September 1977

RELATION BETWEEN SOLAR ELEVATION AND THE VERTICAL ATTENUATION COEFFICIENT OF IRRADIANCE IN OSLOFJORDEN

by

Jan H. Nilsen and Eyvind Aas

INSTITUTT FOR GEOFYSIKK

UNIVERSITETET I OSLO

INSTITUTE REPORT SERIES

No. 31

September 1977

RELATION BETWEEN SOLAR ELEVATION AND THE VERTICAL ATTENUATION COEFFICIENT OF IRRADIANCE IN OSLOFJORDEN

by

Jan H. Nilsen and Eyvind Aas

ABSTRACT

Irradiance observations at different solar elevations are presented. In the turbid waters, of coastal type 7 according to JERLOV's classification, the mean vertical attenuation coefficient in the layer 0-10 m seems to be independent of solar elevation.

No. 31

CONTENTS

1.	INTRODUCTION	3
2.	INSTRUMENTS AND BOAT	4
3.	THE STATION	6
4.	THE OPTICAL AND HYDROGRAPHICAL CONDITIONS	6
5.	OBSERVATION AND CALCULATION OF THE SPECTRAL IRRADIANCE	8
6.	THE INTEGRATED IRRADIANCE	9
7.	OPTICAL CLASSIFICATION 1	0
8.	CALCULATION OF THE VERTICAL ATTENUATION COEFFICIENT 1	1
9.	EARLIER INVESTIGATIONSl	2
10.	ESTIMATES OF c FROM Kl	4
11.	DISCUSSION 1	6
	ACKNOWLEDGEMENTS	7
	REFERENCESl	8
	TABLES	0
	FIGURES	0

1: INTRODUCTION

This work is based on the thesis for the cand.real. degree by JAN H. NILSEN (1976). The variation of the vertical attenuation coefficient for downward irradiance, K, the spectral distribution of irradiance, $E_{\lambda}(\lambda)$, and the integrated irradiance, E, in Oslofjorden as a function of the solar elevation, h, have been investigated.

The vertical attenuation coefficient for downward irradiance at a wavelength λ , in a layer between the depths z_0 and z_1 , is defined as

$$K = \frac{1}{z_1 - z_0} \cdot \ln \frac{E_{\lambda}(\lambda, z_0)}{E_{\lambda}(\lambda, z_1)}$$
 1.1

KOZLYANINOV and PELEVIN (1966) found for K in the upper layer of the ocean the expression

$$K = K_{O} \cdot D \qquad 1.2$$

where

$$K_{o} = \sqrt{1 - (\frac{b_{b}}{a + b_{b}})^{2}} \cdot (a + b_{b}) \approx a + b_{b}$$
 1.3

a = absorption coefficient; b_b = backward scattering coefficient; D = downward distribution function (TYLER and PREISENDORFER, 1962).

a and b_b are inherent optical properties and are independent of the light conditions. D, however, and consequently K, are functions of the radiance distribution.

If the radiance distribution in the sea has a strong maximum in the direction of the solar radiance, the function

D may be approximated by sec j, where j is the zenith angle of the refracted sunrays. sec j is given as a function of the solar elevation h from SNELL's law of refraction in the form

sec
$$j = (1 - \frac{1}{n^2} \cdot \cos^2 h)^{-\frac{1}{2}}$$
 1.4

where n is the refractive index of sea water (n \approx 4/3).

It has been tested whether the secans relation

$$K(h) = K_{0} \cdot \sec j$$
 1.5

was valid during the day of the measurement. K_0 is the vertical attenuation coefficient with a zenith sun. The result has been compared with the findings of other authors. Finally the best estimate of K(h) in Oslofjorden is discussed.

2. INSTRUMENTS AND BOAT

The irradiance meter

The irradiance meter was a simple instrument consisting of a selenium cell, protected by a brass housing and a glass window. The window was covered by exterior filters of different colours with an opal glass at the top. The photocurrent from the selenium cell was recorded on deck by means of a cable and a microampere meter.

The irradiance meter was calibrated against an instrument calibrated earlier by AAS (1969, 1971).

A deck photometer with opal glass and neutral glassfilter, placed on the roof of the cabin to avoid shadows and light reflections from the boat, was used as a reference for the light conditions in air.

The Tyndall meter

Fluorescence F and scatterance $\beta(45^{\circ})$ were measured with a Tyndall meter, in values relative to a plexiglass standard (JERLOV, 1953, HØJERSLEV, 1971). The instrument consisted of a water sample section between a Hg-lamp section and a photo multiplier section. The receiver was able to measure in two different directions, 45° and 90° from the incoming rays of the lamp.

The scattered light from the water sample was measured at 45° angle. A calibration of the standard at the Institute of Physical Oceanography in Copenhagen, makes it possible to relate the $\beta(45^{\circ})$ values in relative units to the scattering coefficient b in absolute units. The scatterance data presented in Table 3 represent red light (640 nm).

The fluorescence (Table 3) was measured at an angle of 90[°]. The water sample was irradiated by light of wavelength 366 nm, and the light from the fluorescent matter was separated from the former light by means of a V9 filter in front of the photo multiplier.

The water sampling bottles

The water samples were collected with NIVO bottles of plastic to avoid particle contamination from the bottles.

The salinity-temperature bridge

This instrument was manufactured by Electronic Switchgear Ltd., type M.C.5.

- 5 -

The boat

The boat had a lenght of 9 meter. The irradiance meter was kept on a 3 meter long bar outside the boat.

3. THE STATION

The measurements were carried out between two small groups of islands, Ildjernet and Steilene, in the inner Oslofjord (Fig. 1). The place was chosen partly because of its relatively high transparency compared to the rest of the fjord at that time. The Secchi depth was 6 m on the day of the basic irradiance measurements, July 19, 1973. The depth to the bottom was 60 m. The irradiance was measured down to 30 m.

4. THE OPTICAL AND HYDROGRAPHICAL CONDITIONS

The submarine irradiance at a certain wavelength and at a certain depth is a function of cloudiness, solar elevation, turbidity of the air, state of the sea surface and inherent optical properties of the water.

It was therefore desirable to choose a day and a station where all these factors, except the solar elevation, changed as little as possible. Such ideal conditions were not easy to find, and the day of measurement was a bit cloudy (Table 1). During the summers of 1973 and 1974, however, few days had so many hours of sunshine as July 19, 1973.

The wind speed and the waves were highest when the solar elevation was 21⁰ (at 1800 hrs).Some foam also drifted on the surface, which may have caused a decrease in the sub-marine irradiance and perhaps also influenced the vertical

- 6 -

attenuation coefficient, due to a more diffuse radiance distribution.

Observations of clouds together with wind speed and direction, made at Fornebu, ca. 7 km north of the station (Fig. 1) are presented in Table 1. At 1400 hrs. local time the cloudiness was 3/8 while from 1500 hrs. to 2200 hrs. it was 2/8. The dominating clouds were of Cumulus type. It was always taken great care to make the measurements when no clouds were in front of the sun. It is therefore assumed that the clouds on this day had no vital influence on the secans relation, but the clouds may slightly have caused an increase in the irradiance.

The water masses at the station were strongly stratified both hydrographically and optically as seen in Figs. 2 and 3 and Tables 2 and 3.

The isohalines and isoterms, shown in Fig. 2 as functions of time, indicate no essential change of the waters in the surface layer during the day. But the small vertical movements of the transition layer, where the optical properties changed quickly with depth, may have influenced the irradiance attenuation.

However, since we are not able to estimate the influence of the above-mentioned factors on the vertical attenuation coefficient, all variation will be attributed to the effect of solar elevation.

- 7 -

5. OBSERVATION AND CALCULATION OF THE SPECTRAL IRRADIANCE

Irradiance was measured with the filter combinations U1+B12, B12+G5, V9, R1 and R5, together with measurements of salinity, temperature, scatterance and fluorescence. The photocurrent from the selenium cell, p, from this date are plotted as a function of the deck photocurrent p_d , at each depth in Fig. 4-8. p and p_d are also given in Table 5. p was corrected for "dark current", which was of order 0.001 µA.

The photocurrent just below the surface was determined by measuring p with wet filters in air, and multiplying p by a coefficient including the effect of wet filters, the immersion coefficient (AAS 1969) and the surface transmittance. The values in Table 4 refer to the instrument of the Institute of Marin Research, Bergen.

At 48° solar elevation p was unfortunately not measured in air with the filter combination V9 and Rl. Approximated values were found by extrapolation; the dotted lines in Figs. 6 and 7.

The instrument had to be lowered five times for each series of measurements, which then might last 40 minutes. During this time both p and p_d could change, especially for low solar elevations. In order to calculate the irradiance at a fixed solar elevation, it was therefore necessary to correct the photocurrents to the same solar elevation or to the same deck photometer reading. This was done by drawing straight lines between

- 8 -

the points in Figs. 4-8, and then reading off the values on this line corresponding to the chosen value of p_d .

From Figs. 4-8 it is seen that there are few observations at the lowest values of pd, that is at the lowest solar elevations which change fast. In order to get a better view of the relationship between p and pd in this region, new sets were measured (with a different irradiance meter) on June 16 and September 12, 1974 (Figs. 9-11). The results show that the linear interpolation is a reasonable method also at low solar elevations. The interpolated photocurrents were then used to calculate the spectral irradiance distribution $E_{\lambda}(\lambda)$ in the different depth (AAS, 1971). The results, presented in Figs. 12-16, show that some of the spectral irradiance distributions are more irregular than others. This may be due to irregular changes in the light conditions in air, or changes in the optical properties of the water, but most probably to the uncertainty of the photocurrent readings. The distributions are also given in Table 6.

6. THE INTEGRATED IRRADIANCE

E is the irradiance integrated in the visible part of the spectrum:

$$E = \int_{\lambda}^{750} E_{\lambda}(\lambda) d\lambda$$
350 nm
6.1

E was calculated at each depth as a function of solar elevation or time, as shown in Figs. 18 and 19 and Table 7. It is notable that E decreases rapidly as the solar elevation decreases from 7° to -2° .

- 9 -

Fig. 17 shows the solar elevation as a function of local time in Oslo at summer and winter solstice and at the vernal and autumnal equinox (BRAHDE 1970). On the basis of this figure and Fig. 18, E is then calculated for these days in the depths 0 m, 4 m, 10 m and 20 m, assuming the optical conditions to be only a function of solar elevation. The results are presented in Figs. 20-22 and Table 8.

The total diurnal energy per unit area, f E dt, for the mentioned five days has been calculated too, and the results are given in Table 9.

7. OPTICAL CLASSIFICATION

Table 6 shows that the maximum irradiance transmittance is 1.5% at 550 nm between 0 and 10 m depth. From 10 to 20 m the maximum transmittance is 11% at 535 nm. According to JERLOV's classification of coastal waters (e.g. 1976 tab. XXVI), these values suggest that the waters are of coastal type 6-7 and 3-4 in the upper and lower layer respectively. JERLOV's classifications refers to a solar elevation of 45° and the upper 10 meters. We have assumed that the classification values may also be used at 48° elevation and below 10 m depth.

If the irradiance transmittance of blue light (465 nm) is considered, we obtain similarly coastal waters of type 6-7 above 10 m, and type 4-5 below.

It is assumed that the visible irradiance integrated between 350 and 750 nm, at 0 meter depth represents approximately 50% of the total spectrum from 300 to 3000 nm. Also it is assumed that only wavelengths between 350 and 750 nm contribute

- 10 -

to E at 10 and 20 m depth. From Table 7 it can be seen that at 48° solar elevation, only 0.20% of the total irradiance has reached down to 10 m, while 6.5% of the 10 m irradiance has reached down to 20 m. According to JERLOV (1976 tab.XXVIII), with the same assumptions as before, the water on the station should then be coastal water of type 7 between 0 and 10 m, and type 4 below. The results of the three different methods of classifying waters agree fairly well with each other, and we conclude that we have coastal water of type 7 above 10 m, and coastal water type 4 below.

8. CALCULATION OF THE VERTICAL ATTENUATION COEFFICIENT

If K were constant in a layer, the points obtained by plotting the irradiance in a logarithmic scale as a function of depth in a linear scale, should lie on a straight line.

In Figs. 23-26 straight lines with the best fit are drawn between the points (z, $E_{\lambda}(\lambda)$). Values of $E_{\lambda}(380 \text{ nm})$, $E_{\lambda}(470 \text{ nm})$, $E_{\lambda}(520 \text{ nm})$ and $E_{\lambda}(620 \text{ nm})$ are only used at depths where the photocurrents of Ul+B12, B12+G5, V9 and R1-R5 respectively have been observed. The coefficient K seems to attain one value in the layer from 0 to 10 m, other values below. The hydrographical and optical stratification confirms this division into two layers as already seen in Fig. 3.

The relative standard deviation of K in a layer was calculated from the expression:

$$\frac{S_{K}}{K} = \frac{\left|\log E_{\lambda}(z) - \log E_{\lambda F}(z)\right|_{max}}{\left(\log E_{\lambda max} - \log E_{\lambda min}\right) \cdot \sqrt{N}} \qquad 8.1$$

(RASMUSSEN, 1964, p.92). The numerator in 8.1 expresses the maximum distance from the calculated irradiance E_{λ} to the

point on the straight line, $E_{\lambda F}$, in the same depth. $E_{\lambda max}$ and $E_{\lambda min}$ are the greatest and smallest calculated irradiance values in the layer. N is the number of observations in the layer.

K is calculated from the straight line by eq. 1.1. The value of K, together with its standard deviation and its mean value through the day, \overline{K} , is plotted as a function of the solar elevation in Fig. 27. K and $S_{\overline{K}}$ are also presented in Table 10.

 K_{o} is calculated from equation 1.5, and the standard deviation of K_{o} is calculated from the assumption

$$\frac{S_{K_{o}}}{K_{o}} = \frac{S_{K}}{K}$$
8.2

 K_{o} with standard deviation and the mean value of K_{o} through the day, K_{o} , are plotted in Fig. 28.

9. EARLIER INVESTIGATIONS

According to KOZLYANINOV and PELEVIN the secans relation should be valid down to an optical depth τ given by

$$r = cz \leq 2.5 \qquad 9.1$$

c is the (beam) attenuation coefficient.

From equation 1.3 we get

$$K_a \approx a + b_b < a + b = c$$
 9.2

b is the total scattering coefficient.

Eq. 9.1 combined with 9.2 gives

$$z \leq \frac{2.5}{c} < \frac{2.5}{K_0}$$
 9.3

- 12 -

The inequality 9.3 shows that a necessary, but not sufficient condition, is that the depth must be less than $2.5/K_{o}$ for the secans relation to be valid. With Table 11 the depths $2.5/\overline{K}_{o}$ become 1, 4, 7 and 5 m at the wavelengths 380, 470, 520 and 620 nm respectively. This means that K should not follow the secans relation entirely at any wave-length in the layer 0-10 m. The deviation, however, should be smallest at 520 nm. In the layer below 10 m depth the relation definitely should not be applicable.

JERLOV and NYGARD (1969) found the secans relation valid down to an optical depth

 $\tau = cz \leq 4$

for blue light in the Sargasso Sea as well as for green light in the Baltic Sea. When applied to our K_0 data the lower limit of validity should then be less than 7 and 11 m at the wavelength 470 and 520 nm respectively. An attempt to estimate c from the K_0 values, and thus to make better use of the inequalities 9.1 and 9.4, is made in the next chapter.

It should be noted that regardless of depth $H \not$ JERSLEV found little dependence of K upon the solar elevation for green light in the Baltic Sea when the sun was lower than 40° (1974a), and for blue light in the Mediterranean when the sun was lower than 50° (1974b).

It may be added that AAS (1976) has proposed a formula for the vertical attenuation coefficient of blue light in the ocean. When applied to the turbid waters of Oslofjorden, this formula will give a constant K in the upper 10 meter layer.

9.4

10. ESTIMATES OF c FROM K

The attenuation coefficient c may be divided into

 $c = c_w + c_y + c_p$

where c_w = attenuation coefficient due to pure water

- c = attenuation coefficient due to yellow substance
- c = attenuation coefficient due to particles.

The attenuation coefficient may again be divided into the absorption and scattering coefficients

$$c = a_{w} + a_{y} + a_{p} + b_{p} = a_{w} + a_{y} + a_{p}(1+\gamma)$$
 10.2

10.1

Since $b_w << a_w$ and $b_y << a_y$, they are omitted here. γ is defined as

$$\gamma = b_p / a_p$$
 10.3

According to JERLOV (1976, table IX) the backward scattering coefficient in surface ocean waters is about 2% of the total scattering coefficient. Since $b_W \ll b_p$ and consequently $b \approx b_p$, eq. 1.3 may be written

$$K_{o} \approx a + b_{b} = a_{w} + a_{y} + a_{p} + 0.02 \ b = a_{w} + a_{y} + a_{p} (1 + 0.02\gamma)$$
 10.4

When a_y is assumed zero in the red part of the spectrum, and the definition

$$\delta_{\lambda} = \frac{a_{p\lambda}}{a_{p} \ 655}$$
 10.5

is introduced, eqs. 10.2-5 may be solved to give a_p , b_p , a_y and c as functions of K_o :

- 14 -

- 15 -

$$a_{p\lambda} = \delta_{\lambda} \frac{(K_o - a_w)_{655}}{1 + 0.02 \gamma_{655}}$$
 10.6

$$b_{p\lambda} = \gamma_{\lambda} \delta_{\lambda} \frac{(K_{o} - a_{w})_{655}}{1 + 0.02 \gamma_{655}}$$
 10.7

$$a_{y\lambda} = (K_0 - a_w)_{\lambda} - \delta_{\lambda}(1 + 0.02 \gamma_{\lambda}) \frac{(K_0 - a_w)_{655}}{1 + 0.02 \gamma_{655}} = 10.8$$

$$c_{\lambda} = K_{0\lambda} + 0.98 \delta_{\lambda} \gamma_{\lambda} \frac{(K_0 - a_w)}{1 + 0.02 \gamma_{655}}$$
 10.9

From the results of JERLOV (1974, 1976 table XV) and HØJERSLEV (1974a) the following mean relations have been adapted

 $^{b}p 655 \approx ^{2.2} a_{p} 655$ 10.10

^bp 525 ^{$$\approx$$} 1.2 ^bp 655 10.12

$$(a_p + b_p)_{380} \approx 1.8 (a_p + b_p)_{655}$$
 10.13

$$(a_p + b_p)_{525} \approx 1.3 (a_p + b_p)_{655}$$
 10.14

These equations can be solved for γ and δ at the different wavelengths. The results are listed in Table 12. The values for blue light (470 nm) are interpolated. \overline{K}_{O} has been calculated from observations (Table 11), and c_{W} or a_{W} are known from tables (e.g. JERLOV 1976, table XIII). The values of γ and δ at 655 nm have been assumed valid also at 620 nm. All the terms in eq. 10.2 are then known, and the resulting values of c are presented in Table 12.

An interesting result of these very rough estimates, is that the mean value of b in the layer 0-10 m should be 0.36 m^{-1} for red light, which agrees well with the observed value at 5 m depth (Table 3), - 0.29 m⁻¹.

11. DISCUSSION

With the values of c found in the last chapter, the secans relation should not be valid below 1, 2, 3 and 3 m at 380, 470, 520 and 620 nm respectively according to KOZLYANINOV and PELEVIN, while the result of JERLOV and NYGARD says that it should not be valid below 4 and 5 m at 470 and 520 nm respectively, provided the results of these authors can be applied to the turbid waters of Oslofjorden. This agrees well with the results shown in Fig. 28. If a necessary condition for the secans relation to be valid is that all $K_0 \pm S_{K_0}$ shall touch the line \overline{K}_0 , then the relation definitely is not valid in the layer 0-10 m for any wavelength. (At 380 nm the standard deviation is too large and the data too scarce to test the validity, but since the relation is not valid at 470 nm, it is most probably not valid at 380 nm either).

However, from Fig. 27 it is seen that the assumption

would give better results than the secans relation

in Fig. 28. Table 13 shows the ratios K/\overline{K} and $K/(\overline{K}_{o} \sec j)$, and it is seen that the former ratio has the smallest deviation from 1.

We then conclude that in waters with as high vertical attenuation coefficients as those in Oslofjorden, a good assumption is that the coefficient is independent of the solar elevation.

From the discussion in Chapter 4, however, it may be argued that a weak point of this and all other similar investigations so far, is that the conclusion is based on only one day's measurements, which makes it difficult to separate the effect of solar elevation from that of other varying factors.

ACKNOWLEDGEMENTS

We are due thanks to the Institute of Marin Research, Bergen, and the Institute of Marine Biology and Limnology, University of Oslo, for instrumental support.

REFERENCES

- AAS, E., 1969. On submarine irradiance measurements. Rep. Inst. Fysisk Oceanogr., Univ. Copenhagen. 6. 23 pp.
- AAS, E., 1971. The natural history of the Hardangerfjord. 9. Irradiance in Hardangerfjorden 1967. Sarsia. 46: 59-78.
- AAS, E., 1976. The vertical attenuation coefficient of submarine irradiance. Rep. Inst. Geofysikk, Univ. Oslo. <u>19</u>. 28 pp.
- BRAHDE, R., 1970. Solas stilling i Norge. Universitetsforlaget, Oslo. 215 pp.
- HØJERSLEV, N.K., 1971. Tyndall and fluorescens measurements in Danish and Norwegian waters related to dynamical features. Rep. Inst. Fysisk Oceanogr. Univ.Copenhagen. <u>16.</u> 46 pp.
- HØJERSLEV, N.K. 1974a. Inherent and apparent optical properties of the Batic. Rep. Inst. Fysisk Oceanogr. Univ. Copenhagen, 23. 41 pp.
- HØJERSLEV, N.K. 1974b. Daylight measurements for photosynthetic studies in the western Mediterranean. Rep.Inst.Fysisk oceanogr., Univ.Copenhagen, 26. 38 pp.
- JERLOV, N.G., 1953. Particle distribution in the ocean. Rep. Swed. Deep-Sea Exped. <u>3</u>: 73-97.
- JERLOV, N.G., 1974. Significant relationships between optical properties of the sea. In: N.G. JERLOV and E. STEEMANN NIELSEN (editors), Optical aspects of oceanography. Academic press, New York, N.Y: 77-94.
- JERLOV, N.G., 1976. Marine optics. Elsevier, Amsterdam. 231 pp.
- JERLOV, N.G. and NYGÅRD, K., 1969. Influence of solar elevation on attenuation of underwater irradiance. Rep. Inst. Fysisk Oceanogr., Univ. Copenhagen. <u>4</u>. 6 pp.
- KOZLYANINOV, M.V. and PELEVIN, V.N., 1966. On the application of a one-dimensional approximation in the investigation of the propagation of optical radiation in the sea. U.S. Dept. Comm., Joint Publ. Res.Ser., Rept. <u>36</u>: 54-63.

NILSEN, J.H., 1976. En undersøkelse av hvordan den vertikale svekningskoeffisienten for dagslyset varierer med solhøyden i det øvre laget av sjøen. Thesis, University of Oslo. Unpublished.

RASMUSSEN, R.E.H., 1964. Elementær måleteori. J. Gjellerups forlag, Copenhagen. 4.ed. 130 pp.

TYLER, J.E. and PREISENDORFER, R.W., 1962. Light. In: The Sea, Vol.1, ed. M.N. Hill. Interscience Publishers, London: 397-451.

		The St	ation		No.du willingit a signed britiser	Forneb	u	2 * * C C C * C * C * C * C * C * C * C	
Date	hr.	Secchi	Max.	Win	d	Clou	ds		
1		depth	wave-	Vel.	Dir.	Cloudi-	Main	Relative	Air.
			height			ness	cloud type	humidity	temperature
		m	m	knots	degr.			%	°c
19/7 1973	13 19 22	6.0	0.5 0.5 0.5	3 9 3	21 19 19	3 2 2	Cumulus "	44 56 65	21.5 21.7 18.5
17/6 1974	13 19 23	8.5	0.5 0.5 0.5	9 8 4	09 16 14	2 1 1	" " Str.Cum	27 30 37	27.5 23.6 21.6
12/9 1974	13 19 23	5.0	0.5 0.5 0.5	5 1 0	22 22 00	1 1 1	Cumulus Str.Cum "	47 54 80	18.0 15.0 9.8

TABLE 1. CONDITIONS AT FORNEBU AND THE STATION

TABLE	2A.	SALINITY	AND	TEMPERATURE
		the start was a size of a		A REFE FIR PARTY STATE OF A CARD

	je.	× *	JULY 19, 197	3	Б.
Time	1300	1500	1700	1900	2300
Depth m	°/00 °C	°/00 °C	°/oo °/C	°/00 °C	°/00 °C
0 1 2 4 6 7 8 10 11 12 14 16 20 25 30 35 40	21.6 22.2 21.5 21.4 21.5 20.9 21.5 20.8 21.5 20.7 21.5 20.8 21.5 20.8 22.8 19.1 25.4 14.0 26.5 12.5 27.7 11.6 28.4 10.6 29.8 9.6 30.7 8.1 31.9 7.4 32.0 7.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.120.721.120.821.120.921.120.821.120.821.120.823.815.524.514.625.713.127.011.628.010.429.89.030.97.631.57.231.57.131.77.0

- 20 -

		J	une 16	, 197	4			Sept	tember	12,	1974	
Time	170	0	18	40	21	35	14	55	17	10	18	55
Depth m	S º/oo	°C	S ⁰ /00	т ° _C	S ⁰ /00	т °с	S ⁰ /00	o ŭ	S ⁰ /00	т ° _С	S °/00	т С
0 1 2 4 6 7 8 10 11 12 14 16 25 30 40	24.8 24.9 24.9 25.3 25.7 26.6 27.9 28.5 30.0 30.9 32.2 33.1 33.3 33.9	17.1 16.6 14.8 14.3 13.5 13.0 12.3 11.4 11.0 9.8 9.0 8.0 7.3 7.0 6.6	25.1 25.1 25.2 25.2 25.5 25.7 26.8 27.4 27.9 29.5 30.6 32.2 33.1 33.3	16.0 16.2 16.1 14.6 13.8 13.2 12.2 11.8 11.4 10.2 9.3 8.2 7.4 7.0	25.0 25.0 25.0 25.1 25.1 25.1 25.1 25.8 26.8 27.5 29.1 31.2 32.0 32.6 33.2	16.3 16.4 15.8 14.2 13.7 12.2 11.8 10.5 9.7 8.2 7.4 7.0	24.8 25.0 24.9 25.0 25.1 25.2 25.2 25.2 25.2 25.2 25.3 25.5 25.5	16.6 15.5 15.3 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	25.0 25.0 25.0 25.1 25.1 25.1 25.2 25.2 25.2 25.2 25.4 25.6 26.3 29.2 31.1 32.5 33.4	15.3 15.1 15.1 14.8 14.8 14.8 14.8 14.9 14.8 14.9 15.0 15.0 12.2 9.0 7.5 6.4	25.0 25.0 25.0 25.0 25.0 25.1 25.2 25.3 25.3 25.4 25.8 26.8 28.9 31.1 33.5	15.2 15.2 15.0 15.0 14.8 14.8 14.8 14.9 14.9 15.0 14.8 14.9 15.0 14.8 14.9 15.0 14.8 14.9 15.0 14.8 14.9 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0

TABLE 2B. SALINITY AND TEMPERATURE

TABLE 3. SCATTERANCE AND FLUORESCENCE

DEPTH m	β(45 ⁰) _{red} rel.values	bred m ⁻¹	F rel.values
5	5.8	0.29	1.1
11	3.4	0.17	1.1
18	1.5	0.077	0.57
40	2.3	0.12	0.64

TABLE 4. RATIO BETWEEN CALCULATED PHOTOCURRENT BENEATH THE SURFACE, p_w, AND MEASURED PHOTOCURRENT WITH WET INSTRUMENT IN AIR, p_a.

Filter	<pre>Immersion coefficient = sensitivity in water sensitivity in air (dry instr.)</pre>	p _w p _a
U1+B12	[.] 0 _° 76	0.91
B 12 + G 5	0.72	0.85
V 9	0.71	0.83
R 1	0.66	0.75
R 5	0.60	0.68

TABLE 5. PHOTOCURRENTS JULY 19, 1973.

	an ann an		Ti	me	ca. 14;	h =	48°			
	p r	d	p	pd	.p	Pd	p	pd	P	P _d
DEPTH	U1+B12		B12+G5		V9		RI		75	
m	μΑ	μA	ųА	μA	рА	μА	μА	μя	μя	μм
0	16.8	46	70	45				52	40	54
1	0.55	45	23	45	200	48.	150	51	10	54
2	0.094	45	11	45	145.	48	89	50	5.2	53
4	0.0035	44	2.25	45	48	48	26.7	50	1.05	53
6			0.46	46	17	47	7.2	49	0.21	53
8			0.103	46	7	47	2.25	49	0.105	53
10			0.03	46	2.9	47	0.65	49	0.03	53
12					1.65	47	0.27	49		
14					0.91	47	0.085	49		
16					0.55	47	0.031	49		
20					0.239	47	0.0048	49		
30					0.03	47		* a [
35			с ж		0.01	47				
			T1	me	ca. 16:	h =	360		er ²	
0	17.5	35	51	33	300	34	248	31	27	30
1	0.51	35	17.5	33	120	34	87	31	3.8	31
2	0.073	35	9.5	34	86	34	45	31	1.8	32
4	0.0015	35	1.7	34	32.6	34	11	31	0.27	31
6			0.35	34	12.2	33	3.1	31	0.049	30
8.			0.066	33	4.4	30	0.9	30	0.013	29
10			0.0235	33	1.9	31	0.28	32	0.0062	29
12					1.05	29	0.102	32		
14					0.6	29	0.036	33		
16					0.36	30	0.015	35		
20					0.165	29	0.006	36		
30					0.022	29				
35		1			0.0085	30				

			Time	ca.	18; h =	21°				
	P	Pd	р	Pd	P	P _d	p	pd	p	P _d
2.1	U1+B12		B12+G4		V9		71		R5	
	μA	μA	μA	μA	μA	μA	μA	μA	μА.	μA
0	4.2 -	15	24	18	155	20	140	23	19	24
1	0.125	15	5.4 *	18	58	20	50	23	3.4	24
2	0.0034	14	1.85	18	33	21	21	24	1.1	24
4			0.37	17	10.7	20	6.4	23	0.135	24
6	8		0.079	17	4.3	20	1.3	23	0.034	24
8			0.0145	17	1.6	20	0.41	22	0.0055	24
10			0.0042	16	0.65	19	0.11	22	0.0015	24
12					0.38	19	0.039	22	l	
14		ж			0.196	20	0.0163	21		
16					0.13	20	0.0061	21		
20					0.056	19	0.0026	21		
30	<i></i>				0.0075	20				
35					0.0039	19				
			Time	ca.	20; h =	7 ⁰				
0	1.8	5.3	6.5	4,8	39	4.3	17	3.2	1.65	2.5
1	0.038	5.2	1.9	4.5	13	4.0	8.2	3.1	0.28	2.4
2	0.0028	5.0	1.2	4.5	8.7	3.8	3.6	3.0	0.112	2.5
4	1.0		0.28	4.4	3.1	3.8	0.98	3.0	0.02	2.6
6			0.045	4.6	1.1	3.8	0.25	2.9	0.0034	2.5
8			0.01	4.5	0.36	3.7	0.064	2.9	0.0005	2.4
10	× *	2	0.0035	4.4	0.138	3.7	0.017	2.9		
12		8 ¹⁰	1211		0.06	3.6	0.0046	2.9		
14					0.033	3.6	0.0018	2.8		
16	s.*				0.0178	3.5				
20					0.0074	3.6				
30			1		0.0015	3.5	8			

2

		and an	Tir	ne ca.	22; h =	-2°				
0 1 2 4	0.0015	0.003	0.028 0.012 0.0024 0.0006	0.009 0.008 0.007 0.005	0.15 0.056 0.036 0.0125	0.015 0.013 0.013 0.013	0.17 0.054 0.03 0.005	0.027 0.025 0.023 0.022	0.066 0.0085 0.0031	0.046 0.043 0.038
6					0.005	0.011	0.0005	0.021		

- 22

ft

11m	0 <u>s</u>	1m	21	. 4m	6±	8m	102	12m	16m	2011	30m
150	4470	5.70	.322				i i				
60	.564	9.87	.957								
70	544 .	16.9	2.61	.0420							
80	631.	29.2	5.47	.210					*		
90	683.	49.9	9.53	.707							
20	715.	19.0	15.2	1.51	100						
10	770	1140	25.8	3.28	.133	0.201					
20	760	150.	39.9	6.15	. 301	.0291	(12)				
40	804	2020	20.7	9.42	, 143	0122	0131				
50	827.	304.	120	13.7	2.87	101.	0787			*	
50	832.	361.	154	27.2	4.82	.768	187	- 0600			
0	836.	406.	194.	40.5	7.94	1.58	412	153	0200		
00	840.	450.	273.	56.5	11.9	3.04	945	.359	.0473	.0179	.00244
0	853.	476.	283.	79.5	19.9	6.13	1.92	.798	.129	. 1494	.00791
0	871.	515.	346.	107.	29.5	10.1	3.45	1.70	.336	.114	.0259
0	880.	559.	403.	132.	42.1	16.5	6.07	3.07	.867	.314	.0719
20	894 .	586.	437 .	149.	54.5	22.0	8.44	4.83	1.77-	.764	.136
30	669.	597.	451.	154.	59.7	25.8	11.1	6.59	2.56	1.23	.169
10	872.	556.	460.	157.	62.7	28.0	12.6	7.69	2.99	1.43	.154
	855.	572.	456.	154.	63.5	28.9	12.6	7.76	2.82	1.28	.111
0	846.	533.	432.	146.	59.7	26.8	11.4	6.74	5.09	.164	.0626
0	823.	512.	39(137.	55.2	22.8	9.92	4.97	1.26		.0337
	190.	490.	331.	125.	47.9	17.1	7.47	3.59	0193	0000	. 4150
	713.	432.0	3200	112.	39.2	14.0	5.30	2.49	276	00030	00131
0	790.	4290	243	100.	31.3	10.1	3.04	1.01	140	. 0236	00151
	57.	364	212.	61.0	10 0	5 75	2.47	1.13		.0120	
	57%	212	184.	54.5	10.7	4.22	1.11	632	.0450	00651	
0	514.	269.	158.	43.2	1 4 0 7	2.87	. 686	276	0221	.00355	
0	455.	241.	138.	35.0	8.79	1.91	.431	.155	.0116	.00177	
0	407.	196.	118.	28.1	6.25	1.43	.274	.0950	.00672	.000987	
0	378.	168.	99.6	22.2	4.43	.901	.186			-	
0	337.	144 .	63.9	17.2	3.26	2	-				
0	301.	125.	67.8	13.8	2.21						
0	266.	106.	56.1	10.5	1.49						
10	239.	91.7	46.1	8.34							
20	210.	78.3	37.5	5.95							
10	182.		30.2								

TABLE 6A

m 0.	a 1 m	2 m	4m	6m	8m	-, 10m	12m	16m	20т	30a
0 533.	4.89	.217								
505.	0.40	007L	04.04							
0 505.	14.7	2017	.0124							
0 527	6700	3013	00004							
660	42.00	3071	0 6 4 2							
0 637	05.9	10.9	0471							
633.	126	30.4	2 43	.0971						
0 618.	161	45.5	6.45	.219	. 01//					
0 602.	2010	71.4	7 00	e 541	.0439	.00937				
50 582.	247	103-	13.1	1.00	.0982	.0243				
50 579.	274	132.	19.5	2.09	0 CU7	. 0562				
70 577.	300	171.	29.1	3.51	.40/	.154	.0453			
0 57A-	316.	194	60.6	5.10	. 903	.294	.115	.0145		
579.	319.	212	56.5	0.00	2007	.015	.2/1	. 0345	.0138	.00195
DD 580.	324	231.	75.7	1407	5.00	1.30	.602	.0944	.0380	.01633
10 580.	330 .	245.	92.1	21.00	0.011	C 0 4 7	1.20	. 240	.0882	. 6207
20 581.	332	248.	167.	50.9	1100	4.31	2.32	0034	.242	.0575
33 581.	335	250	105.	~U o 1	48 6	2.90	3.67	1.030	• >00	• 1 0 G
578.	334.	252.	108.	44.0	20.9	1.81	6.91	1.6/	.951	•135
50 568.	326 -	250	105-	40.02	20.0	5.95	5.80	2.19	1.10	• 123
562.	313.	236.	100.	4001	40 4	0.90	2.80	. 2.00	. 985	.0092
70 555.	305.	220.	88-3	77 8	15 4	0017	5.00	1053	e 588	.0500
80 544.	305.	205.	75.7	70 7	1901	0004	3.33	0042	. 294	.0264
0 532.	295.	194.	63.1	30.03	11.00	****	2013	04/5	.14/	.0125
DC 514.	284 .	173.	52.9	46 5	5.08	6 04	2.000	0 6 4 7	.0725	.00633
468.	264	152.	43.3	17 4	1 16	1 70	. 532	0113	. 0363	.00264
20 443.	266.	133.	34.4	10 0	3.20	2030	0719	. 00/4	. 0207	.00120
30 408.	223.	115.	28.0	7.0%	2.35	0004	0313	0346	.0105	
60 363.	199.	99.6	22.9	6.04	1.60	360	0270	00210	.007/0	
50 319.	169.	87.1	18.5	4.65	1.05	. 226	0100	0100	.00155	
50 284.	149.	74.1	14.9	3.31	- 801	- 1 44	0436	.00700	000177	
70 257.	132.	62.4	11.8	2.34	502	0077	06400	000363	00000000	
30 237.	115.	52.6	3.15	1.72	0 2 0 6	00711				
213.	93.6	42.5	7.36	1.17						
188.	86.4	35.2	5.57	794						
10 168.	73.2	29.9	4.42	01 14						
20 149.	67.0	23.5	3.15							
12 128.	53.9	19.0								

.

TABLE 6B

× .

à.,

2

ð 12

1				4	6m	0		10-	46-		70-
nm	Um		21	4 W			1 0 20	120	102	20m	204
50	223.	2.07	.0380						A.		
0	232 .	3.59	.114								
0	233.	6.17	. 304								
0	250.	10.6	. 655								
0	259.	17.8	1.14	an an all							
C	264.	26.5	1.94	.136							
0	276.	35.9	3.62	. 337	. 0364	00537					
0	288.	47.2	6.39	.744		0177	00284				
30	295.	58.9	10.5	1.43	. 205	0297	00231				
40	301.	71.0	17.0	2.67	. 3/4	.0622	.0168				
50	306.	85.6	24.4	4.09	. 70	. 141	.0402				
50	30%.	97.6	31.9	6.09	1.30	291	.0883	0103	001.68		
0	304.	111.	42.8	9.07	2.10	- 560	- 202	. 1075	01400	57479	000611
10	3640	122.	49.8	12.6	3.24	1.19		215	0704	000471	000012
00	305.	135.	61.4	17.7	7 76	2.09	. 812	.463	0785		00647
0	305.	145.	75.4	23.9	10 0	3.59	9.49	.835	202	. 0.826	.0173
0	306.	157.	89.0	29.5	17 8	5.18	2.16	1.31	- 415	- 200	.0361
0	306.	170.	100.	33.0	13.0	5.91	2.85	1.79	. 599	323	5427
30	300.	1/1.	103.	34.2	1701	5.42	3.24	2.08	690	776	6386
• 0	305.	1/1.	101.	34.9	1200	6.63	3.24	2.10	650	370	0278
0	300.	167.	100.	34.2	45 4	6.13	2.05	1.83	6097	200	0155
0	291.	158.	94.7	32.3	1701	6-90	2.26	1.15	281	500	C0827
0	275.	151.	84.1	31.0	12.5	3.61	9.53	.718	468	0500	00325
10	269.	146.	76.6	23.7	7 74	2.77	- 994	20	0007	0217	000007
0	266.	161.	69.2	25.7	F 64	1.99	6516	254	04.55	04241	000571
0	230.	134.	. 61.4	23.0	5.01	1.38	6010	158	00000	00105	000371
.0	211.	120.	52.5	18.5	4.10 7.13	1-06	285	.0056	09567	00750	
0	192.	109.	46.2	14.9	3010	.783	180	0605	001707	00101	
50	171.	96.0	39.5	12.5	4 76	534	116	0787	000007	00436	
0	154.	86.5	34.0	9.94	4 74	356	.0729	.0217	00421	600530	
0	138.	75.3	28.3	5.05	1.031	267	0464	- 01 33	00120	010204	
0	123.	67.5	24.8	6.4A	217	167	0315		000107	0 0 0 0 C 74	
0	111.	59.3	19.9	5.17	o/L/	2441	00012				
0	39.9	52.0	15.8	3.97							
0	83.3	44.7	13.8	3.20	0304	2					
00	79.3	38.8	12.0	2.42	0 C 4 4						
.0	71.9	32.9	9.89	1.92							
0	62.3	25.2	8.05	1.37							

TABLE 6C

nm On	1@	21	. 4m	6m	8 <u>m</u>	101	12m	162	2011	30m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.282 .490 .444 2.444 2.451 2.58 .451 2.58 .451 2.58 .454 .451 .452 .453 .453 .454 .453 .454 .453 .454 .454	.00819 .0245 .0245 .0245 .256 .2996 2.996 2.996 2.996 2.996 2.996 2.996 2.996 2.996 2.996 2.996 2.996 2.996 2.55.12758 2.25.58 2.25.58 2.25.58 2.25.58 2.25.58 2.25.58 2.25.58 2.25.58 2.25.58 2.25.58 2.5.59 2.5.58 2.5.58 2.5.59 2.50 2.50 2.50 2.50 2.50 2.	. 0703 . 3782 . 3782 . 20934. 20934. 20934. 20934. 20934. 20934. 20934. 20934. 20934. 20934. 2010. 100. 20037. 200941. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20032. 20034. 20032. 20032. 20034. 20032. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20034. 20032. 20032. 20034. 20032. 20	• 0119 • 0270 • 0676 • 122 • 250 • 430 • 710 1• 06 1• 64 2• 22 2• 90 3• 41 3• 74 3• 97 3• 74 3• 97 3• 74 3• 97 3• 21 2• 62 2• 01 1• 59 1• 17 • 884 • 692 • 501 • 3711 2• 62 2• 01 1• 59 1• 17 • 884 • 692 • 501 • 3711 • 275 • 62 2• 01 • 50 • 122 • 250 • 430 • 710 • 10 • 10 • 10 • 10 • 10 • 10 • 10 •	• 00271 • 00672 • 0150 • 0314 • 0714 • 147 • 263 • 508 • 738 1• 02 1• 16 1• 32 1• 44 1• 48 1• 37 1• 11 • 824 • 638 • 463 • 323 • 248 • 182 • 182 • 182 • 182 • 182 • 182 • 0621 • 0389	.00166 .00437 .0100 .0521 .104 .164 .248 .339 .426 .518 .590 .536 .426 .516 .590 .536 .427 .0455 .0453 .0264 .0169 .0105 .00730	.00250 .00542 .0149 .0333 .0712 .128 .201 .275 .321 .324 .281 .184 .118 .0723 .0462 .0285 .0173 .0110 .00704 .00396 .00242	.000744 .00167 .00456 .0120 .0307 .0633 .0912 .102 .100 .0838 .0643 .0455 .0306 .0210 .0126 .00725 .00399 .00199 .00105	.000620 .00170 .00395 .0108 .0263 .0426 .0496 .0442 .0263 .0131 .02659 .00325 .00162 .00931 .000473	. C C D 1 3 8 . C D D 4 4 3 . C C D 4 4 4 3 . C C D 4 4 5 . C C 4 4 7 . C D 9 5 8 . D 0 0 0 0 0 9 5 8 . D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE 6D

2 2

n N

- 07

	Ε _λ (λ)	in mW m ⁻²	nm ⁻¹ . Time	22 0 0, h =	-2 [°] .
nm	0=	12	2т	4 m	6ш
$\begin{array}{c} 350\\ 360\\ 370\\ 380\\ 410\\ 420\\ 430\\ 440\\ 450\\ 470\\ 480\\ 470\\ 590\\ 510\\ 520\\ 530\\ 550\\ 580\\ 510\\ 570\\ 580\\ 610\\ 620\\ 640\\ 650\\ 660\\ 670\\ 680\\ 670\\ 690\\ 710\\ 720\\ 730\\ \end{array}$.165 .219 .201 .351 .425 .510 .570 .611 .651 .654 .647 .629 .593 .548 .510 .481 .441 .400 .371 .343 .314 .285 .263 .249 .229 .214 .191 .175 .156 .141 .126 .112 .101 .0887 .0595 .0511 .04*9	.00732 .0159 .0319 .0648 .122 .219 .311 .380 .409 .418 .409 .389 .347 .305 .265 .234 .204 .186 .170 .158 .146 .170 .158 .146 .143 .141 .136 .130 .115 .109 .0993 .0894 .0805 .0717 .0629 .0540 .0463 .0342 .0292 .0248	.00134 .00268 .00492 .00823 .0138 .0232 .0384 .0590 .0850 .118 .153 .172 .178 .180 .174 .161 .148 .136 .123 .114 .161 .148 .136 .123 .114 .105 .0962 .0861 .0747 .0389 .0311 .0254 .0254 .0254 .0254 .0254 .0254 .0254 .0254 .0254 .0254 .0254 .0254 .0254 .0254 .00788 .00622	.00105 .00225 .00431 .00735 .0133 .0211 .0321 .0470 .0561 .0611 .0632 .0623 .0605 .0558 .0493 .0428 .0385 .0328 .0277 .0222 .0169 .0126 .00973 .00708 .00428 .00169 .0016 .00169 .0016 .000423	.000589 .00147 .00314 .00628 .0103 .0186 .0260 .0314 .0334 .0331 .0299 .0250 .0186 .0137 .00982 .00687 .00451 .00314 .00196 .00117 .000785 .006392

TABLE 6E

		E in W/m	2	alanın yara talan danı dalam mayna məsəri								
Depth		solar e	levation									
m	48° 36° 21° 7° -											
0 1 2 4 6 8 10 12 16 20 30	252 112 70.4 21.2 6.93 2.62 1.03 0.555 0.167 0.067 0.008	188 75.7 44.4 13.6 4.69 1.75 0.687 0.389 0.118 0.052 0.006	88.5 33.9 15.2 4.74 1.59 0.561 0.241 0.138 0.038 0.018 0.018 0.002	17.7 7.76 4.44 1.49 0.422 0.137 0.050 0.022 0.007 0.002 0.002 0.005	0.124 0.062 0.026 0.008 0.003							

TABLE 7. IRRADIANCE IN THE REGION 350 - 750 nm

TABLE 8. IRRADIANCE IN THE REGION 350 - 750 nm

				E	in W/	m ²		
Date	Depth m	Time	12	14	16	18	20	22
	0		265	250	190	96	23	0.25
June	4		25	22	14	5.5	1.6	
21	10		1.2	1.1	. 68	.28	.060	
	20		.080	.075	.054	.021	.0030	
March	0	sonon häisen dara- Adamigha	135	115	54	2.5		
20	4		8.5	6.8	3.2	. 32		
Sept.	10		.46	.36	.13			
23	20		.034	.028	.0085			
Dec.	0		15	7.0		an ann daoine in tha taire ann an		
22	4		1.2	.70				

TABLE 9. TOTAL DIURNAL ENERGY

Depth		Energy	in J/m ²	an an the Barth and Barth and an
m	June 29	July 19	March & Sept. 23	Dec. 22
0 4 10 20	9.5.10 ⁶ 7.5.10 ⁵ 3.6.10 ⁴ 2.6.10 ³	8.8.10 ⁶ 6.7.10 ⁵ 3.3.10 ⁴ 2.3.10 ³	3.4.10 ⁶ 2.1.10 ⁵ 1.0.10 ⁴ 7.7.10 ²	1.8.10 ⁵ 1.6.10 ⁴

λ	Time	14		16		1	3	20		2	2
nm		К	s _K	К	SK	K	SK	K	SK	K	SK
380		2.15	.16	2.30	.14						
470		.77	.01	.79	.01	.83	.02	.74	.01	.84	.07
520		.47	.01	.46	.01	.50	.02	.51	.01	.41	.02
620		.60	.01	.62	.01	.66	.01	.65	.03	.65	。04

TABLE 10. K (m⁻¹) IN THE LAYER 0-10 m.

λ nm	Time	14		16		18		2	0	22	
		Ко	SKo	Ko	SKo	^K o	SKo	х _о	SKo	Ko	K _{So}
380		1.86	. 14	1.83	.11						
470		.67	.01	.63	.01	.59	.01	.49	.01	.56	.04
520		.41	.01	. 37	.01	. 36	.01	•34	.01	27	.02
620		.52	.01	.49	.01	.47	.01	.43	.02	.42	.03

TABLE 11. K_{o} (m⁻¹) IN THE LAYER 0-10 m

TABLE 12. ESTIMATES OF c FROM K

λ nm	₹ _o m ⁻¹	aw m-1	Ŷ	δ	ap m ⁻¹	bp m-1	ay m ⁻¹	ic m ⁻¹
380	1.85	0.04	0.7	3.3	0.56	0.39	1.25	2.24
470	0.59	0.02	1.3	2.2	0.37	0.48	0.19	1.06
520	0,35	0.04	1.7	1.5	0,25	0.43	0.05	0.77
620	0,47	0.29	2.2	1	0.17	0.37	0	0.83

TABLE 13. THE RATIOS $R_1 = \frac{K}{\overline{K}}$ AND $R_2 = \frac{K}{\overline{K}_0 \sec j}$ AND THEIR DEVIATION FROM 1 IN %.

λ		38	0 nm		470 nm				520 nm				<u>620 'nm</u>			
TIME	R ₁	%	R2	5	R ₁	%	R ₂	6.9	Rl	70	R ₂	53	Rl	ž	R2	r p
14	,96	4	1,01	1	.97	3	1.14	14	1.00	0	1.17	17	.94	6	1,11	11
16	1,03	3	.99	1	1,00	0	1.07	7	.98	2	1.06	6	.97	3	1.04	4
18					1,05	5	1.00	0	1.06	6	1.03	3	1.03	3	1.00	0
20					.94	6	.83	17	1.09	9	.97	3	1.02	2	. 91	9
22					1,06	6	.95	5	.87	13	•77	23	1,02	2	.89	11
MFAN 7 DEVI- ATION		4		1		4		9		6		10		3		7

Fig. 2. The distribution of temperature and salinity during July 19, 1973

0.1

0.2

0.3

Grad m

Fig. 3.

Vertical distribution of temperature, T, salinity, S, scattering coefficient, b, and fluorescence, F, at 23 hrs, July 19, 1973.

100

10-1 pd #A

10-2

10-3

80

101

102

101

- 32 -

10° Pd HA

101

- 34 -

12m

10⁰ Pd

16

AU A

101

Fig. 13. E_{λ} at 1600 hrs, h = 36^o

- 36 -

Fig. 14. E_{λ} at 1800 hrs, h = 21°.

Fig. 15. E_{λ} at 2000 hrs, h = 7^o.

Fig. 18. E as a function of solar elevation on July 19, 1973.

Ei

Fig. 20.

L,

Ŧ

E as a function of local time at vernal and autumnal equinox.

Fig. 21. E as a function of local time at winter solstice.

Fig. 22.

E as a function of local time at summer solstice.

Fig. 23. $E_{\lambda}(380 \text{ nm})$ as a function of depth at different solar elevations. 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} mWm⁻²nm⁻¹ 10^{3} -2^{0} 7^{00} 48^{0} 380 nm 4m

Fig. 24. E_{λ} (470 nm) as a function of depth at different solar elevations.

F

Fig. 25.

 E_{λ} (520 nm) as a function of depth at different solar elevations.

Fig. 26.

 $E_{\lambda}(620~\text{nm})$ as a function of depth at different solar elevations.

- 41 -

Fig. 28.

 K_{o} at different solar elevations. The hatched line denotes \overline{K}_{o} .