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Abstract
The aim of this work has been to develop new knowledge about macro-
modelling of microsystems. Doing that, we have followed two different ap-
proaches for generating macromodels, namely model order reduction and
lumped modelling. The latter is a rather mature method which has been
widely recognized and used for a relatively long period of time. Model order
reduction, on the other hand, is a relatively new area still in rapid develop-
ment. Due to this, the focus is therefore different for the two approaches. The
parts considering reduced order modelling is strongly biased towards method-
ology and concepts, whereas parts on lumped modelling is biased towards
systems and devices.

In the first part of this thesis, we focus on model order reduction. We
introduce some approaches for reducing model order for linear systems, and
demonstrate how a model of a (linear) squeeze-film damping system can be
simplified. The example clearly demonstrates capabilities of model order
reduction. It is also shown how the squeeze-film damping can be expressed in
terms of an electrical equivalent circuit. We then move on to investigate model
order reduction of nonlinear systems, where we present and use the concept
of invariant manifolds. The concept can be explained in a simple manner by
the following: for a linear system being excitated in a single eigenmode, the
motion will always stay on the phase-plane of that eigenmode. The surface
described by the phase plane is an invariant manifold, since the state of the
system never leaves the surface (without external excitation). Parallel to this,
nonlinear systems may also contain such surfaces, or invariant manifolds,
that the motion always will stay on. For nonlinear systems, however, these
surfaces are generally no longer planar, but curved. While the concept of
invariant manifolds is general, we utilize it for reducing models. An obvious
advantage of using invariant manifold theory is that it offers a conceptually
clear understanding of effects and behaviour of nonlinear system.

A major difficulty in using the invariant manifold method is to identify
the shape of the manifold. We utilize an asymptotic approach presented by
others [1]. We investigate the accuracy of the asymptotic approach. For our
examples, we find that the nonlinear behaviour of the slave modes are stronger
than the retained mode(s). This implies that the polynomial approximations
of the slave modes will diverge earlier from the exact solution, than will the
approximation of the retained mode. Thus the reduced model is approximat-
ing the retained mode better than the slave modes.

The treatment of external forcing for reduced models created via the in-
variant manifold approach is discussed. We present a new geometrical inter-
pretation, and show how this leads to a procedure where external forcing can
be dealt with in a manner consistent with the invariance property of the man-
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ifold. The interpretation also indicates how this can be utilized to minimize
errors by creating a manifold of larger dimension.

We have also extended the asymptotic approach in a manner that makes
it possible to create design-parameter sensitive models. The asymptotic ap-
proach, both with regards to modal amplitude and to design-parameters, limits
the range of validity of the design-parameter sensitive model. Nevertheless,
it gives the designer the possibility to reason about changes in linear and
nonlinear behaviour of the system, and is therefore a valuable tool. We in-
vestigate an industrialized dual-axis accelerometer by means of the method
and demonstrate some of the capabilities of the method.

In the last chapter dealing with reduced order modelling, we discuss how
manifolds for nonlinear dissipative systems can be found. We present a method,
which we apply to the industrialized dual-axis accelerometer, now with squeeze-
film damping included.

After having focused on model order reduction in the first chapters, we
focus on lumped modelling of a microresonator in chapter 6. We also discuss
other topics, like electrical equivalents of mechanical systems. Particularly
we demonstrate the two analogies between the mechanical and the electrical
domain. It is shown how the f → V analogy, linking velocity to voltage, is the
natural choice. This does, however, have the implication that the electrostatic
transducer element, expressed as an electrical equivalent, involves a gyrator.
The microresonator is modelled using a lumped modelling technique, disre-
garding all nonlinear effects except in the electrostatic transducer. We create
electrical equivalent circuits of the system by employing the f → V analogy.
We create 3 lumped models with different number of degrees of freedom.

In chapter 7, we analyse an electromagnetic system, intended for levitating
objects. The analysis is done by using a lumped model, where the elements
are created on the basis of analytical solutions. By using the compact model,
we demonstrate the scaling effects of the system, clearly showing that this sys-
tem takes advantage of the miniaturization. Furthermore, the analysis shows
that the system is intrinsically stable. However, an effect which will cause the
stable state of the floating disc to be slightly tilted is also unveiled. This is
the first analysis done assessing the stability criterions of such a systems. The
knowledge arising from the analysis gives strong indications on how such a
system can be utilized and how it can be improved.
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Chapter 1
Introduction

1.1 Background and motivation
Microsystems, and more specifically MEMS (MicroElectroMechanical Sys-
tem), is a relatively new area. Many consider an article published in 1982
("Silicon as a mechanical material", [2]) as the starting point, although MEMS-
devices had been around for nearly a decade at the time. A myriad of fabri-
cation techniques enabling microsystems to be realized has been developed
and improved considerably in the past two decades or so. Examples are wet
and dry anisotropic etching for both bulk and surface micromachining, and
double-sided lithography. This has allowed new concepts and devices to be
brought forward, motivated by the market forces and the scientists’ ingenuity.
Examples are ink-jet heads for printers, accelerometers for airbag systems,
and micromirror arrays used in projectors.

One of the fundamental characteristics of microsystems is their small size.
Although the macroscopic and the microscopic world is governed by the same
physical laws, the relative importance of the individual effects changes with
size. Therefore, when designing microsystems, merely miniaturizing macro-
scopic systems is not a clever way to realize such systems. Scaling effects,
i.e. of mass versus stiffness, and microscale effects, like surface tension and
brownian noise, must be taken into account right on from the outset of the
design process.

The close interaction between different ’energy domains’ is also of funda-
mental importance to microsystems. An example is electrostatic forces, acting
on the mechanical structure, thus involving both the mechanical domain and
the electrical domain. While mechanical and electrical effects often are the
keystones of the operational principles of microsystems, many systems in-
volve effects from other domains, like the fluidic, thermal, optical, biological,
or others.

From a historical perspective, most domains utilized in microsystems,
like mechanics, are already well known and well explored, although minia-
turization brings forward new effects, knowledge, and use. However, the
close interaction between various domains demands something more than
an understanding of each single domain: the understanding of the complex
interaction between effects from the different domains acting on the complete
microsystem is required. Although the full system can be analysed in detail
using one of the many system level simulators available, the designers will
always need simpler models, where more explicit relations between macro-
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scopic parameters and functionality are preserved, for efficient optimization,
failure mode prediction and etc. of designs.

Such models may be called macromodels. These are the attributes a macro-
model should have, as defined by Senturia [3]:

• Preferably analytical, rather than numerical, permitting the designer to
reason about the effects of design changes.

• Correct dependencies on device geometry and constitutive properties.
• Correct explicitly energy conservation and dissipation behaviour (that is,

contains no dependent sources with mysterious energy sources).
• Covers both quasi-static and dynamical behaviour.
• Expressible in a simple-to-use form, either as an equation, a network

analogy, or a small set of coupled ordinary differential equations.
• Easy to connect to system-level simulators.

In this work dealing with microsystems and macromodels, we are more
focused on general aspects regarding macromodels than on specific aspects
of microsystems. We are also emphasizing mechanical problems, although
the methods we present are general in nature.

1.2 General simulation issues
Microsystems technology offers product developers a number of fascinating
possibilities, but also challenges. Fully understanding how a microsystem
device works generally requires insight across traditional engineering fields.
The same is true for the modelling of microsystems.

Simple problems encountered in engineering can be solved by classical
analytical methods. However, most realistic systems encountered are gener-
ally too complex to be solved analytically, and we have to use numerical meth-
ods instead. Such methods, characteristed by partioning the original problem
into a number of smaller, interconnected problems, have been known for a
long time. However, it was not until major advances in computer-technology
took place in the 50’s and 60’s, that the real development of such methods,
like the finite element method and the boundary element method, took place
[4], [5]. With the continouos improvements both in computer technology
and in simulator code, these methods have become indispensable to modern
engineering.

Today, there exist a number of CAD-tools capable of handling more than
a single energy ’domain’, e.g. which are capable of performing a mixed
mechanical and electrical simulation. Some of these are targeted specifi-
cally at the Microsystems community (CoventorWare, IntelliSuite, SESES,
CFD-ACE+MEMS, MEMS XPLORER) while others are more general (like
ANSYS Multiphysics, FEMLAB, CFD-ACE).
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An alternative to using mixed simulators is to express the system in terms
of a single energy domain. It is, for example, quite possible to express me-
chanical system in terms of an electrical equivalent circuit [6]. We will discuss
this possibility in a later chapter, since it offers the advantage that a designer
can work in a single domain.

1.2.1 Earlier work in (macro-) modelling
Since this thesis is biased towards mechanics, it is natural to focus on the
developments within the mechanics community. This involves, for example
preference for FEM instead of BEM. However, many of the methods for
creating macromodels are general in nature, and are not linked to a specific
method.

The finite element method (FEM) is, in brief, a method where a system
is discretized into a number of smaller subsystems. It is then assumed that
the behaviour of each subsystem can be approximated by a simple solution
(for example, a linear function). The subsystems are then interconnected
in a proper way, effectively creating a set of coupled equations, where the
subsystem solutions are parts of the total solution (piecewise linearization).

Present day numerical simulators, based on FEM and BEM are very pow-
erful tools indeed for analyzing mechanical systems. They have been applied
to create increasingly complex systems, again leading to increasingly large
and complex models. This model complexity is determined by the degrees of
freedom used, and the damping and nonlinearities in the system. However,
early on it became apparent that the detail and complexity of many models
where much greater than needed to reproduce the system behaviour within
the range of interest, mostly because of excessive numerical partitioning of the
system, which creates a complex topology [7]. In the field of finite element
modelling, this was a topic as early as in the 60’s, making researchers look
for how to reduce the original size of the FE-model without loosing accuracy
[8].

In structural mechanics, the discretization of a system can roughly be
divided in two different categories, as is shown schematically in fig. 1.1.
One alternative is to merely divide the structure into such small pieces that
we can use the Cauchy-equations to describe the behaviour of the elements
(the Cauchy-equations are the underlying governing differential equations in
continuum mechanics). The other alternative is to divide the structure into
larger elements, ’lumped’ elements, where each element is essentially a well-
known structure. Typical are beam elements, springs, dampers, and rigid
bodies. Generally, the behaviour of such lumped elements are approximately
described by beam theory, plate theory, rigid body theory, or other. However,
these theories are all based on the continuum hypothesis (and thereby the
Cauchy-equations) in one way or another.

We also note that there is a direct analogy with electrical systems, where
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The Cauchy-equationsBeam theory, rigid body, or 
other

Elements based 
on:

Very highLow# degrees of 
freedom (dof)

Highly automaticDof’s chosen by designerChoice of dof

Accuracy Very goodDepends on choice of dof’s

’Standard’’Lumped’

The Cauchy-equationsBeam theory, rigid body, or 
other

Elements based 
on:

Very highLow# degrees of 
freedom (dof)

Highly automaticDof’s chosen by designerChoice of dof

Accuracy Very goodDepends on choice of dof’s

’Standard’’Lumped’

Figure 1.1: Two main categories in mechanics for creating finite element
models. For electrical systems / electrodynamics, similar categories exists.

the Cauchy-equations are replaced by Maxwells equations. The lumped ele-
ments can be resistors, inductors, and capacitances.

1.2.1.1 Lumped modelling

Lumped modelling has been very popular for creating macromodels, and it
has been the de facto standard for creating such models also in the MEMS-
community [9], [3]. It offers the designer the possibility to create a manage-
able model, where the elements normally are described in terms of analyti-
cal expressions. The latter facilitates reasoning and transparency regarding
effects of design-parameter changes since the elements used are well under-
stood and characterized.

The accuracy of lumped models, however, can be questioned in many
cases since creating such models is a manual operation, which depends on
the experience and insight of the designer. The designer’s goal is to partition
the system into as few elements as possible, while still capturing the essence
of the system behaviour. Non-essential effects, that require large simulator
resources can therefore be ignored in a lumped model. We note that nonlinear
behaviour may be difficult to capture in lumped elements, requiring extensive
physical intuition on part of the designer.

1.2.1.2 Transfer-function approximation

An alternative to formulating the systems as a set of differential equations
is to use a transfer-function. A transfer-function is obtained by performing
a Laplace-transformation and some matrix-operation on the FE-model of the
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system. Hence, the function is expressed in the s-plane.
If the transfer-function is created on basis of a full FE-model, the function

becomes large and complex, consisting of a large polynomial in both the nu-
merator and the denominator. Such a function can easily be approximated by
a number of methods. Well known are Padé-approximations [10] and Taylor-
expansion.

Two major drawbacks are associated with the use of transfer-function (ap-
proximations). Firstly, the method is linear in nature, and is not valid for non-
linear systems. Secondly, most simulators do not accept transfer-functions,
and they must therefore be reformulated to a format that is accepted, typically
a set of differential equations. However, this may prove to be difficult due
to numerical issues for complex systems. Finally, a transfer-function often
appears quite abstract, and is generally not very transparent in the form.

1.2.1.3 Model order reduction

As already mentioned, it was early on recognized that the complexity of (FE-
) models where governed by topology, and not complexity of behaviour [7].
The overall goal is therefore to reduce the number of degrees of freedom in the
models in such a way that they still represent the behavioural characteristics
in a satisfactory manner. In finite-element modelling and mechanical engi-
neering, the first attempts where focused on identifying structural properties
by investigating the FE-model. One such method is Guyan reduction (or mass
condensation) dating back to the 1960’s [8].

A number of other methods have been utilized to automatically reduce the
number of degrees of freedom in the systems. However, they all have the
same general foundation, which is to project the original high-dimensional
space, in which the model is presented in, onto a lower-dimensional space.
This is often referred to as the projection framework.

One example of this procedure is to express the system in terms of the
eigenvectors, and then disregard all but the eigenvectors corresponding to a
small set of the lowest eigenvalues. In other words, the full system is projected
onto a lower-dimensional space, whose basis-vectors are the eigenvectors
corresponding to the lowest eigenvalues. A number of other methods for
choosing basis-vectors in the lower-dimensional space also exists.

The projection framework has lately proved efficient in reducing large
models. However, much of the work in this area appears to be focused on
creating highly accurate reduced models rather than on creating transparent
macromodels. In fig. 1.2, we have compared some properties of lumped
modelling and the use of the projection framework.

1.2.1.4 Nonlinear systems

The problem of reducing nonlinear systems is considerably harder than re-
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Figure 1.2: Two main methods for creating reduced models, examplified by a
mechanical system. General properties of the methods are shown.
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ducing linear systems, even though the former can be viewed as a natural
extension of the latter.

Among the approaches that exist for reducing nonlinear systems are piece-
wise linearization, Volterra series, and manifold methods. These methods
are still in rapid development, and have apparently not yet reached their full
potential. This is also true for the methods that are capable of creating macro-
model (note that the terms "reduced model" and "macromodel" are not en-
tirely identical).

In this thesis we have chosen to focus on manifold methods for reducing
nonlinear systems. A first step towards invariant manifolds, namely the con-
cept of the nonlinear normal mode, was introduced as early as in the 1960’s
[11]. Explained briefly, the nonlinear normal mode is a nonlinear extension of
the linear normal mode (or eigenvector). A good review on nonlinear normal
modes, including use and updated knowledge, can be found in [12].

We know that for a linear system excitated in a single mode, the state
of the system will always stay on the phase-plane of that mode. No other
modes will be excitated. Hence, the state of the system will always stay on
a surface defined by the phase-plane of the excitated mode. This surface is
in fact an invariant manifold, since the motion of the system will always stay
on the manifold (or surface). However, such invariant manifolds also exists
for many nonlinear system. These surfaces are generally no longer planar, but
curved, for the nonlinear system. The concept of invariant manifolds where
apparently introduced as late as in the beginning of the 1990’s to the field
of mechanical engineering [13]. It is of interest to note that although the
use of invariant manifolds was recently introduced to the field of mechanical
engineering, these objects have been known in the mathematical community
for a long period of time [14].

Manifold methods for reducing nonlinear structural problems have re-
cieved a good deal of attention from researchers. However, much of the
work is focused on identification of special effects and behaviour of small
discrete or continuous systems (e.g [15], [16], [17], [18]). This is perhaps
symptomatic of the relative recent introduction of the methods to mechanics.
However, with more attention paid to this method, more of the work will be
directed towards larger systems of more practical importance.

1.3 This work
We show in this work how large models, like FE-models with many degrees
of freedom, can be reduced to give more compact models (reduced order
modelling). To this end, we have studied the use of invariant manifolds for
nonlinear conservative systems. Hence, we have investigated the accuracy of
an asymptotic approach for finding the invariant manifold, and developed a
design-parameter sensitive model. We also discuss how external forcing in
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the systems should be treated, taking into account assumptions made in the
invariant manifold theory and present an approach to deal with this problem.
We have also analysed a nonlinear dissipative systems, using a numerical
approach to obtain the manifold.

Most of these analyses are based on the modelling of an industrialized
accelerometer and yielded valuable insigth into the behaviour of the microsys-
tem. In addition, we have analysed squeeze-film damping, and shown how to
represent simplified models of the squeeze-film damping in terms of electrical
equivalents.

The lumped modelling approach has been applied to a resonator with elec-
trostatic excitation and detection, and and investigated how electrical equiva-
lents of the mechanical system can be built. Using electrical equivalents, we
have demonstrated how the correct analogy gives a natural relation between
the equivalent circuit and the mechanical topology. We also present the elec-
trostatic transducer element in terms of both electrical analogies (the direct
analogy and the mobility analogy).

Finally, we have analysed a newly proposed electromagnetic levitation
system. This is the first complete analysis of such a system. The system
has been analysed based on fundamental solutions of waves in waveguides,
combined with a lumped modelling approach. The analysis demonstrates new
effects and offers increased understanding of the system.

During the work on this thesis, the following papers have been published:

• Zhang, Z.L., Vitorovich, N., Westby, E., Wang, D.T.: Notch fracture
of MEMS sensors made of single crystal silicon, 10th International
Conference on Fracture (ICF’10), December 2001.

• Zhang, Z.L., Vitorovich, N., Westby, E., Wang, D.T.: Notch fracture of
MEMS sensors made of single crystal silicon, First national conference on
Computational Mechanics, Norway, MekIT’01, pp. 449-455, 2001.

• Westby, E., Fjeldly, T.A.:Dynamical Equivalent-Circuit Modeling of
MEMS with Squeezed Gas Film Damping. Physica Scripta, Proc. of the
19th Nordic Semiconductor Meeting. Vol.T101, pp. 192-195, 2002.

• Westby, E., Fjeldly, T.A.:Nonlinear Analytical Reduced-Order Modeling
of MEMS. Proc. of Modeling and Simulations of Microsystems 2002,
MSM’02, pp. 150-153, 2002.

• Westby, E., Sangster, A., McErlean, E.:Stability of a cavity based
electromagnetic suspension system for micro-scale actuators. J. of
Electromagnetic waves and applications, Vol. 17, No. 9, pp.1331-1347,
2003.

• Westby, E.:Nonlinear Reduced Modeling Of a Damped Dual-axis
Accelerometer. EuroSIME’03, pp. 161-164, 2003.
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1.4 Outline of thesis
In chapter 2, we presented the subject of model order reduction, starting with
reduction methods for linear systems. An example with squeeze-film damping
is given. In chapter 3, several methods for reducing nonlinear conservative
systems are presented. The concept of invariant manifolds is further elab-
orated on in chapter 4 and we present a method for treatment of external
forcing. We analyse the accuracy of an asymptotic approach for creating the
invariant manifold. A reduced model of an undamped dual-axis accelerome-
ter is built. We also develope a method to create design-parameter sensitive
models. We finish the topic of model order reduction by looking at nonlinear
dissipative systems in chapter 5, where we also build a reduced model of a
damped dual-axis accelerometer. The second main topic is lumped modelling.
In chapter 6, we present some equations that are fundamental to mechanical
and electrical engineering, following an analysis of electrical analogies of me-
chanical systems, including electrostatic transducer elements. The accuracy
of the lumped models of the microresonator is analysed. In chapter 7 we
analyse an electromagnetic levitation system. Finally, we discuss the topic of
macromodelling and we draw some conclusions in chapter 8.
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PART I

Model Order Reduction



Chapter 2
MOR: Linear Systems

The subject of this thesis is macromodelling of microsystem. That implies
the creation of macromodels involving various domains. At least two main
strategies for constructing compact models can be identified, and are here
divided into the two categories:

• Model order reduction
• Lumped modelling

Model order reduction of a compact model typically start with a large,
accurate, numerical model describing the system of interest. Based on a
highly accurate, but large model, methodologies can be applied to reduce the
size of the model. This will obviously also reduce the accuracy of the model,
but many reduction methodologies are capable of reducing model size heavily
while retaining a high degree of accuracy. These methodologies do generally
have a strong mathematical foundation. They tend to be used in such a way
that the reduced model contain typically hundreds of d.o.f.. Hence it is often
difficult, if not impossible, to gain much physical insight into the physical
system from the reduced model. This is not necessarily a limitation of the
reduction methods, but may simply be a result of the way the methods are
used (i.e. by giving priority to accuracy, and hence retain a relatively large
number of d.o.f.)

Lumped modelling is somewhat opposite to the aforementioned. The
methodology is based upon the use of analytical models and physical intu-
ition. A number of simple designs invite for using and solving the governing
equations directly. However, most systems are too complicated to be solved
directly using analytical models. In many of these cases, there is a possi-
bility of dividing the structure into a small number of simple substructures,
where each substructures can be modelled by a simple analytical equation.
This approach has proven very efficient in many cases. The approach can be
examplified showing how it is used in mechanical engineering. An accurate
approach would mean solving the Cauchy-equations over the full structure.
This is generally solved numerically, using finite elements. Instead of using a
large number of elements based on the Cauchy-equations, we identify simple
substructures. Each substructure is typically masses, beams etc.. The be-
haviour of such structures can often be modelled analytically, and then made
to form a single finite element. Hence, the structure is modelled by a small
number of elements, each describing the behaviour of a substructure.

In electrical engineering, the parallel to this is the use of lumped inductors,
resistors, and capacitances, and not the direct use of Maxwells equations.
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Both model order reduction and lumped modelling have their advantages
and drawbacks, of which a few were shown in fig. 1.2. Model order reduction
tend to give models where parameter-dependency and physical intuition are
not necessarily easily to deduce. Despite this, it is definitely an important
area, due to possible automation in the methodology and ability to model
effects that are lost using oversimplified lumped models (or analytical models
with coarse approximations). Hence, an overview of some methods used for
reducing models are given in the following. Reviewing these methods also
gives basic understanding of compact models and their properties.

2.1 Linear systems
Systems can be described in a number of ways. A convinient way to describe
linear dynamic systems is state-space description:

ẋ = Ax+ Fu

y = Cx

where we denote the state vector x, the observation vector y, system matrix
A, load matrix F, and the observability matrixC. The state-space description
can of course also be used for nonlinear system, simply by replacing the
matrix-operation by some kind of nonlinear function. However, we will at
present consentrate on linear systems. A mechanical system, described in
terms of finite elements, may be transformed from the usual description to a
state-space description:δ

δFmu = Mẍm +Dẋm +Kxm·
ẋM
ẍM

¸
=

·
0 I

−M−1K −M−1D

¸ ·
xM
ẋM

¸
+

·
0

−M−1δFm

¸
u

where xm denotes the amplitude of the mechanical degrees of freedom. M
denotes mass matrix, andK andD denotes the stiffness matrix and the damp-
ing matrix respectively. I is the identity matrix. Some distinct disadvantages
of this formulation are that the size of the matrices are doubled, and cer-
tain properties are lost, like symmetry. These are evident computational and
numerical drawbacks. Nevertheless, the formulation has advantages which
may outweigh the drawbacks. Hence many of the methods described in the
following rely on this formulation. It should also be noted that some systems
are naturally of first order and are therefore naturally in this formulation.

2.1.1 S-plane analysis
In vibration analysis, the Laplace-transforms are important. Using the Laplace-
transform, the system’s response is evaluated as a function of frequency (or
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the s-parameter). The most common Laplace-transform is:

ẋ = sx

This can be applied to the state-space description and one obtains (for sim-
plicity we assume a single excitation, u (s)):

[sI−A]x (s) = Fu (s)

x = [sI−A]−1Fu (s)
y = Cx = C [sI−A]−1Fu (s)

H (s) =
y (s)

u (s)
= C [sI−A]−1F

Since the s-parameter is complex, we note that the transfer-function, H (s),
will also be complex. Hence the transfer-function gives us information about
the system response from sinusoidal excitation, in terms of both amplitude
and phase.

2.1.2 Eigenvalue analysis
Along with s-plane analysis, eigenvalue analysis is an important basic tool.
Assuming we describe the system by the set of equations:

Bẋ = Ax

we substitute:

x = veλt

ẋ = λveλt

which yields:

λBv = Av

Which is the eigenvalue-problem. The solution of the eigen-problem gives
the eigenvalue, λi, and the corresponding eigenvector, vi. Generally, this
problem has as many solutions as it has d.o.f.’s. Note also that both eigenval-
ues and eigenvectors may consist of both real and imaginary components. By
placing all the eigenvectors in a matrix, we have obtained the transformation
matrix from the eigenroom (d.o.f.’s=q’s) to the k-room (d.o.f.’s=x’s).

x =
£
v1 v2 ... vN

¤
q

x = Vq

The system originally posed in the k-room, may likewise be expressed
in the eigenroom. With proper normalization of the eigenvectors, the system
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matrix becomes a diagonal matrix with the eigenvalues in the diagonal:

ẋ = Ax+ Fu

V−1Vq̇ = V−1AVq+V−1Fu
q̇ = Aqq+ Fqu

q̇ =


λ1 0 0
0 λ2 0

. . .
0 0 0 λN

q+ Fqu

Returning to the transfer-function, we note that this is an extremely handy
form, since:

H (s) = Cq [sI−Aq]−1Fq

H (s) =



P
j

Cq
1,j

1
s−λjF

q
jP

j

Cq
2,j

1
s−λjF

q
j

...P
j

Cq
K,j

1
s−λjF

q
j


From this equation the importance of the eigenvalues becomes apparent.

2.2 Transfer-function approximation
The transfer-function may also be formulated as a rationale (for simplicity we
assume a single output):

H (s) =
X
j

Cq
j

1

s− λj
F q
j

H (s) =
a1 + a2s+ . . .+ aNs

N−1

b1 + b2s+ . . .+ bNsN−1 + sN

We note that the goal of model order reduction is to construct a simpler
transfer-function approximating the exact transfer-function as accurately as
required.

2.2.1 Reduction through choice of eigenvalues
With the transfer-function in the form of eigenvalues, we see that one method
of reducing the transfer-function is to make a selection of eigenvalues to re-
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tain. Hence the transfer-function becomes:

Hred (s) =
X
k

Cq
k

1

s− λk
F q
k k ∈ retained modes

We note that for systems with purely imaginary eigenvalues (i.e. undamped
mechanical systems), the reduced transfer-function is exact at the retained
resonance frequencies (eigenvalues). At the same time we see that there is
no assurance of accuracy at frequencies different from the chosen eigenval-
ues. This method has been well-known and commonly used in the MEMS-
community [19], [20], [9].

One drawback of the method is that the accuracy is only guarantied at
the resonance-frequencies chosen. This implies that the simplified transfer-
function is inaccurate at static behaviour. Obviously, the accuracy also de-
pends on the number of chosen modes. It is common practice to include
typically the 6 lowest modes [21].

2.2.2 Reduction through moment-matching
Another, more predictive method, is to analyse the transfer-function rationale.
By performing a Taylor-expansion of the full rationale, an approximate func-
tion may be constructed:

H (s) =
a1 + a2s+ . . .+ aNs

N−1

b1 + b2s+ . . .+ bNsN−1 + sN

Hred (s) = H (0) +
dH (s)

ds
s+

1

2

d2H (s)

ds2
s2 + · · ·

A major drawback of this method is that most simulators do not accept the
transfer-function directly, so it must be rewritten. When writing the transfer-
function as a sum of simple first-order systems, it is quite simple to construct,
for example an electrical circuit with the same behaviour. Hence it is corre-
spondingly easy to create a state-space model of the system. However, when
expreessing the transfer-function in terms of a rationale, it becomes increas-
ingly difficult to find the roots of the numerator and the denominator with
increasing order. Constructing a state-space model from a rationale therefore
soon becomes a numerically extremely difficult task.

2.2.3 Matching at frequencies
Another method of constructing a simple transfer-function is by establishing
a simplest possible function that matches the full transfer-function at given set
of frequencies. The disadvantages of this method is much like those encoun-
tered in 2.2.1, using the method of choosing a set of eigenvalues. However,
also this method suffers from the difficulty of constructing a first-order system
from the reduced transfer-function.
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2.3 Projection framework, reducing space

2.3.1 Using eigenvectors
Above we presented methods that may be used for simplifying the full transfer-
function. It is of interest to note that these methods may be expressed dif-
ferently by focusing on a coordinate system representation instead of the
transfer-function.

This is achieved by projecting the original high-dimensional system onto
a lower-dimensional space. This lower-dimensional space may, for example,
be spanned by a subset of the eigenvectors. The resulting transfer-function
then becomes equivalent to what is obtained by attacking the transfer-function
directly and selecting a set of eigenvalue, like presented in 2.2.1. Mathemat-
ically, this is done by constructing a matrix, mapping the reduced state-space
vector, qred, onto the full-size state-space vector:

x = Vredqred =


(v1)1 (v2)1 · · · (vn)1
(v1)2 (v2)2 (vn)2

... . . .
(v1)N (v2)N (vn)N

qred
Here we note that the transfer matrix is of size N ×n, where N is the number
of d.o.f. in the full system and n is the number of d.o.f. in the reduced system.
In the case of using a set of eigenvectors as reduced basis, it is apparent that
the columns inVred-matrix consists of the chosen eigenvectors. We also note
the mapping from the full space onto the reduced space:

qred = Uredx =


(u1)1 (u2)1 · · · (uN)1
(u1)2 (u2)2 (uN)2... . . .
(u1)n (u2)n (uN)n

x
The construction of the reduced model then proceeds by replacing the original
full state-space vector with the mapping functions:

Full model Reduced model
ẋ = Ax+ Fu ⇒ UredVredq̇ = UredAVredq+UredFu
y = Cx ⇒ y = CredVq

When a set of eigenvectors are used as the reduced basis, calculations show
that this is equivalent to the transfer-function approximation in 2.2.1. Al-
though it was assumed that the basis vectors of the reduced space was defined
by eigenvectors, this is no requirement, since the formalism is quite general.

2.3.2 Krylov-subspace
In the above, the projection framework was examplified by using eigenvectors
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for defining the basis vectors of the reduced space. However, other suitable
ways of defining the reduced space exists. A method that has shown good re-
sults is the use of Krylov subspace [20], [22], [23]. This method is parallel to
the moment-matching of the transfer-function. The difference is that instead
of finding the moments of the transfer-function, the corresponding general-
ized vector is found. This means that a k’th order Krylov subspace matches
the k first moments of the transfer-function. The resemblance between the
Krylov subspace (found via the Lanczos method) and Padé-approximations of
the transfer-function is shown clearly in [24]. Several papers have investigated
the use of Krylov subspace methods, using Lanzcos or Arnoldi-methods, e.g.
[25], [22].

2.3.3 Proper orthogonal modes
Proper orthogonal decomposition, or Karhunen-Loève decomposition, is pri-
marily a statistical formulation, finding an optimal distribution of energy from
a set of measurement histories. A historical review and a physical interpreta-
tion of proper orthogonal modes can be found in [26]. It is a common tool in
turbulence studies [27], and it has recently also received attention from other
communities, e.g. the MEMS-community [28], [21]. The method is presented
for systems with a finite number of degrees of freedom, see [29] for more
details. The set of measurement histories can be obtained either via simulation
or via experimental observation. The set of measurement histories are placed
in an M × N ensemble matrix (X), where N is the number of degrees of
freedom, while M is the number of timesteps the system has been observed.
From the ensemble matrix one can thus obtain the N ×N correlation matrix
(R):

x (t) =
£
x1 (t) x2 (t) . . . xN (t)

¤
X =

£
x (t1) x (t2) . . . x (tM)

¤T
R = XTX

(The means are sometimes subtracted from the time history data). The eigen-
values and eigenvectors of the correlation matrix corresponds to the proper
orthogonal values and proper orthogonal modes of the system. A selection
of the proper orthogonal modes (POM) may now serve as the basis for the
reduced model. One common criterion for choosing POMs is to select those
POMs with corresponding proper orthogonal values that sums up to at least
99% of the sum of all the proper orthogonal values ([30], [27]).

It is worth mentioning that using the singular value decomposition (SVD)
gives the same results as using the Karhunen-Loève approach for finding the
POMs [29].

A drawback of using POMs is, however, that it relies on measurement
histories. One problem is obviously that these measurement histories must be
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created somehow, either by simulation of the full system or by experimental
observation, with the latter possibly being difficult or impossible in the con-
text of MEMS. Secondly, the measurement histories should represent results
obtained under all different external influences.

2.4 Guyan reduction
In mechanics, Guyan reduction is a well-known method for reducing models,
dating back to the 60’s [8]. It is implemented in the commercial finite element
program ANSYS. The method is based on dividing the degrees of freedom
into masters and slaves. The principal idea is that for low-frequency modes,
the inertia forces on slave d.o.f.’s are much less important than the elastic
forces transmitted by the master d.o.f.’s [4]. In other words, this means that
the slave d.o.f. move in a quasi-static manner. This methodology is, despite
being fully automatic, rather coarse, meaning that reduction by a factor of
only 5-10 can be expected with good accuracy compared to e.g. a factor in
the hundreds for Krylov methods, [31], [32], and [4].

2.5 Example: squeeze-film damping

2.5.1 Introduction
Modelling of MEMS structures often involves multi-domain simulations. One
of the domains encountered is the fluidic domain, where gas film damping is
of importance for a wide range of systems. This is often, if not always, en-
countered along with the mechanical domain. There are obvious advantages
to having simplified models of systems or subsystems available. Also the
advantages of describing the various domains in a consistent manner have
been mentioned. In [33] we have shown how squeeze-film damping can be
described in a compact fashion using electrical equivalents. This part of the
thesis is largely based on [33].

A popular solver for the electronic domain is the circuit simulator SPICE.
This simulator is capable of dealing with analog and highly nonlinear ele-
ments. In the present work, we have chosen to use SPICE, which means
that the mechanical problem must be reformulated in terms of an electrical
equivalent circuit. When transforming a mechanical system into an electrical
equivalent, we have two choices of mapping, either the flow-voltage analogy
(f → V ), or the effort–voltage (e → V ) analogy. Here, the f → V mapping
is preferred (a more thorough discussion regarding mechanical systems and
their electrical equivalents is found in chapter 6). Considering, for example,
a simple mass-spring-damper element, the mapping should be quite straight
forward, see fig. 2.1.

One main characteristic of many silicon microstructures is that the moving
surfaces are often very close to other surfaces. This means that if one surface
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Figure 2.1: Shown is a simple mechanical system with squeeze-film damping.
Below is the electrical equivalent circut (in the f → V mapping). L = 1
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moves against another, and the gap is small relative to the surface dimensions,
the gas in between behaves as a squeezed gas film. Analytical solutions of the
governing equations show that the fluid adds an effective spring and a viscous
damper to the mechanical system. The effective spring and viscous damper
are frequency-dependent. Describing the system in an electrical equivalent in
the f → V analogy, the squeeze-film effect may be represented represented
by an infinite ladder-like circuit with elements described analytically [34].
We have developed an approximate representation of the ladder which only
requires a small number of elements. This is done through a careful selection
of elements including suitable weighting factors. Finally, we classify some
mass/spring systems and discuss what consequences the different systems will
have upon the modelling.

2.6 Squeeze-film damping
Before demonstrating the capabilities of the reduced model, squeeze-film
damping is more thoroughly presented. Starting from the Navier-Stokes equa-
tion for fluids, the continuity equation, the ideal gas law, and some simplifying
assumptions, the Reynolds equation valid for squeezed films can be derived.
The assumptions are as follows [35],[36]:

• The gap is always small relative to the lateral extent of the moving plate.
• The motion of the plate is sufficiently slow, so that we can treat the gas as

moving under Stokes flow.
• The gas film has no pressure gradient in the direction perpendicular to the

plate.
• The lateral flow has a Poiseuille-like velocity profile (parabolic profile

with zero transverse velocity at the plates).
• The gas obeys the ideal gas law.
• The system is isothermal, i.e., any temperature rise due to gas compression

or to viscous dissipation, or any temperature drop due to gas dilation is
quickly compensated by heat flow to or from the walls.

To simplify further, it is assumed that the amplitude of the plate displace-
ment δh is small relative to the mean distance h between the plates, which
means that the pressure variation δp in the film is small compared to the
ambient pressure Pa (small-signal approximation). With these assumptions,
the Reynolds equation for the gas in the squeezed film becomes

∇2ψ − σstatic
∂

∂t
ψ = σstatic

∂

∂t
ϕ (2.1)

For a rectangular plate, σstatic =
12µ·L2W
h2Pa

is the so-called static squeeze num-
ber, LW is the shortest of the rectangular plate dimensions, µ is the gas vis-
cosity, and ψ = δp

Pa
and ϕ = δh

h
are the relative (dimension-less) pressure and

20



gap perturbations, respectively.
The temporal behaviour of the film response can easily be found from eq.

2.1 for the case of a simple harmonic motion excitation. The corresponding
in-phase and out-of-phase force components, F1 and F0, respectively, become
(integrating the pressure over the plate area A):

F1 = Pa

Z
ψ1 cos τdA (2.2)

F0 = Pa

Z
ψ0 sin τdA (2.3)

Here F0 acts as a damper, while F1 acts as a spring.
For a rectangular plate of lengthLL and widthLW , the spring and damping

coefficients can be expressed as follows [37]:

Kfluid = 64σ2PaA
π8h

X
m, odd

X
n, odd

m2+n2

β2

(mn)2 m2+n2

β2

2
+σ2

π4

(2.4)

Cfluid = 64σPaA
π6hω

X
m, odd

X
n, odd

m2+n2

β2

(mn)2 m2+n2

β2

2
+σ2

π4

(2.5)

Here β = LL
LW

(LL ≥ LW ) is the plate aspect ratio, which should always be
unity or larger. We also note that the frequency-dependant squeeze number
is one of the coefficients that govern the behaviour of the spring constant and
the viscous constant. Plots of the spring constant and the viscous damping
constant for some common parameters are shown in fig. 2.2.

Note that the spring-effect shown here is the result of the viscous forces
opposing the motion of the fluid, and is not caused by inertial forces, which
we neglected earlier.

Plots of the forces associated with the spring and the damping are shown in
fig. 2.3. We define the cutoff frequency, as the frequency where the damping
and spring forces become equal. It can be estimated to first order as ωcutoff =
(1+( 1

β
)2)·π2

σstatic
.

2.7 Electrical equivalent circuit
The two analogies that can be used for deriving an electrical equivalent circuit
for a mechanical system are shown in table 1. For a general one-dimensional
mass-spring system modelled in the f → V analogy, the electrical equivalent
circuit is shown in fig. 2.4.

The fluidic forces are represented here as R_f(s) and L_f(s), where the
s indicates that there is a frequency-dependence (in the notation of Laplace
transforms). The resistance R represents damping by other causes, e.g. in-
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Figure 2.2: Above: Damping coefficient plotted against frequency. Below:
Spring coefficient plotted against frequency.

Electrical equivalent
Mech. quan f→V analogy e→ V analogy
F , Force i, Current V , Voltage
v, Velocity V , Voltage i, Current
M , Mass C, Cap. L, Ind.
C, Damping R−1, Cond. R−1, Cond
K, Stiffness L−1, Inv. ind. C−1, Inv. cap.

Table 1.: Electrical - Mechanical analogies.
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Figure 2.3: Force arrising from the fluidic damper plotted against frequency.
The same is done for the spring and the total force from the fluid.

Figure 2.4: Electrical equivalent of mass-damper-spring system, with fluidic
forces.
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Figure 2.5: Ladder-like equivalent circuit of fluidic forces.

ternal damping in the spring. Since frequency-dependent parameters, such as
those associated with the fluid, are not readily acceptable in many solvers, e.g.
SPICE, a motivation exists for reformulating the problem in terms of suitable
electrical equivalents.

2.7.1 Electrical equivalent of fluid forces
Veijola et al. [34] reformulated the expressions for the fluidic forces to cir-
cumvent the use of frequency-dependent parameters. This was done, how-
ever, at the cost of introducing an infinite array of circuit-elements. Hence,
the rewritten form will have a ladder-like representation of a resistor and an
inductor at each step, as shown in fig. 2.5. The circuit elements of the ladder
can be expressed as:

Lm,n = (mn)2
π4h

64APa

Rm,n = (mn)2(m2 +
n2

β2
)

π6h3

768AL2Wη

(m,n = odd)

(σ =
12ηL2W
Pah2

ω)

2.7.2 Reduced series and approximation
In practice, we are interested in finding approximate representations for the
infinite ladder of the exact solution. Analysing the equivalent in fig. 2.5, we
find that at low frequencies (below cutoff), the forces can be represented quite
well by retaining only a few low-order steps (elements) of the ladder. As we
add elements, the accuracy gradually improves also at higher frequencies. A

24



(m,n) (1, 1)
(1, 3)
(3, 1)

(1, 6)
(6, 1)

(1, 17)
(17, 1)

Bm,n 1 1 3.4 11.5

(m,n)
(1, 53)
(53, 1)

(1, 167)
(167, 1)

(1, 265)
(265, 1)

(1, 800)
(800, 1)

Bm,n 37 128 380 1200

Table 2.

complicating factor is that the number of elements needed to obtain a given
accuracy will depend on the geometry of the plate, as represented by the plate
aspect ratio β. Figure 2.6 shows the number of elements needed to obtain an
accuracy of 5% versus frequency for β = 1 (square plate). We see that above
the cutoff frequency, the complexity of the equivalent soon makes this model
impracticably complicated.

On the other hand, we find that a comparable accuracy can be obtained
by selecting a subset of elements, letting each represent an average of all the
elements in its vicinity. To sum up the total effect, each element of the subset
is given a suitable weighting factor to account for all the elements omitted in
the subset. Using this technique, the number of elements needed to obtain the
desired accuracy is drastically reduced as seen in fig. 2.6. In this case, the
following sequence of elements was chosen:

X
m,n

em,n=̃
selectedX

m

em,1 ·Bm,1 +
selectedX

n

e1,n ·B1,n (2.6)

where Bm,n are the weighting factors and the elements are defined as

em,n = (Rm,n + Lm,n · s) (2.7)

The selected values of m and n, together with the weighting factors are shown
in table 2 for a selection that will guarantee an accuracy of 5% for the entire
frequency range from dc to 104·fcutoff for all plate aspect ratios. We note
that the highest accuracy is found for small values of β (≤ 1.5) or for large
values (β ≥ 25), in which case the number of elements in the selection can
be reduced further. In the above discussion, we have not included boundary
effects that may affect the properties of the squeezed gas. However, it has
been shown that such effects can be incorporated by approximate techniques
[38].

2.8 Design and simulation issues
Using the above model for fluidic damping, we can classify different mass/spring
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Figure 2.6: Number of elements needed for a 5% accuracy, plotted against
normalized frequency. Starting with the complete ladder-like solution, we
include all elements up to eMN max,MN max which satisfies the 5% accuracy
requirement. The same is done for the reduced ladder subset when the element
selection is optimized for a minimum number of elements.

systems according to their resonance frequency fMS =
1
2π

q
K
M

relative to the
squeeze film cutoff frequency fcutoff :

1) Highly damped fMS << fcutoff
2) Lightly damped fMS >> fcutoff
3) Medium damped fMS=̃fcutoff

2.8.1 Highly damped
Systems that have their main response below the cutoff frequency, can be
modelled quite precisely using a small number of elements in the approximate
ladder discussed above. In fact, even with one element a good representation
is obtained. However, it should be noted that with only one element, the
description close to and above the cutoff will degrade significantly. For such
accelerometers, this may give significant errors in the simulated behaviour,
since an additional resonance top for the system above cutoff will be missed.
However, this can be rectified by adding a few more elements.

If the fluidic spring effect is insignificant or the frequency is sufficiently
low, the squeeze-film ladder can be replaced by a simple resistor.

2.8.2 Lightly damped
Above the cutoff frequency, the damping decreases with increasing frequency
(see fig. 2.2). Hence, for fMS >> fcutoff the transfer-function of the system
will not be flat at frequencies below fMS (assuming that fluidic dissipation
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is dominant). We assume that the system’s Q-factor is large, and that the
operating frequency will be close to the mechanical resonance. Then, for a
model covering the frequency range from DC up to and above the mechanical
resonance, an approximation should be used, for example the type shown in
2.7.2.

If only the response close to resonance is needed, it may be sufficient to
use 2 elements in the representation.

If the fluidic damping is much smaller than the damping in the intrinsic
mass/spring system, it is sufficient to model the fluid as a constant spring.

2.8.3 Medium damped
For a system operating at frequencies close to the cutoff frequency, the model
must describe fully the behaviour of the fluid. This means that the fluid
must be represented by several elements. However, two elements may be
sufficient providing that the frequency-range is sufficiently small. Basically
this constitutes the same problem as in the modelling of a resonator, except
that the approximation of disregarding the fluidic damping cannot be made.

2.9 Discussion and conclusion
In the first part of the chapter, we presented methodologies for model order re-
duction. Some of the methods are based on the approximation of the transfer-
function, while others have their basis in the projection framework. The prin-
ciples behind the reduction methods are dissimilar and the reduced model’s
properties may therefore vary distinctly with reduction method. Hence a
knowledge of various methods are of importance.

We have analysed the fluidic forces that act on a mass/spring system work-
ing against a nearby surface, with a thin gas-filled gap separating them. We
have shown how the frequency dependent fluidic forces can be approximately
represented by a ladder type equivalent circuit with a finite number of steps
(elements), rendering systems with fluidic damping suitable for analysis by
means of circuit simulators such as SPICE. We have classified mass/spring
systems with fluidic damping into three categories, depending on the relative
magnitude of the mass/spring resonant frequency and the fluidic cutoff fre-
quency, and determined which additional simplifications (if any) can be made
in each case. The present model is a small-signal one, but it is still applicable
for realistic microdevices. It is also pointed out that the model is based on the
exact solution of the Reynold’s equation for squeeze-film, which is only valid
for a harmonic motion.

In this example, the reduction has not been strictly based on a mathe-
matical blackbox-style methodology, but rather on an analysis of the fluidic
system. It has also become apparent through the analysis, that the reduction
of the fluidic system is strongly linked with the properties and the behaviour
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of the interacting domain, i.e. the mechanical system. Thus we obtain an
increased knowledge of the full system, leading to an increased understanding
of properties required from the reduced model. This knowledge may in turn
be applied to create an optimally reduced model. Combining this with the
analytical expressions of the series elements, which were the basis of the re-
duced model, the model also becomes transparent in the sense that parameter-
dependency of the reduced elements can be deduced.
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Chapter 3
MOR: Nonlinear Systems

The importance of normal modes in linear dynamical systems is indisputable.
They are used to decouple the governing equations of motions, and to evaluate
the system response. Furthermore, linear superpositioning can be used in
cases where nonlinearities are insignificant. In the example related to mod-
elling squeeze-film damping, a reduction scheme was applied to make the
model more compact. One of the more important approximations that was
made, was regarding linearities. In fact, it was assumed that the squeeze-film
damping model was linear. Looking at the theory, it is clear that nonlinearities
do exists and are potentially of great importance [35], [39]. We shall in the
following look more at weakly nonlinear systems and how such systems can
be reduced. This shall be done without a focus on the squeeze-film damping,
but rather on general systems.

In many cases, neglecting nonlinearities in a model is a decent approxima-
tion. This is e.g. very often done analysing mechanical systems. Cases may
arrise, however, where nonlinearities cannot be neglected. This is especially
true in microsystems, where there exists designs that rely on nonlinear effects
(see e.g. [40] and [41]).

The problem of generating compact models for nonlinear systems is much
harder than for linear problems. One of the main reasons for that can be seen
by looking at a nonlinear system:

ẋ = A(x)x+ Fu

y = Cx

From the equation it is clear that linear eiqenvectors do not exist, since the
eigenvectors will be state-dependent. Likewise will moment-matching meth-
ods fail, since the moments depend upon the state of the system, also this due
to the state-dependency of the system matrixA(x). The concepts, howevever,
are still of importance, either used directly or as the basis of slightly more
advanced concepts. In the following, some methods used for reducing weakly
nonlinear systems are presented.

3.1 Piecewise linear models
In the previous chapter, the projection framework was presented, where the
reduced basis vectors are found by considering the linear system. We are
here, however, dealing with a nonlinear system, meaning that the reduced
basis vectors will be functions of the state. These functions can be represented
by piecewise constant functions. Using piecewise constant basis vectors, the
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Figure 3.1: Left side shows how a number of discrete system matrices can
reflect the nonlinear system. Right side demonstrates how the efficiency can
be improved by only mapping the discrete system matrices that are ”needed”.

reduced system matrix becomes a piecewise constant function. Thus, the
state-space model has become a piecewise linear model. Such a methodology
has been presented in [22] and [42], where moment-matching via the Krylov
subspace was applied to find the reduced basis vectors. Left side in fig. 3.1
shows how a number of discrete system matrices can describe the reduced
nonlinear system. It is apparent, however, that the number of discrete system
matrices may be unnecessarily large. Therefore, instead of calculating all pos-
sible discrete system matrices, a training input can be applied, and whereby
only the ”necessary” space is mapped by discrete system matrices [22], see
right side of fig. 3.1. The methodology appears to be promising, and quite
accurate results have been demonstrated [22].

3.2 Truncation
A method that in the past has been presented in the MEMS-community is
simple truncation ([43], [44]). The methodology can in certain ways be com-
pared to a projection framework method. Often, the first few eigenvectors
(or linear normal modes) are used as the reduced basis vectors, equivalent to
what would have been done for a linear system. The eigenvectors are found
by disregarding nonlinear effects. The truncation then proceeds by simply
disregarding everything but the reduced basis. An example of this is shown
below, where the system is presented in the eigenspace. For simplicity, we
consider a model with only 2 degrees of freedom. The full system is nonlinear
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in displacement and is:·
q̈1
q̈2

¸
=

· −ω21 0
0 −ω22

¸ ·
q1
q2

¸
+

· −a −b −c
−d −e −f

¸ q21
q1q2
q22

 (3.1)

By keeping mode 1, and disregarding mode 2, we get the reduced model:·
q̈1
0

¸
=

· −ω21 0
0 0

¸ ·
q1
0

¸
+

· −a 0 0
0 0 0

¸ q21
0
0


q̈1 = −ω21q1 − aq21

However, by simple comparison of the full and the reduced model, it is clear
that the reduction method does not handle nonlinearities in a proper way. Say,
for instance, that mode 1 is initially excited. That would, according to the
reduced model, mean that mode 2 would have no amplitude, regardless of
how large the amplitude of mode 1 is. Looking at the full model, however, it
is clear that there will be energy-transfer between (the linear) mode 1 and 2.
This is neglected in such a simple truncation scheme. It can therefore be con-
cluded that the truncation methodology cannot handle general nonlinearities
in a proper way.

The technique can be enhanced by performing additional simulations of
the complete system, where unmodelled nonlinear effects in the truncated
mode set can be obtained [45]. Normally, this may lead to a large number of
simulations.

3.3 Proper orthogonal modes
Proper orthogonal modes (POMs) have been presented in 2.3.3. The method
for identifying the POMs are the same whether the system is linear or nonlin-
ear. However, utilizing the method on nonlinear systems have certain impli-
cations.

Having selected a set of POMs, they now act as the reduced basis. In this
manner, the reduction is linear and related to the truncation scheme presented
above in 3.2. In fact, the only difference is how the reduced basis vectors are
chosen. In the section presenting the truncation scheme (3.2), we used linear
eigenvectors, whereas here we use the POMs. Since the choice of POMs
are made using an energy criterion based on test-results, it appears that a
truncation based on POMs are more sophisticated and ”smarter” than simply
using a selection of eigenvectors.

As mentioned in 2.3.3, a problem related to using POMs is that it relies
on measurement histories. This problem becomes much more accentuated for
nonlinear system, since the measurement histories now must reflect results
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Figure 3.2: The figure shows the linear deflection path of a linear normal
mode (broken line) and the nonlinear deflection path of a nonlinear normal
mode [12].

from a much wider space of external influences.

3.4 Manifolds
As an alternative to using the linear normal modes as the reduced basis, we
may use a procedure where both nonlinearities and, indirectly, a wider modal
space are included from the outset, resulting in the creation of nonlinear,
reduced-order models [1]. This is done by focusing on the inherent nonlin-
ear behaviour from the outset of the analysis, using nonlinear normal mode
(NNM) theory [12]. In the following, a theoretical background is presented.

3.4.1 Normal modes
Vakakis extended the definition of normal modes of classical vibration theory
to the nonlinear case [46]. He defined a nonlinear normal mode (NNM)
in an undamped, discrete or continuous system as a synchronous, periodic
oscillation where all material points of the system simultaneously reach their
extreme values or pass through zero. Clearly, when a discrete system vibrates
in an NNM, the corresponding oscillation can be represented in the config-
uration space as a modal line (deflection path), as indicated in fig. 3.2. As
can be seen from the same figure, linear systems possess linear modal lines,
while nonlinear systems generally have nonlinear modal lines. Comments on
differences between nonlinear normal modes and POMs can be found in [26].

3.4.2 Invariant manifolds
In linear dynamical systems, there is a clear relation between the linear normal
modes and the dynamic behaviour. If a single linear normal mode is excited,
all other modes will always be zero. The motion is therefore always on the
phase plane of the single linear mode, where the phase plane is defined by
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Figure 3.3: Left side depicts a manifold of linear dynamical system, while
right side shows how a manifold of a nonlinear dynamical system may appear.

the eigenvector corresponding to the single linear normal mode and the time-
derivative of the same mode. This is examplified on the left side of fig. 3.3,
where the surface of the phase-plane is shown. Such a surface can generally
be called an invariant manifold, since a motion initially on that surface is
confined to the same surface.

For nonlinear dynamical systems the concept of linear normal modes was
extended to nonlinear normal modes. A parallel extension can be done re-
garding the invariant manifold (or surface) in which the motion takes place.
The invariant manifold will for nonlinear dynamical systems no longer be
generally planar, but curved, see fig. 3.3. Hence any motion initially lying on
the curved manifold will always stay on the manifold.

Provided that there exists an invariant manifold, this manifold can be used
to create the reduced nonlinear model. In principle, this is done in the same
manner as selecting an eigenvector as basis vector for reducing the linear
model. A main difference to point out is that, due to the inherent nonlin-
earities, the NNMs and the manifolds do not obey the superpositioning prin-
ciple. Hence two different manifolds based on two different NNMs cannot be
added to construct a multi-mode manifold. A multi-mode manifold must be
generated directly from the full nonlinear model.

3.5 Conclusion
In this and the previous chapter, some methodologies for constructing reduced-
order models of linear and nonlinear systems were presented. In the following
chapters, we shall only pursue one of the methods, namely the use of mani-
folds. It is, however, important for the design engineer to have a knowledge
about a variety of reduction methodologies. This is because different method-
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ologies result in reduced models with different properties, and because the
knowledge of how reduction takes place enhances the understanding of the
system under investigation.
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Chapter 4
MOR: Manifolds For Conservative

Systems
In section 3.4, we presented the idea of invariant manifolds. In the following
we will look more carefully at methods based on invariant manifold-theory for
reduction of nonlinear systems. First, however, we briefly discuss the reasons
for choosing manifold-methods and not any of the other methods.

Much of what has been seen in the literature in the field of model order
reduction has been concerned with the objective of creating small systems that
are rapid and accurate to simulate. This is, especially in the area of MEMS, a
very important task. However, our task is not only to obtain fast and accurate
models. Just as important is the transparency of the model, and to give the
engineer increased insight into the behaviour of the system.

To obtain transparency, knowledge, and increased understanding of a sys-
tem, it is fundamental that the system description is very compact. Systems
with, say a 100 d.o.f.’s, can be rapidly simulated. However, the number of
d.o.f.’s is still far too large to allow for analytical inspection. A macromodel
containing very few d.o.f., perhaps in the range 1-10, is more likely to provide
analytical inspection. Nonlinearities in the system complicate matters, and
thus a reduced nonlinear system will probably need fewer retained d.o.f. than
a linear system to allow for more or less the same level of understanding and
transparency.

In the previous chapters, a few methods for creating reduced-order models
for both linear and nonlinear systems have been outlined. Especially for non-
linear systems, many reduction methods appear to be related to the projection
framework (see section 2.3), where a main task is to choose a reduction basis.
The reduction basis may then typically be based on the Krylov subspace or
linear eigenvectors. We have earlier described how the nonlinearities can e.g.
be included either via piecewise linearization or via manifold-methods.

It appears that it is rather difficult to gain a physical understanding of the
system from basis vectors found via the Krylov subspace. A main exception
is the first basis vector in the Krylov subspace, which basically is the state
of the system under static load. Another drawback is that for lightly damped
systems, a large Krylov subspace (many retained d.o.f.) must be used. The
reason is that a close-to conservative linear system has large changes in the
transfer-functions (e.g. the peaks), requiring a large number of moments to
obtain a decent approximation of the transfer-function. While e.g. frequency-
shift methods can be applied to alleviate the problems, the Krylov-method is
inherently a moment-matching method and will remain with these drawbacks
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[47].

Piecewise linearization appears to obscure the model from analytical in-
vestigation. Therefore it is a goal to use smooth functions instead of piecewise
linearization in the reduced model.

For linear systems, eigenvectors can be used as the reduced basis, instead
of using Krylov subspace. Using eigenvectors will give a transfer-function
that is correct at the respective eigenvalues, but inaccurate elsewhere. How-
ever, eigenvectors and eigenvalues not only contain much information, but this
information is also very easily accessible and provides a reasonable physical
understanding of the system.

For nonlinear systems, the use of nonlinear normal modes and manifolds
can be viewed as an extension of the use of eigenvectors for linear systems.
The same information is, more or less, also available for this case. The non-
linearities obviously complicate the physical understanding of the system, but
this can hardly be changed, since nonlinearities are the nature of the system
under investigation. Thus we choose to use invariant manifolds as the basis
for reduction, since this method appears to be rather transparent and intuitive.

4.1 Methodologies
In the previous chapter we presented the concept of invariant manifold theory.
However, we have so far omitted discussing how invariant manifolds can be
found. Three methods will be presented in the following.

4.1.1 Taylor-expansion (Asymptotic approach)
Shaw and Pierre [13] first applied center manifold theory (CMT) to nonlinear
modal analysis. A number of details and examples can be found in [48].
Later, Pesheck and Pierre [1] developed a rigorous methodology for reducing
a large, nonlinear system of equations to a more manageable subset, where
the subset is an invariant manifold. This method is strictly valid only for
conservative systems. For weakly damped systems, it has been suggested that
this may be added afterwards, although this violates the invariance principle
[1]. Here follows a brief outline of the formulation.

Consider a dynamical system of N degrees of freedom, expressed in the
following form:

[M ] [ẍ] + [K] [x] + fnl ([x]) = 0 (4.1)

where [M ] is a mass matrix, [K] is the linear stiffness matrix, and fnl rep-
resents the nonlinearities of the stiffness. We assume that the nonlinearities
can be expressed by means of quadratic and cubic terms. Using linear modal
coordinates [q], we may rewrite eq. 4.1 as

[I] [q̈] + [κ] [q] + [α]
£
q2∗
¤
+ [β]

£
q3∗
¤
= 0 (4.2)
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where [I] is the identity matrix, [κ] is the new stiffness matrix, and [α] and [β]
are the second- and third-order stiffness matrices, respectively, and [q2∗] and
[q3∗] contain all second and third order combinations of the modal coordinates,
respectively. Eq. 4.2 may be recast into the following general form:½

q̇ = p
ṗ = f (p, q)

(4.3)

where q =
£
q1 q2 . . . qN

¤T and p =
£
p1 p2 . . . pN

¤T represent
the generalized positions and velocities, while f =

£
f1 f2 . . . fN

¤T
represents the position and velocity dependent forces. Since we are searching
for a multi-mode manifold corresponding to a subset SM of modes, we may
express the coordinates as:½

qk = uk
pk = vk

for k ∈ SM (4.4a)½
qj = Xj (u, v)
pj = Yj (u, v)

for j /∈ SM (4.4b)

The work of finding the functions Xj and Yj has been the subject of several
papers [49], [13], but we follow the line of [1]. Substituting this into the
governing equations (eq. 4.3), we obtain a set of equations with no readily
available solutions:

P
k∈SM

³
dXj

duk
vk +

dXj

dvk
fk
´
= YjP

k∈SM

³
dYj
duk

vk +
dYj
dvk

fk
´
= fj

for j /∈ SM (4.5)

However, we write an approximate solution for the coordinates Xj and Yj
(j /∈ SM ) in the form of a polynomial expansion in the coordinates uk and vk
(k ∈ SM ) as follows:

Xj =



P
k∈SM

ak1,juk + ak2,jvk

+
P

k∈SM

P
l∈SM

ak,l3,jukul + ak,l4,jukvl + ak,l5,jvkvl

+
P

k∈SM

P
l∈SM

P
q∈SM

µ
ak,l,q6,j ukuluq + ak,l,q7,j ukulvq
+ak,l,q8,j ukvlvq + ak,l,q9,j vkvlvq

¶
 (4.6a)

Yj =



P
k∈SM

bk1,juk + bk2,jvk

+
P

k∈SM

P
l∈SM

bk,l3,jukul + bk,l4,jukvl + bk,l5,jvkvl

+
P

k∈SM

P
l∈SM

P
q∈SM

µ
bk,l,q6,j ukuluq + bk,l,q7,j ukulvq
+bk,l,q8,j ukvlvq + bk,l,q9,j vkvlvq

¶
 (4.6b)

Inserting this into eq. 4.5, we obtain the coefficients (a’s and b’s) in 4.6.
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Although not explicitly stated here, the solution may be given in an analytical
form [1]. Generally, these coefficients can be expressed through the following
coupled equations:

D(ω)axx = h1(α) (4.7a)
E(ω)axxx = h2(α, β, a

xx) (4.7b)

where the matrices D and E are known functions of the linear eigenfre-
quencies, the vectors axx and axxx represent the coefficients in 4.6. axx is
obtained from the first of these equations where h1 is a known function of
the second order stiffness matrix. Using this result, axxx is obtained from the
second equation where h2 is a function of axx and the second and third order
stiffness matrices. ω are the linear eigenfrequencies of the retained modes.

Using the solution for the dependent coordinates Xj and Yj (j /∈ SM )
in the nonlinear terms of 4.2, we obtain a manageable formulation of the
reduced-order, nonlinear problem expressed in terms of the coordinates for
the modes belonging to SM .

4.1.2 Galerkin-based method
An alternative to using asymptotic methods is to use Galerkin-methods. One
example of this can be found in [50]. The same procedure is used to establish
the fundamental equations describing the manifolds. However, these equa-
tions are not solved by asymptotical methods, but by means of a nonlinear
Galerkin method. In brief, Galerkin-methods give an approximate solution
that is valid over a pre-defined range. This is done numerically. Compared to
the asymptotic approach, the Galerkin-methods have the obvious advantage
of having a predefined range in which the solution is valid. This also means
that the Galerkin-methods allow for a larger range of validity, and a better
control of accuracy. These obvious advantages have been demonstrated in
the context of invariant manifolds in [50]. We will not present any details
regarding nonlinear Galerkin-methods here, but rather refer to texts like [50]
and [51].

In the paper [50], they also utilizes a different coordinate system than what
we have used earlier. Instead of using displacement and velocity to describe
the system, the state is described by amplitude, a, and phase, φ:

uk = a cosφ

vk = u̇k = −aωk sinφ

This makes it simpler to describe the range covered by the reduced model. In-
stead of dealing with vmax, vmin, umax, and umin, only the maximum amplitude
is needed to limit the range of validity.
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4.1.3 Methods using periodic constraint
The majority of the approaches today uses various asymptotic methods or
nonlinear Galerkin methods. Some work has, however, also been focused
on using periodicity constraints, [52]. There, a purely numerical method is
developed, of which the principle can be briefly explained: Given that one
(nonlinear) mode is excited, a simulation in time shall return to the same point
after one period. The same simulation performed backwards in time, starting
at the initial state, shall trace the exact same trajectory (but clearly in opposite
direction). Now, assuming that the initial excitation is only approximately
on the manifold, the two simulations will not trace the same trajectory. Thus
the initial conditions are changed iteratively until the two trajectories are the
same. At that stage the nonlinear normal mode is found for that amplitude.
Further simulations can then be done at various amplitudes.

4.2 External forcing
External forcing, which clearly is of importance, has not been included in
the discussion so far. A few papers have investigated systems with periodic
forcing, where the forcing-effect has been included in the determination of
the manifolds. In [1], using the automated method based on the asymptotic
approach, external forcing was included in the model by adding it as an extra
degree of freedom. A limitiation of this method is that the forcing must be
described by a second order differential equation. Another possibility is to
simply add the forcing to the reduced model after the reduction of the (un-
forced) model has taken place.

The latter method is very simple, but a main drawback is that it violates the
invariance property of the manifold [1]. Here, we will demonstrate this by a
very simple geometric analysis. The geometric analysis provides an increased
understanding of the manifold. This in turn opens up for new methods for
handling forcing.

The geometric analysis is as follows: for simplicity, assume that the forc-
ing is constant in direction and only has a component in one of the eigenvec-
tors. This eigenvector happens to be the vector the reduced model is based on.
In other words, for small amplitudes, we can regard the system as linear, and
the motion of the system should stay on the phase-plane of that mode. Further-
more, we note that the forcing vector is parallel to the linear eigenvector, and
hence also parallel to the phase-plane of the chosen mode. Hence no other
modes are exitated. For large amplitudes, however, the manifold deviates
from the phase-plane of the linear eigenmode. The forcing (F ), on the other
hand, continues to be parallel to the phase plane of the linear eigenmode,
see fig. 4.1 (For simplicity, we have plotted the manifold as a line, without
dependence on velocity). From this we see that there is a component of the
forcing that can be projected onto the manifold, and one part that is normal to
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Figure 4.1: The external forcing is defined in the full space. The reduced
model is, however, only capable of interacting with the parallel component
of the force (F ). Thus the normal component must be disregarded. (For
simplicity, velocities have been assumed constant in the figure)

the manifold. The interpretation of these two components is of importance.
Firstly, we assume that the system is fully modelled, but the motion happens
to be on the reduced manifold (and should therefore always stay on it as long
as the system is not under external influence, e.g. forcing). Now, we look at
the force component parallel to the manifold. Since the forcing is parallel to
the manifold, the state will change, but in a manner that still keeps the state
on the manifold. This can be seen by comparing with the linear case, where a
force parallel to the phase-plane of a mode, influences only that mode and no
other mode.

Next step, still looking at the full system, is to analyze the force compo-
nent normal to the manifold. The motion still lies on the manifold, but is now
under influence of this force component. Now, since the force component is
normal to the manifold, the energy (from the forcing) cannot be absorbed by
the manifold. However, since the motion is not confined to the manifold (in
the full system), other degrees of freedom can be excited to absorb the energy.
Thus it is clear that this force-component excitates some degrees of freedom
in a manner that is incompatible with the invariance property of the manifold.

So far, we have disregarded the dynamics of the system. This can be
done in a simple manner, following the same general idea. For the simplified
quasi-static example in fig. 4.1 we decomposed the force to one parallel and
one normal component along the line. For the dynamic case, however, we
must decompose the force to one component normal to, and one parallel to
the invariant manifold.

40



If we now revisit the reduced model and we apply the forcing directly,
it is clear that we actually enforce the reduced model to accept all energy-
transfer resulting from the external forcing. From the arguments given above,
this must be wrong, since only parts of this energy should be transfered to the
manifold.

4.2.0.1 Error in external forcing and damping

The line of arguments presented above, naturally leads us to propose a better
method of approximating external forcing for the reduced model. Instead of
using the forcing directly, it is conceptually much more correct to project the
forcing onto the manifold. A further advantage of the concept, related to
error-estimates, will be explained below.

The force component normal to the manifold violates the invariance prop-
erty. Hence this component can actually be used as a measure of the error in
the reduced model. The larger the normal component is, the more effort is
put into driving the system away from the manifold. We also note that small
deviations in the state away from the manifold will influence little the behav-
iour. It may be quite useful not only to find the size of the normal component
of the force, but also to do a coarse approximation of the displacement that
this force causes. This can be done in a rather straightforward way, where the
starting point is the normal component of the force. Secondly, it is assumed
the system is only weakly nonlinear, in which case the linear eigenmodes
can be viewed as a very rough estimate of the nonlinear normal modes in the
nonlinear system. In a rather crude approximation, we therefore decompose
the normal component of the force onto the linear eigenmodes and ignore
the amplitude for the retained modes (of the reduced system). Following this
approximation, the effect the normal component of the force has on the full
linearized system is analyzed. It is important to note that this analysis only
gives an indication of the size of the amplitude deviation from the manifold.
However, knowing the magnitude of this amplitude, it is possible to judge
whether it is acceptable to ignore it or not.

In the case where the amplitude-deviation due to forcing is too large to be
acceptable, we have in fact obtained information about which modes are most
important and which should be included when rebuilding a reduced model.
This is clearly very useful.

So far, only external forcing has been investigated. We recall that the as-
ymptotic approach presented earlier was not capable of dealing with damped
systems. In this context it is quite possible to treat the damping forces and
the external forcing in the same way. Hence it is actually possible to start
with the undamped system, build a reduced model based on the asymptotic
approach, investigate the effect of the damping, and then include more modes
in the reduced model. This approach can clearly be used iteratively, until
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satisfactory behaviour is established. In this case, with a damped, unforced
system, the exact manifold is not found, but the reduced model will contain
the manifold. Hence it appears that the reduced model is not reduced fully in
accordance with the invariant manifold theory, but will be slightly larger than
the invariant manifold.

4.3 Further considerations on invariant manifolds
Above, we have presented conciderations and concepts concerning invariant
manifolds. However, a number of details regarding manifold theory and meth-
ods have been ignored. We will briefly present some of them here.

4.3.1 The asymptotic approach
The asymptotic approach method presented above assumes that the descrip-
tion is in the polynomial form of eq. 4.2. These coefficients must, for most
systems, be obtained numerically. This can be done in a systematic manner,
see [53]. Due to the high number of coefficients, this is also very time-
consuming for large systems.

The asymptotic method relies upon an asymptotic approach, and will there-
fore have a limited range of validity. This range is not known a priori, as
opposed to what is true for the nonlinear Galerkin approach. However, the
range of validity is not only limited by the asymptotic approach. The full
model is adapted to a polynomial form, and hence will also be valid only
up to a given amplitude. Consequently, the range of validity of the reduced
model relies upon the accuracy of the asymptotic approach and the accuracy
of the full model. Clearly, the polynomial form also limits the form of the
nonlinearities in the full system.

Another strong limitation is that the method is only strictly valid for con-
servative systems. However, in practice, it can be used for weakly damped
systems as well [1]. Further improvements can be made by using the method
presented here for determining errors due to external forcing/damping forces.

4.3.2 Internal resonance
The nonlinear normal mode is in general amplitude dependent. This implies
that the resonance frequencies are state-dependent. If certain conditions are
met, commensurable modes may interact strongly, resulting in interchange of
energy between those modes. Hence the response becomes multi-modal [54].
This phenomenon is known as internal resonance ([55],[56]).

The interchange of energy between the (nonlinear) modes consequently
requires that two modes being in internal resonance must either both be mod-
elled or both remain unmodelled. If one mode is modelled and the other is
unmodelled, the energy interchange between the (nonlinear) modes will be
missing and hence the reduced model will be erronous.
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For the asymptotic approach, internal resonances appears as singularities
in the matrices used to find the coefficients in the polynomial expansions [1].

4.4 Accuracy of the asymptotic approach
In 4.1, methods for generating invariant manifolds were presented. Here, we
will proceed by investigating the convergence properties of the asymptotic
approach, as it was presented above (4.1.1) and in [1]. To investigate the
properties of the method, an example system with 6 d.o.f.’s is considered.
The example system is conservative.

Based on the nonlinear system, a reduced model is created, using the as-
ymptotic approach presented earlier (4.1.1). The reduced model is simulated,
and the results are compared with simulation results from the full system.
Also simulation results from the linear model is included for comparison.

4.4.1 The nonlinear system
Care has to be taken to ensure that the system is conservative. This is done by
choosing the nonlinear terms in a consistent manner. Here, we have chosen to
implement the nonlinearities as a special case of a nonlinear coupling, where
the energy has the form:

E =
1

2
k (x1 − x2)

2 +
1

3
α (x1 − x2)

3 +
1

4
β (x1 − x2)

4

The force from the nonlinear coupling can easily be derived from the energy:·
F1
F2

¸
=

· d
dx1

E
d
dx2

E

¸
=

·
k (x1 − x2) + α (x1 − x2)

2 + β (x1 − x2)
3

−k (x1 − x2)− α (x1 − x2)
2 − β (x1 − x2)

3

¸
Using this nonlinear relation, it is a simple task to add a number of these
nonlinear elements to the linear system, and hence obtain a nonlinear system.

The nonlinear elements of the system used, are shown as a table in fig. 4.2.
As can be seen, the coupling elements have been included to ensure sufficient
coupling between the various degrees of freedom. The linear elements are:

[K] [q] =


1·105 0 0 0 0 0
0 2.5·106 0 0 0 0
0 0 1.5·105 0 0 0
0 0 0 1.2·105 0 0
0 0 0 0 4.1·106 0
0 0 0 0 0 2.7·106




q1
q2
q3
q4
q5
q6


In the following, the accuracy of the reduction scheme is tested and discussed.
This is done by varying the number of retained modes (that is, the degree
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Figure 4.2: The nonlinear stiffness of the system.
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of freedom in the reduced model) and the amplitude at which the system
oscillates.

4.4.2 One-mode selection
In the first test case, we generate the manifold with a single mode retained.
We choose mode 1 as the retained mode, and it is thus the mode of origin of
the manifold. It is the mode with lowest eigenfrequency, and this makes it a
sensible choice in terms of trying to model as much as possible of the energy
in the system. This of course depend on the form of the system-excitation, but
generally, it is a sensible choice.

As already mentioned, three types of simulations are done, namely of the
full system (FNI), the linear system (FL), and the reduced manifold system
(TNI).

The initial conditions of the system are obviously important. To make sure
that the starting points are equivalent in all the simulations, they are calculated
from the invariant manifold. This means that we first set mode 1 (the retained
mode) to the assigned amplitude. Next, we calculate the amplitude and veloc-
ity of the slave modes, as given from the equations describing the manifold
(eq. 4.6). Thus we have the initial values for the full system simulations.

In figs. 4.3 and 4.4, the shape of the approximate manifold is presented,
demonstrating the geometric nature of the manifold methodology. The initial
values for the full system simulations can also be interpreted geometrically.
Looking at the figs. 4.3 and 4.4, the amplitude of mode 2 and mode 3 can be
found as function of amplitude and velocity of mode 1 (the retained mode).
Similar figures can also be made relating velocities and amplitudes of the
other modes to the retained mode.

In the same figures (figs. 4.3 and 4.4), simulation results are also included,
the green line are results of the full simulations, while the red line stems from
the simulations of the reduced model. Clearly, the red lines are bound to
follow the shape of the manifold. The green lines, however, may be said to
represents the exact solution, since they are based on the full system simula-
tions.

The deviations between the simulation results are likely to be due to errors
in the manifold resulting from the approximative nature of the asymptotic
approach. Two main types of errors are present, and will be explained in the
below.

First comes the error related to the initial conditions of the full system (or
shape of the manifold). According to the geometrical interpretation of the
manifold, we note that the amplitudes and velocities of the slave modes are
functions of the retained mode (see figs. 4.3 and 4.4). Hence, once the am-
plitude of the retained mode is chosen, we can calculate the amplitude of the
slave modes from the invariant manifold. We may now perform simulations
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on the full system, and we note that the result should be equivalent to that
of the reduced model. However, if the invariant manifold is inaccurate, then
also the initial amplitudes of the slave modes will be inaccurately calculated.
Now, performing a simulation on the reduced system, the motion is bound to
follow the (inaccurate) manifold. Using the same initial conditions to perform
simulations on the full system, the result will show that the motion is different
from the inaccurate manifold.

A comparison with a linear system can be given. Looking at the linear
system, we remember that a motion existing on the phase-plane of one mode
only will always stay on that phase-plane (3.4). Now we assume that we have
calculated the eigenvector inaccurately (which for a linear system means the
same as identifying the phase-plane, or manifold, inaccurately). Secondly, we
say that the initial conditions should be so that only a single mode is exitated.
This means that the initial conditions are proportional to an eigenvector. How-
ever, since the eigenvector is inaccurate, we are actually exitating other modes
as well, and the motion will clearly not stay on the calculated phase-plane of
the intially chosen mode.

The second type of error relates to the energy of the system when being
on the manifold, but not to the geometric shape of the manifold. This can be
examplified by looking at the system:·

q̈1
q̈2

¸
=

· −ω21 0
0 −ω21

¸ ·
q1
q2

¸
+

· −a · q21
0

¸
Whilst the system is clearly nonlinear, it is evident that nonlinear normal
modes at all time are parallel to respectively q1 and q2. Also, it can be seen
that the mode 1 manifold is planar (Mode 1 is the retained mode. The motion
will always stay on the phase-plane of mode 1. The amplitude of mode 2 is
always zero). This means that the reduced model based on the manifold is:

q̈1 = −ω21 · q1 − a · q21 (4.8a)
q2 = f (q1) = 0 (4.8b)

At the same time, we see that the equation:

q̈1 = −ω21 · q1 (4.9a)
q2 = f (q1) = 0 (4.9b)

exhibits the same motion with respect to the slave mode (mode 2). Hence,
the geometric shape of the manifold is described correctly in both equations
(eq. 4.8b, 4.9b), although the latter system describes the dynamics of the
motion on the manifold erronously (eq. 4.9a). In other words, the energy of
the system being on the manifold is described incorrectly.

In principal, these two types of errors can be seen by investigating plots
of the results. The first type of error, regarding the geometric shape of the
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manifold, can potentially be seen in plots like those in figs. 4.3, 4.4, and
4.8. In fig. 4.4, we see that there is a distinct difference between the full
system results and the manifold shape regarding mode 3, a slave mode for
the largest initial amplitude. Thus it may be concluded that the initial values
for the full system simulations where not on the exact manifold, or, in other
words, the calculated manifold shape does not match the exact manifold shape
accurately.

Assuming that the calculated manifold shape matches the exact manifold
shape nicely, one may identify the second type of error (regarding the dy-
namics on the manifold) by investigating plots. This may most easily be
done by looking at phase-plots of the retained mode, like fig. 4.5, where
the error appears as a difference between simulation results of the full system
and those of the reduced system. However, it is important to note that an error
in the phase-plot of the retained mode is not necessarily an error of the second
type. Both types of errors give phase-plots where the full system and reduced
system results differ, and this is true for phase-plots for both the retained
mode(s) and the slave modes.

For the one-mode selection considered in this section, one may draw some
conclusions. By looking at the phase-plot in fig. 4.5, we note that the reduced
system gives quite accurate results for mode 1 (the retained mode). Hence, we
may compare results of the slave modes by investigating phase-plots. In figs.
4.6, 4.7, and 4.8, we note that the results starts to differ at the higher level of
initial amplitude. At the same time, the retained mode is approximated quite
well. The conclusion must therefore be that for the slave modes 2 and 3 (ref.
figs. 4.6, 4.7, and 4.8), the manifold shape starts to diverge, but that the modes
are relatively insignificant for the dynamics of the reduced model. Two other
slave modes, modes 5 and 6, though, appears to give quite accurate results
when looking at the phase-plots (figs. 4.9, 4.10). Because the dynamics of
the retained mode is modelled quite accurately, we therefore conclude that
modes 5 and 6 are of higher importance to the nonlinear behaviour of the
reduced system, than are modes 2 and 3.

4.4.3 Two-mode selection
In this section, a reduced model is created based on two retained modes,
namely mode 1 and mode 4. These are selected since they have the lowest
resonance frequencies. Using more than one mode as basis for the manifold
means that a geometric visualization of the manifold shapes (like in fig. 4.3)
becomes impossible. The phase-plots, however, can still be used to investigate
errors.

4.4.3.1 Comparison with one-mode selection

In the above simulations, it was noted that the response of the reduced system
was not completely in accordance with that of the full system for larger initial
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Figure 4.3: The single-mode manifold is shown, where mode 2 is shown as
a function of retained mode 1 (the surface). Simulations of the full system
are shown (green lines). Simulations using the manifold are also shown (red
lines). Simulations are done at different initial amplitudes.

Figure 4.4: The single-mode manifold is shown, where mode 3 is shown as
a function of retained mode 1 (the surface). Simulations of the full system
are shown (green lines). Simulations using the manifold are also shown (red
lines). Simulations are done at different initial amplitudes.
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Figure 4.5: The trajectory of mode 1 is shown for simulations using the full
system (FNI), the reduced model (TNI) and the full linear model (FL). The
reduced model is created using a single-mode manifold, based on mode 1.
Each plot in the figure refers to a different level of inital values.

Figure 4.6: The trajectory of mode 2 is shown for simulations using the full
system (FNI), the reduced model (TNI) and the full linear model (FL). The
reduced model is created using a single-mode manifold, based on mode 1.
Each plot in the figure refers to a different level of inital values.
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Figure 4.7: The trajectory of mode 3 is shown for simulations using the full
system (FNI), the reduced model (TNI) and the full linear model (FL). The
reduced model is created using a single-mode manifold, based on mode 1.
Each plot in the figure refers to a different level of inital values.

Figure 4.8: The trajectory of mode 4 is shown for simulations using the full
system (FNI), the reduced model (TNI) and the full linear model (FL). The
reduced model is created using a single-mode manifold, based on mode 1.
Each plot in the figure refers to a different level of inital values.
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Figure 4.9: The trajectory of mode 5 is shown for simulations using the full
system (FNI), the reduced model (TNI) and the full linear model (FL). The
reduced model is created using a single-mode manifold, based on mode 1.
Each plot in the figure refers to a different level of inital values.

Figure 4.10: The trajectory of mode 6 is shown for simulations using the full
system (FNI), the reduced model (TNI) and the full linear model (FL). The
reduced model is created using a single-mode manifold, based on mode 1.
Each plot in the figure refers to a different level of inital values.
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Figure 4.11: The trajectory of mode 3 is shown for simulations using the
full system (FNI), the reduced model (TNI) and the full linear model (FL).
The reduced model is created using a two-mode manifold, based on modes
1 and 4. The simulations are performed at different initial values, which are
calculated based on the one-mode manifold. Simulations are based on the
two-mode manifold.

values of the amplitude of the retained mode. Here, we create a manifold
based on the two modes 1 and 4, to investigate what happens to the accuracy
when the dimensions of the manifold increase. For the simulations, the initial
values used, are the same as those for the one mode manifold. More precisely,
for the manifold simulations the initial amplitudes of mode 1 and 4 are taken
from the one-mode manifold approximation presented in 4.4.2. For the full
simulations, these values are used in the two-mode manifold approximation
to find the initial values of the slave modes. The results for mode 3 and 4 are
presented in figs. 4.11 and 4.12.

From figs.4.8 and 4.12, we see that the behaviour of mode 4 is much better
approximated using the two-mode manifold, compared to using only the one-
mode manifold. This should be no big surprise since the two-mode manifold
uses mode 4 as one of the retained modes.

The approximation of mode 3 was seen to be poor for the largest initial
values for the one-mode manifold, see fig. 4.7. This approximation appears
not be improved when the manifold is expanded to a two-mode manifold,
see fig. 4.11. This may indicate that the inaccuracy is due to insufficient
approximation of a coupling directly between mode 1 and mode 3, or at least
that the coupling is not strongly dependent upon mode 4.

4.4.3.2 General initial condition

For the simulation-results presented here, the initial conditions have been such
that both retained modes have the same initial value. The slave modes are
calculated on basis of two retained modes in the manifold.
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Figure 4.12: The trajectory of mode 4 is shown for simulations using the
full system (FNI), the reduced model (TNI) and the full linear model (FL).
The reduced model is created using a two-mode manifold, based on modes
1 and 4. The simulations are performed at different initial values, which are
calculated based on the one-mode manifold. Simulations are based on the
two-mode manifold.

Figure 4.13: The trajectory of mode 1 is shown for simulations using the full
system (FNI), the reduced model (TNI) and the full linear model (FL). The
reduced model is created using a two-mode manifold, based on modes 1 and
4. The simulations are performed at different initial values. Both the retained
modes have the same initial value.
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Figure 4.14: The trajectory of mode 4 is shown for simulations using the full
system (FNI), the reduced model (TNI) and the full linear model (FL). The
reduced model is created using a two-mode manifold, based on modes 1 and
4. The simulations are performed at different initial values. Both the retained
modes have the same initial value.

Figure 4.15: The trajectory of mode 3 is shown for simulations using the full
system (FNI), the reduced model (TNI) and the full linear model (FL). The
reduced model is created using a two-mode manifold, based on modes 1 and
4. The simulations are performed at different initial values. Both the retained
modes have the same initial value.
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In fig. 4.13, we note the nonlinear behaviour of the retained mode 1. For
the retained mode 4, we see the behaviour in fig. 4.14, which appears to be
less nonlinear than mode 1. However, the reduced model simulation fits the
full system simulations well for both retained modes.

In fig. 4.15, the response of mode 3, a slave mode, is shown. From the plot
with lowest initial conditions, it can be seen that the mode 3 approximation
is acceptable to a certain degree. However, at the larger initial conditions, the
calculated manifold for mode 3 strongly diverges from the exact manifold,
which can be seen by the total mismatch between the manifold-based and the
full system simulations in fig. 4.15. It is interesting to note that although mode
4 appears to behave quite linearly in fig. 4.14, it has significant influence on
the nonlinear behaviour of slave mode 3. This can be seen by comparing
the simulation results based on the two-mode manifold, with different initial
conditions, see fig. 4.15 and 4.11.

From the simulation results of the two-mode manifold, it can be seen that
the approximation of mode 3 is worse when both mode 1 and mode 4 have
large initial values. It can be argued that having large initial values of both
mode 1 and 4 mean that one is effectively further away from the starting-
point of the Taylor-expansion. This, in turn, means that the Taylor-expansion
becomes less accurate when both modes are excited. At the same time, we
clearly see that the manifold converges for smaller initial values, but at levels
where nonlinearities still are significant.

4.4.4 Three-mode selection
This model is the largest of the reduced models presented. Here, 3 modes are
retained. This implies that there are only 3 modes left to be modelled (being
slaves), and which are removed from the dynamics of the reduced model.
With a reduced dynamic model containing as many as 3 d.o.f.’s out of an
initially 6 d.o.f.-system, one would expect a quite accurate reduced model.

For the retained modes 1, 3, and 4, it can be seen that mode 3 and 4
appears to behave much more linear than mode 1, see fig. 4.16, 4.17, and
4.18. However, for all the retained modes, the reduced model simulations
compare quite nicely with the full system simulations.

In fig. 4.19, it can be seen that the response from the reduced system gives
a well-defined and periodic response for mode 5 (which is a slave mode). At
lower levels of initial conditions, it can be seen that the manifold matches
quite nicely, but at higher levels a clear mismatch can be seen.

4.4.5 Summary and discussion of results
In the above, a 6-d.o.f. system has been simulated using a full nonlinear
model and a linear model. Furthermore, reduced models based on an asymp-
totic approach of the invariant manifold have been constructed and simulated.
These reduced models have been constructed with different number of re-
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Figure 4.16: The trajectory of mode 1 is shown for simulations using the full
system (FNI), the reduced model (TNI) and the full linear model (FL). The
reduced model is created using a three-mode manifold, based on modes 1,
4, and 3. The simulations are performed at different initial values. All the
retained modes have the same initial value.

Figure 4.17: The trajectory of mode 3 is shown for simulations using the full
system (FNI), the reduced model (TNI) and the full linear model (FL). The
reduced model is created using a three-mode manifold, based on modes 1,
4, and 3. The simulations are performed at different initial values. All the
retained modes have the same initial value.
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Figure 4.18: The trajectory of mode 4 is shown for simulations using the full
system (FNI), the reduced model (TNI) and the full linear model (FL). The
reduced model is created using a three-mode manifold, based on modes 1,
4, and 3. The simulations are performed at different initial values. All the
retained modes have the same initial value.

Figure 4.19: The trajectory of mode 5 is shown for simulations using the full
system (FNI), the reduced model (TNI) and the full linear model (FL). The
reduced model is created using a three-mode manifold, based on modes 1,
4, and 3. The simulations are performed at different initial values. All the
retained modes have the same initial value.
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tained modes.
The accuracy of the asymptotic approach has been demonstrated, and it

has been clearly shown that for large amplitudes the polynomial approxi-
mation of the manifold deviates from the true manifold. This is due to the
asymptotic approach used for finding the manifold shape. It is also noted
that due to the same asymptotic approach, the inaccuracy of a manifold (with
several retained modes) increases when more and more of the retained modes
are given large initial values. Hence the most accurate reduced model is a
manifold with many retained modes, whose initial condition lie on a single-
mode manifold.

The reduced model’s accuracy can be defined in terms of accuracy in
the dynamics of the retained mode in the reduced model, or in terms of the
manifold’s ability to approximate the slave modes. From the limited set of
simulation presented here, the accuracy of the slave modes varies significantly
from mode to mode. It appears that the slave modes being most important
with respect to the nonlinear behaviour of the retained mode, are those slave
modes that are best approximated. This might be a specific property of the
system we have chosen. In other words, the limited set of simulations and the
single system we tested prohibit us from drawing conclusion on which slave
modes are best approximated in general systems.

For a physical system, the nonlinearities must be expressed in terms of
poynomials. Generally, the polynomials are only approximations of the exact
physics. Hence, both the accuracy of the asymptotic approach for finding
the manifold and the accuracy of the polynomials in the full system present
restrictions on the valid range of the manifold.

The simulations have shown that the manifold methodology based on the
asymptotic approach is capable of capturing the true nonlinear behaviour of a
system. Due to its geometric foundation, the method also invites for increased
understanding of the nonlinear behaviour of the nonlinear system.

4.5 Example: Analytical reduced-order modelling of a
dual-axis accelerometer

This section is largely based on [57], where we developed a method for gen-
erating a design-parameter sensitive invariant manifold.

4.5.1 Design-parameter sensitivity
In section 4.4, we demonstrated the use of invariant manifolds generated via
the asymptotic approach. This technique has the proven ability to generate
reduced models, which not only leads to faster simulations, but even more
importantly, increases understanding of the nonlinear system. However, the
methodology gives no information about how changes in design-parameters
influence the system behaviour. Clearly, there is a great advantage in having a

58



model that is parameter dependent. This has lead us to develop a method that
is based on the asymptotic approach for generating the manifold, which also
includes design-parameter sensitivities [57].

From the general formalism of generating the invariant manifold via the
asymptotic approach, as presented in 4.1.1, we now proceed to develop a pa-
rameterized model formalism suitable for predictive design. One possibility
is to sample the design space of interest to obtain a suitable parameter set.
However, this may require extensive simulations. Instead, we adopt a strategy
based on Taylor-series expansions of the formalism presented in section 4.1.1,
with respect to the design parameters.

First, our problem is normally stated in terms of the physical coordinates
such as in eq. 4.1, instead of the modal coordinates as in eq. 4.2. We there-
fore generate an approximate formulation in the form of eq. 4.2 by a linear
expansion of the eigenvectors of the original system in terms of the design
parameters. Various methods exist for finding these derivatives, such as Nel-
son’s method [58], finite-difference methods, modal methods, and modified
modal methods. Computational cost and accuracy may vary between these
methods [59]. For problems with repeated (degenerate) eigenvalues and their
associated eigenvectors, special methods must be applied [60],[61].

Having calculated the derivatives by means of one of the above-mentioned
methods, we may write:

Q̃ = Q0 +

µ
d

dg
Q0

¶
∆g (4.10)

where Q0 =
£
q1 q2 . . . qN

¤
is the initial eigenvector matrix, Q̃ is the

perturbed eigenvector matrix, and g is a design-parameter (typically length,
width, etc). Assuming that the dependence of the stiffness matrices on the
design parameters are known, we may proceed to rewrite eq. 4.2 in the
following form:

[I]

·
d

dt2
q̃

¸
+ [κ̃ (g)] [q̃] + [α̃ (g)]

£
q̃2∗
¤
+
h
β̃ (g)

i £
q̃3∗
¤
= 0 (4.11)

However, we also need an approximate solution of eq. 4.7, that involves
the following derivatives (see 4.1.1):

d

dg
axx = D−1

µ
d

dg
h1 −

µ
d

dg
D

¶
axx
¶

and the corresponding ones for axxx.
Hence we have constructed approximate solutions both for the stiffness

matrices and for the coefficients in the polynomial expansion. Inserting the
approximate solutions of the modes into eq. 4.11, we obtained a reduced,
parametrized, nonlinear model of the system.
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Figure 4.20: Schematic view of the dual-axis accelerometer investigated. De-
tection is done for x- and z-axis acceleration (Courtesy of SensoNor ASA.
Patent pending EP00305807.0).

4.5.2 Simulation results
The above method was implemented in the commercial mathematical pro-
gram Mathcad and tested on an industrialized dual-axis accelerometer as shown
in fig. 4.20.

The accelerometer was realized in single-crystalline silicon by a bulk micro-
machining process. The z-axis acceleration is measured by piezoresistors
implanted in the inner (light gray) beams, while the x-axis acceleration is
detected by piezoresistors implanted in one of the outer (light gray) beams
(torsional deformation).

A preliminary analysis indicates that there are two dominant modes in the
system, the z-axis deflection of the central mass (mode 2) and the torsion of
the assembly about the y-axis (mode 1). Hence, these modes are chosen as
our subset SM (i.e the retained modes). In general, the modes to be included
in the subset should be selected with care.

Here we primarily investigate the validity of the design-parameter sensi-
tive solution presented above by comparison with the ”exact” reduced model,
obtained using the asymptotic approach for generating the manifold. In other
words, the design-parameter sensitive reduced model is compared to reduced
models obtained by using the asymptotic approach for a number of different
geometries. In the design-parameter sensitive reduced model, approximate
results are obtained by linear expansion in terms of a given design parameter
from a known starting point, while the reduced model made for comparison,
the results were always calculated using the complete reduced model. The
design parameter considered is the length L of the left-side outer beam.
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Figure 4.21: Eigenvalues of the two dominant modes versus the relative in-
crease in the design parameter L.

In fig. 4.21 we show the change in the small-signal eigenvalues of the two
dominant modes with increasing L. Although this result does not depend on
the nonlinearities in the stiffness matrix, it illustrates the overall sensitivity of
the system to the parameter chosen, and how well this is reproduced using the
linear expansion in eq. 4.10. We notice that the linear expansion provides a
good indication of the sensitivity of the eigenfunctions to the design parameter
L. It reproduces the results from the complete reduced-order model quite well
for up to 10–20 percent increase in L, which is well in the range of process-
variations of the geometry and also quite acceptable for optimization of the
geometry.

To illustrate the effects of the stiffness nonlinearties, we show in fig. 4.22
a similar comparison of the sensitivity of a dominant second order term in the
stiffness matrix. We again observe, just as for the eigenvalues, that the se-
ries expansion reproduces the results from the complete reduced-order model
quite well for up to 10–20 percent increase in L.

As a further illustration of the nonlinear effects, we have considered the
coupling of modes 1 and 2. In fig. 4.23, we have plotted the temporal variation
in the excitation of mode 1 resulting from an initial displacement of the system
in mode 2. The figure shows the excitation in mode 1 calculated from the
complete reduced-order model for a nominal value of the design parameter L
and for an 11 percent increase in L. In addition, the latter was calculated using
the parameter sensitivity procedure. Again, we observe that the sensitivity
procedure provides a good representation of the excitation predicted by the
complete model.
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Figure 4.22: Dependence of a dominant second order stiffness coefficient on
the relative change of the design parameter L, calculated with the complete
reduced-order model and its linearization
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Figure 4.23: Comparison of mode excitation caused by nonlinear mode cou-
pling, calculated with the complete reduced-order model (solid line) and its
parameter-sensitive reduced model (dotted line) at 11 percent change in the
design parameter L. Also shown: the excitation at the nominal value of L.
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4.5.3 Discussion and summary
Here, we have shown how a reduced-order description of nonlinear, dynam-
ical MEMS systems can be formulated analytically, allowing it to be used in
predictive device design. A version of the formalism linearized with respect
to design parameters is shown to be quite suitable for sensitivity analysis and
design optimization.

In modelling the accelerometer, damping effects have been neglected.
Hence the non-linear effects are geometrical non-linearites of the mechanics,
since the material, single-crystalline silicon, is assumed to be perfectly linear.

As already mentioned, the asymptotic approach has a limited range of
validity. Clearly, the same is true for the Taylor-expansion approximation of
the eigenvectors and the nonlinear coefficients. Thence it follows that the
parameter sensitive reduced model is not only limited in validity in terms
of amplitude, but also in terms of changes in design-parameters. This does
limit the applicability of the reduced model. However, we have seen that in
the example above that the method is capable of handling design-parameter
changes that significantly changes the system behaviour. The advantages of
having a parameter-sensitive reduced model which more than indicates the
non-linear effects are apparent.

4.6 Discussion and conclusion on invariant manifolds
In this chapter manifold-methods for conservative systems have been pre-
sented. We emphasized the asymptotic approach as presented by Pesheck and
Pierre in [1]. We have demonstrated the accuracy of the method with respect
to its ability to model large-amplitude nonlinearites. We have shown that the
asymptotic approach is quite capable of handling weakly nonlinear systems.
For stronger nonlinearities, other methods for finding the manifold must be
used.

To the author’s best knowledge, this is the first time a geometric interpre-
tation of external forcing on the manifold has been presented. The geometric
interpretation results in a more correct way of handling the forcing. At the
same time, the interpretation also provides a measure of accuracy of the re-
duced manifold.

Also presented is a new method for generating parameter-sensitive invari-
ant manifolds. The model is obtained by performing a Taylor-expansion of
the formulation using an asymptotic approach for finding the manifold [57].

Generally, manifold-methods appear to be suitable for reducing weakly
nonlinear systems. This results from the ability to maintain the correct non-
linear behaviour and from the intuitivity principle that lies behind the method.
The latter is of fundamental importance for obtaining a simple model that is
transparent and that gives further insight into the system behaviour.
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Reduction based on manifold methods may be more difficult to realize for
strongly nonlinear systems, primarily due to limitations arising from internal
resonances between nonlinear normal modes.
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Chapter 5
MOR: Manifolds For Dissipative

Systems

In the previous chapter, we were concerned with invariant manifolds for con-
servative systems. To cover a broader range of systems, we will in this chapter
look at dissipative systems. For linear systems, where one utilize a reduction
based on a set of eigenvectors, conservative and dissipative systems may be
treated equivalent. However, for nonlinear system the situation is more com-
plex. Before looking more into manifolds for dissipative systems, we will
briefly recapitulate our discussion of manifolds for conservative systems.

For conservative systems, we used the concept of an invariant manifold.
This implies that the system behaviour would always stay on that manifold.
However, nothing was said about periodicity of the reduced system behaviour,
so as long as the manifold has at least 2 d.o.f.’s it still might be chaotic.
We will not involve ourselves in a discussion of chaotic systems and their
behaviour, but rather refer to books like [62].

Dissipative systems will behave differently than conservative systems. The
states of the system will decay towards an equilibrium. Still, it might be
possible to identify an invariant manifold on which the motion will always
stay. Put in other words, the manifold for the dissipative system must contain
the global attractor (the equilibrium) and have the invariance properties (i.e.
always remain on the manifold). Such objects, apparently discovered at the
end of the 80’s, are called inertial manifolds [63]. Although a number of
papers have been published within the topic of inertial manifolds, dissipative
systems have received far less attention than conservative systems [64]. Also,
many of the papers regarding inertial manifolds are heavily focused on strict
mathematics and proofs of existence of inertial manifolds for given systems.
An overview of the relatively newly introduced objects (i.e. inertial mani-
folds) can be found in [65].

Here, we take a less rigid mathematical view than is common in papers
regarding inertial manifolds. This implies that we take the existence of the
inertial manifold for granted. No attempt is made to prove its existence.
Hence, the problem is reduced to finding the inertial manifold. This will
be adressed in the following, and we will also give an example where our
proposed method is used.

5.1 Methodologies
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5.1.1 Naive adding of dissipation after reduction
In the chapters 4 and 3, we have discussed invariant manifolds for conserva-
tive systems and how they can be created. The subject of external forcing was
also adressed.

A very simple method of creating a reduced model of a dissipative system
is to regard the dissipative forces as external forces. Hence the system can
be seen as a conservative system with external forces. The invariant manifold
for the conservative system (disregarding the ’external forcing’) can then be
found, for instance, by using one of the methods presented earlier (see 4.1).
The second step is to include the dissipative forces into the dynamics of the
manifold. Possible ways of including external forcing has been outlined in
a previous section (see 4.2). It is, however, again necessary to point out that
this kind of treatment violates the invariance properties of the manifold, thus
resulting in inaccuracies in the reduced model. By employing the method
proposed in section 4.2 regarding consistent treatment of external forcing, this
inaccuracy may to a certain extent be controllable, but at the cost of having a
larger reduced model.

Despite the disadvantages pointed out, the simplicity of the method makes
it very tempting to use. Any results should, however, be treated with care,
having the drawbacks of the method in mind.

5.1.2 Galerkin-based method
In an earlier chapter, we briefly mentioned that Galerkin-methods may be
used to find the invariant manifold for conservative systems. Such a method,
and the use of it, has been presented recently in [50]. Although no examples
for dissipative systems are given in the paper, it appears that the method can
be used also for such systems. The nonlinear Galerkin method is commented
on in section ??.

5.1.3 A method based on simulations of the system
In the following we present a method that is capable of tracing the inertial
manifold for dissipative systems. We have recently presented the method
and the use of it in [66]. To give an outline of the method, we will first
briefly review specific subjects regarding manifolds for conservative system.
This will lead us to the newly proposed method for finding manifolds for
dissipative systems.

In section 4.1.3, we presented very briefly a method relying on period-
icity constraints [52], valid for conservative systems. The principle behind
the method was to compare two simulations, one backward-in-time and one
forward-in-time. Assuming periodicity and equal initial conditions on the
manifold, the two simulations both lasting one period, should be equal.

Such a method, relying on periodicity constraints, appears to be useless
for dissipative systems, since the trace backward in time and forward in time
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Figure 5.1: Left plot demonstrates the trajectory of a temporal simulation
(forward in time) of a dissipative system. Right plot shows the same system
simulated backwards in time. We note that the trajectories follows the same
path.

from a given state clearly will never intersect. This is due to the dissipative
nature, where energy is removed from the system as time passes. For the
opposite case, where the time-axis is in opposite direction (i.e. backward in
time), the system energy will increase with (negative) time.

At this stage we observe that the manifold for the systems is tangential to
the phase-plane of the linear mode for low levels of energy. The challenge is
therefore to find the manifold for increasingly larger amplitudes and energy-
levels. Contrary to this, we see that dissipative systems will decrease energy
level and amplitude with time.

At the same time, we note that the results from a temporal simulation, may
be reproduced by starting with the final results and running backwards in time.
Focusing on dissipative systems, we realize that this may not necessarily be
correct in a numerical simulator, since certain modes may numerically have
died out when doing the forward simulation. On the other hand, a simulation
that is steadily injecting energy into the system, can be reversed and one
will obtain the same results going forwards and backwards in time, see fig.
5.1. This procedure will, of course, be more complicated in the presence of
instabilities, bifurcations, etc., but this is disregarded at present.

A temporal simulation (forward in time), starting off at a point on the
manifold, will obviously always stay on the manifold. Following the ear-
lier argument, so will a simulation running backward in time. Hence, one
is capable of expanding the range of the known manifold, since simulations
backwards in time means increasing amplitude.

While the principle appears simple, the method suffers from some draw-
backs. One major drawback is that a single simulation only traces a line
on the manifold. Performing a number of simulations with different initial
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conditions will give more traces (that is, change phase of initial mode, but not
amplitude, so that initial conditions still remain on the small signal manifold).
From these traces, one may then approximate the shape of the rest of the
manifold. Thus to obtain an accurate manifold a number of simulations must
be performed. Following this approach, the construction of higher-degree
manifolds requires a large number of simulations, making the method im-
practical for high-degree manifolds.

Numerical issues deserve special attention. Since the manifold is known at
small amplitudes, the starting point is also known. Due to limited numerical
accuracy, it is likely that other modes will be slightly inaccurately excited.
While in dissipative systems, small errors will be damped out and disappear
with time, the opposite will happen in a system where energy is injected.
The initial small error will grow as more and more energy is injected into an
incorrectly excited mode. Care must therefore be taken to ensure numerical
accuracy.

As earlier mentioned, the way the method is outlined here, it is not capable
of handling instabilities and bifurcations. However, also the other methods
presented here, suffers from the same problem.

The implementation of this method is, in principle, quite simple, which is
its clear advantage over the other methods. Nothing special is needed except
a solver that is capable of performing temporal simulations both forward and
backwards in time. An alternative is to change the definition of the system,
a slight modification regarding signs is the same as running a simulation
backward in time. A further advantage is that the method directly outputs
the dynamics of the reduced system.

5.2 Example: Reduced-order model of a dissipative dual
axis accelerometer

Following what we presented in [66], we will now present an example utiliz-
ing the methodology presented above. The example is based on the previously
presented dual-axis accelerometer, see section 4.5, but with the difference that
the top glass of the cavity is included here, see fig. 5.2. The relatively small
distance between the glas and the masses, as compared to the surface area of
the masses, gives rise to a squeeze-film effect (figure is not correctly scaled).
While other dissipative effects will also be present, squeeze-film damping is
by far the most important, given the system dimension and pressure of the
surrounding gas. Therefore we have ignored other dissipative effects.

Altough the accelerometer considered here is equivalent to that in section
4.5, we do not use the same model description. One reason for this is that
the reduction method applied earlier required a model description in poly-
nomial form, whereas here we have chosen to use a nonlinear FE-model,
where the nonlinearity is found numerically (i.e. using standard nonlinear
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Figure 5.2: Schematic view of the dual-axis accelerometer investigated. Note
that we have included the top glass. Detection is done for x- and z-axis
acceleration (Courtesy of SensoNor ASA. Patent pending EP 00305807.0).

FE-formulation). Although possibly slower, this is clearly a more general
scheme, and presumably also more accurate.

To accurately model the effects arrising from the surrounding gas, a com-
plete CFD (computationally fluid dynamics) analysis should be performed
coupled with the mechanical model. In principle, one may use available
software packages for this, but this possibility is limited due to our special
use. Furthermore, a CFD-analysis is quite extensive. Therefore we chose
to implement a simplified model of the squeeze-film damping. Analytical
squeeze-film damping, parallel to what was used in section 2.5 on reduced
models of linear systems, was implemented. Stiffness introduced by the
squeeze-film effects, early proved unimportant and was disregarded. How-
ever, since we at this stage are interested in nonlinear effects, we made the
squeeze-film damping inverse proportional to the cube of the gap (i.e. gap
between surface area of the mass and the top glas). Although not as precise
as a full CFD-model, references indicate that this nonlinear adaption can be
acceptable [34],[39].

5.2.1 The program package
The general process and main elements of the package is shown in fig. 5.3. It
was buildt in the commercial mathematical program Matlab.

The first task is to establish the full nonlinear model, using the “Model-
Builder”, see fig. 5.3. The next step is to choose the basis-vectors of the
reduced model. Although these vectors can in principle be chosen freely, our
implementation limits the choice to the eigenvectors. In addition, we have
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to define a suitable set of simulations that will span the manifold sufficiently.
Since the manifold is approximated by interpolations between the states sim-
ulated, this choice is clearly important. This is further emphasized by the fact
that simulation time is directly proportional with the number of simulations
that must be done.

To facilitate the special needs of MEMS-structures, the simulation tool
"SimTool", in fig. 5.3, is buildt to handle large displacements and a simple
form of nonlinear squeeze-film damping. Fig. 5.3 indicates that “SimTool”
can be run several times as defined by “ReductionChoice”. Having obtained
the set of solutions, the full-scale simulations are finalized.

With these results, the system’s response is known within a defined range
that is limited by the full-scale simulations, and a reduced dynamic model
can be extracted. This is done within the elements "ManifoldCreate" and
"ManifoldCreate2". In the former, we create the dynamics of the reduced
model. From the temporal simulations (backwards in time) that trace out
points on the manifold, we approximate the parameters in the reduced model.
The reduced model is of the form:·

φ̇

Ȧ

¸
=

·
α

β ·A
¸
+

·
fφ (A,φ)
fA (A,φ)

¸
(5.1)

Here, φ and A are respectively phase and amplitude of the retained mode(s).
The functions fφ (A,φ) and fA (A,φ) approximate the nonlinearities of the
manifold. Hence eq. 5.1 should be fitted to the simulation results. To approx-
imate the nonlinear effects, we use:

fφ (A, φ) =
X
m

amA cos (bmφ+ τm) (5.2a)

fA (A, φ) =
X
m

cmA
2 cos (dmφ+ ηm) (5.2b)

The parameters in eq. 5.1 and 5.2 are found using an optimal approximation
of eq. 5.1 to the simulation results. Clearly, more complex functions that may
capture more nonlinearities can be chosen in eq. 5.2 to improve performance.

In "ManifoldCreate2" the relation between the slave modes and the re-
tained mode(s) is created. This can either be done by means of an approximat-
ing function, parallel to the procedure in "ManifoldCreate", using functions
like:

φmodelled,j =
X
n,m

oj,n,mA
n cos (pj,n,mφ+ σj,n,m)

Amodelled,j =
X
n,m

qj,n,mA
n cos

¡
rj,n,mφ+ ψj,n,m

¢
Where the phase and amplitudes of the modelled (slave) modes (φmodelled,j ,
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Figure 5.3: Schematics of the program package, showing the sub-routines.

Amodelled,j) becomes function of the amplitude and phase of the retained modes
(φ, A). Another alternative is to use a numeric scheme, where the functions
are defined by using linear interpolation of the simulation results.

The approach for finding the reduced model is in clear contrast to the
method used in the asymptotic approach. In the latter, the relation between
the slave and retained modes are first found, and then re-inserted into the
full model description obtaining the dynamics of the reduced model. In the
approach we present here, having the relation between the slave and retained
modes is not a prerequisite to create the dynamics of the reduced model in
terms of the retained degree of freedom. However, the information for creat-
ing the relations is at hand.

5.2.2 Simulation results
A preliminary analysis indicates that there are two dominant modes in the
system, the torsion of the assembly about the y-axis (mode 1), and the z-axis
deflection of the central mass (mode 2). This is parallel to our findings for the
undamped system presented in section 4.5. In the analysis, we select one of
the dominant modes as our retained modes, leaving the other modes as slave
modes.

Creating the dynamics of the reduced model, we utilized the functions
presented in eq. 5.1 and 5.2. Linear interpolation was used to obtain the
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Figure 5.4: Plots of the dynamics of the retained mode (mode 2). Top:
amplitude-velocity plotted as function of amplitude and phase. Bottom:
Phase-velocity plotted as function of amplitude and phase. For both plots,
wave-formation on right side are nonlinear effects. Note that the plots are
normalised.

relations between the slave modes and the retained mode.

5.2.2.1 Mode 2 - manifold

In the first manifold we created, we used mode 2 as the retained mode, hence
mode 1 and the other modes where modelled. The initial analysis showed
that mode 2 was underdamped. The dynamics of the manifold we obtain are
shown in fig. 5.4, where we clearly note the nonlinearities of the system.
For the sake of example, we also show the obtained manifold for the relation
between the retained mode and one of the slave modes, see fig. 5.5. In the
plots, the amplitudes are normalized.

So far, we have not verified the key to success, namely the equivalence
of the simulations backward in time with those performed forward in time.
Early simulations performed backward in time, revealed that high-frequency
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Figure 5.5: The plot shows how the amplitude of a slave mode varies with
amplitude and phase of the retained mode (mode 2).

components grew quickly and unstable. Although the unstable growth may
be said to be the core of the concept for finding the manifold, it was necessary
to take proper measures to prevent unstable growth of high-frequency com-
ponents in the backward in time simulations, resulting from inaccuracies in
the numerical procedures. These measures have to be handled with care since
they appear as a double-edged sword. The upside is that they should prevent
the rapid growth of the high-frequency components, the downside is that these
components may be part of the solution and therefore should not be removed.
These issues where solved to an acceptable degree, but further improvement
is clearly possible.

Having reduced numerical errors, the next step where to compare the
simulations backward in time with those performed forward in time. Early
simulations indicated that the equivalence degraded with longer simulation
time. This is not surprising. To illustrate the accuracy of the manifold we
created, we performed normal simulations (forward in time) both of the full
system, and of the reduced model. Results are shown in fig. 5.6. Higher
initial amplitude would result in larger deviation between the result from the
reduced system and the full system. Lower initial amplitude would equally
give more equivalent result.

The deviation between the results of the full system and the reduced sys-
tem, has mainly two causes. The first stems from inaccuracies due to numeri-
cal issues, which both the backwards simulations and the forward simulations
suffer from. However, the numerical errors may be different in nature for
the two situations. Numerical errors in the backwards simulations lead to an
inaccurate definition of the defining point on the manifold. Hence, any exact
simulation of the full system is deemed to be only approximately equivalent
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to those of the reduced system. The second cause of deviation is related to
the limitation of the approximating functions of the nonlinearities (eq. 5.1,
5.2). The limited flexibility in these functions (eq. 5.2) restricts the shape of
the manifold, so that it might be impossible to fit the approximate manifold to
the simulation results that defines the manifold. Clearly, this problem may be
alleviated by increasing the complexity of the approximating functions in eq.
5.1.

5.2.2.2 Mode 1 - manifold

In this second example, we choose mode 1 as the retained mode, leaving mode
2 and all other modes as slaves. Initial simulations showed that mode 1 was
overdamped. The nature of an overdamped mode is significantly different
from an underdamped mode. This manifests itself in the relation between
displacement and velocity of the mode, assuming no external influence. If the
displacement is known for an overdamped mode, the velocity is given, and
hence the amplitude is a function of one parameter only (the displacement or
alternatively velocity). For the underdamped mode, however, the amplitude
is a function of both displacement and velocity, since the two are initially
uncorrelated. The latter manifests itself in that an underdamped mode will
stay on a surface, whereas the relation between amplitude and phase of an
overdamped mode reduces the surface to a line.

Since mode 1 is overdamped, such a manifold may be simplified and de-
scribed only by the amplitude. This is done in fig. 5.7, where the torsional
amplitude is plotted versus amplitude of mode 1. Alongside, the linear mode
1’s contribution is plotted, showing significant discrepancies at larger ampli-
tudes. However, with the inclusion of one slave mode (mode 3), determined
via numerical interpolation from the defining simulations, the estimation of
the angular deflection becomes much better.

5.3 Discussion and conclusion
We have presented a methodology for constructing manifolds in dissipative
systems. The procedure is simple, and may be easily implemented in solvers
readily available. The numerical accuracy of the procedure may be increased
by adding certain subroutines to the solver used. Although not discussed,
problems related to bifurcations and instabilities apparently remain as a prob-
lem also within this methodology.

While only demonstrated for 1-d.o.f. manifolds, the method can easily be
used for higher-degrees manifolds. This comes at an increased computational
cost.

The methodology for tracing out manifolds has been applied to a dual-axis
accelerometer. Quasi-analytical manifolds were obtained from a polynomial
fit to the numerical results. This reduced model is nonlinear in nature and al-

75



0.5

0

Exact solution

Mode 3's contribution
Error with 2 modes approximation

1
Amplitude of angular dof

Amplitude of manifold

A
ng

ul
ar

 a
m

pl
itu

de
 (n

or
m

.)

Mode 1's contribution

Figure 5.7: The (normalised) amplitude of angular deformation in torsional
beam is plotted as function of amplitude of of the manifold. Mode 1 (over-
damped) defines the manifold at small amplitudes. Note that estimating the
physical deformation with only two linear modes gives a very small error.

76



lows for quasi-analytical inspection of the nonlinear behaviour of the system.
Nonlinear behaviour of the system was successfully identified in the reduced
model, although the second and third order polynoms used in the reduced
model have limited validity at large nonlinearities.
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PART II

Lumped Modelling



Chapter 6
Lumped Modelling Of A Microfilter

The purpose of this chapter is to present general modelling and simulation
aspects, applicable to a microresonator. The knowledge and results obtained
from that will also be presented. The microresonator’s elements are in two
main energy domains, namely the mechanical and the electrostatic. To be
able to model the system there is a need for understanding mechanics and
electrostatics. The necessary theory is presented. We choose to use equiva-
lent circuits of the mechanics to be able to model the system in an electrical
domain simulator.

Mechanical filters used in electronics have been a subject of research for
a number of decades. A significant number of publications from the 1960’s
and the 70’s can be found (see e.g. [67],[68] and references therein). Various
types of mechanical filters have been proposed, and a number have also been
produced in large numbers for industrial use [67]. Much of the advantages of
MEMS was, however, at that time either unknown or inaccesible for practical
use. However, with the continuously increasing knowledge and processing
capabilities of microstructures, new opportunities have emerged in the area of
mechanical filters/resonators for electronics. The microresonator described in
[69] is an example of this, shown schematically in fig. 6.1. The structure is
quite different from common structures seen in the 70’s, but is still operat-
ing with the same mechanically principles. The electromechanical readout,
however, is different. This is a direct result of the MEMS-technology.

While some research has been carried out in this intriguing area, it appears
that there is still a long way to go before micromechanical filters/resonators
have reached their full potential. The objective of this part is therefore to
highlight modelling aspects, with a primary goal of constructing simple mod-
els that builds physical insight.

6.1 Operating principle and geometry of a
microfilter/resonator

The microresonator investigated in this chapter is of a type proposed in [69].
The structure is shown in fig. 6.1. As can be seen, the system consists of two
clamped beams, with an interconnecting beam between. The red areas denote
pads, where electrical potential can be applied. With a potential applied,
electrostatic forces will set the beam(s) in motion.

Assuming that one beam only has been excited and is vibrating, the inter-
connecting beam will couple the second beam to the motion of the initially
excited beam. The coupling of the two beams results in a transfer-function
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Figure 6.1: Figure of the microfilter. Red area denotes pads.

with certain properties, which will be discussed later. The deformation of the
second beam may then be read by detecting capacitance since the capacitance
is dependent upon the gap-size..

It is clear that modelling such a systems means describing both mechanical
and electrical behaviour, including the electrostatic forcing, which links the
electrical domain with the mechanical domain. Usually, in most systems,
both domains are too complex to be fully described analytically. Instead
the mechanical domain is often modelled by means of the finite element
method whereas the electrostatics is best modelled using the boundary el-
ement method. Few simulators allows for using different methods in one
calculation. Neither will such an approach establish a very good physical
intuition about the system. For these reasons, we have chosen to separate the
modelling of the two domains, and couple them to describe the full system at
a later stage.

6.2 Governing equations in mechanics
The Cauchy-equation serves as the fundamental governing equation of me-
chanics, just as the Maxwell equations are the fundamental equations of elec-
trodynamics. The assumption of continuity is observed, and the Cauchy-
equation reads:

∇ ·T+ ρb = ρa

HereT is the stress tensor, b is the body forces, a is acceleration, and ρ is the
density of the material.

6.2.1 Beam theory
In this section a brief review of beam theory is given. This is obviously of
importance, since the main mechanical building-blocks of the microresonator
are beams.
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The most commonly encountered beam is perhaps the slender beam. The
modelling of long, thin beams is done using Euler-Bernoulli theory. Fol-
lowing this commonly used theory, the governing equation of forced lateral
vibration of a nonuniform beam is [70]:

d2

dx2

µ
EI(x)

d2

dx2
w(x, t)

¶
+ ρA(x)

d2

dt2
w(x, t) = f(x, t)

The parameters are: E Young’s modulus, I second moment of area, A cross-
sectional area, x position along beam, t time, w transversal deflection of beam,
f force. For a uniform beam, we obtain the governing equation:

EI
d4

dx4
w(x, t) + ρA

d2

dt2
w(x, t) = f(x, t)

The equations are based on elementary beam theory. Proper boundary condi-
tions must be imposed when solving the problem.

For thicker beams, effects of rotary inertia and shear deformation become
increasingly important. These effects are included in the Timoshenko beam
theory. The equation for forced vibration of a uniform beam is [70]:

EI
d4

dx4
w + ρA

d2

dt2
w − ρI

µ
1 +

E

kG

¶
d4

dx2dt2

+
ρ2I

kG

d4

dt4
w +

EI

kAG

d2

dx2
f − ρI

kA

d2

dt2
f − f = 0

where k is the Timoshenko shear coefficent and G is the shear modulus. For
free vibration of a simply supported beam, this reduces to:

EI
d4

dx4
w + ρA

d2

dt2
w − ρI(1 +

E

kG
)

d4

dx2dt2
+

ρ2I

kG

d4

dt4
w = 0

We search for the natural frequencies of a simply supported beam. Assuming
the deformation shape:

w(x, t) = C sin
³nπx

L

´
cos (ωnt)

And the beam equation reduces to:

ω4n + ω2nK1(n) +K2(n) = 0

We note that for each n, we have two natural frequencies, the lower corre-
sponding to bending deformation mode and the higher corresponding to the
shear deformation mode. While the two natural frequencies are different, the
mode shapes are equal [70], see also fig. 6.2.

Other and more sophisticated beam theories exist. E.g. does third-order
theory take into account a more accurate stress-distribution than Timoshenko
beam theory does [71]. Although these more advanced methods should be
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B) Shear deformation

C) Bending deformation

A) Undeformed beam

Figure 6.2: Deformation shapes of a simply supported beam. The shape of the
shear deformation mode and bending deformation mode are equivalent when
we look at the central axis of the beam (broken line). The cross-sectional
deformation of the beam is, however, dependent upon deformation mode.
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Slender beam

Timoshenko beam

Figure 6.3: The notation for both Euler-Bernoulli elements and Timoshenko
beam elements are shown above. The blue arrows are in the case of seperation
between shear and bending deformation in the Timoshenko beam element.

more accurate, a possibly larger source of inaccuracy is, for short and thick
beams, the complex stress-distribution (and for that case the dynamics) that
possibly exists nearby the boundary conditions. These effects are not included
in general beam theory. To analyse the effects of the boundary conditions, a
more in-depth nuumerical analysis must be performed. The need for a truely
accurate beam theory for short beams is therefore of limited value. For these
reasons, no other advanced theories than the Timoshenko beam theory are
presented here.

6.2.2 Beam elements of Euler-Bernoulli and Timoshenko beams
In the above, we presented the governing equation for an Euler-Bernoulli
beam. However, the form of the equation limits the practical use. A more
suitable form to describe the behaviour is by means of a finite element. This
makes it much easier to model system with several joined elements, like
beams, masses and dampers. The Euler-Bernoulli beam element is indeed
well-known and commonly used. Presented with two degrees of freedom at
each node, it is:

F1
M1

F2
M2

 =


12EI
L3

6EI
L2

−12EI
L3

6EI
L2

6EI
L2

4EI
L

−6EI
L2

2EI
L−12EI

L3
−6EI

L2
12EI
L3

−6EI
L2

6EI
L2

2EI
L

−6EI
L2

4EI
L




u1
φ1
u2
φ2

 (6.1)

See fig. 6.3 for directions. In a more compact fashion and including also
inertial forces, it is written as:

[F ] = [M ] [ẍ] + [K] [x]

While Timoshenko beam theory is quite well known, finite elements repre-
senting the Timoshenko beam are less often encountered. In the literature,
various elements trying to replicate the properties of the Timoshenko beam
have been presented [71], [72], [73], [74]. There are two basically differ-
ent approaches to representing such an element. One way is to change the
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mass and stiffness matrices so as to reflect the increased influence of rotary
inertia and shear deformation with increased thickness of the beam. The
other method is to split the state-vector into bending deformation and shear
deformation, leading to an increased number of states. However, this method
will directly give two natural eigenfrequencies per degree of freedom, whose
existence are indicated in the Timoshenko beam equation. Below, general
equations for both approaches are shown:

[F ] = [M +∆M ] [ẍ] + [K +∆K] [x]·
F
0

¸
=

·
M11 M12

M21 M22

¸ ·
ẍbend
ẍshear

¸
+

·
K11 K12

K21 K22

¸ ·
xbend
xshear

¸
6.2.3 Nonlinear Beams
So far, only linear systems have been presented. This may be a serious over-
simplification in some systems, since nonlinearities may be present. Non-
linearities may stem from large displacement (large geometrical changes of
structure) or material nonlinearity. External effects, like damping, may obvi-
ously also introduce nonlinearities in the system, but they are not discussed
here. Nonlinear mechanical systems are often solved numerically by iteration.
In this chapter, we will not discuss nonlinear beams.

6.2.4 Consistent forcing in finite element models
Consider a distributed external force over e.g. a part of a beam. Given the
nodes, it is quite tempting to simply redistribute the external forcing so that
it can be allocated to the nodes. Although apparently correct, simply re-
distributing the external force over the nodes is in fact generally inconsistent.
To find the consistent forces, the shape-functions of the elements need to be
considered. The shape functions are the link between nodal displacement
and the displacement between the nodes, and are used to derive the element
matrices. Details on this can be found in i.e. [4].

6.3 Electrical equivalent of mechanical systems
The preference for using different strategies for different energy domains have
already been mentioned. While there are good reasons for this, other argu-
ments can be made for treating the different domains in a consistent environ-
ment. For example, mechanical finite element models can be represented in
terms of electrical equivalent circuits, enabling the electrical circuit designer
to use well-known simulators like SPICE. Equivalent circuits and how to build
them will be presented here.

At a first glance, one should note similarities between mechanical lumped
systems and electrical circuits. In electrical circuits, Kirchoff’s voltage law
and current law, are akin to Newton’s 2. law and the kinematic equations in
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i1

V1

i2
+ +

V2

- -

Z

i1

V1

i2
+ +

V2

- -

Y

Figure 6.4: Two simple two-port elements.

mechanics. But before discussing how to construct electrical equivalents of
mechanical finite element models, some basic knowledge regarding electrical
systems are presented. The analogies between the electrical and the mechan-
ical domains are also investigated to enable us to construct the equivalent
circuits correctly.

6.3.1 Two-port elements
A convinient way of representing electrical circuits is by the use of two-
port elements. Of course, n-port elements may also be used, but a two-port
element suffices here. Assuming the element to be linear, a relation between
voltage and current at the ports can be written in terms of the [ABCD]-matrix
reference:

·
V1
i1

¸
=

·
A B
C D

¸ ·
V2
−i2

¸
ABCD =

·
A B
C D

¸

Two simple general examples are shown in fig. 6.4 to demonstrate the method.For
these two examples, the matrices becomes:

[ABCD] =

·
1 0
Y 1

¸
[ABCD] =

·
1 Z
0 1

¸

Besides the two basic elements presented, a few more elements may come in
handy, these are presented in the table:
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Figure [ABCD] Name
i1

V1

i2
+ +

V2

- -

N:1

·
N 0
0 1

N

¸
Transformer

i1

V1

i2
+ +

V2

- -

f:g

·
0 − 1

f

−g 0

¸
Gyrator

C

i1

V1

i2
+ +

V2

- -
·

1 0
jωC 1

¸

Yb

i1

V1

+

-

Ya

i2
+

V2

-

Yc · 1
Yb
(Yb + Yc)

1
Yb

Ya +
YaYc
Yb
+ Yc

Ya
Yb
+ 1

¸
π-network

6.3.1.1 Larger circuits

Two-ports can be combined in different ways to represent larger circuits. If
the system is made up of a set of two-ports connected in cascade, the use
of [ABCD]-matrices are simple and straight forward. In such cases, the
resulting [ABCD]-matrix can be found by multiplying the [ABCD]-matrices
of the two-ports (although one must take proper care of sign conventions):

[ABCDtotal] = [ABCD1] [ABCD2] . . . [ABCDN ]

An alternative description involves the use of admittance matrices. How
port-elements are connected using the admittance matrix is shown in fig. 6.5.
Each of the two-ports may f.ex. consist of the previously shown π-network.
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i1

V1

+

-

i2

V2

i3

V3

i4
+

V4

-

ic Vc

+ -

Figure 6.5: The cascading of 2 two-port elements, resulting in a three-port
element.

In that case, we have the following admittance matrix before connection:·
I1
I2

¸
=

·
Ya + Yb −Yb
−Yb Yb + Yc

¸ ·
V1
V2

¸


I1
I2
I3
I4

 =


Ya + Yb −Yb 0 0
−Yb Yb + Yc 0 0
0 0 Yd + Yf −Yf
0 0 −Yf Yf + Yg




V1
V2
V3
V4


We join by equating currents and voltages at the connecting node:

 I1
Ic
I4

 =

 1 0 0 0
0 1 1 0
0 0 0 1




I1
I2
I3
I4

 = [T1]


I1
I2
I3
I4




V1
V2
V3
V4

 =


1 0 0
0 1 0
0 1 0
0 0 1


 V1

VC
V4

 = [T2]
 V1

VC
V4


This means that: I1

Ic
I4

 = [T1]


Ya + Yb −Yb 0 0
−Yb Yb + Yc 0 0
0 0 Yd + Yf −Yf
0 0 −Yf Yf + Yg

 [T2]
 V1

VC
V4


 I1

Ic
I4

 =

 Ya + Yb −Yb 0
−Yb Yb + Yc + Yd + Yf −Yf
0 −Yf Yf + Yg

 V1
VC
V4


This example serve the purpose of demonstrating how n-ports may be created
by adjoining 2-port elements. With this basic knowledge, the attention is
turned to the electrical analogies.
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6.3.2 The two analogies
Having presented both general two-port elements for electrical circuits and
FE-description of mechanical beams, the next step is to look at how the me-
chanical system can be described in terms of electrical equivalents.

6.3.2.1 Basic electrical equations

The capacitor, resistor and inductor are described by the equations:

V =
1

C

Z
Idt =

1

C
Q

V = RI = R
d

dt
Q

V = L
d

dt
I = L

d2

dt2
Q

We see the similarities with mechanical forces. Equivalent equations of the
mechanical forces may be done in two manners, following either the e → V
analogy (effort→voltage) or the f → V analogy (flow→voltage). In the
mechanical domain, force is an effort while velocity is a flow.

e→ V f → V
Direct analogy Mobility analogy

Mech. El. El.
F V I
d
dt
x I V

M d2

dt2
x L d2

dt2
q = L d

dt
I C d

dt
V = I, CV = q

D d
dt
x R d

dt
q = RI 1

R
V = I, 1

R
d
dt
V = q

Kx 1
C
q = 1

C

R
Idt 1

L

R
V dt = I, 1

L

R R
V dt2 = q

Recalling that a 1-d.o.f. mechanical system is written in the manner:

M
d2

dt2
x+D

d

dt
x+Kx = F

we see that the electrical equivalent in the f → V -convention is:

C
d

dt
V +

1

R
V +

1

L

Z
V dt = I (f → V )

From this it is seen that the mechanical elements that are placed in parallel
have an equivalent circuit with electrical elements also placed in parallel. In
the case of creating an electrical equivalent in the e → V -convention, the
result is:

L
d2

dt2
q +R

d

dt
q +

1

C
q = V (e→ V )
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k1k2
12

Figure 6.6: A simple mechanical system consisting of two springs.

This can be realized by placing the electrical elements in series. Hence it
appears to be a relation between parallel mechanical elements and serial elec-
trical elements and vice versa in the e→ V analogy. For the general case, the
system may have n d.o.f.’s. How these equivalent circuits can be constructed
for such systems will be considered more closely in the following.

6.3.3 e→ V (Direct analogy)
For the case of creating a network parallel to a mechanical finite element
model with n d.o.f.’s, it is of importance to realize that the parallel to the stiff-
ness and mass-matrix is the impedance matrix. Also, in many practical cases,
the stiffness matrix may be inverted to obtain the compliance matrix. This, in
turn, is the equivalent admittance matrix. From what was shown earlier, the
relation between the admittance matrix and the circuit is quite simple. How-
ever, understanding the relationship between the electrical equivalent and the
mechanical system need not to be based on the complicated matrix-inversion
process, since this is not a very transparent process. A better alternative
may be to look at single elements and what forces attack them. From this,
equivalent circuits of each single element can be created. The second step
will then be to join these electrical elements that can be connected without
violating the governing equations. Doing this, it soon becomes apparent that
there is a very close relationship between mechanical elements in parallel and
electrical elements in series, and vice versa. However, for the general case,
coupling elements exist that make it impossible to directly use the parallel-
serial relation.

6.3.3.1 Example 1

Assume two springs connected in series, with the right side of the first spring
fixed, see fig.6.6. The stiffness matrix for such a system is:

[K] =

·
k1 + k2 −k2
−k2 k2

¸
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k1
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F +F1 2

 X1

F2

X2  X1
c d
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V =F
I =v -v
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cd 2 1

(V =F =0)a 1
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c d
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C2

V =F
I=v
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k1k2 12

F2
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a b
C1 V =F +F

I =v
b 2 1

ab 1

Figure 6.7: In the two upper boxes, the springs are separated, and the proper
displacements and forces are shown. On the right side, the equivalent circuits
are shown ( d

dt
x = v, C = 1

K
). The bottom box shows how these two springs

are connected and what the equivalent circuit looks like. (e→ V convention)

The admittance and impedance matrices then becomes:
Admittance, [Y ]: Impedance, [Z]:

jω

· 1
k1

1
k1

1
k1

1
k1
+ 1

k2

¸
1
jω

·
k2 + k1 −k2
−k2 k2

¸
For this simple system, it is quite tempting to use the admittance matrix

directly to create an equivalent circuit. However, we will here demonstrate
the generally more transparent method of constructing an electrical equiva-
lent of each single mechanical element, and then connect these small circuit-
elements to form the equivalent of the full system. First, an equivalent of
each single spring element is created, without being connected to any other
elements, see fig. 6.7. Hence, each spring is designated its own equivalent
electrical element (capacitance):·

Vab
Vcd

µ
=

F1 + F2
F2

¶¸
=

· 1
Y1

0

0 1
Y2

¸ ·
Iab
Icd

µ
=

v1
v2 − v1

¶¸
Secondly, the elements should possibly be joined. To aid in this, the mechan-
ical analogies have been included in the equations. This is also done in fig.
6.7, where the task of joining the subcircuits appears quite manageable and
understandable.
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m2
3
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1
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Figure 6.8: A system of 4 springs and 2 masses.

Here F1 and F2 are external forcing on the respective nodes.

6.3.3.2 Example 2

A more complex structure will now be analyzed. Assume the mechanical
system shown in fig. 6.8. In this example, the starting point is to create
electrical equivalents of each single spring element. From the topography,
the electrical elements are joined to form the electrical equivalent of the static
system, see left side in fig. 6.9. However, the circuit is not complete before the
inertial effects are incuded in the electrical equivalent. Trying to implement
the inertial effects in the same manner as the springs, reveals a problem. The
inertial effects are a function of acceleration relative to ground. However, in
fig. 6.9 it is apparent that the variables (current/displacement) needed are not
directly available. Therefore, the inertial force must be reformulated to be in
terms of available variables in the electrical equivalent:

m1ẍ2 = m1 (ẍ2 − ẍ3) +m1ẍ3 Reformulated
m2ẍ3 = m2ẍ3 Ok

The effect can now be readily implemented in the equivalent circuit, which
can be seen in right side of fig. 6.9.

Inserting the inertial effects in the electrical equivalent demonstrated that
single mechanical elements may result in a number of electrical elements.
The same can be true for spring elements, if their connections do not match
available variables. These spring elements must be implemented in the same
manner as the inertial effects was.

6.3.4 f → V (Mobility analogy)
While in the e → V analogy, the impedance matrix is the equivalent to the
stiffness matrix, the admittance matrix is the equivalent to the stiffness matrix
in the f → V convention. We recall that building an admittance-matrix for
larger circuits, involved adding the admittance-values for the smaller two-
ports to form the full admittance matrix. This is in direct parallel to the
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Figure 6.9: LEFT SIDE: Mechanical system with 4 springs, excluding the
inertial forces. RIGHT SIDE: Equivalent circuit of the mechanical system
with 4 springs, including the 2 masses.(e→ V convention)

Figure 6.10: Picture of beam section along with directions used. Below is
shown how a number of sections may be joined to form a longer beam.

creation of a stiffness matrix, where any new stiffnesses, e.g. arrising from
a spring, is implemented in the matrix by simply adding it in at the correct
places. Hence adjoining beam elements to nodes in the mechanical structure
is equivalent to adjoining electrical equivalent to the nodes in the electrical
circuit ([75], [76]).

6.3.4.1 Example with static 2–D beam elements

In this section it is demonstrated how to build an electrical equivalent of
a slender beam. The beam in itself may be discretized into a number of
subsections, see fig. 6.10. The element formulation of an Euler-Bernoulli
subsection is expressed analytically in eq. 6.1. Expressed by the equivalent
electrical parameters in the f → V analogy it is:


I1
I2
I3
I4

 = 1

jω


12EI
L3

6EI
L2

−12EI
L3

6EI
L2

6EI
L2

4EI
L

−6EI
L2

2EI
L−12EI

L3
−6EI

L2
12EI
L3

−6EI
L2

6EI
L2

2EI
L

−6EI
L2

4EI
L




V1
V2
V3
V4


Assuming the circuit in fig. 6.11, it is noted that the admittance matrix ex-
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Figure 6.11: The electrical equivalent of a 2-d Euler-Bernoulli beam element
in the f → V convention.

pressed in terms of the admittances are:
I1
I2
I3
I4

 =

P

Y1,j −Y1,2 −Y1,3 −Y1,4
−Y2,1

P
Y2,j −Y2,3 −Y2,4

−Y3,1 −Y3,2
P

Y3,j −Y3,4
−Y4,1 −Y4,2 −Y4,3

P
j Y4,j




V1
V2
V3
V4


From this it can be seen that:

Yi,i =
X
j

1

jω
Ki,j

Yi,j = − 1
jω

Ki,j i 6= j

The values of the inductances may be negative. So far we have obtained the
electrical equivalent for the static problem of the single beam element.

The second stage is to connect two elements, forming a longer beam (one
could simply change the length of the beam element instead, but that would
not demonstrate the principle we want to show). For simplicity, the elements
are assumed to be identical. The procedure mentioned above, namely adding
the admittance values at the correct nodes, is followed. This is equivalent to
connecting the subcircuits at the proper nodes, see fig. 6.12.The subcircuits
are clearly recognized.

6.3.4.2 The case of a dynamic system

In the above, the system was assumed to be static. A further developement
of the tool is to allow for dynamic models. Recall that the equivalent of the
stiffness and mass matrices is the admittance matrix. Hence the admittance
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Figure 6.12: The equivalent circuit of two beam elements connected. The
nodes 3 and 4 are connected with nodes 5 and 6 respectively. (f → V
convention)

Yi,j Li,jRi,jCi,j

Figure 6.13: Equivalent circuit when stiffness, damping, and inertial effects
are included. (f → V convention)

matrix must be equivalent to the sum of the stiffness, the damping, and the
mass matrices:

Yi,i =
X
j

µ
1

jω
Ki,j +Bi,j + jωMi,j

¶
Yi,j = − 1

jω
Ki,j −Bi,j − jωMi,j i 6= j

Elements with such an admittance is simply an inductor, a resistor and a ca-
pacitor in parallel, see fig. 6.13. This proves to be a convenient property, since
it means that the equivalent static model (inductances) can be constructed first,
and then the dynamic effects (resistors and capacitances) can be included by
simply placing the elements in parallel to the inductances.

Above, the creation of electrical equivalent models of linear FEM-models
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have been presented. The question of external forcing has been indirectly
answered by the introduction of the current injection at the electrical nodes.

6.3.5 Conclusions and discussion on electrical equivalents
Both the f → V analogy and the e → V have now been presented. Both
methods prove to be able to replicate mechanical systems described in terms
of stiffness, damping and mass matrices. The two analogies obviously result
in very different electrical equivalents. From the above, it can be concluded
that in the f → V analogy there is a 1 to 1 mapping of mechanical elements
and variables into electrical equivalents. This is generally not true in the
e→ V convention, making the system less transparent in terms of seeing the
relation between the electrical equivalent and the mechanical system. Also
the way external forces are applied to the electrical equivalent in the e → V
analogy appears more complicated and less transparent than in the f → V
analogy.

There is a discussion of choice of analogy in [75], where the relation
between electrical and mechanical switches is shown to be perfectly natural
in the f → V analogy. The e → V analogy, on the other hand, gives a
much less logical relation. For example, on/off states in a mechanical switch
is represented by the opposite states in the equivalent electrical switch.

The case of having nonlinear effects present is also of importance. Non-
linear effects are most often described either as a black-box model, where
the FEM-matrices are generated iteratively, or as an analytical formulation.
In the former case, the circuit must be regenerated each single time for the
piecewise linearized model and no advantage of one analogy over the other
appears to exists. In the latter case, the nonlinearity is known a priori, and may
be directly implemented. The analytical description of the nonlinear element
is often based on the nonlinear relation between the nodes of an element. For
the case of the f → V analogy, the implementation can be done directly,
but in the case of utilizing the e → V analogy, the nonlinearity may have
to be reformulated to fit the available states in the circuit constructed. This
is analogous to the implementation of m1 in example 2 in section 6.3.3.2
regarding e→ V analogy.

As shown, the e→ V analogy is generally inferior to the f → V analogy.
The drawbacks can, however, for certain types of systems be diminshed. E.g.
can some mechanical systems be expressed in the eigenspace with diagonal
stiffness, damping, and mass matrices. For such systems, the drawbacks as-
sociated with large connectivity are removed.

6.4 Electrostatic transducers

6.4.1 A transducer element
Many types of transducer elements and their electrical equivalent structures
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Fixed electrode

Electrode on surface

DamperSpring

Figure 6.14: A transducer-element including mass and damper elements.
Note that positive direction for force and displacement is upwards.

have been discussed in the literature, see e.g. [67] and references therein.
However, older publications tend to not consider the electrostatic transducers.

In the MEMS-world, however, the electrostatic transducer is a key ele-
ment, being used for excitation of mechanical elements and for electrical read-
out of mechanical states ([77],[78],[36]). An important property of electrosta-
tic transducer elements is their nonlinearity. This is obviously a complicating
matter for both modelling and utilization of these transducers. A simple trans-
verse electrostatic transducer element, including mass and damper elements,
is shown in fig. 6.14.

To develope the governing equations for such a system, it is convinient to
look at the energy conserved in such a system:

E =
1

2
kx2 +

q2 (d+ x)

2ε0Ae
+
1

2
mv2

where Ae is area of capacitance, q is charge and d is initial height of gap
between the electrodes with the spring relaxed. The displacement of the upper
electrode is given by x, while the velocity is v. Spring stiffness and mass is
given by k and m. From the energy expression, the relations between force,
voltage, current, and displacement can be developed.

6.4.2 e→ V analogy
The e → V analogy of electrostatic transducers have been thoroughly inves-
tigated to create equivalent circuits in i.e. [77], [78]. The equivalent circuit of
the system shown in fig. 6.14 is presented in fig. 6.15 (taken from [77]]).Note
that the equivalent circuit is linearised around a bias-point. The variables are:
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∆i ∆v

∆V ∆F

Figure 6.15: The e→ V equivalent circuit of the system shown in 6.14. The
left side of the transformer is the electrical input, while the right side is the
electrical analogy of the mechanics. (Taken from [77])

C0 =
Q0

V0
=

ε0A0
d+ x0

Γ =
Q0

x0
=

ε0A0V0

(d+ x0)
2

k0 = κ2k =
Γ2

C0
=

ε0A0V
2
0

(d+ x0)
3

k∗ = km − k0

km = - spring stiffness
Rm = - viscous damping
Lm = - mass
v = - velocity
d = - gap
x0 = -displacement of spring at V0

We note the amplitude dependency (nonlinearity) of the parameters. The
[ABCD]-matrix is:

[ABCD] =

·
1 0

iωC0 1

¸ ·
1
Γ
0

0 Γ

¸ ·
1
¡
k∗
iω
+Rm + iωLm

¢
0 1

¸
[ABCD] =

·
1
Γ

1
Γ

¡
k∗
iω
+Rm + iωLm

¢
iωC0

Γ
iωC0

Γ

¡
k∗
iω
+Rm + iωLm

¢
+ Γ

¸
[ABCD] =

·
1
Γ

1
Γ

¡
k∗
iω
+Rm + iωLm

¢
iωC0

Γ
iωC0

Γ

¡
km
iω
+Rm + iωLm

¢ ¸ (6.2)

As seen in the example it is rather straight forward to construct this equivalent
circuit for a system with 1 mechanical degree of freedom. More often, the sys-
tems are distributed, and a number of mechanical d.o.f.’s may be influenced
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y

x

Figure 6.16: A beam with a capacitor placed arbitrarily underneath. The
ccapacitors are marked in red. Boundary-conditions for the beam are not
included in the schematic, and can be chosen freely.

by the capacitor.

6.4.3 Distributed-parameter system for a beam
In [78], a distributed-parameter system is presented for the case of a single-
sided fixed beam with an electrode covering the length of the beam. The
mechanical system is represented in terms of eigenvectors, which makes the
construction of the equivalent circuit of the mechanical system easier (since
the e→ V convention is assumed).

The equations given in [78] can be slightly modified to allow for the more
general case of a uniform beam with shorter electrodes placed at an arbitrary
position along the beam, see fig. 6.16.

The developement of the equations need to be done in a correct manner.
A good starting point is to look at the electrical energy stored in each infini-
tesimal transducer element (Us,e is the energy density per area, while dAn is
the infinitesimal electrode area. Surface charge density is given by σ, and x is
change in gap due to deformation of beam):

Us,e =
1

2

(σ (y, z))2

ε0
d+x(y)

We =
X
j

Us,e,jdAj =
X
j

1

2

(σj)
2

ε0
d+xj,0

dAj

Clearly, this is an analytical approximation that does not include fringing
fields. From the energy expression, we can find the potential and force:

V (y, z) =
d

dσ

Ã
1

2

(σ (y, z))2

ε0
d+x(y)

!
w=constant

=
σ (y, z)

ε0
d+x(y)

Fdensity (y, z) =
d

dx

Ã
1

2

(σ (y, z))2

ε0
d+x(y)

!
σ=constant

=
(σ (y, z))2

2ε0
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Assuming that the operation is small around a bias point, it follows:

∆V (y) =
dV

dσ
∆σ +

dV

dx
∆x =

d+ x0
ε0

∆σ +
V0

d+ x0
∆x

∆Fdensity (y) =
dFdensity

dσ
∆σ +

dFdensity

dx
∆x =

V0
d+ x0

∆σ + 0∆x

For convinience, the position dependencies of the parameters have been ig-
nored. With a perfect conductor, the potential will be constant and the equa-
tions may be simplified:

∆V (y) =
d+ x0 (y)

ε0
∆σ (y) +

V0
d+ x0 (y)

∆x (y)

∆Fdensity (y) =
V0

d+ x0 (y)
∆σ (y)

Next stage now, is to discretize the equations, giving:

∆Vj =
d+ xj,0

ε0
∆σj +

V0
d+ xj,0

∆xj (6.4a)

∆Fj =
V0

d+ xj,0
∆σj (6.4b)

∆V1
...

∆VN
∆F1

...
∆FN


=



B1 0 0 C1 0 0

0
. . . 0 0

. . . 0
0 0 BN 0 0 CN

A1 0 0 0 0

0
. . . 0

0 0 AN 0 0





∆σ1
...

∆σN
∆x1

...
∆xN


(6.4c)

With the latter sub-equation in mind (eq. 6.4c), we may impose the assump-
tion of a perfect conductor. Such an added assumption gives a strong relation
between the voltage, the distributed surface charge, the distributed force, and
the deformation.

To be able to construct the exact equivalent circuit, the bias-point around
which the system is linearised must be found. This is done by solving the full
nonlinear system at the given voltage (or charge).

Continuing to focus on the e→ V convention, we are now ready to create
the full equivalent circuit with the discretized description of the transducer.
In the previous discussions, problems encountered in constructing equivalent
circuits in the e → V convention of arbitrary mechanical systems were em-
phasized. Very often, the best choice would be to represent the mechanical
system in the eigenspace, and not the original k-space of the system. Nonethe-
less, consideration should be given to the modelling of the transducer when
the mechanical system is represented in the k-space. Eq. 6.4c appears to be
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similar to a number of unconnected transducer elements. However, with the
assumption of a perfect conducter, the transducer elements may be connected
to have the same voltage. This means that the equivalent circuit may be con-
structed as given in fig. 6.17 (the equivalent circuit of the mechanical part has
been omitted for simplicity, since the electrical equivalent of the mechanical
system in the e→ V analogy is not obvious). The parameters are given as:

C0 ≈
Z
Aelectrode

ε0
d+ x̄0

dA x̄0-average displacement over electrode

Γj =

Z
Aelectrode j

ε0V0

(d+ x0,j)
2dAj

k0j =
V 2
0 ε0

(d+ xj,0)
3

Another alternative in creating the equivalent circuit is to represent the
mechanical system in the eigenspace. The advantage of this is that the me-
chanical system will become a set of uncoupled ordinary differential equa-
tions, hence it is very easy to create an equivalent circuit of the mechanical
system. Looking only at the capacitance and the transformer, i.e. disregarding
the mechanical system and the electrostatic spring effect, it holds :·

∆V
∆I

¸
=

· £
1
Γ

¤
[0]£

iωC0
Γ

¤
[−Γ]

¸ ·
∆Ftransformer

∆xtransformer

¸
For the distributed system, the variables∆V , I , ∆Ftransformer, and xtransformer

are obviously vectors, while the elements
£
1
Γ

¤
,
£
C0
Γ

¤
, and [−Γ] are diagonal

matrices. The goal is now to diagonalize the mechanical system by transform-
ing it into the eigenspace. In doing so, the electrostatic spring effect must be
included. The eigenvectors can be found by solving the eigenproblem of the
equation:

[M ] [ẍ] + ([K] + [Kes]) [x] = [0]

where [Kes] resembles the electrostatic spring effect. With the eigenvectors,
[Q], at hand, the transformation of the governing equation is done:·

∆V
∆I

¸
=

· £
1
Γ

¤
[0]£

iωC0
Γ

¤
[−Γ]

¸ ·
[Q] [0]
[0] [Q]

¸ ·
∆F q

transformer

∆xqtransformer

¸
=

· £
1
Γ

¤
[Q] [0]£

iωC0
Γ

¤
[Q] [−Γ] [Q]

¸ ·
∆F q

transformer

∆xqtransformer

¸
And from the latter it is clear that the submatrices

£
1
Γ

¤
[Q],

£
iωC0

Γ

¤
[Q], and

[−Γ] [Q] are no longer diagonal (except in special cases). This means that
the transducer elements can no longer be described in the simple manner
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∆vn

∆F2
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Figure 6.17: An equivalent circuit of the electrostatic transducer. This figure
assumes that the mechanical part is represented in its k-space and modeled in
the e→ V convention. (vj = ẋj).
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depicted in fig. 6.17. A more complex topology of the transducer elements
linking the voltages and charges with the displacement and forces defined
in the eigenspace must be created. This can be examplified by applying a
force in a single d.o.f. (defined in the eigenspace) implies that energy may be
transmitted through a number of capacitors. This is in contrast to a system
where the mechanics is represented in the k-space, where applying a force on
a single node only interfere with a single capacitor.

6.4.4 f → V analogy
We have earlier discussed the differences between the f → V analogy and the
e → V analogy in section 6.3, where we noted the clear advantages of using
the f → V analogy. The importance of having an equivalent circuit for the
electrostatic transducer for the mobility analogy is therefore unquestionable.
In this section we develope such an equivalent circuit. From eq. 6.2, we
have the [ABCD]-matrix for the e → V analogy. A simple interchange of
variables, and disregarding damping and inertia, leads to :

·
∆V
∆I

¸
=

·
1
Γ

1
Γ
k∗
iω

iωC0
Γ

iωC0
Γ

k∗
iω
+ Γ

¸ ·
∆F
−∆u

¸
direct analogy·

∆V
∆I

¸
=

· − k∗
iωΓ

− 1
Γ−C0

Γ
k∗ − Γ −iωC0

Γ

¸ ·
∆u
−∆F

¸
mobility analogy

This [ABCD]-matrix may be expressed in terms of three simpler [ABCD]-
matrices in cascade. Refering to the multiplicative properties of the [ABCD]-
matrices, we see that:

[ABCDtotal] = [ABCD1] [ABCD2] . . . [ABCDN ]

And hence the full [ABCD]-matrix can be decomposed into three cascaded
[ABCD]-matrices:·

∆V
∆I

¸
=

· − k∗
iωΓ

− 1
Γ−C0

Γ
k∗ − Γ −iωC0

Γ

¸ ·
∆u
−∆F

¸
=

·
1 0

iωC0 1

¸ ·
0 − 1

Γ−Γ 0

¸ ·
1 0
1
iω
k∗ 1

¸ ·
∆u
−∆F

¸
This decomposition gives us the circuit in fig. 6.18.

6.4.4.1 Distributed transducers

As in the previous section 6.4.3, we expand the single d.o.f. system to a
NDOF-system. The same methodology as was used for the e → V analogy,
can be applied here.The results are similar, hence there is generally no way
of decoupling the mechanical system and still keep the topology as indicated
by fig. 6.19. However, the reasons for decoupling the mechanical system is
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∆v

∆F

∆V

Figure 6.18: The equivalent circuit of the transverse electrostatic transducer.
The mechanical spring is included.

∆i

∆V

∆F1

∆F2

∆Fn

∆v1

∆v2

∆vn

Figure 6.19: Equivalent circuit of a distributed transducer-element in the
f → V analogy
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not as accentuated in the f → V analogy as it is in the e → V analogy. For
reasons of transparency and understanding, a decoupling of the mechanical
system may in many situations still be very advantageous. This can obviously
be done, but as indicated earlier when discussing the e → V analogy, at the
cost of introducing more complex transducer circuitry. Transparency of the
transducer element is best attained in the original k-space, since this only
involves a number of simple gyrator elements.

6.4.5 Equivalent circuits without physical interpretation
In the literature there exists examples where the equivalent circuits have been
further elaborated, to create simpler circuits. These circuits have, however, the
drawback that physical interpretation of the parameters and (internal) states
no longer exists (see e.g. [68]). Since a main objective of this work is to
maintain and increase the understanding of system behaviour via modelling
no further attention is given to such circuits.

6.4.6 Transducer elements with numerically calculated fields
In the above, we demonstrated how to build transducer elements based on
analytical approximations of the total energy and the electric field. This
method has obvious drawbacks, due to the inherent inaccuracies of the an-
alytical approximations. To overcome this, the electrostatic problems may be
solved numerically, e.g. using the boundary element methods. Results from
these simulations may then be used directly to obtain the various parameters
in the electrical equivalent. Another possibility is to use the numerical results
in combination with the analytical results, i.e. adjusting the analytical results
to fit with the numerical results, but still keep the parameter dependencies.

Here, basic equations regarding electrostatics and energy are presented
and elaborated on to match the context in which it is used. A natural starting
point is the energy contained in a set of capacitances:

W =
X
i,j

ViCi,jVj

where we have that [C] is the capacitance matrix. From the energy we can
find the charge and the forces on each conductor:

Qi =
dW

dVi |x=constant
=

ÃX
j

(Ci,j + Cj,i)Vj

!
− Ci,iVi

Fi =
dW

dxi |V=constant
=
X
k,j

µ
d

dxi
Ck,j

¶
VkVj −

X
k

µ
d

dxi
Ck,k

¶
1

2
V 2
k

With the equations for the charges and forces available, we may do a lineariza-
tion of the equations, obtaining the relations for the linearized transducer
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element:

∆Q (x) =
dQ

dV
∆V +

dQ

dw
∆x

∆F (x, z) =
dF

dV
∆V +

dFdensity

dw
∆x

[∆Q] = [a] [∆V ] + [b] [∆x]

[∆F ] = [c] [∆V ] + [d] [∆x]

To find the derivatives (or the matrices [a], [b], [c], and [d]), we use the above
equations and get:

dQi

dVm
= C0i,m + C0m,i − C0m,m

dQi

dxm
=

X
j

µ
d

dx0m
(C0i,j + C0j,i)

¶
V 0j −

µ
d

dx0m
C0i,i

¶
V 0i

dFi

dVm
=

X
k

µ
d

dx0i
C0k,m +

d

dx0i
C0m,k

¶
Vk −

µ
d

dx0i
C0m,m

¶
V 0m

dFi

dxm
=

X
k,j

µ
d2

dx0idx0m
C0k,j

¶
V 0kV 0j −

X
k

µ
d2

dx0idx0m
C0k,k

¶
1

2
V 02k

where the zeros indicate the bias point (C0, V 0, x0). Furthermore, we also
recall the importance of the [ABCD]-matrix, and we may formulate the n-
port matrix:·

[∆Q]
[∆F ]

¸
=

·
[a] [b]
[c] [d]

¸ ·
[∆V ]
[∆x]

¸
·
[∆V ]
[∆Q]

¸
=

·
[c]−1 − [c]−1 [d]
[a] [c]−1 [b]− [a] [c]−1 [d]

¸ ·
[∆F ]
− [∆x]

¸

6.5 Boundary element method and parasitic capacitances
We have earlier argued for using lumped models, or finite element models for
modelling mechanical structures, since such structures often tend to be too
complex to model analytically. Likewise does electrostatic problems tend to
be difficult to accurately model analytically. Just like the mechanical prob-
lem, the electrostatic problem can be solved by the finite element method.
However, this is not a very efficient way of solving the electrostatic prob-
lem, since the whole volume must be divided into elements, and a solution
for every element must be found. Another method, the boundary element
method (BEM), does not use volume elements, but boundary elements. That
is, conducting surfaces and interface surfaces are meshed (as surface). From
this, equations relating voltage and surface charges on the various surfaces
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are set up. Hence a more compact model, with less superfluous information,
is created. A drawback, although seldomly of importance, is that the electric
field distribution over the volume is not directly at hand. The field distribution
can be calculated on the basis of the voltages and charges on the surfaces, if
needed. In this work, the most useful property of the BEM, is the compact and
accurate description of relations between charge and voltage on the surfaces.

We have implemented a very simple program that solves 2-D electrostatic
problems by means of the boundary element method. Without going into
much detail, we will briefly present some fundamental aspects of the bound-
ary element method related to the electrostatic problem. The electrostatic
problem is governed by the Laplace-equation:

52φ = 0

where φ is the potential. This equation can be reformulated to Fredholm’s
equations of the first and second kind [79]. These equations then become the
basis of the boundary element formulation. The Fredholm equation of the
first kind governs the behaviour in a volume of constant permittivity, while
Fredholm’s equation of the second kind ensures that continuity is preserved
over dielectric boundaries. The discretization of the Fredholm equations gives
us the means to calculate the elements in the BE-matrix. Hence the Fredholm
equations define the relation between charges and voltages on given surfaces,
lines or points.

Fredholm’s equations can be discretized in various manners. A Galerkin-
method attempts to satsify the boundary conditions over the surface [79]. An
alternative is the ”charge collocation”-method which satisfies the boundary
conditions at a discrete number of points. The latter method is inferior to the
Galerkin-method [79], but nevertheless we chose to use it, due to simpler im-
plementation. The governing system of equations for an electrostatic system
described by the boundary element method appears as:·

A1,1 A1,2
A2,1 A2,2

¸ ·
ρcharge
ρinterface

¸
=

·
Vcharge

0

¸
Here Vboundary is a vector consisting of the voltages on the boundary-elements.
ρcharge is the corresponding surface charges on the elements. ρinterface is the
charges on the dielectric interfaces.

6.6 Modelling and simulations of the microfilter
In this section, we create models of the microfilter with varying number of
degrees of freedom. From the smallest models, the operational principle can
easily be understood, whereas the larger models gives a more accurate picture
of the real system behaviour. Models are created in the order that the smallest
and simplest models are created first, whereas the more complex are created
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afterwards. Simulation results are presented and the results are discussed,
with a special focus on accuracy versus model size.

In the below, we present the parameter values used for the system-simulations:
Lbeam_1 = 50µm Length of main beam 1
Lbeam_2 = 50µm Length of main beam 2
Wbeam = 10µm Width of main beams
Tbeam = 2µm Thickness of main beams
Lcouple = 20µm Length of coupling beam
Wcouple = 3µm Width of coupling beam
Tcouple = 2µm Thickness of coupling beam
ρ = 2.329 · 103 kg

m3 Density of main beam
E = 1.6 · 1011Pa Young’s modulus
d = 2µm Electrode gap
Lcap = 30µm Length of electrode
Wcap = 10µm Width of electrode
ε = 8.854 · 10−12 F

m
Permittivity of vacuum

6.6.1 A 2-d.o.f. model of the microfilter
The starting point for us is to identify a model as small as possible. We will
in the forthcoming do this, describing the process, ending up with a simple
model capturing the main characteristics of the real system.

Referring to fig. 6.1, showing the microfilter, three important mechanical
objects are identified, namely the two main beams and the coupling beam.
While each beam truely contains an infinite number of degrees of freedom
(with the continuum assumption), the models of each beam can be simplified
to contain a finite number of d.o.f.’s.

Looking at the to main beams, they are fixed at the end-points, while the
coupling beam is connected at a point along the beam. For the simulations
here, we assume the coupling beam is connected at the centre (hence not
equivalent with fig. 6.1). We also note that the capacitances are centred. The
electrostatic forces from the capacitances may therefore be approximated to
be attacking at the centre point. With all forcing attacking at the centre point,
the deformation will in large be described by a sinusoidal curve, equivalent to
the lowest eigenfrequency mode. Therefore, we choose the lowest eigenfre-
quency mode as the only degree of freedom to model the deformation of each
of the main beams, see fig. 6.20. Each main beam is therefore modelled by a
single stiffness and a single mass.

The coupling beam is connected to the main beams at each end-point.
These are also the only points that are controllable and observable. Therefore,
we are only interested in the link between force and deformation of the end-
points, where possible deformation of the end-points are defined by possible
deformation-shapes of the main beams. This gives us a stiffness and a mass
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Figure 6.20: The solid line symbolizes the undeformed main beam. The dot-
ted line shows the lowest eigenfrequency mode, which is used in the 2-d.o.f.
model.

that arises from the coupling beam. We will, however, assume the mass of
the coupling beam to be insignificant to the system behaviour, and therefore
disregard it.

Each of the two main beams have their respective (uncoupled) eigenfre-
quencies at ω1 =

q
k1
M1

and ω2 =
q

k2
M2

. Further details of the equations used,
are given as:

ωbeam
∼= 4.72

s
EI

ρAL4

kbeam ∼= 423

1.68

EI

L3

mbeam
∼= 0.845

1.68
· ρAL

kcouple = 12
EI

L3

Here, I is second moment of area, A is cross-sectional area, and L is length
of beam. These equations are consequences of the earlier made assumptions
applied to the Euler-Bernoulli beam theory.

The system described above can be shown schematically. This is done in
fig. 6.21, where also the electrical equivalent of the model is shown (in the
f → V analogy). Furthermore, the system can be described in terms of a
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Figure 6.21: A 2-dof mechanical system and its electrical analogy (f → V ).
The values should be so that ω1 =

q
k1
M1

and ω2 =
q

k2
M2

state-space description:
ẋ1
ẋ2
ẍ1
ẍ2

 =


0 0 1 0
0 0 0 1

−ω21 − kcouple
m1

kcouple
m1

0 0
kcouple
m2

−ω22 − kcouple
m2

0 0




x1
x2
ẋ1
ẋ2

 (6.5)

+


0
0
1
m1

0

 f (t)

y =
£
0 1 0 0

¤
x1
x2
ẋ1
ẋ2


Where f (t) is the mechanical force excitation on the first main beam. y is
equivalent to the maximum displacement of the second main beam. With
the state-space description at hand, it is straight-forward to find the transfer-
function for the system:

H (s) =
y (s)

f (s)

= m1
kcouple s4m1m2

+s2 (m1kcouple +m2kcouple +m1m2ω
2
1 +m1m2ω

2
2)

+m1m2ω
2
1ω

2
2 +m1ω

2
1kcouple +m2ω

2
2kcouple


=

k

(s2 + a2) (s2 + b2)
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2-dof mechanical system
1-dof mechanical system

Figure 6.22: Normalized plot of the transfer-function of the idealized purely
mechanical 2-d.o.f. system. Also included are a plot of a similar system with
only 1 d.o.f. (detection node and excitation node is equivalent for the 1-d.o.f.
system)

Here, the constants a, b, and k are functions of the properties of the beams.
However, by assuming the coupling stiffness, kcouple to be small compared to
the spring stiffness of the main beams, the transfer-function can be simplified:

Hsimple (s) =̃
kcouple
m2

1

(s2 + ω21) (s
2 + ω22)

The transfer-function demonstrates the underlying principle of the filter. By
trimming the eigenfrequencies to be as close as possible, we obtain a transfer-
characteristic of a resonator, see fig. 6.22. Note that the plot is idealized in
that the poles are at the same frequencies. In the same figure, we have also in-
cluded the transfer-function of a system with only one main beam (and hence
no second main beam or coupling beam, H (s) = k

(s2+ω21)
). By investigating

the two transfer-functions, it is seen that sharper fall-off after the peak can be
obtained with systems with more degrees of freedom.

6.6.2 Electrical excitation and detection
The mechanical filter is meant to replace electrical components, and the input
and output of the system should therefore be electrical. We use an electrostatic
transducer to create the coupling between the mechanical and the electrical
parts. For the excitation, we assume a voltage controlled system, and hence
the mechanical forcing can be said to be proportional to the voltage (for
simplicity we disregard nonlinearities at this stage). Obviously, excitation
can also be done assuming a current-controlled system, however, the prin-
cipal behaviour stays much the sames. How detection should be done is,
on the other hand, quite important for system response. Here, two principal
methods will be mentioned, which results in different transfer-functions. The
first method is capacitive detection. The (detection) capacitance is dependent
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Capacitive detection
Detection via current

Figure 6.23: Normalized transfer-function plots of the 2-d.o.f. mechanical
system, when capacitive detection and detection via current monitoring is
employed.

upon gap, and thus one may simply monitor the change in capacitance, which
is proportional to displacement (to first order). The other method relies upon
the same effect, but instead of monitoring the capacitance value directly, the
current that is generated by the (changing) capacitance is monitored. This
assumes that a constant voltage is applied to the detection capacitance. The
result is a current that is proportional to the velocity, and not the displacement
of the detectional degree of freedom. The transfer-characteristics of the two
methods are shown in fig. 6.23, and the transfer-functions becomes:

Hcap (s) ∝ x (s)

f (s)
=̃
kcouple
m2

1

(s2 + ω21) (s
2 + ω22)

Hcurrent (s) ∝ ẋ (s)

f (s)
=̃
kcouple
m2

s

(s2 + ω21) (s
2 + ω22)

A very convinient property of the nonlinear transducer element is that at
small-signal values, there is a nonlinear effect that appears as addditional stiff-
ness. This means that the transducer element can partly change the mechani-
cal system’s stiffness, hence the mechanical system’s frequency response can
be tuned electrically.

6.6.3 2-d.o.f. model with electrical excitation and detection
The 2-d.o.f. model presented above, only includes the mechanical domain,
where excitation is force and detection is displacement. Clearly, we would
prefer a model that has an electrical input and output. This can be done by
including the capacitances into the model. This is done by introducing the
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electrostatic transformers to the model, where we use the analytical equations:

·
∆F
∆I

¸
=

"
Γ

³
kbeam−k0

iω
+ iωmbeam

´
−Γ iωC0

#·
∆V
∆ẋ

¸
C0 =

ε0Aelectrode

d+ x0

Γ =
ε0AelectrodeV0

(d+ x0)
2

k0 =
ε0AelectrodeV

2
0

(d+ x0)
3

We assume the excitation to be voltage-controlled. For this simplified model,
we also assume the electrostatic transducer for detection to be voltage-controlled:

·
∆Fn

∆In

¸
=

"
Γn

³
kmech,n−k0n

iω
+ iωmmech,n

´
−Γn iωC0,n

#·
∆Vn
∆ẋn

¸
Note that this is the linearized equation around an operating point. Inserting
the above into eq. 6.5, we get the linearized state-space model:


∆ẋ1
∆ẋ2
∆ẍ1
∆ẍ2

 =


0 0 1 0
0 0 0 1

−ω21 + k01−kcouple
m1

kcouple
m1

0 0
kcouple
m2

−ω22 + k02−kcouple
m2

0 0




∆x1
∆x2
∆ẋ1
∆ẋ2



+


0 0
0 0
Γ1
m1

0

0 Γ2
m2

 · ∆V1
∆V2

¸

y =
ε0Aelectrode

d+ x2Ã
Γn =

ε0AnVdc,n
gap+xn,static

k0n =
εAnV 2

dc,n

(gap+xn.static)
3

!

Note that we have assumed a capacitive detection that is voltage-controlled.
The electrical equivalent, including the electrostatic transducer is shown in
fig. 6.24.

6.6.4 Simulation results
In the simulations, we have assumed that both excitation and detection have a
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Figure 6.24: The electrical equivalent of the 2-d.o.f. model, where the elec-
trostatic transducer is included (f → V analogy).

static offset on voltage equivalent to 1 Volt:

V1,static = 1V olt

V2,static = 1V olt

With the static voltage, the system is solved nonlinearly with respect to sta-
tic deformation. This information is again used in the state-space model, to
obtain a linear approximation to the system response. Vital information and
results can be summed up in the below table:

Beam 1 Beam 2
Frequencies of beams ω = 4.28 · 107 ω = 4.28 · 107
Applied static voltage 1V 1V
Static deformation (∆xdc) 1.54 · 10−7µm 1.54 · 10−7µm
Static capacitance (C0,dc) 1.328 · 10−15 1.328 · 10−15
Applied AC-voltage 0.5V 0V
Low-frequency deformation (∆xac) 2.38 · 10−8µm
Low-frequency ∆capacitance
(∆Cac)

3.17 · 10−23

Eigenfrequencies of system ω1 = 4.28·107 ω2 = 5.15·107
(∆ symbolizes the amplitude of the sine)
Of importance at this stage, is the fact that we have ignored dissipative

effects. Surrounded by an appropriate atmosphere with low pressure, lit-
terature suggests that dissipation will generally be quite low, with examples
ranging from Q’s in the 100’s to measurements over 105 for the mechanical
structure ([80], [81], [82], [83]).This implies that the amplitudes in the table
will at resonance be likely to be augmented by a factor in the range 103-105,
assuming a linear system.

In fig. 6.25, we also show the frequency-response of the detection. This is
calculated using a linearized system and assuming no dissipation, but due to
vizualisation the infinite peaks are not shown.
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Figure 6.25: The transfer-functions of the system, with voltage as input and
displacement of second beam as response. Right plot is shows a section of
left plot.

6.6.5 Nonlinear analysis
Whilst the calculations apparently give good information about what values
to expect, there are nonlinear effects in the system that we so far have ignored
to a large extent. Looking at the definition of the parameters in the state-
space model, we realize that there are two nonlinear effects, namely voltage-
dependent nonlinearities and displacement-dependent nonlinearities. Com-
paring with the linear simulation above, it becomes clear that the displacement-
dependent nonlinearities are comparatively small, since the gap at all times are
much larger than the displacement. The voltage–dependent nonlinearities are,
on the other hand, apparently very large. This is due to the excitation, which
is quadratic in voltage(∝ V 2

1 ). This becomes a significant nonlinearity with
the values we have used, where V1 = 1V + 1V · sin (ωt). It is therefore in
place to analyse the full system. The nonlinear state-space model is:


ẋ1
ẋ2
ẍ1
ẍ2

 =


0 0 1 0
0 0 0 1

−ω21 − kcouple
m1

kcouple
m1

0 0
kcouple
m2

−ω22 − kcouple
m2

0 0




x1
x2
ẋ1
ẋ2



+


0
0

−εA1V 21
2(g+x1)

2
1
m1

−εA2V 22
2(g+x2)

2
1
m2


y =

ε0Aelectrode

d+ x2
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Once again we note that the nonlinearities due to displacement are small
(this can be verified by looking at static displacement and scale it with the Q-
factor). This is not generally true, since one may obtain static displacements
as large as 1

3
of the gap before pull-in, given sufficient voltage. Since we do

not look at such large voltages, the nonlinearity in excitation voltage is much
more interesting. As indicated in the earlier section demonstrating the linear
system, this nonlinearity may be utilized to adjust the system by applying a
DC-voltage over one of the capacitances. For small AC-values of the voltage,
the system behaves linearly. However, for larger values, a sine-excitation in
voltage will have two frequency-components in mechanical forcing:

V 2 = (Vdc +∆V sin (ωt))2

= V 2
dc +

∆V 2

2
+ 2Vdc∆V sin (ωt)− ∆V 2

2
cos (2ωt)

For excitations at frequencies at or above the system’s two eigenfrequencies,
this can often cause little problem since the parasitic frequency is twice that
of the main part. For lower frequencies, however, this can be a problem since
an excitation at low frequencies may be meant to be filtered out. The main
part will in such a case be filtered out, put the parasitic frequency might be
close to the system’s eigenfrequencies and thereby not filtered out.

To conclude, the nonlinearities in the voltage is not a problem if the sys-
tem is meant to operate as a resonator. In the case of using the system as a
filter, however, the AC-part of the excitation voltage must be sufficiently low
compared to the DC-part so that the parasitic effect is reduced to an acceptable
level.

6.6.6 A 4-d.o.f. model of the microfilter
In the previous section (6.6.1), we built a small model of the microfilter with
2 degrees of freedom. In this section we will build a model with 2 additional
degrees of freedom. This will hopefully demonstrate some shortcomings of
the previous model.

From the state-space description of the previous model, it is seen that the
coupling beam is modelled as massless. Although the mass of the coupling
beam could be added to the model in the previous section, we will here first
add another 2 degrees of freedom to the coupling beam and then add the mass
of the beam to the model.

6.6.6.1 Shape functions

In the 2-d.o.f. model, the coupling beam was simply modelled as a spring.
This was found by modelling the beam in a finite element fashion, where
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Euler-Bernoulli beam theory gives us (eq. 6.1):
F1
M1

F2
M2

 =


12EI
L3

6EI
L2

−12EI
L3

6EI
L2

6EI
L2

4EI
L

−6EI
L2

2EI
L−12EI

L3
−6EI

L2
12EI
L3

−6EI
L2

6EI
L2

2EI
L

−6EI
L2

4EI
L




u1
φ1
u2
φ2

 (6.6)

By applying the appropriate boundary conditions, φ1 = φ2 = 0, we obtain
the equivalent spring stiffness.

At this stage it is important to realize the link between the nodal displace-
ments and the displacements over the length of the beam. Generally, each
nodal displacement causes a displacement over the whole of the beam. The
shape of the displacement is defined by the shape function:

un (x) = un · fn (x)
Where u (x) is the displacement at position x along the beam, un is the dis-
placement at the nodal point n, and fn (x) is the shape function. The sum of
all the displacements is equivalent to the total displacement:

utotal (x) =
X
n

un (x)

Generally, any shape function is legal as long as it satisfies two requirements.
The first is that the function must be equivalent to the nodal displacement at
the node. The second is that the shape function must be zero at all other nodes.
A commonly used shape function is a polynomial function:

un (x) = un
X
n

anx
n (6.7)

Here, the a’s are chosen so that the shape function satisfies the above-mentioned
criterias, and n is the order of the shape-function. These shape-functions are
then applied to the governing equations, and the result is a finite element, like
that of eq. 6.6. To develope the finite element of eq. 6.6, second-order shape
functions are used. Due to the second-order degree of the shape-function, the
shape of the function is determined by the translatory displacement (un) and
also the gradient of the translatory displacement (φn). More on this subject
can be found in books like [4], [84].

The shape-functions have large impact on the accuracy of the modelling.
The overall deformation of the structure is governed by the shape functions,
hence the structure is not free to deform in an energy-minimzing shape. Thus
the energy in the deformed structure may be over-estimated. The effects of
the shape-function approximation can therefore be summed up in two points
main points, with the first being that the stiffness of the structure will be too
high. The second effect is that the overall displacement will not be exactly
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Second-order appr.

Sinus -function

Figure 6.26: The full line demonstrates some function to be approxi-
mated. Underneath are respectively a second-order approximation, a piece-
wise first-order (linear) approximation, and single first-order approximation.

equivalent to the exact solution. More about the topic can be found in i.e. [4],
[85].

Both the two mentioned effects appears to make the finite element method
inaccurate. But as pointed out above, the inaccuracy is due to lack of the
shape-function to approximate the true deformation. Hence, a shape function
that is capable of approximating the true deformation better, would improve
the accuracy. This can be accomplished by increasing the order of the shape-
function (see eq. 6.7). Alternatively, the structure can be divided into two
parts, where deformation of each part is described by the shape function. In
fig. 6.26, we demonstrate the two approaches, using a zero-order shape func-
tion as basis. Both increasing the order of the shape-function, and dividing
the structure into smaller elements, makes the FE-solution converge towards
the exact solution.

6.6.6.2 Modelling of the coupling beam

In the discussion above, we gave reasons for why lumped models are inaccu-
rate. A possible solution to increase accuracy was to divide the structure in
more elements. We will do this with the coupling beam, and incorporate this
into a full state-space model of the filter.

The finite element we use is the commonly used beam element of eq. 6.6.
We write the element in a more compact fashion:
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·
fn
fn+1

¸
=

·
eK1,1

eK1,2
eK2,1

eK2,2

¸ ·
xn
xn+1

¸
Here the states (un, φn) at each node is gathered in xn, equivalent treatment is
done with the force and moment, expressed as /fn. The stiffness matrix, eK is
divided into 4 submatrices. The n indicates the number of the node, whereas
the e indicates element. Two such elements can be gathered together: f1

f2
f3

 =

 1K1,1
1K1,2 0

1K2,1
1K2,2 0

0 0 0

+
 0 0 0
0 2K1,1

2K1,2

0 2K2,1
2K2,2

 x1
x2
x3


=

 1K1,1
1K1,2 0

1K2,1
1K2,2 +

2 K1,1
2K1,2

0 2K2,1
2K2,2

 x1
x2
x3


Finally, appropriate boundary conditions are applied. We have chosen them
to be φ1 = φ3 = 0, which is consistent with no torsional deformation of the
main beams. Furtermore, the displacements u1 and u3 are connected directly
to the displacement of the main beams. Equivalent treatment is done with the
mass matrix.

6.6.7 Electrical equivalent
In the above, we showed how the state-space model was buildt. We will here
show how the same model is buildt using the electrical equivalent approach.
Our starting-point is the 2-d.o.f. model of the filter, see fig. 6.21. We can
identify the coupling beam as the inductance with the value 1/k12.

Returning to an earlier section in this chapter, we demonstrated how a
beam element could be modelled using an electrical equivalent in the f → V
convention, see fig. 6.11. We also showed how two such beam elements could
be coupled in fig. 6.12. We use the latter and apply appropriate boundary con-
ditions (no rotation at ends of the coupling beam.). Thus we obtain a model of
the coupling beam more complex, and with a potential to be more accurate,
than the single conductance used in the 2-d.o.f. model. The slightly more
involved beam model is then connected to the main beams. The procedure is
shown in fig. 6.27, along with the final model.

6.6.8 Simulation results
The simulations of the 4-d.o.f. model could clearly be done using either the
equivalent circuit or the state-space model. Either model would give the same
result. Here, we use the state-space model.

A plot of the transfer-function is shown in fig. 6.28. Comparing with
the transfer-function of the 2-d.o.f. model (see fig. 6.25), we see that the 4-
d.o.f. model have two additional resonance-peaks. This is expected, since an
undamped 2-d.o.f. model generally have 2 resonance frequencies, while an

118



Y7,8

Y6,8

Y5,7

Y5,8

Y5,6

Y7,7

Y8,8

Y5,5

Y6,6

Y6,8

I , V88 

I , V77 

I , V22 

Y3,4

Y2,4

Y1,3

Y1,4

Y1,2

Y3,3

Y4,4

Y1,1

Y2,2

Y2,3

I , V11 

I , V44 

I , V33 

New model of coupling spring:

Replace coupling spring and apply 
appropriate boundary conditions:

Y7,8

Y6,8

Y5,7

Y5,8

Y5,6

Y7,7Y5,5

Y6,6

Y6,8

V7

Y3,4

Y2,4

Y1,3

Y1,4

Y1,2

Y3,3

Y4,4

Y1,1

Y2,3

V1 V3

V4

Coupling spring

Coupling spring

2-dof model:

Coupling spring

Figure 6.27: Top: Showing the earlier presented 2-d.o.f. model, where the
coupling spring is identified. Middle: Shows a more involved model of the
coupling spring. Bottom: The simple spring model is replaced by the more
involved. Boundary conditions are imposed (bold lines).
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Figure 6.28: The transfer-function of the 4-d.o.f. model (right plot shows a
section of left plot).

undamped 4-d.o.f. model generally have 4 resonance frequencies.
Simulations of the 4-d.o.f. shows that static behaviour is equivalent to

those of the 2-d.o.f. model. Dynamic behaviour of the system is indicated by
the eigenfrequencies. The eigenvalues of the 4-d.o.f. model is plotted in the
below table, alongside those of the 2-d.o.f. model:

4-d.o.f. model 2-d.o.f. model
ω1 4.045 · 107 4.28 · 107
ω2 4.998 · 107 5.15 · 107
ω3 2.41 · 108 -
ω4 9.58 · 108 -

Comparing the two lowest eigenfrequencies of the two models, we realize
that those of the 4-d.o.f. model indicate much lower resonance frequencies of
the system. Since the static behaviour of the two systems are equivalent, this
implies that it must be the inertial modelling that gives the different eigenfre-
quencies. We recall that we ignored mass of the coupling beam in the 2-d.o.f.
model, but included it in the 4-d.o.f. model. A heuristic conclusion of that
fact, would be that the resonance frequencies of the 4-d.o.f. model would be
expected to be lower than those of the 2-d.o.f. model. This is also what we
see from the above table.

The mass of the coupling beam could easily be implemented in the 2-d.o.f.
model in an analytical manner. This would greatly improve the accuracy of
the eigenfrequencies. However, this would not give any more information
about other eigenfrequencies, and as we can see from the transfer-plot in fig.
6.28, other eigenfrequencies are in the neighbourhood of the two lower eigen-
frequencies, threatening the system performance. Clearly, this information is
important.
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6.6.9 An n-d.o.f. model of the microfilter
In the previous we have presented two compact models of the microfilter.
The analytical expression of the elements in the models, combined with the
compact size of the models, make them attractive as macromodels. However,
by comparing the 2-d.o.f. model with the 4-d.o.f. model, it was indicated
that the models had a lack of accuracy and validity for certain properties. It is
therefore in place to build a larger model. This is both to verify the accuracy
of the smaller models and to get knowledge about complex behaviour.

The objective of such an involved model is to create a model that as
accurate as possible describe both the mechanical and the electrostatic be-
haviour. A possible solution to this, is to use a couple simulator that allows
one to model both the mechanics and the electrostatics in a finite element
environment. However, solving electrostatic problems using finite elements
are not very efficient. An alternative is to use a coupled simulator allowing
the mechanics to be solved using a FE-method, whereas the electrostatics
is solved in a boundary-element fashion. For both the mechanics and the
electrostatics to be modelled accurately, the structures need to be discretized
sufficiently.

In this section, we will discretize the mechanical structure into a number
of beam-elements. This means that each beam is divided into a number of
beam-elements. The beam elements we use take three degrees of freedom,
namely displacement in z-direction, and rotation around the x- and y-axis.

6.6.9.1 Simplifications for the electrostatic problem

The electrostatics is modelled using a BE-method. A precise model of the
electrostatics of the microfilter would include an accurate 3-D description of
the geometry and the dielectric interfaces. To simplify the description of the
system and the size of the governing matrix, we consider a 2-dimensional
model. Furthermore, only the elements stemming directly from the filter are
included in the model. This means that parasitics from nearby conductors etc.
are ignored. All these simplifications concern accuracy, computation time,
and degrees of freedom in model.

With the simplifications listed above, the BE-model still have a signifi-
cant number of degrees of freedom, since each electrode is discretized into a
number of elements. Hence the governing equation is:

[A]
£
ρcharge

¤
= [V ]

Note that the conductors between the collocation points have been ignored in
the governing equations. We assume that the potential on a given electrode is
constant, independent of how many elements that electrode was divided into.
The surface charge density on the electrode may therefore vary. This may lead
to a significant reduction of matrix-size in one dimension (n× n→ n×N).
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[A]
£
ρcharge

¤
= [V ] (6.8a)

[A]
£
ρcharge

¤
= [BV ] [Vsmall] (6.8b)£

ρcharge

¤
= [Ared]

−1 [BV ] [Vsmall] (6.8c)£
ρcharge

¤
= [Asmall] [Vsmall] (6.8d)

Where [BV ] is the matrix linking the voltages of the element with the
voltages on the electrodes. Parallel to this, one may also sum up the charges
on each electrode to find the total charge on each electrode:£

ρcharge_small

¤
= [Dcharge]

£
ρcharge

¤
= [Dcharge] [Asmall] [Vsmall] (6.9)

Here, [Dcharge] links the charges of each element to the charges of each elec-
trode.

6.6.10 Electrostatic forcing
Following 6.6.9.1, we are able to express the relation between charge and
voltage on the electrodes. While the capacitances have been calculated more
accurately using a numerical approach (BEM), the results does not give direct
access to the electrostatic forcing. However, by applying the scheme pre-
sented in 6.4.6, we may create the full transducer description from numerical
results.

The obtained description is then of the form:·
∆Velectrodes
∆Felectrodes

¸
= [Asmall]

·
∆Ielectrodes
∆ẋelectrodes

¸
It is of importance to realize that the BEM-results stems from a 2D-simulation,

where the electrodes are assumed to be infinitely long. It then follows that the
displacement of an electrode must be a true translation, which must be the
same for all points along the electrode for the model to be truely valid. The
beams are, however, doomed to bend, making the displacement dependent
upon position on the electrode. Each capacitor must therefore be replaced by
a number of capacitances in parallel. The full procedure from the initial full
2D boundary model, to obtaining the distributed model along the beam axis is
shown schematically in fig. 6.29. The first step in the figure, that is reducing
initial 2D boundary element model, was explained mathematically in 6.6.9.1.
The last step in fig. 6.29, is actually two-fold. The first step is simply to create
a number of distributed elements:

·
∆Velement

∆Felement

¸
=
1

N
· [Asmall]

·
∆Ielement

∆ẋelement

¸
Where xelement is a vector equivalent to that in xelectrodes, except that the
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matrix has now been scaled to match the length of the elements. This is seen
since N is the number of elements along the length of the beam axis (assumed
to be equal in length). All these elements are now stacked together to form
the full transducer system:

∆Velement#1

∆Felement#1
...

∆V
element#N

∆Felement#N

 = 1

n
·
 Asmall 0 0

0
. . . 0

0 0 Asmall




∆Ielement#1

∆ẋelement#1
...

∆Ielement#N

∆ẋelement#N


With a little rearrangement, we have obtained the matrix governing the

transducer system. However, the final step still lacks, where the forcing vector
in the above equation needs to be reformated. This is needed both because the
forcing ought to be consistent (in terms of what was explained in 6.2.4), but
also because the discretization of the electrostatic problem not necessarily
match that of the mechanical problem.

6.6.11 Full model
In this section, we discuss a model of the microfilter in fig. 6.1 based on the
above results and methods. The model is presented schematically in fig. 6.30,
as an equivalent circuit in the f → V analogy.

First, the three main beams can be easily distinguished in the figure, by
recognizing that each beam consists of a number of beam elements (since
the two main beams are equal in geometry and discretization, they use the
same type of beam elements). These beam elements are electrical equivalents
similar to that given in fig. 6.11. The difference being that here we use three
degrees of freedom, namely z (translation), φy (angle), and φx (angle) instead
of two in the example in fig. 6.11.

Secondly, the transducer elements are also easily identified by the gyrator
elements. Note that in the schematics, the parasitic effects between electrodes
have been ignored for better visualization. Another point to observe is that
the transducer elements give excitation both in force and moment. At a first
glance, this may appear incorrect. However, according to earlier discussions
on external forcing on finite elements, this is generally correct when consis-
tent loading is used (6.2.4).

6.6.12 Simulation results and discussion
We have used the above model to simulate the behaviour of the system. The
result will be presented alongside some of the results obtained from the 2-
d.o.f. model and the 4-d.o.f. model. We compare and discuss the results.

An important characteristic of the system, is its frequency-behaviour. In
fig. 6.31, we see a plot of the transfer-function obtained from the n-d.o.f.
model. Immediately we recognize the much more involved transfer-function
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Figure 6.29: Schematics demonstrating how the initial 2D electrostatic model
is first reduced, and then distributed along (parts of) the length of the beam.
In the bottom part, the capacitances between electrodes on left and right side
have not been plotted. This is to simplify the schematics.
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Figure 6.30: The schematics of the equivalent circuit (f → V analogy) of the
microfilter. Some details are left out, like that the transducer elements do not
necessarily have the same values.
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than indicated by the 2-d.o.f. model and the 4-d.o.f. model (see figs. 6.25,
6.28). At the same time, we compare the resonance-frequencies of the system,
obtained from the three models:

n-d.o.f. model 4-d.o.f. model 2-d.o.f. model
ω1 3.873 · 107 4.045 · 107 4.28 · 107
ω2 4.644 · 107 4.998 · 107 5.15 · 107
ω3 1.05 · 108 2.41 · 108 -
ω4 1.086 · 108 9.58 · 108 -
ω5 1.667 · 108
ω6 1.792 · 108
...

...
Most obvious is the fact that the higher-degree models have more res-

onance frequencies than the lower. It is however, also interesting to note
the value of the first two resonance frequencies. We note that the simplest
model indicate a higher resonance frequency, while the largest model indicate
the lowest value. This is consistent with our earlier discussion on degrees of
freedom versus energy-minimization. Looking at resonance frequencies 3 and
4, they don’t appear to be comparable at all for the two models. This is due to
the restriction upon the main beam deformation in the 4-d.o.f. model. In the
larger model, these restrictions are effectively loosened, and the main beams
are much more free to move. In this case we see that we have introduced
’new’ resonance frequencies, and not only a more accurate calculation of the
resonance frequencies obtained from the 4-d.o.f. model. This indicates that
our choice of freedom in the 4-d.o.f. model is not optimal.

We see that the smallest model give us a good understanding of the fun-
damental behaviour of the system. However, as we can see from the transfer-
function plots (see figs. 6.25, 6.31) the model does not give us information
about significant parasitic effects. The two larger models, however, are more
or less capable of giving us information about possible important parasitic
effects. One can clearly see the use of all these models, where the simplest
model gives the designer a very transparent and simple parametrized model.
However, the model is not very accurate and fails to predict important para-
sitic effects. The 4-d.o.f. model is more accurate, but is still small and trans-
parent. It does give information about parasitic effects, albeit inaccurately.
The largest model is of special interest, not because it fulfill the requirements
of a macromodel, which it hardly does, but because it can, and should, be
used as a standard when evaluating the smaller models performance. Clearly,
if a more involved model where available this would be used instead.

For the performance of the system, we can see that a main problem of
this design is to isolate the two main resonance peaks from the parasitic reso-
nances. Although the geometry can be optimized to reduce this problem, it is
a difficult task. A major problem in this respect is the processing capabilities,
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Figure 6.31: Transfer-function for the system as given by the n-d.o.f. model.

giving restrictions to geometric size and giving rise to process tolerances of
the geometry. An approach to improving system behaviour is to create a more
complex systems of beams, which one can see has been done for mechanical
filters created in the 1970’s [67].

6.7 Discussion and conclusions
We have in this chapter presented general theory regarding modelling of basic
mechanical and electrical elements. Furthermore, we have used this knowl-
edge to demonstrate how mechanical systems can be presented in terms of
electrical equivalents. It was shown that the f → V analogy is generally
more intuitive than the e → V analogy for creating electrical equivalents.
This is since the f → V analogy has a more intuitive link between variables
in the electrical domain and variables in the mechanical domain.

Furthermore, we looked at an electrostatic transducer element. We pre-
sented the element in the e → V analogy, and reformulated it to the f → V
analogy. The latter circuit involves the use of a gyrator.

We continued by investigating a microresonator by means of lumped mod-
elling. Simulations of the system where done with three different models,
where each model had a different number of degrees of freedom. As ex-
pected, the overall performance of the models degraded with fewer degrees
of freedom in the model. However, the operational principle becomes very
clear in the most compact (lumped) models. To capture parasitic effects the
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lumped models must be slightly more involved. It is, however, in many cases
difficult for an engineer to create a lumped model that captures the parasitic
behaviour accurately. This difficulty can be strongly alleviated by performing
high-precision simulations that reveals the basic (and more complex) parasitic
effects. This knowledge can then be used to choose the degrees of freedom of
the lumped model in a more optimal manner.

We utilized a microfilter to examplify equivalent electrical modelling of
mechanical systems. These models presents the behaviour of the microfilter
in a more or less accurate manner. We see that the microfilter operate in the
MHz-range, but is by no means optimized for a specific use. We can f.ex.
see that the system has a quite wide passband in the primary band, making it
useless as a resonator. We can furthermore see that the system have a number
of parasitic resonances quite close to the primary resonances, hence degrading
the system’s performance used as a filter. However, we note that we have
made no attempts to optimize the system behaviour.
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Chapter 7
The Modelling Of A Cavity Based

Electromagnetic Suspension System

In this chapter we will investigate an electromagnetic levitation system com-
prising a detuned microwave cavity. The cavity takes the form of a ring-
resonator supporting a TM mode, the fields of which generate suspension
forces on an unattached ‘free’ wall of the cavity. In fig. 7.1, we show the
cavity with a disc shaped wall. Also included in the figure is a possible em-
bodiment of a suspended disc shaped conducting plate, utilizing two cavities.
This chapter is largely based on [86], where we present the analysis of the
single cavity suspension system and the results.

Figure 7.1: SINGLE CAVITY: TM-mode ring resonator levitating a disc
shaped conducting plate. DOUBLE CAVITY: Possible embodiment of disc
shaped conducting plate suspended between two TM-mode ring resonators.

In the earlier chapters, focus was on how to create a simplified model
based on an initially large and potentially complex mathematical model. As
indicated in the opening chapters, a different approach can be taken, where
the model is created on the basis of ”engineering knowledge”. This may
involve building-blocks for which the behaviour is generally well-known. An
alternative is to attack the governing equations directly, and perhaps discretize
them in a proper manner, resulting in some kind of lumped model.

In this chapter we adopt the latter strategy. From the outset, there were two
main reasons for choosing such a strategy. The first reason was merely that
”accurate” and fully discretized modelling results in an impractically large
model, hence reducing such a model would also be difficult. The second
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reason was that a quasi-analytical compact model would give better physical
insight into the system behaviour.

7.1 Electromagnetics and waveguides
Preparing for an investigation of the electromagnetic system, we present some
fundamental equations that are used at a later stage. For a more thorough
introduction to the field, we refer the reader to introductory books on electro-
dynamics, like e.g. [87],[88].

In electromagnetics, Maxwells equations play much the same role as do
Newton’s laws in mechanics. Maxwells equations are:
∇ ·D = V (Gauss’s law)
∇ ·B = 0 (Gauss’s law for magnetism)
∇×E = −dB

dt
(Faraday’s law)

∇×H = J+ dD
dt

(Ampere’s law)
The variables are as follows: E is the electric field, D is the electric flux

density, B is the magnetic flux density, H is the magnetic field, while J is
the current density. V represents the volume charge density. Furthermore we
have the consitutive equations (for linear, isotropic nonferromagnetic media,
[87]):

D = εE

B = µH

where ε is the permittivity and µ is the permeability.

7.1.1 Waveguides
Waveguides are hollow devices being relatively long compared to their trans-
verse dimensions. They are surrounded by metals or dielectric media. Inside,
wave modes can be excited, and they can be made to travel along the lon-
gitudinal direction of the waveguide. Examples of waveguides are coaxial
cables and rectangular waveguides, where the latter are a common feature for
guiding antenna signals.

We consider a time-harmonic solution of Maxwells equations:

∇ · Ē = 0

∇ · H̄ = 0

∇× Ē = −iωµdH̄
dt

∇× H̄ = iωε
dĒ

dt

where the line over the vectors implies phasor-notation. Since we are exam-
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ining waves travelling in the +z-direction, this means that we have defined:

Ē = E (x, y) e−ikzz

H̄ = H (x, y) e−ikzz

where kz is a wavenumber.
Focusing on two-dimensional waveguides, we can classify a number of

important waveguide modes. If Ez = Hz = 0, we have a transverse elec-
tromagnetic (TEM) mode (here, the z-axis is the longitudinal direction along
the waveguide). Parallel to this, we obtain a transverse electric (TE) mode if
only Ez = 0. Hence we have an transverse magnetic (TM) mode when only
Hz = 0.

7.1.2 Magnetostatic forces
A second area of interest is the magnetostatic forces. The conducting walls in
a cavity will experience magnetostatic forces. They can be derived using the
Lorentz force law:

F = qv×B
where F is the mechanical force, q is a charge, and v is the velocity of the
moving charge. This can be reformulated so that we obtain the distributed
force density, Fsurface:

Fsurface = −J× µH

where J is the (surface) current density. The surface current in the conducting
walls of a waveguide can easily be found:

J = n×H
Here, n is the normal vector to the surface. Using these equations, we obtain
a simple relation between the magnetic field and the force, which is valid for
the waveguide-walls:

Fsurface = − (n×H)× µH

7.2 Fundamentals of the device
Despite the advances of the MEMS-area, severe problems continue to be
presented by the very high frictional (in relative terms) forces and wear as-
sociated with micro-sized moving parts in MEMS devices [89]. A possible
solution to this problem is attainable through levitation of the motive element
of the micro-machine. For example in references [90] and [91] levitation
in a micro-machine is procured by using electrostatic forces, but the system
is complicated, and expensive to implement, because of the need to provide
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sensing and control to ensure stability. It has also been suggested [92] that
intrinsically stable magnetic suspension of the rotor of an electrostatic micro-
motor could, in principle, be procured by using diamagnetic materials to
stabilise the system. However, the slow response time of such a system to
rotor misalignment could present a major obstacle to its likely effectiveness.

On the other hand, it has been shown [89], that responsive intrinsically
stable levitation of a small (millimetre and sub-millimetre sized) conducting
rotor within an electro-static micromotor can be achieved if the rotor forms
part of the capacitive element of a detuned resonant LC circuit. This so-
lution has been demonstrated in practice, only for relatively large planar (˜2
cm2) conducting pads [93], which permit the easy realisation of the capacitive
and inductive components at resonant frequencies in the MHz range. More
recently, however, by employing microwave (10 GHz approximately) cavity
resonators rather than L-C circuits, it has been shown that modal field patterns
can be set up which permit a ‘floating’ wall to be lifted without quenching
the resonance. This suggests that the stable suspension of millimetre scale
flat conducting discs [94],[95],[96] should be possible. Furthermore, the rel-
atively high Q, which is available from cavity resonators, offers the added
advantage that useful levitation fields can be attained at relatively low power
levels which are easy to generate. An illustration of the ring resonator system
for a thin disc shaped conducting plate levitated above the TM-mode ring
resonator was presented in fig. 7.1 (single cavity). Electromagnetic field
computations on ring-cavities, of the single cavity depicted in fig. 7.1, in-
dicate that the ratio of the levitation force (Fl) to the gravitational force (Fg)
in a single cavity system incorporating an aluminium disc-shaped ‘float’ of
commensurate dimensions, is given approximately by the relation:

Fl

Fg
=̃4

f2PQ

c3ρgt
(7.1)

where is the resonant frequency in Hz, P is the power supplied in watts, Q
is the quality factor for the cavities, c (m

s
) is the speed of light, ρ ( kg

m3 ) is
the density of the disc, g is the gravitational acceleration and t is the disc
thickness in metres. The equation clearly shows that for a given power input,
high operating frequency secures high relative levitation force. At 300 GHz,
for example, a cavity system with Q = 10000, P = 1mW , t = 0.5mm,
ρ = 1gram

cm3 , produces a levitation force which is approximately 25 times the
gravitation force. For an actuator in a MEMS device, weighing typically
0.1mg, this means that levitation forces of the order of several micro-newtons
are predicted. It is interesting to note [97] that without cavity enhancement,
electromagnetic pressure using a 750mW , 10mm diameter, laser beam gen-
erates a force of 5 nano-Newtons when perfectly reflected by a mirror surface.
This is shown to be sufficient to drive a MEMS actuator.

While sufficient force is potentially available to secure electromagnetic
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Figure 7.2: Schematic of the ring resonator as used in levitation experiments.

levitation using a high-Q microwave cavity resonator, the stability of such
systems remains to be assessed. It is the purpose of the following sections to
examine the electromagnetic boundary problem represented by a ring-mode
cavity resonator with a floating outer wall in order to determine the level and
distribution of the suspension forces over the surface of the wall for various
levitation conditions. These forces are then used, in an assessment of the
mechanics of the disc shaped float subjected to the electromagnetic pressure
from below, to assess stability criteria.

7.3 Analysis
Macroscopic levitation experiments performed at approximately 11.5 GHz
have been carried out using a TM mode rectangular waveguide ring resonator
model. The reasons behind this choice were manifold. Firstly, when operated
in a TM mode (TM11 in this case, the meaning of the subscript is explained
later) the waveguide-ring supports circumferential wall currents which means
that the TM mode is not significantly disturbed by loss of contact between
the floating wall (fig. 7.2) and the ring resonator base. Secondly it is rel-
atively easy to couple to the TM mode through a transverse (radial) slot in
the waveguide. Thirdly directional coupling is readily achievable using two
slots (not shown). Fourthly the travelling-wave ring mode provides potentially
uniform levitation forces around the ring.
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The levitation mechanism can be illustrated, and the force available as a
function of power and frequency can be determined, by first considering the
field expressions for a TM11 mode in a rectangular waveguide with major
dimension a and minor dimension b. For a ring-resonator whose inner radius
of curvature is greater than λ (the wavelength), it is possible without too
much loss of generality to formulate the modal equations from the Maxwell
equations by using a linearized version of the cavity. The key requirement
in setting up this model is the enforcing of boundary conditions at the input
and output ports of the linear cavity which ensure that the transverse fields in
the ports are in the same phase and magnitude relationship which they would
possess in the ring. The linearized version has the advantage that deviations
of the floating wall from parallel alignment with the base can be more easily
modelled. The resulting fields can generally be expressed as:

Ē0 =

 Ex
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 =
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Where γ is the propagation constant, Lx and Ly is the dimension of the rec-
tangle, and σ is the conductivity of dry air. The angular frequency is given by
ω. The n and m are integers.

Looking at the fields, the origin of the TMnm-labelling can be found,
selecting a TM11 mode means setting n = m = 1.

To correctly model the ring resonator fields it is essential that both the
forward travelling-wave (−z) and the backward travelling-wave (+z) in the
linearized cavity are accommodated. The full field set can be written as
follows, using subscript F for the forward wave and subscript B for the
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backward wave:

Ē0_F (x, y, z, t) = Ē0 (x, y) e
iωte−iγz

H̄0_F (x, y, z, t) = H̄0 (x, y) e
iωte−iγz

Ē0_B (x, y, z, t) = TĒ0 (x, y) e
iωteiγz

H̄0_B (x, y, z, t) = H̄0 (x, y) e
iωteiγz

T =

 −1 0 0
0 −1 0
0 0 1


However, we must also take into account the amplitude of the fields. When

this is done the fields in the cavity becomes:

ĒF (x, y, z, t) = f (z) · Ē0_F (7.2a)
H̄F (x, y, z, t) = f (z) · H̄0_F (7.2b)
ĒB (x, y, z, t) = g (z) · Ē0_B (7.2c)
H̄B (x, y, z, t) = g (z) · H̄0_B (7.2d)

The functions f(z) and g(z) represents the amplitude and its z-dependence,
which is due to power loss, for the forward and backward waves respectively.
Power flow density in the waveguide can be expressed using the Poynting
vector and has the following form:

P̄ = Ē× H̄∗ = ¡ĒF + ĒB

¢× ¡H̄F + H̄B

¢∗
The axial time-averaged power flow along the waveguide, both in the forward
and backward directions is then given by:

P̄z_area =

I
S

P̄z · dS

where S denotes a surface enclosing the interior of the waveguide. In an air
filled cavity some of this power will be absorbed by the waveguide walls. For
a rectangular waveguide the time-averaged absorbed power per unit length is
given by:

Ploss (z) =
1

2

I
c

Rs

¯̄
H̄F _TAN + H̄B_TAN

¯̄2
dl

where Rs is surface resistance, c denotes the circumference of the guide cross-
section, and the _TAN subscripts denotes the tangential components of the
fields with respect to the cavity wall surface.

7.3.1 Resonant case:
When the cavity is operating in its resonant state, with an ‘ideal feed’ arrange-
ment which is ‘invisible’ to the cavity fields, the length of the cavity is an exact
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multiple of a guide-wavelength, for both the clockwise and anticlockwise
travelling wave. In this case an E-field maximum (node) in the cavity mode
occurs where the power is injected into the cavity and signal phase becomes
irrelevant. Power can be inserted into the cavity by simply introducing it at
a selected node. The differential equation governing the behaviour the cavity
mode can, in this case, be obtained by applying power conservation. This
requires that the rate of change of axial power flow should equal the power
loss into the waveguide walls and leads to the differential equation:

0 =
1

2

d

dz
Re
¡
P̄z_area

¢
+ Ploss

For the steady state solution, the equation can be rewritten in a much
simplified manner:

0 =
d

dz

¡
P0 ·

¡
f2 (z)− g2 (z)

¢¢
+A0 · (f (z)− g (z))2 (7.3)

where we define the parameters as:

P0 =
1

2

I
S

Re
¡¡
Ē0_F + Ē0_B

¢× ¡H̄0_F + H̄0_B
¢∗¢ · dS

A0 =
1

2

1

2

I
c

Rs

¯̄
H̄F _0_TAN + H̄B_0_TAN

¯̄2
dl

The solution to the differential equation will give us the field expressions
needed for calculating the forces acting on the plate. A solution to the differ-
ential equation above must satisfy the following requirements:

f (z) = a0 + a1z

g (z) = b0 + b1z

The solution will, for the symmetrically loaded case, also fulfil:

f (0) = g (L)

f (L) = g (0)

From this we note that the standing-wave field maxima are of equal magnitude
as they should be in a ring-resonator.

The above analysis is strictly applicable to the case where the floating wall
is levitated uniformly from the base, i.e. there is no tilting involved.

7.3.2 Tilting float
The problem of tilting of the floating wall (as illustrated in fig. 7.3) cannot be
directly solved using the simplified differential equation given above (eq. 7.3).
This is because the parameters P0 and A0 are no longer invariant along the z-
axis, since the cross-sectional area of the cavity now changes as a function of
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Figure 7.3: Ring-cavity with tilting float. Also shown is the coordinate system
used for describing lift and tilt of the plate (as opposed to the coordinate
system used for finding the electromagnetic fields). Note the relation between
the coordinate system and the excitation slot (symbolized by the dark area on
the cut-plane).

z. The solution can be found by formulating P0 and A0 exactly as functions
of z, and then solving the differential equation directly. Alternatively, the
differential equation can be solved by means of a finite element model, which
is the method chosen here. Each element is assigned values for P0 and A0,
according to cavity geometry/float height within the element. This means
that each element is assigned an average cross-sectional area. Within each
element, the solution to the field amplitude is linear, in accordance with eq.
7.4.

In fig. 7.4, the linearized cavity model is presented showing the way in
which the tilting float and cavity are portrayed using finite elements.

It is finally noted that when solving the discretised model, energy levels
and power flow must be continuous over element boundaries. However, owing
to the adoption of 0th-order approximations for P0 and A0 in the calculations,
the fields can be discontinuous over element boundaries. Provided that these
discontinuities are small, and this can be controlled by employing a sufficient
number of elements, the model remains representative of the physics of the
problem.

7.3.3 Non-resonant case
The non-resonant case is slightly more complicated than the resonant case
since, in addition to the level of the power injected, it is now necessary to
take into account the phase relationship between waves entering an element
and waves leaving the same element. These relative phases must now be
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Figure 7.4: Schematic drawing showing the development of the linearized
finite element model for a tilting float. Also shown is the coordinate system
used for describing the fields in the cavity.

fully accounted for, when the fields expressions (eq. 7.2) are employed in the
formulation of the non-resonant version of the discretized model.

It should be noted that the model assumes that all power is injected into
the TM11 mode of the waveguide. Furthermore, the model also assumes
that power reflected at the small cross-sectional changes associated with the
discretization of the cavity, are negligible.

A methodology to calculate the fields of a ring cavity with a floating up-
per wall has been outlined, which is applicable to a tilting float. The main
assumptions that have been introduced in the model are:

• The air gap between the float and the waveguide channel is assumed to be
lossless. For TM11 mode operation this is a good approximation for small
gaps.

• The model assumes steady-state operation.
• All power is inserted into a single mode – the TM11 mode.
• Reflection of travelling waves at element boundaries is disregarded.
• The method of excitation of the cavity is assumed to be ideal. The model

is therefore most accurate for frequencies where the length of the cavity
is equal to or close to an odd number of half-wavelengths for the TM11

mode.

7.3.4 Mechanical model of the plate
With the electromagnetic fields readily available from the solution of the
boundary value problem represented by the cavity, it is a simple task to calcu-
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late the electromagnetic forces acting on the floating wall. These forces will
obviously be a function of both the degree of tilt and the lift magnitude of
the float. Furthermore, calculating the inertial and gravitational forces on the
plate is a simple task. Since the mechanical system is much slower than the
electromagnetic system, it is justifiable to use the steady-state EM-solution at
given positions.

The resultant model is comprehensive and takes into account 3 degrees of
freedom of the plate, namely, y movement (levitation), φx movement (asym-
metric tilt), and φz movement (symmetric tilt). Symmetry is taken with re-
spect to x-y plane through the excitation slot, as illustrated in fig. 7.3.

It should be noted that to construct a more accurate dynamic model of
the float movement, squeeze-film damping should also be taken into account.
Squeeze-film damping is experienced when two closely adjacent and parallel
flat plates are moving normally to each other. A simplified model of the
squeeze film mechanism is presented in [33], see also section 2.5, where it
is demonstrated that it can be modelled by means of a spring and a damper.
Additionally, contact forces between float and the waveguide channel could
also be included in the model.

7.4 Modelling results

7.4.1 1-dimensional case
Preliminary computations using the model described above were performed
for a float having only one degree of freedom. That is pure lifting and no
tilting was considered. It was assumed that the system was fed from a source
producing a fixed single-frequency signal close to the resonant frequency of
the cavity. The computed levitation force as a function of float height is
presented in fig. 7.5 which shows that the force on the float is similar in
shape to a resonance curve for the cavity, which typically plots field amplitude
as a function of frequency. The reason for this behaviour is that the natural
resonant frequency of the cavity changes with float height. The force will
therefore peak when the cavity’s natural resonant frequency coincides with
the frequency of the source. From fig. 7.5, it is seen that if the power to the
cavity is sufficient to generate an EM-force that is larger than the gravitational
force (and sticking forces), the float will levitate and reach a stable equilib-
rium. At the same time we note that if the source frequency changes with
the power held constant, the levitation force graph would be shifted either to
the right or to the left. A left shift (higher frequency) would mean that the
stable levitation height would decrease and eventually there would be no lift
at all. A small right shift (lower frequency) would mean that levitation height
increases. However, at larger shifts, the system will eventually no longer
be capable of reaching the stable point since the increase in power merely

139



Levitation force

0,00E+00

5,00E-05

1,00E-04

1,50E-04

2,00E-04

-20 -10 0 10 20 30

Levitation (microns)

Fo
rc

e 
(N

ew
to

ns
)

Y-force
Gravitational force

Stable point

Collapse

Figure 7.5: The figure shows levitation force as a function of plate levitation.
Also included is the gravitational force on the float.

supplies the electromagnetic leakage through the gap between the float and
the cavity body. It is noted that the above behaviour puts strict limits on the
choice of operating frequency for the source.

7.4.2 2-dimensional case
Having modelled and demonstrated the essential nature of the cavity based
electromagnetic levitation system using the simplified 1-dof system described
above, the next step is to introduce tilting of the float around its z-axis (float
coordinate system) as an additional degree of freedom. Assuming that the
system is again excited by a single-frequency source, it is clear that as the
float tilts, this frequency may no longer match the resonant frequency of the
cavity. The extent and the sensitivity of this frequency mismatch to tilt is
clearly a function of float height. The mismatch between excitation frequency
and resonant frequency means that the nodes of the modal fields in the cavity
will move with respect to the z-axis. This in turn results in a moment being
generated on the float due to the non-uniform distribution of the modal fields.
This can be seen clearly from fig. 7.6. However it can also be seen that the
moment decreases again when the float height results in a large deviation of
the cavity resonance from the excitation-frequency. This is due to a general
reduction of the field amplitudes.

Any moment of forces acting on the plate will cause it to tilt. Any such tilt
will in turn change the cavity dimensions and its resonant frequency, and this
implies that further changes will be induced in the forces and moments. In
investigating the behaviour related to tilt, one finds that a stable equilibrium
of the moment does exist within a limited range of levitation heights (fig.
7.7). However, outside this region there is no equilibrium in free “float”. The
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Figure 7.8: LEFT: Levitation force as a function of lift with and without tilt
at equilibrium. RIGHT: Tilt as a function of lift at equilibrium.
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Figure 7.9: Plot of force and moment as function of float height and tilt.

enforced tilt at equilibrium will change the natural frequency of the cavity, and
strongly counter-acts the rapid fall-off in the force, as compared to untilted
levitation, see left part of fig. 7.8. A plot of the relation between tilt and
levitation at equilibrium can also be produced, as can be seen from right part
of fig. 7.8. It is also noted that this puts strict limitations on the levitation
heights that are practicably available for this configuration, since large tilts
are unwanted. This is clearly demonstrated by how force and moment depend
upon levitation and tilt, as shown in fig. 7.9.

The apparent angular instability at levitation heights below the natural fre-
quency of the cavity is not a significant problem, simply because the system
will reach stability when levitated further by introducing more power. At
higher levitation heights, the degree of stability can be described by dMz

dφz
,

(derivative of the z-moment with respect to the angular tilt). On investigating
this function it is noted that the angular stability increases with levitation
height, see fig 7.10, however at higher levitation heights the field amplitudes
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Figure 7.10: Derivative of the z-moment with respect to z-angle at equi-
librium state as a function of levitation height. This can be viewed as the
linearized angular stiffness acting on the plate.

will degrade strongly due to leakage and reduce the stability. This plot can be
compared to a plot of spring stiffness (angular spring).

7.4.3 3-dimensional case
While we have presented the behaviour of the system considering 2 degrees of
freedom, it is clear that the plate may also be perturbed about the x-axis. It is
noted that a tilt around the x-axis (of the plate coordinate system, see fig. 7.3),
is not truly the same as a tilt around the z-axis, due to the location of the feed
point. The analysis shows that there will be a restoring moment for a tilt about
the x-axis. At the same time, it is revealed that there will be a simultaneous
moment about the z-axis. The reason for this is that, as for the tilt about the
z-axis, the peaks of the field will change position slightly. However, due to
the position of the power input, the symmetry is lost resulting in the moment
about the z-axis.

7.4.4 Scaling effects
Above we presented an approximate equation that illustrates the scaling ef-
fects of the system (eq. 7.1). However, we have also developed a more accu-
rate model. This more accurate model is used to find more precise estimates
of the scaling effects in the system. In this model we have also implemented
limitations due to the dielectric strength of dry air. We have disregarded the
fact that the dielectric breakdown limit may increase with decreasing geom-
etry. The scaling effects, showing both the inertial forces due to gravity and
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Figure 7.11: The plot shows how the gravitational forces and the electromag-
netic forces will scale in the system. For small devices, levitation of the ’float’
is possible.

the electromagnetic forces on the ’float’ is shown in fig. 7.11.

7.4.5 Conclusion
The analysis gives valuable insight into the physics of the system comprising
a ring resonator and disc shaped float. The analysis shows that the system
exhibits a stable levitation height for the float even when tilted. The 2-D
analysis presented here, demonstrates that a limited range of levitation heights
and tilts about the z-axis exists at which the float will be at equilibrium. The
computations show that if there is an external moment normal to the face of
the float, the plate will show simple rotational behaviour. However, if the
external moment is not normal to the face of the plate (e.g. for large tilts),
but rather to the surface of the waveguide channel, the float may either have a
pure rotation about the z-axis as described above, or some kind of ‘wobbling’
motion. To decide the exact motion, a more thorough analysis with respect to
external forces, inertial forces, and squeeze-film damping needs to be done.
Such an analysis of the stability of the system can be done without too much
difficulty. The model would include all three degrees of freedom for the
float and a linearized “stiffness” matrix could be introduced on the basis of
the electromagnetic forces calculated. This will give further insight into the
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stability mechanisms associated with a disc floating on an electromagnetic
cushion.

The compact model enables us, after the construction of the model, to
swiftly investigate the system in a manner that clearifies the nature of the
system behaviour. Using the insight obtained, it is seen that the limitation
on levitation height, due to the tilting effect, can be reduced strongly by
leaking energy into the cavity through more than one slot. Equally well may
a configuration with two cavities (e.g. as in fig. 7.1) be used to reduce the
tilting effect. Any of the two approaches are bound to influence and improve
the stability of the system, and a more thorough analysis is required to assess
this possibility. However, the general knowledge emanating from the analysis
performed here already gives strong indications of what results to expect.
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Chapter 8
Conclusion

The aim of this work has been to develop knowledge about macromodelling
of microsystems. In doing so, we have followed two different approaches
for generating macromodels, namely model order reduction and lumped mod-
elling. The latter is a rather mature method, which has been widely recognized
and used for a relatively long period of time. Model order reduction, on the
other hand, is a relatively new area still in rapid development. Due to this,
the focus is therefore different for the two approaches. The parts considering
reduced order modelling is strongly biased towards methodology and con-
cepts, whereas the parts on lumped modelling are biased towards systems and
devices.

In the first part of the thesis, we focus on model order reduction. We
introduce a few approaches for reducing the model order for linear systems,
see chapter 2. We then demonstrate how a model of a (linear) squeeze-film
damping system can be simplified. While both the full model of the squeeze-
film damping and the method used for reduction can be said to be simple,
the example clearly demonstrates capabilities of model order reduction. It is
also shown how the squeeze-film damping can be expressed in terms of an
electrical equivalent circuit.

In the subsequent chapters (chapters 3-5), the focus is on reduction of non-
linear systems, where we present the concept of invariant manifolds. While
the concept is general, we utilize it for reducing models. An obvious advan-
tage of using invariant manifold theory is that it offers a conceptually clear
understanding of effects and behaviour of nonlinear system.

A major difficulty in using the invariant manifold method is to identify the
shape of the manifold. For this, we utilize an asymptotic approach developed
by Pesheck [1]. The accuracy of the asymptotic approach is investigated.
For our examples, retaining only the most energetic mode„ we find that the
nonlinear behaviour of this mode is present, but is relatively small compared
to the linear behaviour at small amplitudes. The calculated nonlinear behav-
iour of the slave modes, however, soon become relatively (important and)
complex, and the polynomial approximations of these modes diverge earlier
from the exact solution, than does the approximation of the retained mode.
Thus the reduced model approximates the retained mode better than the slave
modes. This is because the slave modes have a more complex behaviour than
the retained mode.

The treatment of external forcing for reduced models created via the in-
variant manifold approach is discussed. We present a geometrical interpreta-
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tion, and show how this leads to a procedure where external forcing can be
dealt with in a manner consistent with the invariance property of the manifold.
The interpretation also indicates how this can be utilized to minimize errors
by creating a manifold of larger dimension.

We have also extended the asymptotic approach in a manner that makes
it possible to create design-parameter sensitive models. The asymptotic ap-
proach, both with regards to modal amplitude and to design-parameters, limits
the range of validity of the design-parameter sensitive model. Nevertheless,
it gives the designer the possibility to reason about both linear and nonlinear
behaviour of the system, and is therefore a valuable tool. We have success-
fully investigated an industrialized dual-axis accelerometer by means of the
method and demonstrate some of the capabilities of the method.

In the last chapter dealing with reduced order modelling (chapter 5), we
discuss how manifolds for nonlinear dissipative systems can be found. By
performing a set of simulations backwards-in-time we find trajectories on the
manifold. These are in turn used to find the manifold, by interpolating be-
tween the known states. In our simulations, the trajectories prove to identify
the manifold in a correct manner. A drawback, however, is that numerical
errors escalate with amplitude and time. This clearly limits the use, but it is
likely that the numerical procedure can be significantly improved to reduce
these errors. One major advantage of the method is that it is very easy to im-
plement. The method is demonstrated utilizing a model of the aforementioned
dual-axis accelerometer, where squeeze-film damping is included.

In chapter 6, we focus on lumped modelling of a microresonator. We
also discuss other topics, and especially electrical equivalents of mechani-
cal systems. In particular, we demonstrate the two analogies between the
mechanical and electrical domains. It is shown how the velocity-voltage
(f → V ) analogy, linking velocity to voltage, is the natural choice over the
force-voltage (e → V ) analogy. This does, however, have the implication
that the electrostatic transducer element, expressed as an electrical equivalent,
involves a gyrator element.

A microresonator is modelled using lumped modelling techniques, disre-
garding all nonlinear effects except in the electrostatic transducer. We create
electrical equivalent circuits of the system by employing the f → V analogy.
This is done for various degrees of partitioning of the microresonator. In
all we create 3 lumped models with different numbers of degrees of freedom.
The results are as expected with regard to accuracy, it improves with increased
degrees of freedom. At the same time we note that the more accurate models
reveal effects that are of potential importance, and which in turn can be used
to improve the models of least accuracy.

In chapter 7, we analyse an electromagnetic system, intended for levitating
objects. The analysis is done using a lumped model, where the elements are
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created on the basis of analytical solutions. By using the compact model, we
demonstrate the scaling effects of the system, clearly showing that this system
takes advantage of the miniaturization. Furthermore, the analysis shows that
the system is intrinsically stable. However, an effect, which causes the stable
state of the floating disc to be slightly tilted is also unveiled. This is the first
analysis done assessing the stability criterions of such a system. The insight
arising from the analysis gives strong indications on how such a system can
be utilized and how it can be improved.

8.1 Lumped modelling versus reduced order modelling
Lumped modelling and reduced order modelling puts different requirements
on the designer’s background knowledge and experience. Creating a reduced-
order model generally requires the designer to build an accurate model in a
numerical tool, and thereafter choose an appropriate reduction method. The
choice of reduction method is of major importance, since this directly in-
fluences the properties of the reduced model. While we have focused on the
invariant manifold method for creating reduced models, other reduction meth-
ods have also been briefly presented. This gives us an indication of the variety
of the methods and also of the differing properties of the methods. Among the
important parameters for choosing the best suitable reduction method is need
of transparency and accuracy of the reduced model. Nonlinearity is clearly
also important in many systems. As of today, however, a severe restriction to
the designer’s possibilities is that many reduction methods are still immature,
and have to little extend been implemented in commercial software.

In model order reduction, the designer is focused on reduction method-
ology and its capabilities to capture either known or unknown effects from
a fairly accurate large model. Lumped modelling on the other hand puts the
designer in a totally different situation. He or she must identify all important
effects of the system based on physical intuition. Based on that, the model
is built in a manner that includes all the identified important effects, leaving
unimportant effects unmodelled. For many systems, it is a straightforward
task to identify the most important effects, thus making it possible to create
a fairly good lumped model. However, other systems may be more complex,
challenging the designer’s abilities. Hence, the quality of the lumped model
becomes highly dependent upon the designer’s insight and experience. How-
ever, one can often build physical intuition from simulations utilizing more
complex models. We also note that a designer failing to recognize a complex
effect will not include such an effect in the model. Of equal importance, the
designer will not be aware of the error made, resulting in a possibly erroneous
model. Despite the drawbacks pointed out, lumped modelling is very popular.
This is mainly due to the method’s simplicity. At the same time it is a very
efficient way of verifying a conceptual idea, since the main effects of the
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system will then presumably be known.
Both lumped modelling and reduced order modelling can be used for

creating macromodels. However, if we refer to the requirements of a macro-
model given in 1.1, we note that neither of the methods are completely ca-
pable of fulfilling these requirements. For lumped models, possibly the most
important problem concerns inaccuracies (and possible direct errors) in the
model. Methods for reduced order modelling are still in rapid development.
This is especially true for nonlinear methods where more knowledge must
be obtained. Generally, model order reduction methods also do not explic-
itly include dependencies on design-parameters. Furthermore, they require
extensive computational resources in terms of software.

Further improvements in methods for reducing nonlinear models are nec-
essary to make them a valuable tool. When this is fulfilled, reduction methods
will become an important complementary tool to lumped modelling for gen-
erating macromodels. Lumped modelling will continue to be a very important
tool in macromodelling due to its simplicity and fundamental difference from
model-order reduction.

8.2 Future work
It is always an advantage for designer to improve their knowledge and un-
derstanding of lumped modelling. However, designers can also benefit by
expanding the knowledge and understanding of the basic physical effects and
domains that are encountered in MEMS.

For model-order reduction the focus is still to develop methods and make
them commersially available. We believe that the use of eigenvectors (instead
of i.e. Krylov subspace) as basis vectors for the reduction process aids in
making the reduced model more transparent. However, it is widely recognized
that this results in reduced models that are inaccurate at static load. However,
a reduced model based on the Krylov subspace will give correct static load,
since the displacement under static load defines the first Krylov subspace
vector. It would therefore be interesting to look at model-order reduction
where the basis-vectors are a combination of the eigenvectors and the first
Krylov subspace vector. This should improve the accuracy, hopefully without
reducing the transparency of the model.

Invariant manifolds are an important topic in this thesis. A number of
issues must be resolved before the use of manifolds can become widespread.
Methods for identifying the manifold must be further investigated. Nonlin-
ear Galerkin methods have already been investigated to a certain degree and
appear to be promising. Finally, we have outlined a methodology to handle
external forcing in a consistent manner, which should also be further investi-
gated.
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