
Design of Low-Power Reduction-Trees

in Parallel Multipliers

by

Saeeid Tahmasbi Oskuii

Dissertation submitted to the
Norwegian University of Science and Technology

in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

Department of Electronics and Telecommunications
Norwegian University of Science and Technology

Trondheim, Norway

Abstract

Multiplications occur frequently in digital signal processing systems, communica-
tion systems, and other application specific integrated circuits. Multipliers, being
relatively complex units, are deciding factors to the overall speed, area, and power
consumption of digital computers. The diversity of application areas for multi-
pliers and the ubiquity of multiplication in digital systems exhibit a variety of
requirements for speed, area, power consumption, and other specifications. Tradi-
tionally, speed, area, and hardware resources have been the major design factors
and concerns in digital design. However, the design paradigm shift over the past
decade has entered dynamic power and static power into play as well.

In many situations, the overall performance of a system is decided by the
speed of its multiplier. In this thesis, parallel multipliers are addressed because
of their speed superiority. Parallel multipliers are combinational circuits and can
be subject to any standard combinational logic optimization. However, the com-
plex structure of the multipliers imposes a number of difficulties for the electronic
design automation (EDA) tools, as they simply cannot consider the multipliers as
a whole; i.e., EDA tools have to limit the optimizations to a small portion of the
circuit and perform logic optimizations. On the other hand, multipliers are arith-
metic circuits and considering arithmetic relations in the structure of multipliers
can be extremely useful and can result in better optimization results. The different
structures obtained using the different arithmetically equivalent solutions, have
the same functionality but exhibit different temporal and physical behavior. The
arithmetic equivalencies are used earlier mainly to optimize for area, speed and
hardware resources.

In this thesis a design methodology is proposed for reducing dynamic and
static power dissipation in parallel multiplier partial product reduction tree. Ba-
sically, using the information about the input pattern that is going to be applied
to the multiplier (such as static probabilities and spatiotemporal correlations), the
reduction tree is optimized. The optimization is obtained by selecting the power

i

ii ABSTRACT

efficient configurations by searching among the permutations of partial products
for each reduction stage. Probabilistic power estimation methods are introduced
for leakage and dynamic power estimations. These estimations are used to lead
the optimizers to minimum power consumption. Optimization methods, utilizing
the arithmetic equivalencies in the partial product reduction trees, are proposed
in order to reduce the dynamic power, static power, or total power which is a
combination of dynamic and static power. The energy saving is achieved with-
out any noticeable area or speed overhead compared to random reduction trees.
The optimization algorithms are extended to include spatiotemporal correlations
between primary inputs. As another extension to the optimization algorithms, the
cost function is considered as a weighted sum of dynamic power and static power.
This can be extended further to contain speed merits and interconnection power.
Through a number of experiments the effectiveness of the optimization methods
are shown. The average number of transitions obtained from simulation is reduced
significantly (up to 35% in some cases) using the proposed optimizations.

The proposed methods are in general applicable on arbitrary multi-operand
adder trees. As an example, the optimization is applied to the summation tree of
a class of elementary function generators which is implemented using summation
of weighted bit-products. Accurate transistor-level power estimations show up to
25% reduction in dynamic power compared to the original designs.

Power estimation is an important step of the optimization algorithm. A prob-
abilistic gate-level power estimator is developed which uses a novel set of simple
waveforms as its kernel. The transition density of each circuit node is estimated.
This power estimator allows to utilize a global glitch filtering technique that can
model the removal of glitches in more detail. It produces error free estimates for
tree structured circuits. For circuits with reconvergent fanout, experimental results
using the ISCAS85 benchmarks show that this method generally provides signifi-
cantly better estimates of the transition density compared to previous techniques.

Preface

This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor (Ph.D.) at the Department of Electronics and Telecommu-
nications, Norwegian University of Science and Technology (NTNU). My main
supervisor has been Associate Professor Per Gunnar Kjeldsberg, while my co-
supervisors have been Associate Professor Lars Lundheim and Professor Geir
Øien, all of whom are with the Department of Electronics and Telecommuni-
cations at NTNU. I spent about four months at Electronics Systems group at
Linköping University for research cooperation under the supervision of Assistant
Professor Oscar Gustafsson. The last six months I have worked at the University
of Oslo.

The studies have been carried out in the period from January 2004 to March
2008. The work includes the equivalent of half a year of full-time course stud-
ies and approximately one year of teaching duties. The latter included being a
teaching assistant in several graduate courses, as well as being an advisor for one
student working on his master thesis.

The work included in this thesis has been funded by the the Department of
Electronics and Telecommunications, NTNU.

iii

iv Acknowledgments

Acknowledgments

I have a theory that when I am happy, time passes more quickly. It has been over
four years now from the day I started as a Ph.D. student at Norwegian University
of Science and Technology and these four years have passed extremely quick.
Indeed, these years have been nothing but happiness and excitement and I owe
this to many people who have helped me in this part of my life and in the course
of my research throughout these years.

First of all, I would like to thank my supervisor, Associate Professor Per
Gunnar Kjeldsberg. I could not have imagined having a better advisor for my
Ph.D., and without his constant encouragement, perceptiveness and advice over
these years I could ever come this far. I am very grateful for his encouragement,
common-sense and being available to help me whenever I needed it. I am also
very grateful to my co-supervisors Associate Professor Lars Lundheim and Pro-
fessor Geir Øien for the valuable discussions and insightful advise.

I am thankful to Assistant Professor Oscar Gustafsson who was hosting me
during my stays at Linköping University. I am very grateful for his fruitful dis-
cussions, valuable comments, and feedback. My special thanks also go to Kenny
Johansson for his contributions to this thesis. I am amazed by his punctuality and
his ability to find small errors. I am also grateful to Professor Jim Tørresen at
ROBIN group, Department of Informatics, University of Oslo, for letting me have
an office at his group.

I would also like to thank my colleagues and friends at the Department of
Electronics and Telecommunications, NTNU and especially those of the Circuits
and Systems and Signal Processing groups. There are many people I should thank
for making these years so memorable, and by naming a few of them I will certainly
run the risk of forgetting others. Therefore, I simply want to thank all the people
who have made these years so enjoyable.

I would like to express my gratitude to my treasured family for their support
and unconditional love throughout all these years. And last but most importantly,
I am greatly indebted to my sweet Jeiran, my wife, for all support and encourage-
ment. She has been the greatest source of love and inspiration.

Contents

Abstract i

Preface iii

Acknowledgments iv

List of Abbreviations xv

1 Introduction 1
1.1 Sources of Power Consumption 2

1.1.1 Static Power Dissipation 2
1.1.2 Dynamic Power Dissipation 3

1.1.2.1 Short-Circuit Power Dissipation 3
1.1.2.2 Switching Power Dissipation 4

1.1.3 Power Consumption in Multipliers 5
1.2 Probabilistic Treatment of Multipliers 6
1.3 Outline of the Thesis . 9
1.4 Main Contributions . 11

2 Multiplication Schemes 13
2.1 Classification of Multipliers . 16

2.1.1 Sequential Multipliers 16
2.1.2 Parallel Multipliers . 16
2.1.3 Array Multipliers . 17

2.2 Parallel Multipliers . 17
2.2.1 Partial Product Generation 17

2.2.1.1 Higher Radix Multipliers 20
2.2.1.2 Recoding Techniques 21

v

vi CONTENTS

2.2.2 Partial Product Accumulation 23
2.2.2.1 Carry-Save Adders 25
2.2.2.2 Wallace Reduction Tree 27
2.2.2.3 Dadda Reduction Tree 31
2.2.2.4 Modified Dadda-Wallace Reduction Tree 32
2.2.2.5 Generalized Parallel Counters 34
2.2.2.6 Parallel Multipliers with Redundant Full-Adders 34

2.2.3 The Final Carry Propagate Adder 37
2.3 Flexibility in the Reduction Tree 39

2.3.1 Optimizing for Area, Delay and Hardware Resources . . . 39
2.3.2 Optimizing for Power 40

2.4 Choice of the Multiplier Structure 41

3 Power Estimation in Combinational Circuits 43
3.1 Dynamic Power Estimation . 43

3.1.1 Power Estimation using Simple Waveform Set 44
3.1.1.1 Simple Waveform Set 46
3.1.1.2 Computation of Simple Waveform Sets 48
3.1.1.3 Dealing with interdependencies 50
3.1.1.4 Glitch filtering 52
3.1.1.5 Experiments 55

3.1.2 High-Level Power Estimation 59
3.2 Static Power Estimation . 60

4 Transition-Activity Aware Design of Reduction-Trees 63
4.1 Construction of the Reduction Tree 63
4.2 Method 1: Optimization of Complete Reduction Tree 66

4.2.1 Power Estimation . 71
4.2.2 Notation of the multipliers 72
4.2.3 Experiments . 73

4.3 Method 2: Progressive Design of Reduction Tree 78
4.3.1 Progressive PPRT Design and the SWS Power Estimator . 81
4.3.2 Experiments . 83
4.3.3 Runtime and Complexity 90

5 PPRT Optimization in Presence of Highly Correlated Inputs 95
5.1 Spatiotemporal Correlation of Inputs 96

5.1.1 Modeling Spatial Correlations 97

CONTENTS vii

5.1.2 Modeling Temporal Correlations 98
5.2 Design Methodology . 101
5.3 Experiments . 103

5.3.1 Temporal correlations of input words 103
5.3.2 Spatial correlations of input words 105
5.3.3 MAC-based FIR filter 109

6 Reducing the Static Power for the PPRT 113
6.1 Progressive Reduction-Tree Design 114

6.1.1 Experiments . 114
6.2 Reducing Total Power for the PPRT 118

6.2.1 Experiments . 119

7 Optimization of Multipliers Operating with Variable Word-Length 123
7.1 Variable Word-Length . 125
7.2 Experiments . 128

7.2.1 General-Purpose Multiplier 129
7.2.2 FFT Processor with Variable Word-Length 132

8 Function Generation using a Weighted Sum of Bit-Products 137
8.1 Elementary Function Generation 139

8.1.1 Approximation using a Weighted Sum of Bit-Products . . 140
8.1.2 Architecture . 142

8.2 Optimized Summation-Tree Generation 143
8.3 Experiments . 145

9 Conclusions 151
9.1 Low-Transition Reduction-Tree Generation 151
9.2 Low-Leakage Reduction-Tree Generation 152
9.3 Generalized Multi-Operand Adders 152
9.4 Probabilistic Gate-Level Power Estimator 153
9.5 Directions for Future Work . 153

9.5.1 Power Estimation with Realistic Delay Models 153
9.5.2 Including Speed and Interconnect Power 154
9.5.3 Different PP Generation and Reduction Schemes 154
9.5.4 Other Search Algorithms 154
9.5.5 Pipelining . 154
9.5.6 Optimization of Synthesized Designs 155

viii CONTENTS

Appendix 155

A Computation of static probabilities 157
A.1 Pairwise Correlation Coefficients 158

A.1.1 An Example . 163

B Examples of Computing SWSs 165
B.1 Tree-Structured example . 166
B.2 A 2-to-1 MUX Example . 173

Bibliography 192

List of Figures

1.1 Dynamic and static power in Watt for microprocessor chips 3
1.2 Computation of static probabilities 8

2.1 Shift-and-Add multiplication scheme 14
2.2 Block diagram for a shift-and-add multiplier 15
2.3 The dot-diagram representation of an 8 × 8-bit multiplier 15
2.4 Signed multiplication . 19
2.5 8 × 8-bit Radix-4 multiplication in dot-diagram and its structure . 20
2.6 Overlapping multiple bit scanning in radix-4 MBR 22
2.7 Accumulating PPs using two-operand adders 23
2.8 Carry propagation and carry-free operation 24
2.9 A half-adder(a) and a full-adder(b) 26
2.10 A typical gate-level implementation of full-adder and half-adder . 27
2.11 The relationship between RCA and CSA 28
2.12 Wallace’s scheme for a 12 × 12-bit unsigned multiplier 30
2.13 Using Dadda’s strategy for a 12 × 12-bit multiplier 33
2.14 A reduced-area 12 × 12-bit unsigned multiplier [13] 35
2.15 A (10; 4) counter and its possible implementation 36
2.16 Examples of generalized parallel counters 36
2.17 The arrival time profile for output bit-vectors of the dadda PPRT . 38

3.1 The target circuit architecture for power estimator 45
3.2 Examples of simple and non-simple waveforms 47
3.3 A 2-to-1 MUX example . 48
3.4 Generation and decomposition of non-simple waveforms 49
3.5 Algorithm I for computing SWSs 50
3.6 Algorithm II for computing SWSs with glitch filtering 53
3.7 An example of glitch filtering . 54

ix

x LIST OF FIGURES

3.8 Propagation delays in Full-adders and Half-adders 55
3.9 An example tree-structured circuit 56
3.10 Average node error, average number of waveforms per node and

runtime versus pth for C1355 . 58
3.11 A NAND gate with possible input values 62

4.1 The multiplier generation algorithm 64
4.2 The PPM, FA and HA matrices for a 12×12-bit unsigned multiplier 65
4.3 The multiplier optimization algorithm - Method 1 67
4.4 Sorting PPs based on their estimated transition densities 70
4.5 Worst-case multiplier algorithm - Method 1 71
4.6 Log-normal signal distribution 77
4.7 One-probabilities of input bits with log-normal distribution 77
4.8 The multiplier optimization algorithm - Method 2 79
4.9 Progressive reduction-tree design using SWS power estimator . . 82
4.10 The worst-case multiplier generation algorithm 84
4.11 Log-normal signal distribution 89
4.12 One-probabilities of input bits with log-normal distribution 89
4.13 Runtime versus number of iteration in SA 92
4.14 Average number of transitions versus number of iterations in SA . 92
4.15 Cooling factor . 93

5.1 Transition activity vs. bit positions with varying ρ 99
5.2 The generalized design methodology 102
5.3 Illustration of lag-one temporal correlation ratio vector (R) for Φ16

0.99105
5.4 Illustration of pairwise correlation coefficient matrix (C) 106
5.5 Illustration of pairwise correlation coefficient matrix (C) 107
5.6 FIR filter implementation . 110
5.7 Multiply accumulate architecture 110
5.8 Illustration of pairwise correlation coefficient matrix (C) 112

6.1 Progressive reduction-tree design using static power estimator . . 115
6.2 Progressive PPRT design for total power reduction 120

7.1 Correlated and uncorrelated input pattern 127
7.2 Visualization of the word-length probability density matrix 129
7.3 One-probabilities for primary input bits in example 1 132
7.4 Visualization of the correlation coefficient matrix 133
7.5 Lag-one temporal correlation ratios for primary input bits 134

LIST OF FIGURES xi

8.1 Different patterns for partial products in multi-operand adders . . 138
8.2 Architecture used for approximating elementary functions 142
8.3 Progressive reduction-tree design algorithm for function generators 144
8.4 The primary PP pattern for the (a) COSINE and (b) SINE functions 146

A.1 Calculating output one-probability of the basic logic gates 160
A.2 Calculating correlation coefficients for basic logic gates 162
A.3 An example of static probability computation 163

B.1 An example tree-structured circuit 166
B.2 A 2-to-1 MUX example . 173

List of Tables

2.1 Booth’s recoding algorithm . 21
2.2 Radix-4 modified Booth’s recoding algorithm 22
2.3 Truth-table and behavioral representation of half-adder 26
2.4 Truth-table and behavioral representation of full-adder 26
2.5 The Dadda sequence for minimal number of reduction stages . . . 31

3.1 Power estimation error for ISCAS’85 benchmark circuits with
fanout delay assignment. All errors are in percentage. 57

3.2 Runtime and computation complexity for ISCAS’85 benchmark
circuits with fanout delay assignment. All errors are in percentage. 59

3.3 The normalized leakage current for the logic gates 61

4.1 Number of search alternatives in one column 69
4.2 The search alternatives of a 7-bit column 70
4.3 Estimated energy per operation for different multipliers [pJ] . . . 74
4.4 Estimated energy per operation for optimized multipliers [pJ] . . . 74
4.5 Estimated energy per operation for multipliers with log-normal

inputs . 78
4.6 Average number of transitions for different multipliers 85
4.7 Average number of transitions with realistic delay model 86
4.8 Estimations of energy per operation from Synopsys Power Com-

piler for 0.35μm CMOS library 86
4.9 Estimations of energy per operation from Synopsys Power Com-

piler for a 65nm CMOS library 86
4.10 Average number of transitions for different multipliers 88
4.11 Average number of transitions for different multipliers 90

xiii

xiv LIST OF TABLES

5.1 Average number of transitions for different multipliers with tem-
porally correlated inputs . 104

5.2 Average number of transitions for different multipliers with spa-
tially correlated inputs . 108

5.3 Average number of transitions for MAC-based FIR filter 111

6.1 Unsigned multipliers with independent input bits 117
6.2 Signed 16 × 16 multipliers with correlated input bits 118
6.3 16 × 16 multipliers optimized for total power 121

7.1 Non-zero elements in the word-length probability density matrix
(W) in example 1 . 130

7.2 Average number of transitions for different multipliers 130
7.3 Word-length probabilities for an FFT processor with fading channel135
7.4 Average number of transitions for different multipliers 135

8.1 Coefficient values in terms of function values 141
8.2 Function definitions . 147
8.3 Average transition activity per clock cycle 149
8.4 Estimated energy per operation from NanoSim [pJ] 149

B.1 Average transition activity for nodes in Figure B.1 166
B.2 The simple waveform sets for the example tree-structured circuit . 172
B.3 Average transition activity for nodes in Figure B.2 173
B.4 The simple waveform sets for the 2-to-1 MUX example 174

List of Abbreviations

Abbreviation Definition Page

ASIC Application Specific Integrated Circuit 1
CMOS Complementary Metal-Oxide-Semiconductor 2
CORDIC COordinate Rotation DIgital Computer 139
CPA Carry-Propagate Adder 23
CSA Carry-Save Adder 25
CSD Canonical Signed Digit 22
CSNR Channel Signal to Noise Ratio 132
CUT Circuit Under Test 44
DBT Dual Bit Type 98
DCT Discrete Cosine Transform 139
DDFS Direct Digital Frequency Synthesizer 139
DFT Discrete Fourier Transform 139
DSP Digital Signal Processor 1
EDA Electronic Design Automation 1
FA Full-Adder 25
FFT Fast Fourier Transform 139
FIR Finite-length Impulse Response 103
HA Half-Adder 25
GA Genetic Algorithm 154
LN Log-Normal distribution 116
LSB Least Significant Bit 37
MAC Multiply-Accumulate 95
MBR Modified Booth’s Recoding 22
MSB Most Significant Bit 37
MSD Minimum Signed Digit 142

xv

xvi LIST OF ABBREVIATIONS

Abbreviation Definition Page

OBDD Ordered Binary Decision Diagram 61
OFDM Orthogonal Frequency Division Multiplexing 132
OPT Optimized 72
PDF Probability Density Function 6
PP Partial Product 13
PPG Partial Product Generation 17
PPM Partial Product Matrix 14
PPRT Partial Product Reduction Tree 27
RCA Ripple-Carry Adder 23
RFO Reconvergent FanOut 50
RND Randomly generated multiplier 72
ROBDD Reduced Ordered Binary Decision Diagram 157
ROM Read Only Memory 140
RT Reduction Tree 27
SA Simulated Annealing 80
SNR Signal to Noise Ratio 132
SWS Simple Waveform Set 46
TDM Three Dimensional Minimization 40
TPS Tagged Probabilistic Simulation 43
UD Uniform Distribution 116
UWN Uniform White Noise 98
VHDL VHSIC Hardware Description Language 73
VHSIC Very High Speed Integrated Circuits xvi
VLSI Very Large Scale Integration 1
VMA Vector Merge Adder 37
WC Worst-Case 72
WSS Wide Sense Stationary 6

Chapter 1

Introduction

Multipliers have been important since the introduction of the digital comput-
ers. Multiplication occurs frequently in Digital Signal Processing (DSP) sys-
tems, communication systems and other Application Specific Integrated Circuits
(ASICs). Because of the significance of multiplication in scientific and engineer-
ing computations, this area has received much attention in the past decades which
has led to a number of implementation techniques for multiplication. These are
surveyed in many textbooks such as [50, 93, 105, 141, 195, 199]. The vast vari-
ety of application areas for multipliers exhibits different requirements for speed,
area, power consumption and other specifications. Based on these requirements,
which are imposed from the system that the multiplier will be operating in, dif-
ferent characteristics of the multiplier will be given different priorities. It is the
designers task to choose a suitable multiplication algorithm and implementation
method according to these priorities. Traditionally, the design priorities have been
given to speed and area. However, the fast evolution of digital systems has caused
a major paradigm shift in the past years. Now, other parameters like low-power,
flexibility, testability and reliability have entered into the play. Power dissipation
has become an important constraint in the design of digital systems. This is even
more important for battery-powered applications where the energy budget is ex-
tremely limited. Low-power design has become a new area in VLSI technology
and power-aware design is inevitable in the new Electronic Design Automation
(EDA) tools.

Multipliers are generally computationally heavy circuit parts. Basically a large
number of transistors with high transition activities has to be devoted to perform
the multiplication. More transistors with high transition activities mean more in-
ternal capacitance, more overall switching and consequently more power dissi-

1

2 Chapter 1. Introduction

pation. Also the total leakage current is expected to be large in a multiplier be-
cause of its large active area. Multipliers are among the main contributors of area
and power consumption in a DSP system and, more importantly, they are usually
placed in the critical paths of such systems.

Throughout this thesis, a design methodology is proposed for reducing the dy-
namic and static power dissipation in parallel multipliers. It is assumed that the
multiplier will be operating in real-time systems where high-speed is essential.
Therefore, among the variety of implementation methods, high-speed parallel im-
plementation methods are addressed. The proposed optimization method in this
thesis, which will be elaborated in the following chapters, is an interconnection re-
ordering algorithm based on the input data characteristics. It is applicable directly
on all full-adder based parallel multipliers. With some changes the optimization
method is applicable for majority of the reduction schemes. The optimization
only modifies the interconnects between logic gates and the logic gates and the
architecture remains unchanged.

1.1 Sources of Power Consumption

The total power dissipation in CMOS circuits results from a combination of dy-
namic and static sources:

PTotal = PStatic + PDynamic (1.1)

Figure 1.1 shows a scaling scenario throughout past years for both the dynamic
and the static power consumption [125]. It can be seen that the problem of static
power due to the leakage has emerged in the 1990s. Both fractions of the total
power consumption grow exponentially but the leakage power with a much big-
ger rate. From the trajectory of the evolutions in dynamic and static power con-
sumption, it can be expected that in future the static power will not be negligible
anymore.

1.1.1 Static Power Dissipation

Ideally, the static power consumption of CMOS gates should equal to zero as the
PMOS and NMOS devices are never on simultaneously in steady-state operation.
However, the static power consumption in CMOS circuits results from imperfect
cut-off of the transistors and causes power dissipation even without any switching
activity. The leakage currents are always present, flowing through the reverse

1.1. Sources of Power Consumption 3

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Year

Po
w

er
 (

W
)

Static Power
Dynamic Power

Figure 1.1: Dynamic and static power in Watt for microprocessor chips

biased diode junctions of the transistors located between the source or drain and
the substrate. Another important source of leakage current is subthreshold current
of the transistors. A CMOS transistor can experience a drain-source current, even
when the gate-source voltage is below the threshold voltage. The subthreshold
leakage current increases as the threshold voltage becomes smaller.

With an increasing number of transistors both the total capacitance as well as
the total channel width which is relevant for leakage currents grows [135]. Thus
an exponential growth of the amount of devices, according to Moore’s law, di-
rectly results in exponentially increased leakage power dissipation. It is worth
mentioning that the junction leakage currents are by thermally generated carriers.
Therefore, their value increases exponentially with increasing junction tempera-
ture.

1.1.2 Dynamic Power Dissipation

The dynamic power, PDynamic, in Eq. 1.1 can be divided into two parts:

PDynamic = PSwitching + PShort−Circuit (1.2)

1.1.2.1 Short-Circuit Power Dissipation

PShort−Circuit is due to direct-path short-circuit current which arises when both
NMOS and PMOS transistors are simultaneously active, conducting current di-
rectly from voltage supply to ground. The short-circuit power dissipation can be

4 Chapter 1. Introduction

written as:
PShort−Circuit = VDDISC (1.3)

where VDD is the supply voltage and ISC is the short-circuit current that flows
between VDD and ground during the switching of the gates. The power dissipa-
tion due to short circuit currents shows a strong dependency on the supply and
threshold voltage [138, 190, 191]. Short circuit power consumption can be kept
within bounds by careful design and tuning the switching characteristics (slope
engineering) of complementary logic.

1.1.2.2 Switching Power Dissipation

PSwitching is due to charging and discharging of the load capacitances in the circuit.
Each time the load capacitor at node i is charged through a transistor, part of the
energy is dissipated in the transistor while the remainder of the energy drawn from
power supply is stored on the load capacitance. The amount of dissipated energy
per transition is equal to [151]:

Energy per transition =
1

2
V 2

DDCi (1.4)

where VDD is the supply voltage and Ci is the load capacitance at node i. There-
fore, the average power dissipation at node i due to switching will be equal to:

P sw
i =

1

2
V 2

DDDiCi (1.5)

where Di is the transition density at node i. The notion of transition density which
is the average number of transitions per second is proposed in [130] (DENSIM).
Di is defined as:

Di = lim
T→∞

ni(T)

T
(1.6)

where ni(T) is the number of transitions at node i in a time interval of length T .
Average number of transitions in one clock cycle can be defined as:

ni =
Di

fclk
(1.7)

where fclk is the clock frequency. The average switching power consumed in a
combinational circuit is then given by:

P sw
total =

N∑
i=1

P sw
i =

1

2
V 2

DD

N∑
i=1

CiDi =
1

2
fclkV

2
DD

N∑
i=1

Cini (1.8)

1.1. Sources of Power Consumption 5

where N is the total number of nodes, Ci is the total load capacitance at node i,
Di is the transition density for node i and ni is the average number of transitions
at node i per clock cycle.

1.1.3 Power Consumption in Multipliers

As will be discussed in Chapter 2, multipliers can in general be implemented as se-
quential and combinational circuits. In this thesis the focus is on the parallel mul-
tipliers which are purely combinational circuits. Therefore, the three sources for
power consumption in general circuits (i.e., switching power, short-circuit power
and leakage power) are present in parallel multipliers as well.

Parallel multipliers are fairly large circuit portions with high transistor den-
sity. Large active area directly leads to large leakage power dissipation in parallel
multipliers. As will be elaborated in Chapter 2, parallel multipliers have three
computation steps: partial product generation, partial product accumulation and
vector merge addition. The accumulation of partial products is a computationally
heavy task and in general this part of the multiplier dictates the overall computa-
tion delay, area and power consumption in the parallel multipliers. A number of
techniques, that will be discussed in Chapter 2, has been proposed to move parts of
the computation burden from the partial product accumulation step to the partial
product generation step. However, even after applying such techniques, the partial
product accumulation step is the dominating portion for delay, area, and power.
Comprehensive discussions about the power consumption in different multiplier
structures are given in [24, 25, 118]

Imbalanced signal paths within the structure of the parallel multipliers lead
to high density of spurious transitions. The steady-state transitions, also referred
to as functional activities, are the transitions that are necessary to perform the
computation task. On the other hand, spurious (hazardous) transitions or glitches
dissipate power without producing any useful computations. The ratio of the haz-
ardous component to the total power depends strongly on the logic depth and the
signal arrival time balance. In a 32-bit multiplier, the power dissipation due to
glitches is about three times higher than that due to functional activities [143].

The glitch pattern is particularly dependent on the gate delays. Indeed, two
identical circuits at gate-level with different gate delays may have a totally differ-
ent glitch pattern and power consumption. Current power estimation techniques
often handle both zero delay (no glitch) and real delay models. In the first model,
it is assumed that all changes at the circuit inputs propagate through the internal
gates of the circuits instantaneously. The latter model assigns each gate in the

6 Chapter 1. Introduction

circuit a finite delay and can thus account for the hazards in the circuit. A real-
delay model significantly increases the computational requirements of the power
estimation techniques while improving the accuracy of the estimates. In the con-
text of parallel multipliers, taking the glitches into account is extremely important,
because glitches consume a considerable amount of power. Consequently, consid-
ering gate delays is essential in optimization of parallel multipliers.

1.2 Probabilistic Treatment of Multipliers

When the behavior of a digital system becomes so complicated that it cannot
be described deterministically, probabilistic treatment of the system is useful to
quantify the behavior. In many applications, the input signals to a multiplier can
be modeled as discrete time random processes. The discussion here is restricted
to a short description of random processes. A more specific definition of random
processes is available in probability textbooks such as [7, 122].

A discrete random process X at any specific time n is a random variable, X[n].
The first order distribution function of X[n] is:

FX[n](X ; n) = p{X[n] ≤ X} (1.9)

where X is a real number (X ∈ R). The corresponding probability density func-
tion (PDF) is:

fX[n](X ; n) =
∂FX[n](X ; n)

∂X (1.10)

The second order distribution function is:

FX[n1]X[n2](X1,X2; n1, n2) = p{X[n1] ≤ X1, X[n2] ≤ X2} (1.11)

Similarly, the second order PDF is:

fX[n1]X[n2](X1,X2; n1, n2) =
∂2FX[n1]X[n2](X1,X2; n1, n2)

∂X1∂X2

(1.12)

Note that two random variables X[n1] and X[n2] can be correlated to each other.
Throughout this thesis, the input data words applied to the multiplier are de-

noted by random processes A and B. Furthermore, it is assumed that A and B
are ergodic. Ergodicity is defined for wide sense stationary (WSS) random pro-
cesses. A random process is WSS if the ensemble average and the autocorrelation

1.2. Probabilistic Treatment of Multipliers 7

function are invariant to a time shift. The ensemble average of X is:

E [X[n]] =

∫ +∞

−∞
X fX(X ; n)dX (1.13)

The auto correlation is defined as:

RXX(n1, n2) = E [X[n1]X[n2]] =

∫∫ +∞

−∞
X1X2fX1,X2(X1,X2; n1, n2)dX1dX2

(1.14)
Therefore a process is WSS if E [X[n]] and RXX(n, n + η) are independent of
n. E [X[n]] is constant for all values of n, and RXX(n, n + η) can be denoted as
RXX(η).

A WSS random process is ergodic if the time average of any realization of the
random process is equal to the ensemble average of the variable. The time average
of X is defined as:

X = lim
N→∞

1

N

N∑
n=1

X[n] (1.15)

A WSS random process X is ergodic in mean if X = E[X]. It is ergodic in
autocorrelation if

RXX(η) = lim
N→∞

1

N

N∑
n=1

X[n]X[n + η] (1.16)

The inputs of M × N-bit multiplier, A[n] and B[n], are quantized and rep-
resented with M and N bits respectively. The i:th and j:th input bit in the first
and second operands are denoted as ai[n] and bj [n], respectively (aN−1[n] and
bM−1[n] are the most significant bits). The values of A and B must be limited
to the maximum and minimum numbers that can be represented using M and N
bits, respectively. The one-probabilities (and zero-probabilities) of individual bits
in the data words can be computed by integrating the PDFs for the intervals where
the bits are 1 (or 0). The one-probability for a bit is referred to as the static prob-
abilities of that bit as well. For example let us assume a real random variable X
with values in the interval [0, 2N). X will be uniformly digitized (truncated) using
an unsigned N-bit word. Figure 1.2(a) depicts an example distribution function
for the real valued random variable X . Figure 1.2(b-d) illustrate the parts of the
distribution function where the N :th, (N − 1):th and (N − 2):th bits are one,

8 Chapter 1. Introduction

(a) (b)

(c) (d)

��
��
��
���
	

��
�
��
	

����������� �����������

����������������������

��
��
��
���
	

��
�
��
	

��
��
��
���
	

��
�
��
	

��
��
��
���
	

��
�
��
	

Figure 1.2: Computation of static probabilities
(a) The probability density function at word-level

(b) The interval resulting a 1 at the MSB
(c) The intervals resulting a 1 at the (N − 1):th bit
(d) The intervals resulting a 1 at the (N − 2):th bit

1.3. Outline of the Thesis 9

respectively. By integrating over these intervals the one-probabilities can be com-
puted. The one-probability for the MSB can be written as:

pxN−1
=

∫ 2N

2N−1

fX[n](X ; n)dX (1.17)

The one-probability for i:th bit is:

pxi−1
=

2N−i∑
r=1

(∫ r2i

(2r−1)2i−1

fX[n](X ; n)dX
)

(1.18)

For many applications the distribution of input words are unknown. However,
high-level simulations of the system can provide realistic input streams for the
multiplier inputs. Let us assume that a realistic input stream with NS samples is
available for both input operands. Using this input stream the static probabilities
of the input bits can be approximated as:

pxi
= lim

NS→+∞

1

NS

NS−1∑
n=0

xi[n] (1.19)

1.3 Outline of the Thesis

Chapter 1 has presented a brief introduction to the concepts and importance of
low-power design. It has also discussed the sources of power consumption in the
multipliers. The probabilistic treatment of multipliers introduced in this chapter
will be a key consideration for the subsequent chapters.

Chapter 2 presents the relevant background information about multipliers in
the following order:

• Classification of multipliers into sequential, parallel and array multipliers

• The purpose of basic steps in parallel multipliers: partial product genera-
tion, partial product accumulation and the final carry propagate adders

• Prevalent methods for designing the partial product generation step, the par-
tial product accumulation step, and the final carry propagate adder in paral-
lel multipliers

• The arithmetic flexibilities in the partial product reduction-tree structure

10 Chapter 1. Introduction

• The multiplier structure that will be used in the experiments in the subse-
quent chapters

Chapter 3 presents the power estimation methods used in this thesis. A prob-
abilistic gate-level power estimation technique presented in Section 3.1.1 and a
high-level power macro model based estimator presented in Section 3.1.2 will be
utilized as dynamic power estimators in the optimization algorithms in Chapters 4
through 8. A leakage power estimator presented in Section 3.2 will be utilized as
the static power estimator in Chapter 6.

Chapter 4 presents two optimization algorithms for designing low-power par-
tial product reduction-trees. The first method optimizes the complete reduction-
tree using the power macro model based estimator presented in Section 3.1.2. The
second method designs the reduction-tree progressively using the power estimator
presented in Section 3.1.1. Each method is evaluated using a number of experi-
ments.

Chapter 5 extends the progressive partial product reduction tree design algo-
rithm in Chapter 4 to include the potential correlations between the primary inputs.
The correlations are classified into two sources: temporal correlation and spatial
correlations. Methods for including the temporal and spatial correlations in the
power estimator are presented. This is followed by experiments for multipliers
with highly correlated inputs.

Chapter 6 introduces a change in the progressive partial product reduction tree
design algorithm in Chapter 4 to minimize the static power instead of the dynamic
power. The dynamic power estimator is replaced by the static power estimator
presented in Chapter 6. Additionally, Chapter 6 presents a method to optimize
the reduction-tree for static power and dynamic power simultaneously. In this
method a weighted sum of static power and dynamic power will be used in the
optimization algorithm as the cost function.

Chapter 7 extends the optimization algorithms, presented in Chapters 4 and 5,
on multipliers with variable word-length. Experiments on two scenarios, where
the multiplier may operate with variable word-length, are presented in this Chap-
ter.

Chapter 8 presents a different application area for the introduced optimization
algorithms in Chapters 4 and 5. While Chapters 4 through 7 focus on the parallel
multipliers, Chapter 8 extends the power reduction technique to a special class
of elementary function generators. This class of elementary function generators
is built using a summation-tree which can be optimized in a similar way as the
reduction-trees in the parallel multipliers.

1.4. Main Contributions 11

Chapter 9 presents the conclusions of this thesis, and recommendations for
future work. This is followed by appendices and the bibliography.

1.4 Main Contributions

This thesis has led to several contributions, with the principal ones listed here
below:

• Power-optimized partial product reduction tree design algorithm using power
estimation based on power macro model and suggestions for limiting the
search space

• Power-aware reduction tree design methodology using the progressive re-
duction tree design algorithm

• Extending the progressive reduction tree design algorithm to include spa-
tiotemporal correlations between primary inputs

• Extending the progressive reduction tree design algorithm to optimize for
static power or total power which is a combination of static and dynamic
power

• Generalizing the application area to arbitrary multi-operand adder trees and
applying the progressive reduction tree design algorithm to elementary func-
tion generators build using weighted sum of bit-products

• Probabilistic dynamic power estimation technique for combinational logic
circuits using the simple waveform set

The proposed algorithms and the automated VHDL generation describing the op-
timized reduction trees are implemented in C++ and MATLAB as part of the work
behind this thesis.

Chapter 2

Multiplication Schemes

This chapter briefly reviews a number of widely-used high-speed multiplication
techniques, focusing mainly on the parts that will be addressed in the follow-
ing chapters. More elaborate discussions about the multiplication techniques are
given in [45, 50, 93, 105, 141]. Moreover, the discussions of this chapter are only
limited to fixed-point multipliers. In fact, the floating-point multipliers consist of
a fixed-point multiplier for the significands, plus peripheral and support circuitry
to deal with the exponents and special values (0,±∞, etc.) [4, 16, 36, 62, 124].
Therefore the optimization methods discussed in the following chapters are also
applicable for floating-point operators.

A fixed-point multiplication involves two basic steps: generating partial prod-
ucts (PPs) and accumulating the generated PPs. The diverse multiplication schemes
differ in the generation and/or accumulation methods. Consequently, speed-up in
the multiplication process is achieved in two ways: generating less number of PPs
in the first step or accelerating their accumulation in the second step. The simplest
scheme for multiplication, known as shift-and-add scheme, consists of cycles of
shifting and adding with hardware or software control loops. Let us use the fol-
lowing notation to illustrate this scheme for an unsigned M × N-bit multiplier:

13

14 Chapter 2. Multiplication Schemes

aM−1 aM−2 . . . a1 a0 Multiplicand
bN−1 bN−2 . . . b1 b0 Multiplier

aM−1b0 aM−2b0 . . . a1b0 a0b0
aM−1b1 aM−2b1 . . . a1b1 a0b1

... Partial Products
aM−1bN−1 aM−2bN−1 . . . a1bN−1 a0bN−1

pN+M−1 pN+M−2 . . . p1 p0 Product

Figure 2.1: Shift-and-Add multiplication scheme

Binary representation

Multiplicand A =

M−1∑
i=0

a
i
2i (a

M−1
a

M−2
. . . a1a0)2

Multiplier B =

N−1∑
j=0

b
j
2j (b

N−1
b

N−2
. . . b1b0)2

Product (P = A × B) P =

N+M−1∑
k=0

p
k
2k (p

N+M−1
p

N+M−2
. . . p1p0)2

Figure 2.1 illustrates the generation, shifting and summing of partial products
for an unsigned M ×N-bit multiplier and Figure 2.2 shows the block diagram of
a shift-and-add multiplier in which the PPs are implemented using a multiplexer.
The PPs can also be implemented using logical AND gates. The multiplication is
performed in N cycles of shifting and adding. The product is given in Eq. 2.1.

P =
N+M−1∑

k=0

pk2
k = (

M−1∑
i=0

ai2
i)(

N−1∑
j=0

bj2
j) =

M−1∑
i=0

N−1∑
j=0

aibj2
i+j (2.1)

The PPs are more conveniently illustrated using a dot-diagram. A dot-diagram
is useful when only the positioning and alignment of bits, rather than their values,
are important. Figure 2.3(a) illustrates the PPs for an unsigned 8×8-bit multiplier.
Figure 2.3(b) is an alternative dot-diagram representation for the same multiplier.
Each dot in the diagram is representing a single bit which can be a zero or one. In
the dot-diagram representation, only the horizontal position of the PPs has signif-
icance. By relaxing the vertical positions of PPs, the dot-diagram can be altered
as shown in Figure 2.3(b).

The partial product matrix (PPM) is another representation tool for PPs. The
PPM is a boolean matrix that represents a PP with the weight j by placing a 1 or
TRUE in column j. The elements in the PPM that do not correspond to a PP are

15

���

���

��	��

� �

�

�
� �
�

�
� �
�

����������	�����

�

Figure 2.2: Block diagram for a shift-and-add multiplier

���	��������
���	�����

���	���
������	�

������	

���	���
������	�

������	

��� ���⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(c)

Figure 2.3: The dot-diagram representation of an 8 × 8-bit multiplier
(a) Dot-diagram for shift-and-Add multiplication scheme

(b) An alternative dot-diagram representation
(c) The corresponding partial product matrix

16 Chapter 2. Multiplication Schemes

represented with a 0 or FALSE. Therefore, the PPM is equivalent to dot-diagram
representation of the PPs. Note that the size of the PPM can be arbitrary large
as long as it contains all PPs. However, conventionally, the minimum size PPM
that contains all PPs is chosen; i.e. both the first column and the last column in
the PPM must include a PP (a TRUE value). The PPs are normally accumulated
through several stages, resulting in a number of intermediate PPMs. Throughout
this thesis the initial PPM is denoted as M0 and contains all initial PPs in the
column corresponding to their weight. Mi denotes the partial product matrix after
ith stage of reduction. The operator ‖Mi‖ is also defined so that it returns the
maximum height of the partial product matrix; i.e., the largest number of PPs with
equal weight for Mi.

2.1 Classification of Multipliers

Multiplication schemes are commonly classified in three general types: sequen-
tial, parallel and array multipliers [93, 106, 195]. This is not a universal classi-
fication and some hybrid multiplication schemes do not fall into exactly one of
these categories. For example, as a compromise between sequential and parallel
multipliers, partially combinational multipliers are introduced to achieve higher
performance but still keep the hardware small. Examples of such multipliers are
described in [4, 63, 107, 162]

2.1.1 Sequential Multipliers

The sequential multipliers generate the PPs sequentially and add each newly gen-
erated PP to the previously accumulated sum. The sequential multipliers were
popular when the hardware was expensive and bulky. They are still in use in appli-
cations where the speed is not critical or the high parallelism achieved by multiple
operating sequential multipliers compensates for the low speed. Shift-and-Add
multiplication is an example of sequential multipliers.

2.1.2 Parallel Multipliers

The parallel multipliers generate all PPs in parallel and then use fast multi-operand
adders for their accumulation. Parallel multipliers are the main focus of this thesis;
Therefore the structure of parallel multipliers will be discussed more elaborately
in Section 2.2.

2.2. Parallel Multipliers 17

2.1.3 Array Multipliers

Array multipliers iteratively utilize (almost) identical cells that generate new PPs
and accumulate them simultaneously and therefore there is no separate circuit for
PP generation and for their accumulation. In this way, the overhead that is due to
the separate controls of these two steps is avoided. Examples of array multipliers
are presented in [33, 49, 109, 110, 137].

2.2 Parallel Multipliers

Today parallel multipliers are popular because of the need for high speed opera-
tors. In addition to the high-speed requirement, more area is available nowadays,
compared to the past. As mentioned earlier, the speed enhancement in multipliers
are achieved in two ways: reducing the number of generated PPs and using faster
techniques to accumulate the PPs. In order to investigate the speed enhancement
methods in multipliers, the partial product generation (PPG) and partial product
accumulation methods must be investigated.

2.2.1 Partial Product Generation

The PPs are generated using multiplexers or AND gates in an unsigned radix-
2 shift-and-add multiplication. For multiplication of signed-magnitude numbers,
the unsigned multiplication core can be used for the magnitude part of the inputs,
with an extension that the sign bit is computed separately by checking the two
input operands’ sign bits. Multiplication of signed values with complement repre-
sentation is a bit more complex. One way is to complement the negative operands,
multiply the unsigned values and then complement the result if necessary; i.e.
when only one of the input operands are negative. Such a pre-complement and
post-complement method is suitable for 1’s complement numbers but is too com-
plicated for 2’s complement numbers. For a 2’s complement multiplier to yield
correct product of its inputs, sign extension is needed on PPs. The PPs must be
sign-extended to the width of the final product. Robertson in [158] suggests a
more efficient procedure for 2’s complement numbers compared to pre- and post-
complement approach. Roberston classifies the multiplication in 2 cases. Case 1
is when the multiplier is positive. In this case the original shift-and-add approach
(with right-shifts) can be utilized with only one consideration that the right-shifts
are arithmetic shifts rather than logic shifts; i.e. when the multiplicand is neg-

18 Chapter 2. Multiplication Schemes

ative, 1 will be entered in MSB instead of 0. Case 2 is when the multiplier is
negative. In this case a correction step is required in the last step of shift-and-add
multiplication. That is, the multiplicand will be subtracted instead of being added.

For 2’s complement multiplication a number of direct methods are devel-
oped [6,15,70,145]. Let us consider the following 2’s complement representation
for the multiplicand, the multiplier and the product:

Multiplicand A = −2
M−1

a
M−1

+

M−2∑
i=0

2
i

a
i

Multiplier B = −2
N−1

b
N−1

+

N−2∑
j=0

2
j

b
j

Product (A × B) P = −2
N+M−1

p
N+M−1

+

N+M−2∑
k=0

2
k

p
k

Therefore, the product will be computed as:

P = (−2
M−1

a
M−1

+
M−2∑
i=0

2
i

a
i
) × (−2

N−1

b
N−1

+
N−2∑
j=0

2
j

b
j
)

=

M−2∑
i=0

N−2∑
j=0

aibj2
i+j + aM−1bN−12

N+M−1

−(
N−2∑
j=0

aM−1bj2
j+M−1 +

M−2∑
i=0

aibN−12
i+N−1) (2.2)

Figure 2.4(a) depicts the product computation for 2’s complement numbers. In
order to avoid the complication that subtraction or sign extension will introduce
in most applications, Baugh and Wooley in [6] proposed an efficient method for
2’s complement multiplication that handles subtractions by taking the 2’s comple-
ment of the terms to be subtracted. In 2’s complement representation negation of
an integer word X can be obtained by the formula −X = comp(X) + 1; where
comp(X) is bitwise inversion of the bits in word X . Figure 2.4(b) illustrates
the PPM formation using Baugh-Wooley’s method. Baugh-Wooley’s strategy in-
creases the maximum column height by 2 and this can potentially increase the ac-
cumulation delay. Hatamian and Cash in [70] modified Baugh-Wooley multiplier
and reduced the maximum number of PPs to its previous value as in the unsigned
multiplier. Figure 2.4(c) illustrates the modified 2’s complement multiplier.

2.2. Parallel Multipliers 19

a4 a3 a2 a1 a0

× b4 b3 b2 b1 b0
−a4b0 a3b0 a2b0 a1b0 a0b0

−a4b1 a3b1 a2b1 a1b1 a0b1
−a4b2 a3b2 a2b2 a1b2 a0b2

−a4b3 a3b3 a2b3 a1b3 a0b3
a4b4 −a3b4 −a2b4 −a1b4 −a0b4

p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

(a)

a4 a3 a2 a1 a0

× b4 b3 b2 b1 b0

a4b0 a3b0 a2b0 a1b0 a0b0

a4b1 a3b1 a2b1 a1b1 a0b1

a4b2 a3b2 a2b2 a1b2 a0b2

a4b3 a3b3 a2b3 a1b3 a0b3

a4b4 a3b4 a2b4 a1b4 a0b4

a4 a4

1 b4 b4

p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

(b)

a4 a3 a2 a1 a0

× b4 b3 b2 b1 b0

1 a4b0 a3b0 a2b0 a1b0 a0b0

a4b1 a3b1 a2b1 a1b1 a0b1

a4b2 a3b2 a2b2 a1b2 a0b2

a4b3 a3b3 a2b3 a1b3 a0b3

1 a4b4 a3b4 a2b4 a1b4 a0b4

p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

(c)

Figure 2.4: Signed multiplication
(a) 2’s complement multiplication with positive and negative partial products.

(b) Baugh-Wooley multiplier 2’s complement multiplier
(c) Modified Baugh-Wooley 2’s complement multiplier

20 Chapter 2. Multiplication Schemes

�����	��������
 ����	�����

���	���
������	�

������	

����������!�"��������
����������!�"��������
��	�
�����!�"��������
����������!�"��������

���

���

��	�������

� �

�

����������	������

�� �� �� ��

"� #�

"

����������
����

Figure 2.5: 8 × 8-bit Radix-4 multiplication in dot-diagram and its structure

In addition to the Baugh-Wooley and modified Baugh-Wooley multiplication
methods, an alternative method to handle 2’s complement multiplication is pro-
posed by Pezaris in [145]. Pezaris’s method employs different types of full-adders
depending on whether they have positive or negative weight.

2.2.1.1 Higher Radix Multipliers

Reduction in the number of generated partial products is favorable because it re-
duces the complexity of the following accumulation steps; thus it decreases the
execution and amount of hardware involved. One way to reduce the number of
PPs is to examine two or more bits of the multiplier at a time. Although higher
representation radix leads to fewer digits, it requires generation of multiples of
the multiplicand. For example in radix-4 multiplication each digit can assume the
values 0, 1, 2 or 3; therefore 0, A, 2A and 3A are needed, where A is the multipli-
cand. In fact a part of the complexity is moved from the PP accumulation step to
the PP generation step. This method is efficient specially when these multiples of
the multiplicand can be precomputed [141, Chapter 10].

As illustrated in Figure 2.5, the number of partial products are reduced by a
factor 2 for radix-4 multiplication. The multiples A and 2A are easy to obtain
(2A is simply the shifted version of A), but 3A is a hard multiple and requires
an addition operation (3A = 2A + A). This addition can be combined with the
addition required with each shift-and-add step. Doing so there will be a need
for a 3-operand adder. As will be discussed later in Section 2.2.2.1, carry-save
adders can be used to reduce the number of operands from three to two. The time
required to perform this computation is approximately equal to the delay of one
full-adder cell (i.e. 2 XOR gates) regardless of the number of bits in the operands.

2.2. Parallel Multipliers 21

Table 2.1: Booth’s recoding algorithm

Current input bit Previous input bit Recoded bit Explanation
bj bj−1 b′j
0 0 0 Consecutive zeros
0 1 1 End of a string of ones
1 0 1̄ Start of a string of ones
1 1 0 Consecutive ones

2.2.1.2 Recoding Techniques

Various algorithms for reducing the number of generated partial products have
been proposed. Many of these algorithms benefit from the fact that a group of
consecutive zeros or ones may generate fewer PPs. A group of i consecutive ones
(or zeros) can be represented by the difference between two bit sequences each
having a single nonzero bit. The string property is the base for such algorithms:

2j+i−1 + 2j+i−2 + . . . + 2j+1 + 2j = 2j+i − 2j (2.3)

The longer the sequence of ones or zeros, the larger is the achieved saving. In or-
der to benefit from this transformation, the binary number representation needs to
be changed from the conventional representation in digit set {0,1} to the signed-
digit representation in digit set {-1,0,1} [5]. The process of converting the repre-
sentation digit set to another digit set is referred as recoding in the literature.

Although the use of digit set {-1,0,1} dates back to 1897 [60], Booth’s recod-
ing in [15] was one of the first algorithms to benefit from the property described
above to accelerate serial multiplication. Booth proposed a simple recoding algo-
rithm described in Table 2.1. that examines the current bit bj and the previous bit
bj−1 of the multiplier bN−1bN−2 . . . b1b0 in order to generate the ith bit b′i of the
recoded multiplier b′N−1b

′
N−2 . . . b′1b

′
0. Booth’s recoding algorithm may reduce the

number of non-zero bits in the multiplier but it has two main drawbacks. First, the
number of non-zero digits is variable and in synchronous applications the worst-
case maximum number of required addition/subtractions should be considered
which is the same as the original multiplier width. Second, in some cases this
algorithm may increase the number of non-zero bits. An example of such ineffi-
cient recoding is the string (001010101)2 which is recoded to (011̄11̄11̄11̄)2. The
original word has 4 non-zero bits while the recoded word has 8. The maximum

22 Chapter 2. Multiplication Schemes

Table 2.2: Radix-4 modified Booth’s recoding algorithm

b2j+1 b2j b2j−1 b′2j+1 b′2j increment
0 0 0 0 0 0
0 0 1 0 1 +A
0 1 0 0 1 +A
0 1 1 1 0 +2A
1 0 0 1̄ 0 −2A
1 0 1 0 1̄ −A
1 1 0 0 1̄ −A
1 1 1 0 0 −0

b′7 b′6 b′3 b′2︷ ︸︸ ︷ ︷ ︸︸ ︷
. . . b7 b6 b5 b4 b3 b2 b1 b0 b−1︸ ︷︷ ︸ ︸ ︷︷ ︸

b′5 b′4 b′1 b′0

Figure 2.6: Overlapping multiple bit scanning in radix-4 MBR

number of non-zero bits can be reduced using overlapping multiple bit scanning.
Modified Booth’s recoding (MBR) proposed by MacSorley in [107] examines
three overlapping bits of the multiplier at a time and recodes them into two digits
(Figure 2.6). The radix-4 MBR algorithm is summarized in Table 2.2. Using the
MBR can reduce the maximum number of required additions/subtractions to n

2
for

an n×n-bit multiplier at the cost of somewhat increased complexity for each iter-
ation [159]. However, the MBR is simpler than Reitwiesner’s algorithm [154] for
canonical signed digit (CSD) conversion, which guarantees the minimum number
of non-zero digits. The CSD conversion using Reitwiesner’s algorithm requires
carry propagation and therefore it has to generate the multiplier bits sequentially.
The canonical recoding has application in constant multiplications and modular
exponentiation [77]. The MBR algorithm can be extended to higher radices but
this will require hard multiples like ±3A, adding more complexity to the PP gen-
eration step [108]. Flynn and Oberman in [55] present methods for simpler gen-
eration of these hard multiples. Extensions to radices-8 and -16 are described
in [51, 161, 206]. Seidel et al. in [166] present multipliers in radix-32 and radix-
256.

2.2. Parallel Multipliers 23

�

��

$$$

�"$$$

��

�%%&' �%%&' �%%&' �%%&' �%%&'

�%%&' �%%&'

�" $$$$$$

�����
"
����

�%%&'

�����
"
����

�����
"
�

�� �� ��

� � � � � � � � �

Figure 2.7: Accumulating PPs using two-operand adders

2.2.2 Partial Product Accumulation

After the generation of the PPs, they must be accumulated to obtain the final prod-
uct. In the multiplication operation, this is the most time consuming process. The
accumulation of the PPs, also referred to as reduction of the PPs, is performed
using two main approaches: Reduction by rows and reduction by columns. The
building modules are called adders and counters for reduction by rows and reduc-
tion by columns, respectively. A straightforward method in the reduction by rows
is to use multiple two-operand carry propagate adders (CPAs). Using logarithmic
time two-operand CPAs, the accumulation time needed to accumulate n words of
width k bits will be equal to [141]:

T
fast two-operand adders

= O(logn + log(n + 1) + . . . + log(n + �log2 k� − 1))

≈ O(log k log n + log k log log k) (2.4)

The accumulation process is illustrated in Figure 2.7. �n/2� adders of width k
bits compute outputs of width k + 1 bits each. Then �n/4� adders of width k + 1
compute outputs of width k + 2. This process is continued until the final product
is computed. Parhami in [141] shows that using two-operand ripple carry adders
(RCAs) instead of fast logarithmic adders results in computation time equal to:

T
ripple carry adders

= O(n + log k) (2.5)

24 Chapter 2. Multiplication Schemes

��(���(� �� �� ���� ����

	�(� 	� 	���

��(���(� �� �� ���� ����

	�(� 	� 	���

�("
�
�(�
���

��(���(� �� �� ���� ����

	�(� 	� 	���

���

���

���

��(���(� �� �� ���� ����

	�(� 	� 	���

���

Figure 2.8: Carry propagation and carry-free operation
(a) Single-stage operation with carry propagation

(b) Single-stage operation with look-ahead
(c) Single-stage carry-free operation
(d) Two-stage carry-free operation

This is because the carry propagation in each level lags one time unit behind the
preceding level. In fact accumulation time using RCAs can be less than the accu-
mulation time using fast adders for large k. The absolute minimum time required
for accumulation is O(log(nk)) = O(logn + log k), where nk is the total num-
ber of bits to be processed by the multi-operand adder, which is composed of
constant-fan-in logic gates. This minimum is achievable using redundant multi-
operand adders with redundant outputs in carry-save form [141]. The objective of
adopting redundant representation is to reduce the computation time by reducing
the maximum carry propagation chain.

Propagation of the carry in arithmetic operations is time-consuming and slow
(Figure 2.8(a)). Look-ahead techniques are usually expensive and unaffordable

2.2. Parallel Multipliers 25

(Figure 2.8(b)). Redundancy enables performing carry-free arithmetic operations.
Although the idealistic single-stage carry-free operation in Figure 2.8(c) is im-
possible to realize with fixed digit set, the two-stage carry-free operations are
feasible using the redundant representation illustrated in Figure 2.8(d). Metze and
Robertson in [121] presented the first example of using carry-save numbers for
fast addition of a sequence of binary operands.

2.2.2.1 Carry-Save Adders

Carry-save adders (CSAs) are efficient operators when three or more operands
are to be added. Their efficiency is due to the fact that the addition is performed
without propagating carries. Carry-save addition was introduced by Estrin et al.
in the context of sequential multiplication [53]. In the simplest implementation
of a CSA, the basic elements of the CSA are full-adders (FAs) and half-adders
(HAs).

The half-adder in Figure 2.9(a) adds two binary inputs, A and B. The result
is 0, 1 or 2, so two bits are required to represent the value. They are called the
sum and carry-out denoted by S and Cout. The Cout output has double the weight
of the other bits. The full-adder in Figure 2.9(b) has a third input called Cin. The
truth-table and behavioral representation of the HA and FA are given in Tables 2.3
and 2.4. The notations ⊕, · and + in Tables 2.3 and 2.4 represent logical XOR,
AND and OR operators, respectively. Typical gate-level implementations of HA
and FA are depicted in Figure 2.10(a) and Figure 2.10(b). A number of efficient
transistor-level FA implementations are surveyed in [28, 168]. From behavioral
perspective, all three inputs of the FA are equivalent, because the FA is symmetric
with respect to its inputs (Table 2.4). However, in the actual implementation of
FAs the structure is not symmetric with respect to the inputs. Different permu-
tations of the inputs to a FA or a HA may result in different overall computation
delays, dynamic power consumption, or leakage current. For instance, in the im-
plementation shown in Figure 2.10(b), transitions at the inputs A and B have to
pass through two XOR gates to reach the output S, while it is only one XOR gate
for the input Cin.

A row of full-adders can be viewed as a mechanism to reduce three num-
bers to two numbers. An RCA turns into a CSA if carries are saved rather than
propagated. Figure 2.11 shows the relationship between an RCA and a CSA.
Figure 2.11 illustrates also the dot-diagram of the inputs and outputs to RCA and
CSA. For RCA, three dots in the rightmost column represent the inputs to the least
significant bit FA. The remaining FAs have two dots in one column and the carry

26 Chapter 2. Multiplication Schemes

)�

�

*+��	

,�

�

+��	

+��

��� ���

*

Figure 2.9: A half-adder(a) and a full-adder(b)

Table 2.3: Truth-table and behavioral representation of half-adder

A B S Cout

0 0 0 0
0 1 1 0 S = A ⊕ B
1 0 1 0 Cin = A · B
1 1 0 1

Table 2.4: Truth-table and behavioral representation of full-adder

A B Cin S Cout

0 0 0 0 0
0 0 1 1 0 S = A ⊕ B ⊕ C
0 1 0 1 0 Cin = A · B + B · Cin + Cin · A
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

2.2. Parallel Multipliers 27

�

+��

+��	

*
�

+��	

*

����)�������� ����,��������

Figure 2.10: A typical gate-level implementation of full-adder and half-adder

out from the FA to its right. For a CSA, each FA have three dots in one column as
inputs. For the CSA, a sum output will result in a dot with the same weight as the
inputs. A carry output will result in a dot in the column to its left; i.e. one order
of magnitude higher. Each dashed line in the dot-diagram represents the delay of
one full-adder.

Let X , Y and Z be the input bit-vectors to a three-operand CSA, and let C and
S be the carry and sum output bit-vectors, respectively. Then it can be written:

X + Y + Z = S + 2C (2.6)

A row of full-adders produces a reduction from three bit-vectors to two bit-
vectors and generates weighted outputs. Therefore a row of full-adders is also
referred to as a [3 : 2] adder. Early schemes for reduction by rows using [3 :
2] adders are described in [107, 193]. MacSorley in [107] utilized CSAs in the
structure of the radix-8 sequential multiplier. Wallace reduction method described
in [193] accommodate a number of parallel CSAs. This method will be elaborated
in Section 2.2.2.2.

The reduction of PPs can be performed using the generalized form of CSAs
referred to as [p : 2] adders which reduce the p bit-vectors to 2 bit-vectors [50]. A
reduction-tree composed of [4 : 2] adders is described in [197]. The generalized
[p : 2] adders are referred as parallel compressors in [58]. Implementation of such
adders are discussed in, among others, [96, 129, 148].

2.2.2.2 Wallace Reduction Tree

Wallace in [193] proposed a method for reduction by rows using CSAs in parallel.
The partial product reduction tree (PPRT) obtained from this method is called
a Wallace tree. In each stage of the reduction, Wallace performs a preliminary

28 Chapter 2. Multiplication Schemes

,�,�,�,�,�

,�,�,�,�,�

���

���

Figure 2.11: The relationship between RCA and CSA
The structure and dot-diagram of (a) A ripple-carry adder

(b) A carry-save adder

2.2. Parallel Multipliers 29

grouping of rows into sets of three. Within each three-row set, [3 : 2] adders are
employed to reduce columns with three bits to two bits. Half-adders are employed
to reduce columns with only two bits. Rows which are not part of any three-row
sets are transferred to the next stage without modification. The bits of these rows
will be reduced in later stages. Figure 2.12 illustrates the reduction process for a
12 × 12-bit unsigned multiplier. As mentioned, a sum output, S, from a full- or
half-adder at one stage places a dot in the same column at the next stage. A carry
output, Cout, from a full- or half-adder at one stage places a dot in the column to
its left, i.e., one order of magnitude higher, at the next stage. As it is shown in
Figure 2.12, in the second stage of reduction for example, the last two rows are
left to the following stage. Recall the operator ‖Mi‖ which returns the maximum
height of PPM in the ith stage of reduction. ‖Mi‖ can be recursively computed
from the formula:

‖Mi‖ = 2
‖Mi−1‖/3� + (‖Mi−1‖ mod 3) (2.7)

where ‖M0‖ is equal to min(N, M) in an M × N-bit multiplier. When ‖Mi‖ is
equal to 2, i is the last stage of reduction (denoted as l) and the reduction should
be followed by a CPA to add the two final vectors. Each level of CSAs reduces
the number of PPs by a factor of 3/2. Thus the total number of the required stages
is roughly equal to:

l ≈ �log 3
2
(
min(N, M)

2
)� (2.8)

The total number full-adders in the Wallace’s scheme is equal to [14]:

nFA = N · M − 2(N + M) + l + η (2.9)

where η is 1, 2 or 3 depending on the values of N and M . The number of half-
adders is at least min(N, M)− 1, although it is often much larger than N and M .
The word-length of the final CPA using Wallace’s scheme is

wCPA = N + M − l − ν (2.10)

where ν is either 1 or 2 depending on the values of N and M . For the 12 × 12-
bit multiplier in Figure 2.12, in order to reduce 12 bit-vectors to 2 bit-vectors, 5
stages of reduction is required. The number of full-adders and half-adders is equal
to 102 and 34 respectively. The CPA length is 18 bits in this case.

30 Chapter 2. Multiplication Schemes

*	����

*	���"

*	���#

*	���-

*	���.

Figure 2.12: Wallace’s scheme for a 12 × 12-bit unsigned multiplier

2.2. Parallel Multipliers 31

Table 2.5: The Dadda sequence for minimal number of reduction stages

i s
i

i s
i

i s
i

i s
i

1 2 6 13 11 94 16 711
2 3 7 19 12 141 17 1066
3 4 8 28 13 211 18 1599
4 6 9 42 14 316 19 2398
5 9 10 63 15 474 20 3597

2.2.2.3 Dadda Reduction Tree

Following the Wallace’s scheme for reduction by rows, Dadda in [38, 39] intro-
duced a scheme for reduction by columns. Similar to Wallace’s scheme, full-
adders and half-adders are the building blocks of the PPRT, but they are referred
to as counters. In the Wallace’s method, the PPs are reduced as soon as possible.
In contrast, Dadda’s method carries out the minimum reduction necessary at each
stage to perform the reduction in the same number of stages as required by a Wal-
lace multiplier. In order to perform the minimum necessary reduction, a sequence
of intermediate PPM heights is defined that provides the minimum number of re-
duction stages for a given multiplier size. This sequence is computed recursively
as:

s
i
=
3

2
s

i−1
� (2.11)

where s1 = 2. In other words, the sequence is determined by working back from
the final two bit-vectors and limits the height of each intermediate matrix to the
largest integer that is no more than 3

2
times the height of its successor. The values

of s
i

for 1 ≤ i ≤ 20 are given in Table 2.5.
Dadda’s reduction scheme is as follows [176]:

1. Generate the PPs and initialize the partial product matrix M0.

2. Find the largest i such that ‖M0‖ > s
i
.

3. Employ full-adders and half-adders to obtain a reduced matrix with no more
than s

i
elements in any column.

4. Let i = i−1 and repeat step 3 until a matrix with only two rows is generated.

32 Chapter 2. Multiplication Schemes

The total number of full-adders for an N × M-bit multiplier using the Dadda
PPRT is equal to [14]:

nFA = N · M − 2(N + M) + 3 (2.12)

The total number of half-adders is min(N, M). The word-length of the final CPA
using Dadda’s scheme is

wCPA = N + M − 2 (2.13)

Dadda and Wallace multipliers are compared in [12, 66, 185]. Dadda’s scheme is
optimum in the number of required full-adders and half-adders but it requires a
larger CPA. It has generally been assumed that compared to a Dadda multiplier, a
Wallace multiplier yields a slightly faster design due to its smaller CPA. However,
Townsend et al. in [185] show that this assumption may be incorrect, as the CPA
can start the computation before all the bits of the final vectors are computed. In
fact, using the 9-gate full-adder implementation given in [175] which consists of
AND, OR and NOT gates, a Dadda multiplier is smaller and faster than a Wallace
multiplier. Figure 2.13 illustrates the dot diagram of the reduction steps for a
12 × 12-bit multiplier using Dadda’s scheme. For the 12 × 12-bit multiplier in
Figure 2.13, similar to Wallace’s scheme, 5 stages of reduction is required. The
number of full-adders and half-adders is equal to 99 and 11 respectively. The CPA
length is 22 bits in this case.

2.2.2.4 Modified Dadda-Wallace Reduction Tree

Bickerstaff et al. in [13] introduced a refinement of Wallace’s and Dadda’s meth-
ods referred to as reduced area multiplier. The modified Dadda-Wallace reduction
scheme differs from Wallace’s and Dadda’s methods in that the maximum num-
ber of full-adders is used in the PPRT as soon as possible, while a number of
half-adders are carefully placed to reduce the word size of the CPA. Doing so, the
number of half-adders will be kept small (inheriting this property from Dadda’s
scheme). On the other hand, the word-length of the final CPA will be kept small
similar to Wallace’s scheme. Additionally, the modified Dadda-Wallace reduction
scheme is also claimed to require minimum number of registers for a pipelined
multiplier [13]. This scheme constructs the PPRT as follows:

For each stage, the maximum number of full-adders are used, i.e.
 pj

3
�, where

pj is the number of bits in column j. Half-adders are used only (a) when required
to reduce the number of bits in a column to the number of bits specified by the
Dadda sequences (Table 2.5), or (b) to reduce the rightmost column containing
exactly two bits.

2.2. Parallel Multipliers 33

*	����

*	���"

*	���#

*	���-

*	���.

Figure 2.13: Using Dadda’s strategy for a 12 × 12-bit multiplier

34 Chapter 2. Multiplication Schemes

Using this scheme, the number of required full-adders for an N ×M-bit mul-
tiplier is equal to:

nFA = N · M − 2(N + M) + 3 + l (2.14)

The total number of half-adders is min(N, M) and the word-length of the final
CPA is

wCPA = N + M − 2 − l (2.15)

Figure 2.14 illustrates the dot diagram of the reduction steps for a 12 × 12-bit
multiplier using modified Dadda-Wallace scheme. For the 12×12-bit multiplier in
Figure 2.14, similar to Dadda and Wallace trees, 5 stages of reduction are required.
The number of full-adders and half-adders is equal to 104 and 11 respectively. The
CPA length is 17 bits in this case.

2.2.2.5 Generalized Parallel Counters

The reduction by columns can be done using parallel counters that add several
equal-weight bits in one column and produce a binary output representing the
number of ones among these bits. Full-adders and half-adders in Dadda’s reduc-
tion scheme are the simplest forms of the parallel counters. A full-adder, rep-
resented as a (3; 2) counter, counts the number of ones among its three inputs
and represents the result as a 2-bit number. The counter modules can be gen-
eralized to a (p; �log2(p + 1)�) counter that has p equal-weight input bits and
produces a �log2(p + 1)�-bit number at the output [173]. The (p; q) counters can
be implemented using full-adders and half-adders [56]. Figure 2.15 illustrates a
(10; 4) counter and a possible implementation of this counter. A parallel counter
can be generalized further by allowing multi-column compression. A generalized
parallel counter receives a number of PPs (not necessarily in a single column)
and converts the PPs to another pattern (not necessarily one in each column).
For example, a (4, 6; 4) illustrated in Figure 2.16(a) receives 6 bits of weight 1
and 4 bits of weight 2 and outputs their sum in the form of a 4-bit binary num-
ber. The generalized parallel counters and their implementations are discussed
in [47, 48, 91, 119, 140].

2.2.2.6 Parallel Multipliers with Redundant Full-Adders

The concept of carry-free reduction of partial products using redundant repre-
sentation is useful in eliminating the intermediate carry propagation from Least

2.2. Parallel Multipliers 35

*	����

*	���"

*	���#

*	���-

*	���.

Figure 2.14: A reduced-area 12 × 12-bit unsigned multiplier [13]

36 Chapter 2. Multiplication Schemes

,� ,� ,�

,�,�

)�

,�

)�

� � � � � � � � � �

� � �
� ��

"
�

� �

�

��"#

"
#���	
'+�

#���	
'+�

Figure 2.15: A (10; 4) counter and its possible implementation

��� ���

Figure 2.16: Examples of generalized parallel counters
(a) The dot-diagram representation for a (4, 6; 4) counter

(b) A (1, 2, 3; 4) counter.

2.2. Parallel Multipliers 37

Significant Bit (LSB) to Most Significant Bit (MSB). The CSA-based PPRTs
were discussed earlier in this chapter. In addition to CSA-based PPRTs, a num-
ber of PPRTs are introduced in the past which utilize redundant full-adders [111,
183]. The parallel multipliers based on redundant full-adders are originally worse
than CSA-based multipliers both in terms of delay and power consumption [43].
Huang et al. in [74] introduced a new encoding method for converting two’s
complement representation to signed digit representation, a development that has
enhanced the performance of multipliers using redundant binary adders.

2.2.3 The Final Carry Propagate Adder

Accumulating the PPs in redundant form is fast and can result in the logarithmic
delay growth for the reduction step, as discussed earlier in this chapter. Algo-
rithms for multiplication with redundant form at inputs and outputs have been
proposed [54, 55]. However, the majority of applications require inputs and out-
puts in conventional representation. Therefore after computation of the product
in redundant form, it has to be converted into conventional form. For CSA-based
PPRT, the conversion is performed using a carry propagate adder also referred
as a vector merge adder (VMA). This step is also called assimilation of the car-
ries. A number of alternatives exists for the final CPA, varying in the speed, area
and complexity. Similar to PP generation algorithm and PP reduction scheme,
the priorities like speed, area and power consumption must be considered simul-
taneously in selection of the CPA to achieve an optimal solution. An RCA or a
Manchester adder [84] for example have the area and worst-case delay propor-
tional to the adder’s length. On the other hand, carry-lookahead adders [103,198]
offer logarithmic delay growth if they are constructed of constant-fan-in logic
gates. Alternative solutions are parallel prefix adders, such as Kogge-Stone [92]
and Brent-Kung [17], which offer close to logarithmic delay.

Most adders are built assuming that all inputs will arrive at the same time;
i.e., all the input signals are stable at the beginning of the computation. However,
the arrival times of the PPRT outputs are not uniform. The arrival time profile
for a 100 × 100-bit multiplier with Dadda reduction scheme under the fanout
delay model assumption is depicted in Figure 2.17. The automated multiplier
design program, used to design this 100 × 100-bit multiplier, will be presented in
Section 4.1. Figure 2.17 is the result of timing analysis for the generated 100 ×
100-bit multiplier. Under the fanout delay model assumption, the delay of each
logic gate is set equal to the number of its fanouts. The vertical axis is the arrival

38 Chapter 2. Multiplication Schemes

�"�-�/�0�����"��-��/��0�"��
�

��

"�

#�

-�

.�

/�

����	���

�
��
��
��
�1
�2

3�	��	�4�	����
3�	��	�4�	���"

5* �*

'�����"

'������

'�����#

Figure 2.17: The arrival time profile for output bit-vectors of the dadda PPRT

time and the horizontal axis is the position of the output bits. A similar arrival
time pattern is reported in [171].

Based on the timing characteristics of the output bit-vectors from the reduc-
tion step, the final adder structure can be optimized [32, 102, 170–172, 205]. The
addition in region 1 (shown in Figure 2.17) can be done using a slow adder, such
as an RCA. In region 2, a fast adder is required because the bits of this region
arrive late. A logarithmic time adder is often used in this region. The RCA’s
length should be such that the carry-out is ready when the LSB of the adder in the
second region arrives. Finally, the addition in region 3 can be done using a simple
carry select adder. The carry select adder computes two outputs, assuming zero
and one carry-in values. Depending on the carry-out value from the adder in the
second region one of these values will be selected. The length of the carry select
adder should be such that the outputs are ready when the carry-out from region 2
is ready.

The optimization of the final adder in a high-speed multiplier reduces the
power consumption and area. High speed adders require large area, and then
by using slower and smaller adders for region 1 and 3, the area of the whole mul-
tiplier is improved. Meanwhile, the use of a structure that computes as late as
possible avoids some spurious transitions.

2.3. Flexibility in the Reduction Tree 39

As mentioned earlier in Section 2.2.2.4, the modified Dadda-Wallace reduc-
tion scheme produces smaller output bit-vectors. Therefore the adder in region 1
(Figure 2.17) is absorbed in the PPRT.

2.3 Flexibility in the Reduction Tree

Multipliers and multi-operand adders can be subject to any standard combina-
tional logic optimization. Such circuits are inherently more difficult to optimize
because they are normally large and have a prevalence of exclusive-OR opera-
tions in their logic relations. Therefore, considering the arithmetic relations in the
structure of multipliers and multi-operand adders can be extremely useful and can
result in larger savings.

Arithmetic properties such as commutativity, associativity and retiming entail
a large freedom in the structure of multi-operand adders. This freedom can be
exploited to optimize area, delay, dynamic power and static power. The bases
of the flexibilities that are used throughout this thesis are the commutativity and
associativity of addition. The arithmetic equivalency inferred from this property
is discussed in Chapter 4. In this section related works are reviewed.

2.3.1 Optimizing for Area, Delay and Hardware Resources

The word-level area and delay optimization of multi-operand adders using CSAs
is explored in [87]. Various forms of arithmetic optimizations in word-level have
been proposed in [146, 157] using arithmetic properties such as commutativity,
associativity and retiming.

The timing and area trade off for CSA implementations has been studied ex-
tensively [83, 88, 89, 189, 202]. The bit-level optimization proposed by Khoo et
al. in [83] introduces the concept of a relaxed carry-save adder and the flexibil-
ity of choosing among a number of arithmetically equivalent implementations of
a multi-operand adder where the input operands have unequal word-length. The
target architecture in [83] is CSA adders and the optimization target is a weighted
cost function which is affected by the overall number of FAs, HAs and registers.
In [83] authors conclude that the order of inputs to the CSA has a slight impact on
the optimization as their cost function does not include power consumption and
delay. In this thesis, it will be shown that the order of inputs to the FAs and HAs
has a large impact on dynamic and static power consumption.

40 Chapter 2. Multiplication Schemes

Oklobdzija et al. in [139] developed a three-dimensional minimization (TDM)
algorithm to reduce the delay in the reduction tree. [139] benefits from unequal
delays in a FA.

An essential difference between the optimizations in [83,88,89,189,202] and
the method in this thesis is that, these optimizations are performed on the PPRT
building blocks. However, in this thesis, a reduction scheme that is claimed to
have small area [12] is chosen and the optimization is performed without alter-
ing the building blocks and only by reorganization of the interconnects. In fact,
the proposed optimization in this thesis can be applied as a postprocess on the
optimization results from majority of these works.

2.3.2 Optimizing for Power

In order to optimize the power dissipation of digital systems, and specifically
multipliers, low-power strategies should be applied throughout the design pro-
cess from system-level to process-level, while realizing that the performance is
still essential. The different levels that can be considered for a design, from high-
est to lowest level of abstraction, are: system and algorithm level, architecture
level, logic/circuit level and device/process level. Basically the majority of low-
level power optimization methods for universal circuits can be applied for mul-
tipliers in particular. Examples of such low-level power optimizations are volt-
age scaling, layout optimization, transistor reordering and sizing [40, 42], using
pass-transistor logic [2, 101], timing balancing [118, 128, 160] and node polarity
optimization [118].

There has been substantial work on power optimization of multipliers in al-
gorithm/architecture level. As discussed briefly in this chapter, a large variety of
multiplication algorithms, partial product generation techniques and partial prod-
uct reduction techniques have been proposed in the past. In addition to different
multiplication algorithms, high-level power reduction strategies have been applied
to multipliers. Among them are signal gating techniques and dynamic strategies
for improving power [11, 19, 20], caching higher part of the operands to avoid
redundant recomputations [68], bypassing parts of circuit based on the input val-
ues [41].

Optimization of power using the flexibilities induced from arithmetic proper-
ties are proposed among others in [100,201]. Larsson and Nicol in [100] exploited
redundancies in the structure of [4 : 2] compressors and optimized the power con-
sumption by selecting a proper boolean function for the compressors. Yu et al.
in [201] proposed a reorganization method on Booth-encoded multipliers. Es-

2.4. Choice of the Multiplier Structure 41

timates of switching probabilities based on the static probabilities of the nodes
are used for reorganization. [201] introduces a number of guidelines for reducing
the power consumption; For example, to assign those PPs having high switching
probabilities a short signal path. This leads to a CSA array structure that adds the
partial-products sequentially in the order of non-decreasing switching probabili-
ties. Based on the experiments that will be discussed in Chapter 4, sorting the PPs
based on their transition probabilities can lower the power consumption but the
improvements are not significant because the spurious transitions are completely
ignored in the transition probability quantifier.

A number of high-level optimization techniques are proposed in [75] using
input data characteristics.

2.4 Choice of the Multiplier Structure

High-speed is essential in many real-time applications, and multipliers are typi-
cally in the critical path of such systems. Hence, strict requirements on speed are
present for the multipliers. Among the large number of the existing implemen-
tation methods for multiplication, the parallel multipliers are proven to outper-
form others in speed. Tree multipliers such as Wallace and Dadda are shown to
have substantially better performance compared to array multipliers [25, 66, 118,
185, 186]. A comparison between the power consumption of a CSA array multi-
plier, Wallace-tree multiplier and Booth multiplier is presented in [71]. Accord-
ing to [71], the average power consumption in Wallace-tree multiplier is lowest
among these three structures. In this thesis the proposed optimization methods
are applied to modified Wallace/Dadda PPRT [12]. However, with minor changes
in the reduction tree generation algorithm, the proposed optimization methods
are directly applicable on Wallace and Dadda PPRT. The optimization algorithm
can be generalized to include redundant full-adder based PPRT and generalized
counter based PPRT. As the optimizations are performed on the PPRT, the partial
product generation method is chosen to be simple and general. Throughout the ex-
periments in this thesis, the PP generation step for signed multipliers is modified
Baugh-Wooley’s scheme [6, 70]. For unsigned multipliers simple 2-input AND
gates between the operand bits are used. The optimization method is directly
applicable in presence of other partial product generation methods.

Chapter 3

Power Estimation in Combinational
Circuits

Power estimation is an important step in the power-aware design. In order to opti-
mize the PPRT, estimates of different solutions are needed. This chapter presents
the power estimation techniques that will be used within the PPRT optimization
algorithms in subsequent chapters. The techniques used for power estimation, es-
pecially the method introduced in Section 3.1.1, are among the contributions of
this thesis. Some of the materials in Section 3.1.1 are published in [179].

3.1 Dynamic Power Estimation

Several power estimation techniques have been proposed in the past. These are
surveyed in [133, 136, 144, 152]. Gate-level power estimation techniques can be
divided into two main categories: Statistical sampling and probabilistic estima-
tions. Statistical sampling approaches explicitly simulate the circuit with typi-
cal input streams [76, 81, 188]. To generate the input streams efficiently, Monte
Carlo simulation techniques have been exploited [23]. Probabilistic approaches
on the other hand, rely on the signal probabilities and spatiotemporal correlations
between signals to estimate the power [10, 46, 59, 72, 73, 131]. The concept of
probability waveforms, introduced in [132], is a compact representation of logic
waveforms and consists of the signal probability and a sequence of events happen-
ing at different time instances. Tagged probabilistic simulation (TPS) [46, 187] is
also an estimation technique based on the notion of tagged waveforms which mod-
els the set of all possible events at the output of each circuit node. The origin of

43

44 Chapter 3. Power Estimation in Combinational Circuits

the estimation errors in the probabilistic power estimation methods is the glitch
filtering and interdependency issues. In the original TPS a simple glitch filter-
ing approach is followed. That is, if a rising transition appears close enough to
a falling transition in a tagged waveform, they will both be removed from com-
putations. The glitch filtering of TPS has been improved in [72] by introducing
a dual-transition method to consider different combinations of tagged waveforms
at a certain node, and filter out extra transitions if necessary. The dual transition
method is improved further in [73] by reusing supergate notion from [167] (en-
closing reconvergent fanouts) and improving interdependency issues in a circuit.
Simple Waveform Set (SWS) is a novel power estimation method which will be
presented in Section 3.1.1. It improves glitch filtering by taking into account the
successor nodes when a glitch is generated, as a glitch might be filtered out in
some of the successor nodes. Unlike the previous methods, which consider the
glitch filtering locally, SWS considers the glitch filtering globally. This results in
accurate estimations for tree-structured circuits and relatively smaller errors for
general circuits with reconvergent fanouts.

3.1.1 Power Estimation using Simple Waveform Set

As discussed in Section 1.1.2.2, the average dynamic power consumed in a com-
binational circuit is given by:

Pav =
1

2
V 2

DD

N∑
i=1

CiDi

where VDD is the supply voltage, N is the total number of nodes, Ci is the total
load capacitance at node i and Di is the transition density at node i defined in
Eq. 1.6. Blocks of combinational logic within a synchronous system are very
common in digital circuits (Figure 3.1). In the context of parallel multipliers, it
is assumed that the primary input operands arrive simultaneously at a clock edge
and that the circuit under test (CUT) is built of pure combinational logic. The
transitions on the primary combinational inputs then appear on the clock edge and
the total delay of the combinational circuit is required to be less than the clock
period. With these assumptions the transition density Di in a pure combinatorial
circuit can be rewritten as:

Di = fclkni (3.1)

where ni is the average number of transitions at node i in one clock cycle and fclk

is the clock frequency.

3.1. Dynamic Power Estimation 45

+�2����	�����
�����6�

��
	

'
�
��
	
��

+57

3
�	
��
	

'
�
��
	
��

Figure 3.1: The target circuit architecture for power estimator

Deterministic delay assignments for the gates lead to a finite set of transition
times for each node. The power estimator is restricted to deterministic delay as-
sumptions. In addition, a node can only assume binary values ({0, 1}). As can
be seen from Eq. 3.1, the computations are limited to one clock cycle. The clock
period is assumed larger than the maximum delay of the combinational logic. The
clock’s active edge is assumed to appear at time 0. This infers that all nodes have
settled to their final values after the previous clock edge at time 0.

Let us assume that primary inputs of the CUT change from Xu to Xv at time
t = 0; where Xu and Xv are bit-vectors of Nb bits (Nb is the number of primary
input bits). Therefore, Xu, Xv ∈ X, where X the set of all possible primary input
values; i.e., X = {0, 1}Nb. This transition at primary inputs will create a waveform
at node i, denoted by W Xu→Xv

i (t). The transition times set of W Xu→Xv
i (t) is

defined as:

T Xu→Xv
i =

{
τ ∈ [0, Tclk)

∣∣∣∣W Xu→Xv
i (τ+) = ¬W Xu→Xv

i (τ−)

}
(3.2)

That is, the time instances that W Xu→Xv
i (t) has changed its values from 0 to 1, or

vice versa. The occurrence probability of a transition time, t, at node i is equal to:

pi(t) =

⎧⎨⎩
∑

(Xu,Xv)∈Ci(t)

p(Xu → Xv) Ci(t) = ∅

0 Ci(t) = ∅
(3.3)

where p(Xu → Xv) is the probability of the transition Xu to Xv at the primary
inputs and Ci(t) is the subset of all input transitions that will cause a transition at
time t; i.e.:

Ci(t) =

{
(Xu, Xv) ∈ X2

∣∣∣∣ t ∈ T Xu→Xv
i

}
(3.4)

Under temporal independence assumption, p(Xu → Xv) = p(Xu)p(Xv)
where p(Xu) and p(Xv) are the occurrence probabilities of inputs Xu and Xv,

46 Chapter 3. Power Estimation in Combinational Circuits

respectively. Thus, the average number of transitions at node i in one clock cycle,
ni, can be expressed in terms of pi(t)s.

ni =
∑
τ∈T̆i

pi(τ) (3.5)

where

T̆i =

{
τ ∈ [0, Tclk)

∣∣∣∣ pi(τ) > 0

}
(3.6)

The objective is to approximate the set of all possible transition times (T̆i)
and their corresponding probabilities. Once this is computed for all nodes, the
dynamic power consumption can easily be calculated using Eq. 3.5 and Eq. 1.8.
The Simple Waveform Set (SWS) is a method for representing and approximating
the set of all possible transition times and their occurrence probabilities.

3.1.1.1 Simple Waveform Set

The SWS is build on waveforms with a special meaning. A waveform W is as-
sumed to have exactly one rising edge and one falling edge. Thus, a waveform
is denoted as a pair of time stamps Ψ(tr, tf), where tr and tf are the times of
the rising edge and falling edge respectively. An occurrence probability is also
associated with each waveform denoted as p(W) for waveform W . Figure 3.2
shows some example waveforms. The zero-holding and one-holding are in SWS
method represented as Ψ(+∞,−∞) and Ψ(−∞, +∞), respectively. +∞ shows
that the transition appears after any imaginable time and will not be considered in
power computations. Similarly −∞ shows that the transition appears before any
imaginable time and will not be considered in power computations. A waveform
W is simple if either tr or tf is +∞. A waveform is non-simple if both tr and tf
are non-infinite times. A non-simple waveform is originally a glitch. A Simple
Waveform Set S is a set of simple waveforms and is complete if the sum of the
waveform occurrence probabilities is equal to 1, i.e:∑

W∈S
p(W) = 1 (3.7)

In order to keep SWS small, waveforms with equal rise and fall times are com-
bined, i.e., the occurrence probabilities are summed.

3.1. Dynamic Power Estimation 47

� "

� #

���8�"�

"

�

���

���

��#8���

��(�89��

��9�8(��

���8(��

��(�8"�

Figure 3.2: Examples of simple and non-simple waveforms
(a) Examples of simple transitions (b) Examples of non-simple transitions

The probabilistic power estimation commences by assigning SWSs to input
nodes. The SWSs at primary inputs consist of four waveforms holding one, hold-
ing zero, zero-one transition and one-zero transition:⎧⎪⎪⎨⎪⎪⎩

W11 = Ψ(−∞, +∞)
W00 = Ψ(+∞,−∞)
W01 = Ψ(0, +∞)
W10 = Ψ(+∞, 0)

⎫⎪⎪⎬⎪⎪⎭ (3.8)

Under the temporal independence assumption for input values before and after
time 0, occurrence probabilities can be assigned to each waveform based on their
static probabilities. Let p be the one-probability at the corresponding input node.
Then 1 − p will be zero-probability at this node. Hence,⎧⎪⎪⎨⎪⎪⎩

p(W11) = p × p = p2

p(W00) = (1 − p) × (1 − p) = 1 − 2p + p2

p(W01) = (1 − p) × p = p − p2

p(W10) = p × (1 − p) = p − p2

⎫⎪⎪⎬⎪⎪⎭ (3.9)

Once the SWSs are assigned to the inputs of a certain logic gate, the SWS at the
output of that gate can be computed by computing the output waveform for each
combination of the input waveforms. In some cases the output waveform may
contain two non-infinite transition edges which cannot be considered as simple
waveforms. In such cases the waveform will be decomposed into simple wave-
forms.

48 Chapter 3. Power Estimation in Combinational Circuits

�

�

�
�

�

�

�

�

��
���

Figure 3.3: A 2-to-1 MUX example

Definition - Assume that W = Ψ(tr, tf) is a non-simple waveform (tr = tf).
decomp(W) decomposes W into three simple waveforms:

If tr < tf , these simple waveforms are W ∗
1 = Ψ(tr, +∞), W ∗

2 = Ψ(+∞, tf)
and W ∗

3 = �Ψ(−∞, +∞). If tr > tf , they are W ∗
1 = Ψ(tr, +∞), W ∗

2 =
Ψ(+∞, tf) and W ∗

3 = �Ψ(+∞,−∞).
Occurrence probabilities for all decomposed simple waveforms are equal to the
occurrence probability p(W) of the original non-simple waveform. Waveforms
marked by � will be considered with negated occurrence probabilities and they
are used to remove the extra transitions generated by the other two waveforms.
The negative sign for the occurrence probability nullifies the extra waveforms, as
two waveforms with equal rise edge and fall edge can be combined by adding the
occurrence probabilities.

An example of decomposition is illustrated in Figure 3.4. The numbers inside
each gate in Figure 3.3 represent the inertial delay of that gate. When Ψ(+∞, 2)
and Ψ(1, +∞) are applied to inputs f and e, respectively, the output at node g will
be Ψ(3, 2). This waveform is non-simple and should be decomposed to simple
waveforms Ψ(3, +∞), Ψ(+∞, 2), and �Ψ(−∞, +∞).

3.1.1.2 Computation of Simple Waveform Sets

For a given node in a combinational circuit, the output SWS is computed using
its input SWSs as shown in Algorithm I in Figure 3.5. The computation for a
node can commence if all input SWSs are computed earlier. The list of available
nodes is initialized to the primary inputs in the beginning. After completion of
the computations for each node, the list of available nodes should be updated by
adding the new nodes that can be computed and removing the computed node.
After computation of the SWS of a given node i, its transition density can be

3.1. Dynamic Power Estimation 49

���(�89��

#

��#8(��

��(�8"�
"

���2��� :�����2��	��

:�����2��	��

:�����2��	��

"

�

���8(��

��(�8"�

#

��#8"�
":�����2��	��

:�����2��	��

:�����2��	��

Figure 3.4: Generation and decomposition of non-simple waveforms

calculated. When SWSs are computed for all nodes having node i as input, the
SWS for node i can be removed from memory to reduce the estimator’s run-time
memory requirement.

The waveform W = Ψ(tr, tf) resulting from applying W1 and W2 to a logic
gate f , has the occurrence probability of p(W1 ∧ W2); i.e. the joint probability of
two waveforms. If two waveforms are independent, the joint probability is equal
to p(W1)p(W2); where p(W1) and p(W2) are the occurrence probabilities of W1

and W2, respectively.

The inertial and transport delay of the logic gate f , denoted as df
i and df

t

respectively, are taken into account by adding the delay values df
i and df

t to the
time stamps of the resulted waveform’s rise and fall edges, i.e. tr and tf . For non-
simple output waveform, if the glitch length |tr − tf | is smaller than the inertial
delay df

i , it will be replaced by constant zero or one depending on the waveform
value at +∞. This is because such a non-simple waveform (or glitch) cannot pass
through a gate with the inertial delay df

i . Although the proposed technique is not
limited to a particular delay model, a fanout delay model is utilized. The delays
of the gates are assumed to be proportional to their fanout number. The simplify()

procedure in Algorithm I locates waveforms with equal rise and fall times and
equal values at t = −∞ and t = +∞ within the given SWS and replaces them
with a waveform with the same rise and fall times and an occurrence probability
equal to the sum of their occurrence probabilities.

50 Chapter 3. Power Estimation in Combinational Circuits

function ComputeSWS (S1,S2)
{

O=∅;
for all W1 ∈ S1

{
for all W2 ∈ S2

{
compute W = f(W1, W2);
if W is simple then

add W to O;
else
{

[W ∗
1 , W ∗

2 , W ∗
3]=decomp(W);

add W ∗
1 , W ∗

2 and W ∗
3 to O;

}
}

}
simplify(O);
return O;

}

Figure 3.5: Algorithm I for computing SWSs

3.1.1.3 Dealing with interdependencies

The problem of interdependencies between different nodes arises in the presence
of reconvergent fanouts (RFOs) in a combinational logic circuit. Indeed these
interdependencies are time-variant under real delay models. For circuits with
RFO paths, the exact computation of transition probabilities is a problem of NP-
complexity. Several methods try to overcome this problem. [132] uses the super-
gate concept introduced in [167] and tries to estimate spatial dependencies, while
[46] uses macroscopic correlations. Correlation coefficients can also be approxi-
mated using local ordered binary decision diagrams (LOBDDs) [82,174]. Markov
Chain models are utilized in [113,164,184] to capture correlations. In [113], Mar-
culescu et al. describe a mechanism for computation of temporal and spatial corre-
lations. The exact computation of spatiotemporal correlations is computationally
heavy. In the SWS power estimator, similar to [46], macroscopic correlations are
employed. Macroscopic correlations are time-independent correlations between
the different nodes for fixed input values and zero-delay model. Since the values
of nodes are assumed to be settled and delay independent at times +∞ and −∞,
these values are used for capturing macroscopic correlations. These macroscopic
correlations are encapsulated by correlation coefficients, which are defined as:

κa,b
A,B =

p(A = a ∧ B = b)

p(A = a)p(B = b)
(3.10)

3.1. Dynamic Power Estimation 51

where A and B are two logic nodes in the circuit and a and b are two logic values
(a, b ∈ {0, 1}). These correlation coefficients can be computed under the zero-
delay model. In [52], a procedure for propagating signal probabilities from the
circuit inputs toward the circuit outputs using only pairwise correlations between
circuit lines and ignoring higher order correlation terms is described. The com-
putation method is described in Appendix A. This method approximates joint
probabilities using only pairwise correlation coefficients of all involved signals
and ignores higher orders of correlations. This approximation, however, intro-
duces small errors to the estimations [52].

In the SWS power estimation method, the joint probabilities of the waveforms
are approximated using the correlation coefficients. Assume that WA and WB are
two waveforms at inputs A and B of gate f . The occurrence probability for the
waveform W at the output of f is p(W) = p(WA ∧ WB) which is approximated
by κp(WA)p(WB) where

κ = κ
WA|+∞,WB|+∞
A,B · κWA|−∞,WB|−∞

A,B (3.11)

Ercolani’s method is utilized for computation of correlation coefficients (see Ap-
pendix A).

As an example let us consider the multiplexer circuit in Figure 3.3 again.
Waveforms W1 = Ψ(1, +∞) and W2 = Ψ(+∞, 2) are applied to inputs e and
f , respectively. A one-probability assignment of 0.5 at the primary inputs gives
occurrence probabilities of each of these waveform of 3

16
. The RFO from node

b to node g means that the waveforms at the inputs of node g are not indepen-
dent. Using Ercolani’s method gives the following correlation coefficients (more
detailed computations in Appendix A):

κ1,1
e,f =

8

9
, κ1,0

e,f = κ0,1
e,f =

4

3
and κ0,0

e,f = 0 (3.12)

The waveform W1 at node e is equal to 0 at t = −∞ and is 1 at t = +∞ since
it rises at time 1. Similarly, the waveform W2 at node f is equal to 1 and 0 at
t = −∞ and t = +∞ respectively. This gives the following coefficient κ:

κ = κ1,0
e,fκ

0,1
e,f =

16

9
(3.13)

The occurrence probability of the resulting waveform W = Ψ(3, 2) will therefore
be

p(W) = κp(W1)p(W2) =
1

16
(3.14)

As discussed earlier, the waveform W is non-simple and should be decomposed
to simple waveforms.

52 Chapter 3. Power Estimation in Combinational Circuits

3.1.1.4 Glitch filtering

A logic gate will remove short glitches due to its inertial delay. Overestimation
of power is resulted if glitch filtering is ignored or is imperfect. A glitch will be
removed at a certain gate if the glitch length is shorter than the inertial delay of
that gate. Glitches generated in a certain node of the circuit might be filtered out
in some of the successor nodes. Due to differences in the inertial delays of the
successor nodes, a situation can occur where the glitch is filtered out in some, but
not all, of the successor nodes. In order to include glitch filtering in the SWS
power estimator, a mask tag is assigned to each one of the waveforms in the SWS.
Let MW be the mask tag for waveform W . This tag is an array of boolean with
the size of the total number of nodes in the system. M W

i , the i:th element in array
MW , is FALSE if the waveform W will reach node i in the future and will be filtered
out at node i; otherwise it is TRUE. Several changes in Algorithm I are needed in
order to include glitch filtering. Algorithm II in Figure 3.6 takes into account the
glitch filtering. The & operators used for mask computations in Algorithm II are
bitwise AND operations on two vectors.

If W = Ψ(tr, tf) is a non-simple waveform, decomp2(W) decomposes the
non-simple waveform, W , into simple waveforms similar to decomp(W). How-
ever decomp2(W) generates five waveforms W ∗

1..5. If tr < tf , they are W ∗
1 =

Ψ(tr, +∞), W ∗
2 = Ψ(+∞, tf), W ∗

3 = �Ψ(−∞, +∞), W ∗
4 = �Ψ(+∞,−∞)

and W ∗
5 = Ψ(+∞,−∞). And if tr > tf , the decomposed waveforms are W ∗

1 =
Ψ(tr, +∞), W ∗

2 = Ψ(+∞, tf), W ∗
3 = �Ψ(+∞,−∞), W ∗

4 = �Ψ(−∞, +∞)
and W ∗

5 = Ψ(−∞, +∞).
The simplify() procedure is altered to take into account the mask tags as well.

Two waveforms with equal rise and fall times and equal values at t = −∞ and
t = +∞ can be combined only if they have equal mask tags for the successor
nodes of the current node.

The call computemask(W) computes a new mask, MW , for the non-simple
waveform W . MW

i is FALSE if W can reach node i but cannot pass this node;
otherwise MW

i will be TRUE. Basically, computemask(W) has to traverse all suc-
cessor nodes where the non-simple waveform W can reach; if the inertial delay
of the node is larger than the glitch size of W , the corresponding node will block
W . The new computed mask affects waveform W ∗

1..4 from the decomposed wave-
forms, but not waveform W ∗

5 . Assume that node j and node k are successors of
node i and that node j will pass the non-simple wave W , while node k will filter
it out. As a result of Algorithm II, the j node mask tags of the decomposed wave-
forms W ∗

1..5 will all be TRUE. Therefore, at node j, waveform W ∗
4 and W ∗

5 will be

3.1. Dynamic Power Estimation 53

function ComputeSWS (S1,S2)
{

O=∅;
i=current node ID;
for all W1 ∈ S1

{
for all W2 ∈ S2

{
if (MW1

i &MW2
i)

{
compute W = f(W1, W2);
if W is simple then
{

MW = MW1&MW2 ;
add W to O;

}
else
{

MW =computemask(W);
[W ∗

1 , W ∗
2 , W ∗

3 , W ∗
4 , W ∗

5]=decomp2(W);
MW∗

1..4 = MW1&MW2&MW ;
MW∗

5 = MW1&MW2 ;
add W ∗

1..5 to O;
}

}
}

}
simplify(O);
return O;

}

Figure 3.6: Algorithm II for computing SWSs with glitch filtering

54 Chapter 3. Power Estimation in Combinational Circuits

�

;
.

��
� "���

��
�

� �

���(�89��

-

��-8(��

��(�8��
�

���2���

#

�

���8(��

��(�8#�

-

��-8��
�:�����2��	��

:�����2��	��

:�����2��	��

���9�8(��

��9�8(��

Figure 3.7: An example of glitch filtering

removed because of the negative sign in the occurrence probability of W ∗
4 . Only

W ∗
1 , W ∗

2 and W ∗
3 will be left which is exactly as algorithm I. However, the node

k mask tags are FALSE for waveforms W ∗
1..4 so that they will be removed, leaving

only waveform W ∗
5 . The glitch is consequently filtered out. Let us consider the

example shown in Figure 3.7. A glitch with length 3 will be created at node f due
to unequal delays of input paths of node f . The successor nodes i and h have dif-
ferent inertial delays. The glitch with length 3 created in node f will pass through
node g and i, while it will be filtered out in node h. Therefore the node h mask
tag of waveform W ∗

1..4 generated at node f will be FALSE while all other mask tags
will be FALSE. During the SWS computation for node h, all waveforms with FALSE

mask tag value for node h will be removed.

The complete waveform sets, resulted from the SWS power estimator, for two
example circuits are listed in Appendix B. The SWS power estimator described
in this section will be applied to parallel multiplier PPRT with FAs and HAs as
basic building blocks. The full-adder based PPRT exhibits special properties with
respect to generated glitches and their filtering. Therefore it can be optimized for
such structure to enhance the speed of estimations. Each PP (if not connected to
the final CPA) is connected to exactly one FA or HA. Thus each PP is connected
to exactly one NAND/AND gate and one XOR gate. An AND gate in the HA
can be considered as a NAND gate followed by a NOT gate; hence, they have

3.1. Dynamic Power Estimation 55

�

+��

+��	

*
�

+��	

*

����)�������� ����,��������

"

"

" "

"�
�

Figure 3.8: Propagation delays in Full-adders and Half-adders

similar input capacitance. The structure of the PPRT hence does not accommodate
high-fanout nodes, and the maximum fanout is two. Figure 3.8 illustrates the gate
propagation delays of a FA and a HA with the fanout delay model. With the fanout
delay model assumption, the only gates that can generate a glitch that might be
filtered are two NAND gates in the FA with unit delay. With this observation
the glitch filtering in the PPRT can be simplifies. The estimator will therefore be
faster if it is not required to track the successor nodes for glitch filtering analysis.

3.1.1.5 Experiments

The proposed technique for power estimation is implemented as stand-alone soft-
ware in C++. The power estimation tool includes the procedure for signal proba-
bility and correlation coefficient estimation. The inputs to the tool are the netlist,
the delay model and one-probabilities of primary inputs. The delay model is cho-
sen to be the fanout delay model. It should be emphasized that any realistic delay
model can be used in the estimation system and it not restricted to the fanout
model. However, using realistic delay models may increase the number of wave-
forms in the SWS because the delays are not integer numbers anymore. For the
experiments in this section, the one-probabilities for primary inputs are in the
experiments set to 0.5, but can be any arbitrary value between 0 and 1. In addi-
tion, the primary inputs are assumed to be temporally and spatially uncorrelated.
Therefore, as discussed in Section 3.1.1.3, the pairwise correlation coefficients
between primary inputs are initialized to one. In Chapter 5, a modification to this
power estimator will be presented that enables the power estimation when primary
inputs have spatiotemporal correlations. These modifications involve the initial-
ization of the correlation coefficients and the waveform occurrence probabilities
for primary input nodes. The reference transition densities for the experiments

56 Chapter 3. Power Estimation in Combinational Circuits

�

#

�

-

�

#

�

-

�

#

�

#

�

#

#

�

#

Figure 3.9: An example tree-structured circuit

in this section are acquired from a circuit logic simulation with 100000 random
input vectors that satisfy the one-probabilities of the primary inputs (i.e, 0.5).

A sample tree structured circuit, illustrated in Figure 3.9, is analyzed in [72]
and computation errors are reported. Node errors are up to 42% for the proba-
bilistic simulation method [132] and up to 23% for the TPS method [46]. Dual-
transition glitch filtering [72] reduces the computation error to maximum 3%. As
opposed to these methods, the computation error for tree structured circuits (with
no reconvergent fanouts) using SWS estimation technique is zero. This is because
of the complete glitch filtering consideration for tree-structured circuits.

In the presence of RFOs errors are introduced in the estimations due to imper-
fect consideration of interdependencies between signals. More experiments are
carried out using ISCAS’85 benchmark circuits. In order to be able to compare
the results with those previously published, the fanout delay model is utilized;
i.e., the delay of each gate is assumed proportional to its number of fanouts. For
each circuit average node error (Eav), standard deviation (σ) and total power error

3.1. Dynamic Power Estimation 57

Table 3.1: Power estimation error for ISCAS’85 benchmark circuits with fanout

delay assignment. All errors are in percentage.
TPS TPS-DT TPS-EDT SWS

Circuit Eav σ Etot Eav σ Etot Eav σ Etot Eav σ Etot

C17 2.3 2.6 0.1 2.3 2.6 0.1 2.3 2.6 0.1 0.7 1.1 0.7

C432 29.9 38.8 35.8 9.5 11.8 6.5 11.5 16.6 11.5 5.2 9.6 2.8

C499 6.8 14.0 7.0 3.6 8.2 0.6 2.3 3.0 3.0 1.0 1.6 0.3

C880 8.3 15.3 1.6 8.0 15.7 5.2 4.8 9.0 0.0 4.4 7.9 2.7

C1355 24.2 31.6 32.9 5.8 11.2 5.4 5.0 9.5 0.5 6.3 9.5 0.2

C1908 15.0 23.1 4.1 17.7 27.9 11.2 7.0 16.3 2.0 7.8 11.1 2.3

C2670 16.6 29.8 7.2 16.7 28.3 9.9 13.2 23.6 6.2 9.7 16.7 2.9

C3540 13.8 26.3 9.8 10.3 25.6 2.4 10.5 26.4 3.7 7.3 17.9 1.5

C5315 11.8 24.4 2.3 13.4 31.5 10.1 11.3 27.0 3.4 7.1 11.5 2.1

C6288 27.4 27.5 32.1 15.7 18.8 4.1 12.7 15.4 0.2 15.7 20.1 4.9

C7552 14.5 27.5 3.2 14.8 31.4 7.8 14.1 27.6 1.3 11.5 27.7 0.9

AVE. 15.5 23.7 12.4 10.7 19.4 5.8 8.6 16.1 2.9 7.0 12.2 1.9

(Etot) are reported in Table 3.1. Eav is the average relative error in node transition
density estimation and Etot is relative error in total power. The errors are reported
in percentage. The error numbers for TPS, dual transition TPS (referred as TPS-
DT) and Enhanced dual transition TPS (referred as TPS-EDT) from [46], [72]
and [73] are reported for comparison. On average, and for most cases better results
are achieved using SWS technique. One measurement of quality of an estimate is
average error. Another important measure is standard deviation (σ), which mea-
sures the uncertainty of the estimate. The improvement over TPS-EDT, namely σ
equals 12.2% versus 16.1%, is significant, because large errors contribute more to
the sigma value. TPS-EDT provides better estimation results in some cases which
is mainly because of better dependency coverage in this method. From Table 3.1
and 3.2 it can be seen that SWS (as well as TPS, TPS-DT and TPS-EDT) in gen-
eral gives better estimates for circuits with small logic depth. The waveform set
at the output of a gate is computed based on its input waveform sets, therefore er-
rors might propagate and accumulate from earlier stages to later stages. However,
one should note that practical circuits are typically optimized to avoid excessively
large logic depths, so the circuits with large logic depths are mainly used to eval-
uate the performance of the estimators.

58 Chapter 3. Power Estimation in Combinational Circuits

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

0

20

40

60

80

100

120

140

p
th

Average number of waveforms per node
Runtime [sec]
Average node error (%)

p
th

=10−7

10−7

Figure 3.10: Average node error, average number of waveforms per node and
runtime versus pth for C1355

During the computation phase, waveforms with extremely small occurrence
probabilities can be ignored in order to achieve higher speed. All the generated
waveforms are compared to an experimentally determined threshold pth; if the
occurrence probability is smaller than pth this waveform will be ignored. The
value of pth affects the runtime and accuracy of computations. Figure 3.10 shows
the variation of the runtime, the average number of waveforms, and the average
error for the C1355 circuit. For the experiments in this section pth = 10−7 is
chosen since this value provides a very small degradation from the case with pth =
0 while still achieving a relatively short runtime.

Table 3.2 summarizes the estimation errors from computing correlation coef-
ficients as discussed in Sec. 3.1.1.3. Eav2 and Etot2 in Table 3.2 are average and
total relative estimation errors respectively where the correlation coefficients are
acquired from zero-delay logic simulations. In this case the correlation coeffi-
cients are error-free. However, errors still exist in the power estimations because
microcorrelations are approximated by macrocorrelations. Eav1 and Etot1 in Ta-

3.1. Dynamic Power Estimation 59

Table 3.2: Runtime and computation complexity for ISCAS’85 benchmark cir-

cuits with fanout delay assignment. All errors are in percentage.

R
un

tim
e

(s
ec

)

A
ve

.#
of

w
av

ef
or

m
s

A
ve

.l
og

ic
de

pt
h

M
ax

im
um

lo
gi

c
de

pt
h

N
um

be
r

of
no

de
s

Eav1 Etot1 Eav2 Etot2

C17 0.003 8.4 1.1 3 11 0.7 0.7 0.7 0.7

C432 7 130.6 11.2 29 252 5.2 2.8 5.1 1.0

C499 0.3 23.1 5.9 13 287 1.0 0.3 0.9 0.1

C880 7 110.7 8.7 30 495 4.4 2.7 4.5 2.0

C1355 8 110.4 12.7 26 631 6.3 0.2 6.3 0.4

C1908 77 168.6 16.1 44 1090 7.8 2.3 6.4 1.2

C2670 205 125.8 8.4 39 1633 9.7 2.9 9.3 2.5

C3540 881 275.2 13.4 56 2033 7.3 1.5 5.8 0.7

C5315 570 141.1 9.5 52 3151 7.1 2.1 6.8 2.0

C6288 3984 1268.3 42.1 124 2448 15.7 4.9 14.9 3.5

C7552 1201 154.4 11.1 45 4249 11.5 0.9 10.0 0.8

ble 3.2 are average and total relative estimation errors when correlation coeffi-
cients are computed using the method in [52]. The computation complexity of the
SWS method is highly dependent on the circuit structure. Table 3.2 summarizes
the runtime and average number of waveforms per node for the ISCAS’85 bench-
mark circuits. An Intel Xeon processor 3GHz is used for computations. These
experiments show that the product of the total number of nodes and the average
logic depth can in general give a relatively good estimation of the runtime of the
power estimation algorithm.

The memory requirement can grow for large circuits due to the large mask tags
and large number of waveforms. However, the memory size can be suppressed
significantly by dynamically removing the SWSs for the nodes that are not re-
quired for future computations. This reduces the maximum required memory for
the C6288 circuit from about 2.1GB to about 200MB.

3.1.2 High-Level Power Estimation

In some situations fast power estimators are required. An example of such situ-
ations will be discussed in Section 4.2 where the power estimator is particularly

60 Chapter 3. Power Estimation in Combinational Circuits

utilized within an optimization loop for estimating the power consumption of the
different PPRTs. A power macro model based high-level power estimator can
be utilized in these situations. Such power estimation techniques characterize
every component in the high-level design library by simulating it under pseudo
random data and fitting a multi-variable regression curve (i.e. the power macro-
model equation) to the power dissipation results using a least mean square error
fit. The macro-model equation is then used to estimate the power for random
logic [8, 97, 144, 147]. The power estimator estimates the transition densities of
each node using the static probabilities and transition densities of the preceding
nodes. This estimation of transition densities is perform using data interpolation
of the estimations from the Synopsys Power-Compiler for elementary gates that
are used in the PPRT circuits, i.e. XOR, NAND and AND gates.

The inputs to Power-Compiler are static probabilities and transition densi-
ties of circuit’s primary inputs. According to Power-Compiler’s documentation,
Power-Compiler estimates the power statistically using random simulation vectors
that satisfies the given static-probabilities and transition densities [177]. The zero
delay simulator uses the functionality of the design cells and the random vectors
to obtain the switching activity on unannotated cell outputs.

For AND, NAND and XOR gates, a large number of estimations have been
performed using Power-Compiler for different values of static-probabilities and
transition densities. The target technology used in these experiments is a typical
0.35μm CMOS library. Information about the load capacitances is also extracted
for the target technology.

The estimation results from Power-Compiler have been used in the develop-
ment of a faster estimator, which estimates the power by interpolation of the col-
lected data for each gate and estimating the transition activities at the gate outputs.
The transition densities are propagated through the circuit from primary inputs to
the outputs. The experimental results using this power estimator is reported and
compared in Section 4.2.

3.2 Static Power Estimation

The amount of leakage current in a logic gate strongly depends on its input val-
ues [67,135]. Figure 3.11 illustrates a static CMOS 2-input NAND gate. The total
leakage current shows large variations when the input values vary (Figure 3.11.a-
d). In Table 3.3 the estimates of leakage currents for a 2-input NAND gate are
given in a 65nm CMOS library. The estimates are computed using SPICE mod-

3.2. Static Power Estimation 61

Table 3.3: The normalized leakage current for the logic gates

Input Values NAND AND XOR
L L 1 5.3 17.9
L H 5.9 10.2 17.9
H L 7.1 11.4 9.1
H H 4.5 14.5 9.1

els of a low power 65nm process with standard threshold transistors. Standard
cells with driving force of one are used. The sum of gate leakage, reverse biased
diode leakage and sub-threshold leakage is extracted for different states. It is ob-
served that the total leakage current is dominated by the sub-threshold leakage,
followed by the reverse bias diode leakage and the gate leakage. The values are
normalized and are for room temperature (T = 27◦C). From Table 3.3, the ra-
tio between maximum total leakage current and minimum total leakage currents
for a NAND, an AND and an XOR gate are about 7.1, 2.7 and 2 respectively.
These differences have earlier been used to reduce the leakage current through
input vector control [1, 3, 67, 85]. If the values of leakage currents for the logic
gates are known and the inputs are specified, computing the leakage power is sim-
ple. The total leakage current can be approximated using sum of the gate leakage
currents. This can be generalized to build a probabilistic static power estimator,
where instead of using exact values for the different gate inputs, the correspond-
ing one-probabilities are used. The static power estimation is obtained using the
lookup-tables (Table 3.3) for the basic logic cells (AND, NAND and XOR gates).
Let us assume a gate with inputs X and Y . The static power for this gate will be

Pstatic =
∑

x∈{0,1}

∑
y∈{0,1}

p(X = x ∧ Y = y)LUT(x, y) (3.15)

where x and y are logic values, and LUT(x, y) is the value from the lookup-table
for x and y as inputs. The joint probability of the events X = x and Y = y is
denoted by p(X = x∧Y = y). Therefore, as a part of a probabilistic static power
estimator, a static probability estimator needs to be implemented.

As discussed in Section 3.1.1, various methods exist for computing the static
probabilities in a combinational logic network [26, 52, 95, 142]. Methods based
on Bayesian networks [37] and ordered binary decision diagrams (OBDDs) [21]

62 Chapter 3. Power Estimation in Combinational Circuits

�

�

�

�

�

�

�

�
� � � �

��� ��� ��� ���

Figure 3.11: A NAND gate with possible input values

have become widespread in recent years and they provide efficient computational
procedures for exact signal probability estimation. In order to estimate the static
probabilities the method in [52] is utilized because it can easily encapsulate the
spatial correlation between primary inputs. This method is summarized in Ap-
pendix A. When spatial correlations are present between primary inputs, they can
also be included in the form of correlation coefficients between primary inputs.

The static power estimator presented in this section is implemented in C++ and
it will be utilized in the optimization algorithm introduced in Chapter 6. Chapter 6
also presents the experiments on multipliers using this power estimator. As briefly
discussed in Chapter 1.1, the total power consumption of a digital circuit consists
of dynamic power consumption and static power consumption. The estimation
methods introduced in Section 3.1 and Section 3.2 can be employed concurrently
to estimate the total power consumption of the circuit. This will be discussed and
experimented further in Chapter 6.2.

Chapter 4

Transition-Activity Aware Design of
Reduction-Trees

This chapter presents two new techniques for designing the reduction-trees. First,
the construction of the PPRT and the possible flexibilities in the PPRT structure
are discussed in Section 4.1. The optimization methods will be discussed in Sec-
tions 4.2 and 4.3.

4.1 Construction of the Reduction Tree

The full-adder based PPRT is in fact a multi-operand adder with a large number
of inputs. The inputs are bit-products with different weights, conveniently repre-
sented in matrix form (the partial product matrices Mi). It is assumed that pointers
to the actual location of the PPs are also embedded in the PPMs; i.e., from a 1 in
the PPM it is possible to track which PP it is corresponding to. The left-top cor-
ner of these matrices corresponds to the LSB bit. A pseudo-code for generating
the multiplier is given in Figure 4.1. A C++ and MATLAB program with this
behavior has been implemented as a part of the work behind this thesis. First,
M0 is generated using a suitable PPG method, as discussed in Chapter 2. Then,
using a suitable reduction scheme (for example Wallace, Dadda or modified Wal-
lace/Dadda) the number of full-adders (FAs) and half-adders (HAs) are specified
for the current stage. The reduction scheme specifies a number of FAs/HAs to be
connected to the PPs in Mi. All inputs of a FA (or HA) have equivalent weight;
i.e., all inputs are selected from a unique column in Mi. The order of this column
is referred to as the order of the FA (or HA). The call-routine reduction scheme(),

63

64 Chapter 4. Transition-Activity Aware Design of Reduction-Trees

generate multiplier(operand sizes)
{

TheMultiplier=∅;
M0=generate PPs(operand sizes);
TheMultiplier.append(PPG circuitry);
i=0;
while (‖Mi‖ > 2)
{

[Fi, Hi]=reduction scheme(Mi);
Mi+1=apply FA HA(Mi, Fi, Hi);
TheMultiplier.append(Mi, Fi, Hi);
i=i+1;

}
TheMultiplier.append(final CPA(Mi));

}

Figure 4.1: The multiplier generation algorithm

takes the current PPM, Mi, and returns two vectors, Fi and Hi, which contain the
number of FAs and HAs required in the current stage. The j:th element in the
vector Fi is the number of FAs with order j in the i:th stage. Similarly, the j:th
element in the vector Hi is the number of HAs with order j in the i:th stage. The
call-routine apply FA HA() applies the FAs and HAs specified by Fi and Hi to Mi

and generates the PPM for the next stage (Mi+1). Each FA with order j removes
three PPs from column j in Mi and places two new PPs in j:th and (j + 1):th col-
umn of Mi+1. The new PPs in columns j and j + 1 correspond to the FA’s S and
Cout outputs, respectively. Similarly, each HA with order j removes two PPs from
column j in Mi and places two new PPs in j:th and (j + 1):th column of Mi+1

for S and Cout outputs, respectively. The reduction continues until the maximum
height of the current PPM, ‖Mi‖, is equal to 2. The reduction tree is followed by
the final CPA which produces the final multiplication product. Figure 4.2 gives
the intermediate matrices and vectors for an unsigned 12 × 12-bit multiplier. The
modified Wallace/Dadda’s reduction scheme is utilized.

The reduction scheme gives the number of FAs/HAs and their order but it does
not specify the order of the inputs to the FAs. If column j in Mi has mj bits, and
there are fj FAs and hj HAs with the order j, then the number of possible ways
the inputs to FAs and HAs can be connected is:

P (mj , fj, hj) =
mj !

(mj − 3fj − 2hj)!fj !hj!
(4.1)

If a FA is assumed to treat all three inputs equally and a HA is assumed to treat

4.1. Construction of the Reduction Tree 65

M0 :

2
666666666666666664

11111111111111111111111
01111111111111111111110
00111111111111111111100
00011111111111111111000
00001111111111111110000
00000111111111111100000
00000011111111111000000
00000001111111110000000
00000000111111100000000
00000000011111000000000
00000000001110000000000
00000000000100000000000

3
777777777777777775

F0 :
ˆ
00111222333433322211100

˜

H0 :
ˆ
01000000000000000000000

˜

M1 :

2
666666666664

11111111111111111111111
00111111111111111111110
00011111111111111111010
00001011111111111110000
00000011111111111010000
00000001011111110000000
00000000011111010000000
00000000001010000000000
00000000000010000000000

3
777777777775

F1 :
ˆ
00011112122232221111010

˜

H1 :
ˆ
00100000000000000000000

˜

M2 :

2
666664

11111111111111111111111
00011111111111111111101
00001011111111111110100
00000010111111111010000
00000000101111011000000
00000000001001000000000

3
777775

F2 :
ˆ
00001011112112111110100

˜

H2 :
ˆ
00010000000110000000000

˜

M3 :

2
664
11111111111111111111111
00001111111111111111011
00000100111111111011000
00000000100111111000000

3
775

F3 :
ˆ
00000100111111111011000

˜

H3 :
ˆ
00001000000000000000000

˜

M4 :

2
411111111111111111111111
00000111111111111101111
00000010000111111100000

3
5 F4 :

ˆ
00000010000111111100000

˜

H4 :
ˆ
00000101111000000000000

˜

M5 :

»
11111111111111111111111
00000011111111111111111

–

Figure 4.2: The PPM, FA and HA matrices for a 12 × 12-bit unsigned multiplier

66 Chapter 4. Transition-Activity Aware Design of Reduction-Trees

both inputs equally, then the number of possible interconnections:

C (mj , fj, hj) =
mj !

(mj − 3fj − 2hj)!fj!hj !6
fj 2

hj
(4.2)

Let us consider the the FA and HA implementations in Figure 2.10. If AND, XOR
and NAND gates are assumed to be symmetric with respect to their inputs, then
HA and FA will be symmetric for inputs A and B. However, the FA is asymmetric
for input Cin. With these assumptions, the number of possible interconnections
will be:

S (mj, fj , hj) =
mj !

(mj − 3fj − 2hj)!fj !hj !2
fj+hj

(4.3)

Indeed, interchanging the PPs that belong to one column of the PPM does not
change the functionality of the structure. The commutativity and associativity
properties of the addition allow any permutation of the PPs with equal weight to
be connected to the adder’s inputs. Although all permutations of the PPs result in
the same final output, they may differ in other properties of the circuit such as the
computation delay, the dynamic power dissipation, the leakage currents, and so
on. The freedom of choosing among these possibilities can therefore be used to
reduce the computation delay, the dynamic power, and the total leakage current.

In this chapter two methods for optimizing the PPRT with respect to the dy-
namic power consumption are examined. In the first method, the complete reduc-
tion tree is constructed in the beginning of the optimization procedure. Then the
optimization is performed on the complete PPRT. In the second method, however,
the reduction tree is progressively designed such that at the end a low-power PPRT
is achieved.

4.2 Method 1: Optimization of Complete Reduction
Tree

In the first attempt for optimizing the PPRT, the optimization of the complete
PPRT is proposed. Most of the material in this section is published in [181].
The proposed optimization algorithm is summarized in Figure 4.3. A high-level
power estimator developed in MATLAB, estimate power(), estimates the transition
activities at internal nodes based on the primary input static probabilities. This
power estimator is described in Section 4.2.1. The complete PPRT is initially

4.2. Method 1: Optimization of Complete Reduction Tree 67

optimized multiplier(input static probabilities)
{

generate multiplier(operand sizes);
Pmin=estimate power(TheMultiplier, input static probabilities);
i=0;
while (‖Mi‖ > 2)
{

for current col=1 to number of columns in Mi do
{

possible permutations=list of all useful permutations of the PPs in current col of Mi;
current perm= the current permutation of the PPs in current col of Mi;
for all m ∈ possible permutations
{

reorder interconnects(TheMultiplier, Mi, current col, m);
P =estimate power(TheMultiplier, input static probabilities);
if (P < Pmin)
{

Pmin=P ;
current perm=m;

} else
reorder interconnects(TheMultiplier, Mi, current col, current perm);

}
}
i=i+1;

}
}

Figure 4.3: The multiplier optimization algorithm - Method 1

constructed using random interconnection permutations. In this step all interme-
diate PPMs (Mis), FA assignment vectors (Fis) and HA assignment vectors (His)
are computed. A brute force approach to find the optimal solution is to perform a
exhaustive search of all implementation alternatives and estimate their power con-
sumption. As demonstrated in Table 4.1, this is obviously impossible because of
the huge number of possibilities. Therefore utilizing simpler methods and heuris-
tics are inevitable. Estimated transition density values from the power estimator
can be used to focus the search at the interesting parts of the solution space. As
defined in Eq. 1.6, the transition density at node i is :

Di = lim
T→∞

ni(T)

T

where ni(T) is the number of transitions at node i in a time interval of length T .
Based on the experiments with the PPRT, in order to limit the number of search
alternatives, the following considerations are applied in the optimization method.
The experimental results show that, even with limiting the search alternatives,
significant reduction in power consumption is achieved.

The search is limited to only one column in one stage at a time. The ex-

68 Chapter 4. Transition-Activity Aware Design of Reduction-Trees

periments show that performing the optimization of columns from LSB to MSB
and from first stage to last stage gives better results. The explanation can be that
the generated carry bits from adders propagate from LSB towards MSB. The op-
timization from LSB to MSB and from first stage to last stage ensures that the
optimized parts of the circuit are not altered when later optimizations are being
performed.

It is assumed that optimization of columns in early stages of the reduction can
be performed without taking the organization of interconnection in later stages
into account. This localization of search might in general result in suboptimal
structures because of the fact that the structure of later stages may influence the
optimal solution for earlier stages. However, this degradation from the optimal
solution reduces the search space dramatically. Localization of the search space
has been employed in numerous optimization methods, especially in optimization
algorithms for hardware design [57]. The observations below are provided under
this assumption of independence between columns.

Glitches and spurious transitions spread in the reduction stage after a few lay-
ers of combinational logic. To avoid them is not feasible in most cases. Therefore
it seems beneficial to assign partial products having high switching activity a short
path and thus perform addition of bits with lower switching activities in the ear-
lier stages of the reduction tree and keep the ones with higher switching activity
for the later stages. The partial products first added will affect larger parts of the
reduction tree.

The experiments in this section, as well as other work that has employed the
above mentioned assumption [201], show that by sorting the PPs based on their
transition densities and assigning bits to full-adders and half-adders in this order,
a noticeable power saving can be achieved.

As discussed earlier in this chapter, the inputs to a FA are asymmetric. The
path of the carry-in input of a FA (Cin in Figure 2.10) is shorter than the other
two inputs. A transition on this input will therefore result in less activity. The in-
put with the highest transition density among the three inputs of the FA should
therefore be connected to the Cin input. For a FA with inputs (A, B, Cin),
max(DA, DB) < DCin

. It is assumed that the FA is symmetric with respect
to inputs A and B.

In a FA, a transition in input Cin affects only one XOR gate while a transition
in A or B affects two XOR gates to reach the S output. This will minimize the
power consumption of such an addition under the single column assumption.

The transition densities of the outputs of FAs are in general close to the largest
input transition density. Thus the transition densities of the three inputs should

4.2. Method 1: Optimization of Complete Reduction Tree 69

Table 4.1: Number of search alternatives in one column

Number of bits Exhaustive search Reduced search
3 6 1
6 360 3
9 6.048 × 104 12

12 1.996 × 107 55
18 8.892 × 1012 1428
24 1.539 × 1019 4.326 × 104

be as similar as possible in order to minimize the overall transition activity of the
multiplier. For any two FAs x and y with inputs (xA, xB , xCin

) and (yA, yB,
yCin

) respectively, the following property should hold. If DxCin
< DyCin

then
max(DxB

, DxA
) < min(DyB

, DyA
).

From the above assumptions, it can be easily inferred that if DxCin
< DyCin

,
then DxB

and DxA
are smaller than DxCin

, DyA
, DyB

and DyCin
.

Using these four assumptions, it is possible to prune away a large number of
uninteresting solutions. Table 4.1 compared the total number of search alterna-
tives (Eq. 4.1) and the number of permutations after applying the four above-
mentioned assumptions. Although the numbers of search alternatives are still
factorially growing, the growth rate is much slower. Note that the numbers of
alternatives for the exhaustive search are obtained with independence assumption
between different columns and stages of the PPRT (the first assumption). Without
the independence assumption between different columns and stages of the PPRT,
the numbers of alternatives for the exhaustive search will be much bigger.

Figure 4.4 gives an example where 7 bits with the same order of magnitude
are to be added. It is taken from the second stage in a 12 × 12-bit multiplier in
Figure 2.14. According to the rules of designing the reduction tree, 2 FAs are
needed and one bit will be kept for the next stage. Using the observations in this
section, the bit with the highest transition density will be kept for the next stages
and the other bits are assigned to the FAs. The three interesting permutations of
these seven bits that will be examined in the optimization algorithm are given in
Table 4.2. For comparison, a full search of these permutations would require ex-
amination of 2520 alternatives. The ordered transition density D∗

i s in Table 4.2 are
found through a sorting of the transition densities Dis of the 7 bits, as illustrated
in Figure 4.4.

70 Chapter 4. Transition-Activity Aware Design of Reduction-Trees

%�
%"
%#
%-
%.
%/
%<

*3'16�=
1'��*6163�
%&�*616&*

%�
%"
%#
%-
%.
%/
%<

>

>

>

>

>

5�:�	

>

>

)��;�	

Figure 4.4: Sorting PPs based on their estimated transition densities

Table 4.2: The search alternatives of a 7-bit column

To next Full-adder 1 Full-adder 2
stage A B Cin A B Cin

1 D∗
1 D∗

4 D∗
3 D∗

2 D∗
7 D∗

6 D∗
5

2 D∗
1 D∗

5 D∗
3 D∗

2 D∗
7 D∗

6 D∗
4

3 D∗
1 D∗

5 D∗
4 D∗

2 D∗
7 D∗

6 D∗
3

4.2. Method 1: Optimization of Complete Reduction Tree 71

worst case multiplier(input static probabilities)
{

generate multiplier(operand sizes);
Pmax=estimate power(TheMultiplier, input static probabilities);
i=0;
while (‖Mi‖ > 2)
{

for current col=1 to number of columns in Mi do
{

possible permutations=list of all useful permutations of the PPs in current col of Mi;
current perm= the current permutation of the PPs in current col of Mi;
for all m ∈ possible permutations
{

reorder interconnects(TheMultiplier, Mi, current col, m);
P =estimate power(TheMultiplier, input static probabilities);
if (P > Pmax)
{

Pmax=P ;
current perm=m;

} else
reorder interconnects(TheMultiplier, Mi, current col, current perm);

}
}
i=i+1;

}
}

Figure 4.5: Worst-case multiplier algorithm - Method 1

4.2.1 Power Estimation

After assigning a new configuration set to the bits of a particular column, the
power consumption of these configurations is needed. The power estimation is
placed in the core of search loops (Figure 4.3) and the power estimation is per-
formed for the complete PPRT. Therefore the estimation time is crucial and the
power estimator needs to be fast. The power macro model based high-level power
estimator introduced in Section 3.1.2 is utilized as estimate power(). This estimator
runs on the MathWorks MATLAB platform at a speed about 80 times faster than
Power-Compiler. Using a Pentium IV 1.4GHz machine one power estimation run
for a 12 × 12 multiplier is performed in 0.09 second with this tool while it takes
8 seconds using Power-Compiler. For a 24 × 24 multiplier the times are 0.29 and
31 seconds respectively. The run-time differences between the tools are important
since the estimates are performed a large number of times during an execution of
the optimization algorithm.

72 Chapter 4. Transition-Activity Aware Design of Reduction-Trees

4.2.2 Notation of the multipliers

In order to demonstrate the effect of the optimization, the optimized structure gen-
erated by algorithm optimize multiplier() are compared with the worst case structure
generated by another algorithm similar to optimize multiplier() but aiming at getting
the maximum possible switching activity when rearranging the interconnections
in the reduction stages (algorithm worst case multiplier() shown in Figure 4.5). A
random multiplier version, achieved if transition activities are not taken into ac-
count, could fall anywhere in between. As shown in Table 4.3, experiments indi-
cate that it will typically lie near the middle. This is also intuitively correct, since
it is not likely that all of the many random interconnects will be optimal or that all
will be worst case.

The optimized, worst-case and random multipliers must be differentiated in
the results. In addition, two optimized multipliers, resulted from different input
static probabilities, may differ in the structure and therefore must be differentiated.
The notation introduced here will be also used in the subsequent chapters. A
multiplier will be represented as:

MAlgorithm
pA,pB

Algorithm →

⎧⎪⎪⎨⎪⎪⎩
OPT
RND
WC
SORT

where Algorithm is the algorithm used for generating the multiplier and pA and
pB are the static probability vectors of the inputs A and B, respectively. The i:th
element of the vector pA represents the one-probability of the i:th bit of the input
A (i.e., the one-probability of ai). The Algorithm can be OPT , WC, SORT and
RND. The multipliers generated by optimize multiplier() and worst case multiplier()

are denoted as MOPT and MWC respectively. A multiplier denoted as MSORT is
obtained from sorting the PPs by their transition densities and assigning the bits
with low transition densities earlier in the PPRT (similar to the approach in [201]).
No other interconnect optimization is performed on MSORT . In order to have a
fair comparison of the introduced algorithms, random multipliers are generated
where the interconnects are chosen randomly. These multipliers are denoted as
MRND.

The dynamic power consumption of a multiplier is a function of input static
probabilities applied to its operands while it is operating. This is the case for all
multipliers; whether the multiplier is optimized for the inputs that are applied to it

4.2. Method 1: Optimization of Complete Reduction Tree 73

or not. The energy consumption per operation for a multiplier is denoted as:

E
(
MAlgorithm

pA,pB
, p′

A, p′
B

)
where p′

A and p′
B are the static probability vectors of the inputs applied to the

multiplier MAlgorithm
pA,pB

.
A uniform random binary bit-vector with no temporal or spatial correlation,

where all bits have 0.5 one-probabilities, is the simplest form of the input static
probability vector. All elements of this vector are equal to 0.5. This vector is
denoted as Ωn

n where n is the number of bits in the vector. To generalize this
representation, a number of bits from LSB are assumed to be inactive; i.e. forced
to zero. This situation can happen in systems where the resolution of signals varies
dynamically. Ωn

i represents an input static probability vector where i bits from the
MSB side are active and n − i bits from LSB side are forced to zero. If the static
probability of a 6-bits vector A0..5 is represented by Ω6

4, it means that input bits
A0 and A1 have 0 one-probabilities and input bits A2, A3, A4 and A5 have 0.5
one-probabilities. That is

MSB LSB
Ω6

4 = [0.5 0.5 0.5 0.5 0 0]
(4.4)

As an example, E
(
MOPT

Ω12
10,Ω12

10
, Ω12

12, Ω
12
12

)
is the energy per operation for a multi-

plier that is optimized for Ω12
10 as input static probability vectors but it is operating

at Ω12
12 as input static probability vectors.

4.2.3 Experiments

The optimization algorithm, the power estimator, and a gate-level VHDL code
generator for the optimized structure are implemented in MATLAB. Inputs to the
optimization program are the static probabilities of the input bits. The output is
a multiplier which is generated according to the OPT , WC, SORT or RND
algorithms. To evaluate the quality of optimization exact power estimates are per-
formed for the generated multipliers, using switching activity back-annotation;
i.e., the transition density of every single node in the designed multiplier is com-
puted by VHDL simulations in ModelSim using large number of input vectors
with the desired input static probabilities. These transition densities are fed into
Synopsys Power-Compiler and are utilized for power estimation. A 0.35μm-3.3V
CMOS library is used for VHDL simulation in ModelSim as well as synthesis and

74 Chapter 4. Transition-Activity Aware Design of Reduction-Trees

Table 4.3: Estimated energy per operation for different multipliers [pJ]

MOPT
Ω12

12,Ω12
12

MWC
Ω12

12,Ω12
12

MRND MSORT
Ω12

12,Ω12
12

Ω12
12 set as

input static
probabilities

of both
operands

Power-Compiler with switching activity
back-annotation from ModelSim

98.04 105.14 102.23 100.54

Power-Compiler with internal switching ac-
tivity estimation (without back-annotation)

102.40 108.18 105.97 104.31

The power estimation tool in MATLAB 102.26 108.28 106.06 104.52

Ω12
6 set as

input static
probabilities

of both
operands

Power-Compiler with switching activity
back-annotation from ModelSim

28.26 33.94 31.15 29.56

Power-Compiler with internal switching ac-
tivity estimation (without back-annotation)

29.19 34.78 32.70 30.81

The power estimation tool in MATLAB 29.23 34.90 32.67 30.89

Table 4.4: Estimated energy per operation for optimized multipliers [pJ]

Values of E
(
MOPT

Ω12
i ,Ω12

i
, Ω12

j , Ω12
j

)
for different i and j values

j

12 11 10 9 8 7 6

i

12 98.04 87.70 74.07 61.24 49.90 37.87 28.26

11 98.32 87.68 73.90 60.69 49.60 38.04 28.26

10 98.29 87.97 73.65 59.67 48.68 37.60 28.26

9 98.96 88.83 74.40 59.14 48.33 37.07 28.14

8 98.65 88.55 74.55 59.91 48.28 36.74 27.65

7 98.63 88.59 74.94 60.85 49.35 36.57 27.10

6 98.66 88.69 75.14 61.73 50.03 37.34 26.90

4.2. Method 1: Optimization of Complete Reduction Tree 75

power estimation in Design-Compiler and Power-Compiler. ModelSim simula-
tions consider the realistic delays provided from the library and therefore, propa-
gation of glitches and spurious transitions are more accurately taken into account.

Energy is a measure of the total number of Joules dissipated by a circuit,
whereas power refers to the energy or number of Joules dissipated by a circuit
over a certain period of time. Properly speaking, power reduction is a different
goal than energy reduction. However, as the timing characteristics of the circuit
are not subject to change in this thesis, these two terms, i.e., energy reduction and
power reduction, might be used to refer to the same goal. In the reported results,
energy per operation is used as the metric that removes the time factor. Energy
per operation is the amount of energy needed to complete one multiplication op-
eration.

In the first part of the experiments 12 × 12-bit multipliers are considered.
The input operands of the multiplier are assumed to be uniform random binary
bit-vectors with no temporal or spatial correlation, where all bits have 0.5 one-
probabilities. A number of LSB bits are allowed to be inactive. This situation
can happen in systems where the resolution of signals varies dynamically. In Ta-
ble 4.3 the energy per operation numbers are given for optimum multipliers and
worst-case multipliers. Three values for energy per operation are provided, from
Power-Compiler with switching activity back-annotation provided by ModelSim
VHDL simulations with realistic delay-models, from Power-Compiler with inter-
nal switching activity estimation (without back-annotation), and from the estima-
tion tool in MATLAB. Table 4.3 and 4.4 provide the energy per operation estima-
tions with accurate transition densities (with switching activity back-annotation)
for 12× 12-bit multipliers optimized for different number of active bits. With Ω12

6

applied to both operands, the multiplier optimized for this, MOPT
Ω12

6 ,Ω12
6

, consumes

4.8% less energy than MOPT
Ω12

12,Ω12
12

. MOPT
Ω12

6 ,Ω12
6

consumes about 16% less energy com-

pared to MWC
Ω12

6 ,Ω12
6

when Ω12
6 is applied to inputs. MWC is an extreme case that

is unlikely to happen. In order to have fair comparison of the optimization al-
gorithm 10 random multipliers are generated where the interconnects are chosen
randomly. The averaged energy per operation numbers for these multipliers are
reported in Table 4.3 denoted as MRND. MOPT

Ω12
6 ,Ω12

6
consumes about 13.6% less

energy compared to MRND with Ω12
6 as inputs. From this it can be concluded that

it may be beneficial to optimize the multiplier to the number of bits that are active
most of the time. The situations where the signal resolution varies dynamically
will be analyzed in Chapter 7.

The static probabilities of the input operands in a multiplier depend strongly

76 Chapter 4. Transition-Activity Aware Design of Reduction-Trees

on the nature of input signals. For many natural signals the static probability
of the MSB-part is smaller than that of the LSB-part. In these cases, it can be
beneficial to optimize the multiplier structure for the given pattern of input static
probabilities. In the second part of the experiments 12 × 12-bit multipliers with
log-normal input distributions are considered.

The log-normal distribution is associated to any random variable whose log-
arithm is normally distributed, which is very common for natural signals. It can
model any variable that can be thought of as the multiplicative product of many
small independent identically-distributed factors. Its probability density function
is given by:

fX(X) =
1

Xσ
√

2π
e−

(lnX−μ)2

2σ2 X > 0 (4.5)

where μ and σ are the mean and standard deviation of the normal distribution (log-
arithm of the random variable), respectively. A log-normal random variable can
be very large; although the probability of large numbers are very small. Therefore
depending on the tolerable error in the system the word-length of such variables
are defined. Three values ln 25, ln 26, and ln 27 for μ are chosen in the experi-
ments. σ is chosen to be one for all experiments. The distribution function for a
random variable with log-normal distribution is depicted in Figure 4.6. Figure 4.7
illustrates the one-probabilities of input bits assuming these values for μ and σ.
Both operands of the multiplier have equal probability functions. In the results Λn

i

represents an input probability vector where a log-normal variable with μ = ln 2i

and σ = 1 is quantized using n bits; i.e. the input static probability vectors Λ12
5 ,

Λ12
6 and Λ12

7 , denote the input static probabilities of a 12-bit vector associated with
log-normal distributions where μ = ln 25, μ = ln 26 and μ = ln 27 respectively.
Table 4.5 summarizes estimated energy per operations for these multipliers with
different input static probabilities. When log-normally distributed inputs with Λ12

5

are applied to the multipliers, the MOPT
Ω12

12,Ω12
12

consumes 4.8% more energy than

MOPT
Λ12

5 ,Λ12
5

. MOPT
Λ12

5 ,Λ12
5

requires 14.8% less energy than the worst case multiplier

MWC
Λ12

5 ,Λ12
5

in this case.
From Table 4.5 it can be observed that significant parts of the power reduction

in the optimal multiplier appears regardless of input static probabilities. The rest
depends on input static probabilities. According to Synopsys Design-Compiler’s
area estimation, the circuit and routing area of the generated multipliers are the
same. This is because the difference between the generated multipliers is only
in the interconnects of the adders. The required standard cells are exactly the
same for all of the architectures. The speed of the energy-optimized multiplier is

4.2. Method 1: Optimization of Complete Reduction Tree 77

0 32 64 96 128 160 192
0

0.01

0.02

Input Signal

Pr
ob

ab
ili

ty
 D

en
si

ty

μ=ln25

μ=ln26

μ=ln27

Figure 4.6: Log-normal signal distribution

X0X1X2X3X4X5X6X7X8X9X10X11
0

0.1

0.2

0.3

0.4

0.5

0.6

Input Bits

O
ne

−
Pr

ob
ab

ili
tie

s

μ=ln27

μ=ln26

μ=ln25

MSB LSB

Figure 4.7: One-probabilities of input bits with log-normal distribution
Input signals for both operands have log-normal distribution

with μ = ln 25, μ = ln 26 and μ = ln 27 (σ = 1)

78 Chapter 4. Transition-Activity Aware Design of Reduction-Trees

Table 4.5: Estimated energy per operation for multipliers with log-normal inputs
Values of E (M, p, p) for different multipliers (M) and different

input static probability vectors (p). Values are in [pJ].

p = Ω12
12 p = Λ12

7 p = Λ12
6 p = Λ12

5

M = MOPT
Ω12

12,Ω12
12

98.04 56.02 44.09 33.82

M = MOPT
Λ12

7 ,Λ12
7

98.54 54.23 42.95 32.84

M = MOPT
Λ12

6 ,Λ12
6

98.62 54.70 42.60 32.71

M = MOPT
Λ12

5 ,Λ12
5

98.79 54.82 42.98 32.27

M = MWC
Λ12

5 ,Λ12
5

104.52 61.81 48.97 37.86

slightly lower than the average version. Using Design-Compiler, however, per-
formance penalties of more than 1% for any of the generated optimized circuits,
compared to average performance of the randomly generated multipliers, have not
been observed.

4.3 Method 2: Progressive Design of Reduction Tree

Following method 1 for optimizing the PPRT structure based on the input char-
acteristic information, a second approach is proposed. The objective is to reduce
the circuit size that is considered for power estimation. With smaller circuits,
it is possible to increase the accuracy of power estimation. As discussed in the
previous section, in the first method, power estimation is performed for the com-
plete PPRT, which can be time-consuming. Therefore, large number of iterations
cannot be afforded timewise. In the second approach, the power estimation is
limited to a small portion of the complete circuit. Therefore larger number of
iterations can be afforded, giving better results. The material of this chapter are
mostly published in [180,181]. In this approach, design of the PPRT is combined
with the optimization phase. The power estimation and PPRT optimization algo-
rithm is integrated in the algorithm for designing the PPRT shown in Figure 4.1.
Therefore, the optimization is merely performed on the part of the PPRT which is
constructed. This type of optimization is called progressive design of the PPRT in
this thesis.

Figure 4.8 summarizes the progressive multiplier design algorithm. As can
be seen, the multiplier generation step is merged with the optimization phase in

4.3. Method 2: Progressive Design of Reduction Tree 79

optimized multiplier(input static probabilities)
{

TheMultiplier=∅;
M0=generate PPs(operand sizes);
TheMultiplier.append(PPG circuitry);
i=0;
while (‖Mi‖ > 2)
{

[Fi, Hi]=reduction scheme(Mi);
Mi+1=apply FA HA(Mi, Fi, Hi);
for current col=1 to number of columns in Mi do
{

current perm=random permutation of the PPs in current col of Mi;
Pmin=+∞;
α=α0;
for current iteration=1 to number of iterations do
{

old perm=current perm;
swap two random positions in current perm;
P =estimate power(Fi, Hi, current perm);
if (P < Pmin)

Pmin=P ;
else
{

r=uniform random (r ∈ [0, 1));

if (r < e
Pmin−P

α)
Pmin=P ;

else
current perm=old perm;

}
α= α

τ
;

}
reorder current col of Mi as current perm;

}
TheMultiplier.append(Mi, Fi, Hi);
i=i+1;

}
TheMultiplier.append(final CPA(Mi));

}

Figure 4.8: The multiplier optimization algorithm - Method 2

80 Chapter 4. Transition-Activity Aware Design of Reduction-Trees

method 2. The search method is also different from method 1. Method 1 performs
the search on a selection of possible permutations, while method 2 performs a
search based on simulated annealing. As discussed in Section 4.2, the search
in method 1 is limited to a reduced space using four assumptions. Except the
independence assumption between columns and stages, the other assumptions are
not considered for method 2. Similar to method 1, the search is limited to only
one column in one stage at a time.

Simulated annealing (SA) is a method that simulates a thermodynamic pro-
cess, where a metal is heated to its melting point and then allowed to cool slowly
so that its structure is frozen at the lowest energy crystal form. The slow cooling
gives the atoms more chances of finding configurations with lower internal energy
than the initial one. In this process, the configuration of the atoms is continuously
rearranged, moving toward lowest energy. Meanwhile the atoms gradually lose
their mobilities as the temperature is reduced during the process. Even though
the energy function may have local minima, simulated annealing is able to go up-
hill occasionally and avoid local minima. Metropolis et al. in [120] developed a
heuristics that simulates the cooling of a metal. However, this method is applica-
ble to more general applications other than its original application as simulating
metal cooling. Kirkpatrick et al. in [90] discussed various applications of SA. As
it will be discussed later, the minimization problem in multiplier PPRT design in
method 2 is solved using SA.

In order to use simulated annealing, a cooling strategy must be chosen. The
cooling strategy specifies the initial temperature and how to decrease the temper-
ature as a function of time. The cooling strategy depends on the problem being
solved. Many successful SA implementations use a geometric cooling strategy
with parameters obtained by experimentation. However, an ad-hoc approach may
give better results for some applications. In the geometric cooling strategy, tem-
perature is reduced geometrically; i.e. α∗ = α/τ , for some fixed τ (τ > 1). α is
the current temperature and α∗ is the temperature at the next iteration. In addition
to the cooling strategy, the probability of accepting a higher energy state must also
be chosen in the SA optimizer. Although this probability could be chosen in vari-
ous ways, it is usually taken as e−ΔP/α which is proportional to the probability of
an energy change of ΔP at temperature α and comes from the original application
in [120].

The progressive multiplier design algorithm in Figure 4.8 starts with initial-
ization of the circuit to primary partial products generated by a suitable algorithm
discussed in Chapter 2. After the PPs are generated, the multiplier structure is
progressively designed. For each column of each stage in the PPRT, the SA op-

4.3. Method 2: Progressive Design of Reduction Tree 81

timization is performed. A randomly chosen permutations is the start configura-
tion. This configuration is altered in each iteration. A new power estimation is
computed for the perturbed configuration. If the move decreases the value of the
estimated power, the move is accepted and the new permutation is retained. If SA
gets stuck in a local optima then the Boltzmann factor is calculated, and a ran-
dom number, uniformly distributed in the interval [0,1), is chosen. If the random
number is less than the calculated Boltzmann factor, then the new permutation is
retained, otherwise, the move is discarded and the configuration before this move
is used for the next step. The power estimator in this loop computes the transition
densities exclusively for the current full-adder and half-adder stage, i.e. Fi and Hi.
The temperature α is initialized to α0 before the SA begins and then is reduced
geometrically after each iteration by the cooling factor τ . The parameters α0, τ
and number of iterations are chosen by experimentation.

Another difference between two proposed methods of optimization is the power
estimation method. The probabilistic gate-level power estimation technique de-
scribed in Section 3.1.1 is utilized in the progressive PPRT design.

4.3.1 Progressive PPRT Design and the SWS Power Estimator

The SWS power estimator can be easily embedded in the optimization algorithm
in Figure 4.8. Figure 4.9 summarizes the progressive PPRT design using the SWS
power estimator. The function computeSWS(TheMultiplier) computes the SWSs for
the nodes of the multiplier circuit for which SWSs are not computed earlier. Note
that each time a circuit portion (i.e., a new column of a given stage) is appended
to TheMultiplier, this function is executed, computing SWSs for the new portion
using the SWSs computed earlier. After the PPs are generated, the multiplier
structure is progressively designed. The power estimator innermost loop com-
putes the transition densities exclusively for the current full-adder and half-adder
stage, i.e., the stage that is being designed, using the SWSs computed earlier.
A minimum search mechanism based on simulated annealing is executed for the
estimated power consumption. The power estimation (estimate power SWS) is per-
formed merely for the current column of the current stage, therefore optimization
at each stage is performed assuming that it will not affect the other stages. Recall
that the same assumption was considered for method 1 in Figure 4.3. The new
permutation of PPs and the previous permutation differ only in the position of two
PPs. Therefore, the power estimation for the new permutation can be obtained
by recomputing the power for the logic gates whose inputs are changed. In fact,
estimate power SWS() can be limited to recompute SWSs for maximum 10 logic

82 Chapter 4. Transition-Activity Aware Design of Reduction-Trees

optimized multiplier(input static probabilities)
{

TheMultiplier=∅;
M0=generate PPs(operand sizes);
TheMultiplier.append(PPG circuitry);
computeSWS(TheMultiplier);
i=0;
while (‖Mi‖ > 2)
{

[Fi, Hi]=reduction scheme(Mi);
Mi+1=apply FA HA(Mi, Fi, Hi);
for current col=1 to number of columns in Mi do
{

current perm=random permutation of the PPs in current col of Mi;
Pmin=+∞;
α=α0;
for current iteration=1 to number of iterations do
{

old perm=current perm;
swap two random positions in current perm;
P =estimate power SWS(Fi, Hi, current perm);
if (P < Pmin)

Pmin=P ;
else
{

r=uniform random (r ∈ [0, 1));

if (r < e
Pmin−P

α)
Pmin=P ;

else
current perm=old perm;

}
α= α

τ
;

}
reorder current col of Mi as current perm;

}
TheMultiplier.append(Mi, Fi, Hi);
computeSWS(TheMultiplier);
i=i+1;

}
TheMultiplier.append(final CPA(Mi));
computeSWS(TheMultiplier);

}

Figure 4.9: Progressive reduction-tree design using SWS power estimator

4.3. Method 2: Progressive Design of Reduction Tree 83

gates for each iteration. The worst-case is when the two interchanged PPs are
connected to different FAs which have 5 logic gates each (Figure 2.10).

There is a substantial difference between method 1 discussed in Section 4.2
and method 2 discussed in this section. Method 2 uses a more accurate and more
complex power estimator (SWS) but only engage the estimator for one stage of
full-adders or half-adders at any given time. However, method 1 uses a simpler
power estimator and runs the power estimations for the complete multiplier. Com-
pared to method 1, the power estimation for method 2 is faster even though it is
more accurate and more complex. The reason is that the estimation is performed
on only a small part of the multiplier (limited to maximum ten logic gates) rather
than the complete multiplier. This allows running the optimization algorithm for
larger number of permutations. Running the power estimator for the complete
multiplier as in method 1, even for the parts that are not optimized yet, means
that the effects are considered for all successive nodes. But because parts of the
multiplier are not optimized yet, the actual effects will be different when those
parts are optimized as well. On the other hand, running the power estimation ex-
clusively for the current full-adders/half-adder stage means that the effects are not
considered on the PPs that are not the direct outputs of the immediate successive
full-adders/half-adders.

The algorithm optimized multiplier shown in Figure 4.9 constructs a multiplier
that is optimized for low power consumption. The notations introduced in Sec-
tion 4.2.2 are used in this part as well. When reporting experimental results in
the next section, multipliers generated using optimized multiplier are denoted by in-
dex OPT (e.g., MOPT

Ω16
16,Ω16

16
). An algorithm called worst case multiplier generates a

multiplier that is connected in a worst-case fashion to consume maximum energy.
worst case multiplier is summarized in Figure 4.10. The multipliers generated using
worst case multiplier are indexed by WC (e.g. MWC

Ω16
16,Ω16

16
).

4.3.2 Experiments

The proposed method shown in Figure 4.9, the SWS power estimator, and a gate-
level VHDL code generator, are all implemented in C++. Inputs to the optimiza-
tion program are the static probabilities of the primary inputs. It is assumed that
the primary input bits are spatially and temporally uncorrelated. After comple-
tion of the optimization algorithm, the equivalent VHDL code for the multiplier
is generated. To evaluate the quality of the optimization algorithm, this VHDL
code is run through a ModelSim simulation. Input stimuli with the same static

84 Chapter 4. Transition-Activity Aware Design of Reduction-Trees

worst case multiplier(input static probabilities)
{

TheMultiplier=∅;
M0=generate PPs(operand sizes);
TheMultiplier.append(PPG circuitry);
computeSWS(TheMultiplier);
i=0;
while (‖Mi‖ > 2)
{

[Fi, Hi]=reduction scheme(Mi);
Mi+1=apply FA HA(Mi, Fi, Hi);
for current col=1 to number of columns in Mi do
{

current perm=random permutation of the PPs in current col of Mi;
Pmax=0;
α=α0;
for current iteration=1 to number of iterations do
{

old perm=current perm;
swap two random positions in current perm;
P =estimate power SWS(Fi, Hi, current perm);
if (P > Pmax)

Pmax=P ;
else
{

r=uniform random (r ∈ [0, 1));

if (r < e
P−Pmax

α)
Pmax=P ;

else
current perm=old perm;

}
α= α

τ
;

}
reorder current col of Mi as current perm;

}
TheMultiplier.append(Mi, Fi, Hi);
computeSWS(TheMultiplier);
i=i+1;

}
TheMultiplier.append(final CPA(Mi));
computeSWS(TheMultiplier);

}

Figure 4.10: The worst-case multiplier generation algorithm

4.3. Method 2: Progressive Design of Reduction Tree 85

Table 4.6: Average number of transitions for different multipliers

(the input static probabilities Ω16
i are applied to both operands)

MOPT
Ω16

i ,Ω16
i

MWC
Ω16

i ,Ω16
i

MRND

i

16 1189 1456 1379

15 1037 1286 1216

14 849 1142 1061

13 715 995 901

12 586 848 755

11 477 688 618

10 379 557 487

9 282 433 373

probabilities are used, and the average number of transitions for all nodes is col-
lected. The sum of average node transitions for all nodes in the PPRT is reported.
As node load capacitance for the reduction tree does not have large variations, the
average number of transitions is strongly related to the power consumption.

Similar to method 1, in the first part of the experiments, multipliers with purely
random uncorrelated input bits are considered, where certain numbers of least sig-
nificant bits are forced to zero. This can for instance appear in systems where the
word-length is varying due to changes in the quality of service requirements. The
optimized (and worst-case) 16 × 16-bit multipliers are designed to be optimized
for input probability vectors Ω16

i (i = 9..16). In Table 4.6 the average number of
transitions is given for MOPT

Ω16
i ,Ω16

i
and MWC

Ω16
i ,Ω16

i
when static input probability vector

Ω16
i is applied to both operands. The rightmost column in Table 4.6 is dedicated

to MRND. The numbers in this column are average numbers of transitions for 10
randomly generated multipliers. From Table 4.6, it can be seen that the average
numbers of transitions for optimized multipliers are from 18.3% to 34.9% smaller
than the worst-case multipliers. Compared to random multipliers, optimized mul-
tipliers have from 13.8% to 24.3% smaller average numbers of transitions. The
saving in power consumption is larger when more bits have zero one-probabilities.

As discussed in Section 3.1.1, the estimated power used in the optimization
routine is dependent on the delay model used in the power estimator. This affects
the generated multipliers considerably. The PPRT that is optimized using a partic-
ular delay model, does not exhibit the same amount of saving when it is operating

86 Chapter 4. Transition-Activity Aware Design of Reduction-Trees

Table 4.7: Average number of transitions with realistic delay model

(the multipliers are optimized using the fanout delay model but the VHDL
simulations are using realistic delay model for a 0.35μm CMOS library)

Ω16
16 applied to input operands Ω16

9 applied to input operands

MOPT
Ω16

16,Ω16
16

878.2 225.6

MOPT
Ω16

9 ,Ω16
9

884.5 201.6

MWC
Ω16

16,Ω16
16

921.4 257.7

MWC
Ω16

9 ,Ω16
9

918.7 272.7

Table 4.8: Estimations of energy per operation from Synopsys Power Compiler

for 0.35μm CMOS library

(the multipliers are optimized using the fanout delay model)

Ω16
16 applied to input operands Ω16

9 applied to input operands

MOPT
Ω16

16,Ω16
16

183.2pJ 63.4pJ

MOPT
Ω16

9 ,Ω16
9

186.4pJ 59.8pJ

MWC
Ω16

16,Ω16
16

192.1pJ 73.2pJ

MWC
Ω16

9 ,Ω16
9

189.4pJ 75.0pJ

Table 4.9: Estimations of energy per operation from Synopsys Power Compiler

for a 65nm CMOS library

(the multipliers are optimized using the fanout delay model)

Ω16
16 applied to input operands Ω16

9 applied to input operands

MOPT
Ω16

16,Ω16
16

2.0651pJ 705.6fJ

MOPT
Ω16

9 ,Ω16
9

2.0763pJ 665.9fJ

MWC
Ω16

16,Ω16
16

2.1328pJ 802.2fJ

MWC
Ω16

9 ,Ω16
9

2.1232pJ 820.2fJ

4.3. Method 2: Progressive Design of Reduction Tree 87

with another delay model. A circuit with two different delay models may create
completely different patterns of spurious transitions. Therefore the savings due to
minimizing the glitches may be annihilated because of the mismatch between the
delay models in the optimizer and the real circuit. Table 4.7 reports the average
number of transitions for the multipliers that are optimized using the fanout de-
lay model but the VHDL simulations are using the realistic delay model from a
0.35μm-3.3V CMOS library. Comparing the values in Table 4.7 with the equiv-
alent values in Table 4.6, it can be seen that the reductions in average number of
transitions are deteriorated when the delay model in optimizer does not exactly
match the real circuit delays.

Table 4.8 and Table 4.9 report the estimated energy per operation for the mul-
tipliers that are optimized using the fanout delay model, in 0.35μm-3.3V CMOS
and 65nm-0.9V CMOS libraries, respectively. These numbers are obtained from
Synopsys Power-Compiler. Since the optimizer uses a different and simpler de-
lay model, the amount of saving is less than the numbers reported in Table 4.6. A
more accurate delay model for the optimizer is expected to result in larger savings.
The SWS power estimator is not restricted to the fanout delay model as discussed
in Section 3.1.1. However, using a realistic delay model results in larger num-
ber of possible waveforms because the delays are not integer numbers anymore.
Moreover, in a realistic delay model, the delay of a gate is dependent on its in-
put values which increases the number of waveforms even further. This slows
down the power estimator because more waveforms need to be processed for each
node. According to the results in Table 4.8, the amount of power saving between
MOPT

Ω16
16,Ω16

16
and MWC

Ω16
16,Ω16

16
when Ω16

16 is applied to both input operands is 4.6%; while

it is reported 18.3% in Table 4.6. When Ω16
9 is applied to both operands, the

amount of power saving between MOPT
Ω16

9 ,Ω16
9

and MWC
Ω16

9 ,Ω16
9

is 20% (compared to
35% reported in Table 4.6). The savings are deteriorated because of mismatch be-
tween the delay models in the optimizer and the real circuit. This is more serious
when the input bits have similar input static probabilities.

Table 4.10 compares the average number of transitions for MOPT
Ω16

i ,Ω16
i

(i =

9..16), when different static input probability vectors (Ω16
j , j = 9..16) are ap-

plied. The average number of transitions for the multiplier M, when input static
probability vectors pA and pB are applied to the input operands is denoted by
D (M, pA, pB) in Table 4.10. The multiplier that is optimized for Ω16

i is the one
that has the lowest average number of transitions when Ω16

i is applied. However,
when a different input static probability vector is applied, the average number
of transitions for this multiplier is not minimum any longer. From Table 4.10

88 Chapter 4. Transition-Activity Aware Design of Reduction-Trees

Table 4.10: Average number of transitions for different multipliers

Values of D
(
MOPT

Ω16
i ,Ω16

i
, Ω16

j , Ω16
j

)
for different i and j values

j

16 15 14 13 12 11 10 9

i

16 1189 1040 877 751 632 504 403 308

15 1208 1037 885 757 621 508 397 305

14 1241 1067 849 725 620 495 394 299

13 1266 1099 929 714 606 500 393 298

12 1256 1104 933 771 586 482 385 306

11 1282 1132 973 820 649 477 383 294

10 1296 1143 977 836 671 525 380 294

9 1289 1144 1001 854 712 556 409 282

one may conclude that in a system with dynamically varying data word-length,
it might be beneficial to optimize the multiplier to the word-length that is most
frequently used. However, as it will be discussed in Chapter 7, finding the best
solution for systems with variable word-length is more complex. Using a multi-
plier that is optimized for the most frequently used word-length does not always
provide the best solution.

In the second part of the experiments, similar to method 1, signals with un-
equal static probabilities are applied to the primary input bits. For many natural
signals the switching activities of the MSB-bits are lower than that of LSB-bits.
In these cases, the multiplier structure can be optimized for the pattern of static
probabilities of the input bits. Similar to method 1, input signals with a log-
normal distribution are considered. Eq. 4.5 gives the probability density function
for a random variable with log-normal distribution. In this experiment σ is chosen
to be one. μ assumes three different values: ln 28, ln 29 and ln 210. Figure 4.12
illustrates the one-probabilities of input bits assuming these values for μ and σ.
The probability distribution of such random variables are shown in Figure 4.11.
The notations Λ16

10, Λ16
9 and Λ16

8 are used to represent 16-bit input static probability
vectors with μ = ln 210, μ = ln 29 and μ = ln 28, respectively.

Table 4.11 specifies the average number of transitions for multipliers that are
optimized for different input static probability vectors. The numbers reported in

4.3. Method 2: Progressive Design of Reduction Tree 89

0 512 1024 1536 2048
0

0.5

1

1.5

2

2.5

3
x 10

−3

Input Signal

Pr
ob

ab
ili

ty
 D

en
si

ty

μ=ln28

μ=ln29

μ=ln210

Figure 4.11: Log-normal signal distribution

X0X1X2X3X4X5X6X7X8X9X10X11X12X13X14X15
0

0.2

0.4

0.6

Input Bits

O
ne

−
Pr

ob
ab

ili
tie

s

μ=ln210

μ=ln29

μ=ln28

MSB LSB

Figure 4.12: One-probabilities of input bits with log-normal distribution
Input signals for both operands have log-normal distribution

with μ = ln 28, μ = ln 29 and μ = ln 210 (σ = 1)

90 Chapter 4. Transition-Activity Aware Design of Reduction-Trees

Table 4.11: Average number of transitions for different multipliers

Values of D (M, p, p) for different multipliers (M) and different

input static probability vectors (p)

p = Ω16
16 p = Λ16

10 p = Λ16
9 p = Λ16

8

M = MOPT
Ω16

16,Ω16
16

1189 570 450 362

M = MOPT
Λ16

10,Λ16
10

1265 564 458 363

M = MOPT
Λ16

9 ,Λ16
9

1299 575 446 352

M = MOPT
Λ16

8 ,Λ16
8

1325 596 460 343

M = MWC
Ω16

16,Ω16
16

1456 703 563 438

M = MWC
Λ16

10,Λ16
10

1425 720 561 442

M = MWC
Λ16

9 ,Λ16
9

1402 691 578 437

M = MWC
Λ16

8 ,Λ16
8

1400 686 558 444

M = MRND 1379 661 526 407

the last row (MRND), are the mean values for ten randomly generated multipliers.
The multiplier generated using the optimized multiplier() algorithm in Figure 4.9 in
general creates fewer transitions than a random multiplier, even for cases where
the input static probability vector that is applied is not what the multiplier is op-
timized for. From this it can be concluded that a part of the optimization is inde-
pendent from the input static probabilities. However, further power savings can be
achieved if the optimization is performed for the input static probabilities of multi-
plier’s inputs. For example, if the inputs are variables with log-normal distribution
(Λ16

8), the multiplier that is optimized for these static probabilities consumes 5%
less power than MOPT

Ω16
16,Ω16

16
.

4.3.3 Runtime and Complexity

The power estimate function is located in the core of three loops in the algorithm
described in Figure 4.9. The computational complexity of the power estimator is
approximately proportional to the product of the average number of waveforms
and the average logic depth [179]. In the full-adder based PPRT, as discussed

4.3. Method 2: Progressive Design of Reduction Tree 91

earlier, the glitch filtering does not happen outside the FA and HA cells. When
the glitch filtering is not considered, the number of waveforms in the SWSs grows
approximately linearly with the logic depth. The upper-bound for the logic depth
is 3 × current stage + 1. Therefore for an N × N bits multiplier, the computa-
tion complexity can be approximated to O

(
number of iterations × (3 logN

1.5)
3
)
, as

the number of stages required to compress the partial products is approximately
logN

1.5. number of iterations is the number of iteration in the SA optimization. In
the experiments, constructing a 16× 16 bits multiplier using this method requires
approximately 3 minutes on a PC with Intel Pentium 1.4GHz processor. num-

ber of iterations is chosen to be 1000. Figure 4.13 and Figure 4.14 show the influ-
ence of number of iterations on the achieved results. When the number of iterations
is small, the optimization algorithm generates a close-to-random multiplier. More
iterations, which translate into longer runtime, result in more power efficient mul-
tipliers compared to a random multiplier. However the improvements saturate
after a certain number of iterations and the algorithm is not able to produce better
results. It is beneficial to choose smaller values for number of iterations when a col-
umn has small number of PPs. On the other hand, for columns with larger number
of PPs, number of iterations can be larger. The initial temperature (α0) and the cool-
ing factor (τ) are empirically chosen to be 0.1 and 1.015, respectively. The effect
of τ in the achieved results is shown in Figure 4.15. Large values of τ reduce
the temperature so rapidly that the SA is incapable of performing uphill moves
to avoid local minima. Meanwhile, small values of τ lead to unnecessary uphill
moves and require more iterations to reach the minimum energy configuration.

92 Chapter 4. Transition-Activity Aware Design of Reduction-Trees

10
0

10
1

10
2

10
3

10
0

10
1

10
2

number_of_iterations

ru
nt

im
e

[s
ec

]

Figure 4.13: Runtime versus number of iteration in SA

10
0

10
1

10
2

10
3

1200

1250

1300

1350

number_of_iterations

A
ve

ra
ge

 n
um

be
r

of
 tr

an
si

tio
ns

Figure 4.14: Average number of transitions versus number of iterations in SA

4.3. Method 2: Progressive Design of Reduction Tree 93

1 1.005 1.01 1.015 1.02 1.025 1.03 1.035
1180

1190

1200

1210

1220

1230

1240

1250

1260

cooling factor (τ)

A
ve

ra
ge

 n
um

be
r

of
 tr

an
si

tio
ns

Figure 4.15: Cooling factor

Chapter 5

PPRT Optimization in Presence of
Highly Correlated Inputs

Estimating the power consumption is difficult because of the interdependencies
between signals in a logic circuit. This becomes even more problematic in pres-
ence of highly correlated inputs as the spatial and temporal correlations of the in-
puts must be considered as well. The data activity of a 16 × 16-bit multiplier can
vary by as much as one order of magnitude as a function of input correlation [114].
Several methods for estimating power in circuits with highly correlated inputs are
proposed [9, 113, 114, 164]. Changing the order of temporally correlated input
data changes the temporal correlations significantly. Reordering the input pattern,
as a means of switching activity reduction in Multiply-Accumulate (MAC) units,
has been investigated in [65, 115, 117].

In Chapter 4, it is assumed that multiplier input signals are independent spa-
tially and temporally; i.e., four random variables A[n], B[n], A[n−1] and B[n−1]
are independent for any n. Knowledge about one of them does not change the dis-
tribution functions of the others. In this chapter, the dependency of input data and
its effect on the power estimation is investigated. The lag-one temporal correla-
tions, e.g. between A[n] and A[n − 1], are focused only because correlation of
two non-consecutive random variables (e.g. A[n] and A[n − 2]) will not affect
the switching activity, since a transition is defined based on the current value of a
node and its previous value only. Therefore, correlations between non-consecutive
values do not contribute to the transition activity.

A complete coverage of the input signal spatiotemporal correlations requires
knowledge about joint probabilities of all input bits in two consecutive time in-
stance. Let I be the set of all input bits ai and bj for 0 ≤ i ≤ M − 1 and

95

96 Chapter 5. PPRT Optimization in Presence of Highly Correlated Inputs

0 ≤ j ≤ N − 1:

I = {a0, . . . , ai, . . . , aM−1, b0, . . . , bj , . . . , bN−1} (5.1)

The complete spatiotemporal correlations are described as a joint probability dis-
tribution function of all variables in I . Indeed considering thorough correlations
is difficult and impractical even for small size multipliers. To make the problem
more tractable, the spatiotemporal correlations are approximated. In the power es-
timator described in Section 3.1.1, the spatial correlations are approximated using
pairwise correlation coefficients.

The remainder of this chapter describes a method to integrate the spatiotem-
poral correlations of inputs in the power estimator and multiplier optimization
algorithm in Figure 4.9.

5.1 Spatiotemporal Correlation of Inputs

The inputs of a multiplier can have very complicated dependencies. Let us con-
sider three simple examples at word-level.

1.
∣∣∣A[n] − A[n − 1]

∣∣∣ < �A

2. A[n] × B[n] > 0

3. A[n] + B[n − 1] > 0

A[n], A[n − 1], B[n] and B[n − 1] are independent if not otherwise stated.
In example 1, A and B are independent but it is known that two consecutive

values of input A can not have changes larger than a predefined value �A. In
example 2, random variables A[n] and B[n] have the same sign but their sign
is independent from that of their previous values. Example 3 illustrates more
complex spatiotemporal correlation where the current value of A is correlated to
the previous value of B. In example 1, only temporal correlations are present
with no spatial correlations. In example 2, spatial correlations are present with
no temporal correlations. In example 3, a combination of spatial and temporal
correlations are present. Obviously, the spatiotemporal correlations at word-level
will translate into spatiotemporal correlations at bit-level. Similar situations can
appear at bit-level. Two arbitrary bits from I (Eq. 5.1) can have pure temporal
correlations, pure spatial correlations, or a combination of temporal and spatial
correlations.

5.1. Spatiotemporal Correlation of Inputs 97

5.1.1 Modeling Spatial Correlations

The spatial correlations in between circuit nodes have two main sources: First is
the structural dependency due to reconvergent fanouts (RFO). In the SWS power
estimator, this is modeled using correlation coefficients. The pairwise correlation
coefficient between two circuit nodes A and B is defined in Eq. 3.10. The corre-
lation coefficients can only model pure spatial correlation as they are independent
of time variable n (stationary random process).

The second source of the spatial correlations is due to pattern dependencies at
the primary inputs. The correlation coefficients can also be defined for primary
input bits. The value of correlation coefficients can be estimated statistically from
a large realistic input data stream.

The SWS power estimator described in Chapter 3.1.1 utilizes the correlation
coefficients to compute the occurrence probabilities of the waveforms. In Er-
colani’s method [52] for computing correlation coefficients (Appendix A), the
correlation coefficients at the output of a logic gate are estimated using the cor-
relation coefficients of the inputs. Under the independent input assumption, the
correlation coefficients of the primary inputs are equal to 1. Now that the inputs
are correlated, the estimated correlation coefficients in Eq. 5.4 can simply be used
as starting point to compute the correlation coefficients for the rest of the nodes
using Ercolani’s method. In this way the spatial correlations between the primary
inputs will be included in the computations.

The spatial correlations of primary inputs are given to the power estimator as a
pairwise correlation coefficient matrix, C. The value in the i:th row of j:th column
in this matrix is the estimated correlation coefficient for the Ii and Ij (i.e., the i:th
and j:th element in the set I).

Ii =

{
ai if i ≤ M
bi−M if M < i ≤ M + N

(5.2)

C =
[
κIi,Ij

]
(M+N)×(M+N)

(5.3)

where κIi,Ij
is defined as

κIi,Ij
=

p(Ii = 1 ∧ Ij = 1)

p(Ii = 1)p(Ij = 1)
(5.4)

The values of correlation coefficients for primary inputs can be estimated statis-
tically from the large realistic input streams, having a given spatial correlation at

98 Chapter 5. PPRT Optimization in Presence of Highly Correlated Inputs

word-level. Using NS samples of primary input bits, κIi,Ij
can be approximated

as:

κIi,Ij
= lim

NS→+∞

1

NS

NS−1∑
n=0

(Ii[n] · Ij [n])(
1

NS

NS−1∑
n=0

Ii[n]

)(
1

NS

NS−1∑
n=0

Ij[n]

) (5.5)

Choosing NS = 100000 gives a good approximation for most applications.

5.1.2 Modeling Temporal Correlations

The temporal correlations are very important and estimation of power without
considering temporal correlations can be extremely inaccurate. Methods for esti-
mating the transition activities at bit-level from word-level input statistics (mean,
variance and temporal correlation) are proposed in the past [98, 153]. Landman
and Rabaey in [98] proposed a dual bit type (DBT) method to overcome the prob-
lem of temporal dependencies. The word-level lag-one temporal correlation is
represented by ρ:

ρ =
E[X[n]X[n − 1]] − E[X[n]]2

E[X[n]2] − E[X[n]]2
=

RXX(1) − μ2

σ2
(5.6)

DBT divides a word with gaussian distribution into three regions depending on
the switching activities. These regions are LSB, linear, and MSB, as depicted in
Figure 5.1. The bits in the LSB region have random activities with 0.5 switching
probability at the input bits. However, the MSB region shows correlated activities.
For simplicity, DBT approximates the input data with two types of bits (neglecting
the linear region): Uniform white noise (UWN) for LSBs and sign for MSBs. The
break points of these regions are empirically defined as [98]:

BP0 = log2 σ + log2

(√
1 − ρ2 + |ρ|

8

)
BP1 = log2(|μ| + 3σ)
BP = BP0+BP1

2

(5.7)

In order to include the temporal correlations in the SWS power estimator, a
small change is necessary in the initialization of the SWSs for primary inputs.
The SWSs for primary input nodes are initialized by four waveforms holding one,

5.1. Spatiotemporal Correlation of Inputs 99

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MSB BP
1
 BP BP

0
 LSB

T
ra

ns
iti

on
 p

ro
ba

bi
lit

y

in

cr
ea

si
ng

 ρ

ρ=−0.9

ρ=0

ρ=0.9

Sign Region UWN Region

5����

Figure 5.1: Transition activity vs. bit positions with varying ρ

100 Chapter 5. PPRT Optimization in Presence of Highly Correlated Inputs

holding zero, zero-one transition and one-zero transition (Chapter 3.1.1.1).⎧⎪⎪⎨⎪⎪⎩
W11 = Ψ(−∞, +∞)
W00 = Ψ(+∞,−∞)
W01 = Ψ(0, +∞)
W10 = Ψ(+∞, 0)

⎫⎪⎪⎬⎪⎪⎭
Under the temporal independence assumption for input values before and after

time 0, occurrence probabilities can be assigned to each waveform based on their
static probabilities. Let px be the one-probability at an arbitrary input node x.
Then 1 − px will be zero-probability at this node. From Eq. 3.9, the initialization
of waveform probabilities for uncorrelated primary inputs are as:⎧⎪⎪⎨⎪⎪⎩

p(W11) = px × px = p2
x

p(W00) = (1 − px) × (1 − px) = 1 − 2px + p2
x

p(W01) = (1 − px) × px = px − p2
x

p(W10) = px × (1 − px) = px − p2
x

When the inputs have temporal correlation, the occurrence probabilities of the
waveforms will be different. Using Eq. 5.6, the lag-one temporal correlation ratio
for a bit x is defined as:

ρx =
p {(x[n] = 1) ∧ (x[n − 1] = 1)} − p2

x

px − p2
x

(5.8)

The maximum magnitude of ρx is 1. ρx is 0 if x does not have temporal depen-
dence. Two methods (exact and approximative) for computing bit-level temporal
correlations from word-level signal statistics are presented in [153]. In the ex-
periments presented in Section 5.3 the temporal correlations are approximated by
profiling a large number of input samples (100000 samples), which satisfy the
properties assumed in the experiment (i.e., the word-level probability distribution
and the word-level temporal correlation). This provides a good accuracy for the
computed bit-level temporal correlations.

In the presence of temporal correlations, the occurrence probabilities of the
initial waveforms in Eq. 5.8 are set to:⎧⎪⎪⎨⎪⎪⎩

p(W11) = p {(x[n − 1] = 1) ∧ (x[n] = 1)} = ρx(px − p2
x) + p2

x

p(W00) = p {(x[n − 1] = 0) ∧ (x[n] = 0)} = ρx(px − p2
x) + (1 − px)

2

p(W01) = p {(x[n − 1] = 0) ∧ (x[n] = 1)} = (1 − ρx)(px − p2
x)

p(W10) = p {(x[n − 1] = 1) ∧ (x[n] = 0)} = (1 − ρx)(px − p2
x)

(5.9)

5.2. Design Methodology 101

Assigning the value of temporal correlation to zero (i.e., temporal independence)
will result in the probabilities in Eq. 3.9.

The lag-one temporal correlation ratio, ρx, can be approximated statistically
using a large input stream:

ρx = lim
NS→+∞

1

NS − 1

NS−1∑
n=1

(x[n] · x[n − 1]) −
(

1

NS

NS−1∑
n=0

x[n]

)2

1

NS

NS−1∑
n=0

x[n] −
(

1

NS

NS−1∑
n=0

x[n]

)2 (5.10)

where px = lim
NS→+∞

1

NS

NS−1∑
n=0

x[n] is the one-probability at node x (Eq. 1.19).

Using Eq. 5.10, the lag-one temporal correlation ratio vector R is computed
for the primary inputs (Ii ∈ I):

R = [ρIi
]1×(M+N) (5.11)

R is a vector of length M + N , where the i : th element in this vector represents
the lag-one temporal correlation ratio for Ii ∈ I .

5.2 Design Methodology

Including the information about spatiotemporal correlations between the multi-
plier’s inputs improves the optimization algorithm. This information is captured
using lag-one temporal correlation ratios (R) and pairwise correlation coefficients
(C) for primary inputs. The design methodology is therefore generalized to in-
clude such inputs as summarized in Figure 5.2. First, large input streams are
generated that satisfy the desired properties (e.g. correlations and static probabili-
ties). For most applications, generating such input streams is easier than comput-
ing static-probabilities and classifying the correlations. Indeed such input streams
are often needed to estimate static probabilities and dependencies. After generat-
ing the input streams, one-probabilities, lag-one temporal correlation ratios, and
pairwise correlation coefficients can easily be computed using Eq. 1.19, Eq. 5.10
and Eq. 5.5 respectively. They will be used in the SWS power estimator. Using
the computed lag-one temporal correlation ratios and one-probabilities, the SWSs
for primary inputs are initialized using the waveforms in Eq. 5.9. At this point the

102 Chapter 5. PPRT Optimization in Presence of Highly Correlated Inputs

=���	����������	��	��2�
:�	;�	;������������	��

+�2��	�������������	��8
�������	2������������	���
��	������������:���������	���
��������	���������2��
�����	�

*	��	

6��	����?����	�����
������	�
�	����=

����2�?���:�
���������	�����2�
��������	��	��

&��

��������2��@

�����	���@
�

�

1
;�������������'

1������

Figure 5.2: The generalized design methodology

5.3. Experiments 103

progressive PPRT design algorithm in Figure 4.9 can be utilized. The pairwise
correlation coefficients will be used for computing the correlation coefficients for
intermediate nodes.

5.3 Experiments

This section is divided into three parts. The first part is studying the effect of
word-level temporal correlation on multiplier inputs. The second part deals with
cases where the inputs are spatially correlated. The third part is optimization of
a multiplier used in a multiply-accumulate (MAC) based finite-length impulse
response (FIR) filter.

5.3.1 Temporal correlations of input words

In this experiment a signed 16 × 16-bit multiplier is considered. The input bit-
vectors are assumed to be random variables with normal distributions. The nor-
mal distribution also called Laplace-Gaussian distribution, is defined using two
parameters, the mean μ and variance σ. The normal distribution arises in many
areas. Many natural signals and physical phenomena (like noise) can be approx-
imated by the normal distribution. The probability density function (PDF) of the
normal distribution is given by the Gaussian function:

fX(X) =
1

σ
√

2π
exp

(
−(X − μ)2

2σ2

)
(5.12)

The mean μ and σ are kept constant during this experiment (μ = 0 and σ = 28).
The word-level lag-one temporal correlation ratio between the input words, ρ, is
altered (ρ = 0,±0.5,±0.9 and ±0.99). For each ρ, after profiling the inputs and
computing the vector R (Eq. 5.11) and the matrix C (Eq. 5.3), the optimized and
worst-case multipliers are generated using algorithms in Figures 4.9 and 4.10. For
simpilicity, a Gaussian input stream with word-level temporal correlation ratio ρ
represented using 16 bits is denoted as Φ16

ρ in this section. Figures 5.3 illustrates
the lag-one temporal correlation ratio vector (R) for Φ16

0.99 input pattern. The sign
and UWN regions can be seen in this figure. As can be seen in Figure 5.3, the
sign regions of input words have strong temporal correlations. Figure 5.4 illus-
trates the pairwise correlation coefficient matrix (C) for Φ16

0.99 input pattern using
different circle radii. As it can be seen in this figure, the input bits (specially
significant bits) are not independent spatially and spatial correlations are present

104 Chapter 5. PPRT Optimization in Presence of Highly Correlated Inputs

Table 5.1: Average number of transitions for different multipliers with temporally

correlated inputs
Input pattern applied to both operands

Φ16
0 Φ16

0.5 Φ16
0.9 Φ16

0.99 Φ16
−0.5 Φ16

−0.9 Φ16
−0.99 Ω16

16

MOPT
Φ16

0 ,Φ16
0

1019 970 881 681 1073 1138 1151 1195

MOPT
Φ16

0.5,Φ16
0.5

1024 962 881 675 1079 1145 1156 1205

MOPT
Φ16

0.9,Φ16
0.9

1028 967 875 668 1082 1141 1160 1210

MOPT
Φ16

0.99,Φ16
0.99

1045 985 891 655 1105 1171 1190 1232

MOPT
Φ16

−0.5,Φ16
−0.5

1027 972 889 686 1071 1131 1153 1201

MOPT
Φ16

−0.9,Φ16
−0.9

1040 988 909 690 1088 1126 1144 1205

MOPT
Φ16

−0.99,Φ16
−0.99

1039 988 907 699 1084 1135 1128 1206

MOPT
Ω16

16,Ω16
16

1034 984 900 731 1108 1166 1193 1189

MWC
Φ16

0 ,Φ16
0

1340 1260 1147 854 1399 1479 1490 1463

MWC
Φ16

0.5,Φ16
0.5

1336 1265 1149 862 1396 1479 1486 1460

MWC
Φ16

0.9,Φ16
0.9

1334 1264 1154 868 1395 1469 1482 1455

MWC
Φ16

0.99,Φ16
0.99

1317 1248 1140 872 1374 1442 1459 1434

MWC
Φ16

−0.5,Φ16
−0.5

1327 1248 1132 846 1405 1470 1492 1463

MWC
Φ16

−0.9,Φ16
−0.9

1323 1238 1121 842 1394 1482 1495 1461

MWC
Φ16

−0.99,Φ16
−0.99

1321 1243 1126 839 1390 1474 1504 1457

MRND 1223 1157 1056 798 1283 1355 1370 1378

5.3. Experiments 105

0

0.2

0.4

0.6

0.8

1

I
b

15
b

7
b

0
a

15
a

7
a

0

Figure 5.3: Illustration of lag-one temporal correlation ratio vector (R) for Φ16
0.99

for the sign region (Figure 5.4). After computing R and C, these values are fed
into the optimization algorithm as the primary correlations. The results of the
optimization are shown in Table 5.1. MOPT

Φ16
ρ ,Φ16

ρ
and MWC

Φ16
ρ ,Φ16

ρ
are optimized and

worst-case multipliers for the input streams Φ16
ρ at both input operands. MOPT

Ω16
16,Ω16

16

is, similar to the experiments in Chapter 4, the optimized multiplier for uncorre-
lated input stream with 0.5 one-probabilities for all bits. The numbers in the last
row (MRND) are the mean values for 10 randomly generated multipliers. The op-
timized multipliers exhibit about 17% and 24% less transitions compared to the
random multipliers and worst-case multipliers, respectively. Note that all input
streams (Φ16

ρ s and Ω16
16) have 0.5 one-probabilities. The difference is in the spa-

tiotemporal correlations of the inputs. Significant reduction in the average number
of transitions can be achieved by considering the spatiotemporal correlations. For
example, MOPT

Φ16
0.99,Φ16

0.99
has about 10% less transisions compared to MOPT

Ω16
16,Ω16

16
, when

the input streams Φ16
0.99 are applied to the inputs.

5.3.2 Spatial correlations of input words

Four different word-level spatial correlation conditions are assumed in this exper-
iment:

• A = B

• A + B ≤ 0

• |A − B| < 256

• A × B ≥ 1024

106 Chapter 5. PPRT Optimization in Presence of Highly Correlated Inputs

"$� �$0 �$/ �$- �$" �$�

a
15

a
7

a
0

b
15

b
7

b
0

a
15

a
7

a
0

b
15

b
7

b
0

Figure 5.4: Illustration of pairwise correlation coefficient matrix (C)
for Φ16

0.99 using circle radii

5.3. Experiments 107

"$� �$0 �$/ �$- �$" �$�

b
0

b
7

b
15

a
0

a
7

a
15

a
15

a
7

a
0

b
15

b
7

b
0

Figure 5.5: Illustration of pairwise correlation coefficient matrix (C)
for correlated inputs (A = B) using circle radii

108 Chapter 5. PPRT Optimization in Presence of Highly Correlated Inputs

Table 5.2: Average number of transitions for different multipliers with spatially

correlated inputs
Correlation Average number of transitions

Condition Optimized Worst-case MOPT
Ω16

16,Ω16
16

MRND

Uncorrelated 1189 1456 1189 1379

A = B 951 1471 1179 1350

A + B ≤ 0 1102 1408 1143 1335

|A − B| < 256 1092 1458 1181 1366

A × B ≥ 1024 1127 1447 1164 1363

Only one of the correlation conditions are used at a time. The stated condition
is the only dependency between the input words. No temporal correlations are
involved in this experiment. In order to generate the input streams, first the input
word A is selected randomly with a uniform distribution. Then an interval is spec-
ified for B such that it satisfies the correlation condition. B is selected randomly
from this interval. The pairwise correlation coefficient matrix for primary inputs
(C) is visualized in Figure 5.5 for the case with A = B condition. After computing
the pairwise correlation coefficients using Eq. 5.5, the optimized and worst-case
multipliers are generated. Table 5.2 summarizes the average number of transi-
tions for the optimized, worst-case and random multipliers. Each row specifies
the input streams that is applied to the multipliers. For example the first row cor-
responds to uncorrelated input streams (also denoted as Ω16

16). The number in the
second column of each row is the average number of transitions for the multiplier
that is optimized for the corresponding input stream. Similarly, the third column
gives the average number of transitions for the worst-case multiplers. Table 5.2
also compares the optimized multipliers with MOPT

Ω16
16,Ω16

16
. The column identified as

MRND represents the mean values for 10 randomly generated multipliers. For
some of the correlation conditions including the dependencies in the optimization
program results in significantly better designs. For example, the multiplier that
is optimized for the condition A = B, has 19.3%, 29.6%, and 35.4% less tran-
sitions compared to MOPT

Ω16
16,Ω16

16
, random multipliers and the worst-case multiplier

respectively.

5.3. Experiments 109

5.3.3 MAC-based FIR filter

The last experiment in this section is optimizing the multiplier used to implement
an FIR filter. The output of an N:th-order FIR filter is computed as

Y [n] =

N∑
i=0

H [i]X[n − i] (5.13)

where the filter impulse response, H [n], determines the frequency response of the
filter. The transfer function of the FIR filter is

H(z) =

N∑
i=0

H [i]z−i (5.14)

The two most common filter structures for realizing the transfer function in Eq. 5.14
are the direct form and the transposed direct form structures depicted in Figure 5.6.
As it can be seen from Figure 5.6, the basic arithmetic operation is a multiplication
followed by an addition. This is usually called a multiply-accumulate (MAC) op-
eration and is commonly supported in programmable DSP processors [99]. In this
experiment it is assumed that the FIR filter is realized using the transposed direct
form and the input data and coefficients are stored in separate memories as shown
in Figure 5.7. Each output is computed by performing (N + 1) MAC operations.
The passband and stopband edges are at 0.2π and 0.3π radians, respectively. The
multiplier used is signed 24 × 24-bits. The filter order is 64. For the given spec-
ifications, the filter is designed using the Park-McClellan method [116], which
is based on the Remez algorithm [156]. For simplicity the same weights are as-
signed for the passband and the stopband ripples. The filter coefficients are scaled
by a power of two such that the magnitude of the largest coefficients is represented
using all available bits, i.e. 0.5 ≤ max (|H [i]|) < 1.

The input data to the described filter is assumed to be uncorrelated and all
input bits have 0.5 one-probabilities. Each output is computed by performing 65
MAC operations. Therefore one of the operands (the data input) is uncorrelated
denoted by Ω24

24. The other operand (the coefficient input) is connected to the
filter coefficients in the natural order (i.e., without the coefficient reordering tech-
niques). Since the filter coefficients appear in the same order in each iteration,
therefore, they are correlated. By profiling the coefficients, the lag-one temporal
correlation ratio vector, R (Eq. 5.11), and pairwise correlation coefficient matrix,
C (Eq. 5.3), can be computed and used for the optimization. Figure 5.8 illustrates
C using circle radii. The results of optimizations are shown in Table 5.3. The

110 Chapter 5. PPRT Optimization in Presence of Highly Correlated Inputs

�

�

�

�

)A�B)A�B

�

�

)A"B

�

�

)A#B

�

�

)A��"B

�

�

)A���B)A�B

� �

)A�B

� �

)A�B

� �

)A"B

�

)A#B

� � �

)A���B)A�B

CA�B

DA�B

CA�B

DA�B

���

���

Figure 5.6: FIR filter implementation
(a) direct form and (b) transposed form FIR filter structure

%�	�
22��

+�������	
22��

'���	�

Figure 5.7: Multiply accumulate architecture
suitable for realizing direct form FIR filters

5.3. Experiments 111

Table 5.3: Average number of transitions for MAC-based FIR filter
Multiplier Ω24

24 is applied to data input Ω24
24 is applied to data

structure Filter coefficients are applied to coefficient input and coefficient inputs

MOPT
Ω24

24,FIR Coefs
3004.9 3105.2

MWC
Ω24

24,FIR Coefs
3826.4 3807.5

MOPT
Ω24

24,Ω24
24

3097.3 3064.0

MRND 3701.5 3678.3

optimization using the dependency information reduces the number of transitions
with 3% compared to MOPT

Ω24
24,Ω24

24
. The reduction is 18.8% and 21.5% compared to

random multipliers and the worst-case multiplier, respectively.

112 Chapter 5. PPRT Optimization in Presence of Highly Correlated Inputs

"$� �$0 �$/ �$- �$" �$�"$""$-"$/"$0#$�#$"#$-#$/ �$0 �$/ �$- �$"

b
11

b
0

b
23

a
23

a
11

a
0

a
23

a
11

a
0

b
23

b
11

b
0

Figure 5.8: Illustration of pairwise correlation coefficient matrix (C)
for the MAC-based FIR filter using circle radii

Chapter 6

Reducing the Static Power for the
PPRT

The feature size shrinking has posed a new design challenge as the leakage power
dominates the dynamic power on the chip. Traditionally, chip area, speed and
dynamic power have been the main criteria in DSP systems design. However, the
static power reduction should be given a high priority for a system that is mostly
in idle state and operates in short intervals. This is becoming even more important
for the CMOS technologies with channel size below 100nm [86]. Indeed, circuit
simulations reveal that in the 65nm technology, subthreshold leakage power can
be as much as 60% of total chip power in high operation temperatures [150].

In Chapters 4 and 5 optimization methods for dynamic power are introduced.
In this chapter the arithmetically equivalent implementations of the PPRT will be
utilized for optimization of the power dissipation due to leakage. In the methods
for dynamic power optimization (Chapters 4 and 5), an estimator for dynamic
power is utilized. Similarly, in the method for static power optimization, a static
power estimator is required. The static power estimator described in Chapter 3.2
is utilized in this method.

Different permutations of partial products will result in different static prob-
abilities for the intermediate nodes. Meanwhile, different static probabilities for
internal nodes will result in different leakage current values. As discussed in
Chapter 3.2, the amount of leakage current in a logic gate strongly depends on its
input values [67, 135]. The static probabilities are estimated using the Ercolani’s
method described in Appendix A. When spatial correlations are present between
primary inputs of the multiplier, they can be included in the computations by

113

114 Chapter 6. Reducing the Static Power for the PPRT

feeding in the pairwise correlation coefficient matrix (C) defined in Eq. 5.3. After
computing the static probabilities, the static power is estimated using Eq. 3.15.

An important difference must be emphasized between the technique intro-
duced in this chapter for reducing the total leakage current and methods intro-
duced in [1, 3, 67]. In the earlier methods for reducing the static power dissipa-
tion, it is assumed that the circuit will enter a stand-by mode when it is idle and
in this stand-by mode the leakage currents are reduced by utilizing low leakage
transistors or assigning optimum input vectors to the circuit input nodes. How-
ever, the proposed technique in this chapter ensures reduction in static power in
both operation phase and idle phase. This is becoming even more important as the
power dissipation due to leakage becomes comparable with the dynamic power
consumption [125].

6.1 Progressive Reduction-Tree Design

By changing the cost function in the progressive reduction-tree design algorithm
in Chapters 4 and 5, from dynamic power estimator to static power estimator, a
new optimizer can be achieved. This optimizer reduces the overall static power
consumption in the reduction-tree. Figure 6.1 summarizes the proposed method
for progressive reduction-tree design, minimizing static power consumption. The
algorithm starts with initialization of the circuit to primary PPs generated by a
suitable algorithm. After the PPs are generated, the multiplier structure is pro-
gressively designed similar to the algorithm in Figure 4.9. The function com-

pute probabilities() computes static probabilities for the nodes of the multiplier cir-
cuit for which probabilities are not computed earlier. Note that each time a circuit
portion is appended to TheMultiplier, this function is executed, which computes the
static probabilities for the new portion. The static power estimator in this loop
(estimate static power) computes the static power exclusively for the current stage
being designed, i.e., the current layer of full- and half-adders.

6.1.1 Experiments

The algorithm shown in Figure 6.1 optimizes the multiplier for minimum static
power consumption. An algorithm called worst case multipler for static power gen-
erates a multiplier that is connected in a worst-case fashion to consume maxi-
mum static power. Indeed optimized multiplier for static power is simply converted
to worst case multipler for static power by altering the estimate static power function

6.1. Progressive Reduction-Tree Design 115

optimized multiplier for static power(input static probabilities and their correlation coefficients)
{

TheMultiplier=∅;
M0=generate PPs(operand sizes);
TheMultiplier.append(PPG circuitry);
compute probabilities(TheMultiplier);
i=0;
while (‖Mi‖ > 2)
{

[Fi, Hi]=reduction scheme(Mi);
Mi+1=apply FA HA(Mi, Fi, Hi);
for current col=1 to number of columns in Mi do
{

current perm=random permutation of the PPs in current col of Mi;
P static

min =+∞;
α=α0;
for current iteration=1 to number of iterations do
{

old perm=current perm;
swap two random positions in current perm;
P static=estimate static power(Fi, Hi, current perm);
if (P static < P static

min)
P static

min =P static;
else
{

r=uniform random (r ∈ [0, 1));

if (r < e
Pstatic

min −P static

α)
P static

min =P static;
else

current perm=old perm;
}
α= α

τ
;

}
reorder current col of Mi as current perm;

}
TheMultiplier.append(Mi, Fi, Hi);
compute probabilities(TheMultiplier);
i=i+1;

}
TheMultiplier.append(final CPA(Mi));
compute probabilities(TheMultiplier);

}

Figure 6.1: Progressive reduction-tree design using static power estimator

116 Chapter 6. Reducing the Static Power for the PPRT

to return the negated estimated power value rather the power value itself. This
ensures that the algorithm minimizes the negated static power or maximizes the
actual static power. These algorithms are implemented in C++. Inputs to the
optimization program are the static probabilities of the primary inputs and their
correlation coefficients (the pairwise correlation coefficient matrix, C). After com-
pletion of the optimization algorithm, the equivalent VHDL code for the multiplier
is generated. This VHDL code is then simulated using the ModelSim logic simu-
lator from Mentor Graphics, collecting actual static probabilities for all nodes in
the circuit. The simulation is carried out for 10000 samples with the input char-
acteristics that is assumed for optimization. These probabilities, together with the
lookup-tables for leakage currents of the logic gates in 65nm CMOS library, are
used to calculate the static power consumption for the multipliers. The results are
reported in Tables 6.1 and 6.2.

In the first part of the experiments in this chapter, independent primary input
bits are connected to the multiplier; i.e., the correlation coefficients are set to 1 for
primary inputs. Assuming 0.5 as one-probabilities of the independent input bits
will result in a uniform distribution for the input operands in the interval [0, 2N)
where N is the operand word-length. This type of data distribution appears fre-
quently specially in computation units where one multiplier is a shared hardware
resource between several simultaneously executed applications. In addition to the
uniform input distribution, log-normal input distribution is examined. The log-
normal distribution is associated to any random variable whose logarithm is nor-
mally distributed. A log-normal distribution results if the variable is the product of
a large number of independent, identically-distributed variables. Table 6.1 com-
pares the effects of applying the optimization algorithm on unsigned multipliers
with different sizes and different input probability distributions. The second col-
umn in Table 6.1 specifies the probability distribution of the input bits. UD stands
for the uniform distribution where all input bits have one-probabilities equal to
0.5. LN1 and LN2 stand for log-normally distributed inputs with μ = ln 28 and
μ = ln 210, respectively, where μ is the mean of the variables logarithm (the stan-
dard deviation of the variable’s logarithm is assumed to be 1). The mean value of a
variable with LN1 (or LN2) distribution is 28 (or 210). The static power consump-
tion for optimized, worst-case and random multipliers are given in the third, forth,
and fifth columns, respectively. The number reported as random multiplier is the
average static-power for 10 multipliers where the interconnections are chosen ran-
domly. The reduction in static power consumption ranges from 15.6% to 17.3%
compared to the worst-case circuits when the inputs have a uniform distribution
(UD). The static power for randomly interconnected multipliers lie between the

6.1. Progressive Reduction-Tree Design 117

Table 6.1: Unsigned multipliers with independent input bits

Operand Input Static Power [nW]
Size Type Optimized Worst-Case Random

12 × 12 UD 518 614 577
12 × 12 LN1 513 595 563
16 × 16 UD 994 1187 1114
16 × 16 LN1 979 1097 1050
16 × 16 LN2 984 1134 1075
24 × 24 UD 2416 2921 2732
24 × 24 LN1 2382 2578 2501
24 × 24 LN2 2387 2621 2531

optimized power and the worst-case power (biased towards worst-case numbers).
The reduction ratio is slightly less for log-normally distributed inputs where the
most significant bits have one-probabilities close to zero. The computation delay
and dynamic power consumption of the three types of multipliers are also inves-
tigated. The difference between the optimized circuits and the worst-case and
random circuits are negligible. The minor variations in the speed and dynamic
power are random in direction; i.e., the reduction in static power consumption
seems to be orthogonal with the reduction in dynamic power consumption and/or
computation delay. In Section 6.2, it is shown how both dynamic and static power
can be optimized at the same time.

In the second part of the experiments, it is assumed that the primary input
operands are not independent. The spatial correlations of primary inputs can then
be captured using correlation coefficients. In this case, instead of initializing the
correlation coefficients to 1, they are initialized to their real values. These val-
ues are given to the optimization algorithm in a matrix form (C). Four different
correlation conditions are considered in Table 6.2 for signed 16 × 16 multipli-
ers. The one-probabilities of the input bits are set equal to 0.5. A correlation
is assumed to exist between the multiplier operands A and B, where A and B
are two’s complement bit-vectors. The pairwise correlation coefficients between
the input bits are computed by applying the correlation condition (the first col-
umn in Table 6.2) on a large number of random numbers (100000 samples) using
Eq. 5.5. The rightmost column in Table 6.2 gives the static power consumption of

118 Chapter 6. Reducing the Static Power for the PPRT

Table 6.2: Signed 16 × 16 multipliers with correlated input bits

Correlation Static Power [nW]
Condition Optimized Worst-Case Random OPT-UC

Uncorrelated 990 1182 1101 990
A + B ≤ 0 991 1203 1107 1009

|A − B| < 256 978 1197 1111 1031
AB ≥ 1024 986 1189 1096 997

A = B 954 1173 1107 1022

the multiplier OPT-UC when inputs with each of the specified correlation condi-
tions are applied. OPT-UC is a 16-bit signed multiplier optimized for uncorrelated
inputs. As can be seen, applying inputs with spatial correlations to OPT-UC in-
creases the static power consumption compared to having uncorrelated inputs. In
comparison, the static power consumption is unchanged, or even reduced, when
the multiplier is optimized according to the current correlation condition. This is
seen from column Optimized. The reduction in static power consumption using
the optimization algorithm is between 10.0 and 14.7% compared to the random
multipliers and about 17.1–18.7% compared to the worst-case multipliers. Con-
sidering the spatial correlations reduces the static power even further compared
to OPT-UC. For example, for the correlation condition A = B, the optimized
multiplier consumes 6.7% less power compared to OPT-UC.

6.2 Reducing Total Power for the PPRT

The total power dissipation in a CMOS circuit is a combination of static and dy-
namic power as shown in Eq. 1.1. That is

PTotal = PStatic + PDynamic

The dynamic power was once the dominant power consumption term. However, as
the result of technology scaling and threshold voltage decreasing, leakage power
will soon account for a large portion of total power consumption. The gradual
emerging of the leakage power problem has initiated a number of research activi-
ties in the past decade. Nevertheless, the majority of power reduction techniques

6.2. Reducing Total Power for the PPRT 119

proposed in the past focus on either dynamic or static power consumption instead
of considering the total power. The progressive PPRT design algorithm with dy-
namic power as its cost function was discussed in Chapters 4 and 5. In this chap-
ter, by implementing the static power estimator and changing the cost function
to static power, the progressive PPRT design algorithm was altered to minimize
static power. In this section, by combining the two methods, the progressive PPRT
design algorithm is generalized to reduce the total power.

When a circuit is in standby situation, the dynamic power will be zero and the
total power will be equal to PStatic. Let tactive(T) be the amount of time that the
circuit is active (not in standby) within the time interval T . Then ω can be defined
as the ratio between tactive(T) and T , when T is infinitely large; i.e

ω = lim
T
→∞

tactive(T)

T
(6.1)

ω lies between 0 to 1. The total power for systems with standby periods can be
then written as

PTotal = PStatic + ωPDynamic (6.2)

Figure 6.2 summarizes the progressive PPRT design algorithm for total power
reduction for the given value of ω. Low values of ω gives larger weight to the
static power, while large values bias the optimization toward dynamic power re-
duction. The total power is computed as weighted sum of static power and dy-
namic power. estimate power SWS estimates the average number of transitions.
Therefore the average number of transitions must be converted to power (Eq. 1.8)
which is approximated using the factor λ; i.e. the product of λ and the estimated
average number of transitions approximates the switching power. The dynamic
power depends on the operation frequency. In the reported results in this sec-
tion, λ = 3nW/transition per clock cycle is chosen, which is achieved when the inputs arrive
with clock frequency equal to 1.7MHz. Using this value, at the room temperature
(25◦C), a 16 × 16-bit multiplier consumes about 22% of the total power due to
leakage and 78% of the total power is due to switching.

6.2.1 Experiments

The joint static and dynamic power optimization algorithm in Figure 6.2 is tested
for 16 × 16-bit multipliers and the results are summarized in Table 6.3. The in-
puts are assumed to be independent and random with 0.5 one-probabilities (i.e.
Ω16

16). The multipliers denoted as MOPT
ω=ω0

are optimized using the joint static and

120 Chapter 6. Reducing the Static Power for the PPRT

optimized multiplier(input static probabilities)
{

TheMultiplier=∅;
M0=generate PPs(operand sizes);
TheMultiplier.append(PPG circuitry);
computeSWS(TheMultiplier);
compute probabilities(TheMultiplier);
i=0;
while (‖Mi‖ > 2)
{

[Fi, Hi]=reduction scheme(Mi);
Mi+1=apply FA HA(Mi, Fi, Hi);
for current col=1 to number of columns in Mi do
{

current perm=random permutation of the PPs in current col of Mi;
Pmin=+∞;
α=α0;
for current iteration=1 to number of iterations do
{

old perm=current perm;
swap two random positions in current perm;
P dynamic=estimate power SWS(Fi, Hi, current perm);
P static=estimate static power(Fi, Hi, current perm);
P =P static+ωλP dynamic;
if (P < Pmin)

Pmin=P ;
else
{

r=uniform random (r ∈ [0, 1));

if (r < e
Pmin−P

α)
Pmin=P ;

else
current perm=old perm;

}
α= α

τ
;

}
reorder current col of Mi as current perm;

}
TheMultiplier.append(Mi, Fi, Hi);
computeSWS(TheMultiplier);
compute probabilities(TheMultiplier);
i=i+1;

}
TheMultiplier.append(final CPA(Mi));
computeSWS(TheMultiplier);
compute probabilities(TheMultiplier);

}

Figure 6.2: Progressive PPRT design for total power reduction

6.2. Reducing Total Power for the PPRT 121

Table 6.3: 16 × 16 multipliers optimized for total power

Multiplier Total Power [nW] Static Average number

Structure ω = 0.001 ω = 0.01 ω = 0.1 ω = 1 Power [nW] of Transitions

MOPT
ω=0.001 994.2 1030.9 1398.3 5071.6 990.1 1360.5

MOPT
ω=0.01 994.8 1030.2 1385.0 4933.1 990.8 1314.1

MOPT
ω=0.1 1004.8 1038.5 1376.2 4753.1 1001.0 1250.7

MOPT
ω=1 1027.5 1060.2 1386.5 4649.4 1023.9 1208.5

MOPT
ω=0 994.2 1031.4 1403.0 5119.3 990.1 1376.4

MOPT
Ω16

16,Ω16
16

1103.4 1135.5 1456.6 4667.1 1099.8 1189.1

MWC
ω=0.001 1186.4 1224.0 1599.5 5354.4 1182.3 1390.7

MWC
ω=0.01 1185.8 1224.0 1605.9 5424.2 1181.6 1414.2

MWC
ω=0.1 1175.5 1214.4 1604.0 5499.9 1171.2 1442.9

MWC
ω=1 1153.7 1193.0 1585.2 5508.1 1149.4 1452.9

MWC
ω=0 1186.6 1223.3 1590.8 5265.2 1182.5 1360.9

MWC
Ω16

16,Ω16
16

1106.4 1145.8 1538.9 5470.7 1102.1 1456.2

MRND 1105.5 1142.8 1514.9 5236.6 1101.4 1378.4

122 Chapter 6. Reducing the Static Power for the PPRT

dynamic power optimization algorithm in Figure 6.2 using ω = ω0. Similarly, the
multipliers denoted as MWC

ω=ω0
are the worst-case multipliers using ω = ω0. The

multipliers MOPT
Ω16

16,Ω16
16

and MWC
Ω16

16,Ω16
16

are optimized and worst-case multipliers for
dynamic power (without considering static power), obtained from algorithms in
Figures 4.9 and 4.10 respectively. The numbers in the last row denoted as MRND

are the averaged values for ten randomly generated multipliers. Looking at the
numbers in Table 6.3, it can be seen that compared to random multipliers, 9.2–
13.7% power can be saved using this optimization method. The amounts of power
saving are 14.2–18.3% compared to worst-case multipliers. If the total power is
dominated by the static power (i.e. small values of ω), the optimized multiplier’s
dynamic power is close to that of random multipliers. On the other hand when the
total power is dominated by the dynamic power, the optimized multiplier’s static
power is close to that of random multipliers. This indicates that optimization for
static power and dynamic power are to a large extent orthogonal to each other.

Chapter 7

Optimization of Multipliers
Operating with Variable
Word-Length

The hardware of a digital signal processing (DSP) system can be optimized for the
operation conditions, if these conditions are known in the design phase. In a DSP
system operating with a nondeterministic data set, these operation conditions can
involve probabilistic measures like the distribution of the input data over time and
their correlations. For such systems it can in addition be advantageous to dynam-
ically adapt the computation algorithm based on run-time knowledge about the
operating condition and the current states of the inputs. Such adaptation of, e.g.,
the datapath word-length and other system-level parameters, can significantly im-
prove the computation efficiency, power consumption, robustness, or other merits
of the system. Adaptive modulation [61, ch. 9], adaptive power control [123,134]
and tunable word-length [30,104,127,200] are among the adaptation methods that
have been proposed in the past.

Adaptive word-length variation for example performs a trade off between per-
formance, power consumption and quality of computations. It is shown in [35]
that the problem of word-length optimization in DSP systems belongs to the NP-
complete problem classification. There are several approaches to tackle the prob-
lem of word-length optimization. Some use heuristic methods, and some use
analytical or simulation approaches. These are surveyed in [34]. Word-length
variation affects the quantization error introduced when fixed-point operators are
utilized instead of operators with an ideally infinite accuracy. It is therefore the
acceptable threshold of the quantization error that specifies the minimum number

123

124Chapter 7. Optimization of Multipliers Operating with Variable Word-Length

of bits in a DSP system. In many systems this acceptable threshold can vary over
time based on, e.g., user preferences, operating conditions such as communica-
tion channel noise, and the application that is currently being executed. It is then
advantageous to be able to vary the word-length dynamically. The design-time
word-length optimization methods trade off area, speed and signal quality, while
dynamic word-length variation enables a trade off between power consumption
and signal quality.

Dynamic word-length variation does not necessitate dedicated hardware re-
sources for different word-lengths. The system can keep operating with its hard-
ware resources, but use less number of bits; i.e., fix a number of bits from the least
significant bit (LSB) side to zero (or one) and force no transition on these bits. The
average number of transitions for a multiplier drops approximately quadratically
with the number of inactive bits in the input operands. The amount of saving
is less than the case where there is dedicated hardware for variable word-length
multiplication. However, the dedicated hardware requires additional circuitry to
switch between multipliers.

With evermore important stress on lengthening the battery lifetime in portable
devices, more and more focus has been given to the power consumption in such
systems. Examples of use of dynamic word-length control can be found in [104,
127, 200] for parts of communication systems. [30] introduces dynamic word-
length variation in a 3D graphic texture mapping context. In these systems mul-
tipliers are among the main power consuming parts, and have consequently been
given great attention in this respect.

In the previous chapters, it is shown that using the progressive reduction-tree
design algorithm for uncorrelated input bits in Section 4 and for correlated input
bits in Section 5 can reduce the power consumption in multipliers. In this chapter,
application of these algorithms for systems with varying word-length is studied.
In addition to systems which utilize word-length adaptation techniques for power
saving, the proposed method is applicable for general-purpose processors where
the word-length is defined by the program that at any given time is being exe-
cuted. Through profiling of the target programs for a general-purpose processor,
the power consumption of build-in multipliers can be reduced using the proposed
method. Some of the material in this chapter will be published in [182].

The target application for multipliers with variable word-length are DSP sys-
tems and general-purpose processors. For both application areas the multiplier
is often placed in the critical path and is therefore speed-limiting. Thus, as dis-
cussed in Chapter 2, parallel multipliers are utilized because they offer the best
performance compared to other multiplier types.

7.1. Variable Word-Length 125

Similar to previous chapters, for the reported results in Section 7.2, modified
Baugh-Wooley [6, 70] is used as the 2’s complement multiplier PP generation
method and modified Dadda/Wallace reduction scheme [12] is chosen as the re-
duction scheme. This reduction scheme promises minimal hardware resources
and minimal output vector size.

7.1 Variable Word-Length

Multiplication with variable input word-length is addressed, where only one single
hardware resource is available; i.e., there is no dedicated multiplier for different
word-lengths. The notations introduced in Section 4.2.2 is used in this chapter as
well. Let the bit-vectors A(M bits) and B(N bits) be the input operands to an
M ×N-bit multiplier. The static probabilities of bit-vectors A and B are denoted
as vectors pA and pB respectively. The i:th element of the vector pA represents the
one-probability of the i:th bit of the input A. A multiplier that is optimized using
the algorithm in Figure 4.9, to operate with inputs having pA and pB as their static
probability vectors, is denoted as MOPT

pA,pB
. Similarly the worst-case multiplier is

referred as MWC
pA,pB

. Using the algorithm in Figure 4.10, the interconnect orders in
the worst-case multiplier are chosen so that the power consumption is maximized.
Note that even if a multiplier is optimized at design-time using two specific in-
put static probability vectors, it may at run-time be operating under other input
conditions. These conditions can also change over time.

In the context of systems with variable word-length, the A and B inputs have
l and k active bits, respectively. The M − l and N − k inactive bits in A and
B are assumed to be forced to zero. The number of active bits is variant with
time. The active bits are assumed to have 0.5 one-probabilities. This results in
uniform distributions for the random variables A and B. It is also possible to
assume non-uniform distributions for input words, e.g., a Gaussian distribution.
Landman and Rabaey in [98] show that the lower bit positions in normally dis-
tributed inputs behave like completely random bits with 0.5 one-probabilities. In
the scenario of the word-length variation, the random portion of the input bits is
forced to zero. In this paper it is assumed that the input signals have uniform
distribution. More specifically, the active input bits are uncorrelated and have
0.5 one-probabilities. For simplicity, the notation ΩM

l from Section 4.2.2 is used,
which is a static probability vector of an M-bit uniform random input with l spa-
tiotemporally uncorrelated active bits. The M − l inactive bits are assigned to be
zero; i.e., their one-probabilities are zero.

126Chapter 7. Optimization of Multipliers Operating with Variable Word-Length

Let W = [μi,j]M×N be the word-length probability density matrix (0 ≤ μi,j ≤
1). μi,j is the probability that the M ×N multiplier will have i and j active bits in
the first and the second operands respectively; i.e. μi,j is the probability that ΩM

i

and ΩN
j are applied to A and B respectively. W is visualized in Figure 7.2 using

radii of circles as the probability. W satisfies the following condition:

M∑
i=1

N∑
j=1

μi,j = 1 (7.1)

Let imax and jmax be the row and column indexes of the largest element in
the word-length probability density matrix; i.e., μimax,jmax is the largest element
of the matrix W . Intuitively, in systems with variable word-length, the multiplier
optimization can be performed for this maximal probability. That is, if imax ×
jmax-bit multiplications are the most frequent multiplications, then the multiplier
MOPT

ΩM
imax

,ΩN
jmax

is expected to consume the lowest power consumption over time.

However, as will be demonstrated in the experimental results later in chapter, this
is often not the case.

From the word-length probability density matrix, W , two vectors pA and pB

are obtained which are average static probability vectors for the first and second
operands over an infinitely large time interval, respectively. The η:th element in
pA is equal to:

pA[η] =
1

2
− 1

2

η−1∑
i=1

N∑
j=1

μi,j (7.2)

For example, for the word-length probability density matrix shown in Figure 7.2,
the one-probability for 10th bit is pA[10] = 0.5−0.5×(0.02+0.05+0.10+0.15) =
0.34. Similarly, the ζ :th element in pB is equal to:

pB[ζ] =
1

2
− 1

2

ζ−1∑
j=1

M∑
i=1

μi,j (7.3)

For a multiplier where M = N and the probability density matrix W is symmet-
rical, the notation p is used instead of pA and pB for simplicity. These vectors
are applied as inputs to the optimization algorithm and the optimized multiplier is
denoted as MOPT

pA,pB
. The experimental results shows that this multiplier in general

exhibits better performance for the system with variable word-length compared to
MOPT

ΩM
imax

,ΩN
jmax

.

7.1. Variable Word-Length 127

(b)(a) Time

MSB LSBMSB LSB

Time

Figure 7.1: Correlated and uncorrelated input pattern
(a) Spatiotemporally uncorrelated input bits pattern (b) Correlated input

bits pattern expected in the systems with word-length variation

In the experiments, it is realistically assumed that the changes in word-length
occur seldom and therefore, the power consumption due to the actual word-length
shift is negligible; i.e., the power consumption can be estimated by estimating
the power consumption for various word-lengths separately. The total power con-
sumption Ptot is the weighed sum of the estimated power numbers using the word-
length probability density matrix W .

Ptot =
M∑
i=1

N∑
j=1

μi,jPi,j (7.4)

where Pi,j is the estimated power consumption when the M ×N-bit multiplier is
operating with i × j active bits.

The input bits which are forced to zero due to word-length reduction, are all
equal and with a high probability will not experience changes in the next clock cy-
cle. This leads to a certain pattern of spatiotemporal correlation between the pri-
mary inputs. Figure 7.1(b) depicts such correlated input bits, while Figure 7.1(a)

128Chapter 7. Optimization of Multipliers Operating with Variable Word-Length

shows a sequence of uncorrelated inputs. Figures 7.1(b) and 7.1(a) have equal
one-probabilities over an infinitely large time interval. The only difference is their
spatiotemporal correlations. As will be shown in the experimental results, the
power consumption caused by the two input patterns can be quite different. Hence,
integrating such correlations in the power estimator and optimization will lead to
better solutions compared to using the independence assumption for primary in-
puts. As discussed in Chapter 5, in order to include the spatiotemporal correlations
in the optimization procedure, spatial correlations are captured using a pairwise
correlation coefficient matrix between primary inputs, C (Eq. 5.3). Temporal cor-
relations are captured using a lag-one temporal correlation ratio vector, R defined
in Eq. 5.11. The value of matrix C and vector R can be approximated using a large
number of inputs with the desired input pattern using Eq. 5.5 and Eq. 5.10. In or-
der to be able to observe the effects of including C and R in the optimization, two
optimized multipliers are shown in the results; MOPT

pA,pB
is the optimized multiplier

without considering correlations between primary inputs, i.e., without including C
and R. M̂OPT

pA,pB
is the optimized multiplier with considering correlations between

primary inputs, i.e., including C and R. Therefore, MOPT
pA,pB

and M̂OPT
pA,pB

refer to
different multipliers, as spatiotemporal correlations between primary inputs are
considered for the latter, while it is not considered for the former.

7.2 Experiments

The optimization algorithm, the power estimator and a VHDL generator for the
designed multipliers are implemented in C++. This CAD tool generates optimized
(and worst-case) multipliers for the given static probabilities, spatial correlation
coefficients and temporal correlation ratios. The VHDL code for the generated
multiplier structures are simulated using the ModelSim logic simulator from Men-
tor Graphics and the average number of transitions per clock cycle for all nodes
in the multiplier is reported. The average number of transitions per clock cycle
is obtained from simulating the circuit for 10000 input samples with the desired
pattern and static-probabilities using a fanout-delay model. As the capacitances
within the reduction-tree do not have large variations, the average number of tran-
sitions gives a good estimate of the dynamic power consumption.

In order to have a fair comparison of the optimization method, the optimized
and worst-case multipliers are compared with random multipliers as well. Ten
random multipliers are generated for which the permutations of equal-weight PPs
are chosen randomly regardless of their transition activities. The average number

7.2. Experiments 129

8 16 24 32

8

16

24

32

i

j

0.15

0.10

0.05

0.02

0.020.05
0.10

0.20

0.08 0.05

0.08

0.10

Figure 7.2: Visualization of the word-length probability density matrix
(W) in example 1 using circles’ radii

of transitions reported for random multipliers are mean values obtained from these
ten random multipliers.

7.2.1 General-Purpose Multiplier

In the first part of the experiments, a parallel multiplier that is operating in a
general purpose processor is considered. The programs executed on this processor
are controlled by a variety of applications, exploiting the multiplier with different
resolutions. By profiling a number of applications, a rough estimate of the word-
length probability density matrix can be obtained. As an example, a 32 × 32-bit
multiplier embedded in a general-purpose processor is considered. The word-
length probability density matrix, W , is visualized in Figure 7.2. The radius of a
circle that is centered at location (i, j) is proportional to μi,j; i.e., the probability
of utilizing the multiplier for a i × j-bit multiplication. The non-zero elements

130Chapter 7. Optimization of Multipliers Operating with Variable Word-Length

Table 7.1: Non-zero elements in the word-length probability density matrix (W)

in example 1

μ8,8 0.15 μ8,16 0.10 μ24,24 0.10

μ16,8 0.10 μ16,16 0.20 μ8,32 0.02

μ24,8 0.05 μ32,16 0.08 μ16,32 0.08

μ32,8 0.02 μ24,8 0.05 μ32,32 0.05

Table 7.2: Average number of transitions for different multipliers

Multiplier Input pattern applied to both operands

Structure Ω32
32 Ω32

24 Ω32
16 Ω32

8 pUC pV W

MOPT
Ω32

32,Ω32
32

6324 3574 1339 228 1728 1737

MOPT
Ω32

24,Ω32
24

6828 3322 1312 226 1712 1734

MOPT
Ω32

16,Ω32
16

7109 4053 1250 226 1833 1867

MOPT
Ω32

8 ,Ω32
8

7182 4084 1512 207 1947 1967

MOPT
p,p 6907 3805 1271 217 1693 1781

MWC
p,p 7167 4258 1715 307 2249 2132

M̂OPT
p,p 6755 3579 1265 213 1719 1709

M̂WC
p,p 7369 4371 1749 305 2234 2193

MRND 7258 4180 1588 271 2063 2045

7.2. Experiments 131

of W are given in Table 7.1. For instance, 20% of the multiplications performed
on the multiplier circuit will be 16 × 16-bit multiplication, while only 5% of the
multiplications will be 32 × 32-bit. Using Eq. 7.2 and Eq. 7.3, pA and pB can be
computed as illustrated in Figure 7.3. The least significant bits have lower average
one-probabilities because they are often forced to zero. For the most significant
bits, one-probabilities equal to 0.5.

Table 7.2 summarizes the results for this example. Different multiplier struc-
tures are placed in different rows of this table. The actual input pattern that is
applied to different multiplier structures are shown in different columns. The
one-probability vector p is obtained from Eq. 7.2 and Eq. 7.3. The last column
denoted as pV W is the input pattern with a word-length variation similar to that
of Figure 7.1(b). The input pattern satisfies the word-length probability distribu-
tion shown in Figure 7.2 as well as the spatiotemporal correlations due to minimal
word-length variation assumption discussed in Section 7.1. The second rightmost
column denoted as pUC is the uncorrelated input pattern with static probabilities
equal to p (Figure 7.1.(a)).

The pairwise spatial correlation coefficients and lag-one temporal correlation
ratios for primary input bits are obtained from Eq. 5.5 and Eq. 5.10 by generating
a large number of random inputs (100000 samples) with the desired pattern, i.e.,
similar to Figure 7.1.(b), for word-length variation. The spatial correlation coeffi-
cient matrix for primary input bits (C) is shown in Figure 7.4 using radii of circles
to visualized correlation coefficient values. The lag-one temporal correlation ra-
tio (R) is illustrated in Figure 7.5. Note that the input patterns pUC are pV W are
different because the former has uncorrelated random bits (Figure 7.1.(a)) while
the latter is correlated (Figure 7.1.(b)).

The multiplier M̂OPT
p,p refers to the multiplier that is optimized for p including

the pairwise correlation coefficient matrix (C) for primary inputs in Figure 7.4
and lag-one temporal correlation ratios (R) in Figure 7.5. MOPT

p,p is the optimized

multiplier for pUC . The numbers reported in the last row (MRND) are average
number of transitions for ten random multipliers.

From Table 7.2 it can be seen that M̂WC
p,p has about 28% more transitions com-

pared to M̂OPT
p,p when pV W is applied to input operands. Compared to randomly

interconnected multipliers, the reduction in the average number of transitions is
about 16%. Comparing the two multipliers M̂OPT

p,p and MOPT
p,p , it can be concluded

that considering spatiotemporal correlations for primary inputs, reduces the aver-
age number of transitions even further. An important conclusion from Table 7.2 is
that if information about the word-length probability density matrix in Figure 7.2

132Chapter 7. Optimization of Multipliers Operating with Variable Word-Length

0

0.1

0.2

0.3

0.4

0.5

a
31

a
15

a
0

b
31

b
15

b
0

Figure 7.3: One-probabilities for primary input bits in example 1

is not available, even optimizing the multiplier for its full word-length can reduce
the power consumption significantly. In this example, MOPT

Ω32
32,Ω32

32
experiences 15%

less transitions compared to random multipliers. However, in order to achieve
further reduction in power consumption, information about input patterns is nec-
essary including spatiotemporal correlations.

7.2.2 FFT Processor with Variable Word-Length

A relevant case for using adaptive multiplier word-length could be the Fast Fourier
Transform (FFT) computation in an Orthogonal Frequency Division Multiplexing
(OFDM) receiver. An M ×N-bit multiplier is utilized in the FFT processor. This
multiplier computes the product of the data input (input A with M bits) and the
twiddle factor (input B with N bits). With a fading channel, the channel noise
power experiences large variation in time. Thus, the requirements to quantizing
errors in the receiver DSP will also vary with time. For simplicity a constant signal
power σ2

A = 1 for each subcarrier at the output of the FFT is assumed. Addition-
ally, a Rayleigh fading channel resulting in a subcarrier noise at the FFT output is
assumed. This noise will have a time-varying power σ2

C resulting in a subcarrier
channel signal to noise ratio (CSNR) γ with the exponential distribution:

fγ(γ) =
1

γ
exp(−γ

γ
) (7.5)

where γ is the mean value of the random variable γ. Furthermore, the quantization
noise due to finite multiplier word-lengths should be negligible in comparison to

7.2. Experiments 133

�"#-./<0E�����"�#�-

a
31

a
15

a
0
b

31
b

15
b

0

a
31

a
15

a
0

b
31

b
15

b
0

Figure 7.4: Visualization of the correlation coefficient matrix
(C) between primary input bits in example 1

134Chapter 7. Optimization of Multipliers Operating with Variable Word-Length

0

0.1

0.2

0.3

0.4

0.5

a
31

a
15

a
0

b
31

b
15

b
0

Figure 7.5: Lag-one temporal correlation ratios for primary input bits
in example 1

the channel noise. This is ensured by keeping the quantization noise power, σ2
Q,

20 dB below the channel noise, i.e.

σ2
Q ≤ 1

100
σ2

A (7.6)

Assuming the model in [149, Section 6.4.2] the quantization power with an M bit
data word-length will then be given as

σ2
Q = 21−ν−2M (7.7)

for an FFT of length 2ν . The error due to finite twiddle factor word-length is
assumed to be negligible compared to σ2

A, if N = M + 2 bits are used for these
values.

Now the target is to find the probability that Eq. 7.6 is fulfilled for the different
multiplier sizes. This is indeed the values of the word-length probability density
matrix W . Assuming an FFT of length 26, it is observed that this is equivalent to
requiring the CSNR (in dB) to be in a given interval:

μb,(b+2) = P
(
41 − 6.02(b + 1) < γdB ≤ 41 − 6.02b

)
(7.8)

Assuming a scenario with γdB = 30dB and using the distribution in Eq. 7.5, the
probabilities can be computed as shown in Table 7.3. The elements of matrix W
which are not given in Table 7.3 are zero. The largest multiplier size is chosen to
be 15 × 17-bit. In order to save power during the operation of the FFT processor,
the multiplication size will vary, based on the quality of the channel. For instance,

7.2. Experiments 135

Table 7.3: Word-length probabilities for an FFT processor with fading channel

μ5,7 0.0001 μ9,11 0.0154 μ13,15 0.2594

μ6,8 0.0002 μ10,12 0.0592 μ14,16 0.0049

μ7,9 0.0010 μ11,13 0.2032 μ15,17 0.0001

μ8,10 0.0039 μ12,14 0.4526

Table 7.4: Average number of transitions for different multipliers

Applied input pattern

Multiplier

Structure (Ω
1
5

1
5
,Ω

1
7

1
7

)
(Ω

1
5

1
4
,Ω

1
7

1
6

)
(Ω

1
5

1
3
,Ω

1
7

1
5

)
(Ω

1
5

1
2
,Ω

1
7

1
4

)
(Ω

1
5

1
1
,Ω

1
7

1
3

)
(Ω

1
5

1
0
,Ω

1
7

1
2

)
(Ω

1
5

9
,Ω

1
7

1
1

)
(Ω

1
5

8
,Ω

1
7

1
0

)
p U

C

p V
W

MOPT
Ω15

15,Ω17
17

1158 1052 885 742 610 467 391 304 743 732

MOPT
Ω15

14,Ω17
16

1201 1021 852 740 600 489 391 292 780 719

MOPT
Ω15

13,Ω17
15

1238 1072 844 727 599 489 386 297 804 712

MOPT
Ω15

12,Ω17
14

1262 1112 904 699 601 493 397 308 816 715

MOPT
Ω15

11,Ω17
13

1251 1110 937 758 560 474 377 289 800 741

MOPT
Ω15

10,Ω17
12

1249 1113 959 789 617 443 363 288 811 770

MOPT
Ω15

9 ,Ω17
11

1271 1138 985 834 688 520 345 294 834 816

MOPT
Ω15

8 ,Ω17
10

1277 1145 975 841 698 568 428 278 832 823

MOPT
pA,pB

1237 1084 859 725 584 480 385 296 729 711

MWC
pA,pB

1422 1272 1120 985 828 678 521 406 932 960

M̂OPT
pA,pB

1236 1081 848 702 578 478 389 297 780 696

M̂WC
pA,pB

1417 1279 1128 988 831 679 542 418 929 966

MRND 1359 1218 1046 892 745 610 482 365 887 878

136Chapter 7. Optimization of Multipliers Operating with Variable Word-Length

when a 12× 14-bit multiplier is needed three bits from LSB side will be forced to
zero on both inputs.

Table 7.4 summarizes the average number of transitions for different multi-
plier structures. Each row shows a different multiplier structure and each column
shows the input pattern that is applied to the multiplier. The rightmost column,
pV W , is the variable word-length input pattern with the probabilities shown in Ta-
ble 7.3. It is again assumed that word-length transitions do not happen often. The
input pattern pUC shows the uncorrelated random input bits where the input bits
have the average one-probabilities equal to pA and pB obtained from Eq. 7.2 and
Eq. 7.3. M̂OPT

pA,pB
is the multiplier that is optimized for pA and pB, considering

the spatiotemporal correlations for primary inputs. MOPT
pA,pB

is the multiplier that
is optimized for pA and pB , but without considering the spatiotemporal correla-
tions for primary inputs. The lowest number of transitions when pV W is applied
to the multiplier, is found in row M̂OPT

pA,pB
which has 21% and 28% less transitions

compared to random multipliers and the worst-case multiplier respectively. The
most probable multiplication in this example is 12 × 14-bit. Table 7.4 shows that
MOPT

Ω15
12,Ω17

14
reduces the number of transitions significantly when pV W is applied.

However, the reduction is less than M̂OPT
pA,pB

.

Chapter 8

Function Generation using a
Weighted Sum of Bit-Products

Multi-operand adder trees are implicit in many application such as multiplication,
computation of vector inner products, fused multiply-add operation, recurrences,
transformations, and filters. The combinational implementation of multi-operand
adders forms a reduction-tree that resembles the PPRT in parallel multipliers. In
the previous chapters, the optimization of the reduction-tree structure in parallel
multipliers was addressed. The progressive reduction-tree design algorithm intro-
duced in Chapter 4, without major modifications, can be utilized to optimize the
reduction-tree of general multi-operand adders. Minor changes might be neces-
sary to generalize the optimization algorithms to arbitrary multi-operand adders.
For example, the initial PPs might be clustered in disjoint groups in the general
form of multi-operand adders. Figure 8.1 illustrates different types of PP patterns
that might appear in a general multi-operand adder. In Figure 8.1(a) the PPs are
joint and no intermediate columns are left without PPs. Examples of disjoint PP
patterns are illustrated in Figure 8.1(b) and Figure 8.1(c). Figure 8.1(b) is partially
disjoint because after a number of FA stages in the reduction-tree the PP pattern
will not be disjoint anymore and two clusters of PPs will adhere and form one clus-
ter. Consequently, partially disjoint PP patterns will result in contiguous output
vectors. Figure 8.1(c) shows a strictly disjoint PP pattern where even the output
vectors are disjoint. The PPRT in parallel multipliers exhibit a joint PP pattern. In
order to generalize the optimization algorithms to arbitrary multi-operand adder
trees, these algorithms must be able to handle disjoint PP patterns as well. Multi-
operand adder trees with strictly disjoint PP patterns may be optimized separately
for each cluster.

137

138 Chapter 8. Function Generation using a Weighted Sum of Bit-Products

+���	��"
+���	���

+���	��"

+���	���

���

���

���

+���	���

Figure 8.1: Different patterns for partial products in multi-operand adders
(a) Joint partial product pattern

(b) Partially disjoint partial product pattern
(c) Strictly disjoint partial product pattern

8.1. Elementary Function Generation 139

In this chapter, application of the progressive reduction-tree design algorithm
on a special class of elementary function generators is studied. It is shown that
this strategy can result in even larger savings compared to a general multiplier.
The results are partially published in [178].

8.1 Elementary Function Generation

This section gives an introduction to the basic techniques for elementary func-
tion generation using sum of weighted bit-products. The most commonly used
mathematical functions are called elementary functions. Examples of such func-
tions are: sin, cos, tan, sin−1, cos−1, tan−1, sinh, cosh, tanh, sinh−1, cosh−1,
tanh−1, exponentials, logarithms, and so on. Working in a finite word-length
system necessitates approximation of elementary functions. Approximation of
elementary functions finds applications in several areas [126]. For example, in di-
rect digital frequency synthesis (DDFS), logarithmic number systems, transforms
such as discrete Fourier transform (DFT), fast Fourier transform (FFT) and dis-
crete cosine transform (DCT), computer graphics, and neural networks. Also it
finds applications as seed value generation for Newton-Raphson-based division
and square-root computations [50].

Shift-and-add methods are useful approximation techniques which are based
on simple elementary steps, addition and shift. The CORDIC algorithm intro-
duced in [192] for example, is a shift-and-add algorithm that can approximate
trigonometric and hyperbolic functions. This algorithm was generalized in [194]
to compute logarithms, exponentials and square-roots. The method for approxi-
mating elementary functions as a weighted sum of bit-products is proposed in [64,
78–80,196]. The resulting architecture is composed of a number of and-gates and
a summation-tree, leading to an architecture that can be easily pipelined to an ar-
bitrary degree. Starting with computation of sine and cosine, an approach based
on trigonometric identities was proposed [196]. In [64], an optimization proce-
dure was outlined and the effect of finite word-length was studied. Then, [78]
presented a modified architecture that turns off parts of the summation-tree to re-
duce the power consumption. The proposed method was generalized to arbitrary
elementary functions in [79]. In [80], the application of the proposed method to
logarithmic number systems was studied. Here, some modifications to produce
better results for certain functions were proposed. Although the resulting archi-
tecture has similarities with those proposed in [44, 112, 165, 169], a completely
different technique is used to derive the approximation. The proposed approxima-

140 Chapter 8. Function Generation using a Weighted Sum of Bit-Products

tion method is not limited by the behavior of the approximated function but can be
used for all possible functions. However, the complexity depends on the function,
for example, the complexity would be high for an irregular function composed by
random values. Furthermore, the method in [69] has some similarities, given that
the ROMs in [69] are only using one input-bit each.

8.1.1 Approximation using a Weighted Sum of Bit-Products

A function, f(X), where X is an integer composed of N bits, xi (0 ≤ i < N),
can be represented as

f(X) =
2N−1∑
j=0

cjpj (8.1)

where cj is the weight and pj is a bit-product [79]. Each bit-product, pj , is com-
posed of the bits xi that are one in the binary representation of j, hence

pj =

{
1 j = 0∏

i∈Sj
xi j > 0

(8.2)

where ∑
i∈Sj

2i = j (8.3)

Note that the bit-products can be computed using simple logic AND-operations.
For example, for j = 25, S25 = {4, 3, 0} and p25 = x4x3x0, which corresponds to
a 3-input AND gate.

The weights, cj, which in the following also are referred to as coefficients, are
computed by vector multiplications according to

cj = qjF (8.4)

where F is a column vector containing all function values. The row vector qj is
the j:th row of the lower triangular matrix QN , which is obtained by

Qi =

⎧⎨⎩
1 i = 0[

1 0
−1 1

]
⊗ Qi−1 1 ≤ i ≤ N

(8.5)

where the ⊗ operation denotes the Kronecker product. If U is an m × n matrix
and V is a p × q matrix, then the Kronecker product U ⊗ V is the mp × nq block

8.1. Elementary Function Generation 141

Table 8.1: Coefficient values in terms of function values

c0 f(0)
c1 −f(0) + f(1)
c2 −f(0) + f(2)
c3 f(0) − f(1) − f(2) + f(3)
c4 −f(0) + f(4)
c5 f(0) − f(1) − f(4) + f(5)
c6 f(0) − f(2) − f(4) + f(6)
c7 −f(0) + f(1) + f(2) − f(3) + f(4) − f(5) − f(6) + f(7)
c8 −f(0) + f(8)
c9 f(0) − f(1) − f(8) + f(9)
c10 f(0) − f(2) − f(8) + f(10)
...

...

matrix:

U ⊗ V =

⎡⎢⎣u11V · · · u1nV
...

. . .
...

um1V · · · umnV

⎤⎥⎦ . (8.6)

or more explicitly,

U ⊗ V =

2
666666666666666666664

u11v11 u11v12 · · · u11v1q · · · · · · u1nv11 u1nv12 · · · u1nv1q

u11v21 u11v22 · · · u11v2q · · · · · · u1nv21 u1nv22 · · · u1nv2q

...
...

. . .
...

...
...

. . .
...

u11vp1 u11vp2 · · · u11vpq · · · · · · u1nvp1 u1nvp2 · · · u1nvpq

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

um1v11 um1v12 · · · um1v1q · · · · · · umnv11 umnv12 · · · umnv1q

um1v21 um1v22 · · · um1v2q · · · · · · umnv21 umnv22 · · · umnv2q

...
...

. . .
...

...
...

. . .
...

um1vp1 um1vp2 · · · um1vpq · · · · · · umnvp1 umnvp2 · · · umnvpq

3
777777777777777777775

(8.7)

Using Eq. 8.4, the coefficients are directly obtained from the function values.
Some examples are shown in Table 8.1. For functions with certain properties,
basically all continuous functions, many of the coefficients, cj , will be small, i.e.,
truncated to zero for a limited coefficient word-length. Hence, the function f(X)

142 Chapter 8. Function Generation using a Weighted Sum of Bit-Products

6���	���	�

�����	��

���	����������	
����	���

*�22�	����	�

+��
3�	��	

Figure 8.2: Architecture used for approximating elementary functions

can be approximated with f̂(X) which is defined as:

f̂(X) =
∑
j∈G

cjpj (8.8)

where G is the set of indices for the M coefficients with largest absolute value;
i.e. |G| = M and min

j∈G
{|cj|} ≥ max

j /∈G
{|cj|}.

8.1.2 Architecture

To implement the expression in Eq. 8.8, an effective architecture, suitable for high-
speed implementations, was proposed in [196]. The architecture is illustrated in
Figure 8.2, where the and-stage is used to compute the required bit-products, pj .

The partial product generation stage only shifts and possibly inverts the out-
puts of the and-stage, according to the corresponding coefficients, cj. The bit-
products are included in the columns corresponding to nonzero digits in the coef-
ficient representation. Hence, by using a minimum signed digit (MSD) represen-
tation, the number of partial products to be added is decreased.

In the third stage, a summation-tree accumulates the partial products. The
reduction of partial products can be performed in logarithmic time using redun-

8.2. Optimized Summation-Tree Generation 143

dant multi-operand adders with redundant outputs in carry-save form. Several
reduction schemes can be chosen for the summation-tree as discussed in Chap-
ter 2. Similar to the multiplier PPRT in the previous chapters, the Modified Wal-
lace/Dadda reduction scheme proposed by Bickerstaff et al. in [12] is utilized
for the reported results. This reduction scheme is discussed in detail in Sec-
tion 2.2.2.4. Finally, the last stage is a carry propagation adder (CPA) used to
form a non-redundant representation of the output.

Note that the architecture can easily be pipelined to an arbitrary degree to ob-
tain the desired throughput. In [78], it is shown that the power consumption can be
decreased if the architecture is divided into multiple summation trees. For exam-
ple, all bit-products that include the input bit xi can be separated into a summation
tree that is turned off when xi is zero. In this chapter pure combinational archi-
tecture is considered, but the proposed method can be applied to each summation-
tree in the modified architecture. So these two power reduction methods do not
contradict each other, but rather complement each other.

8.2 Optimized Summation-Tree Generation

The algorithm for the progressive reduction tree design is summarized in Fig-
ure 8.3. The algorithm generate summation tree() is executed after the genera-
tion of the primary partial products pattern. The function generator circuit, de-
noted as TheCircuit, is initialized to contain the AND-terms and the primary par-
tial products generation step as described in Section 8.1.1. The function com-

pute SWSs(TheCircuit) estimates the power consumption using the simple wave-
form set (SWS) method which is a probabilistic gate-level power estimator de-
scribed in Section 3.1.1. The power estimator computes a simple waveform set
which is a set of possible transition times and their occurrence probabilities for
each node of the circuit. The computation of the SWS for a node is based on the
SWSs at the predecessor nodes; i.e. the computation starts from primary inputs
and traverses towards outputs. Note that each time a circuit portion is appended
to TheCircuit, this function is executed, computing the power estimation for the
new portion using the estimated transition sets of the predecessor nodes. After
the PPs are generated, the summation-tree is progressively designed. Similar to
the progressive reduction-tree design algorithm in Section 4.3, for each column of
each stage in the summation-tree a local search is performed. The power estimator
in the innermost loop, estimate power SWS, computes the transition densities ex-
clusively for the current FA/HA stage, i.e. the stage that is being designed, using

144 Chapter 8. Function Generation using a Weighted Sum of Bit-Products

generate summation tree()
Inputs: static probabilities of input bits and primary PP generation pattern
{

TheCircuit=∅;
[M0,PPG circuitry]=generate PPs(primary PP generation pattern);
TheCircuit.append(PPG circuitry);
computeSWS(TheCircuit);
i=0;
while (‖Mi‖ > 2)
{

[Fi, Hi]=reduction scheme(Mi);
Mi+1=apply FA HA(Mi, Fi, Hi);
for current col=1 to number of columns in Mi do
{

current perm=random permutation of the PPs in current col of Mi;
Pmin=+∞;
α=α0;
for current iteration=1 to number of iterations do
{

old perm=current perm;
swap two random positions in current perm;
P =estimate power SWS(Fi, Hi, current perm);
if (P < Pmin)

Pmin=P ;
else
{

r=uniform random (r ∈ [0, 1));

if (r < e
Pmin−P

α)
Pmin=P ;

else
current perm=old perm;

}
α= α

τ
;

}
reorder current col of Mi as current perm;

}
TheCircuit.append(Mi, Fi, Hi);
computeSWS(TheCircuit);
i=i+1;

}
TheCircuit.append(final CPA(Mi));
computeSWS(TheCircuit);

}

Figure 8.3: Progressive reduction-tree design algorithm for function generators

8.3. Experiments 145

the SWSs computed earlier. This power estimation is limited to few logic gates
and is hence fast; making it feasible to perform a large number of iterations. As
discussed in Chapter 4, the power estimates can be updated in each SA iteration
by recalculating the SWSs for maximum ten logic gates, merely the ones that have
changed in the current configuration.

In this chapter, it is assumed that primary input bits are uncorrelated. If this
assumption is not valid for the primary input bits, the spatiotemporal correlations
must be considered using the pairwise correlation coefficient matrix and lag-one
temporal correlation ratios as discussed in Chapter 5.

The algorithm generate summation tree() is implemented in C++. Inputs to the
optimization algorithm are the static probabilities of the primary inputs, the par-
tial product generation pattern and eventually the spatiotemporal correlations of
the primary inputs. The power estimation in this algorithm uses a fanout delay
model for its computations; i.e. the delay of a logic gate, regardless of its func-
tion, is equal to its number of fanouts and is an integer number. If needed, a
more complex delay model can also be implemented. After completion of the
optimization algorithm, the equivalent VHDL code for the circuit is generated.
This algorithm constructs an optimum summation-tree such that it consumes less
energy while operating. A similar algorithm can be developed by altering gener-

ate summation tree() to maximize the energy consumption and generate a worst-
case summation tree. The power consumption of the optimum and worst-case
summation trees is compared in Section 8.3. Designing the summation-tree ran-
domly or regardless of the transition activities of partial products results in a power
consumption value that lies somewhere between optimum and worst-case values.
In fact the experiments show that the power consumption of random summation
trees is biased towards the worst-case values.

8.3 Experiments

In this section the proposed method is applied to a number of elementary func-
tions (Table 8.2). The detailed definitions of these functions, except SINE and
COSINE, are given in [80]. The number in the different circuit names correspond
to the number of coefficients (after optimization some coefficients are truncated
to zero so the number of bit-products used might be a few less). The primary
PP patterns for the COSINE and SINE functions are illustrated Figure 8.4. After
the generation of the partial products, the algorithm generate summation tree() is
executed for each example. The primary inputs of all circuits are assumed to be

146 Chapter 8. Function Generation using a Weighted Sum of Bit-Products

��� ���

Figure 8.4: The primary PP pattern for the (a) COSINE and (b) SINE functions
with 91 and 89 coefficients respectively

8.3. Experiments 147

Table 8.2: Function definitions

Circuit f(X) Range of f(X) #
in

pu
ts

#
co

ef
s.

C
oe

f.
w

or
dl

en
gt

h

A
cc

ur
ac

y
[b

its
]

SINE sin(πX/4) 0 ≤ f(X) ≤ 1/
√

2 9 89 20 16.00

COSINE cos(πX/4) 1/
√

2 ≤ f(X) ≤ 1 9 91 20 16.00

LOG2-100 log2 |X | −8 ≤ f(X) < 0 8 99 11 9.07

LOG2-149 log2 |X | −8 ≤ f(X) < 0 8 149 14 12.00

Φ−-227 log2

∣∣1 − 2X
∣∣ log2

∣∣∣1 − 2−2−8
∣∣∣ ≤ f(X) < 0 11 227 12 9.15

Φ−-239 log2

∣∣1 − 2X
∣∣ log2

∣∣∣1 − 2−2−8
∣∣∣ ≤ f(X) < 0 11 229 11 9.00

Φ−-400 log2

∣∣1 − 2X
∣∣ log2

∣∣∣1 − 2−2−8
∣∣∣ ≤ f(X) < 0 11 394 15 12.15

Φ+-70 log2

∣∣1 + 2X
∣∣ 0 < f(X) ≤ 1 11 70 13 9.01

Φ+-82 log2

∣∣1 + 2X
∣∣ 0 < f(X) ≤ 1 11 79 11 9.26

Φ+-173 log2

∣∣1 + 2X
∣∣ 0 < f(X) ≤ 1 11 169 14 12.12

uncorrelated and random with uniform distribution. The one-probabilities of the
primary input bits are set to be 0.5. The VHDL code resulting from the optimiza-
tion algorithm is compiled for a 0.35μm standard cell CMOS library. The power
consumption is then estimated using Synopsys NanoSim, which is an accurate
circuit simulator featuring common HSPICE models for greater accuracy.

The results of the power estimation are given in Table 8.4. In addition to the
accurate power consumption values obtained from NanoSim, the average tran-
sition activities of the circuits are reported in Table 8.3. The average transition
activities in Table 8.3 are obtained by simulating the resulting VHDL codes in
ModelSim using a fanout delay model. Note that the optimization algorithm uses
the fanout delay model.

In order to evaluate the quality of the optimized circuits, the results are com-
pared with the worst-case circuits as well as the random circuits (the fourth columns
in Tables 8.3 and 8.4). For each circuit, ten versions are generated, where the inter-
connection between the full-adders and half-adders are chosen randomly without
considering the transition activities. Subsequently, the average transition activi-
ties for these random circuit versions as well as the mean value of the average
transition activities are estimated. In the tables, the results of the circuit version

148 Chapter 8. Function Generation using a Weighted Sum of Bit-Products

that has an average transition activity closest to the mean value is presented. The
rightmost columns in Tables 8.3 and 8.4 are the reduction in power consumption
compared to the random circuits. Comparing the values in Tables 8.3 and 8.4, it
can be concluded that the random circuits are closer to worst-case circuits in terms
of average transition activities and power consumption.

In some cases the random circuits are estimated to consume more power than
the worst-case circuits because of the differences in the power estimator that is
embedded in the optimization algorithm and NanoSim. The power estimation
that is used in optimization algorithm to generate the optimized and worst-case
circuits is at gate-level and uses fanout delay model; while NanoSim is an accu-
rate transistor-level analog power estimator with a real delay computation mech-
anism based on the actual node capacitances and driving capabilities of the tran-
sistors. For example, NanoSim is capable of accounting for glitches that are not
full-swing, something that the power estimator in the optimization program is in-
capable of. From Table 8.4 the power consumption for the optimized circuits is
3–29% lower than the worst-case. The gain is even larger when the average tran-
sition activities are compared in Table 8.3 (29–40%). This shows the capacity
of the optimization method. Larger improvements in power consumption can be
achieved if a more accurate delay model is used in the embedded power estimator.

The differences in improvements between the circuits can be explained by
looking at the bit-products. For Φ+-82, most bit-products are short, which limits
the possibilities to obtain switching activity reductions as most bit-products have
similar properties. For Φ−-400, there are 224 bit-products with more than 4 input
bits and 24 with more than 8 input bits, hence, a lot of different interconnect
choices can be made. Moreover, having a larger number of bit-products increases
the possibilities for improvements. Even more important than studying long bit-
products is probably the short ones. The circuits SINE, COSINE, and Φ+-82
have almost the same number of bit-products. However, looking at the single bit
products, i.e., the bit-products which are only dependent on a single input bit,
SINE has all 10 input bits as bit products, COSINE has 8, and Φ+-82 has only
5. The single bit products have highest switching activities because they are only
dependent on one bit. Hence, largest savings are obtained for SINE and smallest
for Φ+-82. The improvement in power consumption compared to the random
circuits is in the range of 5.4% to 25.6%.

8.3. Experiments 149

Table 8.3: Average transition activity per clock cycle

Circuit Optimized Worst-Case Random Improvement
SINE 1334.2 2023.0 1807.5 26.2%
COSINE 1525.5 2204.7 1976.9 22.8%
LOG2-100 1029.4 1660.8 1477.9 30.4%
LOG2-149 1889.1 3145.4 2777.8 32.0%
Φ−-227 1871.1 2961.8 2691.6 30.5%
Φ−-239 1487.0 2393.5 2290.1 35.1%
Φ−-400 3484.5 5739.4 5278.5 34.0%
Φ+-70 596.2 889.0 820.2 27.3%
Φ+-82 548.1 775.3 700.1 21.7%
Φ+-173 1400.4 2036.9 1869.9 25.1%

Table 8.4: Estimated energy per operation from NanoSim [pJ]

Circuit Optimized Worst-Case Random Improvement
SINE 214.0 232.3 230.9 7.3%
COSINE 181.1 210.0 209.5 13.6%
LOG2-100 149.8 164.1 180.2 16.9%
LOG2-149 247.8 290.8 295.2 16.1%
Φ−-227 271.8 357.3 364.8 25.6%
Φ−-239 222.4 265.2 278.4 20.1%
Φ−-400 497.2 695.5 662.0 25.0%
Φ+-70 105.6 130.4 128.1 17.6%
Φ+-82 103.7 106.5 109.6 5.4%
Φ+-173 231.0 280.2 285.8 19.2%

Chapter 9

Conclusions

9.1 Low-Transition Reduction-Tree Generation

This thesis presents a number of methods for generation of power optimized PPRT
in parallel multiplier. Energy saving is achieved without any noticeable area or
speed overhead compared to random reduction trees. Chapter 4 presented two
methods for optimizing the PPRT. The first method optimizes the complete PPRT;
i.e., the power estimates are for the complete PPRT and a complete search is per-
formed among a selection of interesting solutions. The second method is the pro-
gressive PPRT design algorithm, which limits the power estimation to one FA/HA
stage. This method uses simulated annealing as search algorithm. Within the
search loop, the power estimates are updated by recomputing the power estimates
for a minimum number of gates for which the inputs are altered. The progressive
reduction tree design algorithm employs a probabilistic gate-level power estima-
tion to compute cost functions.

Automatically generated VHDL codes for the resulting multipliers are simu-
lated using ModelSim and the average number of transitions are reported. The
average number of transitions is reduced significantly compared to random mul-
tipliers. Generally, the improvements are larger if the input pattern space is more
limited, for example, due to high correlation between input bits or large number
of low activity input bits.

The progressive reduction tree design algorithm is further improved to include
the spatiotemporal correlations of the primary inputs in Chapter 5. By profiling a
large input data stream with the desired properties, the required parameters can be
extracted as discussed in Chapter 5. These parameters are one-probabilities, lag-

151

152 Chapter 9. Conclusions

one temporal correlation ratios, and pairwise correlation coefficients for primary
input bits. Several examples of multipliers with correlated inputs are examined in
Chapters 5 and 7. Including the spatiotemporal correlations in the power estimator
improves the generated results considerably. From the experiments in Chapter 7,
for the multipliers with variable word-length, the average number of transitions is
reduced 16–21% in the optimized multipliers, compared to random multipliers.

9.2 Low-Leakage Reduction-Tree Generation

By changing the cost function in the progressive PPRT design algorithm in Chap-
ter 4, this algorithm can be used to generate a low-leakage PPRT as well. In this
case, a leakage power estimator is needed to be utilized instead of the dynamic
power estimator. The reduction in the total leakage current is achieved by reorder-
ing the interconnects between full-adders/half-adders, and hence optimizing the
partial product reduction tree with respect to the distribution of static probabilities
along the tree. The static probabilities are affected by the input characteristics and
their spatial correlations. The experiments in Chapter 6 show that improvements
about 18% can be expected in static power dissipation relative to a worst-case
reduction-tree multiplier.

An important observation from the experiments in Chapters 4 and 6 is that the
optimization for static power does not alter the speed and dynamic power notice-
ably, compared to random multipliers. In other words, the optimization for static
power is orthogonal with the optimization for dynamic power and speed. Based
on this observation, both static and dynamic power estimators can be employed in
the optimization algorithm for reducing the total power in the PPRTs, as the total
power is the sum of static power and dynamic power. The cost function is altered
to a weighted sum of static power estimation and dynamic power estimation. The
experiments in Chapter 6 shows that the total power can be reduced considerably
using this optimization method.

9.3 Generalized Multi-Operand Adders

The progressive PPRT design algorithm can be generalized to work on arbitrary
multi-operand adders. As an example application of this algorithm on arbitrary
multi-operand adders, which is not in the context of multipliers, a special class
of function generators are considered in Chapter 8. This class of function gener-

9.4. Probabilistic Gate-Level Power Estimator 153

ators use a weighted sum of bit-products to generate elementary functions. Ac-
cording to the experiments on a number of function generators, by progressively
constructing the summation tree, power savings in the range of 5% to 26% are
achieved compared to a random interconnect ordering.

The one-probabilities of the primary bit-products and their correlations have
larger variations in the function generators, compared to the multiplier PPRT.
Therefore, the progressive reduction-tree design algorithm has larger potential to
improve the reduction tree for function generators compared to multipliers.

9.4 Probabilistic Gate-Level Power Estimator

As a part of the contributions of this thesis, the simple waveform set power es-
timator is introduced in Chapter 3. The previous methods of probabilistic power
estimation have weak modeling of glitch filtering. The set of simple waveforms
technique is capable of accounting for the successor nodes’ behavior with respect
to introduced glitches. The estimations for a number of benchmark circuits are
compared to the estimations obtained from logic simulations. Error-free estima-
tions are obtained for tree structured circuits. Significant improvements in the
power estimation of general circuits are achieved compared to earlier techniques.

9.5 Directions for Future Work

9.5.1 Power Estimation with Realistic Delay Models

At this point, the most important task for future work seems to be implementation
of a more accurate and realistic delay model in the power estimator. As dis-
cussed earlier, the computational complexity may increase a by accommodating
real numbers as gate delays. In order to achieve a more accurate power estimator,
it may be also necessary to differentiate delay values as a function of input values
for each logic gates.

It is important to note that the optimization algorithms introduced in this thesis
are to a large extent independent from the power estimator. Therefore any power
estimation technique may be engaged in this optimization tool as long as it pro-
duces the correct cost functions for the optimizer. However, the power estimator
must be able to include spatiotemporal correlations, as it is shown to have great
importance in the optimization.

154 Chapter 9. Conclusions

9.5.2 Including Speed and Interconnect Power

As discussed earlier, the arithmetically equivalent implementations of the PPRT
exhibit different temporal behavior, dynamic power consumption, leakage cur-
rents and overall interconnect wire length. In the optimization methods discussed
in this thesis, the weighted sum of leakage power and dynamic power is used as
the cost function for the optimization algorithms. As a suggestion for the future
work, timing and interconnect power can be included in the cost function as well.
This cost function can prioritize different measures based on the application and
designer’s demand with different weights for speed, dynamic power, static power,
and interconnect power. The interconnect power for parallel multipliers is ana-
lyzed in [31].

9.5.3 Different PP Generation and Reduction Schemes

In this thesis, relatively simple partial product generation methods are considered.
That is, for unsigned multiplications, simple AND operation between input bits
and, for signed multiplications, modified Baugh-Wooley method [6,70]. The mod-
ified Wallace/Dadda PPRT [12] is applied as the partial product reduction scheme.
As a future work, the improvements can be analyzed for other partial product
generation and reduction schemes. For full-adder based reduction schemes, the
improvements are expected to be similar. However, for other multiplier structure
setup, for example reduction schemes based on generalized parallel counters, or
PP generation schemes based on Booth recoding or higher radix the improvements
may be different.

9.5.4 Other Search Algorithms

The Simulated Annealing is used in the progressive reduction-tree design algo-
rithm. Another search algorithm that might be useful instead of SA is a Genetic
Algorithm (GA). GA performs well in presence of local minima, which is desir-
able for the progressive reduction-tree design algorithm.

9.5.5 Pipelining

In this thesis, pipelining is not considered and the structure of the PPRT is as-
sumed to consist of pure combinational logic. As a future work, pipelining can
be considered in the optimization algorithms. Pipelining is an effective method

9.5. Directions for Future Work 155

to reduce the glitches in a parallel multiplier, as the spurious transitions are sup-
pressed in register layers introduced because of pipelining. It might be possible
to develop algorithms that optimize each layer of pipelines individually and inde-
pendent from other layers.

9.5.6 Optimization of Synthesized Designs

A gate-level description of arithmetic units consists of logic gates operating on
single bits. Extracting the word-level and arithmetic relations between these bit-
level signals is a difficult task [22]. As a suggestion for future, extracting the
arithmetic equivalencies for a given gate-level description of arithmetic circuits
can be considered. The target will be, for example, to create a list of nodes having
outputs that can be interchanged without changing the arithmetic behavior of the
circuit. Having such lists, the optimization algorithms in this thesis can be applied
to a wider range of circuits and applications.

Appendix A

Computation of static probabilities

Computation of static probabilities of combinational logic networks finds ap-
plication, among others, in probabilistic power estimation, testability and fault
detection and reliability. Therefore computing signal probabilities has attracted
much attention. The problem of computing the static probabilities represents a
#P-complete problem that is conjectured to be even harder than the NP-complete
class [95]. The major difficulty in computing the signal probabilities is dependen-
cies caused by reconvergent fan-out (RFO). Earlier works in computing the static
probabilities in a combinational network include [18, 27, 52, 95, 142, 163, 167].
The approximation method in [18, 142] ignores dependencies and approximates
the joint probabilities with the product of individual probabilities, which results in
an algorithm that can compute static probabilities in linear time. This algorithm is
error-free for RFO-free circuits, but it becomes inaccurate in presence of RFOs.

Exact method for computation of static probabilities based on Reduced Or-
dered Binary Decision Diagrams (ROBDDs) [21] are introduced in [26,94]. How-
ever, the worst-case complexity of graph size in this method is exponential with
number of circuit inputs and thus it is not practical for many circuits. An ROBDD
is a reduced functional representation in which every directed path starts from the
root and ends at a ZERO or ONE terminal. The underlying decomposition for
ROBDDs is the Shannon decomposition in Eq. A.1:

Y = XY |X=1 + X̄Y |X=0 (A.1)

An efficient method for implementing ROBDDs is presented in [174]. If the full
ROBDD is known, then exact static probabilities can be computed by counting
the paths that go to the terminal ONE [204]. The ROBDDs represent the global
function in terms of circuit inputs. Approximation techniques are proposed by

157

158 Chapter A. Computation of static probabilities

localizing the ROBDDs by expressing the function in terms of intermediate vari-
ables other than circuit inputs. An example of local binary decision diagrams are
presented in [82].

Bayesian Networks have also been employed as a means for estimating the
static probabilities in a logic network [155]. Bayesian networks are graphical
model representing a set of variables and their conditional independencies de-
duced from Bayes’s Theorem. Implementing combinational logic using graphi-
cal probabilistic models is easy because the conditional independencies are easy
to derive for combinational logic networks. All logic gates are described as
conditional probability distribution tables which are the interactions between the
output node of the gate and its immediate predecessors. Probabilistic networks
are capable of computing exact static probabilities. The computation process
involves moralization, triangulation and identifying cliques and creating clique
tree [37]. Moralization is creating an undirected graph from the directed acyclic
graph (DAG) representation of the circuit by removing the directions and adding
edges between any two nodes which share a common child node. Triangulated or
chordal graph is obtained from moral graph by adding edges to remove all cycles
of length ≥ 4. RFOs in the logic network directly translate to larger clique sizes
in the graphical model. The complexity of Bayesian networks is exponential with
maximum clique size. Hence Bayesian networks are too impractical for circuits
with large number of RFOs. Approximation techniques for Bayesian networks
are developed [29, 203]. Yuan and Druzdzel in [203] propose an approximation
technique for Bayesian networks using importance sampling and evidence pre-
propagation.

For the purpose of dynamic and static power estimation (Chapter 3), several
static probability computation methods were tested including BDDs, Bayesian
networks. Considering computation complexity, accuracy and ease of manipu-
lation to encapsulate spatial correlations of primary inputs, the method based on
pairwise correlation coefficients in [52] suits best for this application. The remain-
der of this chapter describes pairwise correlation coefficients.

A.1 Pairwise Correlation Coefficients

The pairwise correlation coefficients are used in the SWS power estimator and
static power estimator in Chapter 3. The exact computation of the pairwise cor-
relation coefficients can be difficult as discussed earlier. Ercolani et al. in [52]
an efficient method for approximating the pairwise correlation coefficients under

A.1. Pairwise Correlation Coefficients 159

zero-delay model. The pairwise correlation coefficients are defined as:

κa,b
A,B =

p(A = a ∧ B = b)

p(A = a)p(B = b)
(A.2)

where A and B are two logic nodes in the circuit and a and b are two logic values
(a, b ∈ {0, 1}). For simplicity κ1,1

A,B is denoted as κA,B and p(A = 1) and p(B = 1)
are denote as pA and pB respectively. Using Eqs. A.3-A.5, correlation coefficients
κ0,0

A,B, κ1,0
A,B and κ0,1

A,B can be rewritten in terms of κA,B.

κ1,0
A,B =

1 − pBκA,B

1 − pB

(A.3)

κ0,1
A,B =

1 − pAκA,B

1 − pA
(A.4)

κ0,0
A,B =

1 − pA − pB + pApBκA,B

(1 − pA)(1 − pB)
(A.5)

From the probability theory, two obvious formulas hold for the correlation coef-
ficient. First, the correlation coefficient between two independent signals is equal
to 1. Second, the autocorrelation coefficient for a signal is equal to inverse of the
static probability of the signal; i.e. κAA = 1

pA
.

Throughout the computation of static probabilities from inputs towards out-
puts using correlation coefficients, higher orders of joint probabilities will be en-
countered. In [52] the higher order joint probabilities are approximated using the
pairwise correlation coefficients. For example, the correlation coefficient among
three signals A, B and C is approximated as:

κA,B,C =
p(A = 1 ∧ B = 1 ∧ C = 1)

pApBpC
≈ κA,BκB,CκC,A (A.6)

Although the approximation (A.6) introduces errors in the computed static proba-
bilities, the error is negligible for most circuits [52].

The static probability at the output of a logic gate can be written in terms of
input static probabilities and the correlation coefficients. For example, an OR gate
produces a one at the output when at least one of the inputs are one. Then the

160 Chapter A. Computation of static probabilities

AND
�

�

� pO = pApBκA,B

OR
�

�

� pO = pA + pB − pApBκA,B

NAND
�

�

� pO = 1 − pApBκA,B

NOR
�

�

� pO = 1−pA−pB +pApBκA,B

XOR
�

�

� pO = pA + pj − 2pApBκA,B

NOT � � pO = 1 − pA

Figure A.1: Calculating output one-probability of the basic logic gates

one-probability of a two-input OR gate, pO, is equal to:

pO = p ((A = 1 ∧ B = 1) ∨ (A = 0 ∧ B = 1) ∨ (A = 1 ∧ B = 0))

= p(A = 1 ∧ B = 1) + p(A = 0 ∧ B = 1) + p(A = 1 ∧ B = 0)

= pApBκ1,1
A,B + (1 − pA)pBκ0,1

A,B + pA(1 − pB)κ1,0
A,B

= pApBκA,B + (1 − pAκA,B)pB + pA(1 − pBκA,B)

= pA + pB − pApBκA,B (A.7)

Similarly, the static probabilities of other logic gates can be computed using the
input static probabilities and correlation coefficients. Figure A.1 summarizes the
expressions for basic logic gates.

The correlation coefficients between the output of a logic gate, O, and another
signal X can be also computed in terms of input static probabilities and correlation

A.1. Pairwise Correlation Coefficients 161

coefficients. Let us consider the OR gate again:

κO,X =
p(O = 1 ∧ X = 1)

p(O = 1)p(X = 1)

=
p (((A = 1 ∧ B = 1) ∨ (A = 0 ∧ B = 1) ∨ (A = 1 ∧ B = 0)) ∧ X = 1)

(pA + pB − pApBκA,B)pX

=
p(A = 1 ∧ X = 1) + p(B = 1 ∧ X = 1) − p(A = 1 ∧ B = 1 ∧ X = 1)

(pA + pB − pApBκA,B)pX

=
pApXκA,X + pBpXκB,X − pApBpXκA,B,X

(pA + pB − pApBκA,B)pX

≈ pAκA,X + pBκB,X − pApBκA,BκA,XκB,X

pA + pB − pApBκA,B
(A.8)

Figure A.2 summarized the correlation coefficients at outputs of basic logic gates
in terms of input static probabilities and correlation coefficients. Because of the
approximations, the correlation coefficients may exceed the acceptable interval
that will result one-probabilities between 0 and 1. Therefore after computing the
correlation coefficients it should be checked that it falls into the acceptable inter-
val:

max

(
0,

pA + pB − 1

pApB

)
≤ κA,B ≤ min

(
1

pA
,

1

pB

)
(A.9)

Computation of static probabilities starts from primary inputs of a combina-
tional logic network and traverses towards the outputs. A list of available nodes
is created that contains the nodes that their predecessor nodes are computed. It is
initialized to the output nodes of logic gates directly connected to primary inputs.
After each computation of static probabilities, the list of available nodes must be
updated by adding new nodes that are ready to be computed and removing the
computed nodes in the list. The computation process continues until the list of
available nodes is empty.

The static probabilities are computed using the expressions in Figure A.1. At
this point, input static probabilities are known but the correlation coefficients may
be unknown. The computation algorithm backtracts the correlation coefficients
using expressions in Figure A.2 until it reaches known correlation coefficients.
This can be at worst case the primary inputs where the correlation coefficients
are known (for independent inputs the correlation coefficients are set to 1). A list
of already computed correlation coefficients is required which can speed up the
computation process.

162 Chapter A. Computation of static probabilities

AND

�

�

�

�
κO,X = κX,AκX,B

OR

�

�

�

�
κO,X =

pAκA,X+pBκB,X−pApBκA,BκA,XκB,X

pA+pB−pApBκA,B

NAND

�

�

�

�
κO,X =

1−pApBκA,BκA,XκB,X

1−pApBκA,B

NOR

�

�

�

�
κO,X =

1−pAκA,X−pBκB,X+pApBκA,BκA,XκB,X

1−pA−pB+pApBκA,B

XOR

�

�

�

�
κO,X =

pAκA,X+pBκB,X−2pApBκA,BκA,XκB,X

pA+pB−2pApBκA,B

NOT
� �

�
κO,X =

1−pAκA,X

1−pA

Figure A.2: Calculating correlation coefficients for basic logic gates

A.1. Pairwise Correlation Coefficients 163

�

�

�
�

�

�

�

�

��
���

Figure A.3: An example of static probability computation

A.1.1 An Example

As an example of the correlation coefficient method, the static probabilities of a
1-bit multiplexer in Figure A.3 is estimated here. The one-probabilities of the
inputs are set to 0.5; i.e.

pA = pB = pC = 0.5

The mutual correlation coefficients of the inputs are set to 1 and autocorrelation
coefficients are set to 2; i.e.

κA,B = κB,C = κA,C = 1

and
κA,A = κB,B = κC,C = 2

In this step nodes E and D are computable from the expressions in Figure A.1;
i.e.

pD = 1 − pB = 0.5

and
pE = 1 − pApBκA,B = 0.75

The next computable node is then F :

pF = 1 − pCpDκC,D

κC,D is unknown and must be computed using expressions in Figure A.2:

κC,D =
1 − pBκB,C

1 − pB
= 1

164 Chapter A. Computation of static probabilities

thus, pF = 0.75. Finally, node G is computable:

pG = 1 − pEpF κE,F

and κE,F must be computed:

κE,F =
1 − pApBκA,BκA,FκB,F

1 − pApBκA,B

κA,F = 1

κB,F =
1 − pCpDκC,DκB,DκB,C

1 − pCpDκC,D

κB,D =
1 − pBκB,B

1 − pB
= 0

Thus, κB,F =
4

3
and κE,F =

8

9
resulting pG = 0.5.

Appendix B

Examples of Computing SWSs

In this appendix, the SWS power estimator described in Section 3.1.1 is utilized
on two example circuits, a tree-structured circuit and a 2-to-1 MUX circuit. The
detailed waveforms are listed for all nodes. The number inside each gate rep-
resents the inertial delay of that gate. Primary inputs are assumed to have 0.5
one-probabilities. In addition, primary inputs are assumed to be spatially and
temporally independent.

165

166 Chapter B. Examples of Computing SWSs

B.1 Tree-Structured example

Table B.1: Average transition activity for nodes in Figure B.1
Node Ave.Trans. Node Ave.Trans. Node Ave.Trans. Node Ave.Trans.
G1 0.5 G10 0.5 G18 0.375 G26 0.5625
G2 0.5 G11 0.5 G19 0.375 G27 0.5625
G3 0.5 G12 0.5 G20 0.375 G28 0.5625
G4 0.5 G13 0.5 G21 0.375 G29 0.452637
G5 0.5 G14 0.5 G22 0.375 G30 0.524048
G6 0.5 G15 0.5 G23 0.375 G31 0.392212
G7 0.5 G16 0.5 G24 0.375 G32 0.524048
G8 0.5 G17 0.375 G25 0.5625 G33 0.30945
G9 0.5

�

#

�

-

�

#

�

-

�

#

�

#

�

#

#

�

#

=�
="
=#
=-
=.
=/
=<
=0
=E
=��

=�"
=�#
=�-
=�.
=�/

=��

=�<

=�0

=�E

="�

=""

="-

="�

="#

=".

="/

="0

="<

="E

=#�

=#�

=#"

=##

Figure B.1: An example tree-structured circuit

Occurrence Value Value MASK
Waveform Probability @−∞ @+∞ G1 G33

G1
Ψ(+∞,−∞) 0.25 0 0 111111111111111111111111111111111
Ψ(0, +∞) 0.25 0 1 111111111111111111111111111111111

B.1. Tree-Structured example 167

Ψ(+∞, 0) 0.25 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.25 1 1 111111111111111111111111111111111
G2
Ψ(+∞,−∞) 0.25 0 0 111111111111111111111111111111111
Ψ(0, +∞) 0.25 0 1 111111111111111111111111111111111
Ψ(+∞, 0) 0.25 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.25 1 1 111111111111111111111111111111111
G3
Ψ(+∞,−∞) 0.25 0 0 111111111111111111111111111111111
Ψ(0, +∞) 0.25 0 1 111111111111111111111111111111111
Ψ(+∞, 0) 0.25 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.25 1 1 111111111111111111111111111111111
G4
Ψ(+∞,−∞) 0.25 0 0 111111111111111111111111111111111
Ψ(0, +∞) 0.25 0 1 111111111111111111111111111111111
Ψ(+∞, 0) 0.25 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.25 1 1 111111111111111111111111111111111
G5
Ψ(+∞,−∞) 0.25 0 0 111111111111111111111111111111111
Ψ(0, +∞) 0.25 0 1 111111111111111111111111111111111
Ψ(+∞, 0) 0.25 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.25 1 1 111111111111111111111111111111111
G6
Ψ(+∞,−∞) 0.25 0 0 111111111111111111111111111111111
Ψ(0, +∞) 0.25 0 1 111111111111111111111111111111111
Ψ(+∞, 0) 0.25 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.25 1 1 111111111111111111111111111111111
G7
Ψ(+∞,−∞) 0.25 0 0 111111111111111111111111111111111
Ψ(0, +∞) 0.25 0 1 111111111111111111111111111111111
Ψ(+∞, 0) 0.25 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.25 1 1 111111111111111111111111111111111
G8
Ψ(+∞,−∞) 0.25 0 0 111111111111111111111111111111111
Ψ(0, +∞) 0.25 0 1 111111111111111111111111111111111
Ψ(+∞, 0) 0.25 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.25 1 1 111111111111111111111111111111111
G9
Ψ(+∞,−∞) 0.25 0 0 111111111111111111111111111111111
Ψ(0, +∞) 0.25 0 1 111111111111111111111111111111111
Ψ(+∞, 0) 0.25 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.25 1 1 111111111111111111111111111111111
G10
Ψ(+∞,−∞) 0.25 0 0 111111111111111111111111111111111
Ψ(0, +∞) 0.25 0 1 111111111111111111111111111111111

168 Chapter B. Examples of Computing SWSs

Ψ(+∞, 0) 0.25 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.25 1 1 111111111111111111111111111111111
G11
Ψ(+∞,−∞) 0.25 0 0 111111111111111111111111111111111
Ψ(0, +∞) 0.25 0 1 111111111111111111111111111111111
Ψ(+∞, 0) 0.25 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.25 1 1 111111111111111111111111111111111
G12
Ψ(+∞,−∞) 0.25 0 0 111111111111111111111111111111111
Ψ(0, +∞) 0.25 0 1 111111111111111111111111111111111
Ψ(+∞, 0) 0.25 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.25 1 1 111111111111111111111111111111111
G13
Ψ(+∞,−∞) 0.25 0 0 111111111111111111111111111111111
Ψ(0, +∞) 0.25 0 1 111111111111111111111111111111111
Ψ(+∞, 0) 0.25 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.25 1 1 111111111111111111111111111111111
G14
Ψ(+∞,−∞) 0.25 0 0 111111111111111111111111111111111
Ψ(0, +∞) 0.25 0 1 111111111111111111111111111111111
Ψ(+∞, 0) 0.25 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.25 1 1 111111111111111111111111111111111
G15
Ψ(+∞,−∞) 0.25 0 0 111111111111111111111111111111111
Ψ(0, +∞) 0.25 0 1 111111111111111111111111111111111
Ψ(+∞, 0) 0.25 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.25 1 1 111111111111111111111111111111111
G16
Ψ(+∞,−∞) 0.25 0 0 111111111111111111111111111111111
Ψ(0, +∞) 0.25 0 1 111111111111111111111111111111111
Ψ(+∞, 0) 0.25 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.25 1 1 111111111111111111111111111111111
G17
Ψ(+∞,−∞) 0.5625 0 0 111111111111111111111111111111111
Ψ(1, +∞) 0.1875 0 1 111111111111111111111111111111111
Ψ(+∞, 1) 0.1875 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.0625 1 1 111111111111111111111111111111111
G18
Ψ(+∞,−∞) 0.5625 0 0 111111111111111111111111111111111
Ψ(3, +∞) 0.1875 0 1 111111111111111111111111111111111
Ψ(+∞, 3) 0.1875 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.0625 1 1 111111111111111111111111111111111
G19
Ψ(+∞,−∞) 0.5625 0 0 111111111111111111111111111111111
Ψ(1, +∞) 0.1875 0 1 111111111111111111111111111111111

B.1. Tree-Structured example 169

Ψ(+∞, 1) 0.1875 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.0625 1 1 111111111111111111111111111111111
G20
Ψ(+∞,−∞) 0.5625 0 0 111111111111111111111111111111111
Ψ(4, +∞) 0.1875 0 1 111111111111111111111111111111111
Ψ(+∞, 4) 0.1875 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.0625 1 1 111111111111111111111111111111111
G21
Ψ(+∞,−∞) 0.5625 0 0 111111111111111111111111111111111
Ψ(1, +∞) 0.1875 0 1 111111111111111111111111111111111
Ψ(+∞, 1) 0.1875 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.0625 1 1 111111111111111111111111111111111
G22
Ψ(+∞,−∞) 0.5625 0 0 111111111111111111111111111111111
Ψ(3, +∞) 0.1875 0 1 111111111111111111111111111111111
Ψ(+∞, 3) 0.1875 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.0625 1 1 111111111111111111111111111111111
G23
Ψ(+∞,−∞) 0.5625 0 0 111111111111111111111111111111111
Ψ(1, +∞) 0.1875 0 1 111111111111111111111111111111111
Ψ(+∞, 1) 0.1875 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.0625 1 1 111111111111111111111111111111111
G24
Ψ(+∞,−∞) 0.5625 0 0 111111111111111111111111111111111
Ψ(4, +∞) 0.1875 0 1 111111111111111111111111111111111
Ψ(+∞, 4) 0.1875 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.0625 1 1 111111111111111111111111111111111
G25
Ψ(+∞,−∞) 0.316406 0 0 111111111111111111111111111111111
Ψ(4, +∞) 0.105469 0 1 111111111111111111111111111111111
Ψ(+∞, 4) 0.140625 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.191406 1 1 111111111111111111111111111111111
Ψ(2, +∞) 0.140625 0 1 111111111111111111111111111111111
Ψ(+∞, 2) 0.105469 1 0 111111111111111111111111111111111
Ψ(4, +∞) 0.0351562 1 1 111111111111111111111111111111011
Ψ(+∞, 2) 0.0351562 1 1 111111111111111111111111111111011
Ψ(+∞,−∞) -0.0351562 1 1 111111111111111111111111111111011
Ψ(−∞, +∞) -0.0351562 1 1 111111111111111111111111111111011
G26
Ψ(+∞,−∞) 0.316406 0 0 111111111111111111111111111111111
Ψ(7, +∞) 0.105469 0 1 111111111111111111111111111111111
Ψ(+∞, 7) 0.140625 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.15625 1 1 111111111111111111111111111111111
Ψ(4, +∞) 0.140625 0 1 111111111111111111111111111111111
Ψ(+∞, 4) 0.105469 1 0 111111111111111111111111111111111

170 Chapter B. Examples of Computing SWSs

Ψ(7, +∞) 0.0351562 1 1 111111111111111111111111111111111
Ψ(+∞, 4) 0.0351562 1 1 111111111111111111111111111111111
Ψ(+∞,−∞) -0.0351562 1 1 111111111111111111111111111111111
G27
Ψ(−∞, +∞) 0.316406 1 1 111111111111111111111111111111111
Ψ(+∞, 4) 0.105469 1 0 111111111111111111111111111111111
Ψ(4, +∞) 0.140625 0 1 111111111111111111111111111111111
Ψ(+∞,−∞) 0.191406 0 0 111111111111111111111111111111111
Ψ(+∞, 2) 0.140625 1 0 111111111111111111111111111111111
Ψ(2, +∞) 0.105469 0 1 111111111111111111111111111111111
Ψ(+∞, 4) 0.0351562 0 0 111111111111111111111111111110111
Ψ(2, +∞) 0.0351562 0 0 111111111111111111111111111110111
Ψ(−∞, +∞) -0.0351562 0 0 111111111111111111111111111110111
Ψ(+∞,−∞) -0.0351562 0 0 111111111111111111111111111110111
G28
Ψ(−∞, +∞) 0.316406 1 1 111111111111111111111111111111111
Ψ(+∞, 7) 0.105469 1 0 111111111111111111111111111111111
Ψ(7, +∞) 0.140625 0 1 111111111111111111111111111111111
Ψ(+∞,−∞) 0.15625 0 0 111111111111111111111111111111111
Ψ(+∞, 4) 0.140625 1 0 111111111111111111111111111111111
Ψ(4, +∞) 0.105469 0 1 111111111111111111111111111111111
Ψ(+∞, 7) 0.0351562 0 0 111111111111111111111111111111111
Ψ(4, +∞) 0.0351562 0 0 111111111111111111111111111111111
Ψ(−∞, +∞) -0.0351562 0 0 111111111111111111111111111111111
G29
Ψ(−∞, +∞) 0.619217 1 1 111111111111111111111111111111111
Ψ(+∞, 8) 0.0547943 1 0 111111111111111111111111111111111
Ψ(8, +∞) 0.0346069 1 1 111111111111111111111111111111111
Ψ(+∞, 5) 0.0148315 1 1 111111111111111111111111111111111
Ψ(+∞,−∞) -0.0346069 1 1 111111111111111111111111111111111
Ψ(+∞, 5) 0.0780029 1 0 111111111111111111111111111111111
Ψ(5, +∞) 0.0817108 0 1 111111111111111111111111111111111
Ψ(8, +∞) 0.0269165 0 1 111111111111111111111111111111111
Ψ(+∞,−∞) 0.0299072 0 0 111111111111111111111111111111111
Ψ(+∞, 8) 0.00672913 0 0 111111111111111111111111111111111
Ψ(5, +∞) 0.00672913 0 0 111111111111111111111111111111111
Ψ(−∞, +∞) -0.00672913 0 0 111111111111111111111111111111111
Ψ(+∞, 3) 0.0197754 1 1 111111111111111111111111111111111
Ψ(+∞, 3) 0.0219727 1 0 111111111111111111111111111111111
Ψ(5, +∞) 0.0148315 1 1 111111111111111111111111111111011
Ψ(+∞, 3) 0.0148315 1 1 111111111111111111111111111111011
Ψ(+∞,−∞) -0.0148315 1 1 111111111111111111111111111111011
Ψ(−∞, +∞) -0.0148315 1 1 111111111111111111111111111111011
Ψ(5, +∞) 0.00494385 1 0 111111111111111111111111111111011
Ψ(+∞, 3) 0.00494385 1 0 111111111111111111111111111111011

B.1. Tree-Structured example 171

Ψ(+∞,−∞) -0.00494385 1 0 111111111111111111111111111111011
Ψ(−∞, +∞) -0.00494385 1 0 111111111111111111111111111111011
Ψ(3, +∞) 0.0461426 0 1 111111111111111111111111111111111
Ψ(+∞, 5) 0.00494385 0 1 111111111111111111111111111111011
Ψ(+∞,−∞) -0.00494385 0 1 111111111111111111111111111111011
Ψ(−∞, +∞) -0.00494385 0 1 111111111111111111111111111111011
Ψ(+∞, 5) 0.00549316 0 0 111111111111111111111111111111011
Ψ(−∞, +∞) -0.00549316 0 0 111111111111111111111111111111011
Ψ(3, +∞) 0.00865173 0 1 111111111111111111111111111111011
Ψ(3, +∞) 0.00672913 0 0 111111111111111111111111111111011
Ψ(+∞,−∞) -0.00549316 0 0 111111111111111111111111111111011
Ψ(5, +∞) -0.00370789 0 1 111111111111111111111111111111011
Ψ(5, +∞) -0.00123596 0 0 111111111111111111111111111111011
G30
Ψ(+∞,−∞) 0.100113 0 0 111111111111111111111111111111111
Ψ(10, +∞) 0.033371 0 1 111111111111111111111111111111111
Ψ(+∞, 10) 0.0791016 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.42157 1 1 111111111111111111111111111111111
Ψ(7, +∞) 0.103821 0 1 111111111111111111111111111111111
Ψ(+∞, 7) 0.103821 1 0 111111111111111111111111111111111
Ψ(10, +∞) 0.0457306 1 1 111111111111111111111111111111111
Ψ(+∞, 7) 0.0346069 1 1 111111111111111111111111111111111
Ψ(+∞,−∞) -0.0457306 1 1 111111111111111111111111111111111
Ψ(5, +∞) 0.0791016 0 1 111111111111111111111111111111111
Ψ(+∞, 5) 0.033371 1 0 111111111111111111111111111111111
Ψ(+∞, 5) 0.0111237 1 1 111111111111111111111111111111111
G31
Ψ(+∞,−∞) 0.619217 0 0 111111111111111111111111111111111
Ψ(11, +∞) 0.0547943 0 1 111111111111111111111111111111111
Ψ(+∞, 11) 0.0346069 0 0 111111111111111111111111111111111
Ψ(8, +∞) 0.0148315 0 0 111111111111111111111111111111111
Ψ(−∞, +∞) -0.0346069 0 0 111111111111111111111111111111111
Ψ(8, +∞) 0.0780029 0 1 111111111111111111111111111111111
Ψ(+∞, 8) 0.0817108 1 0 111111111111111111111111111111111
Ψ(+∞, 11) 0.0269165 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.0299072 1 1 111111111111111111111111111111111
Ψ(11, +∞) 0.00672913 1 1 111111111111111111111111111111111
Ψ(+∞, 8) 0.00672913 1 1 111111111111111111111111111111111
Ψ(+∞,−∞) -0.00672913 1 1 111111111111111111111111111111111
Ψ(6, +∞) 0.0197754 0 0 111111111111111111111111111111111
Ψ(6, +∞) 0.0219727 0 1 111111111111111111111111111111111
Ψ(+∞, 6) 0.0461426 1 0 111111111111111111111111111111111
G32
Ψ(+∞,−∞) 0.100113 0 0 111111111111111111111111111111111
Ψ(11, +∞) 0.033371 0 1 111111111111111111111111111111111

172 Chapter B. Examples of Computing SWSs

Ψ(+∞, 11) 0.0791016 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.42157 1 1 111111111111111111111111111111111
Ψ(8, +∞) 0.103821 0 1 111111111111111111111111111111111
Ψ(+∞, 8) 0.103821 1 0 111111111111111111111111111111111
Ψ(11, +∞) 0.0457306 1 1 111111111111111111111111111111111
Ψ(+∞, 8) 0.0346069 1 1 111111111111111111111111111111111
Ψ(+∞,−∞) -0.0457306 1 1 111111111111111111111111111111111
Ψ(6, +∞) 0.0791016 0 1 111111111111111111111111111111111
Ψ(+∞, 6) 0.033371 1 0 111111111111111111111111111111111
Ψ(+∞, 6) 0.0111237 1 1 111111111111111111111111111111111
G33
Ψ(+∞,−∞) 0.718943 0 0 111111111111111111111111111111111
Ψ(14, +∞) 0.0478188 0 1 111111111111111111111111111111111
Ψ(+∞, 14) 0.0364889 0 0 111111111111111111111111111111111
Ψ(11, +∞) 0.0211565 0 0 111111111111111111111111111111111
Ψ(−∞, +∞) -0.0364889 0 0 111111111111111111111111111111111
Ψ(9, +∞) 0.0153324 0 0 111111111111111111111111111111111
Ψ(11, +∞) 0.0525384 0 1 111111111111111111111111111111111
Ψ(+∞, 11) 0.0602832 1 0 111111111111111111111111111111111
Ψ(+∞, 9) 0.0375987 1 0 111111111111111111111111111111111
Ψ(+∞, 14) 0.015842 1 0 111111111111111111111111111111111
Ψ(−∞, +∞) 0.012608 1 1 111111111111111111111111111111111
Ψ(14, +∞) 0.0045122 1 1 111111111111111111111111111111111
Ψ(+∞, 11) 0.00410467 1 1 111111111111111111111111111111111
Ψ(+∞,−∞) -0.0045122 1 1 111111111111111111111111111111111
Ψ(9, +∞) 0.0133668 0 1 111111111111111111111111111111111
Ψ(+∞, 9) 0.00040753 1 1 111111111111111111111111111111111

Table B.2: The simple waveform sets for the example tree-structured
circuit

B.2. A 2-to-1 MUX Example 173

B.2 A 2-to-1 MUX Example

=� �

"

��

="

=#

=-

=.

=/

=<

Figure B.2: A 2-to-1 MUX example

Table B.3: Average transition activity for nodes in Figure B.2
Node Ave.Trans. Node Ave.Trans. Node Ave.Trans. Node Ave.Trans.
G1 0.5 G3 0.5 G5 0.375 G7 0.5
G2 0.5 G4 0.5 G6 0.5

Occurrence Value Value MASK
Waveform Probability @−∞ @+∞ G1 G7

G1
Ψ(+∞,−∞) 0.25 0 0 1111111
Ψ(0, +∞) 0.25 0 1 1111111
Ψ(+∞, 0) 0.25 1 0 1111111
Ψ(−∞, +∞) 0.25 1 1 1111111
G2
Ψ(+∞,−∞) 0.25 0 0 1111111
Ψ(0, +∞) 0.25 0 1 1111111
Ψ(+∞, 0) 0.25 1 0 1111111
Ψ(−∞, +∞) 0.25 1 1 1111111
G3
Ψ(+∞,−∞) 0.25 0 0 1111111
Ψ(0, +∞) 0.25 0 1 1111111
Ψ(+∞, 0) 0.25 1 0 1111111
Ψ(−∞, +∞) 0.25 1 1 1111111
G4
Ψ(−∞, +∞) 0.25 1 1 1111111
Ψ(+∞, 1) 0.25 1 0 1111111
Ψ(1, +∞) 0.25 0 1 1111111
Ψ(+∞,−∞) 0.25 0 0 1111111

174 Chapter B. Examples of Computing SWSs

G5
Ψ(−∞, +∞) 0.5625 1 1 1111111
Ψ(+∞, 1) 0.1875 1 0 1111111
Ψ(1, +∞) 0.1875 0 1 1111111
Ψ(+∞,−∞) 0.0625 0 0 1111111
G6
Ψ(−∞, +∞) 0.5625 1 1 1111111
Ψ(+∞, 1) 0.0625 1 0 1111111
Ψ(2, +∞) 0.0625 1 1 1111110
Ψ(+∞, 1) 0.0625 1 1 1111110
Ψ(+∞,−∞) -0.0625 1 1 1111110
Ψ(−∞, +∞) -0.0625 1 1 1111110
Ψ(+∞, 2) 0.125 1 0 1111111
Ψ(1, +∞) 0.125 0 1 1111111
Ψ(+∞,−∞) 0.0625 0 0 1111111
Ψ(2, +∞) 0.0625 0 1 1111111
G7
Ψ(+∞,−∞) 0.25 0 0 1111111
Ψ(3, +∞) 0.166667 0 1 1111111
Ψ(4, +∞) 0.0833333 0 1 1111111
Ψ(+∞, 3) 0.208333 1 0 1111111
Ψ(−∞, +∞) 0.25 1 1 1111111
Ψ(+∞, 4) 0.0416667 1 0 1111111

Table B.4: The simple waveform sets for the 2-to-1 MUX example

Bibliography

[1] A. Abdollahi, F. Fallah, and M. Pedram, “Leakage current reduction in
CMOS VLSI circuits by input vector control,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 12, no. 2, pp. 140–154, 2004.

[2] I. Abu-Khater, A. Bellaouar, and M. Elmasry, “Circuit techniques for
CMOS low-power high-performance multipliers,” IEEE J. Solid -State Cir-
cuits, vol. 31, no. 10, pp. 1535–1546, 1996.

[3] F. A. Aloul, S. Hassoun, K. A. Sakallah, and D. Blaauw, “Robust SAT-
based search algorithm for leakage power reduction,” in Proc. 12th Intr.
Workshop on Integrated Circuit Design. Power and Timing Modeling, Op-
timization and Simulation, pp. 167–177, 2002.

[4] S. F. Anderson, J. G. Earle, R. E. Goldschmidt, and D. M. Powers, “The
IBM system/360 model 91: Floating-point execution unit,” IBM J. of Re-
search and Development, vol. 11, no. 1, pp. 34–53, 1967.

[5] A. Avizienis, “Signed-digit number representation for fast parallel arith-
metic,” IRE Trans. Electronic Computers, vol. EC-10, no. 3, pp. 389–400,
1961.

[6] C. R. Baugh and B. A. Wooley, “A two’s complement parallel array mul-
tiplication algorithm,” IEEE Trans. Computers, vol. C-22, pp. 1045–1047,
1973.

[7] H. Benaroya and S. M. Han, Probability Models in Engineering and Sci-
ence. Boca Raton, FL, USA: CRC, 1st ed., 2005.

[8] L. Benini, A. Bogliolo, M. Favalli, and G. D. Micheli, “Regression models
for behavioral power estimation,” Integr. Comput.-Aided Eng., vol. 5, no. 2,
pp. 95–106, 1998.

[9] S. Bhanja and N. Ranganathan, “Modeling switching activity using cas-
caded bayesian networks for correlated input streams,” in Proc. IEEE Intr.

175

176 BIBLIOGRAPHY

Conf. on Computer Design: VLSI in Computers and Processors, pp. 388–
390, 2002.

[10] S. Bhanja and N. Ranganathan, “Swtiching activity estimation of VLSI
circuits using bayesian networks,” IEEE Trans. Very Large Scale Integr.
Syst., vol. 11, no. 4, pp. 558–567, 2003.

[11] M. Bhardwaj, R. Min, and A. Chandrakasan, “Power-aware systems,” in
Proc. 34th Asilomar Conf. on Signals, Systems and Computers, vol. 2,
pp. 1695–1701, Nov. 2000.

[12] K. C. Bickerstaff, M. J. Schulte, and E. E. Swartzlander, Jr., “Reduced area
multipliers,” in Proc. Intr. Conf. on Application-Specific Array Processors,
pp. 478–489, 1993.

[13] K. C. Bickerstaff, M. J. Schulte, and E. E. Swartzlander, Jr., “Parallel re-
duced area multipliers,” J. VLSI Signal Process. Syst., vol. 9, no. 3, pp. 181–
191, 1995.

[14] K. C. Bickerstaff, E. E. Swartzlander, Jr., and M. J. Schulte, “Analysis
of column compression multipliers,” in Proc. IEEE Symp. Comp. Arith.,
pp. 33–39, 2001.

[15] A. D. Booth, “A signed binary multiplication technique,” Quarterly J. of
Mechanics and Applied Mathematics, vol. 4, no. 2, pp. 236–240, 1951.

[16] B. K. Bose, D. A. Patterson, L. Pei, and G. S. Taylor, “Fast multiply and di-
vide for a VLSI floating-point unit,” in Proc. 8th IEEE Symp. on Computer
Arithmetic, pp. 87–94, May 1987.

[17] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE
Trans. Computers, vol. 31, no. 3, pp. 260–264, 1982.

[18] F. Brglez, P. Pownall, and R. Hum, “Applications of testability analysis:
From ATPG to critical delay path tracing,” in Proc. Intr. Test Conf., pp. 705–
712, 1984.

[19] D. Brooks and M. Martonosi, “Dynamically exploiting narrow width
operands to improve processor power and performance,” in Proc. 5th Intr.
Symp. on High Performance Computer Architecture, pp. 13–22, 1999.

[20] D. Brooks and M. Martonosi, “Value-based clock gating and operation
packing: dynamic strategies for improving processor power and perfor-
mance,” ACM Trans. Comput. Syst., vol. 18, no. 2, pp. 89–126, 2000.

BIBLIOGRAPHY 177

[21] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,”
IEEE Trans. Computers, vol. C-35, no. 8, pp. 677–691, 1986.

[22] R. E. Bryant, “On the complexity of VLSI implementations and graph rep-
resentations of Boolean functions with application to integer multiplica-
tion,” IEEE Trans. on Computers, vol. 40, no. 2, pp. 205–213, 1991.

[23] R. Burch, F. Najm, P. Yang, and T. Trick, “A monte carlo approach for
power estimation,” IEEE Trans. Very Large Scale Integr. Syst., vol. 1, no. 1,
pp. 63–71, 1993.

[24] T. K. Callaway and E. E. Swartzlander, Jr., “Power-delay characteristics of
CMOS multipliers,” in Proc. 13th Symp. on Computer Arithmetic (ARITH
’97), pp. 26–32, 1997.

[25] T. Callaway and E. E. Swartzlander, Jr., Low Power Arithmetic Compo-
nents, pp. 161–198. Low Power Design Methodologies (The International
Series in Engineering and Computer Science), Rabaey, J.M. and Pedram,
M. eds., Norwell, MA, USA: Kluwer Academic Publishers, 1996.

[26] S. Chakravarty, “On the complexity of using BDDs for the synthesis and
analysis of boolean circuits,” in Proc. 27th Annual Allerton Conf. on Com-
munication, Control, and Computing, pp. 730–739, 1989.

[27] S. Chakravarty and H. B. Hunt, “On computing signal probability and de-
tection probability of stuck-at faults,” IEEE Trans. Computers, vol. 39,
no. 11, pp. 1369–1377, 1990.

[28] C.-H. Chang, J. Gu, and M. Zhang, “A review of 0.18-μm full adder per-
formances for tree structured arithmetic circuits,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 13, no. 6, pp. 686–695, 2005.

[29] J. Cheng and M. J. Druzdzel, “AIS-BN: An adaptive importance sampling
algorithm for evidential reasoning in large bayesian networks,” J. Artificial
Intelligence Research, vol. 13, pp. 155–188, 2000.

[30] J. Chittamuru, W. Burleson, and J. Euh, “Dynamic wordlength variation
for low-power 3D graphics texture mapping,” in IEEE Workshop on Signal
Processing Systems, pp. 251–256, 2003.

[31] G. Choe and E. E. Swartzlander, Jr., “Interconnection effects in fast multi-
pliers,” in Proc. of the 33th Asilomar Conf. on Signals, Systems and Com-
puters, vol. 2, pp. 1224–1227, 1999.

178 BIBLIOGRAPHY

[32] Y. Choi and E. E. Swartzlander, Jr., “Design of a hybrid prefix adder for
nonuniform input arrival times,” in SPIE: Advanced Signal Processing Al-
gorithms, Architectures, and Implementations XII, vol. 4791, pp. 456–465,
2002.

[33] L. Ciminiera and P. Montuschi, “Carry-save multiplication schemes with-
out final addition,” IEEE Trans. Computers, vol. 45, no. 9, pp. 1050–1055,
1996.

[34] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, Synthesis And Op-
timization Of DSP Algorithms. Norwell, MA, USA: Kluwer Academic
Publishers, 2004.

[35] G. A. Constantinides and G. J. Woeginger, “The complexity of multiple
wordlength assignment,” Appl. Math. Lett., vol. 15, no. 2, pp. 137–140,
2002.

[36] J. T. Coonen, “An implementation guide to a proposed standard for floating
point arithmetic,” IEEE Computer, vol. 13, no. 1, pp. 68–79, 1980.

[37] R. Cowell, A. Dawid, S. Lauritzen, and D. Spiegelhalter, Probabilistic Net-
works and Expert Systems. Secaucus, NJ, USA: Springer-Verlag, 1999.

[38] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza, vol. 34,
pp. 349–356, March 1965.

[39] L. Dadda, “On parallel digital multipliers,” Alta Frequenza, vol. 45,
pp. 574–580, October 1976.

[40] E. de Angel, Low Power Digital Multiplication. PhD thesis, The University
of Texas at Austin, 1996.

[41] E. de Angel, Low Power Digital Multipliers, ch. 4. Application Specific
Processors (The International Series in Engineering and Computer Sci-
ence), E.E. Swartzlander Jr. ed., Norwell, MA, USA: Kluwer Academic
Publishers, 1997.

[42] E. de Angel and E. E. Swartzlander, Jr., “Survey of low power techniques
for VLSI design,” in Proc. IEEE Intr. Conf. Innovative Systems in Silicon,
pp. 159–169, Oct 1996.

[43] E. de Angel and E. E. Swartzlander, Jr., “Switching activity in parallel mul-
tipliers,” in Proc. of the 35th Asilomar Conf. on Signals, Systems and Com-
puters, pp. 857–860, 2001.

BIBLIOGRAPHY 179

[44] D. De Caro, E. Napoli, and A. Strollo, “Direct digital frequency synthesiz-
ers with polynomial hyperfolding technique,” IEEE Trans. Circuit & Syst.
II, vol. 51, no. 7, pp. 337–344, 2004.

[45] J.-P. Deschamps, G. J. Bioul, and G. D. Sutter, Synthesis of Arithmetic Cir-
cuits: FPGA, ASIC and Embedded Systems. John Wiley & Sons, 2006.

[46] C. Ding, C. Tsui, and M. Pedram, “Gate-level power estimation using
tagged probabilistic simulation,” IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 17, no. 11, pp. 1099–1107, 1998.

[47] S. Dormido and M. A. Canto, “Synthesis of generalized parallel counters,”
IEEE Trans. Computers, vol. C-30, no. 9, pp. 699–703, 1981.

[48] S. Dormido and M. A. Canto, “An upper bound for the synthesis of general-
ized parallel counters,” IEEE Trans. Computers, vol. C-31, no. 8, pp. 802–
805, 1982.

[49] M. D. Ercegovac and T. Lang, “Fast multiplication without carry-propagate
addition,” IEEE Trans. Computers, vol. 39, no. 11, pp. 1385–1390, 1990.

[50] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann Pub-
lishers, 2004.

[51] M. D. Ercegovac and T. Lang, “On recoding in arithmetic algorithms,” J.
VLSI Signal Process. Syst., vol. 14, no. 3, pp. 283–294, 1996.

[52] S. Ercolani, M. Favalli, M. Damiani, P. Olivo, and B. Riccó, “Estimate of
signal probability in combinational logic networks,” in Proc. 1st European
Test Conf., pp. 132–138, 1989.

[53] G. Estrin, B. Gilchrist, and J. H. Pomerene, “A note on high-speed digital
multiplication,” IRE Transactions on Electronic Computers, vol. 5, no. 3,
p. 140, 1956.

[54] M. I. Ferguson and M. D. Ercegovac, “A multiplier with redundant
operands,” in Proc. 33rd Asilomar Conf. on Signals, Systems and Com-
puters, vol. 2, pp. 1322–1326, 1999.

[55] M. J. Flynn and S. S. Oberman, Advanced Computer Arithmetic Design.
New York, USA: John Wiley & Sons, Inc., rev. ed., 2001.

[56] C. C. Foster and F. D. Stockton, “Counting responders in an associative
memory,” IEEE Trans. Computers, vol. C-20, no. 12, pp. 1580–1583, 1971.

180 BIBLIOGRAPHY

[57] D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and Design of
Embedded Systems, ch. 6. New Jersey, USA: Prentice Hall, 1994.

[58] D. D. Gajski, “Parallel compressors,” IEEE Trans. Computers, vol. C-29,
no. 5, pp. 393–398, 1980.

[59] A. Ghosh, S. Devadas, K. Keutzer, and J. White, “Estimation of average
switching activity in combinational and sequential circuits,” in Proc. De-
sign Automation Conf., pp. 253–259, 1992.

[60] A. Glaser, History of Binary and Other Nondecimal Numeration. US:
Tomash Publishers, rev. ed., 1981.

[61] A. Goldsmith, Wireless Communications. New York, USA: Cambridge
University Press, 2005.

[62] J. B. Gosling, “Design of large high-speed floating-point arithmetic units,”
IEE Proc., vol. 118, pp. 493–498, 1971.

[63] J. B. Gosling, Design of Arithmetic Units for Digital Computers. New York,
US: Springer-Verlag, 1980.

[64] O. Gustafsson, K. Johansson, and L. Wanhammar, “Optimization and
quantization effects for sine and cosine computation using a sum of bit-
products,” in Proc. Asilomar Conf. Signals, Syst., Comp., (Pacific Grove,
CA), pp. 1347–1351, 2005.

[65] O. Gustafsson, S. T. Oskuii, K. Johansson, and P. G. Kjeldsberg, “Switch-
ing activity reduction of mac-based fir filters with correlated input data,”
in 17th Intr. Workshop on Power and Timing Modeling Optimization and
Simulation, pp. 526–535, 2007.

[66] A. Habibi and P. A. Wintz, “Fast multipliers,” IEEE Trans. Computers,
vol. C-19, no. 2, pp. 153–157, 1970.

[67] J. Halter and F. Najm, “A gate-level leakage power reduction method for
ultra-low-power cmos circuits,” in Proc. IEEE Custom Integrated Circuits
Conference, pp. 475–478, 1997.

[68] C.-Y. Han, H.-J. Park, and L.-S. Kim, “A low-power array multiplier using
separated multiplication technique,” IEEE Trans. on Circuits and Systems
II: Analog and Digital Signal Processing, vol. 48, no. 9, pp. 866–871, 2001.

[69] H. Hassler and N. Takagi, “Function evaluation by table look-up and addi-
tion,” in Proc. Symp. Comp. Arith., pp. 10–16, 1995.

BIBLIOGRAPHY 181

[70] M. Hatamian and G. L. Cash, “A 70-MHz 8-bit x 8 bit parallel pipelined
multiplier in 2.5-μm CMOS,” IEEE J. Solid-State Circuits, vol. SC-21,
no. 4, pp. 505–513, 1986.

[71] S. Hong, S.-S. Chin, S. Kim, and W. Hwang, “Multiplier architecture power
consumption characterization for low-power DSP applications,” in Proc.
IEEE Intr. Conf. on Electronics, Circuits and Systems (ICECS), vol. 2,
pp. 741–744, 2002.

[72] F. Hu and V. D. Agrawal, “Dual-transition glitch filtering in probabilistic
waveform power estimation,” in Proc. 15th Great Lakes Symp. on VLSI,
pp. 357–360, 2005.

[73] F. Hu and V. D. Agrawal, “Enhanced dual-transition probabilistic power
estimation with selective supergate analysis,” in Proc. Intr. Conf. on Com-
puter Design, pp. 366–372, 2005.

[74] X. Huang, B. W. Y. Wei, H. Chen, and Y. H. Mao, “High-performance VLSI
multiplier with a new redundant binary coding,” J. VLSI Signal Process.
Syst., vol. 3, no. 4, pp. 283–291, 1991.

[75] Z. Huang, High-Level Optimization Techniques for Low-Power Multiplier
Design. PhD thesis, University of California Los Angeles, 2003.

[76] C. M. Huizer, “Power dissipation analysis of CMOS VLSI circuits by
means of switch-level simulation,” in Proc. IEEE European Solid State Cir-
cuits Conf., pp. 61–64, 1990.

[77] J. Jedwab and C. J. Mitchell, “Minimum weight modified signed-digit rep-
resentations and fast exponentiation,” Electronics Letters, vol. 25, no. 17,
pp. 1171–1172, 1989.

[78] K. Johansson, O. Gustafsson, and L. Wanhammar, “Low power architec-
tures for sine and cosine computation using a sum of bit-products,” in Proc.
IEEE NorChip Conf., (Oulu, Finland), pp. 161–164, 2005.

[79] K. Johansson, O. Gustafsson, and L. Wanhammar, “Approximation of el-
ementary functions using a weighted sum of bit-products,” in Proc. IEEE
Int. Symp. Circuits Syst., (Kos Island, Greece), pp. 795–798, 2006.

[80] K. Johansson, O. Gustafsson, and L. Wanhammar, “Conversion and addi-
tion in logarithmic number systems using a sum of bit-products,” in Proc.
IEEE Norchip Conf., (Linköping, Sweden), pp. 39–42, 2006.

182 BIBLIOGRAPHY

[81] S. Kang, “Accurate simulation of power dissipation in VLSI circuits,” IEEE
journal of solid-state circuits, vol. SC-21, no. 5, pp. 899–901, 1986.

[82] B. Kapoor, “Improving the accuracy of circuit activity measurement,” in
Proc. Design Automation Conf., pp. 734–739, June 1994.

[83] K.-Y. Khoo, Z. Yu, and A. N. Willson, “Bit-level arithmetic optimization
for carry-save additions,” in Proc. IEEE/ACM Intr. Conf. on Computer-
aided design, pp. 14–19, 1999.

[84] T. Kilburn, D. B. G. Edwards, and D. Aspinall, “Parallel addition in digital
computers: A new fast carry circuit,” Proceedings of the IEE, vol. 106,
no. B, pp. 464–466, 1959.

[85] K. K. Kim, Y.-B. Kim, M. Choi, and N. Park, “Leakage minimization tech-
nique for nanoscale CMOS VLSI,” IEEE Design and Test, vol. 24, no. 4,
pp. 322–330, 2007.

[86] N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu, M. J.
Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law
meets static power,” Computer, vol. 36, no. 12, pp. 68–75, 2003.

[87] T. Kim, W. Jao, and S. Tjiang, “Arithmetic optimization using carry-save-
adders,” in Proc. Conf. on Design automation, pp. 433–438, 1998.

[88] Y.-T. Kim and T. Kim, “An accurate exploration of timing and area trade-
offs in arithmetic optimization using carry-save-adders,” Journal of Cir-
cuits, Systems, and Computers, vol. 10, no. 5-6, pp. 279–292, 2000.

[89] Y.-T. Kim and T. Kim, “Accurate exploration of timing and area trade-offs
in arithmetic optimization using carry-save-adders,” in Proc. Conf. on Asia
South Pacific design automation, pp. 622–628, 2001.

[90] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” Science, vol. 220, 4598, pp. 671–680, May 1983.

[91] H. Kobayashi and H. Ohara, “A synthesizing method for large parallel
counters with a network of smaller ones,” IEEE Trans. Computers, vol. 27,
no. 8, pp. 753–757, 1978.

[92] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient solution
of a general class of recurrence equations,” IEEE Trans. Computers, vol. C-
22, no. 8, pp. 786–793, 1973.

BIBLIOGRAPHY 183

[93] I. Koren, Computer Arithmetic Algorithms. A. K. Peters, Natick, Mas-
sachusetts, 2nd ed., 2002.

[94] R. Krieger, B. Becker, and R. Sinkovic, “A BDD-based algorithm for com-
putation of exact fault detectionprobabilities,” in Digest of Papers, Intr.
Symp. on Fault-Tolerant Computing, pp. 186–195, 1993.

[95] B. Krishnamurthy and I. G. Tollis, “Improved techniques for estimating
signal probabilities,” IEEE Trans. Computers, vol. 38, no. 7, pp. 1041–
1045, 1989.

[96] O. Kwon, E. E. Swartzlander, Jr., and K. Nowka, “A 16-bit x 16-bit
MAC design using fast 5:2 compressors,” in Proc. IEEE Intr. Conf. on
Application-Specific Systems, Architectures, and Processors, pp. 235–243,
2000.

[97] P. Landman and J. Rabaey, “Power estimation for high level synthesis,” in
Proc. European Design Automation Conf., pp. 361–366, 1993.

[98] P. E. Landman and J. M. Rabaey, “Architectural power analysis: the dual
bit type method,” IEEE Trans. Very Large Scale Integr. Syst., vol. 3, no. 2,
pp. 173–187, 1995.

[99] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor Fundamen-
tals: Architectures and Features. Wiley-IEEE Press, 1996.

[100] P. Larsson and C. Nicol, “Transition reduction in carry-save adder trees,” in
Proc. Intr. Symp. on Low power electronics and design, pp. 85–88, 1996.

[101] C. F. Law, S. S. Rofail, and K. S. Yeo, “A low-power 16 × 16-b paral-
lel multiplier utilizing pass-transistor logic,” IEEE J. Solid -State Circuits,
vol. SC-34, no. 10, pp. 1395–1399, 1999.

[102] M.-J. Liao, C.-F. Su, C.-Y. Chang, and A.-H. Wu, “A carry-select-adder
optimization technique for high-performance Booth-encoded wallace-tree
multipliers,” in Proc. IEEE Int. Symp. Circuits Syst., pp. I–81–I–84, 2002.

[103] H. Ling, “High speed binary adder,” IBM J. Research and Development,
vol. 25, no. 2-3, pp. 156–166, 1981.

[104] W. Ling and Y. Savaria, “Variable-precision multiplier for equalizer with
adaptive modulation,” in Proc. 47th Midwest Symp. Circuits and Systems,
pp. I–553–556, 2004.

184 BIBLIOGRAPHY

[105] M. Lu, Arithmetic and Logic in Computer Systems. John Wiley & Sons,
2004.

[106] G.-K. Ma and F. J. Taylor, “Multiplier policies for digital signal process-
ing,” IEEE ASSP Magazine, vol. 7, no. 1, pp. 6–19, 1990.

[107] O. L. MacSorley, “High-speed arithmetic in binary computers,” IRC Pro-
ceedings, vol. 49, no. 1, pp. 67–91, 1961.

[108] P. E. Madrid, B. Millar, and E. E. Swartzlander, Jr., “Modified Booth al-
gorithm for high radix multiplication,” in IEEE Computer Design: VLSI in
Computers and Processors, Intr. Conf. on, pp. 118–121, October 1992.

[109] S. S. Mahant-Shetti, P. T. Balsara, and C. Lemonds, “High performance
low power array multiplier using temporal tiling,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 7, no. 1, pp. 121–124, 1999.

[110] J. C. Majithia and R. Kitai, “An iterative array for multiplication of signed
binary numbers,” IEEE Trans. Computers, vol. C-20, no. 2, pp. 214–216,
1971.

[111] H. Makino, Y. Nakase, and H. Shinohara, “A 8.8-ns 54 × 54-bit multiplier
using new redundant binary architecture,” in Proc. Intr. Conf. on Computer
Design, pp. 202–205, 1993.

[112] D. M. Mandelbaum and S. G. Mandelbaum, “A fast, efficient parallel-
acting method of generating functions defined by power series, including
logarithm, exponential, and sine, cosine,” IEEE Trans. Parallel Distrib.
Syst., vol. 7, no. 1, pp. 33–45, 1996.

[113] R. Marculescu, D. Marculescu, and M. Pedram, “Switching activity analy-
sis considering spatiotemporal correlations,” in Proc. IEEE/ACM Intr. Conf.
on Computer-aided design, pp. 239–299, 1994.

[114] R. Marculescu, D. Marculescu, and M. Pedram, “Efficient power estima-
tion for highly correlated input streams,” in Proc. 32nd ACM/IEEE Conf.
on Design Automation, pp. 628–634, 1995.

[115] K. Masselos, P. Merakos, S. Theoharis, T. Stouraitis, and C. E. Goutis,
“Power efficient data path synthesis of sum-of-products computations,”
IEEE Trans. Very Large Scale Integr. Syst., vol. 11, no. 3, pp. 446–450,
2003.

BIBLIOGRAPHY 185

[116] J. McClellan, T. Parks, and L. Rabiner, “A computer program for designing
optimum FIR linear phase digital filters,” IEEE Trans. Audio and Electroa-
coust., vol. AU-21, no. 6, pp. 506–526, 1973.

[117] M. Mehendale, S. D. Sherlekar, and G. Venkatesh, “Low-power realiza-
tion of FIR filters on programmable DSP’s,” IEEE Trans. Very Large Scale
Integr. Syst., vol. 6, no. 4, pp. 546–553, 1998.

[118] P. C. H. Meier, Analysis and design of low power digital multipliers. PhD
thesis, Carnegie Mellon University, 1999.

[119] A. R. Meo, “Arithmetic networks and their minimization using a new line
of elementary units,” IEEE Trans. Computers, vol. 24, no. 3, pp. 258–280,
1975.

[120] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of state calculations by fast computing machines,”
Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[121] G. Metze and J. E. Robertson, “Elimination of carry propagation in digital
computers,” in IFIP Congress, pp. 389–395, 1959.

[122] S. Miller and D. Childers, Probability and Random Processes: With Appli-
cations to Signal Processing and Communications. New York: Academic
Press, 2004.

[123] J. Monks, V. Bharghavan, and W. Hwu, “A power controlled multiple ac-
cess protocol for wireless packet networks,” in Proc. IEEE Conf. on Com-
puter Communications (INFOCOM), pp. 219–228, 2001.

[124] R. K. Montoye, E. Hokonek, and S. L. Runyan, “Design of the floating-
point execution unit of the IBM RISC system/6000,” IBM J. of Research
and Development, vol. 34, no. 1, pp. 59–70, 1990.

[125] G. E. Moore, “No exponential is forever: but ”forever” can be delayed!,”
in Proc. IEEE Int. Solid-State Circuits Conf., Digest of Technical Papers,
pp. 20–23 vol.1, 2003.

[126] J.-M. Muller, Elementary Functions: Algorithms and Implementation.
Birkhäuser Boston, 2nd ed., 2006.

[127] K. T. M. Muroyama, S. Yamaguchi, and H. Yasuura, “A design method for
a low power equalization circuit by adaptive bitwidth control,” in IEEE Intr.
Symp. Communications and Information Technology, pp. 704–709, 2004.

186 BIBLIOGRAPHY

[128] E. Musoll and J. Cortadella, “Low-power array multipliers with transition-
retaining barriers,” in 5th Intr. Workshop on Power and Timing Modeling
Optimization and Simulation, pp. 227–238, Oct 1995.

[129] M. Nagamatsu, S. Tanaka, J. Mori, T. Noguchi, and K. Hatanaka, “A 15 ns
32x32-bit CMOS multiplier with an improved parallel structure,” in Proc.
of IEEE Custom Integrated Circuits Conf., pp. 10.3/1–10.3/4, 1989.

[130] F. Najm, “Transition density: A new measure of activity in digital circuits,”
IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems,
vol. 12, no. 2, pp. 310–323, 1992.

[131] F. Najm, R. Burch, P. Yang, and I. Hajj, “CREST - a current estimator
for CMOS circuits,” in Proc. IEEE Intr. Conf. on Computer-aided design,
pp. 204–207, November 1988.

[132] F. Najm, R. Burch, P. Yang, and I. Hajj, “Probabilistic simulation for re-
liability analysis of CMOS VLSI circuits,” IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, vol. 9, no. 4, pp. 439–450, 1990.

[133] F. N. Najm, “A survey of power estimation techniques in VLSI circuits,”
IEEE Trans. Very Large Scale Integr. Syst., vol. 2, no. 4, pp. 446–455, 1994.

[134] S. Narayanaswamy, V. Kawadia, R. Sreenivas, and P. Kumar, “Power con-
trol in ad-hoc networks: Theory, architecture, algorithm and implementa-
tion of the compow protocol,” in in European Wireless Conference, 2002.

[135] S. G. Narendra and A. Chandrakasan, Leakage in Nanometer CMOS Tech-
nologies (Series on Integrated Circuits and Systems). New York, USA:
Springer-Verlag, 2005.

[136] W. Nebel and J. Mermet, eds., Low power design in deep submicron elec-
tronics. The International Series in Engineering and Computer Science,
Norwell, MA, USA: Kluwer Academic Publishers, 1997.

[137] T. Noll, D. Schmitt, H. Klar, and G. Enders, “A pipelined 330-MHz multi-
plier,” IEEE journal of solid-state circuits, vol. SC-21, pp. 411–416, 1986.

[138] K. Nose and T. Sakurai, “Analysis and future trend of short-circuit power,”
IEEE Trans. CAD of Integrated Circuits and Systems, vol. 19, no. 9,
pp. 1023–1030, 2000.

[139] V. Oklobdzija, D. Villeger, and S. Liu, “A method for speed optimized
partial product reduction and generation of fast parallel multipliers using
an algorithmic approach,” IEEE Trans. Computers, vol. 45, no. 3, pp. 294–
306, 1996.

BIBLIOGRAPHY 187

[140] B. Parhami and C.-H. Yeh, “Accumulative parallel counters,” in Proc. 29th
Asilomar Conf. on Signals, Systems and Computers, vol. 2, pp. 966–970,
1995.

[141] B. Parhami, Computer Arithmetic - Algorithms and Hardware Design. New
York, US: Oxford University Press, 2000.

[142] K. P. Parker and E. J. McCluskey, “Probabilistic treatment of general com-
binational networks,” IEEE Trans. Computers, vol. 24, no. 6, pp. 668–670,
1975.

[143] M. Pedram, “Power minimization in IC design: principles and applica-
tions,” ACM Trans. Design Automation of Electronic Systems, vol. 1, no. 1,
pp. 3–56, 1996.

[144] M. Pedram, Power simulation and estimation in VLSI circuits, pp. 18–1–
18–27. The VLSI Handbook: W-K. Chen ed., CRC Press and IEEE Press,
1999.

[145] S. D. Pezaris, “A 40 ns 17 bit by 17 bit array multiplier,” IEEE Trans.
Computers, vol. C-20, no. 4, pp. 442–447, 1971.

[146] M. Potkonjak and J. M. Rabaey, “Optimizing resource utilization using
transformations,” in Proc. IEEE/ACM Intr. Conf. on Computer-aided de-
sign, pp. 88–91, 1991.

[147] S. Powell and P. Chau, “Estimating power dissipation of VLSI signal pro-
cessing chips: The PFA technique,” IEEE Workshop on VLSI Signal Pro-
cessing, IEEE Press, vol. IV, pp. 250–259, 1990.

[148] K. Prasad and K. K. Parhi, “Low-power 4-2 and 5-2 compressors,” in Proc.
of the 35th Asilomar Conf. on Signals, Systems and Computers, vol. 1,
pp. 129–133, 2001.

[149] J. Proakis and D. G. Manolakis, Digital Signal Processing, Principles, Al-
gorithms, and Aplications. New Jersey, USA: Prentice Hall, 3rd ed., 1996.

[150] X. Qi, S. C. Lo, A. Gyure, Y. Luo, M. Shahram, K. Singhal, and D. B.
MacMillen, “Efficient subthreshold leakage current optimization - leak-
age current optimization and layout migration for 90- and 65- nm ASIC
libraries,” IEEE Circuits and Devices Magazine, vol. 22, no. 5, pp. 39–47,
2006.

[151] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits,
A Design Perspective. Prentice Hall, 2nd ed., 2003.

188 BIBLIOGRAPHY

[152] J. Rabaey and M. Pedram, eds., Low Power Design Methodologies. The
International Series in Engineering and Computer Science, Norwell, MA,
USA: Kluwer Academic Publishers, 1996.

[153] S. Ramprasad, N. R. Shanbhag, and I. N. Hajj, “Analytical estimation of
transition activity from word-level signal statistics,” in Proc. Design Au-
tomation Conf., pp. 582–587, 1997.

[154] G. W. Reitwiesner, “Binary arithmetic,” Advances in Computers, pp. 231–
308, 1960.

[155] T. Rejimon and S. Bhanja, “An accurate probalistic model for error detec-
tion,” in Proc. Intr. Conf. on VLSI Design held jointly with Intr. Conf. on
Embedded Systems Design, pp. 717–722, 2005.

[156] E. Y. Remez, “General computational methods of chebychev approxima-
tion,” Kiev, USSR: Atomic Energy Translation 4491, 1957.

[157] L. Rijnders, Z. Sahraoui, P. Six, and H. D. Man, “Timing optimization by
bit-level arithmetic transformations,” in Proc. Conf. on European design
automation, pp. 48–53, 1995.

[158] J. E. Robertson, “Two’s complement multiplication in binary parallel com-
puters,” IEEE Transactions on Electronic Computers, vol. EC-34, no. 3,
pp. 118–119, 1955.

[159] L. P. Rubinfield, “A proof of the modified Booth’s algorithm for multipli-
cation,” IEEE Trans. Computers, vol. 24, no. 10, pp. 1014–1015, 1975.

[160] T. Sakuta, W. Lee, and P. Balsara, “Delay balanced multipliers for low
power/low voltage DSP core,” in Proc. IEEE Symp. Low Power Electronics,
pp. 36–37, Oct 1995.

[161] H. Sam and A. Gupta, “A generalized multibit recoding of two’s comple-
ment binary numbers and its proof with application in multiplier implemen-
tations,” IEEE Trans. Computers, vol. 39, no. 8, pp. 1006–1015, 1990.

[162] M. R. Santoro and M. A. Horowitz, “SPIM: a pipelined 64x64-bit iterative
multiplier,” IEEE journal of solid-state circuits, vol. 24, pp. 487–493, 1989.

[163] J. Savir, G. Ditlow, and P. H. Bardell, “Random pattern testability,” in Proc.
IEEE Symp. Fault Tolerant Comput., pp. 80–89, 1983.

[164] P. Schneider and U. Schlichtmann, “Decomposition of boolean functions
for low power based on a new power estimation technique,” in Proc. Intr.
Low Power Design Workshop, pp. 123–128, April 1994.

BIBLIOGRAPHY 189

[165] E. M. Schwarz and M. J. Flynn, “Hardware starting approximation method
and its application to the square root operation,” IEEE Trans. Computers,
vol. 45, no. 12, pp. 1356–1369, 1996.

[166] P.-M. Seidel, L. D. McFearin, and D. W. Matula, “Binary multiplication
radix-32 and radix-256,” in Proc. of the 15th IEEE Symposium on Com-
puter Arithmetic, pp. 23–32, October 2001.

[167] S. Seth, L. Pan, and V. Agrawal, “Predict – probabilistic estimation of dig-
ital circuit testability,” in Proc. Fault Tolerant Computing Symp., pp. 220–
225, June 1985.

[168] A. M. Shams, T. K. Darwish, and M. A. Bayoumi, “Performance analysis
of low-power 1-bit CMOS full adder cells,” IEEE Trans. Very Large Scale
Integr. Syst., vol. 10, no. 1, pp. 20–29, 2002.

[169] R. Stefanelli, “A suggestion for a high-speed parallel binary divider,” IEEE
Trans. Computers, vol. C-21, no. 1, pp. 42–55, 1972.

[170] P. F. Stelling, C. U. Martel, V. G. Oklobdzija, and R. Ravi, “Optimal circuits
for parallel multipliers,” IEEE Trans. Computers, vol. 47, no. 3, pp. 273–
285, 1998.

[171] P. F. Stelling and V. Oklobdzija, “Design strategies for the final adder in a
parallel multiplier,” in Proc. 29th Asilomar Conf. on Signals, Systems and
Computers, pp. 591–595, 1995.

[172] P. F. Stelling and V. G. Oklobdzija, “Implementing multiply-accumulate
operation in multiplication time,” in Proc. 13th Symposium on Computer
Arithmetic, pp. 99–106, 1997.

[173] W. J. Stenzel, W. J. Kubitz, and G. H. Garcia, “A compact high-speed
parallel multiplication scheme,” IEEE Trans. Computers, vol. 26, no. 10,
pp. 948–957, 1977.

[174] T. Stornetta and F. Brewer, “Implementation of an efficient parallel BDD
package,” in Proc. Design Automation Conf., pp. 641–641, June 1996.

[175] E. E. Swartzlander, Jr. and G. Goto, Computer Arithmetic, ch. 9. The Com-
puter Engineering Handbook: Electrical Engineering Handbook, V. G. Ok-
lobdzija ed., Boca Raton, FL, USA: CRC Press, Inc., 2002.

[176] E. E. Swartzlander, Jr., “Merged arithmetic,” IEEE Trans. Computers,
vol. 29, no. 10, pp. 946–950, 1980.

190 BIBLIOGRAPHY

[177] Synopsys, “Power management.” Y-2006.06 Synopsys Online Documen-
tation, http://www.synopsys.com/support/dotw.html.

[178] S. Tahmasbi Oskuii, K. Johansson, O. Gustafsson, and P. G. Kjeldsberg,
“Power optimization of weighted bit-product summation tree for elemen-
tary function generator,” in to appear in Proc. Intr. Symp. on Circuits and
Systems, (Seattle, USA), pp. –, May 2008.

[179] S. Tahmasbi Oskuii, P. G. Kjeldsberg, and E. J. Aas, “Probabilistic gate-
level power estimation using a novel waveform set method,” in Proc. 17th
Great Lakes Symp. on VLSI, pp. 37–42, March 2007.

[180] S. Tahmasbi Oskuii, P. G. Kjeldsberg, and O. Gustafsson, “Power opti-
mized partial product reduction interconnect ordering in parallel multipli-
ers,” in Proc. 25th IEEE Norchip Conf., (Aalborg, Denmark), November
2007.

[181] S. Tahmasbi Oskuii, P. G. Kjeldsberg, and O. Gustafsson, “Transition-
activity aware design of reduction-stages for parallel multipliers,” in Proc.
17th Great Lakes Symp. on VLSI, pp. 120–125, March 2007.

[182] S. Tahmasbi Oskuii, P. G. Kjeldsberg, L. Lundheim, and A. Havashki,
“Power optimization of parallel multipliers in systems with variable word-
length,” in submitted to 8th Nordic Signal Processing Symposium (NOR-
SIG’08), (Copenhagen, Denmark), pp. –, June 2008.

[183] N. Takagi, H. Yasuura, and S. Yajima, “High-speed VLSI multiplication
algorithm with a redundant binary addition tree,” IEEE Trans. Computers,
vol. 34, no. 9, pp. 789–796, 1985.

[184] S. Theoharis, G. Theodoridis, D. Soudris, C. Goutis, and A. Thanailakis, “A
fast and accurate delay dependent method for switching estimation of large
combinational circuits,” J. Systems Architecture, vol. 48, no. 4–5, pp. 113–
124, 2002.

[185] W. J. Townsend, E. E. Swartzlander, Jr., and J. A. Abraham, “Accumulative
parallel counters,” in Proc. SPIE, Advanced Signal Processing Algorithms,
Architectures, and Implementations XIII, vol. 5205, pp. 552–560, 2003.

[186] W. J. Townsend, E. E. Swartzlander, Jr., and J. A. Abraham, “A comparison
of dadda and wallace multiplier delays,” in Proc. SPIE, Advanced Signal
Processing Algorithms, Architectures, and Implementations XIII, vol. 5205,
pp. 552–560, Dec. 2003.

BIBLIOGRAPHY 191

[187] C.-Y. Tsui, M. Pedram, and A. M. Despain, “Efficient estimation of dy-
namic power consumption under a real delay model,” in Proc. IEEE/ACM
Intr. Conf. on Computer-Aided Design, pp. 224–228, 1993.

[188] A. Tyagi, “Hercules: A power analyzer of MOS VLSI circuits,” in Proc.
IEEE Intr. Conf. on Computer-aided design, pp. 530–533, 1987.

[189] J. Um, T. Kim, and C. L. Liu, “Optimal allocation of carry-save-adders
in arithmetic optimization,” in Proc. IEEE/ACM Intr. Conf. on Computer-
aided design, pp. 410–413, 1999.

[190] H. J. Veendrick, “Short-circuit dissipation of static CMOS circuitry and
its impact on the design of buffer circuits,” IEEE J. Solid -State Circuits,
vol. SC-19, pp. 468–473, Aug. 1984.

[191] S. Vemuru, N. Scheinberg, and E. Smith, “Short-circuit power dissipa-
tion formulae for CMOS gates,” in Proc. IEEE Int. Symp. Circuits Syst.,
pp. 1333–1336, 1993.

[192] J. Volder, “The CORDIC trigonometric computing technique,” IRE Trans.
Electronic Computers, vol. EC-8, no. 3, pp. 330–334, 1959.

[193] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions on
Electronic Computers, pp. 14–17, February 1964.

[194] J. Walther, “A unified algorithm for elementary functions,” in Proc. Joint
Computer Conference Proceedings, vol. 38, pp. 379–385, 1971.

[195] L. Wanhammar, DSP Integrated Circuits. New York: Academic Press,
1999.

[196] L. Wanhammar, K. Johansson, and O. Gustafsson, “Efficient sine and co-
sine computation using a weighted sum of bit-products,” in Proc. European
Conf. Circuit Theory Design, vol. 1, (Cork, Ireland), pp. 139–142, 2005.

[197] A. Weinberger, “4:2 carry-save adder module,” IBM Technical Disclosure
Bulletin, vol. 23, January 1981.

[198] A. Weinberger and J. L. Smith, “A logic for high-speed addition,” Nat. Bur.
Stand. Circ., vol. 591, pp. 3–12, 1958.

[199] N. H. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective. Pearson Education Inc., Addison-Wesley, 3rd ed., 2004.

192 BIBLIOGRAPHY

[200] S. Yoshizawa and Y. Miyanaga, “Tunable wordlength architecture for a
low power wireless OFDM demodulator,” IEICE Trans. Fundam. Electron.
Commun. Comput. Sci., vol. E89-A, no. 10, pp. 2866–2873, 2006.

[201] Z. Yu, L. Wasserman, and A. Willson, “A painless way to reduce power
dissipation by over 18% in Booth-encoded carry-save array multipliers for
DSP,” in Proc. IEEE Workshop Signal Processing Syst., pp. 571–580, Oc-
tober 2000.

[202] Z. Yu, M.-L. Yu, and A. N. Willson, “Signal representation guided syn-
thesis using carry-save adders for synchronous data-path circuits,” in Proc.
Design Automation Conf., pp. 456–461, 2001.

[203] C. Yuan and M. Druzdzel, “An importance sampling algorithm based on
evidence pre-propagation,” in Proc. Conf. on Uncertainty in Artificial In-
telligence, pp. 624–631, 2003.

[204] Z. Zeng, Q. Zhang, I. Harris, and M. Ciesielski, “Fast computation of data
correlation using BDDs,” in Proc. Conf. on Design, Automation and Test in
Europe, pp. 122–127, 2003.

[205] R. Zimmermann, “Non-heuristic optimization and synthesis of parallel-
prefix adders,” in Intr. Workshop on Logic and Architecture Synthesis,
pp. 123–132, 1996.

[206] J. H. Zurawski and J. B. Gosling, “Design of a high-speed square root mul-
tiply and divide unit,” IEEE Trans. Computers, vol. 36, no. 1, pp. 13–23,
1987.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

