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Abstract 
Scientific Computing is the collection of tools, techniques, and theories required 
to solve on a computer, mathematical models of problems from science and 
engineering, and its main goal is to gain insight in such problems. Generally, it 
is difficult to understand or communicate information from complex or large 
datasets generated by Scientific Computing methods and techniques 
(computational simulations, complex experiments, observational instruments 
etc.). Therefore, support of Scientific Visualization is needed, to provide the 
techniques, algorithms, and software tools needed to extract and display 
appropriately important information from numerical data. 

Usually, complex computational and visualization algorithms require 
large amounts of computational power. The computing power of a single 
desktop computer is insufficient for running such complex algorithms,  
and, traditionally, large parallel supercomputers or dedicated clusters were 
used for this job. However, very high initial investments and maintenance costs 
limit the availability of such systems. A more convenient solution,  
which is becoming more and more popular, is based on the use of non-
dedicated desktop PCs in a Desktop Grid Computing environment. Harnessing 
idle CPU cycles, storage space and other resources of networked computers to 
work together on a particularly computational intensive application does this. 
Increasing power and communication bandwidth of desktop computers 
provides for this solution.  

In a desktop grid system, the execution of an application is orchestrated 
by a central scheduler node, which distributes the tasks amongst the  
worker nodes and awaits workers' results. An application only finishes when 
all tasks have been completed. The attractiveness of exploiting desktop grids is 
further reinforced by the fact that costs are highly distributed: every volunteer 
supports her resources (hardware, power costs and internet connections)  
while the benefited entity provides management infrastructures, namely 
network bandwidth, servers and management services, receiving in exchange a 
massive and otherwise unaffordable computing power. The usefulness of 
desktop grid computing is not limited to major high throughput public 
computing projects. Many institutions, ranging from academics to enterprises, 
hold vast number of desktop machines and could benefit from exploiting the 
idle cycles of their local machines. 

In the work presented in this thesis, the central idea has been to provide 
a desktop grid computing framework and to prove its viability by testing it  
in some Scientific Computing and Visualization experiments. We present  
here QADPZ, an open source system for desktop grid computing that have 
been developed to meet the above presented needs. QADPZ enables users  
from a local network or Internet to share their resources. It is a multi-platform, 
heterogeneous system, where different computing resources from inside  
an organization can be used. It can be used also for volunteer computing,  
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where the communication infrastructure is the Internet. QADPZ supports  
the following native operating systems: Linux, Windows, MacOS and  
Unix variants. The reason behind natively supporting multiple operating 
systems, and not only one (Unix or Windows, as other systems do), is that 
often, in real life, this kind of limitation restricts very much the usability of 
desktop grid computing. 

QADPZ provides a flexible object-oriented software framework that 
makes it easy for programmers to write various applications, and for 
researchers to address issues such as adaptive parallelism, fault-tolerance, and 
scalability. The framework supports also the execution of legacy applications, 
which for different reasons could not be rewritten, and that makes it suitable for 
other domains as business. It also supports low-level programming languages 
as C/C++ or high-level language applications, (e.g. Lisp, Python, and Java), and 
provides the necessary mechanisms to use such applications in a computation.  
Consequently, users with various backgrounds can benefit from using QADPZ. 
The flexible object-oriented structure and the modularity allow facile 
improvements and further extensions to other programming languages. 

We have developed a general-purpose runtime and an API to support 
new kinds of high performance computing applications, and therefore to 
benefit from the advantages offered by desktop grid computing. This API 
directly supports the C/C++ programming language. We have shown how 
distributed computing extends beyond the master-worker paradigm (typical for 
such systems) and provided QADPZ with an extended API that supports in 
addition lightweight tasks and parallel computing (using the message passing 
paradigm - MPI). This extends the range of applications that can be used to 
already existing MPI based applications - e.g. parallel numerical solvers used in 
computational science, or parallel visualization algorithms. 

Another restriction of existing systems, especially middleware based, is 
that each resource provider needs to install a runtime module with 
administrator privileges. This poses some issues regarding data integrity and 
accessibility on providers� computers. The QADPZ system tries to overcome 
this by allowing the middleware module to run as a non-privileged user, even 
with restricted access, to the local system. 

QADPZ provides also low-level optimizations, such as on-the-fly 
compression and encryption for communication. The user can choose from 
different algorithms, depending on the application, improving both the 
communication overhead imposed by large data transfers and keeping privacy 
of the data. The system goes further, by providing an experimental, adaptive 
compression algorithm, which can transparently choose different algorithms to 
improve the application. QADPZ support two different protocols (UDP and 
TCP/IP) in order to improve the efficiency of communication. 

Free source code allows its flexible installations and modifications based 
on the particular needs of research projects and institutions. In addition to being 
a very powerful tool for computationally-intensive research, the open-



 

 iii

sourceness makes QADPZ a flexible educational platform for numerous small-
size student projects in the areas of operating systems, distributed systems, 
mobile agents, parallel algorithms, etc. Open source software is a natural choice 
for modern research as well, because it encourages effectively integration, 
cooperation and boosting of new ideas.  

This thesis proposes also an improved conceptual model (based on the 
master-worker paradigm), which makes contributions in several directions: pull 
vs. push work-units, pipelining of work-units, more work-units sent at a time, 
adaptive number of workers, adaptive time-out interval for work-units, and 
multithreading. We have also demonstrated that the use of desktop grids 
should not be limited to only master-worker applications, but it can be used for 
more fine-grained parallel Scientific Computing and Visualization applications, 
by performing some specific experiments. This thesis makes supplementary 
contributions: a hierarchical taxonomy of the main existing desktop grids, and 
an adaptive compression algorithm for remote visualization. QADPZ has also 
pioneered autonomic computing approach for desktop grids and presents 
specific self-management features: self-knowledge, self-configuration, self-
optimization and self-healing. It is worth to mention that to the present the 
QADPZ has over a thousand users who have download it (since July, 2001 
when it has been uploaded to sourceforge.net), and many of them use it for 
their daily tasks (see the appendix). Many of the results have been published or 
are in course of publishing as it can be seen from the references. 
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1 Introduction 

1.1 Problem description 
Technology may be the product of knowledge and intense work. Nevertheless, 
people want it to work like magic. And when technology users want to 
accomplish something, the last thing they want to think about is how to do it. 
That is why the scientific and engineering community, and increasingly the 
business world, are welcoming Grid computing with the kind of enthusiasm 
inspired by the Internet not long ago, when its standards and technologies 
began the march toward near-universal connectivity, broad access to content, 
and a new model for science, engineering, business and for life itself. That 
development was extraordinary in many respects, not least because it was a 
major step in Information Technology's historic evolution toward total 
integration into our society. In that passage of Information Technology (IT) to 
mass adoption, Grid computing could be as momentous as the Internet itself. 

Grid computing is a model of distributed computing that uses 
geographically and administratively disparate resources that are found on the 
network. These resources may include processing power, storage capacity, 
specific data, and other hardware such as input and output devices. In grid 
computing, individual users can access computers and data transparently, 
without having to consider location, operating system, account administration, 
and other details. Moreover, the details are abstracted, and the resources are 
virtualized. Grid computing seeks to achieve the secured, controlled and 
flexible sharing of resources (for example, multiple computers, software and 
data) among various dynamically created virtual organizations (Foster and 
Kesselman, 2004) (Cummings, 2007), which are generally setup for collaborative 
problem solving and access to grid resources are limited to those who are part 
of the project. The creation of an application that can benefit from Grid 
computing (faster execution speed, linking of geographically separated 
resources, interoperation of software, etc.) typically requires the installation of 
complex supporting software and an in-depth knowledge of how this complex 
supporting software works.  

Grid computing systems can be classified into two broad types. The first 
type are heavy-weight, feature-rich systems that tend to concern themselves 
primarily with providing access to large-scale, intra- and inter-institutional 
resources such as clusters or multiprocessors. The second general class of Grid 
computing systems is the Desktop Grids, in which cycles are scavenged from 
idle desktop computers. The typical and most appropriate application for 
desktop grid is comprised of independent tasks (no communication exists 
amongst tasks) with a high computation to communication ratio. 

In a desktop grid system, the execution of an application is orchestrated 
by a central scheduler node, which distributes the tasks amongst the worker 
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nodes and awaits workers' results. It is important to note that an application 
only finishes when all tasks have been completed. The main difference in the 
usage of institutional desktop grids relatively to public ones lies in the 
dimension of the application that can be tackled. In fact, while public projects 
usually embrace large applications made up of a huge number of tasks, 
institutional desktop grids, which are much more limited in resources, are more 
suited for modestly-sized applications. So, whereas in public volunteer projects 
importance is on the number of tasks carried out per time unit (throughput), 
users of institutional desktop grids are normally more interested in a fast 
execution of their applications, seeking fast turnaround time. 

The attractiveness of exploiting desktop grid systems is further 
reinforced by the fact that costs are highly distributed: every volunteer supports 
her resources (hardware, power costs and internet connections) while the 
benefited entity provides management infrastructures, namely network 
bandwidth, servers and management services, receiving in exchange a massive 
and otherwise unaffordable computing power. The usefulness of desktop grid 
computing is not limited to major high throughput public computing projects. 
Many institutions, ranging from academics to enterprises, hold vast number of 
desktop machines and could benefit from exploiting the idle cycles of their local 
machines. In fact, several studies confirm that CPU idleness in desktop 
machines averages 95% (Heap, 2003), (Domingues et al., 2005). 

The needs for more accurate simulations, combined with advances in 
computer hardware performance, are generating larger and larger amounts of 
numerical results. Workstations, minicomputers, and image computers are 
significantly more powerful and effective visualization tools than 
supercomputers. It is a waste of super-computer cycles to use them to convert 
this data into new pictures. Specialized graphic processors are more cost-
effective than supercomputers for specialized picture processing and/or 
generation. Researchers must have easy access to local or distributed resources 
for high quality computations and visualizations. 

Scientific Computing (or Computational Science) is the field of study 
concerned with constructing mathematical models and numerical solution 
techniques, and with using computers to analyze and solve scientific and 
engineering problems. In practical use, it is typically the application of 
computer simulation and other forms of computation to problems in various 
scientific and engineering disciplines. The field is distinct from computer 
science (the mathematical study of computation, computers and information 
processing). It is also different from theory and experiment, which are the 
traditional forms of science and engineering. The Scientific Computing 
approach is to gain understanding, mainly through the analysis of 
mathematical models implemented on computers. As Richard Hamming has 
observed many year ago, �the purpose of Scientific Computing is insight, not 
numbers� (McCormick, 1988). 

http://en.wikipedia.org/wiki/Mathematical
http://en.wikipedia.org/wiki/Computation
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Information_processing
http://en.wikipedia.org/wiki/Information_processing
http://en.wikipedia.org/wiki/Computer
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Scientific Computing programs often model real-world changing conditions, 
such as weather, air flow around a plane, automobile body distortions in a 
crash, the motion of stars in a galaxy, an explosive device, etc. Such programs 
might create a 'logical mesh' in computer memory where each item corresponds 
to an area in space and contains information about that space relevant to the 
model. For example in weather models, each item might be a square kilometer; 
with land elevation, current wind direction, humidity, temperature, pressure, 
etc. The program would calculate the likely next state based on the current 
state, in simulated time steps, solving equations that describe how the system 
operates, and then repeat the process to calculate the next state. 

Scientists and engineers develop software systems that implement the 
models of the systems being studied and run these programs with various sets 
of input parameters. Typically, these models require massive amounts of 
calculations (usually floating-point) and are often executed on supercomputers 
or distributed computing platforms. 

Visualization could help overcome the dilemma of having information, 
but not the right interpretation for it. Interactive computing and visualization 
would be an invaluable aid during the scientific discovery process, as well as a 
useful tool for gaining insight into scientific anomalies or computational errors. 
Scientist needs an alternative to numbers. A cognitive possibility and technical 
reality is the use of images. The ability of scientists to visualize complex 
computations and simulations is absolutely essential to ensure the integrity of 
the analysis, to provoke insights, and to communicate about them with others. 
Scientific and Information Visualization are concerned with presenting data to 
users by means of images. Both fields seek ways to help users explore, make 
sense of, and communicate about data. They are active research areas, drawing 
on theory in information graphics, computer graphics, human-computer 
interaction and cognitive science. 

Information Visualization and Scientific Visualization have overlapping 
goals and techniques. There is currently no clear consensus on the boundaries 
between these fields, but broadly speaking the two areas can be distinguished 
as follows: Scientific Visualization deals primarily with data that has a natural 
geometric structure (e.g. MRI data or wind flows), and Information 
Visualization handles more abstract data structures. 

A related term, Visual Analytics, focuses on human interaction with 
visualization systems as part of a larger process of data analysis. Visual 
analytics is considered the science of analytical reasoning supported by the 
interactive visual interface. Its focus is on human information discourse 
(interaction) within massive, dynamically changing information spaces. Visual 
analytics research concentrates on support for perceptual and cognitive 
operations that enable users to detect the expected and discover the unexpected 
in complex information space. Technologies resulting from visual analytics find 
their application in almost all fields, but are being driven by critical needs (and 
funding) in biology and national security. 

http://en.wikipedia.org/wiki/Floating-point
http://en.wikipedia.org/wiki/Supercomputer
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/MRI
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Through a strong US government financial support Scientific Visualization 
prospered specifically after the mid ´80s. A key event for the growth of 
Scientific Visualization was the appearance of a report based on an NSF 
sponsored workshop (McCormick et al., 1987). Scientific Visualization is a 
relatively new, exciting field of computational science spurred on in large 
measure by the rapid growth in computer technology, particular in graphics 
workstation hardware and computer graphics software. Visualization tools are 
beginning to impact our daily lives through usage in art (e.g. film animation), 
and they hold great promise for scientific research and education. The goal of 
visualization is to leverage existing scientific methods by providing new 
scientific insight through visual methods. An estimated 50 percent of the brain�s 
neurons are associated with vision. Visualization in Scientific Computing aims 
to put that neurological machinery to work.  

Moreover, there is every indication that the number of data sources will 
multiply, as will the data density of these sources. For example, the definition of 
a supercomputer is changing from its former meaning of 0.1 - 1.0 gigaflops 
(billions of floating-point operations per second) to intermediate 1 - 10 
gigaflops, and up-to-date 500Tflops (Top500, 2007). Also, current earth resource 
satellites have resolutions 10 -100 times higher than satellites orbited just a few 
years ago. Scientists involved in the computational sciences require these data 
sources to conduct significant research; however, the flood of data generated 
overwhelms them. Using an exclusively numerical format, the human brain 
cannot interpret gigabytes of data each day, and therefore much information 
will goes to waste. 

Moreover, scientists not only want to analyze data that results from  
super-computations, they want to interpret what is happening to the data 
during super computations. Scientist wants to steer calculations in  
close-to-real-time, they want to be able to change parameters, resolution, or 
representation, and see the effects. Basically, scientists want to be able to 
interact with their data. 

Some of the domains and directions in which Scientific Computation and 
Visualization are able to give valuable insight are listed here: engineering, 
computational fluid dynamics, finite element analysis, electronic design 
automation, simulation, medical imaging, geospatial, RF propagation, 
meteorology, hydrology, data fusion, ground water modeling, oil and gas 
exploration and production, finance, data mining/OLAP, numerical 
simulations, orbiting satellites returning earth resource, military intelligence, 
astronomical data, spacecraft sending planetary and interplanetary data, 
earthbound radio astronomy arrays, instrumental arrays recording geophysical 
entities, such as ocean temperatures, ocean floor features, tectonic plate and 
volcanic movements, and seismic reflections from geological strata, medical 
scanners employing various imaging modalities, such as computed 
transmission and emission tomography, and magnetic resonance imagery. 

There are many complex computational and visualization algorithms, 
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which require large amounts of computational power. In many cases  
the computing power of a single desktop computer is insufficient for  
generating such complex visualizations, or it takes too long time to  
generate them. The situation becomes more complicated when the data sets are 
very large. Traditionally, large parallel supercomputers were used for 
generating such complex visualizations. However, very high initial investments 
and maintenance costs limited the availability of such systems to very few 
research labs.  

A more convenient solution, which is becoming more and more popular, 
is based on commodity clusters, consisting of cheaper personal computers 
connected by large bandwidth network. In a similar way, the cost of such 
systems is still high due to the large number of cluster nodes required by the 
computationally intensive applications. 

An alternative approach is the use of non-dedicated desktop PCs in a 
desktop grid computing environment. Harnessing idle CPU cycles and storage 
space of networked computers to work together on a particularly 
computational intensive application does this. Increasing power and 
communication bandwidth of desktop computers are helping to make 
distributed computing a more practical idea. By using existing desktop 
computers from a local network, the cost of such an approach is low compared 
with parallel supercomputers and dedicated clusters. 

We finally conclude that science, industry, business and other domains 
can benefit from Grids and Desktop Grids. However, at the risk of stating the 
case too broadly, we make a more comprehensive statement. A primary 
purpose of information technology and infrastructure is to enable people  
to perform their daily tasks more efficiently or effectively. To the extent  
that these tasks are performed in collaboration with others, grids are more  
than just a niche technology, but rather a direction in which our  
infrastructure must evolve if it is to support our social structures and the way 
work gets done in our society. 

1.2 Research goals  
This thesis mainly deals with processing power as the vital resource. The 
motivation for harnessing the available processing power on the network is 
simple: to increase the size of problems that can be solved, to increase 
performance and obtain results faster. Consider a typical local area network, 
where many low-price machines on the network will be idle for significant 
periods of time. If these wasted processor cycles could be utilized, they could 
represent a significant processing resource. This approach provides a more 
flexible and cost effective processing system. Normally, workstations may be in 
use as desktop machines, but become part of a distributed computation 
resource when not in use, for example, at night or during weekends.  
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In many universities, research organizations, and, lately, enterprises, the 
following recent trends can be identified: larger amounts of data are being 
accumulated and manipulated; hardware performance of desktop computers 
increases dramatically; new technological advancements stimulate use of 
computing applications with extreme requirements for computational power; 
use of computing, simulations, visualizations, and optimization in various 
research fields and practical applications is accelerating and leads to very  
high demands on computing power; and the pace of development  
of high-performance servers hardly equals these trends, but for very high 
financial costs. Increasing hardware performance of desktop computers 
accounts for a low-cost high-performance computing potential that is waiting to 
be efficiently put in use.  

Distributed Computing harnesses the idle processing cycles of the 
available workstations on the network and makes them available for  
working on computationally intensive problems that would otherwise  
require a supercomputer or a dedicated cluster of computers to solve.  
A distributed computing application is divided to smaller computing tasks, 
which are then distributed to the workstations to process in parallel. Results are 
sent back to the server, where they are collected. The more PCs in a network, 
the more processors available to process applications in parallel, and the faster 
the results are returned. A network of a few thousand PCs can process 
applications that otherwise can be run only on fast and expensive 
supercomputers. This kind of computing can transform a local network of 
workstations into a virtual supercomputer. 

In this thesis we present a solution that has been developed to meet the 
above needs. It consists of a conceptual model for desktop grid computing and 
the system that has been developed according to it, QADPZ [�kwod �pi: �si:], a 
modular, open source, object oriented implementation in C++, of a multi-user 
and multi-platform desktop grid system. The computing power of large 
number of idle desktop computers is utilized by automatically scheduled tasks 
that are submitted, monitored, and controlled by users. Flexibility of the system 
is implied by several user application modes. Task software and hardware 
requirements and input/output files are handled automatically by the system. 
Internal communication protocol is based on optionally encrypted XML 
messages using public/private keys, user names and passwords. QADPZ can 
operate both in conditions of an open Internet environment and of a closed local 
network which supports the family of TCP/IP protocols. QAPDZ has important 
autonomic features as well. The system is currently in use for research tasks in 
the areas of large-scale Scientific Visualization, evolutionary computation, 
simulation of complex neural network models, and other computationally 
intensive applications. Besides that, QADPZ can also be used a as research 
environment for studying different algorithms related to distributed 
computing, different scheduling policies etc., or as an educational environment 
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to study different aspects related to operating systems, distributed systems, 
mobile agents, parallel algorithms, etc. 

The QADPZ design goals have been ease of use at different user skill 
levels, inter-platform operability, modularity and modifiability, client-master-
slave architecture using fast message based communication, security of 
computers participating in QADPZ, and easy and automatic installation and 
upgrade. In QADPZ, a small software program (slave service) runs on each 
desktop workstation. As long as the workstation is not being utilized, the slave 
service accepts tasks sent by the server (master). The available computational 
power is used for executing a task. Human system administration required for 
the whole system is minimal.  

1.3 Results and contributions 
In the work presented in this thesis, the central idea has been to provide a 
desktop grid computing framework and to prove its viability by testing it in 
some Scientific Computing and Visualization experiments. We present here 
QADPZ, an open source system for desktop grid computing, which enables 
users from a local network or even Internet to share their resources. It is a 
multi-platform, heterogeneous system, where different computing resources 
from inside an organization can be used. It can also be used for volunteer 
computing, where the communication infrastructure is the Internet. QADPZ 
supports the following native operating systems: Linux, Windows, MacOS and 
Unix variants. The reason behind natively supporting multiple operating 
systems, and not only one (Unix or Windows, as other systems do), is that 
often, in real life, this kind of limitation restricts very much the usability of 
desktop grid computing. 

QADPZ provides a flexible object-oriented software framework  
that makes it easy for programmers to write various applications, and  
for researchers to address issues such as adaptive parallelism, fault-tolerance, 
and scalability. The framework supports also the execution of legacy 
applications, which for different reasons could not be rewritten, and that  
makes it also suitable for other domains as business. It also supports either low-
level programming languages as C and C++ or high-level language 
applications, like for example Lisp, Python, and Java, providing the necessary 
mechanisms to use such applications in a computation.  Consequently, users 
with various backgrounds can benefit from using QADPZ. The flexible,  
object oriented structure, the modularity of the system along with the  
open-sourceness provide for easy improvements and further extensions to  
other programming languages. 

We developed a general-purpose runtime and an API to support new 
kind of high performance computing applications, and therefore to benefit from 
the advantages offered by desktop grid computing. We have shown how 
distributed computing extends beyond the master-worker paradigm, typical for 
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such systems, and provided QADPZ with an extended API which supports in 
addition lightweight tasks creation and parallel computing, using the message 
passing paradigm (MPI). The API directly supports the C/C++ programming 
language. QADPZ supports parallel programs running on the desktop grid, by 
providing an API in the C/C++ language, which implements a subset of the 
MPI standard. This extends the range of applications that can be used in the 
system to already existing MPI based applications, e.g. parallel numerical 
solvers from computational science, or parallel visualization algorithms. 

Another restriction of existing systems, especially middleware based, is 
that each resource provider needs to install a runtime module with 
administrator privileges (root, supervisor). This poses some issues regarding 
data integrity and accessibility on providers� computers. The QADPZ system 
tries to overcome this by allowing the middleware module to run as a non-
privileged user, even with restricted access, to the local system. 

QADPZ provides also low-level optimizations, such as on-the-fly 
compression and encryption for communication. The user can choose  
from different algorithms, depending on the application, improving  
both the communication overhead imposed by large data transfers and keeping 
privacy of the data. The system goes further, by providing an experimental, 
adaptive compression algorithm, which can transparently choose  
different algorithms to improve the application. QADPZ also support two 
different communication protocols (UDP and TCP/IP) in order to improve the 
efficiency of communication. 

Free availability of the source code allows its flexible installations and 
modifications based on the individual needs of research projects and 
institutions. In addition to being a very powerful tool for computationally-
intensive research, the open-source availability makes QADPZ a flexible 
educational platform for numerous small-size student projects in the areas of 
operating systems, distributed systems, mobile agents, parallel algorithms, and 
others. More, free/open source software is a natural choice for modern 
research, as well, because it encourages integration, cooperation and boosting of 
new ideas, in a very effective way. We offered the QADPZ system as open 
source from the beginning, at a time when very few such solution were free, 
with all the positive implications of this for research and computationally 
intensive applications. 

This thesis proposes an improved conceptual model (based on the 
master-worker paradigm), which makes contributions in several directions 
(pull vs. push work-units, pipelining of work-units, more work-units sent at a 
time, adaptive number of workers, adaptive time-out interval for work-units, 
and multithreading). 

Beside the extended master-worker conceptual model and the QADPZ 
desktop grid system, this thesis make contributions in form of a hierarchical 
taxonomy of the main existing desktop grids, and of an adaptive compression 
algorithm for remote visualization. We have also been trying to demonstrate 
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that the use of desktop grid computing should not be limited to only master-
worker type of application, but can be used also for more fine-grained parallel 
applications, in the field of Scientific Computing and Visualization, by 
performing some experiments in those domains. The system is currently used 
for research tasks in the areas of large-scale scientific visualization, evolutionary 
computation, simulation of complex neural network models, and other 
computationally intensive applications. It is worth to mention that to the 
present, the QADPZ has over a thousand downloads, from users who use it for 
their tasks, as it can be seen in the appendix. 

Some of the results of this thesis have already been published (they are 
listed in the references) and some are in course of publication. Thus, 
contributions that are already published concern: the QADPZ system 
(Constantinescu and Petrovic, 2002) and (Constantinescu et al., 2002), QADPZ 
proven to be useful in Scientific Computing � example of using it to solve the 
Navier Stokes equation for fluid dynamics (Constantinescu, 2003), QADPZ as 
an autonomic distributed computing system (Constantinescu, 2003), and the 
hierarchical taxonomy of desktop grid systems built from users� perspective 
(Constantinescu and Vladoiu, 2008). The paper on QADPZ�s autonomicity has 
been highly cited since it has been published and considered as pioneering this 
approach in desktop grids, as it can be seen in the appendix. The results on 
QADPZ, as a viable desktop grid/volunteer computing open solution, which 
can also use parallel computing techniques using the MPI layer - this is a novel 
approach in desktop grid, on the improved master worker model, on the 
adaptive compression algorithm for remote visualization, on master 
virtualization, on QADPZ testing in some experimental scientific visualizations, 
and on QADPZ development journey are in course of publication. 

1.4 Outline of the thesis 
This thesis consists of an abstract, ten chapters and one appendix. In the 
abstract, the reader is familiarized briefly with the basic ideas from Scientific 
Computing and Visualization, then it is shown that the computationally 
intensive problems from those domains can be solved by using Desktop Grid 
Computing Systems (that are briefly described), and finally, the desktop grid 
framework which has been developed during this work, the QADPZ system, is 
presented, along with the main contributions of this thesis. The first chapter, 
Introduction, establish the boundaries of the problem to be solved, i.e. providing 
an environment of desktop grid computing and proving its viability by testing 
it in some computationally intensive experiments. In the beginning, it is shown 
that, due to the fact that people need the technology to work like magic,  
Grid and Desktop Grids are welcomed with the kind of enthusiasm inspired by 
the Internet not so long ago. After that, Grid and Desktop Grids are briefly 
introduced, with their features and challenges. Then, the Scientific Computing 
and Scientific Visualization domains are presented in a few words, along with 
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their specific requirements for huge computing power and other resources. The 
importance of proper visualization to gain insight in the real world modeled 
problems is then emphasized. Finally, it is revealed that grids are more than just 
a niche technology, but rather a direction in which our infrastructure must 
evolve if it is to support our social structures and the way work gets done in our 
society. Before its end, Introduction includes also the research goals and the 
thesis results and contributions. 

The second chapter, Scientific Computing, tries to respond the question, 
what is Scientific Computing all about?, and it concludes by the working 
definition that says that it is the collection of tools, techniques, and theories 
required to solve on a computer, mathematical models of problems in science 
and engineering. The path from a scientific or engineering problem, via 
mathematical modeling, numerical analysis and computer science that converge 
through Scientific Computing to a solution is illustrated as well. Besides that, 
specific problems of the process of numerical solution are presented, because of 
their importance when using computers to find that solution (errors, 
approximations etc.). Finally, the computing environment in which Scientific 
Computing takes place, is discussed. 

Scientific Visualization is the subject of the third chapter. It starts with 
establishing the human nature of visualization, and then shifts to presentation 
of various sorts of computer-based visualizations: interactive visualizations, 
animations, abstract and model-based visualizations etc. Next, the main reasons 
for the need of Scientific Visualization are presented, along with the domains 
from which visualization has been bred. The chapter continues with detailed 
descriptions of some applications of visualization, from which the critical 
requirements of these applications arise. Then a few words about visualization 
algorithms, environments and graphical excellence guidelines are provided. 

The fourth chapter, Computational Grids and Desktop Grids, introduces the 
main domain of this thesis. First, some basic ideas about distributed and 
parallel computing are presented, and then a bit of grid history is brought to the 
light. Further on, the need for computational grid along with its context is 
established. Data-intensive science, simulations, remote apparatus and virtual 
community science are briefly presented, along with their specific needs that 
demand for grid facilities. Then, an argumentation, based on exemplifying 
scenarios, that grid is needed also outside the scientific and engineering world, 
to solve real day to day problems, is given. After establishing the need for it, the 
premises (technical and financial) for making the Grid happen are summarized. 
At this point, two milestone definitions for Grid are provided, and their key 
elements are discussed. The chapter continues with a short taxonomy of grid 
applications, and concludes the Grid part with some integrability, efficiency 
and quality of services� issues. The second part of this chapter concerns Desktop 
Grids, and it starts with introducing small composite elements, as basic 
elements for desktop grids (high-throughput computing), high-reliability 
clusters and high-performance clusters. The key components and requirements 
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for desktop grids are given, along with detailed robustness, communication, 
and security issues. 

The fifth chapter, which is entitled Overview and Taxonomy of Desktop Grid 
Systems, runs a survey of the most remarkable desktop grids (SETI@home-
BOINC, distributed.net, PVM, Entropia, and Condor), and, then synthesize a 
hierarchical three level taxonomy for desktop grids. The first level refers to 
infrastructure and includes resource type, the platform that runs at the 
provider, scalability and security issues. The second one includes conceptual 
model, architecture and data model, under the umbrella of models. The last 
level concerns aspects related to software: application type, need for 
administrator privileges, architecture of the support operating system, and 
licensing. Before the end of the chapter, a table with the classification of the 
main desktop grid systems according to this taxonomy is provided. Examining 
few typical application scenarios has eased crafting a user-centric taxonomy. 
We hope that our approach will help promote the introduced taxonomy as a 
practice for its potential users. 

The Conceptual Model chapter present first the master-worker model for 
distributed computing, then gives some decompositions and distributions of 
the work-units, and finally introduce an improved conceptual model, which 
makes contributions in several directions (pull vs. push work-units, pipelining 
of work-units, more work-units sent at a time, adaptive number of workers, 
adaptive time-out interval for work-units, multithreading, resource estimation 
and monitoring, scheduling). 

The seventh chapter, The QADPZ system, deals with detailed 
presentation of the desktop grid system that has been developed during this 
thesis work. In the first place, a justification for the need for a new such system 
is given. Then, in the Design and Implementation section, the requirements for 
the system are reviewed, and the QADPZ architecture comes along, with details 
about various components of this desktop grid framework (master, slave, 
client). Detailed explanations about the communication mechanism are 
provided further, here being included the parallel computing feature as well. 
Interplatform operability, security, and autonomic computing features of 
QADPZ bring to a close this section. Further on, a brief �get started� 
documentation is provided. 

The eighth chapter is dedicated to the QADPZ users and it refers to 
QADPZ usage on sourceforge.net, reactions to it and feedback. Basically, we present 
the screenshot-based history of the system since its upload to this site, with 
emphasis on the number of hits and downloads of the systems. Within the 
appendix of this thesis, the raw feedback and reactions to the system are listed. 
These have been categorized into four main categories: feedback and support 
requests from users who use QADPZ for their research and development tasks, 
forum discussions, citations in papers, and working assignments, based on 
QADPZ features, for students from some universities. 
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The next chapter, Experiments of Scientific Computing and Visualization, presents 
some experiments we have performed by using QADPZ and other support 
systems: computational resource monitoring, real world problem: Trondheim 
fjord, fluid flow around a cylinder � simulation and visualization, evolutionary 
computation, and, finally, an adaptive compression for remote visualization. 

The last chapter, Conclusions, re-states the need for Grid and Desktop 
Grid facilities for solving both scientific and engineering problems (with their 
complicated visualizations) and daily ones, then summarizes the contributions 
of this thesis work and the future work ideas, and finally concludes with 
asserting that, as we become capable of doing more and more with our 
advanced technologies and as we hide those technologies and their 
complexities from users, the results will indeed seem like magic. 
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2 Scientific Computing 

2.1 What is Scientific Computing (all about)? 
The numerous millions of computers now installed worldwide are used for an 
increasing puzzling variety of tasks: accounting and inventory control for 
industry and government, airline and other reservation systems, limited 
translation of natural languages, monitoring of process control, and so on. One 
of the earliest - and still one of the largest - uses of computers was to solve 
problems in science and engineering and, more specifically, to obtain solutions 
of mathematical models that represent some physical situation. The techniques 
used to obtain such solutions are part of the general area called Scientific 
Computing, and the use of these techniques to obtain insight into scientific or 
engineering problems is called computational science or engineering.  
Scientific Computing is concerned with the design and analysis of algorithms 
for solving mathematical problems that arise in many fields, especially  
science and engineering.  

Scientific Computing is distinguished from most other parts of computer 
science in that it deals with quantities that are continuous. as opposed to 
discrete. It is concerned with functions and equations whose underlying 
variables time, distance, velocity, temperature, density, pressure, stress, and the 
like are continuous in nature. Must of the problems of continuous mathematics 
(for example, almost any problem involving derivatives, integrals, or 
nonlinearities) cannot be solved exactly, even in principle, in a finite number of 
steps and thus must be solved by a (theoretically infinite) iterative process that 
ultimately converges to a solution. In practice one does not iterate forever, of 
course, but only until the answer is approximately correct, "close enough" to the 
desired result for practical purposes. Thus, one of the most imperative aspects 
of Scientific Computing is finding rapidly convergent iterative algorithms and 
assessing the accuracy of the resulting approximation. If convergence is 
sufficiently rapid, even some of the problems that can be solved by finite 
algorithms, such as systems of linear algebraic equations, may in some cases be 
better solved by iterative methods. 

Consequently, a second factor that distinguishes Scientific Computing is 
its concern with the effects of approximations. Many solution techniques 
involve a whole series of approximations of various types. Even the arithmetic 
that is used is only approximate, because digital computers cannot represent all 
real numbers exactly. In addition to having the usual properties of good 
algorithms, such as efficiency, numerical algorithms should also be as reliable 
and accurate as possible despite the various approximations made along the 
way (Heath, 2002). 
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Nowadays, there is hardly an area of science or engineering that does not use 
computers for modeling. Trajectories for earth satellites and for planetary 
missions are routinely computed. Engineers use computers to simulate the flow 
of air about a spacecraft or other aerospace vehicle as it passes through the 
atmosphere, and to verify the structural integrity of aircraft. Such studies are of 
crucial importance to the aerospace industry in the design of safe and 
economical aircraft and spacecraft. Modeling new designs on a computer can 
save many millions of dollars compared to building a series of prototypes. 
Similar considerations apply to the design of automobiles and many other 
products, including new computers. 

Astronomers and astrophysicists have modeled the evolution of stars, 
and much of our basic knowledge about such phenomena as red giants and 
pulsating stars has come from such calculations corroborated with 
observations. Civil engineers study the structural characteristics of large 
bridges, buildings, dams, and highways. Meteorologists use large amounts of 
computer time to predict tomorrow's weather as well as to make much longer 
range predictions, including the possible change of the earth's climate. 
Biochemists visualize the effect of drugs on human cells. Ecologists and 
biologists are increasingly using the computer in such diverse areas as 
population dynamics (including the study of natural predator and prey 
relationships), the flow of blood in the human body, and the dispersion of 
pollutants in the oceans and atmosphere.  

As the above examples suggest, many of the problems from Scientific 
Computing come from science and engineering, in which the ultimate aim is to 
understand some natural phenomenon or to design some device. 
Computational simulation, as a representation and an emulation of a physical 
system or process using a computer, can greatly enhance scientific 
understanding by allowing the investigation of situations that may he difficult 
or impossible to investigate by theoretical, observational, or experimental 
means alone. In astrophysics, for example, the detailed behavior of two 
colliding black holes is too complicated to determine theoretically and 
impossible to observe directly or duplicate in the laboratory (Heath, 2002). To 
simulate it computationally, however, requires only an appropriate 
mathematical representation (in this case Einstein�s equations of general 
relativity), an algorithm for solving those equations numerically, and a 
sufficiently large computer on which to implement the algorithm. 

Computational simulation is useful not just for exploring exotic or 
otherwise inaccessible situations, however, but also for exploring a larger 
variety of normal scenarios than could otherwise be investigated with 
unreasonable cost and time. In engineering design, computational simulation 
allows a large number of design operations to be tried much more rapidly, 
inexpensively, and safely than with traditional prototyping methods. In this 
context, computational simulation has become known as virtual prototyping. In 
improving automobile safety, for example, crash testing is far less expensive 
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and dangerous on a computer than in real life, and thus the space of all possible 
design parameters can be explored much more thoroughly to develop an 
optimal design. 

The overall problem solving process in computational simulation usually 
includes the following steps: develop a mathematical model usually expressed by 
equations of some type of a physical phenomenon or system of interest, develop 
algorithms to solve the equations numerically, implement the algorithms in software 
systems, run the software on a computer to simulate the physical process 
numerically, represent the computed results in some comprehensible form such as 
graphical visualization, and, finally, interpret and validate the computed results, 
repeating any or all of the preceding steps, if necessary. 

The first step is often called mathematical modeling. It requires, specific 
knowledge of the particular scientific or engineering disciplines involved, as 
well as knowledge of applied mathematics. The next two steps that are 
concerned with designing, analyzing, implementing, and using numerical 
algorithms and software, are the main subject matter of Scientific Computing. It 
is essential that all of these steps, from problem formulation to interpretation 
and validation of results, be done properly for the results to be meaningful and 
useful. The principles and methods of Scientific Computing can be studied at a 
fairly broad level of generality, but the specific source of a given problem and 
the uses to which the results will be put should always be kept in mind, as each 
aspect affects and is affected by the others (Heath, 2002). For example, the 
original problem formulation may strongly affect the accuracy of numerical 
results, which in turn affects the interpretation and validation of those results. 

A mathematical problem is said to be well-posed if a solution exists, is 
unique, and depends continuously on the problem data. The latter condition 
means that a small change in the problem data does not cause an abrupt, 
disproportionate change in the solution. This property is especially important 
for numerical computations, where such perturbations are usually expected. 
Well-posedness is highly desirable in mathematical models of physical systems, 
but this is not always achievable. For example, inferring the internal structure of 
a physical system solely from external observations, as in tomography or 
seismology, often leads to mathematical problems that are inherently  
ill-posed in that distinctly different internal configurations may have 
indistinguishable external appearances. 

Even when a problem is well-posed the solution may still respond in a 
highly sensitive (though continuous) manner to perturbations in the problem 
data. To assess the effects of such perturbations, one must go beyond the 
qualitative concept of continuity to define a quantitative measure of the 
sensitivity of a problem. In addition, one must also take care to ensure that the 
algorithm that is used to solve a given problem numerically does not make the 
results more sensitive than is already inherent in the underlying problem. This 
need leads to the notion of a stable algorithm.  
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In seeking a solution to a given computational problem, a basic general strategy 
is to replace a difficult problem with an easier one that has the same solution, or 
at least a closely related solution. Examples of this approach include: replacing 
of infinite-dimensional spaces with finite-dimensional spaces, replacing infinite 
processes with finite processes (such as replacing integrals or infinite series 
with finite sums, or derivatives with finite differences), replacing differential 
equations with algebraic equations, replacing nonlinear problems with linear 
problems, substituting high-order systems with low-order systems, changing 
complicated functions with simple functions, such its polynomials, and 
replacing general matrices with simpler form ones. 

For example, to solve a system of nonlinear differential equations, one 
might first replace it with a system of nonlinear algebraic equations, then 
replace the nonlinear algebraic system with a linear algebraic system, then 
replace the matrix of the linear system with one of a special form for which the 
solution is easy to compute At each step of this process, we would need to 
verify that the solution is unchanged, or is at least within some required 
tolerance of the true solution. 

To make this general strategy work for solving a given problem, we have 
to have an alternative problem, or class of problems, that is easier to solve, and 
a transformation of the given problem into a problem of this alternative type 
that preserves the solution in some sense. Thus, much of the effort will go into 
identifying suitable problem classes with simple solutions and solution-
preserving transformations into those classes. 

Ideally, the solution to the transformed problem is identical to that of the 
original problem, but this is not always possible. In the latter case the solution 
may only approximate that of the original problem, but the accuracy can be 
made arbitrarily good at the expensive of additional work and storage. Thus, 
primary concerns are estimating the accuracy of such an approximate solution 
and establishing convergence to the true solution in the limit. 

The mathematical models of all of these problems are systems of 
differential equations, either ordinary or partial. Differential equations come in 
all "sizes and shapes" (Golub and Ortega, 1993) and even with the largest 
computers we are nowhere near being able to solve many of the problems 
posed by scientists and engineers. But there is more to Scientific Computing, 
and the scope of the field is changing rapidly. There are many other 
mathematical models, each with its own challenges. In operations research and 
economics, large linear or nonlinear optimization problems need to be solved. 

Data reduction, the condensation of a large number of measurements 
into usable statistics, has always been an important, if somewhat ordinary, part 
of Scientific Computing. However now there are available new tools (such as 
earth satellites) that have increased our ability to make measurements faster 
than our ability to assimilate them. Fresh insights are needed into ways to 
preserve and use this exceptional information. In more developed areas of 
engineering, what formerly were difficult problems to solve even once on a 
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computer are in our days routine problems that are being solved over and over 
with changes in design parameters. This has given rise to an increasing  
number of computer-aided design systems. Similar considerations apply in a 
variety of other areas. 

Before presenting a definition, we must mention that delimiting the area 
of Scientific Computing nowadays is tricky, especially the boundaries and 
overlaps with other areas. Though we will agree to use the working definition 
that says that �Scientific Computing is the collection of tools, techniques, and 
theories required to solve on a computer, mathematical models of problems in 
science and engineering� (Golub, 1997). 

A preponderance of these theories, tools, and techniques was originally 
developed in mathematics, many of them having their origin long before the 
dawn of electronic computers. This set of mathematical theories and techniques 
is called numerical analysis (or numerical mathematics) and constitutes a major 
part of Scientific Computing. The development of the computers, however, 
indicated a new approach of the solutioning the scientific problems. Many of 
the numerical methods that had been developed for the purpose of hand 
calculation (including the use of desk calculators for the actual arithmetic) had 
to be revised and sometimes abandoned. Considerations that were irrelevant or 
insignificant for hand calculation now became of chief importance for the 
efficient and correct use of a large computer system. Many of these 
considerations with regard to programming languages, operating systems, 
management of large quantities of data, correctness of programs have been 
subsumed under the discipline of computer science, on which Scientific 
Computing now depends heavily.  

Nevertheless mathematics itself continues to play a major role in 
Scientific Computing: it provides the language of the mathematical models that 
are to be solved and information about the appropriateness of a model (Does it 
have a solution? Is the solution unique?), and it provides the theoretical 
groundwork for the numerical methods and, increasingly, many of the tools 
from computer science. 

In summary, then, Scientific Computing draws on modeling in science 
and engineering, numerical mathematics, and computer science to develop the 
best ways to use computer systems to solve problems from science and 
engineering. This relationship is depicted schematically in Figure 2.1, where the 
informational flow from problem to solution in Scientific Computing is drawn.  
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Figure 2.1 From problem to solution in Scientific Computing 

 

2.2 Mathematical Modeling 
As it was shown in the previous section, Scientific Computing is seen as the 
discipline that achieves a computer solution for mathematical models of 
problems from science and engineering. Therefore the first step in the overall 
solution process is the formulation of an appropriate mathematical model of the 
problem to be solved. 

2.2.1 Modeling 
The formulation of a mathematical model starts with a statement of the factors 
to be considered. In many physical problems, these factors concern the balance 
of forces and other conservation laws of physics. For example, in the 
formulation of a model of a trajectory problem the basic physical law is 
Newton's second law of motion, which requires that the forces acting on a body 
equal the rate of change of momentum of the body. This general law must then 
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be specialized to the particular problem by enumerating and quantifying the 
forces that will be of importance.  

For example, the gravitational attraction of Jupiter will exert a force on a 
rocket in Earth's atmosphere, but its effect will be so little compared to the 
earth's gravitational force that it can usually be neglected. Other forces may  
also be small compared to the dominant ones but their effects not so  
easily dismissed, and the construction of the model will invariably be a 
compromise between retaining all factors that could likely have a bearing on 
the validity of the model and keeping the mathematical model sufficiently 
simple that it is solvable using the tools at hand. Traditionally, only very simple 
models of most phenomena were considered since the solutions had to be 
achieved by hand, either analytically or numerically. As the power of 
computers and numerical methods has developed, increasingly complicated 
models have become solvable. 

In addition to the indispensable relations of the model - which in most 
situations in Scientific Computing take the form of differential equations - there 
usually will be a number of initial or boundary conditions. For example, in the 
predator-prey problem the initial population of the two species being studied is 
specified. In studying the flow in a blood vessel, we may require a boundary 
condition that the flow cannot penetrate the walls of the vessel. In some other 
cases, boundary conditions may not be so physically evident but are still 
essential so that the mathematical problem has a unique solution.  

Or the mathematical model as first formulated may indeed have many 
solutions, the one of interest to be selected by some constraint such as a 
requirement that the solution be positive, or that it be the solution with 
minimum energy (Golub and Ortega, 1993), (Leopold, 2001). In any case, it is 
usually assumed that the final mathematical model with all appropriate initial, 
boundary, and side conditions indeed has a unique solution. The next step, 
then, is to find this solution. For problems of current interest, such solutions 
rarely can be obtained in "closed form." The solution must be approximated by 
some method, and the methods to be considered are numerical methods 
suitable for a computer. In the next section we will consider the general steps to 
be taken to achieve such a numerical solution.  

2.2.2 Validation 
Once we are able to compute solutions of the model, the next step usually is 
called the validation of the model. This means a verification that the computed 
solution is sufficiently accurate to serve the purposes for which the model was 
constructed. There are two main sources of possible error. First, there invariably 
are errors in the numerical solution. The general nature of these errors will be 
discussed in the next section, and one of the major research themes is a better 
understanding of the source and control of these numerical errors. But there is 
also invariably an error in the model itself. As mentioned previously, this is a 
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necessary aspect of modeling: the modeler has attempted to take into account 
all the factors in the physical problem but then, in order to keep the model 
tractable, has neglected or approximated those factors that would seem to have 
a small effect on the solution. The question is whether neglecting these effects 
was justified. The first test of the validity of the model is whether the solution 
satisfies obvious physical and mathematical constraints.  

For example, if the problem is to compute a rocket trajectory where the 
expected maximum height is 100 kilometers and the computed solution shows 
heights of 200 kilometers, obviously some blunder has been committed. Or, it 
may be that we are solving a problem for which we know, mathematically, that 
the solution must be increasing but the computed solution is not increasing. 
Once such gross errors are eliminated, which is usually fairly easy, the next 
phase begins, which is, whenever possible, comparison of the computed results 
with whatever experimental or observational data are available. Many times 
this is a clever undertaking, since even though the experimental results may 
have been obtained in a controlled setting, the physics of the experiment may 
differ from the mathematical model. For example, the mathematical model of 
airflow over an aircraft wing may assume the idealization of an aircraft flying in 
an infinite atmosphere, whereas the corresponding experimental results will be 
obtained from a wind tunnel where there will be effects from the walls of the 
enclosure. Neither the experiment, nor the mathematical model represents the 
true situation of an aircraft flying in our finite atmosphere. The experience and 
intuition of the investigator are required to make a human judgment as to 
whether the results from the mathematical model are corresponding sufficiently 
well with observational data (Heath, 1997). 

At the outset of an investigation this is quite often not the case, and the 
model must be modified. This may mean that additional terms - which have 
been thought insignificant, but may not be - are added to the model. 
Occasionally a complete revision of the model is required and the physical 
situation must be approached from an entirely different point of view. In any 
case, once the model is modified the cycle begins again: a new numerical 
solution, revalidation, additional modifications, and so on. This process is 
depicted schematically in Figure 2.2. 

Once the model is estimated adequate from the validation and 
modification process, it is ready to be used for prediction. This, of course, was 
the whole purpose. We should now be able to answer the questions that gave 
rise to the modeling effort: How high will the rocket go? Will the wolves eat all 
the rabbits? Of course, we must always take the answers with a sound 
skepticism. Our physical world is simply too complicated and our knowledge 
of it too thin for us to be able to predict the future perfectly. Nevertheless, we 
hope that our computer solutions will give increased insight into the problem 
being studied, be it a physical phenomenon or an engineering design. 
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Figure 2.2 Validation of a mathematical model 

2.3 The Process of Numerical Solution 
This section presents the general considerations that arise in the computer 
solution of a mathematical model. Once the mathematical model is given, the 
first thought typically is to try to find an explicit closed-form solution, but such 
a solution will usually only be possible for certain, perhaps radical, 
simplifications of the problem. These simplified problems with known 
solutions may be of great utility in providing "check cases" for the more general 
problem. After realizing that explicit solutions are not possible, one must turn 
to the task of developing a numerical method for the solution. Implicit in the 
thinking at the outset - and increasingly explicit as the development proceeds - 
will be the computing equipment as well as the software environment that is 
available. The approach may be quite different for a microcomputer or a cluster 
than for a supercomputer. Nevertheless certain general factors must be 
considered apart from the computer system to be used. 

Perhaps the most important factor is that computers manipulate only a 
finite number of digits or characters. Because of this, normally, we cannot do 
arithmetic within the real number system as we do in pure mathematics. That 
is, the arithmetic done by a computer is restricted to finitely many digits, 
whereas the numerical representation of most real numbers requires infinitely 
many. Therefore round-off errors can affect the final computed result in different 
ways, from the possible accumulation of errors over a large number of 
operations to catastrophic cancellation. Catastrophic cancellation is one way in 
which an algorithm can be numerically unstable, although in exact arithmetic it 
may be a correct algorithm. Indeed, it is possible for the results of a 
computation to be completely erroneous because of round-off error even 
though only a small number of arithmetic operations have been performed.  

Detailed round-off error analyses have now been completed for a 
number of the simpler and more basic algorithms such as those that occur in the 
solution of linear systems of equations. A particular type of analysis that has 
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proved to be very powerful is backward error analysis. In this approach the 
round-off errors are shown to have the same effect as that caused by changes in 
the original problem data. When this analysis is possible, it can be stated that 
the error in the solution caused by round off is no worse than that caused by 
certain errors in the original model. The question of errors in the solution is 
then equivalent to the study of the sensitivity of the solution to perturbations in 
the model. If the solution is highly sensitive, the problem is said to be ill-posed 
or ill-conditioned, and numerical solutions are apt to be meaningless. 

Another way that the finiteness of computers manifests itself in causing 
errors in numerical computation is due to the need to replace "continuous" 
problems by "discrete" ones. This type of error is usually called discretization 
error or truncation error, and it affects, except in trivial cases, all numerical 
solutions of differential equations and other "continuous" problems. 

There is one more type of error that is somewhat akin to discretization 
error. Many numerical methods are based on the idea of an iterative process. In 
such a process, a sequence of approximations to a solution is generated with the 
hope that the approximations will converge to the solution; in many cases 
mathematical proofs of the convergence can be given. However, only finitely 
many such approximations can ever be generated on a computer, and, 
therefore, we must necessarily stop short of mathematical convergence, i.e. 
having a convergence error.  

If we rule out trivial problems that are of no interest in Scientific 
Computing, we can summarize the situation with respect to computational 
errors as follows. Every calculation will be subject to rounding error. Whenever 
the mathematical model of the problem is a differential equation or other 
"continuous" problem, there also will be discretization error, and in many cases, 
especially when the problem is nonlinear, there will be convergence error. 
These types of errors and methods of analyzing and controlling them need to 
discussed more fully in concrete situations, but for us it is important to keep in 
mind that an acceptable error is very much dependent on the particular 
problem. Rarely is very high accuracy, let�s say 16 digits, needed in the final 
solution; indeed, for many problems arising in industry or other applications 
two or three digit accuracy is quite acceptable. 

The other major consideration besides accuracy in the development of 
computer methods for the solution of mathematical models is efficiency. By this 
we will mean the amount of effort both human and computer required to solve 
a given problem. For most problems, such as solving a system of linear 
algebraic equations, there are a variety of possible methods, some going back 
many tens or even hundreds of years. Clearly, we would like to choose a 
method that minimizes the computing time yet retains suitable accuracy in the 
approximate solution. This turns out to be a surprisingly difficult problem, 
which involves a number of considerations. Although it is frequently possible 
to estimate the computing time of an algorithm by counting the required 
arithmetic operations, the amount of computation necessary to solve a problem 
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to a given tolerance is still an open question except in a few cases. Even if  
one ignores the effects of round-off error, surprisingly little is known.  
In the past several years these questions have spawned the subject of 
computational complexity. However, even if such theoretical results were 
known, they would still give only approximations to the actual computing time, 
which depends on a number of factors involving the computer system. And 
these factors change as the result of new systems and architectures. Indeed, the 
design and analysis of numerical algorithms should provide motivation and 
directions for such changes. 

Even if a method is intrinsically "good", it is extremely important to 
implement the corresponding software in the best way possible, especially if 
other people are to use it. Some of the criteria for a good software system, 
besides functionality, are the following: maintainability, reliability, availability, 
robustness, efficiency, user friendliness, simplicity, readability, validity, 
verifiability, reusability, compatibility, portability, integrity, and, of course, a 
well-written documentation.  

2.4 The Computational Environment 
As indicated in the last section, there is usually a long way from a mathematical 
model to a successful software system. Such programs are developed within the 
overall computational environment, which includes the computers to be used, 
the operating system and other software systems, the languages in which the 
program is to be written, techniques and software for data management and 
visualization of the results, and programs that do symbolic computation. In 
addition, network facilities allow the use of remote computers, as well as the 
exchange of software and data. 

The computer hardware itself is of primary importance. Scientific 
Computing is done on computers ranging from small PC's, which execute  
a few thousand floating-point operations per second, to supercomputers 
capable of billions of such operations per second. Supercomputers that utilize 
hardware vector instructions are called vector computers, while those that 
incorporate multiple processors are called parallel computers. In the latter case, 
the computer system may contain a few, usually very powerful processors or as 
many as several tens of thousands of relatively simple processors. Generally, 
algorithms designed for single processor "serial" computers will not be 
satisfactory, without modification, for parallel computers. Indeed, a very active 
area of research in Scientific Computing is the development of algorithms 
suitable for vector and parallel computers, and also for desktop grid  
or volunteer computing.  

It is quite common to do program development on a workstation or PC 
prior to production runs on a larger computer. Unfortunately, a program will 
not always produce the same answers on two different machines due to 
different rounding errors. This, of course, will be the case if different precision 
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arithmetic is used. However, even when the precision is the same, two 
machines may produce slightly different results due to different conventions for 
handling rounding error. This is an unsatisfactory situation that has been 
addressed by the IEEE standard for floating point arithmetic. Although not all 
computers currently follow this standard, in the future they probably will, and 
then machines with the same precision will produce identical results on the 
same problem. On the other hand, algorithms for parallel computers often do 
the arithmetic operations in a different order than on a serial machine and this 
causes different errors to occur.  

In order to be useful, computer hardware must be supplemented by 
software systems, including operating systems and compilers for high level 
languages. Although there are many operating systems, UNIX and its variants 
have increasingly become the standard for Scientific Computing and essentially 
all computer manufacturers now offer a version of UNIX for their machines. 
This is true for vector and parallel computers as well as more conventional 
ones. The use of a common operating system helps to make programs more 
portable. The same is true of programming languages. Since its inception in the 
mid 1950's, Fortran has been the primary programming language for Scientific 
Computing. It has been continually modified and extended over the years, and 
now versions of Fortran also exist for parallel and vector computers. Other 
languages, especially the systems language "C�, are sometimes used for 
Scientific Computing. However, it is expected that Fortran will continue to 
evolve and be the standard for the foreseeable future, at least in part because of 
the large investment in existing Fortran programs. 

Many of the problems in Scientific Computing require huge amounts of 
data, both input and output, as well as data generated during the course of the 
computation. The storing and retrieving of these data in an efficient manner is 
called data management. As an example of this in the area of computer-aided 
design, a database containing all information relevant to a particular design 
application, which might be for an aircraft, an automobile, or a dam - may 
contain several billion characters. An engineer may use this database simply to 
find all the materials with a certain property. On the other hand, the database 
will also be used in doing various analyses of the structural properties of the 
aircraft, which requires the solution of certain linear or nonlinear systems of 
equations. Large data management programs for use in business applications 
such as inventory control have been developed over many years, and some of 
the techniques used there are now being applied to the management of large 
databases for scientific computation. It is interesting to note that in many 
Scientific Computing programs the number of lines of code to handle data 
management is far larger than that for the actual computation. 

The results of a scientific computation are numbers that may represent, 
for example, the solution of a differential equation at selected points. For large 
computations, such results may consist of the values of four or five functions at 
a million or more points. Such a volume of data cannot just be printed.  
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Scientific Visualization techniques allow the results of such computations to be 
represented pictorially. For example, the output of a fluid flow computation 
might be a movie, which depicts the flow as a function of time in either two or 
three dimensions. The results of a calculation of the temperature distribution in 
a solid might be a color-coded representation in which regions of high 
temperatures are red and regions of low temperatures are blue, with a 
gradation of hues between the extremes. Or, a design model may be rotated in 
three-dimensional space to allow views from any angle. Such visual 
representations allow a quick understanding of the computation, although 
more detailed analysis of selected tables of numerical results may be needed for 
certain purposes, such as error checking. 

Another development that is having an increasing impact on Scientific 
Computing is symbolic computation. Systems such as MACSYMA, REDUCE, 
MAPLE, and MATHEMATICA allow the symbolic (as opposed to numerical) 
computation of derivatives, integrals and various algebraic quantities.  
For example, such systems can add, multiply and divide polynomials or 
rational expressions, differentiate expressions to obtain the same results that 
one would obtain using pencil and paper, and integrate expressions that have a 
"closed form" integral. This capability can alleviate the hard work of 
manipulating by hand lengthy algebraic expressions, perhaps as a prelude to a 
subsequent numerical computation. In this case, the output of the symbolic 
computation would ideally be a Fortran program. Symbolic computation 
systems can also solve certain mathematical problems, such as systems of linear 
equations, without rounding error. However, their use in this regard is limited 
since the size of the system must be small. In any case, symbolic computation is 
continuing to develop and can be expected to play an increasing role in 
scientific computation. 
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3 Scientific Visualization 
This chapter starts with establishing the human nature of visualization, and 
then shifts to considerations on various sorts of computer-based visualizations: 
animations, interactive visualizations, abstract and model-based visualizations 
etc. Next, the main reasons for the need for Scientific Visualization are 
presented, along with the domains from which visualization has been bred, and 
the reasons for which visualization works. The chapter continues with detailed 
descriptions of some applications of visualization, from which the critical 
requirements of these applications arise. Then a few words about visualization 
algorithms, environments and graphical excellence guidelines are provided. 

3.1 Visualization 
The Merriam-Webster Collegiate Dictionary (Webster, 1998) gives two 
definitions for the term visualization: 

1. the formation of mental visual images; 
2. the act or process of interpreting in visual terms or of putting into visual 

form. 

The Oxford Dictionary (Oxford, 2002) gives similar definitions for the same 
term visualization: 

1. to form a mental vision, image, or picture of (something not visible or 
present to sight, or of an abstraction);  

2. to make visible to the mind or imagination. 

Visualization has its ancestry in pictorial representations dating back to the 
origins of man. Pictographs, for whatever reasons, are human generated 
images. Through the centuries, we have had maps, human generated imagery 
of different parts of the world for travel and warfare, paintings; imagery of 
plans for architectural and novel devices; images to enhance stories, and many 
more. Visualization is now part of our everyday life. From paintings and 
photographs to maps, television, and to computer generated graphics and 
virtual environments, we can see how it is used today in diverse ways. Some 
impressive examples can be seen in Figure 3.1 and Figure 3.2. 

The use of visualization to present information is not a new 
phenomenon. It has been used in maps, scientific drawings, and data plots  
for over a thousand years. Examples from cartography include Ptolemy's 
Geographia (2nd Century AD), a map of China (1137 AD), and  
Minard's map (1861) of Napoleon's invasion of Russia half a century earlier. 
Most of the concepts learned in devising these images carry over in a 
straightforward manner to computer visualization. Edward Tufte has written 
two critically acclaimed books that explain many of these principles  
(Tufte, 1997), (Tufte, 2001). 

http://en.wikipedia.org/wiki/Cartography
http://en.wikipedia.org/wiki/Napoleon
http://en.wikipedia.org/wiki/Edward_Tufte
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Figure 3.1 Cave Painting in Lascaux 

 
Figure 3.2 Kotsushika Hokusai - The 

Great Wave 
 

Computer graphics has from its beginning been used to study scientific 
problems. However, in its early days the lack of graphics power often limited 
its usefulness. The recent emphasis on visualization started in 1987 with the 
special issue of Computer Graphics on Visualization in Scientific Computing. 
Since then there have been several conferences and workshops, co-sponsored 
by the IEEE Computer Society and ACM SIGGRAPH, devoted to the general 
topic, and special areas in the field (for example volume visualization). 

Most people are familiar with the digital animations produced to present 
meteorological data during weather reports on television, though few can 
distinguish between those models of reality and the satellite photos that are also 
shown on such programs. TV also offers Scientific Visualizations when it shows 
computer drawn and animated reconstructions of road or airplane accidents. 
Some of the most popular examples of Scientific Visualizations are  
computer-generated images that show real spacecraft in action, out in the void 
far beyond Earth, or on other planets. Dynamic forms of visualization, such as 
educational animation, have the potential to enhance learning about systems 
that change over time. 

Apart from the distinction between interactive visualizations and 
animation, the most useful categorization is probably between abstract and 
model-based Scientific Visualizations. The abstract visualizations show 
completely conceptual constructs in 2D or 3D. These generated shapes are 
completely arbitrary. The model-based visualizations either place overlays of 
data on real or digitally constructed images of reality, or they make a digital 
construction of a real object directly from the scientific data. 

The success of visualization not only depends on the results, which it 
produces, but also depends on the environment in which it has to be done. This 
environment is determined by the available hardware, like graphical 
workstations, disk space, color printers, video editing hardware, and network 
bandwidth, and by the visualization software. For example, the graphical 
hardware imposes constraints on interactive speed of visualization and on the 
size of the data sets, which can be handled. Many different problems 

http://en.wikipedia.org/wiki/Scientific_computing
http://en.wikipedia.org/wiki/IEEE_Computer_Society
http://en.wikipedia.org/wiki/ACM_SIGGRAPH
http://en.wikipedia.org/wiki/Meteorological
http://en.wikipedia.org/wiki/Television
http://en.wikipedia.org/wiki/Satellite_photo
http://en.wikipedia.org/wiki/Spacecraft
http://en.wikipedia.org/wiki/Planet
http://en.wikipedia.org/wiki/Educational_animation
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encountered with visualization software must be taken into account.  
The user interface, programming model, data input, data output, data 
manipulation facilities, and other related items are all important. The way in 
which these items are implemented determines the convenience and 
effectiveness of the use of the software package as seen by the scientist. 
Furthermore, whether software supports distributive processing and 
computational steering must be taken into account. 

In our context, we consider visualization to mean a computer generated 
image or collection of images, possibly ordered, using a computer representation of data 
as its primary source and a human as its primary target (McCormick et al., 1987). 
Computer generated data visualizations appeared in the late 40's when tables 
became much too large for a human to comprehend and manage. These 
visualizations, then called plots, were followed by the growth of computer 
graphics and systems that permitted the rapid, often interactive, generation of 
scientific data sets.  

Visualization is a method of computing. It transforms the symbolic into 
the geometric, enabling researchers to observe their simulations and 
computations. Visualization offers a method for seeing the unseen. It enriches 
the process of scientific discovery and fosters profound and unexpected 
insights. In many fields it is already revolutionizing the way scientists do 
science. Thus, a new definition has been added: a tool or method for interpreting 
image data fed into a computer and for generating images from complex multi-
dimensional data sets (McCormick et al., 1987). 

Visualization embraces both image understanding and image synthesis, 
that is, it is a tool both for interpreting image data fed into a computer and for 
generating images from complex multidimensional data sets. Visualization 
studies those mechanisms in humans and computers �which allow them in 
concert to perceive, use, and communicate visual information� (McCormick, 
1988). It unifies the largely independent but converging fields of computer 
graphics, image processing, computer vision, computer-aided design, signal 
processing and user interfacing. An inspiring example can be seen in Figure 3.3. 

The main reasons of need for Scientific Visualization are the following 
ones: it will compress a lot of data into one picture (data browsing), it can reveal 
correlations between different quantities both in space and time, it can furnish 
new space-like structures beside the ones which are already known from 
previous calculations, and it opens up the possibility to view the data 
selectively and interactively in `real time'. By following the formation and the 
deformation as well as the motions of these structures in time, one will gain 
insight into the complicated dynamics. 

As was mention before, we also want to integrate our simulation codes 
into a visualization environment in order to analyze the data in real time and to 
by-pass the need to store every intermediate result for later analysis. This is 
possible by means of processing in which the simulation is distributed over a set 
of high-performance computers and the actual visualization is done on a 
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graphical distributive workstation. It is also very useful to have the possibility 
to interactively change the simulation parameters and immediately see the 
effect of this change through the new data. This process is called computational 
steering and it will increase the effective use of CPU time. 

 

 
Figure 3.3 Great wave discretization 

Why does visualization work at all? Because humans are inherently visual beings, 
with over half the brain being dedicated to visual information processing. The 
bandwidth of the human visual system is greater than any other sense, allowing 
humans to see and understand huge amounts of complex data quickly and 
accurately. By transforming data into pictures, visualization takes advantage of 
this enormous bandwidth and processing power of the human visual system. 
The data is not only processed faster, but also with a different strategy: instead 
of using conscious mechanisms (read something, translate it into a mental 
model, then understand the mental model), visual processing uses preconscious 
mechanisms, which are �hardwired, highly parallel processes that handle the 
initial stages of analysis of the retinal patterns� (Friedhoff and Peercy, 2000). 

The brain areas involved in higher order visual perception and cognition 
are highly interlinked, such that the systems for seeing, understanding and 
remembering are closely associated. This means that in certain situations 
information can be more readily assimilated and communicated in a visual 
format than in any other form. For example, we are very good at recognizing 
objects, faces, and characters. Color information may be more appropriate for 
categorizing different objects or data types. With good luminance contrast we 
are very good in making fine spatial discriminations and to accurately 
determine shape, motion or depth. 

How people perceive an image can have a profound effect on the 
meaning they attach to that image. Vision is also influenced by memory, context 
and intention. Many visualization methods are exploiting the human 
perceptual capacities and insensitivities. Since the appearance of the resulting 
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images as perceived by the human observer is of primary importance, the 
computation can be focused on those image features that can be readily 
perceived. This can lead to simplification of computation by omitting from the 
image details that will not make significant differences in its appearance.  

3.2 Scientific Visualization 
Today we are presented with a broader context within data visualization fits.  
It encompasses scientific visualization, information visualization, database 
visualization, software visualization and all the specific visualizations 
(including biomedical and geospatial visualizations). Visualization of Scientific 
Data, or Scientific Visualization describes the application of graphical methods to 
enhance interpretation and meaning of scientific data, representation of data graphically 
as a means of gaining understanding and insight into the data. This allows the 
researcher to achieve insight into the system that is studied in ways previously 
impossible. We will abbreviate Scientific Visualization to simply Visualization 
throughout this work. Scientific data can be derived from various sources, 
including measuring instruments, or may be obtained as a result of scientific 
computations performed on large computers. However, data do not become 
useful until some (or all) of the information they carry is extracted.  

The goal of Scientific Visualization is to provide concepts, methods and 
tools to create expressive and effective visual representations from scientific 
data. Such visual representations will convey new insights and an improved 
understanding of physical processes, mathematical concepts and other 
quantifiable phenomena expressed in the data (Magnenat-Thalmann and 
Thalmann, 1991). Together with quantitative analysis of data, such as offered by 
statistical analysis, image and signal processing, visualization attempts to 
explore all information inherent in scientific data in the most effective way. 
Therefore, Scientific Visualization is expected to enhance and increase scientific 
productivity. The discipline of Visualization in Scientific Computing is widely 
recognized to have begun in the 1980s. Its birth marked by the production of a 
key report for the US National Science Foundation (NSF). Interest in 
visualization was stimulated by the happy coincidence of a number of factors. 
Workstations had become powerful enough to display graphics on the 
scientist's desktop and algorithmic developments were making the treatment of 
large datasets tractable. Crucially, supercomputers could now run simulations 
of complex phenomena and produce more data than could otherwise be 
assimilated. The NSF report argued that continuing slowly computer graphics 
provision was equivalent to a waste of these compute resources (Wright, 2007). 

Scientific Visualization encompasses and unifies the fields of computer 
graphics, image processing, high performance computing, computer vision, 
signal processing, computer aided design, and human-machine interaction. 
Visualization is a method of extracting meaningful information from complex 
or voluminous datasets through the use of interactive graphics and imaging. It 
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provides processes for steering the dataset and seeing the unseen, thereby 
enriching existing scientific methods.  

In this context, it is important to differentiate between Scientific 
Visualization and presentation graphics. Presentation graphics is primarily 
concerned with the communication of information and results in ways that are 
easily understood. In Scientific Visualization, we seek to understand the data. 
However, often the two methods are intertwined.  

3.3 Applications of Visualization 
Examples of the power of visualization to gain new insights into scientific data, 
to understand complex concepts, or to aid in the quest for information are 
plentiful. In this section we present some of the typical applications of 
visualization in various fields. 

Computation is emerging between theory and experiment as a partner in 
scientific investigation. Computational science and engineering encompass a 
broad range of applications with one common denominator: visualization. 
Visualization tools are helping researchers understand and steer computations. 
The list of research opportunities for visualization in Scientific Computing is 
long and spans all of contemporary scientific endeavor.  

The research opportunities actually described in this section represent a 
select sampling of advanced scientific and engineering applications.  
There are scientific opportunities for visualization in molecular modeling, 
medical imaging, brain structure and function, mathematics, geosciences, space 
exploration, astrophysics etc. Engineering opportunities for visualization  
consist of computational fluid dynamics and finite element analysis.   
Images and signals may be captured from cameras or sensors, transformed by 
image processing, and presented pictorially on hard or soft copy output. 
Abstractions of these visual representations can be transformed by computer 
vision to create symbolic representations in the form of symbols and structures.  
Using computer graphics, symbols or structures can be synthesized  
into visual representations. 

Molecular Modeling. The use of interactive computer graphics to gain 
insight into chemical complexity began in 1964. Interactive graphics is now an 
integral part of academic and industrial research on molecular structures and 
interactions, and the methodology is being successfully combined with 
supercomputers to model complex systems such as proteins and DNA. 
Techniques range from simple black-and-white, bitmapped representations of 
small molecules for substructure searches and synthetic analyses, to the most 
sophisticated 3D color stereographic displays required for advanced work in 
genetic engineering and drug design.  

The attitude of the research and development community toward 
molecular modeling has changed. What used to be viewed as a sophisticated 
and expensive way to make pretty pictures for publication is now seen as a 
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valuable tool for the analysis and design of experiments. Molecular graphics 
complements crystallography, sequencing, chromatography, mass 
spectrometry, magnetic resonance and the other tools of the experimentalist, 
and is an experimental tool in its own right. The pharmaceutical industry, 
especially in the new and flourishing fields of genetic and protein engineering, 
is increasingly using molecular modeling to design modifications to known 
drugs, and to propose new therapeutic agents. 

Molecular modeling supports three general activities: synthesis, analysis 
and communication. Interactive 3D images are essential to each of these areas, 
to give scientists control of their data and access to information. Synthesis lets 
scientists integrate information interactively in real time. The computer is used 
to build or extend existing models by combining information and knowledge 
from a variety of sources. Molecular fragments pieced together from a chemical 
fragment database or a protein structure fitted into a 3D electron density map 
typifies this modeling activity. Analysis enables scientists to interpret and 
evaluate data by selectively displaying experimental and/or computational 
results in a comprehensible framework. The display and comparison of any 
number of macromolecular properties, such as chemical composition, 
connectivity, molecular shape, electrostatic properties, or mobility 
characteristics, all fall into the domain of modeling analysis. As more structures 
become available for examination, and as more techniques are developed for 
analysis, new patterns will emerge. This activity then feeds back to the 
synthesis activities and new models for the next level of biomolecular 
organization can be constructed. Communication takes place between computer 
and scientist, and between scientist and scientist. It is important that the 
information discovered about biological molecules be conveyed not only to the 
structural scientist, but also to a larger body of scientists whose expertise can 
add data and knowledge to increase overall understanding. Communication 
can also bridge the gap between science and the general public, making 
individuals aware of significant discoveries.  

In an effort to make major inroads in these areas, scientists need access to 
more powerful visualization hardware and software. Effort must be expended 
on imaginative uses of graphics devices as windows on the microscopic world 
of the molecule, as well as on integrating the complex numeric and symbolic 
calculations used to simulate this world. There are currently two types of 
images one can generate: realistic pictures of molecules (simulations that 
resemble plastic models), and 3D line drawings (informative images that can be 
manipulated in real time). Raster equipment is used to create realistic-looking 
representations and animations, while vector hardware, used for real-time 
display and interaction, is used to create line drawings. As raster hardware 
improves, it is expected that raster and vector hardware will merge, allowing 
increased flexibility in the representations of chemical properties.  

Tachistoscopic stereo has been in use for over 15 years and is rapidly 
gaining acceptance. The introduction of inexpensive liquid polarized screens 
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and polarized glasses will accelerate this important development. Interaction 
with the complex 3D world of the molecule is inhibited by the inherent 2D 
nature of many interactive input devices, such as the mouse. The ability to 
manipulate the 6 degrees of freedom of a molecule in space so it can interact 
with another is currently done using dual 3-axis joysticks or similar devices. 
Imaginative and inventive solutions are needed, such as magnetic motion 
monitors, to allow multiple interactions.  

Medical Imaging. Scientific computation applied to medical imaging has 
created opportunities in diagnostic medicine, surgical planning for orthopedic 
prostheses, and radiation treatment planning. In each case, these opportunities 
have been brought about by 2D and 3D visualizations of portions of the body 
previously inaccessible to view.  

In each of these applications, image processing dominates; both 
computer vision and computer graphics play a role in orthopedic prostheses 
and radiation treatment planning. The research activity is experimental, 
depending on volume-filled images reconstructed from measured data. The 
bottleneck in each of these examples is in the generation of useful 3D images, 
which requires further visualization research to increase spatial and temporal 
resolution. Useful 3D visualization algorithms, the development of powerful 
and portable visualization software, and relevant experimentation in visual 
psychophysics are all areas of visualization research.  

Diagnostic medicine. The imaging modalities of computed transmission 
and emission tomography, magnetic resonance imaging and ultrasound, 
enhanced at times by contrast agents or monoclonal antibodies, are leading to a 
new understanding of both clinical and research questions in diagnosis. 
Improved 3D visualization techniques are essential for the comprehension of 
complex spatial and, in some cases, temporal relationships between anatomical 
features both within and across imaging modalities. Computation will play an 
increasingly central role in diagnostic medicine as information is integrated 
from multiple images and modalities. Visualization, the cornerstone of 
diagnostic radiology, must be smoothly combined with computation to yield 
natural and accurate images that a diagnostician can understand in 3D. 

Orthopedic prostheses. An emerging visualization application is the  
fitting of prostheses to individuals for orthopedic reconstructions, such as  
hip replacements. The 3D fit must be precisely individualized to minimize 
rejection. Only through non-invasive 3D imaging can accurate specifications  
be obtained, so that a custom hip replacement can be fabricated in advance  
of a surgical procedure.  

Radiation treatment planning. The use of ionizing radiation to destroy or 
inhibit the growth of malignant tumors requires careful planning. 
Misapplication of the radiation beam can jeopardize nearby normal tissue or 
render therapy ineffective. The precision required for safe but effective 
treatment is surprisingly high. Fortunately, recent computational advances 
have made practical the extensive computations that are essential to predict 
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radiation dosage accurately. Medical imaging allows these predictions  
to be based on a patient's own anatomy. Before the radiation treatment  
can be confidently applied, however, an effective means of visualizing  
the treatment dosage in relation to the tumor and neighboring normal tissue 
must be developed.  

Brain structure and function. Visualization in 3D of human brain structure 
and function is a research frontier of far-reaching importance. The complexity 
of the brain limits understanding gained from the purely reductionistic 
approach familiar to neurobiologists. For continued progress in brain research, 
it will be necessary to integrate structural and functional information at many 
levels of abstraction. Work on brain structure and function requires 
computational support in four areas: 

! acquisition of experimental data in digital image form from serial 
histological sections, medical imaging instruments, drug receptor 
studies and neurophysiological experiments; 

! extraction of features from measured digital images to produce a 3D 
map of brain structure and function; 

! analysis of the abstract brain map to relate measured ~mages and 
parameters to a standard brain geometry, to provide statistical 
summaries across a series of brains and to compare an individual brain 
with such statistical summaries. 

! visualization of the results of data acquisition, feature extraction and 
map analysis in a proper 3D context. 

The massive data input needed to map the brain will eventually lead to the 
invention or use of more advanced storage technologies. However, there is also 
a gap in our present ability to do automatic feature extraction. Manual 
recognition of features is inadequate for so large a problem. Automation will 
require major advances in the field of volume image abstraction and modeling. 
While the accomplishment of these tasks remains a monumental challenge, 
selected pilot studies promise near-term resolution of several pivotal issues. 
Brain mapping is a necessary first step toward modeling and simulating 
biological brain functions at a systems level of description.  

3D brain visualization. Large-scale volume memory modules capable of 
storing 1 gigabyte of volume data are under design to model the brain from 
serial histological sections. Renderings are then constructed from the 
1024x1024x1024 array of voxels to compare the spatial distribution of neurons 
and brain structures within one brain or, at increased resolution, within one 
portion of the brain. Image processing can create complex representations with 
brain parts made transparent, translucent or opaque. The volume memory 
module will aid in the use and evaluation of spatial filtering and boundary 
detection techniques in 3D brain imagery.  
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3D image understanding. A neuroanatomist locates objects in a brain section by 
matching the contour and regional data with a memorized model drawn from a 
visual knowledge base, which can include references to atlases. An image 
understanding system provides similar computer-based guidance for the semi-
automated image analysis task � e.g. at the stage of data input, an individual 
can first identify a feature in one section and then let the system track the 
feature in succeeding serial sections, label the sectional data and store the 
information about the feature in a hierarchical database. Mapping of brain 
interconnections in parallel throughout the brain, at least at the level of nerve 
fiber tracts, remains a shortcoming in our mapping technology.  

Brain mapping factory. Useful statistical experiments will eventually 
require analysis of 50-100 brains or major brain portions. The magnitude of this 
task is such that special automated facilities, called brain mapping factories, will 
inevitably be required to map one brain per month. By centralizing the volume 
image analysis it becomes possible to integrate and standardize scanning 
instrumentation, stain technology, image analysis software, geometric modeling 
and other brain mapping technologies, and to exploit economies of scale. 
Subsequent brain analysis could take place at distributed workstations with 
enhanced tools for image analysis. 

Mathematics. In the computational study of partial differential equations 
associated with gas dynamics, vortex formation, combustion and fluid flow, the 
most effective means of analyzing output has been visualization. Using modern 
supercomputers, novel parallel architectures and new mathematical algorithms, 
important 3D physical processes can now be simulated. Geometric problems, 
such as the generation of body centered coordinates, automatic mesh 
generation, and so on, are mathematical in nature and will have to be solved 
efficiently to conduct research in applied mathematics.  

Visualization is making a tremendous impact in the mathematical study 
of optimal form and more generally the calculus of variations, including the 
theory of minimal surfaces, and surfaces of constant mean curvature. Computer 
graphics has become an essential research tool in this and many other areas of 
pure and applied mathematics. Hard problems, such as eigen value 
optimization for regions with partially-free boundaries, are being attacked 
successfully for the first time with these visualization tools. Mathematics is one 
of the last sciences to become computerized; yet, it is already clear that 
visualization, coupled with very high-speed numerical simulations, is having a 
major influence in the field, even in areas long considered to be abstract. This 
new mode of investigation makes collaboration with scientists in other 
disciplines much easier for the mathematician; there is a common language of 
computation and images. There is a strong need to increase the availability and 
power of visualization tools for researchers within this discipline. 

Computer Simulation. Science and engineering have undergone a major 
transformation at the research level as well as at the development and 
technology level. The modern scientist and engineer spend more and more time 
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in front of a laptop, a workstation, or a parallel supercomputer and less and less 
time in the physical laboratory or in the workshop. The virtual wind tunnel and 
the virtual biology laboratory are not a thing of the future: they are already 
here. The old approach of "cut and try" has been replaced by "simulate and 
analyze" in several key technological areas such as aerospace applications, 
synthesis of new materials, design of new drugs, and chip processing and 
microfabrication. The new discipline of nanotechnology will be based primarily 
on large-scale computations and numerical experiments. The methods of 
scientific analysis and engineering design are changing continuously, affecting 
both our approach to the phenomena that we study as well as the range of 
applications that we address. Whereas there is an abundance of software 
available to be used as almost a "black box", working in new application areas 
requires good knowledge of fundamentals and mastering of effective new tools. 

In the classical scientific approach, the physical system is first simplified 
and set in a form that suggests what type of phenomena and processes may be 
important and, correspondingly, what experiments are to be conducted. In the 
absence of any known type of governing equations, dimensional inter 
dependence between physical parameters can guide laboratory experiments in 
identifying key parametric studies. The database produced in the laboratory is 
then used to construct a simplified "engineering" model that, after field-test 
validation, will be used in other areas of research, product development, and 
design and possibly lead to now technological applications. This approach has 
been used almost invariably in every scientific discipline, from engineering and 
physics to chemistry and biology. 

The simulation approach follows a parallel path but with some 
significant differences. First, the phase of the physical model analysis is more 
elaborate: the physical system is cast in a form governed by a set of partial 
differential equations, which represent continuum approximations to 
microscopic models. Such approximations are not possible for all systems, and 
sometimes the microscopic model should be used directly. Second, the 
laboratory experiment is replaced by simulation, that is, by a numerical 
experiment based on a discrete model. Such a model may represent a discrete 
approximation of the continuum partial differential equations, or it may simply 
represent a statistical representation of the microscopic model. 

Finite difference approximations on a grid are examples of the first case, 
and Monte Carlo methods are examples of the second case. In either case, these 
algorithms have to he converted to software using an appropriate computer 
language, debugged, and run on a workstation, parallel super-computer or a 
grid platform. The output is usually a large number of files of a few megabytes 
to hundreds of gigabytes, being especially large for simulations of time-
dependent phenomena. To be useful, this numerical database needs to be put 
into graphical form using various visualization tools, which may not always be 
suited for the particular application considered. Visualization can be especially 
useful during simulations where interactivity is required as the grid may be 
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changing or the number of molecules may be increasing. The majority of 
researchers have already followed the simulation approach across disciplines in 
the past few decades.  

Let us reexamine some of the requirements following the various steps in 
the simulation approach. The first task is to select the right representation of the 
physical system by making consistent assumptions to derive the governing 
equations and the associated boundary conditions. The conservation laws 
should be satisfied, the entropy condition should not be violated, and the 
uncertainty principle should be honored. 

The second task is to develop the right algorithmic procedure to 
discretize the continuum model or represent the dynamics of the atomistic 
model. The choices are many, but which algorithm is the most accurate one, or 
the simplest one, or the most efficient one? These algorithms do not belong to a 
discipline! Finite elements, first developed by the famous mathematician 
Richard Courant and rediscovered by civil engineers, have found their way into 
every engineering discipline as well as into physics, geology, and other fields. 
Chemists, biologists, material scientists, and others practice molecular 
dynamics simulations.  

The third task is to compute efficiently in the ever-changing world of 
supercomputing. How efficient the computation is translates to how realistic of 
a problem is solved and therefore how useful the results can be to applications. 
The fourth task is to assess the accuracy of the results in cases where no direct 
confirmation from physical experiments is possible, such as in nanotechnology, 
in bio-systems or in astrophysics. Reliability of the predicted numerical answer 
is an important issue in the simulation approach because some of the answers 
may lead to new physics or false physics contained in the discrete model or 
induced by the algorithm but not derived from the physical problem. Finally, 
visualizing the simulated phenomenon, in most cases in three-dimensional 
space and in time, by employing proper computer visualization completes the 
full simulation cycle the rest of the steps followed are similar to those of the 
classical scientific approach. 

3.4 Algorithms for Scientific Visualization 
In this section we look at basic algorithms for Scientific Visualization. In 
practice, a typical algorithm can be thought of as a transformation from one 
data form into another. These operations may also change the dimensionality of 
the data. For example, generating a streamline from a specification of a starting 
point in an input 3D dataset produces a one-dimensional curve. The input may 
be represented as a finite element mesh, while the output may be represented as 
a polyline. Such operations are typical of Scientific Visualization systems that 
repeatedly transform data into different forms and ultimately transform it into a 
representation that can be rendered by the computer system. The algorithms 
that transform data are the heart of data visualization.  
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To describe the various transformations available, algorithms need to be 
categorized according to the structure and type of transformation. Structure 
refers to the effects that transformation has on the topology and geometry of the 
dataset, and type means the type of dataset that the algorithm operates on. 
Structural transformations can he classified in four ways, depending on how 
they affect the geometry, topology, and attributes of a dataset. Here, we 
consider the topology of the dataset as the relationship of discrete data samples 
(one to another) that are invariant with respect to geometric transformation. For 
example, a regular, axis-aligned sampling of data in three dimensions is 
referred to as a volume, and its topology is a rectangular (structured) lattice 
with clearly defined neighborhood voxels and samples.  

On the other hand, the topology of a finite element mesh is represented 
by a (unstructured) list of elements, each defined by an ordered list of points. 
Geometry is a specification of the topology in space (typically 3D), including 
point coordinates and interpolation functions. Attributes are data associated 
with the topology and/or geometry of the dataset, such as temperature, 
pressure, or velocity. Attributes are typically categorized as being scalar (single 
value per sample), vectors (n-vector of values), tensor (matrix), surface normals, 
texture coordinates, or general field data.  

Given these terms, the following transformations are typical of Scientific 
Visualization systems (Hansen and Johnson, 2005): 

o Geometric transformations alter input geometry but do not change the 
topology of the dataset. For example, if we translate, rotate, and/or 
scale the points of a polygonal dataset, the topology does not change, 
but the point coordinates, and therefore the geometry, do change; 

o Topological transformations alter input topology but do not change 
geometry and attribute data. Converting a dataset type from polygonal 
to unstructured grid, or from image to unstructured grid, changes the 
topology but not the geometry. More often, however, the geometry 
changes whenever the topology does, so topological transformation is 
uncommon; 

o Attribute transformations convert data attributes from one form to 
another, or create new attributes from the input data. The structure of 
the dataset remains unaffected. Computing vector magnitude and 
creating scalars based on elevation are data attribute transformations; 

o Combined transformations change both dataset structure and attribute 
data. For example, computing contour lines or surfaces is a combined 
transformation. 

We also may classify algorithms according to the type of data they operate on.  
The meaning of the word "type" is often somewhat vague. Typically, "type" 
means the type of attribute data, such as scalars or vectors. These categories 
include the following (Hansen and Johnson, 2005): 
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• Scalar algorithms that operate on scalar data. An example is the 
generation of contour lines of temperature on a weather map; 

• Vector algorithms that operate on vector data. Showing oriented arrows 
of airflow (direction and magnitude) is an example of vector 
visualization; 

• Tensor algorithms operate on tensor matrices. One example of a tensor 
algorithm is to show the components of stress or strain in a material 
using oriented icons; 

• Modeling algorithms generate dataset topology or geometry, or surface 
normals or texture data. "Modeling algorithms" tends to be the catch-all 
category for algorithms that do not fit neatly into any single category 
mentioned above. For example, generating glyphs oriented according 
to the vector direction and then scaled according to the scalar value is a 
combined scalar/vector algorithm. For convenience, we classify such an 
algorithm as a modeling algorithm because it does not fit squarely into 
any other category. 

Note that an alternative classification scheme is to refer to the topological type 
of the input data (e.g.. image, volume, or unstructured mesh) that a particular 
algorithm operates on. In the remainder of the chapter we will classify the type 
of the algorithm as the type of attribute data on which it operates. Though, we 
should be aware that alternative classification schemes do exist and may he 
better suited to describing the true nature of the algorithm. 

Most algorithms can be implemented specifically for a particular data 
type or, mote generally, for treating any data type. The advantage of a specific 
algorithm is that it is usually faster than a comparable general algorithm.  
An implementation of a specific algorithm may also be more memory-efficient, 
and it may better reflect the relationship between the algorithm and the dataset 
type it operates on. 

One example of this is contour surface creation. Algorithms for 
extracting contour surfaces were originally developed for volume data,  
mainly for medical applications. The regularity of volumes lends itself to 
efficient algorithms. However, the specialization of volume-based algorithms 
precludes their use for more general datasets such as structured or  
unstructured grids. Although the contour algorithms can be adapted to these 
other dataset types, they are less efficient than those for volume datasets. The 
presentation of algorithms in this section favors more general implementations. 
In some special cases, there exist performance-improving techniques for 
particular dataset types.  

In a typical visualization system, algorithms are implemented as filters 
that operate on data. This approach is due in some part lo the success of early 
systems like the Application Visualization System and Data Explorer and the 
popularity of systems like SCIRun and the Visualization Toolkit that are built 
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around the abstraction of data flow. This abstraction is natural because of the 
transformative nature of visualization. The basic idea is that two types of 
objects (data objects and process objects) are connected together into 
visualization pipelines. The process objects, or filters, are the algorithms that 
operate on the data objects and in turn produce data objects as output. In this 
abstraction, filters that initiate the pipeline are referred to as sources and filters 
that terminate the pipeline are known as sinks (or mappers). Depending on 
their particular implementation, filters may have multiple inputs and/or may 
produce multiple outputs. 

3.5 Visualization Environments 
In this section we present briefly some visualization environments, which are 
distinguished by their cost, location and visualization technologies: 

 
 Location Pros Cons Examples 

Supercomputer machine 
room 

very 
specialized 

centralization flight 
simulator 

Minicomputer laboratory 

high speed 
LAN 

specific 
visualization  

small 
support staff 

Viz lab, CAVE 

Distributed laboratory lower cost 

performance 

small 
support staff 

Viz lab, CAVE 

Workstation laboratory decentralization no support 
staff 

high 
performance 
graphics 
desktop 

Remote desktop very low cost limited 
support staff 

low 
performance 
desktop 

3.6 Graphical excellence guidelines 
According to Edward Tufte, �graphical excellence consists of complex ideas, 
situations, phenomenon etc. communicated with clarity, precision, and 
efficiency� (Tufte, 2001). Thus, graphical and visualization applications are 
supposed to do the following: 
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• show the data; 
• induce the viewer to think about the substance rather than about 

methodology, graphic design, the technology of graphic production, or 
something else; 

• avoid distorting what the data have to say; 
• make large data sets coherent; 
• encourage the eye to compare different pieces of data; 
• reveal and distinguish the data at several levels of detail, from a broad 

overview to the fine structure; 
• serve a reasonably clear purpose: description, exploration, and so on; 
• be closely integrated with the meaning of the data set. 

Graphical elegance is often found in simplicity of design and complexity of 
data. Design is choice. The theory of the visual display of quantitative 
information consist of principles that generate design options and that guide 
choices among options. The principles should not be applied rigidly or in a 
peevish spirit; they are not logically or mathematically certain; and it is better to 
violate any principle than to place graceless or inelegant marks on screen or 
paper. Most principles of design should be greeted with some skepticism, for 
word authority can dominate our vision, and we may come to see only through 
the lenses of word authority rather than with our own eyes.  

What is to be sought in designs for the display of information is the clear 
portrayal of complexity. Not the complication of the simple; rather the task of 
the designer is to give visual access to the subtle and the difficult, that is the 
revelation of the complex. 
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4 Computational Grids and Desktop Grids 

4.1 Distributed and Parallel Computing 
Distributed computing arises as soon as one has to solve a problem in terms of 
processes that individually have only a partial knowledge of the several 
parameters associated with the problem. Thus, distributed computing appears 
both in computer world and in real world, and is at the heart of lots of 
applications. Whereas parallel computing is mainly concerned with efficiency, 
distributed computing addresses uncertainty generated by the multiplicity of 
control flows, the absence of shared memory and global time, and the 
occurrence of failures.  

Distributed systems can be defined as computer systems that contain 
multiple processors connected by a communication network. The processors 
communicate with each other using messages that are sent over the network. 
Such systems are increasingly available due to decrease of prices of computer 
processors and the availability of high-bandwidth links to connect them. 
However, despite the availability of hardware for distributed systems, there are 
only few software applications that exploit that hardware. One important 
reason is that distributed software requires a different set of tools and 
techniques than that required by the traditional sequential software. Although 
distributed algorithms are often made up of only few lines, their behaviors can 
be difficult to understand and their properties hard to state and prove.  

A distinction has to be made between distributed systems and parallel 
systems; the later ones consist of multiple processors that communicate with 
each other using shared memory. This distinction is only at a logical level. 
Given a physical system in which processors have shared memory, it is easy to 
simulate messages. Conversely, given a physical system in which processors are 
connected by a network, it is possible to simulate shared memory. Thus a 
parallel hardware system may run distributed software and vice versa. This 
distinction raises two important issues. One regards the question on which 
hardware to build: parallel or distributed. The other refers to the way we write 
applications, i.e. assuming shared memory or not. At the hardware level, we 
would expect that the prevalent model would be multiprocessor workstations 
connected by a network. Thus the system is both parallel and distributed. 
Further, two questions need to be addressed. The first one is �Why would  
the system not be completely parallel?� There are many reasons that follow 
below (Garg, 2002): 

# Scalability. Distributed systems are inherently more scalable than 
parallel systems.  In parallel systems shared memory becomes a 
bottleneck when the number of processors is increased; 
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# Modularity and heterogeneity. A distributed system is more flexible 
because a single processor can be added or deleted easily. Furthermore, 
this processor can be of a different type than the existing processors; 

# Data sharing. Distributed systems provide data sharing as in distributed 
databases. Thus multiple organizations can share their data; 

# Resource sharing. Distributed systems provide resource sharing � e.g. an 
expensive special purpose processor can be shared by organizations; 

# Geographical structure. The geographical structure of an application may 
be inherently distributed. The low communication bandwidth may 
force local processing. This is especially true for wireless networks; 

# Reliability: Distributed systems are more reliable than parallel systems 
because the failure of a single computer does not affect others; 

# Low cost: Availability of high-bandwidth networks and inexpensive 
workstations also favors distributed computing for economic reasons. 

The other essential question is �Why would the system not be purely a 
distributed one?� The reasons for keeping a parallel system at each node are 
mainly of a technological nature. With the current technology it is faster to 
update a shared memory location than to send a message to some other 
processor. This is especially true when the new value of the variable must be 
sent to multiple processors. Consequently, it is more efficient to get fine grain 
parallelism from a parallel system than from a distributed system (Garg, 1996). 

So far the argumentation has been at the hardware level. Nevertheless, 
the interface provided to the programmer can actually be independent of the 
underlying hardware. So which model the programmer should better use? At 
the programming level, is expected that programs will be written using 
multithreaded distributed objects. In this model, an application consists of 
multiple heavyweight processes that communicate using messages (or remote 
method invocations). Each heavyweight process consists of multiple 
lightweight processes called threads. Threads communicate through the shared 
memory. This software model mirrors the hardware that is expected to be 
widely available. By assuming that there is at most one thread per process (or 
by ignoring the parallelism within one process), we get the usual model of a 
distributed system.  

By restricting the focus to a single heavyweight process, we get the usual 
model of a parallel system. Though, the system will have aspects of distributed 
objects. The main reason is the logical simplicity of the distributed object model. 
A distributed program is more object-oriented because data in a remote object 
can only be accessed through an explicit message (or a remote procedure call). 
Conversely, threads are also useful to provide efficient objects. For many 
applications such as servers, it is useful to have a large shared data structure, 
because it is a programming burden to split the data structure across multiple 
heavyweight processes. 
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Summing up, aspects of both parallel processing and distributed processing 
will be seen both in hardware as well as software. To define the distributed 
systems we can consider the following features  (Garg, 2002):  

• Absence of a shared clock - in a distributed system, it is not possible to 
synchronize the clocks of different processors precisely because of 
uncertainty in communication delays between them. Consequently, it 
is rare to use physical clocks for synchronization. The concept of 
causality can be used instead of time to tackle this problem; 

• Absence of shared memory - in a distributed system, it is impossible for 
any particular processor to know the global state of the system. 
Therefore it is difficult to observe any global property of the system. 
Though efficient algorithms can be developed for evaluating a 
suitably restricted set of global properties; 

• Absence of accurate failure detection - in an asynchronous distributed 
system (a distributed system is asynchronous if there is no upper 
bound on the message communication time), the distinction between 
a slow processor and a failed processor cannot be done.  This leads to 
many difficulties in developing algorithms for consensus, election, etc. 
Failure detectors can be built to alleviate some of these problems. 

4.2 Computational Grids and Applications 

4.2.1 A bit of Grid history 
Similar to many momentous concepts and technologies that we now take for 
granted, Grid ideas have been inspired by, and were first applied to, problems 
faced by researchers tackling fundamental problems in science and engineering. 
Starting with ideas first expounded in the 1960s and given concrete form by 
Grid pioneers in the 1990s, the scientific community continues to lead the 
development of Grid technologies that will act as a computational and data 
management infrastructure that will be a key enabler for twenty-first-century 
science and society. 

The origins of the idea of a �Grid� to support scientific research can be 
traced back to the Internet pioneer J. C. R. Licklider, who has began his career as 
an experimental psychologist studying psychoacoustics - how the human ear 
and brain convert air vibrations into the perception of sound. In the 1950s, he 
was a human factor researcher on the famous SAGE project at MIT: an air 
defense system designed to use real-time information on Soviet bombers. 
Coming from this experience, Licklider has written a groundbreaking paper in 
which he argued that computers should be developed to enable people and 
computers to cooperate in making decisions and controlling complex situations 
without inflexible dependence on predetermined programs (Waldrop, 2001). 

Larry Roberts, the principal ARPANET architect, has recalled the 
importance of Licklider's ideas: Lick had this concept of the intergalactic network 
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which he believed was everybody could use computers anywhere and get at data 
anywhere in the world. He didn't envision the number of computers we have today by 
any means, but he had the same concept�all of the stuff linked together throughout the 
world, that you can use a remote computer, get data from a remote computer, or use lots 
of computers in your job. The vision was really Lick's originally. None of us can really 
claim to have seen that before him nor can anybody in the world. Lick saw this vision in 
the early sixties. He didn't have a clue how to build it. He didn't have any idea how to 
make this happen. But he knew it was important, so he sat down with me and really 
convinced me that it was important and convinced me into making it happen (Foster 
and Kesselman, 2004). 

Since the beginnings of the ARPANET very much has changed. The 
Internet has become a reality, and e-mail and Web browsers have emerged as 
killer applications. Moore's law has prevailed for more than 30 years, with the 
result that computers are no longer rare, expensive resources. Nonetheless, 
Licklider's vision of a global network of computers and data resources that can 
be accessed seamlessly from anywhere in the world remains valid. The Grid is 
our latest and most promising attempt to realize Licklider's vision. 

4.2.2 Need for Computational Grid in Context  
Constant exponential technology improvements, new collaborative modalities 
enabled by the quasi-ubiquitous Internet, and the demands of increasingly 
complex problems have, over recent decades, fueled a revolution in the practice 
of science and engineering. Today's science is as much based on large-scale 
numerical simulation, data analysis, and collaboration as it is on the efforts of 
individual experimentalists and theorists. Further on we briefly review some of 
the new modes of inquiry that more and more define twenty-first-century 
science and engineering. 

4.2.2.1 Data-Intensive Science 
Impressive improvements in the capability and capacity of sensors, storage sys-
tems, computers, and networks are enabling the construction of data archives of 
mammoth size and value. Multipetabyte (1015 bytes) archives will soon be in 
place in fields as diverse as astronomy, biology, medicine, the environment, 
engineering, and high energy physics. Analysis of these vast quantities of data 
can yield profound new insights into the nature of matter, life, the environment, 
or other aspects of the physical world.  

The sources of these huge quantities of data span a broad spectrum. At 
one extreme, we have individual, highly specialized, and expensive scientific 
devices that generate large quantities of data at a single location. For example, 
the worldwide particle physics community is planning an ambitious set of 
experiments at the Large Hadron Collider (LHC) experimental facility under 
construction at CERN in Geneva. The goal of this work is to find signs of the 
Higgs boson, key to the generation of mass for both the vector bosons and the 
fermions of the standard model of weak and electromagnetic interactions. 
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Particle physicists are also hoping for indications of other new types of matter - 
such as super symmetric particles - that may shed light on the �dark matter" 
problem of cosmology. These LHC experiments are on a scale never before seen 
in physics, with each experiment involving a collaboration of hundreds of 
institutions and over 5,000 physicists around the globe (LHC, 2007). 

When operational in 2008, each of the LHC experiments will generate 
several petabytes of experimental data per year. This vast amount of data needs 
to be preprocessed and distributed for further analysis by all members of the 
consortia to search for signals betraying the presence of the Higgs boson or 
other revelations. The physicists need to put in place an LHC Grid 
infrastructure that will permit the transport and data mining of extremely large 
and distributed datasets.  

The creation of this infrastructure is being pursued in collaboration with 
major Grid projects in the United States (NSF Grid Physics Network, DOE 
Particle Physics Data Grid, NSF International Virtual Data Grid Laboratory) 
and Europe (the EU DataGrid project and national Grid projects such as the UK 
Grid PP, Italian INFN Grid, and NorduGrid). The Importance of transoceanic 
bandwidth is recognized via the EU-funded DataTAG project for trans-Atlantic 
networks and the U.S.-funded STAR-TAP and StarLight international 
interconnection point (Foster and Kesselman, 2004). 

Another significant source of immense quantities of data is the 
monitoring of industrial equipment. For example, pressure, temperature, and 
vibration sensors in each of the many thousands of Rolls-Royce engines 
currently in service generate about a gigabyte of data per engine on each trans-
Atlantic flight, which translates to petabytes of data per year. The UK e-Science 
Distributed Aircraft Maintenance Environment project is working to aggregate 
these data so that they can be mined to detect indications of potential problems. 
The objective is to transmit a subset of the primary data for analysis and 
comparison with engine data stored in one of several data centers located 
around the world. By identifying the early problems, Rolls-Royce hopes to be 
able to lengthen the period between scheduled maintenance periods, thus 
increasing profitability. Decisions need to be taken in real time as to how much 
of the petabytes of data to analyze, how much to transmit for further analysis, 
and how much to get archived (Foster and Kesselman, 2004). 

Similar (or even larger) data volumes are being generated by other  
high-throughput sensors in fields as varied as environmental and earth 
observation, astronomy, and human health-care monitoring. For example, in 
astronomy, individual �digital sky surveys� are creating data archives that will 
scale from a maximum of 10 terabytes today to petabytes within the next 
decade. It is estimated that the U.S. National Virtual Observatory project alone 
has stored 500 terabytes per year from 2004. Similarly, the Laser Interferometer 
Gravitational Observatory project is estimated to generate 250 terabytes per 
year beginning with 2002. A new generation of astronomical surveys such as 
the VISTA project in the visible and infrared regions will also contribute to the 
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transformation of the data requirements of the astronomy community. The 
VISTA telescope, which is operational since 2004 and will generate 250 
gigabytes of raw data per night and around 10 terabytes of stored data per year. 
There will be several petabytes of data in the VISTA archive within 10 years 
(Foster and Kesselman, 1999). 

Although these data volumes are impressive enough by themselves, 
what has astronomers really eager is the prospect of federating many such 
archives to create a uniformly accessible, globally distributed repository of 
astronomical data spanning all wavelengths, from radio waves to X-rays. The 
worldwide astronomy community is working to create such a globally 
distributed, multiwavelength "virtual observatory�. For the time being, 
astronomical data using different wavelengths are captured by different 
telescopes and stored in a diversity of formats. The creation of such a 
multiwavelength "data warehouse� for astronomical data will enable new types 
of astrophysical studies. 

Similar opportunities are arising in medicine, where all-digital scanning 
technologies allow CT scans, mammograms, MRI scans, and other medical 
images to be stored online rather than in film libraries. Multiterabyte databases 
being assembled within hospitals and research laboratories are making it far 
easier to compare images both across time for individuals and across 
populations. The linking of these databases with advanced analytical tools 
offers the potential for automated diagnosis in support of the individual 
physician, while the federation of multiple databases - potentially on a national 
or international scale - promises to enable epidemiological studies of 
unprecedented scope and scale that will provide new insights into the impact of 
environment and life cycle on disease. 

The UK e-Diamond project is one project working to exploit these 
opportunities. Others include the Biomedical Informatics Research Network, 
the U.S. National Digital Mammography Archive, and the EU MammoGrid.  
e-Diamond brings together medical image analysis expertise from Mirada 
Solutions Ltd. and the MIAS Interdisciplinary Research Collaboration, 
computer science expertise from IBM and the Oxford e-Science Center,  
and clinical expertise from hospitals in London. Oxford, and Scotland.  
The goal is to provide an exemplar of the dynamic, best-evidence-based 
approach to diagnosis and treatment, which is made possible through a Grid 
middleware infrastructure.  

The scope of the project is broad, and includes distributed data 
management and analysis, ontologies and metadata to describe both the 
physics that support the imaging process and the key features within images, as 
well as the capture of relevant demographic and clinical information. 
Technologies for data compression and data transfer that allow rapid data 
mining of the resulting large, federated databases of both metadata and images 
are also a key research area. Security and privacy are of paramount importance, 
and any grid infrastructure must be able to combine databases of information 
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based in hospitals protected by firewalls. The creation of such a large federated 
database of annotated, digitized, and standardized mammograms will provide 
for new applications in teaching and aiding both detection and diagnosis. 

4.2.2.2 Simulation-Based Science 

Numerical simulation represents another new problem-solving methodology in 
its own right, which continues to grow in importance The extensive use of 
supercomputers (an important class of "central power plant� in a scientific 
Grid) has been fundamental to scientific disciplines such as climatology and 
astrophysics, in which physical experiments cannot easily be performed but 
computational simulations are feasible. Indeed, supercomputers have emerged 
as an important class of "extreme scientific instrumentation." For example, the 
supercomputers can run numerical simulations of at a sustained rate of 400 
teraflop/sec, and generating hundreds of terabytes of data in a single run.  
Other extremely capable systems are being operated by the U.S. ASCI program, 
DOE and NSF supercomputer centers in the United States, and supercomputer 
centers in Europe and elsewhere. 

These tremendous investments in high-end supercomputers are just one 
indication of a broad phenomenon, which is that as a result of advances in 
computer performance and computational techniques, computational 
approaches are increasingly being applied even in fields long dominated by 
detriment. For example, in chemistry, combinatorial methods provide new 
opportunities for the generation, via computation rather than experiment, of 
large amounts of new chemical knowledge. The UK Comb-e-Chem project is 
illustrative of what is being done to exploit this opportunity. The goal of this 
project is to synthesize large numbers of new compounds by  
high-throughput combinatorial methods and then map their structure and 
properties. Such a parallel synthetic approach creates hundreds of thousands of 
new compounds at a time, leading to an explosive growth in the volume of data 
generated. Each new compound needs to he screened for potential usefulness, 
and properties and structure must be identified and recorded for promising 
candidates. Thus, an extensive range of primary data needs to be accumulated, 
integrated with information in existing databases, and enhanced with accurate 
models of the various relationships and properties. Comb-e-Chem is 
developing an integrated platform that combines existing  
structure and property data sources within a Grid-based information- and 
knowledge-sharing environment (Comb-e-Chem, 2005). 

Similar transformations are occurring in the life sciences, as illustrated by 
the U.S. Encyclopedia of Life (EOL) project, which seeks to produce a database 
of reputed functional and 3D structure assignments for all known publicly 
available complete or partial genomes. Considerable computational capacity is 
required to update data as new genome sequences become available. This 
computation converts the rather sparse information contained in the linear 
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sequence of DNA bases into human-readable information that can be inferred 
by conversion to the amino acid sequence. Each genome must be subjected  
to a computation that is built up from loosely structured workflow,  
with analysis performed by a collection of algorithms that build on information 
in the EOL database. 

4.2.2.3 Remote Access to Experimental Apparatus 
The increasing prominence of simulation- and data-driven science does not 
mean that experimental science has become less important. On the contrary, the 
advance of technology is also producing revolutionary new experimental 
apparatus, and the emergence of high-speed networks makes it feasible to 
integrate those apparatus into the scientific problem-solving process in ways 
not previously imaginable. 

Thus, for instance, we see the earthquake engineering community 
deploying telepresence capabilities that allow remote participants to design, 
execute, and monitor experiments without traveling to experimental facilities. 
The National Science Foundation's George E. Brown Jr. Network for 
Earthquake Engineering Simulation (NEES) is an ambitious national program 
whose purpose is to advance the study of earthquake engineering and to find 
new ways to reduce the hazard earthquakes represent to life and property. Its 
goal is to encourage the use of both physical and numerical simulation to 
develop increasingly complex, comprehensive, and accurate models of how the 
built infrastructure responds to earthquake loadings. NEESgrid is integrating 
and deploying Grid technologies to link earthquake engineering researchers 
across the United States with shared engineering research equipment, data 
resources, and leading-edge computing resources. 

The NEESgrid middleware infrastructure allows collaborative teams 
(including remote participants) to plan, perform experiments, and publish and 
share their data and results. Collaborative tools assist experiment planning and 
allow engineers at remote sites to perform teleobservation and teleoperation of 
experiments, and enable access to computational resources and open source 
analytical tools for simulation and analysis of experimental data. The 
middleware also supports the publishing of results in a curated data repository 
using standard data and metadata vocabularies and formats. 

Similar technologies have been applied successfully for some time to the 
remote operation of specialized scientific instrumentation. Grid technologies 
introduce the possibility of making these specialized usage scenarios routine. 

4.2.2.4 Virtual Community Science 
Besides the new modes of inquiry enabled by flexible and pervasive access to 
massive amounts of data, large amounts of computation, and specialized 
experimental apparatus, equally significant to 21st century�s science and 
engineering is the increasingly collaborative and distributed nature of the 
teams. Moreover, the collaborative nature of science is in many respects 
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inseparable from the new capabilities. The most significant impact of grid 
technologies on science will probably be global virtual communities of scientists 
able to address the fundamental problems of today and tomorrow. Hopefully, 
this will hold also for virtual communities of non-scholar users that will turn to 
grid applications or opportunities to solve some of their day-to-day problems. 

In data-driven science, the high scientific value of large data archives 
means that they are, increasingly, viewed as major strategic assets by their user 
communities, who devote considerable effort to establishing, managing, 
controlling, and exploiting those archives. Similar to the Encyclopedia of Life 
project mentioned previously, the UK eScience myGrid project is working to 
design, develop, and demonstrate higher-level grid middleware to support the 
use of complex distributed resources for bioinformatics, with particular 
applications being the analysis of functional genomic data and the annotation of 
a pattern database. The myGrid project is developing an e-Scientist's workbench 
to support experimental investigation, evidence accumulation, and result 
assimilation. The goal is to help scientists use community information (e.g., 
"gray literature") and enhance scientific collaboration by assisting the formation 
of dynamic groupings to tackle emergent research problem (myGrid, 2007)  

Personalization facilities relating to resource selection, data management, 
and performing of processes provide for the dynamic creation of personal 
datasets and personal views over repositories, as well as both the addition of 
personal annotations to datasets and a personalized notification service about 
changes in relevant databases. The myGrid project is also developing tools and 
techniques to support the creation of personalized workflows that capture the 
biologist's know-how and enable reuse of patterns of knowledge discovery. 
These services can also associate base resources with the derived data, an aspect 
of the important area of provenance. The project is developing mechanisms to 
track the creation of knowledge, to automate the association of metadata with 
the production of primary experimental data, and to develop ontologies that 
facilitate automated reasoning about information from different communities. 

Similar observations can be made about large-scale experimental and 
simulation science, as increasingly large teams devote considerable effort to 
establish and operate diverse apparatus, such as particle accelerators and 
climate simulation codes. For example, both the fusion and high-energy physics 
communities are planning future experimental facilities of unprecedented 
international scope and scale, and featuring �distributed control rooms" that 
will allow control of long-running experiments to be passed from one time zone 
to another over the course of a day. 

The Comb-e-Chem project presented previously illustrates some of these 
issues. As much attention is given to the needs of the end-user community as to 
basic computational issues. Thus, work on the collection of new data, addresses 
support for both process and product data, and integrates electronic laboratory 
and e-logbook facilities. Also, interfaces are being developed to provide the 
user community with a unified view of resources and transparent access to data 
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retrieval, online modeling, and experiment design tools. The Comb-e-Chem 
service-based infrastructure extends to devices in the laboratory as well as to 
databases and computational resources. An important component of the project 
is the support of remote users of the UK National Criystallographic Service, 
physically located in Southampton. The service extends both to the portal 
access to the apparatus and to the support of resulting workflow.  
This scientific workflow corresponds to the sequence of linked operations 
necessary to get the desired result (use of the X-ray e-Laboratory),  
access to structures� databases, and admission to computing facilities for 
simulation and analysis in a specified sequence of operations. The goal is to 
provide shared, secure access to all of these resources in a supportive 
collaborative e-science environment. 

The EOL project has similar goals. Information produced by  
EOL software is stored in a data warehouse and offered to the public through 
the EOL notebook, which accesses subservient, high-performance  
MySQL data marts. The EOL notebook portal provides users with data-mining 
capability that allows extensive, distributed data analyses. Users can gather 
information with regard to protein function over a wide variety of species and 
then run complex analysis applications on the combined dataset. An example 
could be an analysis of variations in structure and function over the 
evolutionary history of organisms. Such applications require high rates of data 
transfer and access to a large amount of computation, and thus EOL is both 
data- and compute-intensive. Because of the sheer number of current and future 
genomes available and the need for constantly up-to-date and synthesized 
information, EOL represents a growing class of applications for which a global 
grid infrastructure could be critical to enabling new advances in biology. 

4.2.2.5 Scenarios for grid use in the real-world 
Further on some grid use scenarios will be presented in order to emphasize that 
the need for grid systems go beyond the scientific world, to the people and their 
daily problems (Foster and Kesselman, 2004). 

Scenario 1. A holding that want to reach a decision on the placement of a 
new industrial unit invokes a sophisticated financial forecasting model from an 
Application Service Provider (ASP), providing it with access to appropriate 
proprietary historical data from a corporate database on storage systems 
operated by a storage service provider. During the decision-making meeting, 
what-if scenarios are run collaboratively and interactively, even though the 
division heads participating in the decision are located in different locations. 
The ASP itself contracts with an on-demand cycle provider for additional 
�power� during particularly demanding scenarios, requiring of course that 
cycles meet desired security and performance requirements. 

Scenario 2. An industrial consortium formed to develop a feasibility 
study for a next-generation supersonic spacecraft undertakes a highly accurate 
multidisciplinary simulation of the entire spacecraft. This simulation integrates 
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proprietary software components developed by different participants, with 
each component operating on that participant's computers and having access to 
appropriate design databases and other data made available to the consortium 
by its members. 

Scenario 3. A crisis management team responds to a toxic waste accident  
by using local weather and soil models to estimate the spread of the waste, 
determining the impact based on population location and geographic features 
such as rivers and water supplies, creating a short-term mitigation plan (based 
on chemical reaction models), and tasking emergency response personnel by 
planning and coordinating evacuation, notifying hospitals, and so on. 

Scenario 4. A large-scale Internet game consists of many virtual worlds, 
each with its own physical laws and consequences. Each world may have a 
large number of inhabitants that interact with one another and move from one 
world to another. Each virtual world may expand in an on-demand basis to 
accommodate population growth, new simulation technology to model the 
physical laws of the world will need to be added, and simulations need to be 
coupled to determine what happens when worlds collide. 

These scenarios differ in many aspects: the number and type of participants, the 
types of activities, the duration and scale of the interaction, and the resources 
being pooled. However, they also have much in common. In each case, the 
participants who have varying degrees of prior relationship (perhaps none at 
all) want to share resources in order to perform some real-world complex 
problem within a powerful infrastructure.  

4.3 Premises for Computational Grids 
Computational approaches to solve various problems have proven their worth 
in almost every field of human endeavor. Computers are used for modeling and 
simulating complex scientific and engineering problems, diagnosing medical 
conditions, controlling industrial equipment, forecasting the weather, managing 
stock portfolios, and so on. However, although there are certainly challenging 
problems that exceed our ability to solve them, computers are still used much 
less extensively than they could be. For example, university researchers make 
extensive use of computers when studying the impact of changes in land use on 
biodiversity, but city planners selecting routes for new roads or planning new 
zoning ordinances do not. Nevertheless, it is local decisions such as these ones 
that, ultimately, shape our future. 

4.3.1 Technical premises 
There are a variety of reasons for this relative lack of use of computational  
problem-solving methods, including lack of appropriate education and tools. 
But one important factor is that the average computing environment remains 
inadequate for such computationally sophisticated goals. Though, the 
opportunity to provide users � whether city planners, engineers, or scientists � 
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with substantially more computational power: an increase of three orders of 
magnitude within five years, and five orders in a decade. These dramatic 
increases will be achieved by innovations in a wide range of areas (Foster and 
Kesselman, 1999): 

• technology improvement:  evolutionary changes in VLSI technology and 
microprocessor architecture can be expected to result in a factor of 10 
increase in computational capabilities in the next five years, and a 
factor of 100 increase in the next ten; 

• increase in demand-driven access to computational power: many 
applications have only episodic requirements for substantial 
computational resources. For instance, a medical diagnosis system 
may be run only when a CT scan is performed, a stock market 
simulation when a user re-computes some specific benefits, or a 
seismic simulation when an earthquake is studied. If mechanisms are 
available to allow reliable, instantaneous, and transparent access to 
high-end resources, then from the perspective of these applications it 
is as if those resources are dedicated to them. Given the existence of 
multiteraFLOPS systems, an increase in apparent computational 
power of three or more orders of magnitude is feasible; 

• increased utilization of idle capacity - most low-end computers 
(workstations or PCs) are often idle, various studies reporting that 
around 30% of processor time is used in academic and commercial 
environment. Utilization can be doubled, even for parallel programs, 
without having a significant effect on productivity. The benefit to 
individual users can be substantially greater: factors of 100 or 1000 
increase in peak computational capacity have been reported; 

• greater sharing of computational results � the daily weather forecast 
involves probably 1014 numerical operations. If we assume that the 
forecast is of benefit to 107 people, we have 1021 effective operations � 
comparable to the computation performed each day on all the 
world�s PCs. Few other computational results or facilities are shared 
so effectively today, but they may be in the future as other scientific 
communities adopt a �big science� approach to computation. The key 
for more sharing could be the development of �collaboratories� i.e. 
center(s) without walls, in which the researchers can do their research 
without regard to geographical location � interacting with colleagues, 
accessing instrumentation, sharing data and computational resources, 
and accessing information in digital libraries; 

• new problem-solving techniques and tools: a variety of approaches can 
increase the efficiency with which computation is applied to problem 
solving. For instance, network-enabled solvers allow users to invoke 
advanced numerical solution methods without having to install 
sophisticated software. Teleimmersion techniques facilitate the 
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sharing of computational results by supporting collaborative steering 
of simulation and exploration of data sets. 

Underlying each of these advances is the synergistic use of high-performance 
networking, computing, and advanced software to provide access to 
sophisticated computational capabilities, regardless of the location of both  
users and resources. 

4.3.2 Financial premises 
The new modes of inquiry and application scenarios presented in the preceding 
sections will transform the practice of science and engineering. Nevertheless, 
achieving these transformations requires major investments in physical 
infrastructure (petabyte archival storage, terabit networks, sensor networks, 
teraop supercomputers), software infrastructure (grid middleware, 
collaboratories), and new application concepts and software. Governments are 
realizing the importance of these investments its a means of enabling scientific 
progress and enhancing national competitiveness. To this end, major initiatives 
are under way worldwide, aimed variously at supporting major science and 
research grid projects, establishing and enhancing national grid resources and 
instruments, developing grid and middleware technologies, and/or 
coordinating and facilitating grid technologies and activities. 

John Taylor, Director General of the United Kingdom's Office of Science 
and Technology, was an early proponent of this idea, coining in 1999 the term  
e-science to denote a new field of endeavor, writing that �e-science is about 
global collaboration in key areas of science and the next generation of 
infrastructure that will enable it�. He was also successful in obtaining 
significant funding to realize his concept. The first phase of the UK e-Science 
programme, launched in 2001 with a budget of £120 M over three years, has 
established projects spanning many areas of science and engineering. A key 
feature of the program is the active engagement of early adopters from 
industry: over 80 companies are contributing a total of £30 M in collaborative e-
science projects. The industries represented range from IT, pharmaceutical, 
engineering, and petrochemical companies to financial modeling and media. 
These projects define middleware infrastructure requirements that far exceed 
the capability of present grid middleware. The UK e-Science Core Programme 
is tasked with identifying the elements of a generic grid middleware stack that 
will not only support UK science but also be of interest to industry. The UK 
program revived in 2003 a second investment of about £120 M for a further 
three years, till 2006 (eScience, 2007). 

In the United Slates, a National Science Foundation (NSF) Blue-Ribbon 
Advisory Panel was convened in 2001 to inventory and explore advances in 
computational technology and to make strategic recommendations on the 
nature and form of programs that the NSF should take in response to 
converging technology trends. The Panel observed that digital computation, 
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data, information, and networks are now increasingly replacing and extending 
traditional methods of science and engineering research. In silico simulation 
and modeling at new levels of resolution and fidelity arc providing a 
complementary approach to scientific exploration to contrast with the 
traditional theoretical/analytical and experimental/observational modes. The 
Panel states that �a new age has dawned in scientific and engineering research, 
pushed by continuing progress in computing, information and communication 
technology, and pulled by the expanding complexity, scope, and scale of 
today's challenges� and concludes that new technologies have progressed to the 
extent that it is now possible to envisage creating a global "cyber infrastructure" 
on which new types of scientific and engineering knowledge environments  
and "virtual organizations' can be built The realization of such cyber 
infrastructure would allow research to be pursued in new ways and with 
increased efficiency. The blue-ribbon report recommends that NSF should lead 
a large ($1 billion per year), interagency and internationally coordinated 
Advanced Cyber infrastructure Program (ACP) to "create, deploy, and apply 
cyber infrastructure in ways that radically empower all scientific and 
engineering research and allied education.  

The European Union's 6th and 7th Framework Programmes (FP6, FP7) 
also devote substantial sums to research infrastructure and grid computing, 
through their specific programmes, which aim to �to optimize the use and 
development of the best research infrastructures existing in Europe. 
Furthermore, it aims to help to create new research infrastructures of pan-
European interest in all fields of science and technology. The European 
scientific community needs these to remain at the forefront of the advancement 
of research, and they will help industry to strengthen its base of knowledge and 
technological know how�. In the case of FP7, the specific program is called 
�Research Infrastructure� and the budget is � 1.8 billion for funding this theme 
over the duration of FP7 (2007-2013) (FP7, 2007). 

Within the scope of this European Community action, the term �research 
infrastructures� refers to facilities or resources that provide essential services to 
the scientific community for basic or applied research in all scientific and 
technological fields. Such research infrastructures may be �single-sited� or 
distributed (a network of resources). Including the associated human resources, 
this definition covers:  

! major equipment or sets of instruments used for research purposes;  
! knowledge-based resources such as collections, archives, structures 

information or systems related to data management, used in research;  
! enabling Information and Communication Technology-based 

infrastructures such as Grid, computing, software and 
communications;  

! any other entity of a unique nature that is used for scientific research.  
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The optimization, or emergence, of research infrastructures with a clear 
European dimension and added value in terms of performance and access will 
be considered for support. These infrastructures must contribute significantly to 
the development of European research capacities. The activities to be supported 
are identified under three main lines of action as described below:  

1. Optimizing the utilization of existing research infrastructures and 
improving their performance. The objective is to strengthen European 
capacities and performance of specific research infrastructures, and 
increase user communities' involvement in opportunities offered by 
research infrastructures and their commitment towards investment in 
top-level research. This line of action represents the majority of the 
efforts (more than 60% of the operational funds) to be carried out 
under this part of the Specific Programme 'Capacities'. Support will 
be provided for integrating activities to structure better, on a 
European scale, the way research infrastructures operate in a given 
field, to foster their joint development in terms of capacity and 
performance and to promote their coherent and cross-disciplinary 
use. Emphasis should be given to the efficient and coordinated 
implementation of trans-national access and service activities, to 
ensure that European researchers, including researchers from 
industry and SMEs, may have access to the best research 
infrastructures to conduct their research, irrespective of their location. 
This action is both a bottom-up and a targeted approach:  
- bottom-up to respond to the needs of the scientific community in 

all fields of science and technology, without any preference for 
one field over another;  

- targeted to respond to the strategic research needs of the thematic 
priority areas and thereby strengthen the consistency of actions 
within the FP7.  

2. Strengthening research e-infrastructures by fostering further development 
and global connectivity of high-capacity and high-performance 
communication and grid-empowered infrastructures, and by reinforcing 
distributed supercomputing and data storage facilities. The aim is to 
develop a new research environment, building upon the capabilities 
of GÉANT, the multi-gigabit pan-European data communications 
network reserved specifically for research and education and existing 
grid infrastructures, in which all scientists have easy-to-use, 
controlled access, regardless of their location in the world. It will be 
necessary to support, in a coordinated way, digital libraries, archives, 
data storage and curation activities and the essential pooling of 
resources at European level. Finally, the activities aim at fostering the 
adoption of e-infrastructures by user communities where 
appropriate, enhancing their global relevance and increasing the level 
of trust and confidence. The development of new research 
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infrastructures of pan-European interest, will build primarily on the 
work of the 'European strategy forum on research infrastructures' 
(ESFRI), which aims to promote the creation of new research 
infrastructures with a crucial and pan-European impact for the 
development of relevant scientific fields of science and technology, 
and to be able to help industry to strengthen its knowledge base and 
technological know-how. This action will also examine the 
opportunities for exploiting the potential of scientific excellence of the 
converging and outermost regions through new infrastructures. This 
line of action represents about one third of the total financial 
resources available for in this part of the Specific Programme 
'Capacities'. Support will be provided for designs investigated for 
new research infrastructures that demonstrate a clear European 
dimension and interest, through a bottom-up approach of 'calls for 
proposals' and construction of critical new research infrastructures, 
building upon the work conducted by the ESFRI on the development 
of a European roadmap for new research infrastructures. This activity 
will follow a two-stage approach. The first phase will involve the 
preparation of the detailed construction plans, of the legal 
organization, of the management and multi-annual financial planning 
and the final agreement between stakeholders. In the second stage, 
the construction plans will be implemented with the possible 
involvement of private financial institutions, building on the 
achieved technical, legal and financial agreements.  

3. Support measures for policy development and programme implementation, 
including support for emerging needs. Strong coordination within the EU 
in formulating and adopting a European policy on research 
infrastructures is the key to the success of this activity. Throughout 
the whole programme there will be measures to enhance the 
effectiveness and coherence of national and Community research 
policies and the development of international co-operation.  

 
These activities will be carried out mainly following periodic 'calls for 
proposals' that aim to stimulate the coordination of national programmes 
through ERA-NET actions and support the work of ESFRI and 'e-infrastructure 
reflection group' (eIRG). In the context of international co-operation, they will 
also allow the identification of the needs of specific third countries and mutual 
interests on which specific co-operation actions could be based and, on the basis 
of targeted calls, the development of cross-links between key research 
infrastructures in third countries and those within the European Research Area 
(ERA) (FP7, 2007). 
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4.3.3 Experiencing premises 
For the time being, there are some remarkable American and European 
experiences in development of grid computing solutions that will be  presented 
further on. Similar initiatives are underway in Japan, Singapore, and China. 
Although active research on grid technology has been conducted  
among various countries, mainly in European countries and USA, research in 
Japan is rather behind compared with these countries. Though, in the meantime 
the interest of the people in Japan is rapidly getting higher, and it is  
commonly and basically recognized that it is necessary to accelerate the grid 
research (JPGRID, 2007).  

Through developing corresponding grid middleware and cooperating 
with the application of Network Computer, ChinaGrid aims to  
integrate heterogeneous mass resources distributed in the China Education and 
Research Network (CERNET), shares those resources in the CERNET 
environment effectively and avoids the resource islands, provides  
useful services, finally forms the public platform for research and education  
in China (ChinaGRID, 2007). 

gLite is the next generation lightweight middleware for grid computing. 
Born from the collaborative efforts of more than 80 people in 12 different 
academic and industrial research centers as part of the EGEE Project, gLite 
provides a framework for building grid applications tapping into the power of 
distributed computing and storage resources across the Internet (gLite, 2008). 
gLite middleware is currently deployed on hundreds of sites as part of the 
EGEE project and enables global science in a number of disciplines, notably 
serving the LCG project (LCG, 2008). The EGEE project brings together experts 
from over 27 countries with the common aim of building on recent advances in 
Grid technology and developing a service Grid infrastructure which is available 
to scientists 24 hours-a-day. The project aims to provide researchers in 
academia and industry with access to major computing resources, independent 
of their geographic location. The EGEE project will also focus on attracting a 
wide range of new users to the Grid. The project primarily concentrates on 
three core areas (EGEE, 2008):  

• The first area is to build a consistent, robust and secure Grid network 
that will attract additional computing resources. 

• The second area is to continuously improve and maintain the 
middleware in order to deliver a reliable service to users. 

• The third area is to attract new users from industry as well as science and 
ensure they receive the high standard of training and support they need. 

The EGEE Grid is being built on the EU Research Network GÉANT and exploit 
Grid expertise generated by many EU, national and international Grid projects 
to date. Funded by the European Commission, the EGEE project community 
has been divided into 12 partner federations, consisting of over 70 contractors 
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and over 30 non-contacting participants covering a wide-range of both scientific 
and industrial applications.  

The work being carried out in the project is organized into 11 activities. 
Two pilot application domains were selected to guide the implementation and 
certify the performance and functionality of the evolving infrastructure. One is 
the Large Hadron Collider Computing Grid supporting physics experiments 
and the other is Biomedical Grids, where several communities are facing 
equally daunting challenges to cope with the flood of bioinformatics and 
healthcare data.  With funding of over 30 million Euro from the European 
Commission, the project is one of the largest of its kind. EGEE is a two-year 
project conceived as part of a four-year programme (2004-2008), where the 
results of the first two years will provide the basis for assessing subsequent 
objectives and funding needs.  

NorduGrid/ARC is a Grid Research and Development collaboration 
aiming at development, maintenance and support of the free Grid middleware, 
known as the Advance Resource Connector (ARC). The NorduGrid 
collaborative activity is based on the success of the project known as the 
"Nordic Testbed for Wide Area Computing and Data Handling", and aims at 
continuation and development of its achievements. That project was launched 
in May 2001, aiming to build a Grid infrastructure suitable for production-level 
research tasks. The project developers came up with an original architecture 
and implementation, which allowed the testbed to be set up accordingly in May 
2002, and remain in continuous operation and development since August 2002. 
The aim of the NorduGrid collaboration is to deliver a robust, scalable, portable 
and fully featured solution for a global computational and data Grid system. 
NorduGrid develops and deploys a set of tools and services � the so-called ARC 
middleware, which is a free software. The goals are (NorduGrid, 2008):  

• Develop and support the ARC middleware. 
• Coordinate contributions to the ARC code. 
• Define strategical directions for development of the ARC middleware 

following latest tendencies in the Grid technologies. 
• Promote ARC middleware solutions in such areas as Grid development, 

deployment and usage. 
• Contribute to development of Grid standards, e.g. via GGF.  

 
UNICORE (Uniform Interface to Computing Resources) offers a ready-to-run 
Grid system including client and server software. UNICORE makes distributed 
computing and data resources available in a seamless and secure way in 
intranets and the Internet. UNICORE has special characteristics that make it 
unique among Grid middleware systems. The UNICORE design is based on 
several guiding principles that serve as key objectives for further enhancements 
(UNICORE, 2008):  

http://www.nordugrid.org/middleware
http://www.nordugrid.org/documents/nordugrid-final.pdf
http://www.nordugrid.org/middleware/
http://www.nordugrid.org/middleware/
http://www.ggf.org/
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• Abstraction: UNICORE users need not know details about the system that 
they use. UNICORE provides abstractions for concepts such as 
application software and storage locations. Thus, UNICORE allows 
seamless access to heterogeneous environments; 

• Security: UNICORE offers strong security based on industry standards 
such as the X.509 PKI. Communication over the Internet is protected by 
mutual authentication;  

• Site autonomy: when making resources available on the Grid, 
administrators keep fine-grained control about their resources. Local 
policies are respected;  

• Ease of use: A powerful GUI client covers the most common usage 
scenarios, e.g application execution and multi-step, multi-site workflows;  

• Ease of installation: UNICORE is simple to install, with minimal external 
dependencies. Quick start bundles exist that allow getting  
up-and-running quickly.  

The development of the UNICORE system was initiated in 1997 to enable 
German supercomputer centers to provide their users with a seamless, secure, 
and intuitive access to their heterogeneous computing resources. As in the case 
of the Globus Toolkit, UNICORE was started before �Grid computing�  
became the accepted new paradigm for distributed computing (Foster and 
Kesselman, 1999). The UNICORE vision was proposed to the German Ministry 
for Education and Research (BMBF) and received funding. A first prototype 
was developed in the "UNICORE" project. The foundations for the current 
production version were laid in the follow-up project "UNICORE Plus", which 
was successfully completed in 2002. In recent years, UNICORE has undergone a 
major restructuring and re-implementation of core components. This has been 
done in the European UniGrids project. Now, UNICORE is based on Web 
Services as proposed by the Open Grid Services Architecture maintained by the 
Open Grid Forum. In fact, UNICORE 6 is the most up-to-date implementation 
of the core specifications (such as WS-RF).  

MiG - Minimum intrusion Grid is an attempt to design a new platform 
for Grid computing which is driven by a stand-alone approach to Grid, rather 
than integration with existing systems. The goal of the MiG project is to provide 
Grid infrastructure where the requirements on users and resources alike is as 
small as possible (minimum intrusion). MiG strives for minimum intrusion but 
will seek to provide a feature rich and dependable Grid solution (MiG, 2008).  

MiG's main features (when fully implemented) will be as follows: 
minimum intrusion on user and resource, few dependencies on user and 
resource, scalable, autonomous - updating grid without user/resource software, 
anonymous - users and resources can't see identity of each other if desired, fault 
tolerance, load balancing, firewall compliant, strong scheduling (grid level), 
simple implementation, cooperative support (user-defined data-structures), and 
banking/accounting. MiG sandboxes make it easy to donate the spare 
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computing power in your computer to scientific research. Sandboxes provides a 
secure execution environment, which ensures that your computer is in no 
danger for being exposed for virus or other malware from the work it performs 
for the Grid. The sandbox also makes sure that both the personal files and other 
information cannot be seen by the Grid. Thus the name sandbox, the Grid really 
cannot see or access anything outside the sandbox. In MiG, there are 3 ways to 
contribute to the researchers work and still be fully protected by the sandboxes: 
One-Click, MiG-SSS, and MiG-PS3. 

WebCom-G is a fledgling Grid Operating System, designed to provide 
independent service access through interoperability with existing middlewares 
(Morrison et al., 2004). Metacomputing systems were developed to harness the 
power of geographically distributed computing resources. Such resources 
generally consisted of machines connected to intranets, the Internet and World 
Wide Web. WebCom separates the application and execution environments by 
providing both an execution platform, and a development platform. The 
independence provided by separating these two environments facilitates 
computation in heterogeneous environments. WebCom uses a server/client 
model for task distribution. Clients consist of Abstract Machines (AM�s) that 
can be either pre-installed or downloaded dynamically form a WebCom server. 
AM�s are uniquely comprised of both volunteers and conscripts. 

Volunteers donate compute cycles by instantiating a web-based 
connection to a WebCom server and dynamically downloading the client 
abstract machine. These clients, constrained to run in the browsers� sandbox, 
will execute tasks on behalf of the server. Task communication is carried out 
over dedicated sockets. Pre-installed clients, also communicate over dedicated 
sockets. Upon receipt of a task representing a Condensed Graph (the task can 
be partitioned for further distributed execution), such clients are promoted to 
act as other WebCom servers. The returning of a result causes a promoted AM 
to be demoted, and act as a simple client once more. The execution platform 
consists of a network of dynamically managed machines, each running 
WebCom. WebCom can assume a traditional client server connection model or 
the more contemporary peer-to-peer model. WebCom sees each abstract 
machine as a �unit�. Each unit contains a number of modules. The modules 
include an execution engine module and others for communication, load 
balancing, fault tolerance, scheduling and security. These modules are plugins 
to a backplane. Communications between WebCom units use a messaging 
system. Plugins can send messages between themselves on the local unit or to 
any plugin on other connected units. The default engine module is capable of 
executing Condensed Graphs applications. 

By using WebCom, a whole grid can be viewed as a single WebCom unit 
with a specific computation engine plugin. This evolution of WebCom is the 
first step of producing a grid-enabled middleware: WebCom-G. Multiple grids 
are themselves viewed as independent WebCom-G units. When an instruction 
is sent to WebCom-G all the information is supplied to either dynamically 
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create or invoke an RSL script or to execute the job directly. When a WebCom-G 
unit receives an instruction it is passed to the grid engine module. This module 
unwraps the instruction, creates the RSL script and directs the gatekeeper to 
execute it. Once the Gatekeeper has completed execution, the result is passed 
back to the unit that generated the instruction. As WebCom-G uses the 
underlying grid architectures, failures are detected only at the higher level. In 
this case WebCom-G�s fault tolerance will cause the complete job to be re 
scheduled. A WebCom compute engine plugin is implemented as a module 
that interacts with WebCom via a well-defined interface. This gives a platform 
independent grid compute engine. Although a Condensed Graph may be 
developed on a platform that is not grid enabled, the execution of grid 
operations will be targeted to grid-enabled platforms. The WebCom-G 
Operating System is proposed as a Grid Operating System. It is modular and 
constructed around a WebCom kernel, offering a rich suite of features to enable 
the Grid. It will utilize the tested benefits of the WebCom metacomputer and 
will leverage existing grid technologies such as Globus and MPI. The aim of the 
WebCom-G OS is to hide the low level details from the programmer while 
providing the benefits of distributed computing. 

Office Grid relies on the fact that the concept of grids of office 
computers is especially desirable for many enterprises. One can look at a 
department or division in a corporation as a computational unit. The structure 
of today�s businesses implies a heterogeneous setup and machine park, and 
centralized management. In addition the internal network of computers in an 
office is normally trusted and thought of as secure. The centralized 
management and the trusted status of the computers make the task of joining 
the power of the office computers more manageable, while the heterogeneous 
nature of the network is an obstacle. The vision of Office Grid is to allow for the 
constructive use of these hours of wasted time. OfficeGRID glues this pool of 
unused computational power together, thus making in possible to utilize the 
unused 75% (or more) computer time. OfficeGRID contains a system that allows 
the user to start jobs that run on many computers with a single OfficeGRID 
command and collect the results on his local computer, thereby giving him an 
easy way to use the grid of office computers as a supercomputer.  

OfficeGRID can be run explicitly at any time or it can be limited to run 
when the screen saver on a given computer is running - that is, when the user is 
not using it. This gives the possibility to ensure that OfficeGRID will not bother 
the user, while still running more than 75% of the time. OfficeGRID BLAST is 
an OfficeGRID application, which has been developed by using the OfficeGRID 
Development Package. BLAST is an algorithm that is used to compare 
biological sequences, such as DNA sequences of different genes or the amino-
acid sequence of different proteins. Several computer programs that implement 
the BLAST algorithm has been created, but generally these BLAST 
implementations are not built to run in parallel on several computational hosts. 
This is a problem because BLAST normally has a very long running time and 
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requires a lot of memory to run efficiently. OfficeGRID BLAST is a 
parallellization of NCBI BLAST, which is developed by the U.S. National Center 
for Biotechnology Information. There is both a Windows and a Linux version  
of the OfficeGRID Development Package available and complete 
interoperability of the two is possible. This makes it possible to develop 
OfficeGRID applications that will run on both the Windows and the Linux 
operating system as well as a mix of them. It could be used also for Mac OSX or 
Solaris (Office Grid, 2008).  

The Globus Toolkit is an open source software toolkit used for building 
Grid systems and applications. The Globus Alliance and many others all over 
the world are developing it. A growing number of projects and companies are 
using the Globus Toolkit to unlock the potential of grids for their cause.  
The Globus Alliance is a community of organizations and individuals developing 
fundamental technologies behind the "Grid," which lets people share 
computing power, databases, instruments, and other on-line tools securely 
across corporate, institutional, and geographic boundaries without sacrificing 
local autonomy. The Globus Alliance is an active member in the community of 
Grid Software developers. As partners in e-Science and e-Business projects, 
they have built Grid Solutions for a variety of challenges that come up when 
people share resources. The open source Globus Toolkit is a fundamental 
enabling technology for the "Grid," letting people share computing power, 
databases, and other tools securely online across corporate, institutional, and 
geographic boundaries without sacrificing local autonomy. The toolkit includes 
software services and libraries for resource monitoring, discovery, and 
management, plus security and file management. In addition to being a central 
part of science and engineering projects that total nearly a half-billion dollars 
internationally, the Globus Toolkit is a substrate on which leading IT companies 
are building significant commercial Grid products. 

The toolkit includes software for security, information infrastructure, 
resource management, data management, communication, fault detection, and 
portability. It is packaged as a set of components that can be used either 
independently or together to develop applications. Every organization has 
unique modes of operation, and collaboration between multiple organizations 
is hindered by incompatibility of resources such as data archives, computers, 
and networks. The Globus Toolkit was conceived to remove obstacles that 
prevent seamless collaboration. Its core services, interfaces and protocols allow 
users to access remote resources as if they were located within their own 
machine room while simultaneously preserving local control over who can use 
resources and when. The Globus Toolkit has grown through an open-source 
strategy similar to the Linux OS, and distinct from proprietary attempts at 
resource-sharing software. This encourages broader, more rapid adoption and 
leads to greater technical innovation, as the open-source community provides 
continual enhancements to the product. 

http://www.globus.org/toolkit/
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The Globus Alliance and the Globus Toolkit have enabled many exciting new 
scientific and business applications, as it is presented further on (Globus, 2007). 
Computational scientists at Brown University are using the Globus Toolkit and 
MPICH-G2 to simulate the flow of blood through human arteries. Globus 
Toolkit-driven Grid computing is central to management of large datasets 
generated by colliders such as those at CERN (LCH, 2007). The Southern 
California Earthquake Center uses Globus software to visualize earthquake 
simulation data. Scientists simulate earthquakes by calculating the effect of 
shock waves as they propagate through various layers of a geological model. 
SCEC simulations cover a very large space with very high resolution and can 
generate up to 40TB of data per simulation run. Scientists in the National 
Fusion Collaboratory are learning to use the Access Grid and Globus Web 
services to participate remotely in pulsed plasma fusion experiments. The 
remote interface provides sensor readings, data analysis, audio, and video 
available in the control room and allows the team to discuss what is happening. 
The Access Grid is integrated with Grid services and applications using the 
Globus Toolkit's security and communication libraries. 

Physicists used the Globus Toolkit and MPICH-G2 to harness the power 
of multiple supercomputers to simulate the gravitational effects of black hole 
collisions. The team, which included researchers from Argonne National 
Laboratory, the University of Chicago, Northern Illinois University, and the 
Max Planck Institute for Gravitational Physics in Germany, was awarded a 
prestigious Gordon Bell prize for its work. Scientists in the Earth System Grid 
(ESG) are producing, archiving, and providing access to climate data that 
advances our understanding of global climate change. ESG uses Globus 
software for security, data movement, and system monitoring.  

4.4 Computational Grid Definition 

The current status of computation is analogous in some respects to that of 
electricity at its beginnings. At that early time (around 1910), electric power 
generation was possible, and new devices that depended on electric power 
were becoming available, but the need for each user to build and operate a new 
generator hindered use. The truly revolutionary achievement has not been, in 
fact, electricity, but the electric power grid and the associated transmission and 
distribution technologies. Together, these revolutionary developments 
provided reliable, low-cost access to a standardized service, with the result that 
power that, for most of the human history has been accessible only in non-
portable forms (human effort, horses, steam engines, water power etc.), has 
become universally accessible. By permitting both individuals and industries to 
take for granted the accessibility of cheap, reliable power, the electric power 
grid has made possible both new devices and the new industries that 
manufactured them. 

http://www.niu.edu/mpi/
http://www.scec.org/
http://www.scec.org/
http://www.fusiongrid.org/
http://www.fusiongrid.org/
http://www.accessgrid.org/
http://www-unix.mcs.anl.gov/~pieper/SUCCESS/gordon01.html
http://www.earthsystemgrid.org/
http://www.earthsystemgrid.org/
http://www-unix.globus.org/solutions/purse/
http://www-unix.globus.org/solutions/system_monitoring/
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Analogously, the term of computational grid can be adopted for the 
infrastructure that will enable the increases of computation presented above.  
An early attempt to define a computational grid states that is a hardware and 
software infrastructure that provides dependable, consistent, pervasive, and inexpensive 
access to high-end computational capabilities (Foster and Kesselman, 1999). 
Infrastructure is needed because the computational grid is concerned, above all, 
with large-scale pooling of resources, whether compute cycles, data, sensors 
and people. Such performant pooling requires significant hardware 
infrastructure to get hold of the necessary interconnections and software 
infrastructure to monitor and control the resulting assembly. 

The requirement for dependable service is fundamental. Users need 
assurances that they will receive predictable, sustained, and high levels of 
performance from the various components that constitute the grid. In the 
absence of these guarantees, application will not be written or used. The 
performance characteristics that are of interest will vary widely from 
application to application, but may include network bandwidth, latency, jitter, 
computer power, software services, reliability and security. 

The need for consistency of service is an essential concern as well.  
As with electric power, we need standard services, which are accessible via 
standard interfaces, and operating within standard parameters. Without such 
standards, pervasive use and application development are unrealistic. A 
significant challenge when developing standards is to encapsulate 
heterogeneity without compromising high performance execution.  

Pervasive access provides services that are always available, within 
whatever environment we expect to move. Pervasiveness does not, of course, 
imply that resources are everywhere or are universally accessible. Similar to 
electricity services, computational grids will have circumscribed availability 
and access. Finally, the grid must offer inexpensive access if it is to be broadly 
accepted and used. 

It is the combination of dependability, consistency and pervasiveness 
that will cause computational grids to have a transforming effect on how 
computation is performed and used. By increasing the set of capabilities that 
can be taken for granted to the extent that they are noticed only by their 
absence, grids allow new tools to be developed and widely deployed. 
Computational grids have the potential to change fundamentally the way we 
think about and relate to computation and resources. 

The term "the Grid" was coined in the mid-1990s to denote a (then) 
proposed distributed computing infrastructure for advanced science and 
engineering. Much progress has since been made, on the construction of such 
an infrastructure and on its extension and application to commercial computing 
problems. And while, the term �Grid� has also been on occasion conflated to 
embrace everything from advanced networking and computing clusters to 
artificial intelligence, there has also emerged a good understanding of the 
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problems that grid technologies address, and at least a first set of applications 
for which they are suited (Foster and Kesselman, 1999). 

Grid concepts and technologies were originally developed to enable 
resource sharing within scientific collaborations, first within early gigabit/sec 
testbeds and then on increasingly larger scales. Applications in this context 
include distributed computing for computationally demanding data analyses 
(pooling of compute power and storage), the federation of diverse distributed 
datasets, collaborative visualization of large scientific datasets (pooling of 
expertise), and coupling of scientific instruments with remote computers and 
archives (increasing functionality as well as availability). A common theme 
underlying these different usage modalities is a need for coordinated resource 
sharing and problem solving in dynamic, multi-institutional virtual 
organizations. More recently, it has become clear that similar requirements arise 
in commercial settings, not only for scientific and technical computing 
applications but also for commercial distributed computing applications, 
including enterprise application integration and business-to-business partner 
collaboration over the Internet. 

A more recent definition of Grid states it is a system that coordinates 
distributed resources using standard, open, general-purpose protocols and 
interfaces to deliver nontrivial qualities of service. Let us examine the key 
elements of this definition (Foster and Kesselman, 2004): 

• Coordinates distributed resources - a Grid integrates and coordinates 
resources and users that live within different control domains - for 
example, the user's desktop versus central computing, different 
administrative units of the same company, and/or different 
companies - and addresses the issues of security, policy, payment, 
membership, and so forth that arise in these settings. Otherwise, we 
are dealing with a local management system; 

• Using standard, open, general-purpose protocols and interfaces - a Grid is 
built from multipurpose protocols and interfaces that address such 
fundamental issues as authentication, authorization, resource 
discovery,  and  resource access. As we discuss in material to follow, 
it is important that these protocols and interfaces be standard and 
open. Otherwise, we are dealing with an application-specific system; 

• To deliver nontrivial qualities of service - a Grid allows its constituent 
resources to be used in a coordinated fashion to deliver various 
qualities of service, relating, for example, to response time, 
throughput, availability, and security - and/or co-allocation of 
multiple resource types to meet complex user demands, so that the 
utility of the combined system is significantly greater than that of the 
sum of its parts. 
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The second point is of particular importance. Standard protocols (and interfaces 
and policies) allow us to establish resource-sharing arrangements dynamically 
with any interested party and thus to create something more than a plethora of 
balkanized, incompatible, non-interoperable distributed systems. Relevant 
standards are being developed rapidly within the Global Grid forum and other 
bodies (Globus, 2007). For an entity to be part of the Grid it must implement 
these inter-Grid protocols, just as to be part of the Internet an entity must speak 
IP (among other things).  

Both open source and commercial products can interoperate effectively 
in this heterogeneous, multivendor Grid world, thus providing the pervasive 
infrastructure that will enable successful Grid applications. In the Internet, it is 
not uncommon that a specific set of hosts is disconnected from other hosts 
within an Intranet. However, this partitioning occurs as a result of policy and 
not because of implementation. In general, all networked computers use 
TCP/IP and its associated protocols; and despite these policy restrictions, we 
still talk about a single Internet. 

Similarly, we speak about the Grid as a single entity, even though 
different organizations and communities use Grid protocols to create 
disconnected Grids for specific purposes. As with the Internet, it is policy issues 
(e.g., security, cost, operational mode), not implementation issues that prevent a 
service or resource from being accessible. The success of the Grid to date owes 
much to the relatively early emergence of clean architectural principles, de facto 
standard software, aggressive early adopters with challenging application 
problems, and a vibrant international community of developers and users.  

4.5 Short Taxonomy of Grid Applications 
The history of network computing shows that orders-of-magnitude 
improvements in underlying technology, invariably enable revolutionary, often 
unanticipated applications of that technology, which in turn motivate further 
technological improvements. The integrated computational grids are expected 
to provide dependable and pervasive computational capabilities and consistent 
interfaces. The applications will follow this revolutionary path. There are 
several major classes of grid applications: high-throughput computing, 
distributed supercomputing, on-demand computing, data intensive computing 
and collaborative computing (Foster and Kesselman, 1999). 

In high-throughput computing (desktop grid computing) the grid is used to 
schedule large numbers of loosely coupled or independent tasks with the goal 
of putting unused processor cycles to work, much often those cycles coming 
from idle workstations. The result may be, as in distributed supercomputing, 
the focusing of available resources on a single problem. The quasi-independent 
nature of the involved tasks leads to very different types of problems and 
problem-solving methods. Such a system is Condor from the University of 
Wisconsin, which is used to manage pools of hundreds of workstations at 
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universities around the world. These resources have been used for studies as 
diverse as ground-penetrating radar, design of diesel engines or various 
molecular simulations of liquid crystals. Cryptographic problems or design of 
the processors are other common applications. 

Distributed supercomputing applications use grids to aggregate substantial 
computational resources in order to tackle problems that cannot be solved on a 
single system. Depending on the grid on which one works, these aggregated 
resources might include the majority of supercomputers in a country or simply 
all of the workstations within a company. Some examples include distributed 
interactive or complex physical processes simulations. Distributed interactive 
simulation is a technique used for training and planning in the military. 
Realistic scenarios may involve hundreds of thousands of entities, each having 
potentially complex behavior patterns. Complex physical processes require 
high spatial and temporal resolution in order to resolve fine-scale detail. 
Although high latencies can pose significant difficulties, coupled 
supercomputers have been used successfully in climate modeling, cosmology, 
and high-resolution computational chemistry applications. 

On-demand applications need grid capabilities to meet short-term 
requirements for resources (software, data repositories, sensors, and so on) that 
cannot be cost-effectively or conveniently positioned locally. In contrast to 
distributed supercomputing, these applications are often driven by cost-
efficiency concerns rather than absolute performance. Such applications include 
a system developed at the Aerospace Corporation for processing of data from 
meteorological satellites that uses dynamically acquired supercomputer 
resources to deliver the result of a cloud detection algorithm to remote 
meteorologists in quasi real time. The NEOS and NetSolve network-enhanced 
numerical solver systems allow users to couple remote software and resources 
into desktop applications, dispatching to remote servers calculations that are 
computationally demanding or that require specialized software. A computer-
enhanced MRI machine and scanning tunneling microscope developed at the  
National Center for Supercomputing Applications use supercomputers to 
achieve real-time image processing. 

In data-intensive applications, the spotlight is on synthesizing new 
information from data that is maintained in geographically distributed 
repositories, digital libraries and databases. The synthesis process is habitually 
computationally and communication intensive as well. Future high-energy 
physics experiments will generate terabytes of data per day, or around a 
petabyte per year. The complex queries that are used to detect attention-
grabbing events may need to access large fractions of this data. The scientific 
collaborators who will access this data are widely distributed, and hence the 
data systems in which data is placed are likely to be distributed as well. Modern 
meteorological forecasting systems make extensive use of data assimilation to 
incorporate remote satellite observations. The process involves the movement 
and processing of many gigabytes of data. The Digital Sky Survey will make 
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also many terabytes of astronomical photographic data, which will be available 
in numerous network-accessible databases. This facility provides for new 
approaches to astronomical research that are based on distributed analysis, 
assuming that suitable computational grid facilities exist. 

Collaborative computing applications are concerned primarily with enabling 
and enhancing human-to-human interactions and sharing. Such applications 
are often structured in terms of a virtual shared space. Many collaborative 
applications are concerned with making possible the shared use of 
computational resources such as data archives and simulations. Moreover, such 
applications have common features with other application classes, which are 
presented above. For example, the CAVE5D system supports both remote, 
collaborative exploration of large geophysical data sets and the models that 
generate them. The BoilerMaker system developed at Argonne National 
Laboratory allows multiple users to cooperate on the design of emission control 
systems in industrial incinerators. The different users interact with each other 
and with a simulation of the incinerator. The NICE system from University of 
Illinois at Chicago permits children to participate in the creation and 
maintenance of realistic virtual worlds, for entertainment and education. The 
grid use scenarios are also included in this class of applications. 

Sharing is not simply document exchange, it can rather involve direct 
access to remote software, computers, data, sensors, and other resources. For 
example, members of a consortium may provide access to specialized software 
and data and/or share their computational resources. More abstractly, what 
these collaborative application domains have in common is a need for 
coordinated resource sharing and problem solving in dynamic, multi-
institutional virtual organizations.  

The sharing that Grid is concerned with is direct access to computers, 
software, data, and other resources, as it is required by a range of collaborative 
problem-solving and resource-brokering strategies emerging in industry, 
science, and engineering. This sharing is highly controlled, with resource 
providers and consumers defining clearly and carefully just what is shared, 
who is allowed to share, and the conditions under which sharing occurs.  

A set of individuals and/or institutions defined by such sharing rules 
form what we call a Virtual Organization (VO), a concept that is becoming 
fundamental to modern computing world. VOs enable disparate groups of 
organizations and/or individuals to share resources in a controlled fashion, so 
that members may collaborate to achieve a shared goal. As the examples show, 
VOs can vary greatly in their purpose, scope, size, duration, structure, 
community, and sociology (Foster and Kesselman, 2004). Nevertheless, a broad 
set of common concerns and technology requirements can be identified.  

In particular, we see a need for highly flexible sharing relationships, 
ranging from client-server to peer-to-peer; for sophisticated and precise levels 
of control over how shared resources are used, including fine-grained and 
multistakeholder access control, delegation, and application of local and global 



 

 71

policies; for sharing of varied resources, ranging from programs, files, and data 
to computers, sensors, and networks; for virtualization of resources as services, 
so that diverse capabilities can be delivered in standard ways, without regard to 
physical location and implementation; and for diverse usage modes, ranging 
from single-user to multi-user and from performance-sensitive to cost-sensitive 
and hence embracing issues of quality of service, scheduling, co-allocation, etc. 

To conclude this sections three remarks are necessary: first, we should 
notice that a large variety of successful grid applications exists already and that 
has been possible despite of the significant difficulties faced by developers of 
grid applications, in the absence of a mature grid infrastructure. As this will 
evolve, the range and sophistication of applications is expected to increase 
tremendously. Secondly, we must point out that almost all of the previous 
presented applications crave for computational resources that will not be 
provided by expected growth in single-system performance. This emphasizes 
the importance of grid technologies which will allow sharing of computation, 
data access and communication medium. Finally, we notice that many of the 
above applications are interactive, or dependable on tight synchronization with 
computational component. Therefore, the grid infrastructure is expected to 
provide for robust performance guarantees. 

4.6 Grid�s Integrability, Efficiency and Quality of Services  
The plethora of powerful technologies emanating from the industry's 
laboratories will let us do new and great things, but realizing that potential 
depends on our ability to integrate these technologies. Such integration will 
grow increasingly easier as open standards become more and more common. 
Historically, the success of most technologies has depended on the availability 
of a small number of commonly agreed-upon standards. IT today is moving in 
the same way, especially with the increase of open standards and the growing 
trend toward open source software -be it Linux, Grid protocols or Web services. 
Standardization has the feel of historical inevitability, because it is the only way 
to integrate that incredibly diverse abundance of technologies. Standards bring 
the kind of flexibility and modularity that allow technology to be absorbed and 
managed smoothly, that make it commonplace and unremarkable and permit 
people to pay attention to what it does, rather then what it is. 

The cause of Grid standards took a major step forward in 2002, as open 
Grid protocols were brought together with Web services in the Open Grid 
Services Architecture (OGSA), which represents an evolution towards a Grid 
system architecture based on Web services concepts and technologies and is 
provided by GLOBUS (Globus, 2007). The Grid allows people share computing 
power, databases, and other on-line tools securely across corporate, 
institutional, and geographic boundaries without sacrificing local autonomy. 
Web services' XML-based technologies, such as WSDL, UDDI, and SOAP, can 
now be used as the language in which to express Grid protocols. Clearly, this 
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development indicates levels of integration inconceivable just a few years ago, 
integration at every level that is increasingly dynamic. Such integration will be 
a major step forward for e-enterprises of any kind. Organizations, universities, 
departments, divisions, people, and processes will be united as never before. 
Together, they will be capable of prompt action and reaction, of quickly 
forming alliances with other organizations, companies or individuals in search 
of common interests. Standardization and integration, however, are not 
synonymous with simplicity. The ever-growing volume of technology and the 
constant spreading out of a heterogeneous infrastructure, no matter how 
smoothly integrated, lead to profound levels of complexity. And while, the 
availability of technology and growing standardization continue to push IT 
toward mass adoption in a post-technology era, the industry must find ways to 
deal with that complexity, keep it from intruding on the user, and make the 
infrastructure perform efficiently. 

Efficiency poses the same challenge, on a smaller scale, that the IT 
industry faced in earlier times, when systems like mainframes addressed one 
job at a time and operating systems were relatively simple. However, 
computers and their applications eventually had to be shared among many 
users, and with sharing the efficient allocation of physical resources became 
extremely tricky. The solution to this problem stands as one of the more 
influential breakthroughs in the history of computer science. It was the notion 
of virtualization that, fueled by increasingly powerful and sophisticated 
operating systems, provided people with their own machines - virtual systems, 
consisting of virtual I/O, virtual memory, and virtual storage. Virtualization 
has enabled people to share an expensive and complex resource, as well as the 
applications and data they were all working with, without worrying about 
what was there physically, how it did what it did, or even where it was. 
Increasingly sophisticated operating systems allowed users to invoke a service 
that then provided and managed the resources needed by these users. 

Thirty or so years ago, virtualization within a single system capitalized 
on a very expensive resource by making it available to users without their 
needing a deep knowledge of programming in order to use it. Today, the 
challenge is to virtualize computing re-sources over the Internet. This is the 
essence of Grid computing, and applying a layer of open Grid protocols to 
every local operating system, for example, Linux, Windows, AIX, Solaris, and 
z/OS are accomplishing it. Thus, we will make the sharing of resources over the 
Internet (or through a private intranet) a reality, while also hiding the vast, 
complex, global Infrastructure supporting the user. 

That transparency is essential to accelerate the move to the post-
technology era while enabling businesses and other institutions to make the 
most of substantial investments in heterogeneous systems. Moreover, since 
grids bring to bear not just the resources immediately at hand but also those 
that are distributed all over the world, users on become more productive, 
paying further dividends on an enterprise's investment in people and 



 

 73

technology. Increased efficiency is the reason so many are turning to open grid 
protocols to share resources.  

In addition to a much more integrated environment and marked 
increases in efficiency attributable to a shared infrastructure, we can expect 
considerable, though gradual, gains in the quality of service provided to the 
enterprise. This will be due primarily to the increasingly autonomic 
characteristics that will characterize the infrastructure. For the colossal volumes 
of technology being produced every year to be useful to a human activity or 
undertaking, all this new, sophisticated technology must be integrable, efficient 
and manageable. It must get to its users smoothly and quietly, almost unnoticed 
because it is delivered with a superb quality of service. Grids, because their 
open standards are running on every system in the infrastructure, will enable 
increasingly sophisticated levels of integration and management for distributed 
resources, and the delivery of a great quality-of-service. 

Certainly, the level of management today leaves much to be desired, 
especially in the world of distributed computing and the Internet. In fact, it is a 
grand challenge for the industry, which must bring to bear more and more 
sophisticated technologies to provide a very high quality of service at an 
affordable price. The answer lies in creating highly sophisticated, end-to-end 
resource management. The system itself should be able to schedule not just one 
computer at a time but also multiple computers along the path of a particular 
transaction, enabling truly global collaboration. 

For the different nodes to collaborate (whether for availability, 
scheduling, or anything else), they must exchange information. All the nodes in 
the infrastructure must be addressed as if by a single operating system 
managing the resources under its control, the difference being that unlike the 
resources addressed by a conventional operating system, these are distributed 
and heterogeneous. They come from different vendors, are the products of 
different architectures, and are totally reliant on a common set of open 
protocols to feed back information about the state of the system. All that should 
take part in an open architecture for grid services. That will work as a virtual 
operating system working on top of all the local operating systems and 
permitting the resources of the entire aggregation of heterogeneous 
architectures to be managed in an automated fashion. Its open protocols will 
allow management to become more autonomic in nature and be carried out 
much the way biological systems regulate themselves - unconsciously and 
autonomically. It will configure, optimize, heal, and protect itself with minimal 
human intervention. In short, it will be self-managing. 

Greater integration, efficiency, and a far higher quality of service are 
some of the more significant ways in which e-activities or e-undertakings will 
benefit from grid computing. They are the direct result of the Grid's ability to 
balance infrastructure needs and costs and to deliver a quality of service that 
truly unlocks the substantial, unrealized value of the infrastructure. These vast 
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new levels of integration, efficiency, and resiliency will combine to bring a new, 
far more flexible computing model to various human e-endeavors. 

4.7 Desktop Grid Computing  
Distributed computing systems are constructed by integrating diverse end 
systems, and therefore it is important to understand key characteristics of these 
systems with respect to both current and expected future capabilities. This 
section presents briefly Simple Composite Elements (SCEs) (Foster and Kesselman, 
1999), (Foster and Kesselman, 2004). They are important, because, in fact, the 
similarity between a national-scale Grid and simple composite elements reflects 
the "fractal nature" of Grids. Simple composite elements are collections of basic 
elements, aggregated with software and sometimes, special hardware, to 
provide a qualitatively different interface and capability. Examples of simple 
composite elements include high-throughput, high-reliability, dedicated high-
performance, and shared controllable system components. These composite 
elements can be employed in functions suited to their capabilities.  

The capabilities of basic elements, the building blocks for all computing 
systems, have improved at geometric rates for the past three decides. Such 
rapid change produces not only tremendous quantitative changes in capability 
(1,000-10,000 times) but also, even more important, qualitative changes. 
Computer systems were once of the size of a small building and now are 
wristwatch-sized gadgets. Multiplying the revolutionary changes enabled by 
size reductions are equally dramatic increases in storage, compute power, and 
networking capability.  

Simple composite elements are richly connected, relatively homogeneous 
collections of basic system elements (compute, memory, communication, and 
storage). They are often housed within single administrative domains and in 
many cases are already thought of as a single system. SCEs are building blocks 
for wide-area, national, and international Grids. SCEs are worthy of particular 
study far several reasons. First, local grid technologies can reduce the number 
of problems higher-level grids must solve. Second, local grids use resources and 
software to implement the external properties of the composite element 
affecting its utility or integration into larger grids. And, finally, local grids form 
the basis for larger grids. Thus, their evolution is an integral part of the 
challenges in building larger grids. 

Together, these integral relationships make understanding technologies 
for SCEs and their capabilities a crucial element of understanding issues in 
building grids. For example, in a national Grid, reliable composite elements can 
be used to provide management (access control and scheduling) and basic 
services (naming and routing). Other composite elements can provide resource 
pools with distinct computation power. Composing two SCEs together may be 
challenging however, if they correspond to different administrative domains or 
employ distinct data representations or different network protocols. Further on, 
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we first describe the two key distinguishing features of SCEs: their external 
interfaces and guarantees and their hardware requirements.  
External interfaces and guarantees affect the use and utility of SCEs in the 
larger grid context. Hardware requirements determine the SCE capabilities that 
can be exploited for building grids. Then we describe a series of state-of-the-art 
SCEs and technologies: high-throughput clusters, reliable clusters, dedicated 
high-performance clusters, and shared controllable-performance clusters. 

4.7.1 SCEs� Capabilities and Requirements 
SCEs can be defined by their external interfaces and guarantees, by their 
internal hardware requirements, and by their ability to deliver efficient, flexible 
use of their internal capabilities to applications. The focus here is on classifying 
these interfaces and guarantees. In addition, because an SCE technology's 
internal hardware requirements and capabilities are integrally related to its 
applicability, we also provide a classification of hardware requirements. 
Together, the two classifications delineate both current-day SCE systems and 
many other systems under development. 

External interfaces and guarantees define how SCE are used by 
applications and how they can be integrated into larger Grids. Five attributes 
capture the important distinctions among a wide range of SCEs: capacity, 
aggregate performance, reliability, predictability, and sharability. Capacity 
corresponds to the total throughput of the SCE in dimensions of compute, 
memory, communication, and storage. Aggregate performance corresponds to the 
SCE's ability to deliver compute, memory, communication, and storage 
performance. Reliability reflects the likelihood of unavailability of resource or 
unavailability (or loss) of data. Predictability captures an application's ability to 
predict the delivered capacity or performance. Sharability refers to whether the 
SCE can be shared, integrating a number of computations on one resource for 
tighter coupling or simply multitasking. 

Hardware requirements and capabilities distinguish the range and 
capability of the technologies used to build an SCE. These constrain the range of 
an SCE and distinguish it from higher-level grids. Five attributes capture many 
important distinctions in applicability: heterogeneity, networking requirements, 
distributed resources, changes in constituent systems, and scalability. 
Heterogeneity in compute, networking, and storage elements influences the 
inclusiveness of an SCE environment and its ability to encompass both legacy 
and new systems. Networking requirements, as special hardware, link length 
limited, high bandwidth, and so on, all limit the locales and cost constraints 
under which an SCE technology can be deployed.  

Whether an SCE technology can exploit distributed resources (links tens 
of meters or thousands of kilometers) limits the geographical extent of the SCE. 
Whether an SCE technology requires changes in its constituent systems has a 
significant effect on the deployment requirements and technology insertion 



 

 76

cost, and therefore on deployability of a technology. Scalability of a system 
influences the number of nodes that can be deployed and the SCE's ability to 
manage and deliver their performance. 

In the following, we use a two-part framework, external interfaces and 
hardware requirements, to understand and distinguish the wide range of 
cluster systems and systems that have been built by both researchers and 
commercial vendors. Each type has distinct capabilities and provides different 
challenges and advantages for integration into a Grid. They include high-
throughput, high-reliability, and dedicated high-performance SCEs. 

4.7.2 High-Throughput SCEs or Desktop Grids 
In high-throughput computing or desktop grid systems, pooled resources are 
used to achieve high throughput on a set of compute jobs. Such systems allow 
large numbers of machines to be added as a single resource in a higher-level 
grid system, achieving significant benefits in reduced management effort and 
grid complexity. Systems such as BOINC, Condor, and LSF manage clusters of 
workstations as pooled resource servers, with the primary application being 
compute-bound sequential jobs. Although all three systems provide cluster 
access and resource management facilities, Entropia and Condor also increase 
the pool of available resources by allowing desktop machines to be added as 
resources and by ensuring that those resources can be gathered without 
interfering with the desktop users. Whereas early definitions of high 
throughput involved only long-running (multiday) jobs, more recent systems 
such as Entropia have focused on achieving rapid turnaround to enhance 
scientific or engineering productivity. 

Desktop Grids (DGs) evolve in two major directions: institution- or 
enterprise-wide desktop grid computing environment and volunteer computing. The 
former, usually called simply desktop grid, refers to a grid infrastructure that is 
confined to an institutional boundary, where the spare processing capacity of 
an enterprise�s desktop PCs are used to support the execution of the 
enterprise�s applications. User participation in such a grid is not usually 
voluntary and is governed by enterprise policy. Applications like CONDOR, 
Platform LSF, DCGrid and GridMP are all such examples. Unlike the PRC 
model these applications usually allow users to submit jobs for processing. 

The later is an arrangement in which volunteers provide computing 
resources to projects, which use the resources to do distributed computing 
and/or storage. Volunteers are typically members of the general public who 
own Internet-connected PCs. Organizations such as schools and businesses may 
also volunteer the use of their computers. Projects are typically academic 
(university-based) and do scientific research. But there are exceptions, e.g. 
GIMPS and distributed.net (two major projects) are not academic. Several 
aspects of the project/volunteer relationship are worth noting (BOINC, 2006): 
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# volunteers are effectively anonymous; although they may be required 
to register and supply email address or other information, there is no 
way for a project to link them to a real-world identity;  

# due to their anonymity, volunteers are not accountable to projects.  
If a volunteer misbehaves in some way (for example, by intentionally 
returning incorrect computational results) the project cannot prosecute 
or discipline the volunteer;  

# volunteers must trust projects in several ways: 1) the volunteer trusts 
the project to provide applications that don't damage their computer or 
invade their privacy; 2) the volunteer trusts that the project is truthful 
about what work is being done by its applications, and how the 
resulting intellectual property will be used; 3) the volunteer trusts the 
project to follow proper security practices, so that hackers cannot use 
the project as a vehicle for malicious activities.  

The first volunteer computing project was GIMPS (Great Internet Mersenne 
Prime Search), which started in 1995. Other early projects include 
distributed.net, SETI@home, and Folding@home. Today there are at least 50 
active projects. Desktop grid differs from volunteer computing in several ways 
(BOINC, 2006):  

• The computing resources can be trusted; i.e. one can assume that the 
PCs don't return results that are wrong either intentionally or due to 
hardware malfunction, and that they don't falsify credit. Hence there 
is typically no need for redundant computing;  

• There is no need for using screensaver graphics whatsoever; in fact it 
may be desirable to have the computation be completely invisible and 
out of the control of the PCs� users; 

• Client deployment is typically automated.  

4.7.2.1 Key Components for Desktop Grids  
The key elements in a desktop grid system include physical node management, 
resource scheduling, and job scheduling. In addition, systems that also support 
data-intensive computations include facilities for data management.  
 
Physical node management. The desktop environment presents several unique 
challenges to reliable computing. Individual client machines are under the 
control of the desktop user or IT manager. As such, they can be at any time shut 
down, rebooted, reconfigured, and disconnected from the network. Laptops 
may be offline or just off for long periods of time. The physical node 
management layer is supposed to manage these and other low-level reliability 
issues. It is also expected to provide naming, communication, resource 
management, application control, and security. The resource management 
services capture a large amount of node information (e.g., physical memory, 
CPU, disk size and free space, software version, data cached) and collect it in 
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the system manager. This layer also should provide basic facilities for process 
management including file staging, application initiation and termination, and 
error reporting. In addition, the physical node management layer must ensure 
node recovery, terminating runaway and poorly behaving applications.  

The security services employ a range of encryption and technologies to 
protect both distributed computing applications and the underlying physical 
node. Application communications and data are protected with high-quality 
cryptographic techniques. The control of the operations and resources visible to 
distributed applications on the physical nodes is necessary in order to protect 
the software and hardware of the underlying machine. At this level regulation 
of the usage of resources by the distributed computing application is also 
expected. This ensures that the application does not interfere with the primary 
users of the system - it is unobtrusive - without requiring a rewrite of the 
application for good behavior. 
 
Resource scheduling. A DG system consists of resources with a broad diversity of 
configurations and capabilities. The resource-scheduling layer accepts units of 
computation from the user or job management system, matches them to 
appropriate client resources, and schedules them for execution. Despite the 
resource conditioning provided by the physical node management layer, the 
resources may still be unreliable (e.g. the application software itself may be 
unreliable). Therefore, the resource-scheduling layer must adapt to all kind of 
changes in resource status and availability, and also to high failure rates. To 
meet these challenging requirements, multiple instances of heterogeneous 
schedulers can be supported. This layer also provides simple abstractions for IT 
administrators, abstractions that automate the majority of administration tasks 
with reasonable defaults but allow detailed control as desired. 
 
Job management. Distributed computing applications often involve large overall 
computation (thousands to millions of CPU hours) submitted as a single large 
job. These jobs consist of thousands to millions of smaller computations and 
often arise from statistical studies (e.g., genetic algorithms or statistical 
simulations), parameter sweeps, or database searches (bioinformatics, 
combinatorial chemistry, Google search etc.). Because so many computations 
are involved, tools to manage the progress and status of each piece - in addition 
to the performance of the aggregate job in order to provide short, predictable 
turnaround times - are provided by the job management layer. The job manager 
provides simple abstractions for users, delivering a high degree of usability in 
an environment where it is easy to drown in the data, computation, and the vast 
number of activities. 
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4.7.2.2 Requirements for Desktop Grids 
Desktop Grid (DG) systems aggregate large numbers of machines (tens of 
thousands to millions) into a single high-throughput SCE. Such systems allow 
the desktop systems to be incorporated into a larger grid at a low management 
effort. Desktop grid systems begin with a collection of computing resources - 
heterogeneous in hardware and software configuration, distributed throughout 
a corporate network and subject to varied management and use regimens - and 
aggregate them into an easily manageable and usable single resource. 
Furthermore, a desktop grid system must do this in a fashion that ensures there 
is little or no detectable impact on the use of the computing resources for other 
purposes. For end users of distributed computing and higher-level grids, the 
aggregated resources must be presented as a simple-to-use, robust resource that 
can be easily integrated into larger-scale Grids. A matrix of key requirements 
for desktop Grids is shown in next table (Foster and Kesselman, 2004), (Browne 
et al., 2004), (Domingues et al., 2007): 
 
Requirement Brief description 
Efficient A DG should harvest virtually all of the idle resources available 

Robust 

Computational jobs must complete with predictable 
performance, masking underlying resource failures. DGs must 
tolerate job, machine, and network failures and includes a 
variety of mechanisms for ensuring timely completion of a 
larger job in the presence of such failures 

Secure 

The system must protect the integrity of the distributed 
computation (tampering with or disclosure of the application 
data and program must be prevented).  In addition, the DG 
must protect the integrity of the desktops, preventing 
applications from accessing or modifying desktop data 

Scalable 

DGs must scale to the 1,000s, 10,000s, and even 100,000s of 
desktop PCs deployed in enterprise networks. Systems must 
scale both upward and downward, performing well with 
reasonable effort at a variety of system scales 

Manageable 

With thousands to hundreds of thousands of computing 
resources, management and administration effort in a DG 
cannot scale up with the number of resources. DGs systems 
must achieve manageability that requires no incremental 
human effort as clients are added to the system. A key leverage 
for including DGs as single entities in larger grids is to reduce 
the management effort 

Unobtrusive DGs share resources (computing, storage, and network 
resources) with other usage in the corporate IT environment. 
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The DG's use of these resources should be unobtrusive, so as 
not to interfere with the primary use of desktops by their 
primary owners and networks by other activities 

Communicative 
DGs effectively execute iterative parallel computations 
requiring communication among hosts that is anonymous, 
scalable and fault-tolerant. 

Open/Easy to 
integrate 
applications 

DG software is a platform that supports applications that in 
turn provide value to the end users. Distributed computing 
systems must support applications developed with varied 
programming languages, models, and tools - all with minimal 
development effort 

Multiple-
project 
participation 

The rationale for promoting multiple projects, which from the 
individual point of view of a project might seem 
counterproductive since the project loses exclusivity of 
resources, lies in the fact that many projects have downtime (for 
hardware and software maintenance and reparation of the 
server infrastructure), and shortage of tasks (for instance, when 
transitioning from one stage to another). Thus, participation in 
multiple projects helps to cope with a particular project 
downtime, besides permitting the volunteers to donate 
resources for several causes they might find worthy  

Table 4.1 Requirements for Desktop Grids 

More on robustness issues. Desktop grids, which harvest volunteer or enterprise 
computing resources, have gained tremendous momentum in recent years 
attracting hundreds of thousand of enlistees. Currently, more than a dozen 
large-scale projects exist, and new ones are being created regularly. The advent 
of open source and easy-to-setup middleware frameworks like have lowered 
the requirements and skills needed to exploit volunteered resources.  
To encourage volunteers, projects publish online rankings of contributed work. 
Interestingly, these rankings cause fierce competition, and attract even more 
dedicated enlistees.  

Although desktop grids have a high return-on-investment, they also 
have major limitations, namely resource volatility and result correctness. The 
volatility of desktop grids is caused not only by hardware and software faults of 
computing systems, but also by resource owners who retain full priority in 
accessing and managing their desktops. Thus, owners reclaiming their 
resources might force hosted applications to be interrupted. Checkpointing is a 
common solution to cope with volatility, and some support exists for 
application-level checkpointing in existing desktop grid middleware. It consists 
in periodically saving the state of the executing task to stable storage, usually 
the executing machine's local disk. Whenever, the execution recovers from a 
failure, the last stable checkpoint (a checkpoint can get corrupted, for instance, 
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if a failure occurs during checkpointing) can be used to resume the execution, 
reducing the prejudices of the failure. 

Two main types of checkpoint exist: system-level and user-level. The 
former relies on operating system mechanisms to take a full snapshot of the 
target process. While it is transparent to the user, it usually generates huge 
checkpoint files since the whole process image needs to be saved. It also 
requires support from the operating system (a support that does not exist for 
instance on Windows) and saved checkpoints are non-portable across operating 
systems and platforms. On the other hand, user-level checkpointing is 
application specific and is non-transparent since it requires the involvement of 
the application programmer. However, the application programmer can select 
only the data and states deemed relevant, yielding a much lighter checkpoint. 

Moreover, if appropriate care is taken in data representation, checkpoints 
can be used to resume applications across heterogeneous platforms. Apart from 
Condor which supports system level checkpoint desktop grids middleware like 
BOINC and XtremWeb resort to user-level checkpoint. A usual limitation of 
volunteer computing is that checkpoints are private, i.e. a checkpoint taken in a 
given machine will only be used to resume the application in that machine. 
Sharing checkpoints in a desktop grid environment for the purpose of 
optimizing turnaround time could be useful. Under this approach, portable 
checkpoints are saved in a central storage and can be used for restoring, moving 
or replicating tasks to other machines (Domingues et al., 2006). 

Result correctness of computations performed on volunteer resources is 
an important issue, since interpreting incorrect results as correct can be worse 
than no results at all. A major source of result incorrectness is faulty hardware. 
Often overclocking is a significant cause of faulty computations in projects that 
resort to the BOINC framework. The fierce competition and rivalry among 
volunteers sometimes may also cause unhealthy behavior. Some users try to 
increase, not always by honest means, their credits. In some extreme cases, 
users resort to dishonest tricks to collect undue credits, like fabricating results 
that require much less computation than the real ones. These users are known 
as lazy cheaters. Finally, another type of malicious user, the saboteur, might 
simply act for the sole purpose of ruining the computation, without concern for 
credits. In contrast to lazy cheaters, saboteurs may be difficult to counter since 
they may be resourceful and committed to perform everything they can to 
disrupt the computation (Domingues et al., 2006) 

More on security issues. The verification of results is an important issue that 
needs to be addressed in any volunteer computation. Indeed, hardware and 
software mishaps as well as malicious volunteers can falsify the outcome of 
computations, rendering the results useless. Thus, a major concern of 
middleware tools supporting volunteer computation is to provide results 
validation and sabotage tolerance mechanisms. Since computations are run in 
open and non-trustable environments, it is necessary to protect the integrity of 
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data and to validate the computation results. Without a sabotage detection 
mechanism, a malicious user can potentially undermine a computation that 
may have been executing for weeks or even months. Therefore, it is no surprise 
that users with computationally demanding applications do not easily trust 
open environments, rather preferring to have their applications executed over 
more controlled clusters which offer some reliability and trustability. This 
means that sabotage-tolerance is a mandatory issue in desktop grids in order to 
make them trustable and dependable.  

Along with sabotage-tolerance techniques, it is crucial to devise 
protocols for trust management in desktop grids. For this purpose, low-level 
techniques are employed to gather valuable information for the creation and 
maintenance of local reputation lists. On top of that, higher level protocols are 
needed for globally sharing and maintaining an updated view of the 
participants� reputation. Some trust management systems have already been 
proposed in the area of Grid, like the Grid EigenTrust framework and the 
EigenTrust system for P2P networks, among some other proposals. However, 
these trust management systems do not properly exploit the computational 
paradigm of desktop-based computing. 

Sabotage-tolerance techniques The master�worker model is the common 
paradigm for computing over desktop grids. Under this model, an application 
is broken into a large set of individual tasks, with tasks being distributed for 
computation by the master (also referred to as the supervisor) to request 
workers. After having processed a task, a worker sends the computed results to 
the supervisor. In an open environment like the Internet, it is necessary to 
assess the integrity and correctness of the results, since any host can run a 
worker. The taxonomy of the sabotage-tolerance techniques can be  classified in 
three distinct groups: replication and voting; sampling; and checkpoint-based 
techniques (Domingues et al., 2007). 

Replication and voting  (also known as double-check or as majority voting) 
was first deployed on a wide-scale by the SETI@home project to cope with 
erroneous results provoked by faulty hardware and malicious users eager to 
claim credits for work not performed. The technique is based on the replication 
of individual tasks to different and preferably non-related workers. When 
completed, the results of the N replicas are compared and a majority voting is 
applied. The results that do not agree with the majority are marked as 
erroneous. If no majority can be determined (e.g. all results disagree), results 
are classified as erroneous and the task needs to be re-executed. N corresponds 
to the replication factor, and should be at least equal to two. The error rate of 
the replication method is determined by the replication factor N and by the 
percentage of erroneous/malicious volunteers. High levels of redundancy 
augment the resiliency at the cost of higher impact in the overall performance. 
For instance, the Einstein@home project diminished its replication factor from 3 
to 2 when it switched to a more computational demanding stage (S5), and 
evidence that replication can significantly consume computing resources.  
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The main benefits of the replication approach are its support for generic 
computation and its simplicity, which eases its implementation � the technique 
is supported by the main desktop grid middleware, and employed by all major 
public computing projects. On the contrary, a major weakness lies in the 
wasting of resources, since to complete a task, at least N instances need to be 
effectively computed. Furthermore, in computations that produce results 
sensible to hardware and software specificities, some further restrictions might 
be needed to support replication. For instance, some applications are extremely 
susceptible to floating-point implementations, and the same task run over 
different machines can yield different numerical results.  

A viable workaround is homogeneous redundancy, upon which replicas 
of a task are only assigned to homogeneous systems. Regarding sabotage, smart 
colluding saboteurs can bypass the replication technique as long as they 
manage to control a majority of replicas of a task. A more subtle limitation of 
replication-based validation for public computing environments is the 
potentially long interval that might elapse between the completion of the first 
result and the existence of enough results for majority voting. This is relevant in 
credit-based projects, where the effort of volunteers is rewarded through virtual 
credits. Indeed, credit assignment for a given task is only performed after the 
result has been validated, that is, after a majority of results matched and a so-
called canonical result exists. This means that the worker of the first result 
might wait a significant amount of time for receiving its due credits. Although 
this might be perceived as an irrelevant issue, credits and the associated tops, 
where users are ranked according to their earned credits, are major motivation 
factors for volunteers to participate in projects and thus everything related to 
credits should be treated carefully to avoid disgruntled volunteers. 

Sampling techniques were developed to overcome the limitations of 
replication, namely its inefficient usage of resources. Sampling techniques are 
proposed under four different approaches: naive; quizzes; spot checks with black 
lists; and ringers (Domingues et al., 2007). The naive sample is a simple technique, 
which uses probes to test the trustworthiness of participants. Basically, the 
supervisor sends some test samples to the participants and then checks the 
results sent back by the assessed workers. However, malicious workers can 
easily compromise the technique if they are able to distinguish test samples 
from real application tasks. Indeed, a malicious worker can compute correctly 
the test samples, only faking application tasks, with its dual behavior possibly 
going unnoticed. The fact that test samples are computationally less demanding 
than real tasks makes the identification of test samples relatively easy and thus 
seriously compromises the usefulness of the technique. 

Further, if the test samples are sent separately from the batch of real 
tasks, the detection of samples is even easier and the technique becomes almost 
useless in a hostile environment, as occurred in early versions of SETI@home. 
The naive sample technique can be extended by proposing the Commitment-
Based Sampling (CBS) approach for strictly one-way functions f(x). Their goal is 
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to hide the test samples, making them indistinguishable from real tasks. CBS 
requires that a host, which computes f (x) in the domain of D, saves all the 
intermediate results of its computation and builds a Merkle tree to prove that it 
effectively computed every input x. A Merkle tree is a hash-indexed binary tree, 
where data is kept on leafs and sibling nodes are built through a hash function. 
The CBS method involves the following four steps: (1) a participant computes 
its assigned tasks, locally building a Merkle tree which holds the intermediate 
results of the computation; (2) the supervisor sends a set of selected samples to 
the participant; (3) the participant proves its honesty by returning, along with 
the computed results, the Merkle tree�s path up to the leaf; (4) the supervisor 
verifies the results to check whether the participant is cheating or not. For that 
purpose, the supervisor reconstructs the Merkle tree. If the hash root node 
differs from the one reported by the participant, the participant is labeled as a 
cheater. The main drawbacks of the CBS method are its limited applicability to 
one-way functions and the requirement that every worker builds and holds a 
possibly huge Merkle tree. Additionally, it induces a severe computational 
overhead on the supervisor due to the reconstruction of the Merkle tree. 

Quizzes. The naïve sample method can be further extended by hardening 
the detection of samples. For that purpose, quizzes are mixed along with tasks. 
When a batch of tasks is finished, the supervisor checks the results related to the 
quizzes and accepts the results if all quizzes are correct. Otherwise, the results 
are discarded and the tasks rescheduled for another execution. This method is 
resilient to collusion and presents the advantage that the samples� outcome can 
be verified before the end of a task. However, no efficient method exists for 
generating quizzes in an automatic way, therefore preventing the use of this 
technique in wide-scale projects. 

Spot checks with blacklists were proposed by Sarmenta (Sarmenta, 2001). 
This technique works similarly to quizzes. The main novelty is the tight 
integration of the technique with blacklists, which helps to filter out malicious 
users over time. When a participant is caught cheating, all her contributions 
until then are invalidated, and the participant is blacklisted and will be left out 
of any further computations. The implementation of spot-checking with 
blacklists faces some subtle problems, mainly the requirement of uniquely 
identifying participants over time. In fact, identification through email 
addresses, as it is commonly used by most volunteer projects is unreliable, since 
a malicious participant can easily and quickly obtain new email addresses. 

Ringers. Ringers were introduced to protect against coalitions of lazy 
cheaters assuming that all computational tasks involve the inversion of a strictly 
one-way function, f(x), for a given value y. An example of the applicability of 
one-way functions is the attempt to break cryptographic functions through a  
brute-force approach, as is undertaken by Distributed.net (distributed.net, 
2004). Under the ringer approach, the supervisor creates individual tasks, each 
one involving a part Di of the whole domain D. Before assigning a task, the 
supervisor adds to Di a set of test samples (ringers) yi, which are inverted 
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values of D, computed through yi = f (xi ). Each task is then assigned to a 
worker wi, which computes f (x) for all x in its sub-domain Di. A ringer yi yields 
xi, since f(f(xi)) = xi . Thus, to check the integrity of results, the supervisor just 
has to assess the xi , which should correspond to the sent ringers yi. 

Two ringer-based versions have been proposed: basic and bogus. In the 
basic approach, when the supervisor assigns work to the participants, it 
includes a list of input values, for which it already knows the outcome, to be 
computed along with ringers. Each participant must then return the results 
yielded by the computation of input values and ringers, receiving credit only if 
all the ringers are effectively committed to the supervisor. A feebleness of this 
method is that the participant knows the number of ringers. Therefore, a 
malicious participant can halt computation and return faked results as soon as 
all ringers of a task have been found. The bogus ringer version surmounts the 
limitations of the basic version by concealing the real number of ringers from 
the worker. For this purpose, a randomly chosen number of ringers whose 
results are of no interest (�bogus�) are inserted in the computation set.  

Szajda et al. tried to extend the ringers technique to generic 
computations, overcoming the one-way function limitation. In their approach, 
the supervisor plants ringers on the domain of values to be checked, with 
participants computing the values in the domain and the inserted ringers. 
Though, their approach is hardly feasible due to the hardness of generating an 
automatic method for creating the indistinguishable ringers (Szajda et al., 2003). 

Checkpoint-based verification proposes the (a) basic checkpoint verification 
and the (b) distributed checkpoint verification. Both schemes are checkpoint 
based techniques for sabotage-tolerance and address sequential computations 
that can be broken into multiple temporal segments (St1 , ... , Sti , ... , Stn ). At the 
end of each segment, a checkpoint C(Sti ) of the task can be committed to stable 
storage. Next, a brief review of both techniques is given.  

Basic checkpoint verification. Under this technique, each worker 
periodically saves the state of its task in a checkpoint, computes its hash code 
and submits it to the supervisor. The supervisor randomly chooses a 
checkpoint-time Sti and requests the corresponding checkpoint C(Sti ) from the 
worker. Then, the supervisor computes the partial execution of the task, from Sti 
up to the next checkpoint C(Sti+1 ). Finally, the hash code of C(Sti+1), that is, 
H(C(Sti+1 )), is compared with the corresponding hash code sent by the worker. 
The error rate of the basic checkpoint method depends on the number of 
checkpoints verified by the supervisor: a high percentage of verified 
checkpoints yields a low error rate at the cost of increased computation (for the 
partial computation of the task) and bandwidth (for having the checkpoint Sti 

transferred from the worker to the supervisor). Since, the entire overhead 
(computation and bandwidth) needs to be supported by the supervisor, this 
technique might induce an unbearable overhead to the supervisor, especially in  
wide-scale systems. 
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Distributed checkpoint verification extends the basic verification technique by 
distributing the partial computation over workers, in six steps. Firstly, (1) the 
supervisor sends a task to the participant. (2) The worker then computes the 
results along with a list of the partial checkpoint hashes, sending both to the 
supervisor. (3) The supervisor stores the received hash list and selects a worker 
(henceforth the verifier) to verify it. The supervisor identifies the partial 
execution to be computed by the verifier and sends to the verifier the necessary 
data, namely how to contact the worker being scrutinized, so that it can obtain 
the checkpoint to load for the partial execution. (4) The verifier requests the 
initial checkpoint from the original participant, and then it (5) computes the 
partial task up to the next checkpoint, taking a hash code of this new 
checkpoint. Finally, (6) this hash code is sent to the supervisor, which compares 
it with the one it received from the worker under assessment. 

The distributed checkpoint verification method allows the verifications 
without overloading the supervisor. The intermediate steps can also be 
checked, allowing for the detection of a malicious worker before the completion 
of a task. The price for this technique is the redundancy required for checkpoint 
comparison, the cost of communications and the capability of participants to 
communicate directly with each other, a requirement that can be difficult to 
achieve when connectivity of hosts is restricted by firewalls and Network 
Address Translation (NAT) schemes. Even if both machines can contact with 
each other, promoting direct contact between worker and verifier might create 
opportunities for collusion by the supervisor, this technique might induce an 
unbearable overhead to the supervisor, especially in wide-scale systems. 

A combination of replication with checkpoint based comparison to 
promote early detection and finer localization of errors in volunteer 
computations has been proposed (Domingues et al., 2007). Specifically, they 
proposed the compare replicated checkpoint hashes technique, and 
complemented it with trickle messaging to permit early detection of divergent 
computations. They targeted public computing projects, assuming that a N-
level replication is used for results validation.  

Under the compare replicated checkpoint hashes (CRCH) approach, a worker 
is requested to return, along with the results of its task, a selected set of hashes 
of the checkpoints saved along the computation. The list of checkpoints whose 
hashes are requested is defined at task creation time, so that redundant 
instances of a task share the same set of requested checkpoint hashes. When a 
majority of replicated executions are completed, and thus the supervisor holds 
enough results for meaningful comparisons, the hashes from equivalent 
checkpoints are compared to each other. If a divergence occurs, the execution 
point where the differences were detected is marked as suspicious. 
Comparatively to the result comparisons detection level, since an erroneous 
computation can be detected right after the first divergent checkpoint. For 
deterministic errors this might speed up the debugging process, since the 
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temporal location of the fault is known with some precision, permitting a faster 
reproduction on of the error. 

Relatively to the basic checkpoint and to the distributed checkpoint 
techniques, CRCH requires no extra communications since the lightweight 
hashes can be sent to the supervisor along with the results. Additionally, the 
traditional communication model is not disrupted, since no contact is required 
between workers, contrary to the distributed checkpoint verification technique. 
Selective checkpoint hashing is also much less demanding for the supervisor, 
since no task computation (partial or complete) needs to be performed by the 
supervisor. Although the CRCH strategy allows for result verification with 
practically no overhead at the server-side, and permits a more precise location 
of error occurrence, it does not speed up the detection of incorrect 
computations, since error detection can only occur after, at least, two replicas of 
the task have terminated. A more proactive variant is to have workers returning 
available checkpoint hashes during the computation. Ideally, from detection 
point-of-view, the worker should send to the supervisor a hash immediately 
after its computation. However, such an attitude would increase the number of 
messages and consequently stress the supervisor network, possibly disturbing 
the whole system performance.  

A more realistic approach is to use the so-called trickle messages to send 
checkpoint digests to the supervisor. A trickle message is sent by a worker to 
the supervisor and provides some status information about the worker. The 
trickle notification mechanism is used by projects like climateprediction.net, 
which have lengthy tasks (weeks or months long). It permits workers to update 
their progression status and to claim pending credits. Although the trickle 
designation covers a BOINC specific characteristic, the importance of this 
feedback mechanism for projects with long running tasks renders it mandatory 
for any serious desktop grid middleware.  

Thus, an improvement to the CRCH is to take advantage of the trickle 
messages, which are already sent by workers to report status, for sending the 
hashes of the selected checkpoints without additional communication costs. 
This way, the supervisor can spot an error as soon as a majority of checkpoint 
digests is available for the considered execution point. Thus, upon detection of 
a divergent computation, the supervisor can immediately trigger corrective 
measures. For instance, an additional instance of the task can be scheduled to 
replace the faulty task. Additionally, the thought-to-be faulty worker can be 
marked as suspect and further probed to assess its computational honesty, or, if 
repeating a faulty behavior, can be back listed altogether. 

Human-based trusting emphasizes the importance of human factors in 
security and trust management (Domingues et al., 2007). They point out that the 
auction site eBay is a live example of the importance of reputation systems to 
promote transactions among individuals that do not know each other. Indeed, 
reputation systems are important because they collect, distribute and aggregate 
feedback about participant�s behavior and help to decide whom to trust, 
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implicitly encouraging trustworthy behaviors. Further they propose the 
Volunteer Invitation-based System (VIS) for trust management targeted at 
volunteer DGs. The protocol establishes and updates the reputation of the 
participants according to their relationship in the volunteer chain, using 
underlying sabotage-tolerance mechanisms to detect sabotage attempts to 
undermine the computations, or simply, computation errors due to faulty 
hardware. This system aims at building trustable networks of volunteers 
resorting to invitations. The invitation-based system can be extended so that it 
supports recommendations of participants across multiple volunteer projects. 
The basic goal is to permit a volunteer who is already participating in a public 
project (or has participated in the past), to apply for an invitation in another 
project (from which the volunteer does not know anyone to ask directly for an 
invitation), presenting as references a virtual certificate provided by the 
project(s) s/he is currently participating in or has participated in the past. This 
virtual certificate would include the worker performance and trustability 
metrics, such as the ratio of successful tasks completed, earned credits, and 
errors. Note that a certificate-based scheme could attenuate the possibly slow 
growth endured by a VIS-based system in its early stage, when the number of 
volunteers with invitation cards is still small. 
 
More on communications requirements. Desktop grids have been by now very 
successful in cost effective computation of fully partitionable computations. But 
is also clear that desktop grids cannot be applied to general parallel 
computations as long as communication is restricted to the master-slave model 
of parallelism and communication and current parallel computational 
infrastructures, which for the most part rely on synchronous algorithms, 
executing in a fully reliable resource environment. The requirements for 
desktop grids which can effectively execute iterative parallel computations 
requiring communication are anonymous, scalable and fault-tolerant 
communication among the hosts of a scalable desktop grid systems and fault-
tolerant computational algorithms, which are insensitive to heterogeneity in 
processing power of hosts and communication speeds among hosts. The 
requirements on the computational algorithms are obvious from the nature of 
desktop grids as are the requirements for scalable and fault-tolerant 
communication. Anonymity is required of the communication mechanism 
among the hosts in a desktop grid because the software executed on hosts is 
written by users and poses security and privacy risks even when encapsulated 
by desktop grid client agents. Anonymity among the desktop resources 
minimizes security and privacy violation (Browne et al., 2004). 
 
Multiple-project participation. The participation of a volunteer in multiple projects 
is not a novelty, and is actually promoted by the BOINC platform, which 
permits that a volunteer donates resources to several projects, specifying the 
CPU time distribution to be allocated to each project. The rationale for 
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promoting multiple projects, which from the individual point of view of a 
project might seem counterproductive since the project loses exclusivity of 
resources, lies in the fact that many projects have downtime (for hardware and 
software maintenance and reparation of the server infrastructure), and shortage 
of tasks (for instance, when transitioning from one stage to another). Thus, 
participation in multiple projects helps to cope with a particular project 
downtime, besides permitting the volunteers to donate resources for several 
causes they might find worthy (Domingues et al., 2007). 

4.7.2.3 External Interfaces and Guarantees 
A high-throughput cluster provides high computational capacity and is, 
obviously, a sharable resource. The job manager or resource scheduler might 
present its interface in the Entropia system. In fact, most such systems share 
resources with interactive users, and some include elaborate mechanisms for 
ensuring good interactive response. While these systems provide: no special 
support for aggregate performance, interfaces for loosely coupled parallel 
computing such as PVM (Sunderam, 1990) are now becoming available. No 
special support for reliability or predictability is provided. 

4.7.2.4 Hardware Requirements 
High-throughput SCEs have minimal hardware requirements, running on a 
wide range of processor and network environments and tolerating both 
processor and network heterogeneity in type and speed. High-throughput 
systems are also used on widely distributed resources, such as for pooling 
workstation resources across the worldwide sites for a corporation. In addition, 
high-throughput SCEs do not require significant change to the underlying 
systems (depending only on some common job controls and special system 
libraries) and can scale to larger numbers of processors (hundreds lo 
thousands) with little difficulty. 

4.7.2.5 High-Throughput SCEs in Grids 

High-throughput SCEs are flexible, powerful systems for achieving high 
throughput on large numbers of sequential jobs. Thus, they are very suitable 
grid elements for such tasks. These SCEs manage a wide range of heterogeneity 
automatically (instruction set, memory configuration, network, etc.) and 
schedule compute resources efficiently to reduce turnaround title for jobs. In 
addition, effective sharing of resources with interactive users increases the pool 
of resources available to the SCE dramatically. The primary benefit of using 
DGs to organize large numbers of small resources is that the complexity of the 
higher-level grid is reduced (dramatically fewer SCEs), and the usability of the 
small resources is enhanced through the sophisticated management that the 
high-throughput SCE software provides. 
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 However, because high-throughput SCEs primarily focus on processing large 
numbers of small but compute-bound jobs, such SCEs do little to efficiently 
aggregate resources for larger computations, enhance reliability, or improve 
performance predictability. Each of these issues is addressed by at least one of 
the other types of SCEs described next. 

4.7.3 High-Reliability SCEs 
High-reliability SCEs provide computational resources with extremely low 
probability of service interruption and data loss. In high-reliability SCEs, 
commonly called reliable clusters, additional computing resources are deployed 
to replicate the state of an application, and responsibility for the computation is 
'failed over' automatically in the case of software, hardware, or any other 
failure. Failover transfers responsibility for the computation to the additional 
hardware, which takes up the task seamlessly, so clients see no interruption of 
service. This approach, typified by Tandem's Guardian system, has been 
adopted by a wide variety of vendors for highly available systems. 

4.7.3.1 External Interfaces and Guarantees 
Reliable clusters use replication for reliability but can also add resources for 
scalability for many kinds of applications. With the exception of a few large 
data manipulation applications, however, the scalability is generally used to 
increase system capacity, not to scale to support large jobs. Of course, reliable 
clusters provide a reliability guarantee to applications and are generally 
sharable resources. Because of failover delays and dynamic load sharing, most 
reliable systems do not provide strong guarantees of predictable response. 

4.7.3.2 Hardware Requirements 
Reliable clusters generally prefer compatible hardware to enable failover, data 
sharing, and convenient restoration from checkpoints. For cold standbys, 
however, less powerful configurations can be deployed to reduce cost, 
provided lower performance is tolerable in a failover situation. Custom 
networking is employed among cluster nodes and between primaries and 
standbys to ensure fault detection and isolation at the earliest possible time. 
Reliable clusters can be physically localized or distributed over a  
wide area network. Traditionally, reliable systems use special operating 
systems (e.g.. Tandem NonStop kernel), but many recent systems have been 
implemented as a middleware layer, so a specialized operating system is no 
longer required. Finally, reliable dusters can also include multiple nodes for 
scalability in capacity. 

4.7.3.3 High-Reliability SCEs in Grids 
High-reliability elements are a natural choice for simple composite elements. 
The internal substructure of such elements is encapsulated, allowing them to be 



 

 91

viewed as reliable, high-capacity systems. Such systems can provide a wealth of 
important grid services reliably, facilitating rigorous reasoning about operation, 
bootstrap procedures, reconfiguration, failure modes, and so on. 

4.7.4 Dedicated High-Performance SCEs  
Dedicated high-performance SCEs merge basic computing elements into a 
single resource pool for computing, memory, and storage, allowing these 
resources to be applied to a single computational application. Since 
microprocessors have become the fastest processors available, collections of 
microprocessors (especially parallel processors) or entire systems (scalable 
clusters or networks of workstations) have become an attractive and cost-
effective way to achieve very high performance.  

By employing standard workstation or PC building blocks and scalable 
networks, these dedicated high-performance clusters can be scaled to arbitrarily 
large and complex configurations. These systems were initially applied to 
supercomputing tasks and were operated as dedicated systems, with space 
sharing used to run two or more applications simultaneously. To connect 
hundreds or thousands of nodes together with high efficiency, dedicated high-
performance systems employ high-speed custom networks with limited 
physical extent (tens of meters). These networks employ parallel data links and 
custom signaling to deliver high performance, as with the custom cluster 
networks described in a previous section. 

In case of the IBM Blue Horizon machine, it uses high-volume 
microprocessors as their basic computation engines. It employs 8-processor 
SMP servers as the basic building blocks, with custom interconnects delivering 
~350 megabit/sec of network bandwidth to each node in the system and 
latencies as low as 20 microseconds. This system uses a standard AIX (IBM's 
UNIX) workstation operating system and a collection of middleware to 
provide, job scheduling, program loading, file input/output, and so on (Foster 
and Kesselman, 2004). Allowing a single job on each node enables high 
performance on dedicated jobs-direct access to networks, management of local 
memory, and so on. Operating system services such as file access and external 
network input/output are hosted on system service nodes. 

The main programming model on these systems is explicit message 
passing, typically via a standard interface as MPI. This model enables the 
achievement of high performance at the price of explicit programmer 
management of naming and data movement. Higher-level interfaces, such as 
HPF and distributed shared memory, are used to a lesser degree. For a large 
number of applications, high-performance MPI implementations have been 
built, and therefore for these applications, dedicated high-performance SCEs 
can effectively aggregate their compute performance.  

These systems provide single-system image (uniform monitoring, 
resource usage, file system access, etc.). Distributed shared-memory systems 
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have demonstrated techniques for efficient memory pooling, although 
significant issues remain about how to manage and share such pools as well as 
how to best implement virtual memory in such an environment. Efficient 
scheduling remains a difficult challenge, as schedulers typically focus 
disappointingly on processors, utilizing memory, network, disk, and other 
resources (Foster and Kesselman, 2004). 

4.7.4.1 Beowulf Clusters 
An increasingly popular dedicated high-performance SCE is a PC cluster, 
commonly known as a Beowulf cluster (Sterling 1999), which consists of high-
volume products such as dual-processor desktop or server systems, networked 
by low-cost, commodity fast Ethernet or gigabit Ethernet networking. These 
systems are predominantly Linux based (Redhat, Debian, and Suse being 
popular) and there are a wide variety of both commercial and research or 
academic software systems for assembling and managing such cluster systems.  

Commercial systems include Scyld, Scali, Platform Computing, VA 
Cluster, and Score. Research and academic systems include Oscar and NPACI 
Rocks. Although the functionality in these systems varies generally, they all 
address elements of the key challenges in building dedicated high-performance 
elements from commodity components: configuration management, 
scheduling, single-system image, and a shared file system. These software 
packages allow a Beowulf cluster to be viewed as an aggregate resource with a 
single point of access for inclusion as a dedicated, high-performance SCE into 
the Grid. Typical Beowulf cluster systems are anywhere from 8 to about 128 
nodes, with the majority of the systems being in the range of 16 to 64 nodes. 
Above 64 nodes, the complexity of physical machine maintenance, 
configuration management, and even network wiring becomes significant, and 
the advantages of custom-engineered systems are more pronounced. Even at  
64 nodes, however, Beowulf systems can have substantial compute, memory, 
and storage capabilities. 

4.7.4.2 Commercial Resource Virtualization Systems 
Lately, a number of commercial vendors have introduced resource virtualiza-
tion systems that increase the manageability of resources and the applications 
deployed on them. Examples of such commercial systems include IBM's 
Oceano, Hewlett-Packard's Utility Data Center, and Sun Microsystem's N1. 
Although public information on these systems is limited at present, each of 
these systems purports to support "wire once" approaches to hardware in large 
server complexes, automated deployment of applications, monitoring, 
provisioning, and evolution as application needs evolve. Many of these systems 
are advertised as providing a single-system view of an entire data center, much 
as cluster software packages provide a single-system view of a cluster. As the 
commercial virtualization systems become more widespread, they will not only 
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support dedicated high-performance SCEs as grid elements but will also extend 
their capabilities to include dynamic deployment of applications. 

4.7.4.3 External Interfaces and Guarantees 
Dedicated high-performance SCEs aggregate resources to speed up individual 
computational applications and are scalable to hundreds or thousands of nodes.  
Hence, they provide both pooled capacity for sequential jobs and high 
performance for parallel computations. In fact, many scheduling systems such 
as Sun's Grid Engine, IBM's LoadLeveler, and Platform Computing's LSF will 
schedule in combination both uniprocessor and dedicated parallel jobs. Because 
they focus on highest single job performance (supercomputing), however, 
dedicated SCEs have not delivered reliability or predictability and are not 
generally sharable (other than via space partitioning) (Foster and Kesselman, 
2004). More, many commercial reliable cluster products have an element of 
scalability but generally do not deliver the levels of performance described for 
dedicated high-performance SCEs. 

4.7.4.4 Hardware Requirements 
In dedicated high-performance SCEs, aggregate performance is the primary 
objective, so scalability to hundreds or thousands of nodes is a must. Hardware 
attributes (e.g., heterogeneity) that degrade performance are not generally 
included. Software features (e.g., process pairing for reliability) that reduce 
performance are not included either. Further, because the SCE is viewed as a 
single system, changes to the underlying systems (operating system and 
motherboard) are sometimes required. Networks and interfaces are virtually 
always customized. Recently, under pressure from low-cost, high-volume 
products, many vendors have chosen to use unmodified workstations and 
operating systems, differentiating only with modest scheduling and 
middleware software. 

4.7.4.5 Dedicated High-Performance SCEs in Grids 
Dedicated high-performance SCEs can be real assets in a grid environment.  
Indeed, many such systems are deployed in production grids nowadays. 
However, their dedicated-use model significantly reduces their effectiveness. 
This observation provides a major impulsion for the development of shared 
controllable-performance systems. For the future, broadening the model of use 
is essential both for improving resource utilization and for supporting a 
broader class of resource-intensive online and interactive applications. 

4.7.5 Concluding comments 
In this section, we focused on the capabilities of basic elements and SCEs.  
The capabilities of basic computation, communication, and storage elements 
continue to improve geometrically, producing a grid wealthy in resources and 



 

 94

capable of substantial sharing because of the availability of high-bandwidth 
links. SCEs provide both aggregate capabilities and qualitatively different 
capabilities, such as reliability. Thus, high-throughput SCEs (desktop grids) are 
scalable, non-aggregatable, partially reliable, non-predictable and sharable. 
Reliable SCEs have limited scalability, are reliable and sharable, but non-
aggregatable and non-predictable. Finally, dedicated high-performance SCEs 
are scalable and aggregatable, but non reliable, predictable or sharable. These 
capabilities will determine their role and contribution to larger grids. 

Grids based on tile Globus Toolkit are now moving from a resource to a 
services model in which all capabilities are presented as network grid services. 
In such a model, SCEs can provide compute resources, data/storage resources, 
and application services. As compute resources, they will form dynamic grid 
application servers, allowing compute-oriented applications to be dynamically 
instantiated and provide grid compute application services. As data/storage 
resources, they will provide a wealth of data Grid services. As these capabilities 
are combined with the increasingly popular commercial resource virtualization 
systems, applications will increasingly be expressed in a fashion independent of 
the detailed platform environment. That is, if they do not need the greatest 
possible performance or access to unique services, they can be expressed 
against a virtualized interface. Such an approach will further increase the 
liquidity of applications and their flexible deployment, enabling further 
progress in achieving the grid vision of computing and application services as a 
fungible resource (Foster and Kesselman, 2004) (Globus, 2007). 

A number of important challenges arise in building bridges from useful 
SCEs to large-scale grids. Three major elements of these challenges are 
composition (interfacing), performance guarantees, and security and data 
integrity. Composing both basic elements and SCEs into larger grids is a 
complex challenge, which requires directory services, protocols, compatible 
services and data representations, and conversion. Although a general solution 
must involve all element types, special problems are raised here by simple 
composite elements. They include interfaces, semantics, scheduling, and 
management lot aggregated memory resources, aggregated persistent storage 
resources, aggregated communication resources, and migration/interoperation. 
The distinct challenges for SCEs here include developing interfaces to aggregate 
resources that provide simple semantics and high performance and still reflect 
the fact that, even within an SCE, the hardware elements come and go 
dynamically. A number of lower-level issues are also critical: how to map 
aggregated resources to the disjoint basic elements within an SCE (e.g., where 
do the I/O requests and computations go?), whether such mappings are static 
or dynamic, and how users can manage their usage of the resources. 

Another important challenge with SCEs is allowing grid computations to 
achieve reasonable overall performance. In most current approaches, this is 
predicated on some ability to guarantee performance from grid elements. 
Nevertheless, such techniques must be reconciled with local resource 



 

 95

management policies designed to achieve local resource and computational 
efficiency. Therefore, challenge for SCEs in grids include the following (Foster 
and Kesselman, 2004): 

• Mechanisms to ensure predictable performance for memory, 
computation, and storage both for basic and for aggregated resources; 

• Techniques for coordinated scheduling across basic (within an SCE) 
and global memory, computation, and storage resources; 

• Policies for predictable performance, which manage the needs of 
global and local computations against available resources. 

After all, if users are to achieve high productivity in a computing environment 
spanning numerous physical resources and administrative domains, they must 
be shielded from a wealth of security and data integrity concerns, for example, 
users may wish to use remote storage facilities for performance or even cost 
advantages. Conversely, if we have them worry about unauthorized data 
disclosure or unexpected loss of data, it is very likely that they will be rare. 
Thus, important challenges for SCEs in grids include both providing safe access 
to resources and data security for participating computational applications and 
providing data integrity guarantees for data, independent of availability or 
failure of any individual data repository. 
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5 Overview and Taxonomy of Desktop Grid Systems 
Desktop Grid (DG) has recently received the rapidly growing interest and 
attraction because of the success of the most popular examples such as 
SETI@Home and distributed.net. SETI@home is one of the most successful 
projects that use such a model. One of the reasons for this success is its 
simplicity in enabling contributors to donate computational resources�when 
the computer screensaver is activated the application starts by making a request 
to a remote server to download tasks to be processed. Another reason is its 
support for Windows operating system, since the majority of the desktop 
machines around the world run Windows. Based on the same concept, there are 
other @home projects: FightAIDS@home, Folding@home, evolution@home,  etc. 
All of these projects are primarily targeted for applications that can be 
expressed as parameter-sweep applications. They have no or lack of support for 
creating applications consisting of tasks that need to communicate and 
coordinate their activities by exchanging messages among themselves 
(distributedcomputing.info, 2007). In this section we will present first an 
overview of some of the most well-known and used desktop grid systems, and 
will conclude with a taxonomy of these systems. 

5.1 Overview of Desktop Grid Systems 

5.1.1 SETI@home - BOINC 
SETI, or the Search for Extraterrestrial Intelligence, is a scientific effort seeking 
to determine if there is intelligent life outside Earth. One popular method SETI 
researchers use is radio SETI, which involves listening for artificial radio signals 
coming from other stars. Previous radio SETI projects have used special-
purpose supercomputers, located at the telescope, to do the bulk of the data 
analysis. In 1995, a new idea was proposed to do radio SETI using a virtual 
supercomputer composed of large numbers of Internet-connected computers. 

SETI@home, developed at the University of California in Berkley, is a 
radio SETI project that lets anyone with a computer and an Internet connection 
participate. The method they use to do this is with a screen saver that can go get 
a chunk of data from a central server over the Internet, analyze that data, and 
then report the results back. When the computer is needed back, the screen 
saver instantly gets out of the way and only continues it's analysis when the 
computer is not anymore used. The program that runs on each client computer 
looks and behaves like a captivating screen saver. It runs only when the 
machine is idle, and the user can choose from several different colorful and 
dynamic "visualizations" of the SETI process. Some of these visualizations will 
look technical, some will look abstract, and some will look decidedly artistic, as 
it can be seen in the screenshot from Figure 5.1. 
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Figure 5.1 SETI@home screenshot 

The data analysis task can be easily broken up into little pieces that can all be 
worked on separately and in parallel. None of the pieces depends on the other 
pieces, which makes large deployment of clients and computations very easy 
over the Internet. SETI@home needs network connection only when 
transferring data. This occurs only when the screen saver has finished analyzing 
the work-unit and wants to send back the results. Each work unit is sent 
multiple times to different users in order to make sure that the data is processed 
correctly. The system architecture is depicted in Figure 5.2. 
 
 

 
 

 

Figure 5.2 SETI@home architecture 
 
While the "screen saver" is running, the client would be processing the  
quarter-megabyte data block (work-unit), which would contain 50 seconds 
within a 20-kilohertz range. The algorithm examines this data for strong signals 
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or "chirps" while taking Doppler shifting into account. False alarms would be 
prevented by tests for terrestrial interference. Once a block was processed, it 
would be returned to a centralized SETI@home computer where the results 
would be stored and organized. This process, when replicated tens or hundreds 
of thousands of times, has the capacity to analyze the data much more closely 
than before, perhaps noticing subtle patterns that real-time signal processing 
missed. The overall results of the search would appear on the SETI@home web 
site, making the findings immediately available to the public and to the 
participants. SETI@home is the largest public distributed computing project in 
terms of computing power: on September 26, 2001 it reached the ZettaFLOP 
(1021 floating point operations) mark, a new world record, performing 
calculations at an average of 71 TeraFLOPs/second. For comparison, the fastest 
individual computer at that time in the world was IBM's ASCI White, which 
runs at 12.3 TeraFLOPs/second. On June 1, 2002, the project completed over 1 
million CPU years of computation. 

SETI@home was not without problems. For all the media attention and 
public interest, funding has not been forthcoming. Developing new software to 
run the distributed system and to perform the analysis on the client side is a 
difficult and expensive process. The SETI@home project has been delayed 
repeatedly due to lack of corporate sponsorship. "People time", rather than 
computer power, has proven to be hard to come by, and in the end it seems that 
expense - the very thing that SETI@home and distributed computing are meant 
to escape - may be a force as inexorable as gravity. The SETI@home project is for 
a very specific problem, as described above. There was no general framework 
for the system, which can be used by other types of applications, and it became 
SETI@home Classic. Then new funding came for the BOINC project and 
SETI@home was rewritten for the new framework and it became SETI@home II 
in 2005. BOINC is open-source software for volunteer computing and desktop 
grid computing. It includes the following features: project autonomy, volunteer 
flexibility: flexible application framework, security, server performance and 
scalability, source code availability, support for large data, multiple participant 
platforms, open, extensible software architecture, and volunteer community 
features. BOINC is designed to support applications that have large 
computation requirements, storage requirements, or both. The main 
requirement of the application is that it be divisible into a large number 
(thousands or millions) of jobs that can be done independently. If the project is 
going to use volunteered resources, there are additional requirements as public 
appeal and low data/compute ratio (BOINC, 2006). 

5.1.2 distributed.net 
A very similar project is the distributed.net project (distributed.net, 2008). It takes 
up challenges and run projects which require a lot of computing power. 
Utilizing the combined idle processing cycles of the members� computers solves 

http://boinc.berkeley.edu/volunteer.php
http://boinc.berkeley.edu/dg.php
http://boinc.berkeley.edu/dg.php
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these. The collective-computing projects that have attracted the most 
participants have been attempts to decipher encrypted messages. RSA Security 
(RSA, 2005) a commercial company has posted a number of cryptographic 
puzzles, with cash prizes for those who solve them. The company's aim is to 
test the security of their own products and to demonstrate the vulnerability of 
encryption schemes they consider inadequate. The focus of the distributed.net 
project is on very few specialized computing challenges. Furthermore, the 
project releases only binary code of the clients and no server code, making 
impossible the adaptation of this to other types of projects. 

Typical RSA challenges could either involve factoring, or call for a more 
direct attack on an encrypted text. In one challenge the message was encoded 
with DES, the Data Encryption Standard, a cipher developed in the 1970s under 
U.S. government sponsorship. The key that unlocks a DES message is a binary 
number of 56 bits (or larger: 64, 72 bits). In general the only way to crack the 
code is to try all possible keys, of which there are 256, or about 7 * 1016. 
Another RSA challenge also employed a 56-bit key, but with an encryption 
algorithm called RC5. Compared with earlier distributed-computing projects, 
the RC5 efforts were not only technically sophisticated but also reached a new 
level of promotional and motivational slickness. 

For example, they kept statistics on the contributions of individuals and 
teams, adding an element of competition between teams, as it can be seen in 
Figure 5.3. The RSA Challenge numbers are the kind, which are believed to be 
the hardest to factor; these numbers should be particularly challenging. These 
are the kind of numbers used in devising secure RSA cryptosystems. The 
challenges are an effort to learn about the actual difficulty of factoring large 
numbers of the type used in RSA keys. 

Another type of project, which involves a lot of computing power, is the 
optimal Golomb Ruler (OGL) (Gardner, 1972). Essentially, a Golomb Ruler is a 
mathematical term given to a set of whole numbers where no two pairs of 
numbers have the same difference. An Optimal Golomb Ruler is just like an 
everyday ruler, except that the marks are placed so that no two pairs of marks 
measure the same distance. OGRs have many uses in the real world, including 
sensor placements for X-ray crystallography and radio astronomy. Golomb 
rulers can also play a significant role in combinatorics, coding theory and 
communications. The search for OGRs becomes exponentially more difficult as 
the number of marks increases ("NP complete" problem). 

5.1.3 Considerations on parallelism for SETI@home - distributed.net 
None of these two systems provide support for parallel application, when 
communication between programs running on different computers is necessary 
during the computation. This makes difficult to use such systems for our 
purpose, where more than one desktop computer are needed to solve a certain 
problem. Tasks with independent parallelism are suited for this type of 
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computing. In SETI@home, work unit computations are independent, so 
participant computers never have to wait for or communicate with one another. 
If a computer fails while processing a work unit, the work unit is eventually 
sent to another computer. Public-resource computing, with its frequent 
computer outages and network disconnections, seems ill-suited to parallel 
applications that require frequent synchronization and communication between 
nodes. However, scheduling mechanisms that find and exploit groups of LAN-
connected machines may eliminate these difficulties. 
 

 
Figure 5.3 distributed.net statistics screen 

5.1.4 PVM 
PVM (Parallel Virtual Machine) is a portable message-passing programming 
system, designed to link separate host machines to form a virtual machine, 
which is a single, manageable computing resource. The virtual machine can be 
composed of hosts of varying types. The general goals of this project are to 
investigate issues in, and develop solutions for, heterogeneous concurrent 
computing. PVM is an integrated set of software tools and libraries that 
emulates a general-purpose, flexible, heterogeneous concurrent computing 
framework on interconnected computers of varied architecture. The overall 
objective of the PVM system is to enable such a collection of computers to be 
used cooperatively for concurrent or parallel computation. 

Applications can be composed of any number of separate processes and 
are provided access to PVM through the use of calls to PVM library routines for 
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functions such as process initiation, message transmission and reception, and 
synchronization via barriers or rendezvous. PVM is effective for heterogeneous 
applications that exploit specific strengths of individual machines on a network.  

The PVM system is composed of two parts. The first part is a daemon 
(called pvmd) that resides on all the computers making up the virtual machine. 
This is designed in such a way that any user with a valid login can install this 
daemon on a machine. When a user wishes to run a PVM application, he first 
creates a virtual machine by starting up PVM. Multiple users can configure 
overlapping virtual machines, and each user can execute several PVM 
applications simultaneously. 

The second part of the system is a library of PVM interface routines. It 
contains a functionally complete repertoire of primitives that are needed for 
cooperation between tasks of an application. This library contains user-callable 
routines for message passing, spawning processes, coordinating tasks, and 
modifying the virtual machine. 

The PVM computing model described in Figure 5.4 is based on the 
notion that an application consists of several tasks. Each task is responsible for a 
part of the application's computational workload. Sometimes an application is 
parallelized along its functions; that is, each task performs a different function, 
for example, input, problem setup, solution, output, and display. This process is 
often called functional (task) parallelism. A more common method of 
parallelizing an application is called data parallelism. In this method all the 
tasks are the same, but each one only knows and solves a small part of the data. 
This is also referred to as the SPMD (single-program multiple-data) model of 
computing. PVM supports either or a mixture of these methods. Depending on 
their functions, tasks may execute in parallel and may need to synchronize or 
exchange data, although this is not always the case. 

The general paradigm for application programming with PVM is as 
follows. A user writes one or more sequential programs in C/C++, or Fortran 
77 that contain embedded calls to the PVM library. Each program corresponds 
to a task making up the application. These programs are compiled for each 
architecture in the host pool, and the resulting object files are placed at a 
location accessible from machines in the host pool. To execute an application, a 
user typically starts one copy of one task (usually the "master" or "initiating" 
task) by hand from a machine within the host pool. 

This process subsequently starts other PVM tasks, eventually resulting in 
a collection of active tasks that then compute locally and exchange messages 
with each other to solve the problem. Note that while the above is a typical 
scenario, as many tasks as appropriate may be started manually. Tasks interact 
through explicit message passing, identifying each other with a system-
assigned, opaque task identifier. PVM support both task- and data-parallelism. 
An advantage of the PVM system is that it is quite popular today and has 
become a de-facto standard for message passing. There are many algorithms 
implemented using PVM, and there is a large body of experience in using it.  
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It is well known and accepted in the academic environment, due to its easiness 
of use and the availability of source code from the public domain. However, it 
is not very widespread in industry. 

 
 

 
 

 
 
 
 
 

 Figure 5.4 PVM Computing Model  
 

Alas, PVM provides only the parallel programming environment and 
does not offer resource management. This means that the system could not 
prevent access of different users to the same computing resource. Two or more 
users could share the same CPU without even knowing that. Such sharing of 
CPU could result in an inefficient use of resources, especially when running a 
data-parallel application with uniform computational requirements per task. 
Further job/resource scheduling systems are required to provide exclusive 
access to CPU resources in a PVM environment. 

Another disadvantage of the PVM system is that the user needs to have 
'login' access to each of the computers involved in a computation. From the 
user's point of view this is done in a transparent way, by automatically using 
remote login (usually Rush or ssh) to start the application on each computer. 
There are certain problems with this, which limits a large-scale deployment of 
the system in many situations. One is that in a completely heterogeneous 
environment, consisting of operating systems with different types of user 
authentication (e.g. Unix, Windows and Mac), allowing users' login access to 
each computer on the network can be extremely difficult to set up and later 
maintain it. This could also easily be the cause of a potential security problem. 
For this reason, in many real-life situations, users are not allow to remotely 
login to the computers in the network, or if so, to only a very few servers. It has 
also been found to be difficult to install PVM for recent versions of Windows, 
making it very hard to deploy and use in a today's typical large-scale corporate 
network, where desktop machines running different operating systems are 
usually available. So PVM need 'more' heterogeneity than just Unix systems. 
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5.1.5 Entropia 
DCGrid, developed by the company called Entropia, was a PC grid computing 
platform that provides high performance computing capabilities by aggregating 
the unused processing cycles of networks of existing Windows-based PCs. The 
system is no longer used due to the fact that the system was thought in the first 
place as being commercial. We have chosen to still present it since it was a 
major desktop grid system, which has had significant contributions to the field.  

Existing proprietary and third party applications could be deployed on 
the DCGrid platform quickly and easily using DCGrid's rapid integration 
features, which allow enterprises to achieve business objectives faster, with 
higher throughput, increased precision and more meaningful results in less 
time than previously possible. DCGrid solutions enabled new and more 
difficult problems to be solved. Unused PC resources are harvested based on 
user and organization policies, with settings centrally monitored and managed 
with a web-based grid management interface. Work is scheduled to PCs based 
on application resource requirements, and is monitored and rescheduled as 
necessary if there are system disruptions or resource unavailability. Any native 
Win32 application could be deployed and executed on the DCGrid platform, 
and applications are enabled for the platform at the binary code level. 

DCGrid contained an isolation technology, which provides full and 
unobtrusive protection for the grid as well as the underlying resources. DCGrid 
protected the desktop configuration, programs, and data from corruption by 
grid application errors as well as the privacy of desktop users from snooping. 
The grid application could not accidentally or intentionally access or modify the 
PC configuration or data files. Unlike other error-prone approaches, DCGrid 
presented a cleanly isolated, corruption-free environment. DCGrid shielded 
applications, proprietary data, and resources distributed to the desktop PCs by 
using encryption and tamper detection. Proprietary data and research sent out 
to hundreds of PCs in an enterprise could be protected from desktop user 
inspection or malicious corruption. DCGrid automatically monitored and 
limited grid work so it does not intrude on the PC user. DCGrid remained 
invisible at all times, never demanding inputs or responses from the desktop 
user, and never impacting the user's performance. 

The approach is to automatically wrap an application in a virtual 
machine technology (Figure 5.5). When an application program is registered or 
submitted to the Entropia system, it is automatically wrapped inside the virtual 
machine. This isolation is called sandboxing. The application is contained 
within a sandbox and is not allowed to modify resources outside the sandbox. 
The application is fully unaware of being running within a sandbox, since its 
interaction with the OS is automatically controlled by the virtual machine. The 
virtual machine intercepts system calls the application makes. This ensures that 
the virtual machine has complete control over the applications� interaction with 
the operating system and access to the desktop resources. 
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Figure 5.5 Entropia Sandbox Model 
 
The Entropia system architecture consisted of three layers: physical manage-
ment, scheduling, and job management. The physical node management layer, 
provided basic communication and naming, security, resource management, 
and application control. The second layer was resource scheduling, providing 
resource matching, scheduling, and fault tolerance. Users could interact directly 
with the resource-scheduling layer through the available APIs or alternatively 
through the third layer management, which provides management facilities for 
handling large numbers of computations and files. Entropia provided a job 
management system, but existing job management systems can also be used.  

The physical node management layer of the Entropia system managed 
these and other low-level reliability issues. The physical node management 
layer provided naming, communication, resource management, application 
control, and security. The resource management services captured a wealth of 
node information (e.g., physical memory, CPU, disk size and free space, 
software version, data cached) and collected it in the system manager. This 
layer also provided basic facilities for process management including file 
staging, application initiation and termination, and error reporting. In addition, 
the physical node management layer ensures node recovery, terminating 
runaway and poorly behaving applications.  

The security services employed a range of encryption and binary 
sandboxing technologies to protect both distributed computing applications 
and the underlying physical node. Application communications and data were 
protected with high-quality cryptographic techniques. A binary sandbox 
controlled the operations and resources visible to distributed applications on 
the physical nodes in order to protect the software and hardware of the 
underlying machine. The binary sandbox also regulated the usage of resources 
by the distributed computing application. This ensured that the application did 
not interfere with the primary users of the system without requiring a rewrite of 
the application for good behavior (Foster and Kesselman, 2004). 

The resource-scheduling layer of Entropia accepted units of computation 
from the user or job management system, matched them to appropriate client 
resources, and scheduled them for execution. The resource-scheduling layer 
adapted to changes in resource status and availability and to high failure rates. 
To meet these challenging requirements, the Entropia system supported 
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multiple instances of heterogeneous schedulers. This layer also provided simple 
abstractions for IT administrators, abstractions that automate the majority of 
admins� tasks with reasonable defaults but allow detailed control as desired. 

Entropia's three-layer architecture provided a wealth of benefits in 
system capability, ease of use by users and IT administrators, and internal 
implementation. The physical node layer managed many of the complexities of 
the communication, security, and management, allowing the layers above to 
operate with simpler abstractions. The resource-scheduling layer dealt with 
unique challenges of the breadth and diversity of resources but need not deal 
with a wide range of lower-level issues. Above the resource-scheduling layer, 
the job management layer dealt with mostly conventional job management 
issues. Finally, the higher-level abstractions presented by each layer did 
simplify application development. One disadvantage of the Entropia system 
was that it did not support heterogeneous systems. The only platform was 
Windows that limited the usability of this system in a research environment. 

5.1.6 Condor 
Condor, developed at the department of Computer Science, University of 
Wisconsin, Madison, is a High Throughput Computing (HTC) environment 
that can manage very large collections of distributive owned workstations 
(Litzkow and Mutka, 1998). This is a computing environment that delivers large 
amounts of computational power over a long period of time, usually weeks or 
months. In contrast, High Performance Computing (HPC) environments deliver 
a tremendous amount of compute power over a short period of time. In a high 
throughput environment, researchers are more interested in how many jobs 
they can complete over a long period of time instead of how fast an individual 
job can complete. HTC is more concerned to efficiently harness the use of all 
available resources. 

The Condor environment is based on a layered architecture that enables 
it to provide a powerful and flexible suite of resource management services to 
sequential and parallel applications. Condor is a specialized workload 
management system for compute-intensive jobs. Like other full-featured batch 
systems, Condor provides a job queuing mechanism, scheduling policy, priority 
scheme, resource monitoring, and resource management. Users submit their 
serial or parallel jobs to Condor, Condor places them into a queue, chooses 
when and where to run the jobs based upon a policy, carefully monitors their 
progress, and ultimately informs the user upon completion. 

Condor provides a powerful resource management by match-making 
resource owners with resource consumers. This is the cornerstone of a 
successful HTC environment. Other compute cluster resource management 
systems attach properties to the job queues themselves, resulting in user 
confusion over which queue to use as well as administrative hassle in 
constantly adding and editing queue properties to satisfy user demands. 
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Condor implements ClassAds, which simplifies the user's submission of jobs. 
ClassAds work in a fashion similar to the newspaper classified advertising 
want-ads. All machines in the Condor pool advertise their resource properties, 
both static and dynamic, such as available RAM memory, CPU type, CPU 
speed, virtual memory size, physical location, and current load average, in a 
resource offer ad. A user specifies a resource request ad   when submitting a 
job. The request defines both the required and a desired set of properties of the 
resource to run the job. Condor acts as a broker by matching and ranking 
resource offer ads with resource request ads, making certain that all 
requirements in both ads are satisfied. During this match-making process, 
Condor also considers several layers of priority values: the priority the user 
assigned to the resource request ad, the priority of the user which submitted the 
ad, and desire of machines in the pool to accept certain types of ads over others. 

5.2 Hierarchical Taxonomy 
In this section we introduce our three-level hierarchical taxonomy on desktop 
grid systems. The first level refers to infrastructure and includes resource type, 
the platform that runs at the provider, scalability and security issues. The 
second one includes conceptual model, architecture and data model, under the 
umbrella of models. The last level concerns aspects related to software: 
application type, architecture of the support operating system, the need for 
administrator privileges, and whether a license is needed or not. At the end of 
this section, a table with the classification of the main desktop grid systems 
according to this taxonomy will be provided. 
 

5.2.1 Level 1, Infrastructure: resource, platform, scalability, security 
Resource type specifies how resources are provided to the system. There are 
two main trends: volunteer and enterprise resources. Volunteer desktop grid is 
based on voluntary participants, while enterprise desktop grid is based on non-
voluntary participants usually within a corporation, research lab or university. 
Mostly, volunteer desktop grid is Internet-based, while enterprise desktop grid 
is LAN-based. Volunteer DG is more volatile, malicious, and faulty, whereas 
enterprise DG is more controllable because its resource providers are located in 
the same administrative domain. Typical examples of volunteer DG are 
SETI@home, BOINC, XtremWeb (XtremWeb, 2008), and Bayanihan (Bayanihan, 
2008). Enterprise DG examples can be Entropia (Entropia, 2003) and Condor. 

Desktop grids are classified based on the platform running on the 
resource provider. This can be web-based, where the applications are run into the 
web browser (can be Java applets or ActiveX controls), or middleware based, 
where the user must install a specific middleware application, that provides the 
functionality and services required to later execute computing applications on 
the provider�s resource. In the web-based situation, the users only need to load 



 

 108

a specific web page, containing an applet, which is automatically downloaded 
and executed by the resource provider. Typical examples of such web-based 
systems are Bayanihan, Javelin, while middleware-based systems are 
SETI@home, BOINC, XtremWeb, Entropia and Condor. 

Scalability divides desktop grids into two groups: Internet-based and 
LAN-based. Internet based desktop grids are characterized by anonymous 
resource providers, connectivity issues (firewall, NAT, dynamic addressing, 
possibly poor bandwidth and unreliable connection), possibly malicious 
resources, high security risks. In contrast, LAN-based desktop grids are 
characterized by more constant and reliable connectivity, lower security risks or 
under certain degree of control. Mainly, volunteer desktop grids fall in the first 
group, and enterprise desktop grids in to the second one. 

Security in desktop grids deals with aspects of access to the 
computational resources by using some form of authentication and 
authorization; and access to the computational data, input and results, by 
providing data integrity and encryption. The verification of results is also an 
important issue that needs to be addressed in any volunteer computation. 
Hardware and software mishaps as well as malicious volunteers can falsify the 
outcome of computations, rendering the results useless. Thus, a major concern 
of middleware tools supporting volunteer computation is to provide results 
validation and sabotage tolerance mechanisms. Since computations are run in 
open and non-trustable environments, it is necessary to protect the integrity of 
data and to validate the computation results. Without a sabotage detection 
mechanism, a malicious user can potentially undermine a computation that 
may have been executing for weeks or even months. In contrast, applications 
executed over more controlled clusters offer some reliability and trustability. 
 

5.2.2 Level 2, Models: computing model, architecture, data model 
According to the computing model we can group desktop grids into two main 
categories: one is the typical, master-worker computing model, consisting of 
independent tasks, and the other one involves parallel paradigms with 
communication between the tasks. The master-worker (M-W) model includes a 
master (server) process which sends tasks to a set of worker processes, then 
each worker makes some kind of computation on some tasks, a computation 
that generally requires a variable and unpredictable time. The master then waits 
for the answer from each individual worker before sending a new task to that 
worker. This is a typical form of embarrassingly parallel pattern, where tasks 
are mutually independent, and can be executed in parallel. The other category 
involves tasks which depend on each other: there is either an execution flow 
between the tasks, such that one task needs to be executed only after other tasks 
are finished (typically accomplished using some sort of task-dependency 
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graph), or the tasks are run in parallel, with data communication between each 
task (typical paradigms involved are PVM, MPI, BSP). 

Desktop grids can be categorized into centralized, hierarchical and peer-to-
peer (distributed) according to the architecture of the components of each 
system. A centralized DG consists of a central server, where resource providers 
donate computing resources during their idle time, and job submitters send 
their computing requests (jobs). Usually a job is divided into smaller, 
independent computing units, called tasks, with their own input data. The 
server distributes these tasks to the available resources, based on some 
scheduling algorithm. Typical examples are BOINC, XtremWeb, and Entropia 
etc. In a hierarchical DG, desktop grids on the lower level can ask for work from 
higher level, or vice versa, desktop grids on the higher level can send work to 
the lower levels. The control of work at the higher level can be realized with 
priority handling at the lower level. A basic DG can be configured to participate 
in a hierarchy, that is, to connect to a higher-level instance of DG (parent node 
in the tree of the hierarchy). When the child node (a stand-alone desktop grid) 
has less work than resources available, it asks for work from the parent. The 
parent node can see the child as one powerful client. An example of such 
hierarchical DG is the SZTAKI Desktop Grid (SZTAKI, 2008). 

In a peer-to-peer DG, there is no central server, in contrast with the 
centralized type. Resource providers have only partial information of other 
providers. They are also responsible for constructing the computational overlay 
network and for scheduling a job in a distributed way, according to each other�s 
capability, availability, reputation or trust. The reliability and performance of 
such P2P systems depend on how the overlay network is constructed, because 
there is no reliable central server. Examples of such systems are CCOF, Messor, 
Paradropper, and Organic Grid.   

Data model concerns classifying of desktop grids based on how 
computational data (both input and output data) is transferred between the 
components of the DG. We are concerned here with data communication 
between job submitter and resource provider on one hand, and between 
different resource providers on the other hand, in the situation when 
communication between running tasks is required (parallel models).  
We identified three data model types: middleware, data servers, and direct 
communication. In the first situation, using the middleware, which connects the 
two components, transfers data. This could be the master (server) in a 
centralized configuration, or all the involved nodes in a P2P configuration. The 
downside of this approach is that there could be a bottleneck in the case of large 
data sets involved, which could affect other communication between the 
components (control, discovery, status, etc.). 

In the data server model, all the data is transferred using another type of 
component in the system: a data server, which is a repository of both input and 
output data. In this case, the job submitter is responsible for uploading the 
input data to the data server, and for retrieving the results, while the job 
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running on the resource provider�s computer is responsible for downloading 
the input data and storing the results on the server after finishing the job. This 
model has the advantage of moving the burden of data transfer wrt 
communication and complexity from the central node to a more dedicated, and 
optimized component. However, there is a complexity added in maintaining 
such a data server, which in some situations might not be necessary. 

The third data model involves direct data communication between the 
components. This could be done either by using a common network file system, 
where each component has access to it, by using a distributed file sharing 
mechanism (P2P Bittorrent), or by using lower lever network based 
communication for data transfer. The type of direct data communication could 
be chosen based on the amount of data transferred, and the frequency with 
which data transfers occur. We can also have the situation when the submitted 
job contains also the input data for the computation. 
 

5.2.3 Level 3, SW.: application, architecture, administration, license 
SW applications to be run on desktop grids can be of different types: legacy 
applications that already exist and are inherited from languages, platforms, and 
techniques earlier than current technology. Most enterprises that use computers 
have legacy applications that serve critical business needs. In order to run such 
application, some kind of virtualization could be necessary, depending on the 
complexity of the application and the resources it needs (third party 
applications or libraries, file system access, specific operating system, etc.). This 
could range from simple, virtual file systems, to more complex virtual 
environments (virtual machines emulating an operating system). 

Another class includes applications written in a high level or interpreted 
programming language, like Lisp, Perl, Java, where in order to run the 
program, a specific run-time environment should be present. The computing 
jobs must be distributed according to each processing resource�s capabilities, 
and provide the appropriate starting mechanism. Web-based and Java-based 
systems have their own drawbacks, e.g. the historically slow execution speed of 
the Java Virtual Machine (JVM) that executes the platform-independent 
bytecode. Another problem comes from the security restrictions imposed on 
Java applets that prevent them to access local storage space or communicating 
with machines other than the host from which they came. Together, these two 
problems may limit the performance and scalability of Java-based systems. 

A whole class of application includes those where the programs could be 
compiled in a programming language (C/C++, Fortran), and where additional 
support for desktop grids could be included. This allows fine tuning the 
application in term of computing performance, but requires an API from the 
DG to be provided. This includes also parallel applications, where different 
communication paradigms are required (message passing, shared memory, 
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etc.). A last type of applications concerns lightweight programs that are highly 
optimized for performance and DG specific. For example, computational 
applications could be made in form of plugins (or shared libraries), which 
contains only the computational problem, the rest of the communication, file 
access, and other access to resources are handled by the supporting middle 
layer application running on the resource provider. In this case, more complex 
abstraction and API are needed from the underlying DG system. 

SW architecture in desktop grids concerns with the operating system of 
different components of the system. This could be Linux, or other Unix versions 
(BSD, IRIX, etc.) when resource providers are nodes from a cluster, or Linux, 
Windows, Mac if resource providers are desktop computers. Thus, a desktop 
grid system should have support for the different operating systems. Many 
desktop grid systems are based on Java for portability. 

SW administration - during the QADPZ development, we have learned 
that another restriction of existing systems, especially middleware based, is that 
each resource provider needs to install a runtime module as administrator. This 
poses some issues regarding data integrity and accessibility on providers� 
computers. QADPZ tries to overcome this by allowing the middleware module 
to run as a non-priviledged user to the local system.  

SW license can be necessary if the desktop grid system is a commercial 
one or not, in case of open source software systems. Beneath a table with the 
classification of the main desktop grid systems according to the above-
introduced taxonomy is presented (Table 5.1). 
 

 Infrastructure Models Software 

DG system 

Resource 
Platform 
Scalability 
Security 

Computing model 
Architecture 
Data comm.. model 

SW application 
SW platform 
SW administration 
SW license 

distributed.net 

- volunteer 
- middleware 
- Internet 
- trust 

- master-worker (M-W) 
- centralized 
- data server 

- set of dedicated only 
- all OS 
- non admin 
- closed 

Entropia 

- volunteer 
- middleware 
- Internet 
- trust 

- master-worker 
- centralized 
- data server 

- set of dedicated only 
- Windows 
- non admin 
- closed 

SETI@home 

- volunteer 
- middleware 
- Internet 
- trust 

- master-worker 
- centralized 
- data server 

- set of dedicated only 
- Linux, Win, Mac 
- non admin 
- closed 

Bayanihan 

- volunteer 
- web-based 
- Internet 
- Java sandbox 

- master-worker 
- centralized 
- middleware 

- Java applet 
- all OS (Java) 
- non admin 
- open source 
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Condor  

- enterprise 
- middleware 
- LAN, Internet 
- authentication 

- M-W, PVM, MPI 
- centralized, (hierarchical) 
- file system 

- legacy, script, compiled 
- Linux, Win, Mac 
- admin 
- license 

XtremWeb 

- enterprise 
- middleware 
- LAN, Internet? 
- authentication 

- M-W, MPI 
- centralized, (hierarchical) 
- middleware 

- Java applet 
- all OS (Java) 
- admin? 
- open source 

QADPZ 

- enterprise 
- middleware 
- LAN, Internet 
- authentication 

- M-W, MPI, PVM 
- centralized 
- file system, data server 

- legacy,script,compiled, 
lightweight 

- Linux,Win,Mac,Unix 
- non admin, admin 
- open source 

BOINC  

- enterprise 
- middleware 
- LAN, Internet 
- authentication 

- M-W 
- centralized 
- data server 

- legacy, script, compiled 
- Linux,Win,Mac,Solars 
- admin 
- open source 

SZTAKI 
LDG  
(BOINC 
based) 

- enterprise 
- middleware 
- LAN, Internet 
- authentication 

- M-W 
- hierarchical 
- data server 

- legacy, script, compiled 
-Linux,Win, Mac, Solaris 
- admin 
- open source 

Javelin 
Javelin++ 

- volunteer 
- web-based 
- Internet 
- Java sandbox 

- M-W 
- centralized 
- middleware 

- Java applet 
- all OS (Java) 
- non admin 
- open source 

Table 5.1. Classification of the main DG systems according to the taxonomy 
 

Hints to choose the most suitable DG for a given problem: if we consider the four 
scenarios that have been presented in Section 4.2.2.5 and try to decide what is 
the best DG for each scenario, we first look at the first column, first entry 
(resource) and if the project is requested to have robustness and reliability 
(major issue for first 3 scenarios) we would better choose the enterprise DG as it 
overcome the volatility of volunteer computing. More, it has accountability and, 
depending on the type of the organization, lacks anonymity (except for 
universities or alike organizations). On the second choice (middleware vs. web-
based), if the ensuring of control and security is crucial we should go for 
middleware platform (first 3 scenarios), while for the 4th scenario we could use 
both. Though, we must remind that the enterprise desktop grid is limited in 
power, and the volunteer computing has virtually unlimited resources.  

As for the scale and security, probably the best option for the first two 
problems is the LAN solution as it ensures privacy and keeps the secrets of the 
application away from un-authorized eyes. The last two, on the other hand can 
go both ways. The models from the second column are strongly influenced by 
the nature and complexity of the application. One choice would be suitable in 
the case of an application that can be broken in small tasks that can run parallel, 
with no communication between them (master-worker), and another for a 
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different type of application, in which tasks can communicate with each other 
(Message Passing Interface - MPI). Moreover, if the application needs a huge 
computational power, we would probably prefer a hierarchical DG, as it can 
borrow power from third parties.  

As for the data communication model, one has to consider the difficulty 
of developing the software that will manipulate the data and the technical 
limitations (within a virtual file system vs. �back and forth� from a data server). 
The main difference in the usage of institutional DGs relatively to public ones 
lies in the dimension of the application that can be tackled. In fact, while public 
projects usually embrace massive applications made up of an enormous 
number of tasks, institutional DGs (much more limited in resources) are better 
matched for small size applications. So, whereas in public volunteer projects 
importance is on the number of tasks carried out per time unit (throughput), 
users of institutional desktop grids are normally more interested in a fast 
execution of their applications, seeking fast turnaround time. 

The last column is easier to work with as many of the issues involved 
here are known before starting to solve a given problem: we have our own 
application or we want to run a pre-defined one, if we have our own, which 
kind it is (Java applet, legacy, script etc.), what platform we use (Linux, 
Windows, Mac etc.), what are the needed administration privileges (admin or 
user), whether we are interested in access to the source code or not, and finally 
if we need a desktop grid for which a commercial license is requested. 
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6 Conceptual Model 

6.1 Introduction 
This chapter describes the framework that was developed with the purpose of 
using distributed computing for large-scale Scientific Computing and 
Visualization. The framework is based on the master-worker paradigm, where 
worker nodes download small tasks from a central master node, execute them, 
and send back the results to the master. Some of the disadvantages in using this 
model in a heterogeneous and dynamic environment are described, together 
with some problems in using it for visualization purposes. Improvements to 
this model are presented, which are meant to increase the performance and 
efficiency. The idea of using dynamic creation of subtasks is presented. 
Subtasks are generated according to the problem�s requirements, taking into 
consideration the available performance parameters of the system (network 
bandwidth, latency, CPU availability and performance). 

6.2 The Master-Worker Model 
Our conceptual model is based on the master-worker paradigm.  
The master-worker computing paradigm also called replicated worker computing 
is built on the observation that many computational problems can be broken 
into smaller pieces that can be computed by one or more processes in parallel. 
That is, the computations are fairly simple consisting of a loop over a common, 
usually compute-intensive, region of code. The size of this loop is usually 
considered to be long. In this model, a number of worker processes are 
available, each capable of performing any one of the steps in a particular 
computation. The computation is divided into a set of mutually independent 
work units by a master node, as it can be seen in Figure 6.1. Worker nodes then 
execute these work units in parallel. A worker repeatedly gets a work unit from 
its master, carries it out and sends back the result. The master keeps a record of 
all the work units of the computation it is designed to perform.  

 

 
 

 

 Figure 6.1 Master-Worker model  
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As each work unit is completed by one of the workers, the master records the 
result. Finally when all the work units have been completed, the master 
produces the complete result. The program works in the same way irrespective 
of the number of workers available - the master just gives out a new work unit 
to any worker who has completed the previous one. 

Whereas the master worker model is easily programmed to run on a 
single parallel platform, running such a model for a single application across 
distributed machines presents interesting challenges. On a parallel platform, the 
processors are always considered identical in performance. In a distributed 
environment, and especially in a heterogeneous one, processors usually have 
different types and performance. This raises the problem of load balancing of 
work-units between the workers in such a way to minimize the total computing 
time of the application. 

The ideal application is coarse-grain and embarrassingly parallel. 
Granularity is defined as the computation-to-communication ratio, with coarse 
grain applications involving small communication time compared to 
computation time, and fine grained application requiring much more time for 
communication than computation. Coarse-grain applications are ideal for 
desktop grid computing because most such computing systems employ 
commodity network links, which have limited bandwidth and high latencies. 
Embarrassingly parallel applications are those problems that easily decompose 
into a collection of completely independent tasks. Examples of such scientific 
problems are: genetic and evolutionary algorithms, Monte Carlo simulations, 
distributed web crawling, image processing, image rendering. 

In a heterogeneous environment, scheduling that includes both problem 
decomposition and work-unit distribution (placement to workers), has a 
dramatic effect on the program's performance. An inappropriate decomposition 
or distribution decision can result in poor performance due to load imbalance. 
Effective scheduling in such heterogeneous environments is difficult. We will 
show that this problem can be overcome using relatively simple heuristics if 
appropriate mechanisms are provided to the scheduler in order to determine 
the computation and communication complexity of the problem. This 
information is then used to decompose the problem and schedule the work-
units in a way that provides good load balance, and thus good performance. 

6.2.1 Decomposition and Distribution of Work-units 
The most important part of parallel programming is to map out a particular 
problem on a multiprocessor environment. The problem must be broken down 
into a set of tasks that can be solved concurrently. The choice of an approach to 
the problem decomposition depends on the computational scheme. A parallel 
program is only useful if it scales efficiently with the number of processing 
elements, in terms of reduced runtime. For the problem's decomposition, this 
means enough tasks are needed to keep all the processing elements busy with 
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enough work per task to compensate for overhead incurred to manage 
dependencies and communication. The drive for efficiency can lead to complex 
decompositions that lack flexibility. There are two different ways of 
decomposing a parallel problem, based on the way and time when the work-
units are created: static and dynamic. 
 
 

 

 

Figure 6.2 Decomposition and Distribution of Work-units 
 

Static decomposition - the master generates all the work-units in the beginning of 
the computation, as it is shown in Figure 6.3.  
 
 
 

 

 

Figure 6.3 Static decomposition strategy 
 
Dynamic decomposition - not all work-units can be generated in the beginning; 
instead, the computation starts with a small number of work-units, and later 
new work-units are created, depending on the results of already executed 
work-units; the master can create or delete dynamically work-units. 
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Figure.6.4 Dynamic decomposition strategy 
 
There are applications where an easy, static decomposition is not possible, and 
a more complicated dynamic decomposition is necessary. This could lead to 
complex decomposition schemes that lack flexibility. The decomposition needs 
to be complex enough to get the job done, but sufficiently simple to allow easy 
maintenance of the application. After decomposing the problem, the work-units 
need to be distributed to the work-units, or scheduled for execution. The key to 
making a parallel program work well is to schedule their execution so that the 
load is balanced between the processing elements. Distribution of work-units to 
the workers can be of two types: 

Static distribution - the master processor decides on the distribution of 
work at the start of the computation, by assigning the work-units to the 
workers; this is suitable in those situations where the relative amount of time 
required for each work-unit is known and the workers have a well known and 
stable load. This method works when it is possible to statically determine how 
many work-units to assign per worker in order to achieve a balanced load.  

Dynamic distribution - the distribution of work-units varies between 
workers as the computation proceeds; this is a good strategy when the 
execution time of each work-unit is unpredictable, especially when the 
processing elements are different or when the amount of load that can be 
supported by each worker is unknown and possibly changing. The most 
common approach used for this is to use a queue of work-units at the master; 
after execution, each work-unit is removed from the queue.  
Workers which are faster or which receive work-units with shorter execution 
times will get more work-units. 

The static distribution approach is more suited to homogeneous 
environments, where all processing elements are the same, and the work-units 
have a similar execution time. In contrast, dynamic distribution is most suited 
to heterogeneous environments, with applications where each individual work-
unit can have a different execution time. This strategy works also in the case 
where the number of workers is changing during the computation. 
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6.2.1.1 Static decomposition, static distribution 
We describe first the simplest master-worker algorithm. We consider a fixed, 
known from the beginning, number of workers. The problem is decomposed 
into a fixed number or work-units, usually dependent on workers� number 
(Figure 6.5). The decomposition is made considering that each worker has the 
same processing power and that each work-unit requires the same computing 
time. All work-units are handed out to the workers at the beginning of the 
overall computation. The workers start executing work-units, and will contact 
the master each time when finish execution of a individual work-unit, to send 
back the results of the computation. The master will assemble all partial results 
received from the workers into the final result of the application. The algorithm 
is described in the pseudo-code below. 
 

 

 

 

Figure 6.5 Computation times on workers: 
static decomp-static distrib 

 
 

Master - static decomposition, static distribution 
read data 
create all work-units 
assume fixed number of workers 
assign equally work-units to workers 
FOR each worker 

send all assigned work-units to worker 
ENDFOR 
WHILE not all results received 

receive result from worker 
process result 

ENDWHILE 
assemble final result 

 
 

Worker - static decomposition, static distribution 
receive all work-units from master 

FOR each work-unit 
execute work-unit 
send result to master 

ENDFOR 
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The simplicity of the algorithm makes it very easy to implement. Each worker 
knows at the beginning exactly what it needs to compute, and doesn't require 
additional communication with the master to get new work-units. This makes 
the algorithm very efficient, by minimizing the time spent in communication 
and maximizing the total time spent on doing computation at the workers. 
Unfortunately, the algorithm works only for a limited number of applications 
and cannot be used in many situations. The algorithm is not very flexible, 
especially in a heterogeneous environment, where different processors can have 
very different computing power, such that the same work-unit can take 
different amounts of time to compute on different workers. Quite often, in 
many applications, work-units have different computing time, even on the 
same processor. This could result in a large imbalance in the computation time 
spent by different workers. Another disadvantage of the static algorithm is that 
it cannot handle a dynamic pool of workers. This situation can occur when 
computing power is harvested from the idle CPU cycles of desktop computers. 
Available workers can appear and/or disappear, thus the total number of 
workers, which can be used, is varying over time. 

Visualization algorithms that can use this type of master-worker are 
those, which are easily decomposed into independent tasks. Here, we can 
mention ray tracing and volume visualization. Ray tracing is a widely used 
technique to generate realistic looking images on a computer, and is recognized 
as a powerful technique. Rays are reflected and refracted according to the 
reflectivity and transparency of the surfaces. The process is repeated recursively 
with the reflected or refracted rays changing the light intensity at all 
intersection points. However, the ray tracing techniques require heavy 
computing power, since they deal with a large number of floating-point 
calculations for the movement of millions of rays. The required computing 
power increases especially sharply when many objects are needed to be 
rendered. Parallelism inside a ray tracing algorithm is observed in computing 
individual rays. The goal is to distribute all pixels into a number of processors 
in an efficient manner. 

6.2.1.2 Dynamic decomposition, static distribution 
A more advanced master-worker algorithm is needed in the case of dynamic 
decomposition of the problem. We still consider a fixed number of workers, 
known from the beginning. The problem however is considered as not possible 
to be decomposed into all work-units from the beginning. This can either 
because not all the work-units are known from the beginning, or because there 
are too many of them, and would be inefficient to store them in memory at 
once. Instead, only a smaller subset of work-units is generated, based on the 
number of available workers. The master starts by sending out one work-unit 
for each worker, then waits for the results. Once a worker finishes its work-unit, 
it sends the results back to the master and requests a new work-unit. The 
master receives the result and sends a new work-unit to the worker (Figure 6.6).  
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Figure 6.6 Computation times on workers: dyn. decomp-static distrib 
 
Based on this result, the master can also generate new work-units or delete 
existing ones. After the workers execute all work-units, the master assembles 
the final result and notifies all the workers about the termination of the 
application. The algorithm is described in pseudocode below: 
 
 

Master - dynamic decomposition, static distribution 
read data 
create a set of work-units 
assume fixed number of workers 
FOR each worker 

send one work-unit to worker 
ENDFOR 
WHILE not all results received for existing work-units 

receive message from worker 
IF message is request 

send one work-unit to worker 
ELSIF message is result 

process result 
IF necessary 

create new work-units 
ENDIF 

ENDIF 
ENDWHILE 
FOR each worker 

send stop message to worker 
ENDFOR 
assemble final result 

 
 

Worker - static decomposition, static distribution 
REPEAT 

send request for work-unit to master 
receive message from master 
IF message is work-unit 
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execute work-unit 
send result to master 
ENDIF 

UNTIL message is stop 
 

 
Work units are handed out to the workers upon request. Each time a worker is 
idle, it sends a request for new work-unit to the master. The master answers by 
sending a work-unit from the pool. When receiving the results back from the 
workers, the master can create new work-units, or delete existing ones. The 
master will give work-units to the workers until all are solved and no more new 
work-units are created. The master assembles the final result and notifies all 
workers to stop. The advantage of this algorithm is that it provides certain 
amount of load balancing. Each time a worker is idle, it requests a new work-
unit. This way the workers are doing computation most of the time. However, 
there is a waiting period of time before starting each work-unit, after the 
request is sent to the master. This waiting time depends on many variables, for 
example how busy the master is, how large the work-unit messages are, etc. 
The algorithm is more complex than the previous one, however many more 
applications are suitable for this model. Visualization algorithms that can use 
this type of master-worker are for example line integral convolution. 

6.2.1.3 Dynamic decomposition, dynamic distribution 
We consider now the situation where the number of workers is changing 
during the computation. Often, when using idle computational power of 
desktop computers, the availability of individual computers can vary over time. 
In our master-worker model it means that new workers can appear in the 
system and/or other workers can disappear. This can happen for example 
when the owners are using computers, or when computers are started or 
stopped. The algorithm is described in pseudocode that is presented beneath. 
 
 

Master - dynamic decomposition, dynamic distribution 
read data 
create a set of work-units in state "new" 
WHILE not all results received for existing work-units 

t = time interval to next timeout 
wait(t) for message from worker 
IF timeout from wait 

change all timed-out work-units from state "exec" to state 
"new" 
ELSE IF message is requested 

send one "new" work-unit to worker 
change work-unit to state "exec" and set timeout interval 
ELSIF message is result 
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process result 
remove work-unit 
IF necessary 

create new work-units 
ENDIF 

ENDIF 
ENDIF 

ENDWHILE 
FOR each worker 

send stop message to worker 
ENDFOR 
assemble final result 

 
 

Worker - dynamic decomposition, dynamic distribution 
REPEAT 

send request for work-unit to master 
receive message from master 
IF message is work-unit 

execute work-unit 
send result to master 

ENDIF 
UNTIL message is stop 

 

 
The algorithm is an extension of the one presented in the previous section, with 
static distribution of work-units. The problem is split up into work-units 
dynamically, by generating a few work-units at the beginning and more during 
the processing. Work-units are sent to each worker upon request, when these 
are available for computation. The algorithm takes into account the fact that 
workers can become available during the computation. This can happen either 
after a work-unit has been successfully processed, or in the middle of its 
computation. In order to be able to deal with this situation, the master assigns 
to each work-unit a timeout interval for processing. This is done when it is sent 
to a worker. If the master doesn't receive the result from the worker after this 
timeout interval, the work-unit is resent to another worker. 

The work-units can have two possible states: 
• new - a work-unit has the state new when it is created or when it is 

timed-out (i.e. it was sent to a worker, but the result was not received 
in the specified amount of time); 

• exec - a work-unit has the state exec when it is sent to a worker  
for processing; the work-unit gets also associated a timeout interval  
for processing. 
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The algorithm is able to handle the situation of having a variable number of 
workers available. This is very useful when workers are ordinary desktop 
computers. The algorithm is assigning a timeout interval to each work-unit 
when sent to a worker, which has to complete the computation within this 
interval. The problem, which arises here, is in deciding the value of this 
timeout. The simplest solution is to use a fixed, predetermined interval, based 
on an estimation of computation time on the worker. This, however, is not 
always possible. A special case is when having a heterogeneous environment, 
with workers having different processing power. Assigning the same timeout 
interval to work-units assigned to slower and faster workers is not a good 
choice. The master needs to detect in time that a worker has failed to compute a 
work-unit, so that it can send it to another worker (Figure 6.7). 
 

 

 
 

 

Figure 6.7 Computation times on workers: 
dyn. decomp-dyn. distrib 

 

A disadvantage of the algorithm consists in its increased complexity on the 
master side. The master has to keep track of each work-unit, its completion or 
failure. This might increase the CPU time used by the master itself for 
managing the work-units, creating a possible bottleneck in the system. 
Optimized data structures are required for an efficient implementation. 

6.3 Improved Master-Worker Model 
We present further an improved version of the master-worker model. The 
model is based on the algorithm with dynamic decomposition of the problem 
and dynamic number of workers. The improvements concern increasing the 
performance of the original model, by increasing the time workers are doing 
computations, and decreasing the time used for communication delays. This is 
achieved by using different techniques, such as pipelining of the work-units at 
the worker, redundant computation of the last work-units to decrease the time 
to finish, overlapped communication and computation at the workers and the 
master, use of compression to reduce the size of messages. We will describe in 
the following subsections each of these techniques. 
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We define the efficiency of a worker as being the ratio between the amount of 
time the worker spends doing computation and the amount of time the worker 
is available for doing any work: 
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We will use the efficiency as a measure to compare the improved  
master-worker model with the original master-worker model. The new model 
tries to improve the efficiency of the workers. 

6.3.1 Pull vs. Push for work-units 
In the original master-worker model, each time a worker finishes a work-unit, it 
has to wait until it receives the next work-unit for processing. In situations 
where this communication time is comparable with the time needed for 
executing a work-unit, the efficiency of the worker is reduced very much. The 
time intervals used for communication and computation (processing) are 
described in Figure 6.8. 
 
 

 
 

 

Figure 6.8 Worker timeline in execution 
 
The master-worker model is using the pull technology, which is based on the 
request/response paradigm. This is typically used to perform data polling.  
The user (in our case the worker) is requesting data from the publisher (in our 
case the master). The user is the initiator of the transaction. In contrast,  
a push technology is using a different approach, which relies on the 
publish/subscribe/distribute paradigm. The user subscribes once to the publisher, 
and the publisher will initiate all further data transfers to the user. This is better 
suited in certain situations. We first extend the master-worker model by 
replacing the pull technology with the push technology, as it is illustrated in 
Figure 6.9. In this model, the worker doesn't send any more requests for work-
units. Instead, it first announces its availability to the master when it starts, and 
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the master is responsible for sending further work-units. The workers just wait 
for work-units, and process them when received. At the end of each work-unit, 
it sends back the results to the master. The master will further send more work-
units to the worker. This moves all decisions about initiating work-units 
transfers to the master, allowing a better control and monitoring of the overall 
computation. The use of the push technology also allows further improvements 
to the master-worker model and will be detailed in the following sections. 
 
 

 

 

Figure 6.9 Pull vs. Push technology 

6.3.2 Pipelining of work-units 
Reducing the total time spent in waiting for communication can increase the 
efficiency of the worker. One method to do that is to use work-units pipelining 
at the worker, thus making sure that the worker has a new work-unit available 
when it finishes the processing of the current work-unit. Pipelining is achieved 
by sending more that one work-unit to the workers, as shown in Figure 6.10.  
 

 

 
 

 

Figure 6.10 Pipelining of worker tasks 
 

Each worker will have at least one more work-unit in addition to the one being 
processed at that worker. This is done so that the worker, after finishing a 
work-unit, will have ready the next one for processing. In the beginning, the 
master sends more than one work-units to the worker, then after each received 
result, sends another work-unit to be queued on the worker. The worker does 
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not need to wait again for a new work-unit from the master after sending the 
result, the next work-unit being already available for processing.  

The immediate advantage of pipelining is that the waiting time for a new 
work-unit is eliminated. This is described in Figure 6.11. While the worker is 
processing the next work-unit, a new work-unit is sent by the master and is 
queued in the operating system. When using non-blocking communication, the 
waiting time for sending the result to the master after finishing a computation 
can be also eliminated. 

 

 
 

 

Figure 6.11 Worker timeline for unit pipeline 
 

Keeping one new work-unit available at the worker seems to be enough to 
reduce the waiting time for communication. However, there is a situation when 
this is not adequate. It can happen that the execution time of a work-unit is 
much shorter than the communication time (consisting of sending back the 
result and receiving the new work-unit). In this case, the worker finishes the 
current work-unit, but the new one is not yet received. Thus, a certain waiting 
time is involved for receiving it (see Figure 6.12). 
 
 

 
 

 

Figure 6.12 Unit pipeline - worst case 
 
If there are many work-units with short execution times, than the overall 
waiting time can increase significantly, reducing the efficiency of the worker. 
The condition for this not to happen is the following:  
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This situation can be improved by pipelining more than two work-units at the 
worker, thus using a larger pipeline. The master starts by sending out a number 
of work-units to the worker to fill the pipeline. Each time a result is received 
back from the worker, the master sends a new work-unit, thus keeping the 
pipeline full. This algorithm works as long as the average execution time for a 
work-unit is larger than the average communication time for sending a result 
and a new work-unit between the worker and the master. If the communication 
time is too large, the pipeline will eventually become empty and the worker 
will need to wait for new work-units. 

6.3.3 Sending more work-units at a time 
To overcome this situation, the master needs to send more than one work-units 
per each message. The master starts by sending a message containing more than 
one work-unit, and then keeps sending them as long as the pipeline is not full. 
Each time it receives a result, it sends another work-unit, to compensate the 
decreasing number of work-units from the pipe. If the worker sends only one 
result per message back to the master, and this only one new work-unit, then 
eventually the pipeline will become empty. In order to prevent that, the worker 
will need to send back more results at a time. 
 
  

 
 

 

Figure 6.13 More results at a time 
 
We could consider, for example, that the number of results per message is equal 
to the number of work-units per message sent from the master. In this case, all 
results from the work-units, which came in one message, are sent back to the 
master the same way in one message after all of them were successfully 
computed. This would solve the previous problem if the time to send a larger 
message (with more work-units) is much smaller than the time to send the 
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individual messages (for each work-unit). This is usually possible if the data 
required to describe one work-unit is small enough, so the messages are kept 
short. However, it could still happen that communication time is larger than the 
execution time, so that the worker will end up waiting for new work-units. The 
condition for this not to happen is the following: 
 
 

nexecmresnwu ttt ,,, ≤+  for the average time values of multiple work-units  
per message and execution. 

 

6.3.4 Adaptive number of workers 
As mentioned before, in a heterogeneous environment based on idle desktop 
computers, the total number of workers available could be changing during the 
computation. New workers can register to the master, and other can become 
temporarily unavailable. The master controls the total number of workers used 
for computation, since he is the one sending out work-units to the workers. If 
necessary, the master can choose not to use all the available workers for 
computation, only a few of them. This might be for different reasons, as 
described further. In the master-worker model, the master can become a 
bottleneck, especially when there are a lot of workers, which are connecting to 
get work-units and send results back. Overloading the master could cause the 
bottleneck. Because the master has also to do a small amount of processing each 
time when it receives results from the workers, if too many workers connect to 
the master, the processing resource available might not be enough and the 
request will be delayed. There is an upper limit on the number of workers, 
which can connect to the master without overloading it. Finding out this 
number is not easy at all, and it depends on a variety of parameters from the 
entire system: computational capabilities of the workers and the master, 
communication delays, the amount of processing involved for each results, etc.  

Another bottleneck in the system could be caused by too much 
communication. Considering that there is enough computational power on the 
master to serve a large number of workers, it could happened that there are too 
many messages exchanged between the master and workers, thus 
communication delays can occur. This might happen either because there are 
too many messages per time unit, or because the amount of data transferred is 
too high, exceeding thus the available network bandwidth. On the contrary, if 
there is too few workers used, then the total execution time of the computation 
will be too large, not exploiting all the resources available. This suggests that 
there is some optimum for the number of workers, which can increase the 
overall efficiency of the whole computation, and reduce the time to complete it.  
We define the overall efficiency of the computation as being the ratio between 
the total amount of time since the beginning of the computation and the sum of 
execution times for all completed work-units on all workers: 
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We propose an adaptive algorithm for the number of workers, based on 
performance measures and estimates of execution times for work-units and 
communication times for sending/receiving messages. The number of workers 
used is automatically reduced if the efficiency of the computation decreases. We 
employ a heuristic-based method that uses historical data about the behavior of 
the application. It dynamically collects statistical data about the average 
execution times on each worker. 

6.3.5 Adaptive timeout interval for work-units 
In the master-worker algorithm described for the dynamic number of workers 
in pseudocode, the suggested approach for selecting the timeout interval for the 
work-units was to fix it in the beginning of the computation for each worker. 
We propose here an adaptive algorithm for changing dynamically this timeout 
value for each individual worker. Each new timeout value is based on the 
average processing times for the last work-units at that worker.  

The processing time for each work-unit is the time interval from the 
point the work-unit is sent out to the worker and until the result is received 
back. It consists of the communication times used for sending the work-unit 
and receiving back the result, plus the execution time of that work-unit. The 
timeout is recalculated each time a new result is received from the worker. Each 
result message will carry in addition the effective execution time for that work-
unit on that particular worker. 

 
 

Figure.6.14 Model timeout history 
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6.3.6 Use of multithreading 
The multithreaded programming paradigm allows the programmer to indicate 
to the run-time system, which portions of an application can occur 
concurrently. Synchronization variables control the access to shared resources 
and allow different threads to coordinate during execution. The paradigm has 
been successfully used to introduce latency hiding in distributed systems or in a 
single system where different components operate at different speeds. 

The paradigm of programming with multiple threads of execution can 
provide many benefits for the applications. In our situation, it can provide good 
runtime concurrency, while parallel programming techniques can be easier 
implemented. The most interesting and probably most important advantages 
are performance gains and reduced resource consumption. Operating system 
kernels supporting multithreaded application perform thread switching to keep 
the system reactive while waiting on slow I/O services, including networks. In 
this way, the system continues to perform useful work while the network or 
other hardware is transmitting or receiving information at a relatively slow rate.  

Another benefit of multithreaded programming is in the simplification of 
the application structure. Threads can be used to simplify the structure of 
complex, server-type applications. Simple routines can be written for each 
activity (thread), making complex programs easier to design and code, and 
more adaptive to a wide variation in user demands. This has further 
advantages in the maintainability of the application and future extensions. The 
multithreaded paradigm can also improve server responsiveness. Complex 
requests or slow clients don't block other requests for service, the overall 
throughput of the server being increased. 

6.4 Resource Estimation 
The user of the desktop grid systems needs to know what resources are 
available in the grid, so that it can formulate more efficiently the requirements 
for the actual computing job. The system should be able to provide an accurate 
overview of the available resources. Compared with a classic parallel system, or 
a dedicated computer cluster, where the available resources are well known, in 
a desktop grid, their availability is very dynamic: new users can join to the 
system, other users might use their desktop, making unavailable computing 
resources, network resources can change, due to different, uncontrollable traffic 
on the net and so on. We are mainly concerned with two types of resources in 
the system: network and computing.  

6.4.1 Network Performance 
Distributed systems are becoming increasingly dependent on network 
estimation: the ability to determine performance along one or more network 
paths. These include both estimates of network latency and bandwidth. 
Producing such quality estimates is challenging because network observations 
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in distributed systems are noisy, and could be influenced by other 
communication. The master can measure to the latency and bandwidth between 
it and the workers by observing the exchanges with them. This can be done in 
an active way, where the master generates benchmark traffic to the workers and 
measures the parameters. This can be done with simple ping-like messages to 
measure the roundtrip time, and implicitly the latency, or with more complex 
data traffic to estimate the bandwidth.  

The other way of measuring is the passive way, where the master 
measures different times during the real execution of the job. The master 
measures the elapsed time between submitting a task and receiving an 
acknowledge response. The worker responds also with the time spent between 
receiving the request and issuing the response, i.e. the service time. This allows 
the master to consider networking costs separately from other delays. This 
method provides insight to the master about possible bottlenecks in the 
communication, and can decide for example not to send anymore tasks to 
workers having large communication delays. 

6.4.2 Computing Power 
We need also to estimate the computing power of each worker that might be 
used for computation. This is needed only if different types of workers are 
involved in a job (distributed computation). If all the workers have the same 
hardware and software architecture, then most likely their performance is 
identical. A very simple, rough estimate could be based on the clock frequency 
of the worker's CPU. This, however, does not take into consideration the 
different CPU architectures, different clock speed, or different cache memories. 
A more realistic estimate would be to run a standardized CPU benchmark on 
each worker in order to have an estimate of the workers� potential. In reality, 
different benchmarks can give different results when comparing two 
processors, depending on which algorithms each benchmark is using. It also 
depends on what optimizations are possible for each processor type for the 
given benchmark. The situation where a certain benchmark is favoring one type 
or architecture can occur. Thus, choosing the right benchmark is essential to 
obtain a good estimate of the performance for comparing different workers.  

We propose a more realistic approach for estimating the computing 
power of each worker: at the beginning of each job, the master sends to each 
worker the same, initial task. Based on the computing time of each worker for 
this task, the master can have a much better overview of the real computing 
capabilities of each worker. The size of the initial should be relatively small, 
such that not too much time is wasted for the benchmark, and also, it should be 
based on the same algorithm as the rest of the tasks from the job to be run. The 
advantage of this approach in comparison with a standardized benchmark is 
that we have a much better, problem dependent benchmark, which is more 
relevant in comparing the different workers. The master can make a better 
comparison of the computing performance of each worker for the given job. 
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There is however a slight increase in the computational time of each job, due to 
the initial benchmark. Another disadvantage is that the job submitter (user) 
should provide a smaller initial task. This can be done either explicitly by the 
user, in the job description, when submitting the job, or the decision of selecting 
the initial task could be done by the master. The master can simply choose the 
first task from the job to be submitted as the initial benchmark task to each 
worker, or it can choose a random task from the job description. 

Based on the results of the benchmark, the master can make different 
decisions to improve the overall throughput of the job to be submitted. For 
example, it can discard very slow workers from taking part in the job. In case of 
a parallel job, where tasks submitted to each worker are relatively similar in 
size, the master could choose similar workers in terms of computing 
performance. This can minimize the wasted computing power when tasks of 
similar size are executed and the more powerful workers are waiting results 
from the slower workers. The user can provide such information about the jobs 
in the task to the master, in the job description.  

6.5 Resource Monitoring 
To address efficient usage of networked resources, like computing, storage, and 
communication resources, it is compulsory to know the availability and usage 
of the resources in a continuous way, rather than isolated. Monitoring and 
profiling would provide detailed information with an unobtrusive, continuous, 
and application independent view for the monitored nodes. In desktop grid 
environments this is particularly challenging because the desktop PCs are 
volatile, frequently leaving and joining the system, thus making it difficult to 
locate all the monitored nodes at any time. The knowledge of dynamic resource 
properties is vital for improving application performance. 

In our approach, the resources under investigation for monitoring are: 
computing (CPU, memory) and networking. For each such resource we have 
identified a set of metrics to capture the dynamics of resources: (1) CPU: idle 
time, user time, system time, number of processes, load; (2) memory: available, 
max. used by processes, cache, page faults; and (3) network: bandwidth, 
packets transferred, bytes transferred, packets dropped. Periodically, the 
metrics for these parameters are sampled and the resulting values are 
centralized and made available to the user in a friendly way. Depending of the 
usage of resources, some parameters are updated more often then the others. 

The required network communication for transmission of monitoring 
parameters should interfere as little as possible with the rest of the job 
communications. This is especially important in the case of fine-grain parallel 
applications, where communication is crucial. Monitoring data packets should 
be small, and the frequency with which they are transmitted should depend on 
the usage of the resources. It is also possible to send such information after jobs 
are finished, and before others are started, minimizing the interference. 
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We need to maximize the time spend for computation and minimize the time 
spent for communication, by using some of the techniques that are beneath: 
$ overlap computation with the communication on the worker by using 

separate threads for them (both send and receive); 
$ minimize time spent doing communication by reducing the size of the 

transferred messages: efficient packing of information, use of compression; 
$ pipeline work-units on the worker - minimize the time a worker has to wait 

for getting a new work-unit; 
$ make workers inter-communicate - if this reduces redundant computations. 

6.6 Scheduling 
In this section we present the scheduling problem adopted in this work and we 
present also our proposed policy to solve it.  Efficient scheduling of a master-
worker application in a cluster of distributive owned resources should provide 
answers to the following questions:  
o How many workers should be allocated to the application? A simple approach 
would consist of allocating as many workers as tasks are generated by the 
application at each iteration. However, this policy will result, in general, in poor 
resource utilization because some workers may be idle if they are assigned a 
short task while other workers may be busy if they are assigned long tasks;  
o How should tasks be assigned to the workers? When the execution time incurred 
by the tasks of a single iteration is not the same, the total time for completing a 
batch of tasks depends on the order in which tasks are assigned to workers.  
The problem of scheduling master-worker applications on cluster environments 
has been investigated recently in the framework of middleware environments 
that allow the development of adaptive parallel applications running on 
distributed clusters. They include NetSolve, Nimrod and AppLeS. NetSolve 
and Nimrod provide APIs for creating task farms that can only be decomposed 
by a single bag of tasks. Therefore, no historical data can be used to allocate 
workers. The AppLeS (Application-Level Scheduling) system focuses on the 
development of scheduling agents for parallel applications but in a case-by-case 
basis, taking into account the requirements of the application and the predicted 
load and availability of the system resources at scheduling time. 

There are other works in the literature that have studied the use of 
parallel application characteristics by processor schedulers of multi-
programmed multiprocessor systems, typically with the goal of minimizing 
average response time. The results from these studies are not directly applicable 
in our case because they were focused on the allocation of jobs in shared 
memory multiprocessors without considering the problem of task scheduling 
within a fixed number of processors. However, their experimental results also 
confirm that iterative parallel applications usually exhibit regular behaviors 
that can be used by an adaptive scheduler.  
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7 The QADPZ System 
This chapter describes the QADPZ ['kwod 'pi: 'si:] system, a desktop grid 
environment for running compute-intensive tasks in a distributed way, using 
the computational resources from already existing desktop-class machines from 
an Intranet (corporate-wide) or from the Internet (worldwide). Although the 
idea of using idle computational resources from existing computers is not new, 
few systems exist today which could easily provide the necessary support for 
our Scientific Computing and Visualization needs. Besides the distributed 
capabilities, the system provides for parallel computing as well. The reasons for 
building a new such system are described. Furthermore, the chapter describes 
the design and implementation of the QADPZ system, with details of the 
requirements, architecture, communication, security and user interface. We 
explain how this system supports the conceptual model described, and present 
some of the more advanced features of the system. The system described is not 
limited to Scientific Computing and Visualization, and it can be used for other 
types of computational intensive applications. 

7.1 Description 
QADPZ (Quite Advanced Distributed Parallel Zystem) is a system for 
heterogeneous desktop grid computing. The system allows a centralized 
management and use of the computational power of idle computers from a 
network of desktop computers. Users of the system can submit compute-
intensive applications to the system, which are then automatically scheduled 
for execution. The scheduling is made based on the hardware and software 
requirements of the application. Users can later monitor and control the 
execution of the applications. Each application consists of one or more tasks, the 
smallest execution unit of the system. Applications can be independent, when 
the composing tasks do not require any interaction. They can also be parallel, 
when the tasks communicate between each other during the computation. 
Parallel communication is done using a subset of the widely used MPI 
standard. Thus, the system provides for both task- and data-parallelism. 
QADPZ can operate both in conditions of an open Internet environment and of 
a closed local network which supports the family of TCP/IP protocols. 

7.2 Justification for a New Desktop Grid System 
Although the idea of using the idle computational resources from existing 
desktop computers is not new, the use of such distributed systems, especially in 
a research environment, has been limited, however, due to a lack of supporting 
applications, and because of security, management, and standardization 
challenges. Existing systems that were available in July, 2001, the date of first 
QADPZ release, were specialized towards a very limited number of 
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computational intensive problems, or too general to provide the necessary 
support for specific type of applications. For the purpose of this thesis, a flexible 
tool was needed to conduct experiments that concern Scientific Computing and 
Visualization. Also, at the time QADPZ has been developed, most of the 
existing systems have had very restrictive licenses, which had not permitted 
adaptation of the code to different requirements.  

More, the majority of the existing desktop grid systems, as it has been 
shown in the previous chapter, provide no support for parallel application, 
when communication between programs running on different computers is 
necessary during the computation. This makes difficult to use such systems for 
our purpose, where more than one desktop computer are needed to solve a 
certain problem. Tasks with independent parallelism are suited for this type of 
computing. For example, in SETI@home, work unit computations are 
independent, so participant computers never have to wait for or communicate 
with one another. If a computer fails while processing a work unit, the work 
unit is eventually sent to another computer. Public-resource computing, with its 
frequent computer outages and network disconnections, seems ill-suited to 
parallel applications that require frequent synchronization and communication 
between nodes. However, scheduling mechanisms that find and exploit groups 
of LAN-connected machines may eliminate these difficulties.  

To summarize, the need to develop the QADPZ desktop grid system has 
arisen from the following main reasons: 

$ many existing systems tended to be highly specialized towards a very 
limited number of computationally challenging problems, and hence did 
not allow the degree of flexibility that was desired; 

$ source code was generally not available, hence making any novel non-
standard applications, extensions and analyzes difficult; 

$ very few of the existing systems allowed specific considerations to be 
made wrt the challenges of scientific computing and visualization; 

$ most of the existing systems usually have a complicated deployment 
procedure, requiring high-level, privileged access to the desktop 
computers; this makes very hard to use such systems on a larger scale, 
and also makes further maintenance of the computers more complicated; 

$ the front-ends of most existing systems did not match up to current 
expectations of user-friendliness, which limits very much the possibility 
of using these systems on a day by day basis; 

$ many of today's networks of desktop computers are heterogeneous, thus 
requiring a distributed computing system with support for different 
architectures and different kind of operating systems. 

All these reasons have lead to the development of a new tool for desktop grid 
computing: the QADPZ system. 
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7.3 Design and Implementation 

7.3.1 Requirements 
Based on the reasons mentioned earlier, we have set up a set of requirements 
that a successful desktop grid computing system should satisfy in order to 
support applications in Scientific Computing and Visualization. The overall 
goal of the system was to be friendly, flexible and tailorable to many different 
requirements. The main prerequisite is therefore an open architecture that can 
evolve in pace with the need and challenges of the real world. 

We specify two sets of requirements for the system, as it can be seen 
from Figure 7.1- one for the whole system, mostly from a functionally point of 
view, and another set for the interface of the system. The interface of the system 
covers both user interfaces and programming interfaces. Additionally, we 
describe a set of non-functional requirements, concerning more the 
development of the system itself. 
 

 
 

 

 Figure 7.1 QADPZ requirements  

7.3.1.1 System Requirements 
System requirements are related to the core of the system and are concerning 
mainly with the sharing and management of resources and application jobs in a 
heterogeneous environment, but also involve performance and usability of the 
system as required by our conceptual model (see Figure 7.2).  
 

 

 

 

Figure 7.2 QADPZ system requirements 
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These requirements are listed further on: 
$ resource sharing: the most important resources that need to be shared are 

the idle computational cycles of the desktop machines which contribute 
to the system; it should also be possible to share other kind of resources 
from the computers, like for example storage space; 

$ resource management: the system should be able to manage efficiently the 
available shared resources; furthermore, owners of desktop computers 
which are sharing resources should keep control of them, by allowing 
owners to define use policies and retract the resources if they want that; 

$ job management: the user should be able to submit computational jobs to 
the system, which will be executed using the shared computational 
cycles; it should be possible to monitor and control job executions;  

$ heterogeneity: the system should be possible to deploy on a network of 
heterogeneous desktop computers, with different architectures (Intel, 
RISC, etc.) and different operating systems (UNIX type, Windows, Mac 
OS); it is the responsibility of the user submitting the jobs to provide the 
appropriate binary files for execution on the different platforms; 

$ simple installation and maintenance: the system should be easy to install on 
a large number of computers in a network, and further maintenance of 
the installed programs should be minimal;  

$ parallel programming support: the system should support different kind of 
parallel programming paradigms, for example both task- and data-
parallelism; it should be preferable to use well known standards for this;  
MPI is an example of parallel programming standard; 

$ network support: the system should work in a LAN environment, but it 
should also allow the possibility to be used over the Internet; the higher 
level communication protocol used between different components of the 
system should be based on both TCP/IP and UDP/IP families of 
protocols. The reasoning for this dual support will be given later; 

$ autonomous features: the system should be able to deal with its own 
complexity, by supporting different autonomic features: self-healing, 
self-management, self-knowledge, self-configuration, self-optimization; 

$ provide performance measurements: the system should be able to provide to 
the user some information about the performance of the system, which 
could be used for better usage of the available resources; 

$ multi-project use: many projects have downtime and shortage of tasks. 
Participation in multiple projects helps to cope with projects� downtime; 

$ on-line/off-line support: the system should provide support for both batch 
and interactive type of applications; in a batch setting, the user submits 
jobs which will be executed at a later time, when resources become 
available; in contrast, interactive jobs provide real-time feedback of the 
execution; the user can inspect the partial result and interact with the 
execution of the application. 
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7.3.1.2 Interface Requirements 
The interface requirements of the QADPZ system can be split up into two parts. 
One is for the user interface, concerned with the graphical interface by which the 
human user accesses the system. With this interface, the user can either 
monitor, or control the behavior of the system. The other interface is the 
programming interface (API), which allows different user applications to interact 
with the QADPZ system (see Figure 7.3).  
 
 

 

 

Figure 7.3 QADPZ interface requirements 
 
All of these requirements are enlisted beneath:  

$ personalization: the system should provide different levels of access to the 
users, according to their skills and personal preferences; users without 
strong programming skills should be able to use the system without 
difficulty, even if only for easy tasks; more advanced users should be 
provided with a programming API to interface more efficiently with the 
system and use the full capabilities of it; 

$ job management interface: there should be a simple, preferably platform 
independent graphical user interface, to allow submission, monitoring 
and control of the different computational jobs in the system; 

$ resource sharing interface: the owner of a desktop computer should be 
provided with a simple and intuitive graphical user interface that allows 
her to control the sharing of his computational and storage resources; 

7.3.1.3 Non-functional Requirements 
Non-functional requirements of the system are constraints on various attributes 
of these functions of the system (see Figure 7.4). The software tools have been 
developed as free/open source software, which is a natural choice for modern 
research - it encourages integration, cooperation and boosting of new ideas, in a 
very effective way. We have decided to build QADPZ using C/C++, both for 
reasons of high performance and object-orientedness of the language.  
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High performance was required by the nature of Scientific Computing and 
Visualization, especially when handling large data sets. The object-oriented 
features provided by the C++ language were fully employed, together with 
suitable advanced object oriented design patterns. This promoted software 
component reuse and significantly contributed to the maintainability, flexibility 
and extensibility of the system, all very important requirements of such a 
distributed and heterogeneous system. 
 
 

 

 

Figure 7.4 QADPZ non-functional requirements 
 
Modularity of the system was another significant requirement. This provided for 
the source code for an object to be written and maintained independently of the 
source code for other objects. It also allowed an object to be easily passed 
around in the system. Important was also simplicity: software objects were 
design to model real world objects, so the complexity of the system has been 
reduced and the structure has become much more clear. 

7.3.2 Architecture 
The QADPZ system has a centralized architecture, based on the client-server 
model, which is the most common paradigm used in distributed computing. 
The paradigm describes an asymmetric relationship between two processes, of 
which one is the client, and the other is the server. Almost all applications based 
on this paradigm involve multiple clients, however they can involve one or 
multiple servers. In our case, the server manages the computational resources 
available from the desktop computers. Offering a service, which can be used by 
other processes, does this. The client is a process that needs the service in order 
to accomplish a certain work. It sends a request to the server, in which it asks 
for the execution of a concrete task that is covered by the service. Usually, the 
server carries out the task and sends back the result to the client.  

In our situation, the server has two parts: a single master that accepts 
new requests from the clients, and multiple slaves, which handle those requests. 
The system consists of three types of entities: master, client, and slave (Figure 
7.5). Each computer contributing with computing power to the system is called 
a slave, and is running a small background process in the form of a UNIX 
daemon or a Windows system service. The process can be run with the 
privileges of an ordinary user, it doesn't need to be run with administrative 
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rights. This process is responsible for reporting the computer's resources and 
status to a central server, the master. It also accepts computational requests from 
the master, downloads the corresponding binaries and data files for the tasks, 
executes the task, and then uploads the result files when finished. The slave also 
downloads the task to be executed together with the input data, and starts the 
computation. The presence of a user logging into a slave computer is 
automatically detected and the task is killed or moved to another slave to 
minimize the disturbance of the regular computer users. 
 
 

 

 

Figure 7.5 QADPZ coarse architecture 
 
The main role of the master is to maintain the current availability status of the 
slaves, and to start and control the tasks. The master knows about all the 
resources and jobs in the system. The master is responsible for managing the 
available resources, keeping track of the available slaves, their capabilities and 
configuration. It also schedules the computational tasks submitted by any 
authorized user of the system, according to the required resources. Tasks can be 
started, stopped, or rescheduled by the master. There are two ways of doing 
this: a batch mode, and an interactive mode. In the batch mode, which is using our 
universal client, a project file, specifying the required resources and how to start 
the tasks, describes tasks. This information is then sent to the master, which is 
responsible for scheduling it. In the interactive mode, the client has much more 
freedom over the creation and controlling of new tasks. It can have also direct 
feedback from the running tasks, either through the master node, or 
communicating directly with the slaves. This is more suited for applications 
where interactivity with the running computation is required. 

The client is the interface by which a user interacts with the system. Its 
main purpose is to allow the human user to create new computational jobs in 
the system. It allows also monitoring them, and controlling their execution.  
A client does not communicate with the slaves directly, instead it sends all its 
requests to the master. A more detailed architecture of the system is described 
in Figure 7.6. The control and data flow in the system are separated. Data files, 
represented by binary, input, and output files, needed to run the applications 
are not sent to the master. They are stored on one or more data servers. An even 
more comprehensive view of the architecture is presented in Figure. 7.7. 
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Figure 7.6 QADPZ detailed architecture 
Multiple tasks can be grouped into jobs, for an easier management. Different 
types of jobs can be submitted to the system. A job can consist of independent 
tasks, which do not require any kind of communication between each other. 
This is usually referred to as task parallelism. Jobs can also consist of parallel 
tasks, where different tasks running on different computers can communicate 
with each other. Inter-slave communication is accomplished using a subset of 
the MPI standard. The current implementation of the system is made 
considering only one central master node. This can be an inconvenience in 
certain situations, where computers located in different networks are used 
together. However, our high level communication protocol between the entities, 
especially between the client and master, allows a master to act as a client to 
another master, thus making possible to create some sort of virtual master, 
consisting of independent master nodes, which communicate with each other.  

7.3.2.1 Job-view of the system 
The users of the QADPZ system can submit, monitor, and control computing 
applications to be executed on the computers sharing computational resources 
(Figure 7.9, Table 7.1).  The smallest independent execution unit is called a task. 
Tasks are binary programs, which can run on any of the platforms sharing 
computing resources. A task comes in the form of an executable program, 
compiled for a specific architecture and OS. When better performance is 
required, a task can be also in the form of a shared (dynamic) library, which can 
be more efficiently loaded by the slave program running on a computer sharing 
resources. As an alternative to native binary programs for a specific platform, a 
task can also be an interpreted or precompiled program. For example, it can be 
a compiled Java application, which further needs a Java Virtual Machine on the 
host computer; it can also be an interpreted program (e.g. Perl, Python), but 
then an interpreter for that specific language is required on the host computer. 
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Figure 7.7 QADPZ close-up architecture 
 

A simplified UML Diagram of QADPZ�s architecture is depicted in Figure 7.8.  
 

 

 

Figure 7.8 Simplified UML Diagram of QADPZ�s architecture 
Multiple tasks, which are related to each other, can be grouped into a so-called 
job. This is actually what a user submits to the system. A job can be composed of 
one or more tasks, and allows an easier structuring and management of the 
computational applications, both from the user's and the system's point of view. 
Each job is assigned uniquely to one user; however, a user can have multiple 
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jobs submitted at the same time to QADPZ. The tasks part of a job can be either 
independent from each other, or they can depend on each other at execution 
time. Tasks can further be divided into subtasks, consisting of finer work units 
executed within a task. A task can contain different types of subtasks. Subtasks 
are used for interactive applications, which require permanent connection 
between a client and the slaves. They are usually generated at the client and 
send for execution to an already running task, which can solve it. The main 
reason for having subtasks is to improve the efficiency of smaller executional 
units without having the overhead of starting a new task each time. 
 

 

 

Figure 7.9 QADPZ job life 
 

Operation Where  Description 
Create job Client the user creates a job   
Submit job Client the job is submitted to the master 
Queue job Master the job is queued for execution 
Schedule job Master the job is scheduled for execution 
Execute tasks Slave component tasks of the job are executed 
Finish job Master  informs client about job completion 

Table 7.1. - The life of a job  

7.3.2.2 Slave 
The slave component of the system has two roles. On one hand it has to report 
to the configured master node the resources shared. These are mainly 
computational resources (CPU cycles), but can also be for example storage 
space. The slave sends information about the system periodically to the master. 
The information (see Figure 7.10) describes the hardware architecture of the 
slave (cpu type, cpu speed, physical memory, etc.), the software environment 
available on that architecture (operating system, different application or 
libraries available), and the resources available on that slave. 
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 Figure 7.10 QADPZ slave info user interface  

On the other hand, the slave can accept computational jobs from the master.  
This is done only when the slave is free, and any interactive, local user does not 
use resources. The slave decides for itself if it should accept or not a 
computational job to be run by setting some configuration parameters. The user 
can configure different times of day when the slave can accept computational 
jobs. It can also disable the slave at any time. The slave component runs as a 
small background process on the user's desktop. It starts automatically when 
the system starts. The program does not need any special privileges to run, 
which makes it very easy to install and control by any ordinary user.  

7.3.2.3 Master 
The master is responsible for managing the available resources, keeping track of 
the available slaves, their capabilities and configuration. It has always an up-to-
date overview of the resources. Basically it knows which slaves can accept jobs 
for execution and how to contact them. The master is also responsible for 
scheduling the computational tasks submitted by any authorized user of the 
system. Jobs are sent to the appropriate slave based on the hardware and 
software requirements from the jobs' description. Tasks can be started, stopped, 
or rescheduled by the master. Tasks are created by users, who can submit them 
to the master by means of the client as an interface to the QADPZ system. For 
this, the master needs also to keep a database of authorized users. 
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7.3.2.4 Client 
The client represents the interface for submitting jobs in the system. There are 
two execution modes for the client: a batch mode and an interactive mode. In 
the batch mode, which can be done using the universal client, a project file, 
specifying the required resources and how to start the tasks, describes tasks. 
This information is then sent to the master, which is responsible for scheduling 
the tasks. The client can detach from the master and connect later for the results. 
Each project is described by using the XML language, as it will be seen in some 
examples later in this chapter. In the interactive mode, the client stays 
connected to the master for the entire time of the execution of the job. The client 
can also get direct connection to each of the slaves involved in the computation. 
The client has much more freedom over the creation and controlling of new 
tasks: it can dynamically create new tasks, send messages to already executing 
tasks, and can receive feedback from the running tasks, either through the 
master node, or communicating directly with the slaves running the respective 
tasks. This execution mode is more suited for applications where interactivity 
with the running computation is required. 

7.3.2.5 User Interface 
The purpose of the user interface in QADPZ is to give a user-friendly 
environment in which the user can interact with the system. This mainly 
involves submission, monitoring, and management of submitted computational 
applications. It also involves resource monitoring and controlling. The first 
interface is the job monitoring interface, described in Figure 7.11. 

 

 

 

 

 Figure 7.11 QADPZ job monitoring web-interface  
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It is a web-based interface, which provides detailed information about all 
existing jobs in the system. The user can browse through each of the jobs, and 
see their status, and the tasks, which are part of the jobs. It can also easily create 
new jobs and tasks. Each job can be stopped or deleted by using this interface. 
The second interface is also web based and provides information related to the 
resources in the system. Basically it gives a list of the slaves registered in the 
system and their current status (see 
Figure 7.12). 
 

 
 

Figure 7.12 QADPZ resource monitoring web-interface 

The owner of a desktop computer running a slave is given an interactive 
application, which permits easy configuration of the slave (Figure 7.13).  
It allows the user to specify which time of day the slave should accept jobs for 
execution, and also other configuration parameters. The user has complete 
control over the slave running on his computer. 

7.3.3 Communication 
The various components of the QADPZ system (master, slaves, clients) must 
communicate with one-another using IP connections over a LAN or WAN, 
depending on the deployment of the components. Single-stream TCP 
performance on the WAN is often disappointing. Even with aggressive tuning 
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of the TCP window size, buffer sizes, and chunking of transfers, typical 
performance is still a fraction of the available bandwidth on the WAN on OC-12 
or faster links. While there are a number of factors involved, the behavior of the 
TCP congestion avoidance algorithm has been implicated as a leading cause of 
this performance deficit. 
 

 

 
 

 

 Figure 7.13 QADPZ slave configuration interface  
TCP congestion avoidance algorithms assume that any packet loss is due to 
congestion, which we define to be over subscription of bandwidth on any 
switch or link along the path the packet stream takes on the WAN. However, it 
is increasingly the case that packet loss is caused by events that are unrelated to 
congestion. The sensitivity of TCP to loss is further exacerbated as the 
bandwidth of the network is increased, so solutions to remedy poor TCP 
performance will be increasingly important to distributed computing 
applications on the WAN. Simulations of the TCP protocol performed by 
Jacobson and Floyd show a high sensitivity to loss, but also demonstrate the 
fact that from a control theory standpoint, that the TCP congestion avoidance 
algorithm results in periodic fluctuations that resonate with the deterministic 
control mechanisms of switching fabric in a highly non-linear and unstable 
fashion. The default �taildropping� behavior of packet switch input-queues 
leads to significant degradation in performance.  

The conclusion is that TCP congestion control, while adequate for the 
10megabit networks it was originally designed for, is failing completely on 
today�s multiple gigabit networks and multiple efforts are underway to work 
around these problems. Loss-tolerant UDP-based protocols will play an 
increasingly important role in high throughput network applications of the near 
future. With custom tools, it is possible to find out that UDP packet loss rates 
are consistently low until you reach a critical limit, which is the available 
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bandwidth of the slowest/most congested link in the network path. At the 
critical point, when the slowest link in the path across the WAN becomes 
congested, the loss rate climbs almost linearly in proportion to the increase in 
output rate. It is interesting to note that frame loss rates, even at low data rates, 
exhibit some background loss. This is counterintuitive, as switches should be 
less congested when exposed to the slower stream, based on the models of 
network loss assumed by TCP congestion avoidance algorithm. 

For data transfer and replication, file integrity is paramount. Response 
time and performance is of comparable importance to file integrity for 
visualizations. Visualization tools almost invariably use reliable transport 
protocols to connect distributed components, since there is a general concern 
that lifting the guarantee of data integrity would compromise the effectiveness 
of the data analysis. However, visualization researchers find acceptable other 
forms of lossy data compression like JPEG, wavelet compression and even data 
resampling. Acceptance may be due to the fact that degradation in visual 
quality is well behaved in these cases. Therefore, an unreliable transport 
mechanism that deals with packet loss gracefully and doesn�t exhibit extreme 
visual artifacts will compete well with other well-accepted data reduction 
techniques. Furthermore, when tuned to fit within the available bandwidth of a 
dedicated network connection, the loss rates for unreliable transport are 
extremely small - a few tenths of a percent of all packets sent if the packets are 
paced to stay within the limits of the slowest link in the network path. 

In QADPZ, messages exchanged between entities in the system are in 
XML format, in accordance with a strictly defined communication protocol 
between client and master, and between master and slave (the QADPZ 
protocol). For our current implementation, the low level communication is 
based on both TCP (Transmission Control Protocol) and UDP (User Datagram 
Protocol). We have chosen to implement both protocols to be able to make 
performance measurements and comparisons. Nevertheless, for the above 
reasons, UDP is our first option for the low-level communication protocol. 

As shown previously, the UDP is an unreliable communication protocol, 
in which packets are not guaranteed to arrive and if they do, they may arrive 
out of order. We have outcome this by adding a new layer that ensures reliable 
communication with UDP. Our higher-level communication abstraction 
implements a reliable, confirmation based message exchange protocol. 
Messages are represented in an XML format for easier extensibility and 
interconnection with other potential systems.  

The advantage of UDP over TCP/IP is that UDP is fast, reducing the 
connection setup and tear-down overhead, and is connectionless, making the 
scalability of the system much easier. The higher-level protocol is message 
based, and the messages exchanged between the components of the system are 
of a small size. Also, messages are exchanged only for control purposes.  

Because of the unreliable nature of the UDP protocol, an additional, 
more reliable level of communication is needed (see Figure 7.14). This is based 
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on message confirmation. Each  message contains a sequence number, and each 
time it is sent, it is followed by an acknowledgment from the receiver. Each sent 
or received message is accounted, together with the corresponding 
acknowledge, and in case of not receiving an acknowledgment, the message is 
resent a few more times. An acknowledge and a normal message can be 
combined into one message to reduce the network traffic. 

 
 

 
 

 

 Figure 7.14 QADPZ communication layers  
 

The abstraction used in our reliable communication layer (Figure 7.15). is 
similar in functionality  with the real life postal service. It delivers and receives 
high level messages. We use two types of high level messages: an XML format 
for control messages between entities in the system, and a plain binary format, 
used for any kind of data transfer, for example when slaves inter-communicate. 

 

 

 
 

 

 Figure 7.15 Reliable UDP communication  
 

The PostOffice module supports both blocking and non-blocking delivery of 
messages. Messages have a source and a destination address. Received 
messages can be kept by the PostOffice as long as needed, the upper layers in 
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the system having the possibility to retrieve only certain messages, based on the 
sender's address. This layer provides also support for encryption of messages, 
providing a certain amount of security to the system. Another feature provided 
is the possibility of using compression, this way reducing the size of the 
messages by using some more CPU power. 

The PostOffice module is using the capabilities of the UDPConfirm layer 
for sending and receiving messages. This layer is responsible for resending any 
previously sent and unconfirmed messages. A separate thread is checking 
periodically these messages. It provides both blocking and non-blocking 
message sending. The lowest level module is called UDPSocket, and is 
responsible for hiding operating system specific function calls, making a more 
general interface for UDP socket communication. 

7.3.4 Parallel Computing 
The Message Passing Interface implemented is based on the previously 
described reliable UDP communication mechanism, and is shown in Figure 
7.16. It is using the same message based protocol as the one used for the 
communication between the entities in the system. The PostOffice abstraction 
provides a way to send/receive messages in a blocking or non-blocking mode. 
This provides an easy way to implement the different types of MPI_send() and 
MPI_recv() functions from the MPI standard, and the MPI_wait(). 
 

 

 
 

 

 Figure 7.16 MPI communication  
 

The initialization of the MPI communication between slaves is done with the 
help of the master node: when executing the MPI_Init() routine, each slave 
sends a message to the master, specifying the address and port of its UDP 
socket used for sending and receiving messages. The master waits for this 
message from all of the slaves, then gives each slave a rank and distributes a list 
of all MPI nodes to each of the slaves. Our current implementation does not 
support collective communication, only the MPI_COMM_WORLD 
communicator. However, a complete library of the collective communication 
routines can be written entirely using the point-to-point communication 
functions and a few auxiliary functions. The implementation provided is 
limited to a small subset of the MPI. It contains only the most used functions, 
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and is intended only for testing purposes and evaluation of the parallel 
communication. More complete implementation based on existing libraries is 
possible, but is outside the scope of this thesis. The MPI functions implemented 
provide sufficient features for our parallel experiments. 

7.3.5 Interplatform operability 
The pool of computers in a network that can run different operating systems 
and have different hardware architectures achieves inter-platform operability. 
QADPZ handles task submissions with platform specifications, and the 
appropriate library or executable is automatically used. It was compiled and 
tested on many different platforms: Linux, Windows, FreeBSD, MacOS X, IRIX, 
and SunOS. Our current installation runs on a pool of computers consisting of 
80 Pentium III computers from one of our labs, and the nodes of VI a Beowulf 
cluster of 40 Athlon computers. Currently, we use a daemon process on Unix 
environments, or a system service on Windows. At the time of writing, we have 
successfully tested the system on the following hardware  
platforms: Linux/iX86,sparc,sparc64, FreeBSD/iX86, SunOS/sun4m,sun4u, 
IRIX64/IP27, and Win32/x86,x86_64. Most of the code is ANSI C++ and 
POSIX.1 compliant and therefore porting to a new platform does not require too 
much efforts. We use the POSIX threads API.  

7.3.6 Security 
Because of the unreliability of the UDP protocol, it is not guaranteed that the 
executional tasks arriving to the slave computers are undoubtedly sent by 
master. This is a serious security threat since it allows for a malicious hacker to 
submit any piece of code to the slave nodes (IPspoofing). For that reason, and 
on the cost of a decreased performance, all communication from clients to 
master and from master to slaves is crypted or signed. Particularly, the data 
flow from client to master has to be authorized by a QADPZ user name and 
password and crypted by a master public key. A master private key signs the 
data flow from master to slaves and the authenticity is verified by master public 
key on slave nodes. 

It is important to note that the data flow from slaves to master and from 
master to clients is not crypted nor signed, which means that a malicious hacker 
can monitor (packet sniffing) or alter (IPspoofing) the data or control 
information arriving back to master or client nodes and thus: put the slave 
nodes out of operation, put the master node out of operation, modify the result 
data submitted by slaves, or do any other kind of harm to the computational 
process. In other words, the current QADPZ security scheme is designed to 
protect the security of the computers in the network, i.e. a malicious hacker 
cannot submit an alien piece of code to be executed instead of a user 
computational task. However, this scheme doesn't protect the QADPZ user 
data. We are considering allowing optional data integrity in the future versions 
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of the QADPZ system.  
Security of the system is handled in two ways. On one hand, only users 
registered to the QADPZ system are allowed to submit applications for 
execution. This is done by using a user/password scheme, and allows a simple 
access control to the computational resources. The QADPZ system manages its 
own user database, completely independent of any of the underlying operating 
systems, thus simplifying users' access to the system. The QADPZ system 
administrator creates new users by maintaining this user database. Tools are 
provided to minimize the effort in doing this. The other type of security used by 
the system involves the encryption of messages exchanged between 
components of the QADPZ system. This is done using public key encryption, 
and provides an additional level of protection against malicious attacks. 
 

7.3.7 Autonomic Computing Features 
IBM�s manifesto on autonomic computing (Kephart and Chess, 2003) points out 
that the difficulty of managing today�s computing systems is not only because 
of the administration of individual software environments, but also because of 
the need to integrate multiple heterogeneous environments, and to extend 
beyond company boundaries into the Internet. All these factors contribute to 
increased levels of complexity in computing systems. Installing, configuring, 
and maintaining such large systems is becoming an increased challenge even 
for experts. A possible solution to this problem is to embed the complexity in 
the system infrastructure itself (both hardware and software), then automating 
its management. This is in a way similar to the human system, with its 
autonomic nervous system, which provides automatic, involuntary regulation 
of the major physiological functions. The essence of autonomic computing 
systems is self-management, the intent of which is to free system administrators 
from the details of system operation and maintenance. In a similar way to the 
biological systems, autonomic systems will maintain and adjust their operation 
in the face of changing components, demands, workloads, and external 
conditions, and also will be able to handle hardware or software failures.  
Such systems will be able to monitor their use and interact with other systems.  
The following is a list of defining characteristics for an autonomic computing 
system, according to the IBM manifesto (IBM, 2001): 

# know itself: the system should have detailed knowledge of its 
components, status, capacity, and connections with other systems; it 
will need to know the extent of its owned resources, those it can lend, 
and those that can be shared or should be isolated. 

# configure itself: the system configuration should be done automatically, 
as must dynamic adjustments to that configuration to handle changing 
environments. 
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# optimize itself: the system should monitor its components and look for 
ways to optimize its working, like resource allocations, load balancing, 
different network traffic optimizations. 

# heal itself: the system should be able to recover from faults that might 
cause some parts of it to malfunction. 

# protect itself: the system should be capable of detecting and protecting 
resources from both internal and external attacks, thus maintaining 
overall system integrity. 

# adapt itself: the system should be aware of its environment and the 
context surrounding its activity, and act accordingly, by finding rules 
for how best to interact with neighboring systems. 

# open standards: the system should work in a heterogeneous environment 
and implement open standards; it cannot be a proprietary solution.  

# anticipatory: an autonomic computing system will anticipate the 
optimized resources needed while keeping its complexity hidden; both 
the users and applications in the system should be unaware of the 
presence of the technology used to perform their functions. 

Further on, we will describe how the different component types of the QADPZ 
system manifest autonomic characteristics (Constantinescu, 2003). 

7.3.7.1 Self-knowledge 
First, the system must have detailed knowledge about itself. In QADPZ this is 
accomplished by detecting all available computing resources and their current 
status. Each slave knows about its own local resources, while the master knows 
about all the available resources provided by the slaves contributing to the 
system. When the slave background application is started on one of the 
computers in the network, it automatically detects the hardware and software 
resources available on that computer. Hardware resources are, for example, 
system architecture, CPU type and speed, available physical memory, and 
available disk space. These characteristics of the computer can be obtained in 
different ways: by inquiring the operating system (e.g. the available memory 
and disk space), or by running some benchmark tests (e.g. CPU speed). Each 
operating system has its own way of providing such information, so that this 
auto-detection feature of the slave is dependent on the operating system.  

However, it is a small part of the code and can be easily adapted for a 
new system. Software resources can be, for example, the operating system type 
and version, different shared system libraries and software applications 
available on the system. The slave is pre-configured to detect if certain software 
applications (e.g. compilers, interpreters, etc.) are available, and determines the 
installed version on that computer. Using this information, the slave service is 
creating a description of the computer and registers it to the master. In this way, 
the master will collect detailed information about each of the slaves 
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participating in the QADPZ system, keeping an overall knowledge about the 
whole system's resources, thus creating knowledge about itself. 

7.3.7.2 Self-configuration 
The software running on each slave computer is capable of upgrading itself 
whenever there is a new version of the software. This is done automatically on 
the slave side, without any user intervention, or system restart. The user only 
needs to specify to the master the new version of the slave program and its 
location for the different operating systems. The master will notify the slaves 
about the availability of a new version. Each slave will upgrade itself if it has an 
older version. However, the upgrade can be delayed if a specific slave is 
running a task, until the computation is finished. Any additional new slave, 
which connects to master will also be notified about a possible upgrade. 

7.3.7.3 Self-optimization 
The slave is also responsible for detecting if the computer is in use by any 
interactive user, or if the CPU resource is used by other applications. The first 
situation is detected by monitoring if there is an interactive session started on 
the computer: in Windows this is done by checking if the explorer application is 
running, while in Unix by checking for an X-Windows session. The second 
situation is detected by measuring the CPU load over a longer period of time 
(seconds, a few minutes). In any of these situations, the slave is considered 
unavailable, and will not be scheduled for executing computational tasks. Once 
the computer becomes available, its new status is reported to the master and 
scheduling of tasks becomes possible. This monitoring feature of the slaves is 
the first step in gathering information about resource utilization for the purpose 
of self-optimization of the system. The information is used by the master for 
scheduling the distribution of tasks to the slaves. 

7.3.7.4 Self-healing 
When a task is scheduled on one of the slaves, that slave receives a description 
of the task, which contains all the information needed to start it: the download 
addresses for the task to be executed and all the input files needed. All the files 
are downloaded locally on the slave and the computation is started. When the 
task is finished, the results are uploaded, every temporary files are removed 
and the master is notified about the end of the computation. 

There are however certain situations when the execution of the task is 
interrupted, and which requires some kind self-healing mechanisms. One such 
situation is when the task started by the slave is crashing, due to a software 
problem in the executed program. The slave will detect such failure, then it will 
clean up any local temporary files, and notify the master about this. The master 
can either notify the user about the situation, or try to execute the task on a 
different platform slave, if possible. 
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Another situation is when a task is running and a user is starting an interactive 
session on that slave computer. Since interactive users have priority over any 
executing tasks, the running task will be interrupted. The task can be migrated 
to a different slave, or restarted, if migration is not possible, on a different slave. 
Migration can be done if the task program can provide the means to save the 
current state of the program and continue the execution from this point on a 
different computer. This has to be done inside each task. A future extension we 
are investigating now is to use check-pointing techniques. When the task needs 
to be interrupted, it is first check-pointed, the resulting memory footprint is 
transferred on the new slave, where the computation is resumed. Another self-
healing situation is necessary when a task is running for too long and the local 
slave will stop the execution and notify this to the master. 

The current implementation considers only one central master node. This 
can be a shortcoming in certain situations, where computers located in different 
networks are used together. The master node can also be subject to failures, 
software or hardware. A more decentralized approach is needed in this case. 
Currently, our high-level communication protocol between the entities, 
especially between the client and master, allows a master to act as a client to 
another master, thus making possible to create a distributed master, consisting of 
independent master nodes, which inter-communicate. Ideas from peer-to-peer 
computing will be used for implementing such a decentralized approach. 

7.4 Get Started with QADPZ 
In QADPZ, a small software program (slave service) runs on each desktop 
workstation. As long as the workstation is not being utilized, the slave service 
accepts tasks sent by the server (master). The available computational power is 
used for executing a task. Human system administration required for the whole 
system is minimal. We will now describe the features in detail. 

7.4.1 User modes 
Each installation of the system requires a local administrator, who is 
responsible for configuring the system and installing the slave service on desktop 
computers, and the universal client on user computers. Individual users, 
however, do not need to have any knowledge about the system internals. On 
the contrary, they are able to simply submit their executable or interpreted 
(such as Lisp or Java) program from a menu-driven command-line application, 
where they can specify: 
$ number of runs of the application; 
$ file path to the executable and command line arguments; 
$ input and output files (their names are automatically generated from the run 

number) either for all runs or for specified subset of runs; 
$ directories where the files reside; 
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$ utilities to be run after individual tasks (typically to process the output files 
before another task is started); 

$ maximum time allowed for a task to execute; 
$ in what order ought the task groups be executed; 
$ hardware (disk, memory, CPU type and speed) and software (operating 

system, and installed programs) requirements of the application. 

These project configuration parameters are saved into XML-structured file.  
The executable can be taken from a local disk or downloaded from any  
URL-specified address. The input and output data files are automatically 
transferred to slaves using a dedicated data www-server. The progress of 
execution can be viewed in any web browser. Each run corresponds to a task � 
the smallest computational unit in QADPZ. Tasks are grouped into jobs � 
identified by a group name and a job number. System allows control operations 
on the level of tasks, jobs, job groups, or users. If preferred by advanced users, 
the project file may be edited manually or generated automatically, see the 
example 1 and 2 below. 
 
Example1: Simple library-type 
project file. 

Example 2: Simple executable-type project file. 

<Job Name="example"> 
<Task ID="1" Type="Library"> 
<RunCount>1</RunCount> 
<TaskInfo> 
<Memory 
Unit="MB">64</Memory> 
<Disk Unit="MB">5</Disk> 
<TimeOut>3600</TimeOut> 
<OS>Linux</OS> 
<CPU>i386</CPU> 
<URL>http://server/lib-
example.so</URL> 
</TaskInfo> 
</Task> 
</Job> 

<Job Name="brick"> 
<Task ID="1" Type="Executable"> 
<RunCount>15</RunCount> 
<FilesURL>http://server/cgi-bin/</FilesURL> 
<TaskInfo> 
<TimeOut>7200</TimeOut> 
<OS>Win32</OS> 
<CPU Speed="500">i386</CPU> 
<Memory>64</Memory> 
<Disk>5</Disk> 
<URL>http://server/slave_app.dll</URL> 
<Executable Type="File">../bin/evolve_layer.exe 
</Executable> 
<CmdLine>sphere.prj 2 50</CmdLine> 
</TaskInfo> 
<InputFile Constant="Yes">sphere.prj</InputFile> 
<OutputFile>sph/layout/layout.2</OutputFile> 
<InputFile Constant="Yes">sph/sphere.1</InputFile> 
<InputFile Constant="Yes">sph/sphere.2</InputFile> 
<InputFile Constant="Yes">sph/sphere.3</InputFile> 
<OutputFile>sph/logs/evolve_layer.log.2 
</OutputFile> 
<InputFile>sph/layout/layout.1</InputFile> 
</Task> 
</Job> 
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More advanced users can write their own client application that communicates 
directly with the master using API of the client service library. This allows 
submitting tasks with appropriate data dynamically. Finally, advanced users 
can write their own slave libraries that are relatively faster than executable 
programs and very suitable for applications with many short-term small-size 
tasks, i.e. with a high degree of parallelism. The communication between the 
system components is in human readable XML format and can optionally be 
saved into log-files, so that all the activity and possible failures can be traced. 
Extensive debug logs can be produced as well. The system provides basic 
statistics information on usage accounting. 

7.4.2 Installation and maintenance features 
All three main components of the system � client, master, and slave have their 
configuration files, which are well-documented and pre-configured for normal 
operation (only the IP address of the master needs to be modified). Each user of 
the system is authorized by user name and password and a special 
administration utility for their maintenance is provided. Manual configuration 
of the data www-server and master automatic startup is currently required, 
however automatic installation of the slave service on multiple PC workstations 
is solved for Win32/iX86 platform and is easy to setup for UNIX platforms.  

Upgrade of the slave service is automatic, it is started by administration 
utility program � a new version is downloaded and started by each slave 
service. This allows large number of network computers to be easily integrated. 
The computers submitting jobs (the clients) can be offline while their tasks are 
running on slave machines. The master keeps track of the jobs and caches 
computation results when needed. In addition to a flexible storage place for the 
pre- or post-computational data, computational nodes can use common Internet 
protocols for data transfer to or from any other computer, including those not 
involved in the QADPZ system. Tasks are automatically stopped or moved to 
another slave when a user logs on to one of the slave workstations. The system 
does not support job checkpointing yet and does not handle restart of master 
computer. Adding these features has high priority. However, tasks can be 
moved from one slave to another at the request of the running task. This is 
equivalent to resubmitting a task with the addition that initial input data can be 
different from the original task.  

The system installation, administration and use, and system internals are 
documented in the manual that is available from the project webpage. 

7.4.3 Security 
There are two conceptually different parts about security: system integrity and 
data integrity. In QADPZ we have primarily focused on system integrity, i.e. it 
should not be possible to use the system to gain access to any of the machines 
involved. Based on this we have the following requirements: only registered 
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users should be able to upload code to the slave machines, and slave code has 
limited access to the host environment. 
In order to reach the first requirement, the master is fitted with a private/public 
key pair using the OpenSSL library (OpenSSL, 2007). All commands from 
clients to the master are signed with a username/password pair, so that only 
registered users can submit work. The passwords are saved in an encrypted 
form on the master host system.  

The transmission of the username with password is always encrypted. 
Likewise, all commands from the master to the slaves are signed using the 
master�s private key. The key-pair is defined at install-time. Slave code access to 
the system is defined by the owner of the system hosting the slave, and is thus 
outside QADPZ�s control. The slave can be requested to download codeblocks 
from other locations. These locations are also outside the control of QADPZ. 
This means that if the system administrators of slave hosts give the software 
unnecessary system access, these computers will be vulnerable to unlawful 
users and to users ignorant of security issues. We pay this price for flexibility. In 
our setup, the slave is started under separate network user that has the disk 
read and write access only in a special temporary directory. 

7.4.4 Architecture 
The system consists of a central process called �master�, a variable (high) 
number of computing processes on different computers in the network called 
�slaves�, and a number of �client� processes, user applications, which generate 
tasks grouped in jobs. Slave component is run as a daemon or Windows service. 
Its first role is to notify the central master about its status and the available 
resources. These include: operating system type, processor information, CPU 
type, CPU speed nodes, physical memory available, local disk available, and 
existing software on the local system. An example of slave status message is 
shown beneath. Slave status message is sent from all computational nodes at 
regular intervals. 
 
 
<Message Type="M_SLAVE_STATUS"> 
<Status>Ready</Status> 
<SlaveInfo> 
<Version>0.5</Version> 
<OS>Win32</OS> 
<CPU Speed="500">i386</CPU> 
<Memory Unit="MB">32</Memory> 
<Disk Unit="MB">32</Disk> 
<Software Version="1.3.0">JDK</Software> 
<Software Version="2.95.2">GCC</Software> 
<Address>129.241.102.126:9001</Address> 
</SlaveInfo> 
</Message> 
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Another role of the slave is to launch an application (task) as a consequence of 
master�s request. The application, in form of a library, executable, or interpreted 
program, is transferred from a server according to the description of the task, 
then it is launched with the arguments from the same task description. In case 
of executable and interpreted tasks, universal slave library is used. After the slave 
service library launches it, it first downloads the executable or interpreted 
program, either from an automatic data store (now implemented on top of 
www-server in Perl), or from a specified URL location. The universal library 
proceeds with downloading and preparing all the required input files. After the 
executable or interpreted program terminates, the generated output files are 
uploaded to the data store to be picked up later by the universal client, which 
originated the task. On Win32 platform, the user (or universal) slave libraries 
come in form of DLL module, while on UNIX platform they are dynamic 
libraries (this makes it difficult to port the application for example to 
Darwin/Mac OS, which doesn�t support dynamic libraries). 

The master is listening to all the slaves. This way, it has an overview of 
all the resources available in the system, similar to a centralized information 
resource center. It accepts requests for tasks from clients and assigns the most 
suitable computational nodes (slaves) to them. The matching is based on task 
and slave specifications and the history of slave availability. In addition, master 
accepts reservations for serial or parallel groups of computational nodes: clients 
are notified after resources become available. Master generates a report on 
current status of the system either directly on a text console � possibly 
redirected to a (special) file, or in form of an HTML document. 

The client consists of the service library and a client user application or 
the universal client application. The client service library provides a convenient 
C++ API for a communication with the master, allowing controlling and 
starting jobs and tasks and retrieving the results. Users can either use this API 
directly from their application or utilize the universal client, which submits and 
controls the tasks based on an XML-formatted project file. In version 0.6 of the 
system, each job needs a different client process, although we are working on 
extending the client functionality to allow single instance of client to optionally 
connect to multiple masters and handle multiple jobs. 

Communication in QADPZ is based on TCP/UDP, an unreliable 
communication protocol, in which packets are not guaranteed to arrive and if 
they do, they may arrive out of order. The advantage of UDP/IP over TCP/IP 
is that UDP is fast, reducing the connection setup and teardown overhead, and 
is connectionless, making the scalability of the system easier. The higher-level 
protocol is message based, and the size of the messages exchanged between the 
components of the system is small. Also, messages are exchanged only for 
control purposes. This makes UDP a very good option for our low-level 
communication protocol.  

This layer, called UDPSocket, is also responsible for hiding operating 
system specific function calls, and making a more general interface for 
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communication. Because of the unreliable nature of the UDP protocol, an 
additional, more reliable level of communication is needed. This is based on 
message confirmation. Each message contains a sequence number, and each 
time it is sent, it is followed by an acknowledgement from the receiver. Each 
sent or received message is accounted, together with the corresponding 
acknowledge, and in case of not receiving an acknowledgement, the message is 
resent a few more times. An acknowledge and a normal message can be 
combined into one message to reduce the network traffic. This layer is called 
UDPConfirm, and permits both synchronous and asynchronous message 
sending. The next communication layer, PostOffice, has a similar functionality as 
the real life post office service. It delivers and receives high level messages � 
XML elements represented as instances of XMLData class. Both blocking and 
non-blocking modes are supported. Messages have a source and a destination 
address. Received messages can be kept by the PostOffice as long as needed, the 
upper layers in the system having the possibility to retrieve only certain 
messages, based on the sender�s address. The PostOffice is also responsible for 
the encryption and decryption of messages, if necessary. 

Messages exchanged are in XML format, in accordance with a strictly 
defined communication protocol between client and master, and between 
master and slave. Each message is represented as an XML element <Message 
Type="message_type">, see the example 3. XML elements are internally stored 
as objects of class XMLData, which in turn contain their sub-elements � other 
XMLData objects. Element attributes are instances of XMLAttrib class. These 
classes provide extensive functionality for manipulation with XML elements 
including input/output string and stream operations. When the data for slave 
user library are sent in the message, they are encapsulated inside of standard 
<![CDATA[]]> XML elements. We chose to implement our own lightweight 
class in order to achieve flexibility and easy extensibility of its functionality. 
Message based communication is used only for controlling the entities in the 
system. Shared libraries and executable files for task execution on the slaves, as 
well as data files for the computations are transferred using standard Internet 
protocols, like for example http, ftp, ldap, etc. For this, we are using the open 
source library �cURL� (cURL, 2007). Currently, the slave is using http to 
download files from a server (which can be the master itself, or another, 
specialized data server), but this can easily be changed to a different protocol.  
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8 The QADPZ usage on sourceforge.net 
In this section, we present briefly the �history� of the QADPZ system since it 
has been uploaded to sourceforge.net (July, 2001), as well as its users� feedback 
and some other interesting reactions to this open source system. Within the 
appendix of this thesis, some raw feedback and reactions to the system are 
listed. These can be categorized into four main categories: feedback and support 
requests from users who use QADPZ for their research and development tasks, 
forum discussions, citations in papers, and working assignments, based on 
QADPZ features, for students from some universities. Links to the QADPZ 
system can be found also in distributed computing directories 
on the web and in several blogs. 

SourceForge.net is the world's largest Open Source software 
development web site. SourceForge.net provides free hosting to Open Source 
software development projects with a centralized resource for managing 
projects, issues, communications, and code. SourceForge.net is a centralized 
location for software developers to control and manage open source software 
development, and acts as a source code repository. Furthermore, SourceForge is 
a collaborative revision control and software development management system. 
It provides a front-end to a range of software development lifecycle services 
and integrates with a number of free software/open source software 
applications (such as PostgreSQL and Subversion). 

SourceForge.net has offered free access to hosting and tools for 
developers of free software/open source software for several years, and has 
become well-known within such development communities for these services. 
Just as important, SourceForge is the place to �see and be seen� for up and 
coming open source projects. Here, developers are chatting, sharing, rubbing 
elbows, strutting their stuff with other developers or watching each other build. 
It�s a global community of coder geeks, just jonesing to give birth to that next 
line of Java or PHP or Perl. 

SourceForge.net is operated by Sourceforge, Inc. (formerly VA Software) 
and runs a version of the SourceForge software, forked from the last open-
source version available. A large number of open source projects are hosted on 
the site (it had reached 155,585 projects and 1,658,777 registered users as of 
August 2007), although it does contain many dormant or single-user projects. 

When the site opened in November 1999, growth was respectable, if 
modest. At the time, only those with a deep technical background knew the 
term �open source�. Though the site offered myriad free tools, only a small 
crowd of projects registered by the end of the year. That soon changed. By the 
end of 2000, SourceForge had thousands of projects registered; by the end of 
2001, almost 30,000 were coding away. And the following year, the flood 
commenced. Since 2002, they claim that a hundred projects a day are added. 
Fast forward to 2007 and SourceForge is now home to a sprawling universe of 

http://en.wikipedia.org/wiki/Source_code_repository
http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Sourceforge%2C_Inc.
http://en.wikipedia.org/wiki/SourceForge
http://en.wikipedia.org/wiki/Fork_%28software_development%29
http://en.wikipedia.org/wiki/As_of_2007
http://en.wikipedia.org/wiki/As_of_2007
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open source developers. It�s an intense hive of software creators. Some 150,000 
projects � and growing � reside there, covering every conceivable computing 
function. In the Figure 8.1, a sourceforge sample page on distributed computing 
projects can be seen. 

 

 
Figure 8.1 QADPZ in Distributed Computing projects 

 
The QADPZ system had registered on sourceforge.net on July 2001, and 
uploaded its first public version (v 0.4) in September 2001. The QADPZ system 
is one of the first projects on desktop grid computing that have been registered 
on the sourceforge site. On the site there are available the source code files, user 
and developer manual, system documentation and papers about the system. 
The main page of the project on the sourceforge.net website is presented below 
(Figure 8.2).  
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Figure 8.2 QADPZ home page 

 
A summary on the QADPZ system can be seen also on the sourceforge.net 
website, as it is illustrated with the screenshot underneath (Figure 8.3): 
 

 
Figure 8.3 QADPZ project summary 
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Some statistics with source code that have been downloaded since project�s 
registration time on sourceforge.net are presented in Figure 8.4  
(December, 2007): 

 
Figure 8.4 QADPZ download statistics 

 
Each version of the program have been downloaded several times, as it can be 
seen in the following Figure 8.5. 

 
Figure 8.5 QADPZ downloads 
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And, finally, we can see beneath some statistics with project�s webhits since 
QADPZ project has been  registries on sourceforge.net. 
 

  
Figure 8.6 QADPZ webhits statistics 

 
In this chapter we presented briefly the �history� of the QADPZ system since it 
has been uploaded to sourceforge.net. Within the appendix of this thesis users� 
feedback and some other interesting reactions to this open source system are 
listed. These can be categorized into four main categories: feedback and support 
requests from users who use QADPZ for their research and development tasks, 
forum discussions, citations in papers, and working assignments for students 
from some universities, based on QADPZ features. 

To conclude we should mention that from interaction with the system 
users, we have gained insight in their perspective and needs, and we have used 
that feedback to improve our conceptual model, design and implementation  
of the QADPZ system.  
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9 Scientific Computing and Visualization Experiments 

9.1 Computational Resource Monitoring 
Several desktop grid systems have been successfully used for many high 
throughput applications. Yet, in an organization or enterprise setup there has 
been little insight into the temporal structure of resource availability. We 
present some of our observations regarding our desktop grid�s availability of 
computing resources. The results are from an undergraduate student laboratory 
of 70 personal computers from the university. It is well known that the highest 
availability of computers is during night, when few of the students are using 
lab computers. We are more concerned about resource availability during work 
hours, with the idea of using desktop grid resources for interactive tasks, like 
group visualizations or interactive presentations, where a group of researchers 
and students are working together. 

We present our observations between 08:00 in the morning and 20:00 in 
the evening during several days, when computers from labs are actually used 
intensively (e.g. project deadlines, homeworks, lab hours). The results from the 
following plots show the actual number of computers available for 
computations from the running desktop grid. From a rough estimate, we can 
say that computers are available for computations about 50-60% of the time 
during week-days, between 08:00 and 20:00. During the night, the availability is 
close to 95-100%. This amounts to approximately 75-80% availability of 
computers during a 24hours interval of a working day, growing to 90-95% 
during weekends. As a conclusion, we can say that, based on our available 
measurements, we can say that there is a lot of computing power available in 
such laboratories, which can easily be used for scientific experiments, provided 
that an appropriate resource-harvesting framework is available. 
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Figure 9.1 Available desktop computers in laboratory (day 1) 
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Figure 9.2 Available desktop computers in laboratory (day 2) 
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Figure 9.3 Available desktop computers in laboratory (day 3) 
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Figure 9.4 Available desktop computers in laboratory (day 4) 
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Figure 9.5 Available desktop computers in laboratory (day 5) 
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Figure 9.6 Available desktop computers in laboratory (day 6) 
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9.2 Real word problem - Trondheim fjord  

 

 

 
Figure 9.7 Maps of the Trondheim fjord 

 
Geophysical circulation modeling is an increasingly important area for several 
reasons. One is the growing concern for environmental and ecological issues. 
This relates to problems of different scales, from global issues to more local 
questions about water pollution in coastal areas, estuaries, fjords, lakes, etc. To 
analyze such problems, there is a need to predict the flow circulation and 
transport of different materials, either suspended in water or moving along the 
free surface or bottom. The numerical model is based on a finite element 
formulation. It is believed that the finite element flexibility is advantageous for 
applications in restricted waters, where the topography is usually complex. The 
basic mathematical formulation is given by the Navier-Stokes equations. (Utnes 
and Brors, 1993). The figures above show a map of Trondheimsfjorden, a typical 
Norwegian fjord that is located on the coast of central Norway. Detailed 
topographical data are used to interpolate the depth data to the element mesh. 
Figure 9.7 illustrates the topography of the actual domain. The horizontal 
element mesh is shown in Figure 9.8. It consists of 813 biquadratic elements 
with 3683 nodes, and there are 17 levels in the vertical direction with fine 
grading close to the bottom boundary. This grid is assumed to be detailed 
enough to describe the main flow field of the fjord. 

Shading the discretized cells according to the value of the scalar data 
field performs color coding. For better appreciation of continuum data the color 
allocation is linearly graduated. Using directed arrows also represents the 
velocity vector field. Large vector fields, vector fields with wide dynamic 
ranges in magnitude, and vector fields representing turbulent flows can be 
difficult to visualize effectively using common techniques such as drawing 
arrows or other icons at each data point or drawing streamlines. Drawing 
arrows of length proportional to vector magnitude at every data point can 
produce cluttered and confusing images. In areas of turbulence, arrows and 
streamlines can be difficult to interpret. Line Integral Convolution (LIC) (Cabral 
and Leedom, 1993) is a powerful technique for imaging and animating vector 
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fields. The image is created beginning with a white noise that is then 
convoluted along integral  lines of the given vector field. That creates a visible 
correlation between image pixels that lie on the same integral line. The local 
nature of the LIC algorithm suggests a parallel implementation, which could, in 
principle, compute all pixels simultaneously. This would allow for interactive 
generation of periodic motion animations and special effects. 
 

 
 

 

 

Figure 9.8 Trondheim fjord (left: topography, right: grid) 
 

 
 

  

 

Figure 9.9 Grid colored by salinity concentration 
 
Note. Grid colored by salinity concentration; Max 34 ppt - parts per thousand (mg/l) 
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Figure 9.10 Trondheim fjord model 

 
Note. Color by salinity concentration - 3D model representation with isosurface representation. 
 
 

 
Figure 9.11 Velocity vector field - 

LIC representation 

 

 
Figure 9.12 3D representation 

surface- vector field top layer 

9.3 Fluid flow around a cylinder - simulation 
We present some experiences with running a typical Computational Fluid 
Dynamics problem in QADPZ environment. The numerical method for solving 
the incompressible Navier�Stokes equations is used in a test case for the system. 
An evaluation of the performance of the system is presented, by comparing it 
with running the same simulation on a typical dedicated cluster environment. 

To solve the incompressible Navier�Stokes equations we use a version 
the well�known projection method, in which equations for the velocity 
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components and pressure are solved sequentially at each time step. Solving the 
discretized, fully coupled equations can be very expensive due to the nested 
iterations, and this decoupling procedure is found to be computationally 
efficient for transient problems, particularly for higher Reynolds numbers. In 
general, the separation of pressure and velocity can be performed on both the 
continuous equations and the discretized equations. While the latter is 
attractive due to the straightforward interpretation of boundary conditions, 
these methods give a significantly more complicated pressure equation and we 
therefore prefer a splitting at the differential level. The Galerkin finite element 
method is used to discretize in space. The pressure is fixed in one node to 
ensure a unique solution, and has homogeneous Neumann conditions on all 
boundaries. Implementation of the flow solver was done is C++ using the object 
oriented numerical library Diffpack. A parallel version of Diffpack (Langtangen 
et al., 2000) was used, which is based on a standard Message Passing Interface 
(MPI) for communication. We used Linux as a development platform. An MPI 
library with a subset of the most used MPI calls was implemented on top of 
QADPZ�s communication protocol. This QADPZ-MPI library allows us to use 
QADPZ as a straightforward replacement communication system for the MPI 
based Diffpack library (Karniadakis and Kirby, 2003). 

A series of tests were performed on a dedicated cluster of 40 PCs, with 
Athlon XP 1.46GHz CPU, 1 GByte memory, and 100 MBps network 
interconnection between nodes, running a Linux distribution. First, we used the 
original implementation of the solver software, which is using MPICH as a 
parallel communication protocol, to run the cluster version of the simulation. 
Second, we recompiled the solver using the QADPZ-MPI library to create the 
distributed computing version of the simulation. The solver was run using 
exactly the same computers from the cluster (i.e. identical hardware setup). A 
third test case was using a pool of 8 computers with similar hardware 
specifications. These computers were ordinary desktop PCs from our labs, 
connected to our LAN, together with other computers. Simulations were done 
in two different times of the day: during the night, when network traffic in the 
LAN is minimal, and during working hours, when LAN traffic is much higher. 

The first set of results is from simulating some time steps of an oscillating 
flow around a fixed cylinder in three dimensions. The grid has 81600 nodes and 
is made of 8-node isoparametric elements, while the coarse mesh (used for 
pressure preconditiong) has approximately 2000 nodes. Results of the execution 
times are presented in Figure 9.13. We run the same simulation in three 
different parallel settings for the underlying MPI library: 
• the MPICH library from Argone National Laboratory (Gropp and Lusk, 

1996, Gropp et al., 1996), 
• the QADPZ  MPI library using LZO based compression for communication, 
• the QADPZ  MPI library using bzip2 based compression for communication. 
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 Figure 9.13 Execution times for the solver  

 
A second set of results presented is from simulating some time steps of an 
oscillating flow around a fixed cylinder in three dimensions. The grid has 
307296 nodes and is made of 294912 elements (8- node isoparametric). A coarse 
grid was used for pressure preconditioning, which had 2184 nodes and 1728 
elements. Three sets of simulations were done, using MPICH, PVM and 
QADPZ-MPI as communication libraries. For each set of simulation, a 
maximum of 16 processors (Athlon AMD 1.466 GHz) were used. Running times 
were between around 240 minutes (1 processor) and 18 minutes (16 processors). 
Speedup results from these simulations, presented in figure 2, show that the 
performance of our system is comparable to other similar systems based on the 
message-passing interface. The advantages of our system are as follow: The 
installation of the slave on the computational nodes is extremely easy, only one 
executable and one config file being needed, and no root/admin access is 
necessary. Upgrade of the slaves is done automatically from the master, 
without any administrator intervention. Also, there is no need for a shared file 
system, since each of the slaves is downloading by itself the needed files. The 
slaves systems can have different operating systems, and there is no need for 
remote access to them (using rsh/ssh type of protocols). 
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Navier-Stokes eq. (large)
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 Figure 9.14 Speedup for the simulation  

9.4 Fluid flow around a cylinder - visualization 
The results are from simulating some time steps of an oscillating flow around a 
fixed cylinder in three dimensions. The second experiment is with three 
cylinders. The grid has 81600 nodes and is made of 8-node isoparametric 
elements, while the coarse mesh (used for pressure preconditiong) has 
approximately 2000 nodes. As in the previous case, numerical simulation is 
done using the Navier Stokes equations. 
 

 

 

 Figure 9.15 Flow around cylinder grid  
 
In the above figure the 2D domain grid is represented using triangular 
elements, and the coloring is done using the pressure scalar field. 
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Figure 9.16 Flow around cylinder (measurement and simulation) 
 
The left figure is a real life experimental image for Re=26 (Van Dyke, An Album 
of Fluid Motion), and the right is a simulation image using LIC vector field 
representation for Re=20. 
 
Note. Simulation experiment for Re=100 at different time steps. 
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Figure 9.17 Streamline 

 

 
Figure 9.18 Streakline 

 
 
Streamlines are a family of curves that are instantaneously tangent to the 
velocity vector of the flow. This means that if a point is picked then at that point 
the flow moves in a certain direction. Moving a small distance along this 
direction and then finding out where the flow now points would draw out a 
streamline. 
 
Streaklines are the locus of points of all the fluid particles that have passed 
continuously through a particular spatial point in the past. This can be found 
experimentally by releasing dye into the fluid in a time period at a fixed point 
and then at a later time finding out where the dye was. 
 
Note. Simulation experiment for Re=100 at different time steps, with 3 
cylinders. 
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Figure 9.19 Flow around 3 cylinders 
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9.5 Utilizing QADPZ for Evolutionary Computation 
To evaluate the system, the version 0.6 of the system in artificial evolution of 
layers of 3D LEGO models has been used (Petrovic, 2007). A 3D model was 
decomposed into individual layers. The layout of each layer, i.e. the placement 
of LEGO bricks was evolved by a separate task. The input and output files were 
automatically transferred by the universal client. To obtain statistically 
significant data, tens of independent runs were required. QADPZ installation 
included 70 high-performance PentiumIII 733MHz workstations located in a 
student laboratory. Their status can be on or idle during the night, and except of 
the exercise deadline season approximately 30-50% idle also during the day. 

They received results worth many weeks of single computational time 
within approximately 3 days time with no configuration overhead, by simply 
submitting their executable to QADPZ. Evolutionary Algorithms (EA) are 
highly parallel stochastic search methods for finding approximate solutions 
useful when no deterministic algorithm generating good solutions is known. 
They are inspired by the Darwinian natural evolution principles, and work with 
a population (a set) of solutions that survive, mate and get mutated from 
generation to generation based on their performance (fitness). In each 
generation, all individuals in the population have to be evaluated 
independently. That is where it is natural to parallelize the execution of the 
evolutionary algorithms. Some flavors of EA work on multiple populations that 
evolve independently (island models) � and for them another natural place for 
parallelizing is allocating one (or several CPUs) for each sub-population. 
Alternately, evaluating a single individual can also be performed in parallel on 
several CPUs, if the objective function is suitable for parallelizing. 

When setting up a distributed EA, one typically uses a combination of a 
package for distributed computation and a package for EA. The distributed 
computation package will be responsible for delivering the inputs/outputs 
to/from the computational nodes, and submitting the tasks to the nodes 
automatically. The user has to configure which code and data have to be 
processed. Usually the user specifies at how many nodes he runs a particular 
application, or optionally what would be the topology of the parallel virtual 
computer. The user can implement the communication between the 
computational nodes either through the shared file system, message-passing, or 
sockets, or simply rely on the parallelization features provided by the chosen 
EA package. In our case, the evolutionary robotics experiment was based on the 
GaLib package, which does not support parallelization, and thus we needed a 
distributed computing package. 

9.6 Adaptive Compression for Remote Visualization 
In order to understand better the issues from Scientific Visualization and to 
match them with the capabilities provided by QADPZ we did make an 
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experiment of remote visualization. Remote visualization using client-server 
environments allow users to access large datasets. One possible solution for that 
is the use of compression techniques, where images are generated and 
compressed at the servers� side, then the encoded images are transferred over a 
data network, decompressed and displayed at the clients side. One of the 
problems in remote visualization is to increase the frame rate for the user.  

A possible solution is to reduce the amount of data transferred over the 
network, in our case to choose an efficient compression algorithm. However, 
the better a compression algorithm is, the more computing is necessary for both 
compression and decompression, increasing the time needed to process the 
image. The choice of the most efficient compression depends also on the content 
of the image. Therefore we have proposed an innovative intelligent adaptive 
compression method for selecting different image compression algorithms for 
remote visualization. The selection is made based on the performance of 
previously compressed frames and network transfer delays. We have used a 
reinforcement learning technique to select the compression algorithm for each 
individual frame. The algorithm was tested using SGI OpenGL Vizserver, but it 
can be easily adapted to other remote visualization systems (Vizserver, 2004). 

Transferring the full data set to the researcher�s desktop for visualization 
purposes is most of the time impossible, due to the lack of memory and storage 
space of local desktop computers. Scientific Visualization research applies a 
client-server approach to this problem. Remote visualization can be done using 
different strategies. In a first scenario, the server renders the images and 
streams them to the client. In a second scenario, the server is doing some of the 
rendering calculations, such as geometry transformations or visibility 
determination, while the client is doing the final rendering. Another scenario is 
where the client is doing all the rendering computations. 

Each of these scenarios has tradeoffs. For example, performing the 
rendering completely on the client side requires high-end desktop computers, 
not always available to researchers. Performing some of the rendering on the 
server can greatly improve the visualization, however the low-end client 
resources may not provide sufficient power to finish the rendering in time. 
In the rest of the article we consider only the first scenario, where the server is 
doing all the computations including the rendering, and the client is responsible 
only with the display of the final image. Image streaming makes possible 
remote visualization using low-end desktop computers (thin clients), and can 
be made independently from any visualization algorithm used.  

However, image streaming can require significant network bandwidth. 
For example, if we consider that the resolution of displayed image is 640x512 
pixels with 4 bytes for the RGB colors and the alpha channel, then the size of 
such an image is 1.25 MBytes. The maximum theoretical frame rate that can be 
obtained using a 100 MBps bandwidth network, is 10 frames per second, if the 
full bandwidth could be used. If we consider remote visualization over a wide 
area network, then the achievable frame rate will be much lower. 
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One possible solution to this problem, when using image streaming over the 
network, is to use compression algorithms. The server renders the image, then 
compresses that image and sends it over the network. The client is then 
responsible for decompressing the encoded image and displaying it. Using 
different compression techniques for the images, the amount of data transferred 
over the network can be significantly reduced. How much an image can be 
compressed depends essentially on the image content. This means that by using 
different compression algorithm for the same image, different compression 
rates can be obtained. The problem is to find an automatic way of selecting the 
right compression algorithm. Different methods based on analyzing the image 
and using the compression algorithm that gives the best compressed size are 
presented in the literature. However, most of these methods can be used only 
for certain types of images. In this work we present an algorithm for selecting 
the compression methods during a remote visualization session without 
analyzing the content of the image. 

We propose an adaptive algorithm for dynamically selecting one of the 
compression algorithms to be used for each individual frame. The selection is 
done using a reinforcement-learning algorithm, and it is based on different 
performance measures from the environment: past and present frame rates, 
compressed image sizes, compression times, estimated bandwidth. The 
compression method, which increases the overall frame rate, is chosen. 
However, from time to time, other compression methods are also used for short 
periods of time, in order to estimate the potential benefit of selecting them. 

Reinforcement learning is a computational approach to learning whereby 
an agent tries to maximize the total amount of reward (the frame rate in our 
situation) it receives when acting with a complex, uncertain environment.  
As opposed to other machine learning methods, in this method the learner is 
not told which actions to take, but instead must discover which actions yield 
the most reward by trying them. In many cases, the actions may affect not only 
the immediate reward, but also the next situation and, through that, all 
subsequent rewards. 
 

 

 

 

Figure.9.20 Remote visualization 
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Related work. Renderer implementations exploiting image compression have 
mostly adopted relatively simple lossless schemes, which rely on frame 
differencing and run-length encoding. While these techniques can deliver 
acceptable frame rates over local area networks, their compression ratios are 
highly dependent on image content, and are insufficient in slower networks. 
SGI OpenGL Vizserver is a product developed by Silicon Graphics, Inc., to 
enable remote-visualization applications. Specifically, OpenGL Vizserver is 
designed to provide users remote access to graphics pipelines of Onyx2 Infinite 
Reality machines so that they may view rendered output from visualization 
applications at geographically remote locations while utilizing the powerful 
pipeline and memory of an Onyx2 machine located at some centralized place. 
OpenGL Vizserver uses programmable compression modules to compress and 
decompress frames of the rendered scene. It comes with five standard modules 
(CCC, ICC, SCC, SICC, LCC) and an API that provides the capability to develop 
new modules with user defined functionality.  

Each compression module has the capability of taking advantage of 
frame-to-frame coherency inherent in most visualizations, by implementing an 
inter-frame compression scheme where only the changing portions of each 
frame are compressed and sent to the clients. The CCC, ICC, SCC, and SICC 
compression modules implement lossy compression algorithms. These four 
schemes are derived from the Block Truncation Coding (BTC) algorithm  that 
compresses a 4x4 pixel block down to two colors plus a 4x4 pixel mask. In 
addition to lossy compressors, there is also a lossless compression module 
called LCC. This preserves the original image quality while still saving 
bandwidth. In many cases the savings are as high as 4x without any reduction 
in image quality. A similar framework exists which provides remote control to 
Open Inventor or Cosmo3D based visualization applications (Engel et al., 2000). 
It allows transparent access to remote visualization capabilities and allows 
sharing of expensive resources. A visualization server distributes a 
visualization session to Java based clients by transmitting compressed images 
from the server frame buffer. Visualization parameters and GUI events from the 
clients are applied to the server application by sending CORBA requests.  

Both of these two solutions require the user to explicitly select the 
compression algorithm to be used. In most of the situations, the user does not 
have any knowledge about the compression algorithm. An adaptive 
compression algorithm for medical images was presented in (Hludov et al. 
1998). The adaptive algorithm presented is based on a classification of digital 
images into three classes and followed by the compression of the image by a 
suitable compression algorithm. The content of the image is analyses based on a 
validation of the relative number and absolute values of the wavelet 
coefficients. A comparison between the original image and the decoded image 
will be done by a difference criteria calculated by the wavelet coefficients of the 
original image and the decoded of the first and second iteration step of the 
wavelet transform. Compression of images was used in (Ma et al., 2000) for 
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visualizing time varying volume data over a wide area network. The rendering 
was done on a remote parallel computer and compression of the images was 
used for significantly reducing the cost of transferring output images from the 
parallel computer to the local display. They used lossy compression methods 
combined with lossless compression methods, which were capable of providing 
acceptable image quality for many applications, while retaining desirable 
properties such as efficient parallel compression and fast decompression. They 
experimented with different combinations of the JPEG, BZIP and LZO 
compression algorithms, and then selected the combination of JPEG and LZO as 
giving the best frame rates for their system. 

Image compression. The use of image compression algorithms can 
significantly improve the amount of data transmitted over the network. All 
compression algorithms are based on the same principle: compressing data by 
removing redundancy from the original data. Any nonrandom collection data 
has some structure, and this structure can be exploited to achieve a smaller 
representation of the data, where no structure is discernible. This is the case of 
using lossless compression algorithms. An important feature of image 
compression is that in many situations it can be lossy, being acceptable to lose 
image features to which the human eye is not sensitive. Images can be loss 
compressed by removing irrelevant information even if the original image does 
not have any redundancy.  Different image compression algorithms can be used 
for different types of images. Each type of image may feature redundancy, but 
they are redundant in different way. This is why any given compression 
method may not perform well for all images, and why different methods are 
needed to compress the different image types. The choice of the best algorithm 
is not trivial, most of the time requiring a certain experience with the 
algorithms. During a visualization session, the type of image can also change, 
making even more difficult to choose the appropriate algorithm. One important 
factor, which is important in choosing the compression algorithm, is the 
amount of computation needed for both compressing and decompressing the 
image. More efficient algorithms, capable of generating smaller compressed 
images are usually requiring more CPU power. This becomes very critical, 
especially for high-resolution images. There is a tradeoff between the amount of 
computation time needed to generate the compressed image and the amount of 
time used to transfer it over the network. 

There are cases when an investment in a more efficient compression 
algorithm can result in a higher frame rate, especially when the remote 
visualization is done over low bandwidth networks. In many situations, the 
actual network bandwidth available, which can be used, is less that the 
maximum bandwidth. This is the case when the remote visualization is done 
without having a dedicated network connection between the visualization 
server and client, especially when using wide area networks for visualization 
over long distance. An additional problem is that this available network 
bandwidth can change significantly during a remote visualization session. This 
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can be due to other data traffic in the network.  
For our study, we used four lossless compression algorithms. The choice 

was mainly made based on the performance of these algorithms for general 
image compression and the availability of optimal implementations as software 
libraries. The first algorithm (ZLIB) is the so-called �deflation� algorithm, which 
is used in the popular programs zip and gzip. This is a dictionary based 
compression method: it selects strings of symbols and encodes each string as a 
token using a dictionary. It is based on the LZ77 compression method combined 
with static Huffman encoding. The compression time and image sizes are pretty 
good, however for certain image type compression can be very poor.  

The second algorithm called Lempel-Ziv-Oberhumer (LZO), an 
optimized dictionary based method, which is more suited for real-time 
compression-decompression. It offers pretty fast compression and very fast 
decompression, however it favors speed over compression ratio. The resulting 
compressed images can be very large, thus increasing the transfer time over the 
network. The third algorithm used (BZIP2) is based on the Burrows-Wheeler 
method, which is a compression method using block sorting. The input stream 
is read block by block and each block is encoded separately as one string. The 
main idea is to start with a string S of n symbols and to scramble (permute) 
them into another string L, which satisfies: (1) any area of L will tend to have a 
concentration of just a few symbols; (2) it is possible to reconstruct the original 
string S from L. The method is a general-purpose method, which works well on 
images and can achieve very high compression ratios.  

The disadvantage of this algorithm is that it requires a lot of computing, 
both compression and decompression being slow. Since the algorithm is 
compressing individual blocks independently, it is possible to use a parallel 
version of the compression to reduce the time. The last algorithm we used is a 
simple Run Length Encoder (RLE). The idea behind this approach is the 
following: if a data item d occurs n consecutive times in the input stream, 
replace the n occurrences with the single pair nd. This is well suited for certain 
types of images, with large areas containing the same pixel value. The size of 
the compressed stream depends on the complexity of the image. The more 
detail we have, the worse the compression is. The algorithm being extremely 
simple, very efficient implementations could be implemented. It is also well 
suited for a parallel encoding. 

Reinforcement learning (Sutton and Barto, 1998) is a computational 
approach for goal directed learning from interaction. The learner is not told 
which actions to take, but instead must discover which actions yield the most 
reward by trying them. Reinforcement learning is different from supervised 
learning, the kind of learning from examples provided by a knowledgeable 
external supervisor. In interactive problems it is often impractical to obtain 
examples of desired behavior that are both correct and representative of all the 
situations. In uncharted situations, where one would expect learning to be most 
beneficial, an agent must be able to learn from its own experience. 
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Figure.9.21 The agent-environment interaction. 
 
In reinforcement learning, the learner and decision maker is called the agent. 
The thing it interacts with, comprising everything outside the agent, is called 
the environment. These interact continually, the agent selecting actions and the 
environment responding to those actions and presenting new situations to the 
agent. The environment also gives rise to rewards, special numerical values that 
the agent tries to maximize over time. More specifically, the agent and 
environment interact at each of a sequence of discrete time steps, t. At each time 
step t, the agent receives some representation of the environment�s state, st, and 
on that basis selects an action, at. One time step later, in part as a consequence 
of its action, the agent receives a numerical reward, rt+1, and finds itself in a 
new state, st+1. At each time step, the agent implements a mapping from states 
to probabilities of selecting each possible action.  

This mapping is called the agent�s policy. Reinforcement learning 
methods specify how the agent changes its policy as a result of its experience. 
The agent�s goal, roughly speaking, is to maximize the total amount of reward 
it receives over the long run. One of the challenges that arise in reinforcement 
learning is the trade-off between exploration and exploitation. To obtain a lot of 
reward, a reinforcement agent must prefer actions that it has tried in the past 
and found to be effective in producing reward. But to discover such actions, it 
has to try actions that it has not selected before. The agent has to exploit what it 
already knows in order to obtain reward, but it also has to explore in order to 
make better action selections in the future. The agent must try a variety of 
actions and progressively favor those that appear to be best.  

Another key feature of reinforcement learning is that it explicitly 
considers the whole problem of a goal-directed agent interacting with an 
uncertain environment. All reinforcement-learning agents have explicit goals, 
can sense aspects of their environments, and can choose actions to influence 
their environments. It is usually assumed that the agent has to operate despite 
significant uncertainty about the environment it faces. 

Adaptive compression. The adaptive compression algorithm we are 
proposing is using a reinforcement algorithm as presented in the previous 
section. We consider the frame rates as the rewards for each time step. An 
example of frame rate variation during a typical visualization session is 
presented in figure 3. The figure shows the current and average frame rates 
obtained by using the RLE (Run Length Encoding) compression algorithm for 



 

 187

two situations: one 100 MBps and one 10 MBps network connection of the client 
to the LAN. There are large variations in the current frame rate, especially when 
there is enough available network bandwidth (in the left and right regions of 
the figure). The average is done using the last ten frame rates.  

 
 

 

 

Figure.9.22 Frame rate variations and average 
 
Due to these large variations, the algorithm is making the selection of the 
compression algorithm based on these average values. For each selected 
compression method, at least 10 frames will be rendered using this method, 
providing this way a better estimate of performance of the algorithm. The 
adaptive algorithm works as follows: it starts with one of the compression 
methods (LZO in our case) and it uses it for the next 10 frames to get an 
estimate of its performance. After that, it is trying in a similar way the other 
compression methods, and when all the methods are tested it is choosing the 
best of the algorithms. From time to time, another compression method, 
different from the current one, is selected randomly and evaluated. If the new 
method is providing a better performance, i.e. increased frame rate, then it is 
selected as the next compression method. We used an interval of 50 frames 
between trying another compression method. 
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Figure.9.23 The adaptive algorithm 
 
Experimental results. We conducted tests using an SGI Onyx2 2400 parallel 
computer as the remote visualization server. This computer consists of 32 
R12000 RISC processors at 300 MHz, with a total memory of 16 GBytes and two 
Infinite Reality3 graphic pipelines. For the local visualization client we used a 
desktop PC with a Pentium 3 processor, running at 500 MHz, with 256 MBytes 
of memory. The operating system used was Linux with a 2.4.19 kernel. As a 
remote visualization system, we used the SGI OpenGL Vizserver software. This 
software allows remote rendering of the images on the SGI server, which are 
then compressed and sent over the network to the client for display. The SGI 
Vizserver offers an API for writing additional compression modules to be used. 
 
 

 

 

Figure.9.24 Vizserver architecture 
 
We implemented four compression modules using the four lossless methods 
described above. These modules are basically wrappers for existing software 
libraries, which implement the compression methods. The modules give a 
simple interface to both the compression and decompression, which is used by 
the adaptive algorithm. This is implemented as a compression module for the 
SGI Vizserver using the development API provided with the software. The 
adaptive algorithm was implemented using the C++ programming language. 

We chose the SGI Vizserver for several reasons. First because we had 
access to an SGI parallel visualization server which had it available, and second, 
because the API used for the compression modules is very simple, making it 
very easy the implementation of different compression techniques. Another 
reason was that the use of the Vizserver is transparent to the applications used. 
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There was however some problems we experienced. One of them is that the 
version we were using (3.1 beta) was quite unstable. We had to go through 
many crashes of the server software while developing and experimenting with 
different compression algorithms. One of the disadvantages in using SGI 
Vizserver is that the server hardware must be an SGI computer. However, the 
algorithm we implemented for the adaptive compression, together with the 
four compression modules are very easy to adapt to other similar remote 
visualization systems, due to the modular of implementation. 

One possible useful parameter we did not have access to while using the 
SGI Vizserver framework was the effective time required for sending each of 
the compressed frames over the network. The only available parameters we 
could use were the compression time for the frames and the time between two 
consecutive calls for the frame compression algorithm.  

In our experiment, the size of each frame was 640x512 pixels with 4 bytes 
per pixel (RGB plus alpha channels). We used the Volview program for 
visualizing a volume data set of 256x256x77 voxels of a CT scan. The Volview is 
part of the SGI Volumizer2 software, and uses hardware accelerated 3D 
texturing for volume visualization. This is a direct data visualization technique 
that uses textured data slices, which are combined, is a specific order using a 
blending operator. This technique takes advantage of graphics hardware and 
resources by using OpenGL 3D-texture rendering, allowing applications to 
obtain high interactive performances. 

The experiments were conducted using two different network 
connections between the client and the 100 MBps LAN containing the server. In 
the first situation, we connected the client using a 100 MBps network card to the 
LAN. In the second situation, we used a 10 MBps network card for connecting 
the client. Using a modified version of the Volview program, we recorded the 
translation and rotation vectors of the volume data for each frame generated 
during a typical interactive visualization session. We then played back the same 
session using the four different compression methods and then the adaptive 
algorithm. Frame rate averages for all five situations are presented in 
Figure.9.25 and Figure.9.26, for the two network connection situations.  

In both situations, the adaptive algorithm is searching for the best 
algorithm in the beginning, thus giving low frame rates. However, when it 
finds the best algorithm, it keeps it for the rest of the visualization session. 
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Figure.9.25 Average frame rate - 100 MBps network 
 
 

 

 

Figure.9.26 Average frame rate - 100 MBps network. 
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Conclusions. As the amount and size of scientific data continues to increase, the 
demand for high-resolution imaging will also increase. Remote visualization is 
one solution for making accessible remote data sets to users with low capability 
desktop machines. Use of image compression techniques permits remote 
visualization of larger resolution images or over lower bandwidth networks. 
There are different compression methods for different kind of images. Some of 
the methods give very good compression rates but only for a certain types of 
images, while for other types of images the compression is poor. The selection 
of the best compression algorithm is still a matter of experience. One other 
problem is that in most cases a better compression method also requires much 
more computational power. There is a tradeoff between the size of the 
compressed image and the amount of computation used in order to obtain the 
optimal frame rate using remote visualization. 

In this experiment we presented an adaptive algorithm based on 
reinforcement learning for choosing one of the available compression methods 
in order to maximize the frame rate. Our experiments show that such an 
algorithm can work in a dynamic and uncertain environment, consisting of a 
visualization server, a visualization client, and a network for transferring the 
compressed images between the server and the client. One of the problems we 
experience with the current algorithm is that, in certain situations, one of the 
compression methods, which are evaluated by the adaptive algorithm, is giving 
really poor frame rates. This affects the interactive responsiveness of the 
application. One possible improvement of the algorithm would be to use a 
different selection algorithm for evaluating the next possible method, by 
making actions, which give small rewards to be less likely to occur. In this way, 
compression methods, which give poor frame rates, will be less probable to be 
selected in the future.  

The modules for the compression methods and the adaptive algorithm 
are available for download, both as source code and binary at the following 
web site: http://www.idi.ntnu.no/�zoran/vizserver. 
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10 Conclusions and Future Work 
Continued exponential technology improvements, new collaborative modalities 
enabled by the quasi-ubiquitous Internet, and the demands of increasingly 
complex problems have, over recent decades, fuelled a revolution in the 
practice of science and engineering. Today's science is as much based on large-
scale numerical simulation, data analysis, and collaboration as it is on the 
efforts of individual experimentalists and theorists. Licklider's vision of man-
machine symbiosis and a global communication network came from the 
scientific community. Today, this community still leads the way, as early 
attempts in Grid computing evolve to the more sophisticated and ubiquitous 
virtual organization concept, in which Grid middleware enables "coordinated 
resource sharing and problem solving in dynamic, multi-institutional 
organizations�. The scientific community recognizes that following a decade of 
pioneering work in computational science, data technologies, supercomputing, 
and networking linked with Grid technologies, �computational and data 
management infrastructure has become a global phenomenon that is poised to 
evolve as a key enabler for science and society� (Foster and Kesselman, 2004). 

The new modes of inquiry outlined here constitute an ambitious vision 
for the future of science and engineering. The realization of this vision will 
require long-term investments of financial resources by governments and of 
intellectual resources by those who must build and apply the necessary global 
information infrastructure. We should not underestimate the difficulty of the 
technical challenges that must be overcome before we can fully realize the 
vision of a robust middleware infrastructure capable of supporting true virtual 
organizations. We hope that we have emphasized just how critically important 
the realization of this goal is for the future of science and engineering. 

With the rapid and simultaneous advances in software and computer 
technology, especially commodity computing, supercomputing and grid 
computing, every scientist and engineer will have on his or her desk an 
advanced simulation kit of tools that will make analysis, product development, 
and design more optimal and cost effective. Through the availability of 
increasingly powerful computers with increasing amounts of internal and 
external memory, it is possible to investigate incredibly complex dynamics by 
means of ever more realistic simulations. However, this brings with it vast 
amounts of data. To analyze these data it is imperative to have software tools, 
which can visualize these multi-dimensional data sets. Comparing this with 
experiment and theory it becomes clear that visualization of scientific data is 
useful yet difficult. For complicated, time-dependent simulations, the running 
of the simulation may involve the calculation of many time steps, which 
requires a substantial amount of CPU time, and memory resources are still 
limited, one cannot save the results of every time step. Hence, it will be 
necessary to visualize and store the results selectively in real time so that we do 
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not have to recompute the dynamics if we want to see the same scene again. 
Real time means that the selected time step will be visualized as soon as it has 
been calculated. Scientific breakthroughs depend on insight. In our collective 
experience, better visualization of a problem leads to a better understanding of 
the underlying science, and often to an appreciation of something profoundly 
new and unexpected. Advanced capabilities for visualization may prove to be 
as critical as the existence of the supercomputers themselves for scientists and 
engineers, and also for specialists in other domains. Better visualization tools 
would enhance human productivity and improve efficiency in several areas of 
science, industry, business, medicine and government. The most exciting 
potential of widespread availability of visualization is the insight gained and 
the mistakes caught by spotting visual anomalies while computing. 
Visualization will put the scientist into the computing loop and change the way 
the science is done (McCormick, 1988) 

Visualization as a human activity precedes computing by hundreds of 
years, possibly thousands if we include cave paintings as examples of Human�s 
attempts to convey mental imagery to his fellows. Visualization specifically in 
the service of science has a rather shorter but distinguished history of its own, 
with graphs and models produced by hand all having been used to explain 
observations, make predictions, and understand theories. The current era of 
visualization, however, is different in its pace and spread, and both can be 
attributed to the modern invention of the computer. Today, we are bombarded 
with visual imagery, no news report is considered complete without flying in 
graphs of statistics: the weather report can be seen to animate rain-drop by rain-
drop, our banks send as plots of our incomings, and outgoings in an attempt to 
persuade us to manage our finances more responsibly (Wright, 2007). 

Moreover, everyone can now produce their own computer graphics, 
with easy-to-use software integrated into word-processors that makes charts 
and plots an obligatory element of any report or proposal. More specialist 
packages in turn offer complex techniques for higher dimensional data. These 
used to be the domain of experts, but without the expert on hand to advise on 
their usage we run the risk of using the computer to make clever rubbish. 
Visualization has thus become ubiquitous. As a tool it is powerful but not 
infallible. Scientists are becoming familiar with desktop programs capable of 
presenting interactive models molecules and microbiological. The field of 
bioinformatics and the field of cheminformatics make a heavy use of these 
visualization engines for interpreting lab data and for training purposes. 
Medical imaging is a huge application domain for Scientific Visualization with 
an emphasis on enhancing imaging results graphically, e.g. using pseudo-
coloring or overlaying of plots. Real-time visualization can serve to 
simultaneously image analysis results within or beside an analyzed (e.g. 
segmented) scan. Data visualization techniques are now commonly used to 
provide business intelligence. Performance metrics and key performance 
indicators are displayed on an interactive digital dashboard. Business 

http://en.wikipedia.org/wiki/Imaging
http://en.wikipedia.org/wiki/Image_segmentation
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executives use these software applications to monitor the status of business 
results and activities.  

All users of Scientific Computing and Visualization have an interest in 
better hardware, software and integrated systems, and much of what has being 
developed was shared by a number of scientific and engineering disciplines up 
to a point, but with very large costs that were accessible only to large research 
facilities (e.g. SGI visualization servers and large PC clusters). Then the gaming 
industry has made a breakthrough under the pressure of the gamers, who did 
require more and more graphical power, by developing very high performance 
graphics cards, at very low costs (commodity hardware). The visualization 
community has shifted to using these low-priced resources for their 
visualization tasks and progressively more PC-based visualization results have 
been obtained. However, gaming graphics hardware is not well suited for 
Scientific Visualization, leading to a fundamental rethinking of how high-end 
systems are built as designers attempt to apply to large scale (interactive) 
rendering the clustered computing techniques that have revolutionized HPC. 

The remarkable performance figures of the major volunteer computing 
projects, such as SETI@home, self-credited with more than 65 TFlops, as of 
September 2005, clearly demonstrate the usefulness of harvesting cycles over 
the internet. The attractiveness of exploiting desktop grid systems is further 
reinforced by the fact that costs are highly distributed: every volunteer supports 
his or her resources (hardware, power costs and internet connections) while the 
benefited entity provides management infrastructures, namely network 
bandwidth, servers and management services, receiving in exchange a massive 
and otherwise unaffordable computing power. Fortunately, the usefulness of 
desktop grid computing is not limited to major high throughput public 
computing projects. Many institutions, ranging from academics to enterprises, 
hold vast number of desktop machines and could benefit from exploiting the 
idle cycles of their local machines.  

Also, the availability of several desktop grid platforms have smoothened 
the setup, management and exploitation of desktop grid systems. Indeed, the 
potential gains of harvesting idle resources have fostered the development of 
desktop grid middleware. Currently, several platforms exist ranging from 
academic projects such as BOINC, XtremWeb, MiG, and Alchemi, to 
commercial solutions like Unicore, United Devices and OfficeGrid. This 
plethora of desktop grid and volunteer computing platforms has contributed to 
the explosion of new desktop grids and related projects, not only over the 
internet but also at an institutional level, like in the case of a university campus. 
The typical and most appropriate application for desktop grid is comprised of 
independent tasks (with no communication between tasks) with a high 
computation to communication ratio. The execution of the application is 
orchestrated by a central scheduler node, which distributes the tasks amongst 
the worker nodes and awaits workers� results. It is important to note that an 
application only finishes when all tasks have been completed.  
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The main difference in the usage of institutional desktop grids relatively to 
public ones lies in the dimension of the application that can be tackled.  
In fact, while public projects usually embrace massive applications made up of 
an enormous number of tasks, institutional desktop grids (much more limited 
in resources) are better matched for small size applications. So, whereas in 
public volunteer projects importance is on the number of tasks carried out per 
time unit (throughput), users of institutional desktop grids are normally more 
interested in a fast execution of their applications, seeking fast turnaround time.  

Because of the huge number of PCs in the world, desktop grid and 
volunteer computing can (and do) supply more computing power to science 
than does any other type of computing. This computing power enables 
scientific research that could not be done otherwise. This advantage will 
increase over time, because the laws of economics dictate that consumer 
electronics (PCs and game consoles) will advance faster than more specialized 
products, and that there will simply be more of them. Volunteer computing 
power cannot be bought; it must be earned. A research project that has limited 
funding but large public appeal (such as SETI@home) can get huge computing 
power. In contrast, traditional supercomputers are extremely expensive, and are 
available only for applications that can afford them (for example, nuclear 
weapon design and espionage). Desktop grid and volunteer computing 
encourage public interest in science, and provides the public with voice in 
determining the directions of scientific research.  

Desktop grid and volunteer computing are not to evolve outside the 
Grid, but connected intimately with it, inside it. Though there are some notable 
differences. First, within the Grid, each organization can act as either producer 
or consumer of resources (hence the analogy with the electrical power grid, in 
which electric companies can buy and sell power to/from other companies, 
according to fluctuating demand). Second, the organizations are mutually 
accountable. If one organization misbehaves, the others can respond by suing 
them or refusing to share resources with them. This is different from volunteer 
computing or desktop grid computing in some sort of institutions, like 
universities, where is practically impossible to track down each user of a 
resource at some point in time. On the other hand, desktop grid computing, 
which uses desktop PCs within a more formal organization, is superficially 
similar to volunteer computing, but because it has accountability and lacks 
anonymity, it is significantly different.  

Internet standards made possible the Web, which enabled the near-
global access to and sharing of content. Open Grid protocols hold the promise 
of fostering unprecedented integration of technologies, applications, files, and 
just about any other IT resource, enabling global sharing of these resources 
beyond what has been possible with the Web. The same protocols will also 
virtualize those resources, shielding users from their complexity and allowing 
them to focus on what they wish to do, rather than how the technology can get 
it done. Likewise, they will permit management tools to range over that vast 
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heterogeneous infrastructure, rendering it tractable and delivering a quality of 
service consistent with mass adoption. Finally, having standardized the 
infrastructure, open Grid protocols (like OGSA) will permit the delivery of 
computing services when and where needed, on-demand. In enabling all these 
capabilities, Grid computing is establishing the necessary conditions for IT to 
approach mass adoption, or what can be called a post-technology era (Foster 
and Kesselman, 2004). Nevertheless, Desktop Grid computing is still under 
heavy conceptualization, research and development. There are still many 
aspects to clarify and solve: security issues, scheduling, volatile environment, 
sabotage-tolerance, integration with Grid, decentralization etc. 

The core idea of the work presented in this thesis has been to provide a 
desktop grid computing framework and to prove its viability by testing it in 
some Scientific Computing and Visualization experiments. We presented here 
QADPZ, an open source system for desktop grid computing, which enables 
users from a local network or even Internet to share their resources. It is a 
multi-platform, heterogeneous system, where different computing resources 
from inside an organization can be used. It can also be used for volunteer 
computing, where the communication infrastructure is the Internet. QADPZ 
supports the following native operating systems: Linux, Windows, MacOS and 
Unix variants, as opposed to some other similar systems that usually are limited 
to only one (Unix or Windows). Consequently, that kind of limitation restricts 
very much the usability of desktop grid computing in real life situations. 

QADPZ provides a flexible object-oriented software framework that 
makes it easy for programmers to develop various applications, and for 
researchers to address issues such as adaptive parallelism, fault-tolerance, and 
scalability. The system supports also the execution of legacy applications, which 
for different reasons could not be rewritten, and that makes it also suitable for 
other domains as business. It also supports either low-level programming 
languages as C and C++ or high-level language applications, like for example 
Lisp, Python, and Java, providing the necessary mechanisms to use such 
applications in a computation. Therefore users with various backgrounds can 
benefit from using QADPZ. The flexible, object oriented structure and the 
modularity of the system allows improvements and further extensions to other 
programming languages to be made easily. 

We have developed a general-purpose runtime and an API to support 
new kind of high performance computing applications, and therefore to benefit 
from the advantages offered by desktop grid computing. We show how 
distributed computing grid extends beyond the master-worker paradigm, 
typical for such systems, and provide QADPZ with an extended API which 
supports in addition lightweight tasks creation and parallel computing, using 
the message passing paradigm (MPI). The API directly supports the C/C++ 
programming language. QADPZ supports parallel programs running on the 
desktop grid, by providing and API in the C/C++ language, which implements 
a subset of the MPI standard. This extends the range of applications that can be 



 

 198

used in the system to already existing MPI based applications, like for example 
parallel numerical solvers, from computational science, or parallel visualization 
algorithms. Another restriction of existing systems, especially middleware 
based, is that each resource provider needs to install a runtime module with 
administrator privileges. This poses some issues regarding data integrity and 
accessibility on providers� computers. The QADPZ system tries to prevail this 
by allowing the middleware module to run as a non-privileged user, even with 
restricted access, to the local system. 

QADPZ provides for low-level optimizations, such as on-the-fly 
compression and encryption for communication. The user can pick out from 
different algorithms, depending on the application, improving both the 
communication overhead imposed by large data transfers and keeping privacy 
of the data. The system goes further, by providing an experimental, adaptive 
compression algorithm, which can transparently choose different algorithms to 
improve the application. QADPZ support two different protocols (UDP and 
TCP/IP) in order to improve the efficiency of communication. 

Free availability of the source code allows its flexible installations and 
modifications based on the individual needs of research projects and 
institutions. In addition to being a very powerful tool for computationally-
intensive research, the open-sourceness makes QADPZ a flexible educational 
platform for numerous small-size student projects in the areas of operating 
systems, distributed systems, mobile agents, parallel algorithms, and others. 
More, free software is a natural choice for modern research, as well, because it 
encourages effectively integration, cooperation and boosting of new ideas.  
We offered the QADPZ system as open source from the beginning, at a time 
when very few such solution were free, with all the positive implications of this 
for research and other computationally intensive applications. 

Beside the extended master-worker conceptual model (which makes 
contributions in several directions  - pull vs. push work-units, pipelining of 
work-units, more work-units sent at a time, adaptive number of workers, 
adaptive time-out interval for work-units, multithreading, resource estimation 
and monitoring, scheduling) and the QADPZ desktop grid system, this thesis 
make contributions in form of a hierarchical taxonomy of the main existing 
desktop grids, and of an adaptive compression algorithm for remote 
visualization. We have also been trying to demonstrate that the use of desktop 
grid computing should not be limited to only master-worker type of 
application, but can be used also for more fine-grained parallel applications, in 
the field of Scientific Computing and Visualization, by performing some 
experiments in those domains. The system is currently used for research tasks 
in the areas of large-scale Scientific Visualization, evolutionary computation, 
simulation of complex neural network models, and other computationally 
intensive applications. It is worth to mention that to the present, the QADPZ 
has over a thousand downloads, from users who use it for their tasks, as it can 
be seen in the appendix. 
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The work on QADPZ system and its conceptual model has been done in 
collaboration with my colleague Pavel Petrovič from NTNU-IDI, who has had 
major contributions mostly on the slave side and on job descriptions in XML 
(XML parser included), and on a number of specific requirements, coming from 
his research interests. Some of the work he has done on the slave side has been 
later rewritten for better modeling or efficiency purposes. The job description 
and the parser have remained the same as he has developed. The final master 
worker model that has been implemented in QADPZ meets his requirements. 

Some of the results of this thesis have already been published (they are 
listed in the references) and some are in course of publication. Thus, 
contributions that are already published concern: the QADPZ system 
(Constantinescu and Petrovic, 2002) and (Constantinescu et al., 2002), QADPZ 
proven to be useful in Scientific Computing � example of using it to solve the 
Navier Stokes equation for fluid dynamics (Constantinescu, 2003), QADPZ as 
an autonomic distributed computing system (Constantinescu, 2003), and the 
hierarchical taxonomy of desktop grid systems built from users� perspective 
(Constantinescu and Vladoiu, 2008). The paper on QADPZ�s autonomicity has 
been highly cited since it has been published and considered as pioneering this 
approach in desktop grids, as it can be seen in the appendix. The results on 
QADPZ, as a viable desktop grid/volunteer computing open solution, which 
can also use parallel computing techniques using the MPI layer - this is a novel 
approach in desktop grid, on the improved master worker model, on the 
adaptive compression algorithm for remote visualization, on master 
virtualization, on QADPZ testing in some experimental scientific visualizations, 
and on QADPZ development journey are in course of publication. 

It is worth to reconsider here briefly the Desktop Grid requirements 
(which have been presented in section 4.7.2.2) that were not yet synthesized at 
QADPZ�s development time, and to try to match them against the QADPZ 
requirements that have been implemented in the system. With respect to these 
requirements we may say that QADPZ was expected to manage available 
resources efficiently (efficiency), to enforce program security (security), to be easy 
maintainable, flexible, and extensible (scalable, manageable), to provide for job 
management  (open/easy to integrate applications), to offer proper resource and job 
management (manageable, unobtrusive), to handle multiple-projects (multiple-
project participation) and to support parallel programming (communicative). What 
QADPZ misses is full robustness and data security that are in our future work 
plans. The robustness is accomplished simplistically in QADPZ: if one job fails 
due to one or more of task failures, for various reasons, the job is started over. 
But QADPZ had some other rewarding requirements such as providing 
performance measurements, on-line/off-line support for batch and interactive 
applications, personalization and simplicity. Moreover, QADPZ has pioneered 
autonomic features requirements for desktop grids. 

Further on we present some future work ideas that aim to improve both 
the conceptual model and the QADPZ system. First, at this time the system 
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does not support job checkpointing and does not handle restart of master 
computer. Adding these features has high priority. In the current version of the 
system, each job needs a different client process, although we are working on 
extending the client functionality to allow single instance of client to optionally 
connect to multiple masters and handle multiple jobs. Future development of 
the system will include improved support for user data security. Computation 
results data can be encrypted and/or signed so that the user of the system can 
be sure the received data is correct. We are considering allowing optional data 
integrity in the future versions of QADPZ. This is especially useful if the system 
is used in an open environment, for example over the Internet. For faster 
performance, slave libraries will be cached at slave computers � in the current 
version, they are downloaded before each task is started. Slave computers will 
provide a flexible data storage available to other computers in QADPZ. The 
scheduling algorithm of the master needs improvements. We plan to support 
more hardware platforms and operating systems. 

Our current implementation does not support collective communication, 
only the MPI_COMM_WORLD communicator. However, a complete library of 
the collective communication routines can be written entirely using the point-
to-point communication functions and a few auxiliary functions. QADPZ�s 
implementation is limited to a small subset of the MPI. It contains only the most 
used functions, and is intended only for testing purposes and evaluation of the 
parallel communication. More complete implementation based on existing 
libraries is possible, but it was outside the scope of this thesis. The MPI 
functions implemented provide sufficient features for our parallel experiments. 
The current user interface to the system is based on C++. Possible extensions of 
the system would be different interfaces for other languages, e.g. Java, Perl, Tcl 
or Python. This can easily be done, since the message exchanges between 
different components of the system are based on an open XML specification. 

The current implementation of the system is made considering only one 
central master node. This can be an inconvenience in certain situations, where 
computers located in different networks are used together. The master node can 
also be subject to failures, software or hardware. A more decentralized 
approach is needed in this case. However, our high-level communication 
protocol between the entities, especially between the client and master, allows a 
master to act as a client to another master, thus making possible to create a 
distributed master, consisting of independent master nodes, which 
communicate with each other i.e. some sort of virtual master. Ideas from peer-to-
peer computing will be used for implementing such a decentralized approach.  

Future desktop grid infrastructure must be decentralized, robust, highly 
available, and scalable, while efficiently mapping application instances to 
available resources in the system. However, current desktop grid computing 
platforms are typically based on a client-server architecture, which has inherent 
shortcomings with respect to robustness, reliability and scalability. Fortunately, 
these problems can be addressed through the capabilities promised by new 
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techniques and approaches in P2P systems. By employing P2P services, our 
system could allow users to submit jobs to be run in the system and to run jobs 
submitted by other users on any resources available in the system, essentially 
allowing a group of users to form an ad-hoc set of shared resources. 

Another future work idea is to add a set of transparent profiling tools for 
evaluating the performance of the different components. This is an important 
issue, especially when running parallel applications. Dynamic balancing of the 
workload can be used. We plan to introduce more autonomic features in the 
system. Other possible extensions of the system are currently considered, for 
example interconnection with a grid computing environment.  

We invite the interested developers in the open-source community to 
join our development team and we appreciate any kind of feedback. 

 
Viewed from a historical perspective, Information Technology has clearly been 
in the developmental stage of its evolution. IT began with mainframes and 
supercomputers sheltered in the "glass house." Expensive and complex, these 
early systems yielded results only to highly trained specialists steeped in the 
mysteries of programming. With the advent of personal computers and local 
area networks, millions of people began to use the technology, and since the 
emergence of network computing and the Internet, hundreds of millions more 
have come to use it. Information Technology, like electricity and automobiles 
before it, is last approaching its own post-technology phase - a time when the 
application will be dominant and the technology will gradually sink into the 
background of our lives and be integrated into society. The signs are all there. 
One of the major heralds of this new phase is the increasing commoditization of 
information technologies. Microprocessors, storage, DRAMs, bandwidth, and 
all sorts of other information technologies, year in and year out, are improving 
by 50, 60, even 70%, becoming much less expensive, with much more power 
packed into a smaller unit. Obviously, powerful technologies that are less 
expensive and smaller are more easily hidden in the environment.  
Commodity IT, therefore, is potentially ubiquitous, like the little electric motors 
found throughout our homes and in our cars. 

Another indication that IT is headed toward mass adoption is the  
never-ending and incredible increase in the power of systems.  
That same inexpensive commodity technology is being aggregated into larger 
and more powerful computers. Soon blades-servers on inch-thick cards will let 
us cluster systems by the thousands. In the not-so-distant future, we will see 
systems with tens of thousands, eventually even hundreds of thousands, of 
blades or similar small components, all collaborating, all solving unimaginably 
sophisticated problems, all supporting hundreds of millions of users. In sum, 
technologies are becoming commoditized to such a degree that we can afford to 
have billions of them in the environment, while systems are growing so 
incredibly potent that we can build a commensurately powerful and connected 
infrastructure to support them. 
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Properly handled, this rich layer promises a brilliant future. What will it look 
like? For one, it will be thoroughly integrated: systems, business processes, 
organizations, people - everything required for a smoothly functioning whole - 
will be in close dynamic communication. In addition, the infrastructure  
will reach much advanced levels of efficiency, with all the enterprise's resources 
fully employed rather than the current spotty, uneven, piecemeal application of 
these costly assets. The quality of services will be vastly improved, as  
the infrastructure becomes more autonomous and has capabilities as  
self-configuring, sell-optimizing, self-healing, and self-protecting. Finally,  
much greater degrees of flexibility will emerge, leaving people free to  
make technology choices based on their needs rather than on some  
architectural issues. 

However, the planets are aligning: open standards are becoming more 
prevalent. Grids are evolving in the research community and making their way 
swiftly into many other areas of life. It is only a matter of time before 
information technology achieves the kind of productive anonymity that 
electricity did when standards made it ubiquitous and routine. Arthur Clarke 
may have been right. As we become capable of doing more and more with our 
advanced technologies and as we hide those technologies and their 
complexities from users, the result will indeed seem like magic. Making that 
magic convincing is one of the most complex and exciting challenges facing our 
community, as we move IT into its post-technology phase. 
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Appendix 1. Feedback and reactions to QADPZ 
 
Within this appendix, the raw feedback and reactions to the system are listed. These can 
be categorized into four main categories: feedback and support requests from users who 
use QADPZ for their research and development tasks, forum discussions, citations in 
papers, and working assignments, based on QADPZ features, for students from some 
universities. Each item is preceded by a word, which indicates in which category it falls: 
feedback, forum, citation or assignment. 
 
1. Assignment: 
http://diplab.snu.ac.kr/courses/2007f/dip/Homework/assignment_3.pdf 
4541.662A Distributed Information Processing Handout 4 (2007 Fall)  
Mobile Embedded Software Lab, CSE, SNU - Assignment 3 
Add encryption and decryption steps that use the following cryptographic algorithms, to 
the client program that you have written as part of your Assignment 2 work. 
Miscellaneous Links: QADPZ Documentation by the QADPZ Team at the Norwegian 
University of Science and Technology  
RSA: http://qadpz.idi.ntnu.no/doxy/html/RSAcrypter_8cpp-source.html 
 
2. Assignment: 
http://www.eecg.toronto.edu/~ashvin/courses/ece1746/2003/project-suggestions.html 
ECE 1746, Fall 2003, Project Suggestions  
Implement a fault-tolerant large-scale distributed computation. Implement a large-scale 
distributed, perhaps scientific, algorithm of your choice. You can use an infrastructure 
such as QADPZ - Quite Advanced Distributed Parallel Zystem. Test the fault-tolerant 
behavior of your application, e.g., does the algorithm degrade gracefully if one node 
crashes. Modify your algorithm so that it is fault-tolerant in the face of node failure. 
One method of evaluation could be in terms of progress made by the application after 
node crashes, e.g., does the application make progress proportional to the number of 
surviving nodes in the system. 
 
3. Feedback: 
http://ibalita.msuiit.edu.ph/modules.php?name=Forums&file=viewtopic&p=11976 
Since we don�t have a cluster here, where students interested in distributed computing, 
can have access to, I am planning to build one for IIT, something similar to SETI, where 
IDLE CPUs of ordinary desktop PCs can be utilized [CPUs in our offices]. I�m 
currently experimenting with QADPZ (http://qadpz.sourceforge.net/). Pag ok na, I�ll ask 
for the admin�s approval to install the clients in the different offices. 
 
4. Citation: 
http://www.comp.leeds.ac.uk/kwb/publication_repository/2005/cgf_006.pdf 
http://www-compsci.swan.ac.uk/~csmark/PDFS/visualsupercomputing.pdf 
�Visual Supercomputing: Technologies, Applications and Challenges� 
A noticeable amount of research effort in autonomic computing has been placed on the 
self-management of system infrastructure and business services. Examples of this 
include self-configuration in patching management [135] and Grid service composition 

http://diplab.snu.ac.kr/courses/2007f/dip/Homework/assignment_3.pdf
http://qadpz.idi.ntnu.no/doxy/html/RSAcrypter_8cpp-source.html
http://www.eecg.toronto.edu/~ashvin/courses/ece1746/2003/project-suggestions.html
http://ibalita.msuiit.edu.ph/modules.php?name=Forums&file=viewtopic&p=11976
http://qadpz.sourceforge.net/
http://www.comp.leeds.ac.uk/kwb/publication_repository/2005/cgf_006.pdf
http://www-compsci.swan.ac.uk/~csmark/PDFS/visualsupercomputing.pdf
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[136], self-optimization in power management [137], business objectives management 
[138], and network resource management [139], and self-healing in online service 
management [140] and distributed software systems [141]. Efforts have also been made 
to broaden the scope of autonomic computing, addressing a wide range of related 
research issues, such as economic models [142], physiological models [143], interaction 
law [144], preference specification [145], ontology [146,147], human-computer 
interaction [148], and so forth. Though the development of generic software 
environments for autonomic applications is still in its infancy, several attempts were 
made, which include projects such as QADPZ [149], AUTONOMIA [150] and 
Almaden Optimal-Grid [151]. QADPZ [149] provides an open source framework for 
managing heterogeneous distributed computation in a network of desktop computers 
using autonomic principles. In QADPZ, the system complexity is hidden in the 
middleware layer, facilitating self-knowledge, self-configuration, self-optimization and 
self-healing. 
 
5. Citation: 
http://arxiv.org/pdf/cs/0607061 
On Some Peculiarities of Dynamic Switch between Component Implementations in an 
Autonomic Computing System 
The success of an autonomic system behavior is essentially determined by ability to 
detect or predict overall performance that is actually the ground for management of 
autonomic components, in particular, for activation of an appropriate component 
implementation. For this, establishing of mathematical abstractions and models giving 
criteria governing the sequence of switches between component implementations is an 
important point of autonomic computing [2-5]. 
 
6. Citation: 
http://www.scientificjournals.org/journals2007/articles/1198.pdf 
There is no full fledged autonomic system either in the business domain or in the 
research domain that the author is aware of [83]. Most of the autonomic systems so far 
are actually prototypes or provide a limited amount of required functionality [58, 106] 
of an autonomic system. The most important aspect that is missing in all these systems 
is that the authors do not actually describe how to write programs in such systems or 
how to utilize such a system in a simpler fashion. They either introduce new metaphors 
or provide a completely new approach to autonomic computing that adds additional 
complexity and a steep learning curve to the programmer. The goal of this research is to 
make the resultant system simple to use, by making the underlying autonomic 
framework transparent. None of the following systems match this goal. 
QADPZ [19] provides an open source framework that allows the management and use 
of the computational power of idle computers in the network using autonomic 
principles. QADPZ is implemented in C++ and uses MPI as its communication 
protocol, which restricts this system to a certain class of architectures. It also deploys a 
masterslave pattern for task distribution, which actually does not follow the autonomic 
system architecture and it does not take any measure to overcome a single point of 
failure, e.g. the master node. The clients and the slaves (which do the actual work on 
behalf of the client) talk to each other by the use of a shared disk space, which is 
certainly a performance bottleneck and requires costly synchronization. 

http://arxiv.org/pdf/cs/0607061
http://www.scientificjournals.org/journals2007/articles/1198.pdf
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7. Citation: 
http://www.thevantagepoint.com/resources/articles/Mining%20Conference%20Proceedi
ngs%20for%20Corporate%20Technology%20KnowledgeManagement.pdf 
Mining Conference Proceedings for Corporate Technology Knowledge Management 
Let�s explore Figure 4 further. The term �autonomic computing� appears in two factor 
groups. Autonomic computing occurred first in 2003 in 7 abstracts and then in 4 
abstracts in 2004. In a 2003 paper, Constantinescu states �Systems which are 
autonomic, capable of managing themselves are required� in �Towards an Autonomic 
Distributed Computing System.� In a 2003 paper, Sterritt et al. claim autonomic 
computing aims to (i) increase reliability by designing systems to be self-protecting and 
self-healing; and (ii) increase autonomy and performance by enabling systems to adapt 
to changing circumstances, using self-configuring and self-optimizing mechanisms. 
This field, autonomic computing, appears to fit the definition of an emerging area of 
research. 
 
8. Assignment: 
http://buscatextual.cnpq.br/buscatextual/visualizacv.jsp?id=K4792170D6 
TONIN, Neilor Avelino; GIORDANI, Luis Otávio; ADÁRIO, A. M. S.. 
Participação em banca de Carlos Alberto Ferrari. 
Um Estudo Sobre o Sistema de Computação Distribuída Q2ADPZ. 2004. 
Trabalho de Conclusão de Curso (Graduação em Informática) � 
Universidade Regional Integrada do Alto Uruguai e das Missões. 
 
9. Citation: 
http://staff.science.uva.nl/~emeij/publications/OSIR2006_Edgar_Meij.pdf 
http://www.emse.fr/OSIR06/2006-osir-p25-meij.pdf 
Deploying Lucene on the Grid, Edgar Meij and M. de Rijke. In: Proceedings SIGIR 
2006 workshop on Open Source Information Retrieval (OSIR2006), 2006 [PDF] 
A grid enables the integrated use of resources, which are typically owned by multiple 
organizations and/or individuals and is in fact a system consisting of distributed, but 
connected resources [12]. It also encompasses software and/or hardware that provides 
and manages logically seamless access to those resources [13, 24]. Grids can be roughly 
classified in two categories: institutional grids (IG�s) and global computing or P2P 
(GCP) systems [3, 23, 11]. GCP systems typically harvest the computing power 
provided by individual computers, using otherwise unused bandwidth and computing 
cycles in order to run very large and distributed applications [22, 15]. Some examples 
include SETI@home [38], LookSmart�s Grub [28] (a voluntary initiave to crawl the 
Internet in a distributed fashion), and Zeta- Grid [40]. ZetaGrid is an attempt to verify 
Riemann�s Hypothesisusing grid technology, with a reported peak performance rate of 
around 7000 GFLOPS. There are also (open source) packages such as XtremWeb [11], 
and Q2ADPZ [30] which allow to setup, deploy and run GCP projects. BOINC (the 
Berkeley Open Infrastructure for Network Computing) is another open source platform 
for public-resource distributed computing [3] and currently the enabling system for 
SETI@home, LHC@home, Einstein@home, Climateprediction.  net, and many more. 
 

http://www.thevantagepoint.com/resources/articles/Mining Conference Proceedings for Corporate Technology KnowledgeManagement.pdf
http://www.thevantagepoint.com/resources/articles/Mining Conference Proceedings for Corporate Technology KnowledgeManagement.pdf
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http://www.emse.fr/OSIR06/2006-osir-p25-meij.pdf
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10. Feedback: 
http://grulic.org.ar/lurker/message/20040709.151501.e675f4be.es.html 
[translation by babelfish] 
Fecha: 2004-07-09 18:15 +300 
A: sw, List of mail of the User group of Linux in Cordoba 
Asunto: Re: [ GRULIC ] to cluster with mayusculas 
 
Message mentioned by sw@, 
> 
> Pregunta.... 
> Hay people with desire to begin to see that she leaves, to see if it is possible? 
> I suppose that if....pero that I can say to them? 
> Single I am filosofando, and in fact single not much on nothing. 
> 
Surely that is people with desire to prove something... 
Something but or less asi is QÀDPZ (Clears Advanced Distributed Parallel Zystem) 
Segun its presentation... 
[...] 
A time ago I was proving it a pair of hours in the Intranet of my company and walks 
enough good... 
Basicamente consists of a group of three binary ones: Masters, slave and client. 
The thing is thus:  
- a PC is defined Masters that is the one who receives the orders and it delegates and it 
controls the processes. 
- they settle the enslaved soft in the PC with capacity of idle processing. 
- they settle the soft client in the PC that �throws� processes to to cluster. 
In individual it installs the Masters in a Network Hat 7,3 that I have of server the Dpto. 
of development and in 3 PC installs the Slave and Client. 
I made a simple rutinita of mathematical calculos with numeros (several cascade curls 
for) that took the time from beginning and end of calculos and when it finished reduced 
End to me - Beginning 
Corri in a PC normally and soon in that PC with the soft client. The time gave 
something me smaller, but nonmemory whatever... 
Despues I did not have but time for tests... 
If to somebody it interests to him to prove with something but great, I fall in love... 
Greetings 
Paschal Guillermo 
Infrastructure IT 
To integrate Solutions 
It jumps 548 - It plants Discharge 
Jesus Maria - Cordoba - X5220BGB 
Tel/Fax: (03525) 421224 
to www.integrarsoluciones.com.ar 
 
 
 
 

http://grulic.org.ar/lurker/message/20040709.151501.e675f4be.es.html
http://www.integrarsoluciones.com.ar/
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11. Feedback: 
Date: Fri, 28 Apr 2006 21:41:13 +0530 
From: �premkumar srinivasan� <prem.srini@gmail.com> 
To: zoran@idi.ntnu.no 
Subject: Q2ADPZ 
References: <3a3029120604280904p3de0b65fuad79cc6b1976425a@mail.gmail.com> 
Hi Zoran, 
 I reached http://qadpz.idi.ntnu.no/paper-Crossroads/qadpz.html#qadpz while 
searching for available open-source distributed computing softwares. 
I have downloaded q2adpz from http://sourceforge.net/projects/qadpz. While trying to 
setup in windows, I couldn�t open two .dsp files ( cli_flic and slv_flic ). Can I please 
know, from where can I download uncorrupted .dsp files? Also, where can we find 
makefile with respect to building q2adz in windows environment. Can I also know what 
are the other good open source softwares available for distributed computing in 
windows environment? A little advice from you, can help me, to dwelve into the 
amazing area of distributed computing. 
Thanks Zoran! 
--Prem. 
----------------------------------------------------------------------------------------- 
From: Pavel Petrovic <Pavel.Petrovic@idi.ntnu.no> 
Message-Id: <200605011604.k41G4w3k019849@furu.idi.ntnu.no> 
Subject: Re: Q2ADPZ 
To: premkumar srinivasan <prem.srini@gmail.com> 
Date: Mon, 1 May 2006 18:04:22 +0200 (MEST) 
Hi, 
> Hi Pavel, 
> Thanks for sending me the latest CVS snap-shot of q2adpz. 
> I could download liblzo, libzlib, ssl libraries. 
> But I am facing the following problems: 
> 1) Where can I find flic.h in the code-base? Also, the make system requires 
> flic_lib.lib. Where can I get this? 
Good question. flic sample is maintained by Zoran. It relates to his research of 
visualization of stream data with the help of clusters. flic is FastLIC (Fast LIC), 
unfortunatelly, I do not have sources of FLIC. The search on the net tells me that FLIC 
is a past project of ZIP, but from their page http://www.zib.de/Visual/projects/ it seems 
that the project is no longer maintained.  You can just ignore the FLIC sample unless 
you get more info from Zoran. 
> 2) Where can I get crypto.lib and curl.lib? > libcurl-7.15.3�s libcurl.lib isn�t matching, 
it seems.  I will try with some other version of curl. 
I am using the libcurl3-dev 7.14.0-2ubuntu. Are you getting some compilation errors 
with the newer version? For the start, it is better to not use libcrypto  
(set HAVE_OPENSSL = 0 in Makefile.base).  
Q^2ADPZ is an experimental research software, it is not [yet] a complete product. 
Let me know if you have further questions. 
Pavel. 
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12. Feedback: 
Subject: Question Regarding Using QADPZ w/ MPI (i.e. qadpz_mpirun) 
Date: Mon, 8 May 2006 14:16:51 -0700 
Message-ID: 
<8AB7DFF4B7187C43B0C93FA2D55E5B8C05AF8383@xcgca210.northgrum.com> 
From: �Carl, Andrew� <a.carl@ngc.com> 
To: <zoran@idi.ntnu.no> 
Cc: �Carl, Andrew� <a.carl@ngc.com> 
Mr. Constantinescu, 
       I am attempting to understand the implementation of the MPI w/QADPZ. Which 
version did you use in your testing, and is there any documentation available? I have 
contacted Mr. Petrovic, but he stated that you were the author of the MPI related 
upgrades associated w/qadpz_mpirun. 
Thanks, 
       Andy Carl 
 
13. Feedback: 
Date: Fri, 26 Oct 2007 16:53:27 +0200 
To: zoranc@users.sourceforge.net 
From: �Marcus Dapp Survey-Admin (sg)� <swpat-floss@gess.ethz.ch> 
Subject: Software patents and the �qadpz� project - A scientific survey (sg) 
Message-ID: <8ff4bab879dea18739390188a343041d@www.swpat-floss.ethz.ch> 
Dear zoranc! 
There is considerable debating in the Free/Libre/Open Source Software communities 
about software patents; but what do we really know? What are your own experiences 
with software patents in the qadpz project? We are cordially inviting you to participate 
in our global scientific survey on software patents and FLOSS projects. 
Participation is by invitation only. Only a sample of project leaders/key developers of 
active SF projects (August 2006) have been invited. So, it is important that your project 
is represented as well. Please see the survey page for our privacy policy. 
=> Start from here: http://www.swpat-
floss.ethz.ch/lv/index.php?sid=6&token=1566224118 
As your participation is really important, we include everybody in a lottery who 
completes the questionnaire. The prizes are nice, we think: 
1st�A green �XO� (OLPC) laptop, sponsored by Google�s Open Source Program 
Office[2] 
2nd�A free �Neo1973� mobile phone, sponsored by OpenMoko/FIC[3] 
3rd�Be surprised. We aim for similar �coolness� as the other prizes ;-) 
There are only multiple choice questions, so answering will be straightforward. We 
hope you find coming up with answers as exciting as we found coming up with 
questions. 
=> Start from here: 
http://www.swpatfloss.ethz.ch/lv/index.php?sid=6&token=1566224118 
Thanks for helping us by submitting your response ideally within the next days. If you 
face technical problems, please email Marcus at swpat-floss@gess.ethz.ch with the 
subject line: �bug-report-sg�. 
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This is a joint project of the Center for Comparative and International Studies (CIS), the 
Chair for Strategic Management and Innovation (SMI), and the Chair for 
Law&Economics at ETH Zurich, Switzerland[1]. 
Thank you very much for your interest, time and invaluable contribution! 
Professor Thomas Bernauer, http://www.cis.ethz.ch 
Professor Georg von Krogh, http://www.smi.ethz.ch 
Professor Gérard Hertig, http://www.hertig.ethz.ch 
Marcus M. Dapp, PhD candidate 
Marcus M. Dapp | WEC C 19 | ETH-Zentrum | CH-8092 Zurich | Switzerland 
 
14. Citation: 
http://www.cs.montana.edu/techreports/2007/MohammadFuad.pdf 
AN AUTONOMIC SOFTWARE ARCHITECTURE FOR DISTRIBUTED APPLICATIONS 
PhD by Mohammad Muztaba Fuad 
QADPZ [19] provides an open source framework that allows the management and use 
of the computational power of idle computers in the network using autonomic 
principles. QADPZ is implemented in C++ and uses MPI as its communication 
protocol, which restricts this system to a certain class of architectures. It also deploys a 
masterslave pattern for task distribution, which actually does not follow the autonomic 
system architecture and it does not take any measure to overcome a single point of 
failure, e.g. 
the master node. The clients and the slaves (which do the actual work on behalf of the 
client) talk to each other by the use of a shared disk space, which is certainly a 
performance bottleneck and requires costly synchronization. 
 
15. Citation: 
http://http://www.emse.fr/OSIR06/2006-osir-CONTENT.pdf  
 
Grids can be roughly classi-fied in two categories: institutional grids (IG�s) and global 
computing or P2P (GCP) systems [3, 23, 11]. GCP systems typically harvest the 
computing power pro-vided by individual computers, using otherwise unused band-
width and computing cycles in order to run very large and distributed applications [22, 
15]. [...] There are also (open source) packages such as XtremWeb [11], and Q2ADPZ 
[30] which allow to setup, deploy and run GCP projects. 
 
16. Forum: 
http://tech.groups.yahoo.com/group/neat/message/2780 
Re: NEAT Supervising NEAT 
Ken, 
First, I am counting attempting to achieve 80% benefit for 20% effort. And second, I 
intend to use qadpz to achieve a discrete form of parallel processing. 
The various experiments and their associated �.ne� parameter files reveal a limited 
range for the various parameters. That being the case, could you make any suggestions 
as to the max ranges which have been found to be stable and �play nicely� with neat 
(i.e. not blow-up neat), based upon your experiences? 
Thanks, 
Andy 
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http://tech.groups.yahoo.com/group/neat/message/2772 
Re: Parallel NEAT 
 
Sidhant, 
You might take a look at QADPZ at the following link: 
http://qadpz.sourceforge.net/ 
, and incorporating your driver into the client �qadpz_run� source code. The master & 
client can be incorporated onto the same machine if required. 
By the way, I enjoyed reading your report in the files section! 
AFC 
 
> 
> Hullo Joe 
> 
> That sounds like something I have been looking for. A client-server mechanism is 
what I am thinking of at the moment, and not a multithreaded version of NEAT. You 
are talking of something that can be executed on a cluster, right?? 
> It would be very nice if you could share some of your code. 
Thanks a lot.. 
> Sidhant 
> 
 
17. Forum: 
http://groups.google.com/group/microsoft.public.de.vc/browse_frm/thread/8a9837d851
3f9bce/21db1ad9d55bebc3?tvc=1&q=qadpz#21db1ad9d55bebc3 
Newsgroups: microsoft.public.de.vc 
From: �Lars Stegelitz� <lars.stegel...@t-online.de> 
Date: Thu, 4 Dec 2003 20:52:07 +0100 
Local: Thurs, Dec 4 2003 9:52 pm 
Subject: Re: Wie CPU Speed herausfinden? 
 
 
Sebastian Schwaiger wrote: 
> Ich weiß, dass es nicht so schwer sein sollte, aber Google gibt zu CPU 
> Speed algorithm nichts brauchbares her. 
http://qadpz.idi.ntnu.no/doxy/html/cputicker_8cpp-source.html 
sieht vielversprechend aus 
MfG 
Lars Stegelitz 
 
Newsgroups: microsoft.public.de.vc 
From: Hans J. Ude <hajue....@arcor.de> 
Date: Fri, 05 Dec 2003 14:33:55 +0100 
Local: Fri, Dec 5 2003 3:33 pm 
Subject: Re: Wie CPU Speed herausfinden? 
�Lars Stegelitz� <lars.stegel...@t-online.de> schrieb: 
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>Sebastian Schwaiger wrote: 
>> Ich weiß, dass es nicht so schwer sein sollte, aber Google gibt zu CPU 
>> Speed algorithm nichts brauchbares her. 
>http://qadpz.idi.ntnu.no/doxy/html/cputicker_8cpp-source.html 
>sieht vielversprechend aus 
 
Sieht nicht nur vielversprechend aus, sondern hält das auch. Hat mir 
schon sehr gute Dienste beim Profiling geleistet. Die Klasse kann 
wesentlich mehr als nur die CPU Geschwindigkeit messen. 
Hajü 
 
18. Forum: 
http://groups.google.com/group/fr.comp.os.unix/browse_thread/thread/c73eaa477f77f43
0/c512157d95c7f962?lnk=st&q=qadpz#c512157d95c7f962 
Newsgroups: fr.comp.os.unix 
From: William Wu <b...@no.spam> 
Date: Fri, 10 Jan 2003 23:12:02 +0100 
Local: Sat, Jan 11 2003 12:12 am 
Subject: Re: b64encode.sh est-il dispo sous hpux? 
 
On Fri, 10 Jan 2003 23:11:34 +0100, farid wrote: 
> Bonjour à tous, 
> je voulais savoir si le script b64encode.sh est censé être dispo sous hp 
> ux, ou alors quelqu�un peut-il mele fournir. 
tout dépends si le shell et les programmes sont aussi sur hppux, non ou bien je dis une 
conn*r*e ? 
sinon j�ai bien trouvé ça ce qui me semble pas spécialement pour une plateforme 
particulière je sais pas si c�est ce que tu cherche ... tu n�as qu�à jeter un coup d�oeil : 
http://qadpz.idi.ntnu.no/doxy/html/b64encode_8cpp-source.html 
William. 
comment ça mon mail marche pas ??? 
william.wu chez free.fr 
Newsgroups: fr.comp.os.unix 
From: « farid » <lfa...@free.fr> 
Date: Sat, 11 Jan 2003 12:05:48 +0100 
Local: Sat, Jan 11 2003 1:05 pm 
Subject: Re: b64encode.sh est-il dispo sous hpux? 
C�est exactement ce que je cherchais, 
merci beaucoup William. 
http://www.gridresources.info/ 
QADPZ - Quite Advanced Distributed Parallel Zystem 
 http://qadpz.sourceforge.net/ 
http://www.erlang.org/pipermail/erlang-questions/2003-July/009383.html 
Distributing computations 
Vlad Dumitrescu <> 
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Hi, 
From: �Luke Gorrie� <> 
> I�ve never done any of this stuff, but have been doing some reading  
> and looking for an excuse to :-). You�re not getting any solid info 
> out of me, but maybe some inspiring/entertaining/distracting links :-) 
I don�t expect a solution, but just as you say - inspiration! 
> It seems the main trick is to design an algorithm that can run in parallel. 
Yes, that�s one thing that has to be tailored after the specific problem at hand. 
> Then it seems a popular package today is Parallel Virtual Machine 
> (PVM), http://www.csm.ornl.gov/pvm/pvm_home.html. 
I was thinking about using Erlang as back-end :-) 
I found some references at http://www.aspenleaf.com/distributed/distrib-devel.html, and 
I think ideas from Q2ADPZ (at http://qadpz.idi.ntnu.no) could be reused with relative 
ease. The fact is, ERTS does already a lot of the things that such a beast should do, and 
better - probably except only the security aspects. And, hey!, it�s also a good oportunity 
to use UBF, both -A and -B! :-) Thanks for the input. Regards, 
Vlad 
 
19. Citation: 
http://www-compsci.swan.ac.uk/~csmark/PDFS/visualsupercomputing.pdf 
Visual Supercomputing: Technologies, Applications and Challenges 
COMPUTER GRAPHICS forum 
Volume 24 (2005), number 2 pp. 217�245 
 
20. Forum: 
http://curl.haxx.se/mail/lib-2004-04/0366.html 
Re: effects of removing curl_formparse? 
From: Tor Arntsen <tor_at_spacetec.no> 
Date: 2004-04-30 
On Apr 30, 10:20, Daniel Stenberg wrote: 
>Hi 
>curl_formparse() been deprecated and adviced not to be used since 21 August 2001. 
>Can anyone mention anything or anyone that would be affected if we removed it 
>completely? 
I asked google.. didn�t seem to be much out there (but a lot of references 
to updates becuse curl_formparse() has been deprecated): 
http://qadpz.idi.ntnu.no/doxy/html/GetURL_8cpp-source.html 
http://www.seismo.unr.edu/ftp/pub/updates/bankert/php-4.0.4pl1/ext/curl/curl.c 
The strange thing is that when I first searched I got more than 21 pages of references, a 
moment later only 13, then just 10.. is curl_formparse() being purged all over the place 
out there? :-) (there�s probably a more google-technical explanation for this I guess) 
-Tor 
 
21. Forum: 
http://www.broadbandreports.com/forum/remark,8785738 
franconia 
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join:2001-07-04 
Alexandria, VA 
       Opinions on best DC development platform? 
 
I am interested in developing a DC system to analyze a large dataset of atmospheric 
measurements. Since the data and research area are rather mundane, I don�t foresee a lot 
of internet community interest in this project. Nonetheless, capturing the unused cycles 
on our LAN would be great. 
 
Through Google I have run across a few DC backends, such as BOINC, FIDA, and 
QADPZ. All these seem to run from Linux or BSD server systems. Does anybody who 
developed a DC project have any software recommendations for me?  Any familiarity 
with the DC platforms listed above or others? 
to forum · permalink · 2003-12-14 16:50:24 · (locked) 
 
22. Citation: 
http://www.iit.edu/~mummsat/wsrf/SATISH_K_%20MUMMADI.pdf 
from CV 
COMPUTER SKILLS: 
Distributed Computing: Using Parabon Frontier SDK for Java applications, QADPZ 
toolkit. 
 
23. Forum: 
http://hp.parallel.ru/parBB/viewtopic.php?p=4168 
Ищу библиотеку для использования idle процессорного времени офиса (везде 
WinXP).  
Интересует возможность выполнять jobs, при этом должно использоваться только 
idle время, компы могут перезагружаться, т.е. никто ничем не обязан. Нужна 
система автоматического апдейта библиотек на агентах.  
MPICH поэтому и не подходит.  
Я нашел несколько библиотек:  
http://www.alchemi.net/index.html - похоже, то что надо  
http://qadpz.sourceforge.net/  
http://ngrid.sourceforge.net/index.html  
http://mygrid.sourceforge.net/  
 
Кто нибудь имеет опыт работы с ними, или может что-то посоветовать? 
 
24. Feedback: 
--------------------------------------------------------------------------------------------- 
Subject: QUADPZ 
From: Manel Soria Guerrero <manel@labtie.mmt.upc.es> 
To: Zoran Constantinescu-Fulop <zoran@idi.ntnu.no> 
Message-Id: <1054202508.2900.5303.camel@congre.cttc.org> 
Date: 29 May 2003 12:01:49 +0200 
 
Zoran, 
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I�ve been talking about QADPZ with Ramiro, our system administrator. 
You can reach him at raq@labtie.mmt.upc.es 
I�ll try to write a summary of our conversation :) 
-He had problems with the binary and with the CVS versions of the code so he 
downloaded and compiled the last stable version. 
-He needs time to do more tests, but he likes the design of the code, the definition of the 
needs with XML, the security, etc. 
-It is our opinion that it would be a good idea to focus first on sequential jobs and when 
they are closed, go for the parallel executions. In our case, parallel executions are 
complex, they need lots of resources (RAM, disk, network), good load balance, etc and 
we would prefer to run them on the cluster. 
-We wonder if it would be possible for the end users to control the executions. 
This is, the executions need a long time to be completed and it is normal that the 
(research) programs fail to converge, so the executions must be stopped and resubmitted 
with slightly different parameters. The codes write in one or several text files a 
summary of how is the execution going, and from time to time, a rather large binary 
file.  
The users should be able to get this information as soon as it is generated and kill the 
codes if necessary. 
 
Hope this helps and I�ll write more when/if I have more information. Please contact 
Ramiro if you are interested, maybe the problem with the last version is already fixed. 
 
Best regards, 
Manel 
 
25. Feedback: 
Subject: Re: QUADPZ 
From: Ramiro Alba Queipo <raq@labtie.mmt.upc.es> 
To: Zoran Constantinescu-Fulop <zoran@idi.ntnu.no> 
Message-Id: <1054235109.5902.12.camel@mundo.cttc.org> 
Date: 29 May 2003 21:05:09 +0200 
On Thu, 2003-05-29 at 18:04, Zoran Constantinescu-Fulop wrote: 
> Hi Ramiro, 
> Manel told me to contact you about QADPZ. My name is Zoran and I am one of the  
> developers. We are planing to make a new release with some of the new features we  
> added. You had some problems with the binary and CVS versions... could you tell me 
> more about > these problems? so that we can fix them for the new release :) 
Where about libstdc++ (binary version) and something related with 
MPI (not finding a source file). Anyway I must say that I did not try 
very hard as I prefered going into installation step I know about 
functionality. I will be more specific after trying better the 
functionality from the user�s view. 
> > I agree that we should start with the sequential type of jobs and see how it works. 
The parallel code should be easier to test afterwards. 
> > Regarding user control of the executions: after a job/task is 
> started, the owner (i.e. user) can then control it, like for 
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> example send a special control-message or stop the task. For 
> the data, input/output files are downloaded/uploaded from a 
> web server (or any other type of server, like for example ftp). 
> All input files are downloaded before the task starts, while 
> the output files are uploaded after it finishes. We could change 
> a bit the code to do the upload of some intermediary output 
> files more often. For example every 5 minutes, or even catch 
> the �fclose()� type system library calls and do an aditional 
> upload there :) The later should be quite easy to do in Linux, 
> though i�m not sure how to do it in Windows :) 
> 
I would need to make some aditional tests so as I can know a bit more,  
so as I can ask you some questions. I will be a bit busy the next three 
days, but I promise to contact you next week. 
 
See you 
Ramiro 
> Cheers, 
> --zoran 
 
 
26. Feedback: 
Subject: Re: QADPZ 
From: Ramiro Alba Queipo <raq@labtie.mmt.upc.es> 
To: Zoran Constantinescu-Fulop <zoran@idi.ntnu.no> 
Message-Id: <1054297658.9201.1.camel@mundo.cttc.org> 
Date: 30 May 2003 14:27:38 +0200 
 
On Thu, 2003-05-29 at 21:31, Zoran Constantinescu-Fulop wrote: 
> >> problems [...] > > Where about libstdc++ (binary version) [...] 
> I compiled now a binary version which doesn�t need anymore a  specific libstdc++. :)  
> That was my intention also first time,  but probably I�ve put the wrong archive on the  
> web... :( There is also an SSL-enabled version on the web site: 
>   http://qadpz.idi.ntnu.no/download/bin/ 
Now it seems to be running. I will keep you informed. Thanks Zoran. 
See you 
 
 
27. Feedback 
From: Manel Soria Guerrero <manel@labtie.mmt.upc.es> 
To: Zoran Constantinescu-Fulop <zoran@idi.ntnu.no> 
Message-Id: <1054541358.2899.5369.camel@congre.cttc.org> 
Date: 02 Jun 2003 10:09:18 +0200 
> > It would be really nice to be able to control a number of files (maybe 
> > specified with that XML thing ??), as if they were on the local machine. 
> > > i�m not sure i understant exactly what you mean... 
When the programs run on the local machine, to see how  are the programs 
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going, from time to time we usually: 
-print the tail of one or more control files, that contain lots of numbers (ascii) 
-gnuplot an ascii file  
-use a visualization code to see a large binary file 
It would be nice if QADPZ could allow to do that on some remote files just as if they 
were at the local machine. Maybe a possibility could be to specify the files that must be 
controlled, using the same XML file that contains the description of the job 
requirements (if I understood correctly). 
 
28. Feedback: 
Subject: QADPZ: Got the first successful execution 
From: Ramiro Alba Queipo <raq@labtie.mmt.upc.es> 
To: zoran@idi.ntnu.no 
Message-Id: <1054750909.2849.12.camel@mundo.cttc.org> 
Date: 04 Jun 2003 20:21:50 +0200 
 
Hi Zoran: 
After some minor problems, I have got the first successful execution using the 
simple.cpp example. I now can understand much better the way qadpz works and I also 
already have some questions/suggestions, but I prefer to go on trying with our programs 
so as to test real cases and then talk to you. I also compiled the last CVS version, but 
with no MPI (deactivated). (In any case no matter at this moment), and played with 
slv_app.cpp. 
May be only two questions question: How can I send a job to execution and forget (not 
waiting)? Can a slave decide that a job must be stopped? How? 
See you, 
Ramiro 
 
29.Feedback: 
Date: Wed, 6 Aug 2003 02:45:26 -0700 (PDT) 
From: Devesh Singhal <deveshsinghal2003@yahoo.com> 
Subject: Problem : in implementing QADPZ utility 
To: zoranc@acm.org 
Hello Mr. Zoran Constantinescu, 
Sir,myself is Devesh Singhal and I have recently downloaded your 0.8beta version of 
QADPZ utility. But there are some problems arrriving during execution,I am mentiong 
here - [1]. As you have mentioned in article 5.3.4 of Q2ADPZ User & Developer 
Manual , point 1 -> It is quite understandable and I have copied src/wscript/*.cgi (i.e. all 
.cgi files) to /var/www/html/wscript 
point 2 -> Statement � Set the location of these scripts in client.cfg and slave.cfg 
files before installing them accordingly.� 
But to which variables in client.cfg and slave.cfg, these scripts must be assigned. 
[2]. I have renamed the Library libslv-app.so to libslv.so in this utility. But when I 
execute ./qadpz_run at bin directory, an error occurs stating that error in loading 
libslv.so to a new file (file has an rbitrary name) It creates this new file at destination 
directory and return download Ok, but new file remains empty(size 0 bytes). 
 

mailto:raq@labtie.mmt.upc.es
mailto:zoran@idi.ntnu.no
mailto:1054750909.2849.12.camel@mundo.cttc.org
mailto:deveshsinghal2003@yahoo.com
mailto:zoranc@acm.org
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Sir I am here attaching files for more acccurate information- 
- output of ./qadpz_run command and status of master and slave. 
- XML file simple2.xml. 
- file slave.log. 
 
Please respond it Sir. 
Thanking you Sir. 
Devesh Singhal 
 
30. Feedback: 
From: �Deraldo� <deraldo@veloxmail.com.br> 
To: <zoran@idi.ntnu.no> 
Subject: Qadpz 
Date: Mon, 8 Sep 2003 18:29:24 -0300 
Message-ID: <000001c37650$46a8e180$64c8a8c0@dedaserver> 
Zoran! 
Im trying to use the qadpz into a windows environment. We cant get it! Using the linux 
env, we can connect the slave and the client. But this last one stops after requiring some 
reserved slaves. Could you help us? 
thanks in advance! 
 
31. Feedback: 
Date: Sun, 21 Sep 2003 21:00:46 +0200 (MEST) 
From: Zoran Constantinescu <zoran@idi.ntnu.no> 
To: =?ISO-8859-1?Q?Leif_Snorre_Sch=F8yen_Boasson?= 
<Leif.Snorre.Schoyen.Boasson@idi.ntnu.no> 
cc: Zoran Constantinescu-Fulop <zoran@idi.ntnu.no> 
Subject: psim, mpi, compression 
Message-ID: <Pine.GSO.4.51.0309212026130.17828@dionysus.idi.ntnu.no> 
MIME-Version: 1.0 
Hi, 
As I told you, I was hacking a bit around with MPI and compression. I made a few tests 
with your program and here are some results... 
 
 grid         128x128  (one message size is 128 kBytes) 
 particles    1048576 
 time steps   100 
 #nodes       8 
 
MPI version            | simul.time 
-----------------------+----------- 
MPICH                  |   53.7 sec 
MPI-QADPZ no compress  |   28.6 sec 
MPI-QADPZ with LZO     |   17.6 sec 
MPI-QADPZ with ZLIB    |   39.1 sec 
MPI-QADPZ with BZIP2   |   87.2 sec 
 

mailto:deraldo@veloxmail.com.br
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As you can see, it�s quite promissing... =D> :-) LZO, ZLIB, BZIP2 are different 
compression algorithms. I ran each simulation two times, to be sure about the results ;). 
See below the ouput of one of each simulation. 
 
The small hack is made as part of the tiny MPI library on top of QADPZ, the distributed 
computer project I�m working on (http://qadpz.sourceforge.net). 
 
If you want, I can show you how to play with it, so that you can make more tests with it. 
 
Cheers, 
--zoran 
 
MPICH 
-------------------------------------- 
  No. of time-steps: 100 
 Part_rho took :  7.02368 seconds 
 Push_v took :  4.77408 seconds 
 Push_loc took :  1.16180 seconds 
 Solve took :  2.33222 seconds 
 Field_grid took :  0.07043 seconds 
 Simulation  took :  53.47985 seconds 
 MPI_Allreduce took :  37.41524 seconds 
 Total simulation  :  53.72704 seconds 
 
MPI-QADPZ no compression 
-------------------------------------- 
  No. of time-steps: 100 
 Part_rho took :  4.41704 seconds 
 Push_v took :  6.04893 seconds 
 Push_loc took :  1.17400 seconds 
 Solve took :  2.42634 seconds 
 Field_grid took :  0.06443 seconds 
 Simulation  took :  28.59725 seconds 
 MPI_Allreduce took :  10.00685 seconds 
 Total simulation  :  28.60410 seconds 
 
MPI-QADPZ with LZO 
-------------------------------------- 
  No. of time-steps: 100 
 Part_rho took :  4.44002 seconds 
 Push_v took :  5.16125 seconds 
 Push_loc took :  0.93403 seconds 
 Solve took :  2.50315 seconds 
 Field_grid took :  0.06425 seconds 
 Simulation  took :  17.55874 seconds 
 MPI_Allreduce took :  4.26227 seconds 
 Total simulation  :  17.56558 seconds 

http://qadpz.sourceforge.net/
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MPI-QADPZ with ZLIB 
-------------------------------------- 
  No. of time-steps: 100 
 Part_rho took :  4.52847 seconds 
 Push_v took :  6.56303 seconds 
 Push_loc took :  1.27463 seconds 
 Solve took :  2.67737 seconds 
 Field_grid took :  0.06879 seconds 
 Simulation  took :  39.10445 seconds 
 MPI_Allreduce took :  23.68118 seconds 
 Total simulation  :  39.11132 seconds 
 
MPI-QADPZ with BZIP2 
-------------------------------------- 
 Part_rho took :  5.24602 seconds 
 Push_v took :  8.42995 seconds 
 Push_loc took :  1.43487 seconds 
 Solve took :  3.39705 seconds 
 Field_grid took :  0.07894 seconds 
 Simulation  took :  87.14938 seconds 
 MPI_Allreduce took :  67.71850 seconds 
 Total simulation  :  87.15621 seconds 
 
 
32. Feedback� 
Date: Tue, 30 Sep 2003 19:32:18 +0200 (MEST) 
From: Cyril Banino <Cyril.Banino@idi.ntnu.no> 
To: Zoran Constantinescu <zoran@idi.ntnu.no> 
cc: Cyril Banino <Cyril.Banino@idi.ntnu.no> 
Subject: Re: Q2ADPZ 
> one idea, for example, would be to use QADPZ as a scheduler for ClustIS and, in  
> addition to the 37 nodes we have now, we could add some more office-PCs with  
> computing power available. 
> we could talk more about this if you want... 
> cheers, 
> --zoran 
I�d like that. Let�s take about it one day when you have time. 
See you, 
Cyril. 
 
33. Feedback: 
 Subject: Request for info on QADPZ systems 
To: zoran@idi.ntnu.no 
Message-ID: <OF526BB527.14345D7A-ON65256DCD.0013AAD1@interliant.com> 
From: avijayakumar@frost.com 
Date: Tue, 28 Oct 2003 10:09:53 +0530 
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Dear Mr.Zoran Constantinescu, 
 I would like to thank you for your kind and quick response. We had a long festival 
weekend here in India,so I was not able to reply you immediately.As I mentioned 
earlier,I am working on a research service which focusses on the technological 
developments in the area of distributed systems.With respect to this I have few 
questions in my mind,answers to which will give me insight into your work and about 
the topic 
 
1.Can you give a thorough description of your work which will be understood by a 
person without any technical expertise. 
2.What is the driving factor for your research? 
3.What are the competing technologies and what are their deficiencies which 
has been addressed in your systems? 
4.What are the major challenges faced during your research in evolving to 
the marketplace?How is it addressed? 
5.How are the security issues dealt in such open source distributed systems? 
6.What are the current and potential applications for the technology? When do you think 
the potential applications will become commercial? Can you list those applications you 
expect to have most impact and also comment on their degree of expected impact? 
7.Is the technology available for licensing? Are you interested in partnering to further 
develop the technology or applications? Are there patents on the technology? Can you 
provide me with the patent titles and numbers? 
8. In your opinion which do you think are the emerging technologies in the area of 
distributed systems playing a key role in the market? 
 
If you think there are any relevant documents related to this study which you can share 
with us, kindly attach the same along with this mail. 
 
Thank you for your time and cooperation.I look forward to hear from you soon. 
Regards, Amreetha 
----------------- 
Ms.Amreetha Vijayakumar 
Research Analyst-Technical Insights, Frost & Sullivan 
Chennai,India. 
www.ti.frost.com 
 
34. Feedback: 
Ph : +91-44-24314263/5/6/7 Ext-299 
Fax :+91-44-24314264 
email : avijayakumar@frost.com 
 
http://www.undergroundnews.com/forum/ubbthreads.php?ubb=showflat&Number=239
2 
Re: distributed computing sinetific sinetific Offline 
nobody  
Registered: 03/02/02 
Posts: 815 
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http://www.undergroundnews.com/forum/ubbthreads.php?ubb=showflat&Number=2392
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Loc: Ann Arbor 
http://qadpz.sourceforge.net/ 
Platforms supported are Linux, Unix, Win32 and MacOS X. 
 
Seems to be what you are looking for. 
you specify master and slave computers the master sends the computing out to the 
slaves. 
 
I�ve actually beent thinking of trying something like this myself since i have a few 
computers that dont really do a lot with their CPU cycles. 
 
On Tue, 21 Oct 2003 avijayakumar@frost.com wrote: 
 
> Hello Mr.Zoran Constantinescu, 
> 
> I read with interest about your research work on Quite Advanced Distributed Parallel  
Zystem.  I  am an analyst with the Technical Insights division of Frost  and  Sullivan  
(www.ti.frost.com).  We  publish several subscription  services  on  topics  such  as  
sensors,  IT,microelectronics, and Advanced  materials  that  are  read  by  
researchers,engineers and executives at top companies  worldwide.  We  specialize  in  
new developments with commercial promise.  I  am  currently  working  on a research 
service which focuses on Distributed  systems,its  applications and the core technologies 
associated with it which are evolving into the market from the research labs. 
> 
> For  this  I  would  like  to  incorporate your latest developments in this field. I 
wondered if you mind taking the time to answer a few questions for us. Please let me 
the know if its appropriate sending them over to you.  
> I look forward to hearing from you soon.Thank you for your time and cooperation. 
> 
> With Best Regards, 
> Amreetha 
 
35. Assigment: 
http://www.idi.ntnu.no/~zoran/Hydro2/Velo10d-lic-anim.html 
data /wrk_c4/hdb2/BACKUP/clustis/zoran/data/qadpz-log/1056737676 
 
Test case: 3cyl 
1. flow in a channel around 3 cylinders (2D, 26600 elems, 13567 nodes, 400 time steps) 
2. LIC animation (small 25 MBytes) 
3. LIC animation (large 125 MBytes) 
 
36. Forum: 
http://www.beowulfwindows-reserves.us/checkpoint-restart.htm 
 
Simulation was done using the CPM Navier-Stokes solver developed at SINTEF. The 
results were obtained by running a distributed computing simulation using 8 desktop 
lab-computers (not a dedicated cluster!). The QADPZ distributed computing (desktop 

http://qadpz.sourceforge.net/
mailto:avijayakumar@frost.com
http://www.ti.frost.com/
http://www.idi.ntnu.no/~zoran/Hydro2/Velo10d-lic-anim.html
http://www.beowulfwindows-reserves.us/checkpoint-restart.htm
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grid computing) system was used, developed as part of the CSE project. A lightweight 
MPI library on top of QADPZ was used for communication purposes. 
 
37. Forum: 
http://ml.tietew.jp/cppll/cppll_novice/thread_articles/446 

 
38. Forum: 
http://www.mail-archive.com/expert@linux-mandrake.com/msg70236.html 
[expert] Distributed computing package 
Ezequiel Martín Cámara 
Fri, 13 Jun 2003 05:06:37 -0700 
What about integrating some distributed computing system into Mandrake? 
There are a couple of open-source systems that generalize over the [EMAIL 
PROTECTED] setup: 
http://boinc.ssl.berkeley.edu 
http://qadpz.sourceforge.net 
I -and, I guess, many other users- would be happy to give my idle computing power -
and I have several Mandrake machines running most of the time- to Mandrake in 
exchange of, say, Club membership, Mandrake packages. (Or cash) 
 
Would it be very hard for Mandrake to sell all those petaflops commercially? I've been 
Goggling around and I've found .15$/hour for a new Compac (http://www.tech-
report.com/onearticle.x/4467) and 7500$/year for a 400Mhz PII 
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(http://www.mithral.com/pressroom/archive/2000-11-SciAm.html). 
 
I mean, all of us want Mandrake (the company) to survive financially, but many aren't 
ready to actually pay them. This would be a way to give back that would not actually 
cost a penny to users(at least, for those users to whom the company/Daddy pay the 
electric bill 
 
Even if the cash cow is not feasible -and I can't think why not- it would be nice to have 
some OS distributed computing effort integrated on Mandrake. That would mean *so* 
much computing power... 
-- Ezequiel Martín Cámara 
http://www.geocities.com/ezequielmartin 
http://www.radicalparty.org 
 
39. Citation: 
http://java.icmc.usp.br/dilvan/papers/2004-Webmedia/TanakaFinal.pdf 
Um Sistema de Controle para Web Farms 
Webmedia 2004 
 
Para tal, é preciso que o projeto e a implementação dos sistemas de computação, 
software, armazenamento e suporte exibam alguns fundamentos básicos, tais como [7]: 
autonomia, flexibilidade, acessibilidade e transparência. A autonomia pode ainda ter as 
seguintes propriedades [2][12]: auto-configuração, auto-otimização, auto-tratamento e 
auto-proteção.   
[12] Z. Constantinescu, �Towards an Autonomic Distributed Computing System�, Proc. 
of the 14th Inter. Workshop on Database and Expert Systems Applications, IEEE 
Computer Society, 2003, pp. 694-698. 
 
40. Citation 
 
www.netlab.hut.fi/opetus/s384030/k06/papers/SecuredRemoteTrackingOfCritical.pdf 
Secured Remote Tracking Of Critical Autonomic Computing Applications 2004 
��but also because of the need to integrate multiple heterogeneous environments, 
and to extend beyond company boundaries into the Internet [1]� 
[l] Zoran Constantinescu. �Towards an Autnnomic Distributed Computing System, � 
Proceedings of rhe 14th International Workhop on Database and Expert Systems 
Applications (DEXA �OS), 2003 
 
 
 
41. Citation: 
http://www.scientificjournals.org/journals2007/articles/1198.pdf 
An Autonomic Software Architecture for Distributed Applications 2007 
 
QADPZ [19] provides an open source framework that allows the management and use 
of the computational power of idle computers in the network using autonomic 
principles. QADPZ is implemented in C++ and uses MPI as its communication 
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protocol, which restricts this system to a certain class of architectures. It also deploys a 
masterslave pattern for task distribution, which actually does not follow the autonomic 
system architecture and it does not take any measure to overcome a single point of 
failure, e.g. the master node. The clients and the slaves (which do the actual work on 
behalf of the client) talk to each other by the use of a shared disk space, which is 
certainly a performance bottleneck and requires costly synchronization. 
19. Constantinescu Z., �Towards an Autonomic Distributed Computing System�, 14th 
International Workshop on Database and Expert Systems Applications, pp. 699- 
703, 2003. 
 
42. Citation: 
http://www.comp.leeds.ac.uk/kwb/publication_repository/2005/cgf_006.pdf  
Visual Supercomputing: Technologies, Applications and Challenges 
Computer Graphics Forum 2005 
Though the development of generic software environments for autonomic applications 
is still in its infancy, several attempts were made, which include projects such as 
QADPZ [149], AUTONOMIA [150] and Almaden Optimal- Grid [151]. QADPZ [149] 
provides an open source framework for managing heterogeneous distributed 
computation in a network of desktop computers using autonomic principles. In QADPZ, 
the system complexity is hidden in the middleware layer, facilitating self-knowledge, 
self-configuration, self-optimization and self-healing. 
149. Z. Constantinescu. Towards an autonomic distributed computing environment. 
Proc. 14th Int.Workshop on Database and Expert Systems Applications, pp. 699�703, 
2003. 
 
43. Citation 
http://arxiv.org/pdf/cs/0607061 
On Some Peculiarities of Dynamic Switch between Component Implementations in an 
Autonomic Computing System 
The success of an autonomic system behavior is essentially determined by ability to 
detect or predict overall performance that is actually the ground for management of 
autonomic components, in particular, for activation of an appropriate component 
implementation. For this, establishing of mathematical abstractions and models giving 
criteria governing the sequence of switches between component implementations is an 
important point of autonomic computing [2-5]. 
5. Z. Constantinescu, Towards an Autonomic Distributed Computing System, Workshop 
on "Autonomic Computing Systems", ACS�2003, September 1-5, Prague, Chech 
Republic (2003). 
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