
Encrypted Computation

Tønnes Brekne
Department of Telematics

Norwegian University of Science and Technology

July, 2001

URN:NBN:no-2314

Abstract

The ability to construct software, call it a functional ciphertext, which can be
remotely executed in encrypted form as an entirely self-contained unit, has
the potential for some interesting applications. One such application is the
construction of autonomous mobile agents capable of entering into certain
types of legally binding contracts on behalf of the sender. At a premium
in such circumstances is the ability to protect secret cryptographic keys or
other secret information, which typically is necessary for legally binding
contracts. Also important is the ability to do powerful computations, that
are more than just one-off secure function evaluations.

The problem of constructing computation systems that achieve this,
has been attempted by many to little or no avail. This thesis presents three
similar cryptographic systems that take a step closer to making such en-
crypted software a reality.

First is demonstrated how one can construct mappings from finite au-
tomata, that through iteration can do computations. A stateless storage
construction, called a Turing platform, is defined and it is shown that such
a platform, in conjunction with a functional representation of a finite au-
tomaton, can perform Turing universal computation.

The univariate, multivariate, and parametric ciphers for the encryption
of multivariate mappings are presented and cryptanalyzed. Cryptanalysis
of these ciphers shows that they must be used very carefully, in order to re-
sist cryptanalysis. Entirely new to cryptography is the ability to remotely
and securely re-encrypt functional ciphertexts made with either univariate
or multivariate encryption.

i

URN:NBN:no-2314

ii

Lastly it is shown how the ciphers presented can be applied to the au-
tomaton representations in the form of mappings, to do general encrypted
computation.

Note: many of the novel constructions in this thesis are covered by a
patent application.

URN:NBN:no-2314

Contents

1 Introduction 1
1.1 Previous and Related Work 4

1.1.1 Privacy Homomorphisms 4
1.1.2 Encrypted Computation Using Microprocessors . . . 6
1.1.3 Protocols for Secure Computations 7
1.1.4 Zero-Knowledge Simulation of Boolean Circuits . . . 8
1.1.5 Multiparty Computations Ensuring Privacy of Each

Party’s Input and Correctness of the Result 9
1.1.6 On Hiding Information From an Oracle 9
1.1.7 Computing with Encrypted Functions 10
1.1.8 Non-Interactive Encrypted Computation for NC1 . . 11
1.1.9 One-Round Secure Computation 11
1.1.10 Black Box Fields . 12
1.1.11 Solutions Depending On Specified System Conditions 13
1.1.12 Mobile Code Protection 13
1.1.13 Tamper-resistant Execution of Programs 14

1.2 The Problem . 15

2 Encryptable Representations of Automata 17
2.1 The Lagrange Interpolation of a Mealy Machine 17
2.2 Blum-Shub-Smale Automata 20

2.2.1 Definition of BSS-automata 20
2.2.2 The Computing Endomorphism for BSS Automata . 22

iii

URN:NBN:no-2314

iv CONTENTS

2.2.3 Adapting BSS Automata to a Finite Field 24
2.3 A Register Automaton . 28
2.4 A Tabular Representation . 31

3 Interactivity for Encryptable Automata 33
3.1 Turing Platform . 35
3.2 Halting Ms Computation . 37
3.3 Augmenting and Obfuscating Automata 39

3.3.1 Augmenting Mealy Machines 40
3.3.2 Obfuscation as a Private Randomizer 41

3.4 Interactive Mealy Machines 46
3.5 Interactive BSS’ Automata . 49
3.6 Interactive Register Automata 52

4 Encrypting Functions Using Composition 55
4.1 Privacy Homomorphisms Revisited 55
4.2 Univariate Encryption . 56
4.3 Univariate Key Regeneration 59
4.4 Cryptanalysis of Univariate Encryption 61

4.4.1 Chosen-ciphertext Attack 63
4.4.2 Chosen-plaintext Attack 65
4.4.3 Ciphertext-only Attack 65
4.4.4 Known-plaintext Attack 67
4.4.5 Functional Chosen-ciphertext Attack 67
4.4.6 Functional Chosen-plaintext Attack 70
4.4.7 Functional Ciphertext-only Attack 71
4.4.8 Functional Known-plaintext Attack 75

4.5 Multivariate Encryption . 76
4.6 Multivariate Key Regeneration 79
4.7 Cryptanalysis of Multivariate Encryption 81

4.7.1 Chosen-ciphertext Attack 82
4.7.2 Chosen-plaintext Attack 84
4.7.3 Ciphertext-only Attack 84
4.7.4 Known-plaintext Attack 85

URN:NBN:no-2314

CONTENTS v

4.7.5 Functional Chosen-ciphertext Attack 86
4.7.6 Functional Chosen-plaintext Attack 92
4.7.7 Functional Ciphertext-only Attack 93
4.7.8 Functional Known-Plaintext Attack 95

4.8 Parametric Encryption . 95
4.9 Cryptanalysis of Parametric Encryption 100

4.9.1 Chosen-ciphertext Attack 102
4.9.2 Chosen-plaintext Attack 103
4.9.3 Ciphertext-only Attack 104
4.9.4 Known-plaintext Attack 105
4.9.5 Functional Chosen-ciphertext Attack 105
4.9.6 Functional Chosen-plaintext Attack 107
4.9.7 Functional Ciphertext-only Attack 107
4.9.8 Functional Known-Plaintext Attack 108

5 Computing with Encrypted Automata 109
5.1 Univariate Encryption of Programs 111

5.1.1 M Is a Mealy Or BSS’ Machine 112
5.1.2 M Is a Register Automaton 113

5.2 Multivariate Encryption of Programs 114
5.2.1 M Is a Mealy Or BSS’ Machine 114
5.2.2 M Is a Register Automaton 115

5.3 Results . 116
5.4 Parametric Encryption of Programs 118

6 Conclusions 121

A Notation 127

B Miscellaneous Proofs 131
B.1 A Modified Turing Machine 131
B.2 Notes on the Composition Operation 132
B.3 Keys Versus Functions for Univariate Encryption 135

URN:NBN:no-2314

vi CONTENTS

C Composition Using Function Tables 139
C.1 Complexity Notation . 139
C.2 Vectorized Indices . 143
C.3 Converting Function Tables 150
C.4 Composition Using Function Tables 153

Bibliography 173

URN:NBN:no-2314

Foreword

This dissertation is delivered in partial fulfilment of the requirements of
the Doktor Ingeniør degree the Norwegian University of Science and Tech-
nology. The work contained herein has been performed at the Department
of Telematics, NTNU, Trondheim, under the supervision of Associate Pro-
fessor Svein J. Knapskog.

The work has been supported by a joint grant from the Norwegian
Research Council, Alcatel, Ericsson, Siemens, and Telenor.

Acknowledgements

This entire work was made possible by the academic freedom given me by
my supervisor Svein J. Knapskog. Without it, and a broad interpretation
of the research grant’s area of application, this work might not have seen
the light of day.

The entire basis of this thesis is due to a very unexpected breakthrough
made late in the fall of 1998. This allowed me to significantly narrow my
focus from my original, much more broadly defined thesis subject: secur-
ing autonomous mobile agents.

vii

URN:NBN:no-2314

Chapter 1

Introduction

What is an encrypted computation? To explain this, a good starting point
would perhaps be looking at a black box, where something comes in, and
something else comes out. Assume that someone has to operate the box
in order for it to process the input and produce output. If this someone
can look inside the box, the process by which output is produced might
be deduced. If so, the operator might modify the box to suit his or her
purposes. The operator might also simply copy the box’ design, and start
selling it for profit. If the box’ owner does not want this to occur, the box
must be constructed so that it is practically impossible to deduce how it
produces its output, even if the box is opened. As a part of such a design,
the input or work space must be represented so as to be uninterpretable or
unrecognizable within the box.

Imagine a process in place of the black box, which carries out any given
computation on some host. The process and its work space may be re-
garded as plaintext, readable by any host upon which it executes. If such
a process needs to keep one or more secrets, such as keys for generating
digital signatures, as well as carry out a non-trivial computation using
these secrets, it is necessary to make completely obscure the workings and
work space of the process; particularly if the host is considered malicious.
This obfuscation should preferably be done using a strong cryptosystem

1

URN:NBN:no-2314

2 CHAPTER 1. INTRODUCTION

of some sort. A computation carried out with such obfuscated code may
be called an encrypted computation.

An example of such a process could be a mobile autonomous agent
tasked with committing its sender to a purchase, after a sufficient amount
of information is gathered to carry out the purchase. Such an agent is
effectively a migrating process, that communicates with the hosts it visits.
Each such host typically needs a support environment for such agents,
which could be called the host platform. The agent is sent by some party,
called the sender. An agent of this type can be of two types:

• the agent that is a true migrating process which carries along with it
data, or

• an agent embedded in data, which is supposed to facilitate the use
of the data by the host platform in some manner.

An autonomous mobile agent must be able to compute decision re-
sults, and act on them without communicating with its sender. If the agent
needs to send a message to its host platform, where the contents have been
derived using secret data (as when a digital signature is generated), those
secret data must also be protected during storage and use. If the compu-
tation of a decision result depends on the use of secret data carried along
with the agent’s code, then those data must be protected in storage and
during use. Furthermore, the result of the decision must still be useable
by the agent.

There exist several systems for so-called secure multi-party computa-
tions. Many solve very specific multi-party computation problems. There
is, however, a feature common to almost all of these systems: any given
protocol completion can only compute at most a finite number of func-
tions that require input of fixed size. They are therefore at best limited to
computing in parallell several primitive recursive functions.

Related work has produced systems for evaluating primitively recur-
sive functions. Furthermore, no prior work has been done on how to
construct decision primitives that can be remotely evaluated and subse-
quently remotely used in a self-contained unit without directly revealing

URN:NBN:no-2314

3

the decision or the action taken because of the decision.
This dissertation presents a cryptographic system based on a special

case of a problem proven to be NP -hard, which enables what I term en-
crypted computation. Encrypted computation is not to be mistaken for
secure multi-party computations, which solve similar but not equivalent
problems. The aim of the systems presented herein are to enable Turing-
universal computation such that:

1. the program being executed is kept secret, even though it is executed
on a platform where every aspect of the program’s operation can be
observed by a malicious entity;

2. the data manipulated by the secret program are kept secret, when
the program dictates they be kept secret;

3. the program can read plaintext data if need be, without revealing the
program itself or any secret data produced by it; and

4. the program can output plaintext data if need be, without revealing
the program itself or any secret data still in use by it after the output.

Note in particular the third informal property; it effectively requires the
program to be capable of encrypting plaintext data:

• without revealing key data used for the encryption; and preferably

• without revealing the encryption system used.

Similarly, the fourth property effectively requires the program to be capa-
ble of decrypting ciphertext data:

• without revealing key data used for the decryption; and preferably

• without revealing the decryption system used.

The dissertation presents three very similar systems with the afore-
mentioned properties, each of which may be based on the symbolic com-
position of polynomials, and symbolic function composition using func-
tion tables. Cryptanalyses of the systems and their variants have been car-
ried out. Lastly some open problems have been identified. An appendix

URN:NBN:no-2314

4 CHAPTER 1. INTRODUCTION

contains some composition algorithms for function tables and complexity
analyses.

This was the informal introduction to the problems and solutions pre-
sented in this dissertation. The rest of this chapter will review some re-
lated work done by other researchers, before the problems are stated more
formally.

1.1 Previous and Related Work

Related work has been done in the areas of privacy homomorphisms, zero-
knowledge interactive protocols, secure multiparty computations, black
box computations, copyright protection mechanisms, and hardware de-
vices to support encrypted computation. I will now outline most of the
relevant previous work in roughly chronological order. Formal details will
be included where deemed relevant to illustrate the differences between
previous work and the contents of this dissertation.

1.1.1 Privacy Homomorphisms

The ideas presented in this dissertation are based on a concept that may
be traced back to the article [29] on privacy homomorphisms by Rivest,
Adleman, and Dertouzos.

Let S be a set, and S′ a possibly different set with the same cardinality
as S. Let D : S −→ S′ be bijective. D is the decryption function. Denote
an algebraic system for plaintext operations by

U = (S; f1, . . . , fk; p1, . . . , pl; s1, . . . , sm),

where fi : Sgi −→ S are functions with arity gi, the pi are predicates with
arity hi, and the si are distinct constants. Denote U ’s counterpart for com-
puting with encrypted data by:

C = (S′; f ′1, . . . , f
′
k; p
′
1, . . . , p

′
l; s
′
1, . . . , s

′
m).

The mapping D is called a privacy homomorphism if it satisfies the
following conditions:

URN:NBN:no-2314

1.1. PREVIOUS AND RELATED WORK 5

1. (∀i)(1 ≤ i ≤ k ⇒ (∀(a1, . . . , agi) ∈ S′
gi)(∃c ∈ S′)

(f ′i(a1, . . . , agi) = c⇒ fi(D(a1), . . . , D(agi)) = D(c)))

2. (∀i)(1 ≤ i ≤ l⇒ (∀(a1, . . . , ahi
) ∈ S′hi)

(p′i(a1, . . . , ahi
)⇒ pi(D(a1), . . . , D(ahi

))))

3. (∀i)(1 ≤ i ≤ m⇒ D(s′i) = si)

In order for C and D to be of any use as a protection, the following
additional constraints should be satisfied:

1. D and D−1 are easy to compute.

2. The functions f ′i and predicates p′i in C are efficiently computable.

3. D−1 is a non-expanding cipher or an expanding cipher whose cryp-
totext has a representation only marginally larger than the corre-
sponding plaintext.

4. The operations and predicates in C should not be sufficient to yield
an efficient computation of D.

Additionally, D−1 and D must resist ciphertext only and chosen plaintext
attacks.

If a cryptographical system such as this could have existed, it would
have been applicable for almost all problems which secure multiparty
computations are designed to solve. This is not the case.

Rivest, et. al. [29] point out that no predicate that imposes a total order
on S or S′ is allowable, as this allows the efficient computation of D and
D−1 using binary search and the predicate in question. A consequence of
this is that decision primitives that make use of comparisons of the type
“greater-than”, “greater-than-or-equal-to”, and so on, cannot securely be
encrypted as predicates.

Furthermore, an analysis of some of the example homomorphisms pre-
sented in [29], by Brickell and Yacobi [13] demonstrates that two of the
presented homomorphism schemes are vulnerable to cryptanalysis. Later

URN:NBN:no-2314

6 CHAPTER 1. INTRODUCTION

work by Boneh and Lipton in [11] (summarized below) shows that simi-
lar systems, based on algebraically homomorphic functions, are in general
unattainable for finite fields or extensions of finite fields.

1.1.2 Encrypted Computation Using Microprocessors

There are several patented systems for executing encrypted machine code.
Most of these systems are intended to solve one or more of the following
problems:

• Alice has a program p that Bob wants to use. Alice does not want
Bob to see any of p’s contents, but p must be executable by Bob on
his own computer. It should also be possible for p to use plaintext
data supplied by Bob if necessary.

• Alice has a program p that Bob wants to use. The program p must be
executable on Bob’s computer, and only on Bob’s computer, so that
piracy becomes impractical.

Best describes in [5]–[9] different variants of “crypto-microprocessors”
that execute encrypted machine code. Both the instructions and their oper-
ands are encrypted. These systems depend on the microprocessor having
a block cipher on die to do decryption and encryption. Minor variations
of these systems have been designed by Hampson [21] (the cipher is phys-
ically located outside the CPU), and Lumley [26] (how to construct a CPU
that can execute both encrypted and unencrypted code seamlessly).

The basic principle of these systems is that instructions and operands
fetched from the main memory are decrypted upon arrival in the CPU
prior to processing in the instruction decoder. Similarly, all data being
written from the CPU to the main memory is encrypted before it leaves
the CPU. Best describes different ways of ensuring that more than one
key is used in the encryption/decryption of a program and its workspace,
such that usage of individual encryption keys is minimized. Among other
things his inventions allow the use of addresses in the generation of keys
for individual instruction blocks, partitioning of memory into zones with

URN:NBN:no-2314

1.1. PREVIOUS AND RELATED WORK 7

different associated encryption keys, etc. These inventions manage to
solve both the problems mentioned above. Bob can actually execute a
program which without cryptanalytic work is uninterpretable to him. By
hardwiring processor keys, Alice can also make sure that programs are
only executable on Bob’s CPU, and not any other CPU, unless that CPU
has an identical hard-wired key.

There are some obvious cryptographic weaknesses in these systems,
mainly having to do with the amount of ciphertext available to attackers,
and the fact that hard-wired keys are never changed. Nevertheless, they
might still be sufficient for several applications.

If, however, such a CPU were widespread, and the employed cryp-
tosystem were sufficiently resistant to cryptanalysis, it might be a moot
point, as reading the code would require power analysis or similar phys-
ical measurement during code execution. Thus these systems provide en-
crypted computation under the assumption that:

• the keys stored in the CPU never leave the CPU, and are unreadable,
and

• the CPU has instructions that specify whether input/output is in
plaintext or not.

1.1.3 Protocols for Secure Computations

A lot of work has been done on protocols for secure computations. One of
the first constructions is by Andrew Yao [35]. Yao studies the case where
m people want to compute f(x1, . . . , xm) under the following conditions:

1. each person Pi intially knows only xi, and does not know the value
of any xj for j 6= i

2. f must be computed such that after the computation, person Pi still
knows the exact value of only xi, and does not know the value of
any xj for j 6= i

URN:NBN:no-2314

8 CHAPTER 1. INTRODUCTION

The solution to this problem, detailed in [35], computes functions on the
form f : X1×· · ·×Xm −→ V . Thus the protocol as it stands is only capable
of computing primitive recursive functions.

The protocol implicitly assumes that all parties are in possession of se-
cure computing bases upon which they can carry out their computations.
Therefore the protocol does not tackle the problem of computing on a ma-
licious host. Also, the protocol itself “is” the computation, thus remote
encrypted computation is not possible using this protocol.

Stuart Haber attempts to progress from work by Yao and others, and
constructs a protocol presented in [20], which can be used to simulate in-
teractive Turing machine computations. This protocol, however, still as-
sumes that the users are operating within a trusted computing base, since
the computation itself is carried out within a domain under control of the
user.

1.1.4 Zero-Knowledge Simulation of Boolean Circuits

Brassard and Crepeau [12] present a method of simulating boolean circuits
using zero-knowledge interactive protocols. The security of one version of
the protocol depends on the Quadratic Residuosity Assumption (see [28],
page 99).

It may be summed up as follows:

Bob computes the encrypted value of a function f : {0, 1}k −→
{0, 1} from the encrypted bits of the bit vector used as input.
This is done with the help of Alice using a ZKIP.

An important point is that Bob cannot by himself compute the en-
crypted evaluation from encrypted data supplied by Alice. This effectively
means that this method is still far from enabling encrypted universal Tur-
ing computation.

URN:NBN:no-2314

1.1. PREVIOUS AND RELATED WORK 9

1.1.5 Multiparty Computations Ensuring Privacy of Each Party’s
Input and Correctness of the Result

Chaum, Damgård, and van de Graaf [16] present an alternative to Yao’s
protocols. Their alternative requires less computation, but hinges on the
Quadratic Residuosity Assumption. In any case, the computational ca-
pabilities of this protocol are limited to primitive recursive functions for
any individual protocol execution. This protocol solves a problem similar
to—but not equivalent to—that solved in this dissertation.

1.1.6 On Hiding Information From an Oracle

Abadi, Feigenbaum, and Kilian present in [2] a discussion on computing
with encrypted data. The problem considered is summed up in the arti-
cle’s abstract as follows:

Player A wishes to know the value f(x) for some x but lacks
the power to compute it. Player B has the power to compute f
and is willing to send f(y) to A if she sends him y, for any y.

The point is then that A encrypts x, sends y = E(x) to B, who then com-
putes f(y), returns this result to A, who then infers f(x) from f(y).

If one by inferral means decryption, then Abadi et.al. are effectively
handling a problem very similar to that posed by privacy homomorphisms.
This is similar to—but not equivalent to—the problem discussed in this
dissertation. This dissertation discusses the problem where A knows f
and at most part of x, and needs B in order to compute f(x). A, however,
does not wish B to know how f is computed so f must somehow be en-
crypted and still be able to accept plaintext input and produce cryptotext
output. There is a significant difference between the two problems.

A special case of the problem solved in [2] is studied in [4]. This and
[1] add nothing of importance in the context of this dissertation.

URN:NBN:no-2314

10 CHAPTER 1. INTRODUCTION

1.1.7 Computing with Encrypted Functions

In more recent years, Sander and Tschudin presented in [31] and [32] two
potential candidates for encrypted computation:

1. polynomials encrypted with a particular type of privacy homomor-
phism, and

2. rational function composition, where one rational function is used to
encrypt another.

Only the first scheme, called non-interactive evaluation of encrypted func-
tions, is detailed in their work. Sander and Tschudin present a simple pro-
tocol demonstrating how it could work. The description below is taken
directly from their paper with an insubstantial modification.

1. Alice encrypts f

2. Alice creates a program P (E(f)) which implements E(f)

3. Alice sends P (E(f)) to Bob.

4. Bob executes P (E(f)) using x as argument.

5. Bob sends P (E(f))(x) to Alice.

6. Alice decrypts P (E(f))(x) to obtain f(x).

The encryption itself is done using an additively homomorphic en-
cryption scheme on a ring Zn.

The second scheme is hardly mentioned, and is also the one which
most resembles that presented in this paper. There is a difference, how-
ever, in that Sander and Tschudin do not demonstrate how to achieve any-
thing more than evaluation of primitive recursive functions with any of
their presented schemes.

URN:NBN:no-2314

1.1. PREVIOUS AND RELATED WORK 11

1.1.8 Non-Interactive Encrypted Computation for NC1

In [33], Sander, Young, and Yung study the following problems:

Computing with Encrypted Functions (CEF): Alice has a cir-
cuit C and Bob has an input x. Alice wants to learn C(x). Bob
should compute and learn nothing about Alice’s circuit C ex-
cept its size.

Symmetrically Secure CEF: Alice has a circuit C and Bob has
an input x. Alice wants to learn C(x). Bob should compute
and learn nothing about Alice’s circuit C except its size. Al-
ice should learn nothing about x except what the value C(x)
reveals.

They solve this problem for universal circuits in NC1, in practice circuits
with limited depth and a finite number of inputs and outputs.

Their technique makes use of what they call non-interactive inattentive
evaluation to achieve secure, oblivious evaluation of the circuit. Inatten-
tive evaluation bases itself on rearranging bits in vectors of bits that in
themselves represent encodings of the actual input bits. This makes pos-
sible the use of probabilistic encryption of such encodings to make the
computations effectively oblivious.

A disadvantage is the expansion of the sizes of outputs relative to the
sizes of the inputs. This expansion has worst case O(8d) (for the OR-
function), where d is the depth of the circuit. This means that iterative
application of a circuit is not feasible, as the required storage (and com-
putational effort) will increase exponentially with each computation step.
Thus applications where variations in input and/or the number of compu-
tation steps are natural, are hard to compute securely using this algorithm.

1.1.9 One-Round Secure Computation

In [14], Cachin, Camenisch, Kilian, and Müller present a protocol based on
secure multiparty computations as described by Yao, and all-or-nothing-
disclosure-of-secrets. The presented protocol is capable of handling inputs

URN:NBN:no-2314

12 CHAPTER 1. INTRODUCTION

of variable lengths in a single computation run, as opposed to other work
summarized in this section. The computation itself is constructed as a re-
cursive evaluation cascade of circuits from different host platforms visited
during the run of a hypothesized autonomous mobile agent.

It is important to note that the protected code is not the agent’s code,
but that of the host platforms visited by the agent. Thus Cachin et. al.
have, contrary to their claims, not secured mobile agent code, but rather
that of the hosts visited by the agent. As a matter of fact, what they effec-
tively have is a protocol for a series of secure computations between Al-
ice and a series of hosts, where the functions in question may be publicly
known, and only the inputs are secret. In such a context, the concept of
a mobile agent is irrelevant, except as an unnecessarily complicated mes-
saging platform.

Their protocol does not:

• support autonomous encrypted computation by the agent,

• allow use of encrypted results during the computation, or

• protect any of the agent’s code.

1.1.10 Black Box Fields

Boneh and Lipton study in [11] algebraically homomorphic encryption
schemes in the context of black box fields. A black box field is defined
as a six-tuple (p, n, h, F,G, T) where:

• p is a prime;

• n is a positive integer representing encoding length;

• h : {0, 1}n −→ Fp surjectively maps every n-bit binary string to an
element in Fp;

• F,G : {0, 1}n × {0, 1}n −→ {0, 1}n are functions performing ad-
dition and multiplication such that h(F (x, y)) = h(x) + h(y) and
h(G(x, y)) = h(x)h(y).

URN:NBN:no-2314

1.1. PREVIOUS AND RELATED WORK 13

• T : {0, 1}n × {0, 1}n −→ {true , false }n is a function testing the
equality of two black-box elements, such that T (x, y) = true iff
h(x) = h(y).

An n-bit binary string representing some element x ∈ Fp is written [x] for
the remainder of this subsection. Denote the map sending x to [x] by [].

PROBLEM 1 (BLACK BOX FIELD PROBLEM) Let (p, n, h, F,G, T) be a black
box field for some prime p. Find an algorithm AF,G,T,[] that, given p and
oracles for F , G, T , [], and an element [α] ∈ Fp computes α explicitly.
Formally AF,G,T,[]([α]) = a where a ≡ α(mod p).

Boneh and Lipton present subexponential algorithms that solve this
problem. In effect this corresponds to cryptanalysis of a generalization of
privacy homomorphisms.

1.1.11 Solutions Depending On Specified System Conditions

All of the above attempted solutions are general in that they do not require
any special hardware/software combination and/or use in order to work.
There is also much work on execution of encrypted programs based on
specific hardware/software configurations.

1.1.12 Mobile Code Protection

In chapter 5 in [25], Loureiro presents a scheme to do secure remote func-
tion evaluation, where Alice sends Bob a function f in encrypted form
E(f), which is then applied to an input x given by Bob. This is similar to
the construction by Sander and Tschudin, but is done for functions gen-
erally on the form f : Zm

2 −→ Zn
2 . It also has similar capabilities to the

system proposed in [32].
As with the system of Yao, Sander, and others, it can only compute

a primitive recursive function without Alice’ interaction. Loureiro also
introduces a system for reusing encrypted results of such function evalu-
ations, but they depend on part of the computation occurring within tam-
per resistant hardware.

URN:NBN:no-2314

14 CHAPTER 1. INTRODUCTION

1.1.13 Tamper-resistant Execution of Programs

Aucsmith and Graunke describe in [3] a system for tamper-resistant execu-
tion of programs that operate on secret data. There are certain similarities
with the systems presented in this dissertation. There are also critical dif-
ferences between the inventions in [3] and the systems presented in this
dissertation. The system in [3] requires:

• the existence of at least one “programming instruction block” in plain-
text,

• the existence of at least one “memory cell” in plaintext,

• the recovery of subsequent program instruction plaintexts in order
for an execution to continue, and

• the recovery of the data in plaintext for subsequent program execu-
tion.

The system in effect gradually decrypts a program and its requisite data
as the computation progresses. This is in other words not execution of an
encrypted program, but merely a system for program obfuscation.

Glover describes in [19] how any digital information product can be
protected by enclosing it in a program that does authentication, license
checks etc. before decrypting any part of the product. The system de-
scribes by Glover does not actually achieve encrypted computation, as all
code is successively decrypted by some plaintext code prior to execution.
The system hinges on the assumption that the initialization code will ex-
ecute in protected storage—an assumption which cannot be made for the
purposes for this dissertation.

Maliszewski describes in [27] a system for storing and using secret data
and secret execution code in memory. This system is similar to the system
of tamper resistance by Aucsmith and Graunke in [3]. It decrypts and
encrypts code data without necessarily revealing the “keys” needed. It
does not, however, achieve true encrypted computation, as secrets stored
in memory must be decrypted as they are used, or before they are changed.

URN:NBN:no-2314

1.2. THE PROBLEM 15

1.2 The Problem

The problem consists of the following:

• Expressing programs in an encryptable form. This problem can be
broken into:

– expressing program code or state machines in an encryptable
form, and

– expressing program branching in an encryptable form.

• Encrypting program representations.

• Using encrypted program representations, which can be broken into:

– constructing encrypted program representations such that pro-
gram state can be held secret during execution,

– constructing encrypted program representations such that en-
crypted programs can encrypt received plaintext input without
revealing keys and decrypt ciphertext to plaintext output with-
out revealing keys.

In the following, denote by I the input space, S the state space, and O
the output space. A more formal statement of these problems could be as
follows:

PROBLEM 2 (ENCRYPTABLE REPRESENTATION) Given a classM of auto-
mata, does there exist a class of representations F and a transformation
TF :M−→ F , such that:

1. elements in F can be used directly in computation;

2. TF can be efficiently computed; and

3. TF (M) is encryptable?

URN:NBN:no-2314

16 CHAPTER 1. INTRODUCTION

PROBLEM 3 (PROGRAM ENCRYPTION) Given a class of representations F
satisfying property 1 in problem 2, does there exist a class of tranforma-
tions E : K ×F −→ F , where K is a class of keys, such that:

1. F can be encrypted in part or in its entirety;

2. E can be efficiently computed;

3. elements in K can be efficiently generated; and

4. E(F), F ∈ F , can still be used directly in computation such that:

(a) one or more outputs of F may be encrypted;
(b) one or more inputs of F may be encrypted; and
(c) the state space/work space of F may be encrypted partially or

completely?

PROBLEM 4 ((TURING) UNIVERSAL ENCRYPTED COMPUTATION) Does there
exist at least one element F ∈ F such that E(F) is capable of (Turing)
universal encrypted computation, such that a storage of E(F) bijectively
mappable to a Turing machine’s tape contains only encrypted values?

PROBLEM 5 (STRONG PROGRAM ENCRYPTION) Does there exist a class of
transformations E : K ×F −→ F satisfying problem 3 such that:

1. the encrypted portion of the program representation is strongly en-
crypted;

2. the encrypted portion of the state of the encrypted program is strongly
encrypted;

3. encrypted output is strongly encrypted; and

4. encrypted input is strongly encrypted?

PROBLEM 6 (STRONG (TURING) UNIVERSAL ENCRYPTED COMPUTATION)
Does there exist a class of transformations satisfying problem 5 and an el-
ement F ∈ F such that E(F) also satisfies problem 4?

URN:NBN:no-2314

Chapter 2

Encryptable Representations
of Automata

This chapter details three different ways of representing finite state au-
tomata such that they are amenable to encryption. It also reviews table
representations of finite state automata (FSA).

2.1 The Lagrange Interpolation of a Mealy Machine

A Mealy machine as defined in [22] is a six-tuple M = (Q,Σ,∆, δ, λ, q0),
where Q is the set of states, Σ the input alphabet, ∆ the output alphabet,
δ : Q × Σ −→ Q the state transition function, λ : Q × Σ −→ ∆ the output
function, and q0 the initial state. In some cases the state transition function
and output function may not be defined for certain pairs (q, σ) ∈ Q × Σ.
To ensure generality, δ and λ are defined over a domain D ⊆ Q× Σ.

Fix a Mealy machine M such that Q ⊆ ZS
N , Σ ⊆ ZI

N , and ∆ ⊆ ZO
N , and

S, I , andO are fixed positive integers. N is a fixed prime number or a fixed
power e of a prime number P . If N is a prime number, the elements of ZN

are interpreted as integers, and the addition operation is addition mod-
ulo N , while the multiplication operation is multiplication modulo N . If
N = P e where P is a prime number, and e a positive integer, the elements

17

URN:NBN:no-2314

18 CHAPTER 2. ENCRYPTABLE REPRESENTATIONS OF AUTOMATA

of ZN are interpreted as polynomials over ZP , that are elements in ZP [x]
modulo a fixed irreducible polynomial in ZP [x] of degree e. In such a case
the addition operation is the addition of polynomials modulo p(x). The
multiplication operation is the multiplication of polynomials modulo p(x).
Elements in ZP [x]/p(x) can be isomorphically mapped to ZP e . ZP [x]/p(x)
is also a field, whose multiplicative subgroup has order P e − 1.

Any Mealy machine’s transitions (and output) are effectively defined
by a set of quadruplets (state, input,next-state, output). Fix the domain of
M as D ⊆ Q× Σ ⊆ ZS

N × ZI
N . It is possible to extend δ and λ to mappings

δ̃ : ZS
N × ZI

N −→ ZS
N , and (2.1)

λ̃ : ZS
N × ZI

N −→ ZO
N . (2.2)

Let ~x ∈ ZS
N denote M ’s state, and ~y ∈ ZI

N its input. The components of
the mappings δ̃ and λ̃ may be constructed as polynomials in ZN [~x, ~y] =
ZN [x1, . . . , xS , y1, . . . , yI] as follows:

δ̃(~x, ~y) =
∑

(~ı,~)∈D

ai1(x1) · · · aiS (xS)aj1(y1) · · · ajI (yI)δ(~x, ~y), and (2.3)

λ̃(~x, ~y) =
∑

(~ı,~)∈D

ai1(x1) · · · aiS (xS)aj1(y1) · · · ajI (yI)λ(~x, ~y) (2.4)

where

ai(x) =
∏

k∈ZN ,k 6=i

x− k
i− k

. (2.5)

The functions ai(x) are Lagrange polynomials. For i ∈ ZN ai(x) = 1 iff
x = i and ai(x) = 0 for x ∈ ZN − {i}.

δ̃ and λ̃ are the Lagrange interpolations of δ and λ, respectively. This
mapping is called the computing endomorphism of M . All the |D| function
values of δ are used in an interpolation over all |D| distinct elements in the
domain D. Thus δ̃ is an exact interpolation of δ at all elements for which δ
is defined; the points in D. Similarly, λ̃ is an exact interpolation of λ at all
elements in D.

URN:NBN:no-2314

2.1. THE LAGRANGE INTERPOLATION OF A MEALY MACHINE 19

Denote by M̃ the equivalent machine given by the polynomial inter-
polations (and extensions) of the state transition/output functions defined
for a Mealy machine M .

The mapping (δ, λ) is not defined for arguments outside D, while the
polynomial mapping (δ̃, λ̃) is. Thus (δ̃, λ̃) allows the automaton to be run
on arguments outside D even though (δ, λ) is not originally defined out-
side D. Any elements outside D (and thus in ZS

N × ZI
N −D ⊇ Q×Σ−D)

may be defined for one or more of the following purposes:

1. ensure the “graceful” behaviour of M outside D,

2. make possible a particular mode of halting, and/or

3. increase uncertainty with respect to the original automaton, using
obfuscation as a private random source.

Any such modification or combination of modifications ofM is called aug-
mentation in this document. Denote by M ′ a Mealy machine which may
or may not have been augmented. Denote by δ′, λ′,∆′,Σ′, Q′, D′ the map-
pings and sets forM ′ corresponding to δ, λ,∆,Σ, Q,D, respectively, forM .
The symbol M̃ now denotes the polynomial mapping defined by symbolic
interpolation of M ′. Similarly, δ̃ and λ̃ are henceforth the Lagrange inter-
polations of δ′ and λ′, respectively.

Assume that each element of ZN requires Ss,N units of storage. Under
this assumption, the space complexity of storing the tabular representation
ofM ′ is at least 2|D′|Ss,N , whereD′ is the domain of (δ′, λ′) (state transition
and output functions of M ′). Each computation step using the tabular
definition of M ′ directly can be computed in the time it takes to do two
table lookups.

The polynomial representation has a space complexity of at least 2|Q′×
Σ′|Ss,N , as it is usually dense. If |Q′×Σ′|−|D′| is large, the polynomial may
require significantly more storage than the tabular representation. Each
computation step requires the evaluation of two polynomials with at least
|Q′ ×Σ′| coefficients. Each evaluation requires at least |Q′ ×Σ′| − 1 multi-
plications and additions, or more, depending on the exact representation

URN:NBN:no-2314

20 CHAPTER 2. ENCRYPTABLE REPRESENTATIONS OF AUTOMATA

of Q′ and Σ′ and ∆′ over ZN . Depending on the representation, a tempo-
rary workspace of a size polynomial in N may also be needed to speed
evaluation.

2.2 Blum-Shub-Smale Automata

Blum-Shub-Smale automata (hereafter called BSS automata) are defined
in [10]. They appear to be better suited for some implementation pur-
poses in this dissertation’s context than the more common finite automata
representations. BSS automata are defined generally for rings and fields.
The relevant variant is a BSS automaton over a finite field, primarily ZN

when N is a power of a prime number. Since the automata were origi-
nally designed for infinite rings, a restriction to a finite field ZN , and the
introduction of a sort of “interactivity” necessitates some adjustment of
the original automaton definition.

2.2.1 Definition of BSS-automata

Blum, Shub, and Smale define a theory of computation over rings in [10].
This theory encompasses both finite and infinite automata over some ringR.
This subsection shows that finite BSS automata can be expressed using a
single polynomial mapping, when R is a finite field of order N . As before,
N is a power of a prime number. IfN is a prime number, then the elements
of the field ZN are interpreted as integers modulo N . Otherwise, the ele-
ments of ZN are interpreted as polynomials in ZP [x]/p(x), where N = P e,
and p(x) is a fixed irreducible polynomial over ZP .

DEFINITION 1 (BSS AUTOMATON OVER R) A Blum-Shub-Smale (BSS) au-
tomaton over R with finite-dimensional state space consists of:

• an input space I = RI ,

• an output space O = RO,

• a state space S = RS , and

URN:NBN:no-2314

2.2. BLUM-SHUB-SMALE AUTOMATA 21

• a directed graph with N numbered nodes,

where I , O, S, and N are positive integers.
The graph of the automaton has four node variants, numbered by type

in the list below:

1. Input node (node of type 1)
This node has one outgoing edge to the node numbered β(n) and no
incoming edges. The number of the input node is n. Associated to
this node is the injective input mapping Ĩ : I −→ S. There is only
one input node in any automaton over R.

2. Output node (node of type 2)
These nodes have one incoming edge, and no outgoing edges. The
computation of the automaton is finished when an output node is
reached. Each of these nodes has an output mapping On : S −→ O,
where n is the number of the node in question.

3. Computation node (node of type 3)
Each node of this type, numbered n, has one incoming and one out-
going edge to node number β(n). To each such node is associated
a map gn : S −→ S. gn is rational for R a field, and polynomial
otherwise.

4. Branch node (node of type 4)
Each node number n of this type has one incoming edge, and two
outgoing edges to the nodes numbered β−(n) and β+(n). To each
such node is associated a polynomial or rational (for R a field) map
hn : S −→ R. If R is an ordered ring, the automaton “moves” to
node β−(n) when hn(~x) < 0, ~x ∈ S, and to node number β+(n)
when hn(~x) ≥ 0. If R is not ordered, the automaton “moves” by con-
vention to node β−(n) when hn(~x) = 0 and to node number β+(n)
when hn(~x) 6= 0.

The analogue of the classical finite automaton has now been defined.
The automaton defined above has a bounded “memory”—a state vector

URN:NBN:no-2314

22 CHAPTER 2. ENCRYPTABLE REPRESENTATIONS OF AUTOMATA

with finitely many components. It would be nice to accommodate infinite
automata, but such an automaton is not expressible as a polynomial with
finite dimension and a finite number of monomials.

The dimension of an automaton M is defined as

dimM = max
n
{dim gn,dimhn},

where n ∈ {1, . . . ,N} and N is the number of nodes in the automaton’s
graph. The degree of an automaton M is defined as

degM = max
n
{deg gn,deg hn}.

Since only finite-dimensional BSS automata are considered, it is possible
to simplify some of the notation used in [10], and let xk refer to the kth

component in the state vector.

2.2.2 The Computing Endomorphism for BSS Automata

For each “move”, the automaton executes the following two steps:

1. Compute new state: ~x 7→ gn(~x).

2. Change “location” from node number n to the next node, node num-
ber β(n), or one of β+(n), β−(n) for n a branch node.

A complete and precise description of the state of the automaton may be
written

(n, ~x) ∈ N × S,

where N = {1, . . . ,N} is the set of nodes in the automaton’s graph, and S
is the state space containing the automaton’s “registers”. The space N ×S
is called the full state space.

Instead of considering the state transition function, defined explicitly
as with classical finite automata, the automaton’s computing endomorphism

H : N × S −→ N × S

URN:NBN:no-2314

2.2. BLUM-SHUB-SMALE AUTOMATA 23

is considered. The computing endomorphism is in general defined as

H(n, ~x) = (β(n, χ(~x)), gn(~x)),

where β is the next node function, computing the node the automaton is
to “move” to when gn has been applied to the state vector ~x. The sign
function, denoted by χ(~x), is defined as follows:

χ(~x) =

1, x1 > 0
0, x1 = 0
−1, x1 < 0

(2.6)

The next node function β(n, σ) : N × {−1, 0, 1} −→ N is in general

β(n, σ) =

β(n), n < N and n is not a branch node
β+(n), n is a branch node and σ = 0, 1
β−(n), n is a branch node and σ = −1

(2.7)

One may optionally require β to satisfy β(N) = N as a convention. For
some types of encrypted automaton execution, such convention may be
necessary.

The computing endomorphism is a composition of the sign function χ
and polynomial maps or rational maps. Fix an automaton M over ZN . Let
B = {branch nodes in M}, and for BSS automata define

an(y) =
∏

j 6=n,j∈N

(y − j)
(n− j)

. (2.8)

When y ∈ N , an(y) = 1 iff n = y and an(y) = 0 otherwise. For y /∈ N , an(y)
produces nonsense. Next express β(y, σ) = β(y, χ(~x)) as the polynomial
below

β(y, σ) =
∑

n∈N−B

an(y)β(n) +
1
2
(
−σ2 + σ + 2

)∑
n∈B

an(y)β+(n)

+

(
σ2 − σ

)
2

∑
n∈B

an(y)β−(n). (2.9)

URN:NBN:no-2314

24 CHAPTER 2. ENCRYPTABLE REPRESENTATIONS OF AUTOMATA

The first sum in equation 2.9 computes the next node for any node y that is
not a branch node. The last two sums compute the next node for all branch
nodes y. Note that equation 2.9 gives a polynomial expression for β when
y and σ are given. When computing β(y, σ) for a node, σ = χ(~x) must be
evaluated. Over a finite field it is possible to express χ as a polynomial.

A mapping g(n, ~x) = gn(~x) does all “useful” computation in M . Let

g(y, ~x) =
∑
n∈N

an(y)gn(~x),

where an(y) is defined in equation 2.8. One may in general write

gn(~x) =
(
fn,1(~x)
qn,1(~x)

,
fn,2(~x)
qn,2(~x)

,
fn,3(~x)
qn,3(~x)

, . . .

)
,

where fn,l(~x) and qn,l(~x) are polynomials in general. Since all mappings
considered here are over a finite field, qn,l ≡ 1 for all l. If n is a computation
node, fn,l is a polynomial in ~x with dimension bounded by dimM , and
degree bounded by degM . If n is not a computation node, then qn,l(~x) ≡ 1
and fn,l(~x) is identical to the lth component of ~x for all l. It is then possible
to express g(n, ~x) like this:

g(n, ~x) =
(∑

n∈N an(y)fn,1(~x)∑
n∈N an(y)qn,1(~x)

,

∑
n∈N an(y)fn,2(~x)∑
n∈N an(y)qn,2(~x)

, . . .

)
(2.10)

This gives the explicit expression for the computing endomorphism for M
on the form

H(n, ~x) = (β(n, χ(~x)), g(n, ~x)). (2.11)

At this stage, H is at best piecewise polynomial. The next section intro-
duces some adaptions, enabling the expression of H with one polynomial
mapping. The result of the adaption will be called a BSS’ automaton.

2.2.3 Adapting BSS Automata to a Finite Field

Denote by N the number of nodes in the automaton, and by d the dimen-
sion of the automaton. Set N = ZN , and S = Zd

N , so that the computing

URN:NBN:no-2314

2.2. BLUM-SHUB-SMALE AUTOMATA 25

endomorphism H is a mapping

H : ZN × Zd
N −→ ZN × Zd

N .

Note that the first node will hereafter be numbered “0”. For each node
n ∈ ZN , there is a mapping gn : Zd

N −→ Zd
N , which for N a prime power

is in general componentwise rational. The following restrictions are intro-
duced:

1. gn may only be polynomial.

2. Every node may do branching, and computation. One or more nodes
may be designated “halting” nodes.

3. The dimension of each automaton is the dimension of its state-space
S, which is d. If d > dimS, then restrict S such that d = dimS.

Since these automata are constructed over the finite field ZN , which
contains only non-negative integers, the original branch node given in [10]
becomes meaningless. Instead, the next-node function should have the
form β : N × ZN −→ N. To simplify, require N ⊆ ZN , even though one
could make do with a smaller prime than some N ≥ N for the state-space.
Thus β ∈ ZN [x1, x2].

Since the relation ≥ 0 is trivial over ZN , it is necessary with the more
general set membership relation ∈ K, where K ⊆ (ZN − {0}) = Z∗N , the
multiplicative subgroup of ZN . For K ⊆ Z∗N , define

bK(z) =
∏

i∈Z∗N−K

(z − i)N−1. (2.12)

When z ∈ ZN , bK(z) maps to 1 iff z ∈ K and to 0 otherwise. The function
bK exploits a property of elements of the finite multiplicative subgroup Z∗N
of the finite field ZN , which effectively implies xN−1 ≡ 1(mod N). Since
0 is not in this subgroup, it does not satisfy this property, and thus cannot
be included in K.

URN:NBN:no-2314

26 CHAPTER 2. ENCRYPTABLE REPRESENTATIONS OF AUTOMATA

Let B ⊂ ZN be the set of all branch nodes. Using bK , it becomes possi-
ble to express β using a polynomial:

β(n, x) =
N−1∑
i=0

ai(n)∆(i, x), (2.13)

where

∆(i, x) =
{

n′i, i 6∈ B
bKi(x)n

′
1 + (1− bKi(x))n

′
2, i ∈ B. (2.14)

The constants n′i, n
′
1, and n′2 are all elements in ZN , the node space. This

enables the expression of the computing endomorphism of BSS automata
as a polynomial over ZN .

It is possible, however, to generalize the next-node function. For each
i ∈ B, define Ki = ∪ki

j=1Ki,j such that for a fixed i all Ki,j are mutually
disjoint. Each set Ki,j thus has its own bKi,j defined in the same way as
bK was in equation 2.12. This allows the definition of up to N distinct
branches to nodes ni,j from any given node. The resulting expession for
∆(i, x) is then:

∆(i, x) =
{

n′, i 6∈ B∑ki
j=1 bKi,j (x)ni,j + (1− bKi(x))ni,ki+1, i ∈ B. (2.15)

The constants n′, all ni,ki+1, and all ni,j are elements in ZN , the node space.
This enables the expression of the computing endomorphism of BSS auto-
mata as a polynomial over ZN .

Thus the computing endomorphism for BSS’ automata over ZN is:

H (n, ~x) =

(
β (n, xC) ,

N−1∑
i=0

ai(n)gi (~x)

)
, (2.16)

where 1 ≤ C ≤ S + 1 is fixed.
As a convention, every halting node n is defined such that:

• the complete automaton state remains unchanged (including node
number) β(n, x) = n, and

URN:NBN:no-2314

2.2. BLUM-SHUB-SMALE AUTOMATA 27

• a constant “blank” symbol is output irrespective of input.

The resulting definition of a BSS’ automaton is then:

DEFINITION 2 (BSS’ AUTOMATON) An automaton over a selected finite
field ZN consisting of:

• an input space I = ZI
N ,

• an output space O = ZO
N ,

• a state space S = ZS
N , and

• a directed graph with N numbered nodes,

where I , O, S, and N are positive integers.
Each node in the graph has:

• a computation mapping gn : ZS
N × ZI

N −→ ZS
N × ZO

N which operates
on state and input;

• a next node function β : ZN × ZN −→ ZN which computes the next
node where computation will take place.

Lastly, a component number C ∈ {2, . . . , S + 1} of the state vector is se-
lected for use as the second argument of β.

Because the automaton is defined over a finite field, and it is the evalu-
ation of the computing homomorphism which is important, the resulting
polynomial expression can be reduced such that it has degree no greater
than N − 1 in any variable. Thus space complexity for representation
is bounded by (S + O + 1)N (S+I+1). Time complexity for evaluation,
assuming multiplication is the significant operation, is also bounded by
(S +O + 1)N (S+I+1).

URN:NBN:no-2314

28 CHAPTER 2. ENCRYPTABLE REPRESENTATIONS OF AUTOMATA

2.3 A Register Automaton

The final representation is a representation specially tailored for paramet-
ric encryption as presented in section 4.8. Fix an N = P e such that P is
a prime number, and e a positive integer. If e = 1, the elements of ZN

are interpreted as integers modulo N . If e > 1, the elements of ZN are
interpreted as polynomials in ZP [x]/p(x), where p(x) is a degree e fixed
irreducible polynomial over ZP . Fix also positive integers d and m.

DEFINITION 3 (REGISTER AUTOMATON) A register automaton is a tuple
(P, S, ~C, ~D,R, f, g, h, q,N, d,m, ~H, ~T), where

1. d,m,N > 1 are positive integers;

2. P = {~P~ι}~ι∈I , where I ⊆ Zd
N and ~P~ι ∈ Zd

N is a program in the form
of a series of instructions;

3. ~H is either an index vector in Zd
N such that ∃~P~S ∈ P , or not an ele-

ment of Zd
N ;

4. ~T is either a halting instruction in Zd
N such that at least one element

in P equals ~T , or not an element of Zd
N ;

5. ~C ∈ Zd
N is an instruction pointer;

6. S = {~S~ι} is a set of vectors in Zd
N indexed by vectors in Zd

N , where
each ~S~ι is a storage cell;

7. ~D ∈ Zd
N is a storage pointer;

8. R = (~R1, . . . , ~Rm), each ~Ri ∈ Zd
N , are registers;

9. the next instruction pointer mapping is

f(~R1, . . . , ~Rm, ~P ~C ,
~S ~D,

~C, ~D) : Zd(m+4)
N −→ Zd

N ;

URN:NBN:no-2314

2.3. A REGISTER AUTOMATON 29

10. the next storage pointer mapping is

g(~R1, . . . , ~Rm, ~P~C ,
~S ~D,

~C, ~D) : Zd(m+4)
N −→ Zd

N ;

11. the register transition mapping is

h(~R1, . . . , ~Rm, ~P~C ,
~S ~D,

~C, ~D) : Zd(m+4)
N −→ Zkd

N ,

where k is the number of registers not accepting input from the host
platform, 0 ≤ k ≤ m; and

12. the storage transition mapping is

q(~R1, . . . , ~Rm, ~P ~C ,
~S ~D,

~C, ~D) : Zd(m+4)
N −→ Zd

N .

This type of register automaton can accept input from its host platform in
one or more of the following ways:

• through one or more registers,

• through one or more selected storage cells in the storage space,

• through the initial contents of the storage space, and

• through the initial contents of the instruction vectors.

In the case where one or more registers are used to accept input, the reg-
ister transition mapping is adjusted so that it does not alter the contents
of the registers accepting input from the host platform. The register au-
tomaton may also come with a list of registers and storage locations that
function as outputs to the host platform.

A computation with this type of register automaton is initialized with
the following steps:

• The initial values of ~R1, . . . , ~Rm, ~C, ~D are given. Initial values for one
or more storage cells ~S ~D ∈ S may also be given.

URN:NBN:no-2314

30 CHAPTER 2. ENCRYPTABLE REPRESENTATIONS OF AUTOMATA

• All the elements in P are given.

• ~P ~C and ~S ~D are given.

The computation step of this type of register automaton consists of the
following steps:

1. Compute the next instruction pointer:

~C ′ = f(~R1, . . . , ~Rm, ~P ~C ,
~S ~D,

~C, ~D).

2. Compute the next storage pointer:

~D′ = g(~R1, . . . , ~Rm, ~P~C ,
~S ~D,

~C, ~D).

3. Compute the value to be written to the current storage cell:

~S′ = q(~R1, . . . , ~Rm, ~P ~C ,
~S ~D,

~C, ~D).

4. Compute the register transition mapping:(
~Rj1 , . . . ,

~Rjk

)
= h

(
~R1, . . . , ~Rm, ~P ~C ,

~S ~D,
~C, ~D

)
.

5. Set ~S ~D = ~S′, ~C = ~C ′, and ~D = ~D′.

6. Compute ~P ~C and ~S ~D.

The computation is considered to be ended when either ~C = ~H or when
~P ~C = ~T , or both, or a predefined value is written to a selected, fixed regis-
ter or storage cell.

This register automaton may be implemented using either a polyno-
mial representation, or a function table representation. Thus the mappings
f , g, q, and h are defined either by polynomials or by function tables.

During use, there are no requirements as to when the host platform
changes registers accepting input, and no requirements as to when the

URN:NBN:no-2314

2.4. A TABULAR REPRESENTATION 31

host platform reads from designated ”output” registers/storage cells. This
allows computational work to be minimized.

Denote by ~x the vector consisting of the vectors ~R1, . . . , ~Rm, ~P ~C ,
~S ~D,

~C, ~D
in that order. The closest one can get to a computing endomorphism for a
register automaton is the mapping:

(h(~x), ~Pf(~x), ~Sg(~x), f(~x), g(~x)), (2.17)

which doesn’t take into account changes in storage cells.

2.4 A Tabular Representation

Mealy machines, BSS’ automata, and the register automata defined in this
dissertation may all be represented using polynomials or function tables.
The polynomial representations may only be used whenN = P e, where P
is a prime number, and e is a positive integer. In the case of BSS’ automata,
any valid such automaton must have a corresponding polynomial repre-
sentation as described in section 2.2.3. The function table representations
may be used for any integer N ≥ 2.

In general the function table representation for f : Zm
N −→ Zn

N asso-
ciates with each vector (x1, . . . , xm) ∈ Zm

N a vector (f1, . . . , fn) ∈ Zn
N . For

such a function table to be encryptable, the mapping values of f must be
fully defined for all ~x ∈ Zm

N . Thus an such table stores nNm elements of
ZN , but time complexity for evaluation is that of one table lookup, and so
is O(1).

URN:NBN:no-2314

32 CHAPTER 2. ENCRYPTABLE REPRESENTATIONS OF AUTOMATA

URN:NBN:no-2314

Chapter 3

Interactivity for Encryptable
Automata

All the automata presented in chapter 2 are finite state automata. They
have a finite control that produces output from an internal state and in-
put. Mealy machines produce output with each computation step, while
BSS’ automata, as currently defined, produce output only when the com-
putation is finished. Register automata are capable of both synchronous
and asynchronous output and input in a way different from Mealy and
BSS’ automata.

What is desired is a single mapping, a computing endomorphism, that
can repeatedly be applied to state and input to produce a new state and
output for each computation step. To support a sufficiently general model
of encrypted computation, automata must be able to communicate with
other automata and oracles in their environment. This chapter introduces
the necessary constructions to achieve this.

In general, M ’s computation step may be expressed using a mapping

f : ZS
N × ZI

N −→ ZS
N × ZO

N , (3.1)

where S is the dimension of the internal state space, O the dimension of
the output space, and I the dimension of the input space. The full state

33

URN:NBN:no-2314

34 CHAPTER 3. INTERACTIVITY FOR ENCRYPTABLE AUTOMATA

space ofM is ZS
N ×ZO

N ×ZI
N . Let ~x(i), ~y(i), and ~z(i) denote the state, input,

and output, respectively, of M after i completed computation steps. These
may be written together as follows

(~x(i), ~z(i), ~y(i)) = (x1(i), . . . , xS(i), z1(i), . . . , zO(i), y1(i), . . . , yI(i)), (3.2)

and may be regarded as a snapshot ofM ’s execution. Note that i ≥ 0. As a
convention, f does not use already computed output for further computa-
tion. Furthermore, f does not alter ~y(i), as it is given for each computation
step.

The initial state of M may be given as a vector (~x(0), ~z(0), ~y(0)) ∈
ZS

N × ZO
N × ZI

N = S, where the contents of ~z(0) are unimportant with
respect to the initialization of the automaton. GivenM ’s state after n state-
transitions, ~x(n), and the (n+ 1)st input ~y(n), the next state transition and
output is computed by the mapping:

(f1(~x(n), ~y(n)), . . . , fS(~x(n), ~y(n))︸ ︷︷ ︸
next state

,

fS+1(~x(n), ~y(n)), . . . , fS+I(~x(n), ~y(n))︸ ︷︷ ︸
output

, ~y(n+ 1)︸ ︷︷ ︸
next input

). (3.3)

For a Mealy machine, such a mapping would look like the following:

(δ1(~x(n), ~y(n)), . . . , δS(~x(n), ~y(n))︸ ︷︷ ︸
next state

,

λ1(~x(n), ~y(n)), . . . , λI(~x(n), ~y(n))︸ ︷︷ ︸
output

, ~y(n+ 1)︸ ︷︷ ︸
next input

). (3.4)

The computation is executed by iteratively applying the mapping given in

URN:NBN:no-2314

3.1. TURING PLATFORM 35

equation 3.3. This gives the relations:

~x(n) =

(f1(~x(n− 1), ~y(n− 1)), . . . ,
fS(~x(n− 1), ~y(n− 1))), for n > 0

given for n = 0
(3.5)

~z(n) =

(fS+1(~x(n− 1), ~y(n− 1)), . . . ,
fS+I(~x(n− 1), ~y(n− 1))), for n > 0

given for n = 0
(3.6)

~y(n) is given for n ≥ 0. (3.7)

3.1 Turing Platform

In order to explicity demonstrate that the introduction of interactivity al-
lows universal Turing computation (and later on: encrypted universal Tur-
ing computation), the Turing platform is introduced.

Informally, a Turing platform is storage device T consisting of an infi-
nite tape of storage cells and a stateless finite control. When coupled to
an appropriate finite state automaton, the result should be a Turing-like
automaton, such as that described in appendix B.1. In general, however, it
may be coupled to any oracle. A Turing platform performs computation
steps in order to function as a storage device. Each such computation step
consists of the following actions:

1. read the contents γ of the cell at the finite control;

2. write γ to the input of an oracle;

3. read the symbol α from the output of an oracle;

4. write α to the cell at the finite control; and

5. read the symbol d from the output of an oracle, and move left, right,
or stand still, if possible, depending on the value of d.

A complete computation step for an automaton M interacting with a
Turing platform T thus consists of the following actions:

URN:NBN:no-2314

36 CHAPTER 3. INTERACTIVITY FOR ENCRYPTABLE AUTOMATA

1. T reads the contents γ of the cell at which its finite control is placed;

2. T writes γ to M ’s input;

3. M computes the next state;

4. M computes the output, including the direction of movement;

5. T reads the symbol α from M ’s output;

6. T writes α to the cell at the finite control;

7. T reads the symbol d from the output of an oracle; and

8. T moves left, right, or stands still, if possible, depending on the value
of d.

DEFINITION 4 (TURING PLATFORM) A Turing platform is a storage de-
vice T = (Γ, C,D,W), where Γ is the tape alphabet, and C, D, and W
are mappings defined below. The behavior of a Turing platform is defined
by the mappings

C : N × N −→ Γ, where C’s arguments are the tape position, and the
number of completed computation steps, and C(p, i) is the content
of the tape cell at position, p after i computation steps. All C(p, 0)
are given.

P : N −→ N, P (0) = 0, where P ’s argument is the number of completed
computation steps, and P (i) is the position of the finite control after
i computation steps.

D : N − {0} −→ {−1, 0, 1}, gives the direction in which the tape head
moves in the ith computation step: -1 is left, 0 is no move, 1 is right.
If D(i) = 0 and P (i) = 0, then there is no defined next move as for
Turing machines.

W : N −→ Γ, W (i) is the output to be written to cell number P (i) in the
ith computation step.

URN:NBN:no-2314

3.2. HALTING MS COMPUTATION 37

The index i keeps track of the completed computation steps, and is incre-
mented only after every action of a computation step has been completed.
The mappings W (i) and D(i) are given. The mappings must satisfy

(∀i) (i > 0→
(P (i+ 1) = P (i) +D(i))∧
(C(P (i), i+ 1) = W (i)))

(3.8)

The platform T represents the storage facilities offered M by the host.
The interaction between M and T may be formalized by assigning:

1. W (i) the value of a mapping applied to ~z(i+ 1) (output of M);

2. D(i) the value of a mapping applied to ~z(i+ 1); and

3. assigning part (or all of) ~y(i+1) the value of a mapping of C(P (i), i).

In the following, denote by A|B the projection of set A onto set B.

3.2 Halting Ms Computation

One or more methods of halting a computation may be desirable. There
are at least five ways M ’s computation can be halted:

1. The classical way: M is fed an input of finite length and the computa-
tion halts when M ’s computing endomorphism M̃ has been applied
to the last input ~y(nfinal). BSS’ automata are initially not constructed
for this type of halting.

2. Explicit halting symbol from the host: One or more input symbols
is designated as a halting signal. The definition of such symbols ac-
companies the definition of M . The host stops executing M after M̃
has been applied to one such “signal”.

3. Explicit halting symbol from M : One or more plaintext output sym-
bols is defined as a halting signal. The definition of such symbols
accompanies M̃ . The host does not apply M̃ any further after read-
ing such a symbol in the output.

URN:NBN:no-2314

38 CHAPTER 3. INTERACTIVITY FOR ENCRYPTABLE AUTOMATA

4. Explicit halting state: One or more states/nodes are designated halt-
ing states/nodes. The definition of these states/nodes accompanies
M̃ . The host does not apply M̃ once one of these states/nodes is
entered.

5. Detection of 1-cycles: The computing endomorphism is applied to
the input until ~x(n+1) = ~x(n) and ~z(n+1) = ~z(n+1) and ~y(n+1) 6=
~y(n).

More than one of the methods can be available for the same compu-
tation. Method 1 above imposes no intrinsic cost in time or space. It is
possible to have interaction with the host platform prior to halting, which
can affect the length of the input presented to the automaton.

Method 2 requires the definition of at least |Q| (orN additional branches)
entries, so that the halting signal can be received in any state. Halting re-
quires one computation step. Unfortunately, the host has no explicit way
of knowing whether the computation has actually halted in a proper man-
ner or not.

Method 3 requires the definition of at least one part of one entry in the
automaton’s output function, that is the output signal. Halting requires
one computation step.

Method 4 requires the reservation of k > 0 states/nodes that are halt-
ing states/nodes. Theses states/nodes must be defined such that they are
1-cycles (all transitions from state/node q lead to q), and so cannot do any
meaningful computation. Only one computation step is required to detect
the halt.

Method 5 requires the reservation of k > 0 states/nodes that are halt-
ing states/nodes. Theses states/nodes must be defined such that they are
1-cycles (all transitions from state/node q lead to q), and so cannot do any
meaningful computation. The automaton is assumed to have halted if:

• output is identical for the last d steps, and

• the state/node has remained constant for the last d steps.

URN:NBN:no-2314

3.3. AUGMENTING AND OBFUSCATING AUTOMATA 39

The problem is that if the automaton is coupled to a Turing platform, such
a sequence of transitions may be indistinguishable from a sequence of state
transitions in a non-halting state. In fact, detecting a halted automaton
in this manner is a problem equivalent to the halting problem for Turing
machines. d computation steps are needed to determine whether the state
is assumed to be a halting state or not.

DEFINITION 5 (DEFINED HALT) An automaton has a defined halt if any
host executing the automaton can explicitly detect the end of a computa-
tion by comparing the state to a predefined value, or comparing the output
to a predefined value (methods 3 and 4 above).

DEFINITION 6 (PROPERLY DEFINED AUTOMATON) An automaton with a
finite control is properly defined if it has a defined halt, and its state-
transition and output mappings are defined for all possible combinations
of defined states and defined inputs.

3.3 Augmenting and Obfuscating Automata

There are four reasons why one would want to augment or obfuscate au-
tomata prior to encryption:

1. the automaton is to be encrypted in a tabular representation, and the
tabular from of its initial state transition/output function has unde-
fined entries;

2. one wishes to introduce spurious transitions/output and/or sym-
bols as a private randomizer prior to encryption;

3. the automaton is to be used interactively such that an explicit halting
state is required; and

4. some entries in the tabular representation are incomplete, making
both polynomial and tabular representations impossible.

URN:NBN:no-2314

40 CHAPTER 3. INTERACTIVITY FOR ENCRYPTABLE AUTOMATA

3.3.1 Augmenting Mealy Machines

Section 3.2 highlighted a problem with the classical definition of Mealy
machines—there is no way of explicitly detecting a halt. This does not
have to be a problem if explicit halting signals are employed. Otherwise,
augmentation is a necessity if a host platform is to detect a halt.

This augmentation may be accomplished by adding a new state that is
the halting state of the Mealy machine. To this end, one symbol must be
selected as the “blank” symbol.

Denote by D the domain of the state transition and output mappings
of a fixed Mealy machine M . The augmentation is performed as follows:

1. If M does not have an output symbol B reserved as a ”blank” sym-
bol, add a new symbol B (which cannot equal any symbol in Σ) to
the output alphabet , setting ∆′ = ∆ ∪ {B}, otherwise set ∆′ = ∆ ,
and call the previously reserved ”blank” symbol B.

2. If M has a state q ∈ Q such that for all inputs σ, (q, σ) /∈ D, then call
the state qa and defineQ′ = Q. IfM has a state q ∈ Q such that for all
inputs σ, δ(q, σ) = q, call the state qa, set λ(qa, σ) = σ for all inputs ,
and define Q′ = Q. Otherwise:

(a) add a new state qa, such that Q′ = qa ∪Q,

(b) for every node q 6= qa such that δ(q, σ) = q for all inputs (q, σ),
set δ(q, σ) = qa and λ(q, σ) = σ for every σ ∈ Σ.

3. For every pair (q, σ) ∈ D such that either δ(q, σ) or λ(q, σ) or both
are incompletely defined, set δ(q, σ) = qa, and λ(q, σ) = B.

Q′ is the set of states of M ′. The state qa is henceforth referred to as the
augmentation state. M ′ is the augmented Mealy machine.

EXAMPLE 1 As an example of augmentation, consider a Mealy machine de-
fined by the finite control of a universal Turing machine in [30] with four states
and six tape symbols. The initial definition (with minor cosmetic changes) taken
from [30] is

URN:NBN:no-2314

3.3. AUGMENTING AND OBFUSCATING AUTOMATA 41

State
Input 0 1 2 3

0 (0, 4,−1) (1, 1,−1) (0, 5, 1) (1, 5,−1)
1 (0, 4,−1) (1, 0, 1) (2, 1, 1) (3, 0, 1)
2 (0, 3, 1) (2, 3,−1,) (3, 4, 1) (1, 5,−1)
3 (0, 2,−1) (1, 4, 1) (2, 2, 1) (3, 4, 1)
4 (0, 0, 1) (1, 3,−1) (2,−,−) (3,−,−)
5 (3, 0, 1) (1, 2, 1) (0, 1, 1) (3, 2, 1)

where each table entry is a (next-state, output, move) triple. All entries are par-
tially defined in this automaton. It is not possible to use it directly, however, due
to the transitions that are only partially defined. This alone is reason to augment
the definition. Also, as there is no explicit signalling defined to notify the host-
platform of a halt.

Select as blank output symbol “0,0”. Applying the augmentation described
above results in one new state, and a new definition as follows:

State
Input 0 1 2 3 4

0 (0, 4,−1) (1, 1,−1) (0, 5, 1) (1, 5,−1) (4, 0, 0)
1 (0, 4,−1) (1, 0, 1) (2, 1, 1) (3, 0, 1) (4, 0, 0)
2 (0, 3, 1) (2, 3,−1,) (3, 4, 1) (1, 5,−1) (4, 0, 0)
3 (0, 2,−1) (1, 4, 1) (2, 2, 1) (3, 4, 1) (4, 0, 0)
4 (0, 0, 1) (1, 3,−1) (4, 0, 0) (4, 0, 0) (4, 0, 0)
5 (3, 0, 1) (1, 2, 1) (0, 1, 1) (3, 2, 1) (4, 0, 0).

3.3.2 Obfuscation as a Private Randomizer

It is possible to obfuscate each of the automata types prior to any encryp-
tion. The obfuscations described in this dissertation depend on the N se-
lected for the encryptable representation being such that there exists:

• one or more unused input symbols;

• one or more unused output symbols; and/or

• the possibility of adding states/nodes to the automaton.

URN:NBN:no-2314

42 CHAPTER 3. INTERACTIVITY FOR ENCRYPTABLE AUTOMATA

Some methods of obfuscation, which do not depend on such additions
will also be introduced, although they should not have cryptographical
significance without the additions.

Common for all three automata types is that their encryptable repre-
sentations work with inputs in ZI

N , state data in ZS
N (with register auto-

mata having additional internal storage), and produce outputs in ZO
N . The

representation of inputs, outputs, and state as vectors over ZN is hereafter
referred to as the vectorized representation.

The appropriate selection of N can depend on M itself and the desired
scope for obfuscation. If M ’s encryptable representation is to be tabular,
then it might be even be necessary to introduce additional states, input
symbols, and/or output symbols merely to complete the function table1.

Fix N and an automaton M . If M is a Mealy machine, assume that it
already has been augmented as described in section 3.3.1.

One of the possible obfuscation techniques involves the addition of
dummy states, dummy input symbols, and/or dummy output symbols.
There are at least four ways of doing this:

1. No use is made of any initially redundant states in the definition
of M in its vectorized representation. Undefined entries may be
marked as such, but are left alone. This may only be done if M is
represented using polynomials.

2. Dummy states are added until there are NS defined states. Dummy
input symbols are added until areN I defined symbols. Dummy out-
put symbols are added until there are NO symbols. The exact way
to do this varies with the automaton type:

• M is a Mealy machine: For each pair (q, σ) /∈ D, set δ(q, σ) = qa
and λ(q, σ) = B, where B is the fixed “blank” symbol in the
output alphabet ∆.

1This is not a problem if M is a BSS’ automaton, as it must necessarily have a poly-
nomial representation. Converting the polynomial representation to a complete tabular
representation is trivial.

URN:NBN:no-2314

3.3. AUGMENTING AND OBFUSCATING AUTOMATA 43

• M is a BSS’ automaton: As long as N < N , add another node.
Define the next-node mapping such that the node is an isolated
1-cycle. Define the computation mapping gn for the node so
that it outputs the representation of a “blank” output, irrespec-
tive of input, and does not change the state vector.

• M is a register automaton: if M has initially been given a tab-
ular definition, then it is possible to complete that definition
in a manner similar to that for Mealy machines, otherwise the
nature of the register automaton does not give much scope for
dummy additions of this sort. There is however, the possibility,
of adding dummy storage cells, and dummy program instruc-
tions in the program.

3. Randomized dummy states, inputs, and outputs are added. The fol-
lowing is done until there are no undefined states left:

• M is a Mealy machine:

(a) Select an existing state q at random. Add a new state q′.
(b) For every input σ ∈ Σ, set δ(q′, σ) = δ(q, σ) and λ(q′, σ) =

λ(q, σ).
(c) Optionally: For every pair (q, σ) ∈ D such that δ(q, σ) = q,

randomly set δ(q′, σ) to q or q′ and randomly set δ(q, σ) to q
or q′.

• M is a BSS’ automaton:

(a) Select an existing node n at random. Add a new node n′.
(b) Define the computation mapping gn′ at node n′ to be the

identical to the one at node n.
(c) Optionally: For every state vector–input combination at node

n resulting in the next node being n, randomly define the
next node as being node n or n′.

• M is a register automaton: If the register automaton has an in-
complete tabular definition, it can be completed in a manner
similar to that of Mealy machines. There is not much scope for

URN:NBN:no-2314

44 CHAPTER 3. INTERACTIVITY FOR ENCRYPTABLE AUTOMATA

obfuscation with the polynomial form. Both forms can employ
randomly defined dummy storage cells and program instruc-
tions.

Add dummy input symbols until all possible input representations
are defined (not applicable to register automata given on polyno-
mial form or BSS’ automata). Add dummy output symbols until all
possible input representations are defined (not applicable to register
machines given on polynomial form or BSS’ automata). Next do the
following:

• M is a Mealy machine: For each pair (q, σ), which so far has
undefined next state and output, set δ(q, σ) to a random state,
and λ(q, σ) to a random output symbol.

• M is a register automaton on tabular form: A similar comple-
tion as per Mealy machines can be done for each of the map-
pings used by the register automaton. Also, it is possible to add
randomly defined storage cells and program instructions.

In addition to the above obfuscation, it is possible to permute states,
inputs, and/or outputs. This is feasible only for automata defined by
function tables, thus it applies primarily to (tabularly defined) Mealy ma-
chines, and to some degree to register automata. For Mealy machines de-
note by δ′ and λ′ the post-permutation state-transition and output map-
pings, respectively. For register machines denote by f ′, g′, h′, and q′ the
post-permutation counterparts of f , g, h, and q, respectively. The permu-
tations may be made swap-by-swap or may be pre-computed.

1. Permutation of states:

• M is a Mealy machine: When swapping a state q with another
state q′, set δ′(q, σ) = δ(q′, σ), and δ′(q′, σ) = δ(q, σ).

• M is a register automaton: For this type of obfuscation, the state
can be considered as defined by the vectors R = (~R1, . . . , ~Rm).
When swapping a register stateRwith anotherR′, set f ′(R, . . .) =

URN:NBN:no-2314

3.3. AUGMENTING AND OBFUSCATING AUTOMATA 45

f(R′, . . .) and f ′(R′, . . .) = f(R, . . .), where f(R, . . .) denotes
all function table definitions where the argument “begins” withR.
Analogous assignments are done for g, h, and q. Note, however,
that if some of the registers are reserved as inputs, they must not
be affected by these permutations.

2. Permutation of the input alphabet:

• M is a Mealy machine: When swapping an input symbol σ
with another input symbol σ′, set δ′(q, σ) = δ(q, σ′) for every
q ∈ Q and vice-versa. Similarly, set λ′(q, σ) = λ(q, σ′) for ev-
ery q ∈ Q and vice-versa. The swaps may be made one by one,
or may be entirely precomputed. This type of swapping, how-
ever, must have corresponding swaps in the output alphabet
for any symbols used to represent state information. Changes
must be made known to the host that is to execute any partially
encrypted Mealy machine if they affect inputs to be made by
the host platform. Also, the encrypting party should know how
to use the obfuscated and encrypted program, necessitating the
recording of the permutations employed.

• M is a register automaton: For this type of obfuscation, the in-
put is defined as one or more of the following:

– one or more storage cells in {~S~ι},
– one or more program instructions in P , and/or
– one or more registers inR.

Permutation of inputs in registers is done in the same way as
for state stored in registers. When swapping a program instruc-
tion ~Pa with another instruction ~Pb, set f ′(R, ~Pa, ~S, ~C, ~D) =
f(R, ~Pb, ~S, ~C, ~D), and f ′(R, ~Pb, ~S, ~C, ~D) = f(R, ~Pa, ~S, ~C, ~D). Anal-
ogous changes are made in the mappings g, h, and q as well. In
addition, all ~P~ι ∈ P equal to ~Pa must be set to ~Pb. When swap-
ping an instruction located at ~Ca with another instruction lo-
cated at ~Cb, set f ′(R, ~P ~Ca

, ~S, ~Ca, ~D) = f(R, ~P ~Cb
, ~S, ~Cb, ~D), and

URN:NBN:no-2314

46 CHAPTER 3. INTERACTIVITY FOR ENCRYPTABLE AUTOMATA

f ′(R, ~P ~Cb
, ~S, ~Cb, ~D) = f(R, ~P ~Ca

, ~S, ~Ca, ~D). When swapping a

storage cell located at ~Da with another located at ~Db, both func-
tioning as inputs, set f ′(R, ~P, ~S ~Da

, ~C, ~Da) = f(R, ~P, ~S ~Db
, ~C, ~Db),

and f ′(R, ~P, ~S ~Db
, ~C, ~Db) = f(R, ~P, ~S ~Da

, ~C, ~Da). Analogous chan-
ges, where applicable, are made in the mappings g, h, and q as
well.

3. Permutation of the output alphabet:

• M is a Mealy machine: When swapping an output symbol x
with another output symbol x′, set λ′(q, σ) = x′ for every pair
(q, σ) such that λ(q, σ) = x, and vice versa. Similar restrictions
apply to this operation as with the permutation of the input al-
phabet. Changes must be made known to the host that is to ex-
ecute the partially encrypted Mealy machine if they affect out-
puts to the remote host platform. Also, the encrypting party
should know how to use the obfuscated and encrypted pro-
gram, necessitating the recording the permutations employed.
• M is a register automaton: For this type of obfuscation, the out-

put is defined as one or more of the following:

– one or more storage cells in {~S~ι}, and/or
– one or more registers inR.

Since output via the registers effectively gives allows the host
platform to read some of the machine’s state directly, permuting
these outputs is handled by the permutation of the state data
stored in the registers. When swapping an output symbol ~Sa

with another output symbol ~Sb, for all tuples (R, ~P, ~S, ~C, ~Da)
such that q(R, ~P, ~S, ~C, ~Da) = ~Sa, set q′(R, ~P, ~S, ~C, ~Da) = ~Sb,
and vice-versa.

3.4 Interactive Mealy Machines

There are two principally different levels of interactivity:

URN:NBN:no-2314

3.4. INTERACTIVE MEALY MACHINES 47

1. passive, where only host storage is available to the Mealy machine
in the form of a Turing platform or similar construction; and

2. active, where the Mealy machine sends some or all of its output to
an oracle, and receives some or all of it from the same oracle, and
possibly also has a Turing platform at its disposal.

For Mealy machines, the input is simply the input vector ~y(i), where
the input alphabet is given a representation over ZN , such that |ZI

N | ≥ |Σ|.
Similarly, the output alphabet is given a representation over ZN such that
|ZO

N | ≥ |∆|. The state is given a representation over ZN such that |ZS
N | ≥

|Q|.
For function table representations, it is a requirement that |Σ| = |ZI

N |,
|∆| = |ZO

N |, and |Q| = |ZS
N | prior to any encryption with the methods

detailed in chapter 4.
When this is done, interactivity is defined by:

1. designating one or more components of the output vector as inputs
to some oracle O, and

2. designating one or more components of the input vector as receiving
output from O.

Next, it is necessary to define under which conditions a given Turing
platform may interface with a given Mealy machine. This is done using
the concept of a compatible platform.

DEFINITION 7 (COMPATIBLE PLATFORM (FOR MEALY MACHINES)) A Tur-
ing platform T = (Γ, C, P,D,W) is compatible with a Mealy machine
M = (Q,Σ,∆, δ, λ, q0) if there exists a mapping:

1. from M ’s output alphabet ∆ to Γ,

2. from Γ to a subset of M ’s input alphabet Σ, and

3. from M ’s output alphabet, with a domain of at least three elements,
to {−1, 0, 1}.

URN:NBN:no-2314

48 CHAPTER 3. INTERACTIVITY FOR ENCRYPTABLE AUTOMATA

THEOREM 1 For every Turing machine t, there exists a pair (M,T) such
that M is a Mealy machine, T a compatible Turing platform, M reads all
its input from T ’s tape, and (M,T) simulates t.

PROOF: Fix a Turing machine t = (Q,Σ,Γ, δ, q0, B, F). Fix a Mealy ma-
chine M = (Q,Σ,Γ, δ′, λ′, q0), and a compatible Turing platform T =
(Γ, C,D,W). Define the domain of δ′ as the union of the domain of δ and
F × Σ. For every pair (q, σ) in the domain of δ:

1. set δ′(q, σ) = δ1(q, σ); and

2. set λ(q, σ) = (δ2(q, σ), h(δ3(q, σ))), where h(“right′′) = 1 and
h(“left′′) = −1.

For every pair (q, σ) not in the domain of δ, but in F × Σ:

1. set δ′(q, σ) = q; and

2. set λ(q, σ) = (σ, 0).

Since the Mealy machine does not have a defined set of final states, the
halting action of the Turing machine is simulated by no further movement
of the Turing platform, and no further changes on the tape 2.

COROLLARY 2 For every pair (M,T) such that M is a Mealy machine, T a
compatible Turing platform, and M reads all its input from T ’s tape, there
exists a Turing machine t which simulates (M,T).

PROOF: (M,T) defines what is in this dissertation referred to as a Turing-
like machine (see appendix B.1). By theorem 55, there exists a turing ma-
chine t which simulates the defined Turing-like machine 2.

COROLLARY 3 There exists at least one pair (M,T), such thatM is a Mealy
machine, T is a compatible Turing platform, and (M,T) simulates a uni-
versal Turing machine.

PROOF: by construction. Use the small universal Turing machine con-
structed in [30] with four states and six tape symbols. Augment this ma-
chine as shown in example 1.

By theorem 1, a pair (M,T) simulating this Turing machine exists 2.

URN:NBN:no-2314

3.5. INTERACTIVE BSS’ AUTOMATA 49

3.5 Interactive BSS’ Automata

Originally, BSS’ automata do non-interactive computations on an input in
order to produce an output. Their computations are non-interactive in the
sense that only an initial input is given, and no further input is accepted
during subsequent applications of the computing endomorphism. Some
other finite state automata may be regarded as interactive in the sense that
they accept input with each application of the state transition function. It
might be desirable to introduce this type of “interactivity” into BSS’ auto-
mata over finite fields. This means that there is input for each application
of the computing endomorphism.

In addition, the possibility of allowing output for each application of
the computing endomorphism would be desirable. This may be achieved
by doing the following:

• reserving I components of the state-space for input; as a convention
components xd−I+1, . . . , xd are selected

• reserving O components of the state-space for output; as a conven-
tion components xd−I−O+1, . . . , xd−I are selected

• selecting component xC for use in computing bK , where C is such
that 2 ≤ C ≤ d− I −O.

The resulting revised full state space is thus:

S = ZN × ZS
N × ZO

N × ZI
N = Zd+1

N . (3.9)

Denote by gn(~x)i the ith component of gn(~x). Incorporating the above
modifications places restrictions on gn. Since xd−I+1, . . . , xd now are in-
puts, define gn(·)i = xi for d − I + 1 ≤ i ≤ d, so that inputs are not
modified by computation. In addition, require

∂gn(·)i

∂xj
≡ 0

URN:NBN:no-2314

50 CHAPTER 3. INTERACTIVITY FOR ENCRYPTABLE AUTOMATA

for i ≤ d − I − O and d − I − O + 1 ≤ j ≤ d − I . This ensures that no
computations depend on data already output. Because of this, the com-
puting endomorphism for BSS’ automata will henceforth be considered a
mapping

H : Z1+S+I
N −→ ZS+O

N .

To make the use of input and output consistent, it is required that:

1. All nodes accept input from the last I components in the full state
vector ~x ∈ S.

2. All nodes compute output to components number 1+S+1 through
1 + S +O.

DEFINITION 8 (COMPATIBLE PLATFORM (FOR BSS’ AUTOMATA)) A Turing
platform T = () is compatible with a BSS’ automaton M if:

1. there exists a bijection from a subspace MΓ of M ’s output alphabet
ZO

N to Γ,

2. there exists a mapping from Γ to a subspace of M ’s input alphabet
ZI

N , and

3. there exists a subspace MD of M ’s output alphabet ZO
N which con-

tains at least three elements, and a surjection which maps it to {−1, 0, 1},
and MD ∩MΓ = ~0.

THEOREM 4 For every Turing machine t, there exists a pair (M,T), such
that M is a BSS’ automaton, T a compatible Turing platform, M reads all
its input from T ’s tape, and (M,T) simulates t.

PROOF: Fix a Turing machine t = (Q,Σ,Γ, δ, q0, B, F). Let M be a BSS’
automaton withN = |Q| nodes, and select N , S, and O such that: N ≥ N ,
S = 0 (the node number functions as the state), N ≥ |Σ|, and NO ≥ |Γ|.
Construct a mapping f : Q −→ ZN , a mapping g : Σ −→ ZN , and a map-
ping h : Γ×{L,R} −→ ZO

N ×{−1, 1}. Select C = S+2, so that the number
in the input is used as the second argument of the next node function. For

URN:NBN:no-2314

3.5. INTERACTIVE BSS’ AUTOMATA 51

every pair (q, σ) in the domain of δ set β(f(q), g(σ)) = f(δ1(q, σ)). For each
node f(q), such that q ∈ Q, interpolate gf(q) such that for all pairs (q, σ) in
the domain of δ, gf(q)(g(σ)) = h(δ2(q, σ), δ3(q, σ)). In addition, for every
pair (q, σ) ∈ F × Σ, gf(q) must satisfy gf(q)(g(σ)) = (g(σ), 0). As with the
Mealy machine, the halting is simulated by an infinite loop that does not
change the position of the head of the Turing platform’s finite control, and
that does not change the contents of the tape after a state in F has been
entered 2.

COROLLARY 5 For every pair (M,T), such that M is a BSS’ automaton,
T a compatible Turing platform, and M reads all its input from T ’s tape,
there exists a Turing machine t which simulates (M,T).

PROOF: M can be assumed to have a polynomial definition, and thus has
an associated defined power of a prime N . Construct a table for a finite
control withN ·NS (S being the number of state vector components of M
excluding the node number) columns and N I rows. Apply the comput-
ing endomorphism to compute entries of the form (new state,output,move)
such that output is an alphabet withNO−1 symbols. The remaining output
component of M defines the move. The resulting finite control defines a
Turing-like machine, which by theorem 55 can be simulated by a standard
Turing machine 2.

COROLLARY 6 There exists at least one pair (M,T), such that M is a BSS’
automaton, T is a compatible Turing platform, and (M,T) simulates a uni-
versal Turing machine.

PROOF: by construction. Use the small universal Turing machine con-
structed in [30] with four states and six tape symbols. Although, strictly
speaking, not necessary, it is helpful to augment the definition prior to use,
as a BSS’ automaton requires some defined halting state. Therefore use the
augmented definition produced in example 1.

By theorem 4, a pair (M,T) simulating this Turing machine exists 2.

URN:NBN:no-2314

52 CHAPTER 3. INTERACTIVITY FOR ENCRYPTABLE AUTOMATA

3.6 Interactive Register Automata

Register automata can be made interactive in a number of ways, by mak-
ing registers and/or storage cells available to external entities. For cou-
pling to a Turing platform the following additions are natural:

1. The specification of a register dedicated to output of movement di-
rection, in the form of an integer y such that 0 < y ≤ m, and an
integer z such that 0 < z ≤ d. The integer y indicates the register,
and the integer z, the component in which this movement is stored.

2. The specification of a register dedicated as output to the storage cells
of a Turing platform’s tape.

3. The specification of a register dedicated as input from a Turing plat-
form.

The definition of the register automaton given in section already incor-
porates the elements necessary to facilitate communication with an ora-
cle O. The computation itself only specifies explicitly which cells are used
for input from the host—including both the oracle and any Turing plat-
form at the automaton’s disposal. The oracle may read any storage cell
or any register at will, entirely asynchronously to M ′s execution, as long
as reads are between individual step in the computation. Whether or not
the oracle can interpret the data it reads, is determined by any encryption
template used to encrypt M . The register automaton allows an additional
type of encryption not possible with Mealy or BSS’ automata.

DEFINITION 9 (COMPATIBLE PLATFORM (FOR REGISTER AUTOMATA)) A
Turing platform T = (Γ, C,D,W) is compatible with a Register automaton
M if:

1. there exists a mapping from Zd
N to Γ,

2. there exists a mapping from Γ to Zd
N ,

3. there exists a surjection from Zd
N to {−1, 0, 1}, and

URN:NBN:no-2314

3.6. INTERACTIVE REGISTER AUTOMATA 53

4. M has at least three registers.

THEOREM 7 For every Turing machine t, there exists a pair (M,T), such
that M is a register automaton, T a compatible Turing platform, M reads
all its input from T ’s tape, and (M,T) simulates t.

PROOF: Fix a Turing machine t = (Q,Σ,Γ, δ, q0, B, F). Let M be a register
automaton such that Nd ≥ |Γ|, N (m−3)d ≥ |Q|, Construct a mapping: a :
Q −→ Zds

N , where Zd(s−1)
N < |Q| ≤ Zds

N , a mapping b : Σ −→ Zd
N , a mapping

c : Γ × {L,R} −→ Zd
N × {−1, 1}. The first s registers will store the state,

the next register the output, the register after that the direction, and lastly
the input. Any remaining registers are unused. Define a single instruction
vector ~P~0. Set ~C = ~0. Define the next instruction pointer mapping f to be
the constant ~0 ∈ Zd

N . For every pair (q, σ) in the domain of δ set

(h1(a(q), . . . , b(σ), ~P~C ,
~S ~D,

~C, ~D), . . . ,

hds(a(q), . . . , b(σ), ~P ~C ,
~S ~D,

~C, ~D)) = a(δ1(q, σ)).

For every pair (q, σ) in the domain of δ set

(hds+1(a(q), . . . , b(σ), ~P ~C ,
~S ~D,

~C, ~D), . . . ,

hd(s+2)(a(q), . . . , b(σ), ~P ~C ,
~S ~D,

~C, ~D)) = c(δ2(q, σ), δ3(q, σ)).

For every pair (q, σ) ∈ F × Σ set

(hds+1(a(q), . . . , b(σ), ~P ~C ,
~S ~D,

~C, ~D), . . . ,

hd(s+2)(a(q), . . . , b(σ), ~P ~C ,
~S ~D,

~C, ~D)) = (b(σ), 0),

and set

(h1(a(q), . . . , b(σ), ~P ~C ,
~S ~D,

~C, ~D), . . . ,

hds(a(q), . . . , b(σ), ~P ~C ,
~S ~D,

~C, ~D)) = a(q).

The halting is simulated by an infinite loop, that does not change the tape
contents of the Turing platform, or change the position of the finite control
of the Turing platform 2.

URN:NBN:no-2314

54 CHAPTER 3. INTERACTIVITY FOR ENCRYPTABLE AUTOMATA

COROLLARY 8 For every pair (M,T), such thatM is a register automaton,
T a compatible Turing platform, and M reads all its input from T ’s tape
and does not use its storage cells or program instructions, there exists a
turing machine which simulates (M,T).

PROOF: Fix (M,T). M must have m − k registers reserved for input, and
s + 1 registers used for output and indicating movement. The remain-
ing registers record state. Construct a table with Nd(k−s−1) columns, and
Nd(m−k) rows. Write into each entry a triple (next-state,output,move). The
resulting table defines finite control of a Turing-like machine. By theo-
rem 55, there exists a standard Turing machine which simulates this ma-
chine 2.

COROLLARY 9 There exists at least one pair (M,T), such that M is a reg-
ister automaton, T is a compatible Turing platform, and (M,T) simulates
a universal Turing machine.

PROOF: by construction. Use the small universal Turing machine con-
structed in [30] with four states and six tape symbols. To fix the problem
with the undefined states and lack of defined method of halting, augment
the definition as in example 1.

By theorem 7, a pair (M,T) simulating this Turing machine exists 2.

URN:NBN:no-2314

Chapter 4

Encrypting Functions Using
Composition

This chapter describes three related cryptosystems based on symbolic func-
tion composition. They appear to have fairly similar strengths and weak-
nesses.

4.1 Privacy Homomorphisms Revisited

Privacy homomorphisms were originally conceived as a method of pro-
cessing encrypted data (see [29] and [17]). In more recent times, it has
been proposed as a principle underlying encrypted computation [32].

The mapping doing M ’s computation was given in equation 3.3. De-
note this mapping by H . Since ~y(n) is given by Bob, H is such that

H : ZS+I
N −→ ZS+O

N .

If Alice is to keep her machine, and thus H , secret, along with any state
information, H and ~x must somehow be encrypted, and not appear in
plaintext at Bob’s host. Privacy homomorphisms were originally proposed
as a solution to this problem, based on an encryption function EK and a

55

URN:NBN:no-2314

56 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

decryption function DK . The basic principle for the scenario in this paper
would be to give Bob:

1. the encrypted data a′, b′, . . . of the plaintext data a, b, . . . , where a =
DK(a′) = DK(EK(a)),

2. an encrypted version f ′ of each function f , defined as

f ′(a′, b′, . . .) = EK(f(DK(a′), DK(b′), . . .)), (4.1)

3. an encrypted version p′ of each predicate p, defined as

p′(a′, b′, . . .) iff p(DK(a′), DK(b′), . . .).

Bob would then use this to do Alice’ computation.
The encryption functions EK and DK are then privacy homomorphisms

when such is achieved. Unfortunately, they result in inherently weak cryp-
tographic systems (see [17], page 159). This is due to the fact that Bob is
given an ordering for the encrypted data, and is in addition given the sep-
arate encrypted versions of each operation to be applied to the data.

Instead of giving Bob the separate encrypted versions of the operations
and predicates, it is only necessary to give Bob one encrypted mapping,
which does Alice’ entire computation. A good candidate is a computing
endomorphism likeH . Given such a mapping, Bob does not need to know
of any orderings of the encrypted data, which makes it infeasible to do
searches like the one presented in [17].

Essentially, it boils down to the problem of encrypting mappings using
symbolic function composition. It is unlikely that all function classes are
suited to encryption through composition. The function classes that so far
have been found to suit such encryption are polynomials over finite fields,
and function tables.

4.2 Univariate Encryption

Fix a number N and a positive integer m. Fix a multivariate mapping
f : Zm

N −→ Zn
N , which is the mapping to be encrypted. If N is a power of

URN:NBN:no-2314

4.2. UNIVARIATE ENCRYPTION 57

a prime, f may be represented either as a polynomial in ZN [x1, . . . , xm] or
as a function table indexed by vectors in Zm

N , having values in Zn
N . If N is

not a power of a prime, f is assumed to be represented as a function table.
To encrypt f , select a permutation r : ZN −→ ZN . The permutation

r is assumed to have the same representation as f . The inverse of r, s, is
also represented in the same way as r. There are N pairs (a, b) ∈ ZN ×
ZN defining r. Thus a polynomial of degree N − 1 is sufficient for exact
interpolation of all permutation values, when N is a power of a prime.

In a departure from data encryption, there is no one fixed expression
for a mapping encrypted using symbolic functional composition. As a
matter of fact, the above requirements for privacy homomorphisms are
unnecessarily restrictive, as it is possible to operate with only partially
encrypted data. An example will illustrate this.

EXAMPLE 2 Let h be bivariate, so h ∈ ZN [x1, x2]. Denote by g the polynomial
constructed by encrypting f using symbolic function composition. Note that
y1 = r(x1) and y2 = r(x2), that is: y1 and y2 are encrypted data. Encryption
by composition may then take the following forms:

• g(y1, y2) = r(h(s(y1), s(y2)))

• g(y1, y2) = h(s(y1), s(y2))

• g(y1, y2) = r(h(s(y1), s(y2)))

• g(x1, y2) = r(h(x1, s(y2)))

• g(y1, x2) = r(h(s(y1), x2))

• g(x1, x2) = r(h(x1, x2))

• g(x1, y2) = h(x1, s(y2))

• g(y1, x2) = h(s(y1), x2)

In general, one wishes to encrypt multivariate mappings. For bivariate
polynomial mappings, each component will either be unencrypted or on
one of the forms given in example 2. More generally, one wishes to encrypt

URN:NBN:no-2314

58 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

f in a similar fashion. At most n + m different key pairs can be applied
when encrypting f to produce

E(f) = (r1(f1(sn+1(x1), . . . , sn+m(xm))), . . . ,
rn(fn(sn+1(x1), . . . , sn+m(xm)))), (4.2)

where E(f) is a simplistic and imprecise way of referring to the encrypted
result. Henceforth, a plaintext function f will be called the functional plain-
text. Its encrypted counterpart,E(f), will be called the functional ciphertext.
Plaintext data input to or output by E(f) are called plaintext, and cipher-
text data input to or output byE(f) are called ciphertext. Before encrypting
f , one needs to

• select the subset of variables to be decrypted (as they are assumed to
be encrypted when E(f) is applied), by selecting a subset I ⊆ {n +
1, . . . , n + m} of key indexes corresponding to the variable indexes;
and

• select the subset of mapping components to be encrypted, by select-
ing a subset J ⊆ {1, . . . , n} of key indexes corresponding to the com-
ponent indexes.

The key pairs with indices not in I ∪ J are defined to be the identity map-
ping. The remaining keys with indices in I∪J may or may not be restricted
in some manner. For the purposes of encrypted computation, some typi-
cal restrictions are equality restrictions, requiring certain pairs of keys to
be equal. A consequence is that the (possibly partially) encrypted map-
ping may be tailored to:

• take specified inputs in ciphertext and others in plaintext, and

• produce specified outputs in ciphertext and others in plaintext.

DEFINITION 10 (UNIVARIATE ENCRYPTION TEMPLATE) A tuple
(m,n,N, I, J) where:

• m is the arity (number of variables) of the mappings it applies to,

URN:NBN:no-2314

4.3. UNIVARIATE KEY REGENERATION 59

• n is the number of components of the mappings it applies to,

• N is the order of the ring over which the mappings it applies to are
defined,

• I ⊆ {n+ 1, . . . , n+m} contains the indices of variables to be used in
encrypted form plus n, and

• J ⊆ {1, . . . , n} contains the indices of the mapping components to
be encrypted.

The next step is generating the expressions for the non-identity permu-
tations ri : ZN −→ ZN and computing their inverses si.

The encryption itself is done by symbolically substituting each xi with
sn+i(xi), effectively composing each fj with sn+1, . . . , sn+m. In addition,
each fj is composed with rj . The resulting expression in 4.2 is a mapping
with the same number of components and variables as f originally had. It
also has the same representation, domain, and range as f .

Decryption is done by symbolically substituting each xi in E(f) with
rn+i(xi), effectively composing each fj with sn+1, . . . , sn+m. In addition,
each fj is composed with sj . The resulting expression is

(s1(r1(f1(sn+1(rn+1(x1)), . . . , sn+m(rn+m(xm))))), . . . ,
sn(rn(fn(sn+1(rn+1(x1)), . . . , sn+m(rn+m(xm))))))

= (f1(~x), . . . , fn(~x)) (4.3)

4.3 Univariate Key Regeneration

It is possible to remotely re-encrypt any functional ciphertext. There is the
following result for the cryptosystem presented in the previous section:

THEOREM 10 Fix a mapping f : Zm
N −→ Zn

N , a univariate encryption tem-
plate U such that no key pair is set to the identity, and two sets of key pairs
K = {(ri, si)}n+m

i=1 , andK ′ = {(r′i, s′i)}
n+m
i=1 . Initially, only partyA knowsU ,

URN:NBN:no-2314

60 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

K, and K ′. Key pairs are assumed to be uniformly distributed. Denote by
E(f) the encryption of f with the keys in K, and by E(f)′ the encryption
of f with the keys in K ′. Then the following hold:

1. E(f) can be transformed by a party B into E(f)′.

2. IfB does not know I or J ,B gains no knowledge about f fromE(f)′

and the process of generating it, that could not have been gained
from E(f).

PROOF: Note that U fixes the set I of indexes of the variables that are
decrypted, and the set J of indexes of function components that are en-
crypted. This ensures that previously undecrypted variables and unen-
crypted function components remain thus if A generates both sets of key
pairs correctly.

CLAIM 1: Party A generates the following functions using symbolic
composition:

G = {r′1 ◦ s1, . . . , r′n ◦ sn, rn+1 ◦ s′n+1, . . . , rn+m ◦ s′n+m}.

A then sends toB: m, n,N , andG. B substitutes variable i, xi, inE(f) with
rn+i(s′n+m(xi)). Next, B composes r′j ◦ sj with the jth function component
of E(f). This gives the mapping:

(r′1(s1(r1(f1(sn+1(rn+1(s′n+1(x1))), . . . , sn+m(rn+m(s′n+m(xm))))))), . . . ,
r′n(sn(rn(fn(sn+1(rn+1(s′n+1(x1)))), . . . , sn+m(rn+m(s′n+m(xm)))))))

= (r′1(f1(s′n+1(x1), . . . , s′n+m(xm))), . . . , r′n(fn(s′n+1(x1), . . . , s′n+m(xm))))
= E(f)′. (4.4)

Thus B is capable of generating E(f)′ from E(f).
CLAIM 2: A secret key secrecy system is perfect if for all ciphertexts

E(f), the a posteriori probability that the ciphertext is generated from a
plaintext f , after being read by the cryptanalyst, is equal to the a priori
probability of E(f) being generated from f (see [34]). The a priori proba-
bility that a composition r′i(si()) is generated from (ri, si) (viewing (r′i, s

′
i)

URN:NBN:no-2314

4.4. CRYPTANALYSIS OF UNIVARIATE ENCRYPTION 61

as the encryption key) is (N !)−1. The a posteriori probability that r′i(si())
is generated from (ri, si) is the inverse of the number of possible decom-
positions of r′i ◦ si into two permutations a and b such that a ◦ b = r′i ◦ si.
There are N ! such possible decompositions. To see this, start by selecting
a from all N ! permutations. Then b = a−1 ◦ r′i ◦ si is a solution which
always exists, as the permutation group containing a must also contain
its inverse. Thus a priori and a posteriori probabilities remain equal, and
Shannon’s requirement for perfect secrecy is satisfied. Since all key pairs
are randomly selected using a uniform distribution, the list G does not re-
veal any information about keys in K or K ′. Therefore B learns nothing
about f that could not have been learned from E(f) 2.

4.4 Cryptanalysis of Univariate Encryption

Encryption with univariate functions is characterized by the following:

1. It is an asymmetric secret key algorithm—neither of the keys in a key-
pair (r, s) may be publicized, as knowing one allows the construction
of the other.

2. For every set of key pairs and encryption generated with the key
pairs, there are two types of plaintext and ciphertext:

(a) The mapping f represents one of the types of plaintext, and
E(f) its encrypted equivalent.

(b) The datum ~x represents the other type of plaintext, and (E(f))(~x)
its transformed equivalent. Note that (E(f))(~x) is not necessarily
encrypted, a fact which is not necessarily known by the attacker.

LEMMA 11 Fix a univariate encryption template U . If the cryptanalyst
has the function table representation for ri or si, but not both, for the ith

key pair, the cryptanalyst can find the tabular representation for si or ri,
respectively, in time O(N).

URN:NBN:no-2314

62 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

PROOF: Without loss of generality, assume the cryptanalyst knows ri. If
ri is represented as a function table, it can be considered a list of pairs
(x, ri(x)), where 0 ≤ x < N . An ordered table for si can be generated in
time linear inN using a simple radix sort. For every (x, ri(x)) set y = ri(x)
and si(y) = x 2.

COROLLARY 12 Fix a univariate encryption template U . If the cryptan-
alyst has N distinct (ciphertext,plaintext) pairs for the same encryption
keys, the cryptanalyst can construct a table for both the relevant encryp-
tion and decryption keys, ri and si, in time O(N).

PROOF: ri and si permute ZN . The tabular representations of ri and si can
be constructed using radix sort as described in the proof of lemma 11 2.

Univariate encryption admits attacks from more points than data en-
cryption ciphers. As before, f is called the functional plaintext, E(f) the
functional ciphertext, x the plaintext, and its encrypted equivalent the ci-
phertext. (E(f))(x) is called the transformed plaintext/ciphertext if (E(f))(x)
does not/does encrypt x after transforming it.

There are four new variants of attack directed at the functional cipher-
text:

• functional ciphertext-only attack: the cryptanalyst knows only the en-
crypted function E(f) and the public randomizer if it exists

• functional known-plaintext attack: the cryptanalyst knows some pairs
(f,E(f)) for the current key(s)

• functional chosen-plaintext attack: the cryptanalyst can get functional
ciphertexts for some chosen functional plaintexts

• functional chosen-ciphertext attack: the cryptanalyst can get functional
plaintexts for some chosen function ciphertexts

This cryptanalysis proceeds by first applying approaches from the tra-
ditional four types of cryptanalytic attack, before applying approaches
from the four types above. For the following sections fix a mapping f ,

URN:NBN:no-2314

4.4. CRYPTANALYSIS OF UNIVARIATE ENCRYPTION 63

index sets I and J , and keys ri and si for i ∈ I ∪ J . Let E(f) be fixed by
these parameters on the form given in equation 4.2. The key pairs (ri, si)
may all be the same key pair or may be different.

THEOREM 13 Univariate encryption of a functional plaintext is perfectly
secure only for univariate encryption templates when N > 2, m = 1,
n = 1, both key pairs are randomly and independently selected, and the
functional ciphertext is applied only once.

PROOF: By theorem 59, page 137, there are more plaintexts than possible
keys when N = 2 and n,m ≥ 1, and at least one of n and m is greater
than one. Therefore perfect secrecy is impossible for these cases. When
N = 2, n = 1, and m = 1, there are (Nn)(N

m) = 22 = 4 different pos-
sible plaintexts. There are (N !)n+m = 22 = 4 possible keys. The a priori
probability that a particular f : Z2 −→ Z2 has been encrypted is 1/4. The
two possible permutations over Z2 are x+ 0 and x+ 1. These preserve the
degree of f . Thus an attacker can, using the degree of E(f), narrow the
possibilities down to two, making the a posteriori probability 1/2 for both
the possible degrees of f . Therefore univariant encryption is not perfectly
secure for this case either. By lemma 60, (Nn)(N

m) < (N !)n+m whenever
N > 2, and m = n = 1. Thus only in these cases is it possible to achieve
perfect security for the functional plaintext 2.

4.4.1 Chosen-ciphertext Attack

In their conventional form, chosen-ciphertext attacks require the cryptan-
alyst to be capable of using the key(s) directly. This is also the case for
univariate encryption.

The cryptanalyst can use the key directly without knowing its value1.
Therefore the cryptanalyst can systematically generate pairs (yj , si(yj)),
which can be used to interpolate si and ri, or generate tables for si and ri.

1An example is the attacker who knows the PIN to a smartcard, and thus can use the
keys stored in it without necessarily being able to read the values of those keys.

URN:NBN:no-2314

64 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

THEOREM 14 Fix a univariate encryption template U . If a cryptanalyst
can apply, but not read either ri or si for a selected subset A ⊆ K of all key
pairs K = {(ri, si)}n+m

i=1 applied to encrypt f using univariate encryption
to give E(f), then:

1. all the keys in A are vulnerable,

2. any ciphertext encrypted by a key in A, input to- or output by E(f)
is vulnerable, and

3. any components of E(f) encrypted using keys in A are vulnerable.

PROOF: Without loss of generality, the cryptanalyst begins with ri.
CLAIM 1: The cryptanalyst can now generate pairs (xj , ri(xj)) (with si,

the cryptanalyst generates pairs (si(yj), yj)), which can be used to interpo-
late ri or simply generate a function table for ri as described in the proof
of lemma 11. This can be done for every key belonging to a key pair in A.

CLAIM 2: Follows trivially from the proof of claim 1.
CLAIM 3: The cryptanalyst can recover f or parts of f from E(f) by

symbolically substituting xi with rn+i(xi) for all 1 ≤ i ≤ m and symboli-
cally composing si with E(f)i() for all 1 ≤ i ≤ n. The result is

(s1(r1(f1(sn+1(rn+1(x1)), . . . , sn+m(rn+m(xm))))), . . . ,
sn(rn(fn(sn+1(rn+1(x1)), . . . , sn+m(rn+m(xm))))))

= (f1(~x), . . . , fn(~x)), (4.5)

which is the plaintext expression for f . Alternately, the cryptanalyst can
recover part of f , if A is a proper subset of K 2.

COROLLARY 15 Univariate encryption is vulnerable to chosen-ciphertext
attacks.

PROOF: Any chosen-ciphertext attack must allow the cryptanalyst use of
the key pairs. By theorem 14, any ability to apply all the keys renders at
least part of E(f), generated through univariate encryption, vulnerable 2.

URN:NBN:no-2314

4.4. CRYPTANALYSIS OF UNIVARIATE ENCRYPTION 65

4.4.2 Chosen-plaintext Attack

The results for this type of attack are very similar to those presented in
subsection 4.4.1. The same set of cases and subcases in subsection 4.4.1 ap-
ply directly to the chosen plaintext case, and the analysis is for all practical
purposes identical.

COROLLARY 16 Univariate encryption is vulnerable to chosen-plaintext
attacks.

PROOF: Any chosen-plaintext attack must allow the cryptanalyst use of
the key pairs. By theorem 14, any ability to apply all the keys renders
E(f), generated through univariate encryption, vulnerable 2.

4.4.3 Ciphertext-only Attack

The encryption permutations ri viewed with respect to data encryption,
are monoalphabetic substitution ciphers based on an N -letter alphabet.
Given sufficient amounts of ciphertext and the language of the plaintext
data, cryptanalytic attack based on frequency analysis becomes possible,
provided the plaintext is non-uniformly distributed.

The number of ciphertext bits necessary to attempt effective cryptanal-
ysis can be approximated using the expression for unicity distance by
Shannon [34]:

nu ≈
⌈
H(r)
ρ

⌉
. (4.6)

The number of ciphertext blocks necessary to attempt effective ciphertext-
only cryptanalysis for one unique key pair is thus:

bu =
⌈

H(r)
ρ log2N

⌉
(4.7)

Assuming the random selection has a uniform distribution, the en-
tropy of the key space (for one key pair) is given by

H(r) = N ! · 1
N !
· − log2

(
1
N !

)
= log2(N !) (4.8)

URN:NBN:no-2314

66 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

The key length in bits as a function of N is approximately log:

lr(N) = dlog2NeN, (4.9)

which is more than the entropy computed in equation 4.8. Thus there is
some redundancy in the key itself.

It is possible, to some extent, to avoid frequency-based cryptanalysis
by regularly re-encrypting f using the method outlined in section 4.3. The
re-encryption intervals are decided by computing the maximum number
of times a key can be used before it becomes vulnerable to frequency-based
attacks bu. One then only has to divide bu by the number of times the
same key information is used in any one application of E(f) to see how
many times E(f) can be applied before its keys must be changed. Note
that in order for a scheme such as this to work fully, remotely stored data
encrypted by E(f) must be:

1. re-encrypted, which raises the number of times the new key is ap-
plied, unless it is possible to assume that such a use is carried out
within a trusted computing base, and the new data are not given to
cryptanalysts/attackers;

2. thrown away, to reduce the number of times the new key is applied;
or

3. securely archived along with the old key.

LEMMA 17 If a functional ciphertext E(f), encrypted with univariate en-
cryption, is applied more than bu times without re-encryption, all keys are
vulnerable to ciphertext-only attack.

PROOF: bu is the number of ciphertext blocks needed to mount a ciphertext-
only attack 2.

Thus univariate encryption is vulnerable to this form of encryption
whenever:

• there is a significant amount of redundancy in the plaintext language
of the data, and/or

URN:NBN:no-2314

4.4. CRYPTANALYSIS OF UNIVARIATE ENCRYPTION 67

• E(f) must be applied a large number of times to do its job.

4.4.4 Known-plaintext Attack

Instead of being able to apply the keys, the cryptanalyst merely has access
to a limited number of (ciphertext,plaintext) pairs. If the cryptanalyst pos-
sesses N (ciphertext,plaintext) pairs for a given key pair, that key pair must
be considered compromised (see corollary 12).

If the cryptanalyst possesses k < N (ciphertext,plaintext) pairs for a
given key pair, the cryptanalyst knows k of the N unknowns needed to
find the keys. This can be exploited to attack functional ciphertext. If noth-
ing else, the unicity distance is reduced, so that the number of ciphertext
blocks needed to attempt subsequent ciphertext-only cryptanalysis effec-
tively is:

b′u =
⌈

H(r′)
ρ log2(N − k)

⌉
, (4.10)

where
H(r′) = log2((N − k)!). (4.11)

4.4.5 Functional Chosen-ciphertext Attack

The functional ciphertext is on the form in equation 4.2. Each encryption
key may be written

rj(x) =
N−1∑
i=0

Aj,ix
i. (4.12)

Decryption keys may be written

sj(x) =
N−1∑
i=0

Bj,ix
i. (4.13)

Similarly, the plaintext function may in general be written

fj(x1, . . . , xm) =
N−1∑
i1=0

· · ·
N−1∑
im=0

φj,i1,...,imx
i1
1 . . . x

im
m . (4.14)

URN:NBN:no-2314

68 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

The functional ciphertext E(f) may be written

E(f)j =
N−1∑
i1=0

· · ·
N−1∑
im=0

Φj,i1,...,imx
i1
1 . . . x

im
m . (4.15)

If N is not a power of a prime, E(f) may be represented by two differ-
ent polynomial mappings:

1. the composition product F given in equation 4.2, which has degree
no more than (N − 1)3 in any given variable, no less than 1 in any
given variable, and probably at least (N −1)2 for any given variable;

2. the polynomial mapping G generated by interpolating the tabular
representation of E(f), which has degree no more than N − 1 in any
given variable.

Obviously, F (~x) = G(~x) for all ~x ∈ Zm
N . Thus if N is a power of a prime,

E(F) is represented by the composition of the keys and f reduced mod-
ulo N (see appendix B.2), and otherwise, E(f) is represented by G.

An efficient functional chosen-ciphertext attack is possible. This attack
can also be used when the key pairs have a polynomial representation,
provided the generated ciphertext functions are converted to polynomials
prior to decryption.

THEOREM 18 Fix a univariate encryption template U and key pairs K =
{(ri, si)}n+m

i=1 . If a cryptanalyst can generate plaintexts f from ciphertexts
E(f), that have been generated using U and K, then a functional chosen-
ciphertext attack can be completed in asymptotic time O(NnNm), exclud-
ing any time spent doing polynomial interpolation or converting polyno-
mials to function tables, which is nearly linear in the number of coefficients
nNm needed to represent f using an interpolation polynomial.

PROOF: In this case, the keys and functions are represented using function
tables. To reveal the keys, the constant functions 0, . . . , N − 1 are succes-
sively encrypted using U and K. Fix a constant C ∈ {0, . . . , N −1}. For all

URN:NBN:no-2314

4.4. CRYPTANALYSIS OF UNIVARIATE ENCRYPTION 69

j, 1 ≤ j ≤ n, E(f)j(~x) = C. Thus

E(f)j(rn+1(x1), . . . , rn+m(xm)) = C,

and

fj = sj(E(f)j(rn+1(x1), . . . , rn+m(xm)) = sj(C).

In this way it becomes possible to reconstruct in parallell all the permu-
tations s1, . . . , sn (and thus also r1, . . . , rn) using radix sorting of the type
described in the proof of lemma 11.

The next step is to generate one (or more, depending on the actual arity
of each component) E(f)j such that:

E(f)j(0, . . . , 0) = 0
E(f)j(1, 0, . . . , 0) = 1

...
E(f)j(N − 1, 0, . . . , 0) = N − 1
E(f)j(0, 1, 0, . . . , 0) = 1

...
E(f)j(0, N − 1, 0, . . . , 0) = N − 1

...
E(f)j(0, . . . , 0, 1) = 1

...
E(f)j(0, . . . , 0, N − 1) = N − 1,

(4.16)

and E(f)j(~x) = 0 otherwise. Note that all the arguments in equation 4.16
are encrypted. When the resulting E(f) is decrypted to functional plain-

URN:NBN:no-2314

70 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

text, fj will be defined as follows:

fj(sn+1(1), sn+2(0), . . . , sn+m(0)) = sj(1)
...

fj(sn+1(N − 1), sn+2(0), . . . , sn+m(0)) = sj(N − 1)
fj(sn+1(0), sn+2(1), sn+3(0), . . . , sn+m(0)) = sj(1)

...
fj(sn+1(0), sn+2(N − 1), sn+3(0), . . . , sn+m(0)) = sj(N − 1)

fj(sn+1(0), . . . , sn+m−1(0), sn+m(1)) = sj(1)
...

fj(sn+1(0), . . . , sn+m−1(0), sn+m(N − 1)) = sj(N − 1)

(4.17)

Since s1, . . . , sn are known, the right-hand side can be re-encrypted, so as
to construct pairs (xi, sj(xi)) when n < j ≤ n+m. Using radix sort again,
sorted tables for the remaining keys can be constructed.

Functions encryptable under U are defined by tables with Nn+m en-
tries. Generating the tables for the first half of the attack takes O(nNm+1)
time. Decrypting them also takes O(nNm+1) time. Generating the ta-
ble for the second half of the attack takes O(nNm) time. Decrypting it
takes O(nNm) time. Asymptotic time complexity is therefore roughly
O(nNm+1), which is N times the number of coefficients needed to rep-
resent a interpolation polynomial over Q for any f encryptable under U
2.

COROLLARY 19 Univariate encryption is vulnerable to functional chosen-
ciphertext attack.

PROOF: Follows from theorem 18 2.

4.4.6 Functional Chosen-plaintext Attack

The analysis is similar to that in section 4.4.5, and so is the result.

COROLLARY 20 Univariate encryption is vulnerable to functional chosen-
plaintext attack.

URN:NBN:no-2314

4.4. CRYPTANALYSIS OF UNIVARIATE ENCRYPTION 71

PROOF: Follows from theorem 18 2.

4.4.7 Functional Ciphertext-only Attack

There are two obvious ways to attack a functional ciphertext:

1. direct decomposition of each component of E(f), and/or

2. accumulation of enough functional ciphertexts E(f), E(g), . . . to do
a frequency-based attack to find the key.

The second alternative is practical if:

• the key pairs, along with the univariate encryption template, do not
vary with each encryption, so that accumulation of sufficient amounts
of functional ciphertext encrypted with the same sets of key pairs is
feasible;

• the plaintext language has a fair amount of redundancy, and

• the cryptanalyst is capable of recognizing the plaintext.

This analysis will concentrate on decomposition attacks. Univariate
encryption is based on the assumption that decomposing E(f) to find one
or more of the functions f1, . . . , fn, r1, . . . , rn+m, s1, . . . , sn+m is infeasible.

In its simplest form, the problem is symbolically decomposing the uni-
variate function E(f) = r ◦ f to find f and r. As in section 4.4.5, E(f) is
represented by the reduced composition of f and the relevant keys if N
is a power of a prime, and by G otherwise. Henceforth denote by F the
composition r ◦ f .

In general f is an element of the semigroup K = (ZN [x], ◦), where ◦ is
the symbolic functional composition operation. In general r is an element
in SN , the group of permutations of Z1

N . SN is a sub-semigroup of K. All
elements in SN have inverses, but elements in K − P do not necessarily
have inverses. Furthermore, K is not in general commutative for N > 2.
Also, composition is non-linear, so f◦(ag) is not in general equal to a(f◦g),

URN:NBN:no-2314

72 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

when a is a scalar. Decomposing E(f) thus amounts to searching K and
SN for an f and r, respectively, such that r ◦ f = E(f).

By lemma 57, r ◦ f can always be reduced to degree ≤ N − 1, even
though deg r · deg f ≥ N − 1. Thus only when deg r · deg f ≤ N − 1 does
one have a case of the so-called Univariate Decomposition Problem (here
taken from [18] with cosmetic modifications).

PROBLEM 7 (UNIVARIATE DECOMPOSITION) Given a monic polynomial
f(x) ∈ K[x] of degree n, K a commutative ring with identity, and integers
a and b such that n = ab and a, b > 1, decide if there exists a functional
decomposition g, h of f (such that f = g ◦ h) with deg g = a and deg h = b.
If so, determine the coefficients of g and h.

LEMMA 21 Given E(f) = r ◦ f such that degE(f) ≤ N − 1, and deg r ·
deg f ≤ N − 1, then E(f) is vulnerable to ciphertext-only attacks.

PROOF: Since deg r · deg f ≤ N − 1, decomposing E(f) is an instance of
the Univariate Decomposition (problem 7). Kozen and Landau present
in [23] an algorithm that solves this problem, and decomposes E(f) in
time O((deg r · deg f)2(deg r)) 2.

When deg r · deg f ≥ N , then one has another problem:

DEFINITION 11 (REDUCED POLYNOMIAL) A polynomial f ∈ K̂[x1, . . . , xm],
where K̂ is an algebraic extension of a commutative ring K, is called re-
duced if deg f < |K| for every one of f ’s variables, and there exists another
polynomial f̂ ∈ K[x1, . . . , xm] such that f(~x) = f̂(~x), for all ~x ∈ Km, and
deg f̂ > deg f . f̂ is then reducible to f .

For finite fields, it is always possible to find a reduction of f̂ inK[x1, . . . , xm],
so in those cases, K̂ = K.

With reduced polynomials, instead of problem 7, one faces the follow-
ing problem:

PROBLEM 8 (REDUCED UNIVARIATE DECOMPOSITION) Given a polynomial
f(x) ∈ K̂[x] of degree n and integers r and s such that n < |K| ∈ N and

URN:NBN:no-2314

4.4. CRYPTANALYSIS OF UNIVARIATE ENCRYPTION 73

n ≤ rs and r, s > 1, decide if there exist two polynomials g, h ∈ K[x] such
that deg g = r, deg h = s, and g(h(x)) is reducible to f . If so, determine the
coefficients of g and h.

Next, consider another case, where E(f) = (f ◦ (s1, . . . , sm), such that
all deg f · deg si ≤ N − 1 when 1 ≤ i ≤ m. This is an instance of Simple
Multivariate Decomposition (again taken from [18] with cosmetic modifi-
cations).

PROBLEM 9 (SIMPLE MULTIVARIATE DECOMPOSITION) Given a monic mul-
tivariate polynomial f(~x) ∈ K[~x] with degi f = n for every variable num-
ber i, integers a > 1 and b such that ab = n, decide if there exists a func-
tional decomposition g, h of f with g univariate, deg g = a, and degi h = b
for every variable number i. If so, determine the coefficients of g and h.

LEMMA 22 Given E(f) = f ◦ (s1, . . . , sm) such that degE(f) ≤ N − 1,
deg f = a in all variables, and deg si · deg f ≤ N − 1 when 1 ≤ i ≤ m, then
E(f) is vulnerable to ciphertext-only attacks.

PROOF: Since deg si · deg f ≤ N − 1 when 1 ≤ i ≤ m, and deg f = a
in all variables, decomposing E(f) is an instance of Simple Multivariate
Decomposition (problem 9). Dickerson presents in chapter 2 in [18] an al-
gorithm with asymptotic time complexityO(N3m) for decomposing E(f),
where Nm is the number of coefficients in f ’s representation. For fields
ZN supporting fast Fourier transforms, Dickerson presents an algorithm
with asymptotic time complexity O((deg si)mNm log2(deg f)) 2.

Again, if deg f · max{deg si} > degE(f) in any variable, then one is
not dealing with a case of problem 9 anymore. Indeed, the algorithms
that solve problems 7 and 9 use the leading coefficients of the unreduced
composition. If a reduction has occurred, then for either of the special
cases above: r◦f and f ◦(s1, . . . , sm), there are at least deg r ·deg f−N and
(deg f)

∑m
i=1(deg si) − Nm coefficients “missing”, respectively. Therefore

one also has the following problem:

URN:NBN:no-2314

74 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

PROBLEM 10 (REDUCED SIMPLE MULTIVARIATE DECOMPOSITION) Given
a multivariate polynomial f(~x) ∈ K̂[~x], ~x ∈ Km, having degree no greater
than n in any variable and degree equal to n in at least one variable (and
total degree ≤ mn), and given integers r and s such that n ≤ rs and r > 1,
decide if there exist polynomial mappings g ∈ K[y], and h ∈ K[~x] such
that deg g = r, h has degree no greater than s in any of its variables, and
degree equal to s for at least one variable, and such that g(h(~x)) is re-
ducible to f . If so, determine the coefficients of g and h.

The following relation holds for all j such that 1 ≤ j ≤ n and all vectors
(i1, . . . , im) ∈ Zm

N :

Φj,i1,...,im ≡ ψj,~ι(Aj,0, . . . , Aj,N−1, Bn+1,0, . . . , Bn+1,N−1, . . . ,

Bn+m,0, . . . , Bn+m,N−1, φj,0,...,0, . . . , φj,N−1,...,N−1)(mod N). (4.18)

Each ψj,~ι is the general expression for the reduced composition of rj with
fj , which in turn may have one or more of its variables substituted by the
corresponding sk. There are thus nNm equations with nNm + (n + m)N
independent unknowns. The (n+m)N unknowns are the encryption keys.
Since

deg rj · deg fj · deg si ≥ N,

many of the equivalences of the form in equation 4.18 will be non-linear in
many variables. The non-linearity implies that solution techniques such as
Gauss elimination do not work. Furthermore, since there may be as many
as (n+m)N degrees of freedom in the solution, it is not necessarily “sim-
ply” a question of solving the system of equations. A brute force search
must check N (nNm)N !(n+m) possible solutions for all nNm equations.

LEMMA 23 Given a functional compositionE(f) : Zm
N −→ Zn

N with coeffi-
cients Φj,~ι satisfying equation 4.18, with at least one encryption key having
degree N ≥ 5 for at least one of its variables, there does not exist any ana-
lytic method of solving the system of equations resulting from the relation
in equation 4.18.

URN:NBN:no-2314

4.4. CRYPTANALYSIS OF UNIVARIATE ENCRYPTION 75

PROOF: The univariate encryption of a function has the form:

∑
Aj,i

(∑
φj,~ι(sn+1(x1))i1 · · · (sn+m(xm))im

)i
(4.19)

for each component j. For ~ι = ~0, (sn+k(xk))ik = 1, since all ik = 0, 1 ≤ k ≤
m. Thus at least n variables, φj,~0, will exist in at least 6 possible powers:
0, . . . , 5. Thus there is at least one equation for each of these n variables
of degree 5. By Abel’s well-known result on polynomial equations, there
are no general analytic solutions for polynomial equations having degree
5 or more in at least one variable. Thus there does not exist any general
analytic method of arriving at a solution for the system of equations 2.

The consequence of lemma 23 is that attacks on E(f) that make use of
the system of equations can only attempt direct solution by approximate
methods (or brute force-type methods).

4.4.8 Functional Known-plaintext Attack

The cryptanalyst has access to a limited number of (functional ciphertext,
functional plaintext) pairs.

LEMMA 24 Fix a univariate encryption template U and a set of key pairs
K = {(ri, si)}n+m

i=1 . If the cryptanalyst knows one (functional ciphertext,functional
plaintext) pair for U andK, then any other functional ciphertextE(f) gen-
erated using U and K is compromised.

PROOF: The knowledge of the single pair gives knowledge of the coef-
ficients Φj,~ι and φj,~ι for all j ∈ {1, . . . , n} and ~ι ∈ Zm

N . Setting up the
relations given by equation 4.18 results in a system of up to nNm equa-
tions with (n +m)N independent unknowns, and 2(n +m)N dependent
unknowns. Thus at most 2(n + m)N equations need solving to reveal all
the keys in K 2.

Thus univariate encryption is vulnerable to functional known-plaintext
attack.

URN:NBN:no-2314

76 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

4.5 Multivariate Encryption

Fix an integer N > 1, positive integers m and n, a positive integer k ≤
n + m, and a mapping f : Zm

N −→ Zn
N . Select a sequence of integers

{ci}ki=1 such that
∑k

i=1 ci = n + m and
∑l

i=1 ci = n for some l < k. The
selected series of integers ci represents “block sizes” used in encryption
and decryption. Thus one may encrypt directly a mapping:

f(x1, . . . , xm) = (f1(x1, . . . , xm), . . . , fn(x1, . . . , xm)) (4.20)

over the integers modulo N . If N is a power of a prime, f , along with any
encryption and decryption keys, may be represented either using func-
tion tables or polynomials over ZN . Otherwise, f is assumed to be repre-
sented using a function table. The variables of f are grouped into blocks
of cl+1, cl+2, . . . , ck variables as follows:

x1, . . . , xcl+1︸ ︷︷ ︸
block l + 1

, xcl+1+1, . . . , xcl+1+cl+2︸ ︷︷ ︸
block l + 2

, . . . , xm−ck+1, . . . , xm︸ ︷︷ ︸
block k

. (4.21)

For notational convenience, write the ith variable block as ~wi.
The components of f are grouped into blocks of c1-, c2-,. . . , cl-component

mappings as follows:

(f1, . . . , fc1︸ ︷︷ ︸
block 1

, fc1+1, . . . , fc1+c2︸ ︷︷ ︸
block 2

, . . . , fn−cl+1, . . . , fn︸ ︷︷ ︸
block l

). (4.22)

Some examples will hopefully make this easier to grasp.

EXAMPLE 3 Assume f ∈ ZN [x1, x2, x3, x4]5. The mapping f can also be written
(f1, f2, f3, f4, f5). One possible grouping of function components is:

(f1, f2, f3︸ ︷︷ ︸
block 1

, f4, f5︸ ︷︷ ︸
block 2

). (4.23)

Another possible grouping of function components is:

(f1, f2︸ ︷︷ ︸
block 1

, f3, f4︸ ︷︷ ︸
block 2

, f5︸︷︷︸
block 3

). (4.24)

URN:NBN:no-2314

4.5. MULTIVARIATE ENCRYPTION 77

More combinations are possible, and by selecting only one component per block,
subsequent multivariate encryption of the function components is effectively re-
duced to univariate encryption. Similarly, one possible grouping of variables,
assuming the first grouping of function components above is selected, is:

x1, x2︸ ︷︷ ︸
block 3

, x3, x4︸ ︷︷ ︸
block 4

. (4.25)

If the second grouping of function components had been selected, the above
grouping of variables would have looked like this:

x1, x2︸ ︷︷ ︸
block 4

, x3, x4︸ ︷︷ ︸
block 5

.

As with the function components, other groupings are possible, and ultimately, it
is possible to reduce multivariate decryption of variables to univariate decryption
of variables, by only assigning one variable to each variable block.

The general expression for a partially encrypted mapping f , encrypted
using key triples generated according to a multivariate encryption tem-
plate, is then:

E(f) = (r1(f1(sl+1(~w1), . . . , sk(~wk−l)), . . . ,
fc1(sl+1(~w1), . . . , sk(~wk−l))), . . . ,

rl(fn−cl+1(sl+1(~w1), . . . , sk(~wk−l)), . . . ,
fn(sl+1(~w1), . . . , sk(~wk−l))))

(4.26)

where E(f) once again is a simplistic (and imprecise) way of writing the
encryption.

EXAMPLE 4 Continuing example 3, multivariate encryption of f , using the group-
ing given in equation 4.23 would in general be on the form

E(f) = r1(f1(s3(~w1), s4(~w2)), f2(s3(~w1), s4(~w2)), f3(s3(~w1), s4(~w2))),
r2(f4(s3(~w1), s4(~w2)), f5(s3(~w1), s4(~w2))). (4.27)

Assuming that s4 and r2 are the identity mappings, equation 4.27 may be written:

E(f) = r1(f1(s3(~w1), ~w2), f2(s3(~w1), ~w2), f3(s3(~w1), ~w2)),
f4(s3(~w1), ~w2), f5(s3(~w1), ~w2)). (4.28)

URN:NBN:no-2314

78 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

Before encrypting f , one needs to

• define the sizes of the variable blocks;

• define the sizes of the function component blocks;

• select the subset of variable blocks to be encrypted, by selecting a
subset I ⊆ {l + 1, . . . , k} of the variable block indices; and

• select the subset of mapping component blocks to be encrypted, by
selecting a subset J ⊆ {1, . . . , l} of the component block indices.

Denote by Fj the jth mapping component block fa, . . . , fa+cj−1, where a =∑j−1
i=1 ci. Since block sizes may vary, keys are defined by triples, and for

the sake of simplicity, these triples will henceforth be referred to as “key
triples”. Key triples whose indices are not in I ∪ J are defined to be the
identity mapping. The remaining key triples with indices in I ∪ J may or
may not be restricted in some manner, as for univariate encryption. This
allows the tailoring of the encrypted mapping to:

• take specified blocks of inputs in ciphertext and other blocks in plain-
text, and

• produce specified blocks of outputs in ciphertext and other blocks in
plaintext.

DEFINITION 12 (MULTIVARIATE ENCRYPTION TEMPLATE) A tuple
(m,n,N, I, J, k, {ci}ki=1) where:

• m is the arity (number of variables) of the mappings it applies to,

• n is the number of components of the mappings it applies to,

• N is the order of the ring over which the mappings it applies to are
defined,

• I ⊆ {l + 1, . . . , k} contains the indices of blocks of variables to be
used in encrypted form, l is such that

∑l
i=1 ci = n,

URN:NBN:no-2314

4.6. MULTIVARIATE KEY REGENERATION 79

• J ⊆ {1, . . . , l} contains the indices of the blocks of mapping compo-
nents to be encrypted,

• k is the total number of blocks defined, and

• {ci}ki=1 are the block sizes themselves.

The next step is generating the non-identity permutations ri : Zci
N −→

Zci
N , and computing their inverses. Thus ri = (ri,1, . . . , ri,ci) and si =

(si,1, . . . , si,ci).
The encryption is done by symbolically substituting each ~wi with sl+i(~wi),

effectively composing each fj with sl+1, . . . , sk. In addition, each block of
function components (fa, . . . , fa+cj−1), a =

∑j−1
i=1 ci is composed with rj .

The resulting expression in equation 4.26 is a mapping with the same num-
ber of components and variables as f originally had. It also has the same
representation, domain, and range as f .

Decryption is done by symbolically substituting each ~wi in E(f) with
rl+i(~wi), effectively composing each fj with rl+1, . . . , rk. In addition, each
block of function components (Fa, . . . , Fa+cj−1), a =

∑j−1
i=1 ci is composed

with sj . The resulting expression is:

(s1(r1(f1(sl+1(rl+1(~w1)), . . . , sk(rk(~wk−l))), . . . ,
fc1(sl+1(rl+1(~w1)), . . . , sk(rk(~wk−l))))), . . . ,

sl(rl(fn−cl+1(sl+1(rl+1(~w1)), . . . , sk(rk(~wk−l))), . . . ,
fn(sl+1(rl+1(~w1)), . . . , sk(rk(~wk−l))))))
= (f1(~x), . . . , fn(~x)) = f.

(4.29)

4.6 Multivariate Key Regeneration

It is possible to remotely re-encrypt any functional ciphertext. There is the
following result for the cryptosystem presented in the previous section:

THEOREM 25 Fix a mapping f : Zm
N −→ Zn

N , a multivariate encryption
template U such that no key triple is set to the identity, and two sets of
key triples K = {(ci, ri, si)}n+m

i=1 , and K ′ = {(ci, r′i, s′i)}
n+m
i=1 . Initially, only

URN:NBN:no-2314

80 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

party A knows U , K, and K ′. Key triples are assumed to be uniformly
distributed. Denote by E(f) the encryption of f with the keys in K, and
by E(f)′ the encryption of f with the keys in K ′. Then the following hold:

1. E(f) can be transformed by a party B into E(f)′.

2. IfB does not know I or J ,B gains no knowledge about f fromE(f)′

and the process of generating it, that could not have been gained
from E(f).

PROOF: Note that U fixes the set I of indices of the blocks of variables that
are decrypted, and the set J of indices of the blocks of function compo-
nents that are encrypted. This ensures that previously undecrypted vari-
ables and unencrypted function components remain thus if A generates
both sets of key triples correctly.

CLAIM 1: Party A generates the following functions using symbolic
composition:

G = {r′1 ◦ s1, . . . , r′n ◦ sn, rn+1 ◦ s′n+1, . . . , rn+m ◦ s′n+m}.

A then sends to B: m, n, N , k, {ci}ki=1, and G. B substitutes variable block
number i, ~wi−l, in E(f) with ri(s′i(~wi−1)). Next, B composes r′j ◦ sj with
the jth function component of E(f). This gives the mapping:

(r′1(s1(r1(f1(sl+1(rl+1(s′l+1(~w1))), . . . , sk(rk(s′k(~wk−l)))), . . . ,
fc1(sl+1(rl+1(s′l+1(~w1))), . . . , sk(rk(s′k(~wk−l))))))), . . . ,

r′l(sl(rl(fn−cl+1(sl+1(rl+1(s′l+1(~w1), . . . , sk(rk(s′k(~wk−l)))), . . . ,
fn(sl+1(rl+1(s′l+1(~w1), . . . , sk(rk(s′k(~wk−l)))))))

= (r′1(f1(s′l+1(~w1), . . . , s′k(~wk−l))), . . . ,
r′l(fl(s′l+1(~w1), . . . , s′k(~wk−l)))) = E(f)′.

(4.30)

Thus B is capable of generating E(f)′ from E(f).
CLAIM 2: A secret key secrecy system is perfect if for all ciphertexts

E(f), the a posteriori probability that the ciphertext is generated from a
plaintext f , after being read by the cryptanalyst, is equal to the a priori

URN:NBN:no-2314

4.7. CRYPTANALYSIS OF MULTIVARIATE ENCRYPTION 81

probability of E(f) being generated from f (see [34]). The a priori proba-
bility that a composition r′i ◦ si is generated from (ri, si) (viewing (r′i, s

′
i) as

the encryption key) is ((N ci)!)−1. The a posteriori probability that r′i ◦ si is
generated from (ri, si) is the inverse of the number of possible decomposi-
tions of r′i ◦ si into two permutations a and b such that a ◦ b = r′i ◦ si. There
are (N ci)! such possible decompositions. To see this, start by selecting a
from all (N ci)! permutations. Then b = a−1 ◦ r′i ◦ si is a solution which
always exists, as the permutation group containing a must also contain
its inverse. Thus a priori and a posteriori probabilities remain equal, and
Shannon’s requirement for perfect secrecy is satisfied. Since all key pairs
are randomly selected using a uniform distribution, the list G does not re-
veal any information about keys in K or K ′. Therefore B learns nothing
about f that could not have been learned from E(f) 2.

4.7 Cryptanalysis of Multivariate Encryption

Multivariate encryption shares some of the characteristics of univariate
encryption:

1. It is an asymmetric secret key algorithm—neither of the keys ri or si

in a key triple (ci, ri, si) may be publicized, as knowing one allows
the construction of the other. Furthermore, keeping ci secret may in
some cases make cryptanalysis more difficult.

2. For every set of key triples and encryption generated with the key
triples, there are two types of plaintext and ciphertext:

(a) The mapping f represents one of the types of plaintext, and
E(f) its encrypted equivalent.

(b) The datum ~x represents the other type of plaintext, and (E(f))(~x)
its transformed equivalent.

LEMMA 26 Fix a multivariate encryption template U . If the cryptanalyst
has the function table representation for ri or si, but not both, for the ith

URN:NBN:no-2314

82 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

key triple, the cryptanalyst can find the tabular representation for si or ri,
respectively, in time O(N ci).

PROOF: Without loss of generality, assume the cryptanalyst knows ri. If
ri is represented as a function table, it can be considered a list of pairs
(~w, ri(~w)), where ~w ∈ Zci

N . An ordered table for si can be generated in time
linear in N ci using a simple radix sort. For every (~w, ri(~w)) set ~v = ri(~w)
and si(~v) = ~w 2.

COROLLARY 27 Fix a multivariate encryption template U . If the cryptan-
alyst has N ci distinct (ciphertext,plaintext) pairs for the same encryption
keys, the cryptanalyst can construct a table for both the relevant encryp-
tion and decryption keys, ri and si, in time O(N ci).

PROOF: ri and si permute Zci
N . The tabular representations of ri and si can

be constructed using radix sort as described in the proof of lemma 26 2.

LEMMA 28 Multivariate encryption is perfectly secure when N > 2, c1 =
n, c2 = m, (k = 2, l = 1) both key triples are randomly and independently
selected, and the functional ciphertext is applied only once.

PROOF: Follows from lemma 60 2.
There exist (Nn)(N

m) different mappings f : Zm
N −→ Zn

N . At most∏k
i=1(N

ci)! pairs of keys may be independently selected per encryption.
For only one application, multivariate encryption has the possibility of
being perfectly secure as long as (Nn)(N

m) ≤
∏k

i=1(N
ci)!. This is more

general than the result in the lemma above, but is not a particularly useful
result.

4.7.1 Chosen-ciphertext Attack

As with univariate encryption, chosen-ciphertext attacks require the crypt-
analyst to be capable of using the key(s) directly.

As with univariate encryption, the cryptanalyst can use the key di-
rectly without knowing its value. In this case, the cryptanalyst can system-
atically generate pairs (~wi, si(~wi)), which can be used to interpolate si and

URN:NBN:no-2314

4.7. CRYPTANALYSIS OF MULTIVARIATE ENCRYPTION 83

ri. This attack is efficient enough, as N and the ci’s cannot be extremely
large, lest the legitimate user be swamped by the system’s complexity.

THEOREM 29 Fix a multivariate encryption template U . If a cryptanalyst
can apply, but not read either ri or si for a selected subset A ⊆ K of all
key triples K = {(ci, ri, si)}ki=1 applied to encrypt f using multivariate
encryption to give E(f), then:

1. all the keys in A are vulnerable,

2. any ciphertext encrypted by a key in A, input to- or output by E(f)
is vulnerable, and

3. any components of E(f) encrypted using keys in A are vulnerable.

PROOF: Without loss of generality, the cryptanalyst begins with ri.
CLAIM 1: The cryptanalyst can now generate pairs (~wj , ri(~wj)) (with

si, the cryptanalyst generates pairs (si(~wj), ~wj)), which can be used to in-
terpolate ri or simply generate a function table for ri. This can be done for
every key belonging to a key triple in A.

CLAIM 2: Follows trivially from the proof of claim 1.
CLAIM 3: The cryptanalyst can recover f , or parts of f from E(f) by

symbolically substituting ~wi with rl+i(~wi) for all 1 ≤ i ≤ k− l and symbol-
ically composing si with function component block i for all 1 ≤ i ≤ l. The
result is

(s1(r1(f1(sl+1(rl+1(~w1)), . . . , sk(rk(~wk−l))))), . . . ,
sl(rl(fl(sl+1(rl+1(~w1)), . . . , sk(rk(~wk−l))))))

= (f1(~x), . . . , fn(~x)), (4.31)

which is the plaintext expression for f . Alternately, the cryptanalyst can
recover part of f , if A is a proper subset of K 2.

COROLLARY 30 Multivariate encryption is vulnerable to chosen-ciphertext
attacks.

URN:NBN:no-2314

84 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

PROOF: Any chosen-ciphertext attack must allow the cryptanalyst use of
the key pairs. By theorem 29, any ability to apply all the keys renders
E(f), generated through multivariate encryption, vulnerable 2.

4.7.2 Chosen-plaintext Attack

The results for this type of attack are very similar to those presented in
subsection 4.7.1. The same set of cases and subcases in subsection 4.7.1 ap-
ply directly to the chosen plaintext case, and the analysis is for all practical
purposes identical.

COROLLARY 31 Multivariate encryption is vulnerable to chosen-plaintext
attacks.

PROOF: Any chosen-plaintext attack must allow the cryptanalyst use of
the key pairs. By theorem 29, any ability to apply all the keys renders
E(f), generated through multivariate encryption, vulnerable 2.

4.7.3 Ciphertext-only Attack

The encryption permutations ri viewed with respect to data encryption,
are monoalphabetic substitution ciphers based on a N ci-letter alphabet.
Given sufficient amounts of ciphertext and the language of the plaintext
data, cryptanalytic attack based on frequency analysis becomes possible,
provided plaintext is non-uniformily distributed.

The number of ciphertext bits necessary to attempt effective cryptanal-
ysis of block number i can be approximated using the expression for unic-
ity distance by Shannon [34]:

nu ≈
⌈
H(r)
ρ

⌉
(4.32)

The number of ciphertext blocks necessary to attempt effective ciphertext-
only cryptanalysis for the ith key triple is thus:

bu =
⌈

H(r)
ρci log2N

⌉
(4.33)

URN:NBN:no-2314

4.7. CRYPTANALYSIS OF MULTIVARIATE ENCRYPTION 85

Assume the random selection has a uniform distribution. The prob-
ability of selecting any particular key is then ((N ci)!)−1. Since there are
(N ci)! keys in all, the entropy of the key space is given by

H(ri) = −
∑

j

pj log2 pj =

− (N ci)! · 1
(N ci)!

· − log2((N
ci)!) = log2((N

ci)!) (4.34)

The key length in bits as a function of N and ci is approximately:

lri(N, ci) = dci log2NeN ci , (4.35)

which is more than the entropy computed in equation 4.34. Thus there is
some redundance in the key itself.

As with univariate encryption, it is possible, to some extent, to avoid
frequency-based cryptanalysis by regularly re-encrypting f using the method
outlined in section 4.6. Re-encryption intervals are computed by dividing
bu by the number of times the same key information is used in any one
application of E(f). A scheme such as this may work only if the data
encrypted by E(f) are:

1. re-encrypted, which raises the number of times the new key is ap-
plied, unless it is possible to assume that such a use is carried out
within a trusted computing base;

2. thrown away, to reduce the number of times the new key is applied;
or

3. archived along with the old key.

4.7.4 Known-plaintext Attack

Instead of being able to apply the keys, the cryptanalyst merely has ac-
cess to a limited number (ciphertext,plaintext) pairs. If the cryptanalyst pos-
sessesN ci (ciphertext,plaintext) pairs for the ith key triple inK = {ci, ri, si}ki=1,
that key triple must be considered compromised (see corollary 27).

URN:NBN:no-2314

86 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

If the cryptanalyst possesses C < N ci (ciphertext,plaintext) pairs for a
given key pair, the cryptanalyst knows C of the N ci unknowns needed to
find the keys. This gives the reduced unicity distance

b′u =
⌈

H(ri)′

ρ log2(N ci − C)

⌉
,

where H(ri)′ = log2((N ci − C)!).

4.7.5 Functional Chosen-ciphertext Attack

The functional ciphertext is on the form in equation 4.26. Each encryption
key may be written

rj,h(x1, . . . , xcj) =
N−1∑
i1=0

· · ·
N−1∑
icj =0

Aj,h,i1,...,icj
xi1

1 . . . x
icj
cj , (4.36)

where 1 ≤ h ≤ cj . Decryption keys may be written

sj,h(x1, . . . , xcj) =
N−1∑
i1=0

· · ·
N−1∑
icj =0

Bj,h,i1,...,icj
xi1

1 . . . x
icj
cj , (4.37)

where 1 ≤ h ≤ cj . The plaintext function may in general be written

fj(x1, . . . , xm) =
N−1∑
i1=0

· · ·
N−1∑
im=0

φj,i1,...,imx
i1
1 . . . x

im
m . (4.38)

The functional ciphertext E(f) may be written

E(f)j =
N−1∑
i1=0

· · ·
N−1∑
im=0

Φj,i1,...,imx
i1
1 . . . x

im
m . (4.39)

An efficient attack is possible. The attack can also be used with poly-
nomial representations, provided the generated functional ciphertexts are
converted to polynomials prior to decryption.

URN:NBN:no-2314

4.7. CRYPTANALYSIS OF MULTIVARIATE ENCRYPTION 87

THEOREM 32 Fix a multivariate encryption template U and key triples
K = {(ci, ri, si)}ki=1. If a cryptanalyst can generate plaintexts f from ci-
phertexts E(f), that have been generated using U and K, and the crypt-
analyst knows all the block sizes ci, then a functional chosen-ciphertext
attack can be completed in asymptotic time O(NnNm), excluding any
time spent doing polynomial interpolation or converting polynomials to
function tables, which is nearly linear in the number of coefficients nNm

needed to represent f using an interpolation polynomial.

PROOF: In this case, the keys and functions are represented using func-
tion tables. To reveal the keys, the constant mappings (0, . . . , 0), . . . , (N −
1, . . . , N − 1) are generated for each mapping block, and successively de-
crypted using U and K. For each block j set (E(f)a+1, . . . , E(f)a+cj) =
(v1, . . . , vcj) ∈ Zcj

N . It follows that

E(f)h(rl+1(~w1), . . . , rk(~wk−l)) = vh−a = E(f)h,

further implying

fh = (sj(E(f)a+1(rl+1(~w1), . . . , rk(~wk−l), . . . ,
E(f)a+cj (rl+1(~w1), . . . , rk(~wk−l)))h−a = sj,h(v1, . . . , vcj).

In this way it becomes possible to reconstruct the permutations s1, . . . , sl

(and thus also r1, . . . , rl) using radix sorting of the type described in the
proof of lemma 11.

The next step is in principle similar to the corresponding part of the
proof of theorem 18. Instead of constructing bands where individual vari-
ables vary, construct bands where individual blocks vary. The ideal case
is described first, where

∑k
i=l+1 ci ≤

∑l
j=1 cj . In the following set a =

URN:NBN:no-2314

88 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

∑k
i=l+1 ci.

E(f)j(0, . . . , 0) = 0 for all j ∈ {1, . . . , n}
(E(f)1(0, . . . , 0, 1︸ ︷︷ ︸

block l+1

, 0, . . . , 0), . . . , E(f)cl+1
(0, . . . , 0, 1︸ ︷︷ ︸

block l+1

, 0, . . . , 0)) = (0, . . . , 0, 1︸ ︷︷ ︸
cl+1

)

...
(E(f)1(N − 1, . . . , N − 1︸ ︷︷ ︸

block l+1

, 0, . . . , 0), . . . ,

E(f)cl+1
(N − 1, . . . , N − 1︸ ︷︷ ︸

block l+1

, 0, . . . , 0) = (N − 1, . . . , N − 1︸ ︷︷ ︸
cl+1

)

(E(f)cl+1+1(0, . . . , 0, 0, . . . , 0, 1︸ ︷︷ ︸
block l+2

, 0, . . . , 0), . . . ,

E(f)cl+1+cl+2
(0, . . . , 0, 0, . . . , 0︸ ︷︷ ︸

block l+2

, 0, . . . , 0)) = (0, . . . , 0, 1︸ ︷︷ ︸
cl+2

)

...
(E(f)cl+1+1(0, . . . , 0, N − 1, . . . , N − 1︸ ︷︷ ︸

block l+2

, 0, . . . , 0), . . . ,

E(f)cl+1+cl+2
(0, . . . , 0, N − 1, . . . , N − 1︸ ︷︷ ︸

block l+2

, 0, . . . , 0)) = (N − 1, . . . , N − 1︸ ︷︷ ︸
cl+2

)

...
(E(f)a−ck+1(0, . . . , 0, 0, . . . , 0, 1︸ ︷︷ ︸

block k

), . . . , E(f)a(0, . . . , 0, 0, . . . , 0, 1︸ ︷︷ ︸
block k

)) = (0, . . . , 0, 1︸ ︷︷ ︸
ck

)

...
(E(f)a−ck+1(0, . . . , 0, N − 1, . . . , N − 1︸ ︷︷ ︸

block k

), . . . ,

E(f)a(0, . . . , 0, N − 1, . . . , N − 1︸ ︷︷ ︸
block k

) = (N − 1, . . . , N − 1︸ ︷︷ ︸
ck

)

(4.40)
and E(f)j(~x) = 0 otherwise. Note that all the arguments in equation 4.40
are encrypted. When the resulting E(f) is decrypted to functional plain-

URN:NBN:no-2314

4.7. CRYPTANALYSIS OF MULTIVARIATE ENCRYPTION 89

text, f will be defined as follows:

(f1(sl+1(0, . . . , 0, 1)︸ ︷︷ ︸
block l+1

, sl+2(~0), . . . , sk(~0)), . . . ,

fcl+1
(sl+1(0, . . . , 0, 1)︸ ︷︷ ︸

block l+1

, sl+2(~0), . . . , sk(~0))) = ŝl+1(0, . . . , 0, 1)

...
(f1(sl+1(N − 1, . . . , N − 1)︸ ︷︷ ︸

block l+1

, sl+2(~0), . . . , sk(~0)), . . . ,

fcl+1
(sl+1(N − 1, . . . , N − 1)︸ ︷︷ ︸

block l+1

, sl+2(~0), . . . , sk(~0))) = ŝl+1(N − 1, . . . , N − 1)

(fcl+1+1(sl+1(~0), sl+2(0, . . . , 0, 1)︸ ︷︷ ︸
block l+2

, sl+3(~0), . . . , sk(~0)), . . . ,

fcl+1+cl+2
(sl+1(~0), sl+2(0, . . . , 0, 1)︸ ︷︷ ︸

block l+2

, sl+3(~0), . . . , sk(~0))) = ŝl+2(0, . . . , 0, 1)

...
(fcl+1+1(sl+1(~0), sl+2(N − 1, . . . , N − 1)︸ ︷︷ ︸

block l+2

, sl+3(~0), . . . , sk(~0)), . . . ,

fcl+1+cl+2
(sl+1(~0), sl+2(N − 1, . . . , N − 1)︸ ︷︷ ︸

block l+2

, sl+3(~0), . . . , sk(~0)))

= ŝl+2(N − 1, . . . , N − 1)
...

(fa−ck+1(sl+1(~0), . . . , sk−1(~0), sk(0, . . . , 0, 1)︸ ︷︷ ︸
block k

), . . . ,

fa(sl+1(~0), . . . , sk−1(~0), sk(0, . . . , 0, 1)︸ ︷︷ ︸
block k

)) = ŝk(0, . . . , 0, 1)

...
(fa−ck+1(sl+1(~0), . . . , sk−1(~0), sk(N − 1, . . . , N − 1)︸ ︷︷ ︸

block k

), . . . ,

fa(sl+1(~0), . . . , sk−1(~0), sk(N − 1, . . . , N − 1)︸ ︷︷ ︸
block k

)) = ŝk(N − 1, . . . , N − 1),

(4.41)

URN:NBN:no-2314

90 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

where ŝi : Zci
N −→ Zci

N for l < i ≤ k. ŝ is a notational convenience, and is
defined as follows:

ŝi,j = sg,h, (4.42)

where 1 ≤ g ≤ l is such that
∑g

d=1 cd + h =
∑i

e=l+1 ce + j.
Since s1, . . . , sn are known, the right-hand side can be re-encrypted,

generating pairs (xi, sj(xi)) when n < j ≤ n +m. Using radix sort again,
sorted tables for the remaining keys can be constructed. If not all variable
blocks can be fitted into one run of this attack, remaining variable blocks
are attacked in subsequent similar runs, where instead of block l + 1, one
begins with another variable block a > l + 1.

If m > n, but all ci < n for l < i ≤ k, the attack above is repeated with
different selections of variable blocks until all si are generated. If ci > n
for some l < i ≤ k, the attack is modified. A series of in all dci/ne rounds
generating data for blocks of n components at a time is needed. The first
such round is shown in the equation 4.43.

E(f)j(~0) = 0 for all j ∈ {1, . . . , n}

(E(f)1(0, . . . , 0,
first n︷ ︸︸ ︷

0, . . . , 0, . . . ,

last ci mod n︷ ︸︸ ︷
0, . . . , 0, 1︸ ︷︷ ︸

block i

, 0, . . . , 0), . . . ,

E(f)n(0, . . . , 0,
first n︷ ︸︸ ︷

0, . . . , 0, . . . ,

last ci mod n︷ ︸︸ ︷
0, . . . , 0, 1 , 0, . . . , 0)) = (0, . . . , 0︸ ︷︷ ︸

n

)

...

(E(f)1(0, . . . , 0,

first n︷ ︸︸ ︷
N − 1, . . . , N − 1, . . . ,

last ci mod n︷ ︸︸ ︷
N − 1, . . . , N − 1︸ ︷︷ ︸

block i

, 0, . . . , 0), . . . ,

E(f)n(0, . . . , 0,

first n︷ ︸︸ ︷
N − 1, . . . , N − 1, . . . ,

last ci mod n︷ ︸︸ ︷
N − 1, . . . , N − 1, 0, . . . , 0))

= (N − 1, . . . , N − 1︸ ︷︷ ︸
n

)

(4.43)

URN:NBN:no-2314

4.7. CRYPTANALYSIS OF MULTIVARIATE ENCRYPTION 91

When all rounds are completed, sorted function tables for the si’s can
be generated using radix sort on the concatenated vectors.

Functions encryptable under U are defined by tables with Nn+m en-
tries. Generating the tables for the first half of the attack takes O(nNm+1)
time. Decrypting them also takes O(nNm+1) time. Generating the table(s)
for the second half of the attack takes O(nNmdm/ne) time. Decrypting
it takes O(nNm) time. Asymptotic time complexity is therefore roughly
O(nNm+1), which is N times the number of coefficients needed to rep-
resent a interpolation polynomial over Q for any f encryptable under U
2.

Notice that the attack in the proof above only works if the cryptana-
lyst knows all ci, or can find all ci efficiently. Unfortunately, it turns out
that knowledge of these block sizes is not sufficient to prevent a successful
functional chosen-ciphertext attack.

THEOREM 33 Fix a multivariate encryption template U and key triples
K = {(ci, ri, si)}ki=1. If a cryptanalyst can generate plaintexts f as function
tables from ciphertexts E(f) represented as function tables, generated us-
ing U and K, then a functional chosen-ciphertext attack can be completed
in asymptotic time at least

O(NnNm +
N(Nm − 1) +N(Nn − 1)

N − 1
),

and at most

O(NnNm +m(m+ 1)Nm + n(n+ 1)Nn)).

PROOF: The cryptanalyst carries out the same attack as in the proof of
theorem 32 with some differences. All function components are collected
into one block with block size c′1 = n. All variables are collected into one
block with block size c′2 = m. The attack in the proof of theorem 32 is
then carried out with these block sizes. The result is an encryption func-
tion r′1 for the function components, and a decryption function s′2 for the
variables. This step takes O(NnNm) operations, and is thus independent
of the actual number of blocks and the actual block sizes employed in U .

URN:NBN:no-2314

92 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

The next step is to recover the real block sizes, and the real keys. The
functions r′1 and s′2 are represented as function tables. Thus ~x = s′2(~y),
~x, ~y ∈ Zm

N . Set cl+1 = 1. Compare s′2(y1, . . . , ycl+1
, 0, . . . , 0) with

s′2(y1, . . . , ycl+1
, ycl+1+1, . . . , ym) for all other Nm−cl+1 − 1 possible combi-

nations of ycl+1+1, . . . , ym. If there is no difference, cl+1 = 1, otherwise add
one to cl+1, and repeat until there no differences are found. Repeat for cl+2

and onwards, but ignoring the first cl+1 components, so that only every
N cl+1th entry is used. The next round only every N cl+1+cl+2nd entry is
used, etc. This does not necessarily provide block sizes identical to those
in U , but the block sizes so selected are effective and minimal. A similar
procedure is followed to find block sizes for the function components.

If one uses the number of comparisons of individual vector compo-
nents as the unit operation for time complexity purposes, at least

m∑
i=1

N i +
n∑

i=1

N i =
N(Nm − 1) +N(Nn − 1)

N − 1

such operations are needed to find the block sizes, and at most

m∑
i=1

iNm +
n∑

i=1

iNn =
1
2
(m(m+ 1)Nm + n(n+ 1)Nn)

such operations are needed 2.

4.7.6 Functional Chosen-plaintext Attack

The analysis is similar to that in section 4.7.5, and so is the result.

COROLLARY 34 Multivariate encryption is vulnerable to functional chosen-
plaintext attack.

PROOF: Follows from theorem 33 2.

URN:NBN:no-2314

4.7. CRYPTANALYSIS OF MULTIVARIATE ENCRYPTION 93

4.7.7 Functional Ciphertext-only Attack

There are two obvious ways to attack a functional ciphertext (as with uni-
variate encryption):

1. direct decomposition of each component of E(f), and/or

2. accumulation of enough functional ciphertexts E(f), E(g), . . . to do
a frequency-based attack to find the key.

The second alternative is practical if:

• the key pairs, along with the multivariate encryption template, do
not vary with each encryption, so that accumulation of sufficient
amounts of functional ciphertext encrypted with the same sets of key
pairs is feasible;

• the plaintext language has a fair amount of redundancy, and

• the cryptanalyst is capable of recognizing the plaintext.

This analysis will concentrate on decomposition attacks. Only proper
multivariate cases are considered, where at least one ci > 1. Multivariate
encryption is based on the assumption that decomposing E(f) to find one
or more of the mappings f1, . . . , fn, r1, . . . , rk, s1, . . . , sk is infeasible.

The functional ciphertext is on the form in equation 4.26. Consider the
case E(f) = (r1, . . . , rl) ◦ f . It should be obvious that this case is neither
covered by the Simple Multivariate Decomposition Problem (problem 9),
nor the reduced version (problem 10). Decomposition ofE(f) is a problem
covered at least in part by the General Polynomial Decomposition Prob-
lem.

PROBLEM 11 (GENERAL POLYNOMIAL DECOMPOSITION) Given polynomial
f(x1, . . . , xn) ∈ K[x1, . . . , xn] and some subset of the following: polyno-
mial g(y1, . . . , ym) ∈ K[y1, . . . , ym], polynomials h1, . . . , hm ∈ K[x1, . . . , xn],
and templates specifying the form of polynomials g and h1, . . . , hm, decide
if there exists a functional decomposition g, h1, . . . , hm of f such that g and

URN:NBN:no-2314

94 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

h1, . . . , hm are in the form specified by the template. If so, compute those
coefficients of g and the hi’s which were not given.

Since a special case of problem 11, the S-1-decomposition problem,
has been proven NP -hard, General Polynomial Decomposition is there-
fore also NP -hard (see [18]). Even though problem 11 is defined in a very
general manner, I consider it necessary to emphasize the reduced case:

PROBLEM 12 (GENERAL REDUCED POLYNOMIAL DECOMPOSITION) Given
polynomial f(~x) ∈ K̂[~x], K̂ an algebraic extension of a commutative ring
K, ~x ∈ Km, and some subset of the following: a polynomial g(~z) ∈ K[~z],
~z ∈ Kn, polynomials h1(~x), . . . , hn(~x) ∈ K[~x], and templates specifying
the form of the polynomials g and h1, . . . , hn, decide if there exist poly-
nomials g, h1, . . . , hn satisfying the template such that g ◦ (h1, . . . , hn) is
reducible to f . If so, compute those coefficients of g and the his which
were not given.

Problem 11 has been proven NP -hard. Since problem 12 is, strictly
speaking a special case of problem 11 the way Dickerson has expressed it,
I conjecture the following:

CONJECTURE 35 General Reduced Polynomial Decomposition is at least
as hard as General Polynomial Decomposition, so it is NP -hard.

As with the univariate case, it is possible to construct a system of equa-
tions that the coefficients of the reduced polynomial must satisfy. The fol-
lowing relation holds for all j such that :

Φj,i1,...,im ≡ ψj,~ι(Aa,1,0,...,0, . . . , Aa,ca,N−1,...,N−1,
Bl+1,1,0,...,0, . . . , Bl+1,cl+1,N−1,...,N−1, . . . ,
Bk,1,0,...,0, . . . , Bk,ck,N−1,...,N−1,
φj,0,...,0, . . . , φj,N−1,...,N−1)(mod N),

(4.44)

where a is a positive integer such that
∑a

i=1 ci < j ≤
∑a+1

i=1 ci. Set q =∑a
i=1 ci. Each ψj,~ι is the general expression for the reduced composition of

ra with fq+1, . . . , fq+ca , which in turn may have one or more of its variables

URN:NBN:no-2314

4.8. PARAMETRIC ENCRYPTION 95

substituted by the corresponding sh. There are thus nNm equations with
nNm +

∑k
i=1 ciN

ci independent unknowns.

LEMMA 36 Given a functional composition E(f) : Zm
N −→ Zn

N with co-
efficients Φj,~ι satisfying equation 4.44, and N ≥ 6, there does not exist
any analytic method of solving the system of equations resulting from the
relation in equation 4.44.

PROOF: Similar to that of lemma 23 2.

4.7.8 Functional Known-Plaintext Attack

The cryptanalyst has access to a limited number of (functional ciphertext,
functional plaintext) pairs.

LEMMA 37 Fix a multivariate encryption templateU and a set of key triples
K = {(ci, ri, si)}ki=1. If the cryptanalyst knows one (functional ciphertext,
functional plaintext) pair forU andK, then any other functional ciphertext
E(f) generated using U and K is compromised, provided

k∑
i=1

ciN
ci ≤ nNm.

PROOF: The knowledge of the single pair gives knowledge of the coef-
ficients Φj,~ι and φj,~ι for all j ∈ {1, . . . , n} and all ~ι ∈ Zm

N . Setting up the
relations given by equation 4.44 results in a system of up to nNm equations
with

∑k
i=1 ciN

ci independent unknowns and 2
∑k

i=1 ciN
ci dependent un-

knowns. If the number of independent unknowns,
∑k

i=1 ciN
ci , still ex-

ceeds the number of equations, nNm, the keys are not compromised 2.

4.8 Parametric Encryption

This is a generalization of multivariate encryption, which is designed pri-
marily with the register machine in mind. It is an attempt at using a public

URN:NBN:no-2314

96 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

randomizer with respect to effective key choice. One consequence is that
this cryptosystem in general does not appear to support key re-encryption.
Nor does decryption of the functional ciphertexts appear to be possible in
general for parametric encryption templates that do not reduce to mul-
tivariate or univariate encryption templates. Parametric encryption uses
key quadruples (ci, gi, ri, si), where the new element, relative to multivari-
ate encryption, indicates a variable block that is to be taken as parameter
in an encryption/decryption.

Fix an integer N > 1, positive integers m and n, a positive integer
k ≤ n + m, and a mapping f : Zm

N −→ Zn
N . Select a sequence of integers

{ci}ki=1 such that
∑k

i=1 ci = n +m and
∑l

i=1 ci = n for some l < k. Select
another sequence of integers {gi}ki=1 such that l < gi ≤ k or gi < l. The se-
ries of integers ci represents “block sizes” used in encryption and decryp-
tion. The series of integers gi indicates a variable block to be used in the
parametrization of the ith key quadruple, or, if less than l, indicates that no
such parametrization takes place. If N = P e, where P is a prime, and e a
positive integer, mappings may either be represented as function tables or
interpolation polynomials over ZN . If e = 1, ZN is interpreted as the inte-
gers moduloN . If e > 1 they are interpreted as polynomials in ZP [x]/p(x),
where p(x) is an irreducible degree e polynomial over ZP . Otherwise, all
mappings are assumed to be represented using function tables. The vari-
ables of f are grouped into blocks of cl+1, cl+2, . . . , ck variables as follows

x1, . . . , xcl+1︸ ︷︷ ︸
block l + 1

, xcl+1+1, . . . , xcl+1+cl+2︸ ︷︷ ︸
block l + 2

, . . . , xm−ck+1, . . . , xm︸ ︷︷ ︸
block k

. (4.45)

As before, the ith variable block is written ~wi.
The components of f are grouped into blocks of c1-, c2-,. . . , cl-component

mappings as follows:

(f1, . . . , fc1︸ ︷︷ ︸
block 1

, fc1+1, . . . , fc1+c2︸ ︷︷ ︸
block 2

, . . . , fn−cl+1, . . . , fn︸ ︷︷ ︸
block l

). (4.46)

This is identical to the grouping done for multivariate encryption, so ex-
ample 3 is also illustrative in this context.

URN:NBN:no-2314

4.8. PARAMETRIC ENCRYPTION 97

The assignment of parameter groups is perhaps best illustrated by an
example.

EXAMPLE 5 Continuing example 3, the function component grouping indicated
in equation 4.23 along with the variable component grouping indicated in equa-
tion 4.25 could have as two possibilities the parameter groups

(

g1=3︷ ︸︸ ︷
x1, x2︷ ︸︸ ︷
f1, f2, f3︸ ︷︷ ︸

block 1

,

g2=0︷ ︸︸ ︷
f4, f5︸ ︷︷ ︸
block 2

),

g3=4︷ ︸︸ ︷
x3, x4︷ ︸︸ ︷
x1, x2︸ ︷︷ ︸
block 3

,

g4=0︷ ︸︸ ︷
x3, x4︸ ︷︷ ︸
block 4

. (4.47)

or the parameter groups

(

g1=3︷ ︸︸ ︷
x1, x2︷ ︸︸ ︷
f1, f2, f3︸ ︷︷ ︸

block 1

,

g2=0︷ ︸︸ ︷
f4, f5︸ ︷︷ ︸
block 2

),

g3=4︷ ︸︸ ︷
x3, x4︷ ︸︸ ︷
x1, x2︸ ︷︷ ︸
block 3

,

g4=3︷ ︸︸ ︷
x1, x2︷ ︸︸ ︷
x3, x4︸ ︷︷ ︸
block 4

. (4.48)

More combinations are possible, and by setting all gi to 0 or a number not in
{l+ 1, . . . , k}, parametric encryption is reduced to multivariate encryption. Also,
by selecting only blocks containing one function component or one variable, para-
metric univariate encryption is possible as a special case.

Writing a general expression for the composition operations producing
E(f) requires a trick. Define ai =

∑gi−1
j=l+1 cj , and ~vi = (xai+1, . . . , xai+cgi

)
if gi ∈ {l + 1, . . . , k}, and ~vi = (x1, . . . , xcgi

) otherwise. Define

ṙi(y1, . . . , yn, ~vi) =
{
ri(y1, . . . , yn), gi 6∈ {l + 1, . . . , k}
ri(y1, . . . , yn, ~vi), gi ∈ {l + 1, . . . , k} , (4.49)

and define

ṡi(y1, . . . , yn, ~vi) =
{
si(y1, . . . , yn), gi 6∈ {l + 1, . . . , k}
si(y1, . . . , yn, ~vi), gi ∈ {l + 1, . . . , k} . (4.50)

The general expression for the parametric encryption of f may then be
written:

E(f) = (ṙ1(f1(ṡl+1(~w1, ~vl+1), . . . , ṡk(~wk−l, ~vk)), ~v1), . . . ,
ṙl(fl(ṡl+1(~w1, ~vl+1), . . . , ṡk(~wk−l, ~vk)), ~vl)). (4.51)

URN:NBN:no-2314

98 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

Some examples should illustrate what such compositions could look
like.

EXAMPLE 6 Assume we are given the variable and function component group-
ings of example 5, along with the corresponding parametrizations. Using the
parametrization in equation 4.47, the expression for E(f) is

E(f) = r1(f1(s3(~w1, ~w2), s4(~w2)),
f2(s3(~w1, ~w2), s4(~w2)), f3(s3(~w1, ~w2), s4(~w2)), ~w1),

r2(f4(s3(~w1, ~w2), s4(~w2)), f5(s3(~w1, ~w2), s4(~w2))). (4.52)

Using the parametrization given in equation 4.48 results in the expression

E(f) = r1(f1(s3(~w1, ~w2), s4(~w2, ~w1)),
f2(s3(~w1, ~w2), s4(~w2, ~w1)), f3(s3(~w1, ~w2), s4(~w2, ~w1)), ~w1),

r2(f4(s3(~w1, ~w2), s4(~w2, ~w1)), f5(s3(~w1, ~w2), s4(~w2, ~w1))). (4.53)

Before encrypting f , one needs to

• define the sizes of the variable blocks;

• define the sizes of the function component blocks;

• define any parameters used by the keys of a given block;

• select the subset of variable blocks to be encrypted, by selecting a
subset I ⊆ {l + 1, . . . , k} of the variable block indexes; and

• select the subset of mapping component blocks to be encrypted, by
selecting a subset J ⊆ {1, . . . , l} of the component block indexes.

Denote by Fj the jth mapping component block fa+1, . . . , fa+cj , where a =∑j−1
i=1 ci. Since block sizes may vary, keys are defined by quadruples, and

for the sake of simplicity, these quadruples will henceforth be referred to
as “key quadruples”. Key quadruples whose indices are not in I ∪ J are
defined to be the identity mapping. The remaining key triples with indices
in I ∪ J may or may not be restricted in some manner, as for univariate
encryption. This allows the tailoring of the encrypted mapping to:

URN:NBN:no-2314

4.8. PARAMETRIC ENCRYPTION 99

• take specified blocks of inputs in ciphertext and other blocks in plain-
text, and

• produce specified blocks of outputs in ciphertext and other blocks in
plaintext.

DEFINITION 13 (PARAMETRIC ENCRYPTION TEMPLATE) A tuple
(m,n,N, I, J, k, {ci}ki=1, {gi}ki=1) where:

• m is the arity (number of variables) of the mappings it applies to,

• n is the number of components of the mappings it applies to,

• N is the order of the ring over which the mappings it applies to are
defined,

• I ⊆ {l + 1, . . . , k} contains the indices of blocks of variables to be
used in encrypted form, l is such that

∑l
i=1 ci = n,

• J ⊆ {1, . . . , l} contains the indices of the blocks of mapping compo-
nents to be encrypted,

• k is the total number of blocks defined,

• {ci}ki=1 are the block sizes, and

• {gi}ki=1 indicate the variable block to be used as parameter for the ith

block, if any.

Once all constraints on the key quadruples have been defined, the en-
cryption functions may be generated. The encryption functions can be
considered indexed families of permutations. If l < gi ≤ k, the mappings
ri, si : Zci+cgi

N −→ Zci
N , are generated. The mapping ri is generated such

that if the last cgi variables are fixed, ri is a permutation of Zci
N , and si its

inverse. Thus the parameter effectively selects one of many permutations
to use in the evaluation of E(f). If gi ≤ l or k < gi, the permutations
ri, si : Zci

N −→ Zci
N , are generated.

URN:NBN:no-2314

100 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

4.9 Cryptanalysis of Parametric Encryption

Parametric encryption is characterized by the following:

1. It is an asymmetric secret key algorithm—neither of the keys ri, si

in a keyquadruple (ci, gi, ri, si) may be publicized, as knowing one
allows the construction of the other by interpolation or radix sort.
Furthermore, gi should be kept secret, as it may significantly hinder
effective cryptanalysis. Keeping ci secret may also make cryptanaly-
sis harder.

2. For every set of key quadruples and encryption generated with the
key quadruples, there are two types of plaintext and ciphertext:

(a) The mapping f represents one of the types of plaintext, and
E(f) its encrypted equivalent.

(b) The datum ~x represents the other type of plaintext, and (E(f))(~x)
its transformed equivalent. Note that (E(f))(~x) is not necessarily
encrypted, a fact which is not necessarily known by the attacker.

3. Decryption appears to be infeasible for all practical intents and pur-
poses.

4. The encryption key actually applied to any variable or component
block may in part be selected by that block’s parameter block.

LEMMA 38 Fix a parametric encryption template U . If the cryptanalyst
has the function table representation for ri or si, but not both, for the ith

key tuple, the cryptanalyst can find the tabular representation for si or ri,
respectively, in time O(N ci) if ri has no parameter and in time O(N ci+cgi)
if ri does.

PROOF: Without loss of generality, assume the cryptanalyst knows ri.
There are two main cases:

CASE 1: The simplest case is when ri has no parameter. The proof for
this case is the same as the proof of lemma 26.

URN:NBN:no-2314

4.9. CRYPTANALYSIS OF PARAMETRIC ENCRYPTION 101

CASE 2: ri has a parameter. If ri is represented as a function table, it
can be considered a list of pairs ((~w,~vi), ri(~w,~vi)), where ~w ∈ Zci

N , ~vi ∈ Zcgi
N ,

and ri(~w,~vi) ∈ Zci
N . An ordered table for si can be constructed in time

linear in N ci+cgi using radix sort. For every ((~w,~vi), ri(~w,~vi)) set ~w′ =
ri(~w,~vi) and si(~w′, ~vi) = ~w 2.

COROLLARY 39 Fix a parametric encryption template U . If the cryptana-
lyst has N ci+cgi distinct (ciphertext, plaintext) pairs for the same encryp-
tion keys that use a parameter, the cryptanalyst can construct a table for
both the relevant encryption and decryption keys, ri and si, in timeO(N ci+cgi).

PROOF: ri and si permute Zci
N for one fixed parameter value, of which

there are N cgi . For every value of the parameter, the tabular representa-
tions of ri and si can be constructed using radix sort. Each such construc-
tion takes time proportional to N ci , and each such construction must be
repeated N cgi times to cover all the parameter values 2.

Corollary 39 doesn’t cover the case where ri has no parameter, as this
is already covered by corollary 27.

There exist (Nn)(N
m) different mappings f : Zm

N −→ Zn
N . With respect

to key selection, parametric encryption differs somewhat from multivari-
ate and univariate encryption. Each block i may or may not have another
block assigned to it as parameter. If a block j is assigned (variable) block
j as parameter, and block i is to have a permutation applied to it, then
each value for block j selects one of N cj possible permutations to apply
to block i. For large enough cj relative to ci, it is possible that more than
one value of block j refer to the same permutation. There are (N ci)! ways
of permutating block i, and N cj possible selections that block j can offer.
Therefore, there are in general

k∏
i=1

(N ci)!α(i), (4.54)

ways of selecting keys for a given parametric encryption template, where

α(i) =
{

1, gi ≤ l or gi > k
N cgi , l < gi ≤ k.

(4.55)

URN:NBN:no-2314

102 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

If no block has a variable block selected as parameter, this system reduces
to multivariate encryption. A parametric encryption has the possibility of
being perfectly secure if the expression in equation 4.54 exceeds (Nn)(N

m),
the number of mappings encryptable by the template.

The rest of this cryptanalysis proceeds as for the previous two cryp-
tosystems, in the hopes that comparisons between them become easier.

4.9.1 Chosen-ciphertext Attack

Chosen-ciphertext attacks require the cryptanalyst to be capable of using
the key(s) directly.

As with uni- and multivariate encryption, it is possible to generate
(ciphertext, plaintext) pairs, which thereafter can be used to generate both
keys.

THEOREM 40 Fix a parametric encryption template U . If a cryptanalyst
can apply, but not read either ri or si for a selected subset A ⊆ K of all key
quadruples K = {(ci, gi, ri, si)}ki=1 applied to encrypt f using multivariate
encryption to give E(f), then:

1. all the keys in A are vulnerable,

2. any non-functional ciphertext encrypted by a key in A, input to- or
output by E(f) is vulnerable, and

3. any components of E(f) encrypted using keys in A are vulnerable,
provided the cryptanalyst also knows gi for each key in A.

PROOF: Without loss of generality, consider only the ith key quadruple. If
gi ≤ l or g > k (ri and si do not take any parameter), then theorem 29
applies. Therefore assume that ri and si take a parameter.

CLAIM 1: The cryptanalyst can now generate pairs ((~wj , ~vi), ri(~wj , ~vi)),
which can be used to generate a function table for ri. This can be done for
every key belonging to a key quadruple in A.

CLAIM 2: Follows trivially from the proof of claim 1.

URN:NBN:no-2314

4.9. CRYPTANALYSIS OF PARAMETRIC ENCRYPTION 103

CLAIM 3: If the cryptanalyst has or generates a function table for E(f)
and the keys in A, then it is possible to recover part of f from E(f) by
symbolically substituting ~wi with rl+i(~wi, ~vl+i) for all i, 1 ≤ i ≤ k − l.
Note that to do the substitution correctly, one must know where in ~x one
finds the parameter values, so that it is possible to compute the correct
substitution. Next si is composed with the ith component block for all i,
1 ≤ i ≤ l. The result, depending on A is one or more partially or fully
decrypted function blocks of E(f) 2.

COROLLARY 41 Data encrypted by parametric encryption is vulnerable to
chosen-ciphertext attacks.

PROOF: Follows from theorem 40 2.

COROLLARY 42 Functional ciphertext encrypted by parametric encryp-
tion is vulnerable to chosen-ciphertext attacks only if the cryptanalyst knows
what the parameters are.

PROOF: Follows from theorem 40 2.

4.9.2 Chosen-plaintext Attack

The results for this type of attack are very similar to those presented in
subsection 4.9.1.

COROLLARY 43 Data encrypted by parametric encryption is vulnerable to
chosen-plaintext attacks.

PROOF: Follows from theorem 40 2.

COROLLARY 44 Functional ciphertext encrypted by parametric encryp-
tion is vulnerable to chosen-plaintext attacks only if the cryptanalyst knows
what the parameters are.

PROOF: Follows from theorem 40 2.

URN:NBN:no-2314

104 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

4.9.3 Ciphertext-only Attack

The encryption permutations ri viewed with respect to data encryption,
are in a sense non-periodic polyalphabetic substitution ciphers based on
an N ci-letter alphabet. Assume for the rest of this section that block i
makes use of a parameter. The case where block i has no parameter is
covered by the analysis in section 4.7.3. Ciphertext-only attack is only pos-
sible if there is any detectable redundancy or pattern in ~x as a whole. Note,
however, that a cryptanalyst may not know whether or not any particular
block is encrypted with a parameter or not. In fact, the cryptanalyst may
not even know how the blocks are defined.

The number of ciphertext bits necessary to attempt effective cryptanal-
ysis of block number i can be approximated using the expression for the
expected unicity distance by Shannon [34]:

nu ≈
⌈
H(r)
ρ

⌉
. (4.56)

As noted before, block i is encrypted with up to A = min{(N ci)!, N cgi}
different alphabets.

The number of ciphertext blocks necessary to attempt effective ciphertext-
only cryptanalysis is thus:

bu =
⌈

H(r)
ρ(ci log2N + log2A)

⌉
(4.57)

Assuming the random selection has a uniform distribution, and that
the different substitution ciphers are selected cyclicly, the entropy of the
key space is given by

H(r) = A(N ci)! · 1
A(N ci)!

· − log2

(
1

A(N ci)!

)
= log2(A(N ci)!) (4.58)

The effective key length in bits as a function of N , ci, and gi is approx-
imately:

lr(N, ci, gi) = dci log2NeA (4.59)

URN:NBN:no-2314

4.9. CRYPTANALYSIS OF PARAMETRIC ENCRYPTION 105

which is still less than the minimum total number of bits needed to repre-
sent the key:

dci log2NeN ci+cgi . (4.60)

4.9.4 Known-plaintext Attack

The cryptanalyst has access to a limited number (ciphertext, plaintext) pairs.
If a given block is not encrypted with a parameter, this reduces to the mul-
tivariate case. Assume therefore that the block i under consideration has
been encrypted with a parameter.

Knowledge of the (ciphertext, plaintext) pairs can produce two initial
contributions for the cryptanalyst:

• a reduced effective unicity distance, and

• if there are more than N ci pairs, conclusive evidence that a proper
parametric encryption has been applied to the block in question.

4.9.5 Functional Chosen-ciphertext Attack

The functional ciphertext is on the form given in equation 4.51. Each en-
cryption key that takes a parameter, may be written

rj,h(x1, . . . , xcj , xcj+1, . . . , xcj+cgj
)

=
N−1∑
i1=0

· · ·
N−1∑

icj+cgj
=0

Aj,h,i1,...,icj+cgj
xi1

1 . . . x
icj+cgj

cj+cgj
, (4.61)

where 1 ≤ h ≤ cj . Encryption keys that do not take a parameter may be
written on the form given in equation 4.36. Decryption keys that take a
parameter, may be written

sj,h(x1, . . . , xcj , xcj+1, . . . , xcj+cgj
)

=
N−1∑
i1=0

· · ·
N−1∑

icj+cgj
=0

Bj,h,i1,...,icj+cgj
xi1

1 . . . x
icj+cgj

cj+cgj
, (4.62)

URN:NBN:no-2314

106 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

where 1 ≤ h ≤ cj . Decryption keys that do not take a parameter may be
written on the form given in equation 4.37. Similarly, the plaintext function
may in general be written

fj(x1, . . . , xm) =
N−1∑
i1=0

· · ·
N−1∑
im=0

φj,i1,...,imx
i1
1 . . . x

im
m . (4.63)

The functional ciphertext E(f) may be written

E(f)j =
N−1∑
i1=0

· · ·
N−1∑
im=0

Φj,i1,...,imx
i1
1 . . . x

im
m . (4.64)

The cryptanalyst does not know which keys take parameter blocks.
This is an additional barrier to cryptanalysis.

THEOREM 45 Fix a parametric encryption template U and key quadru-
ples K = {(ci, gi, ri, si)}ki=1. If a cryptanalyst can generate plaintexts f
as function tables from ciphertexts E(f), represented as function tables,
generated using U and K, then the cryptanalyst can construct two pairs of
functions (r′1, s

′
1) and (r′2, s

′
2) which allow bulk decryption ofE(f)’s inputs

and outputs.

PROOF: The attack is identical to the first half of the attack described in
the proof of theorem 33 2.

It is possible to employ the same algorithm to find block sizes for a
functional ciphertext encrypted with parametric encryption. The depen-
dencies introduced by parametrization, however, mean that many of the
blocks arrived at will at best be large, and misleading.

COROLLARY 46 Parametric encryption is vulnerable to functional chosen-
ciphertext attack.

PROOF: Follows from theorem 45 2.

URN:NBN:no-2314

4.9. CRYPTANALYSIS OF PARAMETRIC ENCRYPTION 107

4.9.6 Functional Chosen-plaintext Attack

The result here is identical to that in section 4.9.5.

COROLLARY 47 Parametric encryption is vulnerable to functional chosen-
plaintext attack.

PROOF: Follows from theorem 45 2.

4.9.7 Functional Ciphertext-only Attack

There are two obvious ways to attack a functional ciphertext (as with uni-
variate encryption):

1. direct decomposition of each component of E(f), and/or

2. accumulation of enough functional ciphertexts E(f), E(g), . . . to do
a frequency-based attack to find the key.

The second alternative is practical if:

• the key pairs, along with the parametric encryption template, do
not vary with each encryption, so that accumulation of sufficient
amounts of functional ciphertext encrypted with the same sets of key
pairs is feasible;

• the plaintext language has a fair amount of redundancy, and

• the cryptanalyst is capable of recognizing the plaintext.

This analysis will concentrate on decomposition attacks. Only proper
parametric cases are considered, where at least one ci > 1. Parametric
encryption is based on the assumption that decomposing E(f) to find one
or more of the mappings f1, . . . , fn, r1, . . . , rk, s1, . . . , sk is infeasible.

The univariate decomposition problems (7 and 8) are obviously not
applicable at all. Neither are the simple multivariate decomposition prob-
lems (9 and 10) applicable. Only the general polynomial decomposition
variants are applicable (problems 11 and 12) of those considered so far.
Therefore conjecture 35 also applies here.

URN:NBN:no-2314

108 CHAPTER 4. ENCRYPTING FUNCTIONS USING COMPOSITION

LEMMA 48 Given a functional composition E(f) : Zm
N −→ Zn

N with co-
efficients Φj,~ι satisfying equation 4.44 but with key constants on the form
given in equations 4.61 and 4.62, and at least one key with degree ≥ 5,
there does not exist any analytic method of solving the system of equa-
tions resulting from the relation in equation 4.44.

PROOF: Similar to that of lemma 23 2.

4.9.8 Functional Known-Plaintext Attack

The cryptanalyst has access to a limited number of (functional ciphertext,
functional plaintext) pairs.

CONJECTURE 49 Fix a parametric encryption template U and a set of key
quadruplesK = {(ci, gi, ri, si)}ki=1. If the cryptanalyst knows one (functional
ciphertext,functional plaintext) pair for U and K, then any other func-
tional ciphertext E(f) is still secure, and neither U nor K is compromised.

Because the cryptanalyst does not know gi for any block, the crypt-
analyst does not even know whether the ciphertext has been encrypted
using proper parametric encryption or multivariate encryption. Thus the
cryptanalyst does not even know the form of the equations relevant to the
functional ciphertext. Even if this is known, the fact that the gi are un-
known mean that the cryptanalyst still cannot construct the correct equa-
tions. Thus it appears to be the case that parametric encryption resists
functional known-plaintext attack.

URN:NBN:no-2314

Chapter 5

Computing with Encrypted
Automata

Chapter 2 defined three different automata, along with methods of con-
verting them to computing endomorphisms amenable to encryption. Chap-
ter 3 demonstrated how the automata can be used with a simple device
called the Turing platform to acheive (Turing) universal computation by
simulating a universal Turing machine on the tape of the Turing platform.
This chapter applies the encryption methods defined in chapter 4 to en-
crypt the automata representations of chapter 2. This allows, in theory,
universal encrypted (Turing) computation.

To facilitate concise discussion, some more concepts are needed.

DEFINITION 14 (RUN) A run of a mapping f is a seriesR = {(~x(i), ~z(i), ~y(i))}Li=0

that satisfies relations given in equations 3.5–3.7. Furthermore, L ∈ N ∪
{ω}, and ω is the first infinite ordinal (the cardinality of N).

DEFINITION 15 (EQUIVALENCE UP TO ENCRYPTION (AUTOMATA)) A run
R1 = {(~x(i), ~z(i), ~y(i))}κi=0, is equivalent up to encryption under U and K
with another run R2 = {(~X(i), ~Y (i), ~Z(i))}κi=0 if there exists:

1. a mapping f : Zm
N −→ Zn

N such that R1 is a run of f ,

109

URN:NBN:no-2314

110 CHAPTER 5. COMPUTING WITH ENCRYPTED AUTOMATA

2. an encryption template U and a collection of key-tuples K such that
R2 can be generated from R1 as follows, denoting by S the dimen-
sion of ~x(i), O the dimension of ~z(i), and I the dimension of ~y(i):

(a) U is a univariate encryption template:
i. apply r1, . . . , rS to the respective components of each ~x(i)

to produce ~X(i);
ii. apply rS+1, . . . , rS+O to the respective components of each

~z(i) to produce ~Z(i); and
iii. apply rn+S+1, . . . , rn+S+I to the respective components of

each ~y(i) to produce ~Z(i).
(b) U is a multivariate or parametric encryption template:

i. find a such that
∑a

i=1 ci = S;
ii. apply r1, . . . , ra to the respective blocks of each ~x(i) to pro-

duce ~X(i);
iii. apply ra+1, . . . , rl to the respective blocks of each ~z(i) to

produce ~Z(i); and
iv. apply rl+a+1, . . . , rk to the respective blocks of each ~y(i) to

produce ~Y (i);
(c) U is a parametric encryption template:

i. find a such that
∑a

i=1 ci = S;
ii. apply r1, . . . , ra to the respective blocks of each ~x(i) and to

the respective parameter blocks in ~X(i) to produce ~X(i);
iii. apply ra+1, . . . , rl to the respective blocks of each ~z(i) and

to the respective parameter blocks in ~X(i) to produce ~Z(i);
and

iv. apply rl+a+1, . . . , rk to the respective blocks of each ~y(i) and
to the respective parameter blocks in ~X(i) to produce ~Y (i).

Thus there is equivalence up to encryption between two runs if the
(possibly partially) encrypted run R generated by E(H) can be decrypted
to another run R′ of H .

URN:NBN:no-2314

5.1. UNIVARIATE ENCRYPTION OF PROGRAMS 111

DEFINITION 16 (COMPUTATIONAL EQUIVALENCE) A functional ciphertext
E(f) is computationally equivalent to a functional plaintext f iff for every
run R of f , there exists a unique run R′ of E(f) which is equivalent up to
encryption.

DEFINITION 17 (COMPUTATIONAL EQUIVALENCE FOR (M,T) PAIRS) A pair
(E(M), T) such that M is an automaton that reads all its input from T ’s
tape, and T a compatible Turing platform is computationally equivalent
to a pair (M,T) if:

1. the finite control of M is computationally equivalent to E(M) for
some encryption template U and set of key tuplesK generated using
U ; and

2. U is such that the key tuple applied to the output component of M
dedicated to outputting the movement direction to T is set to the
identity mapping;

3. for all computation steps a, C(i, a)′ = E(C(i, a)), where:

• C(i, a)′ is the value stored in cell i after a computation steps on
the tape of T during E(M)’s computation,

• C(i, a) is the value stored in cell i after a computation steps on
the tape of T during M ’s computation,

• E(C(i, a)) is the encryption of C(i, a) using the keys assigned
to encrypting the output alphabet (rS+1, . . . , rn−1 for univari-
ate encryption, rb+1, . . . , rl−1 for multivariate or parametric en-
cryption (b being the last block of state components).

5.1 Univariate Encryption of Programs

Section 4.2, describes how to encrypt a mapping f : Zm
N −→ Zn

N . This
section describes how univariate encryption is applied to computing en-
domorphisms and register automata to achieve encrypted computation.

URN:NBN:no-2314

112 CHAPTER 5. COMPUTING WITH ENCRYPTED AUTOMATA

Fix an automaton M (either a Mealy machine, BSS’ automaton, or register
automaton) with a representation H . H is either a polynomial mapping,
or a mapping defined using a function table. M may or may not be aug-
mented and/or obfuscated.

If M is a Mealy machine, H is the mapping (δ, λ). If M is a BSS’ au-
tomaton, H is the computing endomorphism given in equation 2.16. If
M is a register automaton, there is no directly corresponding computing
endomorphism as with Mealy machines and BSS’ automata, but rather a
series of evaluations of encrypted mappings.

Recall that the general form of H for Mealy and BSS’ automata is:

H : ZS
N × ZI

N −→ ZS
N × ZO

N . (5.1)

5.1.1 M Is a Mealy Or BSS’ Machine

The representationH is the mapping (δ, λ). Encrypting this mapping such
that it still can carry out the original computation is done as follows:

1. Select the state components that are to be stored in encrypted form.
Each state component stored in encrypted form must be decrypted
and encrypted by the same key for each computation step. Thus if
xi, 1 ≤ i ≤ S is encrypted, one must have (ri, si) = (rn+i, sn+i). If
xi is not encrypted, (ri, si) = (rn+i, sn+i) = (I, I), where I is general
notation for an appropriate identity mapping. IfM is to be used with
a compatible Turing platform, at least one output component must
be in plaintext, otherwise the Turing platform will not move its finite
control correctly.

2. Select the input components that are assumed to be encrypted. Un-
encrypted input components have (ri, si) = (I, I), where n+S < i ≤
n+ S + I . Otherwise no special restrictions are necessary.

3. Select the output components to encrypt. Unencrypted output com-
ponents have (ri, si) = (I, I), where S < i ≤ S + O. Otherwise no
special restrictions are necessary.

URN:NBN:no-2314

5.1. UNIVARIATE ENCRYPTION OF PROGRAMS 113

4. Steps 1–3, along with the representation of H should now dictate a
univariate encryption template. Generate key pairs in accordance
with the univariate encryption template, and apply them to H to
produce E(H) using univariate encryption.

The encrypted automaton is used in precisely the same way as the unen-
crypted one, the only difference being that certain inputs, along with part
of or all of the initial state may have to be encrypted.

An encryption template that has a plaintext output that can be used to
specify the movement direction of the finite control of a Turing platform T
compatible with M is called applicable to (M,T). An encryption template
that can be applied to the representation of M is called applicable.

5.1.2 M Is a Register Automaton

Univariate encryption of a register automaton M proceeds as follows:

1. Select which of the register components ~R1, . . . , ~Rm to encrypt. ~C

and ~D must always be in plaintext if the automaton is to function
properly, so the keys for their components are always set to the iden-
tity mappings.

2. The next instruction pointer mapping f has output in the form of
one d-component vector, which must always be in plaintext.

3. The next storage pointer mapping g has output in the form of one
d-component vector, which must always be in plaintext.

4. The mapping giving the output value ~S′ to be written to storage cell
~D typically encrypts its output.

5. The register transition mapping only computes new values for some
of the register components. The components are encrypted with the
inverses of the keys used to decrypt the registers prior to application
of the transition mapping itself. Those components reserved as pas-
sive inputs writable by some external entity have their keys set to
the identity mapping.

URN:NBN:no-2314

114 CHAPTER 5. COMPUTING WITH ENCRYPTED AUTOMATA

6. Steps 1–5, along with the representation of the mappings, should
now dictate a univariate encryption template. Generate key quadru-
ples in accordance with the univariate encryption template, and ap-
ply them to the mappings to produce their encryptions.

The encrypted register automaton is used exactly as the plaintext ver-
sion.

5.2 Multivariate Encryption of Programs

Section 4.5, describes how to encrypt a mapping f : Zm
N −→ Zn

N . This sec-
tion describes how multivariate encryption is applied to computing endo-
morphisms and register automata to achieve encrypted computation. Fix
an automaton M (either a Mealy machine, BSS’ automaton, or register au-
tomaton) with a representation H . H is either a polynomial mapping, or a
mapping defined using a function table. M may or may not be augmented
and/or obfuscated.

If M is a Mealy machine, H is the mapping (δ, λ). If M is a BSS’ au-
tomaton, H is the computing endomorphism given in equation 2.16. If
M is a register automaton, there is no directly corresponding computing
endomorphism as with Mealy machines and BSS’ automata, but rather a
series of evaluations of encrypted mappings.

Recall that the general form of H for Mealy and BSS’ automata is:

H : ZS
N × ZI

N −→ ZS
N × ZO

N . (5.2)

5.2.1 M Is a Mealy Or BSS’ Machine

The representationH is the mapping (δ, λ). Encrypting this mapping such
that it still can carry out the original computation is done as follows:

1. Select the blocks of state components that are to be stored in en-
crypted form. Each block stored in encrypted form must be de-
crypted and encrypted by the same key for each computation step.

URN:NBN:no-2314

5.2. MULTIVARIATE ENCRYPTION OF PROGRAMS 115

Thus if ~wi, 1 ≤ i ≤ a, a being the number of blocks storing all the
state components, is encrypted, one must have (ri, si) = (rl+i, sl+i).
If ~wi is not encrypted, (ri, si) = (rl+i, sl+i) = (I, I), where I is gen-
eral notation for an appropriate identity mapping. If M is to be used
with a compatible Turing platform, at least one output block must
be in plaintext, otherwise the Turing platform will not move its fi-
nite control correctly.

2. Select the blocks of input components that are assumed to be en-
crypted. Unencrypted blocks have (ri, si) = (I, I), where a < i ≤
k − l. Otherwise no special restrictions are necessary.

3. Select the output components to encrypt. Unencrypted output com-
ponents have (ri, si) = (I, I), where a < i ≤ l. Otherwise no special
restrictions are necessary.

4. Steps 1–3, along with the representation of H should now dictate
a multivariate encryption template. Generate key triples in accor-
dance with the multivariate encryption template, and apply them to
H to produce E(H) using multivariate encryption.

5.2.2 M Is a Register Automaton

Multivariate encryption of a register automaton M proceeds as follows:

1. Select which of the registers ~R1, . . . , ~Rm to encrypt. Block length
should preferably be d, such that each register has its own block.
Define one variable block consisting of d components for ~P ~C , ~S ~D, ~C,
and ~D. ~C and ~D must always be in plaintext if the automaton is to
function properly, so the keys for their blocks are always set to the
identity mappings.

2. The next instruction pointer mapping f has output in the form of
one d-component vector, which must always be in plaintext.

URN:NBN:no-2314

116 CHAPTER 5. COMPUTING WITH ENCRYPTED AUTOMATA

3. The next storage pointer mapping g has output in the form of one
d-component vector, which must always be in plaintext.

4. The mapping giving the output value ~S′ to be written to storage cell
~D typically encrypts its output.

5. The register transition mapping only computes new values for some
of the blocks in the register. The mapping’s component blocks are
encrypted with the inverses of of the keys used to encrypt the regis-
ter blocks prior to application of the transition mapping itself. Those
blocks reserved as passive inputs have their keys set to the identity
mapping.

6. Steps 1–5, along with the representation of the mappings, should
now dictate a multivariate encryption template. Generate key quadru-
ples in accordance with the multivariate encryption template, and
apply them to the mappings to produce their encryptions.

The encrypted register automaton is used exactly as the plaintext ver-
sion.

5.3 Results

It is not immediately obvious that the encrypted automata do the same
computations as the plaintext versions, so some additional results are needed
to establish this.

LEMMA 50 Fix H an encryptable representation of a Mealy machine, BSS’
automaton, or register automaton, an applicable encryption template U ,
and a set of key tuples K generated using U . For every run R of H there
exists a run R′ of E(H) which is equivalent up to encryption under U
and K.

PROOF: Follows from the construction in definition 15 2.

URN:NBN:no-2314

5.3. RESULTS 117

LEMMA 51 For every encryptable representation of a Mealy machine, BSS’
automaton, or register automaton H , every univariate or multivariate en-
cryption template U applicable to H , and every set of keys generated
using U , there exists a computationally equivalent encrypted representa-
tion E(H).

PROOF: Fix any encryptable representation H , any encryption template
U applicable to H , and any set of keys K generated using U . If H repre-
sents a Mealy machine or BSS’ automaton, then by lemma 50, every run R
of H has a corresponding run R′ for E(H) which is equivalent up to en-
cryption. Since univariate and multivariate encryption are bijection with
respect to non-functional data, there can only be one run R′ correspond-
ing to a unique R. The same argument is applied to every one of a register
automaton’s mappings, the difference being that each mapping is consid-
ered to have its own run. Since this holds for arbitrary H , U , and K, it
must hold for all H , appropriate U , and K generated from U 2.

THEOREM 52 For every pair (M,T), M a properly defined Mealy or BSS’
machine and T a compatible Turing platform, every univariate or multi-
variate encryption template U applicable to (M,T), and every set of key
pairs K generated using U , there exists a computationally equivalent pair
(E(M), T), where E(M) is a Mealy or BSS’ automaton, respectively.

PROOF: Fix any (M,T), a U applicable to (M,T), and K generated us-
ingU . (M,T) and (E(M), T) are computationally equivalent if they satisfy
the requirements in definition 17.

REQUIREMENT 1: M has an encryptable representationH . By lemma 51,
there exists a computationally equivalent E(H), which is E(M)’s repre-
sentation.

REQUIREMENT 2: Trivially satisfied, as U is applicable to (M,T).
REQUIREMENT 3: By the steps used to construct an applicable U for

univariate and multivariate encryption, and the fact that M and E(M)
read all their input from T ’s tape, The keys used to decrypt input from
T ’s tape must be the inverses of those used to encrypt output to T ’s tape.
Furthermore all initially non-blank tape cells must be encrypted under the

URN:NBN:no-2314

118 CHAPTER 5. COMPUTING WITH ENCRYPTED AUTOMATA

same (output) encryption keys for E(M)’s run. Similarly, the initial state
of E(M) is also encrypted by these same keys. Thus C(i, 0)′ = E(C(i, 0))
for all non-blank storage cells i. By the computational equivalence of H
and E(H), The decryption of all C(i, a)′ must equal the corresponding
C(i, a), for otherwise there would have to be some difference between two
runs with initial tape contents equivalent up to encryption, which would
in turn contradict the computational equivalence of H and E(H). Thus
one must also have C(i, a)′ = E(C(i, a)) for all subsequent computation
steps a > 1 2.

THEOREM 53 For every properly defined turing machine t, it is possible
to generate a pair (E(M), T) computationally equivalent to a pair (M,T)
under a univariate or multivariate encryption template U and keys gener-
ated using U , that simulates t on T ’s tape, where M and E(M) are both
Mealy machines, BSS’ automata, or register machines that only read input
from the tape of a compatible Turing platform T .

PROOF: Fix t. By theorem 1, there exists a pair (M,T) that simulates t
on T ’s tape. Fix a univariate or multivariate encryption template U and a
set of key tuples generated using U . By 52, there exists a pair (E(M), T)
computationally equivalent to (M,T) 2.

THEOREM 54 Univariate and multivariate encryption allow cryptograph-
ically weak encrypted (Turing) universal computation.

PROOF: Select a properly defined universal Turing machine as t. By the-
orem 53 there exists a pair (E(M), T) which simulates t’s computation on
T ’s tape in encrypted form 2.

5.4 Parametric Encryption of Programs

Parametric encryption and the register automaton have been constructed
for one another. Parametric encryption of a register automaton M pro-
ceeds as follows:

URN:NBN:no-2314

5.4. PARAMETRIC ENCRYPTION OF PROGRAMS 119

1. Select which of the registers ~R1, . . . , ~Rm to encrypt. Block length
should preferably be d, such that each register has its own block.
Define one variable block consisting of d components for ~P ~C , ~S ~D, ~C,
and ~D. ~C and ~D must always be in plaintext if the automaton is to
function properly, so the keys for their blocks are always set to the
identity mappings. Program instructions may be encrypted with ~C
as parameter.

2. The next instruction pointer mapping f has output in the form of
one d-component vector, which must always be in plaintext.

3. The next storage pointer mapping g has output in the form of one
d-component vector, which must always be in plaintext.

4. The mapping giving the output value ~S′ to be written to storage cell
~D typically encrypts its output, and uses the block of ~D as parameter.

5. The register transition mapping only computes new values for some
of the blocks in the register. Those blocks reserved as passive inputs
have their keys set to the identity mapping. The registers that are to
be encrypted may take as a parameter any other register, ~C, ~D, ~P ~C ,
or ~S ~D.

6. Steps 1–5, along with the representation of the mappings, should
now dictate a parametric encryption template. Generate key quadru-
ples in accordance with the parametric encryption template, and ap-
ply them to the mappings to produce their encryptions.

Computations with the encrypted register automaton are done in as
for the plaintext register automaton, the difference being the fact that stor-
age cells, registers, and program instructions may be encrypted. Using the
storage cell pointer as parameter for the encryption and decryption of the
storage cells, effectively encrypts each cell with the same substitution ci-
pher but with a different key for each cell. In the same way, a parametric
encryption of the program instructions effectively encrypts each instruc-
tion with a different key.

URN:NBN:no-2314

120 CHAPTER 5. COMPUTING WITH ENCRYPTED AUTOMATA

Register automata encrypted with parametric encryption have the same
computing power as Mealy machines and BSS’ automata encrypted with
univariate and multivariate encryption. Using register automata encrypted
with parametric encryption in conjunction with a Turing platform, how-
ever, does not put the security provided by the parameters to good use.

URN:NBN:no-2314

Chapter 6

Conclusions

This chapter discusses the results of the previous chapters, and presents
some remaining challenges.

The goal of my thesis has been to come as close as possible to providing
one or more methods of encrypting automata. The encrypted automata
should be able to carry out their computations as self-contained units, and
use encrypted storage, while also having plaintext communication with
their surroundings. Furthermore, encrypted (Turing) universal computa-
tion should also be possible.

Recall the first problem posed on the way to this goal:

PROBLEM 2 (ENCRYPTABLE REPRESENTATION) Given a classM of auto-
mata, does there exist a class of representations F and a transformation
TF :M−→ F , such that:

1. elements in F can be used directly in computation;

2. TF can be efficiently computed; and

3. TF (M) is encryptable?

I have presented methods of transforming three types of finite auto-
mata into representations that satisfy all three requirements above. It turns

121

URN:NBN:no-2314

122 CHAPTER 6. CONCLUSIONS

out that every Mealy machine and BSS’ automata can be represented using
one polynomial mapping, or one function table, which through iteration
can execute computations. Register automata consist by definition of four
different mappings that are easily encryptable such that the requirements
of problem 2 are met. These mappings are termed a computing endomor-
phisms. It is established that the representation can be made over a ring
with order N > 1, except for BSS’ automata, where the representation
must be over an N > 1 which is a power of one prime number.

In anticipation of the goal of universal computation, I demonstrate
how these representations can be coupled to an unbounded storage in the
form of an infinite series of indexed storage cells. It is established that the
resulting constructions have instances capable of (Turing) universal com-
putation, and appear to be the first such encryptable representations.

The next problem to overcome was that of the encryption itself:

PROBLEM 3 (PROGRAM ENCRYPTION) Given a class of representations F
satisfying property 1 in problem 2, does there exist a class of tranforma-
tions E : K ×F −→ F , where K is a class of keys, such that:

1. F can be encrypted in part or in its entirety;

2. E can be efficiently computed;

3. elements in K can be efficiently generated; and

4. E(F), F ∈ F , can still be used directly in computation such that:

(a) one or more outputs of F may be encrypted;

(b) one or more inputs of F may be encrypted; and

(c) the state space/work space of F may be encrypted partially or
completely?

I have found three solutions to this problem in the form of univari-
ate, multivariate, and parametric encryption. All three allow selective en-
cryption of parts of the state, input, and output of the finite automata.

URN:NBN:no-2314

123

Parametric encryption was primarily conceived with register automata in
mind, and requires special care in order to encrypt a program such that it
still compute correctly.

A surprise bonus is the ability to remotely re-encrypt all automata that
have been encrypted with univariate or multivariate encryption. Such re-
encryption is especially interesting, as it under certain conditions gives the
cryptanalyst no new information that could not have been gleaned from
the original encrypted automaton itself. To my knowledge these are the
first cryptosystems of any type with this capability.

The next step towards the goal, is making possible universal encrypted
computation.

PROBLEM 4 ((TURING) UNIVERSAL ENCRYPTED COMPUTATION) Does there
exist at least one element F ∈ F such that E(F) is capable of (Turing)
universal encrypted computation, such that a storage of E(F) bijectively
mappable to a Turing machine’s tape contains only encrypted values?

This has been solved for univariate and multivariate encryption. It has
also been established that all computations done in plaintext by a plaintext
automaton, have a corresponding encrypted computation.

The final hurdles to achieving practical universal encrypted computa-
tion are the following two problems:

PROBLEM 5 (STRONG PROGRAM ENCRYPTION) Does there exist a class of
transformations E : K ×F −→ F satisfying problem 3 such that:

1. the encrypted portion of the program representation is strongly en-
crypted;

2. the encrypted portion of the state of the encrypted program is strongly
encrypted;

3. encrypted output is strongly encrypted; and

4. encrypted input is strongly encrypted?

URN:NBN:no-2314

124 CHAPTER 6. CONCLUSIONS

PROBLEM 6 (STRONG (TURING) UNIVERSAL ENCRYPTED COMPUTATION)
Does there exist a class of transformations satisfying problem 5 and an el-
ement F ∈ F such that E(F) also satisfies problem 4?

Unfortunately, the cryptanalysis of all three algorithms demonstrates
quite clearly that they all have significant weaknesses. Therefore these two
problems remain unsolved. This does not automatically render the ciphers
useless for all practical purposes. They may still be of use in niche applica-
tions. The main problem is that the encryption of an automaton only gives
that automaton the ability to apply a monoalphabetic substitution cipher
with small fixed key. This opens up for a other attacks even though the
value of the keys are never known.

The limiting factor for univariate and multivariate encryption is the
unicity distance. This greatly limits their use in cryptographically secure
encrypted computation as an iterated function system. Parametric encryp-
tion manages to reduce the impact of this problem, but not eliminate it,
when used to encrypt register automata. Parametric encryption could also
be employed for Mealy machine and BSS’ automaton representations, but
it is not clear how coherent encrypted computation could then be carried
out. For this reason there are no results in this dissertation on the applica-
tion of parametric encryption to Mealy machines or BSS’ automata.

Noteworthy amongst the attacks, is the decomposition attack with al-
most linear time complexity, which works to a degree even if the attacker
does not have any knowledge of whether univariate or multivariate en-
cryption has been employed.

An interesting aspect is that all three of the encryption systems resist
analytic solution methods as a means of cryptanalysis when at least one
key has degree ≥ 5. Furthermore, multivariate encryption and parametric
encryption are based on special cases ofNP -hard problems. Whether their
particular special versions have any impact on solvability and hardness is
not yet clear. A side effect of the cryptanalyses are the reduced polyno-
mial decomposition problems, similar to the more “traditional” polyno-
mial decomposition problems. I have not yet seen any literature where
such problems are discussed. They appear to have some interesting con-

URN:NBN:no-2314

125

sequences for function composition, but require further study, both in a
purely mathematical context, as well as cryptographical context.

Problems 5 and 6 are still unresolved, although the lack of suggested
systems for the latter suggest that it might not be solvable. The original
intention of this work was to come as close as possible to solving these
two problems, and some progress has been made, since problems 2–4 are
now solved.

Almost all systems for secure or encrypted computation use exact en-
cryption. The systems presented have their security limited by the fact
that the involved mappings are dense, when expressed as polynomials,
and therefore require a lot of storage. Boneh and Lipton point out in [11]
that maybe systems over Q and similar fields/rings of infinite order may
give the desired computational power and security, if such constructions
are possible. Currently, this seems to be the most interesting direction,
provided answers to the following informal questions are found:

1. How does one evaluate a conditional branch over a ring or fieldK of
infinite order using a construction with “short” symbolic represen-
tation?

2. How does one find permutations of K (necessarily a permutation of
an infinite set) that:

(a) offer sufficient confusion,

(b) have “short” symbolic representations, and

(c) are efficiently computable?

3. The original BSS machines can be used to express computations overK.
The challenge, however, is this: how does one express such a ma-
chine as an encryptable expression such as a polynomial? The adap-
tion to finite fields in chapter 2 was done precisely because I could
not find a way of expressing a BSS automaton’s evaluation of the
branch condition over an infinite field.

URN:NBN:no-2314

126 CHAPTER 6. CONCLUSIONS

URN:NBN:no-2314

Appendix A

Notation

Special Symbols
β The next node function of a BSS automaton
δ The state transition function of a finite automaton
δ̃ The exact polynomial interpolation of the function δ
∆ Usually the output alphabet of a Mealy machine
λ The output function of a Mealy machine
Σ Usually a finite alphabet
B The blank (tape) symbol
E(f) The (possibly partial) encryption of the polynomial f
H Usually the computing endomorphism for a finite automaton
I Indices of the variables that are decrypted (or processed

in an encrypted state)
J Indices of the function components that are encrypted

after processing
ci Usually a block size in multivariate or parametric encryption
gi Index of the parameter block in parametric encryption
ri Usually permutations over ZN

si Usually the inverse of ri
I The input space of a BSS automaton
N The set of nodes of a BSS automaton

127

URN:NBN:no-2314

128 APPENDIX A. NOTATION

S The state space of a BSS automaton
I The identity mapping
O An oracle—usually a host system and its environment
O(·) “big-oh” notation for complexity measures
S The full state space
~S Usually the value of a storage cell of a register automaton
N The natural numbers
P The set of program instructions for a register automaton
~P An instruction for a register automaton
Q The rational numbers
R The registers of a register automaton
~R A register vector of a register automaton
Zn The ring of integers modulo n

Operators
A×B The Cartesian product of sets A and B
An The Cartesian product of a set A with itself n times
g ◦ f The functional composition of g with f
A⇒ B A logically implies B
A⇔ B A is logically equivalent to B
a← b a is assigned the value b
a mod b The remainder of the division a/b
a ≡ b(mod c) a is equivalent to b modulo c

Indexing and Similar Things
fi The ith component of a mapping f
xi The ith component of a vector x
iq,k The kth component of the vector~iq
f : A −→ B f maps the set A to the set B
f |D The mapping f with domain restricted to D
~x(n) The vector x after n computation steps/iterations
~xi The ith of a finite ordered collection of vectors
~xi(n) The ith of a finite ordered collection of vectors

URN:NBN:no-2314

129

after n computation steps/iterations
A[x, y] The finite extension of the group A
Zn[x]/p(x) The ring of polynomials over Zn modulo p(x)

URN:NBN:no-2314

130 APPENDIX A. NOTATION

URN:NBN:no-2314

Appendix B

Miscellaneous Proofs

B.1 A Modified Turing Machine

For notational and other practical reasons, this thesis uses primarily a
modified version of the standard one-headed Turing machine with one
semi-infinite tape, and two directions of movement. The version used has
two directions of movement (left and right) as the standard Turing ma-
chine, but may in addition choose not to move its head or finite control.

The modified Turing machine (also referred to as such in the body of
the thesis), is an automaton (Q,Σ,Γ, δ, q0, B, F) whereQ is the set of states,
Σ the input alphabet, Γ = Σ ∪ {B}, B is the symbol denoting a blank cell,
q0 is the initial state, F is the set of final states. The only change actually
introduced is in δ, which is now a function on the form:

δ : Q× Γ −→ Q× Γ× {−1, 0, 1}, (B.1)

where “-1” symbolizes a move to the left, “1” a move to the right, and “0”
no move.

The behavior of the modified Turing machine is defined by the follow-
ing mappings:

• P : N −→ N, P (0) = 0, which gives the position as a function of
completed computation steps.

131

URN:NBN:no-2314

132 APPENDIX B. MISCELLANEOUS PROOFS

• C : N× N −→ Γ, which gives the contents of the cell as a function of
position and completed computation steps.

• H : N −→ Q, H(0) = q0, which gives the state as a function of
completed computation steps.

The above mappings must satisfy the following:

(∀i) (i ∈ N→
(P (i+ 1) = P (i) + δ3(H(i), C(P (i), i)))∧
(C(P (i), i+ 1) = δ2(H(i), C(P (i), i)))∧
(H(i+ 1) = δ1(H(i), C(P (i), i))))

(B.2)

THEOREM 55 Any Turing machine with a finite control capable of mov-
ing left, right, or standing still, may be simulated by a standard Turing
machine.

PROOF: by construction. In the following, S symbolizes the “no move”
direction for the finite control. Fix a modified Turing machine
T = (Q,Σ,Γ, δ, q0, B, F). The mapping δ may be defined by a set of quin-
tuples in Q × Γ × Q × Γ × {L, S,R}. For each quintuple on the form
(q1, γ, q2, γ′, S), with γ, γ′ ∈ Γ:

• replace it with the quintuple (q1, γ, q′2, γ
′, R), and

• the set of quintuples {(q′2, γ, q2, γ, L) | γ ∈ Γ}; and

• add the state q′2 to Q.

2.

B.2 Notes on the Composition Operation

Define for N a power of a prime, a reduction modulo N by:

R(xn) = x1+(n−1) mod N , n ∈ N (B.3)

URN:NBN:no-2314

B.2. NOTES ON THE COMPOSITION OPERATION 133

The reduction operation is merely a notational convenience to clearly de-
note the exponent reduction that can be carried out on finite fields of the
form ZN . This reduction gives a function equivalent to the unreduced
form over ZN .

LEMMA 56 Fix N = P e as a power e of a prime P . If e = 1, ZN is in-
terpreted as the integers modulo N . Otherwise, ZN is interpreted as the
set of degree e − 1 polynomials over ZP modulo an irreducible degree e
polynomial p(x). Given the polynomials f(x) =

∑N−1
i=0 aix

i and g(x) =∑2N−2
i=0 bix

i, the following holds over ZN :

R(f(x)g(x)) = R(f(x)Rg(x)). (B.4)

PROOF:

Rg(x) = b0 +
N−1∑
i=1

(bi + bN−1+i)xi

So

R(f(x)Rg(x)) = R

(N−1∑
i=0

aix
i

)
·

b0 +
N−1∑
j=0

(bj + bN−1+j)xj

= R

N−1∑
j=0

b0ajx
j +

N−1∑
i=1

N−1∑
j=0

(bi + bN−1+i)ajx
i+j

=

N−1∑
j=0

b0ajx
j +

N−1∑
i=1

N−1∑
j=0

(bi + bN−1+i)ajx
(1+(i+j−1)mod(N−1)) (B.5)

URN:NBN:no-2314

134 APPENDIX B. MISCELLANEOUS PROOFS

R(f(x)g(x)) = R

(N−1∑
i=0

aix
i

)
·

2N−2∑
j=0

bjx
j

= R

N−1∑
i=0

N−1∑
j=0

biajx
i+j +

N−1∑
i=1

N−1∑
j=0

bN−1+iajx
N−1+i+j

=

N−1∑
i=0

N−1∑
j=0

biajx
(1+(i+j−1)mod(N−1))

+
N−1∑
i=1

N−1∑
j=0

bN−1+iajx
(1+(N−1+i+j−1)mod(N−1))

=
N−1∑
j=0

b0ajx
j +

N−1∑
i=1

N−1∑
j=0

(bi + bN−1+i)ajx
(1+(i+j−1)mod(N−1)) (B.6)

Thus R(f(x)g(x)) = R(f(x)Rg(x)) 2.

LEMMA 57 Fix N = P e as a power e of a prime P . If e = 1, ZN is
interpreted as the integers modulo N . Otherwise, ZN is interpreted as
the set of degree e − 1 polynomials over ZP modulo an irreducible de-
gree e polynomial p(x). Given the polynomials f ∈ ZN [x1, . . . , xn] and
g1, . . . , gn ∈ ZN [x1, . . . , xm], the symbolic composition of f with g1, . . . , gn,
h ∈ ZN [x1, . . . , xm], has a unique evaluation equivalent polynomial h′ ∈
ZN [x1, . . . , xm] with no monomial having degree greater thanN−1 in any
one variable.

PROOF: Symbolic functional composition of f with g1, . . . , gn consists of:

1. substituting the polynomials g1, . . . , gn for the variables x1, . . . , xn,

2. multiplying the gis with themselves (to exponentiate them) or with
other gjs,

URN:NBN:no-2314

B.3. KEYS VERSUS FUNCTIONS FOR UNIVARIATE ENCRYPTION 135

3. multiplying a product of gis with a constant, and

4. adding the resulting polynomials.

By lemma 56 and the associativity of polynomial multiplication and poly-
nomial addition, R(f(g1, . . . , gn)) has degree ≤ N − 1 for every variable.
By corollary 1.8 in [24], the reduced polynomial is unique. Furthermore, it
is the equivalent function of the unreduced version 2.

B.3 Keys Versus Functions for Univariate Encryption

There are (Nn)(N
m) possible mappings f : Zm

N −→ Zn
N . For the purposes

of univariate encryption, one must have N ≥ 2. Univariate encryption as
applied f can make use of at most n + m different key pairs. Each key
pair can be selected in N ! ways. A set of n+m key pairs can therefore be
selected in (N !)n+m ways.

Define K(N,n,m) = (N !)n+m and F (N,n,m) = (Nn)(N
m).

LEMMA 58 For all N,n,m ≥ 2, F (N,n,m) > K(N,n,m).

PROOF: by induction on every variable. F (2, 2, 2) = 256 and K(2, 2, 2) =
16, so F (2, 2, 2) > K(2, 2, 2).

• Induction on n: F (N,n,m) > K(N,n,m) =⇒ F (N,n + 1,m) >
K(N,n+ 1,m).

F (N,n+ 1,m) > K(N,n+ 1,m)
m(

Nn+1
)(Nm)

> (N !)n+1+m

m(
N (nNm+Nm)

)
> N !K(N,n,m)

m
N (Nm)F (N,n,m) > N !K(N,n,m)

URN:NBN:no-2314

136 APPENDIX B. MISCELLANEOUS PROOFS

This induction hypothesis holds if N (Nm) > N !. Since N ≥ 2 and
m ≥ 2, this must be the case.

• Induction on m: F (N,n,m) > K(N,n,m) =⇒ F (N,n,m + 1) >
K(N,n,m+ 1).

F (N,n+ 1,m) > K(N,n+ 1,m)
m

(Nn)(Nm+1) > (N !)n+m+1

m
N (nNm)Nn((N−1)Nm) > N !K(N,n,m)

m
Nn((N−1)Nm)F (N,n,m) > N !K(N,n,m)

This induction hypothesis holds if Nn((N−1)Nm) > N !. Since N ≥ 2,
n ≥ 2, and m ≥ 2, Nn((N−1)Nm) > N2(Nm) > N !, so this must be the
case.

• Induction on N :

F (N + 1, n,m) > K(N + 1, n,m)
m

((N + 1)n)((N+1)m) > (N + 1)!n+m

m

(N + 1)n
(
Nm+

∑m−1
j=0 (m

j)Nj
)

> (N + 1)n+mK(N,n,m)
m

(N + 1)n(Nm)(N + 1)n
(∑m−1

j=0 (m
j)Nj

)
> (N + 1)n+mK(N,n,m)

URN:NBN:no-2314

B.3. KEYS VERSUS FUNCTIONS FOR UNIVARIATE ENCRYPTION 137

Since

(N + 1)n(Nm) =

(
Nn(Nm) +

nNm−1∑
i=0

(
nNm

i

)
N i

)

= F (N,n,m) +
nNm−1∑

i=0

(
nNm

i

)
N i, (B.7)

and

n

m−1∑
j=0

(
m

j

)
N j

 ≥ n+ n
m!

1!(m− 1)!
N = n+ nmN > n+m, (B.8)

it follows that

(N + 1)n(Nm)(N + 1)n
(∑m−1

j=0 (m
j)Nj

)
>

F (N,n,m)(N + 1)n
(∑m−1

j=0 (m
j)Nj

)
≥

F (N,n,m)(N + 1)n+nmN >

(N + 1)n+mF (N,n,m) > (N + 1)n+mK(N,n,m). (B.9)

Thus all three induction hypotheses hold 2.

THEOREM 59 For all N ≥ 2, and n and m positive integers such that at
least one is greater than 1: (Nn)(N

m) > (N !)n+m.

PROOF: Define K(N,n,m) = (N !)n+m and F (N,n,m) = (Nn)(N
m). Then:

• F (2, 1, 1) = 4 and K(2, 1, 1) = 4,

• F (2, 1, 2) = 16 and K(2, 1, 2) = 8,

• F (2, 2, 1) = 16 and K(2, 2, 1) = 8.

By lemma 58, F (N,n,m) > K(N,n,m) for all N,n,m ≥ 2 2.

URN:NBN:no-2314

138 APPENDIX B. MISCELLANEOUS PROOFS

LEMMA 60 For all N ≥ 3, and n = m = 1, (Nn)(N
m) < (N !)n+m.

PROOF:

NN < (N !)2

m Stirling’s lower bound on factorials
NN < 2πNN2Ne−2N ≤ (N !)2

m
1 < 2πNNNe−2N ≤ (N !)2N−N

The left inequality in the last equation above holds if N > e2 ≈ 7.389. If
N ≥ 8, then F (N, 1, 1) < K(N, 1, 1). Compute F and K for the remaining
values of N :

N F (N, 1, 1) K(N, 1, 1)
3 27 36
4 256 576
5 3 125 14 400
6 46 656 518 400
7 823 543 25 401 600

2.

URN:NBN:no-2314

Appendix C

Composition Using Function
Tables

A side effect of this work are some simple and efficient algorithms for
symbolic function composition. They can also be applied to polynomials,
and would have had linear time complexity, were it not for the fact that
there appears to be no known algorithm for symbolic interpolation that
has linear time complexity in the number of coefficients employed. One of
the faster interpolation algorithms is one by Canny et.al. [15].

Symbolic function composition may be done directly on the functions’
symbolic representation in a straightforward manner or with more com-
plicated (and efficient) approaches for special cases, such as sparse poly-
nomials, employing tools like Fourier transforms. In some cases, however,
a reasonably efficient symbolic function composition may be achieved by
using a function tables.

C.1 Complexity Notation

To make the complexity results as general as possible, all operations as-
sumed to be atomic for the purposes of this document are given their own
time- and space-complexity symbols. Some of the operations are compos-

139

URN:NBN:no-2314

140 APPENDIX C. COMPOSITION USING FUNCTION TABLES

ite operations and may be implemented as algorithms with non-constant
space- and/or time-complexity. Symbols are mainly divided into those
for operations over ZN and those over Z. I argue that these types of com-
plexity results, although more cumbersome, are potentially more useful
in a real-world implementation situation. In such a situation, one may
discover that the algorithm of choice is suddenly rendered useless by a
bottleneck of the available hardware or software. An example of this is
when indexing operations (such as those for nested hash-structures) equal
or surpass the complexity of other operations in an algorithm implemen-
tation.

Ta,N The time complexity of doing one integer addition modulo N when
the arguments being added are elements of the field ZN .

Tm,N The time complexity of doing one integer multiplication modulo N
when the arguments being added are elements of the field ZN .

Td,N The time complexity of doing one integer division modulo N when
the arguments being added are elements of the field ZN .

TR,N The time complexity of evaluating a binary total order relation over ZN .

T←,N The time complexity of assigning a variable over ZN a value in ZN .

Ta The time complexity of doing one integer addition with integers in Z.

Tm The time complexity of doing one integer multiplication with inte-
gers in Z.

Td The time complexity of doing one integer division with integers in Z.

Tp,n,m The time complexity of computing the mth power of the integer n.

TR The time complexity of evaluating a binary total order relation over Z.

Tand The time complexity of logical and.

Tor The time complexity of logical or.

URN:NBN:no-2314

C.1. COMPLEXITY NOTATION 141

T← The time complexity of assigning a variable over Z a value in Z.

Ti Time complexity of general index referencing overhead for non-nested
indices.

Sa,N The space complexity of doing one integer addition moduloN when
the arguments being added are elements of the field ZN .

Sm,N The space complexity of doing one integer multiplication modulo N
when the arguments being added are elements of the field ZN .

Sd,N The space complexity of doing one integer division modulo N when
the arguments being added are elements of the field ZN .

Ss,N The space complexity of storing an integer in ZN .

Sa The space complexity of doing one integer addition with arguments
in Z.

Sm The space complexity of doing one integer multiplication with argu-
ments in Z.

Sd The space complexity of doing one integer division with arguments
in Z.

Sp,n,m The space complexity of computing the mth power of the integer n.

Ss The space complexity of storing an integer in Z.

The following assumptions

ASSUMPTION 1 Every arithmetic operations is assumed to have time com-
plexity that is a function of the size of its input measured in bits.

ASSUMPTION 2 Every integer n occupies dlog2(max{|n|}+1)e storage units,
where max{|n|} is the maximal absolute value taken by n during the exe-
cution of the algorithm.

URN:NBN:no-2314

142 APPENDIX C. COMPOSITION USING FUNCTION TABLES

A more precise computation of the storage occupied by every integer is
dlog2(max{|n|} + 1)e + 1, which takes into account the sign of n. It is
not, however, possible to generally assume that n has a sign, as this is
a representational issue, which may vary from implementation to imple-
mentation. Another issue is the storage of the length of the integer itself.
This is necessary if more storage may vary from integer to integer. This
also, though is very implementation specific, and the length does not nec-
essarily have to be recorded individually with each integer. So this is also
excluded from the computation of occupied storage.

ASSUMPTION 3 Evaluation of logical expressions does not use short-cir-
cuiting to increase efficiency.

ASSUMPTION 4 For a fixed N , all atomic operations modulo N are as-
sumed to have constant space and time complexity.

ASSUMPTION 5 Subtraction has the same space and time complexity as
addition.

ASSUMPTION 6 Interpolation polynomials almost always have dense rep-
resentations.

ASSUMPTION 7 Indexing operations are significant operations with respect
to complexity.

ASSUMPTION 8 Indexes are integers in Z.

ASSUMPTION 9 Index addition and multiplication is always taken to have
time complexity Ta and Tm, respectively, regardless of whether it is done
modulo N or not.

ASSUMPTION 10 Index addition and multiplication is always taken to have
space complexity Sa and Sm, respectively, regardless of whether it is done
modulo N or not.

URN:NBN:no-2314

C.2. VECTORIZED INDICES 143

ASSUMPTION 11 Indexes represented using vectors over ZN , have opera-
tions on them carried out on each individual component. The space and
time complexity this entails is additive for each component.

ASSUMPTION 12 A table lookup in an ordered table has average time com-
plexity To.

ASSUMPTION 13 A table lookup in an unordered table has average time
complexity Tu.

ASSUMPTION 14 A table lookup in an ordered table has average space
complexity So.

ASSUMPTION 15 A table lookup in an unordered table has average space
complexity Su.

ASSUMPTION 16 All subalgorithms are assumed to be inline code (with
appropriate renaming of variables) for the purposes of computing com-
plexity.

As a convention, storage complexity includes local algorithm workspace
and the space used to store input, but does not include the space for the
implementation of the algorithm itself.

C.2 Vectorized Indices

Before beginning on the main composition algorithms themselves, some
of the operations employed, should be reviewed. Since the indexes and
mappings to be encrypted have no inherent limitation on the number of
components they are allowed, nested loop constructions will not have suf-
ficient generality. This means that all vectorized indexes must be handled
by single, unnested loops. The following three operations, given in the
form of algorithms, make this possible.

The first algorithm converts a vector of integers to one integer by con-
sidering it a number with base-N representation.

URN:NBN:no-2314

144 APPENDIX C. COMPOSITION USING FUNCTION TABLES

Algorithm 1

In: The vector (x1, . . . , xm) ∈ ZN , integer m ≥ 1, and integer N > 1.

Out: The integer X ≥ 0.

i← m, X ← xm 2T← + Ti

while(i > 1) do: TR

i← i− 1 T← + Ta

X ← NX + xi T← + Tm + Ta + Ti

LEMMA 61 Algorithm 1 has space complexity 2mdlog2Ne + 2dlog2(m +
1)e+ dlog2(N + 1)e, which is O(m log2N).

PROOF: Storing the input requires space: mSs,N + 2Ss. Local variables oc-
cupy a further 2Ss. Ss,N = dlog2Ne. Since 0 ≤ i ≤ m and 0 ≤ X ≤ Nm−1,
these integers occupy dlog2(m + 1)e and mdlog2Ne storage units, respec-
tively. N occupies dlog2(N + 1)e storage units. Total space complexity is
therefore mdlog2Ne+ 2dlog2(m+ 1)e+ dlog2(N + 1)e+mdlog2Ne, which
is asymptotically proportional to m log2N + log2m 2.

LEMMA 62 Algorithm 1 has time complexitymTR+2mT←+(m−1)(2Ta+
Tm) +mTi, which is O(m).

PROOF: The main loop is run m − 1 times in all, but the loop condition is
evaluated m times, so time complexity is 2T←+Ti +mTR +(m−1)(2T←+
2Ta + Tm + Ti) = mTR + 2mT← + (m − 1)(2Ta + Tm) + mTi, which is
asymptotically proportional to m 2.

The next algorithm is the inverse of algorithm 1.

Algorithm 2

In: The integer X ≥ 0, the integer m, and the integer N > 1.

Out: The vector (x1, . . . , xm) ∈ Zm
N .

URN:NBN:no-2314

C.2. VECTORIZED INDICES 145

i← m, k ← Nm−1 2T← + Ta + Tp,n,m−1

while(i > 1) do: TR

xi ← bX/kc Ti + T← + Td

X ← X − xik T← + Ta + Ti + Tm

i← i− 1 T← + Ta

k ← k/N T← + Td

xi ← X Ti + T←

LEMMA 63 Algorithm 2 has space complexity (3m+1)dlog2Ne+2dlog2me+
Sp,N,m−1, which is O(m log2N) + Sp,N,m−1.

PROOF: The integersX ,m,N , i, and k have maximal sizes ofNm−1,m,N ,
m, and Nm−1, respectively. The exponentiation operation requires a work
space of Sp,N,m−1. The vector (x1, . . . , xm) occupies mSs,N = mdlog2Ne
storage units. Total space complexity is thus 3mdlog2Ne + 2dlog2(m +
1)e+ dlog2Ne+ Sp,N,m−1 2.

LEMMA 64 Algorithm 2 has time complexity mTR + (m − 1)(TR + 2Ti +
4T←+2Ta+2Td+Tm)+Ti+Ta+3T←+Tp,N,m−1, which isO(m)+Tp,N,m−1.

PROOF: Initialization contributes 2T←+Ta +Tp,N,m−1. The loop is always
runm−1 times, which contributes (m−1)(TR+2Ti+4T←+2Ta+2Td+Tm).
The loop is exited on the final evaluation of the loop condition, which
contributes TR time units. The final assignment contributes Ti+T←, which
amounts to a total of mTR + (m− 1)(TR + 2Ti + 4T← + 2Ta + 2Td + Tm) +
Ti + Ta + 3T← + Tp,N,m−1 2.

Algorithm 3

In: The integer Nm > X ≥ 0, the integer m, and the precomputed
powers ki = N i−1 for 1 < i ≤ m.

Out: The vector (x1, . . . , xm) ∈ Zm
N .

i← m T←
while(i > 1) do: TR

URN:NBN:no-2314

146 APPENDIX C. COMPOSITION USING FUNCTION TABLES

xi ← bX/kic 2Ti + T← + Td

X ← X − xiki 2Ti + T← + Ta + Tm

i← i− 1 T← + Ta

xi ← X Ti + T←

Algorithm 3 trades some space complexity for the same asymptotic time
complexity as algorithm 2, but with a lower constant factor.

LEMMA 65 Algorithm 3 has space complexity

dlog2(N
m)e+

m(m+ 1)
2

dlog2Ne+ 2dlog2(m+ 1)e,

which is O(m2 log2N).

PROOF: The integersX ,m, k1, . . . , km, and i occupy dlog2(Nm)e, dlog2(m+
1)e, dlog2Ne, . . . , dm log2Ne, and dlog2(m+1)e storage units, respectively.
The vector (x1, . . . , xm) occupies mdlog2Ne storage units. Total storage
occupied is:

dlog2(N
m)e+

m(m+ 1)
2

dlog2Ne+ 2dlog2(m+ 1)e,

which is O(m2 log2N) 2.

LEMMA 66 Algorithm 3 has time complexity mTR + Ti + 2T← + (m −
1)(4Ti + 3T← + 2Ta + Td + Tm), which is O(m).

PROOF: Initialization takes T← time units. The main loop is executedm−1
times, contributing (m−1)(TR+4Ti+3T←+2Ta+Td+Tm) time units. The
last evaluation of the loop condition contributes TR, and final assignment
Ti + T←. Asymptotic time complexity is O(m) 2.

Lastly, I present two algorithms for incrementing vectorized indices.
The first covers vectorized indices where the base is uniform: all compo-
nents are from the same set. The second covers vectorized indices where
the components are not necessarily elements from the same set.

Algorithm 4

URN:NBN:no-2314

C.2. VECTORIZED INDICES 147

In: The vector (v1, . . . , vm) ∈ Zm
N , the integers N and m.

Out: The vector (v1, . . . , vm) ∈ Zm
N incremented by 1 mod Nm when viewed

as an m-digit number in base N .

i← 1 T←
do:

vi ← (vi + 1) mod N 2Ti + T← + Ta,N

i← i+ 1 T← + Ta

while (vi−1 = 0 and i ≤ m) Ta + Ti + 2TR + Tand

LEMMA 67 Algorithm 4 has space complexitymdlog2Ne+2dlog2(m+1)e+
dlog2(N + 1)e which is O(m log2N).

PROOF: The vector (v1, . . . , vm) occupies mdlog2Ne storage units. The in-
tegers i, m, and N occupy in all 2dlog2(m + 1)e + dlog2(N + 1)e storage
units. The total is mdlog2Ne + 2dlog2(m + 1)e + dlog2(N + 1)e which is
O(m log2N) 2.

LEMMA 68 Algorithm 4 has minimum time complexity 3Ti +Ta,N +2Ta +
3T← + 2TR + Tand, which is O(1).

PROOF: Initialization takes T← time units. The loop is always run at least
once, and thus contributes 3Ti + Ta,N + 2Ta + 2T← + 2TR + Tand 2.

LEMMA 69 Algorithm 4 has maximum time complexity T← + m(3Ti +
Ta,N + 2Ta + 2T← + 2TR + Tand), which is O(m).

PROOF: Initialization takes T← time units. The loop is run a maximum of
m times, contributing m(3Ti + Ta,N + 2Ta + 2T← + 2TR + Tand) 2.

LEMMA 70 Under the assumption that all (v1, . . . , vm) ∈ Zm
N are equally

likely as input (their distribution is uniform), algorithm 4 has average time
complexity

T← +
(Nm − 1)

(Nm −Nm−1)
(3Ti + Ta,N + 2Ta + 2T← + 2TR + Tand),

URN:NBN:no-2314

148 APPENDIX C. COMPOSITION USING FUNCTION TABLES

which is O((Nm − 1)/(Nm −Nm−1)).

PROOF: Fix N and m. Initialization takes T← time units. The average time
complexity of the loop for uniformily distributed input can be computed
by dividing the total number of loop runs by Nm, the number of possible
inputs. The loop is always executed at least once, so the sum is at least
Nm. There is one value of the first digit which always leads to a second
run through the loop, giving Nm−1 additional runs, and so on. There are
thus

∑m
i=1N

i = (Nm+1− 1)/(N − 1)− 1 = N(Nm− 1)/(N − 1) runs in all,
giving an average of (Nm+1−N)/(Nm(N−1)) = (Nm−1)/(Nm−Nm−1)
runs. This contributes an average of

(Nm − 1)
(Nm −Nm−1)

(3Ti + Ta,N + 2Ta + 2T← + 2TR + Tand)

time units to the total 2.

Algorithm 5

In: The base (c1, . . . , cm), such that all ci are positive integers greater
than 1, the vector (v1, . . . , vm) ∈ Zc1 × · · · × Zcm , the integer m.

Out: The vector (v1, . . . , vm) incremented by 1 mod
∏m

i=1 ci when viewed
as a m-digit number in base (c1, . . . , cm).

i← 1 T←
do:

vi ← (vi + 1) mod ci 3Ti + T← + Ta,ci

i← i+ 1 T← + Ta

while (vi−1 = 0 and i ≤ m) Ta + Ti + 2TR + Tand

LEMMA 71 Algorithm 5 has space complexity

2
m∑

i=1

dlog2(ci + 1)e+ 2dlog2(m+ 1)e,

which is O(
∑m

i=1 log2 ci).

URN:NBN:no-2314

C.2. VECTORIZED INDICES 149

PROOF: The vector (v1, . . . , vm) occupies
∑m

i=1dlog2(ci + 1)e storage units.
So does the base (c1, . . . , cm). The integers i and m both occupy dlog2(m+
1)e storage units. Since there are m components to ~v and ~c, log2m is
asymptotically insignificant 2.

LEMMA 72 Algorithm 5 has minimum time complexity T←+(4Ti +2Ta +
2T← + TR + Tand) + Ta,c1 , which is O(1).

PROOF: Initialization contributes T← time units. The single run of the
main loop contributes 4Ti + 2T← + 2Ta + Ta,c1 + 2TR + Tand 2.

LEMMA 73 Algorithm 5 has maximum time complexity T← + m(4Ti +
2Ta + 2T← + TR + Tand) +

∑m
i=1 Ta,ci , which is O(m).

PROOF: Initialization contributes T← time units. The m runs of the main
loop contribute in all m(4Ti + 2Ta + 2T← + TR + Tand) +

∑m
i=1 Ta,ci time

units 2.

LEMMA 74 Under the assumption that all (v1, . . . , vm) ∈
∏m

i=1 Zci are equally
likely as input (their distribution is uniform), algorithm 5 has average time
complexity

T← + (4Ti + 2Ta + 2T← + TR + Tand)

1 +
m∑

i=2

i−1∏
j=1

c−1
j

+

Ta,c1 +
m∑

i=2

Ta,ci

m∏
j=1

c−1
j

 ,

which is O(1 +
∑m

i=2

∏i−1
j=1 c

−1
j).

PROOF: Fix (c1, . . . , cm) and m. Initialization takes T← time units. The av-
erage time complexity of the loop for uniformily distributed input can be
computed by dividing the total number of loop runs by

∏m
i=1 ci, the num-

ber of possible inputs. There is one value of the first digit which always

URN:NBN:no-2314

150 APPENDIX C. COMPOSITION USING FUNCTION TABLES

leads to a second run through the loop, giving
∏m

i=2 ci additional runs,
and so on. There are thus

∑m
i=1

∏m
j=i cj runs in all, giving an average of

1 +
∑m

i=2

∏i−1
j=1 c

−1
j runs. This contributes an average of

(4Ti + 2Ta + 2T← + TR + Tand)

1 +
m∑

i=2

i−1∏
j=1

c−1
j

times units to the total. In addition, since Ta,ci varies with the loop index,

it contributes an average of Ta,c1 +
∑m

i=2

(
Ta,ci

∏m
j=1 c

−1
j

)
time units 2.

C.3 Converting Function Tables

Some of the composition algorithms depend on a transformation from
multivariate mappings to isomorphic univariate mappings. A mapping
f : Zm

N −→ Zn
N may be transformed to a univariate mapping F : ZNm −→

ZNn with the following algorithm:

Algorithm 6

In: The function f : Zm
N −→ Zn

N represented as a table containing allNm

mapping values (f1, . . . , fn) indexed by tuples (x1, . . . , xm) ∈ Zm
N , the

integers N , m, and n.

Out: The function F : ZNm −→ ZNn represented as a table containing all
Nm mapping values F (X) for all integers X ∈ ZNm .

(x1, . . . , xm)← (0, . . . , 0) m(Ti + T←)
X ← 0, k ← Nm − 1 2T← + Tp,N,m + Ta

do:
lookup f(x1, . . . , xm) = (f1, . . . , fn) mTi + To

F ← Nn−1fn + · · ·+N1f2 + f1 using algorithm 1
increment (x1, . . . , xm) using algorithm 4
F (X)← F Ti + T←
X ← X + 1 T← + Ta

while(X ≤ k) TR

URN:NBN:no-2314

C.3. CONVERTING FUNCTION TABLES 151

LEMMA 75 Algorithm 6 has space complexity approximately (2nNm +
3m+ n+ 1)dlog2Ne+ 2dlog2(m+ 1)e+ 2dlog2(n+ 1)e+ ndlog2Ne, which
is O(nNmdlog2Ne).

PROOF: The original table for f() occupies nNmSs,N = nNmdlog2Ne stor-
age units. Since every F (X) lies between 0 and Nn, the new table for F ()
occupiesNmdlog2N

ne storage units. The integersN , m, n, k, X , and F oc-
cupy dlog2(N+1)e, dlog2(m+1)e, dlog2(n+1)e, dlog2(Nm)e, dlog2(Nm+1)e,
and dlog2(Nn)e storage units, respectively. The vector (x1, . . . , xm) oc-
cupies mdlog2Ne storage units. The result of the table lookup occupies
ndlog2Ne storage units. Algorithm 1 only needs an additional integer be-
tween 1 and n for its local indexing, contributing dlog2(n + 1)e storage
units. Algorithm 4 also needs only an additional integer for its local in-
dexing, contributing dlog2(m+ 1)e storage units 2.

LEMMA 76 Algorithm 6 has time complexity

m(Ti + T←) + 2T← + Tp,N,m + Ta

+Nm((m+n+1)Ti+To+(n+1)TR+(2n+3)T←+(2n−1)Ta+2(n−1)Tm)

+
N(Nm − 1)

(N − 1)
(3Ti + Ta,N + 2Ta + 2T← + 2TR + Tand),

which is O(Nm(m+ n)).

PROOF: Initialization takes m(Ti + T←) + 2T← + Tp,N,m + Ta time units.
The main loop is run Nm times. This means that algorithm 4 is used once
for each of its possible Nm cases. The main loop thus contributes:

Nm(mTi + To + nTR + 2nT← + (n− 1)(2Ta + Tm) + nTi + T←

+Ti+2T←+Ta+TR)+
N(Nm − 1)

(N − 1)
(3Ti+Ta,N +2Ta+2T←+2TR+Tand),

(C.1)

URN:NBN:no-2314

152 APPENDIX C. COMPOSITION USING FUNCTION TABLES

which can also be written:

Nm((m+n+1)Ti+To+(n+1)TR+(2n+3)T←+(2n−1)Ta+2(n−1)Tm)

+
N(Nm − 1)

(N − 1)
(3Ti + Ta,N + 2Ta + 2T← + 2TR + Tand). (C.2)

2.
The inverse of algorithm 6 is also needed.

Algorithm 7

In: The function F : ZNm −→ ZNn represented as a table containing all
Nm mapping values F indexed by X ∈ ZNm . The integers N , n, m,
and the precomputed powers ki = N i−1 for 1 ≤ i ≤ m.

Out: The function f : Zm
N −→ Zn

N represented as a table containing allNm

mapping values (f1, . . . , fn) indexed by tuples (x1, . . . , xm) ∈ Zm
N

(x1, . . . , xm)← (0, . . . , 0) mTi +mT←
X ← 0, k ← Nm − 1 2T← + Tp,N,m + Ta

do:
F = F (X) T← + Ti

convert F to (f1, . . . , fn) ∈ Zn
N using algorithm 3

f(x1, . . . , xm)← (f1, . . . , fn) To +mTi + nTi + nT←
increment (x1, . . . , xm) using algorithm 4
X ← X + 1 T← + Ta

while(X ≤ k) TR

LEMMA 77 Algorithm 7 has a space complexity of approximately

(3m+ n+ 2nNm +
m(m+ 1)

2
)dlog2Ne+ dlog2m+ 1e,

which is O(nNm).

PROOF: ~x occupiesmdlog2Ne storage units. (f1, . . . , fn) occupies ndlog2Ne
storage units. The original table for f() occupies Nmndlog2Ne storage

URN:NBN:no-2314

C.4. COMPOSITION USING FUNCTION TABLES 153

units, while the table for F () occupies Nmdlog2(Nn)e storage units. The
precomputed powers k1, . . . , km occupy dlog2Ne, . . . , dlog2(Nm)e storage
units. X and k occupy dlog2(Nm)e storage units each. In addition to the
variables defined explicitly in algorithm refvectorize, algorithms 3 and 4
need one additional integer, which occupies dlog2(m+1)e storage units 2.

LEMMA 78 Algorithm 7 has time complexity

mTi + (m+ 2)T← + Tp,N,m + Ta +Nm((4n+ 2)T←
+ (5n+m− 3)Ti + (n+ 1)TR + To + (2n− 1)Ta + (n− 1)(Td + Tm)

+
N(Nm − 1)

(N − 1)
(3Ti + Ta,N + 2Ta + 2T← + 2TR + Tand)

which is O(nNm).

PROOF: Initialization takesmTi+(m+2)T←+Tp,N,m+Ta. Since algorithm 4
is run Nm times in all, and uses every possible case once, the main loop
contributes:

Nm(T← + Ti + nTR + Ti + 2T← + (n− 1)(4Ti + 3T← + 2Ta + Td + Tm)
+ To + (m+ n)Ti + nT← + T← + Ta + TR + T←)

+
N(Nm − 1)

(N − 1)
(3Ti + Ta,N + 2Ta + 2T← + 2TR + Tand)

2.

C.4 Composition Using Function Tables

It is now possible to describe function composition using function tables.

Algorithm 8

In: The mapping f : Zm
N −→ Zn

N represented as a table containing all
Nm mapping values (f1, . . . , fn) indexed by tuples (x1, . . . , xm) ∈

URN:NBN:no-2314

154 APPENDIX C. COMPOSITION USING FUNCTION TABLES

Zm
N . The mapping g : Zn

N −→ Zo
N represented as a table containing

all Nn mapping values (g1, . . . , go) indexed by tuples (x1, . . . , xn) ∈
Zn

N . The integers N , m, n, and o.

Out: The composition of f and g in the form of a function H : ZNm −→
ZNo represented as a table containing allNm mapping values F (X) ∈
ZNo for all integers X ∈ ZNm .

Convert f to F : ZNm −→ ZNn using algorithm 6
Convert g to G : ZNn −→ ZNo using algorithm 6
X ← 0, k ← Nm − 1 2T← + Tp,N,m + Ta

do:
H(X)← G(F (X)) 3Ti + T←
X ← X + 1 T← + Ta

while(X ≤ k) TR

LEMMA 79 Algorithm 8 has a space complexity of approximately

(2nNm + 2oNn + 2m+ max{m,n}+ max{n, o})dlog2Ne
+ dlog2(max{m+ 1, n+ 1, o+ 1})e,

which is O(nNm + oNn).

PROOF: The original tables for f() and g() occupy in all nNmdlog2Ne +
oNndlog2Ne storage units. The tables forF () andG() occupyNmdlog2(Nn)e+
Nndlog2(No)e storage units. X and k occupy max{m,n}dlog2Ne storage
units each. Algorithm 6 requires for both its runs max{m,n}dlog2Ne +
max{n, o}dlog2Ne storage units for the vectors, and dlog2(max{m+ 1, n+
1, o+ 1})e storage units for the indexes required by algorithms 1 and 4 2.

URN:NBN:no-2314

C.4. COMPOSITION USING FUNCTION TABLES 155

LEMMA 80 Algorithm 8 has time complexity

2T← + 2Tp,N,m + Tp,N,n + 3Ta + (m+ n)(Ti + T←) + 4T←+
+Nm((m+ n+ 4)Ti + To + (n+ 2)TR + (2n+ 5)T← + 2nTa + 2(n− 1)Tm)
+Nn((n+o+1)Ti +To +(o+1)TR +(2o+3)T←+(2o−1)Ta +2(o−1)Tn)

+
N(Nm +Nn − 2)

(N − 1)
(3Ti + Ta,N + 2Ta + 2T← + 2TR + Tand),

which is O((m+ n)Nm + (n+ o)Nn).

PROOF: Initialization after the first two conversions takes 2T←+Tp,N,m+Ta

time units. The main loop is run Nm times, consuming Nm(3Ti + 2T← +
Ta + TR) time units. The two applications of algorithm 6 consume:

m(Ti + T←) + 2T← + Tp,N,m + Ta

+Nm((m+n+1)Ti+To+(n+1)TR+(2n+3)T←+(2n−1)Ta+2(n−1)Tm)

+
N(Nm − 1)

(N − 1)
(3Ti + Ta,N + 2Ta + 2T← + 2TR + Tand)

+ n(Ti + T←) + 2T← + Tp,N,n + Ta

+Nn((n+o+1)Ti +To +(o+1)TR +(2o+3)T←+(2o−1)Ta +2(o−1)Tn)

+
N(Nn − 1)

(N − 1)
(3Ti + Ta,N + 2Ta + 2T← + 2TR + Tand)

time units 2.
The result of algorithm 8 may be converted into a form vectorized over

ZN . This form may in turn be transformed into polynomial form, provided
N is a power of a prime.

Algorithm 9

In: The mapping f : Zm
N −→ Zn

N represented as a table containing all
Nm mapping values (f1, . . . , fn) indexed by tuples (x1, . . . , xm) ∈
Zm

N . The mappings h1, . . . , hk : Zci
N −→ Zci

N , represented as ta-
bles containing all N ci mapping values respectively. The integers
N, k,m, n, c1, . . . , ck, such that

∑k
i=1 ci = m.

URN:NBN:no-2314

156 APPENDIX C. COMPOSITION USING FUNCTION TABLES

Out: The composition of h1, . . . , hk and f defined as:

f(h1(x1, . . . , xc1), h2(xc1+1, . . . , xc1+c2), . . . , hk(xm−ck+1, . . . , xm)),

and expressed as the function L : ZNm −→ ZNn .

Convert f to F using algorithm 6
i← 1,K ← Nm − 1 2T← + Tp,N,m + Ta

do:
Convert hi to Hi : ZNci −→ ZNci using algorithm 6
yi ← N ci 2Ti + T← + Tp,N,ci

i← i+ 1 T← + Ta

while(i ≤ k) TR

i← 0 T←
(b1, . . . , bk)← (0, . . . , 0) k(Ti + T←)
do:

u← 0, j ← k 2T←
do:

u← yju+Hj(bj) T← + 4Ti + Tm + Ta

j ← j − 1 T← + Ta

while(j > 0) TR

L(i)← F (u) 2Ti + T←
i← i+ 1 T← + Ta

Increment ~b using algorithm 5
while(i ≤ K) TR

LEMMA 81 Algorithm 9 has space complexity of approximately3nNm + 3m+ 4
k∑

j=1

(cjN cj) + 1

 dlog2Ne

+
k∑

j=1

dlog2 cje+ dlog2 ke+ dlog2me+ dlog2 ne+ dlog2(max{k,m})e,

which is O(nNm).

URN:NBN:no-2314

C.4. COMPOSITION USING FUNCTION TABLES 157

PROOF: The tables for the mappings f, h1, . . . , hk occupy

nNmdlog2Ne, c1N c1dlog2Ne, . . . , ckN ckdlog2Ne

storage units, respectively. The tables for F,H1, . . . ,Hk, L occupy

Nmdlog2(N
n)e, N c1dlog2(N

c1)e, . . . , N ckdlog2(N
ck)e, Nmdlog2(N

n)e

storage units, respectively. The integers N, k,m, n, c1, . . . , ck, i, j,K, u oc-
cupy

dlog2(N+1)e, dlog2(k+1)e, dlog2(m+1)e, dlog2(n+1)e, dlog2(c1+1)e, . . . ,
dlog2(ck+1)e, dlog2(N

m)e, dlog2(max{k,m}+1)e, dlog2(N
m)e, dlog2(N

m)e

storage units, respectively. The integers b1, . . . , bk, y1, . . . , yk occupy

dlog2(N
c1)e, . . . , dlog2(N

ck)e, dlog2(N
c1 + 1)e, . . . , dlog2(N

ck + 1)e

storage units, respectively. Algorithm 6 needs an additional vector
(x1, . . . , xm), which occupiesmdlog2Ne storage units. Algorithm 5 doesn’t
require any additional variables 2.

LEMMA 82 Algorithm 9 has time complexity

(2m+3k+(2k+2n+8)Nm +5)T←+(3k+2m+(m+n+4k+3)Nm)Ti

+(2k+3+Nm(2n+1))Ta+Nm(2n−1)Tm+(k+Nm(k+n+2))TR+NmTo

+ 2Tp,N,m +
N(Nm − 1)

(N − 1)
(3Ti + Ta,N + 2Ta + 2T← + 2TR + Tand)

+
k∑

i=1

 k∏
j=i

N cj

 (4Ti + 2Ta + T← + TR + Tand + Ta,Nci)

+

k∑
j=1

(
2Tp,N,ci +N cj ((2cj + 1)Ti + To

+ (cj + 1)TR + (2cj + 3)T← + (2cj − 1)Ta + 2(cj − 1)Tm

+
N(N cj − 1)

(N − 1)
(3Ti + Ta,N + 2Ta + 2T← + 2TR + Tand)

)
,

URN:NBN:no-2314

158 APPENDIX C. COMPOSITION USING FUNCTION TABLES

which is O((m+ n+ k)Nm).

PROOF: Part of the initialization consumes

2T← + Tp,N,m + Ta + 2kTi + 2kT←

+ kTa + kTR +
k∑

i=1

Tp,N,ci + T← + k(Ti + T←)

time units. The conversion of f to F consumes the number of time units
given in lemma 76. The conversions of the mappings h1, . . . , hk consume

k∑
j=1

(
cj(Ti + T←) + 2T← + Tp,N,cj + Ta

+N cj ((2cj +1)Ti+To+(cj +1)TR +(2cj +3)T←+(2cj−1)Ta+2(cj−1)Tm)

+
N(N cj − 1)

(N − 1)
(3Ti + Ta,N + 2Ta + 2T← + 2TR + Tand)

)
time units. The main (outer) loop is run Nm times, the inner loop k times.
Since the main loop uses all possible executions of algorithm 5, it con-
sumes

Nm(2T← + k(2T← + 4Ti + Tm + 2Ta + TR) + 2T← + 2Ti + Ta + TR

+ T←) +
k∑

i=1

 k∏
j=i

N cj

 (4Ti + 2Ta + T← + TR + Tand + Ta,Nci)

time units 2.

Algorithm 10

In: The mapping f : Zm
N −→ Zn

N represented as a table containing all
Nm mapping values (f1, . . . , fn) indexed by tuples (x1, . . . , xm) ∈
Zm

N . The mappings h1, . . . , hk : Zci
N −→ Zci

N , represented as ta-
bles containing all N ci mapping values respectively. The integers
N, k,m, c1, . . . , ck, such that

∑k
i=1 ci = n.

URN:NBN:no-2314

C.4. COMPOSITION USING FUNCTION TABLES 159

Out: The mapping

L(x1, . . . , xm) = (h1(f1(x1, . . . , xm), . . . , fc1(x1, . . . , xm)), . . . ,
hk(fn−ck+1(x1, . . . , xm), . . . , fn(x1, . . . , xm))),

represented as a function L : ZNm −→ ZNn .

i← 1,K ← Nm − 1 2T← + Tp,N,m + Ta

do:
Convert hi to Hi : ZNci −→ ZNci using algorithm 6
yi ← N ci T← + 2Ti + Tp,N,ci

i← i+ 1 T← + Ta

while(i ≤ k) TR

(x1, . . . , xm)← (0, . . . , 0) m(Ti + T←)
i← 0 T←
do:

u← 0, j ← k, a← n 3T←
do:

l← cj , v ← 0 2T← + Ti

do:
v ← Nv + fa(x1, . . . , xm) (m+ 1)Ti + To + Tm + Ta + T←
l← l − 1 T← + Ta

a← a− 1 T← + Ta

while(l ≥ 1) Ti + TR

u← yju+Hj(v) T← + 3Ti + Tm + Ta

j ← j − 1 T← + Ta

while(j ≥ 1) TR

L(i)← u Ti + T←
i← i+ 1 T← + Ta

Increment ~x using algorithm 4
while(i ≤ K) TR

URN:NBN:no-2314

160 APPENDIX C. COMPOSITION USING FUNCTION TABLES

LEMMA 83 Algorithm 10 has approximate space complexity

(2n+ 4m)Nm + 2
k∑

j=1

(cj + 1)N cj + 1 + max{cj}

 dlog2Ne

dlog2 ke+ dlog2me+ 2dlog2 ne+
k∑

j=1

dlog2 cje+ dlog2(max{k,m})e

+ dlog2(max{ci})e

which is O((n+m)Nm).

PROOF: The tables for the mappings f, h1, . . . , hk occupy

nNmdlog2Ne, c1N c1dlog2Ne, . . . , ckN ckdlog2Ne

storage units, respectively. The tables for H1, . . . ,Hk, L occupy

N c1dlog2(N
c1)e, . . . , N ckdlog2(N

ck)e, Nmdlog2(N
n)e

storage units, respectively. The integersN, k,m, n, c1, . . . , ck, i, j,K, u, v, a, l
occupy

dlog2(N+1)e, dlog2(k+1)e, dlog2(m+1)e, dlog2(n+1)e, dlog2(c1+1)e, . . . ,
dlog2(ck +1)e, dlog2(N

m)e, dlog2(max{k,m}+1)e, dlog2(N
m)e, dlog2(N

m)e
dlog2(N

max{ci})e, dlog2(n+ 1)e, dlog2(max{ci}+ 1)e

storage units, respectively. The integers x1, . . . , xm, y1, . . . , yk occupy

mdlog2Ne, dlog2(N
c1 + 1)e, . . . , dlog2(N

ck + 1)e

storage units, respectively. Algorithm 6 does not need any additional vari-
ables. Algorithm 4 doesn’t require any additional variables 2.

URN:NBN:no-2314

C.4. COMPOSITION USING FUNCTION TABLES 161

LEMMA 84 Algorithm 10 has time complexity

(m+n+4k+3+Nm(3n+4k+5))T←+(m+n+2k+Nm(mn+n+4k+1))Ti

(2k+1+Nm(3n+2k+1))Ta+(k+Nm(n+k+1))TR+nNmTo+(n+k)NmTm

+ 2
k∑

j=1

Tp,N,cj + Tp,N,m

+
N(Nm − 1)

(N − 1)
(3Ti + Ta,N + 2Ta + 2T← + 2TR + Tand)

k∑
j=1

(
N cj ((2cj + 1)Ti + To + (cj + 1)TR + (2cj + 3)T← + (2cj − 1)Ta

+ 2(cj − 1)Tm) +
N(N cj − 1)

(N − 1)
(3Ti + Ta,N + 2Ta + 2T← + 2TR + Tand)

)
,

which is O(mnNm).

PROOF: Initialization consumes 2T←+Tp,N,m +Ta +2kTi +
∑k

j=1 Tp,N,ci +
kTR + 2kT← + kTa +m(Ti + T←) + T← time units. The conversions of the
mappings h1, . . . , hk consume

k∑
j=1

(
cj(Ti + T←) + 2T← + Tp,N,cj + Ta

+N cj ((2cj +1)Ti+To+(cj +1)TR +(2cj +3)T←+(2cj−1)Ta+2(cj−1)Tm)

+
N(N cj − 1)

(N − 1)
(3Ti + Ta,N + 2Ta + 2T← + 2TR + Tand)

)

time units. The main (outer) loop is run Nm times, the next nested loop
k times, and the innermost loop cj times. Thus, for each iteration of the
outer loop, the innermost loop is run ntimes. Also, each possible run of
algorithm 4 occurs once and only once during the completion of the outer

URN:NBN:no-2314

162 APPENDIX C. COMPOSITION USING FUNCTION TABLES

loop. The main loop thus consumes

Nm(5T← + Ti + Ta + TR + n(3T← + (m+ 1)Ti + To + Tm + 3Ta + TR)
+ k(4T← + 4Ti + 2Ta + Tm + TR))

+
N(Nm − 1)

(N − 1)
(3Ti + Ta,N + 2Ta + 2T← + 2TR + Tand)

time units 2.

Algorithm 11

In: The mapping f : Zm
N −→ Zn

N represented as a table containing all
Nm mapping values (f1, . . . , fn) indexed by tuples (x1, . . . , xm) ∈
Zm

N . The mappings h1, . . . , hk : Zdi
N −→ Zci

N , represented as ta-
bles containing all Ndi mapping values respectively. The integers
m, k, n, c1, . . . , ck, such that

∑k
i=1 ci = m. The functions e(i, ·) :

Zdi
−→ {1, . . . ,m} for i ∈ {1, . . . , k}.

Out: The mapping F : Z|∪(i,j)e(i,j)|
N −→ Zn

N defined by the composition

f(h1(xe(1,1), . . . , xe(1,d1)), . . . , hk(xe(k,1), . . . , xe(k,dk)))

represented as a function table.

i← 1 T←
do:

u(i)← 0 T← + Ti

i← i+ 1 T← + Ta

while(i ≤ m) TR

i← 1, U ← 0 2T←
do:

j ← 1 T←
do:

if u(e(i, j)) = 0 then TR + To + 3Ti

U ← U + 1 T← + Ta

URN:NBN:no-2314

C.4. COMPOSITION USING FUNCTION TABLES 163

u(e(i, j))← U T← + 3Ti + To

j ← j + 1 T← + Ta

while(j ≤ dj) TR + Ti

i← i+ 1 T← + Ta

while(i ≤ k) TR

i← 0,K ← NU − 1 2T← + Tp,N,U + Ta

(a1, . . . , aU)← (0, . . . , 0), a0 ← 0 (U + 1)(Ti + T←)
do:

j ← 1 T←
do:

bj ← a(u(j)) T← + 3Ti

j ← j + 1 T← + Ta

while(j ≤ m) TR

j ← 1, b← 1 2T←
do: l← 1 T←

do:
xb ← hj,l(be(j,1), . . . , be(j,dj))

dj(To + 3Ti) + To + 4Ti + T←
b← b+ 1 T← + Ta

l← l + 1 T← + Ta

while(l ≤ cj) TR + Ti

while(j ≤ k) TR

F (a1, . . . , aU)← f(x1, . . . , xm) (U +m)Ti + 2To + nT←
Increment (a1, . . . , aU) using algorithm 4
i← i+ 1 T← + Ta

while(i ≤ K) TR

URN:NBN:no-2314

164 APPENDIX C. COMPOSITION USING FUNCTION TABLES

LEMMA 85 Algorithm 11 has approximate space complexity

nNm + 3U + 2m+
k∑

j=1

cjN
dj + nNU

 dlog2Ne+dlog2 Ue+dlog2(max{cj})e

+

m+ 2 +
k∑

j=1

dj

 dlog2me+2dlog2 ke+dlog2 ne+
k∑

j=1

(dlog2 cje+dlog2 dje)

which is O
((
nNm +

∑k
j=1 cjN

dj

)
dlog2Ne

)
.

PROOF: The tables for the mappings f, h1, . . . , hk, e occupy

nNmdlog2Ne, c1Nd1dlog2Ne, . . . , ckNdkdlog2Ne,
k∑

j=1

djdlog2m+ 1e

storage units, respectively. The mapping F occupies nNUdlog2Ne storage
units. The integers m, k, n, c1, . . . , ck, d1, . . . , dk, i, j, l, U,K, b occupy

dlog2(m+1)e, dlog2(k+1)e, dlog2(n+1)e, dlog2(c1+1)e, . . . , dlog2(ck+1)e,
dlog2(d1 + 1)e, . . . , dlog2(dk + 1)e, dlog2(N

U)e, dlog2(k + 1)e,
dlog2(max{cj}+ 1)e, dlog2(U + 1)e, dlog2(N

U)e, dlog2(m+ 1)e

storage units, respectively. The vectors (x1, . . . , xm), (b1, . . . , bm) (a1, . . . , aU),
and the array u(1), . . . , u(m) occupy

mdlog2Ne,mdlog2Ne, Udlog2Ne,mdlog2(m+ 1)e

storage units, respectively. Algorithm 4 has no need of any additional local
variables 2.

URN:NBN:no-2314

C.4. COMPOSITION USING FUNCTION TABLES 165

LEMMA 86 Algorithm 11 has time complexity

(2m+2k+U+6+NU (5m+n+k+5))T←+(m+U+1+NU (9m+U))Ti

(m+k+NU (2m+k+1))TR +(m+k+1+NU (3m+1))Ta +NU (m+2)To

+
k∑

j=1

dj(3T← + 2TR + (2 +NU)To + 2Ta + (7 + 3NU)Ti) + Tp,N,U

+
N(NU − 1)

(N − 1)
(3Ti + Ta,N + 2Ta + 2T← + 2TR + Tand)

which is O((m+ k + U)NU +NU
∑k

j=1 dj).

PROOF: Initialization consumes

(2m+ 2k + U + 6)T← + (m+ U + 1)Ti + (m+ k)TR + (m+ k + 1)Ta

k∑
j=1

dj(3T← + 2TR + 2To + 2Ta + 7Ti) + Tp,N,U

time units. Every possible run of algorithm 4 has been executed by the
time the main loop finishes. Assuming that the if always evaluates to true
(the closest one can get to a conservative assumption), it follows that the
main loop consumes:

NU ((5m+ n+ k + 5)T← + (9m+ U)Ti + (2m+ k + 1)TR + (m+ 2)To

(3m+ 1)Ta +
k∑

j=1

dj(To + 3Ti))

+
N(NU − 1)

(N − 1)
(3Ti + Ta,N + 2Ta + 2T← + 2TR + Tand)

2.

Algorithm 12

URN:NBN:no-2314

166 APPENDIX C. COMPOSITION USING FUNCTION TABLES

In: The mapping f : Zm
N −→ Zn

N represented as a table containing all
Nm mapping values (f1, . . . , fn) indexed by tuples (x1, . . . , xm) ∈
Zm

N . The mappings h1, . . . , hk : Zci+di
N −→ Zbi

N , represented as ta-
bles containing all Ndi mapping values respectively. The integers
m,n, o, k, c1, . . . , ck, such that

∑k
i=1 ci = n and

∑k
i=1 bi = o. The

functions e(i, ·) : Zdi
−→ {1, . . . ,m} for i ∈ {1, . . . , k}. The functions

e′(i, ·) : Zci −→ {1, . . . , n} for i ∈ {1, . . . , k}.

Out: The mapping F : Zm
N −→ Zo

N defined by the composition

(h1(fe′(1,1)(x1, . . . , xm), . . . , fe′(1,c1)(x1, . . . , xm), xe(1,1), . . . , xe(1,d1)), . . . ,

hk(fe′(k,1)(x1, . . . , xm), . . . , fe′(k,ck)(x1, . . . , xm), xe(k,1), . . . , xe(k,dk))).

i← 0,K ← Nm 2T← + Tp,N,m

(a1, . . . , am)← (0, . . . , 0) m(Ti + T←)
do:

j ← 1, a← 1 2T←
do:

l← 1 T←
do:

xa ← hj,l(fe′(j,1)(~a), . . . , fe′(j,cj)(~a), ae(j,1), . . . , ae(j,dj))
(m+ 3cj + 3dj)Ti + To + 4Ti + T←

a← a+ 1 T← + Ta

l← l + 1 T← + Ta

while(l ≤ bj) TR + Ti

j ← j + 1 T← + Ta

while(j ≤ k) TR

F (a1, . . . , am)← (x1, . . . , xo) (m+ o)Ti + 2To + T←
increment (a1, . . . , am) using algorithm 4
i← i+ 1 T← + Ta

while(i < K) TR

URN:NBN:no-2314

C.4. COMPOSITION USING FUNCTION TABLES 167

LEMMA 87 Algorithm 12 has approximate space complexity2nNm + 3m+ o+
k∑

j=1

(bjN cj+dj)

 dlog2Ne+ dlog2 oe+ dlog2 ke

+

1 +
k∑

j=1

dj

 dlog2me+

1 +
k∑

j=1

cj

 dlog2 ne

+
k∑

j=1

(dlog2 bje+ dlog2 cje+ dlog2 dje) + dlog2(max{bj})e

which is O(nNm +
∑k

j=1(bjN
cj+dj)).

PROOF: The tables for the mappings f, h1, . . . , hk, e, e
′, F occupy

nNmdlog2Ne, b1N c1+d1dlog2Ne, . . . , bkN ck+dkdlog2Ne,
k∑

j=1

djdlog2m+ 1e,
k∑

j=1

cjdlog2 n+ 1e, nNmdlog2Ne

storage units, respectively. The integers m, k, n, c1, . . . , ck, d1, . . . , dk oc-
cupy

dlog2(m+1)e, dlog2(k+1)e, dlog2(n+1)e, dlog2(c1+1)e, . . . , dlog2(ck+1)e,
dlog2(d1 + 1)e, . . . , dlog2(dk + 1)e

storage units, respectively. The integers b1, . . . , bk, i, j, l,K, a occupy

dlog2(b1 + 1)e, . . . , dlog2(bk + 1)e, dlog2(N
m)e, dlog2(k + 1)e,

dlog2(max{bj}+ 1)e, dlog2(N
m)e, dlog2(o+ 1)e

storage units, respectively. The vectors (x1, . . . , xo) and (a1, . . . , am) oc-
cupy odlog2Ne and mdlog2Ne storage units, respectively. Algorithm 4
does not require additional storage 2.

URN:NBN:no-2314

168 APPENDIX C. COMPOSITION USING FUNCTION TABLES

LEMMA 88 Algorithm 12 has time complexity

(2+m+Nm(3o+2k+5))T←+(m+Nm(m+6o+mo))Ti+Nm(k+o+1)TR

Nm(k + 2o+ 1)Ta +Nm(o+ 2)To + 3Nm
k∑

j=1

bj(cj + dj)Ti

+
N(Nm − 1)

(N − 1)
(3Ti + Ta,N + 2Ta + 2T← + 2TR + Tand),

which is O(moNm).

PROOF: Initialization consumes 2T← + Tp,N,m + m(Ti + T←) time units.
Every possible run of algorithm 4 is executed during the main loop. Thus
the main loop consumes

Nm((3o+ 2k+ 5)T←+ (m+ 6o+mo)Ti + (k+ o+ 1)TR + (k+ 2o+ 1)Ta

+ (o+ 2)To + 3
k∑

j=1

bj(cj + dj)Ti)

+
N(Nm − 1)

(N − 1)
(3Ti + Ta,N + 2Ta + 2T← + 2TR + Tand)

2.

URN:NBN:no-2314

Bibliography

[1] Martı́n Abadi and Joan Feigenbaum. Secure circuit evaluation: A
protocol based on hiding information from an oracle. Journal of Cryp-
tology, (2):1–12, 1990. 1.1.6

[2] Martı́n Abadi, Joan Feigenbaum, and Joe Kilian. On hiding infor-
mation from an oracle (full version). In Proceedings of the 19th An-
nual ACM Symposium on the Theory of Computing, 1987. Proceedings
contains only extended abstract—the complete paper was utilized for
this dissertation. 1.1.6

[3] David Aucsmith and Gary Graunke. Tamper resistant methods and
apparatus. US Patent # 5,892,899, Filed June 13, 1996. 1.1.13

[4] Donald Beaver and Joan Feigenbaum. Hiding instances in multiora-
cle queries. In C. Choffrut and T. Lengauer, editors, Proceedings of the
7th Annual Symposium on Theoretical Aspects of Computer Science, vol-
ume 415 of Lecture Notes in Computer Science. Springer-Verlag, Febru-
ary 1990. 1.1.6

[5] Robert M. Best. Crypto microprocessor using block cipher. US Patent
4,319,079, Filed January 17, 1980. 1.1.2

[6] Robert M. Best. Crypto microprocessor that executes enciphered pro-
grams. US Patent # 4,465,901, Filed July 2, 1981.

169

URN:NBN:no-2314

170 BIBLIOGRAPHY

[7] Robert M. Best. Crypto microprocessor for executing enciphered pro-
grams. US Patent # 4,278,837, Filed June 4, 1979.

[8] Robert M. Best. Microprocessor for executing enciphered programs.
US Patent # 4,168,396, Filed October 31, 1977.

[9] Robert M. Best. Cryptographic decoder for computer programs. US
Patent # 4,433,207, Filed September 10, 1981. 1.1.2

[10] Lenore Blum, Mike Shub, and Steve Smale. On a theory of compu-
tation and complexity over the real numbers: NP-completeness, re-
cursive functions, and universal machines. Bulletin of the American
Mathematical Society, 21(1):1–46, July 1989. 2.2, 2.2.1, 2.2.1, 2.2.3

[11] Dan Boneh and Richard Lipton. Algorithms for black-box fields and
their application to cryptography. In Neal Koblitz, editor, Advances in
Cryptology—CRYPTO’96, Lecture Notes in Computer Science, page
283 ff. Springer-Verlag, 1996. 1.1.1, 1.1.10, 6

[12] Gilles Brassard and Claude Crepeau. Zero-knowledge simulation of
boolean circuits. In A. M. Odlyzko, editor, Advances in Cryptology—
CRYPTO’86: Proceedings, volume 263 of Lecture Notes in Computer Sci-
ence, pages 223–233. Springer-Verlag, 1986. 1.1.4

[13] Ernest F. Brickell and Yacov Yacobi. On privacy homomorphisms
(extended abstract). In D. Chaum and W.L. Price, editors, Advances in
Cryptology—Eurocrypt ’87, Lecture Notes in Computer Science, pages
117–125. Springer-Verlag, 1987. 1.1.1

[14] Christian Cachin, Jan Camenisch, Joe Kilian, and Joy Müller. One-
round secure computation and secure autonomous agents. In
U. Montanari et.al., editor, ICALP 2000, Lecture Notes in Computer
Science, pages 512–523. Springer-Verlag, 2000. Extended Abstract.
1.1.9

[15] John F. Canny, Erich Kaltofen, and Lakshman Yagati. Solving sys-
tems of non-linear polynomial equations faster. In Proceedings of the

URN:NBN:no-2314

BIBLIOGRAPHY 171

International Symposium on Symbolic Algebraic Computation (ISSAC’92),
pages 121–128. ACM Press, 1992. C

[16] David Chaum, Ivan B. Damgård, and Jeroen van de Graaf. Multiparty
computations ensuring privacy of each party’s input and correctness
of the result. In Carl Pomerance, editor, Advances in Cryptology—
CRYPTO’87: Proceedings, volume 293 of Lecture Notes in Computer Sci-
ence, pages 87–119. Springer-Verlag, 1987. 1.1.5

[17] Dorothy Denning. Cryptography and Data Security. Addison-Wesley
Publishing Company, 1983 reprint edition, 1983. 4.1, 4.1

[18] Matthew Dickerson. The Functional Decomposition of Polynomials. PhD
thesis, Cornell University, 1989. 4.4.7, 4.4.7, 4.4.7, 4.7.7

[19] John J. Glover. Computer system and process for accessing an
encrypted and self-decrypting digital information product while
restricting access to decrypted digital information. US Patent #
6,052,870, Filed July 3, 1997. 1.1.13

[20] Stuart Alan Haber. Multi-party Cryptographic Computation: Techniques
and Applications. PhD thesis, Columbia University, 1988. 1.1.3

[21] Bradford E. Hampson. Digital computer system for executing en-
crypted programs. US Patent # 4,847,902, Filed February 10, 1984.
1.1.2

[22] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata The-
ory, Languages, and Computation. Addison-Wesley Series in Computer
Science. Addison-Wesley Publishing Company, 1979. 2.1

[23] Dexter Kozen and Susan Landau. Polynomial decomposition algo-
rithms. Journal of Symbolic Computation, pages 445–456, 1989. 4.4.7

[24] Serge Lang. Algebra. Addison-Wesley Publishing Company, Inc.,
third edition, 1993. B.2

URN:NBN:no-2314

172 BIBLIOGRAPHY

[25] Sergio Loureiro. Mobile Code Protection. PhD thesis, Ecole Nationale
Supérieure des Télécommunications, 2001. 1.1.12

[26] Robert M. Lumley. Digital computer having code conversion appara-
tus for an encrypted program. US Patent # 4,306,289, Filed February
4, 1980. 1.1.2

[27] Richard L. Maliszewski. Cell array providing non-persistent secret
storage through a mutation cycle. US Patent # 6,049,609, Filed August
6, 1997. 1.1.13

[28] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1997. 1.1.4

[29] Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. On data
banks and privacy homomorphisms. In Richard A. DeMillo, editor,
Foundations of Secure Computation. Academic Press, 1978. 1.1.1, 1.1.1,
4.1

[30] Yurii Rogozhin. Small universal turing machines. Theoretical Com-
puter Science, (168):215–240, 1996. 1, 3.4, 3.5, 3.6

[31] Tomas Sander and Christian F. Tschudin. Towards mobile cryptog-
raphy. Technical report, International Computer Science Institute,
November 1997. 1.1.7

[32] Tomas Sander and Christian F. Tschudin. Protecting mobile agents
against malicious hosts. In Giovanni Vigna, editor, Mobile Agents and
Security, LNCS State-of-the-Art Survey. Springer-Verlag, 1998. 1.1.7,
1.1.12, 4.1

[33] Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryp-
tocomputing for NC1. In 40th Annual Symposium on Foundations of
Computer Science, pages 554–566. IEEE Computer Society Technical
Committee on Mathematical Foundations of Computing, 1999. 1.1.8

URN:NBN:no-2314

BIBLIOGRAPHY 173

[34] Claude Elwood Shannon. Communication theory of secrecy systems.
Bell System Technical Journal, pages 656–715, 1948. 4.3, 4.4.3, 4.6, 4.7.3,
4.9.3

[35] Andrew C. Yao. Protocols for secure computations (extended ab-
stract). In 23rd Annual Symposium on Foundations of Computer Science,
volume 23. IEEE Computer Society’s Technical Committee on Math-
ematical Foundations of Computing, November 1982. 1.1.3, 1.1.3

URN:NBN:no-2314

	Introduction
	Previous and Related Work
	Privacy Homomorphisms
	Encrypted Computation Using Microprocessors
	Protocols for Secure Computations
	Zero-Knowledge Simulation of Boolean Circuits
	Multiparty Computations Ensuring Privacy of Each Party's Input and Correctness of the Result
	On Hiding Information From an Oracle
	Computing with Encrypted Functions
	Non-Interactive Encrypted Computation for NC1
	One-Round Secure Computation
	Black Box Fields
	Solutions Depending On Specified System Conditions
	Mobile Code Protection
	Tamper-resistant Execution of Programs

	The Problem

	Encryptable Representations of Automata
	The Lagrange Interpolation of a Mealy Machine
	Blum-Shub-Smale Automata
	Definition of BSS-automata
	The Computing Endomorphism for BSS Automata
	Adapting BSS Automata to a Finite Field

	A Register Automaton
	A Tabular Representation

	Interactivity for Encryptable Automata
	Turing Platform
	Halting Ms Computation
	Augmenting and Obfuscating Automata
	Augmenting Mealy Machines
	Obfuscation as a Private Randomizer

	Interactive Mealy Machines
	Interactive BSS' Automata
	Interactive Register Automata

	Encrypting Functions Using Composition
	Privacy Homomorphisms Revisited
	Univariate Encryption
	Univariate Key Regeneration
	Cryptanalysis of Univariate Encryption
	Chosen-ciphertext Attack
	Chosen-plaintext Attack
	Ciphertext-only Attack
	Known-plaintext Attack
	Functional Chosen-ciphertext Attack
	Functional Chosen-plaintext Attack
	Functional Ciphertext-only Attack
	Functional Known-plaintext Attack

	Multivariate Encryption
	Multivariate Key Regeneration
	Cryptanalysis of Multivariate Encryption
	Chosen-ciphertext Attack
	Chosen-plaintext Attack
	Ciphertext-only Attack
	Known-plaintext Attack
	Functional Chosen-ciphertext Attack
	Functional Chosen-plaintext Attack
	Functional Ciphertext-only Attack
	Functional Known-Plaintext Attack

	Parametric Encryption
	Cryptanalysis of Parametric Encryption
	Chosen-ciphertext Attack
	Chosen-plaintext Attack
	Ciphertext-only Attack
	Known-plaintext Attack
	Functional Chosen-ciphertext Attack
	Functional Chosen-plaintext Attack
	Functional Ciphertext-only Attack
	Functional Known-Plaintext Attack

	Computing with Encrypted Automata
	Univariate Encryption of Programs
	M Is a Mealy Or BSS' Machine
	M Is a Register Automaton

	Multivariate Encryption of Programs
	M Is a Mealy Or BSS' Machine
	M Is a Register Automaton

	Results
	Parametric Encryption of Programs

	Conclusions
	Notation
	Miscellaneous Proofs
	A Modified Turing Machine
	Notes on the Composition Operation
	Keys Versus Functions for Univariate Encryption

	Composition Using Function Tables
	Complexity Notation
	Vectorized Indices
	Converting Function Tables
	Composition Using Function Tables

	Bibliography

