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A B S T R A C T

This paper presents two novel globally exponentially stable position estimators using hydroacoustic measure-
ments from a single transponder to several transceivers on the vehicle. A comparison study of these and several
existing filters is conducted with both experimental and simulated data. Two classes of filters for position esti-
mation are compared: filters expressing the position of an underwater vehicle in the body-fixed and north-east-
down coordinate frames. The comparison study showed that the latter formulation yields lower estimation er-
rors. Furthermore, one of the novel filters developed in this paper using the north-east-down formulation is found
to serve well as a compromise between performance, theoretical stability, and computational complexity relative
to the near-optimal linearization-based filters with which it is compared.
1. Introduction

Current subsea inspection, maintenance, and repair (IMR) operations
are heavily dependent on manually operated remotely operated vehicles
(ROVs). This is time-consuming and expensive as it requires deployment
of a surface vessel and experienced personnel, Schjølberg et al. (2016).
Increased autonomy in current ROV operations may make current op-
erations more efficient, while being a stepping-stone towards future so-
lution that e.g. are independent of the expensive surface vessel. This
paper considers inertial navigation of an (UV) in areas of little interest,
e.g. in transit between subsea facilities.

Inertial navigation of an underwater vehicle (UV) commonly involves
two steps. One is the integration of rate measurements in order to update
position and attitude estimates. These measurements are often provided
by accelerometers or Doppler velocity log (DVL) for position estimation
and angular rate sensor (ARS) for attitude estimation. Due to the noisy
and biased nature of inertial measurements, the integration causes the
position and attitude estimates to drift over time. Therefore, a second
step is needed, namely aiding the inertial navigation using absolute
measurements of position and attitude. The absolute measurement for
attitude estimation is often provided by on-board sensors such as accel-
erometers and magnetometers or compasses. These provide body-fixed
measurements of known reference vectors in the global frame, and
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from this, the rotation between the body-fixed and global frame can be
calculated. For underwater position estimation, these absolute mea-
surements often come from hydroacoustic networks providing range
measurements from known locations. Most commonly used is the long
baseline (LBL) network in which several transducers are mounted on the
sea-bed and one transducer is carried by the vehicle. The short baseline
(SBL) has a similar structure, except the array of transducers are mounted
under a surface vessel, from which the UV with one transducer is often
employed. In ultrashort baseline (USBL) systems, the array of transducers
are compactly fitted inside an apparatus that is mounted under a surface
vessel. The baselines, i.e. the geometry of transducers, impact the posi-
tion estimation accuracy, where longer distances and more diversity
generally yield higher estimation accuracy. For an overview of these set
ups, we refer to Vickery (1998). These acoustic set ups also exist in
slightly modified configurations. The GPS intelligent buoy (GIB) network
is similar to LBL, only that the transducers are mounted to global posi-
tioning system (GPS) positioned buoys. In inverted ultrashort baseline
(iUSBL), the USBL apparatus is mounted on the UV. Lastly, Stovner and
Johansen (2017) suggested an inverted short baseline (iSBL) set up in
which transducers are spaced out as widely as possible on the UV. This
gives a similar set up as the iUSBL, but the baselines are now confined to
the size of the UV instead of a small apparatus. This set up is depicted in
Fig. 1.
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Fig. 1. The iSBL set up with a sender s (blue) and receivers cj (red) mounted on
an UV, and a transponder t on the seabed (black). (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version
of this article.)
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The advantage of both iSBL and iUSBL compared to e.g. LBL is the
lower requirement for external infrastructure. Assuming an attitude es-
timate is available, iSBL and iUSBL only needs contact with one tran-
sponder in order to find its global position, whereas with LBL, three
transponders are typically needed. In areas of little interest, e.g. in transit
between subsea facilities, it is desirable to install as little infrastructure as
possible, both to save deployment and maintenance costs. The trade-off
of navigation precision for less infrastructure is not critical in these areas.

Due to longer baselines, iSBL is potentially more accurate than iUSBL.
Also, one can use cheap light-weight transducer elements instead of a
relatively expensive, heavy, and large USBL apparatus. This is especially
important for small light-weight UVs. Morgado et al. (2011a, b); Batista
et al. (2014) developed Kalman filters (KFs) with global stability prop-
erties using a linear model achieved through state augmentation for
iUSBL measurements. There, the range and range-difference measure-
ments were used in a tightly-coupled scheme, and not used to calculate a
position measurement or range and bearing measurements as is common
with USBL sensors. Also, the receiver baselines on the vehicle are larger
than one would typically expect from a USBL apparatus, i.e. they spanned
20� 30� 30cm. Therefore, the proposed hydroacoustic set up in Mor-
gado et al. (2011a) has many similarities with the measurement set up
used in this paper. Morgado et al. (2013) presented an extended Kalman
filter (EKF)-based solution for the same measurement set up, where the
full state, i.e. position, velocity, and attitude along with ARS and accel-
erometer biases, was estimated.

Another set up that requires only one transponder exists, in which
only one transceiver on the vehicle is assumed as well. This estimation
problem is not observable in each instant, but can be shown to be
observable over time for sufficiently rich vehicle movements, as shown
by Batista et al. (2010) for a state augmentation based solution to the
nonlinear estimation problem. Several EKF- and particle filter (PF)-based
solutions have also been developed, see e.g. Ferreira et al. (2010); Saúde
and Aguiar (2009).

The EKF is the workhorse for estimation of nonlinear systems. It
linearizes the nonlinear model about its own estimate, and employs the
linearized model in a linear KF. However, the feedback of the state es-
timate as a linearization point is potentially destabilizing. This has
inspired solutions where a linear model is achieved without the need for
the feedback of the state estimate. Batista et al. (2012) andMorgado et al.
(2011a) find a linear model by algebraic manipulation of the
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measurement equations, thus avoiding the feedback of a linearization
point. Furthermore, they are able to show global stability properties.
Another way of linearizing the nonlinear model while avoiding the
feedback of a linearization point is to linearize about an exogenous state
estimate which has desired stability properties, but may be suboptimal.
This is the idea of the exogenous Kalman filter (XKF) of Johansen and
Fossen (2017). A special case of the XKF is the three-stage filter (3SF) of
Johansen et al. (2016) where the linearization point is provided by a
cascade of an algebraic transformation that supplies a linear model to a
suboptimal but globally asymptotically stable KF. The algebraic trans-
formation stage is generally similar to that in Bancroft (1985) and
Chaffee and Abel (1994). Stovner et al. (2016) developed a 3SF for un-
derwater position estimation using an LBL network, which Jørgensen
et al. (2016) improved upon by a more accurate model of the noise. In
Stovner et al. (2017) the 3SF was used for body-fixed position estimation
with an iSBL network, and Stovner and Johansen (2017) extended the
work to aid attitude estimation in the case of unreliable magnetometer
measurements.

The presented work contains several contributions. The 3SFs of
Stovner et al. (2017) are improved upon by using a novel algebraic
transformation inspired by Morgado et al. (2011a). The novel algebraic
transformation produces a linear time-varying (LTV) measurement
model where the original range and range difference measurements are
still used as measurements. This is contrary to Batista et al. (2012), where
a position was calculated and used as measurement; Morgado et al.
(2011a, b) and Batista et al. (2014), where state augmentation was used
to handle nonlinear terms; and Stovner et al. (2017), where the algebraic
transformation constructed new measurements that drastically increased
the effect of measurement noise. The novel filters, which essentially are
improvements on those of Stovner et al. (2017), express the state both in
the body-fixed and northeast-down (NED) coordinate frames. These are
thoroughly developed and shown to have global exponential stability
(GES) error dynamics.

The filters are compared both in simulations and experimentally to
Stovner et al. (2017), a loosely coupled filter, and a standard EKF
implementation. The second stage LTV KFs using the NED formulation is
shown to outperform the second stage filters of Stovner et al. (2017). In
fact, it is shown to yield nearly as good performance as the third stage
filter based on the linearized model. Therefore, with a minor reduction in
estimation precision, one can reduce the computational burden by half
relative to the 3SF presented in Stovner et al. (2017).

The contributions are summarized below:

� Two novel three-stage filter for underwater position estimation are
developed and proven to have global exponential stability error dy-
namics. This comes with robustness guarantees, especially with
regards to the transient behavior.

� The filters are verified in simulations and experiments, and calculated
mean absolute error values show that EKF-like performance is
achieved.

2. Preliminaries

On the UV, there is one transmitting and M receiving hydroacoustic
transducer elements denoted the sender and receivers, respectively. In the
vehicle's surroundings, a transponder is placed, capable of both receiving
and transmitting. This set up is depicted in Fig. 1.

Let pabc denote the position of point c relative to point b decomposed in
the coordinate frame a. In the case where c or b generally denote a co-
ordinate frame, the point is the origin of the respective frame. Now, pbbcj
and pbtb denotes the position of receiver cj relative to the vehicle and the
vehicle relative the transponder t, respectively, both decomposed in the
body-fixed frame. pnnb and pnnt denotes the position of the vehicle and
transponder relative to the origin of the local NED frame, respectively,
both decomposed in the NED frame. Similarly, the ground velocity of the
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vehicle decomposed in the body-fixed and NED frames is vbnb and vnnb,
respectively. Now, we define the body-fixed and NED state vectors as

x≜
�
pbtb
vbnb

�
; χ≜

�
pnnb
vnnb

�
(1)

respectively. Denote the rotation from the body-fixed to NED frame as Rn
b .

In this paper, the ARS measurements are assumed to be biased, and the
ARS bias bb is assumed estimated by an attitude estimator. Now, we
define the attitude state tuple z≜ðRn

b ;b
bÞ. For z1 ¼ ðR1; b1Þ and z2 ¼ ðR2;

b2Þ, we define the notation z1 � z2 ¼ ðR1 � R2;b1 � b2Þ. Also, kz1k2 ¼ k
R1k2 þ kb1k2.

3. Modeling

3.1. Measurement model

The Euclidean distance between transponder t and receiver cj is
described by

ρj ¼
���pbtb þ pbbcj

��� (2a)

¼
���pnnb � pnnt þ Rn

bp
b
bcj

��� (2b)

where k ⋅ k denotes the Euclidean norm. Assume the sender is mounted
next to receiver cM , which is responsible for contacting the transponder.
Further assume that the vehicle moves slowly relative to the speed of
sound. The time-of-arrival (TOA) detected by cM measures the distance
from sender to transponder and back in addition to noise: 2ρM þ εy þ
ε∂;M . Therefore, we model the range measurement yM by

yM ¼ hMðxÞ≜ρM þ 1
2
εy þ 1

2
ε∂;M (3)
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where εy � N ð0; σ2yÞ is noise on the range measurement and ε∂;j �
N ð0; σ2∂ Þ; j 2 ð1;…;MÞ is a noise term unique for receiver cj. The time-
difference-of-arrival (TDOA) measured at receiver cj for j 2
ð1;…;M � 1Þ is described by

δyj ¼ hjðxÞ≜ρj � ρM þ ε∂;j � ε∂;m (4)

We define the measurement and measurement model vectors

y≜½ δy1 ⋯ δyM�1 yM �>
hðxÞ≜½ h1ðxÞ ⋯ hM�1ðxÞ hMðxÞ �>

Also, we notice that hðxÞ � hðχ;zÞ, where hðχ; zÞ is the concatenation
of (4) and (3) inserted with (2).

The ARS and accelerometer measurements are modeled by

ωb
nb;m ¼ ωb

nb þ bb þ εars (5)

f bnb;m ¼ abnb � R>�qnb�gn þ εacc (6)

respectively, where ωb
nb, b

b, gn, and abnb are the angular rate, ARS bias,
gravity vector and the acceleration, respectively. The accelerometer and
ARS noise terms are described by εars � N ð0; σ2arsÞ and εacc � N ð0;σ2accÞ,
respectively. Note the implicit assumption that the origin of the body-
fixed frame coincides with the inertial measurement unit (IMU). If this
is not the case, the accelerometer measurements would be more appro-
priately modeled by

f bnI;m ¼ abnb þ S2
�
ωb

nI

�
pbIb þ S

�
_ωb
nI

�
pbIb � R>�qnb�gn þ εacc;

where fIg denotes the body-fixed frame centered in the IMU. Here, one
could either assume that pbIb or ωb

nI and _ωb
nI are small enough that the

Coriolis terms are negligible, or subtract estimates of the Coriolis terms to
cancel them out.

The normalized magnetometer measurement vectormb is modeled by
mb ¼ Rn

b
>mn þ εmag where mn is a known NED reference vector at the
Fig. 2. The structure of the 3SF for the body-fixed
and NED formulations.
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location and the magnetometer noise is εmag � N ð0;σ2magÞ.
3.2. Kinematic model

The kinematics of Rn
b and bbars are

_R
n
b ¼ Rn

bS
�
ωb

nb

�
(7a)

_b
b

ars ¼ 0 (7b)

where Sð⋅Þ is the skew-symmetric matrix

SðωÞ ¼
24 0 �ω3 ω2

ω3 0 �ω1

�ω2 ω1 0

35;ω ¼
24ω1

ω2

ω3

35
The kinematics of the body-fixed translational motion state is

_pbtb ¼ �S
�
ωb

nb

�
pbtb þ vbnb (8a)

_vbnb ¼ �S
�
ωb

nb

�
vbnb þ abnb (8b)

Inserting (5)–(6) into (8) and writing it in matrix form yields

_x ¼ Axðt; zÞxþ BxðzÞuþ GxðxÞεx (9)

where

Axðt; zÞ ¼
24�S

�
ωb

nb;m � bb
�

I3

03�3 �S
�
ωb

nb;m � bb
�35

BxðzÞ ¼
�
03�3 03�3

I3 Rn
b
>

�
; uðtÞ ¼

�
f bacc
gn

�

GxðxÞ ¼
��S

�
pbtb

�
03�3

�S
�
vbnb

� �I3

�
; εx ¼

�
εars
εacc

�
The kinematics of the NED translational motion state is

_pnnb ¼ vnnb (10a)

_vnnb ¼ annb (10b)

Inserting (6) into (11) yields

_χ ¼ Aχχ þ BχðzÞuþ Gχεχ (11)

Aχ ¼
�
0 I
0 0

�
;BχðzÞ ¼

�
0 0
Rn
b I

�

GχðzÞ ¼
�
0
Rn
b

�
; εχ ¼ εacc

4. Filter development

In this section, 3SFs using body-fixed and NED model formulations
are developed and their error dynamics are derived. The 3SFs consist of
an attitude observer and three stages of position estimation. The first
stage, described in Section 4.2, is an algebraic transformation that alge-
braically linearizes the nonlinear measurement model. The second stage
is a KF using the algebraically transformed LTV model, and is described
in Section 4.3. In Section 4.4, the third stage is described, in which the
nonlinear model is linearized about the estimate from the second stage.
The general structure of the body-fixed and NED formulations are
depicted in Fig. 2.

Before deriving the estimators, two key assumptions are stated.
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Assumption 1. There are at least two nonparallel reference vectors.

Assumption 2. There are at least four non-coplanar receivers on the
UV.
4.1. Attitude observer

The nonlinear attitude observer from Grip et al. (2015) is used, which

outputs the rotation matrix estimate Rn
b�
and ARS bias estimate b�

b�
. Define

the tuple z�≜ðRn
b�
; b�b

�Þ and the corresponding estimation error ~z ¼ z� z� .

Denote by Σz the dynamics of the estimation error ~z.

Proposition 1 Suppose Assumption 1 is satisfied. Then, the origin ~z ¼ ð0; 0Þ
of Σz is GES.

Proof. The proof follows from Grip et al. (2015).
4.2. Stage 1: algebraic transformation

4.2.1. Body-fixed algebraic transformation
We begin by computing, in the noise-free case,

ρ2j � ρ2M ¼ �
ρj � ρM

��
ρj þ ρM

� ¼ 2
�
pbbcj � pbbcM

�>
pbtb þ

						pbbcj 						2 � 						pbbcM 						2
Inspired by Batista et al. (2012), we write

ρj � ρM �

						pbbcj 						2 � 						pbbcM 						2
ρj þ ρM

¼ 2

�
pbbcj � pbbcM

�>

ρj þ ρM
pbtb

and insert δyj for ρj � ρM and δyj þ 2yM for ρj þ ρM to obtain

Yx ' ¼
24 δy1 þ νx;1

⋮
δyM�1 þ νx;M�1

35 ¼
24 Cx;1

⋮
Cx;M�1

35
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Cx;p '

pbtb (12)

where

νx;j ¼ �

						pbbcj 						2 � 						pbbcM 						2
δyj þ 2yM

;Cx;j ¼ 2

�
pbbcj � pbbcM

�>

δyj þ 2yM
(13)

In the measurement model (12), the M � 1 range difference mea-
surements are used. In order to use the Mth measurement, i.e. the range
measurement between the sender and transponder, we use (12) to
calculate a crude estimate of pbtb about which we linearize (3):

p� btb ¼ C0y
x;pY

0
x

Now, we define x� ¼ ½p� ntb;03�1� and Taylor expand (3)

hMðxÞ ¼ hMðx�Þ þ Hx;Mðx�Þðx� x�Þ þ φx;M

�
pbtb � p�btb

�
where φx;Mðpbtb � p�btbÞ are higher order terms, φx;Mð0Þ ¼ 0, and

Hx;Mðx�Þ ¼ dhMðxÞ
dx

				
x¼x�

¼
24 �

p�btb � pbbcM
�>						p�btb � pbbcM

						 01�3

35 (14)

Finally, we define C0
x≜½C0

x;p; 0M�1�3�, Cx≜½C0
x;Hx;Mðx�Þ�, and

Yx≜½Y 0
x ; yM �.

4.2.2. NED algebraic transformation
By the same approach as in Section 4.2.1, but starting with the NED-

formulated measurement model
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ρj ¼ 				pnnb � pnnt þ Rn
bp

b
bcj
				 (15)
		 		
a linear measurement model is found as

Y 0
χ ¼ C0

χ;pðzÞpbtb (16)

for the M � 1 range difference measurements, where

Y 0
χ ¼

24 δy1 þ νχ;1ðzÞ
⋮

δyM�1 þ νχ;M�1ðzÞ

35;C0
χ;pðzÞ ¼

24 Cχ;1ðzÞ
⋮

Cχ;M�1ðzÞ

35

νχ;j ¼
2pnnt

>Rn
b

�
pbbcj � pbbcM

�
�
						pbbcj 						2 þ 						pbbcM 						2

δyj þ 2yM
(17a)

Cχ;jðzÞ ¼
2
�
Rn
b

�
pbbcj � pbbcM

��>

δyj þ 2yM
(17b)

From this, a position estimate p�nnb can be found, about which the range
measurement model hMðχ; zÞ is linearized:

p�nnb ¼ C0
χ;pðz�ÞyY 0

χ ; χ� ¼ ½p�nnb; 03�1�

hχ;Mðχ; zÞ ¼ hχ;Mðχ�; zÞ þ Hχ;Mðχ�; zÞðχ � χ�Þ þ φχ;M

�
pnnb � p�nnb

�

Hχ;Mðχ�; zÞ ¼
24 p�nnb � pnnt þ Rn

bp
b
bcj���p�nnb � pnnt þ Rn

bp
b
bcj

��� 01�3

35
where φχ;M

�
pnnb � p�nnb

�
is higher order terms and φχ;Mð0Þ ¼ 0. Lastly, we

define C0
χðzÞ≜½C0

χ;pðzÞ; 0M�1�3�, Cχðχ�; zÞ≜½C0
χðzÞ;Hχ;Mðχ�; zÞ�, and

Yχ≜½Y 0
χ ; yM �.

4.3. Stage 2: LTV KF

4.3.1. Body-fixed formulation
Denote by x the state estimate of the second stage body-fixed KF. We

define the estimated measurement and find the measurement error

Yx≜
�

C0
xx

hMðx�Þ þ Hx;Mðx�Þðx� x�Þ
�

~Yx ¼ Yx � Yx ¼ Cxðx�Þexþ φx

�
pbtb � p�btb

�
respectively, where ex≜x� x, φxðpÞ ¼ ½0M�1�1;φx;MðpÞ�. Now, we define
the estimator

x_ ¼ Axðt; z�Þxþ Bxðz�Þuþ KxðtÞ~Yx (18)

where KxðtÞ is the solution of the Riccati equation inserted Axðt;z�Þ, Cxðx^Þ,
Gxðx^Þ, Q x ¼ Eðεxε>x Þ ¼ diagðσ2arsl3; σ2accl3Þ. The elements of the mea-
surement covariance matrix ℛ are given by
ξMðχ; z; χ�; z�Þ ¼ hðχ�; zÞ � hðχ�; z�Þ þ φχ;M

�
pnnb � p�nnb

�þ �
Hχ;Mðχ�; zÞ � Hχ;Mðχ�; z�Þ

�ðχ � χ
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ℛi;j ¼ Cov ∂yj; ∂yi ¼ E ε∂;j � ε∂;m ðε∂;i � ε∂;mÞ
¼ E

�
εy;jεy;i

�þ E
�
εy;mεy;m

�
� � �� � �
¼



2σ2∂ ; i ¼ j
σ2∂ ; i 6¼ j

(19a)

ℛj;M ¼ Cov
�
∂yj; yM

� ¼ E
��

1
2
εy þ 1

2
ε∂;m

�
ðε∂;i � ε∂;mÞ

�
¼ �1

2
σ2∂

(19b)

ℛM;M ¼ CovðyM ; yMÞ ¼ E

"�
1
2
εy þ 1

2
ε∂;m

�2
#

¼ 1
4

�
σ2y þ σ2

∂

� (19c)

for i;j 2 ð1;…;MÞ. Here, the noise terms in the denominator of νx;j and Cx;j

in (13) and (17) have been neglected. Assuming yM dominates ∂yj in the
denominator, we approximate the noise characteristics of the term

1
yM

� 1
ρM þ εM

¼ 1
ρM

1
1þ εM=ρM

� 1
ρM

�
1� εM

ρM

�

� 1
ρM

� εM
ρ2M

� N
�
1=ρM ; σ

2
y

.
ρ4M

�
The effect of the noise in the denominators of (13) and (17a) can be

assumed negligible if the transceiver baselines on the UV are short
relative to the distance to the transponder. Without loss of generality, the
origin of the NED coordinate frame can be set in the transponder, making
pnnt ¼ 0 in (17a). This justifies neglecting the noise terms in the de-
nominators of (13) and (17).

Subtracting (18) from (9) yields the following nominal error dy-
namics in the noise-free case:

Σx : ex_ ¼ �
Axðt; z�Þ � KxðtÞCxðx�Þ

�exþ ξx
�
z; z�; pbtb; p�

b
tb

�
(20)

where ξxðz; z�; pbtb; p�btbÞ ¼ ðAxðt; zÞ� Axðt; z�ÞÞÞxþ ðBxðzÞ� Bxðz�ÞuðtÞÞþ
KxðtÞφxðpbtb � p�btbÞ.

4.3.2. NED formulation
Denote by χ the state estimate of the second stage NED KF and define

the state error eχ≜χ� χ. We define the estimated measurement and find
the measurement error

Yχ≜
�

C0
χðz�Þχ

hðχ�; z�Þ þ Hχ;Mðχ�; z�Þðχ � χ�Þ
�

(21)

~Yχ ¼ Yχ � Yχ ¼ Cχðχ�; z�Þeχ þ ξχ;Y ðχ; z; χ�; z�Þ (22)

respectively, where

ξχ;Y ðχ; z; χ�; z�Þ ¼
�
ξ'ðχ; z; z�Þ; ξMðχ; z; χ�; z�Þ

�
ξ'ðχ; z; z�Þ ¼ �

C'χðzÞ � C'χðz�Þ
�
χ

�Þ
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Now, we define the estimator

χ_ ¼ Aχχ þ Bχðz�Þuþ KχðtÞ~Yχ (23)

where KχðtÞ is the solution of the Riccati equation inserted Aχ , Cχðχ�; z�Þ,
Gz� ðχ�Þ, Q χ ¼ Eðεχε>χ Þ ¼ I3σ2acc, and the measurement covariance matrixℛ
given by (19).

Subtracting (23) from (11) yields the following nominal error dy-
namics in the noise-free case

Σχ : eχ_ ¼ �
Aχ � KχðtÞCχðχ�; z�Þ

�eχ þ ξχðχ; z; χ�; z�Þ (24)

where

ξχðχ; z; χ�; z�Þ ¼ KχðtÞξχ;Yðχ; z; χ�; z�Þ þ
�
BχðzÞ � Bχðz�Þ

�
uðtÞ

4.4. Stage 3: linearized KF

4.4.1. Body-fixed formulation
Linearizing (4) about x yields

hjðxÞ ¼ hjðxÞ þ Hx;jðxÞ
�ex�þ bφx;j

�ex�

Hx;jðxÞ ¼

264
�
pbtb � pbbcj

�>						pbtb � pbbcj

						 �
�
pbtb � pbbcM

�>						pbtb � pbbcM

						 01�3

375 (25)

for j 2 ð1; …; M� 1Þ, where bφx;jðexÞ contains higher order terms andbφx;jð0Þ ¼ 0. Concatenating (25) and a similar linearization of hMðxÞ
yields

hðxÞ ¼ hðxÞ þ HxðxÞexþ bφx

�ex� (26)

whereHxðxÞ ¼ ½Hx;1ðxÞ;…;Hx;MðxÞ�,Hx;MðxÞ is given by (14), and bφðexÞ ¼
½bφx;1ðexÞ;…; bφx;MðexÞ�. Now, defining byx≜hðxÞ þ HxðxÞðbx � xÞ yields the

measurement error ~yx≜y� byx ¼ HxðxÞ~xþ bφxðexÞ.
Denote by bx the state estimate of the third stage body-fixed KF. We

now define the estimator

bx_ ¼ Axðt; z�Þbx þ Bxðz�ÞuðtÞ þ bKxðtÞ~yx (27)

where bKxðtÞ is the solution of the Riccati equations inserted Axðt; z�Þ,
HxðxÞ, GxðxÞ, Q x, and ℛ from (19).

Define ~x≜x� bx. Subtracting (27) from (9) in the noise-free case yields
the error dynamics:

bΣx : ~x_ ¼ �
Axðz�Þ � bKxðtÞHxðxÞ

�
~xþ bξxðx; z; x; z�Þ (28)

where

bξxðx; z; x; z�Þ ¼ ðAxðzÞ � Axðz�ÞÞxþ ðBxðzÞ � Bxðz�ÞÞuðtÞ � bKxðtÞbφx

�ex�
4.4.2. NED formulation

We begin by linearizing (4) about χ:

hjðχ; zÞ ¼ hjðχ; zÞ þ Hχ;jðχ; zÞeχ þ bφχ;j

�eχ�
where Hχ;jðχ;zÞ ¼ ½Hpχ;jðχ; zÞ;01�3�,

Hpχ;jðχ; zÞ ¼
"�

pnnb þ Rn
bp

b
bcj

� pnnt
�>						pnnb þ Rn

bp
b
bcj

� pnnt
						 �

�
pnnb þ Rn

bp
b
bcm

� pnnt
�>						pnnb þ Rn

bp
b
bcm � pnnt

						
#

bφχ;jðeχÞ is higher order terms, and bφχ;jð0Þ ¼ 0. Concatenating this and a
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linearization of hMðχ; zÞ yields

hðχ; zÞ ¼ hðχ; zÞ þ Hχðχ; zÞeχ þ bφχ

�eχ� (29)

where Hχðχ;zÞ ¼ ½Hχ;1ðχ;zÞ;…;Hχ;Mðχ;zÞ�, Hχ;j ¼ ½Hpχ;j; 01�3� for j 2 ð1;…;

M� 1Þ, and bφχðeχÞ ¼ ½bφχ;1ðeχÞ;…; bφχ;MðeχÞ� .
Denote by bχ the state estimate of the third stage NED KF and define

the state error ~χ≜χ� bχ . Now, we define the estimated measurement

byχ≜hð χ; z�Þ þ Hðχ; z�Þðbχ � χÞ (30)

and find the measurement error in the case noise-free case as

~yχ≜y� byχ ¼ Hðχ; z�Þ~χ þ bξx;yðχ; χ; z; z�Þ (31)

where

bξχ;yðχ; χ; z; z�Þ ¼ hð χ; zÞ � hðχ; z�Þ þ bφx

�eχ�þ ðHxðχ; zÞ � Hxðχ; z�ÞÞeχ
An estimator is defined

bχ_ ¼ Aχbχ þ Bχðz�Þuþ bK χðtÞ~yχ (32)

where bK χðtÞ is the solution of the Riccati equation inserted Aχðt;z�Þ, Hχð χ�;
z�Þ, Gχðχ�Þ, Q χ ¼ Eðεχε>χ Þ ¼ I3σ2acc, and the measurement covariance ma-
trix ℛ given by (19).

Lastly, the error dynamics is found by subtracting (32) from (11)

bΣχ : ~χ
_ ¼ �

Aχ � bK χðtÞHχðχÞ
�
~χ þ bξχðχ; χ; z; z�Þ (33)

where bξχðχ; χ; z; z�Þ ¼ bξχ;yðχ; χ;z;z�Þ� bK χðtÞbφχðeχÞþ ðBχðzÞ� Bχðz�ÞÞuðtÞ.

5. Stability analysis

The inputs f bnb;m and ωb
nb;m are assumed to be bounded.

Proposition 2 The systems ðAxðz�; tÞ; Cxðx�Þ; Gxðx�ÞÞ, ðAχ ; Cχðχ�; z�Þ; Gχðz�ÞÞ,
ðAxðz�; tÞ;CxðxÞ;GxðxÞÞ, and ðAχ ;Cχð χ�; z�Þ;Gχðz�ÞÞ are uni-
formly completely observable (UCO) and uniformly
completely controllable (UCC).

Proof. Theorem 6. O12 in Chen (1998) proves that the pairs ðAðtÞ;
DðtÞÞ is UCO if the observability co-distribution formed by AðtÞ and DðtÞ
have full rank. We define the placeholder matrix DðtÞ 2 fCxðx�Þ;Cχðχ�; z�Þ;
HxðxÞ;Hχðχ; z�Þg and note its general form D ¼ ½DpðtÞ; 0M�3� where
DpðtÞ 2 ℝM�3. The top 2M rows of the observability co-distributions are

dO ¼
�
DpðtÞ 0M�3

⋆ DpðtÞ
�

(34)

where ⋆ denotes an arbitrary matrix of appropriate size. From Theorem
4.2 of Meyer (1973), it follows that if DpðtÞ has full rank, then dO has full
rank. The rank of DpðtÞ is full for all four systems under Assumption 2,
and thus, all systems are UCO.

Using Theorem 6.12 in Chen (1998) in a similar way, it is trivial to
show UCC of all four systems.

Since Ax, Cx, Bx, φx are smooth and z, z�, pbtb, p
�b
tb, u are bounded, there

exists a constant αx > 0 such that

ξx
�
z; z�; pbtb; p�

b
tb

� 	 αx

�						pbtb � p�btb
						2 þ jj~zjj2

�
(35)

Since Bχ , C0
χ , h, Hχ;M , φχ;M are smooth and z, z�, χ, χ�, u are bounded, we

know that there also exists a constant αχ > 0 such that
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ξχðχ; z; χ�; z�Þ 	 αχ

���pnnb � p�nnb
��2 þ k~zk2� (36)
Notice that only the position and not the full state is used in the
bounds (35)–(36) since the errors ξx and ξχ do not depend on velocity.

Proposition 3 Consider the nominal case with no noise, i.e., εars ¼ εacc ¼
0,εy ¼ 0,ε∂;j ¼ 0; j 2 ð1;…;MÞ and that the matrices Q x,
Q χ , ℛ, and P ð0Þ are symmetric and positive definite.
Fig. 3. The simulated trajectory and estimates in one of the simulations.
1. The equilibrium points ~z ¼ ð0; 0Þ and ex ¼ 0 of the error
dynamics cascade Σz–Σx is GES.

2. The equilibrium points ~z ¼ ð0; 0Þ and eχ ¼ 0 of the error
dynamics cascade Σz–Σχ is GES.
Proof. The proof uses similar arguments as Johansen and Fossen
(2017).

Notice that in the noise-free case, we have p�btb � pbtb and p�nnb � pnnb.

Furthermore, when z� ¼ z, then ξx ¼ 0 and ξχ ¼ 0. Using Proposition 2,

the equilibrium points ex ¼ 0 and eχ ¼ 0 of the error dynamics Σx and Σχ ,
respectively, are GES as proven Anderson (1971). When z� 6¼ z, ξx and ξχ
are bounded by (35) and (36), respectively. Proposition 1, Theorem 2.1
and Proposition 2.3 of Loria and Panteley (2005) now proves that the

equilibrium points ~z ¼ ð0;0Þ and ex ¼ 0 and eχ ¼ 0 of the error dynamics
cascades Σz–Σx and Σz–Σχ , respectively, are GES. ∎

From Proposition 3, it follows that x and χ are bounded.
Since Ax, Bx, bφx are smooth and x, x, z, z�, u are bounded, there exists a

constant bαx > 0 such that

bξxðx; z; x; z�Þ 	 bαx

�						ex						2 þ jj~zjj2
�

(37)

Since Bχ , h,Hχ , bφχ are smooth and χ, χ, z, z�, u are bounded, there exists
a constant bαχ > 0 such that

bξχð χ; z; χ; z�Þ 	 bαχ

����eχ���2
þ k~zk2

�
(38)

Proposition 4 Consider the nominal case with no noise, i.e., εars ¼ εacc ¼
0,εy ¼ 0,ε∂;j ¼ 0; j 2 ð1;…;MÞ, and that the matrices Q x,
Q χ , ℛ, and P ð0Þ are symmetric and positive definite.
1. The equilibrium points ~z ¼ ð0;0Þ, ex ¼ 0, and ~x ¼ 0 of the
error dynamics cascade Σz–Σx–bΣx is GES.

2. The equilibrium points ~z ¼ ð0;0Þ, eχ ¼ 0, and ~χ ¼ 0 of the
error dynamics cascade Σz–Σχ–bΣχ is GES.
Proof. The proof is similar to that of Proposition 3.

6. Results

In this section, the results of simulations and experiments are shown.
A depth measurement, modeled by

yd ¼ pnnt;3 þ
h
Rn
b�;3 01�3

i
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Cb
d

�
z�
� x ¼ ½ 0 0 1 01�3 �|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cn
d

χ (39)

where Rn
b�;3

and pnnt;3 are the third rows of Rn
b�
and pnnt , respectively, is added

to the filters by appending yd to y, Cb
d to Cx and Hx, and Cn

d to Cχ and Hχ . It
can be shown that this relaxes Assumption 2 to minimum 3 non-collinear
receivers that construct minimally 2 non-vertical baselines.

In the implementation of the filters, some practical considerations
were taken:
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� �SðpbtbÞ and �SðvbnbÞ were removed from GxðxÞ since they greatly
deteriorated the estimation. This is assumed to be caused by errors in
the estimate of pbtb leading to an erroneous increase in the covariance
matrix over time. Since pbtb typically is large, this may have a detri-
mental effect on estimation.

� For the body-fixed filters, the depth measurement variance was
increased by a factor of 100, i.e. ℛd ¼ 100σ2d . This accounted for the
impact of small errors in Rn

b�
, which was amplified by the distance to

the transponder, as can be seen in (39).

In the plots below, the following color coding is used:

1. True or camera system trajectory
2. Stage 1 and 2 from Stovner and Johansen (2017).
3. Body-fixed stage 2 filter (18)
4. NED stage 2 filter (23)
5. Loosely coupled NED filter
6. Body-fixed stage 3 filter (27)
7. NED stage 3 filter (32)
8. Black — EKF based on NED formulation

The loosely coupled filter 5 is a NED formulated filter with the
measurement model p�nnb ¼ Cχ, where C ¼ ½I3;03�3�.
6.1. Simulations

The simulations were conducted with three different transponder
positions in order to show how the estimators perform with increasing
range measurements. In each of the three simulated scenarios, 50 sim-
ulations were run with different randomly generated noise. In the 800 s
long scenario, the UV stood still for 400 s before following the trajectory
shown in Fig. 3.

The transponder was placed at pnnt ¼ ½� 10; � 20; 5�m, pnnt ¼ ½� 100;
� 200;50�m, and pnnt ¼ ½�1000;�2000;50�m in the three scenarios,
while the M ¼ 4 receivers on the body were at

pbbc1 ¼ ½0:6; 0:3;�0:3�m; pbbc2 ¼ ½0:6;�0:3; 0:3�m

pbbc3 ¼ ½ � 0:6; 0:3; 0:3�m; pbbc4 ¼ ½ � 0:6;�0:3;�0:3�m

where pbbc4 was also the position of the sender.
The initial state of the vehicle was given by pnnb ¼ ½0; 0;0�m, vnnb ¼

½0; 0;0�m=s, Rn
b ¼ I3, while the ARS bias was bb ¼ ½0:012; � 0:021;

0:014�rad=s. The standard deviations of the measurement noises were
σy ¼ 1m, σ∂ ¼ 0:01m, σd ¼ 0:1m, σacc ¼ 0:01m=s2, σars ¼ 0:01rad=s, and
σmag ¼ 0:01. The reference vectors used for attitude estimation were rn1 ¼
gn, rb1 ¼ f bnb;m, r

n
2 ¼mn ¼ ½1;0;0�, and rb2 ¼mb. The frequency of acoustic,

depth, and IMU measurement retrieval were 1Hz, 10Hz, and 100Hz,
respectively.



Fig. 4. The transient of the NED position estimation errors in one of the sim-
ulations. The black, green, and cyan curves are overlapping, and so are the gray
and blue. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)

Table 1
MAE values in the last 400 s of simulation in the cases where distance to the
transponder was short (s), medium (m), and long (l).

Est. XY s [m] Z s [m] XY m [m] Z m [m] XY l [m] Z l [m]

2) 0.095 0.240 0.226 0.254 15.437 0.406
3) 0.090 0.235 0.211 0.252 1.753 0.365
4) 0.082 0.025 0.194 0.025 0.848 0.025
5) 0.070 0.025 0.234 0.025 1.571 0.025
6) 0.087 0.236 0.200 0.251 1.735 0.365
7) 0.078 0.025 0.177 0.025 0.718 0.025
8) 0.078 0.025 0.176 0.025 0.718 0.025

Fig. 5. The sensor platform with hydroacoustic transducers (on rods), Qualisys
markers (reflective balls), and an underwater housing. The blue light is emitted
from the OQUS camera system in order to better detect the reflective markers.
(For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)
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The initial position, velocity, attitude, and bias estimates were

p�nnbð0Þ ¼ ½0; 0; 0�m, v�nnbð0Þ ¼ ½0;0; 0�m=s, Rn
b�
ð0Þ ¼ I3, and b�

b� ð0Þ ¼
½0;0;0�rad=s, from which the initial state of all estimators were found.
The initial covariance matrix were chosen as Pð0Þ ¼ blockdiagðI3;0:1I3Þ,
where blockdiagð⋅Þ forms a block-diagonal matrix of its inputs. Choices
for the attitude observer tuning parameters were kI ¼ 0:05, σ ¼ 1, and
Kp ¼ 1. All estimators were updated with 100Hz.

The difficult geometry of this estimation problem, i.e. the short
baselines between receivers compared to the distance to transponder,
makes this set up sensitive to noise on the acoustic measurements. This
calls for conservative measurement updates in the KF. This can be seen by
the slow convergence of the estimators in Fig. 4, which is seen to take
approximately 100 s for all estimators even with no initial errors apart
from the ARS bias. Little of the slow convergence can be attributed to the
initial ARS bias error, since the NED and body-fixed filters converge with
approximately the same speeds. Rather, this is due to the convergence of
the covariance matrix.

In Table 1, the MAE of the horizontal (XY) and vertical (Z) positions
for the last 400 s of simulations of the three scenarios are shown. The
increasing horizontal MAE with increasing distance to transponder is
evidence that the noise sensitivity increases with distance as well. The
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vertical errors, however, vary less with distance. The NED formulated
filters 4, 5, 7, and 8 have constant vertical MAE, while the body-fixed
filters 2, 3, and 6 increase somewhat. Moreover, the vertical errors are
more that 10 times higher for the body-fixed filters than the NED filters.
This is due to the noisy rotation matrix in (39), which has a detrimental
effect on the depth measurements. One can draw the conclusion that the
NED filters generally outperform the body-fixed filters both in vertical
and horizontal performance. Looking at the NED formulated filters only,
we see that the loosely coupled filter 5 performs substantially worse than

the others. This is due to the highly noise sensitive calculation of p
�n

nb, and
speaks for the benefit of using a tightly coupled filter scheme. Filter 4 has
somewhat higher MAE than the linearization based filters 7 and 8.
Compared to filter 7, it only has half the computational complexity since
it employs one KF instead of two, and compared to filter 8, it has guar-
anteed stability. Therefore, it is argued that filter 4 yields the best
compromise between computational load, stability, and performance.
This is especially true in the suggested case where the UV is far away from
infrastructure and the highest precision of estimation is not crucial.

Filter 7 and 8 have similar performances, which is expected as filter 8
is just an EKF version of filter 7.

In this simulation study, it was assumed that the range measurement
was retrieved instantaneously, and not influenced by the travel time of
the sound wave. This assumption was made for simplicity. In a realistic
scenario, especially when the vehicle is far from the transponder, this
should be taken into account.

6.2. Experiments

The experiment was conducted in the Marine Cybernetic Laboratory
(MCLab), which is a water tank at NTNU. The MCLab is equipped with an
OQUS Underwater camera positioning system from Qualisys providing
reference position and attitude trajectories.

The experimental set up was slightly different than in the simulations,
described below:

� The IMU used in the experiments, an ADIS16485, does not contain a
magnetometer. Therefore, measurements from 3 additional tran-
sponders was used in order to provide yaw information to the attitude
estimator. Also, for ease of implementation, a standard multiplicative
extended Kalman filter (MEKF) was employed, using accelerometer
and the acoustics as reference vector measurements.



Fig. 6. NED position estimates from experimental data.

Table 2
MAE values from the experiments.

Est. XY [m] Z [m]

2) 0.3979 0.0269
3) 0.4030 0.0274
4) 0.2746 0.0232
5) 0.9384 0.0266
6) 0.2734 0.0269
7) 0.2702 0.0266
8) 0.2763 0.0266

Fig. 7. Euler angles in experiments. The red curve is the ground truth trajectory
from the camera system, and the blue dashed line is the MEKF estimate. (For
interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

Fig. 8. ARS bias in experiments.
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� No pressure sensor was available, so the vertical position output from
the Qualisys camera system was used instead. Onto this signal, a
white noise wd � N ð0;0:052Þ was added.

� The acoustic system provided range measurements. From this, range
difference measurements were calculated by subtraction. Simple
outlier rejection was employed to prevent corruption of the estimates.

The sensor platform was a 0:5� 0:5� 0:5maluminum frame onto
which an underwater housing containing an IMU was fastened, seen in
Fig. 5. The transceiver positions were

pbbc1 ¼ ½0:78; 0:27; 0:26�m; pbbc2 ¼ ½0:45;�0:58;�0:28�m

pbbc3 ¼ ½ � 0:44;�0:23; 0:16�m; pbbc4 ¼ ½ � 0:44; 0:27;�0:25�m

and the transponder position pnnt ¼ ½� 2:11; 1:92; � 0:76�m. Acoustic
measurements were retrieved with 1Hz, while IMU and depth measure-
ments were retrieved with 100Hz and 5Hz, respectively. The tuning
parameter standard deviations of the 3SFs and MEKF were σy ¼ 0:2m,
σ∂ ¼ 0:1m, σacc ¼ 0:034m=s2, σars ¼ 0:0021rad=s, and σΔp ¼ 0:1m,
where σΔp represents the noise of the acoustic reference vector mea-
surement used for the MEKF discussed above. The initial ARS bias esti-
mate in the experiments was set to the values found by offline calibration.

From Fig. 6, we see that all filters except the loosely coupled filter 5
successfully tracked the true trajectory except about 300 s into the
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experiments. This was due to range measurement dropouts which
resulted in a period of dead-reckoning. It is likely that filter 5 struggled
because of small undetected outliers that greatly affected the noise sen-
sitive calculation of p�nnb. Table 2 suggests that the body-fixed stage 2
filters, i.e. filter 2 and 3, perform worse than the NED stage 2 filter, i.e.
filter 4. This confirms the conclusion drawn from the simulation study.
Also, filter 4 performs equally well as the linearized filters, i.e. filter 6–8.
This was also seen in the simulation study. Here, however, the distance
between vehicle and transponder was much shorter than in the simula-
tion study. This indicates that neglecting the noise terms in the de-
nominators of (17) is justified also for short distances. That the
performance of the body-fixed and NED linearized filters were similar,
was expected, as the distance to the transponder was small. Figs. 7 and 8
show satisfying attitude and ARS bias estimation in the experiments.

7. Conclusion

In this paper, two novel GES 3SFs for underwater position estimation
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using IMU, iSBL, and depth measurements was presented. These
employed nonlinear transformations of the hydroacoustic measurement
equations that yielded measurement equations on LTV forms. KFs were
implemented using these LTV forms, which constituted the second stage
of two new 3SFs. Based on the estimates from these, third stage linearized
filters were implemented.

A comparison study between several KFs based on NED and body-
fixed formulations were conducted. Generally, it was found that the
NED formulated filters performed better than the body-fixed ones. This
was likely due to that the NED formulated filters are better incorporating
depth measurements and have a lower sensitivity to noisy attitude and
ARS bias estimates. Specifically, the novel second stage filter employing
the NED formulation showed the most promise at it performed nearly as
well as its purely linearization-based third stage filter and EKF counter-
parts while leaving half the computational footprint of the full 3SF and
guaranteeing global stability in contrast to the local stability of the EKF.

Future work should include a comparison study with the other con-
tributors to this estimation problem, especially Morgado et al. (2011b,
2013); Batista et al. (2014).
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