
Roxana Diaconescu

Object Based Concurrency
for Data Parallel

Applications:
Programmability and

Effectiveness

Department of Computer and Information Science
Norwegian University of Science and Technology

N-7491 Trondheim, Norway

URN:NBN:no-3329

NTNU Trondheim
Norges teknisk-naturvitenskapelige universitet
Doktor ingeniøravhandling 2002:83
ISBN 82-471-5483-8
ISSN 0809-103x
Institutt for datateknikk og informasjonsvitenskap
IDI-rapport 2002:09
ISSN 0802-6394

URN:NBN:no-3329

Abstract

Increased programmability for concurrent applications in distributed systems re-
quires automatic support for some of the concurrent computing aspects. These are:
the decomposition of a program into parallel threads, the mapping of threads to pro-
cessors, the communication between threads, and synchronization among threads.
Thus, a highly usable programming environment for data parallel applications strives
to conceal data decomposition, data mapping, data communication, and data access
synchronization.

This work investigates the problem of programmability and effectiveness for scien-
tific, data parallel applications with irregular data layout. The complicating factor for
such applications is the recursive, or indirection data structure representation. That
is, an efficient parallel execution requires a data distribution and mapping that ensure
data locality. However, the recursive and indirect representations yield poor physical
data locality. We examine the techniques for efficient, load-balanced data partition-
ing and mapping for irregular data layouts. Moreover, in the presence of non-trivial
parallelism and data dependences, a general data partitioning procedure complicates
arbitrary locating distributed data across address spaces. We formulate the general
data partitioning and mapping problems and show how a general data layout can be
used to access data across address spaces in a location transparent manner.

Traditional data parallel models promote instruction level, or loop-level paral-
lelism. Compiler transformations and optimizations for discovering and/or increas-
ing parallelism for Fortran programs apply to regular applications. However, many
data intensive applications are irregular (sparse matrix problems, applications that
use general meshes, etc.). Discovering and exploiting fine-grain parallelism for appli-
cations that use indirection structures (e.g. indirection arrays, pointers) is very hard,
or even impossible.

The work in this thesis explores a concurrent programming model that enables
coarse-grain parallelism in a highly usable, efficient manner. Hence, it explores the
issues of implicit parallelism in the context of objects as a means for encapsulating
distributed data. The computation model results in a trivial SPMD (Single Program
Multiple Data), where the non-trivial parallelism aspects are solved automatically.

This thesis makes the following contributions:

� It formulates the general data partitioning and mapping problems for data paral-
lel applications. Based on these formulations, it describes an efficient distributed
data consistency algorithm.

� It describes a data parallel object model suitable for regular and irregular data
parallel applications. Moreover, it describes an original technique to map data to
processors such as to preserve locality. It also presents an inter-object consistency
scheme that tries to minimize communication.

� It brings evidence on the efficiency of the data partitioning and consistency
schemes. It describes a prototype implementation of a system supporting im-
plicit data parallelism through distributed objects. Finally, it presents results
showing that the approach is scalable on various architectures (e.g. Linux clus-
ters, SGI Origin 3800).

URN:NBN:no-3329

URN:NBN:no-3329

Table of Contents

Preface xi

I Setting 1

1 Introduction 3
1.1 Introduction . 3
1.2 Objectives . 4
1.3 Results . 5
1.4 Thesis Outline . 6

II Preliminaries 9

2 Object Oriented/Based Concurrency 11
2.1 Introduction . 11
2.2 Actor-based Languages . 12

2.2.1 The Actor Model . 12
2.2.2 ABCL/1 . 13
2.2.3 Concluding Remarks . 14

2.3 Distributed Shared Object Models . 15
2.3.1 Partitioned Objects . 16
2.3.2 Multi-threaded Execution over Shared Memory 17
2.3.3 Concluding Remarks . 18

2.4 Object-Oriented Middleware . 18
2.4.1 Java Remote Method Invocation 19
2.4.2 The CORBA Distributed Object Model 20
2.4.3 Concluding Remarks . 21

2.5 Summary . 21

3 Data Parallelism 23
3.1 Introduction . 23
3.2 Data Partitioning and Mapping . 25

3.2.1 Block Partitioning . 26
3.2.2 Cyclic Partitioning . 28
3.2.3 General Partitioning . 28

iii

URN:NBN:no-3329

iv TABLE OF CONTENTS

3.3 Criteria . 29
3.3.1 Execution Models . 30
3.3.2 Data Locality . 32
3.3.3 Load Balance . 33

3.4 Summary . 34

4 Concurrent Programming 37
4.1 Introduction . 37
4.2 Shared Memory . 38

4.2.1 Low-level Synchronization Mechanisms 38
4.2.2 High-level Programming . 39

4.3 Distributed Memory . 42
4.3.1 Low-level Synchronization Mechanisms 43
4.3.2 High-level Programming . 44

4.4 Distributed Shared Memory . 45
4.5 Summary . 49

5 Programmability 51
5.1 Introduction . 51
5.2 Manual Parallelization . 52
5.3 Different Degrees of Implicit Concurrency 55

5.3.1 Implicit Synchronization . 55
5.3.2 Implicit Communication . 57
5.3.3 Implicit Mapping . 59
5.3.4 Implicit Decomposition . 60

5.4 Automatic Parallelization . 62
5.5 Summary . 63

6 Methodology 65
6.1 Introduction . 65
6.2 Context . 65
6.3 Goal . 68
6.4 Research Questions and Hypotheses . 68
6.5 Approach . 69

6.5.1 Effectiveness . 69
6.5.2 Programmability . 70

6.6 Experimental Methodology . 71
6.6.1 Performance Metrics . 71
6.6.2 Usability Metrics . 71
6.6.3 Test Bed . 72
6.6.4 Execution Environment . 74

6.7 Summary . 76

URN:NBN:no-3329

TABLE OF CONTENTS v

III Results 77

7 A General Data Layout for Distributed Consistency 79
7.1 Introduction . 79
7.2 Background . 80
7.3 The General Data Layout . 82

7.3.1 Data Partitioning . 82
7.3.2 Data Mapping . 83
7.3.3 Data Consistency . 84
7.3.4 Communication . 85

7.4 A Distributed Algorithm for Data Consistency 86
7.4.1 Implicit Parallelism . 86
7.4.2 A Distributed Consistency Algorithm 87

7.5 Examples . 88
7.5.1 Regular Applications . 89
7.5.2 Irregular Applications . 91

7.6 Experimental Results . 93
7.7 Related Work . 93
7.8 Summary . 95

8 Effective Data Consistency 97
8.1 Introduction . 97
8.2 Background . 98
8.3 The Data Layout . 100
8.4 The Data Consistency Algorithm . 103
8.5 Efficiency Aspects . 106

8.5.1 Remote Location Overhead . 107
8.5.2 Communication Overhead . 107

8.6 Examples . 107
8.7 Experimental Results . 108
8.8 Related Work . 110
8.9 Summary . 111

9 High Level Abstractions: Programmability and Effectiveness 113
9.1 Introduction . 113
9.2 Background . 115
9.3 A Distributed Object Model for Transparent Concurrency 116
9.4 Applicability to Data Parallel Programs 118

9.4.1 Data Representation . 119
9.4.2 Data Consistency . 119
9.4.3 A Typical Computation . 120

9.5 Evaluation and Experimental Results . 122
9.5.1 Usability . 123
9.5.2 Efficiency . 123

9.6 Related Work . 126
9.7 Summary . 128

URN:NBN:no-3329

vi TABLE OF CONTENTS

10 Inter-Object Concurrency 129
10.1 Introduction . 129
10.2 An Overview of the Model . 130
10.3 The Data Model . 133

10.3.1 The Set Data Structure . 133
10.3.2 The Distributed Sets . 134

10.4 Parallelism . 135
10.4.1 Mapping of Data to Processors . 136
10.4.2 The Inter-Object Consistency Protocol 137

10.5 The Computation Model . 139
10.6 Evaluation and Experimental Results . 141
10.7 Related Work . 143
10.8 Summary . 146

11 A Prototype System for Implicit Concurrency 149
11.1 Introduction . 149
11.2 An Overview of the System . 150

11.2.1 Geometrical Data Representation 152
11.2.2 Data Structure Creation . 153
11.2.3 Off-processor Data Updates . 153
11.2.4 Local Numerical Computation . 153

11.3 Discussion . 156
11.4 Related Work . 159
11.5 Summary . 161

IV Synopsis 163

12 Summary and Results 165
12.1 Discussion . 165
12.2 Validation . 167
12.3 Main Results and Contributions . 168

13 Further Work 171
13.1 Techniques . 171

13.1.1 Data Layout . 171
13.1.2 Data Consistency . 172

13.2 Applications . 172

V Appendices 173

A Glossary 175

B Experimental Data 181

URN:NBN:no-3329

List of Figures

2.1 The behavior of an actor in terms of its possible actions. 12
2.2 Java Remote Method Invocation. 19

6.1 The typical solution of a grand-challenge problem. We use as example
the fluid structure interaction in deep sea. The Navier-Stokes equations
are used to model the currents around the marine structures. 66

7.1 Regular and irregular data sets. 81
7.2 The partitioning and mapping for a data set. 84
7.3 A distributed algorithm for data consistency. 88
7.4 A typical regular computation. 89
7.5 The regular partitioning of the x array. 90
7.6 A sequential irregular computation. 91
7.7 The irregular data layout. 91
7.8 The speedup of the parallel Poisson problem for different-sized data. . . 93
7.9 The speedup of the parallel Poisson problem for the smaller set of data. 94

8.1 A typical FEM discretization operator (assembly procedure). 98
8.2 A typical FD discretization operator (stencil operator). 99
8.3 Discrete computations. 101
8.4 The Data Layout. 102
8.5 A distributed consistency algorithm. 105
8.6 An irregular array computation. 108
8.7 The transformation of the irregular computation. 109
8.8 The 3-D FEM Discretization scheme using the Jacobi iteration scheme.

Mesh: small. 109
8.9 The 3-D FEM Discretization scheme using the Jacobi iteration scheme.

Results on a 6 processors Beowulf cluster, for two different domain sizes. 110

9.1 The distributed object model. 117
9.2 Point-to-point communication triggered by an update phase. Internal

boundary data is packed/unpacked and sent/received in one message. 120
9.3 A typical computation combining stored and computed distributed data,

as well as sequential data objects. 121
9.4 Toy problem implementation speedup for different implementations. . . 124
9.5 The 3-D Poisson solver scalability on different distributed platforms. . . 124

vii

URN:NBN:no-3329

viii LIST OF FIGURES

9.6 The absolute wall clock times for the 3-D Poisson solver on “small”
mesh for the compared platforms. 126

10.1 An example of hierarchical data representation. 131
10.2 Data partitioning. Reference and referee marking. 132
10.3 The set class interface. 133
10.4 An example of using sets in graph problems. 134
10.5 Reference count-based mapping scheme. 138
10.6 A typical irregular computation. Example of integrating sets and user

defined components. 140
10.7 The speedup of the 3DFEM application for “tiny” mesh. 142
10.8 The speedup of the 3DFEM application for “small” mesh. 142

11.1 The main building blocks of the system. 154
11.2 A comparison of two sequential programming models. 155
11.3 The infrastructure of the framework. 157
11.4 Compile-time and run-time support for parallelization. 159

B.1 Wall clock times for the Poisson solver on the Beowulf cluster. 181
B.2 Wall clock times for the Poisson solver on the ClustIS cluster. 182
B.3 Wall clock times for the Poisson solver on SGI Origin 3800 – up to 32

processors. 182
B.4 Wall clock times for the Poisson solver on SGI Origin 3800 – up to 64

processors. 183

URN:NBN:no-3329

List of Tables

6.1 Factors for the lack of methodology in scientific software. 72
6.2 Characterization of the Test Bed applications. 73
6.3 Characterization of the test problems. 74
6.4 SGI Origin 3800 . 75
6.5 SGI Origin 3800 . 75
6.6 ClustIS Linux cluster . 75
6.7 Beowulf Cluster . 75

9.1 Usability . 123
9.2 Platform Description . 125

10.1 The distributed set class descriptor. 135
10.2 Comparison of various object-oriented/based concurrent languages and

systems. 144

ix

URN:NBN:no-3329

x LIST OF TABLES

URN:NBN:no-3329

Preface

This dissertation is submitted to the Norwegian University of Science and Technology
(NTNU) in partial fulfillment of the requirements for the degree Doktor Ingeniør. This
work has been completed at the Department of Computer and Information Science,
NTNU, Trondheim. Parts of the work were completed during a research stay with
the Stanford Suif Compiler Group, at the Computer Science Department, Stanford
University, California, USA.

Acknowledgments

This work embodies support and contributions from many people. First, there are the
committee members, whom I thank for the valuable comments helping to improve
the quality of the thesis. I would like to thank Reidar Conradi for being my primary
supervisor and for giving me the complete freedom in conducting this research. I
would like to thank my second supervisor, Einar Rønquist for the valuable support
and feedback related to the numerical analysis aspects of this work.

A special thank to Professor Monica Lam for inviting me to visit the Suif Compiler
Group at Stanford and for her dedication in supervising and guiding me during a
critical period of my research. I would like to thank all the members of the Suif group
and the support staff at Stanford for making my stay unforgettable.

Many thanks to all the past and current members of the Software Engineering
Group at NTNU for providing me with a nice and friendly research environment.
Especially, I would like to thank Alf Inge Wang, Monica Divitini, Torgeir Dingsoyr,
Ekaterina Prasolova-Forland, Tor Stålhane, Carl-Fredrik Sorensen and Maria Letizia
Jaccheri. Special thanks to my colleague and friend Elisabeth Bayegan for sharing
the four years of growing together. Thanks to my old friend and colleague Zoran
Constantinescu for the valuable and endless discussions throughout the years.

As a part of the Computational Science and Engineering project at NTNU, I would
like to thank all the members for creating a frame for collaborating and working with
other departments at NTNU. Especially I would like to thank Syvert P. Nørsett, Bryn-
julf Owren, Anne Kværnø, Trond Kvamsdal, Richard E. Blake, Elena Celledoni, Hall-
geir Melbø, Jens Holmen, Bård Skaflestad and many others.

Many thanks go to friends from the department for the social aspects of my gradu-
ate student life. Among these are Pauline Haddow, Marco Torchiano, Diego Federici,
Daniel Moody, Christian Mönch, Amund Tveit, and many others.

Last, but not least, I owe the professors from my undergraduate school, Computer

xi

URN:NBN:no-3329

xii PREFACE

Science Department of the Politehnica University of Bucharest (PUB), a deep thank for
my formation.

A warm and hearty thank to my family for their precious support and encourage-
ment all these years. Friends from Romania and all over the world have inspired me
and contributed with their care throughout the years.

Roxana Diaconescu
August 9, 2002

URN:NBN:no-3329

Part I

Setting

1

URN:NBN:no-3329

URN:NBN:no-3329

Chapter 1

Introduction

1.1 Introduction

Concurrent programming initially evolved around operating systems design and im-
plementation. However, for more than two decades this topic has found interest in
other application areas such as distributed problem solving and planning in Arti-
ficial Intelligence (AI), real-time, embedded control systems, and large-scale, high-
performance computations, just to name a few. In the past decade scientific comput-
ing has emerged as a field that uses concurrent computing as a means to decrease the
execution time for applications in science or grand-challenge problems (e.g. avion-
ics, computational biology, climate modeling, etc.) that would otherwise require ex-
tremely long computation time. The complexity of such problems solved by using
parallel computing is ever-increasing, and the applications become larger and harder
to manage.

While it is important to consider the low-level details of scientific concurrent com-
puting to account for efficient execution, abstracting away from the machine archi-
tecture ensures conceptual generality. The concern for delivering high performance
for these applications should interplay with the concern for a software development
methodology to ensure not only efficient, but also robust, extendable and reusable
concurrent programs.

Research into programmability of concurrent scientific applications has revolved
around parallelizing compilers for Fortran languages for both shared-memory and
distributed-memory architectures. Research into effectiveness of these applications
has revolved around Fortran libraries tuned to exploit the underlying machine archi-
tecture. Although much of the insight into systematically exploiting parallelism is
awarded to such “bottom-up” approaches, this is an extremely complex and narrow
path and may lead to problems due to its tight relation to the language and archi-
tectural model. The Fortran language has an uncertain future since fewer and fewer
professionals are trained to use it. Parallelizing compilers are thus very useful for
transforming legacy applications without relying on human resources.

On the other hand, a “top-down” approach that considers the domain-specific ab-
stractions and captures the infrastructure building blocks common across applications
allows for more flexibility in adopting modern techniques for software development.

3

URN:NBN:no-3329

4 CHAPTER 1. INTRODUCTION

In the last decade, research on applying object-based1 techniques to scientific concur-
rent applications has revealed new challenges. That is, it is hard to prove the effective-
ness of the resulting end-user applications. On the other hand, many of these high-
level solutions adopt the traditional Fortran approach towards exploiting fine-grain
parallelism.

We are interested in shifting the approach towards the non-traditional, manual
parallelized applications and study their characteristics. Thus, we explore the appli-
cability of object-based techniques in the context of coarse-grain parallelism. We are
interested in answering questions such as:

� What is the main source of parallelism in the scientific applications?

� What is the main dimension for decomposing a problem, and what is the gran-
ularity of such a decomposition to exploit the parallelism inherent in the appli-
cations?

� What are the high-level programming concepts that increase programmability,
while guiding the system software to effectively exploit parallelism in scientific
applications?

Traditional language support for concurrency expresses functional decomposition
of a program along activities or control. Such decomposition is also called task par-
allelism. Data parallelism means that the same activity, or task, can be applied con-
currently to different instances of data. Decomposing a data parallel program along
activities, or control, results in fine-grain concurrency. Decomposing a data parallel
program along data, results in coarse-grain parallelism. Shared-memory concurrency
is suitable to express fine-grain and task parallelism. Distributed-memory concur-
rency is suitable to express coarse-grain and data parallelism.

This thesis explores the techniques for increasing the programmability and ef-
fectiveness for data parallel applications in distributed memory. The context of this
work is that of object-based concurrency and data parallelism in the field of scientific,
high performance computing. The work focuses on the development of a high-level
programming environment to support the application writer in designing and imple-
menting distributed-memory data parallel programs.

1.2 Objectives

Scientific computing is a non-traditional application domain for computer science,
especially for software engineering. While its social dimension through the techno-
logical impact is indisputable, it is considered a very narrow niche compared with
domains which impact every day life, such as information systems, business applica-
tions, etc.

1We use the term object-based to refer to both object-oriented approaches and approaches that have
the notion of encapsulation and consequently, the notion of object, but do not meet all the requirements
for an object-oriented language.

URN:NBN:no-3329

1.3. RESULTS 5

This thesis is an incremental contribution to improve the software methodology
for concurrent scientific software development. The work has also a challenging tech-
nical dimension: parallel computing is not current software practice, it is close to low-
level systems software and thus requires high expertise and good understanding of
non-traditional computing architectures and programming concepts (e.g. concurrent
programming).

Many aspects of what we may call automatic parallelization reduce to the ability
to capture and model parallelism directly into a language or a programming envi-
ronment such that a system automatically accounts for the concurrency aspects. This
ability relies on the possibility to discriminate between different types of parallelism.
The data parallel computation model is simple, symmetric and the commonalities be-
tween the applications that employ it suggest that is possible to capture the concur-
rency infrastructure in a uniform concurrency model.

The main objectives of this thesis are:

� To discuss and clarify the applicability of object-based techniques for concurrent
computing in the context of scientific, data parallel applications, and to demon-
strate their programmability benefit by devising a concurrency model reflecting
the application behaviour.

� To discuss the effectiveness of the existing concurrency models for data parallel
applications and to demonstrate the potential of loosely coupled, commodity-
oriented distributed architectures in delivering high performance at low cost for
coarse-grain, loosely synchronous parallel applications.

1.3 Results

This work is a combination of an adaptation of relevant theoretic base, programming
and computer simulations. We make several assumptions when trying to meet our
objectives. First of all, we start out with a specific class of applications, i.e. the solu-
tion of Partial Differential Equations (PDEs) for general geometries. Furthermore, we
focus on the Finite Element Method (FEM) for such applications. The choice of the
application class is due to the participation in the CSE (Computational Science and
Engineering) project at NTNU.

Throughout the thesis we try to emphasize two aspects of the applications do-
main. One is the distinction between the regular and irregular applications. The other
is the common denominator of data parallel applications and the synthesis of their
main features to enable a uniform treatment. Our goal is to devise a uniform, general
framework to treat coarse-grain data parallel applications.

Our approach occupies the middle ground between automatic and manual par-
allelization. That is, we devise a programming model for loosely synchronous data
parallel applications based on distributed and sequential objects. Then, we show how
data encapsulated in distributed objects is partitioned across multiple address spaces
and consistency is ensured at run-time.

The validation of our approach is built on two pillars: a prototype system for dis-
tributed numerical computations and an application test bed. The prototype system

URN:NBN:no-3329

6 CHAPTER 1. INTRODUCTION

offers support for automatic data layout and consistency for PDE applications that
use general geometries. The test bed consists of trivial and non-trivial data parallel
applications and two test problems. The experimentation base is not extensive. More
applications need to be implemented in order to fully account for the generality of
our approach. We present experimental data using the prototype system and the test
bed applications for the two test problems we have had available. These problems are
of a relatively small size compared with realistic, grand-challenge problems. We dis-
cuss the results in the light of the application features and explain potential benefits
or drawbacks when experimenting with other classes of problems.

There are several drawbacks of such an approach. First of all, the approach is tai-
lored for data parallel applications and thus it does not cover task parallelism. More-
over, the approach is not applicable to applications that exhibit fine-grain parallelism.
That is, in the presence of high communication requirements, the distributed memory
model can lead to significant performance losses. Finally, the experimentation base is
not exhaustive and thus, further work is needed at both techniques and applications
levels.

The main contributions of this thesis are:

� An object-based concurrency model for loosely synchronous data parallel appli-
cations in the light of programmability and effectiveness demands for the high
performance scientific applications.

� A general data partitioning and mapping strategy that subsumes the existing
strategies and allows a uniform treatment for decomposing a parallel problem
along the data space.

� A distributed consistency scheme that uses the general partitioning strategy to
maintain data consistency across address spaces in distributed memory. The
efficiency aspects of this scheme are discussed in detail and results are presented
showing that the approach is efficient.

� A prototype implementation of an object-oriented framework for distributed sci-
entific computations. The framework implements features relevant for building
and evaluating data parallel applications in numerical analysis domain, and of-
fers a user-friendly environment to conduct experiments.

1.4 Thesis Outline

This thesis does not require the reader to have any knowledge of numerical analy-
sis concepts. The main concepts are introduced from the perspective of their impact
on software construction and parallelization. The main concepts of concurrency are
also introduced. However, it is assumed that the reader has a basic understanding of
shared-memory and distributed-memory architectures, system software and object-
oriented concepts. The issues of object-based concurrency and data parallelism are
presented in detail, as well as programming languages and libraries examples.

Most of the results chapters were published as papers in international confer-
ences [39–42]. The remainder of the thesis is structured as follows:

URN:NBN:no-3329

1.4. THESIS OUTLINE 7

Part II Introduces the main concepts of object-based concurrency, data parallelism
and concurrent programming. This part is more than a state of the art for the
fields the contribution in this thesis draws upon. It discusses the existing ap-
proaches, their advantages, applicability and shortcomings, and it motivates the
need for the approach in this work.

Chapter 2 presents the main approaches to object-oriented/-based concurrency.
It discusses the most important models that integrate objects and processes,
namely the actor model, distributed shared object models and object-oriented
middleware.

Chapter 3 presents the main concurrency model for scientific applications, i.e.
data parallelism. It describes the main decomposition strategies along the
data space together with criteria typically used when deciding upon an ef-
fective decomposition.

Chapter 4 presents the main concurrent programming models: shared mem-
ory, distributed memory and distributed shared memory. It describes the
main concurrency concepts, i.e. synchronization and interprocess commu-
nication mechanisms, and presents examples of programming languages
and libraries for concurrent programming.

Chapter 5 presents a usability framework as a guideline to assess the pro-
grammability, or the ease of use for a parallelization environment (e.g. pro-
gramming language, library) with respect to which concurrency aspects are
explicit or visible for a user. Thus, it discusses various approaches to make
one or more aspects of concurrent programming implicit for a user.

Chapter 6 concludes the first part by relating the main concepts presented to
the context, approach, main results and contributions of this work. This
chapter describes the research method used, the main research questions
and hypotheses for this work, together with the approach and the valida-
tion plan.

Part III presents the core results and contributions of this thesis.

Chapter 7 describes a general data layout for decomposing the data space of
an application into multiple partitions and map these partitions to different
processing units (tasks). It further describes how such decomposition can
be used to ensure implicit data consistency for loosely synchronous data
parallel applications in distributed memory. A discussion of related work
and experimental results is included.

Chapter 8 discusses the efficiency aspects related to the distributed consis-
tency scheme which uses the general data layout presented in Chapter 7. It
shows that this approach exploits the applications features, i.e. loosely syn-
chronous, coarse-grain parallelism and nearest neighbour communication, to
ensure efficient data consistency. The chapter also discusses related work
and presents experimental results.

Chapter 9 discusses the data parallel programming model in the context of
high-level objects as a means to increase programmability. Our object-based

URN:NBN:no-3329

8 CHAPTER 1. INTRODUCTION

model uses the decomposition and consistency strategies presented in Chap-
ter 7 and Chapter 8 at a lower level to account for effectiveness.

Chapter 10 presents an inter-object concurrency model that uses the recursive
Set concept to express irregular, recursive data structures most common
for the applications that this work addresses. This model collects all the
threads from the previous three chapters into a uniform model for concur-
rency based on the notion of distributed recursive sets. The chapter also dis-
cusses related work and presents experimental results.

Chapter 11 describes the design rationale, requirements and implementation
for a user-friendly programming environment for building and evaluating
data parallel numerical applications.

Part IV concludes this thesis.

Chapter 12 discusses the main findings of this research and summarizes the
main results and contributions.

Chapter 13 presents some future directions for research.

Appendices containing index of terms, glossary of main concepts and more experi-
mental data can be found at the end.

Even though the thesis is organized such that the information flows logically from
one chapter to another, the chapters are self-contained. Thus, minimum explanations
about the main assumptions or the relations with other chapters are given.

URN:NBN:no-3329

Part II

Preliminaries

9

URN:NBN:no-3329

URN:NBN:no-3329

Chapter 2

Object Oriented/Based Concurrency

2.1 Introduction

This chapter presents the main approaches to object-oriented/based concurrency. The
main benefit of an object-oriented/based concurrent programming model is a higher-
level of abstraction in which some of the lower-level concurrency aspects are implicit.
However, this is not a complete review of the existing languages and systems (see
[26, 112] for complete surveys).

The chapter describes three levels of integration between objects and processes.
Each of the approaches is discussed in turn by using an example of language imple-
mentation. We describe how concurrency is achieved in each of the approaches and
what kind of applications can benefit from it.

The three levels of integration between objects and processes are:

1. The distinction between objects and processes is not visible. Thus, they denote
the same entity, an actor. Actors communicate only through messages. We dis-
cuss the actor model [3] and the ABCL/1 [114] language as most representative
for this approach.

2. The distinction between objects and processes is explicit. Processes are active
entities that communicate through passive, shared objects. The processes may
run in different address spaces. We discuss the Orca [16] language to illustrate
such an approach.

3. The distinction between objects and threads of execution is explicit, in a multi-
threaded execution over a shared memory. We discuss Java multi-threading [71]
as representative for this approach. We also introduce object-oriented middle-
ware.

The chapter is organized as follows: Section 2.2 discusses the actor model, the type
of concurrency it reveals and its applicability. This section also introduces the concepts
of active and passive objects originating from the actor model. Section 2.3 discusses a dis-
tributed programming model based on passive shared objects and its implementation
in the Orca language. It further introduces partitioned objects to exploit data paral-
lelism and their implementation in an enhancement of the Orca language. Finally, it

11

URN:NBN:no-3329

12 CHAPTER 2. OBJECT ORIENTED/BASED CONCURRENCY

Mail queue
1 2 n n+1

1

Mail queue

Create tasks

Task
Create actors

Specifies replacement

. . .

. . .

Xn Xn+1

Y1

Figure 2.1: The behavior of an actor in terms of its possible actions.

discusses the Java multi-threading shared-memory concurrency model. Section 2.4
discusses the object-oriented distributed middleware and its underlying communica-
tion mechanism. Finally, Section 2.5 summarizes the main points of this chapter.

2.2 Actor-based Languages

2.2.1 The Actor Model

The actor model integrates the notions of objects and processes into object-oriented
concurrency. The main benefit of the model is the implicit concurrency achieved by
unifying the concepts of processes and objects under a common abstraction, i.e. an
actor. In the original actor model proposed by Agha [2, 3], the basic unit in the lan-
guage is an actor described by a mail address and behavior. The central idea of the
actor model is to describe the behavior of an object as a function of the incoming com-
munication.

The model: Actors encapsulate data and behavior. Actors represent history sen-
sitive objects that allow the change of state variables. Therefore, actor languages ex-
tend the pure functional languages with “history sensitive” behavior needed to model
shared mutable data objects. The “become” primitive enables state changes.

Actors take a functional view of an object’s internal behavior. The behavior of an
actor consists of three kinds of actions: send communications, create new actors and
specify replacement behavior through delegation. The replacement behavior will ac-
cept the next communication. Figure 2.1 depicts the behavior of an actor. In Figure 2.1
a task is a communication together with its target actor.

Concurrency: Actors communicate only through messages in a point-to-point asyn-
chronous buffered communication. Concurrency is achieved in actor languages in two
ways:

URN:NBN:no-3329

2.2. ACTOR-BASED LANGUAGES 13

1. By sending a number of messages in response to a single message and thus acti-
vate concurrently independent objects.

2. Through computation decomposition: an actor may create several customers
which function concurrently with their creator.

The creation of a new actor enables the overlapping of communication and com-
putation. An actor executes an action in response to a message. An actor may delegate
another actor to take care of a request through the replacement behavior.

The replacement behavior does not update the variables of the old state. The re-
placement concept is a realization of the serialization mechanism, or pipelining (see
Figure 2.1)and thus, it eliminates the disadvantages of the assign behavior. That is,
excluding assignments to a store allows to concurrently evaluate behavior. Originally,
the pure functional languages naturally provide this possibility.

Actor languages were originally designed for artificial intelligence applications.
Actor languages model code sharing through replacement behavior (delegation) and
modularity (actors encapsulate data and behavior). Because of this flexible structure
they are suitable to rapid prototyping applications.

Actor languages express fine-grain, implicit concurrency. Moreover, they express
task-level parallelism. Actor languages have no provision for expressing data-level
coarse grain parallelism.

2.2.2 ABCL/1

ABCL/1 [114] is a language which has evolved from the actor model. The notion of
objects is different from the notion of actors. The basic unit in ABCL/1 is an object
having its own processing power and local persistent memory. Thus, in contrast to
the actor model, this model is process based.

The interaction between objects is concurrent message passing. In contrast to the
actor model, which allows only asynchronous communication, ABCL/1 has provi-
sions for synchronous message passing.

The model: An object in ABCL/1 has three modes: dormant, active, or waiting.
An object in the dormant mode does not perform any activity. An object becomes ac-
tive as a result of an incoming request. The object decides whether to accept a request
and what action to execute in response. While in active state, an object may wait for a
message specified in the message pattern to arrive.

The behavior of an object is described by “scripts”. The scripts specify the mes-
sages that the objects accept, and which actions to take upon receiving a message.

Concurrency: Actors find out about the identities of other actors that they “know”.
Actors communicate in a point-to-point message passing style. The transmission of
messages is asynchronous, that is, an object may send a message whenever it desires.
The reception of the messages is ordered, that is, the messages which arrive concur-
rently will be ordered, or serialized. Messages arriving to an object are organized in
priority queues. Each object has two associated priority queues: the ordinary mode
queue and the express mode queue. After completing an action in response to an
incoming request, an actor selects the next request in the queue.

URN:NBN:no-3329

14 CHAPTER 2. OBJECT ORIENTED/BASED CONCURRENCY

ABCL/1 defines three types of messages for communication: past (send and no
wait), now (send and wait) and future (reply to me later). The past messages model
concurrency through asynchronous communication, as in the original actor model.
Asynchronous communication allows overlapping of communication and computa-
tion and thus increases concurrency.

“Now” messages model synchronization of concurrent activities performed by in-
dependent objects when used in conjunction with the “parallel” construct. “Future”
messages express relaxed synchronous communication. “Future” messages allow for
overlapping of computation and communication, and thus increase concurrency for
“now”, synchronous communication. In the original actor model communication is
only asynchronous and there are no “now” and “future” types of messages.

The language has provision for expressing explicit parallelism through the parallel
and multicasting constructs. Parallelism can also be implicitly achieved through con-
current activations of independent objects – similar to actor languages and through
“past” and “future” messages.

ABCL/1 is suitable for applications such as distributed problem solving and plan-
ning in AI, modeling human cognitive processes, designing real-time and operating
systems, and designing and constructing office information systems. The language is
not designed for coarse-grain, data parallelism.

2.2.3 Concluding Remarks

The actor model introduces the notion of “active objects” that integrate the concepts of
object and process. These concepts are similar in that both can be viewed as commu-
nicating encapsulated units. In ABCL/1, an active object has its own private activity
(own computational resource). Objects that are not active, are “passive”. A passive ob-
ject becomes active by responding to an incoming request. An active object becomes
passive by completing the action associated with a request.

In the actor models there is no visible distinction between objects and processes.
Such uniform models are elegant and have clean semantics. However, intra-object
concurrency is difficult to implement, and it requires special mechanisms to ensure
consistency. For efficiency reasons, fully concurrent objects are usually implemented
as passive objects (standard objects without any activity) without any synchroniza-
tion, and they are replicated on every processor [26].

Other models distinguish between data and behavioral objects [84]. Thus, one
type of objects is used to structure shared memory as a collection of “passive objects”,
while a process is considered a special kind of “active process object”. The actions on
passive shared objects are performed according to their declared interface. The active
objects access the shared objects using synchronization constructs. Thus, two active
objects communicate only through a passive intermediary. Extending the model to a
distributed-memory environment involves a hidden form of message passing. In a
distributed memory setting, objects become “active” in response to communication.

In the next section we will present an object model that captures the second view
of objects and concurrency, where the distinction between objects and processes is
explicit, at the language level.

URN:NBN:no-3329

2.3. DISTRIBUTED SHARED OBJECT MODELS 15

2.3 Distributed Shared Object Models

Many systems use the shared virtual memory (SVM) concept [74] to hide explicit mes-
sage passing between different address spaces in a distributed-memory environment.
This section discusses application-driven SVM implementations that ensure data con-
sistency, rather than memory consistency. Thus the granularity of the consistency pro-
tocol is that of data objects, not transparent pages. This model of consistency can
benefit from the object-oriented features with some system support.

The distributed shared object models promote the notion of virtually sharing data.
These are software implementations of the virtually shared memory concept. In such
approaches, data objects are replicated, instead of physical pages (as in shared virtual
memory systems).

The Orca [15] language is an implementation of a shared-data object model that
can be used to write parallel applications on loosely-coupled systems. Orca is an
object-based language. That is, it supports objects that encapsulate data and define
operations to access the data, but it does not support inheritance.

The model: Shared data is encapsulated in passive-data objects, which are vari-
ables of user-defined abstract data types. An abstract data type has two parts:

1. A specification of the operations that can be applied to objects of this type.

2. The implementation of the operations (declaration of the local variables of the
object and code implementing the operations).

Concurrency: Orca supports task parallelism. Instances of an abstract data type
can be created dynamically, each encapsulating the variables defined in the implemen-
tation part. These objects can be shared among multiple processes, typically running
on different machines. Each process can apply operations to the object, which are
listed in the specification part of the abstract type. The objects become a communica-
tion channel between the processes.

An operation execution has the following semantics:

1. All operations on a given object are executed atomically. The model guarantees
serializability (loose, not strict), i.e. the sequential order is guaranteed, but not
the order of the invocations.

2. All operations apply to single objects, so an operation invocation can modify at
most one object. Making sequences of operations on different objects indivisible
is the responsibility of the programmer.

The distribution of objects and their replication are system tasks, and thus they
are hidden from the user. The user explicitly maps the tasks to processors through
language constructs that specify for each process a processor to run on.

Access to remote data is done through replication to speed up access to shared
data and decrease communication overhead. This also leads to increased parallelism
by parallelizing simultaneous read operations.

There are several replication strategies:

1. With no replication each object is stored on one specific processor.

URN:NBN:no-3329

16 CHAPTER 2. OBJECT ORIENTED/BASED CONCURRENCY

2. With full replication each object is replicated on all processors.

3. With partial replication each object is replicated on some of the processors, based
on compile-time information, run-time information or a combination of both.

An advanced scheme is to let the run-time system decide dynamically where to repli-
cate each object.

The system has to ensure consistency for the replicated objects. There are two main
mechanisms for ensuring consistency:

1. Invalidation protocols. With this approach, an update of a data object invali-
dates all its replicas in other address spaces. Thus, a subsequent read access to
a replicated object has to fetch the valid data from the processor that holds their
last valid values.

2. Update protocols. With this approach, an update to a data object causes the up-
date of all its replicas in other address spaces. Thus, on write, the updated data
values are broadcast to all processors holding replicas of these data. A subse-
quent read will not require communication, since the local values are consistent.

The invalidation strategy has a write-once semantics: a write invalidates a copy.
The update strategy has a write-through semantics: a write updates the copies. A
design decision between invalidation or update schemes depends on the ratio between
read and write operations. If read operations are more frequent than write operations,
then update schemes are more efficient since they generate communication on write.
If write operations are more frequent, then invalidation schemes are less expensive.

The authors indicate that Orca is “intended for high performance applications not
particularly focused on banking, airline reservation systems, not for fine-grain, intra-
object parallelism” [16]. However, it is obvious that the explicit distinction between
shared objects and processes enables the expression of many of the distributed pro-
gramming models, such as client/server, master/workers etc. Generally, task paral-
lelism captures best distributed problem solving, in which functionality can be broken
down into smaller activities that are solved separately. However, the shared objects
in Orca and its consistency model increase the granularity of the concurrency of actor
models.

2.3.1 Partitioned Objects

A later enhancement of Orca integrates task and data parallelism. However, data
parallelism is here limited to regular data layouts and regular partitioning of data:
“the advantage of data parallelism is that it is easy to use. The programmer merely
specifies the distribution of data structures, and the compiler takes care of the low-
level details, such as the generation of messages and synchronization” [55].

Note that the applications which use irregular data representations and general
data partitioning functions are still data parallel. But they are not easy to parallelize.

The model: Data parallelism is achieved through a special kind of objects called
partitioned objects. These objects partition shared information that is physically dis-
tributed over many processors.

URN:NBN:no-3329

2.3. DISTRIBUTED SHARED OBJECT MODELS 17

The partitions are regularly distributed such that each processor owns a partition
and replicates the remaining partitions. The computation model has the owner com-
putes semantics: the processors do not observe updates on remote objects until the
operation is completed. The owner can write the owned partition and only read the
replicated data. In this approach the data is fully replicated in each address space. An
update consistency scheme is employed on write operations. While the full replica-
tion of data increases concurrency on read, it results in inefficiency for applications
that use very large data.

Parallelism is achieved through parallel operations defined on the partitioned ob-
jects. These operations apply to array-based structures. The user explicitly specifies
the partitioning and distribution of data by using system functions.

The authors observe that “a suitable object partitioning that reflects the data lo-
cality in the program will result in lower communication overhead, because the unit
of transfer will be an entire partition rather than a single element”. Since the user
specifies the partitioning, this is neither guaranteed nor controllable.

2.3.2 Multi-threaded Execution over Shared Memory

Concurrency in shared-memory environments is exploited through multi-threading.
That is, multiple actions may be carried out concurrently by independent execution
threads. A process may spawn multiple threads. Threads are light-weight processes
that share the same address space. A process has its own address space. Thus, thread
management (creation, termination, context switch) involves lower cost than process
management.

Multi-threading exploits data parallelism by having one thread of computation per
data item. The form of concurrency is fine-grain, block-level concurrency, sometimes
called fork/join parallelism. That is, the sequential execution forks into multiple exe-
cution threads in the beginning of a parallel block, which join back into the sequential
execution thread at the end of the parallel block. The High Performance Fortran (HPF)
language models fine-grain concurrency model.

Java multi-threading is the object variant of the shared-memory concurrency. Many
concurrent object models use this style of concurrency to integrate task and data par-
allelism in distributed shared memory environments. Thus, we discuss Java multi-
threading in this section.

Concurrency: In Java, multiple activities may proceed concurrently by initiating
an activity in a new thread, and causing it to proceed asynchronously. The language
provides several ways to create concurrency:

� The Runnable interface (java.lang.Runnable): an interface that has only the
run() method. In Java, interfaces say nothing about their implementation (or
code). Objects of a class with a run() implementation assign the activity (code)
implementing it to a thread of execution.

� The Thread class can be used to associate a runnable object with a thread. Thus,
the thread will invoke the runnable objects’ run() method on start. A thread can
also be created independent of a runnable object.

URN:NBN:no-3329

18 CHAPTER 2. OBJECT ORIENTED/BASED CONCURRENCY

There are several synchronization mechanisms in Java. Java guarantees that most
primitive operations are atomic, except assignments to long and double. Java pro-
vides the synchronize keyword for method synchronization. By annotating methods
with this keyword, one thread at the time executes the method code and obtains access
to the object.

The code within a synchronized method may make a self-call to another method in
the same object without blocking. However, synchronize does not ensure exclusive
access between synchronized and unsynchronized methods.

Subclasses may override synchronized methods. The synchronize qualifier is not
inherited, and if desired it must be specified; otherwise, the method is treated as un-
synchronized. The methods declared in Java interfaces cannot be synchronized.

Java also allows for synchronization at the block level. That is, one thread at the
time executes the code within the block and so obtains access to the object.

According to [71], passive objects model data while active objects model action
(function). That is, passive objects encapsulate data that are used through their inter-
face. Active objects model computational kernels, i.e. they do one thing at the time.
Active objects may respond to action synchronously, or asynchronously. Passive ob-
jects are usually sequential objects in Java. Java threads allow active objects by creating
a new asynchronous activity.

2.3.3 Concluding Remarks

The distributed shared object models target usability for distributed-memory pro-
gramming by making the aspects of distribution implicit. These models either directly
implement a virtually shared memory, or rely on an existing implementation of it.

In either case, a memory consistency model is considered. The consistency model
can be at the hardware-, physical pages-, or data objects level. The memory consis-
tency schemes which target general system support are conservative. However, re-
laxation schemes are possible as application knowledge is taken into account. Con-
sistency models can be specialized to the extent that they only support one class of
applications. While less applicable, such tailored models may offer good scalability
for virtually shared memory.

2.4 Object-Oriented Middleware

The term middleware [73] refers to communication support for distributed applica-
tions. This level sits between network operating systems and applications. The mid-
dleware layer uses the primitives provided by the network operating system to pro-
vide higher-level communication support for distributed application writers. Exam-
ples of middleware include database (ODBC SQL), groupware (Lotus Notes), Internet
(HTTP), and object (Corba, Java RMI) middleware.

Object-oriented middleware is based on a remote method invocation mechanism.
The remote method invocation is the object variant of the remote procedure call (RPC).
That is, the caller makes a call to a callee residing in a remote address space. The caller,
sometimes called the client, is responsible for marshaling the actual arguments for the

URN:NBN:no-3329

2.4. OBJECT-ORIENTED MIDDLEWARE 19

Stub
Client side

−Marshal parameters
Send request

Implementation

Skeleton
Server side

−Invoke implementation

return

−Receive return
−Marshal result
−Send reply

−Return result

−Unmarshal reply

−Unmarshal parameters

Remote Method Invocarion

Figure 2.2: Java Remote Method Invocation.

procedure call and send it to the callee, or the server. The server is responsible for
unmarshalling the parameters of the procedures, executing the procedure locally and
sending the results back to the client. The client unmarshals the results and returns
from the remote procedure call.

The remote call mechanism imposes overhead associated with the context switch.
That is, marshaling and unmarshaling of the procedure arguments and results, mes-
sage creation and the procedure execution itself. Moreover, the remote procedure call
is synchronous: the client blocks on request and waits for the server to return the call.

Object-oriented middleware implementations add non-synchronous forms of com-
munication to the RPC mechanism. These are one-way requests and deferred syn-
chronous execution. One-way requests are asynchronous communication where the
client does not wait for the result from the server. This form of communication in-
creases concurrency by overlapping communication and computation and by allow-
ing clients and servers to proceed concurrently. Deferred continuous execution is a
relaxed form of synchronization in which the client can proceed for a while until the
server delivers the results back. Asynchronous requests are usually implemented
in object-oriented middleware by using multi-threading (e.g. a new thread may be
spawned to take care of communication, concurrently with the computation thread).

2.4.1 Java Remote Method Invocation

Java RMI is designed to provide a direct foundation for distributed object-oriented
computing. RMI is Java’s remote procedure call (RPC). Java adds object-oriented fea-
tures to the traditional RPC mechanism. That is, RMI can pass full objects as argu-
ments, not just predefined data types (as with RPC). Java can move behavior (class
implementations) between client and server.

Java RMI offers support for distributed garbage collection to collect remote server
objects that are no longer referenced by any client in the network.

RMI is multi-threaded, allowing servers to exploit Java threads for the concurrent
processing of client requests.

Figure 2.2 depicts the basic functionality of Java RMI. When a server is exported,
its reference type is defined. When a client receives a reference to a server, RMI down-

URN:NBN:no-3329

20 CHAPTER 2. OBJECT ORIENTED/BASED CONCURRENCY

loads a stub which translates calls on that reference into remote calls to the server.
In Figure 2.2 the stub on the client side marshals the arguments to the method us-
ing method serialization, and sends the marshaled invocation to the server. On the
server side, the call is received by the RMI system and connected to a skeleton. The
skeleton unmarshals the arguments and invokes the server’s implementation of the
method. When the server’s implementation completes, either by returning a value
or by throwing an exception, the skeleton marshals the result and sends a reply to
client’s stub. The stub unmarshals the reply and either returns the value, or throws an
exception as appropriate.

Stubs and skeletons are generated from the server implementation. Stubs use ref-
erences to talk to the skeleton. The references can be for single or replicated servers,
using unicast or multicast requests [56].

2.4.2 The CORBA Distributed Object Model

CORBA (Common Object Request Broker Architecture) is the OMG (Object Manage-
ment Group) middleware solution and defines an open standard for distributed ob-
ject computing. The central idea is to separate the specification of a class from its
implementation to achieve platform independence in heterogeneous distributed envi-
ronments. For this purpose CORBA defines an Interface Definition Language (IDL).
IDL permits interfaces to objects to be defined independently of their implementa-
tions. After defining an interface in IDL, the interface definition is used as input to
an IDL compiler which produces output that can be compiled and linked to an object
implementation and its clients.

Client applications may invoke operations on object implementations in a location
independent manner. CORBA adds to the RPC communication model object-oriented
language features and design patterns for distributed communication.

The CORBA architecture is based on the Object Request Broker (ORB) which trans-
parently implements RPC functionality on operation invocations. Thus, when a client
invokes an operation, the ORB finds the object implementation, it transparently acti-
vates it and returns the response to the client.

The CORBA distributed object model is suitable for client/server applications, or
applications based on a request/reply paradigm. One of the objectives of CORBA is
to make it easier to build management and system integration applications. The idea
is that distributed objects can act as gateways to existing heterogeneous information
systems, integrating them into a uniform address space.

Peer (symmetric) applications (Single Programming Multiple Data - SPMD style)
are cumbersome to express with the use of the CORBA client/server (asymmetric)
computing model. Several studies indicate that conventional CORBA implementa-
tions have poor performance over high-speed networks [49]. The main sources of
overhead are: non-optimized presentation layer conversions, data copying and mem-
ory management, excessive control information carried in request messages, and inef-
ficient receiver-side demultiplexing and dispatching operations.

URN:NBN:no-3329

2.5. SUMMARY 21

2.4.3 Concluding Remarks

Distributed object-oriented middleware offers client/server communication based on
the remote procedure call mechanism. The main difference from the traditional RPC
mechanism is that the middleware adds object-oriented features and thus allows ap-
plication developers to easily build distributed applications. However, both CORBA
and Java RMI add more layers to support location-independent invocations, and thus
introduce large overheads in the remote method invocation [49, 63].

Some studies suggest [63] that for applications which transfer small amounts of
information between objects, the performance of Java RMI and CORBA are similar.
However, under heavy client load applications, CORBA may perform better. CORBA
also offers more complex functionality than Java RMI. Therefore, it adds more archi-
tectural layers and thus overhead. These studies indicate that RMI is useful for simple
applications, and CORBA is useful when the applications become more complex.

Generally, the client/server model does not directly address concurrency. While
concurrency is achieved to some extent, this model is not suitable to effectively exploit
task or data parallelism.

2.5 Summary

This chapter has presented three approaches to integrate concurrency into object-
oriented languages. The main benefit of all these approaches is to elevate the level
of abstraction and make low-level concurrency aspects transparent to the application
developer. Throughout the discussion it was pointed out that each model exploits a
specific type of concurrency and is suitable for certain kinds of applications. To sum-
marize our conclusions:

� Actor languages capture fine-grain concurrency. They represent an elegant so-
lution to implicit concurrency. These languages exploit task parallelism mostly
through asynchronous message passing. However, they are hard to implement
efficiently. ABCL/1 evolved from the actor model. The main enhancement over
the original actor model is to increase the concurrency granularity by adding
synchronous communication and independent behavior to actors (own compu-
tation power). While achieving more flexibility in modeling realistic systems,
the model makes some aspects of concurrency explicit.

� Some distributed shared object models make a distinction between process and
object at the language level. Processes communicate through shared objects and
thus these models also express task parallelism (since the concurrent accesses
to objects are serialized). Multi-threaded fine-grain concurrency is usually em-
ployed to express data parallelism. With this approach, one thread is spawned
per element computation. Java multi-threading is the object solution to fine-
grain concurrency. Many concurrency aspects are explicit and a larger burden is
placed on the programming side.

� Finally, object-oriented middleware is suitable to model synchronous, request/response
applications based on the RPC mechanism in a distributed-memory environ-

URN:NBN:no-3329

22 CHAPTER 2. OBJECT ORIENTED/BASED CONCURRENCY

ment. While addressing platform independence, this model does not naturally
exploit concurrency.

None of the existing models directly addresses coarse-grain, data parallelism. Many
existing approaches model fine-grain concurrency over shared virtual memory. We re-
view such approaches in more detail in a later chapter.

URN:NBN:no-3329

Chapter 3

Data Parallelism

3.1 Introduction

Regular problems represent data objects as dense arrays as opposed to non-standard
representations (e.g. special formats for sparse arrays). A large body of work to exploit
data parallelism either through discovering parallelism into programs, or through
modeling parallelism explicitly by using language facilities, addresses the regular
problems.

Irregular problems represent data objects by using non-standard structures, such
as indirection arrays (e.g. in Compressed Row Storage format - CRS - for sparse matri-
ces three arrays are used: one array which lists all non-zero elements, one array which
lists indices of rows for data, and one array which lists all indices of columns for data).
The work on discovering parallelism in irregular data parallel applications is limited
by the lack of language support to express irregular data structures. Data restructur-
ing techniques are used for sparse array representations [22,79,105]. These techniques
are based on the linear array representation as well. Many irregular applications use
non-standard data representations such as graphs, trees, or general geometry meshes.
These applications are hard or even impossible to parallelize with existing compiler
and run-time support.

Data parallelism is exploited by decomposing a problem into subproblems which
then can be solved concurrently. Early work on discovering parallelism based on the
“independence constraint” proves that this requirement may be too strict, and it does
not fully exploit the inherent parallelism in the applications. Coarse-grain parallelism
in distributed memory means relaxing the independence constraint to increase the
parallelism in the programs.

Throughout this chapter we use data representation to denote a data structure at the
programming language or application level. We use data layout to denote the parti-
tioning and mapping of data onto processors to exploit concurrency.

This chapter presents the main techniques to effectively exploit data parallelism in
scientific applications together with their applicability. The chapter discusses the de-
composition of data and computations of a program using the following perspectives:

� Data layout refers to the process of partitioning the data and mapping it onto
processes in an architecture independent fashion. This chapter discusses the

23

URN:NBN:no-3329

24 CHAPTER 3. DATA PARALLELISM

data layout along two axes:

– Regular partitioning is a linear layout function that specifies a symbolic
expression for mapping a variable1 in the function definition domain to
a value. There are two possible regular partitioning schemes: block par-
titioning and cyclic partitioning. Regular partitioning is suitable for multi-
dimensional array representations.

– General partitioning is not tied to a specific data representation or a com-
putation model. It can be seen as a layout function that specifies a value
for each variable in the function definition domain. Therefore, it does not
say anything about how the values are obtained. Any partitioning func-
tion can be used, including symbolic expressions. General graph partitioning
algorithms are suitable to express general partitioning.

� Optimal partitioning refers to the process of choosing the best partitioning strat-
egy for a particular application, or class of applications. Some problems related
to finding efficient data layouts are known to be NP complete. This chapter dis-
cusses data layouts according to the following criteria:

– Execution models. One approach to finding the optimal data layout is to
use a set of available data layouts together with a heuristic-based execution
model that estimates the program execution time for a given layout. The
data layout that requires the least execution time is the optimal layout.

– Data locality. Another approach to efficient data layout is to preserve lo-
cality of reference when decomposing data or computations. Data locality
can be tied to a particular architecture and thus exploit physical locality
through registers, cache-replacement strategies, multi-word cache lines or
local address space. Standard layouts (array based) exploit the linear mem-
ory organization. Non-standard layouts require special support to exploit
locality. Efficient data locality strategies try to match the reference patterns
to the underlying architectures (e.g. cache-based architectures).

– Load balance. Efficient data layout requires that the same work load is
mapped to each execution unit. Architectural considerations may dictate
the estimation of the load. In homogeneous environments the amount of
work is equally divided between the processing units. In heterogeneous
environments, the load balance needs to account for the differences in the
processing characteristics (speed, load, etc.).

The remainder of this chapter is organized as follows: Section 3.2 discusses data
partitioning and mapping strategies. It describes the general formulation of the data
partitioning problem together with some practical regular and general partitioning
strategies such as block, cyclic and general graph partitioning. Section 3.3 discusses ex-
isting criteria for finding an optimal data layout. It discusses various execution mod-
els to select the best mapping strategy. It also discusses the data locality and load

1The word variable in relation to the partitioning function is used with its mathematical sense, rather
than in a programming language context.

URN:NBN:no-3329

3.2. DATA PARTITIONING AND MAPPING 25

balance criteria to find the most effective data layout. Finally, Section 3.4 summarizes
the chapter.

3.2 Data Partitioning and Mapping

This section formulates the data partitioning problem as described in [107]. Further-
more, it discusses various practical partitioning and mapping strategies, their ratio-
nale and applicability.

The notation in [107] is general and thus not necessarily tied to a specific execution
model (architecture) or programming language. A data distribution is a mathematical
function, called a map, that specifies how a bounded set of data items, called an index
space, is distributed over a bounded set of processes.

General Problem Formulation

Let Ip be an index set as an arbitrary set of integers with the range 0, Ip � 1.

Definition 3.1 A P-fold distribution of an index setM is a bijective map µ(m) = (p, i) such
that:

µ :: M! (p, i)j0 � p < P and i 2 Ip : m ! (p, i)
and

µ�1 :: f(p, i) : 0 � p < P and i 2 Ipg !M : (p, i)! m

The definition describes a data distribution by means of a bijective map of the
global index m to a pair (p, i), where p is the process identifier and i the local index.

Let M = 0, M � 1 be the set of global indices. For a given p 2 0, P� 1, the subset
Mp is the subset of global indices mapped to processor p by the P-fold data distribu-
tion µ. That is

Mp = [i2Ipfµ
�1(p, i)g.

Because the P subsets Mp with 0 � p < P satisfy

M = [P�1
p=0Mp and Mp \Mq = ; if p 6= q,

they define a partition of M. Because µ is a bijective map, the number of elements of
Mp equals the number of elements of Ip, or

8p 2 0, P� 1 : Mp = jMpj = jIpj = Ip

Practical Views on Partitioning

A concrete partitioning choice is determined by the underlying execution platform
architecture, operating system and compiler support, as well as programming lan-
guage support. For example, early work on partitioning and mapping requires that
the sizes of data sets and the number of processing units are known at compile-time.
Thus, these approaches promote static data partitioning. One advantage of static data

URN:NBN:no-3329

26 CHAPTER 3. DATA PARALLELISM

partitioning is that it eliminates the run-time overhead. With such approaches, the in-
dex set in the general partitioning problem formulation is mapped to the iteration set
for the sequential loop parallelization. Such approaches exploit fine-grain, loop-level
parallelism.

A computation decomposition [58] splits the program into tasks that can execute
concurrently on a multiprocessor. Data partitioning refers to the distribution of a large
global data set (usually the iteration space) among concurrently executing processors.
Data partitioning in sequentially iterated loops divides the index sets of the inner
loops among the processors. Each processor executes the same code on a contained
area of a data set, typically communicating with processors that work on neighbour-
ing areas.

Later work adds run-time elements to the partitioning process. Wholey [110] pro-
poses that the data mapping process is carried out in two phases, by two processes:

1. Alignment: a compile-time process that determines the relationships between
mappings of different collections of data. The alignment information is derived
from the structure of the program and is independent of quantities that are po-
tentially unknown until run-time (input data size, number of processors).

2. Layout: an architecture dependent run-time process that chooses the final map-
ping based on run-time information (data size, number of processors) and a cost
model of the target machine to minimize the estimated cost of the program. The
layout process searches the space of possible data mappings, subject to the con-
straints of alignment, for a data mapping that minimizes the estimated cost.

High Performance Fortran (HPF) adds concurrency features to the Fortran lan-
guage. HPF allows a programmer to specify how data is distributed over processors.
Kennedy et. al. [68] propose an automatic data layout in HPF [68] that is specified by
the alignment of data and its distribution. In HPF, arrays are aligned relative to each
other by specifying a mapping of their elements to the same array of virtual processors
called “template”. The array of virtual processors is then distributed over the physical
processors. The HPF data layout and the concurrency model are representative of the
existing data parallel frameworks.

All these views on data layout are coupled with the assumption that the informa-
tion on data accesses can be computed statically, in a precise or symbolic manner. This
usually holds in the context of Fortran applications with array accesses as affine ex-
pressions of loop indices. These approaches rely on the linearity and regularity of the
data structures, and on the ability to align structures with respect to themselves and
in memory to exploit the locality of reference. Therefore, these views apply to regular
applications.

3.2.1 Block Partitioning

Block partitioning is at the core of exploiting parallelism in regular and even some-
times irregular applications. The mathematical formulation of this distribution func-
tion is given in [107], and is called linear distribution.

URN:NBN:no-3329

3.2. DATA PARTITIONING AND MAPPING 27

A linear distribution allocates consecutive array elements to consecutive local-
array entries. We give the formulas for the general load-balanced linear distribution,
where M = PL + R, and 0 � R < P:

L = b
M
P
c

R = M mod P

µ(m) = (p, i), where
�

p = max(b m
L+1c, bm�R

L c)
i = m� pL �min(p, R)

(3.1)

This maps L + 1 components to processes 0 through R � 1, and L components to
the remaining processes. Other data-distribution quantities are given by:

Mp = fm : pL + min(p, R) � m < (p + 1)L + min(p + 1, R)g

Ip = b
M + P� p� 1

P
c

Ip = fi : 0 � i < Ipg

µ�1(p, i) = pL + min(p, R) + i. (3.2)

The block distribution is suitable for dense array structures. Due to its straight-
forward formulation and mapping to the linear array structure, many parallelizing
compilers use this distribution to symbolically compute data accesses across multi-
ple address spaces. However, for irregular applications, the block distribution does
not reflect the locality of references. Nevertheless, some of the existing approaches to
automatic parallelization for irregular applications use this distribution. In the man-
ual parallelization approach, the application writers use non-standard distributions to
obtain good scalability.

One approach that considers the application structure to adjust the standard block
distribution, provides a general block distribution that generalizes the existing block
distributions [36]. That is, a fully general block distribution partitions the elements
of an array into rectangular blocks whose sides are parallel to the data coordinate
axes. Different blocks can have different sizes. A block in d-dimensions is a rectangu-
lar parallelepiped in d-dimensions and can be specified by two vectors (e.g one of its
vertices and the extent of the parallelepiped in each dimension). This approach ad-
dresses the requirements of a special class of applications, the semi-structured appli-
cations. The computation in semi-structured methods is characterized by irregularly
organized regular computations on the underlying data. The underlying data is spec-
ified as grid components which are organized in an irregular fashion in a grid hierarchy
which itself changes dynamically.

In contrast to this fully general distribution, for dense programs, block and cyclic
distributions (as in HPF) are standard, and a simple rule like the owner-computes
is used to determine the iterations to be performed on each processor. In this case,
closed-form linear integer constraints can be used to express the local storage require-
ments, the local iteration sets, communication sets, as well as placement of commu-
nication. This does not apply to the semi-structured applications as described in [36].
Thus, the fully general block distribution partitions the elements of an array into reg-
ular blocks whose sides are parallel to the data coordinate axes. A fully general dis-

URN:NBN:no-3329

28 CHAPTER 3. DATA PARALLELISM

tribution of a data item D specifies a tuple of the form (Bi, Pi), where Bi is a block in
d-dimensions defined as a rectangular parallelepiped in d-dimensions.

3.2.2 Cyclic Partitioning

Cyclic partitioning is sometimes also called scatter distribution [107]. Cyclic partition-
ing, as block partitioning, is a form of regular data distribution that also is applicable
to linear array structures. The cyclic distribution leads to even less complex formula-
tions than the block distribution. We give the precise mathematical formulation below,
according to [107].

The scatter distribution allocates consecutive vector components to consecutive pro-
cessors. To distribute the index set M = 0, M � 1 over P processors by the scatter
distribution, let [107]:

µ(m) = (p, i), where
�

p = m mod P
i = bm

P c
(3.3)

It follows that:

Mp = m : 0 � m < M and m mod P = p

Ip = b
M + P� p� 1

P
c

Ip = i : 0 � i < Ip

µ�1(p, i) = iP + p (3.4)

Cyclic partitioning is useful for programs that do not require overlapping input
data sets on neighbouring processors (otherwise each data item would have to be
replicated on several processors).

3.2.3 General Partitioning

A general partitioning procedure maps the global data space (index set in the above
formulations) onto multiple address spaces through a bijective map which specifies a
unique mapping location in an address space for each global data item. Therefore, this
function is not specified by a symbolic expression, but in a discrete fashion, for every
variable in the input domain.

Not using a symbolic expression for the partitioning function does not mean that
the partitioning should be random, as suggested in [107], where the general distri-
bution is identified with the random distribution. The random distribution maps vector
components to array entries by means of a random number generator. If the amount
of work for each index is unpredictable, this is useful to balance the load statically.
The main disadvantage of the random distribution is that a table of length M must be
stored in every processor. This table is used to compute the maps µ and µ�1, which
relate global indices to local indices and processor identifiers. Moreover, the random
distribution almost never outperforms the scatter distribution.

However, the argument of the random distribution does not hold, since the layout
function can, and should be, computed by other means than random number genera-
tion. One possibility is to use an algorithm which takes as input the function definition

URN:NBN:no-3329

3.3. CRITERIA 29

domain (global references) and produces the mapping values (local references and
processor identifiers). Graph partitioning algorithms are suitable for such situations.

The graph representation is one of the most common data representations in irreg-
ular numerical applications. Therefore, graph partitioning algorithms are a suitable
partitioning function choice. The disadvantage of the “random” distribution holds
for this technique too, since there is no way to relate global references to local refer-
ences and process identifiers other than recording the information explicitly. However,
the mapping table does not have to have length M as suggested; rather it can be dis-
tributed over the processes. The distribution of the mapping table can also be tuned
to exploit the application characteristics.

General partitioning is useful for data representations that do not resemble the lin-
ear array structure. Such representations are non-standard and are usually the choice
of the application writer. Therefore, the system support for such applications is very
limited. The general graph partitioning problem can be formulated as follows [33]:

Definition 3.2 Given a graph G = (V, E) of jVj = n vertices, partition V into k subsets,
V1, V2, ..., Vk such that Vi \ Vj = ; for i 6= j,[1�i�kVi = V, and the maximum of a cost
function f over all Vi is minimized:

Min(Max1�i�k f).

Usually the cost function f is the execution estimate of a given application in a
distributed system. Graph partitioning has been proven to be NP-complete. Existing
work focuses on heuristics to solve this problem.

3.3 Criteria

Traditional decompositions of data and computations to exploit concurrency try to
find partitions that make the computations independent. In distributed memory, such
independence means no communication. Later practice proves that this constraint
is too strict and better scalability is usually obtained if some dependences between
computations are allowed, and consequently communication exists. Therefore, the
partitioning objective becomes how to obtain minimum communication.

Compiler support for parallelization in this context translates into discovering par-
allelism in a loop and generating communication according to data dependences. Data
dependence analysis is used to generate communication. Conservative static program
analysis leads to redundant communication and inefficient parallel executions. Sub-
sequent optimization techniques are used to eliminate redundant communication.

Several optimization techniques to exploit data locality or minimize communica-
tion start with a “perfect partitioning” or an “existing user-provided” partitioning.
Some researchers have concluded that such decoupling between partitioning and lo-
cality optimization leads to poor results [58]. Thus, the partitioning should be auto-
matic.

This section presents the main directions for partitioning objectives along with ex-
amples of existing approaches. Some of the approaches assume decomposition of
data and computation, while others suggest automatic data layout (partitioning and

URN:NBN:no-3329

30 CHAPTER 3. DATA PARALLELISM

mapping). The section divides the techniques in classes according to the partitioning
objective and possible heuristics to estimate it.

3.3.1 Execution Models

One way to choose between different partitioning strategies is to use an execution
model. It is difficult to find an accurate static execution model. A static approxima-
tion is suitable for an initial guess that can be refined and improved using a static or
dynamic analysis. This section presents commonly used partitioning strategies and
execution models. The automatic layout is based on mapping techniques and exe-
cution models. Automatic data layout has many advantages. On the one hand, it
alleviates the user from the difficult task of partitioning the data. On the other hand,
it can use program knowledge to decide on a partitioning that preserves data locality.

Sussman [104] describes such an execution model. Here the data partitioning di-
vides the input data sets across the processors in the linear array, so that each processor
can compute its output in parallel. The automatic mapping consists of:

1. Mapping techniques. The compiler writer selects a set of techniques (block,
cyclic).

2. Execution models. The compiler writer builds execution models to predict the
run-time behavior of the program, using the maps from the previous step.

The main assumption in this approach is that the program is already transformed
to expose parallelism. Two different cost approximation strategies are described, for
block and cyclic distribution respectively. Balasundaram et. al. [18] present a static
performance estimator to guide data partitioning decisions. This approach uses a
static performance estimation scheme both in a compiler, which makes decisions be-
tween code alternatives, and in a programming environment to predict the implica-
tions of data partitioning decisions. The system uses a “training set” of kernel routines
to test primitive computational operations and communication patterns on the target
machine.

This approach is based on data partitions that are regular and assumes that the
data domain is partitioned uniformly, i.e. the partitions have the same shape. The
assumed execution model is that of a distributed-memory program with “loose syn-
chronization” requirements. Therefore, all processors execute the same node program
based on the strict owner-computes rule (a processor’s node program can only involve
data items contained in the processor’s local memory). This means that the writing of
the node program implicitly defines the partitioning of the data domain.

The authors indicate that this model may not be well suited for temporally irregu-
lar problems. The method has two initialization steps and an estimation algorithm:

1. In one initialization phase, a set of training routines is run on a target machine
(e.g. arithmetic and control flow operations, etc.). The output of this phase is a
file containing the average time for the control and communication operations.

2. The other initialization phase analyzes the performance data and formats this to
be used by the estimation algorithm. The output of this phase is a formated file
containing the execution time estimations.

URN:NBN:no-3329

3.3. CRITERIA 31

3. The performance estimation algorithm uses the arithmetic/control and commu-
nication data from the previous step to determine an execution and communi-
cation time estimate. The input of the algorithm is a node program statement
(simple or compound). The output is an estimate for the execution and commu-
nication time.

The static performance estimators assume that parameters such as loop iteration counts
and branch frequencies are known or can be approximated [1]. Common performance
metrics are: communication volume, communication frequency, parallelism achiev-
able, extent of load-imbalance, communication latency, and communication overhead.
The chief difficulty in an accurate static performance analysis is to obtain key profiling
parameters such as loop iteration counts, branch frequencies, cache miss rates, etc.

In HPF the data layout is explicitly specified by the programmer. Kennedy et.
al. [68] describe an approach to automatic data layout for HPF. There are four steps in
automatic data layout:

1. Partition the input program into segments. A segment or a phase is the outer-
most loop in a loop nest such that the loop defines an induction variable that
occurs in a subscript expression of an array reference in the loop body. This step
constructs the phase control flow graph (PCFG).

2. Construct a search space of promising candidate layouts. This step uses heuris-
tics to determine a reasonably sized set of alignment candidates that will guaran-
tee a good overall performance for all applications. The step performs an inter-
dimensional alignment analysis by using the component affinity graph (CAG). In
the CAG there is one node for each array dimension, and an edge between nodes
expresses alignment preferences between dimensions of distinct arrays. In a dis-
tribution analysis, a candidate distribution can map single template dimensions
either by block, cyclic or block-cyclic partitionings onto the target architecture,
or replicate dimensions on each processor.

3. Evaluate the candidate layout in terms of execution time. This step determines
the costs of possible remappings between candidate layouts. Each candidate
data layout is evaluated in terms of its expected execution time for each phase.

4. Select a single candidate layout from each search space, based on the estimated
candidate layout costs and the cost of remapping between layouts. The overall
cost is determined by the cost of each selected layout and the required remap-
ping costs between selected layouts.

Fortran D and HPF compilers normally assume that they generate code for a dedi-
cated machine of a known size [30]. However, the mapping decisions typically depend
on run-time parameters. Many prototype HPF compilers (including Rice Fortran 77D)
require that the number of processors are known at compile-time.

The execution models presented in this section rely on the possibility to estimate
the execution time for each program statement and function call. Such an approxi-
mation is usually a guideline for an initial partitioning, and cannot reflect run-time
behavior accurately. Run-time information or heuristics can be used to refine the ini-
tial guess.

URN:NBN:no-3329

32 CHAPTER 3. DATA PARALLELISM

3.3.2 Data Locality

Data locality is a partitioning objective or an optimization target for eliminating ex-
pensive data accesses (to different cache lines in cache-based memory architectures or
remote address spaces in distributed-memory systems).

In shared-memory systems, data locality means that it is efficient to fit data that
are accessed frequently or in the same proximity into the fast memory (cache). In
distributed-memory systems, data locality means that it is efficient to place data whose
accesses are close in time and space in the same processor or in the same address space
to reduce communication.

Minimizing communication is one objective for a partitioning algorithm. How-
ever, the efficiency of a parallel algorithm is not given by the amount of communica-
tion, but by the ratio of communication to computation on a given node.

Traditional work on parallelizing compilers uses dependence vectors to represent
data dependence information and exploit concurrency through independent execu-
tions. Hudak et. al. [58] use access vectors that carry communication information,
rather than dependence information. The definition of such vectors is based on the ar-
ray accesses and their representation as affine expressions (linear expressions) of loop
indices. This approach finds a geometric partitioning that minimizes communication
based on the communication information. Communication is quantified through a
weight defined by the number of data points needed to cross partition boundaries in
the newly formed partitions.

The idea of geometric partitioning is to use geometric shapes to partition a ma-
trix. Subsequently geometrical computations are used to quantify communication.
For instance, in [58] straight line perimeters are used. The perimeter of each part is
composed of line segments whose slopes are rational numbers. The idea is to pair line
segments that have the same orientation and measure the communication weight for
a line segment pair.

Geometrical partitioning applies only if information on data references exists. That
is, the vector accesses can be computed if and only if they are direct accesses of loop
indexes or affine expressions of loop indices.

The linear array structure fits well with the memory linearity and linear array lay-
out in memory. That is, in programming languages such as C and Fortran, arrays are
laid out in memory in a line-wise or column-wise format. Thus, it is efficient to re-
structure computations so that consecutive accesses are in the same line, or column,
respectively. It is not always possible to take advantage of such regularities and per-
form a direct mapping of the data structure to memory layout.

Chatterjee et. al. [32] describe a non-linear array layout that exploits the hierarchi-
cal memory systems. The thesis of this approach is that “the best performance results
when algorithmic patterns of locality of reference match the patterns that the cache
organization performs as well”.

When data locality cannot be exploited by traditional means (e.g through cache
replacement policies, etc.), data and computations can be restructured to fit the locality
requirements. Restructuring work is classified along two axes:

1. Control flow restructuring. Loop tiling (or blocking) is a program transformation
that tessellates the iteration space of a loop nest with uniform tiles of a given size

URN:NBN:no-3329

3.3. CRITERIA 33

and shape, and which schedules the tiles for execution in an order consistent
with the original data dependences.

2. Data structure restructuring. The array layout function changes the mapping
from the array index space to the virtual address space.

Control flow restructuring is the core of such restructuring. This is, according to
the authors in [32], due to the fact that programmers and compilers are more familiar
and comfortable with transforming the control flow of programs; they are less likely
to restructure multidimensional arrays to be “cache conscious” or “memory friendly”.

Restructuring techniques have been studied for pointer-based data structures, such
as heaps and trees, for profile-driven object placement and for matrices with special
structures (e.g. sparse matrices formats), and in parallel computing.

The observation leading to the approach in [32] is that non-standard data layouts
used by library writers and in parallel computing are applicable in more general sit-
uations, but not exploitable given the existing programming languages. The authors
demonstrate, by measurements of the execution time, that the costs associated with
the non-linear layout functions are minimal, and that they improve performance for
representative multi-level memory hierarchy architectures.

Data restructuring is a powerful technique and it works well for programs that
use non-standard data structures. Thus, it applies to situations where the static pro-
gram analysis is not sufficient to find information about data accesses. Therefore, the
computation can be fixed in the SPMD style, and data restructuring can be applied to
ensure locality of reference.

3.3.3 Load Balance

Load balancing is dividing the amount of work that a computer has to do between
two or more computers, so that more work gets done in the same amount of time,
and, in general, the same application is executed faster. Load balancing can be imple-
mented with hardware, software, or a combination of both. In the context of scientific
computing, the same amount of data is roughly assigned to each processing unit.

We give a formal definition of load balance from [107], using the same notation as
before.

Definition 3.3 A P-fold distribution µ of an index set M is load balanced if and only if:

max0�p<PIp = max0�p<PjMpj

is minimal over the set of all P-fold distributions of M.

Computations with P � M are said to be coarse-grain, and computations with
P � M are said to be fine-grain. A good load balance may sometimes lead to poor data
locality. Therefore, a compromise between the two criteria must be reached.

General Graph Partitioning Algorithms

General graph partitioning algorithms offer a general framework for decomposing
data and computations among processes. There is a large body of research concerning

URN:NBN:no-3329

34 CHAPTER 3. DATA PARALLELISM

graph partitioning for high-performance scientific applications. However, given the
formulation of the general partitioning as a function defined at each input domain
variable that maps one data item to one processor and location, any of the algorithms
can be used. Moreover, any regular partitioning can easily be mapped to the general
partitioning scheme.

We give the formulation of a general graph partitioning problem for the high per-
formance scientific computations from [95]:

Given a weighted, undirected graph G = (V, E) that for each vertex and
edge has an associated weight, the k-way graph partitioning problem is
to split the vertices of V into k disjoint subsets (or subdomains) such that
each subdomain has roughly an equal amount of vertex weight (referred
to as the balance constraint), while minimizing the sum of the weights of
the edges whose incident vertices belong to different subdomains (i.e. the
edge-cut).

The general formulation of graph partitioning for multi-constraint, multi-objective
graph partitioning is as follows:

Assign a weight vector of size m (w[m]) to each vertex and a weight vector
of size l (e[l]) to each edge. Find a partitioning that minimizes the edge-cut
with respect to all l weights, subject to the constraints that each of the m
weights is balanced across the subdomains.

3.4 Summary

This chapter has presented two major themes in two parts: partitioning strategies and
criteria to choose a good partitioning. The first part of the chapter presented two main
classes of data partitioning strategies, i.e. regular partitioning and general partition-
ing. The precise formulations were given for the general partitioning problem, along
with two practical partitioning schemes: block and cyclic partitioning. Furthermore,
concrete applications of these strategies were described in terms of automatic data
layouts for regular applications. A general partitioning strategy was discussed as an
alternative general framework to address data parallelism. It was shown that general
partitioning is not a random process, but it can be effectively implemented by using
general graph partitioning algorithms. One disadvantage of the general partition-
ing scheme is the space overhead for retaining partitioning function values instead
of symbolic expressions (as with regular partitioning schemes). The overhead can be
reduced by distributing the partitioning information over multiple processes.

The second part of the chapter presented three criteria for choosing a good par-
titioning: execution models based on heuristics, data locality and load balance. Exe-
cution models rely on the static program analysis to be able to estimate the execution
time for each program statement and function call. Good approximations are hard
to find. Moreover, in a programming language which supports dynamic binding of
variables and functions, the static estimation may be a non-realistic approximation.
Data locality relies on the programmer or compiler to restructure data or control in
a program, such that algorithmic patterns of locality of reference match the patterns

URN:NBN:no-3329

3.4. SUMMARY 35

of memory organization or local address space. Control flow restructuring dominates
the restructuring work. Data restructuring is a promising strategy in the context of
complex data representations and irregular structures. Load balance ensures that the
same amount of work is assigned to each computation unit. A good load balance
may lead to poor data locality. Therefore, these two criteria are usually considered
together. A general graph partitioning algorithm for multi-constraint, multi-objective
graph partitioning enables such coupling of more criteria and objectives when decid-
ing upon a good partitioning.

URN:NBN:no-3329

36 CHAPTER 3. DATA PARALLELISM

URN:NBN:no-3329

Chapter 4

Concurrent Programming

4.1 Introduction

This chapter presents the main concepts for concurrency together with existing high-
level programming support for writing parallel applications. However, this is not
an extensive survey of the existing concurrent programming languages and systems.
The chapter presents the most important mechanisms for communication and syn-
chronization in shared-memory and distributed-memory systems. Existing high-level
programming languages and libraries are presented in the context of large-scale par-
allel programming. The chapter also discusses the distributed shared memory, a soft-
ware implementation of a shared virtual memory on physically distributed memory.

Several aspects must be considered when deciding upon a programming model.
Shared-memory multiprocessors are expensive and rely on vendor-developed soft-
ware. The shared-memory concurrent programming model is close to sequential pro-
gramming and thus intuitive for a programmer. Distributed-memory architectures are
scalable and do not depend on proprietary software. The distributed-memory pro-
gramming model is less intuitive and hardened by the nondeterminism of a program
execution (race conditions). Establishing global properties for a distributed system is
difficult in the absence of a shared memory.

A distributed shared memory that implements a software shared virtual memory
is a cheap alternative to a shared-memory multiprocessor. Moreover, it resolves the
inconveniences of a distributed-programming model. The main limitation of such a
shared virtual memory is poor performance due to the large granularity of coherence
(page size) and the expensive remote accesses.

This chapter is organized as follows: Section 4.2 presents the main concepts for
concurrent shared-memory programming. It discusses the main communication and
synchronization paradigms as well as high-level language support for programming
scientific applications. Section 4.3 introduces the communication and synchronization
mechanisms in a distributed-memory environment. Furthermore, it presents existing
high-level language and library support for writing distributed-memory concurrent
scientific applications. Section 4.4 presents the virtual shared memory concept as de-
scribed by [74] and discusses several implementation issues. Furthermore, it discusses
the research advances in shared virtual memory. Section 4.5 summarizes the chapter.

37

URN:NBN:no-3329

38 CHAPTER 4. CONCURRENT PROGRAMMING

4.2 Shared Memory

A shared-memory multiprocessor has one global address space that is accessible for
all the processors. A program consists of multiple processes that may run on different
processors and perform independent computations. Processes communicate through
reading and writing shared-memory locations. Concurrent accesses to shared data are
serialized through synchronization.

The processes carrying out concurrent actions in shared-memory applications are
usually called threads. Threads are light-weight processes sharing the same address
space (context), usually that of the parent process/thread which has created them.

The main problem in a concurrent computing environment is to ensure correct exe-
cution through synchronization. Synchronizing accesses to a shared-memory location
ensures that only one process at the time has access to that location.

4.2.1 Low-level Synchronization Mechanisms

There are two main mechanisms to ensure synchronization to a shared memory [11]:

� Mutual exclusion ensures that a sequence of statements is treated as an indivisi-
ble operation. Such a sequence of statements is called a critical section.

� Condition synchronization ensures that no action is performed when a shared
data object is in a state inappropriate for executing a particular operation.

Several abstractions are used to implement the synchronization of accesses to shared
memory. The early mechanisms are low-level and expose the programmer to a com-
plex, error-prone programming style. Higher-level programming language constructs
hide the low-level synchronization mechanisms and offer abstract primitives to con-
trol synchronization explicitly. Several languages make synchronization implicit and
alleviate the programmer from the complex, error-prone concurrency aspects.

Some of the most important synchronization mechanisms are:

1. Busy-waiting uses a shared variable that concurrent processes can test and set
to synchronize their accesses to shared data. Busy-waiting works well for im-
plementing condition synchronization. The two instructions test and set make
mutual exclusion difficult to design and implement. Some hardware systems
implement a test-and-set instruction on processors to address the inconvenience
of using two separate instructions to access the shared variable. However, busy-
waiting wastes processor cycles by not allowing other processes run instead.

2. Semaphores use a non-negative integer value on which two operations are de-
fined: P and V. Given a semaphore s, P(s) delays the execution of a process
until s > 0 and then executes s = s � 1. V(s) is a non-blocking operation that
increments the value of the semaphore variable:s = s + 1. It is straightforward
to implement a critical region as a sequence of statements between the P and
V operations. To implement condition synchronization, a shared variable rep-
resents the condition, and a semaphore is associated with it. A P operation be-
comes a wait on the condition, while a V operation becomes a signal. In these

URN:NBN:no-3329

4.2. SHARED MEMORY 39

circumstances, it is hard to distinguish between a critical section and a condition
synchronization without a thorough examination of the code. Moreover, P and
V are unstructured operations, and thus it is easy to commit errors when using
them.

3. Conditional critical regions (CCR) offer a structured, unified notation for synchro-
nization. Shared variables are explicitly placed in groups called resources. Each
shared variable belongs to one resource only and is accessible in the CCR state-
ments that name the resource:

resource r: v1, v2, ..., vn;

region r when B do S,

where B is a boolean expression and S is a statement list. CCR can be expensive
to implement given that conditions in the CCR statements can contain references
to local variables, and thus each processor must evaluate its own context, leading
to expensive context switches.

4. Monitors encapsulate a resource definition and the operations that manipulate it.
Only one process at the time can entry the monitor and execute the operations
on the resource mutually exclusive. There are several proposals for realizing
condition synchronization. One proposal is to use a condition variable to delay
processes executed in a monitor. A condition variable may be declared only
within a monitor and has two operations, wait and signal. The processor in-
voking a wait on a condition variable will block until another processor invokes
a signal on that condition variable, causing the latter to be suspended. A con-
dition variable usually has queues associated with both wait and signal.

These mechanisms are low-level and expose the programmer to a complex, error-
prone programming style. Ideally, a programming language or a system implicitly
ensure synchronization. However, this has proved difficult to achieve. Some syn-
chronization aspects may still be visible, in a higher-level form, at the programming
language level.

4.2.2 High-level Programming

Fine-grain Parallelism

Supercomputers can achieve high performance concurrent execution over a sequen-
tial execution by exploiting parallelism at the instruction level, as well as at the mul-
tiprocessor level. Instruction-level parallelism exploits the vector and array processor
architectures by allowing a single low-level machine instruction such as load, store, in-
teger adds, and floating point multiplies to be executed in parallel. This is a fine-grain
form of parallelism. At the multiprocessor level, all the active processors execute the
same operations on different data items. This form of concurrency is called Single
Instruction Multiple Data (SIMD) and it usually expresses trivial parallelism. The ap-
plications exposing this form of parallelism are dense matrix computations. This is
also a form of fine-grained parallelism.

URN:NBN:no-3329

40 CHAPTER 4. CONCURRENT PROGRAMMING

However, applications also exhibit non-trivial parallelism that requires special lan-
guage support. Languages that exploit architectural support for parallelism are called
array languages and have Fortran as a starting point. There are two approaches to
support parallelism in array languages:

1. Overload arithmetic and boolean operations to perform element-wise opera-
tions [87]. For example, a Fortran-90 statement A = B + C performs an element-
wise sum of the arrays B and C and stores the result into the array A.

2. Offer support for conditional vector operators that allow operations to selec-
tively apply to only parts of arrays. There are two categories of language sup-
port:

(a) Data oriented approaches introduce constructs to express control vectors,
constant stride vectors, array triplets (e.g. A(start:end:stride) where
start, end and stride are the integer array indices and the constant stride
value) and guarded accesses to arrays.

(b) Control oriented approaches introduce concurrency constructs, such as forall.

Array languages effectively exploit data parallelism for applications that perform
dense matrix computations. Data parallelism may take other forms than expressing
numerical vector matrix operations from linear algebra computations. It is not always
obvious how parallelism can be expressed by using adequate data or control structures
at the language level.

Coarse-grain, Loosely-coupled Parallelism

Trivial parallelism is to apply a function concurrently to each element of a data struc-
ture. A more subtle form of parallelism is to use operations (e.g. addition and multi-
plication) to combine all the elements of a data structure together. Coarse-grain par-
allelism exploits the loose synchronization requirements in these applications to al-
low large computation steps to proceed independently. All processors participate in a
synchronization step to combine their local values. This form of parallelism is called
Bulk-Synchronous Parallelism (BSP) [106], or Single Program Multiple Data (SPMD).

HPF (High Performance Fortran) provides a machine independent parallel pro-
gramming model, and thus it can be used to express shared-memory SPMD paral-
lelism. HPF provides the forall statement in conjunction with the INDEPENDENT di-
rective to specify the iterations of a loop which can be executed in parallel. HPF also
provides data distribution directives that allow the programmer to directly control the
assignment of work to processors in block, cyclic, or block-cyclic distribution.

HPF is suitable to express data parallelism for applications that use multi-dimensional
array structures. The loop-level parallelism is still fine-grain. The main addition in
HPF is to allow the programmer to specify how data is distributed among processors
and thus increase the grain of a computation.

URN:NBN:no-3329

4.2. SHARED MEMORY 41

Task Parallelism

Task parallelism allows two or more processors to synchronize whenever they need
to without the involvement of other processors. This style of programming is called
Multiple Instruction Multiple Data (MIMD).

OpenMP [37] is a set of compiler directives and run-time library routines that can
be used in conjunction with a sequential programming language (e.g. Fortran, C) to
express shared-memory task parallelism.

A parallel block is explicitly indicated by the use of the PARALLEL directive. The
block is executed in a fork/join multi-threading style. A number of threads are spawned
from the main control thread and cooperate in executing the body of the block concur-
rently. The threads join back into the main thread of control at the end of the parallel
block.

The programmer can also specify how iterations can be assigned to threads. The
variables in a parallel region are shared between all the threads. Declaring a variable
to be PRIVATE gives each thread its own copy of it.

An example of a parallel region. Variables b and n are shared, while i is
private to each thread. A sum reduction operation is applied to the scalar
variable a:
#pragma omp parallel private(i) shared (b, n) reduction (+:a)

f

for (i = 0; i < n; i++)

a = a + b[i];

g

Two or more threads can also synchronize at the entry in a critical sections. Only one
thread at the time is allowed to execute the code in a critical section.

OpenMP is a standard aimed at achieving portability for shared-memory program-
ming in face of vendor-developed extensions to Fortran and C for parallel software
development. However, its fork/join model of parallelism still resembles fine-grain
loop-level parallelism. OpenMP introduces the concept of orphan directives to specify
control of synchronization from anywhere inside of a parallel region, thus making it
easier to express coarse-grain parallelism.

Functional Programming Languages

Functional programming languages (Multilisp, Actors, ABCL) also express shared-
memory MIMD concurrency. The consumer-producer synchronization is folded into
the data accesses. Concurrency is exploited in two forms:

1. Task parallelism allows multiple expressions to be evaluated concurrently by
concurrent tasks through procedure call/method invocation.

2. Overlapping communication and synchronization through futures which act
like place-holders for variable values that can be returned later as a result of a
communication. This is a form of fine-grain data flow synchronization at the
level of data structure elements.

URN:NBN:no-3329

42 CHAPTER 4. CONCURRENT PROGRAMMING

Functional programming is an elegant mechanism to exploit concurrency. There
are some practical problems that limit its large scale use [87]. The main data struc-
ture for such languages (Multilisp) is a linked list. Unlike arrays, lists are sequentially
accessed and this limits concurrency. The problem of deciding where it is safe and
profitable to insert futures in a general program is non-trivial, since Multilisp is an im-
perative language where expression evaluation can have side-effects. “The suggested
programming style is to write mostly functional code and look for opportunities to
evaluate data structure elements as well as function arguments in parallel” [87].

4.3 Distributed Memory

In a distributed-memory multiprocessor each processor has its own address space of
memory locations inaccessible to other processors. A concurrent program consists of
multiple processes that execute in different address spaces. Processes communicate
through messages. Synchronization is implicit in the message exchange routines.

In a distributed-memory environment concurrent actions are carried out by pro-
cesses. A process encapsulates its own address space which is inaccessible to other
processes. The send and receive interprocess communication primitives replace the
read and write operations to shared variables. Synchronization is implicit in the mes-
sage exchange, in that a message is received only after it has been sent.

According to their distributed computing functionality, processes can be classified
in the following categories [10]:

1. Filter processes act as data transformers: they receive data at their input chan-
nels, perform some transformation on the data and deliver the transformed data
at the output channels. A Unix command is an example of a filter process.

2. Client processes act as triggering processes: they invoke a request which is served
by another process.

3. Server processes act as reactive processes: they perform some actions as a re-
sponse to a request from another process.

4. Peer processes are a collection of identical processes.

There are two main design questions [11]:

1. How are source and destination designators specified?

2. How is communication synchronized?

There are three main naming schemes to designate processes in a distributed-
memory environment:

1. Direct naming. With this scheme, the communicating parties name the commu-
nication channel directly. This form of identification is suitable in one-to-one
communications.

URN:NBN:no-3329

4.3. DISTRIBUTED MEMORY 43

2. Mailboxes are global names that can be used to designate the source and the des-
tination of a communication. This naming scheme is suitable to express many-
to-many type of communication.

3. Ports are a special case of mailboxes, in which a mailbox name can appear as the
source designator in receive statements in one process only. This naming scheme
is suitable in one-to-many communications.

4.3.1 Low-level Synchronization Mechanisms

Synchronization is achieved through communication primitives that can be:

1. Nonblocking invocation: its execution never delays its invoker.

2. Blocking invocation: the execution of the invoker is delayed until the invocation
returns.

3. Buffered communication: messages are buffered between the time they are sent
and received.

The main interprocess communication mechanisms are [10]:

� Asynchronous message passing. A process continues its execution immediately af-
ter issuing a communication request. The messages waiting to be sent/delivered
are placed in system buffers with unbounded capacity.

� Synchronous message passing. A process blocks as a result of a communication
request and waits for the response. There is no buffering in such approaches.

� Buffered message passing is in between the two previous communication forms.
The system buffer has finite bounds and therefore forces processes to synchro-
nize when the buffer is full.

� Generative communication. The processes share a single communication channel,
called a tuple space. Different names, instead of different channels, are used to
distinguish between different messages (e.g. Linda tuple space).

� Remote procedure call. A calling process issues an invocation and waits until it
has been serviced and results have been returned. A new process is created to
service the request.

� Rendez-vous. A calling process issues an invocation that matches an accept state-
ment in another process. The caller blocks upon the invocation until results have
been returned. The callee blocks in an accept statement waiting for a matching
request.

All these approaches are equivalent: a program written in one notation can be rewrit-
ten in any of the other notations. However, each approach is better suited to solve
some problems than others.

URN:NBN:no-3329

44 CHAPTER 4. CONCURRENT PROGRAMMING

4.3.2 High-level Programming

Fine-grain Parallelism

Instruction level parallelism or SIMD expresses fine-grain, almost trivial concurrency.
The shared-memory multiprocessors naturally express this form of parallelism. The
distributed-memory multiprocessors are not suitable for such computations, since
a communication between processes is much more expensive and the computation
grain is too fine to amortize the cost of communication.

The existing distributed-memory SIMD languages use an assembly language called
Paris (Parallel Instruction Set) that augments local sequential execution with the pos-
sibility to send a message. There is no matching receive since the processors operate in
a lock-step. Thus, a send has to specify the address of the receive. This results in a
very low-level programming style.

Coarse-grain, Loosely-coupled Parallelism

The distributed-memory model is best suited to exploit coarse-grain, loosely coupled
parallelism. Processors operate in a loose lock-step, consisting of alternating phases
of parallel asynchronous computation and synchronous communication. This model
of parallel computations corresponds to the BSP or SPMD models. The existing data
parallel frameworks do not capture this model of computation entirely.

HPF-2 offers support for irregular computations and task parallelism. Several
vendor-supported HPF compilers target distributed-memory computers. However,
the quality of the compiler-generated code is relatively poor in comparison to hand-
written parallel code. Moreover, source level performance prediction has proven
to be difficult since performance depends greatly on decisions about inter-processor
communication made by the compiler. “For these reasons, interest in HPF is on the
wane” [87].

There are libraries that implement the BSP model. The libraries have functions for
sending and receiving a message as well as for barrier synchronization. These libraries
do not offer as rich a functionality as the Message Passing Interface (MPI) library does.
This is the reason why MPI dominates the practice in writing SPMD applications.

Even though MPI offers functionality for the MIMD model of parallelism, it is
mostly used to manually parallelize SPMD bulk synchronous applications. The main
disadvantage of the BSP model is that it requires global synchronization even for ex-
changing one message between two parties. The counter argument is that “worrying
about optimizing individual messages makes parallel programming too difficult” [87].
Thus the focus should be on getting the large-scale structure in place.

This argument holds especially in the context of numerical SPMD applications that
need to synchronize globally to exchange values at various points during the applica-
tion lifetime. It is thus useful to concentrate the efforts towards capturing the large-
scale concurrency structure.

URN:NBN:no-3329

4.4. DISTRIBUTED SHARED MEMORY 45

Task Parallelism

With the MIMD synchronization model, two or more processors can synchronize when-
ever they need to without the involvement of other processors. The earliest distributed-
memory MIMD language is CSP (Communicating Sequential Processes) [11]. CSP
supports synchronous message passing and selective communication. However, CSP
is not a complete concurrent language. The current practice for writing concurrent
message passing applications is to use message passing libraries (MPI, PVM) in con-
junction with a sequential language such as C or Fortran.

The goal of MPI is to develop a standard for writing message-passing programs in
a portable, efficient and flexible style [99]. MPI is also used as run-time environment
for parallel compilers and for various libraries. MPI is extensively used to develop
efficient concurrent applications in conjunction with a sequential language.

An MPI program consists of a collection of autonomous processes executing their
own code in a MIMD style. These programs need not be identical. The processes
communicate via MPI communication primitives. Typically, each process executes in
its own address space, although shared-memory implementations of MPI exist. The
existing implementations of MPI provide mechanisms to specify the initial number
of processors and the binding of computations to physical processors. The processes
are identified according to their relative rank in a group as consecutive integers in the
range, i.e. 0..groupsize - 1.

MPI offers provision for point-to-point communications, collective operations, pro-
cess groups, communication domains, process topologies, and environmental man-
agement and enquiry. Through this extensive coverage of message passing communi-
cation, MPI is widely used for distributed-memory concurrent applications.

4.4 Distributed Shared Memory

A distributed shared memory is based on a shared virtual memory [74] implemented
in a distributed-memory system. A shared virtual memory has a single address space
shared by a number of processors. Any one processor can access any one memory
location in the address space directly.

The main benefits of a shared virtual memory (SVM) are [74]:

1. The SVM pages data between physical memories and disks, just as a virtual
memory does.

2. The SVM pages data between the physical memories of individual processors
and thus data can migrate between processors on demand.

3. Data migrates between processors just as a conventional virtual memory swaps
processes. Therefore, this provides an efficient form of process migration in dis-
tributed systems.

4. The process migration subsumes the remote procedure call (RPC) communica-
tion.

URN:NBN:no-3329

46 CHAPTER 4. CONCURRENT PROGRAMMING

The main problem with implementing a SVM is the memory coherence. That is,
ensuring that the value returned by a read operation is always the same as the value
written by the most recent write operation to the same address.

The memory unit for transferring data between processors is a page. Pages can be
read-only or write. The read-only pages can be replicated in each processor. The write
access pages belong to individual processors and cannot be replicated. A memory
reference causes a page fault when the page containing the memory location is not in
the processor’s current physical memory.

The central part of a SVM is memory management and mainly consists of two
tasks:

1. Maintain a map between the local memories and the global address space.

2. Ensure memory coherence:

(a) Manage the information in the map between local and global addresses
using a centralized or distributed manager protocol.

(b) Maintain memory consistency using an invalidate or update protocol upon
a write operation to a local memory, such that all the processors “observe”
the update consistently.

Several performance factors affect the choice of a memory coherence scheme. The
factors that have direct impact on the cost of a coherence protocol are the number of
parallel processes and the degree of updates for the shared data. The granularity of a
page, or the size of the page depends on the application.

A coherence strategy must decide upon the page synchronization scheme (invali-
date or update) and page ownership strategy. Page ownership can be fixed or dynam-
ically established. In a dynamic scheme, the ownership of a page changes during a
program execution such that the last processor that has requested a page becomes its
owner.

A memory manager algorithm that is centralized maintains all the information
about the mapping between the local and global address spaces in one central process
that interacts with all the individual processes cooperating in the coherence protocol.
The centralized manager serializes the concurrent memory requests issued by differ-
ent processes. Therefore, the manager becomes a communication bottleneck.

A memory manager algorithm that is distributed moves the synchronization task
from the central manager to the individual processes at each address space level. This
scheme eliminates the communication bottleneck from the centralized scheme. The
key to a distributed coherence protocol is to keep track of the ownership of all pages
in each processor’s local address space without replicating the entire memory map.
Thus, each processor keeps track of the true owner, as well as of the “probable” owner,
for each page. If the true ownership information is not available, the map entry for
each page has a sequence of processors through which the true owner of a page can
be found. If a request for a page arrives to a processor that does not own the page,
the request is forwarded to the true owner in case this is known, or otherwise to the
“probable” owner.

A distributed memory manager algorithm is more efficient than a centralized one.
One efficiency issue of the distributed scheme concerns the amount of information

URN:NBN:no-3329

4.4. DISTRIBUTED SHARED MEMORY 47

at each address space level to guarantee that the true owner of a page is always
found. Another efficiency issue is the number of forwarding requests needed to find
the owner of a page. The benefits of a virtual shared memory are unquestionable.
However, its main limitation is performance. The main performance limiting factors
are [61]:

� The large granularity of coherence generates artificial communication since entire
pages are transferred between address spaces. False sharing may also occur when
individual memory accesses are located in the same page. Fragmentation arises
when a requesting processor does not need all the data in a page.

� The communication between processors is through software messages. There-
fore, the cost of a communication operation is high.

� Synchronization is also implemented through explicit messages. Therefore, the
cost of synchronization is also high.

There exist several approaches that alleviate the high costs associated with the
communication and synchronization. Their common goal is to relax the consistency
constraint and thus reduce the communication and synchronization requirements.

A strict consistency protocol guarantees sequential consistency. That is, all shared
accesses must be given the same order on all processors. Instead, the order does not
matter as long as the changes are observed in the same way by all the processors at the
synchronization points. As a consequence, the following relaxed consistency schemes
were proposed:

� Processor consistency allows writes from different processors to be observed in
different orders, although writes from a single processor must be performed in
the order that they occurred.

� Weak consistency separates data accesses in regular and synchronization accesses.
Therefore, coherence is postponed until a synchronization point. All regular
data accesses must complete before a synchronization access is allowed to pro-
ceed.

� Release consistency further separates synchronization accesses into acquire and re-
lease accesses. Thus, coherence due to write operations is postponed until before
the releases that follow the writes. Thus, all previous shared data updates are
consistent before a release of a synchronization variable is observed by any pro-
cessor.

� Entry consistency [21] binds data to synchronization variables. Therefore, only
the data bound to the synchronization variables are subject to consistency. The
main problem with this approach is that the user explicitly identifies the syn-
chronization variables, the shared data that needs consistency, and the binding
between the shared data and the synchronization variables.

� Scope consistency [60] tries to make the binding between shared data and synchro-
nization variables implicit. The synchronization variables define scopes through

URN:NBN:no-3329

48 CHAPTER 4. CONCURRENT PROGRAMMING

which the memory is viewed, and an implicit association of data (pages) with
scopes is achieved dynamically when a write access occurs inside the scope.

In practice, there exist several implementations of DSM. TreadMarks [8, 75] is a
user-level library implemented on top of the UNIX operating system that enables a
shared memory programming model in distributed memory (e.g. networks of work-
stations). The library provides subroutines for process creation and destruction, syn-
chronization (barrier and lock/unlock for critical section) and shared memory alloca-
tion.

The memory structure in Treadmarks is a linear array of bytes. The memory model
is lazy release consistency. That is, the memory model enforces consistency at the time
of an acquire. TreadMarks uses an invalidation scheme: at the time of an acquire,
the modified pages are invalidated. This scheme is inefficient, since it introduces extra
communication for invalidating and then updating data.

An important feature that potentially improves efficiency in TreadMarks versus
other DSM implementations that use a single-writer protocol, is the use of a multiple-
writers protocol. That is, multiple processes have at the same time a writable copy
of a page. Processes allow concurrent modifications of a replicated page and syn-
chronize at a barrier to ensure that differences in the page versions are propagated
between them. Although simple, this scheme is dangerous since it assumes that there
is no overlap between the modifications performed concurrently by the two processes.
Such an overlap introduces race conditions.

Ancourt et. al. [9] also propose to build an emulated shared memory on distributed-
memory machines and abandon the owner-computes rule. In order to emulate the
shared memory, the processors are divided into two subsets. One half of the proces-
sors perform computations, while the other half emulate memory banks. The main
advantage of this approach is that the data distribution is implicit. That is, objects
are mapped in the emulated shared memory using a fixed scheme. They can be used
only after they are copied in the memory of one of the compute engines. When new
objects are computed, they are not available before they are copied back into the em-
ulated shared memory. The dependence graph between program instructions is used
to build parallel loops. The price to pay for the ease of use is increased communica-
tion due to the fixed mapping scheme and the load and store operations from/to the
emulated shared memory to the computation engines. Serialization also occurs when
two different tasks work on related block tiles.

Despite the progress in shared virtual memory, the performance of many appli-
cations is lower than that of the hardware coherence systems, especially for irregular
applications involving a lot of synchronization [61]. The main guideline for future
research is to integrate the application and architectural support with the communi-
cation architecture and understand and exploit the interaction among the application,
protocol and communication layers rather then keeping some of them fixed. The dis-
tributed shared memory is a cheaper, still lower-performance substitute for hardware-
coherent machines. The applications that best can exploit this software solution are
those resulting in low-communication requirements, or coarse-grain applications.

URN:NBN:no-3329

4.5. SUMMARY 49

4.5 Summary

This chapter has presented the main concepts for concurrent programming. The shared-
memory programming model is more popular with programmers due to its resem-
blance to the sequential programming model. However, shared-memory systems are
expensive and do not scale well.

The support for shared-memory programming ranges from very fine-grain in-
struction level parallelism to loop-level parallelism, and builds on the Fortran lan-
guage. The ability to express coarse grain parallelism is limited to the loop-level, still
fine-grain concurrency model. The main facility to increase the grain of a computation
in the HPF model is to allow the user to specify array distributions across multiple pro-
cessors, in a block, cyclic or block-cyclic fashion. This programming model is suitable
to express dense array computations.

Distributed-memory programming support is also limited to the Fortran princi-
pal parallelism model (i.e. HPF style). Coarse-grain parallelism is mainly achieved
through library support, in conjunction with sequential languages in manually par-
allelized applications. MPI library is the widely used message passing standard for
writing distributed-memory applications.

The distributed shared memory is an elegant approach to combining the benefits of
the shared-memory and distributed-memory systems. However, limited performance
prevents a wide adoption. Many existing high-level languages or programming envi-
ronments implement ideas from the shared virtual memory, adding some application
specific knowledge to improve efficiency. Even though there is no strong evidence of
the success of such approaches, this is a promising research path.

URN:NBN:no-3329

50 CHAPTER 4. CONCURRENT PROGRAMMING

URN:NBN:no-3329

Chapter 5

Programmability

5.1 Introduction

This chapter discusses the usability of different concurrency models. A usability frame-
work is presented. The framework takes into consideration the aspects of concurrency
and the extent to which all or some of these can be accounted for by a given model.

There are several factors which complicate the development of concurrent pro-
gramming. Ensuring the correctness of a concurrent program is difficult. The testing
and debugging are complicated by the large number of possible states due to decom-
position. Therefore, it is difficult to construct checkpoints, where the state of the con-
current program is saved in order to allow a debugging tool to unwind the erroneous
execution states and detect the error. Dividing the concurrent computing responsi-
bilities between the programmer and the system is one way of tackling the difficulty
of writing concurrent applications. This chapter uses the term usability to denote the
degree to which a programmer is exposed to concurrency issues. The aspects of con-
current computing are:

1. Decomposition specifies how the data and the control in a program are decom-
posed into tasks that can execute in parallel. Decisions regarding which compu-
tations are to run in parallel are of a great importance.

2. Mapping specifies how the parallel tasks are mapped onto physical processors;
that is, which parallel unit is executed on which processor at a given point in
time. A mapping strategy strongly depends on the parallelism objective: the
maximum speedup, or high availability through replication, for instance.

3. Communication specifies how processes communicate: processes need to cooper-
ate while executing a concurrent application. Processes can communicate either
through shared memory, or through message passing.

4. Synchronization specifies how processes interact with each other to exchange re-
sults or reach a common state. Synchronization is explicit in shared memory and
implicit in distributed memory (through message passing).

A concurrent computing model may reveal all these concurrency aspects, some of
them, or none. The manual parallelization and fully implicit concurrency are the two

51

URN:NBN:no-3329

52 CHAPTER 5. PROGRAMMABILITY

ends of the spectrum. The former allows for great flexibility in exploiting concurrency
in an application. The latter is ideally usable, but hardly achievable since it cannot
account for any of the application specific requirements. In between the two ends
there are several concurrency models designed with a specific class of applications in
mind, and thus trying to meet special objectives. This chapter discusses the existing
concurrency models and the extent to which they reveal the concurrency aspects from
the perspective of data parallelism.

The remainder of the chapter is organized as follows. Section 5.2 discusses manual
parallelization and illustrates the issues that a programmer must resolve in the context
of the MPI (Message Passing Interface) concurrent programming model. Section 5.3
presents four approaches to increased usability by hiding one or more of the concur-
rency aspects gradually from synchronization to distribution. Section 5.4 discusses
automatic parallelization. Section 5.5 summarizes the chapter.

5.2 Manual Parallelization

This section discusses the Message Passing Interface [51,99] (MPI) programming model.
MPI allows for MIMD (multiple instructions multiple data) parallelism. However,
MPI is extensively used to program data parallel applications on distributed com-
puter systems (multicomputers, clusters of PCs, or networks of workstations), thus
for programming SPMD applications. MPI programs can also run on shared-memory
machines.

Decomposition. The unit of parallelism in MPI is a process. A process can be sequen-
tial or multi-threaded. Decisions regarding which computations are to run in parallel
belong to the programmer. MPI provides the notion of process groups. The processes
in a group are uniquely identified through consecutive integer identifiers in the range
of the group. The number of processes is fixed at run-time and it does not change
during the application execution.

Mapping. Specifies how MPI processes are to be mapped to physical processors.
Mapping strongly depends on the parallelism objective. The mapping of processes
to physical processors depends on the details of the underlying hardware, i.e. how
the processors are connected to one another by the interconnection network. MPI
provides topology functions to specify the relationship between the physical processors
and the software processes. The most important topology is the Cartesian topology
which specifies a decomposition along the coordinate axes, e.g. in two dimensions
(x, y).

With library support for running MPI applications, mapping is usually not un-
der the programmer’s control. Data parallel applications consist of a number of peer
(equal) processes that is specified at run-time. A command line argument specifies the
number of processes for the application. Existing implementations transparently cre-
ate the processes and map them onto physical processors. It is also allowed to specify
a larger number of processes than physically available processors. In such a situation

URN:NBN:no-3329

5.2. MANUAL PARALLELIZATION 53

multiple processes are interleaved on a single processor. Profiling versions of MPI
allow the user to monitor the execution of the various processes.

Communication. MPI communication routines define basic point-to-point commu-
nication, as well as collective communication. Point-to-point communication allows
data to be transfered between two processes. MPI provides several send and receive

functions for sending and receiving typed data. Both blocking and nonblocking com-
munications are available. A send call specifies the receiver of the data, the type of data
in the message and the message buffer. A receive call may not specify the sender and
thus may receive from an arbitrary source. Care must be taken to distinguish between
multiple receiving sequences.

The user assembles the data in the messages manually on the sender side, and
writes the sequence for disassembling a message on the receiver side. Care must be
taken to ensure that the types and sizes specified in send sequences match those of the
receiving sequences.

The MPI specification provides several functions for collective communication:
barrier synchronization, global communication functions (broadcast, scatter, gather),
and global reduction operations. These communication facilities provide for one-to-
many, many-to-one, and many-to-many communication paradigms.

Synchronization. Synchronization is implicit in message passing. A blocking send

blocks the caller process until the message has been stored away from the system
buffer. A blocking receive blocks the receiver until it receives a message that matches
the call.

The blocking point-to-point communication functions are:
MPI SEND(sendbuf, count, datatype, dest, tag, comm);

MPI RECV(recvbuf, count, datatype, source, tag, comm, status);

Nonblocking communication allows communication and computation to overlap
and thus leads to improved performance. The send and receive calls are split into
post and complete sequences. A post sequence initiates a transfer, while a complete

sequence completes the communication. Computation is overlapped with communi-
cation before the completion call.

The posting operations are:
MPI ISEND(sendbuf, count, datatype, dest, tag, comm, request);

MPI IRECV(recvbuf, count, datatype, source, tag, comm, request);

The completion operations are:
MPI WAIT(request, status);

MPI TEST(request, flag, status);

Complications. There are several issues related to programming MPI data parallel
applications. First of all, explicit communication exposes the user to details such as

URN:NBN:no-3329

54 CHAPTER 5. PROGRAMMABILITY

data packing/unpacking, correctly identifying the communication parties, error re-
covery, etc. Explicit care must be taken with the ordering of the synchronous calls to
avoid deadlock situations or non-deterministic program executions.

The main sources of error in point-to-point synchronous communications are:

� Non-ordered send and receive sequences. Let P1 and P2 be two processes that
attempt to exchange two messages. The following situation would result in a
deadlock because both of the programs are blocked in the receiving operations
and cannot issue the send:

Process P1:
MPI Recv(msg2, ..., P2);

MPI Send(msg1,..., P2);

Process P2:
MPI Recv(msg1, ..., P1);

MPI Send(msg2,..., P1);

� Buffer limited communication. A communication that relies on the system buffer
to store the messages will deadlock if there is not enough space available:

Process P1:
MPI Send(msg1,..., P2);

MPI Recv(msg2, ..., P2);

Process P2:
MPI Send(msg2,..., P1);

MPI Recv(msg1, ..., P1);

Asynchronous communication eliminates to some extent these concerns, since there
is no need for buffering. However, a pending communication uses storage for com-
munication parameters. Storage exhaustion causes a new communication request to
fail.

Collective communication also requires care with the ordering of calling sequences
and matching to avoid deadlock situations. Thus, the collective operations must be or-
dered such that no cyclic dependences occur. Different matching of sends and receives
may lead to non-deterministic execution:

Process P1:
MPI Send(msg1,..., P2);

Process P2:
MPI Recv(msg, ..., ANY);

MPI Recv(msg, ..., ANY);

Process P3:
MPI Send(msg3,..., P2);

URN:NBN:no-3329

5.3. DIFFERENT DEGREES OF IMPLICIT CONCURRENCY 55

All these complications have led researchers to seek means to automate the process
of writing parallel applications. Even though it is hard to achieve, there is enough sim-
ilarity in the structure of data parallel programs to enable capturing of the concurrency
infrastructure. The complicating aspects related to an automatic solution for the par-
allelization of these applications are the possibly recursive data representations used
to express irregular data layouts, and the limitations of the dynamic program analysis
techniques.

5.3 Different Degrees of Implicit Concurrency

5.3.1 Implicit Synchronization

An elegant method to make synchronization implicit is to fold it into data accesses.
This technique originates in functional languages parallelism [87]. Pure functional
languages do not record state, and thus they do not allow efficient implementations.
Object-based models use the same principle of folding synchronization into data ac-
cesses. Actor languages are one example. The problem with the Actor languages is
that there are no guarantees for performance or cost measures given that the commu-
nication in a program may not be bounded. Also, processes are created and deleted in
response to messages and thus lead to frequent, expensive context switches. This sec-
tion discusses Orca [17], an object-based parallel programming language that makes
synchronization implicit.

Decomposition. In Orca, parallelism is explicit. The unit of parallelism is a process.
Processes execute sequentially on different processors. An Orca program consists of a
unique process, but new processes can be created explicitly through a fork statement.
The newly created processes are child processes and can reside on the same processor
as the parent process, or they may be explicitly assigned to a processor.

A process is explicitly declared:
process name(arg1:type1; arg2:type2; ...; shared obj name:obj type);

begin

....

end;

A new process can be created using the fork statement:
fork name(act1, act2, ..., a shared object);

Concurrency is achieved through the creation of multiple processes and their concur-
rent execution. Two processes concurrently accessing a shared object will be synchro-
nized automatically by the system.

Mapping. Parallel processes are mapped onto processors either implicitly, by the
system, or explicitly, by the user. That is, upon the creation of a new process, the user
can specify a logic processor for the newly created process to run on:

fork name(actual parameters)[on(cpu number)];

URN:NBN:no-3329

56 CHAPTER 5. PROGRAMMABILITY

If the user does not specifically assign the newly created process to a logic processor,
the system maps the new process on the same processor as the parent process that
created it.

The mapping of processes to processors renounces any objective, meaning that it
does not take into account locality of reference or other optimizing criteria. Thus, map-
ping is “random”. This may lead to many efficiency problems. Therefore, replication
strategies for the shared objects are used to account for the availability of data.

Communication. In Orca, processes communicate through shared objects. Two dis-
tinct processes may take the same shared object as actual argument and thus use the
shared object as a communication channel. Shared objects can also serve as commu-
nication channels between a parent process and its child. A shared-data object is a
variable of an abstract data type. An abstract data type in Orca encapsulates data and
specifies the applicable operations to an object of a given type. In Orca both shared
(concurrent) and sequential objects are declared as instances of an abstract data type.
The system distinguishes between them according to their usage.

An object specification is Orca has the following structure:
object specification an object;

...; #internal data

operation op1(in args):out;
operation op2(in args);
...;

begin

...;#initialization sequence

end;

Synchronization. Concurrent processes synchronize through shared objects in Orca.
The system automatically ensures intra-object synchronization. That is, operations on
shared objects are atomic. The system ensures mutual exclusion of concurrent accesses
to shared objects by serializing the concurrent operation invocations. However, the
order of operation executions is non-deterministic. The model does not support inter-
object consistency, or atomic operations across multiple objects.

The efficiency of an implementation involves both time and space efficiency. In
Orca, object replication aims at improving the running time of an application by in-
creasing the availability of data and reducing inter-processor communication. How-
ever, full replication leads to space inefficiency for large data objects and thus repli-
cation alone does not account for efficiency. The efficiency of a replication strategy is
determined by the read/write ratio for a given application.

Processes can also synchronize using condition synchronization through guarded
commands.

A blocking operation consists of one or more guarded commands:
operation op(in args):out;

begin

guard cond1 do statements1 od;

URN:NBN:no-3329

5.3. DIFFERENT DEGREES OF IMPLICIT CONCURRENCY 57

...

guard condn do statementsn od;

end;

The conditions condi are boolean expressions called guards. A special execution
model allows for nested objects. Provisions are made such that the execution of a suc-
cessful guard does not lead to the execution of blocking operations on nested objects.
However, it is difficult to account for efficient execution, given that the evaluation of
guards is made on deep copies of the objects (including nested objects) in order to deal
with undesirable side effects.

The problem of embedding synchronization into data accesses is twofold: one is-
sue is related to concurrent modification of data leading to the serialization of accesses,
the other is related to efficient implementation of update protocols in distributed-
memory systems. Pure functional concurrent languages are side effect free, but do
not account for “history-sensitive” behavior and thus express fine-grained task par-
allelism. Actor languages introduce the “history-sensitive” behavior, but serialize the
concurrent accesses to data through the replacement behavior. This also leads to fine-
grained task parallelism. Orca distinguishes between processes and objects to increase
the effectiveness of the implementation, i.e. accesses to objects are synchronized with-
out creating new processes. However, serializing accesses to shared objects ensures
intra-object consistency and accounts for task parallelism, rather than data parallelism
(e.g. all the accesses to a shared matrix object would be serialized). Also, the repli-
cation of objects increases concurrency for the read operations, but may lead to ex-
pensive update due to frequent writes. Thus, some form of inter-object consistency is
needed to account for coarse-grain data parallelism in distributed-memory systems.

5.3.2 Implicit Communication

Explicitly managing communication through message passing exposes the program-
mer to issues such as deadlock and non-determinism. Several approaches to make
communication implicit use some form of global address or name space. At the one
end, a virtual shared memory implements a global address space at the physical pages
level. At the other end, distributed shared memory object models allow accesses in
a location independent manner at the level of method invocation or parallel opera-
tions on collection of objects. Remote method invocation is expensive in the context
of high performance applications. Also, it creates an asymmetric relation between
two objects/processes, i.e. a request/reply relation. This asymmetry does not fit well
with the inherent symmetry in data parallelism. Parallel object collections require the
management of a global object space. Managing a global object space poses many
problems, such as random object location, managing hierarchies of objects, etc. Many
languages start with a sequential programming language such as C++ and add sup-
port for concurrency through parallel collections [24,35,48]. This section discusses the
ICC++ [35] model.

Decomposition. In ICC++, concurrency is explicit. The unit of parallelism is a state-
ment within a block or a loop. Statements within a block are partially ordered based

URN:NBN:no-3329

58 CHAPTER 5. PROGRAMMABILITY

on local data dependences. Concurrent loops expose inter-iteration concurrency. In a
conc loop, loop carried dependences are respected only for scalar variables, but not
for others such as array dependences and dependences through pointer structures.

A concurrent block is explicitly marked:
conc S1; S2; ...; Sn

A concurrent loop (for, while, etc.) is explicitly marked as well:
conc for(...) ...

Decomposition is at the statement level and thus, fine-grain. Data parallelism is achieved
by applying the same method to every element of a collection. A collection is defined
by the use of standard class definitions, with the addition of ``[]'' to the class name.
The unit of distribution is an item of the collection.

For example, a grid data structure can be defined as following:
class Grid [][]f

int count;

Particle* particles;

double Grid[][]::cell size;

g

An operation invocation on an instance of the Grid type (e.g. a grid object) will
apply synchronously on all the elements of the collection: grid[i][j].op(). How-
ever, the user is responsible for implementing the operation through the explicit use
of conc loops or blocks. The parallel execution results in fine-grain concurrency.

Mapping. Concurrent threads of control are implicitly scheduled by the compiler
and run-time system. There is no concern for mapping according to a particular crite-
ria, and thus subsequent locality optimizations are employed (pointer alignment and
object caching) in order to reduce traffic and synchronization. Dynamic pointer align-
ment is limited by the availability of static aliasing information. Object caching is also
limited to static information on global states of objects and their copies. There is no
performance guarantee when such information is not available.

Communication. Communication takes place through remote accesses that can re-
sult in high latencies. In order to tolerate these latencies, communication is overlapped
with computation. That is, separate threads handle remote and local data accesses.
Generating a large number of threads for data accesses (potentially one thread per
access) is inefficient. Also, it is possible for a user to explicitly schedule threads to
account for load balance.

Synchronization. ICC++ guarantees that two concurrent accesses to an object are se-
rialized through atomic operations. However, the order of invocations is non-deterministic.
The language provides explicit user control over consistency for the member variables
of an object (potentially nested objects). That is, the integral declaration specifies that

URN:NBN:no-3329

5.3. DIFFERENT DEGREES OF IMPLICIT CONCURRENCY 59

all the references to a member variable should be considered as read/write operations
on that field, and thus require serialization of the accesses to that variable.

The approaches hiding communication through a global name space use serializa-
tion of concurrent accesses to data. Thus, these approaches account for intra-object
consistency and express a fine-grain data parallelism or task parallelism. Moreover,
any one data access can be in any one data space. Remote accesses require high-latency
communication. Given that there is no control over the remote versus local accesses,
there are no guarantees regarding the communication bounds.

5.3.3 Implicit Mapping

Mapping strategies that ensure spatial data locality are important for data parallel
applications. In shared-memory systems, data locality exploits cache-based architec-
tures. In distributed-memory systems, data locality reduces communication. This
section discusses a mapping strategy that bounds inter-processor communication for
coarse-grain data parallel applications, i.e. the bulk-synchronous parallel model (BSP) [106].

Decomposition. Decomposition in BSP is explicitly managed by the user. A parallel
program in BSP consists of a number of “components”, or threads, each performing
processing and/or memory functions. The user decides the data/computation for
each component, or thread. The unit of concurrency is a superstep. In each super-
step, each component performs some combination of local computation steps, mes-
sage transmissions and (implicitly) message arrivals from other components. All the
components synchronize at the end of a superstep.

The Oxford BSPlib implementation provides routines for dynamically creating a
process and stopping all the running processes. The library routines for process ma-
nipulation are similar to those available in the existing MPI implementations. The C
language synopsis is:

bsp init(void (*startproc)(void), int argc, char ** argv);

int bsp nprocs();

int bsp pid();

void bsp abort(char *format,...);

The bsp init call creates the processes dynamically. The bsp nprocs and bsp pid calls
respectively return the total number of the processes in a program and the identifier
for a specific process. All the processes stop when one process calls bsp abort.

Mapping. The mapping objective in the BSP model is bounded communication.
Thus, each thread is automatically assigned to a physical processor, based on a cost
model that reflects the interconnection network properties. The cost model is based
on the time for global synchronization (l) and the rate at which continuous randomly
addressed data can be delivered (g). Then, if L is the time for an asynchronous com-
putation (between two synchronization points), the total time for a superstep is t =
L + hg + l, where h is the maximum number of messages sent or received by any pro-
cessor. Random placements of threads are evaluated in conjunction with a random or
adaptive routing to bound the communication time.

URN:NBN:no-3329

60 CHAPTER 5. PROGRAMMABILITY

Communication. The communication in the BSP model is implied by the mapping.
Existing implementations of BSP libraries provide routines to place data into another
processor’s address space and get data from another processor’s address space. These
resemble explicit communication. The main difference is that the push register and
pop register calls allow to bind variables to names and thus enable processes to
address data across address spaces by name.

A data structure can be “published” and made visible to remote ad-
dresses and/or “unpublished”:
void bsp push reg (const void *ident, int size);

void bsp popregister(const void *ident);

Once the data has been published, the memory operations (put/get) can refer to it
across address spaces directly. Therefore, the user does not need to worry about
matching send/receive operations.

The following explicit remote memory operations are available:
void bsp put(int pid,const void *src,void *dst,int offset,int nbytes);

void bsp get(int pid,const void *src, int offset,void *dst,int nbytes);

Synchronization. The BSP model defines facilities for synchronizing all or a subset
of the components at regular intervals of L time units, where L is the periodicity pa-
rameter. After each period of L time units, a global check tells if all the processes have
completed a superstep. If they have completed a superstep, the computation proceeds
with the next superstep. Otherwise, a period of L units is allocated to the unfinished
superstep.

The library implementation gives the user control over synchronization through a
barrier synchronization routine:

void bsp sync();

BSP is an abstract concurrency model rather than a language or library specifica-
tion. Therefore, the existing library implementation is very close to the MPI manual
parallelization model. The main contribution of the BSP model is to recognize a com-
mon concurrency structure, i.e. coarse-grain concurrency in loosely synchronous ap-
plications. The challenge is to exploit this fact and design a system that models the
common concurrency infrastructure and enables applications to take advantage of it.
Thus, the BSP model is more of a guideline to implicit mapping through communica-
tion cost estimation.

5.3.4 Implicit Decomposition

In such approaches, parallelism is explicitly expressed in an application through lan-
guage constructs or compiler annotations, but software developers do not need to
worry about decomposition, mapping or communication. This section discusses the
implications of such a model. Generally not giving the user control over decompo-
sition and mapping may affect performance to the extent that a compiler is limited
to statically finding the best decomposition for an execution model. If the program

URN:NBN:no-3329

5.3. DIFFERENT DEGREES OF IMPLICIT CONCURRENCY 61

structure is simple enough, a compiler can use simple execution models to estimate a
good decomposition strategy. This is the case of static array languages. This section
discusses such strategies for dialects of the Fortran language.

Decomposition. In HPF-like approaches, the unit of parallelism is a block of loop
iterations. That is, the compiler automatically assigns loop iterations that can execute
independently to processors. The forall statement allows simultaneous assignment
to a group of array elements, resulting in a generalized array assignment.
FORALL (i=1:N,j=1:M, Y(i,j) .NE. 0.0)

X(i,j) = 1.0/Y(i,j)

END FORALL

The semantics of the above forall loop is equivalent with the following sequence
of statements:
DO i = 1,N

DO j = 1, M

IF (Y(i,j) .NE. 0.0) THEN

X(i,j) = 1.0/Y(i,j)

ENDIF

END DO

END DO

Mapping. In HPF the user may explicitly specify one of the regular data decom-
position strategies (block, cyclic). HPF provides a two-step mapping concept. First,
multi-dimensional arrays align/realign with a template. Then, the template is dis-
tributed/redistributed on the virtual processors arrangement. For example, an align-
ment suitable for a transpose operation (to reflect locality) is:

!HPF$ ALIGN a(j,i) WITH b(i,j)

The user may specify a virtual processor topology and the distribution of an array
onto the virtual processors, e.g.:

!HPF$ PROCESSORS p(1:n, 1:n)

One can also specify a distribution (block, cyclic, block-cyclic):
!HPF$ DISTRIBUTE b(BLOCK, CYCLIC) ONTO p

The virtual processors are automatically mapped onto physical processors. That is,
the static communication structure is easily derived based on the problem size (N),
and the mapping to physical processors is straightforward.

Communication. Communication is implicit in HPF programs. Communication takes
place when different operands of an arithmetic statement are on different processors.
By default, the computation is performed on the processor that “owns” the left hand
side (LHS) of the assignment statement. Scalars are replicated and synchronized to
improve performance for SPMD applications.

URN:NBN:no-3329

62 CHAPTER 5. PROGRAMMABILITY

Synchronization. The synchronization is implicit in the communication phase.
The natural mapping of data-parallel operations to architectures (e.g. for multidi-

mensional array representation), at least for simple types, enables a compiler and/or
a run-time system to make most of the concurrency aspects implicit to the user. It
also makes cost measurements possible. The challenge is to automatically handle con-
currency in data parallel applications that use more complex structures (indirection
arrays, graphs, etc.).

HPF and similar approaches are useful to parallelize applications that have simple
concurrency structures and use static data representations. If the size of data is chang-
ing, or the data dependences are complex, it is impossible for a compiler to generate a
load-balanced distribution. Several syntactic constructs may prevent data distribution
as well. For instance, constructs that use mainly scalar variables impede loop paral-
lelization. Thus, many data parallel applications cannot benefit from such support for
concurrency.

5.4 Automatic Parallelization

The purpose of automatic parallelization is to discover and exploit parallelism in ap-
plications that are written in a sequential programming language. This approach has
two advantages. One advantage is that a user does not need to worry about any of
the concurrency aspects, and thus the approach is highly usable and cost-effective.
Another advantage is that the existing (legacy) applications can be parallelized with-
out costly human resources. The main problem with automatic parallelization is effi-
ciency. A decomposition decision at one loop-level may be very bad later in the pro-
gram, incurring high communication overheads. Also, indirect indexing for variables
within a loop prevents the compiler from discovering parallelism.

Decomposition. The unit of parallelism is a block of loop iterations. The data is dis-
tributed automatically across multiple address spaces. The computation decomposi-
tion follows from the data decomposition and the owner-computes rule: the proces-
sor that owns the left-hand side element will perform the computation. Generally, the
owner-computes rule implies [9]:

� Data structures have to be partitioned onto processors.

� Memory consistency is preserved since no data are duplicated. This is too strict
and leads to poor performance due to increased communication.

� Non-local read references have to be requested from other processors.

� The control partitioning is derived from the data partitioning.

A parallelizing compiler distributes multi-dimensional arrays across multiple ad-
dress spaces according to one of the regular distributions and based on data depen-
dence analysis. There are several factors limiting the distribution of loops. First, the
compiler cannot distribute arrays in the presence of array aliasing. Also, a compiler
cannot distribute an array aliased to a scalar variable. Finally, the compiler cannot

URN:NBN:no-3329

5.5. SUMMARY 63

distribute an array of an unspecified size. In general, array distribution is limited
to accesses that are affine expressions (linear) of loop indices. Indirection arrays or
other non-linear accesses prevent load balanced distributions and result in poor per-
formance.

Mapping. Mapping is automatically performed by the system, according to load
balance and locality constraints. Static execution models are used to evaluate a good
mapping solution.

The problem of optimal data layout (decomposition and mapping) is known to
be NP hard. The existing compiler approaches use heuristics based on static execu-
tion models to choose a “good” data layout that maximizes parallelism and reduces
communication and synchronization. These models are limited to regular partitioning
strategies and regular applications.

Communication. Communication is automatically generated by the compiler when
data on the right hand side of an assignment is not present locally. Due to the limita-
tions of decomposition based on the owner-computes rule and static program analy-
sis, more communication than needed is usually generated. Subsequent optimization
techniques are used. Communication aggregation is one of the most important opti-
mizations. This technique aggregates loop invariant small messages into larger ones
and moves communication outside the loop.

Synchronization. Synchronization is implicit in the communication calls.
Automatic parallelization is ideally usable. Applications that can benefit from it

are mainly scientific, data parallel applications. Even with static array representation,
careless coding may impede the compiler in discovering parallelism even in simple
cases. Moreover, a static data distribution based on a given loop structure may result
in a very bad, inefficient behavior for a subsequent loop structure that uses the same
arrays, but in a different access pattern (e.g. reverse order). Several optimizations
exist to eliminate redundant communication and improve efficiency for parallelized
programs.

5.5 Summary

This chapter has presented a usability framework for concurrency models in the con-
text of data parallel applications. The framework analyzes the concurrency aspects
and discusses possible approaches to place some of the burden of concurrent pro-
gramming to a system. The approaches cover the entire spectrum, from manual par-
allelization to fully automatic parallelization.

Concrete examples and implementation issues show that it is difficult to find the
balance between usability and effectiveness in the approaches. The approaches to hide
synchronization by folding it into data accesses do not effectively model data paral-
lelism. The main problem is that ensuring synchronization of concurrent accesses to
shared data leads to serialization. On the other hand, encapsulating data into objects
forces fine-grain concurrency in order to ensure that enough parallelism is exposed.

URN:NBN:no-3329

64 CHAPTER 5. PROGRAMMABILITY

Implicit communication is typically achieved by ensuring location independence
for data accesses. This can be realized by shared virtual memory, or by ensuring a
global name space in a platform independent language (model). The efficiency of
such approaches is difficult to guarantee, since any process may access any location at
any given time.

Implicit mapping and distribution of data either renounce any parallelization ob-
jective (e.g. locality) or require some execution model based heuristics in order to de-
cide between mapping strategies. The problem of optimal data distribution is known
to be NP complete. Several strategies use static execution models based on static ap-
plication structures to estimate load-balanced distributions.

Finally, automatic parallelization is limited by all these factors and applies to fairly
simple parallelizable applications. The guideline is that a concurrency model may
need to make special assumptions about the class of applications it addresses and
express them in such a way that a system can exploit this knowledge and make con-
currency implicit. The drawback of such a model is that its applicability is restricted
to a particular class of problems. However, this compromise may be successful in
delivering a better usability-to-performance ratio.

URN:NBN:no-3329

Chapter 6

Methodology

6.1 Introduction

The goal of this chapter is to provide a transition from the state of the object-based
concurrency and data parallel programming to the research contribution of this thesis.
The chapter describes the context of the work as a primary motivation for the research
focus. Furthermore, it states the goal for our approach, together with the research
questions and hypotheses. The research methodology is elaborated by summarizing
the approach and describing the concrete evaluation and experimental basis.

6.2 Context

The context of this work is the Computational Science and Engineering (CSE) strategic
project at the Norwegian University of Science and Technology (NTNU). The goal of
the project is to bring together researchers with different competences to cooperate
towards solving grand-challenge problems [85,88,91]. The problem addressed within
the scope of the project is the design and analysis of fluid exposed marine structures.

The mathematics behind this problem consist of a numerical formulation of the
solution of the Navier-Stokes equations. These equations are extensively used in fluid
mechanics. One typical application is to model fluid-flow problems in aerodynamics
and avionics to study turbulent air currents that follow a flight in a modern jet.

We use the incompressible Navier-Stokes equations in our project. A typical prob-
lem in fluid dynamics is to study the fluid flow around a cylinder. The understanding
of solutions to the Navier-Stokes equations is still an active research area. However,
typical solutions use discrete mathematics, i.e. the Finite Element Method (FEM) to
solve the Partial Differential Equations (PDEs).

Figure 6.1 illustrates the typical solution of a scientific problem. The starting
point is a physical formulation of a natural phenomena. The problem is reduced to
a mathematical formulation using simplifying assumptions and identifying the phys-
ical quantities of interests. The mathematical formulation consists of a set of equa-
tions to be solved for the physical quantities of interest. For instance, the unknowns of
the Navier-Stokes equations are the pressure and velocity for the fluid flow. There
are no analytical solutions for such complex PDEs. Therefore, numerical analysis

65

URN:NBN:no-3329

66 CHAPTER 6. METHODOLOGY

Marine Structures

U

(Currents)

(Physical problem)

Abstraction/Modeling

Ω

Navier-Stokes Mathematical Equations

Ω

FEM Numerical Discretization

Ω Ω
21

P P1 2 Parallel Processing

Numerical Application

Domain Decomposition

for General Geometries

Figure 6.1: The typical solution of a grand-challenge problem. We use as example the fluid
structure interaction in deep sea. The Navier-Stokes equations are used to model the currents
around the marine structures.

URN:NBN:no-3329

6.2. CONTEXT 67

uses discretizations of the continuous physical quantities to derive approximate so-
lutions. A FEM discretization uses elements of different shapes to discretize the defi-
nition domain for the equations. Accurate modeling of the physical reality requires
three-dimensional geometric discretizations and experimentation with various ele-
ment shapes and sizes. Computer simulations solve the discrete equations. This type
of computing is also called computational science or scientific computing.

The characteristics of scientific computing are:

� The data sets modeling a complex problem are large and the computations re-
quire a large number of floating point operations. These computations require
parallel execution to reduce the simulation time.

� The discretized domains for the equations, called meshes or grids use complex ge-
ometries, and thus irregular data structures. This complicates the programming
model and the parallelization structure for the applications.

� Domain decomposition leads to computations that are coupled for the data on
the border between separate domains. This leads to nearest neighbour commu-
nication in parallel applications. Automatically detecting the synchronization
points and the communication data is challenging in the presence of irregular
data representations that do not capture locality (connectivity) information be-
tween the grid points describing the discretization domain.

The work in this thesis focuses on exploring a software methodology for writ-
ing parallel scientific, high-performance applications. That is, it addresses the fol-
lowing questions: What are the limitations of the current technology in supporting
parallelization for numerical applications? Can commodity-oriented distributed com-
puting platforms (e.g. clusters of PCs) replace the shared-memory multiprocessors?
Finally, why do scientific programmers resort to manual parallelization?

Specifically, this work focuses on methods for hiding as much as possible of con-
currency from the programmer in distributed-memory systems while enabling mod-
ular and reusable software developments through the use of object-oriented technolo-
gies.

Existing work on system support for concurrency uses Fortran as a starting point.
There are two main lines of thought in approaching parallelism. One is to add con-
currency features to the Fortran language (e.g. HPF). The other approach is automatic
parallelization of sequential Fortran programs.

Throughout this thesis we distinguish between regular and irregular numerical ap-
plications. We use the term regular to refer to applications that use dense matrices in
solving numerical problems (typically linear algebra). We use the term irregular to re-
fer to applications that use sparse matrices or general geometries in solving numerical
problems. Regular applications require support for multi-dimensional arrays and re-
duction operations. Irregular applications require support for recursive (e.g. graphs)
and hierarchical (e.g. indirection arrays) data structures and fast access operations.

URN:NBN:no-3329

68 CHAPTER 6. METHODOLOGY

6.3 Goal

The goal of this work is to explore a means for effective implicit parallelism for sci-
entific applications. The aim is to provide a uniform framework to address the re-
quirements for implicit parallelism and effectiveness for both regular and irregular
applications.

The main assumption is that the applications exhibit data parallelism. Fine-grain
parallelism refers to the exploitation of parallelism at the instruction level for vec-
tor computers, or loop-level for ideal shared-memory multi-processors with an un-
bounded number of processors. Coarse-grain parallelism refers to the exploitation of
parallelism in multicomputers, with a fixed number of computation nodes on which
concurrent components of an application run sequentially. This work focuses on sup-
port for coarse-grain data parallelism in distributed-memory systems.

6.4 Research Questions and Hypotheses

There are two main research questions related to our goal:

Effectiveness: What is the relation between the usability and efficiency for high per-
formance applications? Automatic parallelization of scientific applications po-
tentially achieves ideal usability and correctness. Parallelizing compilers may
not be able to achieve satisfactory performance, mainly due to their limitation
in discovering parallelism and conservative analysis leading to inefficient treat-
ment (e.g. generating redundant communication). Manual parallelization can
potentially achieve the best efficiency for a given application. However, manual
parallelization exposes the user to a complex, error-prone programming model.

Programmability: What can be revealed from concurrency aspects and how can it be
done to explicitly express some form of concurrency in order to enable effective
system support? Between fully implicit and manual parallelism a compromise
is to express concurrency either through different data abstractions (e.g. parallel
collections) or control statements (e.g. the forall statement).

The thesis answers these questions by proposing a concurrency model that occu-
pies the middle ground between the automatic and manual parallelization. The con-
currency model is based on the distinction between distributed objects that require
inter-object consistency and sequential objects that do not require consistency. Thus,
based on the explicit distinction between data objects in an application, a system im-
plicitly decomposes the program into concurrent tasks, maps the tasks to processors,
and generates the necessary communication and synchronization between the concur-
rent tasks.

The main hypotheses for our approach are:

H1 Effective execution of data parallel applications in distributed systems. The assump-
tion leading to this hypothesis is that the communication structures for different
classes of numerical applications can be deduced based on knowledge of both
the specific application and the program implementation, and the number of
synchronization points in a program is small.

URN:NBN:no-3329

6.5. APPROACH 69

H2 Increased programmability for distributed data parallel applications. The assumption
leading to this hypothesis is that the applications share similar structures and
the most difficult tasks of data distribution and communication can be solved
automatically by a system. Thus, the scientific programmer has to supply only
the sequential, application specific part.

6.5 Approach

This section gives an overview of the approach we use to address the two research
questions: effectiveness and programmability. We propose a concurrency model that
is both efficient and easy to use.

The solution steps for our approach to distributed data parallel programming are:

1. [User] Express a data parallel application using our programming model. That
is, use the distributed data type to designate large data objects in the application.
Besides the distinction between sequential and distributed objects, the program-
ming model is close to sequential.

2. [System] Decompose the problem into a number of subproblems to be solved
concurrently by the available processors in the system. We decompose a pro-
gram along data. That is, large data objects are mapped onto a graph that re-
flects the connectivity between data in a complete traversal. Then, we use multi-
objective graph partitioning algorithms to distribute the data across multiple
address spaces such as to preserve locality of reference and thus, reduce the
inter-processor communication.

3. [System] Solve the subproblems concurrently in a SPMD (Single Program Multi-
ple Data) style. The same computation applies to the sequential and distributed
data objects in each address space.

4. [System] Ensure global data consistency across address spaces. We ensure inter-
object consistency for the distributed data. In our model, the processing of dis-
tributed objects is synchronized such as the individual objects’ states make up a
global consistent state in the absence of a shared memory view. Existing object-
based concurrency models for data parallel applications use an intra-object con-
currency model. That is, the accesses to a given object are synchronized such as
the object is in a consistent state, independent of other objects. This means that
the concurrent accesses to an object are serialized.

6.5.1 Effectiveness

There are two main aspects of effectiveness for a concurrency model in a distributed
memory: locality of reference and low communication. The concurrency model ad-
dresses these issues in two steps:

1. Find a data layout that uses a general distribution of data and mapping such as
to preserve data locality and thus reduce communication due to references to the
remote data. The data layout is described in Chapter 7.

URN:NBN:no-3329

70 CHAPTER 6. METHODOLOGY

2. Use a data consistency scheme that incurs low space and time overhead for up-
dating data across multiple address spaces. The efficiency aspects of the consis-
tency protocol are described in Chapter 8.

We assess effectiveness by measuring the speedup of an application with an increas-
ing number of processors. We use two types of measurements. One measurement
is the speedup of a PDE solver for different problem sizes and increasing number of
processors. Due to time limits and significant differences in expressiveness between
different concurrent programming models, we do not compare the implementation
of the PDE solver against other programming models. The other measurement is the
comparison of the performance of a toy application implemented using various exist-
ing programming models for distributed computing, as well as our own model.

6.5.2 Programmability

We assess programmability both qualitatively and quantitatively. The qualitative as-
sessment is based on the classification of the concurrent programming model, pre-
sented in Chapter 5, that is, according to the ability to hide one or more of the concur-
rent computing aspects: decomposition, mapping, communication and synchroniza-
tion. This concurrency model makes decomposition, communication and synchro-
nization implicit, and requires the programmer to indicate the data objects to which
these apply. The quantitative assessment is based on a usability metric which will be
described in Section 6.6.

We explore implicit parallelism in a data parallel programming model that re-
quires the user to identify the data to be distributed across address spaces. Besides
this distinction between the data objects, the programming model resembles a sequen-
tial model. Thus, we address the programmability of the concurrency model at three
levels:

1. We propose a high-level, data parallel programming model that identifies the
main abstractions in a data parallel application and uses distributed and sequen-
tial objects to account for implicit concurrency aspects. This high-level model is
described in Chapter 9.

2. We propose a uniform data abstraction mechanism to enable the user to rep-
resent both regular and irregular data objects. This model uses recursive sets
to allow the user to express data structures most commonly used in numerical
applications and enable a system to account for data locality and reduced com-
munication requirements. This model is described in Chapter 10.

3. We describe a prototype system implementation for experimentation with our
models. The prototype system realizes some of the run-time functionality of the
proposed model. However, it is not a complete system and the calls to the run-
time system routines are manually inserted. We briefly describe the compiler
techniques that would automatically detect and generate the insertion place for
the run-time routines, but we do not implement them. The requirements for the
prototype system together with its implementation are described in Chapter 11.

URN:NBN:no-3329

6.6. EXPERIMENTAL METHODOLOGY 71

6.6 Experimental Methodology

The experimental base to validate the achievement of the goals consists of distributed
and NUMA (Non-Uniform Memory Access) architectures, metrics to measure effi-
ciency and usability, and a test bed consisting of data parallel applications relevant for
this work.

6.6.1 Performance Metrics

The performance of a concurrent program indicates how the execution time for a given
program depends on the number of processors. Thus, the number of processors be-
comes a study parameter, and the problem and multicomputer are fixed parameters,
given the following definitions.

Definition 6.1 [107] The speedup of a p-node computation with execution time Tp is given
by:

Sp = T�1 =Tp,

where T�1 is the best sequential time obtained for the same problem on the same multicomputer.

Definition 6.2 [107] The efficiency of a p-node computation with speedup Sp is given by:

ηp = Sp=p

In practice, performance data is obtained just for one sequential and just for one multi-
computer program. We use the sequential time based on the parallel program running
on one node and not the sequential time for the sequential program.

We measure the speedup for different problems for fixed sizes and execution plat-
forms (multicomputer, i.e. a distributed-memory model where communication only
takes place through message passing). Also, we vary the problem sizes and keep the
platform fixed to study the effect of the problem size on the concurrent execution.
With coarse-grain parallel applications in a distributed environment, a scalable imple-
mentation will lead to an increase in efficiency for larger problem sizes. We also fix
the problem, the number of processors, and vary the execution platform.

6.6.2 Usability Metrics

The quantitative assessment of concurrent programming environments is by no means
comprehensive. It uses a usability metric to compare a toy problem expressed in dif-
ferent concurrent programming environments, including our own.

The metrics used in this work are not intended to give a precise, absolute measure
of usability. The purpose is to offer a guideline on how difficult it is for a programmer
to implement an application using a concurrency model in the absence of a paral-
lelizing compiler (ideally, in such cases no effort is required from the programmer).
We define the following metrics to assess the usability of a concurrent programming
model:

URN:NBN:no-3329

72 CHAPTER 6. METHODOLOGY

� The learning curve is the time spent by a user to learn a new system, library or
language (in days).

� The user effort is the effort required from the user to have a working application
by using a new system or formalism.

– The number of lines of code is the number of extra lines of code the user has to
write by using an existing system, library or language in order to complete
an application.

– The number of classes is the number of extra classes the user has to define by
using an existing object-oriented language or system in order to complete
an application.

– The number of decision points is the number of points in the code where the
user makes decisions about distributed computing (i.e. is aware of aspects
such as communication, remote method invocation, data consistency, etc.).

We use different programming models to implement the same concurrent applica-
tion, including our proposed programming model. We use students to collect usability
data. The results strongly depend on the human factor: the programming style, the
ability to exploit the expressiveness of a given model, etc.

6.6.3 Test Bed

The research in this thesis points out one significant problem: there is a lack of method-
ology for study and research in scientific software development. This problem stems
from a number of incompatibilities between the current practice and isolated attempts
to explore novel software technologies to improve the software development process.
These incompatibilities are listed in Table 6.1.

Table 6.1: Factors for the lack of methodology in scientific software.

Incompatibility Current Practice Desired Feature
Programming Lan-
guage

Fortran languages Higher level languages (e.g.
C++)

Application Mainly Regular (lin-
ear algebra)

General (Regular and Irregu-
lar)

Input data Regular Meshes General Geometries
Input data format Non-Standard Standardized Format
Numerical Method Finite Difference / Fi-

nite Volume
Finite Elements

Goal Compiler Transforma-
tion / Machine Spe-
cific Tuned Libraries

Modeling and Methodologi-
cal Experimentation

Numerical Expertise
in Programming

Scientists Scientists Support

URN:NBN:no-3329

6.6. EXPERIMENTAL METHODOLOGY 73

Table 6.2: Characterization of the Test Bed applications.

Feature Non-trivial Data Parallelism Trivial Data Paral-
lelism

Programming Lan-
guage

C++ C++

Application 3D Poisson Solver 3D Body Surface
Computation

Input data Tetrahedra Mesh Tetrahedra Mesh
Input data format Non-Standard Non-Standard
Numerical Method Finite Elements, Jacobi Itera-

tion
Vector Products

Goal Experimentation Experimentation
Numerical Expertise
in Programming

None Trivial

Existing benchmarks for scientific applications [20] reflect the current practice, i.e.
are useful for the much researched and understood regular Fortran applications. One
difficulty encountered while pursuing this research was the lack of programming ex-
amples for irregular problems, input meshes in different formats and implementations
in other languages than Fortran. Thus, much valuable time was dedicated to this prob-
lem alone.

We use scientific and numeric programs for our study. Since our focus is on a spe-
cial class of applications, i.e. FEM solutions of PDEs, we use the Poisson problem as
representative for the class of applications we address. Table 6.2 lists the characteriza-
tion of the test bed we used.

We use a non-trivial data parallel application to validate the functional and non-
functional research hypotheses. We use a trivial data parallel application to assess
the usability metrics and collect quantitative data on differences between various con-
current programming models. Due to the lack of benchmark suites and limited time
resources, it would not be feasible to have a complex, numerical application imple-
mented in multiple concurrent programming models within the time-frame of a the-
sis.

We use two test problems1 for the applications. Their description is given in Ta-
ble 6.3. These problems are relatively small compared to real applications. The prob-
lem of generating accurate 3D discretizations for various domains is a research area in
itself and it does not concern our work. Thus, we have used problems we have found
available for the benchmarking applications we are using. Larger problems need to be
tested to sustain our experimental results on the scalability of our approach.

1We used two meshes from Peter Monk, Department of Mathematical Sciences University of Delaware
Newark, available at http://www.math.udel.edu/ monk/

URN:NBN:no-3329

74 CHAPTER 6. METHODOLOGY

Table 6.3: Characterization of the test problems.

Mesh Dimension Number of El-
ements

Number of
Faces

Number of
Vertices

Tiny 3 6000 12 600 1331
Small 3 15 581 31 818 2933

6.6.4 Execution Environment

The execution model is a distributed-memory platform consisting of multiple proces-
sors linked by some interconnection medium. The communication between different
address spaces is through message passing. Different architectures have different in-
terconnecting speeds and different per-node performance, which influence the overall
application performance. We use three different architectures to test the application
performance:

1. SGI 3800 is a third-generation NUMA architecture, called NUMA 3. In this ar-
chitecture, all processors and memory are tied together into a single logical sys-
tem through the use of special crossbar switches developed by SGI. The com-
bination of processors, memory, and crossbar switches constitute the intercon-
nect fabric called NUMAlink. This special hardware interconnect delivers a
low-latency and high-bandwidth architecture. The memory latency ratio be-
tween remote and local memory is 2:1 (less than 600 nanoseconds round-trip
in the largest configuration). For message passing programming, SGI offers MPI
and PVM libraries through Message Passing Toolkit (MPT) and SGI PVM 3.3
software, respectively. MPT provides versions of industry-standard message-
passing libraries optimized for SGI computer systems. These high-performance
libraries permit application developers to use standard, portable interfaces for
developing applications while obtaining the best possible communications per-
formance on SGI computer systems. Table 6.4 gives the system characteristics.
Even though memory latency rates are given in the SGI 3000 Family Reference
Guide 2, we did not find any data on the message delivery rate when using mes-
sage passing.

2. The ClustIS Linux cluster consists of 36 computational nodes and one master
node. The nodes are on a switched private network with 100MBit/sec between
the nodes and the switch and a 1GBit/sec link between the master node and the
switch. Table 6.6 lists the detailed characteristics.

3. Beowulf is a 6 processors Linux cluster which consists of 3 nodes with two Intel
Pentium III 500 MHz processors and 512 MB RAM each. Table 6.7 summarizes
the technical characteristics.

2Available at http://www.sgi.com/origin/3000/

URN:NBN:no-3329

6.6. EXPERIMENTAL METHODOLOGY 75

Table 6.4: SGI Origin 3800

Processors: 220 MIPS R14000 processors
Main Memory: 220 GBytes total
Disk: 2.2 TBytes
Architecture: Distributed Shared Memory
Peak Performance: 1000 Mflops per processor / 220 Gflops total
Operating System: Trusted IRIX
Main Purpose: Compute Server

Table 6.5: SGI Origin 3800

Table 6.6: ClustIS Linux cluster

Node
Type

Processor Main
Memory

Secondary
Memory

Interconnect

Master: AMD Athlon XP 1700+ (1.46
GHz)

2GB 2*80GB
IDE

1*Gigabit ,
1*100MBit

Nodes:
1..16

AMD Athlon XP 1700+ (1.46
GHz)

2GB 1*40GB
IDE

1*100MBit

Nodes:
17.. 28

AMD Athlon XP 1700+ (1.46
GHz)

1GB 1*40GB
IDE

1*100MBit

Nodes: 29
.. 36

AMD Athlon MP 1600+ (1.4
GHz)

1GB 1*18GB
SCSI

1*100MBit

Table 6.7: Beowulf Cluster

Processors: Pentium III 500 MHz
Main Memory: 512 MB RAM each
Interconnect: 100Mbit

URN:NBN:no-3329

76 CHAPTER 6. METHODOLOGY

6.7 Summary

This chapter ends the first part of this thesis related to the state of concurrency mod-
els for data parallel applications. The purpose of this part is more than just to point
out the state-of-the-art of our research area: it puts in perspective all the important as-
pects that are related to a concurrency model for the data parallel applications. Thus, it
reflects on the various concurrency models, their expressiveness and limitations, per-
formance aspects, driving design decisions, and provides an in-depth analysis of data
parallelism. This first part serves as a comprehensive motivation and assessment for
the approach in this thesis. After reading these chapters, the reader should be ready to
explore the benefits and limitations of our approach, the new research paths it opens,
and the new questions it raises.

URN:NBN:no-3329

Part III

Results

77

URN:NBN:no-3329

URN:NBN:no-3329

Chapter 7

A General Data Layout for
Distributed Consistency

Parts of this chapter were published as a conference paper [41].

7.1 Introduction

Parallel execution for scientific applications can be employed in the context of shared-
memory and distributed-memory architectures. The shared memory paradigm pro-
vides the benefit of programmability, since it is closer to the sequential programming
model. The distributed-memory paradigm is appealing for its scalability and reduced
cost. Since the latter is important for scientific computations, it becomes increasingly
important to aim the research towards closing the gap in usability between shared-
and distributed-memory programming models [11].

This chapter investigates the issues of general data layout and consistency for sci-
entific applications in distributed-memory systems. The type of the applications and
cost considerations influence the decomposition of the problem and the consistency
scheme employed [10]. We address data parallel applications with general access pat-
terns. The concurrency model is based on peer processes1 that communicate by ex-
changing messages. Point-to-point and collective communication routines are used to
maintain the consistency of data distributed across multiple address spaces.

In the SPMD model, data on each partition can be processed independently, but
this does not guarantee correct results. This is because data dependences across par-
titions exist. One simplifying assumption that makes our approach scalable is that
consistency can be ensured only at synchronization points. This means that the syn-
chronization points have to be detected by the application programmer or some sys-
tem support (e.g. compiler, run-time). Since our goal is to ensure implicit parallelism,
and thus automatic data layout and consistency, we opt for the latter choice. That is,
we want the system to be able to detect the synchronization points and decide what
action to take upon discovering such points. Both of the problems are far from being
trivial. In this chapter, we address thoroughly the second one; that is, by assuming

1Identical processes

79

URN:NBN:no-3329

80 CHAPTER 7. A GENERAL DATA LAYOUT FOR DISTRIBUTED CONSISTENCY

that the synchronization points can be identified, what data layout can be used in a
distributed data consistency algorithm.

Previous experience with data parallel applications shows that the synchronization
points are loose, usually occur at the end of a large computation step, and typically
involve data residing on the boundary between two different partitions. Thus, a data
layout must take into consideration the spatial locality of data in order to ensure an
efficient consistency scheme. We use a generic relation to reflect spatial data locality
in our model. This chapter makes the following contributions:

� A general data layout. We describe a class of data parallel applications and
the data model they employ. We formulate the problems of data partitioning,
data mapping and data consistency. The layout explicitly captures the relation
between the set elements that are to be partitioned. Furthermore, it uses this
extra information to find a general solution to the transformation between local
and global data spaces in the absence of a symbolic expression (e.g. as with block
and cyclic partitioning).

� A distributed algorithm for data consistency. The algorithm we propose con-
verges from the above formulations and shows when data consistency needs to
be employed and what actions that are needed in order to achieve correctness.

� Applicability of our algorithm. We show how our algorithm can be employed,
in conjunction with well-known solutions to our formulated problems (of data
partitioning and mapping) to ensure data consistency for two important classes
of applications. These are regular and irregular numerical applications for solv-
ing Partial Differential Equations (PDEs).

� Experimental results. We show that our approach is scalable, by providing ex-
perimental results. We use our prototype system implementation for the evalu-
ation. We have used the system to parallelize a serial three-dimensional Finite
Element (FEM) Poisson solver on a general (tetrahedra) mesh.

The remainder of the chapter is organized as follows: Section 7.2 introduces the
class of applications we address, their characteristics and simplifying assumptions.
Section 7.3 introduces the data layout we use, and formulates the problems of data
partitioning, mapping and consistency. Section 7.4 describes a distributed data con-
sistency algorithm. Then, in Section 7.5, we describe concrete applications of our algo-
rithm. Section 7.6 presents results from the implementation of our layout and consis-
tency schemes. Section 7.7 provides an overview the existing approaches to automatic
data layout and consistency, and contrasts them to our approach. We conclude the
chapter in Section 7.8 and indicate future directions for our work.

7.2 Background

This section describes in detail the data parallel applications, their characteristics and
behavior. We discuss data parallel numeric applications. One assumption is that these
applications use very large data sets.

URN:NBN:no-3329

7.2. BACKGROUND 81

Figure 7.1: Regular and irregular data sets.

Data parallel applications consist of computations that apply independently and
simultaneously to many pieces of data. The applications can be classified as regular or
irregular according to the shape of the data. Figure 7.1 shows typical input data repre-
sentations for numerical applications that use discrete meshes (or grids) to represent
continuous, physical domains.

The regular data sets represented using multi-dimensional arrays map directly
onto an iteration space describing a nested loop (e.g. for i, for j). This is the most
exploited feature for instruction-level and loop-level parallelism and/or memory op-
timization techniques in cache-based architectures.

Another feature exploited for the parallelization of these applications is the possi-
bility to uniformly distribute the data into alike memory blocks and align them/ map
them to specific memory addresses. Then, given the regularity of the data represen-
tation and its distribution, any data address can be computed as a simple function
application. This means that any data item can be located from any point by applying
a simple recurrence formula that describes the regularity of the data. For instance, a
cyclic distribution maps a global index i of an array to processor p in a P processors
multicomputer using the formula p = imodP.

The irregular data sets are not generated by using a recurrent relation, but by
complex techniques (e.g. mesh generation). As a consequence, the first property that
differentiates them from the regular sets is that much more information must be kept
in order to access/locate a specific data item. Such information can be, for example,
spatial coordinates for mesh data, or connectivity information for data described by
graph-like structures.

The second complicating factor is that it is much harder to access/locate a data
item starting from an arbitrary point based on the connectivity information. Much
more complex data structures and procedures must be employed in order to make
iterations over such data efficient. The gap in the difficulty of treating the two types
of data gets even bigger when introducing the distribution, or parallelization factor.

So far we have described the typical data models in scientific applications. The
computation is another factor that must be taken into account for parallelizing an ap-
plication. For the class of applications we address, it is common that the computation
can proceed independently on large regions of data. Because of the small data subsets,
relating the independent data parts, global data consistency must be ensured. We as-
sume a distributed-memory model. Therefore data consistency is ensured through
message passing communication and synchronization.

In order for the parallelization to be worthwhile in a distributed memory, the in-

URN:NBN:no-3329

82 CHAPTER 7. A GENERAL DATA LAYOUT FOR DISTRIBUTED CONSISTENCY

dependent computation steps must be large, and followed by a collective communi-
cation phase to ensure correct values for related data across processors.

To summarize, the following subproblems have to be solved when parallelizing a
data intensive, numerical application:

1. Data partitioning.

2. Mapping of the partitions onto different address spaces.

3. Data consistency through:

� Communication.

� Synchronization.

In the remainder of the chapter we will continue to refer to the irregular data appli-
cations. This is because, on the one hand, if it is desired or useful, the regular case can
be treated as a particular case of the more general irregular case. On the other hand, if
an irregular problem reduces to a regular problem (e.g. the FEM formulation reduces
to a linear system of equations), the two parts can be decoupled, and data remapped
according to a regular data layout that reflects the new spatial locality requirements.
Then the usual techniques employed for linear algebra problems can be applied.

In the following sections we will formulate the subproblems identified above2.

7.3 The General Data Layout

7.3.1 Data Partitioning

We formulate the problem of data partitioning as follows:
Given a data set D of size N, N large, and a symmetric relation R:

D = fdi j i = 1, Ng

R : D ! D, 8 di s.t. 9 d j, j = 1, N, R(di) = dj,

9R�1 : D ! D s.t. R�1(dj) = di,

Find a set S = fSp j p = 1, Pg with P bounded and sufficiently small and a new
relation Rs such that the following conditions are satisfied:

Sp = fdip jip = 0, jSpjg (7.1)

Rs : S ! S, (7.2)

8dip 2 Sp s.t. 9d jp 2 Sp R(dip) = djp , Rs � R

8dip 2 Sp s.t. 9d jp 2 Sp R�1(dip) = djp , Rs � R

8p, k = 1, P, p 6= k Sp \ Sk = ; (7.3)

8p, k = 1, P, p 6= k, abs(jSpj � jSkj) � �,
2All the formulations throughout the chapter are in one-dimension, for the sake of simplicity. A

multidimensional, vector-based notation would complicate the formulas unnecessary.

URN:NBN:no-3329

7.3. THE GENERAL DATA LAYOUT 83

� � jSpj, � � jSkj (7.4)
P[

p=1

Sp � D. (7.5)

The first condition states that the initial relation between the set elements is re-
tained for those elements being related to elements from the same subset. The second
condition ensures non-overlapping [7] data partitioning. The third condition requires
that the size of any two different subsets must not differ by more than a bounded
quantity which is much smaller than the size of both subsets (e.g. load balance). The
last condition is the prerequisite to data consistency: the initial data set and its par-
titions are interchangeable. That is, the initial data set can be reconstructed correctly
from its subsets.

7.3.2 Data Mapping

We formulate the data mapping problem as follows:
Find a partitioning function P

P : D ! S, (7.6)

such that3:

8 di 2 D, P(di) = dip 2 Sp, 9 P�1 : Sp ! D,

s.t. P�1(dip) = di

Given a partitioning function that satisfies the above, a solution to the transforma-
tion between the initial data set and its partitions is:

8 dip 2 Sp, s.t.9 d jk 2 Sk 6= Sp, R(dip) = djk

let Rs(dip) = (P Æ R Æ P�1)(dip) (7.7)

8dip 2 Sp , s.t.9 d jk 2 Sk 6= Sp , R�1(dip) = djk ,

let R�1
s (dip) = (P Æ R�1 Æ P�1)(dip) (7.8)

The formulation of the data mapping problem adds two important aspects to the
data decomposition problem. One is to find a bijective function that uniquely asso-
ciates an element in the initial data set with a partition. The reversibility condition
ensures that from each data subset, the correspondent in the initial data set can be
found. The other is to construct the relations that have been invalidated by the data
partitioning based on the original relation, the partitioning function and its inverse.
This information enables the transformation between the global and local data spaces.

Claim: The solution to the transformation problem is correct.

Proof: It is easy to see that 9P�1(dip) = di 2 D and 9R(di) = dj. Then 9(R Æ

P�1)(dip) = dj. It follows that given it 9P(dj), then (P Æ R Æ P�1)(dip) is cor-
rectly defined. The proof of (7.8) is similar.

3Throughout the chapter, P as partitioning function is different from P as the bounded number of
partitions.

URN:NBN:no-3329

84 CHAPTER 7. A GENERAL DATA LAYOUT FOR DISTRIBUTED CONSISTENCY

��
��
��
��
��
��
��
���
�
�
�
�
�
�
�

��
��
��
��

��

��
��
��
��

�� �
�
�
�

����

��

��
��
��
��

D

SP

.

.

.

.

.

.

Sk

Sp

.

.

.
S1

..

.

dlp

dip

di

Inv(P)

P

Inv(P)

P

Inv(P)

P

Inv(P)

P

R

Inv(R)R

dj

dl

Inv(R)

R
Inv(R)

djk

Inv(R) R

Figure 7.2: The partitioning and mapping for a data set.

The way we formulate we say that there cannot exist explicit relations among two
different subsets. But since we want to preserve the equivalence and irreversibility of
the initial data and its partition in subsets, we can soundly construct a relation through
function composition.

7.3.3 Data Consistency

The data consistency problem requires that we ensure that applying the same trans-
formation independently on each of the data subsets leads to the same result as when
applying the transformation on the initial data set:

Let T :< D, V >!< D, V >, with T a a generic transformation and V a set of values,
be a transformation such that:

9T :< Sp , Vp >!< Sp, Vp >, p = 1, P (7.9)

The partial values Vp are the values obtained by applying the same transformation
individually to each partition of data. Our goal is to ensure that the partial and the
global sets of values are equivalent in order for the parallel execution to be correct.
Thus, we require that:

P[

p=1

Vp � V (7.10)

is satisfied.
Figure 7.2 graphically illustrates the problem formulations from above. The data

in the global set D is partitioned into disjoint subsets S such that the relation between
elements belonging to different subsets is reconstructed to preserve the initial relation
governing the global set.

The
SP

p=1 f< Sp , R, Rs,P ,P�1, T >g is necessary to the solution of the consistency
problem. This means that the tuples < Sp , R, Rs,P ,P�1, T > contain all the ingredi-
ents necessary to be able to ensure data consistency.

URN:NBN:no-3329

7.3. THE GENERAL DATA LAYOUT 85

The tuples are only a prerequisite (necessary) for solving our problem. Given that
we have a data set D and its partition in subsets Sp, such that the data mapping prob-
lem is solved, we are able to construct the relations that are invalidated in the parti-
tioning process, knowing Rs,P ,P�1. Let us call the tuple < Sp , R, Rs,P ,P�1, T > a
subdomain and denote it by Subdp.

Any time a transformation on a data item from a subset Sp is applied, the informa-
tion from the corresponding subdomain Subdp will suffice to identify that there exists
a remote data item in relation to the locally transformed data item and to correctly
identify the remote subset and data item related to the local data item. This is guaran-
teed by the relations 7.7 and 7.8. In this case, the remote data item is the destination of
the relation dependency. Conversely, we will also be able to identify any data item that
is remote and in inverse relation with a local data item. This is the remote source of the
relation dependency.

We call the detected sources and destinations of remote data items related to data
in each individual data set the data relation pattern of a subdomain. These model the
connection between subdomains, based on the original relation R characterizing the
data set D, the partition set Sp, the partitioning function P and its inverse P�1.

The remaining necessary step to ensure data consistency is to generate communi-
cation. We need to establish when to generate communication, what to communicate,
and where to communicate. The communication will be generated according to the
computed patterns.

7.3.4 Communication

Distributed data consistency uses point-to-point communication to exchange values
for data that is related across address spaces. Typical consistency protocols use either
an invalidation or an update strategy. Every time a data item is updated in one ad-
dress space, an invalidation scheme requires invalidation of data on all the processors
that have a copy of it. Thus, the update of data is postponed until the next read. With
update schemes, all the copies of data in other address spaces are updated. Com-
munication is generated on write. An invalidation scheme requires more messages
(invalidation and update) than an update scheme. Invalidation generates communi-
cation on read, while update generates communication on write.

We use an update protocol to generate communication for data that are related
across address spaces. That is, a write operation to data that have relations to data in
other address spaces causes a message to be sent. This eliminates the communication
on read, since the updated value is guaranteed to be available.

When to Communicate

The moment of generating communication does not only depend on the data rela-
tions across address spaces according to the data representation and its partitioning,
but also on the type of transformation performed (computation). This is generally
strongly related to the application behavior, which we cannot know in advance. Some
assumptions are usually being made for different classes of applications.

URN:NBN:no-3329

86 CHAPTER 7. A GENERAL DATA LAYOUT FOR DISTRIBUTED CONSISTENCY

We divide the data belonging to a data set into data items that preserve their rela-
tions from the initial data set, and data items that do not preserve them (their relations
were invalidated, then recomputed). We call the former data independent data. That is,
this data is directly related (as source or destination of a relationship) only with data
from the subset they belong to. We call the latter type of data dependent data. This is
the data whose relations were invalidated by the partitioning and reconstructed later
on.

Subsequently, the transformations which solely involve independent data can be
carried out in parallel. For the transformations which involve dependent data, con-
sistency must be ensured through communication. Communication is generated after
transformations involving updates (writes) of such data.

What and Where to Communicate

The data to be communicated also depend on the application. Assuming that the
data we treat in the above manner is left values (i.e. locations, data references) of ap-
plication data (data address), then the right values of this data (data value) must be
communicated according to the computed communication patterns. The right values
are application and computation dependent.

The right values of the data from their original subdomain (owners) will be com-
municated to the subdomain indicated by the relations between different data subsets.
That is, application data objects are communicated between different address spaces
at the level of granularity decided by the implementation. Typically, all the data val-
ues that are remotely related need to be exchanged in a communication step. Thus,
one large message is used to update all the values changed in a computation step.

7.4 A Distributed Algorithm for Data Consistency

7.4.1 Implicit Parallelism

The motivation for implicit parallelism in distributed-memory applications is to allevi-
ate the user (programmer) from the complexity of writing and debugging concurrent
applications. The development of message passing parallel programs has long been
identified as a cumbersome and error-prone process.

Ideally, parallelism should be fully implicit. This cannot be achieved for any kind
of application with the available tools and techniques. Nor is it always desirable,
since this would impede the experimentation with novel, more performant parallel
algorithms. As identified in [97], the existing languages and systems can be classified
according to the ability of making implicit the following:

� Parallelism

� Decomposition

� Mapping

� Communication

URN:NBN:no-3329

7.4. A DISTRIBUTED ALGORITHM FOR DATA CONSISTENCY 87

� Synchronization.

Different approaches cover subsets of the above from all to nothing, i.e. ideal
to manual parallelization. Also, the approaches address different classes of applica-
tions (based on certain features or assumptions). To our knowledge, the “state-of-the-
art” approach for irregular applications is close to “all explicit”. There are some ap-
proaches [69, 111] that make mapping, communication and synchronization implicit,
while decomposition is still explicit. However, as most of the approaches for implicit
parallelism in data parallel applications, this one is also restricted to loop-level paral-
lelism.

As a solution to the problems formulated in the previous section, we present a
distributed consistency algorithm for data parallel applications. We will show how
decomposition, mapping, communication and synchronization can be made implicit
by using our algorithm. Parallelism remains explicit to the extent that the distributed
data type is explicit.

7.4.2 A Distributed Consistency Algorithm

This section presents a distributed consistency algorithm for data parallel applica-
tions using the foundation built in the previous sections. The algorithm shows how
data consistency can be preserved when parallelizing a data parallel application in a
distributed-memory environment.

Let D be the distributed data set holding the left values of the distributed data
defined by an application. Let T :< D, V >!< D, V > be a composed transformation
over the initial set D. Then we denote a data parallel (sequential) program by the tuple
< D, T, V >.

Let Ti, i = 1, n be a series of transformations that compose T, i.e. T = Tn Æ ... Æ T1.
Then we can write:

T(D, V) = (Tn Æ ... Æ T1)(D1, V1)

= ... = Tn(Dn, Vn)

There exists a decomposition of Ti into a set of atomic operations such that Ti =
Op1 Æ ...Opl. The atomic operations can be classified into read and write operations.
Write operations modify the values of the data.

Recall that Subdp =< Sp, R, Rs,P ,P�1, T > as defined in the previous section.
Let dip 2 Sp be a reference (address) of a data item in the subset Sp. Then 8 dip 2

Sp and Ti(dip) = (Op1 Æ ... ÆOpl)(di p) an operation Opl(dip) will be executed accord-
ing to the algorithm presented in Figure 7.3.

The algorithm in Figure 7.3 ensures that all the updates of the remote data that are
in relation with the local data are reflected in the local Subdp. For the values that are
not directly related to remote data, the computation proceeds independently in each
address space.

The Dest pattern keeps track of the local data items that are destinations of a rela-
tion from a remote data item. The Source pattern keeps track of the local data items
that are the origin of a relation with a remote data item. Generating communication

URN:NBN:no-3329

88 CHAPTER 7. A GENERAL DATA LAYOUT FOR DISTRIBUTED CONSISTENCY

Dest = ;

Source = ;

8 dip s.t. R(dip) =2 Sp

Construct Rs(dip) = (P Æ R Æ P�1)(dip)
Add fRs(dip)g to Dest pattern

8 dip s.t. R�1(dip) =2 Sp

Construct R�1
s (dip) = (P Æ R�1 Æ P�1)(dip)

Add fR�1
s (dip)g to Source communication pattern

if Opl(dip) writes dip then

Gather all the right values corresponding to the addresses

(left values) from Source
Generate communication on the Source pattern

Generate communication on the Dest pattern

For all left values (addresses) from the Dest
dik = Address(Dest[k])
vik = Value(dik)
dip = R�1

s (dik)
vip = Opl(vik)

Figure 7.3: A distributed algorithm for data consistency.

on the Source pattern means that the changes to a local data item are reflected to the
dependent, remote data item. Conversely, communication on the Dest pattern is gen-
erated to reflect the changes of the destination.

This is a relaxed version of the owner-computes rule. That is, since updates to
remote related data can affect the locally owned data, consistency is required. With
the strict owner-computes rule, the updates can affect only the locally owned data and
remote data is read-only. Thus, with the strict owner-computes rule the consistency
problem does not occur. With our approach, the data relation communication patterns
keep track of the related data. An implementation typically replicates these data and
uses their values to reflect the changes from remote address spaces locally and vice-
versa. With the strict owner-computes rule the data cannot be replicated.

7.5 Examples

This section presents practical examples of data layouts and consistency schemes for
typical computations in numerical applications. Thus, regular and irregular data lay-
outs and computations are presented. We show in each case how remote locations are
identified based on local address space information and the mapping function and
how data is kept consistent.

A typical irregular application is the solution of PDEs for general geometries. The
numerical applications involving PDEs use as input data a discretization of the phys-

URN:NBN:no-3329

7.5. EXAMPLES 89

for t = 0 to T do

for i = 1 to N do

x[i] = x[i-3]

Figure 7.4: A typical regular computation.

ical domain they are defined on, known as mesh or grid data. Since the size of the
mesh can be fairly large, these data are usually the subject of distribution/partitioning.
Moreover, the solution of the PDEs, either by Finite Difference (FD) method or by Fi-
nite Element Method (FEM) consists of iterations over the data that can mostly pro-
ceed independently on partitions of data. For some data, however, consistency has to
be ensured.

Typical solutions of the data partitioning problem for FD applications are the block
and cyclic distributions for regular data meshes. For irregular data meshes the data
partitioning problem can be reduced to a graph partitioning problem if the mesh is
mapped onto a graph. Many solutions of the latter exist [33, 95].

Typical relations for the applications modeling FD solutions of PDEs are “neigh-
bouring” relations. This means that the FD discretization stencils usually result in com-
putations that combine the values from the addresses situated at a fix, small distance
in a linear data representation.

7.5.1 Regular Applications

Let us consider the code excerpt in Figure 7.4. The data representation is a linear
array. Thus, the data to be distributed are the array x, i.e. the set D = fx + i j i =
1, Ng, R(i) = i � 3, R�1(i) = i + 3. Then, assuming a block distribution that
assigns b (block size) consecutive entries from x to a subset p = 1, P (see Figure 7.5),
it follows that b = N

P
4.

We define P ,P�1, R, R�1 as following:

P : D ! Sp=0,P�1 = fip = p� b + 1, (p + 1)� bg

P(i) = (p, ip), with p = b
i
b
c and ip = i � p� b (7.11)

P�1 : Sp=0,P�1 = fip = p� b + 1, (p + 1)� bg ! D

P�1(p, ip) = p� b + ip (7.12)

R : D ! D, R(i) = i� 3 (7.13)

R�1 : D ! D, R�1(i) = i + 3 (7.14)

Let us consider the situation in Figure 7.5, where the subsets p and p� 1 are shown.
Assume now that Opl is the assignment operation and we want to update the value

4For simplicity assume N = P � b.

URN:NBN:no-3329

90 CHAPTER 7. A GENERAL DATA LAYOUT FOR DISTRIBUTED CONSISTENCY

1 1 2 3b-2 b-1 b b 1 b1 b 1 b...

...

1 Pbpb+1(p-1)b+1 pb (p+1)b (p+1)b+1 (p+2)b... ...

R

Inv(R)

p-1 p p+1 P0 -1

Figure 7.5: The regular partitioning of the x array.

x[1] on processor p. Since R(1) = 1 � 3 = �2 =2 Sp, then on processor p, the data
consistency algorithm will proceed as follows: Construct R(i p) becomes:

Rs(ip = 1) = (P Æ R Æ P�1)(1)

= (P Æ R)(p� b + 1), (c f . 7.12)

= P(p� b� 2), (c f . 7.13)

= (k, ik), (c f . 7.11)

k = b
p� b� 2

b
c = bp�

2
b
c = p� 1

ik = p� b� 2� (p� 1)� b = b� 2

Then in the Dest pattern the tuple fp, ip, k, ikg with the values as above will be added.
Now, conversely, on processor p� 1, when the (write) assignment operation Opl is

applied to x[b� 2], then R�1(ip�1) = b� 2 + 3 = b + 1 =2 Sp�1 is detected. Construct
R�1(ip�1 becomes:

R�1
s (ip�1 = b� 2) = (P Æ R�1 Æ P�1)(b� 2)

= (P Æ R�1)(p� b� 2), (c f . 7.12)

= P(p� b + 1), (c f . 7.14)

= (k, ik), (c f . 7.11)

k = b
p� b + 1

b
c = bp +

1
b
c = p

ik = p� b + 1� p� b = 1

The Source set contains the tuple fp� 1, ip�1, p, 1gwith the values as above. Then,
communication will be generated first on the Source pattern in a sender initiated proto-
col. Then, communication will be generated on the Dest pattern in a receiver initiated
fashion. The distributed consistency algorithm executes symmetrically, meaning that
each processor executes the same sequence of steps. Then, the update on p will be
completed in the following manner:

dip�1 = b� 2

vip�1 = xp�1[b� 2]

dip = R�1
s (b� 2) = 1

vip = Opl(vip�1)

URN:NBN:no-3329

7.5. EXAMPLES 91

1 for (e = 0; e < nelems; e++) f
2 vol = Vol[e];

3 for (j = 0; j < NVE; j++) f
4 jnode = El2MeshNo(e, j, NVE);

5 p = P[jnode];

6 for (k = 0; k < NVE - 1; k++) f
7 knode = El2MeshNo(e, (j+k+1)%NVE, NVE);

8 c1jk = ScalarProduct(a[j], a[k])/9*vol;

9 B[knode] += c1jk*p;

g
g

g

Figure 7.6: A sequential irregular computation.

ei
ej

ek
ep

P

Inv(P)Inv(P)

P

D

kp

p2 k2

k1p1

Figure 7.7: The irregular data layout.

This would lead to xp[1] = xp�1[b� 2]. The example above shows how the regular
case can be handled by our algorithm. We have implemented the algorithm for irreg-
ular data sets with general (irregular) distribution. We briefly describe our algorithm
in the next section together with the experimental results.

7.5.2 Irregular Applications

This section shows how the consistency algorithm applies for irregular applications.
The code excerpt in Figure 7.6 shows a typical irregular computation from the FEM
iterative Poisson solver for three dimensional tetrahedra meshes. The computation is
irregular because of the indirections it introduces (such as knode and jnode).

Figure 7.7 shows the irregular data layout. Let B be a data structure mapped as in
Figure 7.7. That is, B is indexed with the vertices of the mesh. Achieving implicit par-

URN:NBN:no-3329

92 CHAPTER 7. A GENERAL DATA LAYOUT FOR DISTRIBUTED CONSISTENCY

allelism means that the value of B can be updated by the same algorithm/computation
replicated over a number of processors P and restricted to the data residing on each
processor Sp.

In Figure 7.7 the vertices surrounded by circles mark the split in the data. These
vertices denote a unique physical point ((x, y, z)). However, the replicated computa-
tion from Figure 7.6 will attempt to compute different values (in line 9 of the code
excerpt).

Analytically, the value of B at a vertex node adds the contributions from all the
nodes connected to it within an element. By splitting the elements between subdo-
mains, multiple copies of the same physical vertex reside on multiple data subsets.
Therefore, the update operation Opl , in this case + = in step 9, must be executed
according to our distributed consistency algorithm in order to ensure correct results.

In this case the relation between data is the edge relation. This means that two
vertices belonging to the same element are connected by an edge. We have used the
following solutions for the data partitioning and mapping:

D = fei j i = 1, Ng, R(ei) = R�1(ei) = e j, j = 1, N

P : D ! Sp=0,P = fepg, P(ei) = (p, ep)

P�1 : Sp=0,P = fepg,! D, P(p, ep) = ei

Let ei, e j be two elements such that R(ei) = e j = R�1(ei) and R(e j) = ei = R�1(e j).
This type of relation says that the edge relation is not directed. Let P(ei) = ep 2 Sp and
P(e j) = ek 2 Sk. Let ip1 , ik1 denote the physically identical nodes that belong to two
different elements(ep, ek), that are related (through ei, e j). The same for ip2 , ik2 . Then
the operation in step 9 of the code excerpt in Figure 7.6 will be executed as follows, on
processor p:

ip1 , ip2 2 ep, R(ep) = ek =2 Sp

Rs(ep) = (P Æ R Æ P�1)(ep) = (P Æ R)(ei)

= P(e j) = (k, ek)

Add f(k, ik)g to the Dest pattern

R�1(ep) = ek =2 Sp

R�1
s (ep) = (P Æ R�1 Æ P�1)(ek) = (P Æ R�1)(e j)

= P(ei) = (p, ep)

Add f(p, ep)g to the Source pattern

Opl(ip1 , arg) :

dik1
= ik1

vik1
= B[ik1]

dip1
= R�1

s (dik) = ip1

vip1
= Opl(vik1

, arg) = (+ =)(B[ik1], arg)

In this case, because of the non-directed, or perfectly symmetric relation, the Source
and Dest patterns are symmetric as well. This means that Destp[k] = Sourcek[p].

URN:NBN:no-3329

7.6. EXPERIMENTAL RESULTS 93

3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364

number_of_processors

0

10

20

30

40

50

60

70

80

S
pe

ed
up

Tiny
Small

Figure 7.8: The speedup of the parallel Poisson problem for different-sized data.

We have implemented both the serial and concurrent versions of the Poisson solver.
By using our system, parallelizing the serial version requires very few modifications.
We will present experimental results regarding the scalability and efficiency of the par-
allelization in the following section.

7.6 Experimental Results

We have used the partitioning and consistency schemes presented in this chapter to
implement a parallel version to the solution of the Poisson equation using a three
dimensional tetrahedra mesh for a FEM discretization. The parallel version was ob-
tained by making a few modifications to the serial one and using our prototype system
for automatic data layout and consistency. The tests were run on the SGI Origin 3800
supercomputer.

As input data we have used the two meshes (described in Chapter 6) of different
sizes. Figure 7.8 shows the speedup for the parallel Poisson up to 64 numbers of
processors for the two different data sets. The shape of the speedup line shows that
there is a threshold number of processors above which the application does not scale
well. In Figure 7.8 this is visible for the smaller mesh. The explanation is that above
the threshold number of processors the cost of communication becomes significant
compared to the amount of computation for small data partitions. This is confirmed
by the results in Figure 7.9 that show the speedup for the application using the smaller
mesh as input and up to 32 processors. Also, in Figure 7.8 it is visible that speedup for
the larger mesh can be achieved up to 64 processors. That is because the ratio between
computation and communication is larger.

7.7 Related Work

This section presents other approaches to automatic data layout and consistency. We
first review existing approaches to data layout for data parallel applications and point
out differences in our approach. We then review the existing approaches to data con-
sistency and contrast our approach against them.

URN:NBN:no-3329

94 CHAPTER 7. A GENERAL DATA LAYOUT FOR DISTRIBUTED CONSISTENCY

3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

number_of_processors

0

10

20

30

S
pe

ed
up

Tiny

Figure 7.9: The speedup of the parallel Poisson problem for the smaller set of data.

Data Layout. Several data mapping schemes exist for Fortran programs [18, 36,
52, 57, 58, 68, 104, 110, 115]. All these approaches have two aspects in common. One
is that they use Fortran-like languages and thus partition multi-dimensional arrays.
The other is the regular partitioning function: block, cyclic and block-cyclic. Our par-
titioning model is not tied to a particular data representation. However, it assumes a
generic relation between data items. Also, we use a general partitioning function that
subsumes the regular partitioning strategies.

Some of these approaches use cost estimation functions and the minimum cost
as a partitioning objective. Many of these strategies perform mapping in two steps:
alignment of data structures in order to resemble the data relation on distribution and
data layout based on problem size, number of processors and cost estimation. The
approaches mainly differ in the cost estimation strategies. However, the cost estima-
tions, static or dynamic, exploit the array data representation and use the regular par-
titioning functions to model the communication cost. Moreover, the automatic layout
strategies are based on the strict owner-computes rule. We use a relaxed variant of the
owner-computes. Then, we use the consistency protocol to ensure correct values for
replicated data. With the strict owner-computes, no consistency is needed since there
is no replicated data.

Our model is abstract and thus not tied with a particular language or execution.
However, we use graph partitioning algorithms from the Metis family5 to partition
the data address space between different processors to minimize communication.

Data Consistency. The data consistency problem occurs when data is spread
across multiple address spaces in a distributed-memory architecture. The existing
techniques for maintaining data consistency across multiple address spaces range
from hardware [72], to automated software data consistency, to manually ensured
(application level) data consistency [8]. Automatically ensuring data consistency, by
hardware or software solutions is often related to simulating a shared-memory on top
of a distributed-memory architecture [16, 54, 72, 94]. Ensuring a consistent view of
the shared-memory built on top of a physically distributed memory usually requires
replication of physical pages or data objects and invalidation or updating of remote
copies of data that is locally written. The hardware coherence schemes are triggered on
read and write operations and transfer entire blocks of data. Software shared virtual

5http://www-users.cs.umn.edu/ karypis/metis/

URN:NBN:no-3329

7.8. SUMMARY 95

memory consistency schemes are cheaper, but the performance of many applications
is lower than with the hardware coherence systems.

Our approach is to maintain consistency at run-time only in specific circumstances.
That is, only for data that are related across different address spaces. Also, data objects
are transferred rather than physical pages. We use the data access patterns when gen-
erating communication for automatically ensured data consistency. The data access
patterns are a run-time issue and are mostly determined by the application charac-
teristics. Most of the approaches to automatic (implicit) parallelism discover the ac-
cess patterns at compile-time [5]. Work in automatic parallelization uses loop-level,
or instruction-level parallelism [93]. A static data distribution based on a given loop
structure may result in a poor, inefficient behaviour for a subsequent loop structure
that uses the same arrays, but in a different access pattern (e.g. reverse order). Our
approach is to apply a global data layout scheme at the entire application level, based
on the application characteristics.

7.8 Summary

This chapter has explored the issues of general data layout and consistency for SPMD
programs. We have proposed a framework for data parallel applications. The main
purpose of this framework is to enable a uniform treatment for a larger category than
regular applications. We have shown examples of how the general formulation re-
duces to particular layout schemes (regular or irregular).

We have presented a data consistency algorithm based on the general data layout.
The algorithm is distributed and uses the distributed information on data partitioning
to locate data across address spaces. The algorithm uses the relations across address
spaces to propagate changes to related data in a point-to-point message passing pro-
tocol. The run-time system generates consistency on data updates. The algorithm is
general and it applies to both regular and irregular data parallel applications.

We have presented results on the scalability of our approach to data layout and
consistency for a 3D FEM discretization of the Poisson problem for general geome-
tries. These applications typically require communication for the grid points shared
by elements in different processors and thus, neighbour communication. The results
show that our approach is scalable for applications with loose communication require-
ments. Thus, the results support our hypothesis on effectiveness (H1 in Chapter 6).

This chapter has presented an abstract data layout and consistency model. An
extension of this work is to evaluate the memory and communication requirements
in the context of a concrete programming model. We use objects to encapsulate data
partitions and fold synchronization into data accesses. In the next chapter we address
efficiency concerns such as space requirements for maintaining the relations across
different address spaces, communication generation on read/write data dependences
and communication aggregation.

URN:NBN:no-3329

96 CHAPTER 7. A GENERAL DATA LAYOUT FOR DISTRIBUTED CONSISTENCY

URN:NBN:no-3329

Chapter 8

Effective Data Consistency

8.1 Introduction

A data layout for data parallel applications specifies how a set of data is partitioned
into subsets and how these are mapped onto processors. In a distributed system where
the cost of communication is high, one of the partitioning objectives is to minimize
communication between address spaces and thus preserve data locality. The high
cost of communication also indicates that the distributed programming model is not
suitable to express fine-grain parallelism or communication-intensive applications.

This chapter investigates the effectiveness of the distributed data consistency scheme
for coarse-grain data parallel applications using the general data layout presented in
Chapter 7. The general data layout maps a global data reference to a unique local ad-
dress using a bijective function that is discretely specified (element wise), instead of a
symbolic expression (as in the block or cyclic partitioning). One problem is to capture
the spatial locality in a non-standard data representation. We assume that the typical
non-standard data representations in data parallel applications such as sparse matrix
formats, or general geometries can be mapped onto a general graph that reflects the
relation between data references (e.g. connectivity information). Given a general data
layout, and the same computation on each data partition, the remaining problem is
to ensure that the result of a computation in the presence of partitioning is the same
as the result of the computation at the level of the entire data space. This chapter
addresses this problem, in the absence of a global shared memory view.

This chapter makes the following contributions:

� A distributed data consistency scheme. We present a loose consistency scheme,
which folds synchronization into data accesses. One data partition is accessible
to a user who expresses his/her algorithm as a set of transformations (oper-
ations) on the available (local) data. Then, consistency is ensured as if the user
has applied his/her algorithm (set of transformations) on the entire data and not
a single partition (a SPMD style, where the user is not exposed to concurrency).

� Efficiency aspects of the consistency scheme. We address three efficiency as-
pects related to the consistency scheme: the amount of information maintained
locally at each address space level, the cost of locating an indirectly remote data

97

URN:NBN:no-3329

98 CHAPTER 8. EFFECTIVE DATA CONSISTENCY

1 for (i = 0; i < NElems; i++) f
2 for (j = 0; j < NVE; j++) f
3 jj = Local2Global(i, j);

4 a[jj] = a[jj] + c0*f[jj];

5 for (k = 0; k < NVE - 1; k++) f
6 kk = Local2Global(i, (j+k+1)%NVE, NVE);

7 a[kk] = a[kk] + c1*f[kk];

g
g

g

Figure 8.1: A typical FEM discretization operator (assembly procedure).

access, and the cost of the consistency protocol. We show that a small amount
of extra information at each address space level enables us to directly locate the
typical remote accesses for data parallel applications. Moreover, the random re-
mote accesses can be located at run-time. We show by measurements that the
run-time efficiency is good for typical coarse-grain applications requiring com-
munication for the data on the border between subdomains.

The remainder of this chapter is organized as follows. Section 8.2 introduces the con-
text of our work and gives an overview of our approach to efficient data consistency.
Section 8.3 discuses the general data layout. Section 8.4 presents the data consistency
algorithm. Section 8.5 discusses the efficiency aspects of the consistency algorithm.
Section 8.6 presents working examples of how the programming model we propose is
different from the existing data parallel models. The section also discusses its appli-
cability and what it takes for the user to embrace it. Section 8.7 presents experimental
findings on the efficiency of our consistency algorithm for concrete applications. Sec-
tion 8.8 discusses related work. We conclude and emphasize future research directions
in Section 8.9.

8.2 Background

As already mentioned in the previous chapters, the solution of PDEs is based on dis-
cretizing the continuous physical domain in a regular or an irregular manner. The
existing data parallel frameworks relate the parallelism in these applications to fine-
grain, loop-level parallelism and linear array representations. The array representa-
tion influences the application coding, the data partitioning and mapping to proces-
sors. This approach is suitable for applications that use dense arrays or regular do-
mains and the FD discretization scheme. Applications that use the FEM to discretize
the continuous physical domain exhibit coarse-grain parallelism and a loose synchro-
nization structure.

Figure 8.1 shows a typical computation for a FEM discretization scheme, used by
most of the applications.

URN:NBN:no-3329

8.2. BACKGROUND 99

1 for (i = 1; i < N; i++) f
2 f[i] = 0.5 * (f[i-1] + f[i+1]);

g

Figure 8.2: A typical FD discretization operator (stencil operator).

The existing data parallel frameworks aimed at parallelizing the iterations of a
loop encounter problems for applications as in Figure 8.1 because of statements like 3
and 6. The references j j and kk can only be found at run-time. The existing run-time
frameworks solve this problem [38] in the context of fine-grain parallelism, based on
linear array representations and affine index expressions. Thus, they do not address
the problem in statements 3 and 6. The work in [69] is an example of a unified treat-
ment of regular, dense array computations with simple access patterns and irregular
applications such as PDEs for general geometries. The regular applications are ana-
lyzed at compile-time and parallel loops are distributed across multiple processors.
The irregular applications use a run-time approach based on the inspector/executor
model. However, the approach applies in the context of multi-dimensional arrays
in Fotran languages and regular data partitioning (block and cyclic). There is an im-
portant body of work on irregular applications that addresses sparse array represen-
tations [22, 105, 111].

The existing data parallel frameworks work well for numerical applications that
use finite difference, or stencil discretization schemes (Figure 8.2). The code excerpt
in Figure 8.2 shows an example of a regular code. Transformations and subsequent
optimizations of regular computations for distributed-memory architectures are well
understood [4, 6, 66, 67]. These do not directly apply to the type of computations such
as those shown in Figure 8.1.

This chapter addresses the issue of effective distributed data consistency for irreg-
ular applications, posing problems shown in Figure 8.1. Our approach is to ensure that
accesses are only to the local address space level and that the effect of a local operation
is reflected to a remote data item related to a local data.

Our approach is different in many respects from the approaches that implement a
global address space [9, 24, 34, 35, 48, 65, 101]. First, we distribute the data and keep a
small amount of information that enables the retrieval of any data item in any address
space at run-time. Moreover, instead of offering a global memory view as with a vir-
tual shared memory, we offer a local view of one address space only. Second, we use
a partitioning scheme that generalizes the existing regular and irregular partitioning
schemes. The partitioning is a general function that maps global references to local
references in a distributed memory. The mapping information on data partitions is
distributed to allow reverse transformation from local to global references and vice
versa. For all the local references which may indirectly result in remote accesses we
keep local reference placeholders for the remote data values.

There are three efficiency aspects of such an approach:

� The amount of extra information maintained at each address space level about

URN:NBN:no-3329

100 CHAPTER 8. EFFECTIVE DATA CONSISTENCY

partitioning such as the indirect remote references resulting from direct local
accesses can be computed statically (at compile-time) or discovered at run-time.

� The overhead incurred to discover a remote reference at run-time. For regu-
lar applications the remote references are directly (symbolically) computed and
thus there is no extra communication overhead for locating a remote reference.

� The overhead of the consistency protocol to ensure that the most recent data
values are available locally. This is the communication overhead incurred by the
write-through (an update writes the copies) protocol.

We summarize our approach to addressing these efficiency issues as follows:

� To address the first efficiency concern, we only record information on the data
cut when partitioning the data. Thus, we map two neighbouring partitions onto
neighbouring physical processors. In our approach the neighbouring relation re-
flects the algorithmic relation between data items, based on the application knowl-
edge, and not based on the physical data locality. In the next section we will
show how we express the relation between data items at the application level.

� To address the second efficiency concern, we observe for the applications we ad-
dress that the remote references typically fall on the border between partitions.
Thus, these coincide with the information we keep about partitioning and can be
directly found. Remote references that result in a randomly distant access (un-
known locally) at run-time can be located by exchanging at most P� 1 messages,
where P is the number of processors in the system.

� To address the third efficiency concern, we employ an update consistency scheme
in which the owner of a data item sends its value on update to all the processors
that need it. We use a data placeholder to keep the last updated remote data
value and eliminate communication on read. The assembly procedure for the
FEM method consists of loop iterations which combine data values according to
update operations (e.g. the arithmetic addition) that are closed under associativ-
ity and commutativity. The effect of such operations can be postponed outside
the loop. Therefore, we aggregate the resulting communication and move it out-
side of the loop.

8.3 The Data Layout

This section puts in perspective the data layout formulations from Chapter 7. Thus,
it uses the application perspective to show how the general data layout formula-
tions generalize the existing approaches to distributing data across multiple address
spaces, that is, it accounts for both regular (standard array-based) and irregular (non-
standard) data layouts. Our observation is that computations like those in Figures 8.1
and 8.2 usually express a discretization scheme, and have the same substrate. The dis-
cretization scheme involves the computation of a value at a spatial point, based on the
neighbour information or the related data items.

URN:NBN:no-3329

8.3. THE DATA LAYOUT 101

1 for (i = 0; i < N; i++) f
2 for (j = R(i)) f
3 a[j] = a[j] + ...;

4 for (k = R(i) && k != j) f
5 a[k] = a[k] + ...;

6 f[i] = f[j] + f[k];

g
g

g

Figure 8.3: Discrete computations.

Let us consider the code fragment in Figure 8.3. We use a generic relation to ex-
press the reference j with respect to i as j = R(i). The relation imposes an ordering
for the traversal of a generic data set consisting of data items and the relation between
them. We consider the data partitioning based on the relation R governing the data
layout (and reflected by an implementation). Thus, both the computations from Fig-
ures 8.1 and 8.2 can be expressed in a similar way, as shown in Figure 8.3. The relation
R may describe the logical, physical and algorithmic grouping of data. Therefore, we
partition the data based on it, to minimize the number of relations that cross parti-
tions boundaries. We use general graph partitioning algorithms to express the general
partitioning function. Thus, we first map the global reference space and the relations
between data onto a graph and then we use a graph partitioning algorithm that min-
imizes the cut [95]1. The general partitioning formulation allows a data layout to use
any symbolic or algorithmic expression to specify a partitioning function. Moreover, it
can use any graph partitioning algorithm to experiment with various decomposition
strategies.

The consistency model is based on this general approach to data layout that en-
ables construction of the communication patterns and the possibility to make data
partitioning and mapping implicit. Also, this general treatment allows for flexibility
in selecting suitable partitioning functions and data relations to express computations
in a manner that is close to sequential.

Having captured the generic relation R that governs a data set, the discretization
code expressing a traversal of the data set results in accesses that are one relation away2

from one another. Therefore, the only communication required after splitting the data
set into partitions is due to the references where the relation was cut.

The data layout is illustrated in Figure 8.4, where an edge between two data items
(vertices) denotes a relation (we do not consider the direction, since we require the re-
lation to be symmetric in a multidimensional space). Then, if the partitioning function
invalidates a relation, we register this in the data relation patterns, depicted in Figure 8.4
as communication patterns. This information is used to reach a data item by following

1We are aware of work in graph partitioning algorithms that considers more complex criteria for load
balance, such as [33]

2In some stencils, involving more neighbours in each directions, this is also captured by one relation.

URN:NBN:no-3329

102 CHAPTER 8. EFFECTIVE DATA CONSISTENCY

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

Received Data

Owned Sent data

Owned Data communication
patterns

owned data

Figure 8.4: The Data Layout.

the relation in a traversal over the data set. We use the minimum number of invalidated
relations between non-overlapping partitions as partitioning objective. The invalidated
relations become the solution to the transformation problem (presented in Chapter 7).
This is the extra information that each processor keeps in order to be able to locate re-
mote references, when needed. Thus, the amount of extra information at each address
space level is small.

One data partition corresponds to one address space in a distributed memory set-
ting. Thus, we distinguish between locally owned data and related data. We sometimes
refer to these also as independent and dependent data. A data access in a traversal of
data based on the ordering relation R can be located in any one address space based
on the data relation patterns information. The data relation patterns can be viewed as
the communication patterns: they can serve to locate any one data in any one address
space. That is, generally, if a local data access results in a remote reference, the pro-
cessor first makes the request for data at the neighbouring processors. If these do not
own the data or do not have a valid copy of it locally, they pass the request to their
neighbours, and so on.

Most of the data accesses for the applications we have described so far follow the
relation in a traversal and can be found directly (from the information about the neigh-
bouring partitions). The accesses that cannot be found directly are located according to
the procedure which we have described in the preceding paragraph. However, most
of the accesses typically fall on the border region between partitions and thus it is suf-
ficient to look at the neighbouring processors to fetch the last updated values. The
experiments conducted with this class of applications show promising results. We did
not experiment with applications for which accesses in one address space may require
data at randomly distant locations. We can locate these data at run-time, but it may
incur large overheads. Thus, an extension of this work is to employ data remapping
strategies for different communication patterns.

According to our model, the data to be distributed is a bounded set consisting
of data items and a relation between these data: D = fdi j i = 1, Ng, R : D !

URN:NBN:no-3329

8.4. THE DATA CONSISTENCY ALGORITHM 103

D, 8 di s.t. 9 d j, j = 1, N, R(di) = dj, 9R�1 : D ! D s.t. R�1(dj) = di
3

The data partitioning function4 P distributes D in P disjoint sets Sp:

P : D ! Sp , p = 1, P, Sp = fdip jip = 0, jSpjg

8 di 2 D,P(di) = dip 2 Sp ,

9 P�1 : Sp ! D,P�1(dip) = di,

(8.1)

After partitioning we use the following solution to the transformation problem
(between local and global data spaces) to construct the relations invalidated during
partitioning:

8dip 2 Sp , s.t. R(dip) =2 Sp,

let Rs(dip) = (P Æ R Æ P�1)(dip)

= (k, dik), k 6= p

8dip 2 Sp, s.t. R�1(dip) =2 Sp,

let R�1
s (dip) = (P Æ R�1 Æ P�1)(dip)

= (l, dil), l 6= p (8.2)

We have given the details of the formulations and their rational in the previous chap-
ter. Here we only show the general layout that enables our efficient approach to data
consistency.

8.4 The Data Consistency Algorithm

As explained in Chapter 7, the data consistency algorithm executes in a distributed
manner, based on one address space knowledge only. Thus, if T :< D, V >!< D, V >,
with T a a generic transformation and V a set of values, is a transformation on the entire
data, then T :< Sp , Vp >,!< Sp , Vp >, p = 1, P reflects the transformation locally, on
a subset Sp, producing the values Vp (results). In the SPMD model a transformation
is the entire program and the same transformation executes in each address space (on
each data partition).

To ensure consistency, the algorithm uses the local knowledge expressed by the
tuple < Sp , R, Rs,P ,P�1, T >, where Sp is the local data subset after partitioning the
data governed by the relation R according to the bijective partitioning function P .
Note that we have already shown how we reconstruct the relation Rs to be correctly
defined at each subset level (according to the equations 8.2).

The algorithm in Figure 8.5 summarizes the data consistency protocol. We present
the algorithm in the context of an object model. We use objects to fold synchronization
into data accesses. We use the C++ [103] programming language as the context for our

3Data relations are multidimensional. For readability reasons, we do not complicate our notation with
vectored data.

4We use the calligraphic letter P to denote the partitioning function and the regular letter P to denote
the number of partitions.

URN:NBN:no-3329

104 CHAPTER 8. EFFECTIVE DATA CONSISTENCY

discussion. This chapter does not focus on the object model. Thus, we only give the
preliminaries for discussing the consistency scheme in the remainder of this section.
The data is encapsulated in distributed objects according to the data layout presented
in the previous section. We ensure synchronization at the method execution level.
That is, an object is accessed only through its methods. All the accesses to an object
are either read (do not modify the state of an object) or write (update the state of an ob-
ject). We ensure consistency on write accesses and eliminate communication on read.
However, not all write accesses need to be synchronized. The algorithm synchronizes
(through an update consistency scheme) only the methods that have read/write de-
pendences to distributed objects.

The first step of the algorithm shows the computation of the Send and Recv sets
which maintain links between independent address spaces. The owned data is the
data in the Sp set. Each access is only to the locally owned data. If a local access
has a direct relation to a remote data, as indicated through the invalidated relation,
local write accesses may need to be propagated to the remote location. The remote
location is found from the data layout information using the relations (8.1) and (8.2).
Thus, each processor keeps locally a Send list of the local references that are remotely
related. Conversely, if a local access is pointed to by a relation from remote (this means
that the inverse relation of the local reference points remotely), then the value may be
needed locally. The remote location is also found from the data layout information
using the relations (8.1) and (8.2). Thus, the processor keeps locally a Recv list of
remote references that are locally related.

The second step of the algorithm marks all the methods which contain write ac-
cesses to distributed data objects indexed by the references in D that are followed by
read accesses to the same data object. This information is obtained from data depen-
dence information. This phase detects the read/write dependences for distributed
data objects indexed by the references in D, but does not say which accesses in Sp (ref-
erences) are related. Control flow information provides dependence information for
data accesses that are known at compile time (e.g. accesses that are affine expressions
of loop indices). The references that cannot be known at compile time are found at
run-time.

The third step of the algorithm ensures data consistency at the execution time.
The consistency procedure takes into account that changes to local data must be re-
flected globally, according to the relation between data references. For example, in
a stencil discretization scheme as in Figure 8.2, data at two consecutive locations are
related. Thus, for the data on the borders between subdomains, the changes in local
data are reflected in the neighbouring subdomains by adding the local contribution
to the directly related data items (from Send). Also, changes in data from the remote
subdomains are reflected locally at data locations (references) which are pointed from
outside (this is given by the inverse relation information – from Recv).

All modifications are performed by each processor on temporary copies, and only
when all the processors have finished the update phase, the changes will be committed
(it can be that a value from an address is involved in multiple transfers and data races
could occur due to different processing speeds).

URN:NBN:no-3329

8.4. THE DATA CONSISTENCY ALGORITHM 105

1. Construct the communication patterns:

8dip 2 Sp such thatR(dip) =2 Sp

Rs(dip) = (P Æ R Æ P�1)(di p) = (k, dik)
Sendp[k] < �(dik)
8dip 2 Sp such thatR�1(dip) =2 Sp

R�1
s (dip) = (P Æ R�1 Æ P�1)(dip) = (l, dil)

Recvp[l] < �(dil)
2. Mark the write methods:

for each method

for each basic block

if (9 statements S1, S2 involving distributed data dd1 and dd2 such as)

S1 : dd2 = ...
S2 : dd1 = Opl(dd2, ...)

then

Mark write
3. Write Method invocation:

Entry:

NOP

Execute method body locally on temporary copies:

for each basic block

if (9 statements S1, S2 involving distributed data dd1 and dd2 such as)

S1 : dd2 = ...
S2 : dd1 = Opl(dd2, ...)

then

8dip 2 Sendp[k]
Send(dd2(dip), k)
8dik 2 Recvp[k]

Receive(dd2(dik), k)
//local contribution: locate and apply

di = R�1
s (dik)

dd1(di) = Opl(dd2(dik), ...)
Synchronization phase:

Wait until everybody finished executing the block;

Update dd
Exit:

NOP

Figure 8.5: A distributed consistency algorithm.

URN:NBN:no-3329

106 CHAPTER 8. EFFECTIVE DATA CONSISTENCY

8.5 Efficiency Aspects

Existing data parallel frameworks use regular block or cyclic partitioning. The par-
titioning is thus specified by symbolic expressions which can be used in conjunction
with symbolic affine expressions of array references to derive information on com-
munication (the communication parties and data), without the need to maintain extra
information. When the array accesses are not known at compile time, it is hard to find
a data layout that reflects data locality.

The general partitioning technique for applications that use multidimensional ar-
rays assigns array entries to processors by means of some function, e.g. a random-
number generator in [107]. In this case the entire mapping information is maintained
at each address space level. Some approaches to implicit data consistency across ad-
dress spaces fully replicate the data in each address space [55].

The data layout which we use shows that a general partitioning can be controlled
by a general graph partitioning algorithm instead of a symbolic expression or ran-
dom number generator. The algorithm takes as input the data space mapped onto a
graph that reflects the traversal relation between data and produces a load-balanced
partitioning that reduces the number of remote relations between partitions. Each pro-
cessor keeps only the locally owned data and links to the neighbouring processors.

This means that without using a symbolic expression to compute a data reference
and using a small amount of information, we can directly know the references to
the neighbouring processors and dynamically find any one random remote reference.
Knowing the references to the neighbouring processors is efficient for all the FEM ir-
regular applications and FD stencil codes. We do not claim that is efficient to find any
one random reference at run-time. If the data traversal maps to a complete graph of N
vertices mapped to N processors, then a table of N � 1 (each vertex has N � 1 neigh-
bours) entries is needed at each address space level. This scenario is not realistic. That
is, a data traversal cannot result in a completely connected graph. Additionally, it is
not realistic to partition a tightly connected problem of size N onto N processors.

Other data parallel frameworks that address irregular applications use distributed
schedules to keep information on irregularly distributed data [38]. In [38] the map
of the global array data is block-distributed between processors and the location of
an array element is symbolically computed. The accesses through an indirection array
cannot be found until run-time and thus a regular partitioning cannot account for data
locality. To improve the performance of a naive translation table, the authors introduce
paged translation. However, the paged translation also binds a static number of pages
to each processor and use a replication factor heuristic (set by the compiler writer) to
dynamically replicate additional pages.

In [28] the authors propose support for automatic hybrid (regular and irregular)
applications. The multidimensional array data is also distributed in a block/cyclic
manner and the array references that are not symbolic affine expressions are found
at run-time. The authors use extra information called Available Section Descriptor to
represent the presence of valid data in a processor. The ASD keeps information on the
array identifier, a vector of subscript values, and an array tuple that specifies for each
array dimension the processor grid dimension that is mapped onto and the mapping
of the corresponding array dimension.

URN:NBN:no-3329

8.6. EXAMPLES 107

8.5.1 Remote Location Overhead

The remote location overhead refers to the time needed to locate a reference on a re-
mote address space based on the distributed mapping information. For the appli-
cations we address, the only remote accesses of interest are on the border between
subdomains and thus directly found from the local information.

If P is the number of processors, maximum P� 1 messages need to be exchanged
in a communication protocol in order to locate a local access that is related to a remote
item not residing on the border region between subdomains. That is, if the P inde-
pendent partitions are connected in a linear chain, f(p1, p2,)(p2, p3), ..., (pP�1, pP)g,
a random remote access will generate P � 1 messages to locate the owner of a refer-
ence. This is the worst-case scenario. The best-case scenario, which corresponds to
the applications we address, is that remote accesses occur only to the neighbouring
processors. Thus, no extra messages are required to indirectly locate the owner of a
data reference.

8.5.2 Communication Overhead

The consistency protocol will generate a send message on write for all the write state-
ments to a distributed data object that are followed by read in subsequent statements.
Our update scheme, however, discriminates between the locations that are related and
will generate messages only for those. For the applications that typically relate data
on the border between subdomains, the maximum number of generated messages on
one processor is the sum of the sizes of Send and Recv sets. These sets are guaranteed
to be minimum by the graph partitioning algorithm.

For loops such as in Figure 8.1, where the array a is both read and written, one mes-
sage is potentially generated for each write access to a location on the border between
subdomains in the assembly procedure. In such a situation we generate a single mes-
sage in which all the values on the border between subdomains are exchanged outside
the loop. That is because an assembly procedure for the FEM problems typically is a
traversal in which the distributed data objects are playing the role of an accumulator
variable: an accumulator variable accumulates values within a loop according to an
arithmetic operation closed under associativity and commutativity. For example, a
typical FEM assembly procedure is a loop over the elements that adds the contribu-
tion of the neighbouring elements. Thus, when distributing the data, the values on the
border of the region have to be accumulated from the remote processors as well.

Treating a distributed object as an accumulator variable eliminates communication
within the loop. All the computations on update are executed on temporary copies of
the replicated data and summed at the exit point of the loop.

8.6 Examples

Let us consider the typical irregular code excerpt in Figure 8.1 and modify it to resem-
ble Figure 8.6.

We introduce the distributed data type in order to model data that has to be globally
consistent, in this case the coefficient arrays a, b. A distributed data is a parameterized

URN:NBN:no-3329

108 CHAPTER 8. EFFECTIVE DATA CONSISTENCY

1 for (i = 0; i < NElems; i++) f
2 for (j = 0; j < NVE; j++) f
3 jj = Local2Global(i, j);

4 b[jj] = a[jj] + c0*f[jj];

5 for (k = 0; k < NVE - 1; k++) f
6 kk = Local2Global(i, (j+k+1)%NVE, NVE);

7 a[kk] += c1*f[kk];

g
g

g

Figure 8.6: An irregular array computation.

type that encapsulates a set of references, the initial bounds of data, and defines the
methods to access data at a specific location. We only brief the necessary aspects to
explain how the data consistency protocol works. The transformed code is shown in
Figure 8.7.

In the transformed code fragment in Figure 8.7 the user has to identify the dis-
tributed data. Failure of correctly identifying sequential data (by declaring it dis-
tributed) results in correct execution and no unnecessary communication, but it in-
curs space and time overhead. Not classifying a data object that needs consistency
as distributed leads to incorrect results. In the present prototype implementation, the
operations to access the distributed data (set and get) are provided by the user.

The same code is executed on each processor, using only the local view of data.
This is given by a Subdomain component which is computed by the system and con-
tains the local view of the global data. Thus, our system computes the loop bounds
and takes care of all the involved transformations. The marked lines in Figure 8.7 are
the manual annotations for ensuring consistency.

The Update functions are system template functions that are triggered either for
the update of a single value at a given location or for the collective communication
phase.

The collective communication phase generates an aggregated communication, where
each processor sends one message per destination found in the Send communication
pattern and issues one receive message for each source found in the Recv communica-
tion patterns.

8.7 Experimental Results

Our general approach applies to regular applications that involve stencil operations
resulting in remote accesses, as well as to trivially parallel applications (e.g. image
processing algorithms, computational geometry, etc.).

Another class of applications that may benefit from our work are applications that
use general meshes (regular or irregular) and need communication due to their re-
lations (e.g. neighbour relation). One class of such applications is the solution of the

URN:NBN:no-3329

8.7. EXPERIMENTAL RESULTS 109

DistrData<double> a, b;

Subdomain m;

...

1 for (i = 0; i < m.GetNElems(); i++) f
2 for (j = 0; j < m.GetNve(); j++) f
3 jj = Local2Global(i, j);

b.SetAt(jj, a.GetAt(jj)+c0*f[jj]);

if (int p = Found(jj, CommPatterns))

LUpdate(b, m, jj, p);

5 for (k = 0; k < m.GetNve() - 1; k++) f
6 kk = Local2Global(i, (j+k+1)%m.GetNve());

7 a.SetAt(kk, a.GetAt(kk) + c1*f[kk]);

if (int p = Found(kk, CommPatterns))

LUpdate(a, m, kk, p);

g
g

g

Figure 8.7: The transformation of the irregular computation.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

number_of_processors

0

10

20

30

40

S
pe

ed
up

mesh2

Figure 8.8: The 3-D FEM Discretization scheme using the Jacobi iteration scheme. Mesh: small.

PDEs, by either FD or FEM methods, using iterative methods for matrix vector com-
putations. For FEM applications operating on large data, there is hardly ever the case
that a matrix is explicitly constructed and manipulated. The common practice is to use
implicit structures. Therefore, our model is suitable for such applications, that hardly
ever use direct methods to solve a particular linear system.

The distributed consistency algorithm presented in this chapter works well for the
applications that involve communication for the neighbouring processors. An exten-
sion to this work is to experiment with applications that require different communica-
tion patterns and to study the effectiveness of the consistency algorithm.

We show the results for the Poisson problem as a validating example for our ap-
proach. The FEM discretization of the Poisson problem contains all the ingredients
typically found in the FEM irregular applications.

The results in Figure 8.8 show the speedup for a three dimensional FEM discretiza-
tion scheme for the Poisson equation using a Jacobi iteration scheme. The results in

URN:NBN:no-3329

110 CHAPTER 8. EFFECTIVE DATA CONSISTENCY

3 4 5 6

number_of_processors

0

1

2

3

4

S
pe

ed
up

mesh1
mesh2

Figure 8.9: The 3-D FEM Discretization scheme using the Jacobi iteration scheme. Results on
a 6 processors Beowulf cluster, for two different domain sizes.

Figure 8.8 show good scalability. This is due to the aggregation of communication. We
show the speedup for the application running on SGI Origin 3800 for different mesh
sizes (described in Chapter 6), using up to 32 processors.

A benefit from using the distributed-memory model is to take advantage of the
commodity-oriented clusters. Thus, we are interested in experimenting the effec-
tiveness of our model on Linux clusters, as well as on Networks of Workstations
(NOWs). The results from running the Poisson solver on the Beowulf Linux cluster
(Beowulf [89]) are shown in Figure 8.9.

The results are promising and show that our approach is successful in capturing
the coarse-grain parallelism in scientific applications.

8.8 Related Work

The goal of our work is to make parallelism implicit by using a suitable data layout
and by automatically ensuring consistency, with system support. The data layout is
based on a general partitioning and a relaxed consistency scheme. Work on relaxed
consistency originates in the virtual shared memory techniques [21,60,61,72,94]. One
way of relaxing a strict consistency model is to ensure consistency only at synchro-
nization points.

In a software-maintained consistency, the synchronization points can be either in-
dicated by the user (programmer) or discovered by a compiler. The first option allows
for high optimizations, but little safety (since a programmer may be wrong). The sec-
ond option is less error-prone, but it can be more conservative and, as a consequence,
less effective. In contrast with existing work on consistency models, the synchroniza-
tion points in our approach occur in connection with read/write dependences for dis-
tributed data objects. We only ensure consistency for the related data, since indepen-
dent data is consistent. Also, we can sometimes postpone synchronization even longer
for certain operations (those which result in partially correct values for the distributed
data and need just one collective communication phase to ensure global consistency).

URN:NBN:no-3329

8.9. SUMMARY 111

Work on parallelizing compilers is also using (sometimes relaxed) the owner-computes
rule and message passing communication in order prefetch the data read locally. Such
work emphasizes fine-grain parallelism and regular data layout in the context of loop-
level parallelism. Many communication optimization techniques have been proposed
to improve performance for the distributed-memory machines [4–6,53,66]. These tech-
niques work well for regular codes, or for computations where data accesses can be
symbolically computed at compile time. For irregular codes work on run-time tech-
niques for automatic parallelization considers array accesses of loop indices or indirect
references as functions of the loop index, scalars that are not defined in the loop body,
or arrays indexed by just the loop index (e.g.i + 2, i � i + 3, ia(i) + i + a) [38, 83]). The
constraint on the array accesses is essential for being able to discover independent
loop iterations that can execute concurrently. With our loose concurrency model all
the accesses are local, and some of them may indirectly result in remote reads. There-
fore, these can be found at run-time without any restriction on how a reference is
computed.

An important body of work on irregular applications addresses the class of sparse
matrix codes [22, 23, 45, 79, 105, 111]. These approaches make specific assumptions
about the applications they address. Thus, the discretization schemes do not fit well
in this context.

Finally, existing work on object models for distributed-memory architectures also
focuses on the virtual shared memory concept [16,54]. While this work leaves room for
flexibility by incorporating task level parallelism as well, the efficiency can be poor for
the irregular, loosely synchronous applications (since the entire data can be replicated,
but sometimes only parts of it kept consistent).

8.9 Summary

This chapter has presented an efficient consistency scheme based on a general data
layout. Unlike a parallelizing compiler, this work does not attempt to discover par-
allelism. Instead, it expresses a loosely coupled parallel computing model consisting
of identical computations across different address spaces. Distributed data objects in
each address space correspond to partitions of a larger data object. Scalar data objects
may exist at each individual space level independent of each other. Thus, with this
model all computations apply concurrently on data in each address space. Synchro-
nization is implicit and is folded into the distributed objects data accesses.

We have used a general data partitioning scheme (from Chapter 7) that subsumes
existing schemes, and thus allows for a general treatment of data parallel applications.
A consistency algorithm ensures loose synchronization on data accesses for data that is
related across address spaces. We have shown that it is possible to locate any one data
reference in a distributed address space by only keeping links between neighbouring
partitions. Thus, our approach is efficient space-wise. Moreover, for many of the
scientific data parallel applications each processor only needs to find out about data
residing in the neighbouring processors. Thus, for these applications our approach
is efficient time-wise. The loose consistency scheme generates communication only
for read/write dependences for distributed data. Then, if a distributed data object

URN:NBN:no-3329

112 CHAPTER 8. EFFECTIVE DATA CONSISTENCY

behaves as an accumulator variable within a loop, communication is aggregated and
moved outside the loop. This further improves the performance of our consistency
scheme. These results also support our hypothesis on effectiveness, H1 in Chapter 6.

There are two research paths in our work complementing the approach in this
chapter. One research issue is to express a general set structure that captures the re-
lation between data. We are currently experimenting with a recursive set type that
allows hierarchical data representations typically found in irregular applications (gen-
eral geometries, graphs, sparse array formats). This type is defined as a template C++
class that encapsulates a bounded set of data items and defines the access to them.
Hierarchical data structures are defined by allowing the template type to be a set it-
self. We can map an instance of a set type to a connected graph and use the approach
presented in this chapter to fold synchronization into data accesses.

Another research path under investigation is to observe the behavior of the consis-
tency algorithm for different communication patterns. The thesis of our work is that
a data structure such as the set type we have described above can be linearized and
restructured to reflect data locality for the recurring communication patterns in data
parallel applications. Moreover, the data layout can dynamically change at run-time
based on heuristic execution models.

URN:NBN:no-3329

Chapter 9

High Level Abstractions:
Programmability and Effectiveness

Parts of this chapter were published as a conference paper [42].

9.1 Introduction

The integration of objects and processes into object-oriented concurrent programming
is natural and useful for practitioners in fields such as telecommunications, high per-
formance computing, banking and operating systems [82]. The current practice for
scientific applications is to express concurrency orthogonal to sequential program-
ming. The programmer annotates an application in a sequential programming lan-
guage with concurrency constructs (i.e. library calls to message passing routines or
shared memory directives).

This chapter investigates the issue of integrating concurrency into a distributed
object model to increase the usability of distributed-memory programming for data
parallel, scientific applications.

The existing distributed shared object models (that implement software virtually
shared-memory on distributed-memory architectures) for distributed-memory sys-
tems pay in efficiency for the gain in expressiveness. Client-server distributed ob-
ject models are suitable for applications that involve intensive data transfer. Due to
the high cost associated with remote procedure calls, they are inefficient for intensive
data parallel computations (scientific applications). The client-server programming
model is asymmetric, and is thus limited in expressing symmetric, peer data parallel
applications.

This chapter proposes an efficient object model that enables the exploitation of
coarse-grain parallelism. The model uses high level abstractions to increase programma-
bility for concurrent scientific applications and integrates the aspects of data partition-
ing and consistency at a lower level discussed in the previous chapters. Thus, the data
partition and communication aspects are implicit in the object model. We distinguish
between distributed and sequential objects. We call the former active objects and the
latter passive objects. The former model non-trivial data parallel computations that
require synchronization due to data dependences. The latter model trivial data paral-

113

URN:NBN:no-3329

114CHAPTER 9. HIGH LEVEL ABSTRACTIONS: PROGRAMMABILITY AND EFFECTIVENESS

lel computations. The distributed objects fold synchronization into data accesses. The
computation is replicated across address spaces in the SPMD style.

We demonstrate the use of the object model in our prototype system implemen-
tation for data parallel irregular applications. The system supports the creation and
the coordination of concurrency, as well as it automatically ensures data consistency,
transparent for the user. This approach ensures correctness by concealing the error-
prone concurrency and distribution aspects.

This chapter makes the following contributions:

� A high level programming model for data parallel, irregular applications. The
model is based on the notion of distributed objects. These objects are active,
as opposed to sequential, passive objects1. Distributed objects model data that
needs to move across address spaces in a communication protocol. This en-
sures consistency, transparent for the user. Sequential objects model data that
is relevant for a single address space. Moreover, distributed objects model BSP
computation kernels [106]. In the BSP model computation steps alternate with
synchronization phases. The distributed objects synchronize loosely to exchange
data between processing nodes. The sequential objects express “ideal” SPMD
computation kernels, which are independent and do not require global consis-
tency, and thus, communication.

� An evaluation of the object model. We use our prototype implementation of
an object-oriented framework([47], [62]) to illustrate how the object model can
support concurrency for the solution of PDEs on irregular meshes (described in
Chapter 11). We evaluate the resulting programming model versus other ap-
proaches to distributed programming for scientific applications. We use two
perspectives for our evaluation. Usability measures the user effort involved in
writing a distributed-memory scientific application. Efficiency involves the scal-
ability, and the speedup of an application implemented using the approaches
compared. We present evaluation data from a didactic experiment we have con-
ducted as a part of a student project.

The remainder of this chapter is organized as follows: Section 9.2 gives an overview
of the transparent concurrency support issues, together with their realization in the
object model we propose. Section 9.3 describes in detail a distributed object model to
support transparent concurrency and the enabling techniques. Section 9.4 discusses
the realization of the object model as a prototype object-oriented framework. Fur-
thermore, it illustrates the resulting programming model in the prototype system and
shows a concrete example from a typical data parallel application. Section 9.5 presents
the evaluation of the object model, together with preliminary results. Section 9.6 re-
views the existing approaches to system support for concurrency. Section 9.7 con-
cludes the chapter.

1The notions of “active” and “passive” do not correspond exactly to their normal usage in parallel
object-oriented programming. By active objects we mean objects that know how and where to commu-
nicate themselves (i.e. pack, unpack). By passive objects we mean objects that do not take the existence
of multiple address spaces into account.

URN:NBN:no-3329

9.2. BACKGROUND 115

9.2 Background

Many scientific applications share a similar parallel structure. The parallel structure
is coarse-grain, and set up manually. The programmer decomposes and maps data
and computations to processors in one “fork phase”, at the beginning of the applica-
tion. The execution of the application consists of independent heavy-weight processes
executing in different address spaces. The programmer takes care of data consistency
between different address spaces by means of calls to message passing routines (e.g.
Message Passing Interface - MPI [51, 99]). The independent computations merge at
the end of the application. Thus, the programmer collects the final results in a “join
phase” before the application ends. This parallel structure is different from the fine-
grain, fork/join loop level parallelism. In such a model the sequential computation
forks into multiple threads, i.e. light-weight processes, at the beginning of a parallel
block (loop). These threads join back into the sequential thread at the end of the par-
allel block.

The object model we present captures the coarse-grain parallelism model rather
than the fine-grain or HPF concurrency style. We describe a distributed object model
for transparent concurrency that addresses the following issues:

1. Data model.

2. Data distribution.

3. Data consistency.

4. Computation model.

The data model consists of distributed and sequential objects. The distinction be-
tween these is visible to the user who indicates the distributed objects upon declara-
tion. The system treats any data that is not declared distributed as sequential. The
distributed active objects maintain information about data location and data depen-
dences across address spaces. They have communication capabilities, including se-
rialization (packing) and deserialization (unpacking) of their data. The system treats
sequential passive objects as independent, data parallel objects that have copies at
each node and do not need consistency. Distributed objects model large application
data that is involved in data intensive computations. Sequential objects model paral-
lel independent computational kernels used in conjunction with distributed objects to
model a complex application.

Data distribution is performed automatically by the system. The system dis-
tributes data across multiple address spaces according to a general partitioning func-
tion that assigns each data item to a unique partition. The user instantiates/creates
the distributed objects. Typically for data parallel computations, the user either stores
large data from an external storage (usually a file) into the application structures, or
employs large data structures (e.g. very large multidimensional array objects) to pro-
duce application output. In either case the user specifies the real instantiation data (e.g
from file, or real data ranges from application parameters). The system then partitions
the data across multiple address spaces in a load-balanced manner. After the initial-
ization (instantiation), the user accesses the distributed objects through their interface,

URN:NBN:no-3329

116CHAPTER 9. HIGH LEVEL ABSTRACTIONS: PROGRAMMABILITY AND EFFECTIVENESS

and therefore only the local data (partition). The system replicates the sequential ob-
jects at each address space level.

Data consistency is automatically ensured by the system for distributed objects
only. Upon data partitioning, these maintain information on data location and data
dependences across address spaces. Thus, for each object the system records data de-
pendence information on data partitions residing in other address spaces. The system
uses this information to keep data consistent. The system propagates the local changes
in the data to the dependent remote objects. Conversely, it reflects the changes in re-
mote objects data to the local objects according to data dependences.

The computation model from the user perspective is the trivial Single Program
Multiple Data (SPMD). In the SPMD style data objects reside in different address
spaces, and the same computation (program) is replicated across multiple address
spaces. The system automatically ensures consistency for the distributed objects. The
user has the illusion of an“ideal SPMD” model, and can thus write an application in a
“close to sequential” programming style.

9.3 A Distributed Object Model for Transparent Concurrency

The model described so far is suitable for data parallel applications, where compu-
tations can proceed independently and consistency has to be ensured only at certain
points in the application control flow. Thus, we refer to these applications, consist-
ing of large computation steps followed by a communication phase, as loosely syn-
chronous [31, 106].

A process2 controls all distributed and sequential objects at one address space
level. There is no intra node concurrency. That is, at one address space level the com-
putation is sequential. Distributed objects encapsulate partitions of data, i.e. data that
are distributed among processors according to a general partitioning function. The
partitioning function is a bijection and uniquely maps one data item on one partition
corresponding to one physical processor. Thus, the object data are disjointly assigned
to processors.

In order to avoid excessive traffic due to consistency, the system classifies the data
around distributed objects into truly owned data and replicated data. This distinction is
not visible to the user. The truly owned data are the object data assigned to a specific
processor in the distribution process. The replicated data are the remote data needed
locally to correctly compute a value, due to data dependences. Instead of performing
a remote access every time the system detects a data dependence to a remote location
at run-time, the system uses the local replicas of data. The system updates the replicas
periodically to ensure that the latest updated values are available locally. From the
user point of view only the truly owned data are available. That is because the user
accesses objects through their interface only.

An operation executes sequentially within a single distributed object, but the same
operation applies in parallel on all distributed object partitions in the system. In the
presence of data dependences inter objects, the state of the object is kept consistent

2One process corresponds to one physical processor in the system. Throughout the chapter we may
use terms processor and process interchangeable.

URN:NBN:no-3329

9.3. A DISTRIBUTED OBJECT MODEL FOR TRANSPARENT CONCURRENCY 117

State

...

recv recv

send

...
...

ID(identifier)

Invocation
(read/write)

Action
Data Map

location

yes/no

lookup
data

Data Dependency
Local/Remote

Data Communication Patterns

send

 id

p1 pn

location
(pi, local address)

Figure 9.1: The distributed object model.

through collective update synchronization. The owner of each set of data computes
the newest values for data replicated remotely and propagates them in a collective up-
date phase. The update communication protocol is point-to-point. The objects have
the ability to pack (“serialize”) and unpack (“deserialize”) their data (owned or repli-
cated) and to communicate it in a message. In order to automatically generate com-
munication, the system computes the communication patterns . That is, based on the
data dependences and the partitioning function, the system records the communica-
tion blueprint of the objects. The objects cooperate by sending and receiving messages
along the communication patterns to ensure data consistency.

In Figure 9.1 the state of a distributed object is the “truly owned” and replicated
data. The user accesses the truly owned data of the object through its interface. The
system distinguishes between the read and write accesses in order to be able to handle
consistency.

The data dependences of interest are only for distributed objects. We can see these
as ordered collections of elements encapsulated together. Due to partitioning, some
of the accesses can be remote. To make the remote values available the system has to
know their location, and thus it keeps information on partitioned data location.

Upon partitioning, a map of the data (data map in Figure 9.1) records the identi-
fier and the location of the distributed objects partitions. Each processor only keeps
track of the location of data partitions that are directly related (i.e where the cut in
the data occurs upon partitioning). Based on the local knowledge of each processor,
any one data access can be located at any one time in a distributed cooperative search.
However, for iterative numerical algorithms it is sufficient to look at the neighbour
processors to find the data. If the location search becomes an efficiency bottleneck,
data reorganization is possible.

URN:NBN:no-3329

118CHAPTER 9. HIGH LEVEL ABSTRACTIONS: PROGRAMMABILITY AND EFFECTIVENESS

The identifier in the data map serves as the lookup index for retrieving the address
of a remote object from the data map. The location consists of a processor identifier
(corresponding to a physical processor address) and the address at the remote loca-
tion. The processor identifier is an index for data communication patterns.

In Figure 9.1 the system constructs the data communication patterns statically, i.e.
the send and receive patterns. These are, for each address space, data to send/receive
to/from remote locations. The system uses these patterns in the data consistency pro-
tocol.

The system takes different actions on operation invocation for distributed objects.
The system uses the access parameters and the inferred read/write dependences to
decide the operation execution strategy. That is, if a write access precedes a read ac-
cess, inconsistencies may occur if the latest values of replicated data are not available
locally. Thus, all processes synchronize upon write. Each process propagates the lo-
cally updated owned data values to the remote replicas (according to the data map).
Therefore, the system ensures that the latest updated values are available for the sub-
sequent local read accesses that point indirectly to replicated data.

Typically, data parallel computations uncover dependences between data residing
on the region at the boundary between the data partitions. By carefully tuning data
partitioning [33] to preserve data locality (e.g. such as to reduce the “edge cut” in a
general graph partitioning algorithm [95]), the data duplicated due to partitioning are
small. Moreover, the aggregation of communication decreases the number of gener-
ated messages.

Sequential objects model data and behavior that do not need to be consistent or
synchronized. That is, they model parallel independent computations. Both dis-
tributed and sequential objects are accessed via their interfaces, in a location-transparent
fashion3. This means that they can be employed in the same manner, as in a sequen-
tial programming model. This is how the objects can be used. The only distinction
between the two types of objects is when one or another type should be used.

The distributed objects represent large data involved in storing large application
input data and/or computing values that contribute to producing the application out-
put data according to the user computation. The sequential objects represent data
parallel independent computations. The distinction is visible for a user. This implies
that a programmer (user) has to make the right choice. The distinction between the
type of objects breaks the uniformity of an object model.

9.4 Applicability to Data Parallel Programs

In this section we demonstrate the use of object-oriented techniques and generic pro-
gramming concepts, in conjunction with a message passing formalism to solve the
problem of transparent concurrency for irregular data parallel applications, i.e. FEM
solvers for PDEs.

3There is a subtle difference between location-independence and location-transparency in a dis-
tributed memory. The former allows any processor to access any address in any one remote address
space. The latter controls the accesses such that they are only local and the remote accesses due to data
dependences are transparently dealt with.

URN:NBN:no-3329

9.4. APPLICABILITY TO DATA PARALLEL PROGRAMS 119

9.4.1 Data Representation

The data parallel applications typically use large data either to store large input data
in application specific structures or to contribute to computing the application output.
In either case the data are distributed onto processors to decrease the application run-
ning time. For the applications we address, the input data to be stored in application
specific structures are a discretized physical domain. The output data are the values
of a physical attribute (e.g. fluid pressure, temperature, etc.) defined at each spatial
location in the discretized physical domain. Consequently, our system provides two
different data representations for the two cases.

A preprocessing phase usually places the discretized physical domain data in an
input file for the application, called mesh or grid4. Traditionally, regular data parallel
applications that employ regular domain discretizations and regular data partitioning,
store the mesh or grid data in multidimensional arrays. However, more complex rep-
resentations are required in practice to express irregular, multidimensional discretized
physical domains.

The prototype system implementation provides a predefined representation of the
unstructured mesh data that the system can use to store input data. The user has ac-
cess to a partition of the input data (local to each processor) through the Subdomain
object. The system also provides a representation of the generic user data that partic-
ipates in non-trivial data parallel computations, called UserData. The user subclasses
the UserData class and provides the access functions to read and write at a specific
location. Instances of this specialized type are distributed user objects. Details on the
class interfaces and their implementation are given in Chapter 11.

The Subdomain data is not changing during the application lifetime. Thus, no
read/write dependences occur in connection with the input data stored by an applica-
tion. Therefore, a computation using the Subdomain data does not involve consistency.
The distributed user objects participate in computations that may use the geometrical
data from the Subdomain object and/or other sequential or distributed data in iter-
ative computations (e.g. coefficient matrix computations, computing the unknown,
etc.). Thus, the system automatically ensures data partitioning, distribution and con-
sistency for the distributed user objects.

9.4.2 Data Consistency

The system ensures data consistency using a point-to-point update protocol in which
owners of data send the newest values to the processors that replicate these data. The
system provides a generic function, Update, that uses the generic user data (subclass-
ing the UserData class) and the information on data dependences across different ad-
dress spaces to update the actual user data. That is, the Update function transparently
packs/unpacks the actual user data in messages that are exchanged among all the dis-
tributed objects. After an update phase, the latest values are available for replicated
data in each address space. Thus, a new computation step can be safely executed.

Figure 9.2 depicts a typical communication pattern for an application using gen-
eral geometries in the FEM solution process. The computation uncovers dependences

4This work does not address preprocessing phase aspects, such as mesh generation techniques.

URN:NBN:no-3329

120CHAPTER 9. HIGH LEVEL ABSTRACTIONS: PROGRAMMABILITY AND EFFECTIVENESS

��
��
��

��
��
��

��
��
��

��
��
����
��
��

��
��
��

��
��
��

��
��
����
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

send

receive

receive

send send

receive

Process 1 Process 2 Process 3

Receive sequenceSend sequence

(Owned data) (Duplicated data)

receive

send

Figure 9.2: Point-to-point communication triggered by an update phase. Internal boundary
data is packed/unpacked and sent/received in one message.

among data residing on the boundary between partitions. Thus, each processor holds
replicas of the remote boundary data. On write invocations the processes cooperate in
a point-to-point protocol to exchange the latest values of the owned data. Therefore,
the system ensures that the replicas of data in each address space are consistent.

9.4.3 A Typical Computation

The C++ code excerpt in Figure 9.3 illustrates the use of the distributed object model
in a concrete prototype framework implementation. The framework provides trans-
parent concurrency support for data parallel applications that use general geometries.
We show a code fragment from an implementation of a 3-D FEM discretization scheme
for the Poisson equation using meshes of tetrahedral elements.

In Figure 9.3, variable m designates a Subdomain, i.e. the local view of the geo-
metrical mesh data. The user defines the parameterized DistrData < T > type as
a specialization of the provided UserData < T > type. The user provides the Set
and Get operations for the DistrData < T > type. The user declares variables a and
c as DistrData < double > arrays of floating point numbers. These are coefficient
matrices5 that contribute to the computation of the pressure values. The system dis-
tributes and keeps consistent data for a and c objects. The variable f represents the
right hand side vector field for the Poisson equation 4p(x) = f (x). Since the val-
ues of the right hand side vector field6 are known and not modified by the solver, the
variable f is declared as an array of floating numbers. Thus, the system treats f as a
passive sequential object, i.e. does not care about its consistency. On the other hand,
the programmer uses the ranges of the local data to initialize f , i.e. only at the discrete
points in the local sub-domain, thus, not for the entire mesh data.

For illustrative purposes we only show the computation of the matrix coefficients
5Typically, one does not have to store large two-dimensional arrays since they are very sparse. Hence,

in this case we use one-dimensional data structure to represent the coefficient matrices.
6In numerical analysis terminology.

URN:NBN:no-3329

9.4. APPLICABILITY TO DATA PARALLEL PROGRAMS 121

class Poisson f

Subdomain m;

DistrData<double> *a, *c;

...

double *f;

public:

...

Poisson& Compute A();

Poisson& Compute C();

...

g

...

Poisson& Poisson::Compute A()f

int dim = m.GetDim();

...

for (int e = 0; e < m.GetNElems(); e++)f

double c0ii = 0.10*m.ElemVol(e);

double c0ij = 0.05*m.ElemVol(e);

for (int i = 0; i < m.GetNve(); i++)f

int inode = m.El2MeshNo(e, i);

double tmp = a->GetAt(inode);

tmp += c0ii*f[inode];

a->SetAt(inode, tmp);

for (int j = 0; j < m.GetNve() - 1; j++)f

int jnode = m.El2MeshNo(e, (i+j+1)%m.GetNve());

tmp = a->GetAt(jnode);

tmp += c0ij*f[jnode];

a->SetAt(jnode, tmp);

g

g

g

...

Update(*a, m);

return *this;

g

Figure 9.3: A typical computation combining stored and computed distributed data, as well
as sequential data objects.

URN:NBN:no-3329

122CHAPTER 9. HIGH LEVEL ABSTRACTIONS: PROGRAMMABILITY AND EFFECTIVENESS

a. In Figure 9.3 a is accessed through the Set and Get operations, and thus, accesses are
local. Moreover, the system uses the operations in the read/write invocation distinc-
tion to detect when to initiate a consistency phase. The computation of the coefficient
matrix involves reading and writing the values of a. The consistency protocol triggers
an update phase after each write that precedes a read (here a read will occur in the
next loop iteration). We use an optimized variant of the Update function to move the
update phase beyond the loop. Showing how this optimization can be detected auto-
matically is outside the scope of this chapter. In the current version of our prototype
we manually insert the calls to initiate the update phase.

The example in Figure 9.3 shows the programming model for writing data parallel
applications. In the current version of our prototype we use the two representations
for storing input, geometrical mesh data and for the generic user data to demonstrate
the distributed objects concept. We are currently developing a uniform mechanism
for expressing irregular, parameterized recursive data structures (graphs, trees, irreg-
ular meshes) so that both input (geometrical mesh) data and generic user data can
be expressed in a common format. The motivation for defining such a mechanism
lies in enabling the system to implement the distributed object model presented so
far and many of the optimizations currently used in the loop level parallelism frame-
works [4, 6, 38, 53, 66, 67]

9.5 Evaluation and Experimental Results

We analyze our system from two perspectives. From the usability point of view we
want to show how simple it is for a user to learn and use our system to write data
parallel scientific applications. From the efficiency point of view we want to show that
our approach is scalable and efficient.

We describe a student experiment from a 5th year project course in our depart-
ment7. Two groups consisting of two students each worked on two projects focusing
on system support for scientific, data parallel irregular applications. One group fo-
cused on object-oriented support for scientific applications. The other group focused
on distributed systems support. The evaluation of the expressiveness and run-time
efficiency of the existing object-oriented languages and systems and distributed pro-
gramming environments was a part of the study.

The evaluation was based on expressing and implementing a toy problem in dif-
ferent existing formalisms as well as using our system. The problem was computing
the area of the surface of a three dimensional body described by a general geometry.
Therefore the complexity of the problem does not reflect the full functionality of our
system.

The problem was implemented using the C++ programming language, together
with the mpich [80] implementation of MPI, OOMPI (Object-Oriented Message Passing
Interface [102]) and CORBA.

We have performed our tests on the Beowulf Linux cluster (Beowulf [89]). In the
following we present the evaluation procedure together with the results of our analy-
sis.

7Department of Computer and Information Science, Norwegian University of Science and Technology

URN:NBN:no-3329

9.5. EVALUATION AND EXPERIMENTAL RESULTS 123

9.5.1 Usability

We asses the usability of the observed systems, languages or libraries using the metrics
described in Chapter 6.

Table 9.1 shows the results of the usability measurements. The listing is not in
a particular order (i.e. implementation or learning of the languages, systems or li-
braries), but relatively random. Moreover, reusable parts (components) from our sys-
tem were used by the students (directly or adapted) to implement the other versions.
More time would probably have been required otherwise. We use the metrics de-

Table 9.1: Usability

Approach Learning
Curve (days)

Number of
classes

Lines of code Decision
Point

MPI 3 2 751 4
OOMPI 3 2 728 4
CORBA 7 3 952 4
OODFw 8 1 1 74 0

scribed above for the evaluation of our high-level solution, versus other lower level
solutions. In Table 9.1 the name OODFw denotes our system. The data in Table 9.1
emphasize that it will take less effort to write a concurrent application when the con-
currency infrastructure is ready-made and can be reused as is.

The results (decision points in Table 9.1) also show that ready made design solu-
tions implemented in a system reduce the complexity of writing irregular data parallel
scientific applications. It also follows from here that our solution would increase the
correctness of the design since most of the low-level, error-prone tasks are taken over
by a system.

This evaluation is limited and is not meant to be statistically significant. Larger
evaluations require much more time. Thus, we hope that the results are sufficient
to give an idea about the goals of our approach and what kind of benefits can be
expected.

9.5.2 Efficiency

We show performance figures for the toy problem implementation using the observed
systems, languages or libraries by measuring the application speedup. Figure 9.4
depicts the speedup of the application for its different implementations. The results
in Figure 9.4 show that MPI, OOMPI and our system (OODFw) have a very similar
performance. This means that the overhead we add to OOMPI is negligible9. The
insignificant difference in performance between MPI and OOMPI confirms the results
of [90].

9Our system uses the OOMPI library for message passing communication.

URN:NBN:no-3329

124CHAPTER 9. HIGH LEVEL ABSTRACTIONS: PROGRAMMABILITY AND EFFECTIVENESS

3 4 5 6

number_of_processors

0

1

2

3

S
pe

ed
up

MPI
OOMPI
CORBA
OODFw

Figure 9.4: Toy problem implementation speedup for different implementations.

3 4 5 6

number_of_processors

0

1

2

3

4

S
pe

ed
up

Beowulf
ClustIS
SGI Origin 3000

Figure 9.5: The 3-D Poisson solver scalability on different distributed platforms.

URN:NBN:no-3329

9.5. EVALUATION AND EXPERIMENTAL RESULTS 125

Table 9.2: Platform Description

Platform Performance Interconnect
Ghz Ratio MFlops

Beowulf 500 MHz (SSE) 4 2000 MFlops Fast Ethernet 100 MBit/sec
1 500 MFlops

ClustIS 1.4 GHz 2 2800 MFlops Fast Ethernet 100 MBit/sec
SGI Origin 3800 NA NA 1000 MFlops Hardware Switch

In Figure 9.4 the CORBA version shows poor scalability with the increase of the
number of processors. This result indicates that the object-oriented middleware solu-
tion is not scalable.

These results are preliminary. The toy problem does not realistically model the
large numerical computations. The number of iterations is small compared with re-
alistic solvers. We have simulated large iteration loops in order to get more realistic
results. Also, we have only tested for the two mesh sizes that we had available. We
give the results for the smaller mesh.

More results on efficiency are shown in Figure 9.5. We show comparative speedup
figures for different platforms from the 3-D Poisson solver on the larger mesh.

We analyze the results from Figure 9.510 using data from Table 9.2. In Table 9.2 we
give the peak floating point performance for the three platforms we use for speedup
measurements. We derive the floating point performance from the cycle time using
the constant Ratio for each processor type (e.g. for Pentium III with ISA extension SSE
- Streaming SIMD, the ratio is 4). In Table 9.2 we also give the interconnect character-
istics.

The results in Figure 9.5 and the data in Table 9.2 indicate that the speedup results
are better on the cluster than on the SGI. We need to compare the actual absolute wall
clock times for the platforms in order to interpret these results. Figure 9.6 shows the
absolute wall clock times for the three platforms. The results show that the best run-
ning time is obtained on ClustIS cluster, followed by SGI and then by the Beowulf
cluster. These results are surprising. One would expect that the floating-point perfor-
mance for the application is lower on the clusters than on the SGI. This is true for the
Beowulf cluster, which is the least performant of all. But, surprisingly, the results on
ClustIS are extremely good, compared with the SGI. One possible explanation is that
the vendor optimized MPI implementation for SGI is poor. We did not find any data
on message-passing performance for the SGI architecture. The vendors give only the
remote versus local access rate (typically 2:1 for SGI 3000 family).

The results on the cluster platforms are promising. The scalability of the dis-
tributed systems (cluster technology) can compensate for the potential overhead added
by the system (setting up the concurrency infrastructure, problems with object-oriented
languages effectiveness, etc.). There are other benefits from the distributed-memory

10We show results for only 6 processors because we do not have a larger Beowulf cluster available for
this study. For other studies, we experiment with all the available processors for each platform.

URN:NBN:no-3329

126CHAPTER 9. HIGH LEVEL ABSTRACTIONS: PROGRAMMABILITY AND EFFECTIVENESS

3 4 5 6

number_of_processors

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400

R
un

ni
ng

 ti
m

e
--

 s
m

al
l

Beowulf
ClustIS
SGI

Figure 9.6: The absolute wall clock times for the 3-D Poisson solver on “small” mesh for the
compared platforms.

architectures over the shared-memory architectures, such as scalability, economy (es-
pecially of the cluster architectures and NOWs - Network of Workstations) that we
do not analyze here. However, these benefits and the results in this chapter strongly
motivate our approach.

9.6 Related Work

There are two aspects of our distributed object model. One aspect is the integration of
objects and processes into object-oriented concurrent programming (see [26, 112] for
complete reviews). Traditionally, object-oriented concurrency distinguishes between
active and passive objects. The other aspect is the support for non-trivial data par-
allelism in the context of irregular data representations and irregular communication
patterns. Below we discuss each of these aspects and compare them with our ap-
proach.

Concurrent object-oriented computing has roots in actor languages [2,3]. The ac-
tor model has a functional11 view of concurrency. Actors are objects that only commu-
nicate through messages. The communication between actors is asynchronous. Actors
allow full concurrency within the objects (by not allowing changing states). The actor
model expresses task parallelism.

The ABCL/1 [114] object-oriented concurrent language evolved from the actor
model. An object in ABCL/1 encapsulates data and its own activity. Objects commu-
nicate through concurrent message passing. The objects become “active” in response
to communication. In contrast to the actor model, ABCL/1 adds mechanisms for syn-
chronous communication through now and future types of messages. Now messages
have “send and wait” semantics. Future messages have “reply to me later” semantics.

11In the sense of functional programming.

URN:NBN:no-3329

9.6. RELATED WORK 127

The future type of messages helps increasing concurrency by overlapping communi-
cation and synchronization.

Both models of integrating objects and processes into object-oriented concurrency
capture task parallelism and not data parallelism. Moreover, objects communicate
explicitly. Accesses to objects may be concurrent. These models have provisions to
serialize the concurrent accesses to an object.

Our model associates a process with all the distributed and sequential objects at
one address space level. Distributed objects communicate implicitly. There is no ex-
plicit remote access or message passing mechanism between objects. The objects allow
concurrent state updates and state consistency is implicit. Our model captures data
parallelism and not task parallelism.

Orca [15] is an object-based language in which processes communicate through
shared objects. Orca supports only passive objects. Concurrent accesses to shared ob-
jects are serialized. Thus, the system ensures that an operation execution is atomic.
The original model of concurrency in Orca supports task-level parallelism. A later en-
hancement of the language [54] adds support for data parallelism. The language adds
support for partitioning array-based structures into regular partitions (blocks). The
user explicitly specifies the type of partitioning (block, cyclic) and the mapping of data
to processors. Parallel operations apply concurrently on partitions. Each processor
has a copy of the entire data, but it owns just a partition of it. This approach is ineffi-
cient for applications that store very large data. The owner processor has write access
to the owned partition and read only access to the replicated partitions. The run-time
system ensures consistency through an invalidation, or an update protocol (existing
implementations support both mechanisms). The system transfers entire partitions,
rather than individual elements.

In our model the partitioning and the mapping (distribution) of data to processors
are implicit. Moreover, the system partitions the data in a load-balanced manner. In the
enhanced Orca language there is no provision on the system side for load-balancing.
Moreover, the enhanced Orca language provides regular partitioning of array-based
structures. Our model provides general partitioning, for data with irregular layout.

Irregular applications refer to data parallel applications that use irregular data
layout (structures). Fortran-like array languages express irregular data layouts with
support of indirection arrays. The indirection arrays complicate the loop-level par-
allelism. The inspector/executor run-time support addresses this issue. Similar to the
inspector/executor strategy in CHAOS [96], we generate all data that needs to be sent
and received based on the knowledge of data dependences. This approach addresses
fine-grain loop-level parallelism, while we address coarse-grain parallelism.

CHAOS++ [31] extends CHAOS to support objects and thus, coarse-grain paral-
lelism. The object model in CHAOS++ supports mobile and globally addressable objects.
The mobile objects model communication. The globally addressable objects model
shared data between processors. The user is responsible for packing and unpacking
data into mobile objects and for explicitly specifying message exchange. With our ap-
proach we isolate the user from these aspects.

Finally, there are many object models that add concurrency constructs to the C++
programming language to support data parallelism [24,34,48]. These models support
HPF-like concurrency in an object-oriented setting. In contrast with the fine-grain HPF

URN:NBN:no-3329

128CHAPTER 9. HIGH LEVEL ABSTRACTIONS: PROGRAMMABILITY AND EFFECTIVENESS

concurrency style, we address coarse-grain concurrency.

9.7 Summary

This chapter has presented a distributed object model for data parallel irregular appli-
cations. The model is based on the notion of distributed active and sequential passive
objects. The distinction between the two types of objects is visible in terms of “when”
to use them. Distributed objects express coarse-grain non-trivial data parallelism for
applications with irregular data layout. Sequential objects express coarse-grain, triv-
ial parallelism. The main benefit of our model is the resulting “illusionary” sequential
programming style. Therefore, the distributed computing aspects are transparent to
the user.

We have presented an evaluation of the usability and the efficiency of the object
model together with preliminary results. The results show that our approach requires
the least effort for writing a new concurrent scientific application. The results also
show that our approach is efficient and exploits the scalability of the distributed-
memory architectures (clusters of PCs). These results support both research hypothe-
sis on effectiveness and programmability from Chapter 6, H1, H2.

In the present prototype implementation we use two different representations to
store input data and to express application specific data. An extension of this work is
to provide a uniform data representation for irregular data layouts. This common rep-
resentation can be used by the system to implement the distributed object mechanisms
presented in the chapter.

URN:NBN:no-3329

Chapter 10

Inter-Object Concurrency

10.1 Introduction

The object-oriented principles of abstraction and encapsulation have been extensively
explored for the software development process. There is broad acceptance of the
object-oriented method as an organizing principle for developing reusable software
artifacts. A large variety of object-oriented languages and systems exists. Beyond their
proved success through wide adoption, they bring valuable insight to the practice of
the object-oriented method.

There are several implementation aspects of the object-oriented languages and sys-
tems that have shadowed their popularity for some classes of applications. One class
of applications for which object-oriented practices are still in the incipient phase is the
class of performance sensitive, concurrent applications.

Our goal is to prove that, besides the benefits of abstraction and encapsulation,
techniques such as generic programming and dynamic binding can be profitable for
raising the level of abstraction while increasing concurrency for data parallel appli-
cations. We elevate the level of abstraction for parallel applications by making data
mapping and consistency implicit in a distributed object model. We increase concur-
rency by having a distributed object exploit data locality through encapsulation of the
data local to one address space.

The existing object-oriented concurrent languages and systems promote intra-object
concurrency. Several complications arise when ensuring that an object accessed in a
concurrent manner is in a consistent state, or that the principles of object orientation
are not violated (e.g. inheritance breaks encapsulation [81, 100]). Moreover, for ap-
plications that manipulate large data through intensive computations1, the fine-grain
intra-object concurrency conflicts with the need of partitioning the data into coarse-
grain, manageable sub-sets.

We propose an inter-object concurrency model that exploits data parallelism for
computationally intensive applications. This chapter makes the following contribu-
tions:

1One has to distinguish between applications that store large data and involve data transfer through
queries (i.e. client-server style), and applications that use large data in computationally intensive tasks
(e.g. computational biology, weapon simulations, climate modeling, etc.).

129

URN:NBN:no-3329

130 CHAPTER 10. INTER-OBJECT CONCURRENCY

� A data model for expressing recursive data layouts: We use the C++ program-
ming language to implement the Set abstraction as a recursive data abstraction
for the efficient representation of large, irregular data layouts. We use the Dis-
trSet abstraction to represent large, distributed data sets among multiple address
spaces.

� A data mapping scheme that ensures data locality: The distributed data sets are
automatically mapped to different processors to ensure data locality. Our orig-
inal mapping scheme uses a general partitioning function that uniquely maps
a data address to a partition (processor) together with information on data ac-
cesses to ensure data locality.

� A dynamic inter-object consistency scheme: Upon the distribution of data based
on our mapping algorithm, the system maintains consistency information on
distributed objects, such as location, references to different address spaces and
references from different address spaces. The consistency scheme uses this infor-
mation and a relaxed owner-computes rule to automatically generate communica-
tion for the most recently updated values across address spaces. The minimum
number of messages is generated due to the controlled mapping scheme and
granted write accesses to non-owned locations.

The remainder of this chapter is organized as follows: Section 10.2 overviews the
inter-object concurrency model. It describes the data model, the concurrency model
and the computation model. Section 10.3 presents the data model. It introduces the
Set abstraction as a means to represent recursive data layouts. It also describes the
distributed set concept in detail. Section 10.4 elaborates the notion of parallelism in
our model. It describes the mapping of data to processors, as well as the inter-object
consistency algorithm. Section 10.5 presents the computation model from the user
perspective. Furthermore, it contrasts the user perspective from the system perspec-
tive in order to highlight the usability of our model. In Section 10.6 the efficiency of
our techniques is evaluated. Scalability results on a 28 processors Linux cluster show
that our approach is efficient. An overview of the related work is given in Section 10.7.
Section 10.8 concludes the chapter and indicates future research directions.

10.2 An Overview of the Model

In this section we overview the object model for data parallel applications. The main
assumption is that such applications use large, irregular data structures required in
scientific, graphics or database applications (e.g. unstructured meshes, graphs, B-
trees, etc.). Such data are usually represented by recursive (trees, graphs) or indi-
rection structures (indirection arrays).

In this chapter we consider SPMD or BSP [106] model of parallelism, as usual. In
a straightforward data parallel model, the computation can be carried out indepen-
dently, on each data item, in a consistent manner. However, this is rarely the case
for realistic applications. Thus, computations on “large parts of data” can be consis-
tently carried out independently. Consistency has to be ensured for the remaining

URN:NBN:no-3329

10.2. AN OVERVIEW OF THE MODEL 131

Vertices Representation:

Adjacency information representation:

1 2 3 4 5 6 7 8 9 10

2 6

2

1 73

3

2 4 8

4

3 5 9

5

4

6

10 1 7

1 7

2 6 8

8

3 7 9

9

4

10

8 10 5 9

6 7 8 9 10

1 2 3 4 5

Figure 10.1: An example of hierarchical data representation.

data. Therefore, in the BSP model, large computation steps proceed in parallel on
independent data items and are followed by a common synchronization phase.

The synchronization phase is usually the bottleneck for usability and efficiency
when writing data parallel, distributed-memory applications. In our approach usabil-
ity is achieved by making synchronization implicit. We achieve efficiency through
coarse-grain, inter-object parallelism, and a relaxed inter-object consistency model.

The Data Parallel Model: There are two aspects of our data model. On the one
hand, it is cumbersome to represent the recursive structures required by the applica-
tions. On the other hand, the recursive representation features poor locality, which can
lead to poor performance. On the other hand, it requires complex, dynamic analysis to
compute the location of a data reference. Another hard aspect is to ensure inter-object
consistency for the application distributed data.

We use the set representation in order to model the recursive data. In our model
a set becomes a “first class” object that expresses the recursive data layout. A set
is a collection of items with a given range. Items in the set can be sets themselves.
Coarse-grain data parallel objects result from the partitioning of a set into subsets
and the distribution of subsets across multiple address spaces. Thus, computations
proceed independently on each subset. Consistency is guaranteed inter sets. While not
extending the C++ syntax, we define the set class interface to be used for expressing
data parallelism in an application.

We distinguish between dependent data and independent data. In a SPMD model the
independent data are manipulated by a process, concurrently with other processes.
Computations on independent data require no communication. In an enhanced form
of SPMD, however, conglomerations of data are handled concurrently and communi-
cation is required for ensuring consistency. Thus, in our model the dependent data
is expressed by the distributed recursive sets of data. When distributing the data we
keep track of potential inter-set data dependences. Consistency is guaranteed for dis-
tributed sets.

The independent data can be distributed sets with no inter-set dependences, non
distributed sets or any other user defined data. There is no consistency notion for the
independent data objects.

Figure 10.1 illustrates an example of hierarchical data representation commonly

URN:NBN:no-3329

132 CHAPTER 10. INTER-OBJECT CONCURRENCY

1 2 3 4 5

6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Graph hierarchical data layout:

Reference

Refereed

2 6 1 3 7 2 4 8 3 5 9 4 10 1 7 2 6 8 3 7 9 4 8 10 5 9

Figure 10.2: Data partitioning. Reference and referee marking.

used for representing undirected, unweighted graph information. It is straight for-
ward to represent such data with only one dimensional indirection arrays. However,
in order to exploit coarse-grain parallelism when partitioning such data across multi-
ple address spaces, a more flexible representation is needed. For instance, a Fortran
parallelizing compiler would have problems in parallelizing traversals over indirec-
tion arrays. Also, the traditional data parallel models (High Performance Fortran -
HPF) lack expressiveness and flexibility for complex, hierarchical data layout.

The Concurrency Model: Parallelism is achieved through inter-object concurrency.
Upon partitioning a set, its new range is automatically recomputed. There is no notion
of intra object concurrency, or shared memory view. Instead, a local address view is
available. Due to the recursive references, local data accesses may refer to remote ad-
dresses. Thus, upon partitioning each distributed set keeps track of all the references
to a different address space. It also keeps track of all the refereed locations from other
address spaces to the local address space. Therefore, data accesses to these locations
are subject to the consistency protocol.

For instance, in a graph an edge relates two vertices. Thus, for each vertex, the con-
nected vertices model the relations existing in a graph structure. While this informa-
tion is usually expressed by an application, a system cannot make use of it. Therefore,
we require explicit information about the relations implicit in a data representation so
that the system can register the references on partitioning and use them in the consis-
tency protocol. This is enabled in our model by declaring the graph as a set of vertices
which point themselves to sets of nodes indicating connectivity information. There-
fore, this would be a two level data structure with linked references. Figure 10.2 shows
how the referring and refereed locations are detected upon partitioning.

The Computation Model: The computation model is an enhanced owner-computes
rule. This means that write accesses are granted to non-owners of data as well. In the
relaxed consistency protocol we locally duplicate the references to remote data ob-
jects. Our consistency algorithm is based on an update protocol in which the owner
of the data initiates an update phase upon write. Thus, the system accounts for the
availability of the correct value upon read.

The same computation is applied on different data sets, in the SPMD style. One
process is spawned for each address space and the computation within a single ad-
dress space is sequential. Therefore, the user has access to a sequential programming

URN:NBN:no-3329

10.3. THE DATA MODEL 133

template <class T> class Setf
public:

Set(size t range);

reference& operator[] (size t pos);

Set& operator= (const Set&);

Set& operator () (size t size);

size t Range();

size t Pos (const T& val);

~ Set();

g

Figure 10.3: The set class interface.

model and one address space only. Employing the distributed sets structures, the user
indicates to the system that the set should be distributed across the available proces-
sors in the system. Employing regular (non-distributed) data objects, the user is aware
that the values are only relevant to the one address space.

10.3 The Data Model

Our data model is a distributed, coarse-grain data parallel model. Data objects are
visible at one address space level only. There is no shared memory view, and thus, no
intra-object concurrency (i.e. an object is accessed by a single thread/process). Coarse-
grain parallelism is exploited through inter-object concurrency only. Inter-object con-
sistency is ensured through message passing.

10.3.1 The Set Data Structure

The introduction of sets in our model is motivated by the lack of a uniform mechanism
to efficiently support irregular, recursive data representations that are used in data
parallel applications.

The multidimensional array representation does not enable the exploitation of
coarse-grain parallelism characteristic to many data parallel applications. Nor does
it enable a flexible representation for complex, irregular structures. Moreover, its lin-
ear structure and regularity call for regular partitioning functions such as block and
cyclic distributions.

This approach does not apply to data parallel applications that use irregular, com-
plex data due to the fundamental differences with respect to the regular structures.
That is, consecutive elements in an irregular sequence are not for instance at contigu-
ous addresses as elements in an array. Thus, there is little inherent spatial locality
between consecutively-accessed data. As a consequence array data representations
and regular distributions do not always work for irregular data layouts. Instead, a
more flexible, recursive data representation that properly reflects the underlying data
layout has to be used in order to exploit logical data locality, rather than physical data
locality.

URN:NBN:no-3329

134 CHAPTER 10. INTER-OBJECT CONCURRENCY

Set<int> conn(3);

Set<Set<int>> Graph(10);

...

for (int i = 0; i < 10; i++)f
for (int j = 0; j < 3; j++)

conn[j] = int val;

Graph[i] = conn;

g
...

g

Figure 10.4: An example of using sets in graph problems.

Figure 10.3 shows the interface of a general data set. A set has a range and ele-
ments in that range. The type of elements in the set is specified through the template
parameter class type. An element in a set can be a set itself. A set has its dimen-
sion specified upon instantiation. The set has operations defined for subscripting (fast
access) and assignment. Sets cannot be extended to add new methods. This is the
provision we make for safe manipulation of distributed sets by the system. Also, sets
are not handled through the use of pointers. Therefore, simple program analysis can
provide precise information on data access patterns for sets.

Figure 10.4 shows an example of the representation and traversal of the graph in
Figure 10.1 by using sets.

10.3.2 The Distributed Sets

The second reason for introducing sets is to facilitate the mapping of data to proces-
sors in a controlled, optimal way, such as to minimize communication across different
address spaces. Thus, when instantiating large data sets, the user specifies that the set
is to be distributed by using the DistrSet class. A distributed set can only be parameter-
ized with a set type and not with another distributed set type. Besides this restriction,
the interface for the distributed set class is identical to the interface for the set class.
This workaround is meant to avoid extending the C++ language by introducing the
keyword distributed as type qualifier for distributed sets.

For each distributed data set object the system registers the automatic consistency
information upon partitioning, as shown in Table 10.1.

In Table 10.1 an address of any one set contains a unique partition number (corre-
sponding to a physical address space), and the memory location. The list of references
holds any of the references (addresses) that this set might have to addresses that con-
tain a different partition number (i.e. to different address spaces). The list of referees
holds the list of all the references belonging to a set whose referees contain a different
partition number (i.e. from a different address space).

The user can define and use more complex data layouts, existing components from
libraries, or ad-hoc simple layouts. Upon instantiation of such a data objects, only local
addresses and values are used. They can be used to store values from distributed sets,

URN:NBN:no-3329

10.4. PARALLELISM 135

Table 10.1: The distributed set class descriptor.

address the address of the memory lo-
cation

list of

references

the list of references to remote
address spaces

list of

referees

the list of references from re-
mote address spaces

to compute values for distributed sets, or parameterize algorithms with distributed
sets.

10.4 Parallelism

Parallelism is achieved in our model through concurrent application of functions on
distributed data objects. A process is associated with all the data objects residing
in one address space and the computation on these objects. Processes synchronize
loosely to exchange the most recent updated values for data duplicated in other ad-
dress spaces.

The mapping of data to processors and the replication of remote data locally are
controlled by the partitioning algorithm. The algorithm, based on heuristic criteria
such as minimizing the remote references, uniquely assigns a partition number to a data
item. Thus, our consistency protocol results in minimum communication while maxi-
mizing data locality.

The sets are the key to exploiting parallelism. Sets can be viewed as a means for
the user to express large, irregular structures. Even though regular structures can be
successfully expressed and manipulated with the use of sets (for instance a distributed
array can be a set of range elements), the sets were motivated by the need to express
irregular, recursive large data.

There are two key ideas behind the set structure. One is to express recursive data
layouts to exploit coarse-grain parallelism. The second is to enable the partitioning of
sets such as to minimize the number of references to remote address spaces.

Coarse-grain parallelism is obtained by applying a general partitioning function
for a large data set in conjunction with information on data accesses. Each partition
corresponds to a physical processor. Then, the references to remote locations are re-
placed by local references, which will act as placeholders for the remote values. The
most recent value will be available when the true owner of the remote location updates
this.

The minimum number of remote references is ensured by having the system lin-
earize the recursive data structure and apply a load-balanced partitioning to data.
Upon partitioning all the addresses are computed and consist of a partition number
(process identifier) and a local address. The number of potentially remote references is
used as minimizing criteria for a load-balanced partitioning algorithm. Thus reference

URN:NBN:no-3329

136 CHAPTER 10. INTER-OBJECT CONCURRENCY

and referee lists are minimal. The lists will be used as communication patterns for the
subsequent consistency phase.

10.4.1 Mapping of Data to Processors

In this section we elaborate the data mapping procedure. The mapping of data to
processors uses a general graph partitioning algorithm and information on data de-
pendences to preserve data locality. Therefore, the mapping strategy relies on being
able to infer the data access patterns for the distributed sets.

We use the linearization technique [77] to account for data locality. Hence, theoret-
ically, any recursive structure expressed with the help of pointers can be potentially
linearized. Thus, references can be computed and mapped such as to exploit data
locality. In practice, though, the cost of such a procedure for an arbitrary changing
recursive data structure would far overcome the gain.

We use a simplification in order to make linearization practical. That is, we restrict
the application of the technique to the structures that can aggressively benefit from
it, i.e. the set structures. On the other hand, the set structure is designed with two
purposes in mind: to express irregular, recursive data layouts while facilitating the
linearization.

The linearization of the distributed sets enables us to compute a data access ad-
dress based on a subscripting index. Moreover, the data can be reordered such as to
match the traversal of recursive sets at compile time. When partitioning we can use
the data accesses patterns to minimize potentially remote references.

The data accesses for the distributed sets can be the result of various expressions.
Usually, data accesses follow the traversal order and are bounded by the ranges of
sets. The extreme case is having accesses as an arbitrary function call that returns the
access index (also bounded by the set range). In the first case, we can compute the
reference and referee lists at compile time. These lists are bound to be small since the
remote references are subject to minimization criteria when partitioning data.

For the second case, we cannot know anything about the accesses until run-time.
Initially, these references and referees are marked as unprocessed. At run-time we use
the information on partitioning in a collective, distributed protocol for computing the
unprocessed references and referees lists. We exploit the symmetry of the computation
model (SPMD) to obtain these data accesses at run-time. That is, the processes coop-
erate in a point-to-point exchange of messages to construct the reference and referee
lists for the distributed data sets associated with each address space.

There is overhead associated with the run-time computation of the reference and
referee lists. Our approach is feasible given that most of the applications access the
recursive data through traversals. Thus, the reordering of data and mapping such as
to minimize remote references will work alone for most of the applications. For the
special cases when we cannot possibly know anything about the shape of the function
computing an access index at compile time, it is very probable that once the infor-
mation is computed at run-time, it can be reused for subsequent unprocessed access
patterns. Given that the structure of data does not change frequently (or at all) for the
applications we look at, the overhead associated with the run-time computation of the
reference and referee lists is small.

URN:NBN:no-3329

10.4. PARALLELISM 137

Our partitioning scheme applies recursively. The partitioning starts with distributed
sets of depth n, with a null set of reference information, by applying the minimize ref-
erences partitioning function. With no reference knowledge the partitioning will re-
sult in a disjoint load-balanced partitioning of data. Then, according to dependences
across distributed sets, the set of references becomes the number of potentially remote
references for depth n sets (estimated at compile time). The partitioning of depth n
distributed sets is now fixed (each data is mapped to a partition) and the procedure
continues for depth n � 1, mapping each data to a partition such as to minimize the
references at level n. References for distributed sets of depth n� 1 are subject to mini-
mization when applying the general partitioning function for depth n� 2, etc.

The depth of a recursive set is established according to the parameterization type.
If the type of the elements in a set is a set itself, then the level is incremented with one.
As soon as the type of the set elements is a built-in type, or a type other than set, the
maximum depth is reached.

We use general graph partitioning algorithms [95] that assign a unique partition
number to each node, such as to minimize the edge cut. In our case nodes are data ad-
dresses, and edges are data dependences. Our mapping scheme is original by using
the number of potentially remote references as minimizing criteria for mapping the
data to processors. Moreover, most of the existing mapping schemes used to paral-
lelize applications are based on regular distribution functions.

For illustrative purposes, let us assume that the graph in Figure 10.1 represents an
irregular mesh information where nodes represent vertices and edges connect the ver-
tices of an element. Through the new perspective, there are 4 elements, each having 4
vertices. Figure 10.5 illustrates how our reference-count based partitioning technique
works on the irregular mesh structure. In Figure 10.5, the elements are level two data,
while vertices are level one data. Let us assume that both, elements and vertices, are
large data, declared as distributed sets and given their dimensions by the user. Then,
based on the control flow information, the number of potentially remote references
can be computed for the elements. Therefore, the level one data, i.e. the vertices, are
mapped such as to preserve data locality.

Our mapping procedure is driven by the scalability concerns and it relies on knowl-
edge of real world, irregular, data intensive applications. That is, in SPMD applica-
tions the recursive data structures holding large data sets change very slowly, if they
change at all. Thus, our optimal placement of data to locations such as to improve
data locality works extremely well. We have experimented with our techniques for
data intensive numerical applications that use large data sets as input and are used
throughout the entire simulation process. The results show extremely good scalabil-
ity.

10.4.2 The Inter-Object Consistency Protocol

At run-time the mapping procedure results in having assigned each data to a partition.
Based on this information and the information on data accesses, we can dynamically
compute the information for the distributed sets, i.e. their new mapping address, the
references and referee lists. Moreover, for each remote reference we duplicate the data
locally to serve as the place-holder for the remote data. These distributed set objects

URN:NBN:no-3329

138 CHAPTER 10. INTER-OBJECT CONCURRENCY

6 7 8 9 10

1 2 3 4 5

1 2 3

1

1 2 6 7 2 3 7 8

3

3 4 8 9

4

4 5 9 10

2

2

7 8 109431

4

Elements

load balanced
partitioning

-fixed, disjoint

-blind

disjoint

partitioning
load balanced

the "cut"
based on minimizing

Final mapping:

Vertices:

:

-partitioning1 2 3 6 5 8 9 1047

5 6

Figure 10.5: Reference count-based mapping scheme.

information is the input for the consistency algorithm.
The inter-objects consistency algorithm is as follows2:

1. Classify the distributed set accesses as read

and write.

2. For each distributed data object:

2.1. Detect read/write dependences for distributed

sets.

2.2. Mark object as dependent (treat as in step 3).

If not, mark independent(do nothing).

3. For all the dependent data objects:

3.1. Insert run-time checks to read/write

dependent accesses.

3.2. Upon write to a refereed location,

send the last value to all referees.

3.3. Prefetch the latest values for references,

if any.

Our consistency scheme is extremely simple and efficient at the same time. First,
we use the local placeholder to allow non-owners to write to not owned locations
without incurring a data transfer. Moreover, based on the referee information, we insert

2The steps in the algorithm indicate logical rather than temporal sequencing. Thus, some of the steps
are performed at compile time, while others are at run-time.

URN:NBN:no-3329

10.5. THE COMPUTATION MODEL 139

run-time checks and trigger a data transfer initiated by the owner of data. Further-
more, we take advantage of this synchronization point to prefetch the newest data as
well, based on the reference information. We can do that because of the symmetry of the
SPMD model. This simple trick guarantees that the next read access to a location from
the reference list will have the newest, consistent value. Thus, upon a read operation
no synchronization is needed.

10.5 The Computation Model

The concurrency model we have presented results in potential benefits for the user.
These are: high usability and high scalability for the SPMD data intensive, irregular
applications. Besides using the distributed set type to declare sets of data that are to
be distributed across multiple address spaces, the programmer is not aware of the
distributed computing details. This achievement can be considerable, given that real
world, scalable applications explicitly code all the mapping (including partitioning)
and consistency (including communication) details we have presented in the previous
sections.

There are two views of the computation model:

I System view: From the system perspective the computation model is SPMD (sin-
gle computation applied concurrently to multiple instances of symmetric data)
with optimal mapping of data onto processors and relaxed consistency model.

II User view: From the user perspective the computational model is sequential and
restricted to a one local address space only (as opposed to a software shared mem-
ory view of multiple address spaces). That is, we ensure location-transparency,
instead of location-independence for accesses to distributed data.

Our computation model is original due to the special user/system perspectives.
Generally, our approach belongs to the class of techniques aimed at achieving usabil-
ity for the distributed programming style, while retaining the scalability of the under-
lying distributed system. The existing approaches can be classified along two main
axes:

- Fully automatic, or guided (through compiler directives) parallelizing (restruc-
turing) compilers for Fortran languages [5,9,57,111]. Along this axis, an existing
sequential program can be transformed to run in parallel. The great advantage
of this approach is the possibility to parallelize legacy code without involving
costly human resources. The main limitation resides in their restricted applica-
bility. Such techniques are successful for regular data layouts and less successful
for irregular data layouts.

- Distributed Shared Memory model (virtually shared memory) [21, 60, 61, 72, 74,
94]. Along this axis, all the existing realizations, from hardware to software,
attempt to exploit the usability of the shared memory model. A virtual shared
memory view is built on top of a physically distributed memory. While the
approach is successful in achieving usability, its scalability is still a challenge to
prove for researchers.

URN:NBN:no-3329

140 CHAPTER 10. INTER-OBJECT CONCURRENCY

typedef Set<double> vertex;

typedef Set<vertex> elems;

DistrSet<vertex> Verts(nverts);

DistrSet<elems> Elems(nelems);

DistrSet<double> a(nverts);

TetraMesh m;

...

for (int e = 0; e < Elems.Range(); e++)f
double c0ii = K1* m.Vol(e);

double c0ij = K2*m.Vol(e);

for (int i = 0; i < I; i++)f
int inode = m.El2MeshNo(e, i);

a[inode] += c0ii*f[inode];

for (int j = 0; j < J; j++)f
jnode = m.El2MeshNo(e, j);

a[jnode] += c0ij*f[jnode];

g
g

g
...

Figure 10.6: A typical irregular computation. Example of integrating sets and user defined
components.

Our approach offers a flexible programming model that enables the expression of
the application knowledge such that a system can exploit it at best. Legacy programs
cannot benefit from our approach to parallelization. Nor can they be applied to task
parallel applications. However, there is always a trade-off involved when trying to
achieve a goal. We trade-off the applicability of our techniques to data parallel appli-
cations only, in order to achieve high usability and scalability.

Figure 10.6 shows a simple example of a computation expressed using distributed
sets and user defined data. This code excerpt is a typical computation from a numer-
ical application that involves large, irregular data. The data describes an irregularly
discretized physical domain by using geometrical shapes. In Figure 10.6 an element
of such a mesh is described by the number of vertices making up the corresponding
geometrical shape (e.g. 3 for triangles, 4 for tetrahedra, etc.). A vertex is described by
its spatial coordinates. The distributed set of elements is used to hold and access large
data. A user-defined class called mesh is used to express complex computations with
geometrical data (e.g. computation of volume, area, surface normal, etc.). The mesh
computations, such as element volume and surface area, are involved in computing a
coefficient matrix.

The elements and vertices are given their real range, upon their declaration as dis-
tributed sets. Then these are only accessed through the Range() operation which re-
turns the local range recomputed automatically by the system upon distribution. The
user mesh data will be instantiated by the user with the elements from the distributed
large data sets and thus, only with the local subset. The computation is therefore kept

URN:NBN:no-3329

10.6. EVALUATION AND EXPERIMENTAL RESULTS 141

within the small range of the actual data as a part of a much larger data. The coeffi-
cient matrix a3 is also a distributed set since it defines a data structure corresponding
to the number of nodes from the entire mesh (and thus, very large).

The example in Figure 10.6 emphasizes two aspects. One is the ease of the pro-
gramming model and its conformance to the sequential programming model. The
other aspect is that the existence of sets does not prevent the programmer from us-
ing the power of the C++ language to express much more complex data layouts or
computational kernels. It merely helps the programmer to store the large data in a
distributed manner and use just a part of it as desired.

10.6 Evaluation and Experimental Results

There are two aspects involved when establishing the appropriateness of the object-
oriented languages for data parallel, performance sensitive applications. One is re-
lated to the sequential efficiency, and translates into the overhead added by dynamic
binding. The other efficiency aspect is related to the parallel execution scalability.

In general, the scalability of a system indicates how well the system can adapt
to increased demands. For concurrent applications scalability is usually measured by
the speedup of an application. The speedup of an application indicates how the parallel
version performs with respect to the sequential one.

The efficiency of the sequential object-oriented languages and systems is a research
topic in itself. Efficiency issues such as the abstraction penalty and inheritance [29] are
addressed by techniques such as procedure/method in-lining. Optimizations such as
dead code elimination, code motion, loop merging, etc. are also explored by research
into optimizing compilers. Here we are interested in showing the effectiveness of
our technique in reducing communication and increasing data locality. Therefore, we
show results on the parallel execution scalability.

We present scalability data from running a large, irregular numerical simulation
on ClustIS Linux cluster [43].

The speedup results are shown in Figures 10.7, 10.84. The input data size used for
the measurements in Figure 10.8 is approximatively twice the input data size used for
the measurements in Figure 10.7. As expected, the larger the data size, the better the
gain in efficiency when adding more resources (processors). However, the scalability
of a distributed computation is also limited by the communication aspects. As a con-
sequence, when communication becomes significant compared with the computation,
there is little, if any, performance gain in adding more computational resources (i.e.
processing nodes). Hence, for different application sizes, there is a different threshold
number of processors, above which the system does not scale well (this number is 21
for results in Figure 10.7 and 27 for the results in Figure 10.8).

There is also the aspect of the scalability of the underlying architecture as well. For
tightly coupled, shared-memory architectures, the communication between different
address spaces is through (expensive) fast hardware switches or memory bus, and

3In numerical applications sometimes matrices are not kept in two dimensional structures, even
though, conceptually, they do represent the elements of a two dimensional mathematical matrix.

4Note the difference in scaling along the speedup axis in the figures.

URN:NBN:no-3329

142 CHAPTER 10. INTER-OBJECT CONCURRENCY

3 5 7 9 11 13 15 17 19 21 23 25 27 28

number_of_processors

0

1

2

3

4

5

S
pe

ed
up

3DFEM1

Figure 10.7: The speedup of the 3DFEM application for “tiny” mesh.

3 5 7 9 11 13 15 17 19 21 23 25 27 28

number_of_processors

0

10

20

S
pe

ed
up

3DFEM2

Figure 10.8: The speedup of the 3DFEM application for “small” mesh.

URN:NBN:no-3329

10.7. RELATED WORK 143

therefore much faster. For loosely coupled systems, such as PC clusters or NOWs (Net-
works of Workstations), the communication is limited by the network bandwidth. We
have tested for different platforms (from tightly coupled, shared-memory machines to
Linux clusters).

However, all the results show very good scalability for large data sets, proving the
effectiveness of our techniques. Moreover, these results show that the sequential over-
head of an object-oriented language cannot be held against their adoption for parallel
computing. That is, if a system scales well, the sequential overhead is amortized in
the parallel execution.

10.7 Related Work

There are numerous approaches to integrating objects and concurrency (see [82, 112]
for complete surveys). First, we briefly review the main concepts. Then we present
the approaches to high performance applications in more detail.

“Pure” object-oriented concurrent languages satisfy the requirements for object-
orientation [84], such as inheritance. In languages like [3, 114] an object can accept
concurrent requests through messages. These models support intra-object concurrency.
In such a model an object is shared or visible to concurrent processes. In a distributed-
memory environment this translates into support for shared memory view, or explicit
remote method invocation.

Intra-object concurrency is suitable for exploiting fine-grain parallelism, in the con-
text of a shared memory view. Neither the shared memory view nor the remote
method invocation answer well the scalability requirements for the data intensive,
SPMD applications. Our model supports inter-object concurrency only in order to effi-
ciently exploit the SPMD computation style.

Object-oriented distributed frameworks [63, 71] such as Corba and Java RMI are
based on the remote method invocation mechanism and support the client-server style
of communication. These models work best for data transfer, and not very well for
data intensive computations. Even though peer (equal) distributed applications can
be expressed in these models, they do not show good scalability. Efforts have been
made to improve Java efficiency and use the shared-memory Java multi-threading to
high-performance applications [113].

Object-oriented/based Distributed Shared Memory (DSM) models implement a
software shared memory view on top of physically distributed memory. Hawk [54] is
a system based on ORCA [15,16] that has the notion of partitioned objects for support-
ing regular, data parallel applications. There is one thread of control per data access.
In this DSM implementation the entire data is replicated on each address space, and
only parts of it are truly owned. The parts that are not owned are invalid and updated
by a consistency protocol. Due to the replication strategy, the system is inefficient for
intensive data applications.

Many researchers have explored the use of objects for writing parallel programs.
One commonality for all these efforts, as well as ours, is to prove that high perfor-
mance applications can benefit from object-oriented techniques such as abstraction
and encapsulation. The challenge is to provide evidence on scalability for complex,

URN:NBN:no-3329

144 CHAPTER 10. INTER-OBJECT CONCURRENCY

Table 10.2: Comparison of various object-oriented/based concurrent languages and systems.

Model
vs.
Crite-
ria

Data Model Concurrency Computation Explicit/Implicit
Parallelism

Our
Model

Distributed
Memory

SPMD Relaxed owner
computes

Implicit

OMPC++DSM Shared Mem-
ory SPMD

SPMD Implicit

EPEE Distributed
and shared

BSP (Block
Synchronous)

NA Explicit (API
designer);
Implicit(user)

Charm++DSM Message pass-
ing, RPC

MIMD5 Explicit

ICC++ DSM Concurrent
blocks & loops

NA Explicit

Concert DSM Concurrent
statements

Multi-
threaded

Implicit (in-
tra objects);
Explicit (task
parallelism)

pC++ DSM HPF like Owner com-
putes

Explicit (intra
object)

Mentat Data-flow
model

RMI Data flow
graph

Implicit

HPC++ DSM HPF loop
directives
and multi-
threading

SPMD Explicit

URN:NBN:no-3329

10.7. RELATED WORK 145

high performance applications.
OMPC++ [101] is an implementation of DSM using OpenC++ reflection. The fo-

cus is on achieving portability for parallel execution environments. A parallel multi-
threaded shared-memory C++ program is transformed to execute on various environ-
ments (e.g. message passing). Our model has a local memory view, as opposed to
a shared memory view. Also, our consistency scheme is based on an update, rather
than an invalidation protocol. Both the local memory view and the update scheme are
more efficient. Yet, the shared memory view is more flexible.

EPEE [64, 92] is an Eiffel parallel execution environment aimed at offering a high
level API developer a platform for incorporating new components as common behav-
ioral patterns are detected. The final goal is to hide parallelism, while hiding data par-
titioning is optional. This idea is similar to the approach taken by COPS [78]. Both of
these systems differ fundamentally from ours in that they are relying on the developer
to find and incorporate new solutions to hard problems such as hiding parallelism
from the user. Instead we present a simple, elegant solution to support efficiently
implicit data parallelism for irregular, data intensive applications.

Charm++ [65] is a concurrent object-oriented system based on C++. Parallelism is
explicitly expressed as an extension to the C++ language. Parallel processes (chares)
communicate through message objects that are explicitly packed/unpacked by user.
The system also features special shared objects and remote accesses through remote
procedure calls. Having the user explicitly pack and unpack messages is exactly what
we are trying to avoid.

ICC++ [35] is a C++ dialect for high performance parallel computing. It supports
expression of irregular and fine-grain concurrency. The data model is based in intra-
object concurrency, where concurrent method calls can be made to an object. The sys-
tem guarantees that the method calls do not interrupt each other. But the programmer
must reason about progress and deadlock. Collections allow distribution to be ex-
plicitly specified. Instead of fine-grain HPF like parallelism, we support coarse-grain,
loosely synchronous concurrency.

Concert [34] is a parallel programming environment based on ICC++. The concur-
rency model is HPF like, with one thread for each access to an object. Optimizations
are added, such as static object in-lining, method in-lining and access region expan-
sion. Dynamic optimizations such as pointer alignment and view caching are also
supported.

pC++ [24] is an object parallel language based on HPF for managing data and
computations. Template (in the HPF sense, not in the C++) and alignment directives
are supported. Similar to the HPF style, this model supports regular applications and
is based on regular partitioning functions (clock, cyclic, whole).

The Mentat [50] system provides data-driven support for object-oriented program-
ming. The idea is to support a data-flow graph computation model in which nodes
are actors and arcs are data dependences. The programmer must specify the classes
whose member functions are sufficiently computationally complex to warrant paral-
lel execution. The data-flow model is enhanced to support larger granularity and a
dynamic topology. Parallelism is supported through having multiple actors execution
on multiple processors.

HPC++ [48] is based on PTSL (Parallel Standard Template Library) parallel exten-

URN:NBN:no-3329

146 CHAPTER 10. INTER-OBJECT CONCURRENCY

sion of STL, Java style thread class for shared-memory architectures, and HPF like
directives for loop level parallelism. A context is a virtual address space on a node.
Parallelism within a context is loop level parallelism. Parallelism across multiple con-
texts allows one thread of execution on each context. Low level synchronization prim-
itives (semaphores, barriers, etc.) coexist with high level collection and iterators.

Table 10.2 classifies the approaches according to the data model, support for con-
currency, computation model and the visibility of parallelism (implicit/explicit).

There are two major differences between our model and the existing object-oriented
models. One is that we take a fundamentally different approach in increasing usability
for the distributed-memory programming model. That is, we avoid paying the price
in scalability by implementing a software shared-memory layer on top of a physically
distributed memory. We obtain the same usability effect (sequential programming
model) by exposing the user to a local memory view only. Also, we avoid expos-
ing the user to any of the low-level concurrency aspects such as synchronization to
shared-memory access or explicit communication.

We place a strong emphasis on scalability. Our data mapping and consistency
schemes maximize data locality while minimizing communication. None of the above-
mentioned systems employs such techniques. However, our model may be less gen-
eral than other models by not supporting task parallelism.

10.8 Summary

In this chapter we have presented a scalable concurrent object model for data inten-
sive applications with complex layout. We have introduced the set data abstraction
as the key to exploiting coarse-grain parallelism. Moreover, we have described the
distributed set abstraction as a means for the user to indicate large data that should
be distributed across multiple address spaces. We have shown how these abstractions
enable us to exploit the logical data locality in the context of recursive data abstractions,
as opposed to physical data locality inherent in linear, multidimensional array represen-
tations.

We have presented an original data mapping scheme that uses the potential num-
ber of remote references as minimizing criteria in conjunction with a general graph
partitioning algorithm. We have explained how our mapping scheme that preserves
locality is used by the consistency algorithm to generate the minimum number of mes-
sages. We have further optimized our consistency algorithm by relaxing the owner
computes rule.

We have shown that our model results in high usability by exposing the user to an
“almost sequential” programming model. Thus, we have presented programming ex-
amples that support our hypothesis on programmability from Chapter 6, H2. We have
shown how our approach retains the scalability of the distributed-memory model by
avoiding implementation of a virtually shared memory view.

Our mapping scheme relies on compile-time estimates of data accesses to poten-
tially remote locations. Dynamic remapping schemes are usually based on the run-
time information about remote references. Dynamic remapping can be expensive.
However, for the worst-case scenario applications with many data accesses impossi-

URN:NBN:no-3329

10.8. SUMMARY 147

ble to process, re-mapping is desirable. Even though this is rarely the case in practice,
we plan to experiment with dynamic remapping when the initial partitioning exhibits
poor locality and results in high traffic (communication).

The benefits of our approach come at the cost of applicability. That is, our concur-
rency model does not accommodate task parallelism. We intend to explore the issue
of integrating task level parallelism in the concurrency model. Since we want to pre-
serve the scalability of the concurrent object, we need more insight into the behaviour
of our system for different classes of applications.

URN:NBN:no-3329

148 CHAPTER 10. INTER-OBJECT CONCURRENCY

URN:NBN:no-3329

Chapter 11

A Prototype System for Implicit
Concurrency

Parts of this chapter were published as conference papers [39, 40].

11.1 Introduction

This chapter describes a prototype system that achieves implicit concurrency for nu-
merical applications. The focus is on providing a general framework that can be used
by practitioners in the application domain to implement their numerical algorithms
without being concerned with distributed computing aspects, such as data partition-
ing and communication generation. Efficiency is an important requirement for scien-
tific numerical applications. We focus on the problem of concurrent Finite Element
Method (FEM) solution of Partial Differential Equations (PDEs) for general (unstruc-
tured) meshes. Numerical abstractions and algorithms are not addressed in the im-
plementation of the prototype system.

Parallel computing has been employed extensively in the scientific computing field
in an explicit manner. Most of the parallel scientific applications use the Fortran lan-
guage in conjunction with the message passing paradigm (MPI1) to specify the decom-
position, mapping, communication and synchronization. Reuse has been explored in
its incipient phase as function libraries. Even though Fortran libraries account for
some reuse, Fortran applications are hardly extendible. As a consequence, despite
their similar structure, most of the parallel applications are re-designed from scratch.
Given that the process of writing distributed-memory applications is complex and
error-prone, this means low productivity.

As stated, our goal is to abstract away from the user the distributed computing
aspects and thus give the user the illusion of a sequential programming model.

With our approach we take advantage of the application specific features to auto-
mate the parallelization process. We separate the user data (numerical application spe-
cific data) from the parallelization algorithm. Therefore, we capture the concurrency
infrastructure for the class of applications at hand (PDE solvers) and dynamically use

1http://www.mpi-forum.org/

149

URN:NBN:no-3329

150 CHAPTER 11. A PROTOTYPE SYSTEM FOR IMPLICIT CONCURRENCY

it during the user solution process. We use generic programming techniques in or-
der to couple user data and the workload partitions for the transparent distributed
solution process.

In the remainder of the chapter we will refer to the FEM solution process, since we
treat the FD case as a particular case of the general solution process. The key features
of FEM applications are:

� The applications are data parallel and loosely synchronous. Domain decom-
position is a technique used to break down the physical domain into smaller
sub-domains that can be treated separately. With this method data on the border
between sub-domains is logically connected with data from other sub-domains.
In a distributed memory setting this means that data residing on remote pro-
cessors are needed locally. The computation steps consist of independent local
computations followed by communication.

� The physical domain is described by a geometrical, discretized structure. This
usually translates into nodes, elements or faces (edges, i.e. the connection be-
tween the elements). Any user application specific abstractions (matrices, vec-
tors, etc.) or attributes (e.g. pressure, temperature) are indexed according to the
nodes, elements or faces. The numerical computation consists mainly of itera-
tions over the entities (nodes, elements, edges).

� The applications are inherently dynamic: experimentation with different geo-
metrical data structures (degrees of freedom, element shapes) or different nu-
merical algorithms (time discretization schemes, iteration schemes, etc.) is at the
core of the physical phenomena simulation (numerical applications).

This chapter describes the prototype system used to implement the techniques and
the numerical applications presented in this thesis. Thus, it describes the design and
the implementation of the component-based framework [62] that captures the concur-
rency infrastructure for dynamic, distributed numerical applications. Furthermore, it
discusses the main design choices, and it motivates our approach. The system uses
the techniques described throughout this thesis to account for efficiency.

The remainder of the chapter is organized as follows: Section 11.2 gives an overview
of the system. Section 11.3 describes the component-based framework implemen-
tation. It also discusses the design rationale that drove our decisions. Section 11.4
overviews the existing approaches to the problem we attempt to solve (transparent
concurrency) and motivates our approach. Section 11.5 concludes the chapter.

11.2 An Overview of the System

In this section we describe the system for transparent concurrency of the distributed
solution of the PDEs from the user perspective. In this perspective, we emphasize the
following requirements for our system:

� Applicability - the class of the applications we address is the parallelization for
the general solution of PDEs (FEM, FD etc.). PDEs are at the core of most of

URN:NBN:no-3329

11.2. AN OVERVIEW OF THE SYSTEM 151

engineering and natural science problems. With such a large class of applica-
tions, our system is most likely to be highly relevant for a large applied research
community.

� Usability - we expose the user to a small, well-tested, well-documented com-
ponent set, together with the control thread (the way the components play to-
gether) that can be easily learned and used.

� Extensibility - the user should be able to use our system in conjunction with
his/her own data and algorithms in order to complete the solution process.

� Efficiency - last, but not least, efficiency is an important requirement of the sci-
entific applications. Our architectural approach is driven by efficiency as well.

In succeeding at meeting our requirements, we have accounted for the following:

� To achieve large applicability, we only focus on capturing the concurrency in-
frastructure, that is the load-balanced data distribution, finding the data that
needs to be communicated (i.e. computing the communication patterns), know-
ing when the communication takes place. We only employ a high-level math-
ematical interface in the form of the geometrical data description for the dis-
cretized physical domain. Our solution is general and it does not involve any
algorithmic or discrete mathematics interface. With our solution, any existing
computational kernels (e.g. BLAS [44], Lapack [12]) or numerical library (e.g.
Diffpack [70]) can be employed by the user in the solution process.

� Most of the existing numerical libraries for the distributed solution of PDEs are
still low-level and complex (e.g PETSc2). By low-level we mean that the user is
still aware of the data distribution and communication aspects, as well as many
other low-level aspects (renumbering, data access offset, etc. [98]). By complex
we mean that the libraries provide a rich, mixed functionality. Part of the func-
tionality accounts for numerical abstractions (linear algebra solvers, time dis-
cretization schemes, etc.). More general functionality (sometimes duplicated by
each library, in its own “philosophy”) such as geometrical data representation,
local element to global mesh renumbering, etc. is mixed in also. Therefore, the
libraries become large, hard to use and learn. We separate the parallel solution
process and the application specific data and algorithm. We achieve high usabil-
ity by designing a small set of well-tested, well-documented components, with
a narrowly focused functionality.

� Our solution is high-level and reusable through the use of encapsulation. We
hide the details of concurrency from the user, while achieving reuse as-is of the
entire concurrency infrastructure. We also hide the tedious details of the geomet-
rical data representation from the user. At the same time, the component-based
design accounts for the reuse of any existing (numerical) software artifacts.

� Our solution is efficient because we employ a truly distributed object model. That
is, there is no notion in our model of a global name or address space or remote

2http://www-fp.mcs.anl.gov/petsc/

URN:NBN:no-3329

152 CHAPTER 11. A PROTOTYPE SYSTEM FOR IMPLICIT CONCURRENCY

invocations. The distributed objects are loosely synchronous. Communication
only takes place at particular times during the application life time. We optimize
communication by knowing when communication takes place and aggregating
data into large messages.

The main concepts/steps involved in the distributed solution of the PDEs are:

1. Geometric data representation.

2. Data structure creation.

3. Off-processor data updates.

4. Local numerical computation.

Our system accounts for the first three phases, while the user is responsible for pro-
viding the numerical algorithm for a particular PDE.

11.2.1 Geometrical Data Representation

Geometrical data representation is one of the hard aspects of scientific applications
that use general meshes. Even though the applications use similar geometries, many
different representations coexist in practice, making existing scientific codes hard to
understand, modify, maintain and extend. We isolate the geometrical data representa-
tion in a component with a well-defined interface for accessing all the needed geomet-
rical attributes. At the system level, the geometrical data representation can be easily
replaced, without affecting the system functionality, or requiring any modifications in
any other system modules.

The user specifies the structure of the input domain as an input file, called mesh
or grid, for the system. The user also specifies the number of the processors available
in his/her system. The file describing the domain has a prescribed, well-documented
format. Such files are usually obtained by means of tools called mesh generators3.

The system reads the data from the file into the internal components. Different
element shapes used for the discretization of the input domain can be specified in the
mesh file.

The system uses a load-balanced partitioning algorithm (as provided by METIS4)
for breaking down the input mesh structure data into smaller regions. All the details
related to the geometrical data representation are encapsulated by our system com-
ponent. The user gets access to all geometrical data aspects through our component
interface, which is the Subdomain. At the system level the geometrical data represen-
tation can easily be replaced without affecting the system functionality, or requiring
any modifications in any other system modules.

3An example of such a tool can be found at http://www.sfb013.uni-linz.ac.at/ joachim/netgen/
4http://www-users.cs.umn.edu/ karypis/metis/

URN:NBN:no-3329

11.2. AN OVERVIEW OF THE SYSTEM 153

11.2.2 Data Structure Creation

The system creates a number of regions from the input data structure equal to the
number of the processors available. Then it associates each data region with a pro-
cess5, transparently for the user. The internal boundary geometrical mesh data is du-
plicated on each process, so that the system has access, locally, to all the off-processor
data needed during one computation.

The user has access to the geometrical data local to one processor through the Sub-
domain component. The component presents the user with a uniform view of the geo-
metrical data structure that can be employed in a sequential programming model for
implementing a numerical algorithm (solver). All the distributed computing aspects
that the component incorporates are invisible to the user.

The user has to subclass a system provided component UserData for defining any
attribute (e.g. pressure, temperature) or data abstraction on the mesh structure which
is involved in the computation of the final result. The user provides the concrete in-
terface for storing and retrieving a user defined data item to/from a specific mesh
location (element, node, etc.).

11.2.3 Off-processor Data Updates

The concurrency structure of the applications we address (the solution of PDEs) con-
sists of independent local computation, followed by communication phases. There-
fore, they are loosely synchronous [31]. In order to automatically provide for the off-
processor data updates, we need to know when and what to communicate. That is,
we need to know the communication patterns and when to generate communication.
Our system computes the communication patterns, but it is the user that explicitly
invokes the update phase. Then, the system performs the updates transparently.

Each region associated with a process is stored in the Subdomain component. The
“invisible” part of this component makes use of the local data in order to account for
the distributed computing part. The component computes the communication pat-
terns, creates the communication data container objects and maintains the global data
consistency transparent for the user. The user has to call a system-provided generic
function, Update, which makes sure that the user-defined data is globally consistent.

11.2.4 Local Numerical Computation

Our system treats the user data differently, depending on the dependence attribute:

1. We call dependent data any defined user property that is the final result (i.e. the
unknown for which the equations are solved, e.g. pressure, temperature, etc.),
or updated by another dependent data item (e.g. some of the coefficient matrices
computed based on the unknown).

2. We call independent data any user data that are not assigned the result of an ex-
pression computed based on dependent data.

5In our model a single process runs on a single processor.

URN:NBN:no-3329

154 CHAPTER 11. A PROTOTYPE SYSTEM FOR IMPLICIT CONCURRENCY

User supplied
application
specific part

...

Subdomain 1

The input file
Communication

Subdomain n

Worker 1 Worker n

 (domain) Mesh data

Master

Data

decomposition

Communication

(Metis library)

 library (MPI)

Figure 11.1: The main building blocks of the system.

Figure 11.1 shows how the system supports the above tasks transparently to the user,
and what the user contribution is in completing the solution process. As shown in
Figure 11.1, we employ a Master/Worker concurrency model. A master process is
responsible for reading the domain data from an input file and distributing the sub-
domains to the workers. We use a hybrid master/worker and SPMD concurrency
model. In the SPMD model all the worker processes execute a similar task on the local
domain (data).

In Figure 11.1 we associate each subdomain with a unique process. A subdomain
has communication capabilities, that is, it “knows” how to “pack/unpack itself” and
send/receive its data. Inside the system there are other components with similar
features. We call these components active components. In contrast, some other com-
ponents, passive components, capture only the structure data, and/or the algorithm
associated with it, without having any communication capabilities6.

The user sees only the “passive interface” of the Subdomain. This will allow the
user to manipulate the appropriate geometrical data. We hide the geometrical data
representation from the user. The system instantiates and “computes” the “right”
subdomain for each worker. The user acts only at a subdomain level, in a sequential
fashion. The system replicates the user algorithm and data over all the workers. The
workers communicate transparently.

In Figure 11.2 we show the difference between a code excerpt written in a “clas-
sical sequential manner”, and the same code excerpt enriched with our system func-
tionality to look sequential, but execute distributed. We do not show the “classical
concurrent model” for such an application (i.e. the MPI) version, since we assume

6The active components are distributed objects, while the passive components are sequential objects.

URN:NBN:no-3329

11.2. AN OVERVIEW OF THE SYSTEM 155

that its complexity is evident to the reader and the space would not allow for such an
illustration.

Classical sequential model:

A FEM Poisson Solver using a tetrahedral mesh

void main() f

while(abs(p[n+1] - p[n]) < EPS) f
ComputeB();

ComputePressure();

g
g
void ComputePressure() f
for (i = 0; i < nverts; i++)

P[i] = (A[i] - B[i])/C[i];

void ComputeA() f
...

g
void ComputeC() f
...

g
void ComputeB() f
for (i = 0; i < nverts; i++) f
B[i] = 0;

for (e = 0; e < nelems; e++) f
vol = Vol[e];

for (j = 0; j < NVE; j++) f
jnode = El2MeshNo(e, j, NVE);

p = P[jnode];

for (k = 0; k < NVE - 1; k++) f
knode = El2MeshNo(e, (j+k+1)%NVE, NVE);

c1jk = ScalarProduct(a[j], a[k])/9*vol;

B[knode] += c1jk*p;

g
g

g
g

g

Our non-classical sequential model:

A FEM Poisson Solver using a tetrahedral mesh

void main() f
P.Init();

Update(P, loc data);

while(abs(p[n+1] - p[n]) < EPS) f
ComputeB();

ComputePressure();

g
g
void ComputePressure() f
for (i = 0; i < loc data.GetNVerts(); i++) f
temp = A[i] - B.GetAt(i)/C[i];

P.SetAt(i,temp);

g
Update(P, loc data);

g
void ComputeA() f
...

g
void ComputeC() f
...

g
void ComputeB() f
B.Init;

Update(B, loc data);

for (e = 0; e < loc data.GetNElems(); e++) f
vol = Vol[e];

for (j = 0; j < loc data.GetNve(); j++) f
jnode = El2MeshNo(e, j, NVE);

p = P.GetAt(jnode);

for (k = 0; k < loc data.GetNve() - 1; k++) f
knode = El2MeshNo(e,

(j+k+1)%loc data.GetNve(),

local data.GetNve());

c1jk = ScalarProduct(a[j], a[k])/9*vol;

temp += c1jk*p;

B.SetAt(knode, temp);

g
g

g
Update(B, loc data);

g

Figure 11.2: A comparison of two sequential programming models.

In Figure 11.2, we emphasize the difference between the two models by using grey
for our model required modifications. We use black for the similar parts. It is easy

URN:NBN:no-3329

156 CHAPTER 11. A PROTOTYPE SYSTEM FOR IMPLICIT CONCURRENCY

to see that the data items B and P are candidates for the dependent data. Therefore,
in the code excerpt above, these data specialize our component UserData. Also, the
loc data variable reflects the data the user sees, i.e. a Subdomain. On the other hand,
the data items A and C are independent, and they do not require any modification to the
sequential algorithm.

An important observation here is that the user is the one who has to “observe”
the difference between the dependent and the independent data. With proper guidance
provided by the system documentation and the user experience, this task is straight
forward.

11.3 Discussion

We have implemented a prototype framework([62], [19]) to demonstrate our ap-
proach, using the C++ programming language [103]. We have used the METIS library
for the load balanced (graph) partitioning of the irregular mesh. We use the Object
Oriented Message Passing Interface (OOMPI7) library for communication. Figure 11.3
depicts a view of the prototype, using the UML [46] (Unified Modeling Language)
formalism. For brevity we only show the key components and interfaces in the UML
diagram.

Our design is based on a careful study of the application domain (PDE solvers)
and their behavior. Our key observation is that the applications share a similar struc-
ture, with differences residing in the numerical problem parameters rather than the
concurrency infrastructure. Therefore, by separating the parallel algorithm and geo-
metrical data from the application specific parameters, data and algorithms, we were
able to come up with a solution to automate the parallelization process.

In Figure 11.3 the UserAlg component is “the hook” for the user to “anchor”
his/her computation into the framework. The user subclasses the abstract component
UserAlg8 and provides his/her main control flow which complements the control flow
of the framework in completing a particular application. The user also hooks the data
representation for his/her application here. As we have mentioned earlier(9.4.3), the
data can be independent or dependent. Furthermore, it can be user-defined, or compo-
nents imported by the user from other libraries. In this case, we say that the user
extends the framework through composition. Composition is the first mechanism used
to extend the framework. The user dependent data has to be defined by subclassing the
framework container component UserData. Subclassing is the second mechanism used
to extend the framework.

The user has access to the geometrical data for a subdomain through the interface
of the Subdomain component. The user algorithm component is parameterized with
the Subdomain component. The Subdomain is created by the framework, so that the
user has a contiguous, consistent view of his/her data. The user writes his/her appli-
cation for a single Subdomain. In a SPMD fashion, the framework instantiates a number
of workers which replicate the user provided computation for all the subdomains. A
worker process is modeled by a Worker component, which is not visible for the user.

7http://www.mpi.nd.edu/research/oompi/
8In this particular implementation, components and classes are the same.

URN:NBN:no-3329

11.3. DISCUSSION 157

UserMain:
public UserAlg

UserDefined:
public UserData User supplied

components

Subdomain

Worker CommPattern

Master

Metis

MeshStruct

UserAlg
virtual void Main()

OOMPI

IntBoundary

UserData<T>

User defined

External packages
internally used by
the framework

Framework internals
User visible

template<T>void Update(UserData<T>&, Subdomain&)

<uses> <uses>

−myDomain

Figure 11.3: The infrastructure of the framework.

URN:NBN:no-3329

158 CHAPTER 11. A PROTOTYPE SYSTEM FOR IMPLICIT CONCURRENCY

The component receives its work from a master process, in a Master/workers fashion.
The Master component reads the input data as provided by the user (the discretized
physical domain) and breaks it down into smaller partitions that it sends to the work-
ers. Based on their local data provided by the Subdomain component, a worker sets up
the communication patterns in cooperation with other workers. The generic function
Update uses the communication patterns for a Subdomain and the container compo-
nent UserData to automatically generate communication every time the user calls the
function, after updating a user dependent data item.

The component-based design for our framework we have chosen due to our con-
structional approach, i.e. we construct part of the solution process. The generative ap-
proach would be to analyze an existing solution and generate a new one (e.g. compiler-
driven parallelization). The compiler techniques (data flow analysis, dynamic analy-
sis) are limited to the regular applications, that use simple data layout. Frameworks
fulfill best our need for the user to be able to plug in his/her own data representations
and algorithms, i.e. to provide the remaining part of the solution process.

The benefits of our architecture choice range from the ability to “automate” the
parallelization process for a general class of applications (regular and irregular ap-
plications) to the data locality and communication optimization, the data encapsulation
concept naturally provides. These benefits come at the cost of whatever makes object-
oriented languages slow: abstraction penalty, dynamic binding penalty and inheri-
tance penalty. At last, but not least, the (object-oriented) framework has been the most
effective route to reuse [86].

Genericity is an important aspect of our design. Because the parallel structure of
the numerical applications we refer to can be expressed independently of the repre-
sentation, the concurrency infrastructure is based on the concept of generic program-
ming. We use generic programming to be able automatically generate communication
for user data. We use containers as placeholders for later defined user data to be able
to pack/unpack and send/receive the data. This solution enables us to free the user
from any distributed computing aspects, from data distribution, and data consistency,
to data communication.

The concurrency model we use is the hybrid master/workers and SPMD. SPMD
is the widely-used concurrency model for numerical applications. We use a special
process, a master, to evenly divide the data and send the work to the worker processes.
This way the workers will have approximately the same amount of work load, and the
computation will be balanced.

The validation of the framework has two aspects. At the usability level our system
is available to students and researchers for experimenting. We have implemented
a test suite to test the functionality of our framework as well as for documentation
purposes.

From the efficiency point of view, we are interested in the applications running
time and speedup. We have implemented few applications using the framework on
clusters of PCs, NOWs and NUMA architectures. The results show that our approach
is efficient.

URN:NBN:no-3329

11.4. RELATED WORK 159

Compilers - regular case:

Example:

for i = 1, N

x[i] = x[i-3]

1.Gather data dependence info

(i.e. f[+,3],[0,3]g)
2.Data and computation decomposition

(i.e. the iteration space).

3.Code (communication) generation

(based on data flow information

and owner-compute rule.)

Run-time support - irregular case:

Example:

for i = 1, N

x[i] = x[i] + y[ia(i)]

1.Build the communication schedule

(i.e. a translation table lists the

home processor and the local address

for each array element)

2.Move the data based on the schedule

The transformed code:

DS = Schedule(...)

Call DataMove(y, DS)

for i = 1, Nlocal

x[i] = x[i] + y[iaLocal(i)]

Figure 11.4: Compile-time and run-time support for parallelization.

11.4 Related Work

Several approaches exist to support the parallelization of scientific applications. The
spectrum of the approaches lies between manual parallelization, at the one end, to the
fully automatic parallelization, at the other end. Despite its inconveniences, manual
parallelization is still the most popular approach to writing concurrent scientific appli-
cations, due to its efficiency and taylorability. On the other hand, writing concurrent
scientific applications is an error-prone, complex task. Automatic parallelization is one
way to tackle the complexity and the reliability of concurrent applications. Research
into parallelizing compilers for scientific applications has been successful for Fortran
applications with simple data representations and regular access patterns [105], [5].
Compile-time analysis cannot handle arbitrary data access patterns that depend on
run-time information. Run-time analysis has been used to address the issue of com-
piling concurrent loop nests in the presence of complicated array references and irreg-
ularly distributed arrays [111]. However, these approaches are limited to loop level
parallelism and simple data layouts (arrays) in the context of Fortran languages. The
code excerpt in Figure 11.4 exemplifies the applicability of the compiler support for
parallelization.

The loop-level parallelism is fine-grain and results in a lot of communication. Also,
the compiler support can only handle arbitrary access patterns in the context of simple
data layouts, such as arrays.

Object-oriented/-based distributed systems that support data parallel applications
have been proposed [31], [54]. Either they do not support complex data representa-
tions with general distribution, or many of the concurrency aspects are still visible to
the user. A complete survey of models and languages for parallel computation can
be found in [97]. We will only refer to the object-oriented models. In [97] they are
classified into external and internal models according to whether the parallelism is or-
thogonal to the object model, or integrated with the object model. We are interested

URN:NBN:no-3329

160 CHAPTER 11. A PROTOTYPE SYSTEM FOR IMPLICIT CONCURRENCY

in the internal object models, because these are closely related to data parallelism,
since the language appears sequentially at the top level. Existing approaches require
communication to be explicit, but reduce some of the burden of the synchronization
associated with it. Our model aims at hiding communication and synchronization
from the user. With our prototype implementation we succeed at achieving this to the
extent that the synchronization phase has to be triggered by the user. It is possible
to extend our system implementation to detect and trigger the synchronization phase
when necessary automatically.

Chaos++ [31] is a library that provides support for distributed arrays and dis-
tributed pointer-based data structures. The library can be used directly by the appli-
cation programmers to parallelize applications with adaptive and/or irregular data
access patterns. The object model is based on mobile and globally addressable objects. A
mobile object is an object that knows how to pack and unpack itself to and from a mes-
sage buffer. A globally addressable object is an object that it is assigned to one processor,
but allows copies to reside on other processors (referred to as ghost objects).

The first problem with this approach is that the user is expected to provide imple-
mentations of the pack and unpack functions (that support deep copy) when subclassing
the mobile component. On the one hand, the packing and unpacking tasks are low-
level operations that expose the user to many of the concurrency aspects (what to
pack, when to pack, where to unpack, what to unpack). On the other hand, more mo-
bile objects may contain a pointer to same-sub-objects. The user has to make sure that
only one copy of a sub-object exists at any point during the program execution. The
use of globally addressable objects can alleviate some of these problems. The global object
is intended to support the global pointer concept. The main problem is that the con-
tents of the ghost objects are updated by explicit calls to data exchange routines. Our
approach is different from this one by not mixing the concurrency aspects at the user
level. We do not let the user see the internals of the active, distributed components of
our model. Also, we do not need naively to transport the entire content of an object
for every communication. We only update the parts of the objects that are needed
for subsequent computations and avoid the overhead associated with communicating
entire objects.

In contrast with the generative approach, such as compiler support for paralleliza-
tion we use a constructional approach. Therefore, we construct part of the solution. We
want to achieve the “illusion” of a sequential programming environment, as opposed
to transforming sequential programs to run in parallel. Our approach is due to the
limited compiler support for dynamic analysis and efficiency considerations. Our ap-
proach is based on capturing the concurrency infrastructure of a class of applications
and reusing it for every new application. This idea is similar to the notion of skeletons,
ready-made building blocks [97], or abstractions characteristic to a class of applica-
tions. In our case we are closer to algorithmic skeletons, those that encapsulate structure.
[25] explore the approach of algorithmic skeletons or common parallelization patterns
for another class of applications, i.e. adaptive multigrid methods. Moreover, [25]
list a series of requirements for a language supporting algorithmic skeletons, among
which data access control and polymorphism. The authors introduce the notion of
parallel abstract data type (PADT) in order to account for the required features. Fur-
thermore, the host language used for experimentation is an imperative language, i.e.

URN:NBN:no-3329

11.5. SUMMARY 161

the C programming language. We argue that object-oriented models and generic pro-
gramming naturally fulfill the requirements for implementing algorithmic skeletons.
Therefore, we concentrate on an efficient data parallel object model suitable for high
performance, parallel applications.

11.5 Summary

In this chapter we have presented a new approach towards the parallelization of
scientific codes, i.e. a constructional approach. In contrast to the generative approach
(e.g.compiler-driven parallelization), we construct part of the solution, instead of gen-
erating a new solution based on an existing one. We use a component-based archi-
tecture in order to be able to allow the user to build on our concurrency infrastruc-
ture. With our approach we get closer to the ideal goal of not having the user dealing
with the concurrency at all, without restricting the generality of the application class.
Therefore, we are able to handle the distributed solution of PDEs for general geome-
tries (meshes).

Given that efficiency is an important constraint of the class of the applications we
address, we show how a “truly distributed” component model can alleviate the effi-
ciency problems of the object-oriented middleware (e.g. Java RMI, CORBA, DCOM).

This research explores the appropriateness of objects in conjunction with concur-
rency (a much desired association [82]) in the context of high performance computing.
High performance scientific computing is known as a community traditionally reluc-
tant to object-oriented techniques because of the poor performance implementations
of object-oriented languages and systems show.

The work presented in this thesis provides evidence that our approach is scal-
able. We intended our system architecture for a cheap, flexible distributed computing
platform, consisting of clusters of Linux PCs or NOWs. With a scalable approach, a
potentially “unlimited” number of computers can be used for gaining computational
power.

URN:NBN:no-3329

162 CHAPTER 11. A PROTOTYPE SYSTEM FOR IMPLICIT CONCURRENCY

URN:NBN:no-3329

Part IV

Synopsis

163

URN:NBN:no-3329

URN:NBN:no-3329

Chapter 12

Summary and Results

12.1 Discussion

This work has explored a high-level programming model for scientific applications,
in conjunction with lower level enabling techniques (e.g. data distribution and con-
sistency). Moreover, it was pointed out a need for modern software technology and
software development methodology in a domain that traditionally took on the techni-
cal dimension, rather than the methodological aspects. That is, the domain concerned
itself with the underlying architectural issues and low-level system software for paral-
lel computing, rather than software tools and programming environments for applica-
tion writers. This was mainly due to the non-traditional nature of both the application
domain (scientific computing) and the computing style (concurrent computing).

The shift in high performance architectures for delivering high computation power
towards commodity-oriented cluster computing forces a shift in trends towards both
system software and programming environments for scientific computing. The in-
dustry is already moving in this direction and in the past years several projects took
on migrating legacy software to modern techniques (e.g. object-oriented wrappers,
component-based development, etc. [13, 14, 19, 27, 59]).

It is still unclear to what degree performance losses due to the software layer (sys-
tem and programming environment) are unacceptable. Our thesis is that the main
gain in performance comes from the architectural and algorithmic scalability. Thus,
the software layer may negatively affect performance, but not in a more dramatic way
than it does in a traditional computing setting (i.e. sequential computing).

The work in this thesis explores these issues of where the gain in performance
comes from and what an acceptable compromise between effectiveness and programma-
bility is. Thus, the following aspects need to be explored:

� Evaluate the performance degradation due to the software environment. We
have not directly attacked this issue. We point out that answering the question
in the context of present software methodology for realistic applications is not
feasible. While numerous applications and benchmarks exist for Fortran lan-
guages, porting those to different programming environments for the purpose
of comparison is not sufficiently attractive to invest effort into this, neither for
the research community, nor of for the industry. We assume that such loss is not

165

URN:NBN:no-3329

166 CHAPTER 12. SUMMARY AND RESULTS

crucial for the overall application performance [108, 109].

� Discover and exploit parallelism inherent in the applications. We have tried
to show that the parallelism inherent in the applications and the parallelism
exposed under the constraints of an architecture-dictated model are different.
Thus, starting with the system platform and exploiting parallelism in a “bottom-
up” approach that incrementally augments the trivial parallelism at instruction
level, and loop level with non-trivial features is limited by fixed assumptions.
These are the array language (Fortran), partitioning function (regular) and paral-
lelization grain (fine). We have pointed out that a “top-down” approach, starting
with the application knowledge and devising the concurrency model according
to the application features invalidates some of the fixed assumptions. Thus, the
following mismatches occur when trying to exploit parallelism:

– Regular partitioning does not fully reflect and model data locality in appli-
cations.

– The Fortran language is not rich and flexible enough to express the common
data representations in scientific applications.

– Static program analysis is limited to discovering and exploiting parallelism
across the entire program.

Thus this thesis has investigated:

– A general distribution and mapping strategy, together with a consistency
scheme to enable a general layout and automatic consistency for the coarse-
grain data parallel applications.

– The power of expressiveness for generic, dynamic programming (in C++)
to enable more flexible data representations and subsequent exploitation of
parallelism.

– The power of run-time techniques to complement compiler analysis in dis-
covering and exploiting parallelism.

There are several problems with our approach. First of all, we have tailored our
solution to a specific class of concurrent applications, i.e. data parallel applications.
Thus, the solution is not general enough to cover task parallelism. Moreover, we have
tested our approach mostly for irregular problems, in particular for the FEM solution
of PDEs for general geometries. Even though we have discussed the FD solution pro-
cess as well and showed how our approach applies to regular applications that require
neighbor communication, we did not complete our tests for these problems. Also,
some of the techniques are not finalized in a complete system. We have implemented
them by hand to produce experimental results. We have not directly addressed regu-
lar problems and dense matrix operations typical in linear algebra. One of the reasons
is that there is an enormous amount of work in this direction. However, we would like
to study more communication patterns typical for such computations and experiment
with dynamic data remapping due to changing communication patterns at run-time.

URN:NBN:no-3329

12.2. VALIDATION 167

The investigation in this thesis is far from complete. This is due to the non-traditional
path taken and the departure from a different set of assumptions than traditional in-
vestigations in the same research area. Other work exploring the novel software de-
velopment techniques differs from ours in that it only varied the high-level dimension
(software development techniques) while it retained the other dimensions (data par-
titioning, mapping, fine-grain concurrency, etc.).

This thesis raises more questions than it answers. Many of the pieces linking var-
ious techniques presented here we assumed rather than completed in a system or a
comprehensive analysis. However, research directions and future work will be pre-
sented in Chapter 13.

12.2 Validation

Chapter 6 introduced two main hypotheses for our approach. These are:

H1 Effective execution of data parallel applications in distributed systems. The assump-
tion leading to this hypothesis is that the communication structures for different
classes of numerical applications can be deduced based on knowledge of both
the specific application and the program implementation, and the number of
synchronization points in a program is small.

H2 Increased programmability for distributed data parallel applications. The assumption
leading to this hypothesis is that the applications share similar structures and
the most difficult tasks of data distribution and communication can be solved
automatically by a system. Thus, the scientific programmer has to supply only
the sequential, application specific part.

To validate our first hypothesis, the results presented throughout the thesis have
shown good effectiveness for our approach. We have presented speedup (the absolute
wall clock times for the measurements are available in the Appendices) measurements
for the data layout and consistency schemes.

We have manually restructured the application input data to reflect the traver-
sal order in the application and mapped it onto a graph. Then we have applied our
general layout scheme to compute the mapping between the local and global address
spaces and the space requirements to duplicate only the related data across the address
spaces. We have measured the effectiveness of this technique for the implementation
of the 3D Poisson FEM solver. The speedup results in Chapter 7 (see the correspond-
ing wall clock times in the Appendices) show good effectiveness for our technique. We
have only tested for the two small test problems (meshes) available, because we did
not have access to larger test problems. Generating large, accurate 3D test problems
(meshes) is a different research area and is not the focus of this work.

Chapter 8 discusses in detail the efficiency aspects of the consistency scheme that
uses the layout presented in Chapter 7. It was shown that the space overhead in-
curred is small since we only keep the links between different partitions. This scheme
works well for applications that require nearest neighbour communication since in-
formation about potentially remote accesses is available locally and no extra run-time

URN:NBN:no-3329

168 CHAPTER 12. SUMMARY AND RESULTS

overhead is required. However, it was pointed out that different communication pat-
terns that cannot be symbolically computed at compile time would incur extra run-
time overhead. The chapter presented speedup measurements for the applications
that use nearest neighbour communication (iterative FEM solver). We have used an
optimized consistency scheme that employs message aggregation in these measure-
ments. The speedup results (together with the absolute wall clock times presented in
the Appendices) show that the consistency scheme is effective, and it does not incur
large run-time overhead.

To validate the second hypothesis, the programming examples using our model show
that the hard aspects of distribution and concurrency are automatically taken care of
and the user is exposed to a close to sequential programming model.

Chapter 9 has presented preliminary results on the usability of our programming
environment for the rapid prototyping of distributed data parallel applications versus
other distributed programming environments (MPI, CORBA and OOMPI). The inves-
tigation conducted for collecting the data is far too small to have statistical relevance.
We have used a four-student project to asses the usability and effectiveness of our sys-
tem in contrast with other programming environments and tools. The time dedicated
to this project was already significant (two thirds of the entire semester work) and
it shows that a comprehensive investigation would require ample resources (student
years). However, the results give a sense of what the goal of our approach is and what
the potential benefits are. That is, using our programming environment was the easi-
est of all with respect to learning time and programming effort. Moreover, our system
showed good effectiveness. That is, it showed comparable speedup with the man-
ual MPI implementation, despite the extra architectural layers it adds for automatic
layout. However, the test problem was simple and it did not reflect the full function-
ality of our system. Moreover, it did not involve the consistency scheme and thus, the
measurements do not reflect the full run-time behaviour.

Chapter 10 has introduced a structured notation for irregular data structures most
commonly used in data parallel applications. We have shown how recursive sets can
be used to express graphs, general geometries, indirection arrays used in sparse codes
and even regular arrays. Moreover, we have shown how the layout and consistency
schemes presented in Chapters 7 and 8 can be used to implement inter-object con-
sistency for distributed recursive sets. We have presented examples of the resulting
programming model. We have also presented results of applications on loosely cou-
pled distributed platforms. These results are promising. However, more extensive
experimentation is needed in this case as well.

The validation of our results is not complete. Yet, enough results were presented
to show that we have good foundations for our research hypotheses and that our
approach is promising. Further research and experimentation need to be conducted.

12.3 Main Results and Contributions

For a concurrency model to gain acceptance in the scientific computing community
and generate impact, it is important that the application domain is carefully analyzed
and the model meets the realistic application demands.

URN:NBN:no-3329

12.3. MAIN RESULTS AND CONTRIBUTIONS 169

This thesis has tried to show that an object-based concurrency model can be equipped
to posses several qualities needed to ensure effectiveness and programmability for
data parallel applications. The main results and contributions of this thesis can be
summarized as follows:

� A general data layout scheme that subsumes the existing schemes and applies
to a larger class of applications than traditional schemes apply to. The abstract,
mathematical formulations are given together with some practical examples of
applications in Chapter 7.

� An efficient distributed data consistency algorithm that incurs little time and
space overhead to automatically ensure consistency across data partitions in
a distributed-memory environment. Experimental results show that numeri-
cal applications using the consistency scheme based on the general data layout
strategy are scalable. Chapter 8 discusses in detail the efficiency aspects of the
algorithm.

� An object-based concurrency model for loosely synchronous data parallel ap-
plications. The model, its usability and efficiency against other concurrent pro-
gramming models were presented in Chapter 9. An inter-object concurrency
scheme based on the distributed set abstraction is presented in Chapter 10. The
Set data type generalizes the multi-dimensional array type and enables recur-
sive data representations. This model collects the threads of the techniques and
concepts developed in the previous chapters into a uniform concurrency model
for data parallel loosely synchronous applications.

� A prototype implementation of an object-oriented framework for distributed sci-
entific computations is presented in Chapter 11. The chapter presents the main
features of the applications and the goal and rationales for designing such a sys-
tem, together with the requirements. Then it discusses in detail the design and
implementation of the system together with the various design decisions. This
system was utilized for experimentation of all the techniques presented in this
thesis and for the rapid prototyping of the test bed applications used to produce
empirical data on effectiveness for various architectures.

URN:NBN:no-3329

170 CHAPTER 12. SUMMARY AND RESULTS

URN:NBN:no-3329

Chapter 13

Further Work

13.1 Techniques

13.1.1 Data Layout

The general data layout presented in Chapter 7 assumes that any large, regular or
irregular data can be mapped onto a graph that reflects the relation between data
items in a traversal. While this may be possible, it is important to indicate a common
data representation and its mapping onto a graph structure.

Thus, we must first demonstrate that such a common representation is sufficient
to express the most relevant irregular/recursive data structures for a class of applica-
tions, i.e. graphs, trees, linked lists, etc. That is, when we link the data partitioning
and mapping strategy for the distributed set type in Chapter 10, we need to prove that:

1. Sets are expressive enough to allow the flexible representation of graph, trees,
linked lists, etc.

2. The linearization technique for sets works well for most of the applications. That
is, based on the partitioning at level n, data at level n� 1 can be restructured to
ensure locality of reference at the same address space level.

In order to address the first issue, experimentation with various data representa-
tions for scientific or non-scientific applications that use large irregular data sets is
needed. This requires further experimentation with various applications types.

The second issue is related to compiler optimizations to restructure data in or-
der to improve data locality. Data and computation restructuring were traditionally
employed by optimizing compilers to reduce memory latency by minimizing cache
misses. Examples of such optimizations are loop tiling (block loop iterations such
as to fit in the cache line) and loop interchange (interchange the loop dimensions ac-
cordingly, to exploit locality – e.g. for line, column major multi-dimensional array
addressing for C and Fortran).

Linearization is an optimization which potentially improves locality for recursive
data structures [76]. It has mainly been explored for compiler-based prefetching of
data structures linked through pointers. We did not implement the linearization tech-
nique, but manually restructured data and fed it into a graph partitioning tool to ex-
periment with recursive set partitioning to preserve locality. Implementing such a

171

URN:NBN:no-3329

172 CHAPTER 13. FURTHER WORK

technique in a compiler is an important and interesting future research direction. This
technique can enable the application of many optimizations traditionally employed in
Fortran programs to dynamic programming environments.

13.1.2 Data Consistency

The data consistency algorithm described in Chapters 7 and 8 relies on the data layout
to ensure the minimum data dependences across address spaces. Thus, given the
application characteristics and the general data layout scheme, it is possible to show
by measurement that the space and time overhead of the run-time consistency scheme
is not significant. However, the algorithm is general and applicable to programs with
more complex access patterns.

A future research direction is to capture the data access patterns for different types
of scientific applications. This is hard in the presence of pointers. Let us assume
that either through restricting the programming environment not to allow pointers, or
through the advances in pointer analysis techniques for heap-allocated objects, point-
ers are not an obstacle anymore. Then, a dynamic remapping strategy should be em-
ployed to account for changing access patterns. Questions regarding the run-time
efficiency of the dynamic remapping would need to be answered when pursuing this
research direction.

13.2 Applications

When experimenting with techniques to improve efficiency of concurrent applica-
tions, it is important to classify and analyze the application domains and understand
their various requirements. We have studied a restricted application domain, but we
wanted to devise sufficiently general techniques in order to be applicable in a larger
context. However, further experimentation may lead to changing requirements for
efficient parallelization.

To prove the general applicability of the recursive set representation for various
applications in banking, scientific computing, etc., the applications in these domains
need to be analyzed and benchmarks need to be implemented using sets.

To experiment with applications with changing access patterns in the context of
scientific programs is important for the study of the dynamic data remapping strate-
gies. Such changing patterns do occur in some applications. For instance, the FEM
formulation reduces a PDE to a linear algebra problem. Some of the linear algebra op-
erations require direct methods that employ vector matrix computations and exhibit
the behaviour typical for regular applications. Thus, it would be efficient to employ
remapping to reflect this change in the application behaviour.

URN:NBN:no-3329

Part V

Appendices

173

URN:NBN:no-3329

URN:NBN:no-3329

Appendix A

Glossary

The main concepts are defined here to improve the readability of the thesis. The en-
tries marked by * were produced using a compiled list of terms by Dongarra. The
remaining entries were produced by the author either to define original concepts in-
troduced by this research, or give general definitions of common terms in computer
science and scientific computing.

* Aliases: Two or more expressions that denote the same memory address. Pointers
and procedures introduce aliases.

Affine transformation: A transformation that preserves lines and parallelism (maps
parallel lines to parallel lines).

Automatic data layout : The process of having a system to partition and map data
onto different threads of computation in concurrent processing.

Automatic parallelization : The process of having a system (usually the compiler and
the runtime system) to perform the decomposition and the concurrent execution
of a program.

* Basic block: A sequence of consecutive statements in which flow of control enters at
the beginning and leaves at the end, without halt or the possibility of branching
except at the end.

* Cache: Small interface memory with better fetch speed than main memory. Cache
memory is usually made transparent to the user. A reference to a given area of
the main memory for one piece of data or instruction is usually closely followed
by several additional references to that same area for other data or instructions.

* Cache hit: A cache access that successfully finds the requested data.

* Cache line: The unit in which data are fetched from memory to cache.

* Cache miss: A cache access that fails to find the requested data. The cache must then
be filled from main memory at the expense of time.

175

URN:NBN:no-3329

176 APPENDIX A. GLOSSARY

* Coarse-grain parallelism: Parallel execution in which the amount of computation
per task is significantly larger than the overhead and communication expended
per task.

* Compiler directives: Special keywords specified on a comment card, but recognized
by a compiler as providing additional information from the user to use in opti-
mizations.

Concurrency model : A conceptual specification of how a program is to be decom-
posed and run in parallel. Task parallelism, data parallelism, etc. are concur-
rency models. A specific concurrency model specifies how the computations are
to be carried out in parallel and how synchronization is ensured.

* Concurrent processing: Simultaneous execution of instructions by two or more pro-
cessors connected through memory or network.

Control flow analysis: A process that identifies loops in the flow graph of a program.

* Data dependence: The situation existing between two statements if one statement
can store into a location that is later accessed by the other statement.

Data flow analysis: A process of collecting information about the way variables are
used in a program.

* Dependence analysis: An analysis (by compiler) that reveals which portions of a
program depend on the prior completion of the other portions of the program.

* Distributed memory: A form of storage in which each processor can access only a
part of the total memory in the system and must explicitly communicate with
other processors in the system to share data.

Distributed processing: Processing on a network of computers that do not share main
memory.

Effectiveness : An abstract notation that denotes the set of metrics to establish the
success of a technique. Speedup is a metric that can be used to indicate the
effectiveness of a parallel algorithm/program.

* Explicitly parallel: Language semantics or software constructs (e.g. library calls,
components, etc.) that describe which computations are independent and can
be performed in parallel.

* Fine-grain parallelism: A type of parallelism where the amount of work per task is
relatively small compared with the overhead necessary for communication and
synchronization.

General data layout : A data layout for which the partitioning is specified by a gen-
eral function, rather than a particular symbolic expression. The general function
can have symbolic expressions as values or can be specified at each point in the
input domain.

URN:NBN:no-3329

177

* Granularity: The size of the tasks to be executed in parallel. Fine granularity is illus-
trated by execution of statements or small loop iterations as separate processes;
coarse granularity involves subroutines or sets of subroutines as separate pro-
cesses. The greater the number of processes, the “finer” the granularity and the
greater the overhead required to keep track of them.

* Implicitly parallel: Programming environment (language, library) that does not al-
low the user to explicitly describe which computations are independent and can
be performed in parallel.

Indirection arrays : Arrays whose indices are array expressions themselves, rather
than expressions of loop indices.

Inter-object concurrency : An object-based concurrency model in which concurrent
processing of independent objects is synchronized such that the individual ob-
jects’ states make up a global consistent state.

* Interprocessor communication: The passing of data and information among the pro-
cessors of a multicomputer during the execution of a parallel program.

Intra-object concurrency : An object-based concurrency model in which concurrent
accesses to a given object are synchronized such that the object is in a consistent
state, independent of other objects.

Irregular applications : Applications that manipulate irregular data structures, such
as graphs, trees, indirection arrays, etc..

* Load balancing: A strategy in which the longer tasks and the shorter tasks are
carefully allocated to different processors to minimize synchronization costs or
startup overhead.

Locality: The grouping together of objects to reduce the cost of memory accesses (e.g.
remote accesses require communication).

Middleware : An intermediate level that sits between network operating systems and
applications to support communication in distributed applications. Its main role
is to alleviate the user from the low-level communication layer programming.

Multicomputer: A computing architecture consisting of several autonomous proces-
sors that do not share memory, but rather communicate by sending messages
over a communication network.

Multiprocessor: A computing architecture consisting of several autonomous proces-
sors sharing a common primary memory.

* MIMD: A multiple-instruction stream/multiple-data stream architecture. Multiple
instruction streams in MIMD machines are executed simultaneously. MIMD ter-
minology is used more generally to refer to multiprocessor machines.

URN:NBN:no-3329

178 APPENDIX A. GLOSSARY

MPMD: A multiple-program/multiple-data computation structure. Multiple pro-
grams (processes) are executed simultaneously on multiple sets of data. MPMD
terminology is used to refer to a high-level computation model, independent of
the machine architecture.

Nearest neighbour communication : A simple communication pattern that involves
the concurrent processes accessing the data directly related in a given represen-
tation (neighbouring accesses).

Object-based : An object model that is more general than an object-oriented model.
That is, it supports encapsulation through objects, but it does not support all the
features in an object-oriented model (i.e. inheritance).

Owner computes rule : A rule for parallel processing specifying that operations writ-
ing the same location must be executed by the same processor.

* Page: The smallest managed unit of a virtual memory system. The system maintains
separate virtual-to-physical translation information for each page.

* Parallel computer: A computer that can perform multiple operations simultane-
ously, usually because multiple processors (that is, control units or ALUs) or
memory units are available. Parallel computers containing a small number of
processors (less that 50) are called multiprocessors; those with more than 1000
are often referred to as massively parallel computers.

* Parallel processing: Processing with more than one CPU on a single program simul-
taneously.

Parallelizing compilers : Special compilers that discover parallelism in a sequential
program based on program analysis and generate the instructions for its parallel
execution.

* Partitioning: Restructuring a program or a algorithm into independent computa-
tional segments. The goal is to have multiple CPUs work simultaneously on the
independent computational segments.

Process: A logical processor that executes code sequentially and has its own state and
data.

Programmability : An abstract notation that denotes the set of metrics (e.g. usability)
to establish how easy to use a programming environment is. The number of
lines of code can give a rough indication of programmability.

Regular applications : Applications that manipulate regular data structures, such as
multi-dimensional arrays whose indices are not expressed using array expres-
sions.

* Scalar processing: The execution of a program by using instructions that can operate
only on a single pair of operands at a time (as opposed to parallel processing).

URN:NBN:no-3329

179

Scientific computing : A type of computing aimed at solving scientific problems
which cannot otherwise be solved by humans, using a computer.

Serialization : A sequential scheduling of concurrent operations due to synchroniza-
tion. Serialization limits parallelism.

SIMD: Single-instruction stream/multiple-data stream architecture.

* Speedup: The factor of performance improvement over pure scalar performance.
The term is usually applied to performance of one CPU versus multiple CPUs or
vector versus scalar processing. The reported numbers are misleading because
of an inconsistency in reporting the speedup over an original or revised process
running in scalar mode.

* Synchronization: An operation in which two or more processors exchange informa-
tion to coordinate their activity.

* Thread: A lightweight or small-granularity process.

Update consistency scheme : A consistency scheme in which updates to data repli-
cated across multiple address spaces are propagated to all the replicas.

Usability : A subjective metric indicating how easy to use a programming environ-
ment is. Depending on a particular model, specific metrics can be used. For
instance, when programming with classes, the number of classes is a typical
metric to indicate how easy it is to write an application using a specific environ-
ment (programming language, library, etc.).

Vector computers: A computer that uses many processors that simultaneously apply
the same arithmetic operations to different data.

* Vector processing: A mode of a computer processing that acts on operands that are
vectors or arrays. Supercomputers achieve speed through pipelined arithmetic
units. Pipelining, when coupled with instructions designed to process all the
elements of a vector rather than one data pair at a time, is known as vector pro-
cessing.

* Virtual memory: A memory scheme that provides a programmer with a larger mem-
ory than that physically available on a computer. As data items are referenced
by a program, the system assigns them to actual physical memory locations. In-
frequently referenced items are transparently migrated to and from secondary
storage – often disks. The collection of physical memory locations assigned to a
program is its “working set”.

URN:NBN:no-3329

180 APPENDIX A. GLOSSARY

URN:NBN:no-3329

Appendix B

Experimental Data

The experimental results presented in this thesis have mainly concerned speedup mea-
surements for the parallel execution. Here we include the absolute floating-point per-
formance for the speedup results presented in this thesis. We give results for the two
test problems described in an earlier chapter.

3 4 5 6

number_of_processors

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400

R
un

ni
ng

 ti
m

e
--

 B
eo

w
ul

f

tiny
small

Figure B.1: Wall clock times for the Poisson solver on the Beowulf cluster.

181

URN:NBN:no-3329

182 APPENDIX B. EXPERIMENTAL DATA

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

number_of_processors

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000
1050
1100
1150

R
un

ni
ng

 ti
m

e
--

 C
lu

st
is

tiny
small

Figure B.2: Wall clock times for the Poisson solver on the ClustIS cluster.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

number_of_processors

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

R
un

ni
ng

 ti
m

e
--

 S
G

I

tiny
small

Figure B.3: Wall clock times for the Poisson solver on SGI Origin 3800 – up to 32 processors.

URN:NBN:no-3329

183

3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364

number_of_processors

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500
1550
1600
1650
1700
1750
1800
1850
1900
1950
2000
2050
2100
2150
2200
2250
2300
2350
2400
2450
2500

R
un

ni
ng

 ti
m

e
--

 S
G

I6
4

tiny
small

Figure B.4: Wall clock times for the Poisson solver on SGI Origin 3800 – up to 64 processors.

URN:NBN:no-3329

Index

abstract data type, 15
active objects, 14, 18, 109, 111, 147
actor, 12
affine expression, 58, 95, 102
aliasing, 58
automatic data layout, 30, 75
automatic parallelization, 58, 159

basic block, 100
bijective function, 79, 93
bijective map, 25, 28
block distribution, 85, 101
block partitioning, 26
bulk-synchronous parallel (BSP), 38, 42,

55, 126
busy-waiting, 36

cache, 31
cache line, 31
cache-based, 31, 55
CCR, 37
client processes, 40
coarse-grain concurrency, 56
coarse-grain data parallelism, 53
coarse-grain parallelism, 38, 64, 110
coarse-grain, loosely coupled parallelism,

42
collective communication, 49
communication, 47
communication aggregation, 59, 96, 104
communication optimization, 158
communication patterns, 82, 97, 113, 146,

153
compiler directives, 39
computation decomposition, 26
concurrency model, 64
concurrent message passing applications,

43
concurrent processing, 19

condition synchronization, 36
consistency, 16
consistency protocol, 81
consumer-producer synchronization, 39
control flow restructuring, 32
CORBA, 20
corse-grain parallelism, 127
CSE, 61
CSP, 43
cyclic distribution, 101
cyclic partitioning, 28

data consistency, 80, 111
data distribution, 25, 111
data flow analysis, 158
data layout, 93
data locality, 31, 55, 93, 101, 129, 158
data parallel applications, 59, 76, 114,

126
data parallelism, 16, 23, 38, 64, 159
data partitioning, 26
data structure restructuring, 32
data-level coarse grain parallelism, 13
deadlock, 50
decomposition, 47
dependence analysis, 29, 58
distributed coherence protocol, 44
distributed shared memory (DSM), 43,

135
distributed shared memory object model,

53
distributed shared object model, 15
distributed-memory, 35
distributed-memory programming, 35
domain decomposition, 63

effectiveness, 65
efficiency, 95, 145, 147, 151
entry consistency, 45

184

URN:NBN:no-3329

INDEX 185

execution model, 30
explicit parallelism, 14

FD, 85, 95
FEM, 61, 87, 94, 150
FEM discretization, 63
filter processes, 40
fine-grain data flow synchronization, 39
fine-grain parallelism, 37, 53, 64, 111,

159
fine-grain, implicit concurrency, 13
forall statement, 57
fork/join parallelism, 17
full replication, 52
functional programming languages, 39

general data layout, 93
general data partitioning, 16
general graph partitioning, 33
general partitioning, 28, 101
graph partitioning, 29
grid, 63, 77, 115, 152

heuristic, 58, 102, 131
HPF, 26

IDL, 20
implicit concurrency, 12
implicit parallelism, 75, 83, 95
indirect indexing, 58
indirection arrays, 23, 58, 126
inter-iteration concurrency, 54
inter-object concurrency, 125
inter-object consistency, 52, 53, 134
interprocess communication, 40, 41
intra-object concurrency, 14, 55, 125
intra-object consistency, 53
intra-object synchronization, 52
invalidation protocols, 16
irregular applications, 23, 63, 95
irregular data, 77
irregular data representation, 16

linear distribution, 26
load balance, 33, 58, 79, 111
load-balanced distribution, 58
load-balanced partitioning, 152

locality, 58
locality optimizations, 54
loose synchronization, 38
loosely synchronous applications, 56

many-to-many communication, 41
mapping, 47, 79, 130, 132
memory coherence, 44
middleware, 18
MIMD, 39, 43, 48
monitor, 37
MPI, 43, 48, 149
multi-threading, 17
multicomputer, 48, 64, 77
multiprocessor, 26, 35, 63
mutual exclusion, 36

nearest neighbor communication, 63
non-determinism, 50, 52
non-trivial parallelism, 38, 115
NUMA, 68
numerical analysis, 61

object-based, 15, 51
object-oriented concurrent programming,

11
object-oriented middleware, 19
one-to-many communication, 41
one-to-one communication, 40
optimal data layout, 58
owned data, 112
owner computes, 17, 58, 83, 128

page, 44
parallelism, 131
parallelizing compilers, 32, 43, 135, 159
partitioned objects, 17
partitioning, 26, 78, 95, 113
partitioning objective, 31, 97
passive objects, 14, 18, 109, 111, 147
passive shared objects, 14
PDEs, 61, 94, 105, 149, 151
peer parallel applications, 109
peer processes, 40
performance, 66
physical memory, 43

URN:NBN:no-3329

186 INDEX

point-to-point communication, 49, 81,
112

point-to-point message passing, 13
Poisson, 68, 87, 105, 120
process, 17, 40
processor consistency, 45
programmability, 65
pure functional languages, 12, 13, 51

regular applications, 23, 63, 115, 158
regular data, 16, 77
regular partitioning, 16
relaxed consistency, 45, 127
relaxed owner computes, 84
release consistency, 45
replicated data, 112
replication, 15
restructuring techniques, 33
RMI, 19
RPC, 19, 43

scalar data, 107
scalar variable, 39, 54
scatter distribution, 28
scientific computing, 63
scope consistency, 46
semaphore, 36
serializability, 15
serialization, 13, 53, 55
serialized, 13
server processes, 40
shared objects, 52
shared virtual memory, 15, 43, 95, 135
shared-memory, 35
shared-memory concurrent programming,

35
shared-memory multiprocessor, 36
shared-memory SPMD parallelism, 38
SIMD, 38, 42
space efficiency, 101
speedup, 66, 89, 105, 119, 137, 159
SPMD, 38, 42, 57, 99, 112, 126, 147, 154
static array languages, 57
static execution models, 59
strict consistency, 45
superstep, 55

synchronization, 47, 49

task parallelism, 13, 15, 39, 53
thread, 17, 36
tiling, 32
trivial parallelism, 38

update consistency scheme, 96
update protocols, 16
update scheme, 112
usability, 47, 67, 118, 127, 147, 151, 159

vector computers, 64
vector operations, 38
vector processor, 37
virtual memory, 43

weak consistency, 45

URN:NBN:no-3329

Bibliography

[1] Vikram Adve, Alan Carle, Elana Granston, Seema Hiranandani, Ken Kennedy,
Charles Koelbel, Ulrich Kremer, John Mellor-Crummey, Scott Warren, and
Chau-Wen Tseng. Requirements for Data-Parallel Programming Environments.
IEEE Parallel and Distributed Technology: Systems and Applications, 2(3):48–58, Fall
1994.

[2] Gul Agha. An overview of actor languages. In Proceedings of the 1986 SIGPLAN
workshop on Object-oriented programming, pages 58–67. ACM Press, 1986.

[3] Gul Agha. Concurrent object-oriented programming. Communications of the
ACM, 33(9):125–141, September 1990.

[4] Gagan Agrawal. Interprocedural communication and optimizations for mes-
sage passing architectures. In Proceedings of Frontiers 99, pages 123–130, Febru-
ary 1999.

[5] Saman P. Amarasinghe, Jennifer M. Anderson, Monica S. Lam, and Amy W. Lim.
An overview of a compiler for scalable parallel machines. In Proceedings of the
6th Workshop on Languages and Compilers for Parallel Computing, pages 253–272,
Portland, OR, August 1993. ACM press.

[6] Saman P. Amarasinghe and Monica S. Lam. Communication optimization and
code generation for distributed memory machines. In Proceedings of ACM SIG-
PLAN’93, Conference on Programming Languages Design and Implementation, June
1993.

[7] Jerome Galtier amd Stephane Lanteri. On overlapping partitions. In Proceedings
of the 2000 International Conference on Parallel Processing, pages 461–468. IEEE,
2000.

[8] Christiana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui
Lu, Ramakrishnan Rajamony, Weimin Yu, and Willy Zwaenepoel. Treadmarks:
Shared Memory Computing on Networks of Workstations. IEEE Computer,
29(2):18–28, 1996.

[9] Corinne Ancourt and Francois Irigoin. Automatic Code Distribution. In Pro-
ceedings of the Third Workshop on Compilers for Parallel Computers, Vienna, Austria,
July 1992.

187

URN:NBN:no-3329

188 BIBLIOGRAPHY

[10] Gregory R. Andrews. Paradigms for process interaction in distributed pro-
grams. ACM Computing Surveys, 23(1):49–90, March 1991.

[11] Gregory R. Andrews and Fred B. Schneider. Concepts and notations for concur-
rent programming. ACM Computing Surveys, 15(1):3–43, March 1983.

[12] E. Angerson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz,
S. Hammarling, J. Demmel, and D. Bischof, C. ans Sorensen. LAPACK: A
portable linear algebra library for high-performance computers. In Proceedings
of Supercomputing ’90, pages 2–11, 1990.

[13] Rob Armstrong, Dennis Gannon, Al Geist, Katarzyna Keahey, Scott Kohn,
Lois McInnes, Steve Parker, and Brent Smolinski. Toward a com-
mon component architecture for high-performance scientific computing.
http://www.mcs.anl.gov/DOE2000. Work partially supported by the MICS Di-
vision of the U.S. Department of Energy through the DOE2000 Initiative.

[14] Susan Atlas, Subhankar Banerjee, Julian Cummings, Paul J. Hinker, M. Srikant,
John V. W. Reynders, and Marydell Tholburn. Pooma: A high performance
distributed simulation environment for scientific applications. In Proceedings of
SuperComputing 95, 1995.

[15] Henri E. Bal and M. Frans Kaashoek. Object distribution in Orca using compile-
time and run-time techniques. In Andreas Paepcke, editor, Proceedings of the
Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’93), volume 28 of SIGPLAN Notices, pages 162–177, New York, NY,
1993. ACM Press.

[16] Henri E. Bal, M. Frans Kaashoek, Andrew S. Tanenbaum, and Jack Jansen. Repli-
cation Techniques for Speeding up Parallel Applications on Distributed Sys-
tems. Concurrency Practice and Experience, 4(5):337–355, August 1992.

[17] Heri E. Bal, M. Frans Kaashoek, and Andrew S. Tanenbaum. Orca: a language
for parallel programming of distributed systems. IEEE Transactions on Software
Engineering, 18(3):190–205, 1992.

[18] Vasanth Balasundaram, Geoffrey Fox, Ken Kennedy, and Ulrich Kremer. A static
performance estimator to guide data partitioning decisions. In Proceedings of the
third ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming,
pages 213–223, Williamsburg, Virginia, United States, 1991. ACM Press.

[19] Federico Bassetti, Kei Davis, and Daniel Quinlan. Optimizations for parallel
object-oriented frameworks. In Michael E. Henderson, Christopher R. Ander-
son, and Stephen L. Lyons, editors, Object-Oriented Methods for Interoperable Sci-
entific and Engineering Computing, pages 303–312. In Proceedings of the 1998
SIAM Workshop.

[20] M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang, L. Pointer, R. Roloff,
A. Sameh, E. Clementi, S. Chin, D. Scheider, G. Fox, P. Messina, D. Walker,

URN:NBN:no-3329

BIBLIOGRAPHY 189

C. Hsiung, J. Schwarzmeier, K. Lue, S. Orszag, F. Seidl, O. Johnson, R. Goodrum,
and J. Martin. The PERFECT club benchmarks: Effective performance evalua-
tion of supercomputers. The International Journal of Supercomputer Applications,
3(3):5–40, 1989.

[21] Brian N. Bershad and Matthew J. Zekauskas. Midway: Shared memory parallel
programming with entry consistency for distributed memory multiprocessors.
Technical Report CMU-CS-91-170, School of Computer Science, Carnegie Mel-
lon University, Pittsburgh, PA (USA), 1991.

[22] Aart J.C. Bik. Compiler Support for Sparse Matrix Computations. PhD thesis, Leiden
University, Netherland, May 1996.

[23] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hardwick, Jay Sipelstein,
and Marco Zagha. Implementation of a portable nested data-parallel language.
Journal of Parallel and Distributed Computing, 21(1):4–14, April 1994.

[24] Francois Bodin, Peter Beckman, Dennis Gannon, Srinivas Narayana, and
Shelby X. Yang. Distributed pC++: Basic Ideas for an object parallel language.
Scientific Programming, 2(3), 1993.

[25] George Horatiu Botorog and Herbert Kuchen. Algorithmic skeletons for adap-
tive multigrid methods. In Proceedings Irregular’95, volume 980, pages 27–41.
Springer LNCS, 1995.

[26] Jean-Pierre Briot, Rachid Guerraoui, and Klaus-Peter Lohr. Concurrency
and distribution in object-oriented programming. ACM Computing Surveys,
30(3):291–329, 1998.

[27] David L. Brown, William D. Henshaw, and Daniel J. Quinlan. Overture: An
object-oriented framework for solving partial differential equations on overlap-
ing grids. In Michael E. Henderson, Christopher R. Anderson, and Stephen L.
Lyon, editors, Object-Oriented Methods for Interoperable Scientific and Engineering
Computing, pages 245–255. Proceedings of the 1998 SIAM Workshop, 1998.

[28] Dhruva R. Chakrabarti and Prithviraj Banerjee. Global optimization techniques
for automatic parallelization of hybrid applications. In Proceedings of the 15th
International Conference on Supercomputing, pages 166–180. ACM Press, 2001.

[29] Craig Chambers. The Design and Implementation of the Self Compiler, an Optimizing
Compiler for Object-Oriented Programming Languages. PhD thesis, Department of
Computer Science, Stanford University, March 1992.

[30] Mani Chandy, Ian Foster, Ken Kennedy, Charles Koelbel, and Chau-Wen Iseng.
Integrated Support for Task and Data Parallelism. The International Journal of
Supercomputer Applications, 8(2):80–98, Summer 1994.

[31] Chialin Chang, Alan Sussman, and Joel Saltz. Object-oriented runtime support
for complex distributed data structures. Technical Report UMIACS-TR-95-35,
University of Maryland, 1995.

URN:NBN:no-3329

190 BIBLIOGRAPHY

[32] Siddhartha Chatterjee, Vibhor V. Jain, Alvin R. Lebeck, Shyam Mundhra, and
Mithuna Thottethodi. Nonlinear array layouts for hierarchical memory systems.
In Proceedings of the 13th international conference on Supercomputing, pages 444–
453. ACM Press, 1999.

[33] Jian Chen and Valerie E. Taylor. Mesh partitioning for efficient use of distributed
systems. IEEE Transactions on Parallel and Distributed Systems, 13(1):67–79, Jan-
uary 2002.

[34] A. Chien, J. Dolby, B. Ganguly, V. Karamecheti, and X. Zhang. Supporting High
Level Programming with High Performance: The Illinois Concert System. In
Proceedings of the Second International Workshop on High-Level Programming Models
and Supportive Environments (HIPS ’97), April 1997.

[35] A. Chien, U. Reddy, J. Plevyak, and J. Dolby. ICC++ — A C++ dialect for high
performance parallel computing. Springer LNCS, 1049:76–94, 1996.

[36] Nikos Chrisochoides, Induprakas Kodukula, and Keshav Pingali. Compiler and
run-time support for semi-structured applications. In Proceedings of the 11th in-
ternational conference on Supercomputing, pages 229–236. ACM Press, 1997.

[37] Leonard Dagum and Remesh Menon. OpenMP: An industry standard API for
shared memory programming. IEEE Computational Science & Engineering, pages
46–55, January-March 1998.

[38] R. Das, M. Uysal, J. Saltz, and Y. Hwang. Communication optimizations for
irregular scientific computations on distributed memory architectures. Journal
of Parallel and Distributed Computing, 22(3):462–479, September 1994.

[39] Roxana Diaconescu. An object-oriented framework for distributed numerical
computations. In OOPSLA 2001 Companion, Doctoral Symposium, page 9, Tampa
Bay, Florida, October 2001. ACM press.

[40] Roxana Diaconescu. Distributed component architecture for scientific applica-
tions. In James Noble and Eds. John Potter, editors, Proceedings of the 40th Interna-
tional Conference on Technology of Object-Oriented Languages and Systems (TOOLS
Pacific 2002), Sydney, Australia., volume Vol. 10. of Conferences in Research and
Practice in Information Technology. Australian Computer Society, Inc., 2002.

[41] Roxana Diaconescu. A general data layout for distributed consistency in data
parallel applications. In Proceedings of the International Conference on High Perfor-
mance Computing (HiPC 2002), Bangalore, India, 18-21 December 2002. Springer
LNCS. To appear.

[42] Roxana Diaconescu and Reidar Conradi. A data parallel programming model
based on distributed objects. In Proceedings of the IEEE International Conference on
Cluster Computing (Cluster 2002), Chicago, Illinois, 23-26 September 2002. IEEE.
To appear.

URN:NBN:no-3329

BIBLIOGRAPHY 191

[43] Intelligent Systems Division of Intelligent Systems. ClustIS - Intelligent Systems
Cluster. Computer Science Department, Norwegian University of Science and
Technology, http://clustis.idi.ntnu.no/, 2002.

[44] Jack Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson. An
extended set of FORTRAN Basic Linear Algebra Subprograms. ACM Transac-
tions on Mathematical Software, 14:1–17, March 1988.

[45] G. Edjlali, G. Agrawal, A. Sussman, J. Humphries, and J. Saltz. Compiler and
runtime support for programming in adaptive parallel environments. Scientific
Programming, pages 215–227, January 1997.

[46] Martin Fowler, Kendall Scott, and Grady Booch. UML Distiled: A Brief Guide to
the Standard Object Modeling Language. The Addison-Wesley Object Technology
Series. Addison-Wesley, 2nd edition edition, August 20 1999.

[47] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing.
Addison-Wesley, 18th printing edition, September 1999.

[48] Dennis Gannon, Peter Beckman, Elizabeth Johnson, Todd Green, and Mike
Levine. HPC++ and the HPC++Lib Toolkit. In Compiler Optimizations for Scalable
Parallel Systems Languages, pages 73–108, 2001.

[49] Aniruddha Gokhale and Douglas C. Schmidt. Measuring the performance of
communication middleware on high-speed networks. In Conference proceedings
on Applications, technologies, architectures, and protocols for computer communica-
tions, pages 306–317. ACM Press, 1996.

[50] Andrew S. Grimshaw. The mentat computation model data-driven support for
object-oriented parallel processing. Technical Report CS-93-30, University of
Virginia, May 1993.

[51] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Par-
allel Programming with the Message Passing Interface. The MIT Press, Cambridge,
Massachusetts, London, England, second edition, 1999.

[52] Manish Gupta and Prithviraj Banerjee. Paradigm: a compiler for automatic data
distribution on multicomputers. In Proceedings of the 7th international conference
on Supercomputing, pages 87–96. ACM Press, 1993.

[53] Manish Gupta, Edith Schonberg, and Harini Srinivasan. A unified framework
for optimizing communication in data-parallel programs. IEEE Transactions on
Parallel and Distributed Systems, 7(7):689–704, 1996.

[54] Saniya Ben Hassen, Irina Athanasiu, and Henri E. Bal. A flexible operation
execution model for shared distributed objects. In Proceedings of the OOPSLA’96
Conference on Object-oriented Programming Systems, Languages, and Applications,
pages 30–50. ACM, October 1996.

URN:NBN:no-3329

192 BIBLIOGRAPHY

[55] Saniya Ben Hassen, Henri E. Bal, and Ceriel J. H. Jacobs. A task- and data-
parallel programming language based on shared objects. ACM Transactions on
Programming Languages and Systems (TOPLAS), 20(6):1131–1170, 1998.

[56] Michael Hicks, Suresh Jagannathan, Richard Kelsey, Jonathan T. Moore, and
Cristian Ungureanu. Transparent communication for distributed objects in java.
In Proceedings of the ACM 1999 conference on Java Grande, pages 160–170. ACM
Press, 1999.

[57] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling Fortran D
for MIMD distributed-memory machines. Communications of the ACM, 35(8):66–
80, 1992.

[58] David E. Hudak and Santosh G. Abraham. Compiler techniques for data par-
titioning of sequentially iterated parallel loops. In Proceedings of the 4th interna-
tional conference on Supercomputing, pages 187–200. ACM Press, 1990.

[59] IBM Research, http://www.research.ibm.com/nao. Numerical Analysis Objects -
NAO.

[60] L. Iftode, J. P. Singh, and K. Li. Scope consistency: A bridge between release con-
sistency and entry consistency. In Proc. of the 8th ACM Annual Symp. on Parallel
Algorithms and Architectures (SPAA’96), pages 277–287, 1996.

[61] Liviu Iftode and Jaswinder Pal Singh. Shared virtual memory: Progress and
challenges. Proc. of the IEEE, Special Issue on Distributed Shared Memory, 87(3):498–
507, 1999.

[62] Ralph E. Johnson. Frameworks = (Components + Patterns). Communications of
the ACM, 40(10):39–42, October 1997.

[63] Matjaz B. Juric, Ales Zivkovic, and Ivan Rozman. Are distributed objects fast
enough? Java Report, SIGS, (5):29–38, May 1998.

[64] J.-M. Jzquel. An object-oriented framework for data parallelism. ACM Comput-
ing Surveys, 32(31):31–35, March 2000.

[65] Laxmikant V. Kale and Sanjeev Krishnan. CHARM++: A Portable Concurrent
Object Oriented System Based On C++. In Proceedings of the OOPSLA ’93 Con-
ference on Object-oriented Programming Systems, Languages and Applications, pages
91–108, 1993.

[66] M. Kandemir, P. Banerjee, A. Choudhary, J. Ramanujam, and N. Shenoy. A
global communication optimization technique based on data-flow analysis
and linear algebra. ACM Transactions on Programming Languages and Systems,
21(6):1251–1297, 1999.

[67] K. Kennedy and N. Nedeljković. Combining dependence and data-flow anal-
yses to optimize communication. In Proceedings of the 9th International Parallel
Processing Symposium, Santa Barbara, CA, 1995.

URN:NBN:no-3329

BIBLIOGRAPHY 193

[68] Ken Kennedy and Ulrich Kremer. Automatic data layout for High Performance
Fortran. In Proceedings of the 1995 conference on Supercomputing (CD-ROM),
page 76. ACM Press, 1995.

[69] Charles Koelbel and Piyush Mehrotra. Compiling global name-space parallel
loops for distributed execution. IEEE Transactions on Parallel and Distributed Sys-
tems, 2(4):440–451, October 1991.

[70] Hans Petter Langtangen. Computational Partial Differential Equations: Numerical
Metheds and Diffpack programming, volume 2 of Lecture Notes in Computational
Science and Engineering. Springer-Verlag Berlin Heidelberg, 1999.

[71] Doug Lea. Concurrent Programming in Java: Design Principles and Patterns, chapter
5 (Concurrency Control). Java Series. Addison-Wesley, second edition, January
1997.

[72] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber,
Anoop Gupta, John Hennessy, Mark Horowitz, and Monica S. Lam. The stan-
ford dash multiprocessor. Computer, pages 63,79, March 1992.

[73] Scott M. Lewandowski. Frameworks for component-based client/server com-
puting. ACM Computing Surveys (CSUR), 30(1):3–27, 1998.

[74] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.
In Proceedings of the 5th ACM Symposium on Principles of Distributed Computing
(PODC), pages 229–239, New York, NY, 1986. ACM Press.

[75] Honghui Lu, Sandhya Dwarkadas, Alan L. Cox, and Willy Zwaenepoel. Mes-
sage Passing Versus Distributed Shared Memory on Networks of Workstations.
In Proceedings of Supercomputing, December 1995.

[76] Chi-Keung Luk. Optimizing the Cache Performance of Non-Numeric Applications.
PhD thesis, Graduate Department of computer Science, University of Toronto,
2000.

[77] Chi-Keung Luk and Todd C. Mowry. Compiler-based prefetching for recursive
data structures. In Architectural Support for Programming Languages and Operating
Systems, pages 222–233, 1996.

[78] Steve MacDonald, Duane Szafron, Jonathan Schaffer, and Steven Bromling.
From patterns to frameworks to parallel programs. Submitted to the Journal
of Parallel and Distributed Computing, 2000.

[79] Nikolay Mateev, Keshav Pingali, Paul Stodghill, and Vladimir Kotlyar. Next-
generation generic programming and its application to sparse matrix computa-
tions. In International Conference on Supercomputing, pages 88–99, 2000.

[80] Mathematics and Computer Science Division Argonne National Labora-
tory. Mpich-a portable implementation of mpi. Available at http://www-
unix.mcs.anl.gov/mpi/mpich/. Argonne, Illinois, USA.

URN:NBN:no-3329

194 BIBLIOGRAPHY

[81] Satoshi Matsuoka and Akinori Yonezawa. Analysis of inheritance anomaly in
object-oriented concurrent programming languages. In G. Agha, P. Wegner, and
A. Yonezawa, editors, Research Directions in Concurrent Object-Oriented Program-
ming, pages 107–150. MIT Press, 1993.

[82] Bertrand Meyer. Systematic concurrent object-oriented programming. Commu-
nication of the ACM, 36(9):56–80, September 1993.

[83] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nico, and K. Crowley. Principles
of runtime support for parallel processors. In Conference proceedings on Interna-
tional conference on supercomputing, pages 140–152. ACM, November 1988.

[84] Oscar Nierstrasz. A survey of object-oriented concepts. In W. Kim and F. Lo-
chovsk, editors, Object-Oriented Concepts, Databases and Applications, pages 3–21.
ACM Press and Addison Wesley, 1989.

[85] Dianne P. O’Leary. Teamwork: Computational science and applied mathemat-
ics. In IEEE Computational Science and Engineering, April-June 1997. Based on a
presentation at the IEEE Computer Society Workshop on Computational Science
and Engineering, Oct. 1996, Purdue University.

[86] David Parsons, Awais Rashid, Andreas Speck, and Alexandru Telea. A ”frame-
wok” for object oriented framework design. In Technology of Object-Oriented Lan-
guages and Systems, Proceedings of, pages 141–151, 1999.

[87] Keshav Pingali. Parallel and Vector Programming Languages. Wiley Encyclopedia
of Electrical and Electronics Engineering. John Wiley & Sons, 1999.

[88] John R. Rice. Computational science as one driving force for all aspects of com-
puting research. ACM Computing Surveys, 28, 1996.

[89] Daniel Ridge, Donald Becker, Phillip Merkey, and Thomas Sterling. Beowulf:
Harnessing the power of parallelism in a pile-of-pcs. In Proceedings, IEEE
Aerospace, 1997.

[90] Peter W. Rijks, Jeffrey M. Squyres, and Andrew Lumsdaine. Performance bench-
marking of object oriented mpi (oompi) version 1.0.2g. Technical report, Univer-
sity of Notre Dame Department of Computer Science and Engineering, 1999.

[91] A. Sameh, G. Cybenko, M. Kalos, K. Neves, J. Rice, D. Sorensen, and F. Sulli-
van. Computational science and engineering. ACM Computing Surveys (CSUR),
28(4):810–817, 1996.

[92] Naohito Sato, Satoshi Matsuoka, Jean-Marc Jezequel, and Akinori Yonezawa.
A methodology for specifying data distribution using only standard object-
oriented features. In Proc. of International Conference on Supercomputing, pages
116–123. ACM, 1997.

[93] Toshinori Sato and Itsujiro Arita. Partial resolution in data value predictors. In
Proceedings of the 2000 International Conference on Parallel Processing, pages 69–76.
IEEE, 2000.

URN:NBN:no-3329

BIBLIOGRAPHY 195

[94] Daniel J. Scales and Monica S. Lam. The design and evaluation of a shared object
system for distributed memory machines. In OSDI94, pages 101–114, Monterey,
CA, November 1994. USENIX Association.

[95] Kirk Schloegel, George Karypis, and Vipin Kumar. Graph partitioning for high
performance scientific simulations. In J. Dongarra et al., editors, CRPC Parallel
Computing Handbook. Morgan Kaufmann, 2000 (in press), 2000.

[96] Shamik D. Sharma, Ravi Ponnusamy, Bongki Moon, Yuan shin Hwang, Raja
Das, and Joel Saltz. Run-time and compile-time support for adaptive irregular
problems. In Proceedings of Supercomputing 94, pages 97–106. IEEE, November
1994.

[97] David B. Skillicorn and Domenico Talia. Models and languages for parallel com-
putation. ACM Computing Surveys, 30(2):123,169, June 1998.

[98] Barry F. Smith. The transition of numerical software: From nuts-and-bolts to
abstractions. This work was supported by the Mathematical, Information and
Computer Sciences Division subprogram of the Office of Computational and
Technology Research, U.S. Department of Energy, under contract W-31-109-Eng-
38, May 1998.

[99] Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack
Dongarra. MPI: The Complete Reference. The MIT Press, Cambridge, Mas-
sachusetts, London, England, 1996.

[100] Alan Snyder. Encapsulation and inheritance in object-oriented programming
languages. In OOPSLA’86, pages 38–45. ACM Press, September 1986.

[101] Yukihiko Sohda, Hirotaka Ogawa, and Satoshi Matsuoka. OMPC++ - A portable
high-performance implementation of DSM using openc++ reflection. In Reflec-
tion, pages 215–234, 1999.

[102] Jeffrey M. Squyres, Brian C. McCandless, and Andrew Lumsdaine. Object ori-
ented mpi: A class library for the message passing interface. In Proceedings of the
POOMA conference, 1996.

[103] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Reading,
Massachusetts, third edition, 2000.

[104] A. Sussman. Model-driven mapping onto distributed memory parallel comput-
ers. In Proceedings of the 1992 conference on Supercomputing ’92, pages 818–829.
IEEE Computer Society Press, 1992.

[105] M. Ujaldon, S. Sharma, J. Saltz, and E. Zapata. Run-time techniques for paral-
lelizing sparse matrix problems. Workshop on Parallel Algorithms for Irregu-
larly Structured Problems (IRREGULAR’95), Lyon, France, September 1995.

[106] Leslie G. Valiant. A bridging model for parallel computation. Communications of
the ACM, 33(8):103–111, 1990.

URN:NBN:no-3329

196 BIBLIOGRAPHY

[107] Eric F. Van DE Velde. Concurrent Scientific Computing, volume 16 of Texts in Ap-
plied Mathematics. Springer-Verlag New York, Berlin, Heidelberg, London, Paris,
Tokyo, Hong Kong, Barcelona, Budapest, 1994.

[108] T. L. Veldhuizen and M. E. Jernigan. Will C++ be faster than Fortran? In Pro-
ceedings of the 1st International Scientific Computing in Object-Oriented Parallel En-
vironments (ISCOPE’97), Lecture Notes in Computer Science. Springer-Verlag,
1997.

[109] Todd L. Veldhuizen. Expression templates. C++ Report, 7(5):26–31, June 1995.
Reprinted in C++ Gems, ed. Stanley Lippman.

[110] Skef Wholey. Automatic data mapping for distributed-memory parallel com-
puters. In Proceedings of the 6th international conference on Supercomputing, pages
25–34. ACM Press, 1992.

[111] J. Wu, R. Das, J. Saltz, H. Berryman, and S. Hiranandani. Distributed memory
compiler design for sparse problems. IEEE Transactions on Computers, 44(6):737–
753, June 1995.

[112] Barbara B. Wyatt, Krishna Kavi, and Steve Hufnagel. Parallelism in object-
oriented languages: A survey. IEEE Software, 9(6):56–66, November 1992.

[113] Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit,
Arvind Krishnamurthy, Paul Hilfinger, Susan Graham, David Gay, Phil Colella,
and Alex Aiken. Titanium: A high-performance Java dialect. In ACM 1998 Work-
shop on Java for High-Performance Network Computing, New York, NY 10036, USA,
1998. ACM Press.

[114] Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-oriented
concurrent programming in ABCL/1. In OOPSLA ’86 Proceedings, pages 258–
268, September 1986.

[115] A. Zaafrani and M. R. Ito. Partitioning the global space for distributed memory
systems. In Proceedings of the 1993 conference on Supercomputing, pages 327–336.
ACM Press, 1993.

URN:NBN:no-3329

