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This thesis is submitted in partial fulfillment of the requirements for the degree of
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(NTNU) and Telemark University College (HiT). The research has been carried out
with financial support from the Research Council of Norway through the project
142994/432, and with some additional financial support from Elkem ASA and from
ISA (the Instrumentation, Systems, and Automation society) through the Norman
E. Huston scholarship. The financial support from these sources is gratefully
acknowledged.
When I started in the summer of 2000, the intention of this work was to in-

vestigate the “Integration of process control based on mechanistic models with
statistical process monitoring”, i.e. the work would cover three fields: mechanistic
modeling, process control, and statistical process monitoring, and the obtained
results would be tested with an industrial process. The selected case study turned
out to belong to a class of systems that has attracted and is still attracting much
attention from the research community, i.e. particulate processes. Modeling and
process control of particulate processes are active areas of research, with certain
challenges that remain unresolved. This made us place more focus on the modeling
and control tasks than originally planned. The title of the thesis has thus been
changed to “Population balance modeling and inventory passivity-based control of
particulate processes” to better reflect the contents of this work.
Although there is one single name on the cover of this thesis, this work would

have not been possible without the guidance, help and support of many people.
Working towards this degree has been challenging, interesting, enjoyable, hard
sometimes, and definitely worthy. I have had the opportunity to meet and collab-
orate with a number of brilliant people that deserve recognition.
First of all, I am indebted to my main supervisor associate professor dr.ing.

Bernt Lie for a good number of reasons: for encouraging me to study for a PhD
degree, for the skilful scientific guidance, for the non-scientific help in many oc-
casions (like when my car broke down), for an amazing patience (to handle my
mediterranean character), for reading and correcting diverse reports, articles, and
the drafts of this thesis, and for the optimistic encouragement I got from you when
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I needed it. Your broad overview of engineering topics (and non-engineering topics)
impresses me. I really hope that we can continue collaboration in the future.
My sincere gratitude also goes to my co-supervisor dr.tech. Magne Fjeld, whose

broad expertise both at the academic level and the industrial level has had a clear
contribution to the fruitful collaboration with the industrial partner. I am thankful
for the way you directed the meetings with Elkem ASA, for the supervision, for
your contribution to direct the focus of the thesis towards key areas, and for reading
and correcting reports, articles and the drafts of the thesis. I also want to thank
Sissel and you for the inspiring hyttetur (cottage trip), which gave me the energy
I needed to finalize the writing of the thesis.
I want to thank my other co-supervisor dr.ing. Rolf Ergon, for his participation

and guidance in this project. Although less focus was placed in this thesis to the
area you work most with, I really appreciate that you took the time to participate
in the meetings, to read diverse written material, to give useful comments and
suggestions, and to participate in our graduate student lunch breaks. I am also
thankful to Målfrid and you for the boat trip last summer to Jomfruland.
I have much to thank Elkem ASA for besides the financial support. Thank you

for providing me with a challenging process to model, for allowing me to carry out
experiments at the laboratory and plant scale, for sharing process knowledge with
me, and for the enthusiasm that the project members have shown. The following
employees at Elkem Research Centre and Elkem Bremanger deserve to be men-
tioned: Geir Ausland, Einar Andersen, Håvard Sørheim, Birte Skofteland, Thomas
Realfsen, Vegard Olsø, and Marit G. Dolmen. In particular, I am sincerely grateful
to Geir Ausland and Einar Andersen for being so enthusiastic and involved. Geir,
although I might once have suggested you were demanding, I really appreciate
that you pushed me to rethink my arguments and to improve the model. I am
also very grateful to Einar Andersen for an active participation in the establish-
ment of the model foundations, and for your tremendous help in the measurement
campaign carried out at the Bremanger plant. It will be difficult to forget the day
you jumped on to a transport track and below the transport belt trying to catch
a large representative sample of the feedstock.
From January to June 2001 I visited Prof. B. Erik Ydstie at Carnegie Mellon

University in Pittsburgh (USA) for the first time. This visit was very inspiring,
and had an important impact on the part of this thesis on control. Erik, I am
thankful to you for introducing me to the fascinating field of nonlinear control.
Thank you to you and your students (Vianey, Edgar, Duncan, Dimitrios, Jennifer,
Martin, Ashish, and Christy) for making me feel as any other member of your
group of graduate students. I am also grateful to Prof. Larry Biegler, from whom
I learnt a lot about numerical methods.

And now my colleagues, with whom I have shared many moments these years.
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Summary

This thesis deals with the systematic development of mechanistic models of par-
ticulate processes for the purposes of nonlinear controller design and implementa-
tion. The methods investigated in this thesis were illustrated with an industrial
hydrometallurgical process called the Silgrain R° process (Elkem ASA), for which a
model and a controller strategy have been developed from scratch.
The class of processes studied in this thesis, particulate processes, has attracted

and still attracts a great deal of interest from the international research community.
Particulate processes are characterized by the presence of a continuous phase and
a dispersed phase comprised of entities that have a distribution of properties. Such
a distribution of properties has an important impact on the process operation and
quality of the final products. Moreover, most of process industries contain one or
more stages that involve particulate processes, among them the major Norwegian
companies: Elkem, Hydro, Borealis, Statoil, etc.
A systematic method to PBE modeling was suggested, consisting of the fol-

lowing stages: establishment of model purpose and model foundations, building
of the model structure, determination of the constitutive relations, selection of a
solution method, parameter estimation and model validation. Such an approach
is general to any type of process, but when dealing with particulate processes
special care should be placed on some of these stages. The method was thor-
oughly illustrated with the development of the model of the two reactors of the
Silgrain R° process. The model was based on the traditional balance equations of
mass, energy, and momentum, and on a balance of the distribution of properties,
called the population balance equation (PBE). This is the first time PBE is used
to model a hydrometallurgical leaching reactor where disintegration takes place.
An experimental laboratory campaign had to be carried out in order to determine
the constitutive equations of the disintegration event. Another experimental cam-
paign at the plant level was carried out to gather data for parameter estimation
and model validation. The results of the fitting were satisfactory. Besides the
particular contribution of developing a detailed model for the case study, some
general contributions of this research were:

• it was shown how dividing the model into compartments according to the

ix



x SUMMARY

regions that are observed in practice in the reactors is key to obtaining
realistic models;

• it was discussed how the widely used assumption of complete mixing provides
unrealistic models. Instead, the compartmentalization approach combined
with a balance of forces on the entities to define the interflows among com-
partments improves the realism of PBE models to a great extent;

• it was shown that the use of a systematic parameter identifiability analysis
prior to parameter estimation can be very useful, and even essential. PBE
models are large in size, typically nonlinear in the parameters, and many pa-
rameters may not be identifiable from the available measurements. Hence, if
no parameter identifiability analysis is carried out, the parameter estimation
algorithm may break down, or give very poor parameter estimates.

An approach to process control called inventory passivity-based control was
selected in this thesis, since this method handles nonlinear processes, is based on
dynamic models, and it has suitable stability properties. In order to apply this
method to particulate processes, the theory was extended in this thesis to han-
dle rectangular systems, i.e. systems where the number of available manipulated
variables is less than the number of inventories. Both chemical reaction networks
and particulate processes fall under such a class of systems. An stability proof has
been developed, by linking inventory passivity-based control to a relevant theory
of nonlinear chemical dynamics, called the Feinberg Deficiency Theorems. In ad-
dition to stability, some other implementation issues were discussed in the thesis,
such as the handling of constraints on the manipulated variables, the robustness of
the controller against disturbances and model errors, the importance of observers,
and the adaptation of the approach to semibatch control. Finally, the thesis also
discussed the role of inventory passivity-based control within the framework of
plantwide control, and the integration of inventory passivity-based control with a
statistical process monitoring approach.
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Nomenclature

It is useful to provide a list of symbols and notation used in this thesis. A few
symbols of temporary nature that are used only in specific contexts are omitted
to restrict the length of the list.

Latin letters
a Particle breakage frequency function
b Birth probability distribution function
b̄ Discrete birth probability distribution function
B Birth rate
C Molar concentration
clip Strictly increasing sigmoid function
D Death rate
D Reactor Diameter
Dcut Cut size
Dp Particle diameter
E Activation energy (kinetic rate)
e Output error
f Mass probability distribution function
f State function of a dynamic model
g Acceleration of gravity
g Time-varying coefficient (method of weighted residuals)
g Output function of a dynamic model
h Specific enthalpy
h Heat transfer coefficient
h Input function of a dynamic model
J Cost function (optimization)
K Proportional constant of a controller
k Preexponential factor (kinetic rate)
k Heat conductivity
L Observer gain
l Linkage classes

xv



xvi NOMENCLATURE

N Mole number
N Number of intervals (discretization method)
Ṅ Molar flow rate
nc Number of complexes in a reaction network
ns Number of species in a reaction network
M Mass
Ṁ Mass flow rate
Mw Molecular weight
m Moment of a distribution
P Pressure
P Partition matrix
p Generation or disappearance term in the inventory balance
Q̇ Heat loss
q Volumetric flow rate
r Reaction rate
r Radius
S Sensitivity matrix (identifiability analysis)
S Sliding function
s Rank of a reaction network
sij Sensitivity of i-th output to j-th parameter
Sc Scaling matrix (nonlinear least squares)
scij Scale required to calculate sij
T Temperature
t Time
U Internal energy
usup Superficial velocity
uo Actual fluid velocity
V Volume
V Storage function (passivity theory)
v Inventory or extensive variable
v Velocity vector
vi Time derivative of internal coordinate (dζi

dt
)

W Component mass
Ẇ Component mass flow rate
w Component weight fraction
w Supply function (passivity theory)
x Representative size
x Internal state of a dynamic system
x Intensive variable
y Model output
y Controlled inventories



xvii

ȳ Deviation of controlled inventory from the desired setpoint
ym Measured variable
z Axial direction
z Uncontrolled inventories
z̄ Deviation of uncontrolled inventory from the steady-state value

Greek Symbols

α Measure of conversion
β Fraction of reaction via HCl
γ Reaction order (kinetic rate)
γ Collinearity index (parameter identifiability)
∆ Uncertainty
∆Hr Reaction enthalpy
δ Importance ranking parameter (parameter identifiability)
δ Deficiency of a chemical reaction network

Daughter particle size
ε Void fraction
ζ Internal coordinate
θ Model parameter
λ Eigenvalue
π Momentum
π̇ Momentum flow rate
ρ Density
Σ Surface to volume ratio
Φ Discrete population density distribution
φ Basis function (method of weighted residuals)
φ Transport term in the inventory balance
ϕ Weighting function (method of weighted residuals)
ψ intensive population density distribution
Ψ extensive population density distribution
Ψ̇ population density distribution flow

Abbreviations
ARMAX AutoRegressive Moving Average with eXternal Input
ARX AutoRegressive with eXternal Input
BDF Backward Differentiation Formulas
CSTR Continuous Stirred Tank Reactor
CV Controlled Variable
DAE Differential and Algebraic Equations



xviii NOMENCLATURE

GUI Graphical User Interface
HR First Leaching Reactor (from hovedreaktor = main reactor)
MV Manipulated Variable
NDF Numerical Differentiation Formulas
ODE Ordinary Differential Equations
PBE Population Balance Equation
PDAE Partial Differential and Algebraic Equations
PDE Partial Differential Equation
PID Proportional, Integral, and Derivative
PSD Particle Size Distribution
SNA Stoichiometric Network Analysis
SPM Statistical Process Monitoring
UR Second Leaching Reactor (from utlutningsreaktor = leaching reactor)

Subscripts
acid relative to the acid and/or acid compound
feed relative to the inlet to the HR
in relative to the inlet flow to a compartment
max maximum
min minimum
Me metallic component, i.e. Fe,Al and Ca
RI relative to the disintegration region of the HR
RII relative to the storage region of the HR
RIII relative to the sedimentation region of the UR
RIV relative to the dissolution region of the UR
out relative to the outflow from the reactor
overflow relative to the overflow of the UR
sediment relative to the sedimentation flow in the UR
solid relative to the particulate phase
surroundings relative to the surroundings
tapping relative to a tapping flow



Chapter 1

Introduction

1.1 Background

The goal of this thesis is to establish a systematic strategy for the development
of PBE models of particulate processes to be used for the purposes of design and
implementation of automatic control, and to illustrate the suggested modeling and
control strategies with a real industrial particulate process, the Silgrain R° process.
Particulate processes are characterized by a presence of a continuous phase and

a disperse phase made up of entities with a distribution of properties, and where
the distribution of properties strongly affects the operation of the process and the
product quality. Particulate processes are encountered in a considerable number
of applications: crystallization, agglomeration, grinding, dissolution, leaching, etc.
Many valuable products are obtained in these processes. Therefore, it is of great
interest to focus attention on particulate processes, and how to improve their
performance. Automatic control is known to improve process operation, and to
reduce process and product variability.
The modeling of particulate processes has been studied for several decades

now, and a tool named Population Balance Equation (PBE) has become the most
widely-used modeling approach for such processes. Despite the active research on
this topic, the PBE remains being a tool for the academic community, and not for
the industrial community. A reason may be that the simplest way to use the PBE,
i.e. assuming complete mixing, may not provide realistic models. Accounting for
the spatial distribution of the properties increases realism, but the resulting models
become mathematically challenging, and impractical for industrial application.
Establishing a systematic strategy for the development of PBE models that both
represent realistically the operation of industrial units and that are mathematically
simple enough to be used in online applications, is thus a first step towards a more
widely use of PBE models in industry.

1



2 CHAPTER 1. INTRODUCTION

The second objective is that of developing a control strategy for particulate
processes, a strategy that exploits the process information contained in the PBE
model. There are several control theories that are based on mechanistic nonlin-
ear models, and that could be studied. One theory that has not been studied in
the framework of particulate processes before, is inventory passivity-based con-
trol. Such an approach is chosen in this thesis because it has some advantageous
features related to stability and robustness, and the controller design is relatively
straightforward. Extending inventory passivity-based control to reactive systems
and particulate systems is thus believed to be an interesting area of research.

1.2 Outline of the thesis

The thesis is composed of three parts. Part I presents the suggested PBE model-
ing methodology, and its application to the case study. Part II describes inventory
passivity-based control, the extension of the theory to reactive systems and par-
ticulate systems, the application to the case study, and the analysis of certain
practical issues. Part III summarizes the conclusions of the thesis. Finally, some
complementary chapters are included as appendices at the end of the thesis.

In more detail: Chapter 2 gives an introduction to mathematical modeling,
particulate processes, and modeling of particulate processes. A systematic PBE
modeling strategy is described in Chapter 3, where emphasis is put on the most
challenging stages. Such a methodology is illustrated in a thorough way with the
development of the the Silgrain R° model in Chapter 4. A general introduction to
process control, and a review of the control methodologies that have been applied
to particulate processes, are given in Chapter 5. Chapter 6 introduces inventory
passivity-based control, shows the suggested methodology for rectangular systems,
discusses in detail the requirements that have to be met to ensure stability, com-
pares the approach with other approaches of nonlinear control, discusses the link
of the methodology to thermodynamics, and illustrates the use of the methodology
with a benchmark chemical reactor and with the Silgrain R° model. Some issues
related to the practical implementation of inventory passivity-based control are
analyzed in Chapter 7, namely: the presence of input constraints, the robustness
of the approach, the need for an observer, the possibility of semibatch control, the
role of the approach within plantwide control, and the combination of the control
strategy with statistical monitoring. The main body of the thesis concludes with
Chapter 8, which presents the concluding remarks and gives some ideas for future
research.
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1.3 Main Contributions

The contributions of this thesis regarding PBE modeling are:

• A systematic approach to PBE modeling is suggested. The approach itself is
not original, and is based on standard modeling techniques. The contribution
consists in how attention is drawn to the stages that require special care
when dealing with particulate processes, due to the special features of such
processes. The application of compartmentalization as a way to achieve more
realistic models is original, although the idea of compartmentalization itself
has been used in reaction engineering for a long time. This thesis stresses the
importance of compartmentalization and description of connections based
on distinguishable physical phenomena in the process. The work on PBE
modeling and compartmentalization has been presented in (Dueñas Díez,
Ausland, Fjeld & Lie 2001) (later published in (Dueñas Díez, Ausland, Fjeld
& Lie 2002)), (Dueñas Díez & Lie 2003c), (Dueñas Díez, Ausland & Lie
2003a), and (Dueñas Díez, Ausland & Lie 2003b) (submitted to Powder
Technology).

• The systematic approach to parameter identifiability prior to parameter es-
timation is not original, but it is the first time that such an approach is
applied to particulate processes. This part of the work will be presented in
(Dueñas Díez, Andersen, Fjeld & Lie 2004), and is submitted to Chemical
Engineering Science.

• The model of the Silgrain R° process is entirely original, including the determi-
nation of the constitutive equations describing particle disintegration. Two
experimental campaigns have been necessary for model development: one at
laboratory scale for the determination of constitutive equations, reported in
(Dueñas Díez 2001) (confidential), and one at the plant scale for gathering
data for model validation, reported in (Dueñas Díez 2003) (confidential). Di-
verse versions of the model have been presented in (Dueñas Díez & Lie 2000),
(Dueñas Díez, Ausland, Fjeld & Lie 2002) and (Dueñas Díez et al. 2003b).

The contributions of this thesis regarding inventory passivity-based control are:

• The application of inventory passivity-based control to particulate processes
is new. This work has been reported in (Dueñas Díez, Lie & Ydstie 2001),
(Dueñas Díez, Ydstie & Lie 2002a), (Dueñas Díez, Ydstie & Lie 2002b),
(Dueñas Díez & Lie 2003a) and (Dueñas Díez & Lie 2003b).

• The stability proof reported in (Farschman, Viswanath & Ydstie 1998) has
been extended in this thesis to account for systems with chemical reaction
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and particulate systems. Such systems are typically rectangular, i.e. systems
with less manipulated variables than inventories. A detectability require-
ment is introduced in this thesis, and a way to check detectability, based
on a published technique of nonlinear chemical dynamics, is suggested. It
is the intention to submit such new theoretical results for publication in an
international journal in the field of process control.

• Some issues that are important for the practical implementation of inven-
tory passivity-based control, such as the presence of input constraints and
robustness, are discussed, and some methods taken from literature are tested
in simulation with the Silgrain R° process, being thus tested for the first time
on a particulate process.



Part I

Modeling of Particulate Processes

5





Chapter 2

Introduction

2.1 Modeling

A model is a representation of a certain real system or event of interest. This is
quite a general definition. Hence, a toy, a drawing, a picture, a computer pro-
gramme or a set of equations fall under such a definition. Here, the interest is
focused on mathematical modeling. A simple but proper definition of a mathe-
matical model is the following:

A mathematical model is a representation, in mathematical terms,
of certain aspects of a nonmathematical system. The arts and crafts
of mathematical modeling are exhibited in the construction of models
that not only are consistent with themselves and mirror the behavior
of their prototype, but also serve some exterior purpose. (Aris 1999b)

The type of model to be used is thus determined to a large extent by the
final purpose of the model. For example, in process engineering a dynamic model
describing the time evolution of the system is needed for process control, whereas
a static (or steady-state) model might be suitable for process optimization.
There are two main types of mathematical models: mechanistic models and

empirical or data-oriented models. Mechanistic models try to describe the mecha-
nisms that lie behind, and drive the evolution of a system. In process engineering,
mechanistic models are based on the application of well-established balance laws
of mass, energy and momentum to the system under study. In such applications,
mechanistic models are also referred to as first-principle models. In contrast, en-
tirely empirical models are just based on experience. Available data from the sys-
tem are used to find a mathematical function that conveniently reproduces these
data. Empirical models are also referred to as black-box models or identification

7
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models. Some authors may argue that mechanistic models are also empirical be-
cause the mechanisms are derived from experience. However, such a classification
of models into mechanistic and empirical is widely accepted.
Some other differences between mechanistic and empirical models are summa-

rized below:

• Empirical models may often require more exhaustive experimentation on the
real system than mechanistic models.

• Empirical models are valid for the range of conditions at which experimental
data were obtained, whereas mechanistic models typically have a broader
range of validity.

• The set of candidate models that are commonly used for empirical dynamic
modeling are simple: linear on the states and time-invariant. In contrast,
mechanistic models are typically nonlinear.

• For complex systems, building up mechanistic models may be very time-
consuming.

Note that purely mechanistic models are rare. Experimental data are typically
required to find expressions for certain terms of the balance laws or for the values
of certain parameters in the model. For this reason, this type of models combining
well-established balance laws with experimentally-obtained constitutive relations
are sometimes called gray-box models.
There is a vast literature both on building of mechanistic and empirical models.

Some basic references on building of mechanistic models are (Bird, Stewart &
Lightfoot 2002) and (Aris 1999b), and on empirical models are (Ljung 1999) and
(Nelles 2001).

2.2 Particulate processes

Particulate processes are present in a very wide range of industrial applications,
such as crystallization, precipitation, leaching, grinding, biotechnology, and many
others. The presence of particulate products in our daily life is also notable:
pharmaceutical products, food (coffee, cocoa powder...), and detergents are a few
examples. Even natural events such as the formation of rain drops or the predator-
pray dynamics may be considered particulate processes. Particulate processes may
thus seem very different from one another, and there is a large amount of research
dedicated to each and one of these processes. However, there exists a number
of characteristics common to all particulate processes that makes it possible to
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study particulate processes within the same framework. Such characteristics are
the following:

• The presence of a continuous phase (liquid, gaseous, or solid) and a dispersed
phase made of individual entities. The dispersed phase is thus a population
of entities of some kind. For example, we may have a crystallizer with a pop-
ulation of crystals immersed in a liquid phase, or we may have a bioreactor
with a population of cells immersed in a liquid phase.

• The population of entities shows a distribution of one or more properties of
interest, which affects the operation of the process and the quality of the
product. In a crystallizer, the crystals are distributed in shape and size. In
a bioreactor, the cells have a distribution of age.

• The presence of complex phenomena that causes dynamic changes in the
property distribution. Examples of such complex phenomena:

— Nucleation, i.e. birth of new entities;

— Disintegration or breakage, i.e. disappearance of entities;

— Growth;

— Agglomeration;

The field of particulate processes is multidisciplinary not only because of the
wide range of applications and products, but also because of the existence of three
scale levels of interest:

• Microscale, i.e. considering one entity.

• Mesoscale, i.e. considering the interaction among some entities and the com-
plex phenomena affecting them.

• Macroscale, i.e. considering the whole population and the integration of the
particulate process within the entire production process.

Such a multiscale interest is also encountered in more traditional process in-
dustry, where microscale would refer to the molecular level, mesoscale would refer
to the operation unit level and macroscale to the plantwide level.
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2.3 Mechanistic models of particulate processes

Extensive research in the last five decades has been dedicated to the modeling of
particulate processes. Increasing demands on product quality, and the need for
operation optimization have enhanced this effort. Mechanistic models are widely
used since the development of the Population Balance Equation (PBE) in 1964,
by two groups of researchers studying crystal nucleation and growth, (Hulburt &
Katz 1964) and (Randolph 1964). A good review on the use of the PBE is given
in (Ramkrishna 1985) and (Ramkrishna 2000). Some of the reasons that explain
the success of mechanistic modeling in the field of particulate processes are:

• the ability of the PBE approach to account for the complex phenomena
taking place in the process,

• the lack of instrumentation to measure distributed properties, and in turn,
the difficulty of obtaining extensive and complete experimental data that are
required to identify an empirical model,

• the type of operation. A great deal of particulate processes operate in semi-
batch or batch modes. Hence, a dynamic model is needed.

The next chapter describes a systematic modeling methodology for particulate
processes. Such a methodology is subsequently illustrated in chapter 4 with the
modeling of an industrial hydrometallurgical leaching process.



Chapter 3

Modeling of particulate processes

3.1 Modeling methodology

The development of mechanistic models of process systems, including particulate
systems, can be carried out quite systematically. Figure 3.1 summarizes such a
systematic approach to modeling.
Naturally, the first stage in the development of a model is to define the purpose

of the model. The model complexity, the validity region of the model, and the
required time to develop the model depend to a great extent on the final purpose
of the model. Then, as much information about the system as possible should be
gathered, not only regarding the physical, chemical, and/or biological mechanisms
taking place in the system, but also about the equipment design and mode of
operation. Based on such a knowledge about the system and on the purpose
of the model, the next stage is to choose the model type and to establish the
main principles and assumptions for the model. In most cases, this is the most
important stage in model-building. Once the basis for the model and the main
assumptions are established, the next stage is to build up the structure of the model
by application of the balance laws and/or the PBE. Once this is done, modeling
continues by determining the constitutive relations that define the transport flows,
the reaction rates, and any other complex phenomena taking place in the system.
The next stage is to find a solution method for the resulting mathematical model.
The final stage is to validate the model using real data. This is a key stage,
particularly if the model is to be used for prediction purposes.
Note that mathematical modeling is often a dynamic and iterative process. New

knowledge about some aspects of the system may force the modeler to change or
extend the existing model. Modeling of particulate processes is challenging and
time-consuming. Changing the structure of such a model may be costly. The three
first stages mentioned in figure 3.1 are thus even more crucial when dealing with

11
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Figure 3.1: A systematic way to develop mechanistic models of process systems.
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particulate processes than with other types of unit operations. If the validation
using real data turns out to give unsatisfactory results, it is worth to check first
whether a change in the constitutive relations may correct the problem. If this is
not the case, then the assumptions need to be revised and changes in the structure
of the model may be needed.

3.2 Establishing the model foundations and as-
sumptions

As stressed in the previous section, the crucial stages in model building are: gath-
ering of information, and establishment of model foundations and assumptions.
As much information as possible should be gathered on:

• the phenomena affecting the continuous phase and the disperse phase, such
as chemical reaction, nucleation, agglomeration, breakage, etc., as well as the
factors affecting these phenomena,

• the flow regimes in the system, and the interaction between the continuous
and disperse phases,

• the equipment design and operation, if an existing unit is to be modelled.

As regards model foundations and assumptions, some guidelines are given in
the subsections below.

3.2.1 Define the coordinates and variables of interest

The coordinate system should be defined first. In the particulate processing field
it is typical to distinguish between external and internal coordinates.
External coordinates are used to denote position (x, y, z) and time (t). The

external coordinates are thus defined for both the continuous phase and the dis-
persed phase. If the properties of the system experience dynamic changes with
time, then a dynamic model accounting for the time coordinate t may be used. In
contrast, if the properties of the system remains constant with time, a steady-state
model may be used. If the properties of interest of the continuous phase and/or
the dispersed phase vary according to the position in the system, then a model
distributed in the external coordinates should be used. Such models are called
microscopic or distributed. In contrast, when space distribution can be neglected,
macroscopic models can be used.
Internal coordinates (ζ) are defined for the dispersed phase only. They refer to

the properties of the entities in the population that can be given values for each
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individual entity, thus characterizing the entities. For example, when referring to
a population of crystals, some possible internal coordinates would be: crystal size,
crystal shape, and crystal composition. Or when referring to a population of cells,
some possible internal coordinates would be: cell age, cell size. Note that the more
internal coordinates we use, the more complex the model would be. Moreover, the
internal coordinates to be used involve additional simplifications. If entity size is
to be defined with a unique coordinate, a regular spherical shape may be assumed.
As regards the variables of interest, it is convenient to distinguish between

extensive and intensive variables. Extensive variables are proportional to the size
of the system. Some examples are: mass, component mass, energy and momentum.
In contrast, intensive variables are those whose value is independent of the size of
the system. Some examples are: concentration, temperature and pressure.
For the dispersed phase, a density distribution function f(ζ) in terms of the

internal coordinates ζ should be defined. Physically,

ζupZ
ζlow

f(ζ)dζ (3.1)

is the fraction of entities in the population that lie in the property interval
£
ζ low, ζup

¤
.

Hence, depending on how the fraction of entities is defined, different density distri-
bution functions may be defined for the same population of entities. The fraction
of entities can be defined in terms of the number of entities, the length of entities,
the area of entities or the volume of entities. The PBE was originally defined
in terms of the number of entities (Hulburt & Katz 1964) and (Randolph 1964),
and it remains the most used definition in literature. However, note that in many
applications other definitions may be more suitable.

3.2.2 Define the number of compartments

In many industrial particulate systems it is possible to identify regions where
there is a marked change in properties from one region to the next. Such changes
typically arise due to the interaction between the continuous and dispersed phase,
and due to hydrodynamic considerations. In particular, when the entities in the
population show a wide range of sizes, and the difference in densities between the
continuous and dispersed phase is relatively large, segregation is likely to occur.
Hence, the fine entities may be concentrated in one region of the reactor, while the
coarser entities may be concentrated in another region. More importantly, very
different physical events may also be localized in different regions. For example,
breakage may only happen in the region where coarse entities are encountered, or
agglomeration and growth may be predominant in the region with the fine entities.
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It is important to account for these physically differentiated regions. The num-
ber of compartments to be used in the model is thus defined by the number of
regions that are physically identifiable in the system. Note that for establishing
the number of compartments, information about the unit design and operation is
required. Note also that in the literature some references to compartmental mod-
eling are found (Ma, Braatz & Taffi 2002), but with a different meaning. There,
the unit is divided into a finite but large number of compartments without much
physical significance. The division in compartments is done in order to solve a
spatially distributed model, i.e. is just an approximate way to solve the equations.
The approach used in literature assumes, in most cases, fixed volume of the com-
partments, whereas in the approach suggested here the volume of compartments
is allowed to vary.

3.3 Building the model structure

Once the model foundations and assumptions are established, the model structure
may be built by applying the corresponding balance laws and PBE to each com-
partment. Now, depending on whether spatial distribution is ignored or consid-
ered, the model to be constructed will be macroscopic or microscopic, respectively.
These two types of models are discussed separately.

3.3.1 Macroscopic balance laws and macroscopic PBE

A macroscopic model is used when the spatial distribution of the properties of
interest may be ignored. Macroscopic models may be obtained by two different
ways: by integrating the microscopic balances over the entire volume of the system,
or by writing the balance laws directly for the macroscopic region of interest1 (Bird
et al. 2002). The latter approach is typically the easiest. A balance law is given
by the following equality:

Accumulation = Inflow−Outflow+Generation−Disappearance, (3.2)

i.e. the rate of accumulation of a certain extensive property of the system is equal
to the rate of property added to the system by convective flow, minus the rate
of the property extracted from the system by convective flow, plus the rate of
generation of the property within the system, minus the rate of disappearance of
the property within the system. A pictorial representation of the balance is given
in Figure 3.2. For example, the total mass balance would be given by

1the whole system of interest or each of the compartments if the system has been divided in
several compartments.
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Figure 3.2: Application of a balance law.

Table 3.1: Balance laws of mass, energy and momentum
Total mass balance dM

dt
= Ṁin − Ṁout

Component mass balance dWi

dt
= Ẇi,in − Ẇi,out + riV

Energy dE
dt
= Ėin − Ėout + Ẇ + Q̇

Momentum dπ
dt
= π̇i,in − π̇i,out +

X
Fj

dM

dt
= Ṁin − Ṁout, (3.3)

where M is the total mass within the system/compartment, Ṁin is the mass
flowrate entering the system by the inflow, and Ṁout is the mass flowrate leav-
ing the system with the outflow.
Table 3.1 summarizes the traditional balance laws of mass, energy and mo-

mentum, whose derivation can be found in excellent references such as (Bird
et al. 2002).
Note that the balance laws are formulated in terms of extensive variables. These

models may be reformulated in terms of intensive variables, but this requires sim-
plifications such as for example constant volume.
In the original work by (Hulburt & Katz 1964) and (Randolph 1964), the macro-

scopic PBE was derived by integration of the microscopic PBE over the entire
volume of the system, yielding the following balance

1

V

∂ (V ψ)

∂t| {z }
Accumulation

=
X
j

qjψj

V| {z }
Inflow − Outflow

+B −D −
mX
i=1

∂ (viψ)

∂ζi| {z },
Generation − Disappearance

(3.4)

where

ψ (t, ζ1, ζ2, . . . , ζm) is the multidimensional population density distribution with
internal coordinates ζ1, ζ2, . . . , ζm. Note that this density distribution is
defined in terms of an intensive variable: the number of entities per unit
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volume, i.e. a number concentration. Hence,

ζi,upZ
· · ·
Z

ζi,low

ψdζ1dζ2 . . . dζm (3.5)

represents the number of entities per unit volume with property values in the
ranges

£
ζ i,low, ζi,up

¤
for i = 1, ...,m.

ψj (t, ζ1, ζ2, . . . , ζm) is the multidimensional population density distribution, given
in number of entities per unit volume, corresponding to the jth influent/effluent.

V is the volume of the macroscopic region of interest, that contains the continuous
and the dispersed phase.

B and D are the birth and death functions, respectively, and were defined as
follows

B =
(birth of entities)µ

unit
time

¶µ
unit
volume

¶µ
unit

property

¶ (3.6)

D =
(death of entities)µ

unit
time

¶µ
unit
volume

¶µ
unit

property

¶ . (3.7)

The birth and death functions are very general and can thus be used to model
a broad class of phenomena affecting particulate processes. In particular,
these terms are useful to model discrete phenomena such as nucleation or
breakage.Pm

i=1
∂(viψ)
∂ζi

represents a continuous generation or disappearance of entities, where
vi = dζi/dt is the time rate or change of property ζj. This term may be used
to model growth or dissolution phenomena.

The macroscopic PBE is mostly used as defined by (Hulburt & Katz 1964) and
(Randolph 1964), as shown in equation 3.4. However, using the number of entities
as the way to express fractions of the population is not always the best choice.
A mass-based distribution of the particle volume seems to be a better choice for
comminution, sintering and granulation applications, as discussed in (Verkoeijen,
Pouw, Meesters & Scarlett 2002). A mass-based distribution is also the best choice
for the case investigated in the present work, as will be discussed in Chapter 4.
It has already been noted that macroscopic models may be formulated by inte-

grating microscopic balances – this is the approach used in equation 3.4 – but
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that is often simpler to work directly with macroscopic quantities. This means
that it may be advantageous to work directly with a extensive population distri-
bution function Ψ rather than the intensive population distribution function ψ in
equation 3.4. Hence,

ζi,upZ
· · ·
Z

ζi,low

Ψdζ1dζ2 . . . dζm (3.8)

represents the fraction (number, mass, volume...) of entities in the macroscopic
region of interest with property values in the ranges

£
ζi,low, ζi,up

¤
. The macroscopic

PBE can thus be rewritten as follows:

∂Ψ

∂t
=
X
j

Ψ̇j + (B −D)V −
mX
i=1

∂ (viΨ)

∂ζi
, (3.9)

where
ζi,upZ
· · ·
Z

ζi,low

Ψ̇jdζ1dζ2 . . . dζm, (3.10)

represents the fraction of entities per unit time with property values in the ranges£
ζi,low, ζi,up

¤
entering or leaving the macroscopic region with the stream j.

3.3.2 Microscopic balance laws and microscopic PBE

A microscopic model is used when there exists a spatial distribution of the proper-
ties of interest, and when such a spatial distribution has important consequences
for the operation of the process and/or the quality of the product. Microscopic
models are generally more difficult to solve than macroscopic models.
A microscopic model can be obtained by writing the corresponding balance law

over a volume element ∆x∆y∆z, fixed in space, through which a continuous phase
and the dispersed phase are flowing. Then, both sizes of the equation are divided
by the volume element. Then, by taking the limit as ∆x, ∆y and ∆z approach
zero, a partial differential equation is obtained.
For example, if the mass balance law is applied to the volume element in Figure

3.3, the following balance is obtained

∆x∆y∆z
∂ (ρ)

∂t
= ∆y∆z

£
(ρvx)|x − (ρvx)|x+∆x

¤
+∆x∆z

h
(ρvy)|y − (ρvy)|y+∆y

i
+∆x∆y

£
(ρvz)|z − (ρvz)|z+∆z

¤
, (3.11)
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Figure 3.3: Volume element for the application of a microscopic conservation law.
Taken from (Bird et al. 2002)

Table 3.2: Microscopic balance laws of mass, energy and momentum
Continuity Equation (total mass) ∂ρ

∂t
= − (∇ · ρv)

Component mass balance ρDωα
Dt

= −∇ · jα + rα
Energy ρCp

DT
Dt
= − (∇ · q)− (τ : ∇v)

Momentum ρDv
Dt
= −∇p− (∇ · τ )

where ρ is the density of the volume element, vx, vy and vz are the fluid velocities
in the x, y and z directions, respectively. By dividing equation 3.11 by ∆x∆y∆z
and taking the limit as ∆x, ∆y and ∆z approach zero, and using the definitions
of the partial derivatives, we get

∂ρ

∂t
= −

µ
∂

∂x
ρvx +

∂

∂x
ρvy +

∂

∂x
ρvz

¶
, (3.12)

that can be written in a more concise way by using vector notation:

∂ρ

∂t
= − (∇ · ρv) . (3.13)

Table 3.1 summarizes the traditional microscopic balance laws of mass, energy
and momentum, whose derivation can be found in excellent references such as
(Bird et al. 2002).
The microscopic PBE was derived in an analogous way, yielding the following

balance
∂ψ

∂t
= − (∇ · vψ)−

mX
i=1

∂ (viψ)

∂ζi
+B −D. (3.14)
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Note that the microscopic PBE is written in terms of ψ (intensive density distri-
bution function) and not in terms of Ψ (extensive density distribution function).
But this is in accordance with the microscopic balances of mass, energy and mo-
mentum, which are also written in terms of intensive variables (density, component
mass concentration, temperature and velocity).

3.4 Defining the constitutive relations

Once the structure of the model is defined, the next step is to find mathematical
expressions for the constitutive relations. The constitutive relations provide the
specific information on the phenomena taking place within the system.

When we make a balance to obtain a differential equation, we are
invoking a natural law. [...] In expressing the elements of the balance in
terms of dependent variables, we use certain properties of the materials
involved. These are sometimes called constitutive relations because
they invoke the constitutions of the various components. They are not
principles applying to everything, as are natural laws, but apply only
to the materials in question. (Aris 1999b)

Hence, the constitutive relations “particularize” the model, i.e. the model is
transformed from a general model that may represent a variety of systems to a
model that is specific for the system under study. The internal coupling between
the balances is typically provided by the constitutive relations. Moreover, the
nonlinear behavior of particulate processes is typically related to the constitutive
relations.
For the continuous phase, the constitutive relations describe:

• the transport flows, e.g. flow by gravity, pumped flow, etc.

• the chemical reaction terms, e.g. reaction rates, reaction enthalpy, etc.

• the dissipative terms, e.g. friction terms, heat loss, etc.

For the dispersed phase, the constitutive relations describe:

• the transport flows.

• the birth and death terms, e.g. nucleation rates, breakage rates, agglomera-
tion rates, etc.

• multiple phase interactions, e.g. bed packing, critical sizes, etc.
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Table 3.3: Some references on phenomenological research of particulate processes.
Application Phenomena References

Crystallization
Birth

½
Primary Nucleation
Secondary Nucleation

Growth
©
Surface Integration

Randolph et al.(1988)
Tavare (1995)
Mersmann et al.(2002)
Mohan et al.(2002)

Granulation

Birth

⎧⎨⎩ Drop controlled nuclea.
Mechanical dispersion
Intermediate regime

Growth

⎧⎨⎩ Induction Growth
Steady Growth
Rapid Growth

Pietsch (2001)
Wauters (2001)
Litster (2003)

Bioreactors
Birth

©
Cell birth

Growth
©
Cell Growth

Death
©
Budding

Ramkrishna (2000)

For the determination of constitutive relations corresponding to the continuous
phase, advantage can be taken of the extensive research available on the phenom-
enological laws of transport phenomena (Bird et al. 2002), and on reaction engi-
neering (Aris 1999a), (Levenspiel 1972), (Fogler 1992), (Froment & Bischoff 1990).
As regards the dispersed phase the emphasis is placed on establishing the mech-

anisms and phenomenological laws for the events affecting the entities of the popu-
lation. However, the development of such theories has not yet come as far as in the
case of continuous media. The great variety and diversity of particulate processes
makes the establishment of such general phenomenological laws difficult. How-
ever, the modeler may take advantage of the existing results within each subfield
of particulate processes. Table 3.3 gives some references on such phenomenological
research. In many cases, tailor-made experimental studies may be necessary to find
expressions for the constitutive relations. A possible approach is the following:

1. Isolate each of the phenomena affecting the particulate process. For example,
in a crystallization problem, it would be necessary to study nucleation and
growth separately.

2. Design a series of batch experiments to identify the factors that influence the
phenomena under study.

3. Based on the factors that have the strongest influence, design a new series
of batch experiments in order to find the desired rates.
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4. Fit the results from batch experiments to appropriate mathematical expres-
sions.

Such an approach is similar to the kinetic studies that are carried out in reaction
engineering to determine reaction rates (Aris 1999a) (Levenspiel 1999).
Another approach that is being used in particulate processing is the so-called

inverse problem approach (Ramkrishna 2000). It consists in extracting the be-
havior of single particles from measurements made on the population. The ap-
proach relies on the exploitation of self-similar behavior. For further details, see
(Ramkrishna 2000) and (Mahoney, Doyle III & Ramkrishna 2002).

3.5 Solution methods

Once the model is built, the next stage is to find a solution method for the model.
The application of the macroscopic PBE together with the balance laws of mass,
energy and momentum results in a system of integrodifferential equations, whereas
the application of the microscopic PBE leads to a system of partial integrodifferen-
tial equations. The integrodifferential term, i.e. an integral function of the density
distribution function, usually appears in the birth term. Such systems are difficult
to solve mathematically.
Extensive research has been focused on developing methods to solve PBE mod-

els. For a quite complete review of solution methods, see (Ramkrishna 2000).
The main idea behind a good deal of the analytical and numerical methods that

are available to solve PBE models, is to transform the integrodifferential equations
into a system of ordinary equations (ODE) or into a system of differential and
algebraic equations (DAE), that may, in turn, be solved by well-known standard
algorithms. As for a system of partial integrodifferential equations, the system
may be transformed into a system of partial differential equations (PDE) or into
a system of partial differential and algebraic equations (PDAE).
A method that has been extensively used in the past is the method of moments,

which was already suggested in (Hulburt & Katz 1964). Note that this method is
widely used in statistics. The jth moment of a given density distribution Ψ (t, ζ)
with internal coordinate ζ is defined as:

mj =

Z
ζj Ψ (t, ζ) dζ, (3.15)

where integration extends for all possible values of ζ. In certain cases, if the
moment definition in equation 3.15 is applied to the PBE model for a certain
number of indexes j = 0, 1, 2, . . . , n, a closed and finite set of ODE is obtained.
However, in other cases where the constitutive relations are relatively complex,
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the moment transformation would lead to a set of ODE that is not closed. Some
applications of the method of moments are discussed in e.g. (Randolph 1964),
(Randolph & Larson 1988), and (Diemer & Olson 2002).
A more general method is the method of weighted residuals, which consists in

expanding the population density distribution Ψ (t, ζ) in terms of a finite number
of basis functions φk (ζ) :

Ψ̂ (t, ζ) =
NX
k=1

g (t)φk (ζ) , (3.16)

where g (t) are time-varying coefficients. Since equation 3.16 is an approximation
of Ψ (t, ζ), the right hand side and the left hand side of the PBE in equation 3.9
do not match, and a residual function can be calculated as follows

R (t, ζ) =
∂Ψ

∂t

¯̄̄̄
Ψ=Ψ̂

−
¯̄̄̄
¯X

j

Ψ̇j + (B −D)V −
mX
i=1

∂ (viΨ)

∂ζi

¯̄̄̄
¯
Ψ=Ψ̂

. (3.17)

Finally, the residual is forced to be orthogonal to a complete set of weighting
functions ϕ (t), i.e. the inner product of the residual with the set of weighting
functions is set equal to zero Z

R (t, ζ)T ϕ (t) dt = 0. (3.18)

The selection of basis functions and weighting functions determines the type of
method of weighted residuals. Hence, the method of moments is obtained when
Laguerre polynomials are chosen as basis functions and ϕj = ζj as the weighting
functions. Some examples about the use of the method of weighted residuals in
particulate processes can be found in (Ramkrishna 1971), (Ramkrishna 1973),
(Bathia & Chakraborty 1992), (Christofides 2002).
As regards numerical methods, those based on coordinate discretization of the

continuous PBE are reported to be the most attractive from the computational
point of view (Kumar & Ramkrishna 1996a). Discretization techniques aim at
the formulation of PBE in discrete internal coordinate space. This is done by
integrating the continuous PBE over a discrete size interval, say ζi to ζi+1Z ζi+1

ζi

∂Ψ (t, y)

∂t
dy =

ζi+1Z
ζi

¯̄̄̄
¯X

j

Ψ̇j + (B −D)V −
mX
i=1

∂ (viΨ)

∂ζi

¯̄̄̄
¯ dy, (3.19)

where the discrete population density distribution φi(t) is given by

φi(t) =

Z ζi+1

ζi

Ψ (t, y) dy, (3.20)
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and the number of intervals used to represent the total population of particles is
N , i.e. i = 1, 2, ...N. The main disadvantage of coordinate discretization methods
is that the discretized model may in some cases not be consistent with the number
and mass balance laws, or any other integral property of interest associated to
the entire population. Often, the accuracy of the solutions is improved by using
finer discretization grids, but this is incurring very high computational costs. Some
references on discretization methods are (Gelbardt & Seinfeld 1978), (Litster, Smit
& Hounslow 1995), (Kumar & Ramkrishna 1996a), (Kumar & Ramkrishna 1996b),
(Ramkrishna 2000).
Monte Carlo methods, which are based on artificial realization of the system

behavior by simulation and by averaging all of the sample paths, have also been
used (Ramkrishna 2000).

3.6 Model validation

Once a solution model is chosen for the PBE model, and the model is implemented
in a programming environment, everything is ready for the model to be used for
simulation purposes. However, the results given by the model should not be trusted
until the model is validated, not only in a qualitative but also in a quantitative
way by comparing it with data measured on the real system.
Mechanistic models are never perfect since they are based on idealizations and

simplifications of the real system. There may be phenomena or interactions that
are not accounted for in the model. Often some of the parameters of the model are
taken from the literature and/or estimated from qualitative information. There-
fore, a quantitative comparison of the simulation results with real data is impor-
tant, and may indicate whether further parameter estimation is needed or not,
or whether some of the assumptions in the model should be reconsidered or not.
Moreover, validation of models should be carried out at two levels:

• the dynamic level, i.e. check that the model is able to properly predict the
transient behavior of the system.

• the static level, i.e. check that the model correctly predicts the steady-state
conditions.

There are thousands of references on PBE modeling. In a recent forum on
particle technology2, 80% of the attendants claimed to have used or be using
population balances in their research. Surprisingly, there is still little material
published on validation of PBE models. Moreover, of the published papers on this

2The 5th UK Particle Technology Forum (Sheffield, UK, July 2003)
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issue, the vast majority validate models using experimental data from laboratory
scale units (Matthews, Miller & Rawlings 1996), (Alopaeus, Koskinen, Keskinen
& Majander 2002), (Immanuel, Cordeiro, Sundaram, Meadows, Crowley & Doyle
III 2002), (Gerstlauer, Motz, Mitrovic & Gilles 2002) and (Zeaiter, Romagnoli,
Barton, Gomes, Hawkett & Gilbert 2002), but not experimental data from in-
dustrial units. Very often the validation is limited to graphical comparison of the
simulation results with the experimental data, and the results are just used to qual-
itatively judge whether the assumptions in the constitutive relations seem correct
or not. In some cases, parametric sensitivity of the model is studied. Therefore,
validation and parameter estimation of PBE models is an area that should (and
probably will) be paid more attention in the future research. The challenges are
not trivial:

• Gathering good experimental data is still difficult, particularly as regards
the population density distributions. Even measuring the initial state of the
system may be problematic.

• Computational issues are important. PBE models are large and nonlinear.
Therefore, if nonlinear optimization is used for parameter fitting, the prob-
lem may be computationally demanding. In addition, global optimality is
difficult, if not impossible, to prove for these types of nonlinear optimization
problems.

• The models may have a large number of parameters, as compared to the num-
ber of available measurements, which makes the parameters non-identifiable
or poorly-identifiable.

Fortunately, parameter identifiability and parameter estimation in mechanistic
models has been widely studied in other areas of engineering (Walter & Pronzato
1997). The systematic approach described in (Brun, Reichert & Künsch 2001)
seems well suited to particulate processes. This method is suited for large simu-
lation models, and provides identifiability diagnosis for parameter subsets. Figure
3.4 summarizes the main stages of the approach. As indicated in the Figure 3.4,
the stages are grouped into three categories: stages related to the experimental
campaign, stages related to identifiability analysis, and stages related to estima-
tion. Note also that some stages have been highlighted by a grey background in
the boxes. These stages are not automatized, they require direct analysis from the
modeler. The remaining stages may be implemented such that they are carried
out in the computer. Let us take a closer look at each of the stages:

1. Experiment design. It consists in establishing the experiments that should be
carried out to obtain data for parameter estimation and model validation.
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Figure 3.4: Systematic approach to parameter identifiability and estimation.
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The feasible measurements, the region of operating conditions to be con-
sidered, the measurement location, and the sampling interval, among other
factors, should be decided. Moreover, the experiment designer should make
sure that the excitation carried out to the process allows to validate both
the steady-state behavior and the dynamic behavior of the model.

2. Experimental campaign.

3. Prior analysis. Once the data are obtained, they should be analyzed to check
their quality. If poor quality data are used in the parameter estimation, the
resulting parameter estimates will be even poorer. The experimental data
have to be treated to adapt them to the parameter estimation, and outliers
should be detected and eliminated. In addition, the basis simulation to
compare the model results with the real data should be established. The
inputs and the initial values for the simulation have to be specified. Then,
the parameters θ of the model should be listed, as well as their initial values
θ0 and range of values ∆θ. Since the parameters and/or outputs of the
model may have different orders of magnitude, proper scaling factors should
be found.

4. Model output. This stage involves the generation of simulated data by using
the model. Such a simulation should resemble the operation of the system
during the data gathering campaign.

5. Compute sensitivities. The sensitivity sij is a measure of the change in the ith
model output yi caused by a change in the jth parameter value θj. Again, for
the sake of comparison, scaled sensitivities should be used. For large complex
models that are solved numerically, the easiest way to calculate sensitivities
is by a finite difference approximation:

sij = scij
yi (θj)− yi (θj,0)

θj − θj,0
. (3.21)

where scij are proper scaling factors. The sensitivity matrix S can be then
constructed from the sij values.

6. Parameter importance ranking. The norm of each column of the sensitivity
matrix is a quantitative measure of the importance of each individual para-
meter. A large norm ksjk means that a change in the jth parameter θj has
an important effect on the model outputs, making it identifiable from the
measured data. Now, there are different types of norm, so that the para-
meter importance ranking can be done in different ways. (Brun et al. 2001)
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recommend the use of the following measure:

δmsqrj =

vuut1

n

nX
i=1

s2ij (3.22)

as ranking criterion.

7. Identifiability of parameter subsets. The parameter importance ranking gives
an idea of the effect of each individual parameter on the outputs. However,
the joint influence of the parameters needs to be studied too. Collinearity
among parameters arise when the changes caused in an output by a change
in one parameter, can be cancelled by a change in another parameter. Pa-
rameter collinearity thus results in ill-conditioning and poor identifiability.
According to (Brun et al. 2001), such compensation effects can be looked for
by checking the degree of near linear dependence among the columns subsets
sj of the scaled sensitivity matrix. The columns sj of a matrix S are said
to be linearly dependent if there exists a vector β such that Sβ = 0. Then,
a measure of near collinearity is to look for the linear combination Sβ that
has minimal norm under the constraint kβk = 1. In (Brun et al. 2001) the
collinearity index γK was defined as follows:

γK =
1

minkβk=1

°°°S̃Kβ°°° = 1 = 1√
λK

, (3.23)

where S̃K is a n×k submatrix of S̃ containing those columns that correspond
to the parameters of the subset K, S̃ is the re-scaled sensitivity matrix with
columns

s̃j =
sj
ksjk

, (3.24)

and where λK is the smallest eigenvalue of S̃T
KS̃K . A high value of the

collinearity index indicates that the parameter subset K is poorly identi-
fiable even if the individual parameters that composes it are among the top
parameters of the parameter importance ranking.

8. Based on the results of the parameter importance ranking and identifiability
analysis, the most suitable subset(s) are chosen.

9. Parameter estimation. This is the first stage at which the measured data
are directly used. A measure of model fit and an optimization algorithm
should be selected. Table 3.4 summarizes some of the most common criteria
used as measure of model fit. There are also many optimization algorithms
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Table 3.4: Measures of model fit.

Least Squares min J = 1
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´¯̄̄
Maximum likelihood max J = fjoint

³
ydata, θ̂

´
that may be used. Hence, if the least squares criterion is chosen as measure
of model fit, several algorithms are available: the Gauss-Newton method,
the Levenberg-Marquadt method, Quasi-Newton methods, etc. For details
about algorithms, see (Nocedal &Wright 1999) or (Walter & Pronzato 1997).

10. Statistical analysis of parameter estimates. It is advisable to analyze the
certainty of the estimates, and to evaluate whether the fitting is appropriate
or not. There is a number of measures of statistical accuracy for parame-
ters: standard errors, biases and confidence intervals. There are also different
methods to estimate these measures of statistical accuracy: large-sample the-
ory methods (Lehmann 1998), bootstrap methods (Efron & Tibshirani 1993),
jackknifing, etc. It is also important to measure how well the model with
the estimated parameters predicts the response values of future observa-
tions. Again, several methods are available: cross-validation, Cp statistics,
Scwartz’s criterion, etc.

Once the parameter estimates are obtained and their certainties are analyzed, a
decision is made on whether the model is sufficiently realistic or if, on the contrary,
the model needs to be revised.

3.7 Model uses

Once a PBE model is built and validated, it can be used for many different pur-
poses. Some of the most common uses are:

• Simulation. The model is used to resemble the operation of the system, and
to analyze how the system would response to changes in the inputs and/or
operation of the system.

• Nonlinear analysis. Complex dynamic behavior, such as self-sustained os-
cillations, has been reported for industrial particulate process units, see for
example (Randolph & Larson 1988). Bifurcation and stability analysis can
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thus be carried out to map operation and/or parameter regions where differ-
ent patterns of behavior may be encountered. Since PBE models are com-
plex and nonlinear, such studies will typically require numerical analysis.
(Pathath & Kienle 2002) gives an example of a crystallization application.

• Process control. There is extensive research on use of PBE models to design
a control system. A review of different PBE model-based methods that have
been suggested in the literature is given in section 5.2.

• Process optimization. The simulation results can be used to establish changes
in the inputs and/or operation of the system that improves the process yield
(Lestage, Pomerleau & Hodouin 2002) and (Zeaiter, Romagnoli, Barton &
Gomes 2002).

• Operator training. PBE models can be used, combined with a proper graph-
ical user interface, to train operators.

• Roll-out. A model corresponding to a given system can be easily changed
to model another system for which the main foundations remain the same.
The constitutive relations or the parameter values are the elements that
have to be modified or identified for the new model. This is particularly
attractive for companies having many similar processes, since the subsequent
models are comparatively easy to develop once the first one is developed, see
(Glemmestad, Ertler & Hillestad 2002) and (Hauge 2003).

3.8 Conclusions

This chapter discusses a systematic approach to mechanistic modeling of partic-
ulate processes. The approach consists of the following stages: establishment of
model foundations, building of the model structure, determination of the consti-
tutive relations, selection of a solution method and model validation. Such an
approach is general to any type of process, but when dealing with particulate
processes special care should be placed on some of these stages. Special emphasis
was put on the establishment of model foundations. The widely-used assumption
of complete-mixing turns out to be unrealistic in many instances, and should thus
be avoided. A compartmentalization of the unit based on distinguishable regions
in the unit is suggested. A macroscopic balance is used for each compartment, and
the connections among compartments should be defined based on the physics and
hydrodynamics of the process.
Once the model is built, the model has to be “particularized” by defining the

constitutive relations. The determination of constitutive relations corresponding
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to the continuous phase is fairly straightforward, since extensive research results
are available on the phenomenological laws of transport phenomena and on reac-
tion engineering. As regards the dispersed phase, general phenomenological laws
for the events affecting the entities of the population have not yet been estab-
lished. However, the modeler may take advantage of the existing results within
each subfield of particulate processes, or tailor-made studies can be carried out.
The mathematical solution of PBE models is typically more challenging than

the solution of other types of process models, mainly due to the fact that the
PBE is a balance on a property distribution function. Hence, a macroscopic PBE
typically results in a system of integrodifferential equations, whereas a microscopic
PBE model typically results in a system of functional partial integrodifferential
equations. Fortunately, extensive research results are available on this topic. In
contrast, the area of parameter estimation and model validation of PBE models
has not been studied to such a large extent yet. The main challenges encountered
are:

• Gathering good experimental data is still difficult, particularly as regards
the population density distributions.

• Computational issues are important. PBE models are large and nonlinear.
Of particular importance is the fact that some parameters may be collinear
for the given measurements, which results in ill-conditioning of the optimiza-
tion problem, and poor parameter identifiability.

The use of a systematic parameter identifiability analysis prior to parameter
estimation was discussed in this chapter. Such an analysis provides a subset of
parameters with two important properties: the measurements are highly sensitive
to the selected parameters, and the selected parameters are not collinear with
each other. In other words, the analysis provides the selection of parameters that
can be identified from the available data. Parameter estimation and validation of
PBE models will probably attract the attention of the research community in the
coming years.
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Chapter 4

Modeling of the Silgrain R° Process

4.1 Introduction

The systematic approach to modeling of particulate processes that was presented in
chapter 3 is applied in this chapter to an industrial leaching process for production
of Silicon (Si) from Ferrosilicon (FeSi) . The process, called the Silgrain R° process,
is patented and is owned by the Norwegian company Elkem ASA.
Si is an important industrial material. Si is widely used in metallurgical appli-

cations, both as a constituent of various alloys and as an oxidizer in steelmaking .
It is also a basic material for the chemical industry:

Silicon shows a rich variety of chemical properties and it lies at the
heart of much modern technology. Indeed, it ranges from such bulk
commodities as concrete, clays, and ceramics, through more chemically
modified systems such as soluble silicates, glasses, and glazes, to the
recent industries based on silicone polymers and solid state electronics
devices. (Greenwood & Earnshaw 1997)

Si is the basis of modern electronics, due to its properties as a semiconductor.
More than 90% of all electronic components are based on Si. One of the most
recent applications of Si is as a feedstock for the multi-crystalline photovoltaic
industry, i.e. for solar cell production. Indeed, the use of Si in the solar industry
has rocketed in the last decade, and is expected to continue growing (Sarti &
Einhaus 2002). ElkemASA supplies Silgrain R° Simetal products to companies that
produce polysilicones (polycrystalline silicone), which are used in the manufacture
of semi-conductors such a microchips for computers, plates for solar panels, and
so-called optoelectronic components for communication systems. Nearly 80% of
the silicon metal used by the Japanese IT industry is delivered by Elkem ASA,

33
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and it is estimated that half of all the PC’s in the world contain Si metal from
Elkem ASA1.
The Silgrain R° process is based on hydrometallurgical leaching. Leaching is the

extraction of a soluble constituent from a solid by means of a solvent (Richardson &
Harker 2002). Leaching processes thus belong to the field of particulate processes;
leaching is encountered in a wide range of applications such as metal extraction,
wastewater treatment and food industry. In some applications it is the liquid phase
with the extracted compounds that constitute the product of interest, whereas in
other applications it is the purified solid phase that constitutes the product. In
general, some of the factors influencing the rate of extraction in a leaching process
are: the particle size, the solvent composition, the temperature, and the agitation
of the solid phase (Richardson & Harker 2002). In the Silgrain R° process, the
metallic impurities present in the FeSi solid phase, mainly iron Fe, aluminum Al,
and calcium Ca, are dissolved in a hot acidic solution. A feature that distinguishes
the Silgrain R° process from other leaching processes is the rapid disintegration of
FeSi into small grains during the reaction. The product thus consists of highgrade
Si metal grains, and this is why the product was trademarked Silgrain R° .
Several references on mechanistic modeling of leaching reactors can be found in

the literature. These mathematical models can be divided into two categories:

1. General heterogeneous models, such as fixed-bed reactor models or fluidized-
bed reactor models. They are developed for catalytic heterogeneous reactions,
but have also been applied to non-catalytic heterogeneous reactors (Froment
& Bischoff 1990), (Kunii & Levenspiel 1991), (Levenspiel 1972). The general
heterogeneous models do not account directly for the changes occurring in
the solid phase, but they focus mainly on the changes occurring in the fluid
phase.

2. Models accounting for the special nature of particulate material, the most-
used approaches being: the segregated flow model, the multiple convolution
integral and the PBE approach. The segregated flow model (Dixon 1995),
(Dixon 1996) assumes that each particle in a steady-state flow leaching reac-
tor behaves as a tiny batch reactor. Hence, a probability integral is solved for
the expected value of the fraction of solids unreacted with respect to mass-
weighted distributions of residence time and particle size. The main draw-
back of this model is the assumption that the system operates at steady-state.
The multiple convolution integral model, developed by Dixon (Dixon 1995),
(Dixon 1996), is an extension of the segregated model to multistage leach-
ing reactors, but it has also the drawback that it can only be applied to

1as reported in http://www.elkem.no/
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steady-state reactors. The first references on the application of the PBE ap-
proach to hydrometallurgical leaching assumed steady-state conditions are
(Herbst 1979), (Crundwell & Bryson 1992) and (Herbst & Asihene 1993).
The transient behavior of hydrometallurgical leaching reactors was first re-
ported in (Rubisov & Papangelakis 1995), (Rubisov & Papangelakis 1996a)
(Rubisov & Papangelakis 1996b). No references2 to PBE modeling of leach-
ing processes where particle disintegration takes place are reported in the
literature.

Some incentives for developing a dynamic model of the Silgrain R° process are:

• Customer requirements become tighter with time, making it necessary to
achieve better control over the system. A mechanistic model could be used
as basis for process control and quality control.

• Increased productivity of the process is desired, and the main way to achieve
this is by enhancing the disintegration of particles. A model that captures
the essence of the disintegration mechanism can be used for the purpose of
process optimization.

• Experimentation on the physical process is difficult and expensive. It would
be much easier and cheaper to do a simulation analyses of the model.

From the academic point of view modeling the Silgrain R° process presents inter-
esting challenges. Firstly, phenomenological modeling of the disintegration process
is challenging. Subsequently, testing whether compartmental PBE modeling pro-
vides a realistic model of the industrial plant or not is of great interest.
Before this project was initiated, mechanistic dynamic modeling of the Sil-

grain R° process had not been attempted. Empirical modeling had previously
been tested, but the results were not very satisfactory for the leaching part of
the process. On the other hand, information was available on process design
(Aas 1971), process operation3, and phenomenological research of the process
(Kolflaath 1960), (Andreassen 1995).
The present chapter describes the development of a mechanistic model of the

Silgrain R° process, following the systematic approach that was presented in chap-
ter 3. Section 4.2 describes the process operation. The model foundations and
assumptions are discussed in section 4.3. Subsequently, the model structure is
established in section 4.4. The establishment of constitutive relations is then
discussed in section 4.5. The numerical solution of the model is studied in sec-
tion 4.6. Parameter estimation and model validation is presented in section 4.7.
Finally, some possible uses of the model are listed in section 4.8.

2other than published work related to this PhD thesis.
3Elkem ASA has been running the process since the 1970s.
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Figure 4.1: Simplified sketch of the two reactors in the Silgrain R° process.

4.2 Description of the Silgrain R° process

As mentioned in the previous section, the Silgrain R° process is a hydrometallurgical
leaching process where high-purity Si metal is produced by leaching lumps of
90− 94% FeSi in a hot acidic solution of ferric chloride (FeCl3) and hydrochloric
acid (HCl). The acid attacks the crystalline structure of the FeSi, selectively
dissolving the intermetallic phases containing the impurities of Fe, Al and Ca,
while leaving the Si unattacked. Leaching is assumed to proceed according to the
following reduction-oxidation reactions (Aas 1971):

Me+2FeCl3 −→ MeCl2+2FeCl2 (4.1)

Me+2HCl −→ MeCl2+H2 (4.2)

where Me represents a metallic impurity in the intermetallic phases, i.e. any of
the species Fe, Al, and Ca .
A simplified sketch of the two reactors in the process is shown in Figure 4.1.

FeSi lumps of relatively large size are fed in a semibatch mode at the top of the
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main reactor (HR) and sink towards the bottom. A relatively large flow of hot
acidic solution is fed in a continuous mode at the bottom of the HR . Contact
between the FeSi lumps and the hot acidic solution results in the leaching of the
metallic impurities and the subsequent disintegration of the lumps. The fine grains
generated in the disintegration process are displaced upwards through particle
buoyancy and hydrodynamic thrust from the acid flow. The lumps that are only
partially disintegrated, are still large in size, and remain in the bottom of the HR
until they are further disintegrated. The stream flowing from the HR to the second
reactor (UR) consists of acid and the fine disintegrated material. The top of the
UR is designed as a sedimentation chamber, where most of the Si grains sediment
while most of the acid leaves the reactor by the overflow on the top. Only very fine
grains are entrained in the overflow stream. The sedimented grains in the UR react
with the remaining acid in the packed bed. This is believed to proceed through
pure chemical dissolution, and not through further disintegration. Tapping of the
Silgrain R° product at the bottom of the UR is carried out in a semibatch mode.
After tapping, the product is subjected to diverse operations such as: filtering,
drying, weighting and packing. The overflow from UR is first circulated through
a heating tank, and later on the composition of the acid is adjusted to the desired
operational values before the acid is recirculated to the HR.
According to (Aas 1971), a successful production of Silgrain R° depends on the

following factors: chemical composition and intermetallic phase composition of
FeSi, chemical composition of the leaching acid, leaching time, and temperature.
Further details about the Silgrain R° process can be found in (Aas 1971) and

(Andreassen 1995).

4.3 Model foundations and assumptions

A mechanistic model of the Silgrain R° process should be dynamic and should be
able to reproduce the main phenomena taking place in the process, as well as the
responses of the system due to changes in the inputs or in the operation of the
process.

4.3.1 Choice of coordinates and variables of interest

As described in section 4.2, the dispersed phase experiences important changes in
the particle size due to particle disintegration. In turn, the particle size affects
the rate at which disintegration takes place. It is thus natural to consider the
particle size as the internal coordinate of interest to be used in the PBE approach.
There are many ways to define particle size: volume diameter, surface diameter,
drag diameter, sieve diameter, sauter diameter, ..., but here the most simple def-
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inition of particle size is used: the particles are assumed to be spherical and the
diameter of the sphere is used as particle size. Particles have a random distrib-
ution of shapes that it would be very difficult to measure in practice, and shape
affects disintegration to a considerably lesser extent than particle size. Therefore
the assumption of spherical particles is reasonable. Another factor affecting dis-
integration is the phase composition of the particles, i.e. the type and amount of
intermetallic phases that are present in the material. The phase composition is
then a distributed property of the particles. However, the quality of raw material
FeSi is controlled, varying within a tight component region. This means that the
variation of intermetallic phase composition may also vary within a restricted re-
gion. Hence, it is reasonable to neglect the distribution of phase composition and
use average values instead, such that the model predicts how these average values
evolve with time. The feedstock has a certain amount of inert material, called slug.
The slug is not dissolved by the leaching acid and accumulates in the bottom of the
HR. For simplicity, the inert content is assumed to be homogeneously distributed
among the feedstock. The variables whose transient behavior is intended to be
modeled are thus: the particle size distribution (PSD) of active FeSi and slug, the
acid composition, the dispersed phase composition (Si, Fe, Al, Ca) and the energy
of the system.
Finally, mass is chosen as basis for the PSD function since in the Silgrain R°

process PSD functions are typically measured by sieving and weighting. A number-
based PSD function was initially used in the work, see references (Dueñas Díez
& Lie 2000) and (Dueñas Díez, Ausland, Fjeld & Lie 2002), but this involved
increased computation to adapt the input and output PSD functions to the correct
basis. The choice of mass is convenient also from a numerical point of view: Note
that there is a relatively small number of large particles and a huge number of
small particles. This means that the ratio:

max (Ψnumber−based)

min (Ψnumber−based)

is a very large number, giving ill-conditioned problems. However, if mass fraction
is used, the ratio

max (Ψmass−based)

min (Ψmass−based)

is several orders of magnitude smaller.

4.3.2 Choice of compartments

In order to choose the number of compartments, attention is paid to the design
and operation of the Silgrain R° process. Only the fine disintegrated particles can be
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entrained with the upward fluid, and flow out from the HR . This means that if the
HR was modelled as one unique compartment and it was assumed that the PSD
flowing out from the HR equals the PSD within the reactor, then the model would
clearly be providing wrong results. The model would indicate that all particles
can appear in the effluent from the HR, no matter their size.
Two regions are clearly identifiable in the HR:

• Disintegration region (compartment I): the bottom part of the HR, where
the feedstock is interacting with the leaching acid, resulting in disintegra-
tion. The disintegrated material that is fine enough to be entrained by the
countercurrent acid flows out from this region, whereas the coarse material
remains in this region until it is further disintegrated.

• Storage region (compartment II): the top part of the HR, where the fine
material transported by the fluid remains for a short time before being further
transported to the UR. Since the residence time is short, it can be assumed
that no reaction is taking place.

As regards the UR, two clearly differentiated regions are also identified:

• Sedimentation region (compartment III): the top of the UR, where most of
the acid is separated from the particles. The acid leaves the UR by the
overflow on the top, whereas the particles sediment.

• Dissolution region (compartment IV): the bottom of the UR, where the par-
ticles have sedimented and formed a packed bed. The particles interact with
the acid in the bed causing a further dissolution of the impurities. The
product material is intermittently pumped out at the bottom of the UR,
in a semibatch mode. Due to this type of operation, spatial gradients in
the properties, such as composition and temperature, are expected within
this region. Time-variant behavior of the profiles is also expected, due to
the semibatch tapping. Hence, a microscopic model accounting for spatial
variations is chosen for this region.

Figure 4.2 sketches the division in compartments for the Silgrain R° process.Let
us analyze now the flow among compartments, and some other assumptions related
to each compartment.

• Compartment I (HR):

— Hydrodynamic considerations can be used to relate the PSD of the
dispersed phase leaving the reactor with that of the dispersed phase
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Figure 4.2: Compartmental modeling of the Silgrain R° process.



4.3. MODEL FOUNDATIONS AND ASSUMPTIONS 41

within the reactor. Hence, a particle in compartment I is subjected
to three forces: the gravitational force, the drag force, and the thrust
force exerted by the upward flow. For a certain particle size, to which
we will refer as cut-size, the free-falling velocity of the particle equals
the velocity of the upward acid. Particles smaller than the cut-size are
displaced by the upflow to the storage region, whereas particles larger
than the cut-size remain in the disintegration region.

— The volume of the region is not constant, it may vary with time. This
region contains a random packing of a population of particles with dis-
tributed sizes and shapes. Such a packing is impossible to predict, and
impossible to measure in the current industrial implementation. How-
ever, it is not unreasonable to assume that the packing occurs in a
pattern that is more or less constant. Therefore, a constant packed bed
void fraction is assumed and used in the model.

— The FeSi feedstock contains a certain amount of inert material, which
is assumed to be evenly distributed among the feedstock. This inert
material does not disintegrate, hence it accumulates in compartment I.
Once too much inert is accumulated in the reactor, tapping of inerts is
carried out at the bottom of the reactor.

— A very high flowrate of acid is used, as compared to the amount of FeSi
fed to the system. The high flowrate generates a great deal of turbu-
lence within the reactor. Therefore, assuming homogeneous tempera-
ture within the HR (compartments I and II) is a good approximation.
In other words, the completely mixed conditions can be assumed for
the energy balance. Further assumptions with respect to the energy
balance are the following:

∗ The kinetic energy and the potential energy are negligible as com-
pared to the internal energy.
∗ The liquid and the solid phases are assumed to be incompressible.
∗ Specific enthalpies are a function of temperature and composition
(i.e. reaction enthalpies are accounted for).
∗ The heat capacities of the liquid and solid phases are assumed to
be constant. However, the bulk heat capacity is allowed to vary
depending on the ratio of solid phase/liquid phase, as follows:

cp = cp,liquid ε+ cp,solid (1− ε) (4.3)

where ε is the void fraction of the packed bed.
∗ The densities of the liquid phase and the solid phase are assumed to
be constant. However, the bulk density is allowed to vary depending
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on the ratio of solid phase/liquid phase, as follows:

ρ = ρliquidε+ ρsolid (1− ε) . (4.4)

— Disintegration is the main event taking place in this compartment, and
has an important effect on the PSD .

— Chemical composition changes occur both to the acid phase and to the
solid phase.

• Compartment II (HR):

— It is reasonable to assume completely mixed conditions in compartment
II, so that the slurry flowing from this compartment to compartment III
have the same properties (PSD, solid composition, acid composition)
as the slurry within the region.

— The slurry leaves compartment II by gravity flow. The corresponding
flowrate can thus be calculated by applying Bernoulli’s law between
the slurry level and the outlet through which the slurry flows from
compartment II to the UR .

— The volume of this region varies with time.

— The residence time of the slurry in this compartment is relatively short
as compared to the residence time in compartment I. Hence, dissolution
or reaction can be neglected.

• Compartment III (UR):

— The total volume of the UR (VUR) is constant, but the volumes of
compartment III (VRIII) and IV (VRIV) are variable and are related as
follows:

VUR = VRIII + VRIV. (4.5)

— The top part of the UR is designed so that most of the acid is separated
from the dispersed phase. The exact flow conditions within this region
are unknown, but it is believed that the grains sediment in an approx-
imately constant pattern, such that constant bed void fraction can be
assumed for the sedimented slurry.

— The residence time within compartment III is much smaller than the
residence time in compartment IV. For this reason, the separation of
particles from the acid phase is assumed to occur instantaneously. The
particles are split among the two flows leaving compartment III: the
overflow and the sedimentation flow (i.e. flow to compartment IV).
The splitting function depends on size, and has a sigmoid shape.
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— The assumption of instantaneous separation implies the following:

∗ since particles do not accumulate in the region, any volume change
in this compartment can only be caused by the liquid phase.

∗ changes in the solid composition in the flow coming from compart-
ment III cause instantaneous changes in the solid composition of
the overflow and sedimentation flow.

— Reaction, dissolution, and heat exchange effects in compartment III are
neglected.

• Compartment IV (UR):

— The stream leaving this compartment is a controlled flow. Moreover,
tapping is not carried out continuously, but in a cyclic way.

— Dissolution is the main phenomenon taking place in this compartment.
Disintegration is not considered since the remains of intermetallic phases
are now located on the external surface of the Si grains as opposed to
the feedstock, where the intermetallic phases were encountered within
the particles.

— Property profiles are believed to exist in this compartment, and should
not be neglected. Therefore, a microscopic model accounting for spatial
distribution should be used. However, only distribution in the axial
direction is considered. In other words, plug-flow with radial perfect
mixing is assumed.

4.4 Model structure

Based on the model foundations and model assumptions that were established in
section 4.3, the structure of the model can now be built. Tables 4.1, 4.2, 4.3,
and 4.4 summarize the structure of the Silgrain R° model. The initial conditions
and boundary conditions that are necessary to solve the model are also indicated.
Tables 4.1 and 4.2 show the PBE, the total mass balances, the component balances
of the acid phase and the solid phase for theHR, whereas table 4.3 shows the energy
balance for the whole HR. Table 4.4 shows the model of the UR .
Some words about notation are necessary. References to compartment I, II, III

or IV are indicated with subscripts RI,RII,RIII and RIV, respectively. Subscript
in refers to a influent into the compartment, whereas subscript out refers to an
effluent of the compartment. Superscript Me indicates a balance for each of the
metallic impurities, i.e. Fe, Al, and Ca. Superscript acid indicates a balance for
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Table 4.1: Structure of HR-model (Compartment I): PBE, mass, and component
balances. I.C. = Initial Condition

Compartment I:

PBE
dΨactive

RI

dt
= Ψ̇active

RI,in − Ψ̇active
RI,out +B −D

I.C. Ψactive
RI (0, Dp) Ψ̇activeRI,in = ṀfeedΨfeed

¡
1− winertfeed

¢
Ψ̇activeRI,out(Dp, t) =

½
B −D for Dp ≤ Dcut

0 for Dp > Dcut

PBE
dΨinert

RI

dt
= Ψ̇inertRI,in − Ψ̇inert

RI,out

I.C. Ψinert
RI (0,Dp) Ψ̇inertRI,in = ṀfeedΨfeedw

inert
feed

Ψ̇inertRI,out = qinertRI,tappingΨ
inert
RI

Comp. mass bal. (solid)
dWMe

RI

dt
= ẆMe

RI,in − ẆMe
RI,out − rMeRIM

Me
w VRI

I.C. WMe
RI (0) ẆMe

RI,in = Ṁfeedw
Me
RI,in

ẆMe
RI,out =

³R Dp,max

Dp,min
Ψ̇active
RI,outdζ

´
wMeRI,out

WMe
RI =

³R Dp,max

Dp,min
ΨactiveRI dζ

´
wMeRI

VRI =

³R Dp,max

Dp,min
ΨactiveRI dζ +

R Dp,max

Dp,min
Ψinert
RI dζ

´
ρsolid (1− εRI)

Comp. mole bal. (acid)
dNacid

RI

dt
= Ṅacid

RI,in − Ṅacid
RI,out + racidRI VRI

I.C. Nacid
RI (0) Ṅacid

RI,in = qacidfeedC
acid
RI,in

Ṅacid
RI,out = qacidRI,outC

acid
RI,out

Nacid
RI = VRIεRIC

acid
RI

qacidRI,out = qacidfeed − εRI
dVRI
dt
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Table 4.2: Structure of HR-model (Compartment II): PBE, mass, and component
balances. I.C. = Initial Condition

Compartment II:

PBE
dΨRII

dt
= Ψ̇RII,in − Ψ̇RII,out

I.C. ΨRII (0, Dp) Ψ̇RII,in = Ψ̇active
RI,out

Ψ̇RII,out =
qRII,out
VRII

ΨRII

Total mass bal.
dMRII

dt
= ṀRII,in − ṀRII,out

I.C. MRII (0) ṀRII,in =
R Dp,max

Dp,min
Ψ̇RI,outdζ + qacidRI,outρacid

ṀRII,out = qRII,out (ρacidεRII + ρsolid (1− εRII))

MRII =
R Dp,max

Dp,min
ΨRIIdζ + εRIIVRIIρacid

Comp. mass bal. (solid)
dWMe

RII

dt
= ẆMe

RII,in − ẆMe
RII,out

I.C. WMe
RII (0) ẆMe

RII,in = ẆMe
RI,out

ẆMe
RII,out = qRII,out (1− εRII) ρsolidw

Me
RII

WMe
RII =

³R Dp,max

Dp,min
ΨRIIdζ

´
wMeRII

Comp. mole bal. (acid)
dNacid

RII

dt
= Ṅacid

RII,in − Ṅacid
RII,out

I.C. Nacid
RII (0) Ṅacid

RII,in = Ṅacid
RI,out

Ṅacid
RI,out = qRII,outεRIIC

acid
RII

Nacid
RII = VRIIεRIIC

acid
RII

Table 4.3: Structure of HR-model: energy balance.¡
VRI ρcpRI + VRII ρcpRII

¢ dTHR
dt

= Ḣin − Ḣout +
X
Me

(−∆HMe) r
Me
RI VRI − Q̇surroundings

Ḣin = Ṁfeedcpsolid
¡
T solidfeed − Tref

¢
+ qacidfeedρacidcpacid

¡
T acidfeed − Tref

¢
Ḣout = qRII,out |ρcp|RII (THR − Tref)
ρcp i = ρacidcpacidεi + ρsolidcpsolid (1− εi) i = RI,RII
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Table 4.4: Structure of UR model. Initial conditions and boundary conditions are
indicated in the first column.
UR vol. bal. qRIII,in= qRIII,overflow+qRIV,tapping
Compartment III:

PBE
dΨRIII

dt
= 0 = Ψ̇RIII,in − Ψ̇RIII,out − Ψ̇RIII,overflow

Ψ̇RIII,overflow = split (Dp) Ψ̇RIII,in
Ψ̇RIII,out = (1− split (Dp)) Ψ̇RIII,in

qRIII,out=

R Dp,max

Dp,min
Ψ̇RIII,outdζ

ρsolid (1− εdesign)
Solid comp.mass b. wMeRIII,out = wMeRIII,overflow = wMeRII,out

Acid comp.mole b.
dNacid

RIII

dt
= Ṅacid

RIII,in − Ṅacid
RIII,out − Ṅacid

RIII,overflow

Ṅacid
RIII,in = Ṅacid

RI,out

Ṅacid
RIII,out = qRIII,out ρsolid (1− εdesign) C

acid
RIII

Ṅacid
RIII,overflow = qRIII,overflow ρsolid (1− εoverflow)C

acid
RIII

Nacid
RIII = VRIIIC

acid
RII

Energy bal. TMeRIII,out = TMeRIII,overflow = TMeRII,out

Compartment IV:

PBE
∂ψRIV
∂t

= −∂ (vzψRIV)
∂z

−
∂
¡
vDpψRIV

¢
∂Dp

ψRIV (0, z,Dp)
ψRIV (t, zboundary, Dp)

vz =
qRIII,out−qRIV,tapping

πD2
UR

Total mass bal.
dMRIV

dt
= ṀRIV,in − ṀRIV,out

MRIV (0) ṀRIV,in = qRIII,out (ρacidεdesign + ρsolid (1− εdesign))

ṀRIV,out = qRIV,tapping (ρacidεtapping + ρsolid (1− εtapping))

εtapping =

R Dp,max

Dp,min
ψRIV (ztapping, ζ) dζ

ρsolidqRIV,tapping

Solid comp.mass b.
∂wMeRIV
∂t

= −
∂
¡
vzw

Me
RIV

¢
∂z

+
rMeRIVM

Me
w

ρsolid
wMeRIV (0, z)
wMeRIV (t, zboundary)

εRIV =

R Dp,max

Dp,min
ψRIVdζ

ρsolid
Acid comp.mole b.
Cacid
RIV (0, z)

Cacid
RIV (t, zboundary)

∂Cacid
RIV

∂t
= −

∂
¡
vzC

acid
RIV

¢
∂z

+
racidRIV (1− εRIV)

εRIV

Energy bal.
TRIV (0, z)
TRIV (t, zboundary)

∂TRIV
∂t

= −∂ (vzTRIV)
∂z

− Q̇surroundings

ρCp
+

rj∆HjεRIV
ρCp
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each of the reactants and products components in the acid phase, i.e. FeCl3, HCl,
FeCl2, AlCl3, and CaCl2.
The model, as presented in this section, is not complete. The disintegration,

chemical reaction, and some of the flow terms need to be specified, and values for
the parameters and the initial conditions (I.C.) and boundary conditions (B.C.)
have to be selected. The structure of the model or some of its parts would be valid
for any other particulate processes as long as the corresponding assumptions are
still reasonable.

4.5 Constitutive relations

The model must now be “particularized” by defining the constitutive relations,
and finding values for the parameters. The constitutive relations that have to be
specified in the Silgrain R° model are the following:

• the disintegration terms.

• the reaction rates.

• the heat exchange terms and reaction enthalpies.

• the hydrodynamic relations, critical sizes, and bed packing parameters.

4.5.1 Particle disintegration

Although the Silgrain R° process had not been mathematically modeled prior to this
work, some phenomenological work had already been carried out by the process
designers and by Elkem ASA. Hence, the patent of the process (Kolflaath 1960) de-
scribes the refining of Si with solutions containing chloride ions and metal cations.
The leaching solution is compared to another reactive solution that had been used
in the past, the hydrochloric acid leaching process. The patent describes some
factors affecting reaction, such as composition or temperature, but does not dis-
cuss the disintegration mechanism. A tentative theory about the disintegration
phenomena was given in (Aas 1971). The theory states that the corrosive attack
opens up narrow cracks along the grain boundaries of the Si . H2 gas is generated
during reaction (see equation 4.2). Salt precipitates of the chloride compounds
may be formed in the cracks since the pH conditions within the crack differ much
from the acidity conditions in the bulk phase due to mass transfer resistance. The
combined effect of gas and precipitate formation may be the reason for particle
disintegration. This theory was further studied in (Andreassen 1995). Moreover,
this work studied some factors affecting disintegration such as acid composition
and intermetallic phase composition.
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Some references to phenomenological research of the refining of FeSi alloys by
acid leaching are found in the literature. Hence, the effect of structural com-
position, acid composition, and stirring was investigated in (Margarido, Martins,
Figueiredo & Bastos 1993b) and (Margarido, Figueiredo, Queiróz &Martins 1997).
The crackling core model, developed by Park and Levenspiel (1975), was used in
(Margarido, Martins, Figueiredo & Bastos 1993a) and (Martins &Margarido 1996)
to model the FeSi leaching. The crackling core model assumes that the particles
are initially nonporous; then, under the action of the reactant the pellet transforms
progressively from the outside in, by crackling and fissuring, to form a grainy ma-
terial, which then continuous reacting according to the shrinking core model (Park
& Levenspiel 1975). Conceptually, this model agrees well with the tentative theory
suggested in (Aas 1971). However, the crackling core model is not suited for use
in the PBE, since the model assumes that all the grains have the same size, thus
ignoring the distribution of particle sizes.
No reference has been reported in the literature on PBE modeling of leaching

processes where particles disintegrate. However, there are other types of partic-
ulate processes where disintegration or breakup phenomena are important, either
as the primary event (comminution, emulsion dispersion) or as a secondary event
(agglomeration, crystallization). Examples of mathematical descriptions of the
birth (B) and death (D) rate functions can thus be found in the granulation
(Kapur 1995), comminution (Herbst & Asihene 1993), (Ramkrishna 2000), and
emulsion dispersion (Chen, Prüss & Warbecke 1998) literature. Although these
particulate processes differ considerably from each other, they model the birth and
death rate terms in a similar way, as follows:

B −D =

Z Dp,max

Dp

b(Dp, ζ) a(ζ, θ) Ψ(ζ, t) dζ − a(Dp, θ)Ψ(Dp, t) (4.6)

where a(Dp, θ) is the rate at which a particle of size Dp breaks per unit time,
and is thus commonly called the breakage frequency function. It is a function of
particle size and some other application-dependent parameters θ. In turn, b(Dp, ζ)
is a probability density distribution function that defines the distribution of sizes
of daughter particles when a mother particle of size ζ breaks apart. Some other
additional conditions must be fulfilled:

• a mother particle can not generate larger daughter particles than itself. This
is the reason why the integral limits are selected as indicated in equation 4.6.

• the mass of daughter particles originated from breakage of a mother particle
of size ζ must be less than or equal to the mass of the mother particle:Z Dp

Dp,min

b( , Dp) a(Dp) Ψ(Dp, t) d ≤ a(Dp)Ψ(Dp, t). (4.7)
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The birth and death terms of the Silgrain R° process have been modeled accord-
ing to equation 4.6. Some experimental work was necessary to find mathematical
expressions for a(Dp, θ) and b(Dp, ζ). The available phenomenological information
was used to design the laboratory experimental campaign. The experiments were
carried out in the laboratories at Elkem Research Centre (Kristiansand, Norway).
A brief description of the experiments is given below, but the operational para-
meters have been omitted to protect confidential information. The experimental
campaign is described in more detail in a confidential report (Dueñas Díez 2001).

Batch leaching tests (performed at Elkem Research Centre)

Batch leaching tests were carried out, and special care was paid so that the op-
erating conditions resembled the conditions encountered in compartment I of the
HR. The influence of the following variables was studied:

• Temperature.

• Leaching acid composition.

• Leaching time.

• Particle size.

The chemical composition and intermetallic phase composition of the FeSi ma-
terial used for the experiments was characterized and representative of the regular
feedstock to the Silgrain R° process. The disintegration and impurity removal rates
were followed by measuring the change of composition in the solid phase.
Each leaching test involved the following stages:

1. Preparation of the feed and the acid.

(a) The material was grinded to the chosen particle size. Batches of FeSi
with the same weight, the same number of particles, and a homogeneous
distribution of shapes were used.

(b) The acid composition was manipulated to the chosen set of values.

2. The acid was heated up to the chosen temperature.

3. Once the chosen temperature was reached, the FeSi was added. A constant
and representative acid/solid ratio was used.

4. The temperature was kept constant during the duration of the test.
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Figure 4.3: Experimental setup for batch leaching experiments. Picture taken by
the author at Elkem Research Centre, Kristiansand, Norway.

5. Once the final time was reached, the vessel was quenched to stop the reaction.
The solid phase was then separated from the liquid phase by vacuum filtering.

6. The solid phase was dried, and then sieved.

7. The sieved fractions were weighted, and subjected to chemical analysis to
determine the impurity content.

Some of the leaching equipment is shown in Figures 4.3 and 4.4. In view of
the results, it was concluded that the disintegration rate is mainly influenced by
temperature and by the initial particle size, in such a way that the smaller the
initial particle size and/or the higher the temperature, the faster the disintegration
is. The leaching acid composition does not have an important effect on the final
PSD, as long as the composition lies within the operation range of the Silgrain R°

process. Therefore, this factor can be neglected in the birth and death rates. A
disintegration pattern was observed: the PSD of daughter particles was bimodal
with a mode located around a fixed particle size in the fine range and with a
mobile mode whose location is dependent on the mother particle size. This led
to the following theory: when the acid attacks FeSi, the intermetallic phases are
dissolved, causing a particle to break up into a small number of still relatively large
particles and a large number of Si grains, which are quite fine. The large daughter
particles are subject to acid attack and breakup, giving rise again to grains and
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Figure 4.4: Sieve equipment. Picture taken by the author at Elkem Research
Centre, Kristiansand, Norway.

intermediate sizes. This process repeats until all the material is disintegrated into
grains. Figure 4.5 sketches the suggested model of disintegration, and indicates
qualitatively how the PSD of daughter particles varies with disintegration.
Based on the results of this experimental campaign, the following mathematical

expression was suggested to describe the breakage frequency:

a(Dp, T ) =

⎧⎨⎩
ka exp (kTT )

Dn
p

for Dp ≤ Dgrain

0 for Dp > Dgrain

, (4.8)

where ka, kT , n and Dgrain are the fitting parameters and where particles smaller
than the average size of Si grains Dgrain do not experience further disintegration.
As regards the density distribution function of daughter particles, the static mode
around a fixed point D∗ was modeled with an exponential distribution function
whereas the mobile mode was modeled with a log-normal distribution function, as
follows:

b( , ζ) = A1 exp

µ
−β1

³
1−

D∗

´2¶
| {z }

static mode

+
A2
exp

Ã
−β2 log2

Ã
1− ζ

(ζ − ) (0.6 3)1/3

!!
| {z }

mobile mode

,

(4.9)
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Figure 4.5: Disintegration model.

where ζ represents the size of the mother particle, represents the size of the
daughter particles, and where A1, A2, β1, β2,D

∗ are the fitting parameters. Note
that mass fraction is used as basis for b( , ζ). The Generalized Reduced Gradient
(GRG) nonlinear optimization algorithm (Edgar, Himmelblau & Ladson 2001),
available in Excel , was used to fit experimental data to equations 4.9 and 4.8,
with satisfactory results. Figure 4.6 shows good agreement between the fitted
curve b( , ζ) and experimental results. The parameter estimates and the axis in
Figure 4.6 have been omitted to protect confidential information.

4.5.2 Reaction rates

The experimental campaign carried out to determine the birth and death terms also
provided information about the chemical reactions. In view of the results, it can
be concluded that when particle disintegration takes place, a part of the metallic
impurities in the FeSi feedstock have been removed. The grains show a considerable
lower content of impurities, whereas the disintegrated material that is still large
in size contains approximately the same proportion of metallic impurities as the
feedstock. Moreover, the conversion observed in the grains was nearly independent
of temperature and acid composition. However, the conversion is still lower than
that of the product material tapped in the UR. Therefore, a part of the chemical
work takes place in the HR, and the remaining in the UR. The kinetic rates in
the two reactors are different, mainly due to unalike flow and solid/liquid ratio
conditions. The solid/liquid ratio is considerably lower in compartment I than in
compartment IV. Moreover, there exists more turbulence in compartment I than in
compartment IV. This means that both the rate limiting stage and the magnitude
of the reaction rate are different for the two reactors. The chemical reaction is
closely linked to disintegration in compartment I, whereas a considerably slower
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Figure 4.6: Fitted b( , ζ) vs. experimental data.

reaction is observed in compartment IV. Figure 4.7 depicts how reaction evolves
with time in compartments I and IV.

A fairly simple kinetic model can be used for compartment I:

wMeRI,out = αMewMeRI (4.10)

rMeRI = −
R D cut
Dp,min

(B −D) dζ

MMe
w VRI

αMewMeRI , (4.11)

where αMe is a measure of conversion. It must be in the range:

0 ≤ αMe ≤ 1, (4.12)

and is assumed to be constant4. Note that the integral term in equation 4.11
represents the mass of grains generated during disintegration in compartment I.
Now, taking into account the stoichiometry of the chemical reactions (see equations
4.1 and 4.2) the reaction rates of the acid components can be formulated in terms

4αMe varies with the phase composition of the feedstock, but since it is assumed that such
a composition does not vary considerably, then it is reasonable to assume a constant value for
αMe.
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Figure 4.7: Evolution of chemical reaction in compartments I and IV.

of the reaction rates of the metallic impurities as follows:⎛⎜⎜⎜⎜⎝
rFeCl3RI

rHClRI

rFeCl2RI

rAlCl3RI

rCaCl2RI

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
2βFeRI 3βAlRI 2βCaRI

2
¡
1− βFeRI

¢
3
¡
1− βAlRI

¢
2
¡
1− βCaRI

¢
−3βFeRI − (1− βFeRI) −3βAlRI −2βCaRI

0 −3 0
0 0 −2

⎞⎟⎟⎟⎟⎠
⎛⎝ rFeRI

rAlRI
rCaRI

⎞⎠ ,

(4.13)
where βMe is the fraction of reacted metallic impurity Me that was dissolved by
reaction with iron chloride FeCl3, whereas 1−βMe is the fraction that was dissolved
by reaction with HCl . The values for the parameters αMe and βMe were obtained
from the laboratory experimental data.
In turn, the following kinetic model is assumed for compartment IV:

rMeRIV = −kMeRIV exp
µ
−E

Me

RT

¶
| {z }

kinetic constant

¡
CFeCl3
RIV

¢γMe1 ¡
CHCl
RIV

¢γMe2 ¡
wMeRIV

¢γMe3 , (4.14)

where kMeRIV is the preexponential factor and EMe is the activation energy of the
reaction. Hence, it is assumed that the kinetic constant follows Arrhenius’ law for
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temperature dependence. Note also that if any of the reactants (Me, HCl or FeCl3)
gets depleted, then the reaction rate goes to zero. Again, the reaction rates of the
acid compounds can be calculated according to stoichiometry as indicated by equa-
tion 4.13, but where βMeRI is substituted by the corresponding values of compartment
IV βMeRIV. Laboratory tests resembling the operation of the UR were attempted in
order to obtain data for parameter estimation (kMeRIV, E

Me, γMe1 , γMe2 , γMe3 , βMeRIV), but
unfortunately the data were not representative. Therefore, the parameters (kMeRIV)
were tuned based on a trial-and-error approach using computer simulations.

4.5.3 Dissolution rate

The chemical reactions in compartment IV not only cause changes in the com-
position of the solid phase and acid phase, but also cause changes in the particle
size. Since the impurities are now concentrated on the external surface of the Si
grains, the particle shrinks when the impurities are dissolved. Note, however, that
the changes in particle size are thus not as dramatic as in compartment I, where
disintegration was taking place.
The continuous shrinking of particles is modeled in the PBE through the fol-

lowing term:
∂
¡
vDpψRIV

¢
∂Dp

=
∂

∂Dp

µ
dDp

dt
ψRIV

¶
, (4.15)

where vDp is the rate of change of particle diameter by chemical reaction. Now, if
we define the total metallic dissolution rate r as follows

rw =
X
Me

MMe
w rMeRIV =MFe

w rFeRIV +MAl
w rAlRIV +MCa

w rCaRIV, (4.16)

where rw is given in dissolved mass per unit time and unit particle volume, whereas
rMeRIV is given in dissolved mol per unit time and unit particle volume. Moreover,
rw can also be defined as:

rw = −
1

π
6
D2

p

d
¡
π
6
D3

pρsolid
¢

dt
= −3ρsolid

Dp
vDp. (4.17)

Hence, if equations 4.16 and 4.17 are combined, it is obtained that

vDp = −
Dp

3ρsolid
rw = −

Dp

3ρsolid

X
Me

MMe
w rMeRIV. (4.18)

4.5.4 Heat of reaction and overall heat transfer coefficients

The reactions shown in equations 4.1 and 4.2 are exothermic. The heat of re-
action can be estimated from thermodynamics. The standard heat of reaction
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∆H ◦
r,298.15K, i.e. the enthalpy change when the reactants are in their standard

states at 298.15K and 1 bar and react to produce products in their standard states
at 25 ◦C and 1 bar. ∆H ◦

r, i can be estimated from the standard heat of formation
∆H ◦

f of reactants and products as follows

∆H ◦
r,298.15K =

X
νproduct i∆H ◦

f, i −
X

νreactant i∆H ◦
f, i, (4.19)

where νproduct i is the stoichiometric coefficients corresponding to product i and
νreactant i is the stoichiometric coefficient corresponding to reactant i in the reaction
under consideration.
However, the heat of reaction does not take place at the standard reference

temperature (298.15K). Hence, the temperature dependence of the heat of reac-
tion has to be considered. The standard heat of temperature at any temperature
T can be calculated as follows

∆H ◦
r,T = ∆H ◦

r,298.15K+

Z T

298.15K

(νproduct iCp,i (T )− νreactant iCp,i (T )) dT, (4.20)

where Cp,i is the standard heat capacity and subscript i identifies a particular reac-
tant or product. Standard heat capacities are typically a function of temperature.
Data for the standard heat of formations and heat capacities were obtained from

the literature (Perry & Green 1984) and from the National Institute of Standards
and Technology (NIST) database5. The resulting heat of reactions were linear
functions of the temperature.
The heat loss to the surroundings can be estimated as follows

Q = uoverall S∆T = uoverall S (THR − Tsurroundings) , (4.21)

where uoverall is the overall heat transfer coefficient, S is the heat transmission
surface and ∆T is the overall temperature difference. The limiting stage in the
heat transfer is the heat convection from the external surface of the reactor to the
air. The value of the overall heat transfer coefficient was taken from the literature
(Coulson & Richardson 1978).

4.5.5 Particle and slurry motion

As mentioned in sections 4.2 and 4.3, particle motion has an important effect on
the structure of the model. Indeed, particle motion was essential in establishing
the number of compartments and the coupling among compartments. Hence, in
compartment I a cut size was defined in order to differentiate particles that can
not leave the compartment from those that can leave the compartment. However,

5http://webbook.nist.gov
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the factors determining this cut size have not been established. It is widely known
that some factors that may affect the cut size are:

• the larger the fluid velocity, the larger the cut size;

• the larger the turbulence, the larger the cut size;

• the smaller the difference between acid density and solid density, the larger
the cut size;

The best way to establish the cut size is by making a force balance over the
particle:

Drag Force = Gravity Force − Buoyancy Force

and since we assume the particles are spherical (Coulson & Richardson 1978)

Ro
π

4
D2
cut =

π

6
D3
cutρsolidg −

π

6
D3
cutρacidg, (4.22)

where Ro is the dimensionless drag force, ρsolid and ρacid are the solid density
and the fluid density, respectively, and g is the gravity constant. The drag force is
generally a complicated function of the Reynolds number Re, but for turbulent flow
(500 < Re < 2 ·105), as in the reactor under study, the drag force is approximately
independent of the Reynolds number (Coulson & Richardson 1978). For turbulent
flow, the dimensionless drag force Ro is given by

Ro

ρacid u
2
0

= 0.22, (4.23)

where u0 is the fluid velocity. Substituting 4.23 into equation 4.22 gives

Dcut = 0.33
ρacid

g (ρsolid − ρacid)
u20

= 0.33
ρacid

g (ρsolid − ρacid)

µ
usup
εnRII

¶2
, (4.24)

where the fluid velocity has been expressed as a function of the the superficial fluid
velocity usup and the void fraction εRII. The unknown exponent n was tuned by
fitting to experimental data.
The other term that has to be defined is the flowrate of the effluent leaving

compartment II. This flow is enhanced by gravity. If Bernoulli’s equation is applied
between the surface of the slurry in the HR (point 1) and the outlet (point 2), then

P1
ρg
+ h1 +

v21
2g
=

P2
ρg
+ hout +

v22
2g

, (4.25)
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where P indicates pressure, v indicates slurry velocity and h indicates height from
the reactor bottom. Taking into consideration that both the HR and the UR
operate at atmospheric pressure (P1 = P2) and that the section of the reactor is
much larger than the section of the orifice, or what is the same, v1 ¿ v2, then
equation 4.25 reduces to

v2 =
p
2g(h1 − hout). (4.26)

The flow rate can thus be calculated by multiplying equation 4.26 by the out-
let cross-section and, to account for the effect of friction in the outlet, a coefficient
of discharge CD is used, resulting in the following equation

qRII,out = CD
π

4
D2
outlet

p
2g(h1 − houtlet). (4.27)

Now, considering that the bottom part of the reactor is semiconical with volume
Vsemiconical and height hsemiconical and the remaining part of the reactor is cylindrical
with reactor diameter DHR, then equation 4.27 can be rewritten in terms of the
volumes

qRII,out = CD
π

4
D2
outlet

s
2g

µ
4

π (DHR)
2 (VHR − Vsemiconical) + hsemiconical − houtlet

¶
.

(4.28)
where

VHR = VRI + VRII. (4.29)

The dimension-related parameters (Doutlet, houtlet, Vsemiconical, hsemiconical and DHR)
are known exactly, whereas a typical value of 0.64 (Coulson & Richardson 1978)
is used for CD.
Finally, in compartment III the particle motion was not modeled by using a

unique cut size, but rather by a split function and a constant value for the void
fraction of the sedimented material εdesign. The split function that is used here is
a function of the type shown in Figure 4.8. The parameters of the split function
and the value of εdesign were selected according to information about the operation
of the industrial reactor. The exact values are not known, but approximate values
can estimated from other operational data available from the process.

4.6 Model solution

Themodel, including the constitutive relations, is summarized in tables 4.5, 4.6, 4.7
and 4.8. Once the constitutive relations were defined and values for the parameters
are chosen, the model represents only the system under study. The model is no
longer valid for diverse similar systems.
The type of mathematical systems encountered are:
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Table 4.5: Model of compartment I.
dΨactive

RI

dt
= Ψ̇active

RI,in − Ψ̇active
RI,out +B −D

Ψ̇activeRI,in =
¡
1− winertfeed

¢
ṀfeedΨfeed

B −D =
R Dp,max

Dp
b(Dp, ζ) a(ζ, T ) Ψ(ζ, t) dζ − a(Dp, θ)Ψ(Dp, t)

b = A1 exp

µ
−β1

³
1−

D∗

´2¶
+
A2
exp

Ã
−β2 log2

Ã
1− ζ

(ζ − ) (0.6 3)1/3

!!

a(Dp, T ) =

⎧⎨⎩
ka exp (kTT )

Dn
p

for Dp ≤ Dgrain

0 for Dp > Dgrain

Ψ̇activeRI,out(Dp, t) =

½
Ψ̇active
RI,in +B −D for Dp ≤ Dcut

0 for Dp > Dcut

Dcut = 0.33
ρacid

g (ρsolid − ρacid)

µ
usup
εnRII

¶2
dΨinert

RI

dt
= Ψ̇inertRI,in − Ψ̇inert

RI,out

Ψ̇inertRI,in = ṀfeedΨfeedw
inert
feed

Ψ̇inertRI,out = qinertRI,tappingΨ
inert
RI

dWMe
RI

dt
= ẆMe

RI,in − ẆMe
RI,out − rMeRIM

Me
w VRI

ẆMe
RI,in = Ṁfeedw

Me
RI,in

ẆMe
RI,out =

³R Dp,max

Dp,min
Ψ̇active
RI,outdζ

´
wMeRI,out =

³R Dp,max

Dp,min
Ψ̇active
RI,outdζ

´
αMewMeRI

WMe
RI =

³R Dp,max

Dp,min
ΨactiveRI dζ

´
wMeRI

VRI =

³R Dp,max

Dp,min
ΨactiveRI dζ +

R Dp,max

Dp,min
Ψinert
RI dζ

´
ρsolid (1− εRI)

rMeRI = −
D cut
Dp,min(B−D)dζ

MMe
w VRI

αMewMeRI

dNacid
RI

dt
= Ṅacid

RI,in − Ṅacid
RI,out + racidRI VRI

Ṅacid
RI,in = qacidfeedC

acid
RI,in

Ṅacid
RI,out = qacidRI,outC

acid
RI,out

Nacid
RI = VRIεRIC

acid
RI

qacidRI,out = qacidfeed − εRI
dVRI
dt⎛⎜⎜⎜⎜⎝

rFeCl3RI

rHClRI

rFeCl2RI

rAlCl3RI

rCaCl2RI

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
2βFeRI 3βAlRI 2βCaRI

2
¡
1− βFeRI

¢
3
¡
1− βAlRI

¢
2
¡
1− βCaRI

¢
−3βFeRI − (1− βFeRI) −3βAlRI −2βCaRI

0 −3 0
0 0 −2

⎞⎟⎟⎟⎟⎠
⎛⎝ rFeRI

rAlRI
rCaRI

⎞⎠
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Table 4.6: Model of compartment II.
dΨRII

dt
= Ψ̇RII,in − Ψ̇RII,out

Ψ̇RII,in = Ψ̇activeRI,out

Ψ̇RII,out =
qRII,out
VRII

ΨRII

Vover = VRI + VRII − Vsemiconical

qRII,out = CD
π
4
D2
outlet

r
2g
³

4Vover
π(DHR)

2 + hsemiconical − houtlet
´

dMRII

dt
= ṀRII,in − ṀRII,out

ṀRII,in =
R Dp,max

Dp,min
Ψ̇RI,outdζ + qacidRI,outρacid

ṀRII,out = qRII,out (ρacidεRII + ρsolid (1− εRII))

MRII =
R Dp,max

Dp,min
ΨRIIdζ + εRIIVRIIρacid

dWMe
RII

dt
= ẆMe

RII,in − ẆMe
RII,out

ẆMe
RII,in = ẆMe

RI,out

ẆMe
RII,out = qRII,out (1− εRII) ρsolidw

Me
RII

WMe
RII =

³R Dp,max

Dp,min
ΨRIIdζ

´
wMeRII

dNacid
RII

dt
= Ṅacid

RII,in − Ṅacid
RII,out

Ṅacid
RII,in = Ṅacid

RI,out

Ṅacid
RI,out = qRII,outεRIIC

acid
RII

Nacid
RII = VRIIεRIIC

acid
RII

Table 4.7: Energy balance for the HR.¡
VRI ρcpRI + VRII ρcpRII

¢ dTHR
dt

= Ḣin − Ḣout +
X
Me

(−∆HMe) r
Me
RI VRI − Q̇surroundings

Ḣin = Ṁfeedcpsolid
¡
T solidfeed − Tref

¢
+ qacidfeedρacidcpacid

¡
T acidfeed − Tref

¢
Ḣout = qRII,out |ρcp|RII (THR − Tref)
ρcp i = ρacidcpacidεi + ρsolidcpsolid (1− εi) i = RI,RII

Q̇surroundings = uoverall S (THR − Tsurroundings)
∆HMe = ∆H0

Me +∆HT
MeTHR
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Table 4.8: Model of compartments III and IV.
qRIII,in= qRIII,overflow+qRIV,tapping
dΨRIII
dt

= 0 = Ψ̇RIII,in − Ψ̇RIII,out − Ψ̇RIII,overflow

Ψ̇RIII,overflow = split (Dp) Ψ̇RIII,in

Ψ̇RIII,out = (1− split (Dp)) Ψ̇RIII,in

qRIII,out=

R Dp,max

Dp,min
Ψ̇RIII,outdζ

ρsolid (1− εdesign)
wMeRIII,out = wMeRIII,overflow = wMeRII,out
dNacid

RIII

dt
= Ṅacid

RIII,in − Ṅacid
RIII,out − Ṅacid

RIII,overflow

Ṅacid
RIII,in = Ṅacid

RI,out

Ṅacid
RIII,out = qRIII,out ρsolid (1− εdesign) C

acid
RIII

Ṅacid
RIII,overflow = qRIII,overflow ρsolid (1− εoverflow)C

acid
RIII

Nacid
RIII = VRIIIC

acid
RII

TMeRIII,out = TMeRIII,overflow = TMeRII,out

∂ψRIV
∂t

= −∂ (vzψRIV)
∂z

−
∂
¡
vDpψRIV

¢
∂Dp

vDp = −
2

ρsolid

P
Me

MMe
w rMeRIV

dMRIV

dt
= ṀRIV,in − ṀRIV,out

ṀRIV,in = qRIII,out (ρacidεdesign + ρsolid (1− εdesign))

ṀRIV,out = qRIV,tapping (ρacidεtapping + ρsolid (1− εtapping))

εtapping =

R Dp,max

Dp,min
ψRIV (ztapping, ζ) dζ

ρsolidqRIV,tapping
∂wMeRIV
∂t

= −
∂
¡
vzw

Me
RIV

¢
∂z

+
rMeRIVM

Me
w

ρsolid

εRIV =

R Dp,max

Dp,min
ψRIVdζ

ρsolid
rMeRIV = −kMeRIV exp

³
−EMe

RT

´ ¡
wMeRIV

¢γMe1 ¡
CFeCl3
RIV

¢γMe2 ¡
CHCl
RIV

¢γMe3
∂Cacid

RIV

∂t
= −

∂
¡
vzC

acid
RIV

¢
∂z

+
racidRIV (1− εRIV)

εRIV⎛⎜⎜⎜⎜⎝
rFeCl3RIV

rHClRIV

rFeCl2RIV

rAlCl3RIV

rCaCl2RIV

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
2βFeRIV 3βAlRIV 2βCaRIV

2
¡
1− βFeRIV

¢
3
¡
1− βAlRIV

¢
2
¡
1− βCaRIV

¢
−3βFeRI − (1− βFeRIV) −3βAlRIV −2βCaRIV

0 −3 0
0 0 −2

⎞⎟⎟⎟⎟⎠
⎛⎝ rFeRIV

rAlRIV
rCaRIV

⎞⎠
∂TRIV
∂t

= −∂ (vzTRIV)
∂z

− Q̇surroundings

ρCp
+

rj∆HjΣRIV
ρCp
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Figure 4.8: Split function.

• compartment I: a system of integrodifferential and algebraic equations.

• compartment II: a system of differential and algebraic equations.

• compartment III: a system of algebraic equations.

• compartment IV: a system of partial differential equations.

Note that compartments I, II and III can be considered a unique system of
equations: Integro-DAE. In contrast, compartment IV is of another mathematical
nature: Partial-DAE, and must be solved by a different algorithm. The solution
of both systems is discussed below.

4.6.1 Solution of compartments I, II and III: Integro-DAE

The system of equations corresponding to compartment I, II and III can be solved
by transforming the equations into a DAE system. Since the expressions for birth
and death are quite complicated, the differential equations are coupled to each
other, and the model is large in size, then the most convenient way to reduce the
equations to a DAE is by discretization.
The main idea behind discretization methods is to divide the continuous internal

coordinate ζ into a finite number of sections and assign a discrete value for the
distribution function in each interval. This is done by integrating the continuous
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PBE over a discrete size interval, say
£
ζi, ζi+1

¤
for i = 1, . . . , N where N is the

number of intervals:

Φi =

ζi+1Z
ζi

Ψ (ζ, t) dζ (4.30)

dΦi

dt
=

ζi+1Z
ζi

ÃP
j

Ψ̇active
j +B −D

!
dζ. (4.31)

Note that the terms on the right hand side of equation 4.31 depend on the density
distribution function. The problem with discretization is that the new set of
equations may not be closed in the set of unknowns, leading to a loss of autonomy
(Ramkrishna 2000). Autonomy is restored by expressing the right hand side of
equation 4.31 in terms of the discrete density distribution function variables Φi.
The available discretization methods differ in how the integration is carried out
and how autonomy is restored. Here, Φi is assumed to be represented by a grid
point xi, such that:

ζ i ≤ xi ≤ ζi+1 (4.32)

Ψ (ζ, t) =
P
i

Φiδ(ζ − xi), (4.33)

where δ(ζ − xi) is the Delta Dirac function, i.e.

δ(ζ − xi) =

½
1 if ζ = xi
0 if ζ = xi

.

Figure 4.9 illustrates how discretization is carried out.The problem with this
type of discretization is that since the population of particles is assumed to exist
only at representative grid points xi, the birth and death of particles of these
sizes may result in the formation of new particles whose sizes do not match with
any other of the representative grid points. Such particles need to be represented
through the chosen representative sizes. This difficulty was discussed in detail in
(Kumar & Ramkrishna 1997). The strategy suggested in (Kumar & Ramkrishna
1997) is to assign the particles to the adjoining representative sizes such that two
preserving properties of interest are preserved, for example number and mass. The
technique as shown in (Kumar & Ramkrishna 1997) is not followed here, but the
main idea of ensuring that some property of interest is preserved is used in this
work. As it was pointed out with inequality 4.7, the mass of daughter particles
originated from breakage of a mother particle of a certain size ζ must be less or
equal to the mass of the mother particle. Such a preservation of mass must also



64 CHAPTER 4. MODELING OF THE SILGRAIN R° PROCESS

Figure 4.9: Discretization of a continuous density distribution function.
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be conserved in the discretized system. To achieve this, the birth and death terms
in equation 4.6 are approximated as follows:

ζi+1Z
ζi

(B −D) dζ ≈
NP
k>i

b̄(xi, xk) a(xk, θ) Φk − a(xi, θ) Φi, (4.34)

where b̄(xi, xk) represents the weight fraction of daughter particles of representative
size xi that are generated during breakage a mother particle of size xk. B̄ thus
represents the discretized PSD of daughter particles and is an N ×N matrix

B̄ =

Increase in size x−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→⎛⎜⎜⎜⎜⎜⎝
b̄(x1, x1) b̄(x1, x2) . . . b̄(x1, xN−1) b̄(x1, xN)

0 b̄(x2, x2) . . . b̄(x2, xN−1) b̄(x2, xN)
...

...
. . .

...
...

0 0 . . . b̄(xN−1, xN−1) b̄(xN−1, xN)
0 0 . . . 0 b̄(xN , xN)

⎞⎟⎟⎟⎟⎟⎠. (4.35)

Since a mother particle can not generate daughter particles that are larger than it-
self, B̄ is an upper diagonal matrix. And in order to ensure fulfillment of inequality
4.7, the following equivalent discrete inequality is established

NP
i=1

b̄ik = 1 ∀k ∈ [1, . . . , N ] , (4.36)

stating that the sum of all elements in each column must be equal to 1. This
implies that the sum of masses of daughter particles is exactly the mass of mother
particles, i.e. no material is lost or dissolved during breakage. If material is lost,
then a scale κ < 1 has to be used in equation 4.36. Therefore, the elements of the
matrix shown in equation 4.35 are calculated as follows:

b̄(xi, xk) =

R ζi+1
ζi

b(ζ, xk)dζ

NP
k=1

³R ζi+1
ζi

b(ζ, xk)dζ
´ , (4.37)

where b(ζ, xk) is the continuous density distribution of daughter particles shown
in equation 4.9.
The selection of the grid is an important stage. The larger the number of in-

tervals, the better the approximation is, but at a larger computational cost. A
compromise between precision and computation time has to be found. Moreover,
the grid may have equidistant interval sizes or variable interval size, and the rep-
resentative sizes may be fixed or moving. Here, a nonequidistant fixed grid is
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Figure 4.10: Grid used in the Silgrain R° model.

chosen. The particle size distribution in compartment I is clearly bimodal, with a
mode in the range of sizes of Si grains and another mode in the range of sizes of
the FeSi feedstock. For this reason, the total number of intervals in the grid was
divided into two, half of the intervals corresponding to the fine range and the other
half to the coarse range. In each of the two divisions, equidistant intervals were
used. Figure 4.10 sketches such a discretization grid. The total number of inter-
vals was determined by trial-and-error, running simulations with different number
of intervals until a further increase in the number of intervals does not provide a
significant improvement in precision.
The discrete PBE corresponding to compartment I is the following set of dif-

ferential equations

d Φi
active
RI

dt
= Φ̇i

active

RI,in − Φ̇i
active

RI,out +
NP
k>i

b̄(xi, xk) a(xk, T ) Φk − a(xi, θ) Φi, (4.38)

for i = 1, . . . , N. Similarly, the discrete PBE of the inert material is

d Φi
inert
RI

dt
= Φ̇i

inert

RI,in − Φ̇i
inert

RI,out , (4.39)

and the discrete PBE corresponding to compartment II is

d ΦiRII

dt
= Φ̇iRII − Φ̇iRII . (4.40)

The moment functions of the PBE appearing in some other parts of the model are
thus substituted by summations in the discretized model, for example, as follows:µZ Dp,max

Dp,min

Ψactive
RI dζ

¶
→

NP
i=1

Φi
active
RI .

Therefore, a large DAE system is obtained when the model of compartments I,
II and III is discretized. The model is large in size since each PBE is substituted
byN ODEs, but the model can now be solved with well-known standard numerical
algorithms.
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Remark 1 The resulting discretised system is an index-0 DAE, which is equivalent
to an ODE. Originally the PBE was formulated in terms of an intensive density
distribution ψ, and the resulting discretised system was an index-1 DAE (Dueñas
Díez, Ausland, Fjeld & Lie 2002). DAE systems are not ODEs (Petzold 1985).
The advantages of the formulation as an index-0 DAE vs. the formulation as
an index-1 DAE are: easier initialization of the system of equations and faster
calculation. For a brief discussion about the differences between ODE and DAE,
please see appendix A.

Remark 2 The choice of mass to define the fraction of entities with a certain
value of the particle size has implications for the numerical solution of the system.
Hence, the resulting system has a several orders of magnitude smaller condition
number than a formulation using number to define the fraction of entities with
a certain value of the particle size. Hence, scaling is not necessary when mass-
fraction is used, whereas scaling was essential when number-fractions were used
(Dueñas Díez, Ausland, Fjeld & Lie 2002). Moreover, since the discretised density
distribution is related to sieve analysis, there is no longer a need to manipulate or
change the basis of the input PSDs and output PSDs. In the case of number-based
distribution, several changes of basis were required. The calculation time has thus
been further reduced.

4.6.2 Solution of compartment IV: Functional PDAE

The system of equations corresponding to compartment IV can be solved by trans-
forming the equations into a DAE system. The challenges that are present are:

• microscopic balance laws are used, implying that variables depend on time
and position.

• a microscopic PBE is used, implying that we have a functional PDAE, i.e.
the partial differential equations are applied to a distribution function, not
to a scalar variable.

• a moving boundary between compartments III and IV is encountered. This
limits the range of methods to solve PDAEs that can be used here.

The first stage in the solution process is to transform the functional PDAE into
a scalar PDAE, i.e. to reduce the dimensionality of the problem with respect to the
internal coordinate Dp. Since vDp is independent of the particle size Dp, a trans-
formation applying a finite number of moments can be used to approximate the
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model description, thus eliminating the infinite dimensionality of the continuous
distribution. Let us recall that the jth moment is defined as

mj =

Z ∞

0

Dj
pψdDp =

Z Dp,max

Dp,min

Dj
pψdDp. (4.41)

The population balance can now be averaged in the Dp dimension by multiply-
ing by Dj

pdDp and integrating the resulting equation from zero to the maximum
particle size Dp,max. Thus,Z Dp,max

Dp,min

Dj
p

"
∂ψRIV
∂t

+
∂ (vzψRIV)

∂z
+

∂
¡
vDpψRIV

¢
∂Dp

#
dDp = 0. (4.42)

Reversing the order of integration and differentiation gives the first two terms
as Z Dp,max

Dp,min

Dj
p

∙
∂ψRIV
∂t

+
∂ (vzψRIV)

∂z

¸
dDp =

∂mj

∂t
+

∂ (vzmj)

∂z
, (4.43)

which assumes that vz is not a function of Dp. The third term of equation 4.42
needs some manipulation

Z Dp,max

Dp,min

Dj
p

∂
¡
vDpψRIV

¢
∂Dp

dDp =

Z Dp,max

Dp,min

Dj
p

"
vDp

∂ (ψRIV)

∂Dp
+ ψRIV

∂
¡
vDp

¢
∂Dp

#
dDp,

(4.44)
where the first integral term on the rhs can be integrated by parts after substituting
vDp by equation 4.18Z Dp,max

Dp,min

Dj
pvDp

∂ (ψRIV)

∂Dp
dDp =

Z Dp,max

Dp,min

Dj
p

µ
− Dp

3ρsolid
rw

¶
∂ψRIV
∂Dp

dDp

= − rw
3ρsolid

£
Dj+1

p ψRIV
¤Dp,max

Dp,min

+
rw
3ρsolid

(j + 1)

Z Dp,max

Dp,min

Dj
pψRIVdDp

=
rw
3ρsolid

(j + 1)

Z Dp,max

Dp,min

Dj
pψRIVdDp

=
rw
3ρsolid

(j + 1)mj, (4.45)

where Dp,min and Dp,max can be chosen such that ψRIV (t, z,Dp,min) = 0 and
ψRIV (t, z,Dp,max) = 0. The second term of equation 4.42 can be directly writ-
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ten in terms of moments as followsZ Dp,max

Dp,min

Dj
pψRIV

∂
¡
vDp

¢
∂Dp

dDp =

Z Dp,max

Dp,min

Dj
pψRIV

µ
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3ρsolid

¶
dDp

= − rw
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mj, (4.46)

such that Z Dp,max

Dp,min

Dj
p

∂
¡
vDpψRIV

¢
∂Dp

dDp =
rw
3ρsolid

jmj.

The microscopic PBE is thus reduced to

∂mj

∂t
= −∂ (vzmj)

∂z
− rw
3ρsolid

jmj, (4.47)

which not only gives a set of scalar PBEs, but indeed a set of uncoupled PBEs
w.r.t. other moments6. The next question to be answered is how many moments
are needed, i.e. how large j should be. This question is answered by the coupling
with the remaining balance laws. Note that the void fraction in compartment IV
is given by

εRIV = 1−
R Dp,max

0
ψRIVdDp

ρsolid
= 1− m0

ρsolid
. (4.48)

We therefore need at least the 0th moment of the distribution m0, i.e. the total
mass of particles. It is also interesting to follow the first and second moments of
the density distribution, i.e. m1 and m2, which are related to the average mass of
particles, and the standard deviation with respect to the average mass of particles,
respectively.
After the moment transformation, the system has been reduced from a func-

tional PDAE to a scalar PDAE. The PDAE should now be further simplified into
a DAE, in order to be solved with standard available numerical routines. Com-
partment IV has variable volume, implying that there exists a moving boundary.
This, in turn, limits the appliability of certain solution methods of PDAEs, such
as the method of lines. The selected method here is the method of weighted residu-
als, which was already introduced in section 3.5. Such a method shows high-order
accuracy and can handle cases with moving boundary. Note that we are mainly
interested in the values of the variables at the outlet of the reactor more than in
the exact profiles. One particular method of weighted residuals called collocation
is suitable in such a case, since it is simple and can handle a moving boundary

6The moment PBEs are coupled to the other transport laws through rw.



70 CHAPTER 4. MODELING OF THE SILGRAIN R° PROCESS

(Lie 2002). Consider the following general formulation of a PDE

∂x

∂t
+

∂ (vzx)

∂z
= B (x) (4.49)

s.t. x (0, z) = x0 (z) x (t, 0) = xF (t) . (4.50)

where x (t, z) represents each of the variables of interest, i.e. mj, C
acid
RIV, w

Me
RIV and

TRIV.
A quadratic function is used as trial function:

x∗ (t, z) = fx,0 (t) + fx,1 (t)
z

L
+ fx,2 (t)

³ z
L

´2
. (4.51)

where L is the distance in the axial direction from the moving boundary to the
bottom of the UR. Note that fx,0, fx,1, fx,2 and L depend on time. A Dirac’s
δ-function is used as weighting function:

w (z) = δ (z − zi) , (4.52)

where the zi’s are known as collocation points. The residual function has exactly
a zero value for the chosen collocation points:

R (t, zi) =

¯̄̄̄
∂x∗

∂t
+

∂ (vzx
∗)

∂z
−B (x∗)

¯̄̄̄
z=zi

= 0. (4.53)

In this study, two collocation points are used: z = L
2
and z = L, whereas z = 0

represents the moving boundary. The following nomenclature is introduced

x∗ (t, 0) = xF (4.54)

x∗
µ
t,
L

2

¶
= xM (4.55)

x∗ (t, L) = xL, (4.56)

where xL is the value at the bottom of the UR (z = L) , xM is the value at the
intermediate point z = L

2
, and xF is the value at the boundary between the sepa-

ration and reaction regions z = 0. Figure 4.11 shows the selection of collocation
points. Equation 4.51 can be rewritten in terms of the new nomenclature as follows

x∗ (t, z) = xF + (−3xF + 4xM − xL)
z

L
+ (2xF − 4xM + 2xL)

³ z
L

´2
. (4.57)

Now by using the residual condition in equation 4.53, and after some formulae
manipulation the PDE in equation 4.49 is transformed into the following set of
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Figure 4.11: Selected collocation points and boundary point for the solution of the
model of compartment IV.
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ODEs

dxL
dt

=

µ
dL

dt
− vz

¶
xF − 4xM + 3xL

L
+ B|z=L − x

∂vz
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¯̄̄̄
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(4.58)
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2
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¶
xL − xF

L
+ B|z=L

2
− x

∂vz
∂z

¯̄̄̄
z=L

2

, (4.59)

where dL/dt is given by the total mass balance for compartment IV. The set of
ODEs together with the trial function and other algebraic equations again consti-
tutes an 0-index DAE that can be solved with standard numerical algorithms.

Remark 3 The main reason why the moment transformation gave a set of closed
and uncoupled ODEs is that the birth and death terms are zero, and the dissolution
rate vDp depends only linearly on Dp. Another choice of such a term may have given
rise to a more complex set of ODEs.

Remark 4 The collocation method gives a zero residual only at the collocation
points, but not at any other value of z. In addition, it has been assumed that the
profiles fit well to a quadratic function, and only two collocation points are used,
which is a fairly small number. No information about the exact profiles within
the UR was available beforehand nor could be measured in the current industrial
setup. This justifies the simple choice of trial function and collocation points. If
additional information of the exact profiles was obtained, such a knowledge could
be exploited in the selection of basis functions and collocation points.

Remark 5 The model of the HR and UR has been implemented in the widely used
problem-solving environment Matlab R° and the set of DAEs are solved with the
ode15s routine. The ode15s code is based on a variant of the Backward Differen-
tiation Formulas (BDFs) called Numerical Differentiation Formulas (NDFs). For
further information about ode15s, see (Shampine, Reichelt & Kierzenka 1999).

4.7 Parameter estimation and model validation

The last stage in the modeling methodology is to validate the model using experi-
mental data. One of the main reasons why models are built is to applied them for
prediction purposes. Modeling results should not be trusted, though, before the
model has been compared to experimental data.
As mentioned in section 3.6, validation of PBE models may become a chal-

lenging task. PBE models are large-scale and nonlinear in the parameters. In
addition, models may be overparametrized, or have poorly identifiable parameters
given the available data. Not only do such models have many and different types of
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Table 4.9: Parameters of the Silgrain model categorized by type (number of para-
meters indicated in brackets).

HR

Dimensions
Birth Rate
Death Rate
Kinetic Rate
Hydrodynamics
Heat Transfer

(7)
(6)
(4)
(4)
(3)
(1)

UR

Dimensions
Kinetic Rate
Hydrodynamics Top UR
Heat Transfer

(3)
(16)
(3)
(1)

Physical
&
Thermodynamical
Properties

Densities
Heat Capacities
Constants (gravity,R)
Molecular Weights
Enthalpies

(2)
(2)
(2)
(8)
(8)

Numerical Solution
Population Balance Equation
Collocation Method

(4)
(2)

parameters (physical constants, birth and death rate parameters, dimensional pa-
rameters, etc.) but also the parameter accuracy varies considerably. Hence, some
parameters are determined experimentally and are thus quite precise, while for
some others only the order of magnitude could be guessed. Table 4.9 summarizes
the parameters of the Silgrain R° model.
Some additional challenges that are particular to PBE model validation are:

• Lack of appropriate measurement techniques. This has been a problem since
the origin of PBE modelling. Although progress has been made in devel-
oping new measurement techniques for distributed properties, there are still
very few sensors that are suitable for industrial and/or online use. In model
validation, parameter identifiability is very dependent on how various pa-
rameters are projected into model states and subsequently how states are
projected onto the measurements.

• The presence of several physically-observable compartments may hinder the
accessibility of some measurements that are important in the model, such as
measurements related to flows connecting the compartments.

• Coexistence of different scales in the dynamics, i.e. there may be variables
with very fast dynamics and others with very slow dynamics. Therefore, care
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Table 4.10: Summary of measurement campaign.

Inputs

FeSi feed rate
FeSi feed solid phase composition
FeSi feed PSD
FeSi feed inert content
Ambient temperature
Silgrain Acid feed rate
Silgrain Acid temperature
Silgrain Acid composition
UR tapping rate

Outputs

HR level of coarse solids
HR outflow temperature
HR outflow solid volumetric fraction
HR outflow PSD
HR outflow acid composition
UR level of sedimented solids
UR temperature profile
Tapping UR solid volumetric fraction
Tapping UR PSD
Tapping UR solid phase composition
Tapping UR solid phase composition

must be paid to sampling rates. Very fast dynamics may be impossible to
capture in practice.

The limited measurement availability together with the large number of pa-
rameters justify the use of the systematic identifiability analysis and parameter
estimation approach presented in section 3.6. The results of the application of
such an approach to the Silgrain R° model are summarized below.
First of all, the regular online measurements that are taken in the Silgrain R°

process are insufficient to estimate parameters or validate the model. Therefore,
a special measurement campaign was planned (Dueñas Díez 2003) and carried
out at Elkem Bremanger plant at Svelgen (Norway) in May 2003. Table 4.10
summarizes the necessary measurements for the validation. Sampling rates were
specified in (Dueñas Díez 2003), but they are omitted here to protect confidential
information. Let us just note that there is a large variation in the time constants
among variables. Certain variables show very fast dynamics while others evolve
slowly with time. Among the special measurements that had to be carried out, let
us note two of them: the PSD of the FeSi feedstock and the temperature at certain
fixed points of the outer surface of the UR. Figure 4.12 shows a picture taken after
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sieving the feedstock. Figure 4.13 shows the location of two of the temperature
sensors at the outer surface of the UR. The measurements at the outer surface are
used as an indirect way to measure the temperature within the reactor.
Some unexpected difficulties arose during the experimental campaign. Hence,

it was impossible to obtain representative samples of the slurry flowing from the
HR to the UR. Regarding other variables, less amount of data were obtained than
expected, which means that the available data could not divided into an data set
for estimation and a test data set, as was desired. Hence, the prediction abilities
of the model could not be analyzed. The data were just enough to carry out the
parameter identifiability and estimation analysis.

4.7.1 Parameter identifiability and estimation of HR para-
meters

The methodology presented in section 3.6 and summarized in Figure 3.4 was ap-
plied to the HR. The measurements used for studying the parameter identifiability
and estimating the HR parameters were the following:

• The time evolution of the boundary between compartment I and compart-
ment II. The operation of the HR was altered to obtain data that are suit-
able to check how well the model predicts disintegration. Hence, feeding was
stopped for a certain period of time so that it could be observed how the
volume of compartment I decreases with time. In contrast, the acid flow at
the bottom of the HR was kept in the normal operational value. After that,
normal semibatch feeding of FeSi was used.

• The time evolution of the temperature at the top of the HR (compartment
II) during one normal operational HR-cycle.

Let us comment on each of the stages of the identifiability and estimation
analysis.

1. As shown in Figure 3.4, the first stage is a prior analysis. Those parame-
ters that are known exactly, such as reactor dimensions, are omitted from
the parameter identifiability analysis. Default values for the parameters
θdefault were already defined in section 4.5, and the outputs to be consid-
ered were mentioned above. The most difficult step in this prior analysis is
thus to set up the basis simulation that resemble the experimental conditions
and the initial values for the simulation. If some initial values are unmeasur-
able or can not be guessed, then they can be included as parameters in the
parameter identifiability analysis. For the HR it was relatively straightfor-
ward to set up the basis simulation and the initial values could be measured
or guessed.
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Figure 4.12: Sieve results of the FeSi feedstock.
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Figure 4.13: Location of two temperature sensors at the outer surface of the UR.
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2. Once the basis simulation conditions are established, then the model outputs
for the default parameter values can be obtained ydefault (t) . Note that a time
series is obtained, since it is desired to validate both the dynamic and static
prediction abilities of the model.

3. Local sensitivities are numerically calculated as follows. Each parameter is
perturbed at a time to the value θj = ej · θj,default where ej is typically in the
range [0.9, 1.1]. Hence, a simulation is run for this perturbed value of the
jth parameter. Then sensitivity of the ith output with respect of the jth
parameter is calculated as:

sij ≈
θj,default

mean (yi,default )

yi, perturbed (t, θj)− yi, default (t)

(ej − 1) · θj,default
. (4.60)

Note that the mean value of the ith output and the default value of the
parameter are used as scaling factors, and that sensitivities are functions of
time. Figures 4.14 and 4.15 show the scaled sensitivities versus time. Note
that the available outputs are most sensitive to the disintegration parameters
θ10 (kT ) and θ11 (n) . Note also that the sensitivity functions corresponding to
such parameters show a very similar trend, indicating a possible collinearity
between these two parameters.

4. In order to determine a quantitative measure of the importance of the indi-
vidual parameters, the following ranking measure was used:

δmsqri,j =

vuut NX
k=1

s2ij (k), (4.61)

where k indicates the time instant. In the original work by (Brun et al. 2001),
a unique ranking parameter that gives an overall idea of the effect of one
parameter on all outputs was calculated. Here the ranking gives an overall
idea of the overall effect of one parameter on one output. It is the time
evolution that is integrated, not the effect on all outputs simultaneously.
Table 4.11 shows the obtained ranking. Observe that the parameter with
most effect on both outputs is θ10, i.e. ka in the breakage frequency function,
see equation 4.8. The second parameter in the ranking is θ11 that is also one
of the parameters of the breakage frequency function, i.e. the exponent n .
Note that the third parameter in the ranking is different for the two outputs,
and that the value of the ranking measure has decreased considerably already.

5. Only subsets containing the 3 parameters that ranked best in the parame-
ter importance ranking, i.e. θ10, θ11 and θ7, are used in the identifiability
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Figure 4.14: Sensitivity of the two HR outputs w.r.t changes in the HR parameters:
θ1 to θ6 represent the reaction enthalpy parameters ∆HMe.
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Figure 4.15: Sensitivity of the two HR outputs w.r.t changes in the HR parameters:
θ7 = void fraction; θ8 = β; θ9, θ10 and θ11 are the disintegration parameters, and
θ12 is the overall heat transfer coefficient.



4.7. PARAMETER ESTIMATION AND MODEL VALIDATION 81

Table 4.11: Ranked parameters according to the importance parameter ranking.
Boundary Level Temperature
δmsqr1,j Parameter

207.6067 θ10
41.7221 θ11
25.0863 θ7
11.2030 θ12
11.1563 θ4
11.1333 θ5
10.8031 θ2
10.7674 θ9
10.6680 θ8
10.5488 θ6
9.9085 θ3
9.6036 θ1

δmsqr2,j Parameter
2.8643 θ10
0.8123 θ11
0.4798 θ3
0.4434 θ9
0.4131 θ1
0.4018 θ7
0.3695 θ5
0.3481 θ4
0.3470 θ12
0.3447 θ8
0.3446 θ2
0.3411 θ6

Table 4.12: Identifiability of parameter subsets.
Parameter Subsets γK

θ7, θ10, θ11 360.97
θ10, θ11 151.32
θ7, θ10 56.80
θ7, θ11 86.72
θ7 26.35
θ10 25.33

analysis. Table 4.12 shows the results of the identifiability analysis. Remem-
ber that the larger the value of the collinearity index γK , the poorer the iden-
tifiability. Hence, it is clear that the subset containing the three parameters
is very poorly identifiable. Subsets S7,10 and S7,11 show a better identifiabil-
ity than subset S10,11. This indicates a possible strong collinearity between
parameters 10 and 11. Figure 4.16 plots the sensitivities corresponding to
one parameter vs. the sensitivities to another parameter, which confirms
again a strong collinearity between parameters 10 and 11.

6. According to the results in Table 4.12, the most identifiable subset is to
choose θ10. Alternatively, only θ7 or the subset comprised of θ7 and θ10 could
also be identified.

7. First, θ10 is chosen and parameter estimation is carried out. The nonlinear
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Figure 4.16: Collinearity among parameters.
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Figure 4.17: Experimental vs. simulation results for HR before parameter estima-
tion, i.e. based on default values for the parameters.

least squares method is used, with the following optimization criteria:

min
∆θ10

J (∆θ10) =
X
k

1

2
{e (tk,∆θ10)}T Sc {e (tk,∆θ10)} , (4.62)

where e represents the difference between the experimental output and the
simulated output, and Sc is a matrix with the appropriate scaling factors.
The estimated parameter is thus

θ̂10 = θ10,default +∆θ̂10, (4.63)

where∆θ̂10 is the optimal value provided by the optimization code lsqnonlin
in Matlab R°. For details about the nonlinear least squares method, see
(Walter & Pronzato 1997) and (Nocedal & Wright 1999). Figures 4.17 and
4.18 compare the experimental measurements with the simulation results
before and after parameter estimation. From these figures we can conclude
that the model fits better to the data after parameter estimation than before.
The obtained value for ∆θ10 was

∆θ10 =
−0.00065696

0.047
= −1. 397 8× 10−2θ10,default (4.64)

corresponding to a value of the cost function of 27.308. Hence, the default
value obtained in section 4.5 was quite close to the value obtained after
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Figure 4.18: Experimental vs. simulation results for HR after parameter estima-
tion.

parameter simulation. Notice, however, how such a small change in the
parameter has a noticeable influence on the model response. The subset
comprised of parameters θ7 and θ10 is also studied. In this case the cost
function is

min
∆θ7 ∆θ11

J

µ
∆θ7
∆θ10

¶
=
X
k

1

2

½
e

µ
tk,

∆θ7
∆θ10

¶¾T

Sc

½
e

µ
tk,

∆θ7
∆θ10

¶¾
.

(4.65)
Figure 4.19 compares the experimental results with the simulation results
after the parameter estimation. The obtained values for ∆θ7 and ∆θ10 are:

∆θ7 = 3. 266 7× 10−3θ7,default (4.66)

∆θ10 = −1. 456 6× 10−2θ10,default (4.67)

corresponding to a value of the cost function of 27.303. Note that the value
of the cost function is very similar to the value obtained when only one
parameter was used for parameter estimation.

8. Finally, an analysis of the accuracy of the estimated parameters should be
carried out. The model with the estimated parameters should be preferably
tested on a new set of experimental data. However, all the available ex-
perimental data had to be used for the parameter estimation here. Hence,
the estimates of the certainty of the parameter are more optimistic than
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Figure 4.19: Experimental vs. simulation results for HR before parameter estima-
tion (2 parameters).

those that would be obtained with an independent set of data. An order-of-
magnitude confidence interval can be obtained by using the following relation
(Rawlings & Ekerdt 2002)³

θ − θ̂
´T

H|θ=θ̂
³
θ − θ̂

´
≤ 2s2npF (np, nd − np, α) , (4.68)

where θ is the real value of the parameter, θ̂ = θdefault+∆θ is the estimated
value of the parameter, np is the number of estimated parameters, nd is the
number of data points, a is the desired confidence level, F represents the F
distribution which is tabulated in statistics handbooks such as (Rice 1995),
H is the Gauss-Newton approximation of the Hessian, and s is the sample
variance

s2 =
1

nd − np

Xn
e
³
tk, θ̂

´oT
Sc
n
e
³
tk, θ̂

´o
=
2J
³
θ̂
´

nd − np
. (4.69)

For the parameter estimation with one estimated parameter, θ10,default, the
95% confidence interval was:

θ10,default − 0.0145θ10,default ≤ θ̂10 ≤ θ10,default + 0.0145θ10,default, (4.70)

while for the parameter estimation with two estimated parameters, the 95%
confidence interval was:¡

θ7 − θ̂7 θ10 − θ̂10
¢µ 1.1778 1.1097

1.1097 1.0679

¶µ
θ7 − θ̂7
θ10 − θ̂10

¶
≤ 1.71 · 10−9,

(4.71)
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The resulting confidence intervals are relatively narrow, indicating a good
approximation of the simulation results to the experimental results.

Therefore, we can conclude that the fitting of the HR model to the available
data is satisfactory. As regards the prediction ability of the model, no strong
statement should be made yet, since the prediction abilities of the model have
not been tested. There was not enough experimental data to split into a data set
for estimation and a test data set. But the fact that the model fits well to the
experimental data is a positive result.

4.7.2 Parameter identifiability and estimation of UR para-
meters

The measurements used for studying the parameter identifiability and estimating
the UR parameters were the following:

• The time evolution of the interphase level between compartments III and IV.

• The time evolution of the temperature at the top of the UR and of the outer
reactor surface temperature at three fixed locations. Such measurements of
temperatures are used as an indirect measurement of the temperature profile
inside the reactor.

• The time evolution of the average metal impurity composition during one
tapping cycle.

The parameters that are studied in the parameter identifiability analysis are:
the reaction enthalpies (6 parameters: θ1 to θ6), the overall heat transfer coef-
ficient used in the energy balance (1 parameter: θ7), the initial conditions for
the metallic impurity fractions at the outlet (wMeRIV,E (0, L)) and the middle point
(wMeRIV,M (0, zM)) (6 parameters: θ8 to θ13), the kinetic parameters corresponding
to equation 4.14, i.e. kMeRIV, E

Me, γMe1 , γMe2 and γMe3 (15 parameters: θ14 to θ28), the
initial conditions of the temperature profile, i.e. TRIV,E (0, L) and TRIV,E (0, zM)
(parameters θ29, θ30), and a parameter related to the collocation method, θ31.
Let us comment on each of the stages of the identifiability and estimation

analysis.

1. The prior analysis of the measurement data is an important stage. Figure
4.20 shows the following UR experimental data: tapping rate, interphase
level, temperature at the top of the reactor, and wall temperature at 4 lo-
cations on the outer reactor surface. These data reveal systematic trends,
which in turn confirm that the evolution of the temperature profile inside
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Figure 4.20: UR experimental data: tapping rate, interphase level, temperature
at the top, and wall temperature at 4 locations on the outer reactor surface.
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Figure 4.21: Thermal resistances of a composite cylindrical wall. Taken from (Bird
et al. 2002)

the reactor can be indirectly followed by measuring wall temperatures at
the outer surface. Note that outliers are observed; these must be removed
somehow. The outliers are related to problems with the sensors. Hence, the
first stage is to make a selection of data. Once this is done, the temperature
profile inside the reactor has to be calculated from the measurements on the
outside. According to heat transfer theory, we can consider the UR reactor
wall as a series of thermal resistances. Figure 4.21 shows the series of ther-
mal resistances corresponding to a composite cylindrical wall. The materials
and thicknesses of the different layers in the wall are known. Assuming heat
transfer through the wall, the following relation is fulfilled (Bird et al. 2002):

q0 =
Tin(z)− T3(z)Ã

1
r0hin

+
3X

j=1

ln(rj/rj−1)
kj

! , (4.72)

where r0 is the internal radius of the UR, rj is the radius of the j-th layer,
r3 is the external radius of the UR, kj is the heat conductivity of the wall
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Figure 4.22: Comparison of measured and estimated temperature at the top of
the UR, and selected experimental data for model validation: estimated internal
temperature at 3 locations in the axial direction of the reactor.

layer, T3 is the measured T on the outer surface, hin is the heat transfer
coefficient from the internal surface to the bulk slurry within the reactor,
and q0 is the heat flux through the wall. Note that Tin(z) is not the only
unknown in equation 4.72. The heat flux q0 and hin are also unknown. In
order to solve this difficulty, we can use the measurement data at the top of
the reactor, i.e. in compartment III, where both Tin (ztop) and T3(ztop) were
measured. The data are thus used to estimate the values of q0 and hin that
minimize the error between the calculated Tin(ztop) through equation 4.72
and the measured Tin(ztop). Then, it is assumed that the obtained values
for q0 and hin can be used for the other sensor locations. This is equivalent to
the assumption that the heat transfer conditions do not change much along
the reactor. Figure 4.22 shows the estimated values for the temperature
inside the reactor for the selected data. As it can be observed, the estimated
value of the temperature at the top of the UR does not match completely
with the measured values, but it is in the same order of magnitude. The
estimated temperature shows more or less the same dynamic trend as the
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Figure 4.23: Basis simulation vs. real evolution of the interphase level between
compartments III and IV.

measured data, although there seems to exist a delay.
Another aspect of the prior analysis is to decide the default values for the
parameters. In the case of the HR, many of these parameters were known
with a relatively good precision since they had been obtained experimentally
or from reliable references in the literature. In contrast, for the UR the
parameters were tuned by trial-and-error in a simulation study, so that these
default values are not as good as in the case of the HR. Having good default
values is important for the parameter estimation. The better the default
values, the easier and the faster the parameter estimation is.

2. The basis simulation was then established to resemble the conditions used
in the experimental campaign. In order to test the quality of the basis
simulation, the interphase level measurements are compared to the values
obtained in the simulation. As Figure 4.23 shows, the basis simulation is
quite close to the real operation.

3. Then, sensitivities were calculated numerically according to equation 4.60.
Due to the large number of parameters (31), graphical analysis of sensitiv-
ities is not recommended. The best thing to do is to use the parameter
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ranking measure in equation 4.61 to study which parameters are the ones
that influence the outputs to the largest extent.

4. The results of the parameter ranking δmsqri,j are summarized in table 4.13.
The parameters that affect the outputs most are the initial conditions for
the equations describing the axial profiles within compartment IV. Hence,
the calculated temperatures are mostly affected by the initial conditions of
the temperature profile, i.e. TRIV,E (0, L) and TRIV,M (0, zM) (parameters
θ29, θ30). A parameter related to the collocation method, θ31, has also a
notable effect on the calculated temperatures. As regards the metallic impu-
rity weight fractions at the bottom of the UR, the parameters that have the
most influence are the respective initial conditions at the outlet (parameters
θ8, θ9, and θ10), i.e. wFeRIV,E (0, L) affects w

Fe
RIV,E (t, L) the most, w

Al
RIV,E (0, L)

affects wAlRIV,E (t, L) the most, and so on. Other parameters having notice-
able influence on the metallic impurity weight fractions are the correspond-
ing activation energies (θ15 to wFeRIV,E (t, L) , θ20 to w

Al
RIV,E (t, L) , and θ23 to

wCaRIV,E (t, L)) and the corresponding reaction orders γ
Me
3 (parameters θ18, θ23,

and θ28). This means that after the parameter ranking, the number of para-
meters to be used for model validation has already been reduced from 31 to
12, possibly to just 6.

5. The next stage is to study collinearity among parameters, and parameter
identifiability. Recalling the kinetic rate for the UR

rMeRIV = −kMeRIV exp
µ
−E

Me

RT

¶¡
CFeCl3
RIV

¢γMe1 ¡
CHCl
RIV

¢γMe2 ¡
wMeRIV

¢γMe3 , (4.73)

it is relatively straightforward to see that EMe and γMe3 are collinear re-
garding their effects on the selected outputs, i.e. the effect of a change in
EMe could be compensated by changing γMe3 appropriately. Figure 4.24 plots
the sensitivities corresponding to EMe and to γMe3 , which confirm again the
collinearity among these parameters. Now, parameter identifiability of the
subsets shown in table 4.14 is analyzed. We can conclude that the first two
subsets are not identifiable due to collinearity between parameters. The sub-
set {θ8, θ9, θ10, θ29, θ30, θ31} has a collinearity index that is small enough
for the nonlinear least squares estimation.

6. Once the subset of parameters has been chosen, parameter estimation is
carried out by means of nonlinear least squares. The cost function to be



92 CHAPTER 4. MODELING OF THE SILGRAIN R° PROCESS

Table 4.13: Values of the parameter ranking index for the UR.
Tlocation 1 Tlocation 2 Tlocation 3 wFeRIV,E wAlRIV,E wCaRIV,E

θ1 2.6 · 10−8 7.6 · 10−9 1.0 · 10−8 7.2 · 10−13 1.8 · 10−13 8.4 · 10−13
θ2 7.4 · 10−10 2.1 · 10−10 3.0 · 10−10 1.4 · 10−14 1.0 · 10−14 4.5 · 10−14
θ3 9.1 · 10−9 2.6 · 10−9 3.7 · 10−9 2.5 · 10−13 9.2 · 10−14 3.2 · 10−13
θ4 4.0 · 10−10 1.2 · 10−10 1.6 · 10−10 1.0 · 10−14 1.0 · 10−14 1.1 · 10−14
θ5 1.3 · 10−9 3.8 · 10−10 5.4 · 10−10 7.6 · 10−14 2.7 · 10−14 2.2 · 10−14
θ6 8.8 · 10−11 2.5 · 10−11 3.6 · 10−11 5.8 · 10−15 8.5 · 10−15 1.1 · 10−14
θ7 1.8 · 10−5 5.4 · 10−6 7.5 · 10−6 5.1 · 10−10 1.0 · 10−10 5.6 · 10−10
θ8 7.2 · 10−8 2.0 · 10−8 2.9 · 10−8 2.310 2.3 · 10−13 8.2 · 10−13
θ9 4.6 · 10−9 8.2 · 10−10 1.2 · 10−9 2.1 · 10−12 2.002 3.3 · 10−12
θ10 2.8 · 10−9 8.2 · 10−10 3.2 · 10−15 7.6 · 10−14 2.1 · 10−14 2.132
θ11 3.2 · 10−15 2.2 · 10−15 1.8 · 10−15 2.0 · 10−14 3.1 · 10−14 1.2 · 10−14
θ12 1.2 · 10−17 1.2 · 10−15 1.0 · 10−15 3.6 · 10−14 4.2 · 10−14 5.1 · 10−14
θ13 3.0 · 10−16 2.7 · 10−15 3.7 · 10−15 8.2 · 10−15 6.0 · 10−15 3.2 · 10−14
θ14 2.5 · 10−8 7.3 · 10−9 1.0 · 10−8 2.8 · 10−6 9.8 · 10−14 3.2 · 10−13
θ15 3.6 · 10−7 1.1 · 10−7 1.5 · 10−7 4.1 · 10−5 1.1 · 10−12 4.1 · 10−12
θ16 6.5 · 10−9 1.9 · 10−9 2.6 · 10−9 8.5 · 10−7 3.8 · 10−14 6.8 · 10−14
θ17 2.3 · 10−8 6.7 · 10−9 9.3 · 10−9 2.6 · 10−6 6.8 · 10−14 2.6 · 10−13
θ18 3.6 · 10−7 1.1 · 10−7 1.5 · 10−7 3.4 · 10−5 9.2 · 10−13 3.3 · 10−13
θ19 8.7 · 10−9 2.5 · 10−9 3.5 · 10−9 4.3 · 10−13 1.5 · 10−6 6.6 · 10−13
θ20 1.3 · 10−7 3.8 · 10−8 5.3 · 10−8 6.0 · 10−12 2.3 · 10−5 9.3 · 10−12
θ21 2.2 · 10−9 6.5 · 10−10 9.1 · 10−10 3.8 · 10−14 3.6 · 10−7 1.8 · 10−13
θ22 7.9 · 10−9 2.3 · 10−9 3.2 · 10−9 7.8 · 10−14 1.3 · 10−6 5.6 · 10−13
θ23 1.3 · 10−7 4.0 · 10−8 5.5 · 10−8 4.2 · 10−13 2.4 · 10−5 9.7 · 10−12
θ24 1.2 · 10−9 3.6 · 10−10 5.1 · 10−10 6.3 · 10−12 1.0 · 10−14 7.3 · 10−6
θ25 1.6 · 10−8 4.7 · 10−9 6.5 · 10−9 3.9 · 10−14 9.8 · 10−14 9.6 · 10−5
θ26 3.2 · 10−10 9.4 · 10−11 1.3 · 10−10 3.3 · 10−14 1.5 · 10−15 1.9 · 10−6
θ27 1.1 · 10−9 3.2 · 10−10 4.6 · 10−10 7.3 · 10−14 1.6 · 10−14 6.7 · 10−6
θ28 1.6 · 10−8 4.6 · 10−9 6.5 · 10−9 4.1 · 10−13 9.9 · 10−14 9.5 · 10−5
θ29 2.833 0.715 1.128 1.1 · 10−5 1.2 · 10−5 2.0 · 10−5
θ30 11.35 12.698 6.960 4.1 · 10−17 3.0 · 10−17 5.1 · 10−17
θ31 0.048 0.055 0.036 1.1 · 10−17 1.5 · 10−17 1.3 · 10−17

Table 4.14: Identifiability of UR parameter subsets.
Parameter Subsets γK

{θ8, θ9, θ10, θ15, θ18, θ20, θ23, θ25, θ28, θ29, θ30, θ31} 56823
{θ8, θ9, θ10, θ15, θ20, θ25, θ29, θ30, θ31} 7356

{θ8, θ9, θ10, θ29, θ30, θ31} 76.86
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Figure 4.24: Collinearity betwen the activation energies (θ15, θ20, θ25) and the re-
action orders (θ18, θ23, θ28) as regards their effect on the temperature at 3 locations
in the UR.

minimized is thus

min J

⎛⎜⎜⎜⎜⎜⎜⎝
∆θ8
∆θ9
∆θ10
∆θ29
∆θ30
∆θ31
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k
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. (4.74)

Nonlinear least squares provided the following estimates:⎛⎜⎜⎜⎜⎜⎜⎜⎝

∆θ̂8
∆θ̂9
∆θ̂10
∆θ̂29
∆θ̂30
∆θ̂31

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝
−0.0127 θ8,default
−0.0109 θ9,default
0.0308 θ10,default
−0.0275 θ29,default
0.0105 θ30,default
− 0.4243 θ31,default

⎞⎟⎟⎟⎟⎟⎟⎠

T

. (4.75)

Figures 4.25 and 4.26 compare the experimental results with the simulation
results with the default parameters. In turn, Figures 4.27 and 4.28 compare
the experimental results with the simulated results with the estimated pa-
rameters. According to Figure 4.28, both the model and the experimental
data show that the impurity fraction do not vary considerably during tap-
ping. The model shows increasing trends with respect to tapping rate, which
agrees with the model assumptions. In contrast, the experimental data does
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Figure 4.25: Experimental temperature values (markers) vs. simulated tempera-
ture values (lines) with default values for the parameters.
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Figure 4.26: Experimental average metallic impurity fraction values (markers) vs.
simulated results (lines) with default values for the parameters.

not show such a trend. Such a lack of trend may be due to sampling and/or
measurement errors or due to funnel flow during tapping. But in any case,
it is proven that the model gives results in the correct order-of-magnitude.
As regards the temperature outputs, Figures 4.25 and 4.27 show that the
approximation is better after parameter estimation than with the default
parameter values. However, the fitting is not good. A systematic delay is
observed between the simulations and the real data. When the temperatures
inside the reactor were estimated from the measurements on the external sur-
face, instantaneous heat transfer was assumed. Such an assumption is not
realistic: the preprocessing of the data was not correct. A dynamic model of
the heat transfer in the reactor wall should have been carried out to estimate
the temperature profile in the reactor from the temperature profile on the
external surface.

In order to achieve a more fair comparison between the simulated data and the
measured data, a dynamic model of the heat transfer from the bulk slurry within
the UR to the reactor external surface is developed. Such a heat transfer process
could have been modeled by using an energy balance in the radial direction, but
since such a process can easily be approximated by linear time invariant dynam-
ics, an empirical model seems suitable for the purpose of data comparison. The
System Identification Toolbox in Matlab R° is used to identify the linear models
whose inputs are the temperatures calculated by the Silgrain R° model, and whose
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Figure 4.27: Experimental temperature values (markers) vs. simulated tempera-
ture values (lines) with estimated values for the parameters.



4.7. PARAMETER ESTIMATION AND MODEL VALIDATION 97

Figure 4.28: Experimental average metallic impurity fraction values (markers) vs.
simulated results (lines) with the estimated values for the parameters.

outputs are the temperatures at the external surface of the UR. The input data
are generated with the Silgrain R° model, and using the parameter values after cor-
recting with the estimated parameter changes shown in equation 4.75. Two types
of model structures are tested:

1. ARX model structure, given by the following linear difference equation:

yk + a1yk−1 + . . .+ anayk−na = b0uk−nk + b1uk−nk−1 + . . .+

bnbyk−nk−nb + ek, (4.76)

where the modeler has to select the orders of the polynomials, i.e. na and
nb, and the time delay nk.

2. ARMAX model structure, given by the following linear difference equation:

yk + a1yk−1 + . . .+ anayk−na = b0uk−nk + b1uk−nk−1 + . . .+

bnbyk−nk−nb + ek + c1ek−1 + . . .

cncek−nc, (4.77)

where the modeler has to select the orders of the polynomials, i.e. na, nb,
and nc, and the time delay nk.
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Figure 4.29: Comparison of the temperature on the outer surface predicted by the
identified ARX and ARMAX models with the measured temperature.

For more information about model structures and model identification, see
(Ljung 1999). Now, since there is a location in the reactor for which we do have a
sensor inside the reactor, and a sensor on the external surface, we can use the re-
sulting identified model as a reference to evaluate how good the fitting for the other
3 locations is. Figure 4.29 shows the resulting models for the case with measured
input and output. As it can be observed, the fitting is not good, being partic-
ularly bad for the last 100 sample measurements. Some uncontrolled event may
have happened with the process or with the sensors in that period. If we remove
the last samples and run the identification again, then Figure 4.30 is obtained,
which shows a much better approximation. Figures 4.31, 4.32, and 4.33 compare
the model responses with the experimental data corresponding to the respective 3
sensor locations. The approximation is now satisfactory, and the model responses
are much closer to the experimental data than in the comparison carried out in
Figure 4.27. Note that, in most cases, the ARX models provide a better fitting
than the ARMAX models. It is important to check whether the identified heat
transfer models have similar or different dynamic behavior, i.e. time constants,
delays, etc. Figure 4.34 shows the step responses of the identified ARX models for
the different sensor locations. It can be observed that the model corresponding to
the measurements inside and on the external surface shows a much smaller delay
than the remaining three other models. Such a result may indicate that the heat
transfer conditions in compartment III and compartment IV are quite different.
In compartment III the solid/liquid ratio is much smaller than in compartment
IV, while the turbulence is considerably stronger in the former than in the latter.
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Figure 4.30: Comparison of the temperature on the outer surface predicted by the
identified ARX and ARMAXmodels with the measured temperature (last samples
ignored).

Figure 4.31: Identification of the heat transfer model for the sensor located at a
height close to the interphase level between compartments III and IV.
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Figure 4.32: Identification of the heat transfer model for the sensor located at a
height close to the intermediate level of compartment IV.

Figure 4.33: Identification of the heat transfer model for the sensor located at a
height close to the bottom of compartment IV.
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Figure 4.34: Comparison of the step response of the identified ARX models.

Therefore, a conclusion that may be derived from Figure 4.34 is that in compart-
ment IV the limiting stage seems to be the heat transfer from the bulk (thick)
slurry to the internal reactor wall. The parameter estimation for the UR model
can be carried out again, now combining the Silgrain R° model with a dynamic heat
transfer model. We select ARX as the model structure, and keep the same polyno-
mial orders and delays as the ones corresponding to Figures 4.31, 4.32, and 4.33.
Note that the nonlinear least squares problem becomes more complex, since for
each function evaluation 3 ARX models are identified. To reduce calculation time
only parameters θ29, θ30, and θ31 are re-estimated, and the default values used are
the corrected estimates after the previous parameter estimation run. Nonlinear
least squares provides the following parameter estimates:⎛⎝ ∆θ̂29

∆θ̂30
∆θ̂31

⎞⎠ =

⎛⎝ −0.0348 θ29,new default−0.0247 θ30,new default
0.1462 θ31,new default

⎞⎠ . (4.78)

Figures 4.35, 4.36, and 4.37 compare the model responses after the last parameter
estimation with the measured data. A certain improvement in the fitting can be
noticed for the new parameters, as compared to Figures 4.31, 4.32, and 4.33.
Therefore, we can conclude that the fitting of the UR model to the available

data is satisfactory. The choice of basis functions and of the collocation points
in the UR model influence the model solution. However, the assumptions made
for these elements in the solution method seem to be appropriate so far, since
a good fitting to the experimental data is obtained. As regards the prediction
ability of the model, no strong statement should be made yet, since the prediction
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Figure 4.35: Comparison of the model outputs after parameter estimation with
the real data, corresponding to the sensor located close to the interphase level
between compartments III and IV.

Figure 4.36: Comparison of the model outputs after parameter estimation with the
real data, corresponding to the sensor located at a height close to the intermediate
level of compartment IV.
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Figure 4.37: Comparison of the model outputs after parameter estimation with
the real data, corresponding to the sensor located at a height close to the bottom
of compartment IV.

abilities of the model have not been tested. Indeed, a more exhaustive parameter
estimation and model validation campaign is recommended for the UR model. In
such a campaign, it would be highly recommended to collect more measurements
and to measure the initial profiles within the reactor, such that the model can be
tested in a more proper way.

4.7.3 Some remarks about the parameter estimation of the
model

The parameter estimation problems shown above are numerically demanding since
we are dealing with large DAE systems. A common problem with these types of
models is that parameters tend to be collinear, which results in poor identifiability.
For this reason, using a method to analyze parameter sensitivity and parameter
identifiability is particularly useful for these types of problems. Such an analysis
provides a subset of parameters that is suited for parameter estimation, i.e. where
the parameter subset has high sensitivity and low collinearity.
The parameter estimation corresponding to the UR model has provided two

important lessons:

• A correct pre-treatment of the data is an essential stage in parameter es-
timation. Hence, it was proven how a static model of the heat transfer in
the radial direction of the UR provided a fitting that was unsatisfactory,
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while the introduction of a dynamic model of such a heat transfer provided
a satisfactory fitting.

• Determining the initial state of the system is also key in parameter estima-
tion. The initial state of the UR was not known. Hence, it is reasonable that
the parameter identifiability analysis gave the initial conditions as the most
important parameters to be identified.

4.8 Model uses

Dynamic models based on the balance laws can be used for different purposes.
We distinguish here between applications in which the model is used off-line from
those applications that use the model on-line.

4.8.1 Off-line applications

1. System analysis by simulation. The model can be used to simulate both
the standard operation conditions, and non standard operation conditions.
Moreover, simulations can be used to better understand the behavior of the
system. In the real system it is not possible to measure all the states of the
system, whereas in simulation these states can be calculated and analyzed.
Analysis of the simulation results is a way to acquire knowledge about the
system response to inputs or changes. Figures 4.38, 4.39, and 4.40 show a
simulation with the standard operating conditions of the Silgrain R° process.
Figure 4.38 shows the feedrate and tapping conditions, and their effect on
the interphase levels of the HR and UR, respectively. Figure 4.39 shows the
evolution of PSDs at the inlet, within compartment I and at the overflow
of compartment III. Figure 4.40 shows two examples of property profiles in
compartment IV.

2. Process optimization. For safety and economic reasons, it is not possible to
carry out neither considerable input changes or thorough experimental cam-
paigns on the real system. However, when a model is available, the model
can be used to test new patterns of operation, and to find optimal operation
conditions. Once these conditions prove to be both optimal and safe on the
model, then they can be tested on the real system. Figure 4.41 shows the
response of the system to three types of feedstock rates: first the standard
semibatch operation, then an equivalent semibatch operation with a lower cy-
cle frequency, and finally the equivalent continuous operation. As observed,
the influence of the type of operation on the system outputs is considerable.
The higher the frequency of the cyclic input, the smaller the amplitude of
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Figure 4.38: Standard operation of the Silgrain R° process: feedrate and tapping,
and their effect on the interphase level.

Figure 4.39: Standard operation of the Silgrain R° process: PSDs.
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Figure 4.40: Standard operation of the Silgrain R° process: profiles in compartment
IV.

Figure 4.41: Response of the HR to three types of feedstock rates: standard
semibatch rate, an equivalent semibatch rate of lower frequency, and continuous
operation.
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the resulting process outputs. This is an expected result: the process has a
low filtering effect, and the simulator is able to give quantitative number of
such an effect. Figure 4.42 shows a simulation of a possible start-up of the
main reactor, after a shutdown. Material could be fed continuously, start-
ing with a relatively cold acid, and then increasing the acid temperature to
enhance disintegration, until the standard level and temperature conditions
are achieved.

3. Process design and roll-out. When a new process is to be designed, and
the basic assumptions and flow conditions in the system are decided, then a
mechanistic model can be used to simulate the operation and to decide on
design parameters, such as dimensions, or feed conditions. Roll-out consists
in using the model of an existing plant, for another plant with a similar
operation and just re-tune the values of the model parameters to use the
same model for the new process. PBE models are thus suitable for process
design and for roll-out.

4. Controller design. In order to design an automatic control system, it is
necessary to decide on the variables that are used as controlled variables
and manipulated variables. Moreover, knowledge about the dynamics of the
system, i.e. the signs of the responses and the time constants, is required no
matter the type of controller that is to be designed. Therefore, simulations
on the model can be used to gather information about:

• Input/output selection. The model can be used to analyze controllabil-
ity of the outputs from the available inputs.

• Required instrumentation. Measurements on the system are required
for automatic control, and simulations can help to decide what and at
which locations measurements should be taken.

• Time constants of the system.

The second part of this thesis is devoted to the use of the developed model
to design a nonlinear controller.

5. Training simulator. The model, implemented in a graphical user interphase
can be used to train new employees regarding the operation and behavior of
the system. Appendix B shows the graphical user interphase that has been
developed for the Silgrain R° simulator as a part of this work.
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Figure 4.42: Simulation example of startup of the HR.
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Figure 4.43: State estimator concept.

4.8.2 On-line applications

1. State estimator, observer or soft sensor. Some of the variables of the system
are either impossible, difficult or too expensive to measure. However, once
we have a validated model, and if there are enough measurements on the
system such that the states we are interested in are observable from the
measurements, then the model can be used to estimate them. Figure 4.43
illustrates the concept of a state estimator.

2. Controller implementation. There are many possible control techniques.
Some of these techniques use predictions on the future behavior of the sys-
tem to decide the control actions, such as model-based predictive control
or optimal control. Other control techniques require estimates of states of
the system that are not measured, such as nonlinear feedback linearization.
Therefore, a model is required for the implementation of certain types of
controllers.

3. Statistical process control. The model can also be used to control quality.
Part III of this thesis explains how the model could be used for such a
purpose.

We can thus conclude that mechanistic models offer the advantage that they
can be used for a variety of purposes.

4.9 Conclusions

The main objective of this chapter has been to develop a model for the two reactors
of the Silgrain R° process that captures the essence of the process and that can be
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used to obtain realistic predictions of the process behavior. A mechanistic model,
based on the traditional balance laws of mass, energy and momentum and on
the PBE, is chosen. Special emphasis has been put on the establishment of the
model basis and assumptions. Hence, care is taken to avoid the common but
unrealistic assumption of complete-mixing. In the Silgrain R° process, four regions
are distinguishable:

1. Compartment I (bottom HR) where mostly coarse material is localized, and
where disintegration is the main event.

2. Compartment II (top HR) where grainy material is localized for a short
residence time.

3. Compartment III (top UR) which operates as a separator of the particles
from most of the acid.

4. Compartment IV (bottom UR) where the sedimented material is located,
and where slow reaction and dissolution is the main phenomena.

A macroscopic balance is used for each of these distinguishable regions. Region
volumes are allowed to vary, and a force balance on the particle is used to find
the cut size, which relates the PSD in the effluent of the compartment to the PSD
within the compartment. Compartments I, II, and III are modeled this way. A
microscopic model is used for compartment IV, since property profiles are encoun-
tered in the axial direction.
Once the model structure is built, the model is “particularized” by defining the
constitutive relations. A tailor-made experimental campaign at laboratory scale is
carried out to find the birth and death terms of the PBE. The remaining consti-
tutive relations are determined from the literature or from qualitative information
of the process. Once the constitutive relations are established, a solution method
is chosen. The system of equations corresponding to compartments I, II, and III
are reduced to an index-0 DAE by discretization in the particle size coordinate.
A nonequidistant fixed grid is used for discretization, and discretization is imple-
mented such that mass is preserved. As regards the model of compartment IV, the
resulting functional PDAE is first reduced to a standard PDAE by the method of
moments, and subsequently reduced to a DAE by collocation.
The final stage is parameter estimation and model validation. An experimental

campaign on the industrial plant has been carried out, and the systematic method
for parameter identifiability analysis is tested with the Silgrain R° model. Such a
method has proved to be very useful. The parameter identifiability analysis reduces
the number of parameters to be identified from 12 to 2 in the case of the HR, and
from 31 to 6 in the case of the UR. After parameter estimation, the fitting of the
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model to the experimental data from the industrial plant is satisfactory. However,
the amount of experimental data is not large enough to divide the data into a set
for parameter estimation and a test data set. It is thus recommended to carry
out further experiments to test the prediction abilities of the model. Although the
prediction abilities have not been validated, the fact that the model fits well to
the experimental data after parameter estimation is a positive result, and confirms
the potential of PBE models for predictive purposes.
Finally, some possible model uses have been described: system analysis, process

optimization, process design, training simulator, controller design and implemen-
tation, soft sensoring, and quality control.
Although PBE models take time to develop, they can be developed quite sys-

tematically, they can represent fairly realistically the operation of industrial-scale
units, and they can be used for a wide range of purposes.
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Part II

Passivity-based control of
particulate processes
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Chapter 5

Introduction

5.1 Process control

Chemical process systems continuously exchange matter and energy with other
units and/or the surroundings. The exchange of matter and energy keeps the
system in a state that is not in equilibrium. If the system was isolated, according
to classical thermodynamics, the state of the system would evolve towards the
equilibrium state. One major aim of process control therefore is to manipulate
the flows of matter and energy into and out of the system in such a way that the
system is kept in desired nonequilibrium states. Such states may be periodic or
aperiodic depending on the process specifications.
Automatic process control can:

• improve product quality;

• reduce emission of hazardous substances;

• reduce environmental impact;

• improve process safety;

• facilitate process optimization;

The implementation of process control has benefited from:

• improvement in measurement techniques, actuators, and computers;

• extensive research during the last 7 decades.
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Many techniques for process control exist: Proportional-Integral-Derivative
(PID) control, model-based predictive control, optimal control, nonlinear feed-
back linearization, adaptive control, etc. Note that these techniques have also
been used in other areas, such as in shipsteering, rocket guidance, vibration con-
trol, water supply and many others. Obviously, some particular control techniques
have had more acceptance in certain applications due to the main features of the
system. Hence, PID control has been widely used for systems that have a more or
less linear behavior, while optimal control has been much used for processes that
operate in batch.
The development of a process controller requires the following stages:

1. System analysis. This includes gathering information about the dynamic
features of the system, studying the availability of measurements and of
manipulated variables, and the definition of the purpose of automatic control
for the system under study.

2. Choice of control technique. This includes the definition of control objectives,
like bandwidth, disturbance rejection, feedback and feedforward structures,
design of filters and observers.

3. Controller design, including building the control algorithm and selecting the
tuning parameters.

4. Controller implementation, which may include the development of new sen-
sors where needed.

A good review of such a general approach can be found in the books by
(Ogunnaike & Ray 1994) and (Seborg, Edgar & Mellichamp 2004).

5.2 Control of particulate processes

For several decades, extensive research has focused on the development of popu-
lation balance models of particulate processes. In the last two decades, attention
has shifted to the development of effective process control techniques for such
processes, and on the exploitation of the available population balance models for
process control. Several approaches have been tested but none of them have been
widely accepted yet. Some of the challenges that are particular to the synthesis of
controllers for particulate processes are:

• Particulate processes are often nonlinear. Open-loop instabilities, oscillatory
behavior and long delays are common among particulate processes.
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• Limited on-line measurement techniques are available for distributed prop-
erties.

• There are few feasible manipulated variables.

• Particulate processes often operate in batch or semibatch.

The first review paper on control of particulate processes (Rawlings, Miller
& Witkowski 1993) reviewed model development, model solution, measurement
techniques, parameter estimation and control of crystallization processes. In the
paper, the authors wrote:

We are only now seeing the advances in measurement and comput-
ing technologies necessary for successful industrial implementation of
the ideas. It is reasonable to expect closed-loop crystal size distribu-
tion control to become part of accepted industrial practice in the near
future (Rawlings et al. 1993).

This statement turned out to be too optimistic and there is still not a complete
theory available for solving the distribution control problem. Nevertheless, there
is no doubt that notable advances have been achieved in these areas at least from
the theoretical point of view.
Another study on control of particulate processes is the controllability analysis

suggested in (Semino & Ray 1995a) and its application to emulsion polymeriza-
tion (Semino & Ray 1995b). In a series of papers authored by Christofides and
coworkers, nonlinear output feedback controllers are developed for a crystallization
process (Chiu & Christofides 1999), (Chiu & Christofides 2000) and an aerosol flow
reactor (Kalani & Christofides 2000). To the best of my knowledge, Christofides
is also the first author to come with a book on control of particulate processes
(Christofides 2002). His methodological framework consists in first reducing the
order of the population balance model by combining the method of weighted resid-
uals and the concept of approximate inertial manifold. Once this is done, a non-
linear low-order output feedback controller that enforce exponential stability of
the closed loop is synthesized using geometric and Lyapunov-based techniques.
Some practical implementation issues such as the effect of input constraints (El-
Farra, Chiu & Christofides 2001), and robustness (Chiu & Christofides 2000) are
analyzed. However, the reported work is limited to theoretical development and
simulation studies without experimental validation. Other nonlinear control tech-
niques have been used, such as input-output decoupling control of a bioreactor
(Kurtz, Zhu, Zamamiri, Henson & Hjortsø 1998). Model-based predictive control
has also received a great deal of attention in the field of particulate processes,
particularly for applications operating in batch or semibatch. Eaton & Rawlings
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(1990) used nonlinear programming to solve the nonlinear model predictive control
formulation of a batch crystallizer. Nonlinear model predictive control was also
used by (Crowley, Meadows, Kostoulas & Doyle III 2000) and (Immanuel & Doyle
III 2002) to optimize the performance of semibatch emulsion polymerization. Lin-
ear model predictive control has been proposed for the stabilization of oscillating
microbial cultures in bioreactors (Kurtz et al. 1998) and (Zhu, Zamamiri, Henson
& Hjortsø 2000), and for the emulsion polymerization of styrene (Zeaiter, Romag-
noli, Barton & Gomes 2002). Linear control has been applied to crystallization
(Vollmer & Raisch 2002) and (Patience & Rawlings 2001), and grinding (Galán,
Barton & Romagnoli 2002). The vast majority of papers on control of particulate
processes use closed-loop simulations to evaluate the performance of the controller.
Practical implementation of process controllers are still rare and usually limited to
laboratory scale plants, such as in (Patience & Rawlings 2001), (Immanuel & Doyle
III 2002), and (Zeaiter, Romagnoli, Barton & Gomes 2002). Recent reviews on
the status of process control of crystallization processes and granulation processes
are given by (Braatz 2002) and (Wang & Cameron 2002).
In this work, a control approach called passivity-based control is chosen for

control of particulate processes. The passivity theory is among the most powerful
theories of control since it is based on input output behavior, and it applies to
nonlinear and distributed systems quite easily. Passivity-based control has been
widely use in the control of mechanical, electrical, and electromechanical systems.
The technique has not been widely applied yet in the process engineering field
despite of the nonlinear and distributed character of many of such systems. No
references on the application of passivity-based control to particulate processes
have been found. The reasons why passivity-based control looks appropriate for
control of particulate processes are:

• passivity-based control is suited for systems that are nonlinear;

• the available population balance model can be exploited both for the design
and implementation of the controller;

• stability is easy to ensure for passive systems;

• systems that are passive can be interconnected, leading to the resulting sys-
tem also being passive.

Chapter 6 gives an introduction to passivity-based control theory and to the par-
ticular approach used in this work. A description of the methodological framework
and the stability analysis are given. Examples of the application of the method
to a simple reactor system and to the Silgrain R° process are also given. Chapter
7 gives a further analysis of the control methodology, including the influence of
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input constraints, the presence of disturbances, and the need of an observer. Some
basic concepts of control theory are revised in appendix C. Any reader that is not
familiar with nonlinear control theory should take a look at this appendix before
reading the subsequent chapters.
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Chapter 6

Inventory passivity-based control

6.1 Introduction

The notion of passivity has a long history in control and formed the basis for
stability analysis of electrical circuits (Desoer & Vidyasagar 1975). Passivity can
also be related to a more general notion called dissipativity, which was introduced
by Willems (1972a) in the context of abstract operators.

Dissipativity theory gives a framework for the design and analysis
of control systems using an input-output description based on energy-
related considerations. Dissipativity is a notion which can be used in
many areas of science, and it allows the control engineer to relate a
set of efficient mathematical tools to well known physical phenomena.
(Lozano, Brogliato, Egeland & Maschke 2000)

The main idea behind the notions of passivity and dissipativity is that the dy-
namic behavior of physical systems can be explained in terms of the conservation,
dissipation, and transport of a certain positive property of the system. The net
increase in the positive property stored by a dissipative system in any given inter-
val, is lower or, at most, equal to the amount of property supplied to the system
in the given time interval. Such a behavior has implications for the stability of the
system.
Ydstie and coworkers were the first to apply the passivity approach to process

systems. A connection between macroscopic thermodynamics of process systems
and the input-output passivity theory of nonlinear control was established in
(Ydstie & Alonso 1997). This work continued with the development of passivity-
based approaches for control of lumped process models (Farschman et al. 1998)
and distributed process models (Alonso, Banga & Sanchez 2000), (Alonso & Ydstie
2001), (Ydstie 2002), respectively. The approach presented in (Farschman et al.
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1998) exploits the structure of the first principle model directly in the formula-
tion of the control law, which has the form of an output feedback linearization
law. Stability of the closed loop is guaranteed by the fulfillment of the passivity
inequality. There are other nonlinear control techniques that have also exploited
the particular properties of process systems. Hence, a relationship between ex-
tensive thermodynamic variables and the dynamic modes of the system was first
published in (Georgakis 1986), where such relationships were used for the synthe-
sis of multivariable and nonlinear control structures. State feedback linearization
and/or output feedback linearization from the balance laws is also used in control
of positive systems, i.e. systems where the states and inputs are positive and upper
bounded (Bastin & Provost 2002), (Imsland 2002). Stability of the closed loop is
enforced by applying LaSalle’s theorem subject to certain constraints on the sys-
tem equations, but those constraints in some cases turn out to be too restrictive
(Imsland 2002). In contrast to the passivity-based approach, no direct reference to
the connection with thermodynamics is mentioned in control of positive systems.
The main ideas in dissipativity and passivity theory are presented in section

6.2. Section 6.3 describes the methodological framework of the inventory passivity-
based approach. The nominal stability analysis of the inventory passivity-based
approach is shown in section 6.4. A comparison with other nonlinear control
approaches is given in section 6.5. Section 6.6 discusses in more detail the control-
lability and detectability requirements, and introduce techniques to check these
requirements. Section 6.7 briefly discusses the connection of this approach to non-
equilibrium thermodynamics. A simple chemical reactor is used as case study in
section 6.8. The Silgrain R° model is used in section 6.9 to illustrate the application
of inventory passivity-based control to particulate processes, followed by a com-
parison with other methods used for control of particulate processes. Finally, this
chapter ends with a summary of the main conclusions in section 6.10.

6.2 General passivity theory

Many dynamic systems, and in particular, many process engineering systems, can
be described by a state-space representation that is affine in the manipulated
variables

dx

dt
= f (x) + h (x)u

y = g(x), (6.1)

where x ∈ X = Rn is the state, u ∈ U = Rm is the manipulated variable, y ∈ Y =
Rp is the output.
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Definition 6 (Dissipation Inequality (Willems 1972)) A dynamic system Σ
is said to be dissipative if there exists a nonnegative function V : X −→ R+, called
the storage function, such that for all (t0, t1) ∈ R2+, u ∈ U and x0 ∈ X, the
following inequality holds

V (x)− V (x0) 6
Z t1

t0

w (τ) dτ. (6.2)

where the supply rate w is a real valued function defined on U × Y, such that for
any (t0, t1) ∈ R2+, u ∈ U and y ∈ Y, the function w (t) = w (u (t) , y (t)) is locally
integrable Z t1

t0

|w (t)| dt <∞. (6.3)

Remark 7 Note that if the storage function V (x) is differentiable, the dissipation
inequality, i.e. equation 6.2, is equivalent to

dV

dt
≤ w (t) ∀t ≥ 0 (6.4)

that is, the rate of change of the property stored in the system is less than or at
most equal to the supply rate (Willems 1972).

The key idea in dissipation theory is to find a suitable storage function V, and
the corresponding supply function w, given a dynamic system Σ. As a general rule,
the storage function V (x) is not uniquely defined by the input/output behavior of
the dynamic system Σ. This means that for the same dynamic system we may find
several pairs (V,w) that fulfill the dissipation inequality. Indeed, one of the most
difficult aspects of dissipativity-based control is to find an appropriate storage
function.

Definition 8 Passivity is a particular case of dissipativity, where the supply func-
tion w is given as the scalar product of outputs and inputs

w = yTu, (6.5)

and where the storage function equals zero for the zero-state

V (0) = 0. (6.6)

Note that in passivity, the number of outputs equals the number of manipulated
variables, i.e. m = p, and that a particular structure for the supply function is
given. However, the choice of storage function V (x) remains as an open problem,
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and it may be necessary to make particular choices of u and y in order to achieve
a nonnegative storage function (Ortega, der Schaft, Mareels & Maschke 2001).
Note also that the broad range of applications of passivity theory has led to

diverse ways of defining the notion of passivity in the literature. Such definitions
are more specific, basically giving more information about the dissipation term.
Definitions of state strictly passivity, input strictly passivity and output strictly
passivity, among others, can be found in (Lozano et al. 2000), where relevant
references are also given.
The main interest of disipassivity and passivity as applied to dynamic systems

is that it is intimately related to stability. Only some technical conditions are re-
quired in order for passivity to imply stability of a steady-state at a local minimum
of the storage function (Willems 1972). Therefore, a control strategy based on pas-
sivity theory would ensure stable operation and would guarantee the convergence
of the system to the desired set point.
Note that the type of stability is determined by the type of passivity and by

some properties of the dissipative system Σ, mainly its detectability. The internal
states of a system are detectable from the outputs if when the outputs are fixed to
zero, then the internal states evolve towards zero too. In mathematical terms, a
dynamic system is said to be locally zero-detectable if there exists a neighborhood
N of 0 such that for all x ∈ N such that

y = g (x) = 0 for all t ≥ 0⇒ lim
t→∞

x (t) = 0. (6.7)

Theorem 9 (Byrnes, Isidori & Willems (1991)) Assume that a system is pas-
sive with a positive definite storage function and it is locally zero-state detectable.
Let Π : Y → U be any smooth function such that Π (0) = 0 and yTΠ (y) > 0 for
each nonzero y. The control law

u = −Π (y) (6.8)

asymptotically stabilizes the zero-state x = 0.

Passivity-based control thus consists in finding the input-output description
[u, y], the storage function V (x) , and the control law u = −Π (y) that renders the
system passive.
The properties that make passivity-based control so valuable are:

• Stability. Stabilization of the closed-loop response is key in process control.

• Interconnectivity. When passive systems are interconnected, certain passiv-
ity properties are inherited (Lozano et al. 2000). Hence, a parallel inter-
connection of two passive systems Σ1 and Σ2 is always passive, whereas the
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feedback interconnection of Σ1 and Σ2 is passive as long as some minor con-
ditions are met (Lozano et al. 2000). Stability of interconnected systems is a
relevant issue in process control, since processes consists of many units that
interact with each other. The standard approach in process control is that
controllers for the individual units are synthesized independently. But this
can create instability of the overall plant. There is thus increasing interest in
synthesizing controllers that ensure stabilization of the whole system. This
is often referred to as plantwide control (Luyben, Tyreus & Luyben 1998).
Therefore, the property of straightforward interconnectivity of passive sys-
tems can be very advantageous.

6.3 Inventory passivity-based control: Method-
ological framework

Inventory passivity-based control was first presented in (Farschman et al. 1998).

Definition 10 (Farschman et al. (1998)) An inventory for a dynamic system
Σ is an additive continuous (C1) function v : X → R+ so that if x1 is the state of
the system Σ1 and x2 is the state of another system Σ2 then we have

v (x) = v (x1) + v (x2) . (6.9)

Note that an inventory is an extensive measure, i.e. proportional to the size of
the system. The thermodynamic states of a process system Σ, such as mass M,
internal energy U or chemical mass of chemical species i Mi are inventories.
Farschman et al. (1998) suggested a storage function that only depends on

inventories. They proved that a quadratic function measuring the distance between
the measured or estimated inventories and their setpoints, is a suitable storage
function. This ensures that the process is passive and that the process inventories
converge to their setpoints.
A mechanistic model of the process system, based on the balance laws of

mass, energy and momentum, and on the PBE if we are dealing with particu-
late processes, gives or can be reduced to a model of the following type:

dv

dt
= φ (x)u+ p (x)

v = g (x) , (6.10)

where the nomenclature introduced in (Farschman et al. 1998) is used: v ∈ Rdim v
+

are inventories (mass, energy, component mass,...), u ∈ Rdimu are the manipulated
variables (mass and energy flows), and x ∈ Rdimx

+ are intensive variables that are
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Figure 6.1: Block diagram of a process system. Note that the following functions:
φ, p, and g, may be nonlinear.

Figure 6.2: Methodology framework for the synthesis of an inventory passivity-
based controller.

involved in the transport term φ and production term p of the balance laws (tem-
perature, pressure, concentrations,...). We assume that the system of equations in
6.10 is complete, i.e. number of equations = dim v + dimx. Figure 6.1 shows a
block diagram of the process model.
The methodology used for the synthesis of inventory passivity-based controllers

of the form of equation is summarized in Figure 6.2, and consists of the following
stages:

1. Open-loop analysis. This is the stage in which the control objectives are
established, the available measurements and manipulated variables are iden-
tified, and the dynamic behavior of the open-loop system is quantified.

2. Controllability analysis and selection of inventories. Inventory-passivity based
control assumes the same number of manipulated variables as controlled vari-
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Figure 6.3: Block diagram of partitioned process model.

ables. The available manipulated variables were established in the previous
stage, so we know the number of inventories that we have to select. The nor-
mal situation is that dim v > dimu. Thus, we have to carry out a partition
of the inventory vector: µ

y
z

¶
= Pv, (6.11)

where y ∈ Rdimu
+ are the controlled inventories, z ∈ Rdim v−dimu

+ are the
uncontrolled inventories, and P ∈ Rdim v × dim v

+ is a permutation matrix.
Similarly, the system in equation 6.10 can be rewritten as follows:

dy

dt
= φy (x) u+ py (x)

dz

dt
= φz (x)u+ pz (x)

P−1
¡
y z

¢T
= g (x) . (6.12)

Figure 6.3 shows the block diagram of the partitioned system. The selection
of the partition matrix P is not arbitrary; certain controllability and de-
tectability conditions must be fulfilled. Sometimes it is convenient that one
or more of the controlled inventories is a linear combination of the inventories
(for example, the sum of certain component masses). Therefore, P does not
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Figure 6.4: Closed-loop block diagram. MV - Manipulated variable; CV - Con-
trolled variable.

necessarily have to be a permutation matrix. The only strict requirement is
that P is invertible.

3. Nonlinear feedback law. Once the controlled inventories are chosen, the
following feedback law is used:

dey
dt

= −Key

ey = y − y∗, (6.13)

where K ∈ R+ is a positive constant, called proportional constant, y∗ ∈
Rdim y is the desired setpoint and ey ∈ Rdim y is the output error. The non-
linear part of the feedback law consists in solving the following system of
algebraic equations:

−Key = φy (x)u+ py (x)−
dy∗

dt
(6.14)

to obtain the value of the manipulated variable u. Figure 6.4 sketches a sim-
plified block diagram the closed-loop. As shown by this figure, the control
law consists of a linear calculation first (system of equations 6.13), followed
by a nonlinear calculation of the manipulated variable (system of equations
6.14). To refer to this nonlinear calculation, we have adopted the nomencla-
ture introduced by (Georgakis 1986): manipulated variable synthesizer. Note
that Figure 6.4 also shows a controlled variable synthesizer block right after
the system block, that represents the calculation of the controlled invento-
ries from available measurements in the system, since inventories may not
be measurable directly. We leave this issue for now, but it will be further
discussed in chapter 7.

4. Analysis of the closed-loop operation. It is important to analyze the perfor-
mance of the controller. The following questions may be noteworthy:
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• Is offset-free tracking achieved?
• Are the closed-loop responses fast enough?
• Are the changes of the manipulated variables too aggressive?
• Are all the relevant states of the system stabilized?

If the performance of the closed-loop is not satisfactory, a retuning of the
parameters of the controller may improve performance. If this is not the
case, the synthesis procedure should be revised.

The methodology explained above is illustrated with the help of more detailed
block diagrams. Two cases are studied.

1. Perfect model, the required measurements are available and all the invento-
ries are used for control (y = v). Figure 6.5 shows the block diagram of the
closed-loop. Since we assume that the model is perfect, there is a cancellation
of terms. The closed-loop dynamics can thus be reduced, in this ideal case,
to an equivalent linear system where the controller is a PID controller and
the system is just an integrator. Therefore, inventory passivity-based control
linearizes the dynamics, i.e. feedback linearization is achieved. The tuning of
the PID controller should thus be relatively easy, and tuning methods from
linear system theory can be used.

2. Perfect model, the required measurements are available, and a subset of in-
ventories are used for control (dim y < dim v). Figure 6.6 shows the block
diagram of the closed-loop. Again, there is a certain cancellation of terms.
The closed-loop dynamics of the controlled inventories is again equivalent to
a linear system where the controller is a PID controller and the system is
just an integrator. Note, however, that the dynamics of the remaining in-
ventories may still be nonlinear, and unless certain requirements are fulfilled,
the response of the uncontrolled inventories may be unstable.

6.4 Inventory passivity-based control: Nominal
stability analysis

The methodology presented in the previous section has not yet made use of the
passivity concepts introduced in section 6.2. Passivity theory is needed to prove
stability. A stability proof was presented in (Farschman et al. 1998), but that
proof only established convergence of the controlled inventories, not examining the
behavior of the remaining inventories or the internal model. The proof presented
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Figure 6.5: Block diagram of the closed-loop, under the assumptions of perfect
model, available measurements, and y = v.
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Figure 6.6: Block diagram of the closed-loop, under the assumptions of perfect
model, available measurements, and dim y < dim v.
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here can be applied to the cases where dim y < dim v. In order to make the proof
as simple as possible, the linear controller used in the methodology is assumed to
have only the proportional term, i.e. P-controller. But the same results would be
obtained if a PID controller was used instead of a P-controller.
Let us define some terminology. The deviation of the controlled inventory y

from the desired setpoint y∗ is denoted by ȳ, the deviation of the uncontrolled
inventories z from the final steady state zss is denoted by z̄, and the instant time
at which the controlled inventories y stabilize at the desired setpoint y∗ is denoted
by t∗. Let K be a diagonal positive matrix, and clip (t) be a strictly increasing
sigmoid function that starts at zero, flattens to 1 at t = t̂ ≥ t∗, and its derivative
has narrow local/exponential support

Theorem 11 The thermodynamic system 6.10 is rendered passive with passive
mapping

passive input → φy (x) u+ py (x)

passive output → ȳ = y − y∗

and storage function

V =
1

2
ȳT ȳ +

1

2
z̄T z̄ clip (t) , (6.15)

by the control law

−Kȳ = φy (x)u+ py (x)−
dy∗

dt
. (6.16)

Passivity is ensured as long as the control law can be solved at any instant time t
and as long as z̄ is zero-state detectable from ȳ.

Proof. Let us assume that there exists a stationary state zss corresponding to
u = u∗. The thermodynamic model can be rewritten in deviation form as follows

dȳ

dt
= φy (x)u+ py (x) (6.17)

dz̄

dt
= φz (x)u+ pz (x) (6.18)

ȳ = y − y∗. (6.19)

The condition of zero-state detectability implies that

ȳ = 0 for all t ≥ 0⇒ lim
t→∞

z̄ (t) = 0. (6.20)

Now the storage function to be used is

V =
1

2
ȳT ȳ +

1

2
z̄T z̄ clip (t) . (6.21)
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Such a storage function is a positive definite function which only takes the zero
value when the controlled inventories reach their setpoints and the uncontrolled
inventories reach the steady-state. The passivity inequality is given by

Vf − V0 ≤
Z tf

t0

−
¡
ȳTKȳ

¢
dτ. (6.22)

According to the control law, the dynamic behavior of ȳ is given by

dȳ

dt
= −Kȳ, (6.23)

which is a linear system of ODEs, with the following solution

ȳ = exp (−K (t− t0)) ȳ0, (6.24)

Now, if

t0 = 0 (6.25)

tf ≤ t∗ (6.26)

then

Vf =
1

2
ȳTf ȳf

V0 =
1

2
ȳT0 ȳ0Z tf

t0

−
¡
ȳTKȳ

¢
dτ =

Z tf

t0

[exp (−K (t− t0)) ȳ0]
TK[exp (−K (t− t0)) ȳ0]dt

=
1

2

¯̄
[exp (−K (t− t0)) ȳ0]

TK[exp (−K (t− t0)) ȳ0]
¯̄tf
t0

=
1

2

¯̄
ȳT ȳ

¯̄tf
t0
=
1

2
ȳTf ȳf −

1

2
ȳT0 ȳ0, (6.27)

and then the passivity inequality becomes an equality. If, on the contrary,

t0 = 0 (6.28)

t∗ ≤ tf ≤ t̂. (6.29)

then the integral term of the passivity inequality can be split into two terms so
that

Vf − V0 ≤
Z t∗

t0

−
¡
ȳTKȳ

¢
dτ +

Z tf

t∗
−
¡
ȳTKȳ

¢
dτ

≤
Z t∗

t0

−
¡
ȳTKȳ

¢
dτ + 0, (6.30)
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then

Vf = 0

V0 =
1

2
ȳT0 ȳ0Z t∗

t0

−
¡
ȳTKȳ

¢
dτ =

1

2

¯̄
ȳT ȳ

¯̄t∗
t0
= 0− 1

2
ȳT0 ȳ0, (6.31)

and again the passivity inequality becomes an equality. Finally for

t0 = 0 (6.32)

tf ≥ t̂ (6.33)

the integral term of the passivity inequality can be split into two terms so that

Vf − V0 ≤
Z t∗

t0

−
¡
ȳTKȳ

¢
dτ +

Z tf

t∗
−
¡
ȳTKȳ

¢
dτ

≤
Z t∗

t0

−
¡
ȳTKȳ

¢
dτ + 0 (6.34)

Vf =
1

2
ȳTf ȳf +

1

2
z̄Tf z̄f = 0 +

1

2
z̄Tf z̄f (6.35)

V0 =
1

2
ȳT0 ȳ0 +

1

2
z̄T0 z̄0. (6.36)

The passivity inequality is then

1

2
z̄Tf z̄f −

1

2
ȳT0 ȳ0 −

1

2
z̄T0 z̄0 ≤

1

2

¯̄
ȳT ȳ

¯̄t∗
t0

(6.37)

resulting in
1

2
z̄Tf z̄f −

1

2
z̄T0 z̄0 ≤ 0. (6.38)

Since z̄ is zero-detectable, and t̂ is a variable that we can choose freely, then for
a sufficient long t̂, zf ≤ z0, which means that the storage function fulfills the
passivity inequality.

Remark 12 The zero-detectability requirement is equivalent to requiring that the
system is minimum phase. For a definition of minimum phase, see appendix C.
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Remark 13 Note that the proof does not depend on the specific choice of clip (t).
One possible function for clip (t) is the following:

clip (t) = t− (t̂− t)

⎛⎝arctan
³

t̂−t
0.01t̂

´
π

+ 0.5

⎞⎠+ (1.1t̂− t)

⎛⎝arctan
³
t−1.1t̂
0.01t̂

´
π

+ 0.5

⎞⎠ ,

(6.39)
where t̂ is the instant where all the states z evolve monotonically. It would equally
work with another choice of clip (t), as long as it is a strictly increasing sigmoid
function that starts at zero, flattens to 1 at t = t̂ ≥ t∗, and its derivative has
narrow local/exponential support.

Theorem 11 states that if we formulate the model of a process system based on
the balance equations, we may stabilize the whole system by using input-output
feedback linearization, with a proper selection of a subset of the inventories as
controlled outputs. In order to ensure passivity, and thus stability, two conditions
must be fulfilled: the control law in equation 6.16 must have unique solution at
all times, and the uncontrolled inventories must be zero-detectable. These two
requirements limit the possible choice of inputs u and controlled inventories y, and
they are typically hard to check for very complex nonlinear systems.

6.5 Comparison with other control methods

The trained eye will see that the proposed controller shares many similarities with
other nonlinear control methods.
First of all, the suggested method is closely related to input-output feedback

linearization. Input-output feedback linearization can be applied to nonlinear sys-
tems that have a well-defined relative degree, and that are minimum phase. Local
stability of the resulting closed-loop follows from the asymptotic stability of the
zero-dynamics, but input-output feedback linearization theory is lacking from sys-
tematic global stability results (Slotine & Li 1991). The inventory-passivity based
approach can be considered a specific application of input-output feedback lin-
earization in which the particular structure of the nonlinear system is exploited to
find the linearizing control law in a straightforward manner and to ensure global
stability of the closed-loop. Hence, if the controlled inventories are selected ac-
cording to the requirements in theorem 11:

1. the system has automatically partial relative degree (1, 1, . . . , 1) and total
relative degree r = m, where m is the number of manipulated variables u.
No differentiation of the nonlinear system is needed to calculate the relative
degree, since the controlled output is just a subset of the state vector.



136 CHAPTER 6. INVENTORY PASSIVITY-BASED CONTROL

2. the system is minimum phase.

3. there exists a Lyapunov-type function (the storage function in equation 6.21)
that ensures not only local stability of the closed-loop, but also global sta-
bility of the closed-loop if the system is globally minimum phase.

Global stability of nonlinear systems that are rendered passive by feedback lin-
earization was studied in (Byrnes, Isidori & Willems 1991). It was shown that not
only minimum phase but also weakly minimum phase nonlinear systems having rel-
ative degree (1, 1, . . . , 1) can be globally asymptotically stabilized by input-output
feedback linearization, provided that suitable controllability-like rank conditions
are satisfied. This means that the requirement of zero-state detectability in our
approach might be weakened even further.
There are parallels between inventory passivity-based control and the state

feedback controller for a class of positive systems presented in (Imsland 2002)
and (Imsland & Foss 2003). Positive systems are dynamic systems in which the
state is nonnegative, and the input is nonnegative and upper bounded. Hence,
inventory models of the form 6.10 can be considered positive systems if the inputs
u have upper bounds. The state feedback controller used by Imsland (2002) is
constructed by dividing the model into m = dimu subsets, each subset associated
to one of the elements in the input vector. The sum of the states in each subset is
the controlled output associated to the corresponding input. Strong assumptions
are made on the terms of the nonlinear system to ensure controllability. Local
and global convergence of the state of the system to an invariant set is proved by
means of LaSalle’s invariance theorem. Stabilization (in the sense of Lyapunov)
of the system relies thus on the existence of an invariant set for the closed-loop
dynamics for the given control law, which is thus related to requiring stable internal
dynamics. As indicated by Imsland (2002), some of the assumptions used in the
approach to ensure controllability may be too strong for certain systems.
The search for general theorems that establish the conditions which make a

nonlinear system stabilizable is a topic that has attracted a good deal of attraction.
Probably the most general result so far is the notion of input-output stability
introduced by Liberzon, Morse & Sontag (2002). This theory does not rely on
zero dynamics or normal forms and is not restricted to affine systems. A system
is defined as input-output stable if its state and input eventually become small
when the output and derivatives of the output are small. This notion thus is
related to the concept of a minimum-phase nonlinear system. Systems fulfilling
the requirements of the inventory passivity-based approach fall under the definition
of input-output stability.
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6.6 A closer look at the controllability and de-
tectability requirements

Theorem 9 states that the closed-loop is passive, and thus stable, if two require-
ments are fulfilled. The first requirement is that the selected controlled inventories
y are controllable with respect to the manipulated variables u. The control law

−Kȳ = φy (x)u+ py (x)−
dy∗

dt
(6.40)

must therefore have solution for u given by

u = φy (x)
−1
µ
−Kȳ − py (x) +

dy∗

dt

¶
. (6.41)

Hence, we have to solve a system of algebraic equations. Depending on the com-
plexity of the terms py (x) and φy (x), the system of equations 6.41 will be solved
analytically or numerically. Note also that the states involved in the control law
have to be available. If they can not be measured, then they must be estimated
by means of an observer. We assume in this chapter that the states that appear in
the control law are measured. This controllability requirement implies static con-
trollability of the selected inventories with respect to the manipulated variables u,
i.e. for a constant value uss, then y reaches a certain steady-state value after a
certain finite time interval:

u = uss ⇒ y → yss. (6.42)

The second requirement of Theorem 9 is that the uncontrolled inventories are
detectable from the controlled inventories, or equivalently, the internal dynam-
ics are stable. However, to prove that the internal dynamics are stable is not
trivial for general nonlinear systems. Fortunately, process systems have certain
structural features that can be exploited for analyzing the stability of the internal
dynamics. In particular, we focus here on chemical reaction systems, since many
particulate systems can be understood as a large network of chemical reactions.
The process systems that exhibit the widest range of nonlinear behavior (multi-
ple steady-states, oscillatory limit cycles, etc.), are precisely the systems where
chemical reaction is present. Indeed, the nonlinear dynamic behavior of chemical
systems has attracted a good deal of attention since the discovery of an homoge-
neous oscillating reaction by Belousov in the 1950s. Such a discovery attracted
the interest of the thermodynamics community, but also of the nonlinear dynamics
community. This resulted in the development of powerful theories on the existence
and uniqueness of equilibria for reaction networks. In particular, the theory devel-
oped in a series of papers by Feinberg, Horn and Jackson (Horn & Jackson 1972),
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(Feinberg & Horn 1974), (Feinberg 1980), (Feinberg 1991), (Feinberg 1995a), and
(Feinberg 1995b) is of remarkable importance, and worth reading. Some of the
main results in this theory are summarized here, and coupled with the inventory
passivity-based approach. These results are new since chemical reaction systems
were not studied in (Farschman et al. 1998).
Feinberg and coworkers thought of a chemical reaction mechanism as a network

that connects the various reactants, intermediates and products. The motivation
of their work was the following:

Although the governing differential equations vary markedly from
one chemical system to another, the equations themselves are deter-
mined in a rather precise way by the underlying network of chemical
reactions. Thus, one can hope to draw firm connections between as-
pects of reaction network structure and the variety of dynamics that
can be admitted by the corresponding system of differential equations.
(Feinberg 1987)

This was quite a challenging goal: being able to state whether the governing
differential equations of a chemical system have the capacity to admit certain
kinds of qualitative behavior by just inspecting the network of chemical reactions.
A chemical reaction network consists of three sets:

• the set of chemical species in the network, denoted by ns.

• the set of complexes of the network, which are the set of objects that appear
before and after the reaction arrows (Horn & Jackson 1972). The number of
complexes is denoted as nc.

• the set of reactions in the network.

Figure 6.7 shows two examples of Feinberg’s diagrams. Once the diagram is
built, one has to count the number of linkage classes l. A linkage class is a
group of complexes that are connected by reaction arrows. Hence, it is simply
the number of separate “pieces” of which the diagram is built. For example,
mechanism a) in Figure 6.7 has 2 linkage classes, while mechanism b) has 1 linkage
class. Now, consider a reaction network with ns species. A reaction vector in
Rns is associated to each reaction in the network, obtained by subtracting the
“reactant” complex vector from the “product” complex vector. Then, the rank
of the reaction network s is the number of linearly independent vectors in the
mechanism. Essentially, s represents the smallest number of reactions required
such that all reaction stoichiometries in the mechanism can be constructed as linear
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Figure 6.7: Examples of the construction of Feinberg’s diagrams (Feinberg 1995a).
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combinations of this set. The deficiency δ of a reaction network is a nonnegative
integer index defined by the formula

δ = nc − l − s. (6.43)

This index contains much information about the type of behavior that the network
may admit. It is also possible to calculate a deficiency index for each individual
linkage class. Both reaction networks in Figure 6.7 have deficiency zero.
Before we can present the theorems, we need some additional definitions. Two

complexes in the same class are strongly linked if they “ultimately react” to each
other, either by a reversible reaction, or through a sequence of (reversible or
not reversible) reactions. The linkage class can thus be partitioned into equiv-
alence classes called the strong-linkage classes. A terminal strong-linkage class is
a strong-linkage class containing no complex that reacts to a complex in a differ-
ent strong-linkage class. For example, network b) in Figure 6.7 has two terminal
strong-linkage classes {D +E,F} and {G,H, 2J}. A chemical reaction network is
reversible if its “react to” reaction is symmetric, i.e. for every reaction in the net-
work, its reverse reaction does also exist. A chemical reaction network is weakly
reversible if its “ultimately react to” reaction is symmetric, i.e. for any pair of
complexes connected with a directed arrow path in one direction, there exists an
arrow path in another direction that also connect those complexes. In a weakly
reversible network each linkage class is a terminal strong-linkage class. Network
a) in Figure 6.7 is weakly reversible, while network b) is not weakly reversible.
Finally, a reaction is said to have mass action kinetics when the rate function for
each reaction is determined by the stoichiometry of the reaction, being the kinetic
order of each reactant equal to the corresponding stoichiometric coefficient.

Theorem 14 (The Deficiency Zero Theorem (Feinberg 1987)) For any re-
action network of deficiency zero the following statements hold true:
(i) If the network is not weakly reversible then, for arbitrary kinetics (not necessar-
ily mass action), the differential equations for the corresponding reaction system
can not admit a positive steady state (i.e. a steady-state where none of the reac-
tants is depleted).
(ii) If the network is not weakly reversible then, for arbitrary kinetics (not neces-
sarily mass action), then the differential equations for the corresponding reaction
system can not admit a cyclic composition trajectory along which all species con-
centrations are positive.
(iii) if the network is weakly reversible then, for mass action kinetics (but re-
gardless of the positive values the rate constants take), the differential equations
for the corresponding reaction system have the following properties: There exist
within each positive stoichiometric compatibility class precisely one steady-state;
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that steady-state is asymptotically stable; and there is no nontrivial cyclic compo-
sition trajectory along which all species concentrations are positive.

Theorem 15 (The Deficiency One Theorem (Feinberg 1987)) Consider a
mass action system for which the underlying reaction network has l linkage classes,
each containing just one terminal strong linkage class. Suppose that the deficiency
of the network and the deficiencies of the individual linkage classes satisfy the fol-
lowing conditions:
(i) δi ≤ 1, i = 1, 2, . . . , l

(ii) δ =
lP

i=1

δi.

Then, no matter what (positive) values the rate constants take, the corresponding
differential equations can admit no more than one steady state within a positive
stoichiometric compatibility class. If the network is weakly reversible, the differ-
ential equations admit precisely one steady state in each positive stoichiometric
compatibility class.

Corollary 16 A mass action system for which the underlying reaction network
has just one linkage class can admit multiple steady states within a positive stoi-
chiometric compatibility class only if the deficiency of the network or the number
of its terminal strong linkage classes exceeds one.

Some remarks may be useful:

• The method is not limited to small networks. It can be applied to very
intrincate networks. This is quite practical, because the deficiency of the
network can be calculated and the linkage classes can be studied even before
one has written the system of differential equations.

• The method is not limited to closed reactors, as it may seem at first glance.
Indeed, open reactors, heterogeneous reactions, and reactors where certain
species concentrations are kept constant, can all be accommodated within
the framework, by incorporating into the network certain pseudoreactions.
Hence, if we have a continuous stirred tank reactor (CSTR), a pseudoreaction
B

q→ 0 would account for the presence of B in the effluent stream q, whereas
0

q→ A would account for the presence of A in the feed stream. Theorems
15 and 15 would then be applied to the augmented reaction network. Some
examples can be found in (Feinberg 1979) and (Feinberg 1987).

• The strongest (and most useful) statements in the theorems apply only to
networks with mass-action kinetics. This may sound as a strong limitation,
but one should remember that mass-action kinetics are very widely used,
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even in the field of particulate processes. Although the theorems can not
give so strong results when dealing with non mass-action kinetics, they still
provide some information about the existence or non-existence of certain
dynamic behaviors.

• It may seem that most chemical reaction networks probably violate theorems
14 and 15, but this is false. Indeed, deficiency zero networks and deficiency
one networks arise frequently.

• Although isothermal conditions are required, some of the conclusions are
valid regardless of the values the kinetic constants may take.

In the context of inventory passivity-based control, we can make use of Fein-
berg’s theory to study the stability of internal dynamics of systems with chemical
reaction. Typically, the controlled inventories will be the energy, one or several
component mole number, and/or total mass. Then, once the controlled inventories
are tracked to their respective setpoints, the system whose dynamics we have to
analyze is an open reactor with certain species regarded as constant. Then, the
theorems are applied to the resulting augmented network. The goal of the con-
troller is that our selection of controlled inventories are such that the remaining
system of equations is a deficiency zero and weakly reversible network with mass
action kinetics. Then, a steady-state compatible with any initial conditions does
exist, is unique, and globally asymptotically stable. In other words, the internal
dynamics are globally asymptotically stable and stabilization of the whole set of
states will be achieved.
In the cases where the deficiency zero and deficiency one theorem can not con-

firm or deny the existence, uniqueness and stability of steady-states, other tech-
niques of nonlinear kinetic dynamics may be used. Hence, a graphical method
specific for CSTR, called the species-complex-linkage graph, was developed in
(Schlosser & Feinberg 1994). Such a graph allows to conclude whether a kinetic
network with mass-action kinetics can or can not give rise to multiple steady states
for any combination of the residence time, rate constants and feed concentrations.
This technique has certain similarities with Feinberg’s approach but is not defi-
ciency oriented. Another ambitious approach is the stoichiometric network analy-
sis (SNA) by (Clarke 1980), that identifies critical subnetworks within a complex
reaction mechanism that can result in instability. Although SNA is very powerful,
it is not as easy to apply as Feinberg’s technique:

There is much in this chapter that would be of practical value to
experimental chemists if they could only understand it. (Clarke 1980)

If none of these methods can provide conclusions on stability, then a local
bifurcation analysis has to be carried out. In such an approach, the steady-state
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values are plotted with respect to different values of the manipulated variables.
Bifurcation plots may require extensive simulations and the results are not globally
valid.

6.7 Connection to thermodynamics

Chapter 5 began with a description of control from a thermodynamic point of
view. Control theory very seldom mentions thermodynamics, but there is a strong
connection between the two fields (Ydstie & Alonso 1997) and (Luyben et al.
1998). Inventory passivity-based control is probably the approach that uses such
a connection in the most direct way.
Thermodynamics is the science that studies various properties of a macroscopic

system, the relationship between these various properties, and the transformations
of states of matter (Kondepudi & Prigogine 1998). Classical thermodynamics was
born as a result of the invention of heat engines, in an attempt to explain and
define the limits of operation of such engines. It is founded on essentially two
fundamental laws, one concerning energy and one concerning entropy. Classical
thermodynamics only applies to isolated1 systems and to closed2 systems that are
very near the state of thermodynamic equilibrium. The state of thermodynamic
equilibrium is a fundamental concept in classical thermodynamics. A characteris-
tic feature of thermodynamic equilibrium is the existence of extremum principles,
i.e. there exist functions of the state called thermodynamic potentials which are
extrema (minima or maxima) at the equilibrium. A fluctuation leading to a devi-
ation from equilibrium is followed by a response which brings the system back to
the extremum of the thermodynamic potential. The thermodynamic equilibrium is
thus a stable state. For isolated systems, entropy is the corresponding thermody-
namic potential and is maximized at equilibrium. For closed systems at constant
entropy and volume, energy is the corresponding thermodynamic potential and is
minimized at equilibrium.
Nonequilibrum thermodynamics, on the other hand, applies to open3 systems,

and to closed systems that are far from the equilibrium state. Note that the
concept of thermodynamic equilibrium does not apply to open systems. Instead,
the term steady-state is used to denote a time-invariant state of an open system.
Nonequilibrium thermodynamics has its roots in the phenomenological laws of
viscous flow, and accounts both for irreversible processes and states far from equi-
librium. In contrast to classical thermodynamics, there is no guarantee that an
extremum principle that predicts the state to which a nonequilibrium system will

1systems that do not exchange energy or matter with the exterior
2systems that exchange energy with the exterior but not matter
3systems that exchange both energy and matter with the exterior
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evolve, exists. As a result, any fluctuations from a steady-state may no longer be
damped, and a variety of phenomena that never appear in equilibrium systems,
such as oscillating concentrations in a chemical system, may be observed. See
(Kondepudi & Prigogine 1998) for an introduction to dissipative structures and
order through fluctuations. Some nonequilibrium systems do have an extremum
principle. Hence, an extremum principle, the principle of minimum entropy pro-
duction, exists for nonequilibrium systems that are in the so-called linear regime,
and that fulfill the Onsager’s reciprocal relations:

In the linear regime, the total entropy production in a system sub-
ject to flow of energy and matter, reaches a minimum value at the
nonequilibrium steady-state. (Kondepudi & Prigogine 1998).

Now, note that systems fulfilling the criteria of inventory passivity-based con-
trol, are open systems that have stable nonequilibrium steady-states. Hence, the
storage function V suggested in the inventory passivity-based approach is a ther-
modynamic potential that is minimized at the nonequilibrium steady-states. An
extremum principle exists for passive process systems. Indeed, the storage function
suggested in (Ydstie & Alonso 1997) was proven to be closely related to Keenan’s
thermodynamic availability. In (Coffey & Ydstie 1999), a new stored function
named generalized availability was introduced. According to (Luyben et al. 1998),
the storage function suggested in (Ydstie & Alonso 1997) is also related to the
exergy function. Finally, a criterion of stability of general nonequilibrium steady-
states are found in (Kondepudi & Prigogine 1998), that is based on Lyapunov
theory, and where the excess entropy production is considered a Lyapunov func-
tional. We can thus conclude that the storage function suggested in theorem 11 is
a thermodynamic potential, related to the curvature of the entropy function.

6.8 Case study: van der Vusse reactor

A benchmark problem for nonlinear control design was proposed in (Chen, Krem-
ling & Allgöwer 1995). The reactor under consideration is a continuous stirred tank
reactor (CSTR) with a cooling jacket. The main reaction is given by the trans-
formation of cyclopentadiene (species A) to the product cyclopentenol (species
B). Cyclopentadiene reacts in an unwanted parallel reaction to the by-product
dicyclopentadiene (substance D). Furthermore, cyclopentanediol (species C) is
formed in an unwanted consecutive reaction from the product cyclopentenol. Such
a reaction mechanism is called van der Vusse reaction, and is given by:

A → B → C (6.44)

2A → D. (6.45)
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The balance equations for such an homogenous reactor are given by

⎛⎜⎜⎝
dNA

dt
dNB

dt
dNC

dt
dND

dt

⎞⎟⎟⎠ =
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1 −1 0
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dU

dt
= qρCp (Tf − T ) + (−∆H)rV +Qhe (6.47)
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(−∆H)rV =
¡
−∆H1 −∆H2 −∆H3

¢⎛⎝ r1V
r2V
r3V

⎞⎠ , (6.50)

where NA, NB, NC, and NC represent the number of moles in the reactor of species
A, B, C, and D, respectively; CA, CB, CC , and CC represent molar concentration
in the reactor; CA,f , CB,f , CC,f , and CD,f represent molar concentration in the
feed stream; V is the reactor volume; U indicates the internal energy within the
reactor; T and Tf are the reactor and feed temperature, respectively; Cp is the fluid
heat capacity; ρ is the fluid density; ∆H1, ∆H2 and ∆H3 are the heat of reactions
corresponding to reaction 1, 2, and 3, respectively; and Qhe is the exchanged heat
flow between the reactor and cooling jacket. The reactions are assumed to have
mass-rate kinetics, and the dependence of the kinetic constant with temperature
follows Arrhenius’ law. Table 6.1 summarizes the values of parameters for the
model (the kinetic parameters are taken from (Chen et al. 1995)).
The manipulated variables are the flowrate q and the exchanged heat flow Qhe.

The species of interest is species B. Therefore, the standard control goal would be
to maximize the yield of B, and operate the reactor at isothermal conditions. If
we chose the number of moles of species B and the internal energy as controlled
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Table 6.1: Kinetic, thermodynamic and design parameters of the van der Vusse
reactor.

k1,0 1.287 · 1012 h−1
k2,0 1.287 · 1012 h−1
k3,0 4. 521 5 · 109 ( hmol/ l)−1 :
E1
R

9758.3K
E2
R

9758.3K
E3
R

8560K
∆H1 4.2 kJ/molA
∆H2 −11 kJ/molB
∆H2 −41.85 kJ/molA
V 100 l

CA,in 5.10mol/ l
CB,in 0mol/ l
CC,in 0mol/ l
CD,in 0mol/ l
ρ 0.9342 kg/ l
Cp 3.01 kJ/ kg h

inventories, we would have the following control law:µ
−KB (NB −N∗

B)
−KU (U − U∗)

¶
=

µ
CB,f − CB 0
ρCp (Tf − T ) 1

¶µ
q
Qhe

¶
+

µ
1 −1 0

−∆H1 −∆H2 −∆H3

¶⎛⎝ r1V
r2V
r3V

⎞⎠ . (6.51)

We have to check if a unique solution for q and Qhe exists for any value the states
may take, and if static controllability is achieved. We can begin by studying if
there exists a value q∗ and Q∗he that can stabilize the controlled inventories to the
setpoints, i.e.µ

0
0

¶
=

µ
CB,f − C∗B 0

ρCp (Tf − T ∗) 1

¶µ
q∗

Q∗he

¶
+

µ
1 −1 0

−∆H1 −∆H2 −∆H3

¶⎛⎝ k∗1CAV
k∗2C

∗
BV

k∗3C
2
AV

⎞⎠ . (6.52)

Some formulae manipulation gives

q∗ =
k∗2C

∗
BV − k∗1CAV

CB,f − C∗B
. (6.53)
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In order for q∗ to be constant, then CA has to have reached a steady-state CSS
A ,

i.e.
0 =

¡
CA,f − CSS

A

¢
q∗ − k∗1C

SS
A V − k∗3

¡
CSS
A

¢2
V. (6.54)

Now, if equation 6.53 is substituted into equation 6.54, and CB,f = 0, then we
obtain

(k∗3C
∗
B + k∗1)

¡
CSS
A

¢2 − (k2C∗B + k1 (CA,f − C∗B))
¡
CSS
A

¢
+ k2C

∗
BCA,f = 0, (6.55)

which means that there exists values of the kinetic constants that provide two
positive solutions for equation 6.55, and consequently, for equation 6.53. Therefore,
we can not select NB as controlled inventory.
Let us thus choose the number of moles of species A and the internal energy as

controlled inventories, yielding the following control lawµ
−KA (NA −N∗

A)
−KU (U − U∗)

¶
=

µ
CA,f − CA 0

ρCp (Tf − T ) 1

¶µ
q
Qhe

¶
+

µ
1 0 −2

−∆H1 −∆H2 −∆H3

¶⎛⎝ r1V
r2V
r3V

⎞⎠ . (6.56)

Let us check whether the available manipulated variables can lead the new con-
trolled inventories to the given setpoint, i.e. whether the following system of
equations has unique solution:µ

0
0

¶
=

µ
CA,f − C∗A 0

ρCp (Tf − T ∗) 1

¶µ
q∗

Q∗he

¶
+

µ
1 0 −1

−∆H1 −∆H2 −∆H3

¶⎛⎝ k∗1C
∗
AV

k∗2CBV

k∗3 (C
∗
A)
2 V

⎞⎠ . (6.57)

After some formulae manipulation we obtain

q∗ =

¡
k∗1C

∗
A + k∗3 (C

∗
A)
2¢V

CA,f − C∗A
(6.58)

Q∗he = −q∗ρCp (Tf − T ∗) +∆Hr∗V. (6.59)

Hence, there exists a unique value of the manipulated variables (for each selected
pair of setpoints and initial conditions, and within the logic range of operation
0 ≤ C∗A < CA,f) that can keep the system in the selected setpoint once reached.
Note however, that in order for Q∗he to get to a constant value, CB has to reach
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Figure 6.8: Feinberg’s diagram corresponding to the Van der Vusse kinetics, when
NA and U are kept constant.

the steady-state too (CB appears in ∆Hr∗V ). Similarly, the control law can be
solved with respect to the manipulated variables at each instant:

q (t) = −KA
CA − C∗A
CA,f − CA

V +
(k1 + k3CA)

CA,f − CA
CAV (6.60)

Qhe (t) = −q∗ρCp (Tf − T ∗) +∆HrV −KU (U − U∗) . (6.61)

Nowwe can use Feinberg’s theory to study the stability of the internal dynamics.
Let us assume that NA and U have reached their respective setpoints, and the
manipulated variables are kept in the corresponding steady-state value. What
happens then with the dynamics of NB, NC and ND? Does a steady-state exist
for them? Is the steady-state unique? Is the steady-state asymptotically stable?
These kinds of questions can be answered by Feinberg’s theorem. The system of
equations under study is thus:

⎛⎝ dNB

dt
dNC

dt
dND

dt

⎞⎠ =

⎛⎝ CB,f − CB

CC,f − CC

CD,f − CD

⎞⎠ q∗ +

⎛⎝ 1 −1 0
0 1 0
0 0 1

⎞⎠⎛⎝ k∗1C
∗
AV

k∗2CBV

k∗3 (C
∗
A)
2 V

⎞⎠(6.62)
µ

dNA

dt
dU
dt

¶
=

µ
0
0

¶
. (6.63)

Figure 6.8 shows the corresponding Feinberg’s network. Note that the zero-
complex is used to account for the fact that we are dealing with an open reactor.
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Figure 6.9: Closed-loop simulation of the Van der Vusse reactor. Manipulated
variables and controlled inventories.

It is also straightforward to see that:

nc = 4

l = 1

s = rank

⎛⎜⎜⎝
−1 1 0 0
0 −1 1 0
−1 0 1 0
0 0 1 −1

⎞⎟⎟⎠ = 3

δ = 0.

Therefore, we have a deficiency-zero network. Moreover, the network is weakly
reversible. Then, by application of theorem 14, we can conclude that there ex-
ists a steady-state for the uncontrolled inventories, the steady-state is unique (but
distinct for each positive pair of N∗

A and U
∗), and is asymptotically stable. There-

fore, the conditions of theorem 11 are fulfilled, and when NA and U are chosen as
controlled inventories, the closed-loop is passive. Figures 6.9 and 6.10 show the
results of closed-loop simulation of the suggested control structure. The initial
conditions for the simulations are shown in Table 6.2, and the controller parame-
ters and the setpoints are shown in Table 6.3. As expected, not only the controlled
inventories reach their respective setpoints, but also the uncontrolled inventories
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Figure 6.10: Closed-loop simulation of the Van der Vusse reactor. Uncontrolled
inventories.

Table 6.2: Initial conditions for Van der Vusse reactor.
NA(0) 200mol
NB(0) 110mol
NC(0) 100mol
ND(0) 100mol
U(0) 33743 kJ

Table 6.3: Controller parameters and setpoints for the van der Vusse reactor.
KA 1 h−1

N∗
A

⎧⎨⎩ 214mol 0 ≤ t < 5 h
235.4mol 5 ≤ t < 10 h
192.6mol 10 ≤ t < 15 h

KU 1 h−1

U∗ 100 kJ
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reach a steady-state. The suggested control is multivariable. Observe that when
the setpoint for NA is changed, both manipulated variables are moved in order
to reach the new setpoint. Note also that the first setpoint for NA corresponds
to the steady-state that maximizes the yield of B for the selected temperature.
This is confirmed by Figure 6.10. Therefore, even though we could not select B
as controlled inventory, we can still achieve optimal conditions of B by a proper
selection of the setpoints of the controller. In other words, the inventory passivity-
based controller could be part of a multi-level hierarchy of control functions. The
suggested controller would ensure stabilization of the system, and on top of it an
optimizer could determine the optimal settings for the inventory passivity-based
controller. In fact, the same process model could be used in both control levels.

Remark 17 A P-controller was used. Alternatively, a PI- or a PID-controller
might have been used. The choice of the controller parameters influences the ve-
locity at which the controlled inventories reach their setpoints, the overshoot expe-
rienced by the uncontrolled inventories, and the extent of the change applied to the
manipulated variables.

Remark 18 The change of setpoints was assumed to occur as a step change. We
could have used a “smoother” version, for example, a first order model of the
setpoint change and account for this in the control law 6.61.

One of the manipulated variables used in the inventory passivity-based con-
troller is the heat flow exchanged by the reactor and the cooling jacket. Obviously,
this is not the actual manipulated variable. Heat flow in the cooling jacket is typ-
ically regulated by manipulating the flowrate of cooling fluid in the cooling jacket.
Hence, a basic control loop is required to achieve the desired heat exchange. We
could use inventory-passivity based control to design such an inner loop. Taking
into account that the exchanged heat flow is given by

Q = −hheS (T − The) , (6.64)

where hhe is the overall heat transfer coefficient, S is the surface available for heat
transfer between the reactor and the cooling jacket, and The is the temperature
in the cooling jacket. Complete-mix conditions are assumed in the cooling jacket,
giving the following heat balance

dUc

dt
= qheρheCp,he (Tf,he − The)−Q, (6.65)

where ρhe is the density of the cooling fluid, Cp,he is its heat capacity, Tf,he is the
temperature of the cooling jacket at the inlet, Vhe is the volume of the cooling
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jacket and Uc is the internal energy stored in the cooling jacket. The control loop
for the inner loop can thus be designed as follows

−KUc(Uc − U∗c ) = qheρheCp,he (Tf,he − The)−Q, (6.66)

where qhe is the manipulated variable, and U∗c is the setpoint for this loop, given
by

U∗c = ρheCp,heVhe

µ
T +

Q

hheS
− Tref

¶
. (6.67)

Hence, we have a cascade controller, in which the inner loop 6.66 should be
designed with faster dynamics than the outer loop 6.61. The controllability and
detectability conditions are still fulfilled, such that the closed-loop remain pas-
sive. Figures 6.11 and 6.12 show the simulation with the cascade controller. As
expected, the controlled inventories reach their respective setpoints, and the un-
controlled inventories stabilize to a certain setpoint.

6.9 Case study: Silgrain R° HR

This section illustrates how inventory passivity-based control can easily be applied
to particulate processes. Only the main reactor (HR) of the Silgrain R° process is
considered for control purposes, for a number of reasons. First of all, the HR is the
bottleneck of the process. Hence, only the material that has undergone disintegra-
tion in the HR, and is fine enough to be transported with the upcoming acid flow,
is further processed in the remaining stages of the process. Since disintegration is
thus the key stage, it is reasonable to focus the control efforts on disintegration.
Moreover, the feasible manipulated variables are inputs to the HR. In contrast, as
the Silgrain R° process is today, the possibilities to manipulate the UR are restricted
to manipulating the tapping rate, i.e. the residence time of the material in the
reactor. Longer residence times in the UR may improve the chemical quality of the
product, but at the cost of decreasing the production rate. If we want to improve
both the product quality and the production rate, then disintegration has to be
enhanced.
In practice, the FeSi feedstock is fed in a semibatch way. However, to test

inventory passivity-based control, continuous feed of the FeSi feedstock is assumed.
Semibatch feed is used in the real plant due to the structural set up of the process.
Continuous feed in the simulations is not a limitation, since it is possible to design
an equivalent semibatch operation from the continuous control moves given by the
controller. Moreover, when constrained control is introduced in the next chapter,
it will be shown that the semibatch operation can be achieved by simply using the
proper setpoint signal.
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Figure 6.11: Closed-loop simulation of the Van der Vusse reactor for the cascade
configuration. Manipulated variables and controlled inventories.
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Figure 6.12: Closed-loop simulation of the Van der Vusse reactor for the cascade
configuration. Uncontrolled inventories.
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There are two available manipulated variables: the FeSi feedrate, Ṁfeed, and the
temperature of the acid feed to the HR, T acidfeed . Disintegration depends to a great
extent on temperature, it is therefore clear that the internal energy should be one
of the controlled inventories. As second controlled variable, the mass of particles
within compartment I, Mactive

RI , is chosen, i.e. the mass of particles that are still
too large to be transported by the acid. The balances for the chosen inventories,
considering the discretized PBE model, are:

dMactive
RI

dt
=

NX
i=1

d Φi
active
RI

dt
=
¡
1− winertfeed

¢
Ṁfeed −

NX
i=1

Φ̇i
active

RI,out

¡
V1 ρcp 1 + V2 ρcp 2

¢ dT
dt

= Ḣin − Ḣout +
X
Me

(−∆HMe) r
Me
RI VRI − Q̇surroundings.(6.68)

where

Ḣin = Ṁfeedcpsolid
¡
T solidfeed − Tref

¢
+ qacidfeedρacidcpacid

¡
T acidfeed − Tref

¢
Ḣout = qRII,out |ρcp|RII (THR − Tref)

ρcp i = ρacidcpacidεi + ρsolidcpsolid (1− εi) i = RI,RII

∆HMe = ∆H0
Me +∆HT

MeT

Q̇surroundings = uoverall S (T − Tsurroundings) .

Note that the energy balance is expressed in terms of the derivative of T ,
instead of the derivative of an extensive variable. This is due to the assumptions
made in the model, and due to the need of expressing the energy balance as a
function of available information, i.e. reaction enthalpies, etc. However, this is
not any inconvenience. We can still use inventory passivity-based control without
any change, where one of the controlled variables is now an intensive variable:
T . Inventory passivity-based control is based on using the inventory balances in
the control law. It does not matter if one or some of the inventory balances are
expressed in an intensive variable instead of an extensive variable. The control law
is

−Key = φyu+ py (6.69)
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Figure 6.13: Feinberg diagram of the discretized HR dynamics.

where

−Key =

µ
−KM 0
0 −KT

¡
V1 ρcp 1 + V2 ρcp 2

¢ ¶µ Mactive
RI −M∗

T − T ∗

¶
φyu =

µ ¡
1− winertfeed

¢
0

cpsolid
¡
T solidfeed − Tref

¢
qacidfeedρacidcpacid

¶µ
Ṁfeed

T acidfeed

¶

py =

⎛⎝ −
PN

i=1 Φ̇i
active

RI,out

−Ḣout +
X
Me

(−∆HMe) r
Me
RI VRI − Q̇surroundings

⎞⎠ .

Such a control law has a unique solution at any instant, since the matrix φy
is invertible for all physically realizable states (winertfeed < 1, qacidfeed > 0), and the
production term py is bounded at any instant. Moreover, the selected inventories
are statically controllable from the selected inputs as long as the internal dynamics
are stable, since the control law depends on some of the internal states.
The dynamics of compartment II are stable. Similarly, the simple kinetic model

used in compartment I and presented in section 4.5.2 also has stable dynamics.
Therefore, the only states that may show unstable dynamic behavior are the par-
ticle size distributions of the active and inert material in compartment I, which
are the states being closely related to disintegration. The dynamics of the PSD
of active feedstock can be studied in the framework of Feinberg’s theory. Indeed,
we can interpret disintegration as the reaction network shown in Figure 6.13. The
disintegration process is thus equivalent to a network of series and parallel reac-
tions among N isomers, φ1, φ2, . . . , φN , where isomer i reacts to any isomer k as
long as k < i, and i > grain. Isomers φN , φN−1, . . ., φcut are fed to the reactor but
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do not leave the reactor, while the remaining isomers are not present in the feed
but leave the reactor. Such an inlet and outlet flow of compounds are represented
in Feinberg’s diagram with reactions with the zeroth complex. It is also straight-
forward to note that φN is the amount of particles of largest size, φ1 is the amount
of particles of smallest size, φcut is the amount of particles of the cut size and φgrain
is the amount of particles of the smallest grains that can still disintegrate. The
kinetic constants kij are a function of the birth and death functions, as follows:

kij = b̄ (xi, xj) aj.

Although the resulting Feinberg’s network seems quite complex, it is straightfor-
ward to calculate the deficiency. The number of complexes, the number of linkage
classes, the rank, and the deficiency are, respectively,

nc = N + 1

l = 1

s = N

δ = 0.

Now, the reaction network shown in Figure 6.13 is weakly reversible, and the
disintegration kinetics in the HR-model are assumed to be mass-action. Hence,
all requirements of theorem 14 are met, and we can conclude that even though
the reaction network apparently is very complex, the system can not experience
complicated nonlinear behavior. There exists a steady-state that corresponds to
each pair of constant values of Ṁfeed and T acidfeed . Such steady-states not only exist;
they are also unique and asymptotically stable. Therefore, static controllability is
achieved. Since all the requirements of theorem 11 are fulfilled, the closed-loop is
passive and stable when using the control law in equation 6.69.
Before showing the simulation analysis, it is noteworthy to take a closer look

at the Feinberg diagram in Figure 6.13. The network is weakly reversible due to
the presence of the zeroth complex, i.e. because of being an open system. If there
were neither feedstock flowing in, nor material flowing out of the compartment,
then we would have the network in Figure 6.14. Such a network has also deficiency
zero:

nc = N

l = 1

s = N − 1
δ = 0

but is not weakly reversible. Then, according to theorem 14, it is not possible
to have a positive steady-state, i.e. a steady-state where none of the reactants is
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Figure 6.14: Feinberg diagram of batch disintegration.

Figure 6.15: Feinberg diagram of disintegration when there is not FeSi feedstock,
but there is outflow.

depleted. Such a result is not really new, we know that if we carry out the disin-
tegration in a batch reactor, after a certain period of time all the FeSi feedstock
would have disintegrated into particles of smaller size than Dgrain. Figure 6.15
shows Feinberg’s network corresponding to the part of a semibatch operation at
which there is not FeSi feedstock, but there is outflow. Again, the kinetic network
has deficiency zero, and is not weakly reversible. Therefore, no positive steady-
state is possible: the larger particles will all be depleted after a sufficiently long
period of time. Such a conclusion was again expected. Finally, note that for the
continuous operation (and the semibatch operation), particles withDi < Dcut have
an outflow Φ̇i,out that equals the sum of produced particles of this size from break-
age of larger particles. Therefore, φi is actually equal to zero within compartment
I, as assumed in the model. This means that we could have simplified the network
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Figure 6.16: Simplified (Deficiency-zero) Feinberg network of disintegration in
compartment I of the HR.

in Figure 6.13 to the simpler network in Figure 6.16 if we were only interested in
the steady-state within compartment I. However, since we are interested in the
whole HR, the best is to use the network in Figure 6.13.
As regards the inert fraction of the FeSi feedstock, it is quite straightforward to

see that the manipulated variables in the suggested control law in equation 6.69
can not stabilize the states related to the inert fraction (Φi

inert
RI , VRI). In other

words, such states are not detectable from the controlled inventories. This is not
a surprising result; it is well-known that the inert fraction of the FeSi feedstock
accumulates in compartment I unless inert tapping is carried out. Since the inert
fraction is small, inert tapping is carried out only a few times per year. We could
consider the inert tapping flowrate as a third manipulated variable: qinertRI,tapping, and
select the total mass of inert material in compartment I, M inert

RI =
PN

i=1 Φi
active
RI ,

as third control inventory. We would need the following additional control loop:

−KMinert

¡
M inert
RI −M∗

inert

¢
= winertfeed Min − qinertRI,tapping(1− εRI)w

inert
RI . (6.70)

If we did so, then all the states of the system would be detectable from the con-
trolled inventories, and then the whole system would be stabilized by the suggested
(3 MV, 3 CV) inventory passivity-based control strategy. However, in practice, it
is more suitable to carry out inert tapping a few times a year, than attempting
continuous inert tapping. Therefore, in the simulation analysis, the (2 MV, 2 CV)
control law shown in equation 6.69 is used, and we account for that the states
related to the inert material will not stabilize when winertfeed > 0.
Figure 6.17 shows the time evolution of the manipulated variables and con-

trolled variables. As expected, the controlled variables converge smoothly to their
respective setpoints, without overshoot or oscillations. Note also that the control
is multivariable, since a change in any of the setpoints involves changes in both
manipulated variables. Figure 6.18 shows the time evolution of some selected vari-
ables of the system, assuming that no inert is present in the FeSi feedstock. As
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Figure 6.17: Closed-loop simulation of the HR. Manipulated variables and con-
trolled inventories.
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expected, all the states stabilize and reach a steady-state. Figure 6.19 shows the
time evolution of the same states as shown in Figure 6.18, but when some inert
material is present in the FeSi feedstock. The fraction of inert material is unreal-
istically high, to facilitate comparison with Figure 6.18. As discussed before, the
states related to the inert material do not stabilize now. The remaining states
do still stabilize. The states related to the inert material could be stabilized by
adding the additional control loop in equation 6.70.
Note that although the states of the system stabilize, the rates at which the

states reach the steady-state vary considerably among different states. Some of
them have rapid dynamics, while others evolve in a sluggish manner. Note also
that the manipulated variable T acidfeed requires, in turn, a basic control loop to be
manipulated. A small heat exchanger would be needed upstream of the HR, where
T acidfeed is the controlled output, and the fluid flow in the heating/cooling jacket is
the manipulated variable. Such a situation is similar to the cascade controller
suggested for the van der Vusse reactor in the previous section.

Remark 19 Since the controlled inventories have a predictable first-order response
under closed-loop operation, the tuning of the controller parameters may seem
relatively straightforward. However, in addition to the response velocity of the
controlled inventories, some other factors to consider when tuning the inventory
passivity-based controller are:
- the larger the values of the proportional constants KM and KU , the shorter the
time it takes for the controlled inventories to reach the setpoints, but the more
aggressive the moves of the manipulated variables.
- the values of the proportional constants influence the dynamics of the remaining
inventories and states.
- the selection of the setpoints influences the values at which the uncontrolled in-
ventories and states stabilize. Hence, we can indirectly control one or more of the
states of the system by a proper selection of the controller setpoints. For exam-
ple, in the Silgrain R° process we may be interested in controlling/optimizing the
mass rate of disintegrated material leaving the HR and entering the UR. Then, we
should integrate the inventory-passivity based controller in a multi-level hierarchy
of control functions.

6.9.1 Comparison with other methods for control of par-
ticulate processes

Despite having a large-scale, nonlinear particulate system, it has been proved
that a proper choice of a few inputs and outputs of the system, combined with a
nonlinear feedback law, may stabilize the whole system, assuming perfect model
and available state measurements. Such assumptions may seem both strict and
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Figure 6.18: Closed-loop simulation of the HR when winertfeed = 0. Selected variables:
interphase level between compartments I and II, mass flowrate of particles leaving
compartment II, mass of particles of active feedstock with size xN within compart-
ment I, and mass of particles of inert feedstock with size xN , within compartment
I.
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Figure 6.19: Closed-loop simulation of the HR when winertfeed > 0. Selected variables:
interphase level between compartments I and II, mass flowrate of particles leaving
compartment II, mass of particles of active feedstock with size xN within compart-
ment I, and mass of particles of inert feedstock with size xN , within compartment
I.
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unrealistic, since models are never perfect, and often some of the states that may
be involved in the control law are not measurable in particulate systems. However,
note that all published material on model-based control of particulate processes do
make the same assumptions of perfect model and available state measurements,
and still none of them can prove global stability. Most methods evaluate the
performance of the closed-loop controller by a mere simulation analysis. Others
just prove local stability.
Particulate process models are large-scale models due to the distributed nature

of particulate processes. In order to design a controller that may be implementable
in practice, only a few outputs can be controlled. In most of the references in
the literature, a heuristic selection of the controlled outputs is carried out (Zhu
et al. 2000), (Zeaiter, Romagnoli, Barton & Gomes 2002), and (Mantzaris, Srienc
& Dautidis 2002). Interestingly, in some cases this heuristic selection is a subset
of the original state vector (Zhu et al. 2000). A different approach, suggested by
Christofides et al., consists in first obtaining a low-order ODE approximation of
the particulate process model, and then use such a model for the synthesis of an
output feedback controller (Chiu & Christofides 1999), (Christofides 2002). The
model reduction procedure is based on a combination of the method of weighted
residuals and the concept of approximate inertial manifold. They recognize that
many particulate processes exhibit low-dimensional dynamic behavior:

We note that even though many particulate processes exhibit low-
dimensional dynamic behavior, the delicate mathematical question of
rigorously establishing the existence of inertial manifolds for particulate
process model, at this stage is unresolved. (Chiu & Christofides 1999)

Christofides et al. use some approximate mathematical methods to find a low-
dimensional model that captures the dominant dynamics of the process. The
inventory passivity-based approach suggested in this chapter also takes advantage
of the low-dimensional dynamic behavior of particulate processes. This is the
reason why choosing a low-order subset of the inventories is sufficient to stabilize
many particulate processes. Inventory passivity-based control uses well-established
techniques of kinetic network theory to make sure that the selected inventories
capture the dominant dynamics of the process and that the internal dynamics are
stable. Such techniques are relatively straightforward to use and do not require as
high level of advanced mathematics as the approximate inertial manifold concept
(except for SNA by (Clarke 1980), which requires knowledge of topology). Finally,
and most important, these techniques may provide global results, as opposed to
the approximate inertial manifold.
As mentioned above, the main advantage of inventory passivity-based control

is that it provides global stability results. The method by Christofides et al.
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only proves local exponential stability. The approaches based on model predictive
control study the performance of the closed-loop response mainly by computer
simulations (Zhu et al. 2000), (Mantzaris et al. 2002), and in some instances by
comparison with experimental results from a laboratory-scale plant (Zeaiter, Ro-
magnoli, Barton & Gomes 2002).

6.10 Conclusions

The original theory for inventory passivity-based control by Farschman, Viswanath
& Ydstie (1998) shows that the balance equations of process systems can be used
to define a controller using feedback linearization that brings the controlled in-
ventories to their setpoints by adjusting flows. The methodological framework is
extended in this chapter to include reactive process systems and particulate process
systems. Such processes show considerably more complicated nonlinear behavior
than the process systems without reaction. The stability proof considered previ-
ously by Farschman, Viswanath & Ydstie (1998) considered only the convergence
of the controlled inventories to their setpoints. The extended proof given in this
thesis proves also stability of the remaining states of the system provided that cer-
tain controllability and detectability requirements are met. The relevance of the
stability property is emphasized by comparing the approach with other well-known
approaches of nonlinear control. A more detailed description of the controllability
and detectability requirements is given. Proving detectability is particularly dif-
ficult for nonlinear systems. However, there exist powerful theories in the field of
nonlinear chemical dynamics that may be used to check detectability in chemical
reaction systems. The chemical network approach by Feinberg; Horn and Jackson
is introduced and connected with the inventory passivity-based control concept.
A brief discussion about the link to nonequilibrium thermodynamics is given in
section 6.7. It is concluded that process systems fulfilling the requirements of the
inventory passivity-based approach are nonequilibrium systems for which an ex-
tremum principle exist. The storage function is the corresponding thermodynamic
potential. The control design methodology is illustrated with two examples: the
van der Vusse reactor, and the Silgrain R° process. It is shown that inventory-
passivity based control can be easily applied to particulate processes. A discussion
of the advantages of the suggested approach compared to other approaches for
control of particulate processes is also discussed.
Despite all the advantages of the inventory passivity-based method, there are

still some important questions that should be investigated:

• How does the presence of input constraints affect stability and controller
performance?
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• How does the presence of model errors affect stability and controller perfor-
mance?

• How does the presence of an observer affect stability and controller perfor-
mance?

• What is the role of inventory passivity-based control in the framework of
plantwide control?

• Can inventory passivity-based control be combined with statistical process
monitoring?

These questions will be the focus of the next chapter.



Chapter 7

Advanced issues in inventory
passivity-based control

7.1 Introduction

The previous chapter discussed the performance of the controller under ideal con-
ditions. Models are not perfect, there are disturbances, there are constraints on
the manipulated variables, and there are states that can not be measured or that
are too expensive to measure. It is thus relevant to evaluate the performance of
the suggested control methodology under more realistic conditions.
Section 7.2 discusses the effect of input constraints, and the ability of inven-

tory passivity-based control to handle them. Section 7.3 shows how an approach
reported in literature, that combines inventory passivity-based control and sliding
control, handles model errors and disturbances in a robust way, and how the ap-
proach is directly applicable to systems with chemical reaction and to particulate
systems. The importance and potential of using observers is discussed in section
7.4, and although no observer is developed for the Silgrain R° process, the most
recent developments in nonlinear observers are reviewed. Section 7.5 shows that
inventory passivity-based control can be used to automate processes that operate
in semibatch. Finally, section 7.6 discusses the role of inventory passivity-based
control in the framework of plantwide control, as well as the advantages of com-
bining inventory passivity-based control with statistical process control.

7.2 Constrained control

Constraints on the manipulated variables are always present due to the inherent
limitations of the actuators. Hence, a valve has a limited range of operation: it can
not be open less then 0% or more than 100%. Such constraints that are related

167



168 CHAPTER 7. ADV. INVENTORY PASSIVITY-BASED CONTROL

to physical limitations are often referred to as hard constraints. There are other
types of constraints that may be considered in the design of the controller, such
as bounds in process outputs, quality constraints, safety margins, etc. Such types
of constraints that can be relaxed are often referred to as soft constraints. The
attention here is focused on hard constraints, since they can not be avoided.
A typical way to introduce input constraints on the controller is by a saturation

function or selector:

u =

⎧⎨⎩ umax if ucalculated > umax
ucalculated if umin ≤ ucalculated ≤ umax
umin if ucalculated < umin.

. (7.1)

Note that such a control law is nonlinear as a result of the saturation. Moreover,
constrained control poses important limitations on the ability to steer processes:

• Some setpoints may not be possible to reach under constrained control, ir-
respective of the choice of the control strategy. The set of unfeasible set-
points depends on the range of the constraints. Hence, the tighter the range
[umin, umax] , the larger the set of unfeasible setpoints.

• A performance deterioration of the closed loop response may occur when the
manipulated variable is saturated, in the form of sluggishness of response or
even loss of stability.

• The controller becomes more difficult to tune. In addition, wind-up prob-
lems may appear when the controller has integral compensation and the
constraints are active.

In the field of control of particulate processes, the effect of constraints has sel-
dom been accounted for, mainly because most of the reported works are exclusively
based on simulation studies. A notable exception is the work reported in (El-Farra
et al. 2001) and (Christofides 2002). The methodology reported in these references
starts with an explicit characterization of the set of admissible setpoints that can
be achieved in the presence of constraints. This information, together with a re-
duced order ODE model of the process, is used as the basis for the synthesis of
a nonlinear bounded output feedback controller that enforces locally exponential
stability in the closed-loop system. Such a controller is synthesized via Lyapunov-
based control methods.
In general control applications, the detrimental effects of input constraints have

been widely recognized and studied. Model predictive control is possibly the frame-
work in which the most notable contributions have been achieved to deal with
constraints. Linear model predictive control accounting for input constraints has
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been applied to particulate processes, see for example (Zhu et al. 2000), but linear
models can not always represent the dynamics of particulate processes well.
Constraint handling in the framework of inventory passivity-based control can

be carried out in a relatively straightforward way, as long as the conditions of
theorem 11 (proving stabilization of chemical reaction networks) are met for the
nominal control. The synthesis of a bounded controller involves some additional
stages as compared to the procedure presented in section 6.3:

1. Determination of constraints. The limitations of the actuators have to be
studied, and a decision on the range of operation of each actuator

[ui,min, ui,max] ∀ui (7.2)

has to be done.

2. Investigation of the feasibility of the desired setpoints. The approach by
(Christofides 2002) consists in characterizing the steady-state feasibility, i.e.
the set of admissible setpoints for the given constraints. This is done by
solving the system of algebraic equations resulting from forcing the accumu-
lation term of the dynamic model to be equal to zero and by considering a
given value of ui ∈ [ui,min, ui,max], i.e. for an inventory model solving the
following system of equations

0 = φyui + py. (7.3)

Then, by repeating such a calculation for different values of ui, a depen-
dence of the steady-states with the input value can be identified. Note that
this analysis is independent of the specific control strategy. An alternative
approach could just be to analyze whether the specific setpoints for the in-
ventories that we are interested in can be achieved for a steady-state value
of the manipulated variables that lies within the constraints or not.

3. Investigation of the controllability of the desired setpoint. Although a set-
point is steady-state feasible, there is not guarantee that such a setpoint
can be achieved under a given controller and starting from any given initial
condition (Christofides 2002). Since the manipulated variables are now con-
strained, the controllability requirement is more difficult to fulfill than in the
nominal case. In (Farschman 1998) a controllability requirement adapted to
constrained control, named -controllability, was introduced.

Definition 20 (Farschman (1998)) Let > 0 be a real number. An inventory
y (x) is said to be -controllable if there exists a u ∈ [ui,min, ui,max] such that for
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all x, the following is true,

− ≤ dy

dt
≤ . (7.4)

Now, theorem 11 can be reformulated to account for constrained control as
follows:

Corollary 21 The thermodynamic system 6.10 is rendered passive with passive
mapping

passive input → φy (x) u+ py (x)

passive output → ȳ = y − y∗

and storage function

V =
1

2
ȳT ȳ +

1

2
z̄T z̄ clip (t) , (7.5)

by the control law

−Kȳ = φy (x)ucalculated + py (x)−
dy∗

dt

u =

⎧⎨⎩ umax if ucalculated > umax
ucalculated if umin ≤ ucalculated ≤ umax
umin if ucalculated < umin

. (7.6)

Passivity is ensured as long as the setpoint is feasible, the inventories are -
controllable at any instant time t and as long as z̄ is zero-state detectable from
ȳ. Under these conditions, the inventories converge to their respective setpoints,
and the remaining states stabilize to a certain steady-state value.

Proof. The proof is very similar to the proof corresponding to theorem 11. The
main difference is when one or several constraints are active. Let us assume that
during the interval [tc,1, tc,2] one or some constraints are active. Then, for one or
several of the controlled inventories, the evolution of the output error is given by:

dȳi
dt
≤ − . (7.7)

Those inventories that are not affected by the constrained manipulated variables
have the following dynamics:

dȳj
dt
= −Kj ȳj. (7.8)

Then, the passivity inequality can be written as

Vc,1 − Vc,2 ≤
tc,2R
tc,1

ÃX
i

− +
X
j

−Kj ȳ
2
j

!
dτ, (7.9)
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and the inequality becomes an equality. Therefore, the requirement of -controllability
ensures that the inventories reach their respective steady-states, since the inven-
tory derivatives can be forced to have positive or negative value at any instant.
Once the setpoints are reached, the stabilization of the remaining uncontrolled
states takes place in an equivalent way to that in unconstrained control.
In the case that the requirements of corollary are violated, stabilization can

still be ensured for certain types of systems. In this work special attention is being
paid to particulate systems, that in many cases can be interpreted as a chemical
reaction network.

Corollary 22 Chemical reaction networks (including particulate processes) for
which the selection of controlled inventories yields to internal dynamics that have
zero deficiency, show stable closed-loop dynamics regardless of the chosen setpoint.
Hence, if the setpoint is feasible, then the inventories will converge to the setpoint
values, whereas if the setpoint is not feasible, then the inventories will converge to
a steady-state that is distinct from the setpoint, i.e. there will be an offset, but the
system is still stable.

Proof. If the setpoint is feasible, corollary 21 is valid. If the setpoint is not
feasible, the constrained control law in equation 7.6 will provide a value of the
manipulated variable which is saturated at a constraint value, i.e. the control law
ends up reduced to

u = uconstraint. (7.10)

Then, the dynamics of the closed loop become:

dy

dt
= φy (x)uconstraint + py (x)

dv

dt
= φv (x)uconstraint + pv (x) . (7.11)

The uncontrolled inventories v fulfill the requirements of the deficiency zero theo-
rem (see theorem 14). Hence, for the states v there exists one unique steady-state
corresponding to each stoichiometric class. In other words, v stabilizes for any
constant value of the manipulated variable. And since the selection of controlled
inventories was done such that they fulfill a steady-state controllability requirement
(see theorem 11), then the controlled inventories y do also reach a steady-state for
any given value of the manipulated variable. Hence the whole state stabilizes.
Figures 7.1 and 7.2 show a simulation run with equivalent setpoint conditions

to the ones used in Figures 6.17 and 6.18, but constrained control is now used.
The constraints to the manipulated variables have been chosen such that the last
setpoint is not feasible. As can be observed in Figures 7.1 and 7.2, the feasible
setpoints are reached in an identical way as in Figures 7.1 and 7.2, whereas in the
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Figure 7.1: Closed-loop simulation of the HR with constrained control. Manipu-
lated variables (first column) and controlled inventories (second column).
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Figure 7.2: Closed-loop simulation of the HR when winertfeed = 0, and using con-
strained control. Selected variables: interphase level between compartments I and
II, mass flowrate of particles leaving compartment II, mass of particles of active
feedstock with size xN within compartment I, and mass of particles of inert feed-
stock with size xN , within compartment I.
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Figure 7.3: Closed-loop simulation of the HR with constrained control. Manipu-
lated variables (first column) and controlled inventories (second column).

case of the unfeasible setpoint, an offset is obtained for both controlled inventories,
but stabilization of all inventories and states is achieved. Figure 7.3 shows other
setpoint conditions. Note that the second setpoint is feasible, and the inventory
converges to the setpoint, but one of the constraints is active for a certain time, and
this makes the response more sluggish than when no saturation takes place. Note
also that the last temperature setpoint is unfeasible, and again the closed-loop
stabilizes at a steady-state, but an offset is obtained.

7.3 Robust inventory-passivity based control

Mathematical models are never perfect. Models are built on assumptions that
facilitate the establishment of the mathematical system of equations. However,
these assumptions make the behavior of the model different from that of the real
system. In control literature, such systems whose behavior are only partially known
are referred to as uncertain systems. Some sources of uncertainty in process models
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are (Christofides 2002):

• uncertain variables, such as unknown process parameters and unknown dis-
turbances,

• unmodeled dynamics, such as fast actuator and sensor dynamics that are
not taken into account and time-varying parameters.

In terms of analysis and control design, there are several approaches to classify
and handle uncertainties, see for example (Qu 1998) for a thorough discussion.

The problem of controlling uncertain systems, also referred to as
the robust control problem, is to design a fixed (i.e. uncertainty in-
dependent) controller which guarantees the design requirements in the
presence of significant uncertainties that are bounded in size by either
some constant or some well-defined functions of the state and time.
If it exists, such a stabilizing control is called robust control, and the
resulting stability or performance is called robust stability or perfor-
mance, respectively. The adjective “robust” is used to refer to the fact
that the specific property holds for all possible uncertainties within
their bounds (or bounding functions). (Qu 1998)

The number of references dealing with robust control of particulate processes
is quite limited. A method for the synthesis of robust nonlinear controllers for
spatially homogeneous particulate processes including time-varying uncertain vari-
ables and unmodeled dynamics, was reported in (Chiu & Christofides 2000) and
(Christofides 2002). The controllers are synthesized via Lyapunov’s direct method,
and enforce the desired stability in the closed-loop system and attenuation of the
effect of uncertain variables. However, the reported method relies on three strong
assumptions that may not be fulfilled for some processes, and the procedure re-
quires knowledge of advanced nonlinear control. Robust linear control has also
been reported in the literature (Vollmer & Raisch 2002), (Galán et al. 2002), but
such an approach is only useful when the dynamics of the particulate process can
be approximated by a linear model, and the linear model is accurate enough to
preserve the main features of the original system.
As regards inventory passivity-based control, a robust controller has recently

been reported (Wang & Ydstie 2004b). The reported approach consists in com-
bining inventory passivity-based control with high gain (sliding mode) adaptive
control to handle the system uncertainties caused by modelling errors and unmea-
sured disturbances.
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Theorem 23 (Wang & Ydstie 2004) Consider the following uncertain inven-
tory system

dv

dt
= p(x) + Φ (x)u+∆, (7.12)

where ∆ is a lumped uncertainty which is possibly nonlinear and time-varying. The
sliding mode controller

p(x) + Φ (x)u = −K (v − v∗) +
dv∗

dt
− δ̂ sign (S (t)) , (7.13)

where

S (t) =

µ
d

dt
+K

¶Z
(v − v∗) dτ (7.14)

k∆k ≤ δ̂, (7.15)

and with the following adaptation algorithm

dδ̂

dt
= α k∆k ,

where α is a positive constant, makes the controlled system asymptotically conver-
gent to the switching surface S (t) = 0, and further guarantees that the system is
stable. The above sliding mode design is equivalent to the passivity-based control.
The mapping

p(x) + Φ (x)→ (v − v∗) (7.16)

is passive with the storage function

V
³
S (t) , δ̃

´
=
1

2
S2 +

1

2
δ̃
2
, (7.17)

and the supply function
w = kS (t)k (k∆k− δ) , (7.18)

where
δ̃ = δ̂ − δ,

being δ the real bound on the uncertainty.

The method reported in (Wang & Ydstie 2004b) was only tested with square
systems, i.e. systems where the number of inventories equals the number of manip-
ulated variables (dim v = dimu). However, the method can be applied to rectan-
gular systems (dimu < dim v) as long as the conditions of the stability theorem
of rectangular system (theorem 11) and of the robust inventory passivity-based
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Figure 7.4: Closed-loop simulation of the HR with an erroneous value of parameter
ka in the controller. Manipulated variables (first column) and controlled inventories
(second column).

control theorem (theorem 23) are all met. This means that the sliding mode con-
troller can be applied to the Silgrain R° process. Let us start considering a constant
uncertainty in the parameters. In section 4.7, it was proved that the parameter
affecting disintegration the most, was ka in the breakage frequency function, see
equation 4.8. Let us assume that the real parameter is constant but unknown,
such that the value used in the model is not correct. Figures 7.4 and 7.5 show
the same closed-loop simulation as that corresponding to Figures 6.17 and 6.18,
except that an erroneous value of ka in the nominal controller is now used. Figure
7.4 shows that the controlled variables stabilize, but an offset exists. By compar-
ing Figures 7.5 (perfect model) and 6.18, it can be noticed that the steady-state
reached by the uncontrolled variables is also slightly displaced. Figures 7.6 and
7.7 show the same closed-loop simulation as previously, again with an erroneous
value of ka in the controller law, but now the controller law is robust and is synthe-



178 CHAPTER 7. ADV. INVENTORY PASSIVITY-BASED CONTROL

Figure 7.5: Closed-loop simulation of the HR with an erroneous value of parameter
ka in the controller. Selected variables: interphase level between compartments
I and II, mass flowrate of particles leaving compartment II, mass of particles of
active feedstock with size xN within compartment I, and mass of particles of inert
feedstock with size xN , within compartment I.
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sized according to equation 7.13. As it can be observed, the inventories converge
to their setpoints, and the selected variables converge to the same setpoints as
in Figure 6.18. This means that the sliding-mode controller has an integral ac-
tion. Moreover, the integral action is adaptive. For this reason, the sliding mode
controller should work in more complex situations than a constant error on one
parameter. Let us assume now that for each of the setpoint conditions the value of
ka is constant but different, i.e. ka acquires 3 different values along the simulation,
and these 3 values are changed in a random way. Figures 7.8 and 7.9 show the
closed-loop response of the nominal controller, while Figures 7.10 and 7.11 show
the closed-loop response of the robust controller. The nominal controller stabilizes
the inventories, but offsets from the setpoints are observed. In contrast, the robust
controller makes the inventories to converge to their setpoints.
In (Wang & Ydstie 2004b), an example is given where the uncertainty of the

parameter is assumed to be a random variable. Such an stochastic model was
simulated, and the sliding mode controller gave a satisfactory performance. Re-
producing the conditions of white noise in a parameter of the Silgrain R° model is
not straightforward due to numerical difficulties. The Silgrain R° model is large in
size and is stiff, thus a variable-order solver for stiff problems is required (ode15s
command inMatlab R° is used in this work). Solvers using variable time step size
can not solve stochastic equations without further modification. This problem is
discussed in (Lie 2004).

For the ODE
dx

dt
= f (x, u) , (7.19)

it is possible to write this as

dx = f (x, u) dt. (7.20)

By integrating dx from xt to xt+∆t and f (x, u) dt from t to t+∆t, this
gives:

xt+∆t − xt =

Z t+∆t

t

f (x, u) dt.

If f (x, u) varies slowly over the time interval, this intuitively leads to
the Explicit Euler approximation:

xt+∆t − xt ≈ ∆t · f (xt, ut) .

However, if f (x, u) varies rapidly over the time interval ∆t, this
approximation is not valid. One example of such systems is if u is
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Figure 7.6: Closed-loop simulation of the HR with an erroneous value of parameter
ka in the controller, and a robust inventory passivity-based controller. Manipulated
variables (first column) and controlled inventories (second column).
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Figure 7.7: Closed-loop simulation of the HR with an erroneous value of parame-
ter ka in the controller, and a robust inventory-passivity based controller. Selected
variables: interphase level between compartments I and II, mass flowrate of par-
ticles leaving compartment II, mass of particles of active feedstock with size xN
within compartment I, and mass of particles of inert feedstock with size xN , within
compartment I.
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Figure 7.8: Closed-loop simulation of the HR with a time-varying ka, and using the
nominal controller. Manipulated variables (first column) and controlled inventories
(second column).
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Figure 7.9: Closed-loop simulation of the HR with with a time-varying ka, and
using the nominal controller. Selected variables: interphase level between compart-
ments I and II, mass flowrate of particles leaving compartment II, mass of particles
of active feedstock with size xN within compartment I, and mass of particles of
inert feedstock with size xN , within compartment I.
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Figure 7.10: Closed-loop simulation of the HR with a time-varying ka, and using
the robust controller. Manipulated variables (first column) and controlled inven-
tories (second column).
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Figure 7.11: Closed-loop simulation of the HR with with a time-varying ka, and
using the robust controller. Selected variables: interphase level between compart-
ments I and II, mass flowrate of particles leaving compartment II, mass of particles
of active feedstock with size xN within compartment I, and mass of particles of
inert feedstock with size xN , within compartment I.
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so-called white noise. When u is white noise, it is even problematic to
write the system as

dx

dt
= f (x, u) ,

because f (x, u) will hardly be continuous, and hence x is not really
differentiable. Because of this, mathematicians tend to write such sto-
chastic differential equations as in equation 7.20. For the general case
of such systems, it is even difficult to find an Euler-type approximation.
For the case of additive/multiplicative white noise u, i.e.

f (x, u) = g (x) + S (x)u, (7.21)

where S (x) is a matrix, it can be shown that the Euler approximation
takes the form

xt+∆t − xt ≈ ∆t · g (xt) + u (∆t) · S (xt) · ut.

For the special case when the white noise is drawn from either the
Gaussian distribution or the uniform distribution, function u (∆t)
takes the form

u (∆t) =
√
∆t,

see e.g. (Artemiev & Averina 1997). For higher order methods such
as Runge-Kutta methods, the scheme becomes even more complicated
when u is white noise. The same is valid for variable step-length meth-
ods. If we treat the problem as an ODE with fixed variance in the
random number generator, instead of adapting the variance to the step-
length, serious problems may show up, and they are especially serious
if a variable step-length method is used. (Lie 2004)

In the simulations attempted with the Silgrain R° model, treating the problem
with fixed variance in the random number generator, the following difficulties
were observed: the simulation time was very large, when a small step-length is
used the controller apparently worked better than it will do in reality, as the
step length increased the problem became unrealistically difficult to control and
the controlled system got sluggish, and in some occasions the problem eventually
became unstable. This behavior can be explained by the erroneous expression

u (∆t) = ∆t.

Hence, the simulation result was not representative of the closed loop behavior
that would be found when using the designed controller on the real system.
A question that may be raised is: Is it realistic to assume that the uncertainty

is white noise? In (Bryson & Ho 1975), the following point of view appears on an
uncertainty:
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. . . , in “worst case designs”, we assume that nature is perverse
enough to determine the worst disturbance; but we do not assume that
nature is perverse enough to actually change the disturbance as the
game evolves. (Bryson & Ho 1975)

In any case, it can be concluded that the robust controller suggested in (Wang
& Ydstie 2004b) may provide a better performance than the nominal inventory
passivity-based control in the presence of uncertainty. Note that the robust con-
troller can be applied to the type of systems reported in this work, i.e. rectangular
systems with dim v < dimu. The robust controller ensures stabilization of the
whole set of variables and inventory convergence to the setpoints as long as all the
requirements of the stability theorem of rectangular system (theorem 11) and of
the robust inventory passivity-based control theorem (theorem 23) are met.
Finally, note that the robust controller has integral action. Therefore, some

anti-windup strategy should be used if there exists constraints on the manipulated
variables.

7.4 Observer-based control

The inventory passivity-based control law, both in the nominal mode (equation
6.16) and in the sliding mode (equation 7.13), is typically a function not only
of the controlled inventories and model parameters, but also a function of other
internal states or transformation of the states (for example, intensive variables).
However, for many particulate processes, the availability of instrumentation and
measurements is limited. This means that in practice not all the states required
in the control law are available. Fortunately, for many particulate processes, rel-
atively realistic mechanistic models are available or can be developed. Therefore,
the available process measurements together with the process knowledge (in the
form of a model) can be used to estimate the state of the system. This is what
an observer or state estimator does. The concept of an observer for a dynamic
process was introduced in 1966 by Luenberger (Luenberger 1966), but actually
observers had already been in use since the invention of the Kalman filter in the
late 1950s. One possible way to define an observer is the following:

An observer for a dynamic system S(x, y, u) with state x, output y
and input u is another dynamic system Ŝ(x̂, y, u) having the property
that the state x̂ of the process of the observer Ŝ converges to the
state x of the system S, independent of the input u or the state x.
(Friedland 1996)

Figure 7.12 shows a block diagram of an observer.There are various ways
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Figure 7.12: Observer block diagram.

to classify observers. Hence, if the observer has the same order as the system
(dim x̂ = dimx) irrespective of the number of independent observations, then a
full-order observer is obtained. In contrast, a reduced-order observer is obtained
if the dimension of the estimated vector is smaller than the dimension of the sys-
tem’s state vector (dim x̂ = dimx − dim y). If the measurements are assumed
to be noise-free, the observer is deterministic. If measurement noise is accounted
for, the observer is stochastic. Depending on the type of system, the observers
can be linear or nonlinear. The Kalman filter is one of the most widely used
observers, and is a linear stochastic full-order observer that is optimized for the
noise present in the measurements and inputs of the process. In the framework of
inventory passivity-based control of particulate processes, it is more convenient to
use nonlinear deterministic full-order observers, for the following reasons:

• The available models, i.e. population balance models, are typically nonlinear.

• Population balance models have a large number of states. Hence, using
reduced-order observers would not present any considerable advantage.

• Stochastic observers require knowledge of the probabilistic nature of mea-
surement noise.

Among the various applications of observers, perhaps the most important is
for the implementation of closed-loop control algorithms designed by state-space
methods (Friedland 1996). Figure 7.13 sketches the function of the observer in
the framework of inventory passivity-based control. Notice that the controlled
inventories in many cases can not be measured directly. Therefore, the symbol
ym is used to indicate measurements, while y is used to indicate the controlled
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Figure 7.13: The function of an observer in the framework of inventory passivity-
based control (CVS = Controlled Variable Synthesizer).

inventories. In mathematical terms, the observer corresponding to the system in
equation 6.10 is:

dv̂

dt
= φ (x̂)u+ p (x̂)− L (ym − ŷm)

v̂ = g (x̂)

ŷm = h (v̂) , (7.22)

where L is the observer gain, and h is the transformation function that relates the
measurements to the state variables, i.e. to the inventories.
The main performance requirement of an observer is that the estimation error:

ê = v̂ − v (7.23)

converges to zero in a finite time interval, and irrespective of u and v. In order for
this to be achieved, the information about the state v must be recoverable from
knowledge of the available measurements ym and from the observer equations.
Such a requirement is referred to as observability. Therefore, the observer design
problem is to find the observer gain L that makes the state v observable from
the available measurements ym, and that guarantees that the estimation error ê
converges to zero in a reasonable time interval. For linear systems, there exists
methods that ensure existence and convergence of observers, see (Friedland 1996)
for a review. In contrast, for nonlinear systems, establishing generally applicable
conditions for existence and convergence of observers is an open and active area
of research (Chaves & Sontag 2002).
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Despite the potential advantage of observers in the field of particulate processes,
the amount of reported material on the design of observers for such systems is
scarce. The extended Kalman filter, which is an extension of the Kalman filter to
nonlinear systems, could be used since it has proven to give satisfactory results
in many other applications. However, no convergence proof is available for the
extended Kalman filter. A Luenberger-type observer is used in (Christofides 2002)
to estimate the states required for the implementation of a nonlinear state feedback
controller. The design is carried out under the hypothesis that the system is locally
observable.
An observer-based control strategy which combines inventory passivity-based

control with a state observer has recently been reported (Wang & Ydstie 2004a),
where it was shown that the observer error converges to zero if the local lin-
earized system is observable and if a Lipschitz condition for the high order terms
is satisfied. The reported work proves that such an observer combined with the
sliding mode controller in equation 7.13 makes the state estimate converge, and
the controlled system will be stable. The development of such an observer for the
Silgrain R° model is possible, but not straightforward, so it falls outside the scope
of this work.
The Silgrain R° model can be considered a deficiency zero chemical reaction

network. The explicit construction of globally convergent observers for these type
of reaction networks has been reported in (Chaves & Sontag 2002). In the reported
method, the measurements are a subset of the state variables, or more generally,
monomials in state variables. A detectability requirement must be fulfilled, but the
observer design method provides a straightforward way to check this requirement,
that is based on linear algebra. Detectability can be checked by analyzing the
rank of the sum of two subspaces: one of them is the stoichiometric subspace of
the reaction network, and the other subspace is the column space of the transpose
of the observer gain. Unfortunately, the method reported in (Chaves & Sontag
2002) can not be directly used for reaction networks with a zero complex, and the
Silgrain R° model does contain a zero complex.
The development of nonlinear observers for particulate processes should attract

attention from the research community in the future, since realistic models are
available, measurements are difficult, and the potential advantages of using model
based control, i.e. observer based control, are notable.

7.5 Semibatch control

The Silgrain R° process operates in a semibatch way as regards the feeding of the
FeSi feedstock. Inventory passivity-based control can still be applied. The only
changes that have to be considered for control design are that:
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Figure 7.14: Semibatch control of the HR of the Silgrain R° process using inven-
tory passivity-based control. Manipulated variables (first column) and controlled
inventories (second column).

• The reference v∗ is no longer an specific setpoint, but a trajectory, more
precisely, a cyclic trajectory.

• Some constraints may be active in certain parts of the cycle, so it is natural to
use constrained inventory passivity-based control. Then, special care should
be taken such that the whole reference trajectory is feasible.

Figure 7.14 shows the closed-loop response that would be obtained if inventory
passivity-based control was used to automate the semibatch feeding of the HR
in the process. Note that in Figure 7.14, inventory passivity-based is used to
keep the temperature constant at a desired setpoint even though FeSi feeding
is semibatch. In contrast, in the current manual operation of the process, the
temperature varies. Keeping the temperature constant is important to reduce
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the variability of the quality of the product. Therefore, using inventory-passivity
based control in the Silgrain R° process is advantageous, regardless of the semibatch
feeding of raw material (in an automatic way).

7.6 Plantwide control and SPM

So far, inventory passivity-based control has been used for the design of a con-
trol strategy for a unique process unit, without considering the rest of the plant.
However, the interaction among units in a plant has an effect on the overall perfor-
mance of the plant. It is known that apparently appropriate control schemes for a
process unit may actually lead to an inoperable plant when the unit is connected
to other unit operations in a process with recycle streams and energy integration
(Luyben et al. 1998). Plantwide process control involves the systems and strategies
required to control an entire chemical plant consisting of many interconnected unit
operations (Luyben et al. 1998). Because of the problem’s complexity, approaches
to plantwide control often rely on heuristics and experience. But also optimization
and simulation are useful for plantwide control.

The primary mathematical tools employed in this book is a rigor-
ous, nonlinear mathematical model of the entire plant. This model
must faithfully capture the nonlinearity and constraints encountered
in the plant under consideration. Any plantwide control scheme must
be tested on this type of model, because linear, unconstrained models
are not adequate to predict many of the important plantwide phenom-
ena. So mathematical modelling and simulation are vital tools in the
solution of the plantwide control problem. (Luyben et al. 1998)

Using inventory passivity-based control to design the individual unit control-
loops may present some advantages as regards plantwide control, since:

• it is based on rigorous nonlinear models. If nonlinear models of the units are
available, it should be relatively straightforward to build a nonlinear model
of the whole plant,

• systems that are rendered passive by passivity-based control retain the sta-
bility properties when they are interconnected (Lozano et al. 2000).

It is also important to remember that inventory passivity-based control is part
of a multi-level hierarchy of control functions. This is illustrated in Figure 7.15,
where inventory passivity-based control would lie in the area of advanced control.
At the bottom of the structure is the basic control, that manipulates the actuators
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Figure 7.15: Hierarchy of the control functions in a typical process plant. Similar
figures can be found in references (Prett & García 1988) and (Qin & Badgwell
1997).

directly. The advanced control improves the performance of the basic controllers.
The following level (optimization and supervisory control) takes into consideration
operational constraints and economical factors to optimize the overall operation
of the plant. Finally at the top of the structure another optimizer takes into
account the long-term and global economic goals of the plant. Similar hierarchical
structures have been described in the field of model predictive control, see for
example, (Prett & García 1988) and (Qin & Badgwell 1997).
Automatic control in general, and inventory passivity-based control in particu-

lar, aim at reducing the variability of a process. There is another field that shares
such a goal: statistical process monitoring (SPM), also sometimes referred to as
statistical quality control. Quality is difficult to define, since it has many dimen-
sions. For instance, according to (Garvin 1988) the main dimensions of quality
are: performance, reliability, durability, serviceability, aesthetics, features, per-
ceived quality, and conformance to standards. The traditional definition of quality
is based on the viewpoint that products and services must meet the requirements of
those who use them, i.e. “quality is fitness for use”. However, a more appropriate
definition is “quality is inversely proportional to variability” (Montgomery 1996),
since if variability in the main characteristics of a product decreases, the quality of
the product increases. Quality improvement is thus the reduction of variability in
processes and products. Process control reduces the variability of a process, thus
being a way to improve quality. SPM uses statistical methods to describe variabil-
ity, to determine whether the variability is due to random variation or to assignable
causes, and then take action depending on the cause of variation. Therefore, the
main elements of an SPM system are:

• The quality characteristics to be followed up, i.e. equivalent to the controlled
outputs of a process controller.



194 CHAPTER 7. ADV. INVENTORY PASSIVITY-BASED CONTROL

Figure 7.16: Statistical process monitoring.

• The nominal or target value for the quality characteristic, i.e. equivalent to
the setpoint values of a process controller.

• A statistical method to determine whether the quality characteristic is in
statistical control, i.e. the characteristic has a value within the target values
where there are no unusual sources of variability present, or if on the contrary,
the quality characteristic is out of statistical control due to the presence of
assignable causes.

• A decision-taking method to solve the situations in which the quality char-
acteristic is out of statistical control.

Figure 7.16 illustrates the concept of SPM.
There are many problem-solving tools that are used in the context of SPM,

such as: histograms, check lists, pareto chart, cause and effect diagram, defect
concentration diagram, scatter diagram and control chart. Control charts plot the
quality characteristic against the nominal value. Hence, control charts are very
similar to the plots used in process control. Originally, the control charts were
used for univariate statistics, such as the mean value chart, dispersion chart, the
cumulative sum chart, the exponentially moving average chart, etc. Control charts
for multivariate statistics have also been developed such as the Hotelling T 2 control
chart (Johnson & Wichern 1998).
SPM regards the quality variables as random variables. Traditional SPMmeth-

ods assume that these random components of the in-control variation are indepen-
dent and identically distributed (iid). However, the measurements made on chem-
ical processes usually violate the iid assumption. Process measurements tend to
be autocorrelated, and specially this is so when feedback control loops are present.
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Figure 7.17: Integration of inventory passivity-based control and statistical process
monitoring. CVS = Controlled variable synthesizer.

An approach that has proven useful in dealing with autocorrelated data is to model
the correlative structure with an appropriate time series model, use that model to
remove the autocorrelation from the data, and apply control charts to the resid-
uals (Montgomery 1996). The residuals are not autocorrelated (white noise), and
therefore the residual at each instant time contains new information not carried
out in the previous values of the residual. For this reason, the residuals are of-
ten referred to as innovations in estimation literature. An alternative approach
was reported in (Negiz 1995) and (Negiz & Cinar 1997), consisting in describing
the in-control variability by means of a canonical-variate (CV) state-space model,
and a T 2 statistic based on the CV state variables is used for developing a SPM
procedure.
Although SPM and process control share the same ultimate goal, they use dif-

ferent techniques and different information to achieve such a goal. There is consid-
erable interest in combining them (Negiz 1995), (Montgomery 1996), since they are
complementary. Properly designed control systems reduce variability. However,
when certain types of disturbances and assignable causes occur, then the process
control system may not handle them properly, and variability may increase. These
assignable causes could then be detected by the SPM procedure, and proper ac-
tions could be taken. Figure 7.17 illustrates how inventory passivity-based control
could be combined with an SPM approach. Since a fairly representative model
is available, the same model can be used as a basis for the SPM procedure. The
quality measurements are compared with the quality variables predicted by the
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model, and then control charts for the innovations or for the T 2 statistic based
on the innovations are constructed. Control charts can be constructed because
the autocorrelation is eliminated, and the residuals are approximately white noise.
When the process is out of statistical control, appropriate corrective measurements
could be adopted such as: modifying the feedstock to the normal values, re-tune
the controller or the model, etc.

7.7 Conclusions

In the practical implementation of inventory passivity-based control, the manipu-
lated variables are often constrained. The presence of such constraints may make
certain sets of setpoints unfeasible, and the controller performance may deterio-
rate. These issues come up on all control designs since the constraints are imposed
by the process equipment and the process physics. Therefore, a prior analysis of
setpoint feasibility is necessary, regardless of the method used for control. Sec-
tion 7.2 shows that inventory passivity-based control ensures convergence of the
controlled inventories to their setpoints, and stabilization of the remaining states,
provided that the selected setpoint are feasible and -controllable. For chemical
reaction networks of zero deficiency, the closed-loop is stable even in the case of
unfeasible setpoints. In such case, the system stabilizes but an offset is obtained.
The effect of disturbances and model errors is analyzed in section 7.3. Wang &

Ydstie (2004b) recently suggested a method which combined inventory passivity-
based control and sliding mode control. The method has been tested on the
Silgrain R° process with satisfactory results. The inventories converge to the desired
setpoints and the remaining states stabilize, even in the presence of disturbances
and model errors, as long as certain conditions are met. Moreover, the design of
the controller is nearly as simple as in the nominal design.
One of the main limitations of inventory passivity-based control is the need of

knowing the state of the system in order to calculate the control law. Unfortu-
nately, full state measurements may not be available. However, relatively realistic
models are available or can be developed for most particulate processes. There-
fore, observers can be constructed to calculate the unmeasured states. Proving
convergence of nonlinear observers is an area of active research; some promising
results have been reported, and are reviewed in section 7.4.
Many particulate processes operate in semibatch, such as the case under study.

Section 7.5 shows that inventory passivity-based control can be used in a straight-
forward way to automate such a semibatch operation.
A brief discussion of the role of inventory passivity-based control within the

overall operation of a plant is given. Inventory passivity-based control is just an
element in the hierarchy of control functions in a chemical plant. It is mentioned
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how the stability of interconnections that characterizes passivity-based control can
be advantageous in the framework of plantwide control. Finally, a brief discussion
is given about the potential benefits of combining inventory passivity-based control
with statistical process monitoring.
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Chapter 8

Conclusions and future directions

8.1 Discussion and conclusions

The main goal of this thesis has been to establish a systematic strategy for the
development of PBE models of particulate processes to be used for the purposes of
design and implementation of automatic control. Particulate processes are encoun-
tered in a great number of industrial processes. Although particulate processes
have been studied for several decades now, there are still many challenges as-
sociated to the development of realistic models and control strategies for such
processes.
Special emphasis has been put on the development of models that represent

realistically the dynamic behavior of industrial-scale units, while keeping a rea-
sonable degree of mathematical complexity. A real industrial particulate process:
the Silgrain R° process, has been used as case study. The approach to PBE mod-
eling suggested in this thesis does not differ to a great extent from the general
approach to modeling of chemical reaction units, but attention has been stressed
in certain stages to account for the special features of particulate processes. Spe-
cial consideration has been given to the establishment of model foundations. The
widely-used assumption of complete-mixing turns out to be unrealistic for the
PBE in many instances, and should thus be avoided. A compartmentalization of
the unit based on distinguishable regions in the unit is suggested in this thesis
to achieve more realistic models. A PBE is thus written for each compartment,
and the connections among compartments are defined based on the physics and
hydrodynamics of the process. For the Silgrain R° process, a division into 4 com-
partments proves adequate. Once the balance equations are written, the next stage
consists in establishing the constitutive equations, which is relatively straightfor-
ward for the continuous phase, but more striving for the disperse phase. Hence,
for the Silgrain R° model a tailor-made experimental campaign at laboratory scale
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was required in order to determine the constitutive equations describing particle
disintegration. Once the constitutive equations are defined, the next stage is the
selection of a solution method for the mathematical equations. PBE models are
in general more challenging to solve than other process models, but the modeler
can benefit from the extensive research results that are available in the literature.
For the Silgrain R° model, a numerical discretization method on the particle size
coordinate, that ensures mass preservation, is used to solve the system equations
corresponding to compartments I, II and III. Compartment IV is solved by a com-
bination of the method of moments and the collocation method. Once the model
can be solved and simulated, an important stage is that of parameter estimation
and model validation. Despite of the importance that this stage plays for the
applications in which PBE models are used as realistic representations of the par-
ticulate processes, there is still limited reported material on this topic. For this
reason, special attention is dedicated to these tasks in this thesis. An experimental
campaign on the industrial plant has been carried out to gather data for parameter
estimation and model validation, and a systematic method for parameter identifi-
ability analysis is discussed and tested with the Silgrain R° model. Such a method
proves to be very useful, since it provides a subset of parameters that can be iden-
tified from the available data. After parameter estimation, the fitting of the model
to the experimental data from the industrial plant is satisfactory. Although the
prediction abilities of the model have not been tested due to the limited amount of
available data, the fact that the model fits well to the experimental data after pa-
rameter estimation is a positive result, and confirms the potential of PBE models
for predictive purposes.

As regards automatic control, the attention is focused on a particular strategy:
inventory passivity-based control. Although this control approach had never been
applied to particulate processes before, and has seldom been applied to chemi-
cal processes, inventory passivity-based control has been chosen here because it
possesses some properties that can be advantageous, and which are not found in
other approaches. First of all, the control law is directly based on the model, is
multivariable, and accounts for the nonlinearities of the process. Secondly, conver-
gence of the controlled outputs to their setpoints and stabilization of the remaining
states of the system, can be ensured under certain conditions. The interconnection
of systems that are rendered passive by the control law, is also passive and thus
stable. In this thesis, the main ideas behind dissipativity, passivity, and inventory
passivity-based control theory are summarized. The methodological framework of
inventory passivity-based control is extended to include reactive process systems
and particulate process systems. The approach relies on certain controllability
and detectability requirements. Although a general method to study detectability
may not be possible, a method is suggested in this thesis that may be applied to a
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large number of systems. It is based on a powerful theory in the field of nonlinear
chemical dynamics: The chemical network approach by Feinberg. This method is
applied to the Silgrain R° model, thus demonstrating that inventory passivity-based
control can relatively easily be used for control of particulate processes. Some is-
sues that are relevant for the practical implementation of inventory passivity-based
control have also been discussed, namely: the presence of constraint inputs, the
effect of uncertainties and model errors, the need of an observer, the possibility for
semibatch control, and the importance of the controller in plantwide control. It is
discussed how the presence of constrained inputs may deteriorate the performance
of controllers in general, and how it may even lead to infeasibility of the setpoints.
However, if certain precautions are taken, inventory passivity-based control may
perform in a satisfactory way in the presence of input constraints. Regarding
model uncertainties, a reported method in the literature for robust control has
been tested with the Silgrain R° model, with quite good results. Some promising
results in the search for convergent nonlinear observers are reviewed. Finally, a dis-
cussion is given on how inventory passivity-based control can be advantageous for
the purpose of plantwide control, and how the control approach can be combined
with statistical process monitoring to achieve a further reduction in the variability
of the process and the products, and thus improving the quality of the processes
and products.
Based on the results presented in this thesis, it can be concluded that relatively

realistic PBE models of industrial process units can be developed in a systematic
way, and that inventory passivity-based control can be applied for the design and
implementation of control strategies for particulate processes. Inventory passivity-
based control exploits the knowledge of the process contained in the PBE model,
can ensure stabilization of the process, can be used for continuous or semibatch
operation, and has other certain advantageous features. A model of an industrial
leaching process, the Silgrain R° process, has been developed, and a control strat-
egy based on inventory passivity-based control has been suggested, with promising
results (in simulation).

8.2 Future directions

Speculation about the directions that the academic and industrial communities
will adopt in the future is not an easy task. In most cases, the statements made
on future directions tend to be too optimistic. This is so because the response
time constant of the academic community to technological advances/discoveries is
several orders of magnitude smaller than the corresponding time constant of the
industrial community. There are a number of reasons that explains this: limited
budgets for research, high employee mobility, economic cycles, etc. I hope this will
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change in the future, such that the technological results studied by the academic
community, will also be quickly adopted by the industrial community. Consid-
erable time and resources are used by many academic institutions nowadays to
develop PBE models, but are these models exploited by industry? Unfortunately,
not to the extent they could. So, here I throw my hopes about future directions:

• Sensor technology will improve, and the new sensors will be used in indus-
try. The areas that will benefit from a better instrumentation are: process
understanding, model development and validation, process control, process
monitoring, and process optimization.

• PBE model development will be more systematic, and even automatic: spe-
cific software for model development may be developed, in which many of
the modeling tasks will be carried out automatically.

• Results on the phenomenological laws of particulate processes will make it
easier to establish the constitutive equations, with less need for tailor-made
experiments.

• A large number of tools and advances from systems engineering will be reg-
ularly used in PBE model development and the use of PBE models.

• The use of PBEmodels for off-line and on-line uses in industrial plants will be
routine. PBE models will be used as the basis for design and implementation
of unit control, plantwide control and statistical process monitoring. A better
integration between these fields will be achieved.

• Controller design and controller implementation will be more straightfor-
ward, more systematic, and the resulting controller algorithm will have well-
known and favorable features. Inventory passivity-based control will be en-
countered in many particulate processes.

• A better integration of process control and statistical process monitoring will
be achieved.

As regards, the case study: the Silgrain R° process, my hopes are that:

• The instrumentation in the plant will be improved.

• The model will be further validated, and improved if new knowledge of the
process is available.

• The model will be used for the following tasks: training simulator, process
optimization, process control, and statistical process monitoring.
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• The control strategy, based on inventory passivity-based control, will be
implemented.
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Appendix A

DAE vs. ODE

Ordinary differential equations (ODE) and differential and algebraic equations
(DAE) arise when using mathematical modeling techniques for describing dynamic
phenomena. An ODE system is given by equations of the type

dx

dt
= f (t, x, u) , (A.1)

where x are the variables whose dynamic behavior we are interested in, u are
specified input variables, and t represents time. In turn, a DAE system is given
by equations of the type

F

µ
t, y,

dy

dt

¶
= 0, (A.2)

i.e. in addition to differential equations the system contains algebraic equations.
Historically, sets of DAEs were frequently restated and solved as ODEs, by

differentiation and/or extensive algebraic manipulation, often destroying the nat-
ural structure of the system. Today, it is becoming more common to deal with
such problems in their original, natural DAE form, mainly because the variables
in the original DAE typically have some physical significance, whereas those that
result after manipulation into an ODE may not (Lefkopoulos & Stadherr 1993).
However,

DAEs are not ODEs (Petzold 1985).

A number of difficulties can arise when numerical methods are used to solve
DAE systems of the form shown in equation A.2.Many of the DAE systems can be
solved using numerical methods which are commonly used for solving stiff systems
of ODEs, such as Backward Differentiation Formulas (BDF). Others can be solved
using such methods but only after substantial modification to the strategies usually
used in codes implementing those methods (Petzold 1985).
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DAE systems can be characterized using the concept of index. The index can
be thought of as a measure of the variation of the DAE structure from a standard
ODE system (Lefkopoulos & Stadherr 1993). The index can be defined as the
minimum number of times we must differentiate all or part of the system A.2 with
respect to time t in order to determine y0 = dy/dt as a continuous function of y
and t. More formally, it can be stated that the index of a DAE is the smallest
nonnegative integer ν such that the nonlinear system:

F (t, y, y0) = 0

d

dt
F (t, y, y0, y00) =

dF

dy
y0 +

dF

dy0
y00 +

∂F

∂t
= 0

...
dν

dtν
F (t, y, y0, y00, ..., yν, yν+1) = 0

when viewed as relating t, y, y0, y00, ..., yν, yν+1 as independent variables, is solved
for y0 uniquely in terms of y and t, i.e. there is an underlying ODE y0 = y0 (z, t) .
The definition implies that any pure ODE is an index-zero DAE, and a system of
algebraic equations has an index-one provided the system of equations is nonsin-
gular.
Another difference between ODEs and DAEs is that in the latter we must

specify consistent initial conditions, and this can become a challenging problem
for certain DAEs. For a set of initial conditions to be consistent, it must satisfy
the system at an initial time t0

F (t0, y0, y
0
0) = 0. (A.3)

Note that the term initial conditions is used to refer to the vector (y0, y00)
rather than simply to y0. This is a necessary condition, but not always sufficient
for consistency. Usually, some or all of the equations resulting from differentiating
F ν times with respect to time have to be satisfied, too.



Appendix B

The Silgrain R° Simulator

In order to make the Silgrain R° model user-friendly and available to users that
may not be very familiar with programming in Matlab R°, a graphical user inter-
face (GUI) has been developed with the help of the GUI Design Environment in
Matlab R°.
The simulator is started by typing Silgrain in the command line of Mat-

lab R°. The window shown in Figure B.1 appears. By clicking on the First Run
button, a new simulation is initiated. The windows shown in Figures B.2 and B.3
appear, where the user types the values of the inputs and the initial conditions
corresponding to the HR and to the UR, respectively. Default values are given in
the windows, but they have been removed here to protect confidential information.
Note that some of the inputs are considered to have constant values during the
simulation, while others can change in a cyclical pattern. This means that we can
simulate diverse modes of operation: continuous, semibatch or batch operation of
certain inputs, such as the FeSi feed or the tapping of the UR . Figure B.4 in-
dicates the kind of cyclic inputs that may be simulated. Once the values of the
initial conditions and inputs in Figures B.2 and B.3 are typed, and the OK buttons
are clicked, the window shown in Figure B.5 pops up, where the user introduces
the desired simulation time. When the OK button is clicked, the simulation starts.
Once the calculations are finished, the standard (Windows) Save window appears,
where the user can select the folder, the filename and save the simulation results
as a data file (format .mat in Matlab R°). Once the data are saved, a window
with a question of whether plotting unscaled or scaled variables appears. Once
the choice is made, plotting is carried out. The windows shown in Figure B.6 then
appear, where the user can select variables from the pop-up menus and plot them
by clicking on the corresponding Update buttons. Some options are available for
modifying the plots, for example zoom, and for saving the figures in some of the
most common formats (.gif, .jpg, etc).
Simulations that were calculated and saved can be continued. The values of the
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Figure B.1: Main window of the Silgrain R° simulator.
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Figure B.2: HR inputs and initial conditions.

Figure B.3: UR inputs and initial conditions.
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Figure B.4: Types of cyclic inputs that can be used in the Silgrain R° simulator.

Figure B.5: Simulation time window.

Figure B.6: Plot windows.
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Figure B.7: New inputs and disturbances window.

variables at the last simulated time instant thus become the initial conditions for
the new simulation. This allows the user for example to make changes in the inputs,
or carry out simulations that otherwise would be too long. In order to continue
a previous simulation, the user has to click on the Continue Simulation button
in the main window (shown in Figure B.1). The standard Open file window
appears. The user thus selects the folder and filename of the simulation data to be
loaded. Once the file is loaded, the window shown in Figure B.7 appears, where
the user can type the values of the new inputs to the system. The values used in
the previous simulation are shown, but they have been removed here to protect
confidential information. When, the OK button is clicked, the window in Figure
B.5 appears, where the user introduces the simulation time. Once the calculations
are finished, the standard Save window appears, and once the data are saved, the
plot windows shown in Figure B.6 appear.
Finally, saved data can be loaded anytime for plotting, by using the Plot

Previous Simulation button in the main window (shown in Figure B.1).
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Appendix C

Some concepts in nonlinear
control theory

The theory presented in this appendix is a summary of material presented in
introductory books to nonlinear control (Slotine & Li 1991), (Khalil 1996).

C.1 Autonomous and nonautonomous nonlinear
systems

A nonlinear dynamic system can usually be represented by a set of nonlinear
differential equations in the form

dx

dt
= f (x, t) (C.1)

where f is a nonlinear function, and x is the state of the system. Note that
although equation C.1 does not explicitly contain the control input as variable,
it can represent the closed-loop dynamics of a feedback system, with the control
input being substituted by a function of the state x or time.
The nonlinear system C.1 is said to be autonomous if f does not depend ex-

plicitly on time, i.e. the system’s state equation can be written

dx

dt
= f (x) (C.2)

Otherwise, the system is called non-autonomous.
Autonomous and non-autonomous systems are equivalent to linear time-invariant

and linear time-variant systems, respectively, in linear system theory. The prop-
erties of closed-loop systems, in particular stability, are easier to analyze for au-
tonomous systems than for non-autonomous systems. Moreover, the state trajec-

217



218 APPENDIX C. CONCEPTS IN NONLINEAR CONTROL THEORY

tory of an autonomous system is independent of the initial time, while that of an
non-autonomous system is dependent on the initial time.

Definition 24 A state xss is said to be an steady-state of the system if once x (t)
is equal to xss, it remains equal to xss for all future time.

If we are interested in studying the properties of an steady-state that is not the
origin, it is common to make the following change of variables

xnew = x− xss, (C.3)

formulating the system of equations in term of the new set of variables xnew, and
studying the behavior of the new system in the neighborhood of the origin.
In some practical problems we are not interested in stability around an steady-

state, but rather with the stability of a motion, i.e. whether a system will remain
close to its original motion trajectory if slightly perturbed away from it. This kind
of problem can also be transformed into an equivalent stability problem around
an equilibrium point, but the equivalent system is non-autonomous.

C.2 Stability

Stability theory has a central role in systems theory and engineering. Qualitatively,
a system is described as stable if starting the system somewhere near the desired
operating point, the system will stay close to the operating point ever after. Sta-
bility is the first and most important performance feature of a controller, at least
for systems operating in a continuous way. Note that since nonlinear systems may
have complex behavior, refinements of the stability notion are needed to describe
the essential features of the system.

C.2.1 Stability of a steady-state for autonomous systems

Definition 25 The steady-state x = 0 of equation C.2 is:
- stable if, for each ε > 0, there is δ = δ (ε) > 0 such that:

kx (0)k < δ ⇒ kx (t)k < ε, ∀t ≥ 0

- unstable if it is not stable.
- asymptotically stable if it is stable and δ can be chosen such that:

kx (0)k < δ ⇒ lim
t→∞

x (t) = 0
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- marginally stable if it is stable but not asymptotically stable.
- exponentially stable if there exist two strictly positive numbers a and λ such that

kx (0)k < δ ⇒ kx (t)k < a kx (0)k e−λt, ∀t ≥ 0

- globally asymptotically stable if asymptotic stability holds for any initial states.
- locally asymptotically stable if asymptotic stability only holds for certain initial
states.

Therefore, asymptotic stability is a harder requirement than marginal stability.
Asymptotic stability requires the state to converge to the origin as time goes to
infinity, while marginal stability only requires the state to remain close to the origin
at all times. When the origin is asymptotically stable, we are often interested in
determining how far from the origin the trajectory can be and still converge to
the origin as t approaches ∞. This gives rise to the definition of the region (or
domain) of attraction. If this region is equal to the whole state space, then we
have global asymptotic stability. Otherwise, we have local asymptotic stability.

C.2.2 Stability of a steady-state for non-autonomous sys-
tems

The concepts of stability for non-autonomous systems are quite similar to those of
autonomous systems. However, due to the dependence of non-autonomous system
behavior on initial time t0, the definitions of these stability concepts include t0
explicitly. Furthermore, the concept of uniformity is necessary to characterize
non-autonomous systems.

Definition 26 The steady-state x = 0 of equation C.1 is:
- stable if, for each ε > 0, there is δ = δ (ε, t0) > 0 such that:

kx (t0)k < δ ⇒ kx (t)k < ε, ∀t ≥ t0 ≥ 0 (C.4)

- unstable if it is not stable.
- uniformly stable if, for each ε > 0, there is δ = δ (ε) > 0, independent of t0, such
that condition C.4 is satisfied.
- asymptotically stable if it is stable and δ = δ (ε, t0) can be chosen such that:

kx (t0)k < δ ⇒ lim
t→∞

x (t) = 0

- globally asymptotically stable if asymptotically stability holds for any initial states.
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- uniformly asymptotically stable if it is uniformly stable and there is a positive
constant δ, independent of t0, such that

kx (t0)k < δ ⇒ lim
t→∞

x (t) = 0

uniformly in t0; that is, for each η > 0, there is T = T (η) > 0 such that

kx (t)k < η, ∀t ≥ t0 + T (η) , ∀ kx (t0)k < c.

- globally uniformly asymptotically stable if it is uniformly stable, δ (ε) can be
chosen to satisfy

lim
ε→∞

δ (ε) =∞,

and, for each pair of positive numbers η and c, there is T = T (η, c) > 0 such that

kx (t)k < η, ∀t ≥ t0 + T (η, c) , ∀ kx (t0)k < c.

Here, asymptotic stability requires that there exists a region of attraction for
every initial time t0. Uniformly asymptotic stability implies that there exists
a region of attraction, independent of t0, such that any system trajectory with
initial states in such a region converges to the origin uniformly in time. Globally
uniformly asymptotic stability requires that the region of attraction is independent
of t0 and equal to the whole state space.

C.2.3 Determination of stability: Lyapunov theory

Having defined stability, the next question is to find ways to determine stability.
Lyapunov stability theorems are widely used, and indeed, they are the basis for
many nonlinear control approaches. The method shown here is called Lyapunov’s
direct method.

Theorem 27 (Lyapunov’s direct method) Let x = 0 be an steady-state point
for the autonomous system C.2 and D ⊂ Rn be a domain containing x = 0. Let
V : D→ R be a scalar, continuously differentiable function of the state such that

V (0) = 0 and V (x) > 0 in D − {0} (C.5)
dV

dt
≤ 0 in D, (C.6)

i.e. V is a positive definite function and its time derivative is negative semi-
definite, then x = 0 is stable.
If, in addition,

dV

dt
< 0 in D − {0} , (C.7)



C.2. STABILITY 221

i.e. the time derivative of V is negative definite, then x = 0 is asymptotically
stable.
If, in addition,

lim
kxk→∞

V (x) =∞

then the steady-state is globally asymptotically stable.

A continuously differentiable function V (x) satisfying conditions C.5 and C.6
is called a Lyapunov function. Lyapunov’s direct method can be applied without
solving the system of differential equations. Unfortunately, there is no systematic
method for finding candidate Lyapunov functions. Many Lyapunov functions may
exist for the same system. On the other hand,

If engineering insight and physical properties are properly exploited,
an elegant and powerful Lyapunov analysis may be possible for very
complex systems. (Slotine & Li 1991)

Note also that the theorem’s conditions are only sufficient. Failure of a can-
didate function to satisfy the conditions for stability or asymptotic stability does
not mean that the steady-state is not stable or asymptotic stable.
However, asymptotic stability is such a desirable property of a system, that

other theorems have been established to be able to draw conclusions on stability
when Lyapunov’s conditions are not met. Thus, if we have a Lyapunov function
that is only positive semidefinite (instead of positive definite), then LaSalle’s in-
variant set theorem can be used to draw conclusions on stability. A set Ω is said
to be invariant if every system trajectory which starts at a point in Ω remains in
Ω for all future time, i.e.

x (0) ∈ Ω ⇒ x (t) ∈ Ω, ∀t ∈ R.

A set is said to be positively invariant if

x (0) ∈ Ω ⇒ x (t) ∈ Ω, ∀t ≥ 0.

Theorem 28 (LaSalle’s invariance principle) Let Ω ⊂ D be a compact set
that is positively invariant with respect to the autonomous system C.2. Let V :
D→ R be a scalar, continuously differentiable, function of the state such that

dV

dt
≤ 0 in Ω.

Let E be the set of all points in Ω where

dV

dt
= 0.
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Let M be the largest invariant set in E. Then every solution starting in Ω ap-
proaches M as t→∞.
Now, suppose that no solution can stay identically in M, other than the trivial
solution x (t) ≡ 0. Then, the origin is asymptotically stable.
Finally, if the conditions for asymptotic stability are met, and V is radially un-
bounded, i.e.

dV

dt
≤ 0 in Rn

then the origin is globally asymptotic stable.

Lyapunov theory for autonomous systems can be extended to non-autonomous
systems. The conditions required in the treatment of non-autonomous systems are
more complicated and more restrictive. These conditions are not shown here, but
can be found in introductory texts to nonlinear control, such as (Slotine & Li 1991).
LaSalle’s invariance principle does not have a counterpart for non-autonomous
systems, though.
Although there are not systematic methods to find candidate Lyapunov func-

tions for a general nonlinear system, there exist theorems that are concerned with
the existence of Lyapunov functions for a given system, and these are called con-
verse Lyapunov theorems. There are also instability theorems based on Lyapunov’s
direct method.

C.3 Feedback linearization

The main idea of feedback linearization is to algebraically transform a nonlin-
ear system dynamics into a fully or partly linear one, such that linear control
techniques can be applied. Input-state feedback linearization is used when the
dynamics are fully linearized, transforming a nonlinear system of the form

dx

dt
= f (x, u) (C.8)

where x ∈ Rn is the state vector, and u ∈ Rm is the input vector, into an equivalent
linear time-invariant system

dz

dt
= Az +Bv (C.9)

by a certain state transformation

z = z (x) (C.10)

and a certain input transformation

v = v (x, u) .
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Then, standard linear techniques are used to design v.
Very often we deal with tracking problems in which it is desired that certain

outputs y ∈ Rp of the system
y = g (x) (C.11)

track a reference signal r, and then it may be more beneficial to linearize the input-
output map even at the expense of leaving part of the state equation nonlinear. In
such cases, Input-output feedback linearization is used, where the nonlinear system
composed of equations C.8 and C.11 is transformed into a linear system of the type

ds

dt
= v

y = s (C.12)

by a certain input transformation

v = v(x, y, u). (C.13)

Then, the original state x is transformed intoµ
y
z

¶
= ϕ (x) (C.14)

where y is the external state and z is the internal state described by

dz

dt
= k(z, y). (C.15)

Linear feedback is then used to design v. However, some catches about input-
output feedback linearization are:

1. Not all nonlinear systems are feedback linearizable. There must be a cer-
tain structural property of the nonlinear system that allows us to perform
nonlinear cancellations. This required property is that the system has a
well-defined relative degree.

2. Since the linearized input-output map does not account for all the dynamics
of the system, we have to make sure that the “unobservable” part of the
dynamics is well-behaved. This is done through the concept of internal
dynamics.

Definition 29 A system has relative degree r if we need to differentiate the output
of a system r times to generate an explicit relationship between the output y and
the input u. A single-input single-output nonlinear system of the form

dx

dt
= f (x) + g(x)u

y = h (x) (C.16)



224 APPENDIX C. CONCEPTS IN NONLINEAR CONTROL THEORY

where x ∈ Rn, u ∈ R, and y ∈ R, has a relative degree r (1 ≤ r ≤ n) in a region
Ω, if ∀x ∈ Ω

LgL
i
fh (x) = 0 0 ≤ i < r − 1

LgL
r−1
f h (x) 6= 0 (C.17)

where the Lie derivatives Lf and Lg are given by

Lfh (x) =
∂h (x)

∂x
f (x)

Li
fh (x) = LfL

i−1
f h (x) =

∂
¡
Li−1
f h (x)

¢
∂x

f (x)

LgL
i
fh (x) =

∂
¡
Li
fh (x)

¢
∂x

g (x) .

Then, the new controlled outputs control law that is used to achieve linearization
is

u =
1

LgL
r−1
f h (x)

¡
−Lr

fh (x) + v
¢
. (C.18)

If we have a multiple-input multiple-output system in the affine form C.16, where
x ∈ Rn, u ∈ Rm, and y ∈ Rm, the system is said to have a relative degree
(r1, r2, . . . , rm) and a total relative degree r = r1 + r2 + . . . + rm, where ri is the
number of times we have to differentiate the output yi such that at least one of the
inputs appears explicitly, i.e.

LgjL
ri−1
f hi (x) 6= 0 for at least one j.

Input-output linearization decomposes the dynamics of a nonlinear system into
an external (input-output) part and an internal part. The internal dynamics, as
shown by equation C.15, depend on the output vector. Well-behaveness of the
internal dynamics is thus essential to ensure good control. In order to make some
conclusions about the internal dynamics, it is common to study the zero-dynamics
of the system, i.e. the system’s internal dynamics when the input is chosen such
that the output is maintained at zero

dy

dt
= 0

dz

dt
= k (z, 0) . (C.19)

Definition 30 A nonlinear system is said to be:
- minimum phase if its zero-dynamics is asymptotically stable.
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- weakly minimum phase if its zero-dynamics are stable in the sense of Lyapunov,
but not necessary asymptotically stable.
- globally minimum phase if its zero-dynamics are asymptotically stable for any
z (0) .
- globally weakly minimum phase if its zero-dynamics is stable in the sense of
Lyapunov for any z (0) .

As in any controller design we are interested in analyzing the stability of the
closed-loop. The input-ouput feedback linearization law stabilizes the system lo-
cally provided that the zero-dynamics is asymptotically stable. However, global
asymptotic stability of the zero-dynamics does not guarantee global stability of
the closed-loop.
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