demand for electricity cannot be
known until it occurs, the day-ahead or primary energy market must be complemented
with shorter term markets where energy may be traded closer to real-time. Typically,
these include markets for intraday trade, real-time balancing, and for procurement of
reserves.
Hydropower producers may participate in these additional markets due to their stor-

age capacity and �exible, fast-ramping generating units. Hydro storage reservoirs give
�exibility in the timing of production � hydro producers may store their water for pro-
duction at peak prices. For this reason, optimizing revenues across multiple markets is
a more relevant challenge for hydro producers than for traditional thermal generators,
which have less �exible production systems. This is, however, only true for reservoir

hydro, i.e. producers with some degree of reservoir storage. Run-of-river hydro does not
have the same temporal �exibility, although they still have fast-ramping units. The rest
of this paper is concerned with reservoir hydro.
With the current trend towards higher shares of renewable electricity sources (such

as wind and solar power), the demand for short-term balancing services is expected to
increase due to the intermittent nature of renewables Berrada et al. (2016). Balanc-
ing services have traditionally been provided by fossil fuel generation resources, but a
sustainable alternative for the future may be that balancing services are supplied by
hydropower. This is especially true for hydropower units that are close (in terms of
grid availability) to the relevant intermittent resources. Under this assumption, oper-
ators of reservoir hydropower will eventually shift their focus from providing energy in
the day-ahead market to providing adjustments and balancing services in the intraday
and balancing markets, becoming key players in several markets. Being able to optimize
their bidding strategy across several markets will therefore be a competitive advantage
for hydropower producers.
However, the products sold in these multiple markets are either the same, or linked

so that commitments in one market limit the �exibility and opportunities in others.
In our opinion, hydro producers should therefore consider their bidding strategy in all

markets as a joint problem. As the markets have di�erent time horizons and closing
times over the operating day, bids in one market might need to be made before having
full knowledge of prices in other markets. Even bidding in a single market requires
consideration of uncertain prices, as bidding is done before market clearing when prices
are still unknown. Thus, even the single market bidding problem1 requires some form

1Arguably, the term `bidding problem' could be more properly de�ned as `o�er problem', as the producer
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of stochastic programming, which again calls for forecasting and scenario generation.
Moving to a multi-market setting then leads to more complex stochastic models where
consistency of forecasts and the information structure described by the scenario trees
make up an even more important part of the problem formulation.
In order to provide hydropower producers with decision support for multi-market trade,

we need information on the present and future state of the markets, reservoir in�ow, and
other uncertain factors. This means having a) reliable forecasting methods to describe
both the expected developments and the uncertainty regarding such estimates, and b)
methods to structure and re�ne the resulting forecasts and forecast information, so that
they can be used e�ciently by c) stochastic-programming models which provide advice
regarding bidding and, secondarily, production or investments. Fig. 1 shows the multi-
market bidding process, identifying markets and bid decisions along time, as well as
how the modelling process inform, or get information, from these stages. We de�ne the
modelling process as the tree interconnected tasks of modelling, forecasting and scenario
generation. This paper surveys research investigating these tasks and point out areas
that are not covered by existing literature.
It should be clari�ed that we consider literature on the hydropower bidding problem

that relate to numerical optimization models, i.e., we focus on papers that take the
perspective of an individual producer participating in the electricity markets. A related
area of research consider economic analyses of electricity markets where hydropower plays
a dominant role. For instance, Philpott et al. (2010) analyze productive ine�ciency of
the New Zealand wholesale electricity market from a system perspective.
Note that our focus is mainly on the market aspect of the hydropower bidding problem,

which makes price the most important random variable. For hydropower producers,
in�ow is of course also an important random variable and should be taken into account
when scheduling the hydropower resources. However, in�ow uncertainty adds further
complexity to the already intricate multi-market bidding problem. The �eld of hydrology
deals with forecasting future in�ows, but such methods are considered outside the scope of
this paper. Another remark is that our focus is generally on price-taking producers. The
game-theoretic aspects involved in strategic bidding adds yet another layer of complexity.
The rest of the paper is organized as follows: Section 2 presents the multi-market bid-

ding process in detail and explains our integrated view on the three tasks in the modelling
process. Section 3 review models that have been formulated to plan day-ahead, intraday
and/or balancing market bids from the point of view of a hydropower producer. Sec-
tion 4 discusses relevant forecasting techniques and their usefulness within the context of
stochastic optimization of multi-market bidding. For models using stochastic program-
ming, Section 5 presents ways to generate scenario trees. In Section 6, we summarize our
�ndings and discuss the value of considering bids in multiple markets as a joint problem.
Section 7 o�ers some conclusions.

needs to decide what volumes to o�er to the market; the term bids traditionally being used for buyers,

i.e. the demand side. However, the term `bidding problem' is widely incorporated in the literature,

at least in the European setting. Some of the references cited use `o�er problem'.
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Figure 1: The market setting faced by a Nordic power producer. The top part illus-

trates the sequential nature of the energy markets, where time �ows from

left to right. The lower part of the �gure illustrates the modelling process

involved in the development of mathematical models for bid optimization.

Full-drawn lines indicate �ow of information from one modelling task to the

next, or from operations to modelling.

2 The multi-market bidding process

Figure 1 shows the markets as organized in the current Nordic setting, and we will use
this terminology in the rest of the paper. We focus on markets where the commodity
traded is energy, i.e., on short-term markets for physical delivery of energy to the power
system. Producers may also sell reserves or ancillary services to the power system,
and commitments for such products may give added constraints for trade in the energy
markets. In addition, there are �nancial markets and contracts that trade energy or
energy derivatives over longer time horizons. We do not consider such markets further,
although they may be important for managing risk. Longer term contracts may also
limit the production available for trade in the short-term markets. The top part of Fig. 1
shows the sequential nature of the physical, short-term energy markets.
The Day-ahead Market (DAM) is a daily, centrally cleared auction market where

producers and consumers/wholesalers bid their production and consumption, one day
before operations. The Nordic day-ahead market is cleared within di�erent price zones
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based on transmission constraints. The deadline for day-ahead bidding is right before
noon; after a short time (e.g., an hour), the market operator has solved the market-
clearing problem and announces prices in each zone. Notice that the bids for all trading
periods of the day ahead are sent to the market operator at the same time, i.e. the
DAM is a one-shot game that repeats every day. Bids may be sent as di�erent bid

types: piecewise-linear or piecewise-constant hourly bids; or blocks that combine several
hours' bids; or more complex con�gurations. Some of these contain conditions (e.g.
on minimum revenue and load gradients) that make the bidding and clearing problems
computationally challenging.
After clearing of the day-ahead market, accepted bids become legally binding contracts

for physical delivery or consumption on price-zone level.
The Intraday Market (IDM) serves as a possibility to make adjustments to the

commitments from the DAM. The IDM operates on a timescale after the closing of the
day-ahead market and up to an hour before the operating hour. In the Nordics, it
is organized as continuous double auctions. As opposed to the one-shot nature of the
day-ahead auction, intraday trading may occur any time from the closing of the day-
ahead market until market closure for individual hours. The IDM is an opportunity for
producers to make adjustments to `unfortunate' commitments from the the day-ahead
market. Unforeseen events may happen between the closure of the day-ahead market
and the operating hour, making it infeasible or very costly for the producer to deliver the
contracted volumes. The IDM is a possibility to change production by buying or selling
additional energy.
In the Nordic region, the day-ahead and intraday markets are operated by NordPool,

which is the market operator. The transmission system operator (TSO) is responsible for
the safe operation of the transmission grid and maintaining the instantaneous balance
between supply and demand. TSOs may be national or regional entities, and may or
may not also be the market operator. As delivery time approaches, the TSO requires
�exibility to ramp up or down power production at short notice.
Balancing markets (BM) are organized by the TSO for procurement of ramping

�exibility. These markets are also called `real-time markets', as activation happens in real
time. Bidding in these markets, however, must be done 45 minutes before the operating
hour, or earlier. The balancing market is aimed at restoring balance, i.e. restoring the
system frequency and replacing (used) reserves. In the context of this paper, balancing
markets will refer to real-time markets where energy (rather than capacity) is traded,
with the TSO as single buyer. In the Nordics, there are balancing markets that close
both prior to and after the day-ahead market; we focus on the latter type. To be allowed
to participate, a generator must be able to ramp up or down a given minimum amount in
a short time interval. Participants submit their willingness to ramp up/down according
to the market rules, and the TSO chooses the most cost-e�cient bids as need arises.
To summarize, the Nordic short-term physical energy markets are made up of the

DAM, where the largest volumes are traded, the IDM, where the position of market
participants may be re�ned on a continuous basis, and �nally, real-time BMs, controlled
by the TSO. As stated above, other countries or jurisdictions may have arrangements
where the timing and de�nitions of markets is di�erent. However, the need for a joint view
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of transactions in all markets still remains, as well as integrating the tasks of forecasting,
scenario generation and optimization. More general de�nitions of various markets may
be found in Klæboe and Fosso (2013), which again builds on Triki et al. (2005).

2.1 An integrated view on modelling, forecasting and scenario generation

We de�ne the modelling process as the three interconnected tasks of modelling, forecast-
ing and scenario generation. This section gives an overview of challenges within each
task.
From the perspective of a power producer, it is important to know how much produc-

tion can be dedicated to the day-ahead market, and how much to dedicate to the intraday
or balancing markets. This involves modelling the production system and its �exibility
and limitations. Even without the added complexity of determining bids, hydropower
production scheduling involves modelling challenges in its own right. Cascading reser-
voirs, environmental constraints and head-variation e�ects are among the features that
needs to be accounted for in e�cient hydropower operations. For price-taking produc-
ers, it is optimal to bid according to the marginal costs of production, but calculating
marginal costs for hydro is challenging as they re�ect an opportunity cost of delayed
releases from reservoirs. Water therefore needs to be strategically managed in long-term
models covering a time horizon determined by the storage capacity of the reservoirs,
which may be several years. Examples include Pereira and Pinto (1991) and Pritchard
et al. (2005).
Planning bids in several short-term markets requires some degree of knowledge of the

future prices and price variability for each of these markets. This is best described as
stochastic processes. Di�erent markets may require di�erent forecasting techniques, due
to their own dynamics, time resolution, inherent stability, and timing.
The usual way of describing uncertain variables for stochastic programming is by sce-

nario trees. There is no universally accepted optimal way of building such trees. Instead,
there are several approaches, each with its own strengths and weaknesses and di�erent
requirements on input data, and therefore in their applicability. We look into methods
to build scenario trees, and, if needed, reduce their complexity while considering the
size/exactness of the optimization problems which use said trees. In a multi-market set-
ting, the scenario trees need to re�ect the information structure inherent in the market
dynamics. This means that the scenario trees must describe what information is available
to producers at what time, so that the consequences of decisions taken at each stage can
be properly taken into account by the optimization model.
Works such as Weron (2014) or Steeger et al. (2014) also present good literature re-

views, but largely focus on individual parts of the modelling process, looking at either
forecasting for one or another market, or the bidding problem. Our paper contribute with
a more integrated view on the full chain of tasks involved in optimizing multi-market bid-
ding strategies for hydropower.
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3 Bid optimization methods

The existing literature on optimal power scheduling and bidding is quite extensive. How-
ever, focus is generally on thermal generation, which is characterized by high start-up
costs, slow ramping times, and large generation volumes. Hydropower systems generally
have lower start-up costs and high ramping �exibility. However, challenges that are due
to the inventory problem of scheduling optimal releases of water over long time hori-
zons are important. Hydropower scheduling has thus been studied by many researchers,
including Gjelsvik et al. (2010); Lindqvist (1962); Pereira and Pinto (1991); Pritchard
et al. (2005); Stage and Larsson (1961); Yakowitz (1982). With the emergence of whole-
sale power markets in many areas around the world, the hydropower scheduling problem
has been augmented with the need for determining bids to these markets. General pre-
sentations of the bidding process in electricity markets may be found in Anderson and
Philpott (2002) and the review paper by Li et al. (2011). Steeger et al. (2014) present
a comprehensive literature survey on methods for the bidding problem, but limit their
attention to works concerned with the day-ahead market. Our focus, on the other hand,
is on studies where day-ahead bidding is seen in connection with either IDM or BMs.

3.1 Long time horizons and dynamic programming

The complexity of hydropower scheduling stems from the combinational nature of unit
commitment and the potentially long time horizon needed for reservoir management;
some reservoirs may store water over several years. Releasing water for production has
practically zero marginal cost, so producers must rather consider the opportunity cost of
selling energy today that could have been stored for the future. This opportunity cost
may only be calculated by optimally scheduling production over the time horizon given
by the reservoir size.
The balance between decisions taken now and decisions taken in the future is often

modelled through variants of dynamic programming. Dynamic programming solves com-
plex problems by solving a number of smaller subproblems. The subproblems often
describe the value of being in a certain state at a certain time, for instance the value of
having a given reservoir level at the start of a week. The solution to the initial problem
is then constructed from the solutions of the subproblems. Stochastic dual dynamic pro-
gramming (SDDP) is extensively used in hydropower scheduling models such as Pereira
and Pinto (1991).
The dynamic programming model in Pritchard et al. (2005) addresses the bidding

problem for producers with large reservoirs that replenish over seasonal periods. The
work proposes a two-step dynamic model in which the �rst step calculates bids for several
mean and variances for electricity prices. In the second step, the values from the �rst
problem are used to choose the mean and variance to maximize revenue in the current
stage plus the expected revenue in all future stages. The detailed planning for each step
is decoupled from reservoir levels, which simpli�es the problem but makes it impossible
to observe dependencies among the reservoirs levels in the decision making.
Dynamic programming models are limited by the curse of dimesionality when consid-
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ering long time horizons, several state variables and large state spaces. The hydropower
scheduling problem is therefore often solved by separate models that operate on di�erent
time scales, from years and months/weeks to days and hours. Long-term models use ag-
gregate system descriptions to �nd the optimal reservoir management strategy over time
and give boundary conditions to shorter term models. These boundary conditions may
be in the form of target reservoir levels, or, more often, the opportunity cost of releasing
water that could have been stored for the future. This opportunity cost is interpreted
as the marginal cost of production and is a very important input to short-term models.
In the short-term, accuracy and details of the production system are more important, as
the results should be feasible, readily implementable production schedules.
In this work, we study the bidding problem, which is normally de�ned as a short-term

problem, i.e. we consider a time horizon of about one week, and determine bids for the
next day's operation. Some works depart from this framework due to the set-up of the
market for which the model is intended, or due to di�erent theories on how long and
short term decisions are linked. However, a common feature of most bidding models is
that marginal costs of production are calculated by some form of longer term hydropower
scheduling model.

3.2 Unit-commitment, nonlinearities, and mixed-integer programming

Aside from the long horizons involved in reservoir management, the unit commitment

problem is also an important aspect of the hydropower bidding problem. The unit com-
mitment problem determines which units should be producing during a given time step.
Unit commitment is important also for thermal producers.
It should be clari�ed here that we use the term �unit commitment� to describe the

individual producer's decision to turn on or o� its generating units. This is sometimes
also called the self-scheduling problem. In the Nordic electricity market, bidding takes
place at the �rm level and not on unit or plant level. Each �rm must thus schedule
its production portfolio to minimize the total cost of meeting its total production bid.
In other markets, particularly in the U.S., units may be o�ered individually into the
market. It is then up to the market operator to clear the market and thereby determine
unit commitment. This system perspective is the traditional meaning of the term unit
commitment. Bidding based on self-scheduling substantially simpli�es the optimization
problem of the market operator compared to unit commitment.
The binary on/o� decision of generating units necessitates the use of integer variables in

the self-scheduling problem. In addition, hydropower production scheduling is in general
a nonlinear problem, due to an e�ciency of production that depends on both discharge
and pressure height. Pressure height depends on the reservoir level, which depends on
discharge, which depends on e�ciency, so there is a three-dimensional relationship be-
tween decision variables in the model. Nonlinear models, and especially integer-nonlinear
models, are however di�cult to work with, so nonlinear e�ects are often either neglected,
linearized or handled in some other way like the two-step procedure in Séguin et al.
(2017). To our knowledge, nonlinear formulations of the hydropower bidding problem
are few.
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However, the nonlinear algorithm proposed in Lu et al. (2004) uses a two-step iterative
optimization routine for electricity arbitrage, while market clearing prices are modelled
by a discrete, composite curve de�ned from weekly averages. The �rst step runs an
unconstrained problem to �nd optimal reservoir limits, while a second step checks if the
solutions obtained from the �rst stage are acceptable. These results are returned to the
�rst step, iterating until a solution is obtained. In this model, prices are modelled as
deterministic.
Unit-commitment is most intuitively described by mixed-integer programs. Integer

variables may also be used for approximating nonlinear or nonconvex relationships in the
description of the production system.
The mixed-integer program in Fleten and Kristo�ersen (2007) considers a price-taking

hydropower producer who participates in both the day-ahead and balancing markets in
the NordPool system. The proposed model handles future prices via a scenario tree.
A case study is provided in which the stochastic model solutions appear to be more
robust than those obtained with a deterministic version of the same model. The model
also includes block bids where the same volume is bid for a given number of consecutive
hours. In the case study, they �nd that block bids tend to support production schedules
with fewer start-ups.
Block bids are a way to shield against unfortunate production schedules for systems

where there are intertemporal dependencies between reservoirs. Production volumes from
di�erent reservoirs may be linked in time as water released from upstream ends up in
downstream reservoirs after a certain river �ow time delay. Large production volumes
for the entire river chain in hours of peak prices may force production in downstream
parts a few hours later when prices are lower. Block bids may be used to secure a steady
amount of production for longer periods of time. However, the usefulness of block bids
is not widely discussed in existing literature. In what situations will block bids increase
pro�ts or �exibility for producers? What are the relative amounts of volumes o�ered as
hourly and block bids? Is the ratio the same for cleared volumes? Are there other bids
types that are more/less relevant in a multi-market setting?
In the mixed-integer program in Aasgård et al. (2014), both reservoir in�ows and day-

ahead prices are considered as stochastic variables. The problem deals with both bidding
and actual dispatch during the operational phase. A case study where bid optimiza-
tion based on stochastic programming is compared to heuristics used in the industry in
a rolling-horizon simulation is presented. The stochastic mixed-integer program keeps
reservoirs in a full state less often, which is desirable, and also limit the number of times
when a unit is started for only a few hours.
De Ladurantaye et al. (2007) formulates a model that optimizes bids for the two-hour

ahead market in Canada. The model considers uncertainty in in�ow and prices, and
combine bidding with sales of reserves. Physical and operational constraints that are
important for cascaded rivers are described in detail in this work. When compared to a
formulation that does not consider the bidding aspect, the proposed formulation is found
to give superior results.
Aasgård et al. (2017) presents how support for bids is implemented in the framework

of models used by most large Nordic hydropower producers. Bids are calculated from the
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optimal production schedules for a set of scenarios for prices. As the bid curve has to be
non-decreasing, a constraint is added stating that the volume produced in any scenario
has to be lower than the volumes produced in scenarios with higher prices. This links
the production decisions across scenarios. Similarly to De Ladurantaye et al. (2007), this
model includes a detailed description of hydropower production for a range of river chain
topologies.
The use of mixed-integer models is common in existing literature, but the combination

of stochasticity and integer variables leads to di�cult models, even when only one market
is included. Such complex models may be too computationally depending to be solved
within the time limits dictated by current market rules. The question then arises of how
these models may be simpli�ed to allow fast solution times without sacri�cing too much
quality in the solution. Input in the form of marginal costs are already calculated from
more aggregate models, so how much is lost by determining bids based on simpler formu-
lations? One could for instance approximate start-ups by continuous decisions. Existing
literature does not answer the question of how important very detailed production system
descriptions are when determining bids.
We think the answer to this will be case-speci�c, as it will depend on the size and

number of generating units in the system. If a producer controls a large portfolio of
di�erently sized units, it is more likely that he will be able to divide his commitments
among the units without approaching infeasible or low e�ciency operating zones. For
smaller, or more constrained, systems, getting the bidding strategy right for each unit
might be of more importance. The day-ahead bid curve should be a monotone non-
decreasing curve from minimum to maximum production, and should result in a feasible
operating schedule after market clearing. So if it is impossible or unwanted to produce
in certain ranges, the price over these ranges should be increased. The non-decreasing
nature of the overall bid curve must however be maintained. Participating in the IDM
or BM o�ers opportunities for trading away unfortunate commitments. The importance
of good bid strategies and multi-market participation should be assessed for di�erent
production portfolios.

3.3 Multi-market formulations

The models presented so far are limited to sales of energy to the DAM. We want to
extend such formulations to consider participation in multiple markets.
Two mixed-integer models which generate bids for both the day-ahead and the balanc-

ing markets are given in Olsson (2009). The �rst model is a stochastic program for the
balancing market, in which capacity has been committed from the day before as part of
a day-ahead market bidding. Prices for these past day-ahead bids are therefore known.
In a second model, both day-ahead and balancing market bids are decided jointly. Prices
for both are assumed stochastic according to a given scenario-tree generation method.
Reservoir levels are not explicitly modelled, but rather taken as exogenous parameters;
deviations from these levels are penalized in the objective function. Risk-management
measures are also considered.
The formulation in Löhndorf et al. (2013) consider bids in the day-ahead and intraday
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market by dividing the problem into short-term intraday and long-term inter-day deci-
sions stages. The �rst stage uses a stochastic program to plan bids and unit commitment
in the day-ahead and the intraday market, while the latter stage simulates a Markov
decision process using Approximate Dynamic Programming, and then integrates SDDP
to form what the authors call Approximate Dual Dynamic Programming, which samples
the Markov state transitions instead of using the whole process. This greatly reduces
complexity and achieves tractability. Results from its application in EPEX SPOT in-
dicate a good �t for the approximated Markov process, and a near optimal solution in
spite of the approximation.
A model that include trade in both the day-ahead and the intraday market is described

in Faria and Fleten (2011). The problem is described by a two-stage mixed-integer
stochastic program where the �rst stage concerns day-ahead bidding and the second
stage involves trades in the intraday market and hydropower production. Their results
show that considering the intraday market when bidding in the day-ahead market does
not signi�cantly change neither the pro�ts nor the bid strategy. However, this model
does not adequately describe the continuous nature of intraday trade; in the model, the
intraday prices for the entire operating day simply become known together with the day-
ahead market prices. This is not the case in real operations, where the intraday price for
a given hour may change continuously until the market is closed an hour before delivery.
To our knowledge, no model has been formulated in the literature to adequately describe
the continuous nature of intraday trade. A possible approach would be to consider the
cost of changing production from the current schedule and compare this to o�ers available
in the intraday market. Production should be ramped up/down whenever power can be
sold/bought for a higher/lower intraday price. A similar approach could be used also for
balancing market bids.
Both day-ahead and balancing bids are modelled in the multi-stage, mixed-integer

stochastic problem in Boomsma et al. (2014). The potentially high complexity of the
model is handled with a carefully designed scenario tree. In this model, thermal gen-
eration is included. An extension in which the generator is not a price taker is also
implemented, which takes the price response as linear for the sake of manageability.
Finally, the way in which joint DAM/BM bidding improves the producer's pro�ts is
explicitly studied.

3.4 Marginal costs and the integration of long and short-term models

Determining bids is, at least in the price-taking case, essentially the same as determining
marginal costs, which for hydropower is the opportunity cost. It is exactly this oppor-
tunity cost that is transferred between the long- and short-term scheduling problems.
When determining bids in multiple markets, how important is it that the input marginal
cost re�ects the opportunities in multiple markets? Participation in multiple markets
gives the producer a chance to trade its way to higher pro�ts and more e�cient produc-
tion. This would in principle lead to a higher opportunity cost, as the value of storing
water for optimal use in the future is increased. Is it possible to formulate long-term
models that include an adequate description of opportunities in several short-term mar-
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kets? What is the gain from consistent multi-market modelling through the chain of
hydropower scheduling models?
Consider the situation of determining bids from a single reservoir. Using the marginal

cost from a long-term model as input, we would decide to produce as long as the (ex-
pected) market price is higher than the marginal cost. The marginal cost estimate is thus
the single basis of our decision. If this estimate is too low due to inadequate represen-
tation of future opportunities, we would o�er more power to the market than optimal.
Over time, this would result in a lower than optimal reservoir level.
The quality of the marginal cost estimate is very important for the long term e�ects of

our bidding strategy. One way to amend this could be to integrate long-term scheduling
and bid optimization, which is done in Fleten et al. (2011). The model uses a �ne
time resolution on near term and a coarser resolution going forward, but has consistent
assumptions on market opportunities and trades for the entire horizon: only the day-
ahead market is considered.
However, as we have already mentioned, very detailed bidding models might be too

computationally demanding in an operational setting, even when considering short-term
and one market only. So it seems rather unlikely that extending such formulations
both in terms of including additional markets and longer time horizons is at all possible.
Instead, a formulation with a less detailed system description, but that includes all market
opportunities, may be used to calculate bids or improved estimates of the marginal cost
used as input to the bid-optimization model. This new model would be a bridge between
traditional, i.e. single-market, long-term models and the very detailed, short-term models
used in operations. The bidding problem could thus be rede�ned as an intermediate term
model that is the last step of the marginal cost calculation for hydropower.

3.5 Further considerations on bid optimization models

Most of the models cited have some sort of stochasticity included in them, either in the
day-ahead prices, and/or IDM or BM prices. It is clear that managing uncertainty, at
least to a certain degree, is considered important for optimal bidding, as is also corrob-
orated by many of the works that compare deterministic and stochastic versions of the
same model. However, joint modelling of multiple markets is often not undertaken at
all, or described with too much simpli�cation. The value of joint modelling for multiple
markets is discussed in Section 6.
A note should be given here on joint modelling of uncertainty of prices and in�ows.

In�ow uncertainty most de�nitely a�ects the long term reservoir management strategy
and thus the marginal costs. However, the e�ect of short-term in�ow uncertainty on
the bidding strategy is rarely explored by existing literature. The e�ect will depend
on the level and variation of local in�ow compared to the size and �ow constraints of
the reservoir, as well as the how pressure height changes as the storage level changes.
For large, `�at' reservoirs there will likely be a limited e�ect of considering short-term
in�ow uncertainty, but for smaller, `narrow' reservoirs where the pressure height changes
considerably with the storage content, short-term variations in in�ow might be very
important. Taking into account river chain dynamics (such as time delays and �ow
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constraints), sensitivity to in�ow uncertainty for a small, bottleneck reservoir might
dictate the bidding strategy for an entire river chain. If uncertainty of both in�ow and
prices is to be considered in the bidding process, forecasting and scenario generation
must aim to describe any dependencies between these variables. The aggregated amount
of in�ow over time is an important driver for prices in hydro-dominated power markets,
but this dependency might be much weaker if we consider local in�ow to a reservoir or
river chain, and the price. Of course, local in�ow might be correlated with total in�ow,
but how strongly will depend on local factors such as geography and weather conditions.
Depending on these factors, in�ow uncertainty might be safely disregarded within the
one week horizon typically used for short-term scheduling. However, if simulation setups
for validation or benchmarking of models is undertaken, one should perform these tests
on long periods to cover various in�ow states and detect trends over time.
Many important results have been established in existing literature for the hydropower

bidding problem. Questions that remain are very much related to multi-market mod-
elling; we �nd only a few works that include two or more markets. Another question
is how much detail it is necessary to include in order to obtain a good bidding strat-
egy. How will this di�er from the optimal strategy found from a more accurate model?
What are the consequences of using less-than-optimal strategies, and does the e�ects
depend on size and other properties of the production portfolio? Finally, how important
is consistent modelling of multi-market opportunities in all steps of the marginal cost
calculation?

4 Forecasting methods

Electricity price forecasting can be done in a number of di�erent ways. The immedi-
ateness of the forecast period, the amount of available historical data and the volatility
of the market in question all come into play when trying to create point- or interval-
forecasts. A natural split is between models that may be used to forecast prices in the
day-ahead and intraday market, and methods for balancing market prices. This is be-
cause the balancing market per de�nition is for unforeseeable events; unbalances occur
because something happens during real-time that could not be predicted. We therefore
present models for forecasting DAM and IDM prices in one section, and BM prices in
the next.

4.1 Day-ahead and intraday market prices

Forecasting methods for day-ahead prices are by far most widely discussed and analysed
in the literature. Balancing and intraday markets have received less attention, likely
because of their so far limited turnover and relatively low extra pro�t potential. A
method that so far mostly have been applied for forecasting day-ahead prices, might also
be suited for forecasting IDM prices.
According to Weron (2014), one can classify models for day-ahead electricity prices into

�ve di�erent types: fundamental models, multi-agent/simulation models, reduced form
models, statistical models, and arti�cial intelligence (AI) models. The methods vary not

13



only in the mathematical tools used, but also the data they use as input, their ability
to calculate outputs at di�erent time resolutions, and whether or not they give punctual
or interval information useful for stochastic scenario generation or other techniques to
generate robustness.
Fundamental models attempt to capture a variety of the most relevant physical and

economic factors that in�uence the prices in a system, like load, temperature, reservoir
levels, fuel prices, and so on. An example for the Nordic markets is found in Wolfgang
et al. (2009). Fundamental models rich in parametric data are often proprietary or
con�dential, thus few literature references exist for them in spite of their wide practical
use, according to Weron (2014). Meaningful and complex fundamental models is an
important research gap in the open scienti�c community. As renewable resources like
wind and solar make up a larger share of electricity production, their e�ects on prices
should also be included in fundamental models. Wind and solar are in general related to
weather data, which presents large uncertainties. For hydro, in�ow uncertainty is also of
key importance, as it describes future resource availability. Coordination of the forecasts
for in�ow, wind and solar needs better coverage.
Multi-agent and simulation models aim to capture the interactions in the relevant

market. They rely on assumptions of the behaviours of the participants, and model
these actions using game theory or similar tools, either in an exact way or through
simulation analysis.
Reduced-form and statistical methods are both based on time series modelling. Reduced-

form models are inspired by �nancial analyses and are rather successful when it comes to
capturing trends in the data, seasonality, mean reversion events, jumps, and so on. They
can be further classi�ed into jump-di�usion models Chan et al. (2008), and Markov
regime-switching models Paraschiv et al. (2015). Both try to identify states in which
prices can be easily forecast, and either identify jump elements which disrupt those
states and their forecast, or model several states with di�erent inherent characteristics
(baseload, peak), and their transitions.
Statistical methods rely on historical observation of parameters, along with additional

exogenous factors, to generate a forecast. Statistical models range from the very simple
same-day approaches (naive, but useful for benchmarking, according to Conejo et al.
(2005), to clear, easily interpretable regression analysis (like that in Jónsson et al. (2013),
often used in conjunction with other tools), to more complex AR models. The latter have
wide use and applications given their ability to incorporate exogenous factors beyond just
the time series in question. AR-type variants appear in Garcia et al. (2005); Haldrup
and Nielsen (2006); Kristiansen (2012), with successful applications in the Nordpool,
Californian and Spanish markets.
Finally, AI methods, which for electricity are mostly based on Arti�cial Neural Net-

works, are specially good for highly non-linear systems and short-term predictions. Force-
feed neutral networks Guo and Luh (2004) and Recurrent Neural Networks Anbazhagan
and Kumarappan (2013) are both tested and, while not consistently better than the
more re�ned, state-of-the-art approaches, the trade-o� between fast processing speed
and accuracy in the forecasts is arguably something to look into.
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4.2 Balancing market prices

Klæboe et al. (2015) note the abundance of sources on day-ahead price forecasting, but
nowhere near as many when it comes to forecasting intraday and balancing markets.
The nature of the balancing markets makes it di�cult to specify information which, if

available, would not have already been included in the day-ahead forecast. The sources
of variation in the balancing markets, by the very nature of these markets, are not easily
incorporated in prediction models. However, there is usefulness in forecasting balancing
market prices, specially when more than point-estimates are needed. Evidence suggests
that models that incorporate more than just statistical information produce narrower
forecasting intervals, though point-estimates of the balancing prices are no better than
a constant zero time series, same as with the purely statistical methods.
In Klæboe et al. (2015), we have a method in which both the system's state and volume

information are considered as exogenous factors for a regression which provides forecasts
for balancing prices. While this method does not necessarily perform better than purely
statistical methods to obtain point-estimates for electricity prices, it does provide better
forecast bands, tighter than the ones in the Markov Regime-switching process presented
in Olsson and Söder (2008). Another fundamental modelling application, a compari-
son of a mean-reverting jump di�usion model for prices and a Markov regime-switching
model is shown in Wang et al. (2014). The e�ectiveness of these approaches, however,
is questioned by Kosater and Mosler (2006), who state that there is little evidence that
regime-switching methods, even when combined with further statistical forecasting meth-
ods, provide added information or forecasting power.
Brolin and Söder (2010) propose a non-linear time series model is used to predict real-

time Swedish electricity prices coupled with simulation to generate a stochastic scenario
tree. The histograms for the simulated data are deemed similar enough to the historical
values, so the method has arguably satisfying results for this particular instance.

4.3 Further considerations on forecasting methods

Considering the day-ahead market, we can say that statistical methods, like SARFIMA
or AR-X forecasts, are widely used in the research community either alone or as a part
of a combined approach, the former when seasonal information is clear, the later when
exogenous data series are available. These statistical approaches can be combined with
reduced-form or Arti�cial Intelligence models, both of which are good in capturing non-
linear trends, such as violent spikes, which are the norm in electricity pricing. The results
can be benchmarked with an easily implemented same-day approach.
In general, the literature seem to favour ARMA, ARIMA and AR-X methods for short-

term forecasts, whereas other authors claim Arti�cial Intelligence models are better suited
to cover the non-linear aspects of the short-term variations Weron (2014). Methods for
the day-ahead market might also be suitable for the intraday market.
For the balancing market, however, there are few sources of price forecasting, and

it is di�cult to justify forecasts for the balancing market when they use exactly the
same information as the DAM forecast. On the other hand, while producers might not
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obtain much information from later market's prices per se, these can inform them on
the TSO's intentions when it comes to real-time regulation. In a sort of two-level game,
the producers could forecast balancing market prices and, based on historical TSO's
decisions, make their DAM, IDM and BM o�ers concurrently in a way that maximize
their pro�ts in view of the possible o�ers from other producers. Kiesel and Paraschiv
(2017), for example, study IDM prices and their impact on day-ahead prices, using a
reduced form model which includes weather data. They acknowledge, however, a lack of
similar multi-market analyses.
We �nd signi�cant challenges and gaps in the literature regarding multi-market price

forecasting. These can roughly be summarized in two, interlinked narratives: a) the in-
creasing dominance of intermittent renewable sources increase uncertainty, making fore-
casting and the development of models taking this into account both more relevant and
challenging, and b) market integration raises the question of how relevant and pro�table
is it for smaller producers to study this in a coordinated way, not just from the bidding
point of view, but also when it comes to forecasting prices.
The value of multi-market price forecasting is intrinsically liked to the value of man-

aging bids in multiple markets. Klæboe and Fosso (2013), while recognizing only modest
gains in their literature overview, seem to think increased intermittent generation in a
system will increase the relevance of coordinated bids, and, consequently, forecasting of
BM prices. Whether or not new information is available to a producer after DAM and
IDM commitment, and how this new information can be used to change a producer's
behaviour when it comes to balancing market dispatch, presents a conceptual challenge.

5 Scenario-tree generation methods

Many of the papers cited in Section 3 are based on stochastic programming and therefore
require scenario trees (Dupa£ová et al., 2000; King and Wallace, 2012). While most
papers provide information about the employed scenario generation process, this section
presents a more systematic overview of available methods. As there is a signi�cant
qualitative di�erence between two- and multi-stage models, we will treat them separately.

5.1 Two-stage models

Two-stage models have only one branching point and therefore only two stages; one
before information is revealed and the second after. Consequently, the scenario tree is
usually in the form of independent scenarios, connected together in the root of the tree,
which represents the �rst stage. Such trees are often referred to as fans.
Since the second-stage part of the scenario tree consists of a set of independent paths,

two-stage models are well suited for forecasting methods able to simulate multiple paths,
such as time-series models. Scenarios in the tree are drawn as a sample of possible paths.
Of the papers presented in the previous section, this approach is used in Faria and Fleten
(2011); Fleten and Kristo�ersen (2007).
A word of warning, though: while sampling-based methods usually guarantee optimal-

ity in the limit, they do not provide good approximations with few scenarios. Without
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further post-processing, they do not even guarantee that the scenarios have correct ex-
pected values, something that is known to be important for stochastic-programming
models (Chopra and Ziemba, 1993). A popular way of avoiding this problem is to gener-
ate a large scenario tree and then reduce it, using scenario-reduction techniques. By the
law of large numbers, the expected value in the large tree should be close to the speci�ed
values. Unfortunately, not all scenario-reduction methods guarantee preservation of the
means. However, one can expect the results to be better than if we sampled the small
number of scenario directly.
In the case of optimizing bids, it is natural to have the bid decisions in the �rst stage

and everything after market clearing in the second stage. This implies that there is no
uncertainty in the operating part of the model, i.e., for unit commitment and dispatch �
which is a correct description as long as the producer operates only in the day-ahead mar-
ket and we ignore other uncertainties such as in�ow and intermittent electricity sources.
However, a two-stage model for multi-market bidding would represent the intraday and
balancing markets without uncertainty, possibly overestimating the pro�t obtainable in
these markets. Jointly considering bids in several markets therefore require scenario
trees that have multiple branching points. This wil re�ect how information on prices and
commitments is gradually revealed to producers as di�erent markets clear over time.

5.2 Multi-stage models

Multi-stage scenario trees are qualitatively di�erent from the two-stage case, because
multi-stage trees involve conditional probability distributions. If the single branching
point of the two-stage tree is right after the �rst period, there is only one distribution
to handle and it depends only on the history, so we can use forecasts and sampling as
described above. Multi-stage trees, on the other hand, include consecutive branchings
that require the knowledge of conditional distributions: the distribution seen from any
node in the scenario tree depends not only on the history up to now, but also on the
values in the given node.
Such conditional distributions are readily available if we use methods based on time-

series, but not for other forecasting techniques. Moreover, time-series models make it
easy to sample any number of successors for a given node, so one can build the whole
scenario tree. A potential problem with such an approach is that the number of branches
at each node must be kept low to avoid exponential growth in the number of scenarios.
This makes pure sampling unsuitable, as expected values may not be preserved by small
samples. One could, in principle, address the issue in the same way as in the two-stage
case, namely by generating the tree with more branches at each branching point and then
reduce it, but such a tree would likely be too large to handle. Instead, we can do the
generation and reduction step at each branching node of the tree; this approach has been
used in De Ladurantaye et al. (2007), employing a mean-preserving reduction technique
from De Ladurantaye et al. (2009), and in Boomsma et al. (2014), using k-medoids
clustering for the reductions. An alternative is to replace sampling by a discretization
method that provides better control of the statistical properties, such as the copula-based
method from Kaut (2014) or the moment-matching method from Høyland et al. (2003).
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This approach has been used in Kaut et al. (2014).
The above approach works only for forecasting methods that provide conditional dis-

tributions at any point of the tree, such as time-series modelling. For other methods, one
usually generates a two-stage tree and then use some clustering or reducing technique
to transform it into a multi-period tree. The most common way of doing this is the
scenario reduction methods from Heitsch and Römisch (2009, 2011), which aim to �nd
a reduced tree that is close to the starting tree in terms of the sum of Lr-distance and
a so-called �ltration distance (Heitsch et al., 2006). There, the Lr-distance measures the
di�erence between values in the scenario trees, while the �ltration distance measures the
di�erence between structures of the trees. While popular, there is a potential problem
with using this method: the main reason for reducing a fan to a tree is that the fan is
not a good approximation of the process, since there is no new information after the �rst
stage. However, the theory supporting the methods measures only how much worse the
solution of the reduced problem is, compared to the one based on the initial tree. Hence,
if the fan is not a good approximation of the stochastic process, there is no guarantee
that the reduced tree will be better. Of the papers presented in Section 3, this approach
is used in Aasgård et al. (2014, 2017); Olsson (2009).
An alternative approach is based on a nested distance, introduced in P�ug (2010) as

a distance between nested distributions, also introduced there. P�ug and Pichler (2015)
presents several such scenario generation algorithms, based on the assumption that we
can sample unlimited number of paths from the underlying process. Finally, P�ug and
Pichler (2016) present a related method that can be used for reducing a fan to a multi-
stage tree. For this, the method estimates the conditional distributions using techniques
from kernel estimation. Once we have the conditional distributions, we can build the
multi-stage tree as described earlier in this section. This approach has been used in
Séguin et al. (2017) for generating scenarios for short-term reservoir in�ows.
Until now, we have discussed situations where a forecast method can either sample

future values, or at least produce a collection of forecasted paths. However, some fore-
casting methods, such as fundamental and AI models, produce only a single forecast; or
we could have access to a single forecast provided by a third party. In this case, we cannot
use the any of the methods discussed so far. Since a single forecast does not include any
information about uncertainty, we have to use other sources. If we have access to histor-
ical forecasts and actual observed values, we can use a scenario-generation method from
Kaut (2017), which is a multi-stage extension to a method from Andersen et al. (2015).
The method works by creating a scenario tree for prediction errors and combining it with
the forecast to get the scenario values. Internally, the method treats errors of forecasts of
di�erent lengths as separate random variables, which allows modelling of inter-temporal
dependencies between errors. A similar approach is used in Vespucci et al. (2013), where
a scenario tree for the day-ahead wind production is obtained by combining a single wind
power production forecast with a scenario tree of historical prediction errors.
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5.3 Further considerations on scenario generation methods

For multi-market bidding, multi-stage scenario trees are needed to describe how prices
and commitments in sequential markets are revealed over time. However, which markets,
i.e. prices, to include as uncertain variables in the tree is still mostly an unanswered
question. Modelling all markets in detail will likely lead to models that are too large.
One way of reducing the model size might be using the multi-horizon modelling approach
from Kaut et al. (2014), with markets beyond the DAM modelled in the inner layer of
the scenario tree. This, however, is beyond the scope of the paper. Another approach is
to model only a subset of the markets, which require some assessments of which markets
are most important for producers. This subject is further discussed in Section 6.
Since the scenario tree introduces an additional approximation step in the modelling

process, it is important to ensure that it does not deteriorate the quality of the solutions
too much. However, the solution obtained by using the true, full distribution of the
uncertain variables is generally not obtainable, either because the true distribution is
unknown, or because the resulting optimization problem would be too large. Without
the true solution as a benchmark, the approximation error of using scenario trees is, in
general, di�cult to estimate; we refer interested readers to Bayraksan and Morton (2006)
and Bayraksan et al. (2011).
Instead, we focus on the easier issue of stability, as de�ned in Kaut and Wallace (2007).

Simply said, stability is the requirement is that if we repeat the scenario generation and
optimization steps using the same input, we should get (approximately) the same results.
Stability may thus also be called reproducibility. In more detail, if we solve the same
problem with N scenario trees, the variation of the obtained optimal objective values
should be within some speci�ed limit � the exact value is case-dependent.
Since the approximation to the true distribution should improve with increasing num-

ber of scenarios S, the task is often to �nd the smallest number of scenarios S that
produces acceptable results. Note that if we use a scenario-generation tool that produces
randomized output (such as sampling), we can use N trees of size S. If, on the other
hand, the tool always produces the same tree for a given size, we can generate trees
with s ∈ {S − N/2, . . . , S + N/2} scenarios instead. In Kaut and Wallace (2007), this
is called an in-sample stability test, since it uses objective values from the trees it was
obtained on. In contrast, an out-of-sample stability test would compare the solutions on
an additional scenario tree, preferably with as many scenarios as possible. This is usually
only applicable to two-stage models, see the discussion in Kaut and Wallace (2007).
To summarize, stability is the minimal requirement for a scenario generation method:

if the model produces di�erent results at each run, it is of no use. The allowed calculation
time of stochastic programming models will be limited in operational settings, and large
trees lead to long run times and potentially also trouble with memory. In our context,
bids must be submitted before certain closing times for the various markets, and produc-
ers must divide their limited time between updating forecasts, scenario generation and
optimization. It is therefore important to �nd a minimal size of the scenario tree that
still produces stable results for the optimization model it is used with.
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6 The value of coordinated multi-market bidding

Formulating an optimization model that includes the decisions to be taken and uncertain
variables for all markets (DAM, IDM and BM) might quickly grow prohibitively complex,
and it would be di�cult to de�ne a scenario tree structure that adequately represent the
information structure; such models are not pursued very often in the literature. Rather,
we �nd bid optimization models that cover one or two of the markets. Even such problems
possess challenges in terms of consistency and dependency in forecasts for prices, and the
size of the resulting scenario trees, which again leads to long run times. The question
then arises, what are the gains of modelling bids in all markets as a joint problem?
Both Klæboe and Fosso (2013) and Boomsma et al. (2014), de�ne the term coordinated

bidding as taking subsequent energy markets into account when determining bids to
the day-ahead market, while separate bidding is de�ned as making bids to the day-
ahead market without considering the opportunities in the IDM and BMs until after the
closure of the DAM. Boomsma et al. (2014) develop bounds on the gain from coordinated
bidding in the day-ahead and balancing market, and �nd that the gain averaged at
2%, with a di�erence between lower and upper bound of 7%. In general, the value of
stochastic planning becomes smaller when moving from single-market bidding to multi-
market bidding. This is because the additional markets represent an opportunity to
adapt and `make up for' bad decisions taken at earlier time steps.
Klæboe and Fosso (2013) discuss modelling challenges for multi-market bidding in more

general terms, and come to the conclusion that consistency of assumptions across markets
should be kept in mind. We hold that this consistency should also include assumptions
made in forecasting and scenario generation, which must be seen as integrated and equally
important tasks when developing the model framework.
With the gains from coordinated bidding reported to be small and the models needed

to calculate such strategies increasingly complex, some alternative modelling choices
arises: a) use simpli�ed descriptions for the IDM and/or BM; b) include only one of the
additional markets; or c) consider the markets as separate bidding problems. Approach b)
is used in most of the papers reviewed in Section 3. This method involves a choice of which
market to include, and further on what basis this choice is to be made. Should we include
the market with the highest pro�t potential? Or the market that gives the producer
largest �exibility to change production close to the operating hour? This depends on the
objectives of the producer, and may even change with seasons or conditions in the water
courses. If hydropower production resources are constrained due to wet/dry conditions,
�exibility might be the most important concern, while pro�t-maximization might be the
goal in more `normal situations'. Even if pro�t potential is used as the decision criterion,
evaluating this potential for di�erent markets require forecasts of expected prices and
their variation in the long term. Using approach a) and simplifying the descriptions of
latter markets, involves challenges of consistency. Does the simpli�ed formulation still
represent enough detail to adequately describe the opportunities in the intraday and
balancing markets? Is the information structure in the scenarios intact? If we simplify
by using smaller scenario trees (or even deterministic modelling), will the statistical
properties and dependencies of prices still be maintained? Lastly, what is lost if using
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approach c) in terms of pro�t or �exibility?
Characterizing and bounding the gains of coordinated bidding in all short-term energy

markets similar to what is done in Boomsma et al. (2014) for the day-ahead and balancing
market would be a guide to choose which markets to include/exclude from the multi-
market hydropower bidding problem. Here, the term `gain' is used in a broader sense than
just pro�ts, and includes for example increased �exibility when managing the production
system and watercourses. Using state-of-the-art methods and striving for consistency in
all steps of the modelling process will help reduce any estimation errors of such bounds.
Simulating and comparing the use of models based on di�erent modelling choices will
also guide in deciding which markets or assumptions are important.

7 Conclusions

In this paper, we review optimization models that describe the multi-market bidding
problem for hydropower producers, together with methods for multi-market price fore-
casting and scenario tree generation. These tasks may be seen as interconnected steps in
the modelling process.
The multi-market setting o�er both oppurtunities and challenges for power producers;

oppurtunities in the form of possibilities to trade their way to pro�table and �exible
production schedules, and challenges in the form of managing uncertainty in several
markets. Our opinion is that managing uncertainty and the interconnections and depen-
dencies between di�erent markets will be a competitive advantage for producers in the
near future.
In order to develop decision-support tools that can aid producers in an increasingly

complex market environment, we need to take an integrated view of all steps of the
modelling process. Understanding the characteristics and variability of prices in dif-
ferent markets and their interaction, and describing this variability and how its is re-
vealed to the producer through stages in the scenario tree, are the foundation on which
stochastic-programming models can be build. To properly account for stochasticity in
a multi-market setting, forecasting, scenario generation and optimization are all equally
important. A successful stochastic model for decision-making heavily relies on the right
selection of methods to manage the uncertainty of the variables involved.
When it comes to bidding in a multi-market setting, there are only a few sources

available, and all of them show little or no gain from coordinated bidding. Our opinion
is that multi-market participation, although reportedly having a limited pro�t potential,
can provide gains in �exibility and system stability for hydro producers. With the current
shift towards renewable sources (which, aside from hydropower, are intermittent), the
need for being able to change production closer to real-time will increase. This gives
opportunities for hydropower producers, which are �exible in the sense that energy can be
stored until needed and production can be started or changed quickly. Power producers,
and hydro power producers in particular, are expected to increasingly participate in more
than one market, and we believe there is a lack of literature and models that address the
topic in a more comprehensive manner.

21



8 Acknowledgements

This work was supported by the Research Council of Norway under projectnumber
255100/E20 MultiSharm.

References

E. K. Aasgård, G. S. Andersen, S.-E. Fleten, and D. Haugstvedt. Evaluating a stochastic-
programming-based bidding model for a multireservoir system. IEEE Transactions on

Power Systems, 29(4):1748�1757, 2014.

E. K. Aasgård, C. Ø. Naversen, M. Fodstad, and H. I. Skjelbred. Optimizing day-ahead
bid curves in hydropower production. Energy Systems, pages 1�19, 2017.

S. Anbazhagan and N. Kumarappan. Day-ahead deregulated electricity market price
forecasting using recurrent neural network. IEEE Systems Journal, 7(4):866�872, 2013.

J. Andersen, M. Kaut, and A. Tomasgard. Stochastic model for short-term
balancing of supply and consumption of electricity. In Modelling and Op-

timisation of Renewable Energy Systems, pages 37�66. School of Business
and Social Sciences, Aarhus University, Aarhus, Denmark, 2015. ISBN
9788793195189. URL http://pure.au.dk/portal/en/publications-research/

modelling-and-optimisation-of-renewable-energy-systems%

2880b927a9-a945-4d22-9e8e-3210714bea9c%29.html.

E. J. Anderson and A. B. Philpott. Using supply functions for o�ering generation into
an electricity market. Operations Research, 50(3):477�489, 2002.

G. Bayraksan and D. P. Morton. Assessing solution quality in stochastic programs.
Mathematical Programming, 108(2�3):495�514, September 2006.

G. Bayraksan, D. P. Morton, and A. Partani. Simulation-based optimality tests for
stochastic programs. In G. Infanger, editor, Stochastic Programming: The State of

the Art In Honor of George B. Dantzig, International Series in Operations Research &
Management Science, pages 37�55. Springer, 2011. doi: 10.1007/978-1-4419-1642-6.

A. Berrada, K. Loudiyi, and I. Zorkani. Valuation of energy storage in energy and
regulation markets. Energy, 115, Part 1:1109 � 1118, 2016. doi: https://doi.org/10.
1016/j.energy.2016.09.093.

T. K. Boomsma, N. Juul, and S.-E. Fleten. Bidding in sequential electricity markets:
The Nordic case. European Journal of Operational Research, 238(3):797�809, 2014.

M. O. Brolin and L. Söder. Modeling swedish real-time balancing power prices using non-
linear time series models. In 2010 IEEE 11th International Conference on Probabilistic

Methods Applied to Power Systems (PMAPS), pages 358�363. IEEE, 2010.

22

http://pure.au.dk/portal/en/publications-research/modelling-and-optimisation-of-renewable-energy-systems%2880b927a9-a945-4d22-9e8e-3210714bea9c%29.html
http://pure.au.dk/portal/en/publications-research/modelling-and-optimisation-of-renewable-energy-systems%2880b927a9-a945-4d22-9e8e-3210714bea9c%29.html
http://pure.au.dk/portal/en/publications-research/modelling-and-optimisation-of-renewable-energy-systems%2880b927a9-a945-4d22-9e8e-3210714bea9c%29.html


K. F. Chan, P. Gray, and B. Van Campen. A new approach to characterizing and
forecasting electricity price volatility. International Journal of Forecasting, 24(4):728�
743, 2008.

V. Chopra and W. Ziemba. The e�ects of errors in means, variances, and covariances on
optimal portfolio choice. The Journal of Portfolio Management, 19(2):6�11, 1993.

A. J. Conejo, J. Contreras, R. Espínola, and M. A. Plazas. Forecasting electricity prices
for a day-ahead pool-based electric energy market. International Journal of Forecast-
ing, 21(3):435�462, 2005.

D. De Ladurantaye, M. Gendreau, and J.-Y. Potvin. Strategic bidding for price-taker
hydroelectricity producers. IEEE Transactions on Power Systems, 22(4):2187�2203,
2007. doi: 10.1109/TPWRS.2007.907457.

D. De Ladurantaye, M. Gendreau, and J.-Y. Potvin. Optimizing pro�ts from hydroelec-
tricity production. Computers & Operations Research, 36(2):499�529, feb 2009. doi:
10.1016/j.cor.2007.10.012.

J. Dupa£ová, G. Consigli, and S. W. Wallace. Scenarios for multistage stochastic pro-
grams. Annals of Operations Research, 100:25�53, December 2000.

E. Faria and S.-E. Fleten. Day-ahead market bidding for a nordic hydropower producer:
taking the elbas market into account. Computational Management Science, 8(1):75�
101, 2011.

S.-E. Fleten and T. K. Kristo�ersen. Stochastic programming for optimizing bidding
strategies of a nordic hydropower producer. European Journal of Operational Research,
181(2):916�928, 2007. doi: 10.1016/j.ejor.2006.08.023.

S.-E. Fleten, D. Haugstvedt, J. A. Steinsbø, M. M. Belsnes, and F. Fleischmann. Bidding
hydropower generation: Integrating short- and long-term scheduling. Proceeding - 17th
Power Systems Computations Conference PSCC 2011, pages 352�358, 2011.

R. C. Garcia, J. Contreras, M. Van Akkeren, and J. B. C. Garcia. A garch forecasting
model to predict day-ahead electricity prices. IEEE Transactions on Power Systems,
20(2):867�874, 2005.

A. Gjelsvik, B. Mo, and A. Haugstad. Long- and medium-term operations planning
and stochastic modelling in hydro-dominated power systems based on stochastic dual
dynamic programming. In P. M. Pardalos, S. Rebennack, M. V. F. Pereira, and N. A.
Iliadis, editors, Handbook of Power Systems I, pages 33�55. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

J.-J. Guo and P. B. Luh. Improving market clearing price prediction by using a committee
machine of neural networks. IEEE Transactions on Power Systems, 19(4):1867�1876,
2004.

23



N. Haldrup and M. Ø. Nielsen. A regime switching long memory model for electricity
prices. Journal of Econometrics, 135(1):349�376, 2006.

H. Heitsch and W. Römisch. Scenario tree modelling for multistage stochastic programs.
Mathematical Programming, 118(2):371�406, 2009. doi: 10.1007/s10107-007-0197-2.

H. Heitsch and W. Römisch. Scenario tree generation for multi-stage stochastic programs.
In M. Bertocchi, G. Consigli, and M. A. H. Dempster, editors, Stochastic Optimization
Methods in Finance and Energy, volume 163 of International Series in Operations

Research & Management Science, chapter 14, pages 313�341. Springer, 2011. doi:
10.1007/978-1-4419-9586-5_14.

H. Heitsch, W. Römisch, and C. Strugarek. Stability of multistage stochastic programs.
SIAM Journal on Optimization, 17(2):511�525, 2006. doi: 10.1137/050632865.

K. Høyland, M. Kaut, and S. W. Wallace. A heuristic for moment-matching scenario
generation. Computational Optimization and Applications, 24(2�3):169�185, February�
March 2003.

T. Jónsson, P. Pinson, H. A. Nielsen, H. Madsen, and T. S. Nielsen. Forecasting electricity
spot prices accounting for wind power predictions. IEEE Transactions on Sustainable

Energy, 4(1):210�218, 2013.

M. Kaut. A copula-based heuristic for scenario generation. Computational Management

Science, 11(4):503�516, 2014. doi: 10.1007/s10287-013-0184-4.

M. Kaut. Forecast-based scenario-tree generation method. Optimization Online, e-print
ID 2017-03-5898, 2017. URL http://www.optimization-online.org/DB_HTML/2017/

03/5898.html.

M. Kaut and S. W. Wallace. Evaluation of scenario generation methods for stochastic
programming. Paci�c Journal of Optimization, 3:257�271, 2007.

M. Kaut, K. T. Midthun, A. S. Werner, A. Tomasgard, L. Hellemo, and M. Fodstad.
Multi-horizon stochastic programming. Computational Management Science, 11(1�
2):179�193, 2014. doi: 10.1007/s10287-013-0182-6. Special Issue: Computational
Techniques in Management Science.

R. Kiesel and F. Paraschiv. Econometric analysis of 15-minute intraday electricity prices.
Energy Economics, 64:77 � 90, 2017.

A. J. King and S. W. Wallace. Modeling with Stochastic Programming. Springer Series
in Operations Research and Financial Engineering. Springer, 2012. doi: 10.1007/
978-0-387-87817-1.

G. Klæboe and O. B. Fosso. Optimal bidding in sequential physical markets � a literature
review and framework discussion. PowerTech (POWERTECH), 2013 IEEE Grenoble,
pages 1�6, 2013.

24

http://www.optimization-online.org/DB_HTML/2017/03/5898.html
http://www.optimization-online.org/DB_HTML/2017/03/5898.html


G. Klæboe, A. L. Eriksrud, and S.-E. Fleten. Benchmarking time series based forecasting
models for electricity balancing market prices. Energy Systems, 6(1):43�61, 2015.

P. Kosater and K. Mosler. Can Markov regime-switching models improve power-price
forecasts? Evidence from German daily power prices. Applied Energy, 83(9):943�958,
2006.

T. Kristiansen. Forecasting Nord Pool day-ahead prices with an autoregressive model.
Energy Policy, 49:328�332, 2012.

G. Li, J. Shi, and X. Qu. Modeling methods for genco bidding strategy optimization
in the liberalized electricity spot market � A state-of-the-art review. Energy, 36(8):
4686�4700, 2011. doi: https://doi.org/10.1016/j.energy.2011.06.015.

J. Lindqvist. Operation of a hydrothermal electric system: A multistage decision processr.
AIEE Trans. Power Apparatus and Systemss, 81:1�7, 1962.

N. Löhndorf, D. Wozabal, and S. Minner. Optimizing trading decisions for hydro storage
systems using approximate dual dynamic programming. Operations Research, 61(4):
810�823, 2013.

N. Lu, J. H. Chow, and A. A. Desrochers. Pumped-storage hydro-turbine bidding strate-
gies in a competitive electricity market. IEEE Transactions on Power Systems, 19(2):
834�841, 2004.

M. Olsson. On optimal hydropower bidding in systems with wind power: Modeling the

impact of wind power on power markets. PhD thesis, KTH, Stockholm, Sweden, 2009.

M. Olsson and L. Söder. Modeling real-time balancing power market prices using com-
bined SARIMA and Markov processes. IEEE Transactions on Power Systems, 23(2):
443�450, 2008.

F. Paraschiv, S.-E. Fleten, and M. Schürle. A spot-forward model for electricity prices
with regime shifts. Energy Economics, 47:142�153, jan 2015. ISSN 0140-9883. doi:
10.1016/j.eneco.2014.11.003.

M. V. Pereira and L. M. Pinto. Multi-stage stochastic optimization applied to energy
planning. Mathematical programming, 52(1-3):359�375, 1991.

G. C. P�ug. Version-independence and nested distributions in multistage stochastic
optimization. SIAM Journal on Optimization, 20(3):1406�1420, 2010. ISSN 1095-
7189. doi: 10.1137/080718401.

G. C. P�ug and A. Pichler. Dynamic generation of scenario trees. Computational Op-

timization and Applications, 62(3):641�668, 2015. ISSN 1573-2894. doi: 10.1007/
s10589-015-9758-0.

25



G. C. P�ug and A. Pichler. From empirical observations to tree models for stochastic
optimization: Convergence properties. SIAM Journal on Optimization, 26(3):1715�
1740, 2016. doi: 10.1137/15M1043376.

A. Philpott, Z. Guan, J. Khazaei, and G. Zakeri. Production ine�ciency of electricity
markets with hydro generation. Utilities Policy, 18(4):174 � 185, 2010. ISSN 0957-1787.
doi: https://doi.org/10.1016/j.jup.2010.09.001. URL http://www.sciencedirect.

com/science/article/pii/S0957178710000585. Designing Electricity Auctions.

G. Pritchard, A. B. Philpott, and P. J. Neame. Hydroelectric reservoir optimization in
a pool market. Mathematical programming, 103(3):445�461, 2005.

S. Séguin, S.-E. Fleten, P. Côté, A. Pichler, and C. Audet. Stochastic short-term hy-
dropower planning with in�ow scenario trees. European Journal of Operational Re-

search, 259(3):1156�1168, 2017.

S. Stage and Y. Larsson. Incremental cost of water power. Power Apparatus and Systems,
part iii. Transactions of the American Institute of Electrical Engineers, 80(3):361�264,
1961.

G. Steeger, L. A. Barroso, and S. Rebennack. Optimal bidding strategies for hydro-
electric producers: A literature survey. IEEE Transactions on Power Systems, 29(4):
1758�1766, 2014.

C. Triki, P. Beraldi, and G. Gross. Optimal capacity allocation in multi-auction electricity
markets under uncertainty. Computers and Operations Research, 32(2):201�217, 2
2005. doi: 10.1016/S0305-0548(03)00211-9.

M. T. Vespucci, M. Bertocchi, A. Tomasgard, and M. Innorta. Integration of wind
power production in a conventional power production system: Stochastic models and
performance measures. In P. M. Pardalos, S. Rebennack, M. V. F. Pereira, N. A.
Iliadis, and V. Pappu, editors, Handbook of Wind Power Systems, Energy Systems,
pages 129�152. Springer, Berlin, Heidelberg, 2013. ISBN 978-3-642-41079-6. doi: 10.
1007/978-3-642-41080-2_5.

P. Wang, H. Zareipour, and W. D. Rosehart. Descriptive models for reserve and regu-
lation prices in competitive electricity markets. IEEE Transactions on Smart Grid, 5
(1):471�479, 2014.

R. Weron. Electricity price forecasting: A review of the state-of-the-art with a look into
the future. International Journal of Forecasting, 30:1030�1081, 2014.

O. Wolfgang, A. Haugstad, B. Mo, A. Gjelsvik, I. Wangensteen, and G. Doorman. Hydro
reservoir handling in Norway before and after deregulation. Energy, 34(10):1642�1651,
2009.

S. Yakowitz. Dynamic programming applications in water resources. Water Resources

Research, 18(4):673�696, 1982.

26

http://www.sciencedirect.com/science/article/pii/S0957178710000585
http://www.sciencedirect.com/science/article/pii/S0957178710000585

	Introduction
	The multi-market bidding process
	An integrated view on modelling, forecasting and scenario generation

	Bid optimization methods
	Long time horizons and dynamic programming
	Unit-commitment, nonlinearities, and mixed-integer programming
	Multi-market formulations
	Marginal costs and the integration of long and short-term models
	Further considerations on bid optimization models

	Forecasting methods
	Day-ahead and intraday market prices
	Balancing market prices
	Further considerations on forecasting methods

	Scenario-tree generation methods
	Two-stage models
	Multi-stage models
	Further considerations on scenario generation methods

	The value of coordinated multi-market bidding
	Conclusions
	Acknowledgements

