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Abstract 

In addition to prototyping, Powder Bed Fusion (PBF) AM processes have lately been more widely used to manufacture end-use parts. These 
changes lead to necessity of higher requirements to quality of a final product. Optimization of process parameters is one of the ways to achieve 
desired quality of a part. Finite Element Method (FEM) and machine learning techniques are applied to evaluate and optimize AM process 
parameters. While FEM requires specific information, Machine Learning is based on big amounts of data. This paper provides a conceptual 
framework on combination of mathematical modelling and Machine Learning to avoid these issues.  
© 2017 The Authors. Published by Elsevier B.V. 
Selection and peer-review under responsibility of the International Scientific Committee of “11th CIRP ICME Conference". 
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1. Introduction 

Additive Manufacturing (AM) is “process of joining 
materials to make parts from 3D model data, usually layer 
upon layer, as opposed to subtractive manufacturing and 
formative” [1]. Development of new processes and 
materials provides a wider variety of areas for applications 
of AM. Nowadays, additive manufacturing is used not just 
in aerospace, medical and automotive industries but also in 
fashion, food industry, jewelry production and architecture, 
etc. [2]. With more use, more needs and requirements are 
set to products fabricated by additive manufacturing. One of 
the most difficult issues that should be addressed is how to 
improve and control quality of as-built part and define what 
significantly influence the quality level of a part.  

Every additive manufacturing process has its own 
process parameters that in combination with material 
properties and environmental conditions influence quality 
of fabricated parts. Experimentally through the observation, 
it is very difficult to define those parameters and their 
combinations, which have the most impact on engineering 
(mechanical, physical and material) properties of the 
product. In addition, by the reason that practical 
experiments are expensive (especially for metal powder) 

[2], detecting parameters that influence quality of as-built 
part becomes more challenging task.  

However, several studies can be found in the literature 
on application of Design of Experiments (DoE) methods 
(e.g. Taguchi, half-factorial design, central composite 
design, etc.) and analysis of variance (ANOVA) to define 
which parameters and their combination influence which 
type of properties of the as-built part [3-5]. 

Since statistical methods require big amount of data for 
more accurate results, just a few attempts were made 
comparing with general scientific attention to additive 
manufacturing. In addition to aforementioned studies 
focused on Taguchi, ANOVA and DoE methods, Garg, et 
al. [6] analyzed existing literature on application of 
empirical modelling for three AM processes 
(Stereolithography (SA), Selective Laser Sintering (SLS), 
and Fused Deposition Modeling (FDM)).  

On the one hand, finite element modeling (FEM) is in 
most cases used for numerical solutions of mathematical 
models and parameters’ optimization, but this process 
requires deep knowledge on physical properties of material 
and in-depth understanding of AM process [7]. On the other 
hand, machine learning techniques can help to predict 
process parameters, thus avoiding the abovementioned 
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requirements for FEM. Although these techniques normally 
require big amounts of data for better generalization and 
accuracy.  

Combination of FEM and machine learning can provide 
possibility to simulate process (FEM), predict or optimize 
process parameters to achieve desired mechanical 
properties (Machine Learning), and then test predicted 
process parameters by testing them on developed models 
for process simulation (FEM). 

Therefore, conceptual framework on combination of 
statistical analysis, mathematical modeling and machine 
learning techniques is proposed in this article. 

2. Additive Manufacturing 

2.1. Powder Bed Fusion Additive Manufacturing 

According to ISO/ASTM52900-15 [1], powder bed 
fusion is “additive manufacturing process in which thermal 
energy selectively fuses regions of a powder bed”. This 
type of AM processes is widely used to manufacture parts 
and therefore, more research activities are focused on the 
improvements of the product properties (physical, material 
and mechanical properties).  The schematic representation 
of powder bed fusion AM process is showed on Figure 1.   

Additive manufacturing process always starts with 
machine preheating (up to 4 hours). Then process of 
powder solidification is performed by focusing laser on 
powder bed to fabricate one layer of designed part (Figure 
1). Then powder bed moves down with a step of one layer 
thickness. The sequence of events should be repeated as 
many times as needed to build a part. After build is 
finished, machine should cool down before anyone can 
open the build chamber to take build cake out from it. 

Metallic, ceramic, composite and polymer are types of 
material that can be fabricated by powder bed fusion 
additive manufacturing process. In addition, for metallic 
material, there are also 2 types of fusion source, which are 
electron beam and laser beam. 

By the reason that during last decade more attention is 
paid to additive manufacturing and its development, there 
exist enormous amount of published literature about AM 
and powder bed fusion processes group. Therefore, this 
article is focused solely on polymer powder bed fusion 
(PPBF) process. However, other processes from this group 
should be investigated in the future work. 

Fig. 1 Schematic representation of powder bed fusion process 

2.2. Application of statistical analysis to define significance 
of PPBF process parameters 

Although there has been relatively little research on what 
AM process parameters are significant regarding final 
product quality, several studies reported results of statistical 
analysis for some AM process parameters. These attempts 
are based on application of such methods as Taguchi, 
ANOVA and regression modelling [6, 8, 9].  

Singh and Prakash [10] planned experiment by 
application of two level factorial design of experiment 
(DOE) and evaluated which AM process parameters have 
significant impact on part density. Their analysis showed 
that among such parameters as laser power, scan spacing 
and scan velocity, the most significant is laser power. Based 
on ANOVA analysis, regression model was proposed 
including all significant factors and combinations of all 
three process parameters. Predicted density is in a good 
agreement with earlier published results [10]. 

Mousa [11] investigated influence of five process 
parameters on shrinkage phenomenon for glass bead-filled 
polyamide 12 samples fabricated by selective laser 
sintering. Application of DOE, Taguchi, S/N analysis and 
ANOVA methods led to the next results: powder base 
thickness has the most significant impact on shrinkage 
effect among such parameters as part bed temperature, laser 
power, powder base thickness, layer cooling time and filler 
ratio [11]. However, relationship between considered 
process parameters was not taken into account. 

In addition, statistical analysis could be used for 
optimization and model development. Singh, et al. [12] 
presented study that is a good example of such application 
of statistical analysis. They optimized values of laser power, 
layer thickness, scan speed, and hatch spacing to achieve the 
best compressive strength without compromising porosity of 
open porous scaffold, which are fabricated from polyamide 
12 by selective laser sintering process [12]. By application 
of ANOVA method, the authors were able to find regression 
model on the one hand, and evaluate significance of each 
parameter and their combination on the other hand. Laser 
power, layer thickness, hatch spacing and interaction 
between hatch spacing and laser power contributes the most 
to the value of compressive strength of scaffolds [12]. Based 
on the resulting regression model from ANOVA analysis, 
Singh, et al. [12] used trust region algorithm for parameters 
optimization. They validated results by fabricating and 
testing human skull, and comparing obtained results with 
the simulated one. 

In addition, it is worth to mention that results from 
statistical analysis are also used to develop new 
mathematical description of powder bed fusion process. 

Fig. 2 Example of process and material properties used in mathematical 
models for analysis of polymer powder bed fusion process [13-15] 
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3. Application of mathematical modeling for analysis of 
PBF AM processes 

To be able to control quality of products produced by 
PPBF, there is a need in understanding of process and 
material behavior, and their interconnections. Therefore, 
mathematical modelling plays important role in finding 
solutions for this goal. However, all researchers emphasize 
the complexity of this task and the following challenges 
were mentioned in different articles [13-19]: 

 
• Lack of understanding which parameters influence as-

built parts 
• Results differ from machine to machine, and from 

material to material, which makes it difficult to 
generalize proposed solutions 

• Lack of information about physical properties for 
polymer powder used by PPBF (e.g., polyamide 12) 

• Scientists need to have deep knowledge about both 
process and material to be able mathematically 
describe different phases in the process 

• Too complex mathematical descriptions that require a 
lot of power, time and money to be solved 
 

To meet these challenges, finite element modelling 
(FEM) and analysis (FEA) is used to find numerical 
solution for developed mathematical models. There are 
three different levels of model complexity: 1D, 2D or 3D 
modeling.  

While one-dimension FE models were created by 
Nelson, et al. [20] to describe mathematically heat transfer 
of PBF process, Singh and Prakash [10] applied two-
dimensional finite element analysis to predict average 
density of parts that can be fabricated by SLS AM process. 
They were also focused on simulation of heat transfer for 
one layer of a build. Two-dimensional model was based on 
such parameters as time, initial temperature of sintering, 
layer thickness, average powder density, laser beam 
diameter and width of raster line. According to authors 
[10], predicted values of average density of part is in a good 
agreement with previously published results. 

Another example of simulation of polymer powder bed 
fusion process but in more complex way, namely 3D 
modeling, were presented by  Bugeda, et al. [16]. The 
authors developed a model for 3D simulation of selective 
laser sintering process of polycarbonate in terms of 
temperature and density distributions. This model consists 
of thermal and sintering submodels, which used as input 
parameters laser beam intensity, radius and beam velocity, 
thermal properties (conductivity of solid material and air), 
rheological properties (initial solid fraction, activation 
energy and viscosity), and geometrical variables (positions 
of the heat source and powder bed dimensions) [16].  

Chen, et al. [21] in their work simulated dynamics of 
bead formation, shape of melt pool and shrinkage 
consolidation using finite element modeling. Among all 
necessary parameters for numerical model solution, authors 
used two types of parameters related to the additive 
manufacturing. The first group of parameters are AM 
machine-related: layer thickness, temperature, laser power, 
beam radius, and reflection coefficient at bed powder 

surface. Another group of parameters is material-related: 
material local density and velocity, conductivity and 
dynamic viscosity. 

Dong, et al. [17] simulated selective sintering process by 
development of 3D finite element model. The main goal 
was set to simulation of temperature and density 
distributions on powder bed, and analysis of effect of 
scanning speed, intensity of the laser, preheating 
temperature and spot size of laser beam on selective 
sintering process. However, polycarbonate powder was 
investigated due to lack of information about physical 
properties of other types of material [17].  Another attempt 
to simulate selective laser sintering process and better 
understand behavior of amorphous polycarbonate by using 
was done by Dong, et al. [13] through development of 3D 
transient finite element model.  

Kumaresan, et al. [14] made the static structural analysis 
of four different scaffold models. Authors applied FEA to 
simulate stress concentration for cubical, shifted cubical, 
spherical and shifted spherical models based on such 
parameters as porosity ranges, pore size, pore 
interconnectivity, load bearing capacity and ease of cell 
penetration [14]. Shifted cubical model appeared to be the 
best model among others.   

Ganci, et al. [15] developed 3D thermal model that 
allowed to predict temperature fields and extension of the 
sintered area in polymer powder bed for polypropylene. 
Josupeit, et al. [18] proposed simplified version of thermal 
finite element model for temperature and heat flow during 
cooling phase. Eshraghi and Das [19] proposed 
micromechanical FEA model of composite 
(polycoprolactone-hydrosyapatite, PCL:HA) scaffolds 
produced by SLS process. Their model was developed 
starting from 1D random sphere packing model through 2D 
micromechanical FEA model resulting in 3D macroscale 
model for different 3D model scaffold designs. The main 
purpose of this research was to find the best material ratio 
of PCL:HA with highest compressive strength. As authors 
reported that previous research on simulation of 
compressive testing of pure polycoprolactone (PCL) had 
disagreement with experimental results (from 67% to 
100%), but their results showed just 26% of error and 
should be further improved.  

As it can be summarized from the literature review 
presented in this chapter, mathematical modeling in 
combination with FEA is widely used to simulate sintering 
process, improve design of the product based on different 
requirements, and in some cases for optimization of value 
of layer thickness, laser power, scan speed, etc. Schematic 
representation of process/material parameters used to 
simulate sintering process and optimize values of 
process/material parameters are presented on Fig. 3. 

However, modelling of the whole sintering process is a 
complex task, and requires information and data on physical 
properties and parameters, which influence is not fully 
described at this moment. Therefore, accuracy of proposed 
model should be further improved and the associated work 
should be more focused on the modelling of pre-heating and 
fabrication of parts including material phase changes.  
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Fig. 3 Schematic representation of relationship between process 
parameters and predicted properties of the part by ML methods [22-30] 

4. Application of Machine Learning for prediction of 
PBF process parameters 

The results of application of machine learning for 
additive manufacturing were reported for the first time in 
literature over 20 years ago [31], and nevertheless limited 
amount of published research studies is available nowadays. 
One can make a few assumptions to explain this situation:  

 
• ML requires a big amount of data for accurate 

performance; 
• expensive experiments (material costs) and therefore 

hard to gather enough data; 
• not all articles were found due to earlier limit of 

standard for AM terminology, and regularly scientists 
use different synonymous for the same process; 

• not all articles have in the tittle or key words “machine 
learning” or its methods but in text it is described to 
what extent ML methods are used for; etc. 

 
Among all found articles focused on machine learning 

application, three dimensional bin-packing problem with 
nonconvex parts having holes and cavities to be fabricated 
by Stereolithography AM process were the first problem 
described using genetic algorithm for optimization of parts 
orientation [31]. According to Garg, et al. [6] review on 
application of machine learning or statistical methods for 
layer-based rapid prototyping, the most attention was paid 
to Fused Deposition Modelling (FDM) AM process until 
year 2014. Although one can argue that their review looks 
into limited amount of types of AM process, and a 
comprehensive review is required.  

However, because this article is focused just on 
application of machine learning methods for polymer 
powder bed fusion process, review of other additive 
manufacturing processes is not included in this article and 
can be found elsewhere. 

4.1. Machine Learning application for polymer powder bed 
fusion AM process 

Many attempts are done to understand behavior of 
various materials suitable for PPBF AM process, and 
modeling was used as a main technique. AM processes are 
simulated and process parameters are optimized by 
developing different mathematical models and then solving 
them numerically (mainly FEM). However, many scientists 
reports that this is complicated task and results depends on 
the precision of finite element model [30].   

Therefore, scientists started using and evaluating 
different machine learning techniques towards modelling 
and simulation of AM processes. Machine learning methods 
and their combinations, which are applied for simulation of 
PPBF AM process at this moment, are described in the 
literature [22-30]: 

 
• Artificial neural network 

o Back propagation neural network 
o Radial basic function neural network based on 

fuzzy clustering and Pseudo-Inverse method 
• Genetic Algorithm 

o Multi-gene genetic programming (MGGP) 
o Non-dominated genetic algorithm (NSGA-II) 
o Multi-objective particle swarm optimizer 

• Ensemble-MGGP that consists of ANN, Bayesian 
classifier and Support Vector Machine algorithm 

• Support Vector Regression (SVR)  
 

Artificail Neural Network (NN), mainly back 
propagation NN, and Genetic Algorithm (GA) are the most 
used machine learning methods for process modelling, 
optimization and prediction of process parameters. For 
instance, Rong-Ji, et al. [27] made an attempt to determine 
the best process parameters to fabricate parts with higher 
level of accuracy. Authors focused on such parameters of 
SLS as the layer thickness, hatch spacing, scanning speed, 
scanning mode, laser power, interval time, and work 
surrounding temperature. To obtain optimum process 
parameters listed above, Rong-Ji, et al. [27] applied 
combination of genetic algorithm and back propagation 
(BP) NN algorithm. In this study results from BPNN was 
used as input parameters for fitness function in GA. Genetic 
algorithm was used as a method to determine optimal 
process parameters based on minimum shrinkage ratio [27]. 
Basic principle of BPNN were well described in [32], and  
Garg, et al. [6] present description of GA.  

Literature review showed that almost all studies used 
from 16-50 samples as an input for both ANN and GA. 
Although, it is well-known that ML methods require a big 
amount of data, hence neural network will be more accurate 
and issues of overfitting the model can be avoided. Thus, 
one can argue that results based on 16 samples are valid, 
and therefore this issue should be taken into account in the 
future.  

However, just one article is among all reviewed that 
developed algorithm based on over 100 samples. Munguía, 
et al. [29] applied neural network to estimate build time and 
relevant costs namely labor, machine costs and overheads. 
Their algorithm was developed on 130 samples, 90 of them 
were used for training, 25 for validation and 15 for testing. 

The schematic representation of relationship between 
process parameters (input) and part’s properties defined by 
application of artificial neural network are presented on Fig. 
3. Fig. 3 shows that shrinkage ratio and density parameters 
are dependent on the more than 10 and 6 process 
parameters, respectively. However, this is based on the 
scientists’ preferences and choice, and more process 
parameters should be invistegated towards variations in 
mechanical and phisycal properties of a part. In addition, 
articles focused on genetic algorithm application is not 
presented on the Fig. 3. Just a few articles [22, 23, 33] are 
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published on application of GA to optimize process 
parameters of polymer powder bed fusion system.  

Garg and Lam [23] made attempt to measure 
environmental aspect of 3-D printing by application of 
ANN, Genetic Programming and Support Vector 
Regression (SVR) methods. However, one can argue that 
mentioning that polymer powder used by SLS process 
reduces waste and saves fuel due to it is biodegradable is 
enough to make statements on environmental aspects of 
sustainability. Their results [23] showed that genetic 
programming performance is better than the other two, 
however how open porosity is connected to measurements 
of environmental aspects is unclear.  

Garg, et al. [22] investigated prediction of open porosity 
for SLS fabricated parts from self-made powder as a mix of 
hydroxyapatite (HA) and polyamide (PA). In addition, they 
applied multi-gene genetic programming algorithm 
(MGGP) and ensemble-MGGP (EN-MGGP).  More 
information about methods and process of powder 
preparation can be found in their article [22]. Results 
showed that layer thickness, laser power and laser scan 
speed has significant impact on open porosity, and EN-
MGGP is better that classical MGGP algorithm. 

Padhye and Deb [33] tested and evaluated different 
methods for multi-objective optimization and multi-criteria 
decision making. They borrowed already described by other 
scientist two multi-objective evolutionary algorithms that 
are non-dominated sorting genetic algorithm (NSGA-II) 
and multi-objective particle swarm optimizer (MOPSO), 
and tested them on 16 different 3D CAD models 
considering surface roughness and build time as main 
parameters that should be minimized [33]. Their results 
showed that there is some shapes that do not have one best 
solution, while for other shapes NSGA-II found better 
optimization solution. However, authors mentioned that this 
work hasn’t been experimentally verified, and should be 
done in the future.  

All presented studies have a few aspects in common. 
First of all, application of machine learning methods is 
motivated by a few reasons: lack of understanding of 
parameters and especially their combinations that may 
influence on engineering properties of a part, and how it can 
be described through mathematical models including 
physical properties of polymers with high pricision. 

Second of all, the small data sets due to high costs of 
powder and expensive production of samples are another 
reason why proposed algorithms may have issues of 
generalization of results.  

5. Proposed conceptual framework on combination of 
Machine Learning and mathematical modeling  

Different techniques on analysis, modeling and 
simulation of polymer powder bed fusion process are 
presented above. However, all of these methods require 
practical experiments first to gather data that later is used 
for analysis, modelling or simulation.  In case of statistical 
analysis, data is used to define either significance of 
process/material parameters related to product quality, or 
regression models that mathematically describes 
relationship between process parameters, their 

interconnection and quality of product or other desired 
output.  

Finite element modeling/analysis is mainly used to 
simulate physical processes that are performed during 
fabrication of parts by PPBF process. This is caused by the 
need in deep understanding of additive manufacturing 
process behavior including material changes during process. 
However, this type of AM process analysis  is very complex 
because many physical laws should be applied to describe 
changes in the process, and thus, amount of coefficients 
used in physical laws very often leads to limitations and 
simplifications of mathematical description due to lack of 
information, especially for newly developed materials.  

Therefore, latest research is focused more on machine 
learning methods that can help to avoid this challenge. 
Machine learning allows optimizing process/material 
parameters by prediction of desired engineering properties 
of product, and the most important part of this type of 
optimization is that input variables are all available 
parameters that can be controlled and changed in AM 
process and material. 

In all three cases, data from practical experiment is used 
either for one of the methods or for combination of two of 
all described methods (statistical analysis with FEM [18], 
statistical analysis with machine learning [34] or FEM and 
machine learning [35]). These combinations already 
showed that application of mixed methods allows 
improvements of quality of final product that are very 
important for production lines in the industry. 

Inspired by  Ma, et al. [36] work, generalized conceptual 
framework on combination of machine learning, statistical 
analysis and mathematical modelling with consideration of 
a particular additive manufacturing process and type of 
material is proposed in this paper as a possible solution of 
abovedescribed challenges and is shown on Fig. 4.  

One of examples, how this combination is beneficial is 
demonstrated below. For instance, Design of Experiments 
can be applied for better understanding of which process 
and material parameters (their combination) have the most 
impact on mechanical properties. Then, results from this 
analysis can be used partly as an input for mathematical 
models to be solved by FEM and partly as an input in 
Machine Learning algorithm. The latter one can be coupled 
with the mathematical model developed for finite element 
analysis as a fitness function in ML techniques. 

Fig. 4 Conceptual framework of combination of statistical analysis, 
mathematical modelling and ML techniques 
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6. Conclusion 

This paper presents review of three methods that are 
used to control and manage quality of parts produced by 
PPBF AM process. Review showed that statistical analysis 
as well as machine learning requires big amount of data to 
be more accurate. In contradiction, mathematical modeling 
requires deep knowledge on both process and material 
physics. Proposed conceptual framework provides an idea 
of how these challenges can be avoided. By the reason that 
all methods use the similar type of input, their combination 
is possible without any additional costs. Another benefit is a 
generalized perspective on all AM processes that was built 
upon PPBF process. In the future work, more attention will 
be paid to practical realization of a proposed framework. 
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