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Preface

The main purpose of this thesis is to study Stochastic Differential Equations (SDEs) using
Path Integration (PI). Nonlinear dynamical systems is a main focus of this work, both
because such systems present important challenges for the PI method, and because these
systems are generally hard to analyze analytically and by means of other numerical meth-
ods. More specifically, three kinds of systems will be discussed; simpler test cases where
analytical solutions exist, systems that exhibit chaotic response, and systems with instan-
taneous changes at fixed values for the variable. The last group consists of signum-kind
nonlinearities, impact systems with completely elastic impact and contacting impacts, and
absorbing boundaries in reliability studies. For some systems, especially the chaotic sys-
tems, the random noise is basically a way to model small perturbations of the system.
The role of this noise is to make theory and numerical methods from stochastic processes
applicable, to model imperfections or noise in a physical system, or to account for the un-
certainty in parameter estimates in such models. In other systems, the noise could be the
main driving force, without which the system would just converge to one stability point.

A lot of this work is based on research from three earlier PhD candidates, [20, 34, 50].
Some of the techniques developed there are continued, some observations are investigated
more thoroughly, and some of the problems and challenges found in this process will be
discussed and explained. This also means that some important issues like convergence,
stability, choice of numerical methods etc. have already been answered, so only the con-
clusions are referred here.

In the beginning of this work, the main question was if PI could be used as a tool to
study chaotic systems, and if so, in what sense. One of the main characteristics of chaotic
systems are “strange attractors”; limit sets with a complicated structure and fractal dimen-
sion. When adding noise, these limit sets are in some ways smeared out in the probability
density over the state space, but this density could still have a very rugged structure. This
is one of the challenges for PI, which requires a good approximative representation of the
probability density by some interpolating surface. Different ways to perform a stable in-
terpolation is discussed, and it is shown that the choice of interpolation could be crucial
for the accuracy and convergence of the method, even for much simpler problems. The
interpolation problem is related to the problem of discretizing the state space variables.
Interpolation error seems to be the main reason for unstable results in earlier work, so
this is the first challenge discussed in this thesis, and requires close attention from those
who plan to follow up this method further. All interpolation methods used here have been
written by the author, and are modified to attain the required stability and accuracy for
the problems discussed. So this work is new.

The second challenge is the nonlinearity of the system, which is extremely important to
handle properly. Time stepping methods like the Euler method, Runge Kutta schemes, and
Taylor will be discussed together with the problem of choosing the optimal time step length.
The path integration itself also requires that the nonlinear effects are properly taken care
of. Except for the Taylor method, the programming code for the time stepping method is
written by the author, though using standard methods. A reason that library functions
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are not used, is that the time stepping method is highly integrated in the rest of the code
to allow for optimization when many points are propagated forwards simultaneously.

A third challenge is dimensionality. Solving a one-dimensional autonomous SDE is
fairly trivial and can be done with high accuracy in short time. A differential equation
with chaotic response will either have three or more dimensions, or contain terms that
explicitely depend upon time, e.g. periodic forcing. It is also of interest to study sys-
tems of coupled oscillators, filtered noise processes etc., which gives systems with a higher
number of dimensions. Not only will computational time and memory requirements grow
exponentially with the number of dimensions; even writing the computer code for such
systems soon becomes an extremely challenging task. How do you write efficient computer
code for a given problem with any number of dimensions and any choice of approximation
method - without typing errors? One solution is to let the computer code be generated by
yet another program, and this is a new development. This required describing the method
of Path Integration and all its numerical structures in a generalized way. Some of the
mathematical observations in this generalization and methods used to create efficient code
is presented in this book. A milestone for the PI method, was the implementation and
running of a stable system with six dimensions (6D), which was finally accomplished in
April 2007. Six dimensions may not seem to be a lot for researchers from other fields, but
to the authors’ knowledge a full 6D response PDF of an SDE has not been computed by
any numerical method earlier.

It has not been a main focus to do detailed studies of a large number of differential
equations with chaotic and non-chaotic response under the influence of various noise pro-
cesses. This is a vast field with endless possibilities, and there are many articles discussing
various topics related to this - often for some very specific differential equations. Partly
because of the challenges described above, there is very little work performed earlier that
allows for detailed comparizations to the results of the PI method.

Some theory on chaos, chaotic and non-chaotic strange attractors is included. In addi-
tion, some of the varieties of possible behaviour when such systems are affected by noise
is described, and illustrated by the PI method. PI could also give more insight to the
behaviour of a system through other statistics than the PDF. Since chaos was a main in-
terest, a great deal of work has been done trying to obtain the maximal Lyapunov exponent
(MLE) of a system. Also here, the main question is if the PI method can be used for this
task. The MLE, and the Lyapunov spectrum, is not trivial to compute with the methods
already proposed by other authors - for general systems.

There are many different kinds of questions that could be asked about adding noise to a
differential equation. In some cases, the problem is stability of the attractor, and the noise is
just there to create a small perturbation kicking the system off from the deterministic path.
For other applications, the qualities of the noise process could be of vital importance, and
different noise levels or noise processes could give very different behaviour of the system.
The latter case requires knowing that the numerical method can handle the stochastic
terms with sufficient accuracy. In cooperation with professor Mircea Grigoriu at Cornell
University, this question developed into some studies of the compound Poisson process,
and the possibilities of implementing compound Poisson noise in PI. A master student at
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NTNU, Tore Selland Kleppe, studied the implementation of Lévy processes in PI, partly
in correspondance with the author [26]. The results from these attempts to use the PI
method in other fields will however not be discussed in this work, due to space limitations.
Many methods in the field of stochastic dynamical systems are limited to processes with
Gaussian increments. In the implementation of PI, a main focus is to avoid this restraint.
Comparing PI to other numerical algorithms is also beyond the scope of this study, but a
brief description of some other methods can be found in sections 2.2 and 4.5.

The structure of this thesis is as follows. Chapter 2 describes some basic theory of
probability, dynamics, and stochastic dynamics. This is partly to set some notation for
the proceeding chapters, and partly to introduce the subject to those not familiar with
this field. Chapters 3 through 6 are devoted to numerical algorithms. First, in chapter
3, the discretization in time of a continuous system and a few time stepping methods are
presented and discussed. This also includes some methods of solving SDEs numerically,
such as moment equations and Monte Carlo simulations. This chapter is basically a review
of earlier work, except that the implementation and combination of methods could be new.
Then, in chapter 4, space is discretized, which means an interpolation method is needed.
One would think that a review of well-known methods like linear interpolation and cubic
B-spline interpolation would be sufficient, but a significant part of the PhD work has been
devoted to stabilize interpolation methods, and also some new methods are proposed. In
chapter 5 the PI method is presented, and some of its properties are investigated. Then
chapter 6 discusses implementation issues of PI, especially with respect to interpolation.
For all the numerical chapters, choices between different (seemingly equivalent) methods
can be made. For some problems, this choice could be crucial for the stability – and
even for the possibility of running the program, especially for the high dimensional case.
This discussion has not been laid out in detail in previous work, and even still there are
unanswered questions here.

In chapter 7, chaos is defined, and results for some chaotic systems are presented. One
specific Duffing equation with harmonic forcing has been used as a model example, and
is studied under the influence of different kinds of noise. This also serves as an example
on how to interpret the resulting response PDF obtained from PI. This chapter includes
some discussion on the possibility of computing the maximal Lyapunov exponent, or the
Lyapunov spectrum for these systems using PI, and the comparization of various results
obtained for the test equations. Also two constructed examples show how added noise can
cause transitions from globally chaotic to globally non-chaotic, and opposite.

Finally, chapter 8 summarizes the main questions posed initially in this work, and the
answers found so far.

The thesis also consists of some articles that were written during the work on this
thesis. They give examples of how one can study specific systems with PI, and highlite
specific observations, and present a broader view on stochastic differential equations. In
these papers, the author has performed all the numerical work, with one exception. In
appendix E, Finn-Erik Kolnes modified code from the author – with some assistance – to
generate the results. Because some results were not completely satisfactory, the author
adapted the original PI code again in a more stable manner, to verify and improve the
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results. For all the articles, all the authors have taken part in the writing process, though
the first author of each article wrote the major part of the text.



vii

Notation list

To some extent, the text aims to reduce the number of different meanings for different
variables. At the same time, some notation is well established in the field, so deviating
from it will easily lead to confusion. Where a character is used with two very different
denotations, like being both a scalar and a function, it is listed with a full stop. When
constants, variables or functions have different interpretations depending on the setting
without changing type, this is indicated by comma-separated list.

Latin lowercase

a Vector field for the deterministic part of an SDE, often written a(x).
ã Approximated vector field for a based on some numerical method.
b Vector field for the stochastic part of an SDE, often written b(x) or bj(x) for integers j.

b̃ Approximated vector field for b based on some numerical method.
c Spline coefficient.
d Real value, typically a diagonal value in a matrix.
d Infinitesimal sign in integrals and proper differentials.
e Unit vector along some coordinate axis.
f Probability density function.

f̂ Approximated function by interpolation.

f̃ Approximated non-interpolating function.
g General function, usually time stepping function.
g0 One-sided spectral density constant.
h General function, usually time stepping function.
i

√
−1

j Counting variable, order of interpolation function.
k Counting variable.
l Radius of ellipsoid along a principal axis.
m Eigenvalues of a (flow) matrix. Integer (for dimension).
n Number of dimensions.
p Point in the state-space or real number.
q Real number, temporary storage value in algorithms.
r Number of dimensions where noise is not directly entering.
s Calculated or estimated standard deviation.
t Time.
u Velocity.
v Point value of function (to be interpolated).
w Real number used for weighting or tension. Free variable.
x Free variable.
y Free variable.
z Free variable.
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Latin uppercase

A Surface inside a geometric object. Path integration matrix.
B Ball in the state space with uniform radius. Basis function for B-spline.
C Compound Poisson process.
C0 Space of bounded functions that go to zero at infinity.
D Differential operator, D : Rn → Rn×n.
D Space of all probability densities on some manifold.
E Expectation operator.
F Forcing function. Cumulative probability density function.
F σ-algebra, see section 1.2.1.
G Linear operator.
H Kernel of integral function or energy function.
I Identity (matrix). Interval.
I0 Modified Bessel function of the first kind.
J Determinant of of the differential matrix, Jh(x) = |Dh(x)|.
K Positive constant, number of (knot) points.
L Lower-triangular matrix. L1, L2 etc are vector spaces.
M Number of gridpoints. Unspecified rectangular matrix. Martingale.
N Formal time-derivative of Wt or poissonian stochastic variable.
N The set of all positive integers; 1, 2, . . ..
O Order of numerical method.
P Probability, probability density operator.
Pt Unspecified stochastic process.
Q Operator to compute the largest lyapunov exponents. Unitary matrix in QZ-factorization.
R Radius.
R The real line.
S Circle; R mod 2π, Sn is a hyper-sphere. Matrix evaluating spline coefficients. Spectrum.
S Circle, S

n is a cartesian product of circles (torus.)
T Period or upcrossing time. Triangular matrix.
U An (open) set. Upper-triangular matrix.
V An open set.
W Wiener process, white noise process with independent Gaussian increments.
X Stochastic variable.
X Sample space for the stochastic variable.

Y Stochastic variable, typically Y = Ẋ, Y = Ẋ.
Z Stochastic variable. Unitary matrix in QZ-factorization.
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Greek lowercase

α Real constant.
β Real constant.
γ Real constant, usually used for scaling of noise process in SDE.
δ Dirac delta function.
∂ Boundary, ∂A is the boundary of A. Infinitesimal sign in partial derivative.
ε Small number, radius of ε-ball.
ε Error in interpolant.
ζ Weighting function.
η Fixed point value for y. Perturbation of y.
θ Free variable for angle, θθθ ∈ Sn−1 or for the stochastic variable Θ.
ϑ Angle to the third axis in 3D space.
κ Real constant.
λ Lyapunov exponent, eigenvalue of matrix.
µ Expectation value in Gaussian (normal) PDF.
ν Probability measure.
ξ Fixed point value for x. Integration variable for x. Perturbation of x.
ρ Free variable for radial distance from a point to the origin in the state space.
% Radius of circle or (hyper)sphere.
σ Standard deviation in Gaussian (normal) PDF.
ς Curve inside a geometric object.
τ Auxillary time variable or spline knot.
υ Free variable for the stochastic variable Υ.
φ Flow function of a dynamical system. Free variable for the stochastic variable Φ.
ϕ Flow matrix of a dynamical system, ϕ(x, t, ω)x = φ(x, t, ω).
ω Stochastic outcome process. Real constant, typically angular velocity.

Greek uppercase

Γ Gamma function, constant matrix.
∆ Discretization length for the following variable.
Θ Stochastic variable for angle.
Ξ All collections of points from Rn, compact volumes, line segments etc.

Πn−1 The (n − 1)-dimensional projective space.
Σ Constant matrix.

Υ Stochastic variable, Υ = Ż
Φ Stochastic variable for angle.
Ω A set.
′ denotes a variable at a previous time step t′ = t − ∆t.

Sub-indeces could indicate numbering or time. For simplicity, time is often skipped.
The numbering of elements from a vector, unit vectors etc will correspond to the dimension
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number, while constants and functions could be arbitrarily numbered. For specific systems,
subscripts could be typeset as plain text to distinguish constants with the same symbol.

Boldface math denotes vector variables or constants, but is not used for functions,
operators or matrices. All vectors are assumed to be column-vectors, written vertically.
The symbol > denotes vector or matrix transpose, typically switching from a row vector to
a column vector or opposite. A vector can also be written out as [. . .]>, e.g. x = [x, y, z]>.
This vector represents point in the state space. When the state space is discretized, a
specific grid point could be referenced by a set of sub-indeces k1, k2, k3, that is xk1,k2,k3 =
[xk1 , yk2, zk3]

>.
Finally, complex conjugation is denoted by ∗. So if z = x + iy, then z∗ = x − iy.
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Chapter 1

Preliminaries

The purpose of this chapter is to introduce some basic notation and definitions for readers
not familiar with the field of stochastic differential equations. More thorough introductions
can be found in e.g. [1], [28], or [44].

1.1 The inverse and implicit function theorems

The following two theorems are presented without proof. More detailed discussions, exam-
ples and proof can be found in introductiory books to algebra.The theorems will be used
in the development of the PI operator in section 4.1.

Theorem 1. The inverse function theorem. Let h : U → V , U, V ∈ Rn be a
continuously differentiable function. If Dh(ξξξ) is invertible for a fixed point ξξξ ∈ U , then
an open set W around ξξξ exists where h is an invertible function. The inverse function
h−1 : h(W ) → W is continuously differentiable.

Theorem 2. The implicit function theorem. Let g : Rn+m → R be a continuously dif-
ferentiable function, and denote points in Rn+m by (x′

1, x
′
2, . . . , x

′
n, x1, x2, . . . , xm) = (x′,x).

If Dg(ξξξ′, ξξξ) is invertible for a fixed point (ξξξ′, ξξξ) that fullfills g(ξξξ′, ξξξ) = 0, an open set U with
ξξξ′ ∈ U , an open set V with ξξξ ∈ V , and a differentiable function h : U → V exist such that
{(x′, h(x′)} = (U × V ) ∩ {(x′,x)|g(x′,x) = 0}.

1.2 Probability and statistics

1.2.1 Measure theory and the probability space

Let Ω be a set. A σ-algebra F on Ω is then a nonempty collection of subsets of Ω such
that these three properties hold:

• Ω ∈ F, i.e. the largest subset in the σ-algebra is the whole set,

• U ∈ F ⇒ Ω\U ∈ F, so for every subset, its complement is also part of the σ-algebra,

1
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• If Ui ∈ F, i = 1, 2, . . . then
⋃∞

i=1 ∈ F, which means that taking unions of subsets
in F will never throw you out of F, even in the limit to infinity.

Roughly speaking, the σ-algebra is hence a collection of possible ways of partitioning
your set. Every subset of Ω belonging to F is said to be F-measurable. The items 1 and
2 above implies that the complement of Ω, which is called the empty set and denoted ∅ is
also a member of F.

The pair (Ω, F) is called a measurable space.
A probability measure P on a measurable space (Ω, F) is a function P : F → [0, 1] such

that

• P (∅) = 0,

• P (Ω) = 1,

• If Ai ∈ F, i = 1, 2, . . . and Ai∩Aj = ∅ for all i 6= j, then P (
⋃∞

i=1 Ai) =
∑∞

i=1 P (Ai).

The triplet (Ω, F, P ) is called a probability space. In such a space, the members of F are
called events. A single point in the probability space is called an outcome, so an event is
a collection of outcomes. P (A) is then the probability that the event A occurs. The three
items in the list above can then be read: The probability of the no outcome event is zero,
the probability of the event containing all outcomes is one, and probabilities can be added
for disjoint (non-overlapping) events.

Two events U and V are independent if P (U ∩ V ) = P (U)P (V ).
A conditional probability is a function P (U |V ) = P (U ∩ V )/P (V ), defined for all F-

measurable V except ∅. The conditional probability also fulfills the three criteria for a
probability measure, and is hence also a probability measure. Independence could also be
defined from the conditional probability by the formula P (U |V ) = P (U).

1.2.2 Random variables

A random variable, sometimes denoted a stochastic variable, is a function X : Ω → R

such that U ∈ Ω : X(U) ≤ x ∈ F for every x ∈ R. The random variable is F-measurable
if X−1(U) ∈ F for every Borel set U . The collection of Borel sets are all possible unions
and intersections of open and closed sets. The outcome U will usually not be written as
an argument in this text.

1.2.3 Probability densities

From here on and throughout the thesis, the set X will be the sample space of X, i.e. all
values that X could take are members of X. Further, X will here always be some compact
subset of Rm × Sn for some integers m and n where one of them could be zero. Here R

is the real line and S the circle, usually represented by a real number [0, 2π〉 modulo 2π.
This space is spanned by m + n orthogonal eigenvectors, and one random variable from
is assigned to each direction. These random variables are indexed as X1, X2, . . . , Xm+n,
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where Xj is simply the function extracting the jth component of the coordinates of the
point X. The allows the standard definition of a sigma-algebra over the state space as the
collection of all tensor products of possible connected intervals in these variables.

If X is only a subset of R or S in some variable, it can be trivially extended to R or S.
By a suitable extension of F, and defining P (U) = 0 for every U disjoint with the original
X, the probability space is retained. So in the teoretical work, we will always assume
X = Rm × Sn so that the range for all the random variables is from −∞ to ∞, or 0 to 2π
for angles. Stochastic differential equations could be defined on other manifolds too, but
except for a brief discussion on systems on the projective plane Πn−1 in section 6.13, and
spheres and hyper-spheres in section 6.15, this will be beyond the scope of this work.

If all the random variables live in R, i.e. X = Rn, the cumulative probability function
can be defined by F (x1, x2, . . . , xn) = P (X1 ∈ 〈−∞, x1]∩X2 ∈ 〈−∞, x2]∩ . . .). This fulfills
F (−∞,−∞, . . .) = 0 and F (∞,∞, . . .) = 1. If F is differentiable in all the state space
variables, the probability density function (PDF) is the function

f(x) = f(x1, x2, . . . , xn) =
∂nF (x1, x2, . . . , xn)

∂x1∂x2 · · ·∂xn
. (1.1)

Some dynamical systems, e.g. systems with dry friction, could result in a cumulative
probability function that is not differentiable everywhere. The corresponding PDF will
contain delta-shaped peaks or structures. This construction is beyond the scope of this
thesis. Generally, the probability density is a function f such that for every event U ∈ F

the probability of U equals
∫

U
f(x)µ( dx). This gives

∫
X

f(x)µ( dx) = 1.

A probability density that will be used extensively in this book is the normal or Gaussian
PDF. In n dimensions, a multivariate case, with independent variables it reads

f(x) =
(2π)−n/2

∏n
j=1 σn

exp

(
−

n∑

j=1

(xj − µj)
2

2σ2
j

)
. (1.2)

The expectation operator is an integral with respect to the probability measure over
the whole space;

E(g(X)) =

∫

Xt

g(x)f(x)µ( dx). (1.3)

1.3 Stochastic processes

A stochastic process is a collection of random variables parameterized in time, e.g. Xt, t ∈
R

+. The time parameter will be written as an argument Xt = X(t) where the subscript
is already used to denote dimension, and where time explicitly appears in an equation or
formula. The time parameter might also be skipped where it is regarded unneccessary.
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1.3.1 Markov processes and Markov operators

All the systems studied in this text will follow the Markov property, namely that the future
behaviour is independent of the past - given knowledge about the present. Mathematically,

f(x(t+∆t)|x(s) = ξ(s), s ≤ t) = f(x(t+∆t)|x(t) = ξ(t)), for all t, ∆t > 0 and fixed ξ(t).
(1.4)

In some cases this is obtained by including a sufficiently large number of state-space vari-
ables to the system. These variables then carries the necessary information about the past
in their present value.

Let (X, F, µ) be a measure space, and let L
1 denote the integrable functions with respect

to this space, that is, every f ∈ L1 satisfies ‖f‖ =
∫

X
|f | dµ < ∞. Any linear operator

P : L1 → L1, satisfying the following properties

(1) Pf ≥ 0 for f ≥ 0, f ∈ L1,

(2) ‖Pf‖ = ‖f‖ for f ≥ 0, f ∈ L1,

is called a Markov operator [29]. Hence, any linear operator P : L1 → L1 that preserves
densities, that is, P : D → D, is a Markov operator. Here D = {f ∈ L1 : f ≥ 0, ‖f‖ = 1}.

1.3.2 The Wiener process and white noise

The Wiener process, or Brownian motion, Wt is characterised by the following properties;

• W0 = 0.

• If 0 < τ < t, then Wt − Wτ ∼ N(0, t − τ).

• If 0 < t1 < t2 ≤ t3 < t4, then Wt2 − Wt1 and Wt4 − Wt3 are independent variables.
That is, for any pair of non-overlapping intervals, the behaviour in one is independent
of the other.

• Further, E(Wt) = 0 and E(WτWt) = min(τ, t).

This process is continuous, as Wτ → Wt almost surely (a.s.) when τ → t. However, it is
almost surely not differentiable - in any point. To avoid the technical definition of a formal
derivative, the noise process Nt = N(t) can be introduced as follows. For every t, Nt is a
Gaussian zero-mean random variable with unit variance, and Nτ is independent of Nt when
τ 6= t. Hence, these variables are uncorrelated, which results in a uniformly distributed
(flat) spectrum, which motivates the notation “white” noise. So the process Nt is denoted
Gaussian white noise. Such a process cannot exist in a real physical system, but is in some
cases a good approximation, and the random noise could be made more physical through
filtering of the white noise process. Many theoretical noise processes represent white noise.
Therefore, one should always specify the underlying distribution of the process. For this
thesis, the process is always Gaussian white noise.



1.3. STOCHASTIC PROCESSES 5

Now use this process as input to a simple differential equation;

dXt = Nt dt = N(t) dt. (1.5)

When the response Xt is calculated for equation (1.5), e.g. by a numerical method, the
result is indistinguishable from a (time discretized) Wiener process. Therefore, the notation
Nt dt = dWt is used. The numerical computation of equations like (1.5) is discussed in the
following section.

1.3.3 Stratonovich and Itô calculus

The next problem is to define stochastic integrals. This is here discussed for one dimension
only, however, these results are trivially generalized to more dimensions. The Riemann
method of integrating a function Xt with respect to a process Pt is

∫ t2

t1

Xt dPt ≈
M−1∑

j=1

Xτ∗

j
(Pτj+1

− Pτj
) (1.6)

with a partitioning t1 = τ1 < τ2 < . . . < τM = t2 and τ ∗
j ∈ [τj, τj+1]. When taking the limit

m → ∞, the right hand side should converge to the integral.
Unfortunately, the Riemann method does not converge uniquely for stochastic pro-

cesses, but depends on how the evalutation points τ ∗
j are chosen. Two different definitions

of the integral are commonly used, namely the Itô integral τ ∗
j = τi and the Stratonovich

integral τ ∗
j = (τj+1 + τj)/2. Excluding the outcome process ωt and returning to the Wiener

process, the Itô and Stratonovich integrals are then formally written

∫ t2

t1

Xt dWt = lim
M→∞,∆→0

M−1∑

j=1

X(τj)(Wτj+1
− Wτj

), (1.7)

∫ t2

α

Xt ◦ dWt = lim
M→∞,∆→0

M−1∑

j=1

X(
τj + τj+1

2
)(Wτj+1

− Wτj
), (1.8)

respectively. The sequence {τj}M
j=1 is the same as for the Riemann integral in equa-

tion (1.6). Equations (1.7) and (1.8) leads to the corresponding stochastic differential
equations (SDEs)

dXt = a(Xt, t) dt + b(Xt, t) dWt, (1.9)

dXt = a(Xt, t) dt + b(Xt, t) ◦ dWt. (1.10)

It can be shown that an SDE of one kind with a modified drift term has the same solution
as the other, where solution can be interpreted many ways, as will be shown in the next
section. E.g. solving the Stratonovich SDE from equation (1.10), is equivalent to solving
the Itô SDE

dXt =

(
a(Xt, t) +

1

2
b(Xt, t)

∂b

∂x
(Xt, t)

)
dt + b(Xt, t) dWt. (1.11)
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So an algorithm for solving Itô SDEs is directly adapted for solving Stratonovich SDEs. In
the following, every SDE presented should be interpreted in Itô sense. Note that the Itô
and Stratonovich representations are equal in the case of additive noise, i.e. when ∂b

∂x
= 0

everywhere. The extra term in equation (1.11) is called the Wong-Sakai correction term.
For a noise process that is not additive, this directly influences the expectation value of
the system.

1.3.4 Dynamical systems and flows

Given a set of r + 1 smooth vector fields on R
n, a, b1, . . . , br : R

n → R
n and a standard

Rr-valued Brownian motion, given as W 1
t , W 2

t , . . . , W r
t for t ≥ 0, on some probability space

(Ω, F, P ). From this an SDE can be written

dXt = a(Xt, t) dt +

r∑

j=1

bj(Xt, t) dW j
t , X0 = x0. (1.12)

Very often, an initial condition will be specified, X0 = Xinit, where Xinit could be a random
variable with some given probability density, or a deterministic point in the state space.
A simple additive noise process is obtained for b1(x, t) ≡ (0, 0, . . . , 0, γ)> = const, and
r = 1. This is the most typical example in this thesis. Note that this simple process does
not have a stable fix point, and this is generally assumed through the rest of the work.
Other studies of SDEs restrict the analysis to very different cases, i.e. Baxendale [5] where
b1(0, t) = b2(0, t) = . . . = br(0, t) = 0, and bj(x, t) is independent of t. In this work,
whenever a or bj has only one index, it is assumed that they are independent of t.

The solution of an SDE is ambiguous, so this term will mostly be avoided from here
on for SDEs. The SDE induces a random flow, or random dynamical system (RDS) over
the state space that will be represented by the function φ : Rn × R × Ω → Rn×n. For
equation (1.12) the resulting flow function will be written Xt = φ(Xinit, t, ω0). The criterion
Xinit = X0 implies that φ(·, 0, ω) is the identity. The order of the arguments of φ is reversed
compared to standard litterature in this field. The reason is that for many of the systems
here, φ depends nonlinearly on the X argument, the ω argument will for simplicity be
skipped many places.The time argument t refers to the length of time the random variable
X is propagated. So for autonomous systems, the fact that the system could also depend
on the value of t is not included.

In some cases, it will be convinient to write the flow as a matrix operator Xt =
ϕ(X0, t, ω0)X0. Here, the rhs is equivalent to φ(X0, t, ω0). Much work has been devoted
to study linear SDEs, where the first argument can be skipped, which might explain the
typical order of arguments in other texts. In e.g. [1], ϕ is a nonlinear operator and not a
matrix, to avoid using X as an argument.

Within a time step in a discretized system and for deterministic systems, φ will not
be considered a random variable. In these situations, the first input argument is also
deterministic. However, generally φ will depend on the outcome process ω. If this is
assumed known, e.g. by simulation with a random number generator, the resulting flow
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will be referred to as a realization of the SDE. In many papers, individual realizations, or
the collection of all possible realizations, is referred to as the solution of the SDE. Some
authors would require the realization of the pair (Xt, Wt) to be given to call it a solution
[19]. For a deeper discussion on the connection between SDEs and RDSs, the reader is
recommended to study Arnold’s well-known book [1].

Another way of solving the SDE, is to find the response probability density for Xt,
ft(x|X0 = Xinit) for some t or all t, which is a PDF in the sense of equation (1.1). For many
of the systems studied here, ft will converge by increasing t to a stationary PDF, which will
not depend on X0. This is the stationary PDF for the SDE, which simply will be written
f(x). In such cases, the initial condition will be skipped. A stationary distribution for a
system means that the Markov operator P from section has a fixed point. In section 4.1 it
will be shown how this operator can be implemented numerically, which is the main goal
of this research project. The sequence of response PDFs for all t does not carry the same
information as the realizations, just as a stationary PDF does not say anything about the
underlying process after reaching stationary behaviour. Therefore, it could be argued that
solving an SDE in the sense of probability densities must require finding the joint PDF of
the state space variables at all times, i.e. f(xt, t,xτ , τ) for every possible combination of
t and τ , such that all conditional densities of the form f(xt, t|xτ = xτ ) can be calculated.
This kind of joint PDF will not be found by the method described here.

Solving an SDE could also involve determining the stochastic asymptotic stability for all
possible initial conditions, or mapping other properties of stability or asymptotic behaviour.
A detailed theoretical discussion of stability, uniqueness, boundedness etc for SDEs can be
found in Gards introduction to stochastic differential equations [13].

1.3.5 Dynamics and differential equations

Nonlinearity can cause a variety of effects. The behaviour of the system can be chaotic,
periodic, oscilliating without a fixed period, stable or unstable. The attractor of a dy-
namical system is a the set of points that the system converges to after a sufficiently long
time. This could one or more single points, or a curve or another compact subset of the
state space. The latter includes complicated stuctures without an integer dimension, the
so-called strange attractors. In some systems there are critical values, in terms of a change
of parameter or a change in initial values, for which the system changes abruptly. Under-
standing such dynamics requires qualitative descriptions. Analytical tools can be used to
examin local behaviour and stability, but in the general case numerical methods must be
used to answer questions of global behaviour. However, one must recognize that a numeri-
cal method is by itself a new dynamical system, possibly with a quite different solution, at
least in some cases. Together with sensitivity or unstability of the system studied, we are
faced with computational difficulties. Sometimes it is better to avoid the problem through
selection of other methods, a change of parameters, or choosing better starting conditions
than trying to overcome the difficulties with a general algorithm.

A common tool for studying the dynamics of a system is state space plots. Based on
realizations Poincaré maps. For some chosen sampling time T , usually equal to the period
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of the differential equation, we register Xt,Xt+T ,Xt+2T , . . ., and plot these values together.

1.3.6 Examples of differential equations

A very simple system is a linear filter, or an oscillator, with no damping.

dx = y dt,

dy = −α1x dt.
(1.13)

Without a forcing term, the system results in a pure harmonic wave, which corresponds to
an ellipse in the state space, or a delta-shaped spectral frequency. The frequency spectrum
for a process is found from a temporal Fourier transformation of the response process x(t),
this will be described in section 5.3. The ellipse drawn by (x(t), y(t)) in the state space
from equation (1.13) is uniquely determined from the initial value (x0, y0), and there is no
transient behaviour. From one single initial value (x0, y0), every Poincaré map will be just
one point in the state space, and the location of this point is determined by where on the
period the map is located.

Adding noise to equation (1.13) results in a stochastic system that almost surely di-
verges from every initial point. This illustrates a typical effect of added noise called dif-
fusion. Also the white noise process, or random walk, Wt, has diffusion. The standard
deviation in the probability density for Xt = Wt, say f(x, t), given W0 = 0 is proportional
to the square root of t.

For both these stochastic systems, the probability density would gradually become
wider, and limt→∞ max(f(x, t)) → 0 for every x. To balance out the diffusion from an
additive noise process, some kind of damping term is needed. In a variable Xt, the damping
term should make E(Ẋt) negative when Xt � 0, and positive when Xt � 0. The only
possible linear damping term is a constant times −Xt, but a number of different nonlinear
terms will do, e.g. any −K|Xt|α for every real α 6= 0 and K > 0. A damping term
typically alters the spectrum, but most systems will still be dominated by one frequency,
an eigenfrequency.

1.3.7 Some SDEs with analytical solution

Some SDEs have analytically known solutions. Knowing a few such examples is a big help
for testing convergence and accuracy of numerical methods, and a discussion of these is
also valuable to point out important aspects of SDE behaviour in general. This list starts
with one-dimensional SDEs, then some two-dimensional systems are presented, and finally
a few general solutions are found by matrix equations. In all the displayed equations below,
f(x) (or f(x, y) or f(x)) is the stationary PDF of the system, with some requirements on
parameters of the SDE. K is a constant needed for f to integrate to one, not the same
constant for the different equations.
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The most simple SDE with a stationary distribution is linear with additive noise.

dXt = −αXt dt + γ dWt, (1.14)

f(x) = K exp

(
−αx2

γ2

)
, α > 0. (1.15)

This illustrates that a linear filter preserves the Gaussian distribution. Also note that for
every α > 0 there is a stationary solution, i.e. the process will with probability one not
diverge to infinity.

To study nonlinear effects, a cubic term can be added.

dXt = −(α1Xt + α3X
3
t ) dt + γ dWt, (1.16)

f(x) = K exp

(
− 1

2γ2
(2α1x

2 + α3x
4)

)
, α3 > 0. (1.17)

If α1 < 0, the density is bimodal with a local minimum in x = 0, and with α1 = 0,
there is zero curvature at the maximum at x = 0. This system is very suitable to study
interpolation of a function that goes smoothly to zero at infinity.

The analytical solution can be generalized to other drift functions and multiplicative
noise.

dXt = a(Xt) dt + b(Xt) dWt, (1.18)

f(x) =
K

b(x)2
exp

(
2

∫ x a(ξ)

b(ξ)2
dξ

)
. (1.19)

So one just needs to be able to integrate the fraction in the exponent. The integral is
indeterminate, as the lower limit only affects the normalizing constant K. The formula
for the stationary density can be verified by inserting it into e.g. the forward Kolmogorov
equation, which for equation (1.18) reads

∂(a(x)f(x))

∂x
− 1

2

∂2(b(x)2f(x))

∂x2
= 0. (1.20)

This general formula can be used for a variety of formulas. One less trivial example is

dX = (α − βX) dt +
√

γX(1 − X) dW, 0 ≤ X ≤ 1, beta > α > 0, γ > 0,

f(x) =
Γ(p + q)

Γ(p)Γ(q)
xp−1(1 − x)q−1, p = 2

α

γ
, q = 2

β − α

γ
,

E(X) =
α

β
, Var(X) =

αγ

β2

β − α

β + γ
.

Using α = 1, β = 2, and γ = 1/2, the PDF is nicely bell-shaped, quite similarly to the
Gaussian Âdistribution although with f(0) = f(1) = 0, while a steep tail with nonzero
derivative at the right hand side is obtained by letting β → 1+. This will clearly be of
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use to reveal typical interpolation challenges. Increasing γ introduces this tail behaviour
at both sides of the domain.

A very different one-dimensional SDE with additive noise is the Rayleigh equation,

dXt = −γ2

2

(
Xt −

κ

Xt

)
dt + γ dWt, Xt > 0, κ > 0 (1.21)

f(x) =
x

κ
exp

(
x2

2κ

)
. (1.22)

This will be discussed in particular in section 5.10.
The stochastic linear oscillator has two state-space variables.

dXt = Yt dt,

dYt = −(ω2Xt + αYt) dt + γ dWt,
(1.23)

f(x, y) = K exp

(
− α

γ2
(ω2x2 + y2)

)
. (1.24)

Also here, the system can still be solved when adding a cubic term, e.g.

dXt = Yt dt,

dYt = −(α1Xt + α3X
3
t + κY ) dt + γ dWt,

(1.25)

f(x, y) = K exp

(
−κ(2α1x

2 + α3x
4 + 2y2)

2γ2

)
. (1.26)

The cases where a stationary PDF can be found analytically in two dimensions are
more limited than in one dimension. If the system is an oscillator with known potential
energy wrt position, h(x), and one writes the derivative h′(x) = dh/ dx, the following is
obtained;

dXt = Yt dt,

dYt = −αYt − h′(Xt) + γ dW (t),
(1.27)

f(x, y) = K exp

(
−2α

γ2
H(x, y)

)
, (1.28)

where the energy function H(x, ẋ) = h(x) + ẋ2/2, i.e. the potential and kinetic energy.
In a the multi-degree-of-freedom system, some SDEs can be solved.

dXt = −ΓXt dt + ΣΣΣ dWt,

f(x) = Ke−
1
2
x
>Mx,

where M, Γ ∈ Rn×n, ΣΣΣ ∈ Rn, and M fulfills Γ>M + MΓ = M(ΣΣΣΣΣΣ>)M .
Finally, it could be added that linear filtering of stochastic processes can be handled

analytically, at least in some cases. Assume an SDE of the form

dXt = (a1(t)Xt + a2(t)Yt) dt, t ≥ 0.
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The process Xt can then be expressed

Xt = H(t, 0)X(0) +

∫ t

0

H(t, τ)a2(τ)Y(τ)dτ,

where H must fulfill ∂H(t,τ)
∂τ

= a1(t)H(t, τ) for all t ≥ τ ≥ 0 and H(τ, τ) is the identity
matrix.

1.3.8 Volume stretching and contraction

In addition to propagating single points with the dynamical system, it also gives meaning
to propagate subsets of the full state space. The main effect then is to study the behaviour
of the dynamical system on a measure like volume, area, or distance. This work will show
that describing this process is necessary to classify systems as chaotic, and to perform the
numerical algorithm presented in this paper correctly.

Consider the one-dimensional damped ODE

dxt = −αxt dt. (1.29)

The solution to this equation is

xt = Ke−αt = xt−∆te
−α∆t = x0e

−αt = φ(x0, t). (1.30)

Now propagate a small interval ∆x between x0 and x0 + ∆x forwards in time a small time
step ∆t. The length of the interval then changes to φ(x0 +∆x, ∆t)−φ(x0, ∆t) = ∆xe−α∆t,
i.e. the the interval shrinks, for α > 0, by a factor e−α∆t.

For nonlinear systems, the relative change of interval lengths will normally have to
be computed numerically. In section 4.2 one such attempt will be presented for systems
dxt = a(xt, t) dt where a(xt, t) is differentiable in both arguments. The derivative wrt the
spatial variable is only needed to derive the numerical approximation, and the resulting
expression also works well for piecewise smooth systems where a is continuous in space.
Then, in section 4.4, the line of thought shown above is extended to simple piecewise
systems that have a discontinuity, to complete the picture. In this setting, the flow function
φ from section 1.3.4 will be extended to φ : Ξ×R×Ω → Ξ, where Ξ represents all collections
of points, i.e. all subsets from Rn. This extension of notation should not lead to confusion.

The long-term effect of the dynamics on line segments and measuring the lengths of
the resulting lines lead to the maximum Lyapunov exponent, which is described in detail
in equation (6.22) in section 6.7.

For a two-dimensional system, the change of infinite decimal areas will be studied. That
is, φ( dA, ∆t) will be considered for correct stepwise integration of two-dimensional SDEs,
typically with dA = dx dy. Similarly, in three dimensional SDEs one should consider the
propagation of infinite decimal volumes for the stepwise integration.
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1.3.9 Stochastic perturbations of deterministic systems

Adding a small noise term to a deterministic ODE could in some cases give new and valuable
insight to the dynamics of the system. One example is to study stability of the system.
If the noise term changes the dynamics radically, the deterministic ODE will probably be
unstable in the sense that it is very sensitive to round-off errors or small deviation in the
initial values. The borderline between the stochastic and the deterministic world is not
necessarily trivial. One would expect similar results from simulations when the noise level
is small. However, this might not be the case. The small noise term could lead some of
the probability mass into a potential well that is not seen by the deterministic solution, or
completely eliminate a deterministically stable solution. One such example will be studied
numerically in section 1.4, two similar constructed situations will be studied in sections 6.17
and 6.18. In some systems, an attractor can turn into a repellor when sufficient noise is
added. This is denoted “noise-induced crisis” in Sommerer et.al. in [45].

For an autonomous system, the stationary response PDF of the stochastic system should
be compared to the attractor, limit cycle or fix-point of the corresponding deterministic
system, possibly with some probability distribution function as discussed in the introduc-
tion. For a time-dependent system, the averaged processes should be comparable in the
same sense, and the Poincaré sections of the deterministic system with a properly cho-
sen sampling interval will in some sense correspond to the instance response PDF of the
stochastic system. In short, all the possible resulting outcomes of the deterministic system,
from a single fixed point to the continuous set of Poincaré sections, will be referred to as
the system’s deterministic attractor.

Results obtained when studying systems with and without added noise, indicate that
the typical behaviour is that the structure is preserved. A survey of such methods can be
found in [25]. Some theory is actually based on this assumption. Due to round-off errors,
a digital simulation of a system cannot exhibit a completely random pattern. There are
only a finite number of possible states, which means that the simulation will eventually
become periodic, hence any invariant probability measure of the original system will not be
preserved. Ulam [53] proposed already in 1960 that one should add random perturbations
to such simulations to avoid spurious periodicity, and this scheme is still used e.g. in [48].
However, the requirements for this kind of stability is not known, nor is a general theory
for the behaviour of a system influenced by very high levels of noise.

Finally, in many practical experiments, a perfect deterministic behaviour cannot be
guaranteed. It seems reasonable to assume that noise is present in input forces, there
might be imperfectnesses in the mounting or physical couplings of the system, and there
might be small errors in the model, measurement errors etc. In this sense, an SDE probably
represent a more realistic model for applications than deterministic equations. Even if a
correct modelling also of the noise processes is infeasable, a study of and SDE version of
your equation could be valuable for stability analysis.



1.4. EXAMPLE: STABILITY OF A NONLINEAR OSCILLATOR 13

max

0.0 0.4 1.00.2 0.6 0.8 1.2

0.0

5.0

10.0

ω

x

Figure 1.1: Sketch of the amplitude xmax for the stable deterministic solutions of equation (1.31)
as a function of the parameter ω.

1.4 Example: stability of a nonlinear oscillator

Consider the following ODE, described in the introduction to [52];

2.56ẍ + 0.32ẋ + x + 0.05x3 = 2.5 cos(ωf t). (1.31)

The lhs has a natural frequency ω = 0.625. For values of ωf from 0 to about 0.8, the system
ends up in a steady-state harmonic, and the amplitude (in x) of this harmonic solution
increases with increasing ωf . Then, for a small interval around ωf = 1, two alterative stable
steady states exist, and which one that is reached depends on the initial values (x(0), ẋ(0).
These two steady states have the same frequency, but differ in phase and amplitude. For
ωf = 1 and t = 0 mod 2π, one starts at (x = 3.15, ẋ = 5.81) and has an amplitude of
about 7, the other starts at (x = −1.63, ẋ = 0.34) with an amplitude of about 2. For
larger values of ωf , at least up to 2.0, only one steady state exist, but this time with much
smaller amplitude and the amplitude decreases with increasing ωf . The amplitudes of the
stable deterministic solutions are sketched in Figure 1.1.

With a small additive noise term, equation (1.31) could be rewritten as an SDE:

dX = Y dt,

dY = (−0.125Y − 0.390625X − 0.00195312X3 + 0.9765625 cos(ωt)) dt + 0.025 dW.

(1.32)

For the simulation here, the initial value was chosen as a bivariate Gaussian PDF centered
in (µX0 = 3.15, µY0 = 5.81), with σX0 = σY0 = 0.26.

The initial behaviour of this system is illustrated with a collection of PDFs in Figures 1.2
to 1.5. These are obtained by using the numerical method that will be introduced in
chapter 4, path integration (PI). The response PDF is sampled every ∆t = 2π/64, and the
first 500 samples are simply added together. A logarithmic color image of the process then
shows the transient behaviour. This visualisation of the process is illustrative if one, like
in this case, knows that the motion in the state space is counter-clockwise, and the PDF
for these samples is sufficiently localized. In Figures 1.2, 1.3, 1.4, and 1.5 this transient
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Figure 1.2: Two plots of the transient behaviour for the response PDF for equation (1.32) with
ω = 0.6250.
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Figure 1.3: Two plots of the transient behaviour for the response PDF for equation (1.32) with
ω = 0.8125.

is shown for four different values of ω, the left side plots include fewer iterations than the
right side plots.

The PI simulations replicate the behaviour of the deterministic system for both the
lower and higher values of ωf , i.e. Figures 1.2 and 1.5, corresponding to ω = 0.6250 and
ω = 1.1875, accordingly. However, in Figure 1.4, where there should be two co-existing
solutions, only the one with low amplitude appears, in spite of the specifically chosen
initial value. The transient approximately follows the high amplitude solution for about
one period, which prolongs the time to reach the steady state solution compared to initial
points out of phase with this solution or with very different amplitude. Also the cases where
only one deterministic solution exists seems to have a shorter transient. This indicates that
the high amplitude solution is sensitive to perturbations, and possibly that there are too
few initial points that end up at this stable solution. For ω = 0.8125, only a high amplitude
solution exists for the deterministic system. The solution with noise in Figure 1.3 indicates



1.4. EXAMPLE: STABILITY OF A NONLINEAR OSCILLATOR 15

Displacement

V
el

oc
ity

−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

Displacement
V

el
oc

ity
−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 1.4: Two plots of the transient behaviour for the response PDF for equation (1.32) with
ω = 1.0000.
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Figure 1.5: Two plots of the transient behaviour for the response PDF for equation (1.32) with
ω = 1.1875.
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that a much lower period becomes stable for this case. This system also shows a quite
abrupt shifting of phase, which results in one or a few quite sharp turns in the transient’s
path in the state space. This phase shift corresponds to a change between the two stable
solutions of the deterministic system.

It should be stated that the reason a solution dissappears could be due to the numerical
discretization. The time stepping method is not exact, but this error will be the same for
most algorithms for the deterministic system. If the attractor for some solution is very
narrow some places, it might not be well represented by the numerical grid, and therefore
dissappear. This is almost equivalent to the solution being sensitive to perturbations. An-
other explanation is that the added noise will make the parametric picture from Figure 1.1
more smooth. If this is the case, the smoothening would in this case have a dramatic effect
at some parameter values, as the deterministic system is discontinuous.



Chapter 2

Method and approximations

2.1 Time discretization and schemes

Writing an SDE or an ODE in discretized time is really an approximation of the original
dynamical system by a new discretized dynamical system one.

To simplify the notation in this chapter, consider first the one-dimensional SDE from
equation (1.9). This will be discretized in time as a forward equation using transition

functions ã and b̃ for the deterministic and stochastic parts respectively, t = t′ + ∆t and
X(k + 1) and X(k) approximating Xt and Xt′ , respectively.

X(k+1) = X(k) + ã(X(k), t)∆t + b̃(X(k), t)∆t. (2.1)

Instead of a continuous variable t, an iterative mapping x(k) → x(k+1) is obtained, for
integer values k. This map could also depend on t. A few ways to select the functions ã
and b̃ will be discussed in this chapter, along with results and potential problems, and then
finally generalized to the higher order or multi-variable case. For some schemes, ã could
depend on b, and b̃ on a. Observe that the functions ã and b̃ also potentially could involve
subdividing the major time step ∆t, and also involve combinations of different numerical
methods. This idea will be explored a bit in section 2.1.5, and when time-stepping is
applied to PI simulation of impact problems and signum nonlinearities in appendices C,
D, E, and F.

Discussing many numerical time-stepping schemes in detail is beyond the scope of this
text. Kloeden and Platen, [28], give a detailed survey that covers the major part of the
book. including applications and examples. A time-stepping scheme can be explicit or
implicit, where the explicit is ready to use, while the implicit requires solving some (often
non-linear) equation. The latter is typically needed for stiff problems, where the system
gives solutions with very different time scales. This is illustrated for linear ODEs in most
introductory books for numerical ODE methods, also [28]. An approved definition of
stiffness for non-linear systems seems to be missing, one proposal is found in [6]. Here,
the selected systems studied are non-stiff, hence explicit methods should suffice. Next, a
numerical scheme can be strong or weak. The scheme is developed based on some criterion

17
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for the convergence of the approximants X(1), X(2), . . . , X(k) to the true Xt as k → ∞,
∆t → 0, t = k∆t = const. For weak convergence, the criterion is that for any test function
g : R → R,

lim
k→∞

∫ ∞

−∞

g(x) dFX(k)
(x) =

∫ ∞

−∞

g(x) dFX(x),

lim
k→∞

∫ ∞

−∞

g(x)fX(k)
(x) dx =

∫ ∞

−∞

g(x)fX(x) dx.

(2.2)

Basically, this means that the cumulative probability function F for the approximant equals
the cumulative probability function for the solution almost everywhere. The second line
assumes that the PDFs also exist, which is implicitly assumed here. Strong convergence
is based on criterions that X(k) should approach Xt, either with probability one, or in
mean square. In this project, the aim is to compute PDFs of the process. Hence, it seems
reasonable to focus on the weak convergence time stepping schemes. However, there should
be no problem in adapting strong and/or implicit methods in the numerical algorithm.

As we are concerned with stochastic differential equations, the time step length for
the deterministic case is limited by how well we can follow the stochastic part of the
dynamics. While studies of deterministic systems, i.e. to compute Poincaré maps, requires
a very high accuracy, path integration seems to perform well also for lower order methods.
In addition, the (total) time step must be the same for all grid points. However, some
systems will perform much better with some time stepping methods than others. The
most obvious reason is due to the properties of the deterministic system, like high stiffness,
strong sensibility to initial values, high curvature of solution trajectories in the state space,
or abrupt changes in the underlying vector field. These properties could hold for just some
parts of the solution space, and still be problematic. For some very special problems, the
interplay between the stochastic and deterministic parts of the system makes approximation
by simple discretized versions difficult, and for multiplicative or parametric noise, the bj(x)
functions in equation (1.12) could cause the problems. These latter cases will not be
discussed in this work.

2.1.1 Time step

In Johnsen’s thesis, [20], the effect of the time step for some systems have been studied
for path integration. The main result is that a fraction of the “characteristic time step”
of the system gives a reasonable error-control for one-dimensional problems based on the
Stratonovic SDE.

∆tmax = Ktchar = K min
x∈{x:f(x)≤10−6}

b2(x)

â(x)2
, (2.3)

â = a(Xt, t) +
1

2
b(Xt, t)

∂b

∂x
(Xt, t),

is the estimated maximal time step ∆tmax for equation (1.9), and this is extended to more
dimensions. Further, a value K = 0.3 is proposed based on numerical simulations on
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systems with a known stationary solution.
However, this is only studied for one- and two-dimensional problems with a very fine

mesh, where reduced time step always gave a better result. This is stated explicitly.
Johnsen also observes that the interpolation error at each iteration will be the same re-
gardless of the time step, and thereby give a larger total error for shorter time steps, as more
iterations are needed to reach stationary state. In practice, especially for high-dimensional
problems, the mesh has to be coarse for the simulation to run efficiently, so the time step
cannot be chosen arbitrarily small.

It is expedient to state that equation (2.3) is not a final answer to the stability boundary
for any system and any discretization. For example, it will be shown in section 4.2 that
further approximations in the integration method could require even shorter time steps. As
stated in the previous section, properties of the vector fields, especially in the state-space
variables where noise does not enter explicitly, could also require a smaller integration time
step.

2.1.2 Exact deterministic time-stepping

All linear and some non-linear ODEs can be solved analytically, so that one directly can
compute the short time flow function φ for the deterministic system.

x(k+1) = φ(x(k), t; ∆t).

It is not obvious that this is preferred even if such a function exist, especially if evaluating φ
requires many operations or evaluations of non-linear equations, or if φ changes behaviour
in a non-trivial manner when parameters in the ODE is varied.

For some linear systems, one can also solve equation (2.1.2) for ∆t when x(k+1) and
x(k) are known or partly known.

2.1.3 Euler methods

The simplest discretization procedure that can be adopted for a numerical solution of the
SDE (1.12) is the basic version is the Euler-Maruyama approximation,

X(k+1) = X(k) + a(X(k), t
′)∆t +

r∑

j=1

bj(X(k))∆W j
t′ . (2.4)

Considering only the deterministic part of the SDE (1.12), equation (2.4) reduces to the
Euler approximation x(k+1) = x(k) + a(x(k), t

′)∆t. This approximation is accurate to order
O(∆t2).

With one additional term, and skipping the trival indeces of a and b, the Milstein
scheme reads

X(k+1) = X(k) + a∆t +

r∑

j=1

bj∆Wt′ +
1

2

r∑

j=1

(
b>j (∇b>j )

)> (
(∆W j

t′)
2 − ∆t

)
. (2.5)
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The vector ∇ and the matrix ∇b>j should be written out explicitly for clarification.

∇ =

(
∂

∂x1

,
∂

∂x2

, . . . ,
∂

∂xn

)>

,

∇b> =




∂b1
∂x1

∂b2
∂x1

. . . ∂br

∂x1
∂b1
∂x2

∂b2
∂x2

. . . ∂br

∂x2
...

...
. . .

...
∂b1
∂xn

∂b2
∂xn

. . . ∂br

∂xn


 .

If the bjs are constant, all the derivatives, and thereby also the last term, disappears.
This means that for additive noise, there is no difference between the Milstein and the
Euler-Maruyama schemes. Otherwise, an important fact to notice is that the extra term
in equation (2.5) also includes a deterministic term. This corresponds to the conversion
term between the Itô and Stratonovich SDEs in equation (1.11).

2.1.4 Runge Kutta methods

To improve the accuracy of the discretization process in following the evolution in time of
the deterministic part of the system, a Runge-Kutta approximation could be implemented.
These are higher-order schemes that in principle can be viewed as an advanced subdivision
of ∆t into smaller Euler steps.

The second order Runge-Kutta method is accurate to order O(∆t3), and is for an ODE
written

x(k+1) = x(k) + a(ξξξ, t′ +
∆t

2
)∆t,

ξξξ = x(k) + a(x(k), t
′)∆t.

(2.6)

The intermediate value ξξξ is identical to the Euler step. As stated earlier, Writing equa-

tion (2.7) as x(k+1) = ã(x, t)∆t, noise could be included by the trivial Maruyama addition
to the Euler equation (2.4).

X(k+1) = X(k) + ã(X(k), t
′)∆t +

r∑

j=1

bj(X(k))∆Wt′ . (2.7)

Formally, this has the same weak order as the Euler-Maruyama approximation in equa-
tion (2.4). Again, as in equation (2.5), the additional term from the Milstein scheme can
be added to equation (2.7) to obtain a formal 1.5 order scheme.

The fourth order Runge-Kutta method, which is accurate to order O(∆t5), is normally
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written

x(k+1) = x(k) +
∆t

6
(qA + 2qB + 2qD + qD),

qA = a(x(k), t
′),

qB = a(x(k) + q1
∆t

2
, t′ +

∆t

2
),

qC = a(x(k) + q2
∆t

2
, t′ +

∆t

2
),

qD = a(x(k) + q3∆t, t′ + ∆t).

(2.8)

Numerically, the author has found that the following algorithm, which formally is iden-
tical to equation (2.8), gives a slightly better performance at the same CPU-time. The
performance is measured both in terms of how close a step backwards in time and subse-
quently a step forwards is to the original starting point, and how well simple exponential
test equations are followed.

x(k+1) =
1

3
(ξξξA + ξξξB + ξξξD),

ξξξA = x(k) + a(x(k), t
′)

∆t

2
,

qB = a(ξξξA, t′ +
∆t

2
)
∆t

2
,

ξξξB = x(k) + 2qB,

ξ̃̃ξ̃ξB = x(k) + qB,

ξξξC = x(k) + 2a(ξ̃̃ξ̃ξB, t′ +
∆t

2
)∆t,

ξξξD = ξξξC + a(ξξξA, t′ + ∆t)∆t.

(2.9)

The purpose of this work is, as stated above, to work with non-linear systems with
additive noise. Experiments have shown that the most important is to approximate the
deterministic terms correctly. Equation (2.4) will therefore be replaced by what will be
referred to as the Runge-Kutta-Maruyama (RKM) approximation

Xt = Xt′ + ã(Xt′ , t
′)∆t + b(Xt′)∆Wt′ . (2.10)

There are unresolved problems concerning Runge-Kutta methods and other time-stepping
methods, especially for non-linear problems. The major ones are listed in [7], and include
the lack of a proper definition of non-linear stiffness, possible lack of stability, and the
counter-intuitive effect of increased error with shorter time steps. Further, even if a Runge-
Kutta scheme converges, one could be observing a so-called ghost attractor, which only
occurs due to the numerical discretization. This is an equivalent statement to the one in
section 1.3.5, that the discretized system by itself is a new system with different properties
than the continuous one.
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2.1.5 Taylor methods

An ODE based on a sufficiently smooth vector field a, can be differentiated repeatedly
with respect to time.

ẋ = a(x, t),

ẍ =
da(x, t)

dt
=

∂a(x, t)

∂t
+

∂a(x, t)

∂x
ẋ =

∂a(x, t)

∂t
+

∂a(x, t)

∂x
a(x, t),

x(3) =
d2a(x, t)

dt2
=

∂2a

∂t2
+ 2

∂2a

∂x∂t
a
∂2a

∂x2
a2 +

∂a

∂t

∂a

∂x
,

. . .,

where the arguments of a = a(x, t) have been skipped for simplicity. Using this relation,
the solution of the ODE after a time step ∆t can be expressed as a Taylor series, here
written in just one dimension for simplicity;

x(k+1) = x(k) +
∞∑

j=1

1

j!
x

(j)
(k)(∆t)j

= x(k) + a(t, x(k))∆t +
1

2

(
∂a

∂t
(x(k), t) +

∂a

∂x
(x(k), t)a(x(k), t)

)
(∆t)2 + . . . .

(2.11)

The main disadvantage of the Taylor method is that all the derivatives must be com-
puted. However, for a number of algebraic expressions in a(x, t), the terms in the Taylor
series either eventually becomes zero (polynomials) or ends up in periodic patterns or ge-
ometric series (exponentials, trigonometric functions, hyperbolic functions, square roots
etc.) This creates a possibility of creating efficient computer code to evaluate many terms
efficiently, and only requires that the ODE is compiled to create such a code in advance.
Automatic differentiation, typically applied to Taylor series, can be found a number of
places in the litterature, e.g. [46] and chapter ten of [37]. Good software using this tech-
nique can be found on the internet, e.g. [9] and [21].1

The advantage of the Taylor method is that the error in following the dynamic behaviour
of the system can be studied and controlled in runtime for each grid point and each time
step independently, without extra CPU-time. This is because the Taylor method is easily
performed with different order, and the error is expressed by the contribution of the last
term. It is then possible to specify a relative or specific acceptance level of this error, and
ensure that this error is constant over the whole grid, while you in general are limited
to the general order of the method, expressed by the time step. For many systems, the
Taylor series in equation (2.11) has a finite length, or the infinite sum can be analytically
described. Then the approximant coincides with the exact time stepping method from
section 2.1.2, and the error is zero.

Note that for SDEs, one still has to perform shorter time steps and handle the stochastic
terms to obtain a good solution. In [28] both explicit and implicit Taylor series for SDEs are

1See also http://www.autodiff.org/ for tools, papers etc. on automatic differentiation.
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developed, and they are again truncated in a number of different ways to obtain different
strong and weak schemes. The main problem with PI, is again that the advanced schemes
introduce non-Gaussian noise and noise entering into more state-space variables. This
complicates the implementation and increases CPU-time.

Therefore, implementations of PI using Taylor are based on just using Maruyama or
Milstein terms for the stochastic parts of the SDE. The implementation has been based
on the program “Taylor” by Jorba and Zou, [21]. However, for the systems studied here,
the Runge-Kutta methods performed just as well for the time steps needed, and because
the “Taylor” program required recompilation for every change of parameters in the SDE,
it became too cumbersome for many studies. However, the idea is good, and the code
available for systems where higher time-stepping accuracy is an issue.

2.1.6 The trapezoidal rule

The objective is to integrate the SDE. All the step methods above have been based on the
idea of following the deterministic trajectories through the time step. However, it is also
possible to increase the accuracy of the Euler method by using the trapezoidal integral
approximation with one step. This is especially relevant for problems of the form Ẋ = Y ,
so assume this in the following. The one-step numerical scheme for X becomes

X(k+1) = X(k) +
1

2
(Y(k+1) + Y(k))∆t. (2.12)

Note that this idea is clearly different from the derivation of the Runge-Kutta schemes,
since Y(k+1) is the current grid point and not the integration variable. In other words, this is
a simple implicit method. Since Y(k+1) normally is unknown, this must be found by one of
the other time-stepping schemes, and this could involve also calculating a value for X(k+1).
In spite of using a high order Runge-Kutta method, discarding this value of X(k+1) and
replacing it by the trapezoidal rule from equation (2.12) could reduce the discretization
error.

Similarly, if a multistep method is used, intermediate values for Y between Y(k) and
Y(k+1) could, if suitably adapted, be used to set up a trapezoidal rule with a higher parti-
tioning, or other similar schemes like the Simpson integration rule.

2.2 Other numerical methods of solving SDEs

This is not a survey of numerical methods for solving SDEs, but a brief description of two
methods that are mentioned and used in the thesis and the appendices. Some variations
on the Path Integration method will be described in section 4.5.

2.2.1 Markov Chain Monte Carlo simulation

This is a brute-force method, quite easily implemented in a direct way, creating samples
of the process for some time histories. A very positive feature is that only the statistics of
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interest needs to be recorded from the sampling algorithm. If this has lower dimensionality
than the system but can be estimated from any sample space, e.g. a mean value or a
standard deviation, Monte Carlo has a clear advantage.

The main challenges are simulation of low-probability events, i.e. the tails, and estimat-
ing a sufficiently smooth or accurate probability density from the samples obtained from
the simulations. A high-dimensional joint probability density will require extremely many
samples to achieve some desired spatial accuracy. Note that also a conditional density, say
f(x|y = y0) for continuous random variables x and y, generally requires the same number
of samples as the joint density f(x, y).

When performing a Monte-Carlo simulation on a dynamical system, it is expedient to
make the following considerations. First, one will need one or more starting points, that
often will be arbitrarily or randomly selected. From the starting point, there will be a
transient time where the dynamics should converge towards the stationary behaviour. The
behaviour in this transient should not be included in estimates of variance or grid selection,
unless the starting point is defined to be an initial value for the SDE.

Independence of samples later on in the simulation requires a waiting time between
each sample at least equal to the length of the transient time. However, the sampling rate
depends on what statistic is of interest. Especially extreme values of the response will be
found more efficiently when sampling at every time step. For sufficiently large levels, one
can assume that each upcrossing of this level is independent of the others. With a fixed
sampling interval, the probability of observing the extreme value is smaller.

Similarly, Monte-Carlo simulations must be properly adapted to handle time depen-
dence, and special considerations can be made for efficient estimation of e.g. the variation
of the response process.

Monte Carlo has been used in this project, partly to visualize the process before run-
ning the main numerical method, partly to determine the best grid for the computational
domain, and partly to estimate response PDFs or other statistics that can be compared
to the results from the main program. If an initial value is given with the SDE in ques-
tion, this should be the starting point for the Monte-Carlo simulation. Otherwise, some
arbitrary starting point(s) must be chosen. In the latter case, this point might not be on
the manifold of the stable solution, and the estimated PDF should not be influenced too
much by the method of choosing the initial value. Therefore, the system should be run for
a while so that most of the initial transitions (if any) die out, and so that the sample of
the state space variables is independent of the starting point. After sampling this point,
the same amount of time is needed to obtain a new independent sample.

However, the Monte-Carlo simulation can give more information than just independent
samples for a PDF. Here, the Monte-Carlo simulation is used to obtain information on
where the computational domain should be. If this is based on extreme values from the
MC-simulation, every step should be checked if it is a new extremal value. Also other
measures of the total variation of the system could be improved even with non-independent
samples.

When the total timespan of the MC-simulation is large compared to the dynamics of
the system, the lack of independence between consecutive samples is no longer a problem.
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2.2.2 Moment equations

For some applications, the topic of interest is to compute the moments of the response of a
stochastic system. The moment equations provide an exact theoretical formula for this, as
a linear system of ODEs. The first problem encountered is that only special problems have
closed form expressions for the moments. The author has worked on this in collaboration
with PhD Çaǧdaş Kafali and Professor Mircea Grigoriu, creating a numerical software
that automatically generates sequences of moment equations and solves them.[8] For most
problems however, the linear system has infinite range, and the solution for a moment of
some order depends on moments with higher order so that the system cannot be solved
iteratively.

This means that one needs to truncate the number of equations by replacing higher-
order expressions by some approximants. This is referred to as a closure technique. A
frequently used truncation method is Gaussian closure, where high order moments are
replaced by formulas for the respective Gaussian moments is frequently used, as in [61],
[60], and [58]. This could be a crude approximation, and the linearity of the system is
destroyed. A second problem is that high and low order moments’ values will be of very
different scales, so that the resulting ODE system will be almost singular. Solving the
ODEs numerically could require a time-stepping method that is stable over a large range
of time scales, and any singular value decomposition method will require high precision.
Finally, the moment equations are based on and limited to Gaussian White Noise processes,
though there are possibilities of applying nonlinear filter equations to obtain heavier tails
than the Gaussian.

Yu, Cai and Lin (1997) [61] numerically solve the moment equations for a 2D SDE with
a Gaussian closure over each time step for each grid point, and create a bivariate Gaussian
TPD. This method is also used later by e.g. by Xie, Xu and Cai (2005) [58]. The reason
this idea is not persued further in this project, is that moment equations easily become
numerically unstable, as the parameter connecting lower and higher order moments are in
very different scales, the Gaussian closure is too crude for many problems, and especially
this is not valid for discontinuities, piecewise systems etc., and finally this approach is not
as easily generalized to other noise processes.
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Chapter 3

Interpolation methods

3.1 Interpolation overview

The choice of interpolation routine is very important in path integration. Christian
Skaug [50] has shown that many problems will not converge to a reasonable approximation
in two dimensions using only a bi-linear interpolation, even if the grid resolution is ex-
tremely high. The reason for this is that a linear interpolant consistently under-estimates
peaks and other areas where the function has a negative second-order derivative, and over-
estimates areas where the second-order derivative is positive. Therefore, in the last years,
cubic spline interpolation has been chosen instead. This seems to work well for a number
of systems. However, instabilities have frequently been observed, and this easily ruins the
final result. These problems have not been documented widely, though most of the the-
sis of Vibeke Moe [34] discusses ways to overcome interpolation problems, although the
discussion in section 5.4 will show that the main proposals in there, although intuitively
reasonable, is generally not recommendable.

In addition, the interpolant is twice differentiable, which seems reasonable for prob-
ability density functions. Unfortunately, the cubic spline interpolation has some major
drawbacks. Computing spline coefficients and evaluating the spline is a minor problem
in systems with one or two dimensions, partly since standard packages are available (e.g.
Fitpack). In higher dimensions, one must know at least the basic coding for tensor-product
forms to attain a full interpolation. There are also three-dimensional interpolation codes
in Fitpack, but they are slow, only approximative, or based on biquadratics, weighting,
and least-squares methods. A simple tensor-product method with B-splines does not exist.
The most significant problem is, however, that the interpolating spline will have unreason-
able oscillations in intervals close to a large jump in the interpolation values. This effect
will be illustrated in secton 5.4.1. This is more likely to occur in higher dimensions with
low resolution, which might be why standard B-spline packages do not exceed two dimen-
sions. In this thesis some methods to remove or reduce such oscillations are proposed,
including locally increasing the grid resolution, using a more sophisticated low-oscillating
and non-negative interpolation routine, or returning back to linear interpolation in some

27
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“problematic” areas. To exercise a better control with the result of the interpolation, this
project included implementing all parts of the interpolation code explicitly.

Parabolic splines do not seem to be nearly as widely used as the cubic splines. This
could be because the construction is a bit less intuitive, one has less freedom to enforce
endpoint conditions, and the interpolant is just once differentiable. The CPU-time in
lower dimensional systems is practically the same as for cubic splines. However, because
the support is smaller, the number of grid points needed in a high-dimensional space to
construct the interpolant can be signifcantly reduced compared to the cubic case. Since
the parabolic splines can be seen as an intermediate method between the linear and the
cubic, one could expect the stability to be higher.

The B-splines methods will be presented here first in a general case as described in
C. de Boor (1978) [10]. Then some simplified algorithms for a uniform grid is presented,
including interpolation over a circle or angle. Tension splines will be briefly discussed as
another method between linear and cubic interpolation.

In Naess and Mo 2004 [41] and in section 6.5, a conditional path integration method
is suggested. Here, a the high-dimensional joint probability density of the state space
variables is pointwise divided by the marginal density for some variables. This way, a more
flat surface is obtained, which should be more suitable for linear interpolation in these
variables, possibly with high accuracy even for a very coarse grid. The interpolated value
of the pdf is then obtained by multiplying the interpolated values in the conditional density
with the given marginal density. Unfortunately, this method also has one major drawback.
In many problems, a cross section of the pdf could be very different from the marginal
density, i.e. the conditional density could easily be less flat than the pdf. This causes a
large interpolation error, which is typically difficult to detect and avoid. In addition, if
the marginal density is unknown, this must also be calculated which requires some extra
computational effort. One way to avoid this latter problem is to substitute the marginal
density with an approximation, especially by assuming a marginal Gaussian distribution,
however this seems to give a bias towards the Gaussian approximation. An ideal test case
for this method is equation (1.25), which is Gaussian in y, but not in x, and with an
analytical known solution.

Finally, interpolation in many dimensions will be described using tensor-product forms.
It will also be shown that the interpolation method can be chosen independently in different
variables, sometimes requiring that the sequence of operations are performed in the right
order.

The new work in this chapter is the development and study of low-oscillating non-zero
splines based on Bézier splines, automatic detection of unstable cubic and rectangular B-
splines and automatic adjustment in such areas, and generalizing code so that all possible
combinations of interpolation methods can be easily attained.
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3.2 Knot sequences

“We must define a knot, because if we do not, then we do not know what
is a knot and what is not a knot.”

John Basias1

A knot sequence is an ordered sequence of numbers τττ = {τk}k∈Z such that τk+1 ≥ τk for
all k. For the implementations described in this thesis, the knot sequence will have finite
length and cover a finite interval [p, q], i.e. the numbering will be k ∈ {1, 2, . . . , K} with
τ1 = p and τK = q, p < q, so K is the number of knots.

Further, the interval Ik = [τk, τk+1] with k ∈ {1, 2, . . . , K − 1} will be denoted a knot
interval. This notation is also valid for angular variables, which will be discussed in sec-
tion 3.5. An angle θ is associated with every angle θ + n2π, n ∈ Z, so any point on the
circle can be chosen as a starting point, and the interval will be chosen counter-clockwise
with a length slightly smaller than 2π. However, one additional interval will be added,
namely IK = [p, p + 2π], or equivalently IK = [q − 2π, p]. Here, all integers k will be
allowed, identifying IK+1 = I1 IK+2 = I2 etc. For knot intervals, the valid range of the
index k will often be skipped due to the different possible applications.

A rigorous discussion of spline interpolation in general requires a definition of the inter-
vals as right or left continuous. That is, one should define which interval the knot points
belong to. Above, the intervals are overlapping. However, as long as the spline surface is
continuous, and sufficiently smooth if a derivative is needed, this has no practical effect.
Continuousness and smoothness is ensured by using sufficiently high order polynomials for
the interpolating function(s), and require that all knots, except possibly those at p and/or
q, are separated, i.e. that the knot sequence is strictly increasing between p and q. These
requirements have been implemented for the work presented, and are therefore assumed
from here on. For a more general discussion of multiple knots and discontinuities in spline
interpolation, see e.g. [10] or [4].

The interpolation will be performed on some sequence of points {(xl, vl)}l∈Z, that will
be denoted nodal points, and each vl is a nodal value. In the practical situation of this
project, the sequence {xl}l∈Z is a fixed partition of some interval of interest for some l ∈ Z,
but extended to the real line. These xl are the grid points. The special case of periodic end
point conditions, i.e. interpolation on a circle, has a different extension, which is discussed
separately.

3.3 B-spline interpolation on a generalized grid

B-splines can be defined by a recursive formula. The zero degree B-splines are piecewise
horisontal lines, with discontinuities at the knot points. To avoid these discontinuities, it

1Quote from a knot-theory course in the 2000 Hampshire College Summer Studies in Mathematics.
Found on http://www.toroidalsnark.net/knotpuns.html, accessed August 2007. Note that the knots in the
quote are not spline knots.
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is just as simple to start the recurrence at the first degree polynomial interpolation, that
is linear interpolation, where the basis functions for k = 1, . . . , K − 2 are

Bk,2(x) =





x−τk

τk+1−τk
, for x ∈ Ik,

τk+2−x

τk+2−τk+1
, for x ∈ Ik+1,

0, otherwise.

(3.1)

The number 2 in Bk,2 refers to the order of the B-spline, which is the degree of the
polynomials involved plus one. Formally, the knot sequence affects the shape of the basis
functions, so the basis functions should be denoted Bk,j,τττ . However, since the knot sequence
will be kept constant, this index is skipped.

The recurrence relation for B-splines is written

Bk,j(x) = ωk,j(x)Bk,j−1(x) + (1 − ωk+1,j(x))Bk+1,j−1(x),

ωk,j(x) =
x − τk

τj+k−1 − τk
.

(3.2)

It should be stated that there are a number of equivalent ways to define the B-spline
series, especially with the single multiplicity of knots that is assumed here.

The basis for parabolic B-splines is achieved by inserting j = 3 in equation (3.2), and
cubic B-splines are again computed from these with the same formula using j = 4. These
interpolation schemes have order 3 and 4, i.e. degree 2 and 3, respectively.

When a proper knot sequence is chosen, and the basis functions are calculated, every-
thing is ready for interpolation. As stated above, the interpolation is performed for some
set of nodal points (xl, vl), l = 1, 2, . . . , M , and should be done so that

K∑

k=1

ckBk,j(xl) = vl (3.3)

for every index l and some unknown constants ck, k = 1, . . . , K, which are denoted spline
coefficients. The number of grid points, M , that ensures a unique and stable solution in
ck for this problem, depends on the order of the method, and the end-point condition.
The different implemented possibilities uses M = K, and these will be discussed below.
Basically, one grid point for each basis function is a good rule. For the further discussion
on B-splines, the linear system (3.3) will be written in a matrix form,

Sc = v, (3.4)

where c contains the spline coefficients, v contains the nodal values to be interpolated, and
S(l, k) = Bk,j(xl). The grid points must also be placed sufficiently evenly relatively to the
knot sequence for this system to be solvable.

Finally, the resulting interpolating approximative function is obtained as

f̂(x) =

K∑

k=1

ckBk,j(x). (3.5)
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From the criterion on the B-spline coefficients in equation (3.3), it is immediately clear

that f̂(xl) = vl for l = 1, . . . , M .
The simplest B-spline interpolation (within the restriction of continuity) is the order 2

B-splines from equation (3.1). When this is used, the knots and grid points should coincide
to ensure stability, positivity, and efficiency of the interpolation. Figure 3.1 illustrates some
of the problems that can occur if this rule of thumb is not followed.

b
2

t1
x

v

a
t

Figure 3.1: 1D interpolation with linear splines. The circles indicates points to interpolate
along a uniformly spaced grid, and t1 and t2, indicated by vertical bars, are two different knot
sequences. The first knot sequence is located at the grid points, and the linear interpolation
(dotted) is trivial. With the latter sequence the resulting interpolation function (dashed) attain
negative values and gives unreasonable placement of peaks.

Some trial and error indicates that also cubic B-splines easily become unstable if the
knots are not at the grid points, as this results in a singular or almost-singular S matrix. In
the iterative procedure that this paper is using, this stability problem seems to deteriorate
the final result. So for cubic B-splines, every knot in the knot sequence will coincide with a
grid point. The maximum for a basis parabolic spline is between τk+1 and τk+2. The only
implemented version using parabolic splines uses a uniform grid sequence, as discussed in
section 3.4, together the zero outside end condition, which is described in section 3.3.2. In
this case, the basis function is symmetric, and the maximum is centered between the knot
points. The most stable interpolation is then obtained placing one grid point in the middle
of each knot interval.

The matrix version of equation (3.3) will have a banded structure, where the width of
the band around the diagonal only depends on how many grid points that belong to the
support of each basis spline. Solving such a matrix equation is most efficiently performed
through an LU-factorization, i.e. computing an upper-triangular matrix U and a lower
triangular matrix L so that S = LU . It can be shown that also L and U will have a
banded structure. As long as the grid is kept constant, the LU decomposition will not
change, and could be done before iteratively performing interpolation on the system.

3.3.1 The not-a-knot end condition

With M gridpoints, with one knot for each grid point, and a double knot at each end,
M + 2 conditions are needed to make a cubic B-spline interpolation unique. The M nodal
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points to be interpolated are known, but still two conditions remain. These will usually
be boundary conditions like the derivative and the curvature at the end points. However,
in a general case, such boundary conditions are not known or difficult to use, e.g. if the
derivative is infinite. Another option is to require complete smoothness at the second and
second last grid point, i.e. continuity also in the third derivative. This is equivalent to
removing the knots at these two grid points, and using a knot multiplicity of two at the
end points. Due to the removed knot positions, this method is called the not-a-knot end
condition. It has been shown [11] that this interpolation scheme converges strictly to any
smooth function when the mesh size goes to zero.

3.3.2 The zero side end condition

The functions to be interpolated here are PDFs. Since the total mass of a PDF is one, it
must asymptotically approach zero from above as the distance to the origin goes to infinity
in all directions. Except for some special cases where the PDF has a fixed endpoint in
one direction, the decay to zero should be smooth. Since the numerical algorithm requires
the domain to be bounded, it is reasonable to assume the PDF is exactly zero outside of
this domain, and search for an interpolation method that smoothly decays to zero as one
crosses the boundary of the domain from the inside.

3.4 Splines in a uniform grid

When the knot sequence has constant increments τk+1−τk = ∆τ , the grid is uniform. This
leads to so-called cardinal splines, where all the basis functions all have the same shape
and are just translated along the axis. In the litterature cardinal splines are sometimes
also called periodic splines, referring to this repetative pattern. A basis function can be
expressed analytically in some reference domain, and then scaled and translated to give the
complete basis of the cardinal splines. This is a computational advantage as this function
can be calculated in advance, and also the calculation of spline coefficients can then be
done faster than in the general case.

A cubic uniform B-spline is composed of four pieces. Every point except the knots are
in the support of four basis functions with one piece each. Translated and scaled to (0, 1),
these four pieces are

1
6
x3

−1
2
x3 + 1

2
x2 + 1

2
x + 1

6
1
2
x3 − x2 +2

3

−1
6
x3 + 1

2
x2 − 1

2
x + 1

6
.

(3.6)

The parabolic uniform B-spline has three pieces. In the reference domain (− 1
2
, 1

2
) they

are
1
2
x2 + 1

2
x + 1

8

−x2 + 3
4

1
2
x2 − 1

2
x + 1

8
.

(3.7)
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The trivial linear uniform B-spline has two pieces that in the reference domain (0, 1),
namely x and 1 − x. For all these cases it is simple to verify that the functions add to 1
for all x.

Consider the matrix version of one-dimensional interpolation problem from equation (3.3);

v = Sc, (3.8)

where v are the nodal values to be interpolated, c are the corresponding spline coefficients,
and S is the spline matrix.

Assume that the values in v tend to zero on the border of the domain, and extend the
grid to a few points with zero values in c as described in section 3.3.2. Now the spline
matrix S becomes very simple. For cubic B-splines, equation (3.6) implies that the basis
function has a maximum value of 4/6. The two neighbours both have the value 1/6 at the
grid point. This gives

S =
1

6




4 1 0 · · · 0 0

1 4 1
. . . 0 0

0 1 4
. . . 0 0

...
. . .

. . .
. . .

...
...

0 0 0
. . . 4 1

0 0 0 · · · 1 4




. (3.9)

Note that the first nodal points outside the original domain, i.e. the closest parts of the
extended grid, by this has nodal values v0 = c1/6 and vn+1 = cn/6. If c1 and cn are positive,
this makes a small extrapolation feasible.

For parabolic splines, the matrix has the same shape as in equation (3.9), but with 6/8
on the diagonal and 1/8 on the sub- and super diagonals. Note that S in both cases is
symmetric and positive definite.

To compute the spline coefficients of equation (3.8) the most efficient way is an LU-
decomposition of S. Also this can be done analytically. If the matrix S has a diagonal
with value d and ones on the sub and super diagonals, as for parabolic and cubic splines
the LU-composition reads

S = LU,

L(j, j) = 1, j = 1, , 2, . . . , M

L(j + 1, j) =
qj−1

qj

, j = 1, 2, . . .M − 1,

U(j, j) =
qj

qj−1

, j = 1, 2, . . .M,

U(j, j + 1) = 1, j = 1, 2, . . . , M − 1

q0 = 1, q1 = d, qj+1 = dqj − qj−1, j = 1, 2, . . .M,

which is easily proved by evaluating the matrix product of L and U . The diagonal elements
of U are the inverse of the elements on the super diagonal of L. The ones does not have to be
saved, hence only M numbers need to be saved when pre-computing the LU-factorization.
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For large matrices, the formula above could lead to numerical overflow for the qj.
However, it can be shown that

lim
j→∞

qj−1

qj

=
d −

√
d2 − 4

2
.

This convergence is fast enough that the limit value and its inverse can be used instead
of the fractions in the procedure above when the counter j is about 20, and thereby avoid
overflow. The LU-decomposition can also be performed numerically quite efficiently, and
this has been implemented for the general grid. However, if the numerical method requires
frequent updates of the grid resolution, the method above will be the faster without lack
of accuracy.

3.5 Cardinal splines on a circle

If the variable is an angle, a uniform partitioning will give points separated by 2π
M

, and
every grid point will have two neighbours. The spline matrix will then contain be non-zero
also at the positions (M, 1) and (1, M). The cubic uniform B-spline matrix becomes

S =
1

6




4 1 0 · · · 0 1

1 4 1
. . . 0 0

0 1 4
. . . 0 0

...
. . .

. . .
. . .

...
...

0 0 0
. . . 4 1

1 0 0 · · · 1 4




.

The LU-factorization will be almost the same as above, except the last row in L and the
last column in U will be non-zero. The total storage required is then 2M .

One could also compute general splines on a circle using the recurrence relation from
equation (3.2), and then generate the S matrix and its LU-factorization. This has not been
implemented in this project, since no system has motivated a need for a globally higher
grid resolution around some angles.

3.6 Tension splines

Tension splines can be expressed as a linear combination of 1, x, ewx and e−wx. This
gives a linear interpolation when the tension factor w goes to infinity, and limw→0+ gives
cubic B-splines. The basis can also be chosen as sinh(wx) and cosh(wx) instead of the
exponential functions.

All the important properties of cubic B-splines, that is pointwise interpolation, smooth-
ness, adding up to one, and the applicable end point conditions, are still retained with this
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basis. Further, the construction of uniform splines periodic endpoint conditions follow the
same procedure as cubic B-splines, and the LU-factorizations for both the periodic and
the non-periodic cases give the same pattern of non-zero elements in the L and U matrices
as for cubic splines, just slightly different numbers. Hence, the tension spline LU matrices
are tri-diagonal for a uniform grid, so the cpu-time should be basically the same.

To avoid the problem of artificial inflection points or extremal points for a specific in-
terpolation problem, one could use tension splines, and gradually increase tension until a
suitable result has been obtained. The author’s experience with this idea is however that
the problematic interpolation behaviour often persists up to very high tension, at which
point the interpolant has the unfortunate property of consistently under-estimating peaks
and over-estimating tails like the linear interpolant. Other problems include that a strict
criteria for choosing the tension parameter has not been found, and changing the ten-
sion parameter requires a full re-calculation of the LU-factorization and spline coefficients.
Theoretically one could also use different tensions at different intervals, and still retain a
smooth curve. However, every change of tension locally affects the interpolant globally,
and now the basis splines also depends on all the tension values globally, so its practi-
cally impossible to express then analytically. Both these facts implies a longer cpu-time
and much more complicated code. Therefore, the idea of using tension splines to avoid
unstable interpolation was abandoned.

3.7 A Bézier-based interpolation method

Here a new interpolation method is presented. The requirements for the method is

1. Pointwise interpolation of all the known function values.

2. Sufficiently fast.

3. Facilitate the use of a more coarse grid in all spatial directions than the cubic spline
method.

4. No explicit assumptions on the shape of the density or marginal density (except some
degree of smoothness).

5. No systematic under-estimation or over-estimation of peaks or tails.

6. Always return positive interpolation values when interpolating a positive function.

7. Give the possibility of adding boundary values for the pdf where these are known
without much extra work.

8. The approximating function or surface should look “reasonable”, i.e. there should
be no numerical oscillations, but the method should give local extremal values also
outside of the known function values.
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The idea is to use the Bézier spline representation of the surface as the smooth approx-
imation. The result of pointwise dividing the pdf by this approximation gives a more flat
surface. This surface can then be interpolated by (bi)linear, or even cubic, splines. Even-
tually, the approximation of the pdf is obtained by multiplying with the Bézier surface.

3.7.1 Bézier splines

The basis of the Bézier splines is the same as for the B-splines. However, instead of
computing spline coefficients, the original function values are used. That is, instead of
equation (3.5), use M = K and

f̃(x) =

K∑

k=1

vkBk,j(x). (3.10)

This does not give interpolation, unless inside intervals where three or more points form
a straight line, so the resulting function is only approximating. It can be shown that the
Bézier approximation is contained in the convex hull of the function values, so the error is
systematical, in the sence that peaks or intervals where f ′′(x) < 0 normally will be under-
estimated and long tails or intervals with f ′′(x) > 0 usually is over-estimated. The Bézier
curve is used in computer graphics and modelling because it is simple to evaluate and
represent the shape of structures, functions and surfaces well. A survey of Bézier splines
and a simple discussion of B-splines and other approximative splines can be found in [4].
Notice also that the second order Bézier spline coincides with the second order B-spline,
and is hence an interpolating piecewise linear function.

3.7.2 The Bézier method procedure

To simplify the details of this method, and because this is efficient for computer program-
ming, assume that the function f that is to be interpolated is known on a uniform infinite
grid. As we will regard f as a density, assume f(x) ≥ 0 for all x. To illustrate the procedure,
we begin by a function of one variable. Without loss of generality, we assume that the func-
tion f is known for integer values, i.e. we have given f(k) for k = {. . . ,−2,−1, 0, 1, 2, . . .}.
Also, the discussion is based on a cubic Bézier spline, however the idea is the same for a
rectangular spline or higher order splines.

The values of the approximating Bézier function f̃ at the grid points are found using
equation (3.6) and (3.10), which gives

f̃(k) =
1

6
f(k − 1) +

2

3
f(k) +

1

6
f(k + 1). (3.11)

A pointwise division gives then the pointwise function q̃(k),

q̃(k) =

{
0 if f(k) = 0,
f(k)
ef(k)

otherwise.
(3.12)
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This works, since f(k) > 0 and f(x) ≥ 0 for all x by equation (3.11) implies f̃(k) > 0. Let
x be the point that is to be evaluated. That is, we want to approximate f(x). Let bkc be
the largest integer smaller than or equal to x. A linear interpolation of q̃ is

q̂(x) = (1 − x + bkc)q̃(bkc) + (x − bkc)q̃(bkc + 1). (3.13)

Then we approximate f(x) by

f̂(x) = f̃(x)q̂(x). (3.14)

Remember from equation (3.10) that f̃ is described by smooth polynomials, so the Bézier-
spline is defined for all x. Accordingly, from equation (3.13), q̂(x) is defined for all x and
continuous, so the result of equation (3.14) is a continuous function.

3.7.3 Properties of the Bézier based method

Firstly, direct substitution shows that f̂(k) = f(k) for all k, so the spline is interpolating.
Even though this is not a B-spline, it is in fact of order 5 (degree 4), it consists of piecewise
polynomials, so using the word splines is justified.

If f(k) ≥ 0 for all k, the method above gives f̃(x) ≥ 0 for all x, and thereby q̃ ≥ 0,

q̂ ≥ 0, and f̂ ≥ 0. This is a good property for probability densities.
f̂(x) is bounded by 23

20
[(1 − x + bkc)f(bkc) + (x − bkc)f(bkc + 1)] if f ≥ 0 and the grid

is uniform. In plain text this means that the deviation above a linear approximation is never
larger than 15%. For the cubic B-spline, no such upper limit exist. It is not possible to
give a lower limit of f̂ relative to a linear approximation, as the relative difference diverges
to infinity as x → 1+ or x → 3− in Figure 3.2 in the examples below in section 3.7.6.
One of the other examples in that section, the right plot in Figure 3.2, is the case when
this maximum is reached. This relative upper bound was found through the following
observations:

• Linear interpolation depends only on the two nearest neighbouring grid points of x,
f̃ only depends on the four nearest neighbour points. So for f̂ only four nodal points
(x−1, v−1), (x0, v0), (x1, v1), and (x2, v2) needs to be considered.

• Since both linear interpolation and f̂ are interpolants, there is no relative error at
the grid points. So the maximal error with respect to the linear interpolant will be
searched for inside the open interval (x0, x1).

• The relative error is scale independent in both x and v. Since the grid is uniform,
calculations are simplified by choosing x−1 = −1, x0 = 0, x1 = 1, andx2 = 2. This
gives bkc = 0.

• If v0 = 0 and v1 = 0, q̃ will be zero in the whole interval (x0, x1), and hence the

linear interpolant and f̂ coincides. To obtain the maximum error relatively to the
linear interpolant, at least one of the nearest nodal values must be non-zero. Since
the problem is symmetric, this choice is arbitrary, so assume v0 > 0.
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• The independence of scale in v-direction can now be used to fix v0 = 1.

• Write out the expression for the spline and the linear interpolant with repect to the
nodal values v−1, v1, and v2, v−1, v1, v2 ≥ 0 and evaluated at x, 0 < x < 1. The linear
interpolant is simply q(x) = v0(1 − x) + v1x.

• The ratio f̂(x)/q(x) is maximized by computing the partial derivatives in x, v−1, v1,
and v2, setting the resulting expressions to zero, and solving the set of four equations
and four unknowns.

The smoothness of f̂ is generally not any better than the smoothness of q̂. Using a
linear interpolation for q̂, as done here, means that the derivative of f̂ does not exist for
integral values for general functions f . However, this does not mean that the interpolation
is coarse.

The left and right derivatives when x → m are

f̂ ′(x−) = f̃ ′(x−)q̂(x−) + f̃(x−) [q̃(m) − q̃(m − 1)] , (3.15)

f̂ ′(x+) = f̃ ′(x+)q̂(x+) + f̃(x+) [q̃(m + 1) − q̃(m)] . (3.16)

Since f̃ is differentiable everywhere and q̂ is continous, the left and right derivatives will
in many cases be close to each other. For some special functions, they are equal, as will
be seen from the examples below. The requirements for these functions could be found by
setting the left and right derivatives equal to each other. E.g. it is always differentiable in
points k where f(k) = 0.

In the two-dimensional case, still with an integer grid and cubic Bézier splines, the
procedure would be the following, assuming that bjc and bkc are the largest integers such
that bjc ≤ x and bkc ≤ y, and the counters j and k are run over the whole (extended)
domain Z.

f̃(j, k) =
1

36
f(j − 1, k − 1) +

1

9
f(j − 1, k) +

1

36
f(j − 1, k + 1)

+
1

9
f(j, k − 1) +

4

9
f(j, k) +

1

9
f(j, k + 1)

+
1

36
f(j + 1, k − 1) +

1

9
f(j + 1, k) +

1

36
f(j + 1, k + 1)

(3.17)

q̃(j, k) =

{
0 if f(j, k) = 0,
f(j,k)
ef(j,k)

otherwise.
(3.18)

q̂(x, y) = (1 − x + bjc)(1 − y + bkc)q̃(bjc, bkc) + (1 − x + bjc)(y − bkc)q̃(bjc, bkc + 1)

+ (x − bjc)(1 − y + bkc)q̃(bjc + 1, bkc) + (x − bjc)(y − bkc)q̃(bjc + 1, bkc + 1).

(3.19)

f̂(x, y) = f̃(x, y)q̂(x, y). (3.20)

This extension of equations (3.11), (3.12), (3.13), and (3.14) is trivially extended to higher
dimensions.
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3.7.4 Number of arithmetic operations

Using this method on an n-dimensional system will require one division, n + 1 multiplica-
tions with a constant, and 3n additions per grid point to calculate q̃. For each interpolated
value, you need to calculate the value of the four non-zero splines for this point and add
their contributions, do a linear interpolation (2 additions and 2 multiplications), and mul-
tiply these two results together.

For a cubic spline, all the points in the grid is traversed n times to compute the spline
coefficients when utilizing the tensor product form. The n-dimensional spline coefficients
are just the 1-dimensional spline coefficients in the last variable of the n − 1-dimensional
spline coefficients of the previous variables. The computations for each row or column
could be done with M −1 multiplications with a constant, 2M −1 variable multiplications,
and 2M − 2 additions, assuming a uniform grid of size M . The interpolated value is easier
to compute when you have the coefficients, as you can skip the linear interpolation and
the last multiplication.

Assume a grid with M points in each direction where K values are to be found by
interpolation. If you forget the computation of the B-spline basis functions, the total
number of computations is as follows. The new method requires Mn divisions, Mn(n + 1)
constant multiplications, 3K multiplications, and Mn + 2K additions. The cubic B-spline
requires (at least) Mn−1n(M−1) constant multiplications, Mn−1n(2M−1) multiplications,
and Mn−1n(2M − 2) additions.

Remember that f̃ is just used as an approximation of the shape of the function. When
the density changes very little at each iteration, the approximation might not have to be
updated so often. This means that the number of computations can be reduced significantly
to just the 3K multiplications and 2K additions in addition to finding the value of the
Bézier spline. There is no trick like this for the B-spline, where the spline coefficients must
be calculated again each iteration.

Pre-calculating the basis spline reduces the cost to 4Mn multiplications for the B-spline,
and 5Mn.

3.7.5 Boundary values

Let the grid be uniform with integer values, but assume now that f(k) is only known or
defined for an interval, say from 0 to M . Scaling and translating the grid does not affect
the behaviour of the interpolation, so this is still an assumption without loss of generality
for any uniform grid.

When extending f to Z, four basis splines that will contribute to the value of f̃ in
the interval are then unknown, namely those scaled with f(−2), f(−1), f(M + 1), and
f(M + 2). All other points outside the interval can be assumed to be zero (or any other
value) without affecting the computations, since the cubic Bézier spline is local within the
four nearest neighbouring nodal points.

If it is known that f should go smoothly to zero on the upper boundary, it is reasonable
to set f(M + 1) = f(M + 2) = 0, and accordingly for the lower boundary if applicable.
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Figure 3.2: Left: Interpolation of “delta function”, i.e. just one non-zero nodal value. Right:
Similar result for the case of two non-zero nodal values. Red: Linear approximation, Blue: Cubic
spline, Black: New method.

In other cases, these four values should be chosen so that the shape of f̃ is similar to the
shape of f . The interpolation will be better if q̃ is mostly constant. Setting the values of
the extended nodal points to zero at a boundary where the density does not go smoothly
to zero could result in unwanted oscillations in the two intervals closest to this boundary.

3.7.6 Examples

The numerical delta-function and unit-function

Take the extreme case first. If the function is zero everywhere except in one point, what
is the most reasonable interpolation? Well, it is difficult to say. In practice, a numerical
method should maybe not continue if a situation like this occurs, unless this is used as
a starting distribution. However, it will be good as an illustration, shown in the left of
Figure 3.2, as the cubic spline interpolant clearly shows the unwanted oscillating behaviour
and how it could be negative in such cases, as discussed above. Note also that the new
interpolant is sharper than the linear on the spike, and clearly not differentiable.

Let us add more non-zero nodal values, gradually approaching a discretization of a unit
step function. The result of two nodal values is shown in the right side of Figure 3.2,
three and four non-zero nodal values in the left and right of Figure 3.3, respectively. Of
course, now the linear interpolant is optimal where the density is flat. However, the new
interpolant is quite good, given that it really is a high-order polynomial. Note that it gives
a straight line in the middle when four or more points are aligned, and that it climbs up
the step function with a steep gradient.
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Figure 3.3: Three and four non-zero nodal values in the left and right plot, respectively. Red:
Linear approximation, Blue: Cubic spline, Black: New method.

The linear function

One can easily check that four nodal points aligned on a straight line gives a linear inter-
polation in the middle knot interval. Start with f(m) = αm + β, which gives

q̃(m) =
αm + β

1
6
(α(m − 1) + β) + 2

3
(αm + β) + 1

6
(α(m + 1) + β)

= 1. (3.21)

In fact, not only is the denominator f̃(n) a straight line, f̃(x) is a straight line for all values
of x when there are at least two nodal points on each side that also are on this line. Hence
is f̂ a perfect interpolation in such intervals. The cubic spline will not adapt unless the
line has infinite length. An illstration is shown in Figure 3.4.

Polynomials

One might expect that this new interpolation is perfect for any polynomial up to degree
4. This is however not the case. But the interpolation is good anyway for most cases.
Remember that we want to interpolate probability densities, and there is usually no rea-
son to believe that they behave locally like polynomials. An example, a second degree
polynomial, is shown in Figure 3.5, including a more detailed plot of the error.

The exponential function

The exponential function without a constant term is not perfectly interpolated. This is an
interesting case anyway, because the interpolant f̂(x) is differentiable everywhere. This is
seen by setting f(m) = αeβm and calculating

q̃(m) =
αeβm

1
6
αeβ(m−1) + 2

3
αeβm + 1

6
αeβ(m+1)

=
1

2
3

+ 1
6
(eβ + e−β)

. (3.22)
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Figure 3.4: The interpolants of a linear function. Red: Linear approximation, Blue: Cubic
spline, Black: New method.

An example is shown in Figure 3.6. When q̃ is a constant, the linear interpolation is perfect
and differentiable, so the only approximation is f̃ . In a logarithmic plot, f̂ is very close to
a straight line. 2

The Gaussian distribution

The new interpolation method underestimates the normal distribution slightly, both close
to the top and in the tails. Here, the B-spline performs better. However, the new method
does not consistently underestimate peaks and overestimate tails, which is the main prob-
lem with the linear interpolant. In fact, close to the boundary, where you have to choose a
boundary condition for the splines, the new method performs slightly better, as both the
absolute and the relative interpolation error decreases to the tails. This is not the case for
the B-spline or the linear approximation. For the example plots in Figure 3.7 it is assumed
that all nodal values outside of the interval are zero.

2This also holds for imaginary β, hence the cosine and sine functions are smoothly interpolated even
if the grid spacing is not a quotient of the period. This has not been studied further, since this project is
restricted to interpolation of probability densities where f is always non-negative.
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Figure 3.5: Left: The quadratic function 16 − x2 and the same interpolants as in the previous

figures. Right: The same function, but focusing on the error by computing

√
16 − f̂(x) − x.
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Figure 3.6: Left: the interpolants of an exponential function y = exp(x). Right: the error for
the same interpolation, obtained by computing log(f̂(x)) − x.
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Figure 3.7: Left: A Gaussion function with standard deviaton 1 and mean value 0 is interpolated,
and log(f̂(x)) is plotted. Right: The same interpolation, where f̂(x) − f(x) is presented.



Chapter 4

Path integration

4.1 A Markov integral operator

In this section it will be shown how an SDE, equation (1.12), in a natural way leads to a
Markov integral operator.

The first important choice is to restrict the analysis and numerical implementation
to solve a time discretized version of equation (1.12), like one of equations (2.4), (2.7),
(2.8), or (2.11). For simplicity, the discussion is based on equation (2.4), however the
idea is the same for all the discretization methods, and therefore a(x)∆t is replaced by
ã(x)∆t. It follows from the discretized equations and the fact that the Wiener process
has independent increments that the sequence {Xn∆t}∞n=0 is a Markov chain. It is also
observed from equation (2.4) that the associated transition probability density function
(TPD), which is denoted by ftt′(x|x′) = f(x, t|x′, t′), is a Gaussian probability density
function (PDF) since ∆Wt′ is a Gaussian variable for every t′.

Before proceeding, it is expedient to introduce one simplification implied by the dynamic
systems considered here, which amounts to setting r = 1 and b1(x, t) = γen. So the noise
process is additive, meaning that the variance over a small time step is independent of the
state space variables. In addition, the stochastic excitations only enter through the last
component of the SDE. The latter is not a basic limitation of the theory, but serves to
simplify the discussion. A generalization will be discussed by the end of this section.

From the assumptions above we may now write down the TPD corresponding to equa-
tion (2.4)

ftt′(x|x′) =
n−1∏

i=1

δ(xi − x′
i − ãi(x

′, t′)∆t) · ftt′(xn|x′) (4.1)

where x = (x1, . . . , xn)T , δ(·) denotes the Dirac delta function symbol and

ftt′(xn|x′) =
1√

2πs(x′)
· exp

{
−(xn − x′

n − ãn(x′, t′)∆t)2

2s(x′)2

}
(4.2)

45
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where s(x)2 =
∑m

j=1 bj(x)2∆t. Hence, ftt′(x|x′) can be interpreted as a degenerate multi-

dimensional Gaussian PDF. We shall assume throughout that s(x)2 ≥ K∆t, where K is a
positive constant.

Starting with an initial density of states finit(x) the study of the evolution in time of
this density is based on the following formal expression of the total probability law

ft(x) =

∫

Rn

ftt′(x|x′)ft′(x
′) dx′ (4.3)

where the (joint) PDF of Xt at time t is denoted by ft(x; t), and f0(x) = finit(x). To
ensure the validity of the integration range, let f be zero at any points x′ where the
formal expression for f(x′; 0) is undefined. Equation (4.3) now has to be interpreted in
the light of equation (4.1). To obtain the appropriate result, the inverse and the implicit
function theorems from section 1.1 will be used. Let x̃ = (x1, . . . , xn−1)

T , whenever x =
(x1, . . . , xn)T is an n-dimensional vector or vector function. Consider the two equations
x = h(x′) and x̃ = h̃(x′) = h̃(x̃′, x′

n), where h(x′) = x′ + ã(x′)∆t. Let

Jh(x
′) = det(Dx′h(x′)) = det

(
∂(h1(x

′), . . . , hn(x′))

∂(x′
1, . . . , x

′
n)

)
,

Jh̃(x̃
′, xn) = det(Dx̃′ h̃(x̃′, xn)) = det

(
∂(h1(x

′), . . . , hn−1(x
′))

∂(x′
1, . . . , x

′
n−1)

)
.

(4.4)

It follows immediately that Jh(x
′) 6= 0 and Jh̃(x

′)) 6= 0 for every x′ for sufficiently small
∆t. This means that for every point x there is an open neighbourhood U containing
x where a smooth inverse g = h−1 : h(U) → U exists. Also, for a fixed point x, let
ξξξ′ = (ξ′1, . . . , ξ

′
n)

T = g(x). Then there is an open interval Un containing ξn and a function
g̃ : Un → Rn−1 so that the equation x̃ = h̃(g̃(x′

n), x′
n) is satisfied for every x′

n ∈ Un, and
Jh̃(g̃(x′

n)) 6= 0 for x′
n ∈ Un. Write g̃(x′

n) = g̃(x̃, x′
n) to make explicit the dependence on

x̃. It is clear that the function g̃ can be suitably modified outside Un so that Un can be
extended to R.

The introduction of this auxiliary system will simplify the discussion without imposing
an important restriction. The reason for this is that in the limit when ∆t → 0, Un → R.
Assuming that Un = R, the following relation expressing the combination of equations (4.1)
and (4.3) is then obtained

ft(x) =

∫

R

ftt′(xn | g̃(x̃, x′
n), x′

n) ft′(g̃(x̃, x′
n), x′

n) |Jh̃(x̃, x′
n)|−1 dx′

n

=

∫

R

H(x′
n,x; t)ft′, dx′

n.

(4.5)

Let us show that equation (4.5) defines an operator Ptt′ : D → D. D = {f :
∫

Rn f dx =
1} is the space of probability densities over the state space. f( · ; t) is well-defined for every
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f( · ; t′) ∈ D. To this end, let f( · ; t′) ∈ D. Then

∫

Rn

f(x; t) dx

=

∫

Rn+1

ftt′(xn | g̃(x̃, x′
n), x′

n) f(g̃(x̃, x′
n), x′

n; t′) |Jh̃(x̃, x′
n)|−1 dxn dx̃ dx′

n

=

∫

Rn

f(g̃(x̃, x′
n), x′

n; t′) |Jh̃(x̃, x′
n)|−1 dx̃ dx′

n. (4.6)

Define Jg̃(x̃
′, x′

n) = det(Dx̃g̃[x̃, x′
n]) similarly to the Jacobians in equation (4.4). From the

equation x̃ = h̃(g̃(x̃, x′
n), x′

n), it is obtained that I = Dx̃x̃ = Dx̃′h̃[g̃(x̃, x′
n), x′

n] Dx̃g̃(x̃, x′
n),

where I denotes the n × n identity matrix. That is, 1 = Jh̃(x̃, x′
n)Jg̃(x̃, x′

n). Introducing
the change of variables (x̃, x′

n) → x′ = (g̃(x̃, x′
n), x′

n) into equation (4.6), it follows that

∫

Rn

f(x; t) dx =
∫

Rn

f(x′; t′) |Jh̃(x̃, x′
n)|−1 |Jg̃(x̃, x′

n)|−1 dx′ =
∫

Rn

f(x′; t′) dx′ = 1. (4.7)

Hence, f( · ; t) ∈ D, which proves that Ptt′ : D → D.
With some restrictions on the dynamics and a non-zero variance everywhere, the oper-

ator P also defines a map between densities in a smaller space, DC
0 = D ∩ C0, where C0 is

the space of bounded functions that go to zero at infinity. That is,

Ptt′ : D
C
0 → D

C
0 , D

C
0 = {f ∈ D : f(x) < ∞∀x, f(x) → 0 ∀ ||x|| → ∞}.

This investigation will be performed in two steps, first checking that the new density
goes to zero at infinity, and second to ensure that it is bounded everywhere.

For every choice of ε and K, one can choose a compact set V ′ ⊂ Rn such that∫
V ′ f(x′) dx′ > 1 − ε and f(x′) < K∀x /∈ V ′. For a given ∆t, V = h(V ′) is compact.

The mapping h : V ′ → V is a continuous homeomorfism for a smooth dynamical system,
i.e. when there are no shocks or limit transitions present. This also defines a variable
transformation also in the last variable,

ξ = x′
n + ãn(x′, t′) = hn(x′, t′),

which then has a continuous Jacobian, and the Jacobian is bounded for x′ ∈ V ′. From
here on, the function argument x̃, ξ will be used indicating that the last element for the
point x is substituted by the variable ξ, which now is the integration variable over the last
state space dimension.

Now regard the image of f(x′) in V after this transformation and denote it f †(x) =
f(h−1(x)). This f † is then a bounded continuous function in C0. (Note, f † is not a
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probability density.) The integral in equation (4.5) is then along a straight line through x

parallell to the xn axis. Using that g = h−1 and |Jh(x̃, ξ)|−1 = |Jg(x̃, ξ)|, the formula reads

f(x, t) =

∫

R

ftt′(xn|g(x̃, ξ))f †(x̃, ξ)|Jg(x̃, ξ)| dξ. (4.8)

Consider a sequence of points x with increasing distance from V . Because ptt′ is centered
in x, the contribution to the integral (4.3) of f(x′), or the image f † is reduced, whenever
ftt′ is bounded and goes to zero for ||ξ|| → ±∞. This is fulfilled for the criterion for the
standard deviation already stated, namely that (s(x′))2 > c∆t > 0 for every x′. In that
case, also f(x) must go to zero as ||x|| → ∞.

Inside this integral, f → 0 for |ξ| → ∞, and ftt′ → 0, for additive noise like the
normal distribution. So the integral will converge everywhere unless the Jacobian diverges
to infinity too fast. In other words, the variable transformation provides a criterion that
the density f(x) is surely bounded at x. Using the limit comparison test with 1/ξ one
obtains

lim
ξ→±∞

ξ

|s(g(x̃, ξ))| exp
{
−ξ2/[2s(g(x̃, ξ))2]

}
|Jg(x̃, ξ)| = 0. (4.9)

Otherwise, the boundedness will depend on how fast f(x′, t′) decreases. The criteria that
has been set for the variance function s2 and the dynamics, here g, are sufficient for
the operator to map DC

0 to itself. These are hence not strict limitations for when PI is
applicable.

For the numerical solution of the problem of establishing the PDF fn∆t(x) of the state
space vector Xn∆t given that the PDF of the initial state Y0 is equal to finit(y) ∈ D,
it is necessary to study the compound effect of the Markov operators Pi = Pi∆t,(i−1)∆t,
i = 1, 2, . . .. Defining P(i) = Pi ◦ . . . ◦ P1, where ◦ denotes operator composition, then
clearly fn(x) = P(n)f0(x). If there exists a stationary PDF, f ∗(x) say, then this can be
estimated by calculating fn(x) for sufficiently large values of n.

The existence of a stationary density for this kind of operator is determined not only by
how the kernel depends on the time parameters, but also on how the stationarity concept
itself is interpreted, as will be discussed below. Also note that a sequence of densities in
D

C
0 could converge to a density which is not in C0.

The choice of discretization scheme will of course affect the shape of the functions s
and h, and hence g, but the general discussion above is still valid. An important point
is to ensure that the integral remains one-dimensional, so terms that gives dispersion in
other variables than the last should be avoided. Finally, the integral will typically also be
discretized, using ξ ∈ {ξ1, ξ2, . . . ξM} where the number of integration points M and the
upper and lower integration value ξ1 and ξM are chosen to give a good numerical estimate.
A trivial integration scheme is then

f(x, t) =

M−1∑

j=1

ftt′(xn|g(x̃, ξj))f
†(x̃, ξj)|Jg(x̃, ξj)|(ξj+1 − ξj). (4.10)
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The integral can of course also be performed using a more advanced scheme like Simpson’s
method or the trapezoidal scheme. Note that this integration is different from the time
stepping method, where one also can apply such a scheme, as seen in section 2.1.6.

The result above can directly be generalized to muliple additive noise processes, r > 1, if
one assumes bj(x, t) = γjen−r+j for j = 1, . . . , r. That is, each independent noise processes
enters the SDE through only one state space variable, and bj(x, t) is orthogonal to bk(x, t)
for all j 6= k, 1 ≤ j, k ≤ r. For additive noise, this is not really a restriction, since
this always can be obtained by linear combinations of the rows in the SDE and renaming
and renumbering of variables. In that case, the domain denoted Un above, will be an r-
dimensional subset of Rn, and will be extended by a proper modification of the backwards
time step to Rr. The integral after the variable transformation will now be a full integral
over Rr following the coordinate axis.

4.2 Numerical approximation of volume change

To implement the Markov operator numerically, some additional obervations have been
made. First, Un is extended to R by approximating g(y) by ĝ(y) = y − ã−(y)∆t; where
ã− is a Runge-Kutta step backwards in time starting in y. This adjustment also ensures
the extension of the domain On to R in the above discussion for g̃. The accuracy of this
approximation is as good as the initial time discretization of the SDE.

The basis for the numerical algorithm is equation (4.8). Since g and h are not expressed
directly, but rather as a Runge-Kutta procedure through the system equations a(x), it is
efficient to approximate the Jacobian by the Jacobian matrix Da(x) of the deterministic
part of the system equations. To manage this, a new variable u is introduced, as a velocity
vector

u = ẋ = a(x),

u̇ =

n∑

j=1

∂a

∂xj
ẋj = Da(x)u.

This differential equation is integrated from u(t) to u(t′), assuming that Da(x) is constant
in t over the sufficiently small time step. One then obtains

u′ = u(t′) = e−Da(x)∆tu(t). (4.11)

The velocity vector can also be defined from the function g;

x′ = g(x),

u′ = ẋ′ = Dg(x)ẋ = Dg(x)u. (4.12)

Comparing equations (4.11) and (4.12) shows that the correction factor |Jg| can be approx-
imated by

∣∣e−Da∆t
∣∣. This can again be evaluated as exp(−∆t

∑n
i=1

∂ai

∂xi
). This is proven
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directly using the properties of the exponential function and the formulas for determinant
and trace of a square matrix M in terms of the eigenvalues λj(M), j = 1, . . . , m;

|M | =

n∏

j=0

λj(M), λj(e
M) = eλj(M),

n∏

j=1

eλj = e
Pn

j=1 λj , tr(M) =
n∑

j=1

λj(M).

|eM | =
n∏

j=0

λj(e
M ) =

n∏

j=0

eλj(M) = e
Pn

j=1 λj(M) = etr(M).

4.3 Example: The Van der Pol equation

To illustrate the method described above, consider the differential equation

Ẍt + 2ζ[X2
t − 1]Ẋt + Xt = γNt. (4.13)

This is a simple van der Pol equation. Such equations are often used to model electrical
and biological oscillations. The typical response of such a system is a limit cycle, similar to
the one obtained by a linear filter, except that the time spent in some parts of the cycle is
much higher than other parts, giving two distinct peaks. In addition, the limit cycle only
depends on the parameters of the ODE, not the initial value.

First, consider this system in the state space (Xt, Ẋt). With γ = 0, this system is
purely deterministic. It has an unstable equilibrium at the origin, and a non-trivial stable
ring-shaped attractor around the origin. The flow from every initial point except the origin
will spiral clockwise towards the stable attractor as t → ∞. If time is reversed, the origin
is a stable point for all initial points inside the ring, and every point outside will spiral
counter-clockwise off to infinity.

In state space variables, with dimension as subscript, equation (4.13) is written

dX1 = X2 dt,

dX2 = (−2ζ[X2
1 − 1]X2 − X1) dt + γ dW.

(4.14)

To simplify the discussion, assume that the Euler-Marayama form is used for the time
steps. The basic ideas will be the same for the Runge Kutta method. The deterministic
part of equation (4.14) is then

x1 = h1(x
′
1, x

′
2) = x′

1 + x′
2∆t,

x2 = h2(x
′
1, x

′
2) = x′

2 − (2ζ[(x′
1)

2 − 1]x′
2 + x′

1)∆t.
(4.15)

As the noise is accumulated to the end of the time step, this system should be considered
for fixed values of x1. Combined, it gives a cubic polynomial in x′

2 where x2 → ∓∞ and
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x′
1 → ±∞ when x′

2 → ±∞. However, since the value of ∆t is small it is also clear that x2

should be close to x′
2 for some values of x′

2, and be an increasing function of x′
2 in some

interval. This means that the cubic equation has three solutions, at least for some points
(x′

1, x
′
2), and h is in principle not invertible. However, the flow of the deterministic part of

the SDE from t′ to t is always a homeomorfism. (Time can be reversed in the deterministic
system, the spirals described above do not intersect, and every point maps to just one
other point in the state space over ∆t.)

So instead of trying to actually invert h, consider the Euler approximation with a
negative time step;

x†
1 = g1(x1, x2) = x1 − x2∆t,

x†
2 = g2(x1, x2) = x2 + (2ζ[(x1)

2 − 1]x2 + x1)∆t.
(4.16)

Now, it is straightforward to compute h(g(x));

h1(x
†
1, x

†
2) = x1 + (2ζ[x2

1 − 1]x2 + x1)∆t2,

h2(x
†
1, x

†
2) = x2 − {(2ζx2[x2∆t − 2x1] − 1)x2

− 2ζ([x1 − x2∆t]2 − 1)(2ζ[x2
1 − 1]x2 + x1)}∆t2.

So h(g(x)) = x + O(∆t2); the error is on the same order as the error of the step method.
The Jacobian for the function g is Jg = 1 + 2ζ(x2

1 − 1)∆t + (4ζx1x2 + 1)∆t2, while
the numerical approximation is det(exp(−Da(x)∆t)) = exp(2ζ(x2 − 1)∆t) = 1 + 2ζ(x2

1 −
1)∆t + 2ζ2(x2

1 − 1)2∆t2 + O(∆t3), again correct to the order of our time step error.
In fact, the numerical approximation of |Dg| is also used for the higher order time

stepping methods. Using a second order Runge-Kutta method for g,

Jg = 1 − ∆t

(
∂a1

∂x1
+

∂a2

∂x2

)
+

∆t2

2

(
∂a1

∂x1
+

∂a2

∂x2

)2

+ O(∆t3), (4.17)

the same series as the Taylor form of det(exp(−Da(x)∆t)).

4.4 Volume change at discontinuities

First, consider for constants α1 6= α2, α1, α2 > 0 and some gluing point ξ the discontinuous
equation

dxt =

{
−α1 dt, for xt ≤ ξ,

−α2 dt, for xt > ξ.
(4.18)

This systems shifts every point, and thereby every interval, down to smaller values along
the x-axis. As long as the shift does not move any point past ξ, the flow is given by the
equation xt+∆t = xt − αj∆t, where j = 1 if xt ≤ ξ and j = 2 for xt > ξ. Considering two
points defining an interval of length ∆x, it is clear that the interval’s length is preserved
when shifted by a constant −α1∆t or −α2∆t. Now consider the interval [ξ, ξ + ∆x], and
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shift this down by a ∆t chosen such that the upper limit of the interval ends up at x = ξ.
The constant shift of this upper limit gives ∆x = α2∆t. The lower point of the interval is
in the same time shifted to ξ − α1∆t, so the size of the interval is now α1∆t = ∆xα1/α2,
i.e. the interval is scaled by a factor α1/α2. This argument is independent of ∆x. Any
sub-interval will first be shifted down to ξ without change of length, then scaled by this
factor, and finally shifted further down in the remaining part of the time step.

This result can be generalized. Consider a system dxt = a(xt) dt that possesses a
discontinuity at x = ξ, such that limx→ξ− a(xt) = α1 and limx→ξ+ a(xt) = α2, any in-
finitesimal interval crossing the discontinuity will be instantly scaled by a factor α1/α2, if
crossing from x > ξ to x < ξ, and the factor is α2/α1 if the crossing is from x < ξ to x > ξ.
This scaling comes in addition to the smooth scaling by nonlinear dynamics described in
section 4.2, which must be calculated for each side of the crossing point ξ separately, as
described for

4.5 Various implementations of Path Integration

In addition to the procedure discussed above, there is (at least) one other possible way of
discretizing the mapping from t′ to t for the integral. Instead of a uniform partitioning
of the region Un ⊂ R in equation (4.5) and stepping backwards, one could estimate the
original region Ω′, perform a uniform partitioning of this and step forwards. In this case,
there is no correction factor in the last variable. In other words the Jacobian will just be
|Jeg| instead of |Jg|, and only correct for the integration of the delta-functions. This could
result in an improved accuracy for the numerical method, depending on the complexity of
the domain Ω′ and the approximation method. Also, since the Jacobian over the variables
without direct input noise in many cases will be constant or closer to a constant, the time
step might be made longer.

Previous implementations of PI, see [20], [34], [50] has mostly been based on this
method. When there is only one noise process and a one-dimensional integral, the domain
Ω′ will be a one-dimensional curve. This has been approximated by a straight line between
the chosen end points of the integral. As the time step ∆t is small, this is usually a good
approximation. The deviation between the points reached when stepping forwards and the
original domain Ω is then small, and has been neglected.

However, for highly nonlinear problems, especially systems containing signum-kind non-
linearlities, piecewise smooth problems, and impact systems, the region Ω′ could be far from
a straight line. One could then improve the accuracy by fitting another function, i.e. a
higher order polynomial. Though simple in its formulation, this approach easily increases
the complexity and cpu time of the program code, since one now should discretize along
a the curve length, and ensure a stable interpolation or curve fitting of Ω′. As shown in
section 4.4, the Jacobian can be expressed analytically for some of these systems. Also,
the FFT implementation of the PI method, described in section 5.3, is based on the path
integral being represented as a pure convolution. This requires the full Jacobian method
that is used in this thesis.
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As a remainder, a more different version of PI is briefly discussed in section 2.2.2.
There are also other methods that are denoted path integration that are based on only
stepping forward in time. These are not discussed here. However, Vibeke Moe [34] discusses
such methods in the beginning of her thesis, and one can otherwise look up cell-mapping
techniqes, e.g. [51].

4.6 Example: Hysteretic system

The thesis of John Magne Johnsen[20] is finalized by an article where hysteretic systems are
studied using path integration. However, the results clearly deviates from what is found in
other papers, and probably what the authors found by other techniques, i.e. Monte Carlo
simulations. The authors discusse possible reasons for their erroneous results, but discards
all the explanations that are presented one by one. This article however resigns with the
following;

the results we obtain by the path integral solution technique deviate from those
of the original sources. Of course, there may be several causes for this. If our
results are in error, the two most likely causes for this seem to be intrinsic dif-
ficulties connected with the numerical calculation of the path integral solution
of the specific examples considered, or to bugs in the computer program. The
last factor does not appear to be involved. This conclusion is based on the
fact that the methodology and the computer program have been tested on a
variety of two-dimensional (2D) and three-dimensional (3D) problems which
have analytical solutions, and in all cases complete agreement has been found.

The article then cites three papers where simpler SDEs have been investigated with PI.
However, in all the test cases, the correction factor due to integration of the delta function
in the TPD, discussed in the preceeding section, is barely a constant, when implemented as
discussed in section 4.5. For the hysteretic system, this is no longer the case. So this should
be a perfect example to validate that this factor is important and gives better results.

After the article discussed above, it seems that no studies of hystretic systems with PI
have been published. Computer code obtained from earlier PhD students in this field only
solves systems where the delta integration factor is a constant, and does not correct for this
constant, and no earlier work discusses the need for this correction of the path integral.

One of the hysteretic systems that were studied can be written in the following form;

Ẋ = a1(X, Y, Z) = Y,

Ẏ = a2(X, Y, Z) = 2ξω0Y − aX − bZ +
√

2πG0N,

Ż = a3(X, Y, Z) =
(
−γ|Y | · Z|Z|n−1 − βY |Z|n + AY

)
/η,

ξ = 0.1, ω0 = 1.0, a =
1

21
, b =

20

21
,

η = 1.0, γ = 0.5, β = 0.5, A = 1.0, n = 1, G0 = 0.1.

(4.19)
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The partial derivatives for system (4.19) with the parametric values inserted, and the
corresponding correction factor are

∂a1

∂x
= 0,

∂a2

∂y
= −0.2,

∂a3

∂z
= −0.5|y| − 0.5y sgn(z).

(4.20)

Since noise enters through the second variable Y in equation (4.19), the contribution
of the last row in equation (4.20) cannot be approximated by performing the path integral
directly in the state space of the previous time step.

The implementation of PI in [20] gives the standard deviations σx = 1.62, σy = 0.693,
and σz = 0.444, which clearly deviated from the results in [43] of σx ≈ 2.5, σy ≈ 0.8, and
σz ≈ 0.55. Note that the latter are approximated, both by the numerical method used
in the paper, and because the numbers are found from manually inspecting figure plots.
A quick implementation with the new PI method described in this text, using a grid of
128×128×128, a time step ∆t = 0.02, and using FFT to compute the convolution integral,
gives σx = 2.4053, σy = 0.8310, and σz = 0.5718, which is very close to the results of the
original article. The mass after each time step, before rescaling was 1− 6.5 · 10−5 after the
transient time, which also indicates that the correction factor approximation is not very
crude. As discussed in section 5.3, the FFT method is not exact, and gives some error,
though this should be compensated by the higher grid resolution than in [20] which has
between 42 and 62 grid points in each direction. Also, the sensibility to the grid resolution
was tested in [20], and was found to be small. The stationary PDF of equation (4.20)
does not have a complicated structure, so the interpolation method or grid resolution
should not be an important concern. As in most other examples, a standard fourth order
Runge-Kutta method was used, but no additional improvement of the accuracy of the time
stepping scheme.

It is not clear if the code from [20] lacked the correction factor, or if there were other
problems, and it is no longer available. However, the factor is ignored in the equation in
the thesis where the PI scheme is derived for the several variables problem. To verify that
this is the cause of the problem, the new PI program was run again, commenting out the
Jacobian correction factor, but otherwise keeping the same settings. This gave the results
σx = 1.8133, σy = 0.7177, and σz = 0.4510, quite close to the results in [20]. So the author
concludes that this is the cause of the error. The probability mass after each iteration for
this implementation is also further away from 1, namely 1 − 1.1 · 10−2, which typically
indicates a lack of precision.

By this, it is shown that PI is suited to solve also hysteretic systems and systems where
strong nonlinearities appears in variables where noise does not enter directly, as long as the
implementation includes a correct integration of the delta functions of the TPD. Further,
the study indicates that the approximation of the correction factor is quite good for this
quite nonlinear system. Some devation should be expected, since the numerical method is
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Figure 4.1: Marginal PDFs of the last state space variable for the hysteretic system. One
simulation, with correction factor, is assumed to be a fairly good approximation, the second curve
is obtained when ignoring this factor. The oscillations close to ±1 for the good approximation
is an error caused by interpolation problems in this region of the full 3D PDF, which is almost
inevitable with the steep gradient which is also seen in the marginal plot.

based on this approximation, in addition to interpolation and a discretized time. Finally,
this study is an indication that this correction factor is a new and important development,
even though the mathematical idea behind is quite simple.

Note that although only standard deviations are reported here, the erroneous integra-
tion of the delta functions also changes the shape of the PDF quite a lot, both in the
transient and in the stationary situation. Here, the marginal PDF in the first two state
space variables x and y are close to Gaussian, and only the standard deviation is wrong.
However, the marginal PDF of the filter z is very different in the two cases, as is shown in
Figure 4.1.

4.7 Example: van der Pol equation with filtered noise

A good and more dramatic example to show how the correction factor is necessary to
obtain a correctly shaped stationary PDF is a van der Pol (vdP) equation (4.13) from
section 4.3 driven with some kind of filtered noise, now written

Ẍ − µ(1 − X2)Ẋ + X = f(t). (4.21)

It is known that the vdP system for f(t) = 0 has a limit cycle, and with f(t) = γNt gives a
PDF over this limit cycle with two distinct peaks. Many researchers also add a cubic term
to systems similar to equation (4.21) to obtain Duffing-van-der-Pol equations, or harmonic
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forcing functions to obtain chaos or other effects. Hence, one should know that this system
can be solved correctly with PI.

The (1−X2) term in equation (4.21) will also appear in the correction factor. If white
noise enters directly through f(t) in equation (4.21), this can be covered by the integral,
when implemented as described in section 4.5. However, if f(t) = Z, where Z is defined
through another SDE, the nonlinearity will appear in the delta function.

So a simple filtered noise example based on equation (4.21) can be written

dX = Y dt,

dY = (µ(1 − X2)Y + X + Z)dt,

dZ = −κZdt + γdW.

(4.22)

This system has been studied in [50], but only for one choice of parameters, namely
γ = 1, κ = 0.5, and µ = 0.05. It is reported that the results give good results compared
to Monte-Carlo simulations. This should mean that the correction factor has been im-
plemented well for the work in this thesis, although it has not been described. However,
only marginal log-densities are shown for this system for some reason, and the marginals
deviate very little from a Gaussian distribution. The reason for the almost Gaussian shape
is the very small value of µ, which makes the nonlinearity almost neglectable. It is also
much smaller than the µ = 0.25 used in the discussion of the 2D system in the same thesis.

A 2D plot of the joint PDF f(X, Y ) clearly shows the effect of the correction factor.
First, choose µ > 0.1, κ > 0.1 and γ = 1 so that the nonlinearity dominates. The correct
PDF, obtained with the correctly implemented version of PI, then has a cycle with two
peaks. Further, it is zero or has a minimum at the origin. Without the correction factor,
the author could not obtain this minimum at the origin. Instead, the stationary PDF
becomes flat over the area confined inside the cycle described above and zero outside.

A correctly shaped 2D marginal PDF is shown in [50] for a Duffing/van der Pol oscillator
with a linear oscillator equation for f(t),

f(t) = Z, Z̈ + ω2
zZ + 2κzωzŻ + W = 0, (4.23)

is reported in [50]. This is the only result from previously published work with PI that the
author cannot reproduce without the correction factor.

4.8 Periodicity in SDE and PDF

Some general comments should be made for SDEs that are periodic with a period tp =
2π/ω, e.g. containing a term cos(ωt). Referring back to the numerical solution procedure
based on the Markov operator, it is clear from an inspection of the stochastic kernel in
equation (4.5) that Htt′(·, ·) = Ht+tp,t′(·, ·). The associated Markov operator Pts is therefore
also periodic in the same sense with period tp. This leads, as one should expect, to eventual
periodicity of the propagated densities in the case of positive damping, that is δ > 0. Hence
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it is assumed that fXẊ(x, ẋ; t) = fXẊ(x, ẋ; t + tp) when t ≥ t′ for a sufficiently large t′.
Letting T = mtp for m ∈ N, one obtains the asymptotic relation

lim
m,T→∞

FX̂(T )(ξ) − exp

(
−m

∫ t′+tp

t′
ν+

X(ξ; t) dt

)
= 0. (4.24)

Introducing the averaged density

f̄XẊ(x, ẋ) =
1

tp

∫ t′+tp

t′
fXẊ(x, ẋ; t) dt, (4.25)

clearly leads to the relation

∫ t′+tp

t′
ν+

X(ξ; t) dt = tp

∫ ∞

0

f̄XẊ(ξ, τ)τ dτ (4.26)

The expression for the extreme value distribution can now in the limit T → ∞ be
rewritten as

FX̂(T )(ξ) = exp
(
−ν̄+

X(ξ)T
)

(4.27)

where the average upcrossing rate is defined as follows

ν̄+
X(ξ) =

1

tp

∫ t′+tp

t′
ν+

X(ξ; t) dt =

∫ ∞

0

f̄XẊ(ξ, τ)s dτ. (4.28)

Hence, for prediction of extreme values, it is the average density that is important and not
the density at a specific point in time, which is the information contained in the Poincaré
map. Another important aspect here is that the concept of stationary density makes perfect
sense after averaging, and there exist criteria which allows one to conclude the existence
of such average stationary densities for a given system of the type studied here [29].
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Chapter 5

Combining PI and interpolation

With the interpolation routine, the numerical implementation of the PI routine is com-
plete. However, there are a number of important considerations to be made at this stage.
Unfortunately, the choice of interpolation routine can be crucial to obtain a reliable result,
especially for highly nonlinear systems. This chapter investigates most of these challenges,
but also some opportunities for efficient computer programming that appears. By the end
of the chapter, some examples are presented where combining interpolation with PI is a
special challenge. This is also the case for some of the appendices. Appendix B requires
an angle as a state-space variable, and the nonlinearities in appendices C, D, E, and F all
required some special consideration for the nonlinearities. For an overview at this point,
it might be an idea to check the float diagram of the PI routine on page 4 of appendix A,
which is the article [32].

5.1 Choice of global interpolation method

For simple additive noise, the simple one-dimensional system from equation (1.16), and
the similar two-dimensional system from (1.25) have been run using cubic B-splines and
rectangular splines in a uniform grid, as discussed in section 3.4, and the corresponding
tension splines from equation (3.6). The result is, for all the chosen parameter values, that
cubic B-splines give slightly better results than the rectangular splines and tension splines
with low tension, w < 5. For splines with higher tension, the final PDF, especially for the
two-dimensional case, deviates more from the correct stationary distributions.

It should be mentioned that one could use a local grid for interpolation of especially
difficult areas. This could cover some subset of the state space, while a coarser global grid
handles interpolation outside, or different grids can cover disjoint parts of the state space.
This idea has not been implemented in this project, basically because the typical behaviour
of the systems studied here gives a PDF which needs the same resolution in basically the
whole state space.

59
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5.2 Eigenproblem formulation

If the SDE is autonomous, the PI trajectories will be the same for every iteration, and also
the values of the basis for the interpolation routine will be the same. For most situations,
it will be much more efficient to compute all of this at once in the beginning, and then
using these pre-computed values at each iteration.

Remember from equation (3.5) that the B-spline interpolation is a linear combination
of the B-spline coefficients, and that these coefficients are expressed as a linear combination
of the interpolated values. This means that equation (4.10) can be further rewritten. For
simplicity, start with a one dimensional SDE and a uniform discretization of the path
integral. Further, the PDF at the previos time step is represented as f̂(x′). Then x̃ from
equation (4.10) can be skipped, xn = x, and one can write

ξj+1 − ξj = ∆ξj, j = 1, . . . , M − 1,

α(x, ξj) = ftt′(x|g(ξj))|Jg(ξj)|∆ξ,

f(x, t) =
M−1∑

j=1

α(x, ξj)f
†(ξj)

=
M−1∑

j=1

α(x, ξj)f̂(g(ξj))

=

M−1∑

j=1

α(ξj)

K∑

k=1

ckBk,j(g(ξj))

=

K∑

k=1

ck

M−1∑

j=1

α(ξj)Bk,j(g(ξj))

(5.1)

The sum
∑M−1

j=1 α(ξj)Bk,j(g(ξj)) does not depend on the earlier PDF, and can be calculated
in advance. If one further includes the spline matrix S from equation (3.4) the PI iterations
can be written in a linear form;

v(j+1) = AS−1v(j). (5.2)

Equation (5.2) defines the (incremental) transition matrix, AS−1. So now A is the matrix
that maps the spline coefficients from the PDF at iteration i − 1 to the values at i by
the inner sum of equation (5.1). This extends to higher dimensional systems, also if
the number of state-space variables where noise enters r is less than the dimension n.
One should then use a natural ordering of the data values. That is just a way to create
a one-dimensional structure from a rectangular grid. The natural ordering for a two-
dimensional grid with indices {j, k}j=1,...,Mx,k=1,...,My

would give indices {l}l=1,...,MxMy
where

each l uniquely represents one index pair (j, k). Storing data sequentially with repect to
the first index gives the formula l = j + (k − 1)Mx, while it should read l = (j − 1)My + k
if one wants sequential storage wrt the second index. If the PDFs values v are represented
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as vectors, using a natural ordering of the grid points, A and S become ordinary matrices
also in the higher-dimensional case. This method is implemented in a very efficient way
in the numerical code developed in this project. A similar optimization was developed by
John Magne Johnsen in [20], but the implementation is unfortunately no longer available.

Since the SDE is assumed to be autonomous, there exists a stationary PDF for this
system unless the diffusion term pulls mass off to infinity. If this PDF can be well repre-
sented by the interpolation method in the discretized truncated computational domain, it
is expected that the PI method will converge to a PDF v∗ that is close to this solution.

It is a fact from linear algebra that the v(j) in equation (5.2) for large j converges to
the eigenvector assosiated with the largest eigenvalue of AS−1, or if the largest eigenvalue
has higher multiplicity to a linear combination of the associated eigenvectors. Since the
eigenvectors are orthogonal, this implies that if only one eigenvector exist for the largest
eigenvalue, it will be the unique solution of the PI algorithm, except for some constant
factor to ensure positivity and mass 1. In other words, given the transition matrix AS−1 it
will for many cases be possible to show that any initial distribution will converge to the same
solution. If this eigenvector attains both positive and negative values, the interpolation
method is not stable. All other eigenvectors, that are stationary points of the system, will
in this case have negative values and add up to zero.

Do also note that the largest eigenvalue has a direct interpretation for our case. It is
simply the probability mass from one iteration to the next when the stationary PDF is
obtained. So this is a number that should be very close to 1.

The stationary eigenproblem could also be presented wrt the spline coefficient vector
c = S−1v. Then S becomes a mass matrix and A a stiffness matrix.

λSc = Ac. (5.3)

If a more direct solver is used to find the eigenvector, the eigenproblem can be modified to
amplify the solution corresponding to the eigenvalue closest to λ̂;

λS(A − λ̂S)−1v =
1

λ − λ̂
v. (5.4)

Or, the pseudo-inverse of (A− S) would be a good candidate for a preconditioning matrix
for this problem.

A last method that should be considered in future work is the QZ-method which is
based on a factorizations of A and S;

AQ = ZT, (5.5)

SQ = ZU, (5.6)

such that Q and Z are unitary (n, k) matrices, and T and U are upper-triangular (k, k)
matrices for some k < n. From the eigenvector for the generalized eigenproblem with T
and V , one can approximate or calculate the eigenvectors of interests with a few different
methods. For this and other similar algorithms, see Golub and van Loan, [16].
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For high-dimensional problems, the matrices are so large that computation of eigenval-
ues and eigenvectors might be impractical. The straight-forward iterations from an initial
distribution might be the best option. Even though the A matrix will be very sparse, it will
require more memory than all other parts of the program. The current implementation of
PI only stores non-zero values of A as one long array, and has another integer array that
maps the indices and values of A.

5.3 Path integration by Fourier transformation

Recently, the PI technique has been implemented by performing the convolution integral by
a Fourier transformation. This idea seems to have been persued simultaneously at NTNU
[26] and in Palermo [3]. The first assumptions needed, is that only purely added noise terms
enter the SDE, i.e. that the standard deviation of the stochastic term is constant over the
state space at a specific time. Note that the stochastic term could be time dependent.

Numerically, the Fourier transformation will be performed by a discrete Fourier trans-
formation (DFT), most efficiently implemented as the routine known as fast Fourier Trans-
form (FFT). Say the original sequence is x = (x1, x2, . . . , xM) and x̂ = (x̂1, x̂2, . . . , x̂M) is
the correponding DFT sequence. The forwards and backwards DFT is then written

x̂j =
1

M

M∑

k=1

xke
−i2π(j−1)(k−1)/M , and (5.7)

xk =
M∑

j=1

x̂je
i2π(j−1)(k−1)/M , (5.8)

respectively.
As long as the forwards and inverse DFT is performed using the same grid, and the

characteristic function is known analytically, one should expect stable results. However,
to avoid spurious modes from appearing in the solution, the transformed PDF and the
characteristic function must be well represented by the Fourier expansion. In other words,
incorrect oscillations from high-frequency components, especially in the tails, will occur if
the PDF is discontinuous, has a discontinuity in the derivative, or in other ways enhance
high-frequency components in the spectrum. The basic assumption of the Fourier transform
is also a periodicity of the function with period equal to the length of the state-space
domain. This implies that the limit value of the function and its derivatives at both sides
of the domain must coincide to avoid a discontinuity. Mathematically,

lim
x→x+

min

Dkf(x) = lim
x→x−

max

Dkf(x).

A large number of FFT versions are available in various languages, to download from the
internet or as built-in packages. A review of the different options is beyond the scope of this
text, but it should be mentioned that not all FFT routines requires the number of points
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to be a power of two as in equations (5.7) and (5.8), and that given some pre-calculation
a DFT of size M can always be computed in the order of KM log2 M operations. Also,
it is usually a good option to extend the vector of interest by zeros (padding) to obtain a
length of M = 2m for some integer m. However, since the FFT basically is the bottleneck
for the CPU-time of the PI algorithm, one could then increase the grid resolution up to M
grid points in the variable(s) where noise enters without much loss of time.

In this project, an FFT algorithm developed by D.M. Monro [36] has been used.
The program computes the DFT of (x1 + ixM/2+1, x2 + ixM/2+2, . . . , xM/2 + ixM) into
say (z1, z2, . . . , zM/2). Based on the observation that equation (5.7) has a symmetry of
x̂j = x̂∗

M/2+j , [35] shows that 4x̂j = zj + z∗n/2+j − i exp[−i2π(j − 1)/n(zj − z∗n/2+j)]. In
other words, one splits the sequence of values into two halves, which are treated as the
real and imaginary parts of a DFT of half the length. The true DFT can then be recon-
structed by a linear unraveling of the real and imaginary parts of the final result. Before
the inverse routine is invoked, this linear operation is also inverted. Since only the result
of the convolution and not the DFT itself is of interest, this scrambling and unscrambling
can be avoided by performing the multiplication as a slightly more complicated linear
transformation.

5.4 Interpolation in log-domain

A major part of the thesis of Vibeke Moe (1997) [34] is devoted to an idea that interpolation
of probability densities should be performed in a logarithmic domain. Assume as before
that vj = f(xj) is known for a sequence of grid points {xj}, j = 1, . . . , M . Instead of
constructing an interpolant based on the vjs, construct the interpolant ĝ(x) based on ṽj =

log(vj). Then, compute f̂(x) = exp(ĝ(x)). This f̂ is clearly an interpolated function, and
it will be positive everywhere. Results presented in [34] are convincing, but the succeeding
research performed by Christian Skaug [50] did not follow this path, and the idea has not
been mentioned afterwards.

The idea is intriguing, since many standard probability densities can be written as
f(x) = K exp(g(x)) with K constant and g a polynomial of low degree (typically less
than five), it intuitively seems reasonable that interpolation by polynomials of a sequence
of values ṽj = log(vj) = log(K) + g(xj) should be more accurate than on a sequence
vj = K exp(g(xj)).

This would certainly be correct if g(x) is perfectly represented by the interpolant,
however this is rarely the case. It should be clear that a linear combination of cubic
polynomials cannot equal a polynomial of higher order anywhere. Global polynomials of
lower degree can be perfectly represented by B-splines, as shown in [10] who also gives the
general spline representation for these splines. A problem is that any numerical error in the
PDF at the knot points will cause the interpolant to be of full degree, and that generally
the PDF of a nonlinear problem is not an exponential of a polynomial.

The major problem with this method is the handling of the boundary of the calculation
domain. As the PDF approaches zero, the logarithm will go to −∞. In addition, assuming
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that this curve is a polynomial shows that also the derivative, the curvature, and all other
non-zero derivatives will have large absolute values. Such curves are generally difficult to
interpolate. Moe discusses many of the problems encountered with various ways of defining
appropriate boundary conditions, but finds no general solution.

Experiments show that the exponential of an interpolant amplifies over-estimated in-
terpolation error. A good analytical description of this phenomenon is difficult to obtain.
However, observe that if ĝ(x) = log(f(x))+ε(x) where ε is the error, f̂(x) = f(x) exp(ε(x)).
So the error is basically proportional to f(x), and exp(|ε(x)|) is a bigger error than
exp(−|ε(x)|). Even if one is interested in the tail behaviour, experiments have shown
that an accurate description of the PDF where most of the probability mass is located is
necessary.

Another appropriate comment is that the exponential function can be well approxi-
mated by local polynomials, and the error by a B-spline will be about the same as for the
truncated Taylor polynomial of the same order. This observation is in fact similar to the
observation that the tension splines from section 5.1 also locally behave similar to polyno-
mials. The boundary conditions f(x) → 0 as ||x|| → ∞ are simpler to work with, and as
Vibeke Moe states in the thesis abstract, “a particular efficiency enhancing scheme can no
longer be used” with the logarithmic method. In conclusion, the method’s weaknesses are
so serious that it cannot be recommended for general problems.

5.4.1 Local modification to remove instabilities

It is seen that cubic and rectangular B-splines work well with PI, except in cases where spu-
rious oscillations occur locally, with devestating results. How these problems were avoided
earlier has not been documented, but code from C. Skaug includes setting negative inter-
polation values to zero and some removal of singular delta-shaped peaks near boundaries
of the domain.

The third and fourth order B-splines are chosen because of their ability to curve. When
locally this effect is not wanted, it seems reasonable to use a linear interpolation instead.
A linear interpolant is easy to compute, so the only problem is to find a well-functioning
criteria for deciding which intervals a linear interpolant should be used. It seems reasonable
that this decision should be based on the PDF values, which means that this could change
from one time step to the next. Negative interpolated values will be easy to spot, but
unreasonable oscillations could also be all positive, and the largest values in spurious
oscillations cause just as many problems for the correct convergence of PI as negative
values.

If the PDF has a slow variation compared to the grid points, the B-spline coefficients
should not deviate too much from the grid points, as the interpolant should be close to
the Bézier curve generated by the PDF values. One would also expect that the spline
coefficients are positive. Oscillations where the interpolant attains values smaller than the
values of the closest nodal points must be caused by at least one negative spline coeffi-
cient. The spurious oscillations seen in numerical simulations with PI have had negative
spline coefficients neighbouring large compensating spline coefficients. From this, the idea
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came to use linear interpolation where negative coefficients were observed at one of the
nearest neighbouring grid points. Results indicate that very few SDEs now cause the huge
interpolation errors, and spurious oscillations are strongly reduced.

If the interpolation is stable in most of the domain with a B-spline, this the time
efficiency scheme from section 5.2 can be applied, with just a direct integration in the
problematic areas.

5.5 Path integration and linear operators

One feature of PI that has not been discussed in previous work by Naess et al. is the
possibility of obtaining additional information about the probability density with just a
small increase in cpu time. Let G be an operator working on the last state space variable,
e.g. differentiation or integration with respect to xn.

The total probability law, equation (4.3), gives

Gft(x) = G

∫

O

ftt′(x|x′)ft′(x
′) dx′ =

∫

O

Gftt′(x|x′)ft′(x
′) dx′, (5.9)

so the requirement on G is really just that it commutes with the integration operator. Since
ftt′ usually is an analytical expression or fairly easily evaluated, Gftt′ should have the same
property. Equation (5.9) can be integrated simultaneously with the original PI operator,
the only modification needed might be to ensure a numerically valid approximation of also
this new integral by adjusting truncation limits and the discretization appropriately.

The reason linear operators working on other state space variables has not been included
in the discussion so far, is that their appearance in the delta functions and the restriction
of the integration domain could cause problems. However, in the general theory - and
when integrating in more dimensions, the argument should also be valid there.

Because interpolation has been a huge challenge in numerical PI, an especially inter-
esting use of equation (5.9) is to compute the partial derivatives of the PDF in the xN

direction. These derivatives could then be used to find better interpolants, e.g. piecewise
defined in each interval. This way the interpolant would also have correct derivatives at
the interpolation points when starting at the correct distribution at a given time. This
approach would still create an interpolant with continuous derivative, and also continuous
curvature if this is included, even if its pieces are very different kinds of functions. This
gives a huge flexibility, but requires that one has a method to choose and compute suitable
functions that can fulfill these constraints.

This approach would be especially useful for processes where the last state space variable
has a marginal PDF with large slope or curvature that causes problems with B-splines,
e.g. the Rayleigh-process where the PDF is almost vertical for values close to zero.

Another feature is that the adaption of the piecewise function is purely local, so that
the effect of smearing out local structure seen with cubic B-splines might be reduced.
This would be of particular interest for systems with a rich structural detail, i.e. chaotic
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attractors. This also implies that there is no global sensitivity to end point conditions,
which clearly is an advantage.

With the first derivative, one could still use cubic polynomials - the main difference from
cubic B-splines is then that the computed derivatives are used as the constraint instead of
requiring a continuous second derivative. Scaled and translated to the interval x ∈ [0, 1]
where f(0), f(1), f ′(0), and f ′(1) are known, the intermediate cubic curve is

f̂(x) = {f ′(0) + f ′(1) + 2(f(0) − f(1))}x3

+ {3(f(1) − f(0)) − 2f ′(0) − f ′(1)}x2 + f ′(0)x + f(0).

However, one could now easily check each interval for false local minima, maxima
or inflection points, and choose a different function if this seems more appropriate. The
coefficients of the cubic polynomial are linear functions of the PDFs values and derivatives,
and hence a fast numerical method based on precalculating the transition matrix as in
section 5.2 is also feasible. This would also be the case for a large class of “basis” functions.
However, this would requre a recalculation of parts of the transition matrix every time a
local function is substituted by a function of a different class.

A main drawback is that there is no obvious way of extending this interpolation pro-
cedure efficiently to more than one dimension. Basically, one would have to interpolate
along grid lines in the last state space variable first, and then compute B-splines coefficients
and interpolated values in the other variables at the points of interest, which seems to be
time consuming. Even if the partial derivatives in every direction could be obtained using
equation (5.9), the complexity of finding piecewise functions fulfilling all end point criterias
would be huge.

5.6 Parametric representation

One of the problems of applying the PI technique to higher dimensional systems is the
representation of the PDF by the probability density function at some (grid) points in the
state space, which leads to the need for high dimensional interpolation.

For complex systems, there is no reason to believe that the joint PDF can be well
represented by some analytical function, and finding such a representation and fitting
parameters would be a difficult task.

However, it might be possible to fit a model in one or very few state-space variables
at specific grid points in the remaining variables. Say the system contains n variables
x1, x2, . . . , xn, all of them evaluated at a specific time, say t0, and where the last k are
weakly connected to the rest of the system and/or not of particular interest for e.g. tail
probabilities. The idea is then to find a model for the conditional probability density
f(xn−k+1, . . . , xn|x1, . . . , xn−k), in addition to the probability density for this grid point
in the first variables f(x1, . . . , xn−k). By storing the latter number, one can still easily
perform integrals over the first variables, compute probability mass etc. In fact, since the
domain in the last variables now can be arbitrarily large, the PDF should also be more
accurate.
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If one can find a model that gives a good representation with fewer parameters than
the number of grid points otherwise required, there is a potential saving here, especially
in reducing computer memory, but also in code complexity and possibly in shorter CPU
time. An example of utilizing this, is discussed at the end of section 6.12.

This approach requires that it makes sense to interpolate the parameters from the grid
points to the full state space, and that this can be done in a numerically stable way. E.g. if
some parameters could become very large, or have a steep behaviour close to the borders of
the domain, one could try representing the PDF by the inverse of this parameter instead,
e.g. storing 1/σ2 or 1/σ instead of σ2 or σ for a Gaussian model.

5.7 Interpolation error and PI step size

The PI method described in the previous chapters to a large extent decouples the spatial
resolution and the time step. However, this is not completely true. Assume that the time
variable should go over a fixed interval t ∈ [t0, t1]. For a given spatial resolution, there will
for most problems be a limit to how many partitions this interval can be divided in, i.e.
how small the time steps could become, before the numerical error increases. The reason
for this is the accumulated effect of the interpolation error.

The best way to visualize this, is from a one-dimensional example where the exact
solution to the system is known, say the Langevin equation. The exact solution is an
exponential function. If this is sampled in discrete points, the interpolant will not be exact,
except at the sampled points. If the simulation is started from the exact distribution, and
the time stepping method is exact, there will be an error and thereby a small adjustment
of the pdf due to interpolation error in the first iteration, for any time step.

The size of an interval containing (100 − ε)% of the probability mass is approximately
proportional to

√
∆t. This is where the significant contribution to the path integral

When the time step is large, the path integral for a given point gets a significant
contribution from a large interval where the interpolant is too large some places and too
small other places. This partially averages out the interpolation error, and should make it
signifcantly smaller than the other errors of the system.

By choosing the time step sufficiently small, the path integral for a given point gets the
significant contribution from a small interval. If the interpolant is smaller than the exact
PDF in this interval, the integral will give a too low value, and vice versa. Now, repeat this
experiment, but with half the time step and two iterations. The adjustment of the PDF at
the first iteration is so small that the second interpolant is basically equal to the first, and
the two steps both contributes with approximately the same error, so the error is doubled.
Further, the interval that one integrates over is smaller, so local over-estimation or under-
estimation by the interpolant is not as likely to cancel out for one specific point. One
could argue that since the time step is smaller in the second case, the interpolation will be
performed closer to grid points, at least in the variables not integrated over, and that this
should reduce the interpolation error. However, the contribution from the neighbouring
grid points basically is what represents the evolution of the PDF. In other words, although
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the interpolaton error might be smaller, the change of the PDF from one time step to the
next depends strongly of the influence of the neighbouring grid points. Their contributions
still have the same error.

Exact analysis of the total numerical error is difficult.

5.8 Discontinuities in the SDE and piecewise systems

In some cases, a direct implementation of PI will perform well for discontinuous problems.
However, there are important pitfalls here. One of them illustrates one way time step and
coupling could be related. Consider the following SDE:

d

dt

[
(1 + R sgn(XẊ))Ẋ

]
+ Ω2X = γNt. (5.10)

The parameter R ∈ (0, 1) describe the amount of nonlinearity in the moment of inertia.
Equation (5.10) is transformed to the following coupled model.

Y = (1 + R sgn(XẊ))Ẋ,

Ẋ =
Y

1 + R sgn(XY )
,

Ẏ = −Ω2Y + γNt.

This, and a few other similar systems, are studied by PI in appendices C and D.
Not only is the system discontinuous, but the resulting PDF will also be discontinuous

at X = 0. At Y = 0 there is no discontinuity, since Ẋ goes to zero from both sides.
A global smooth interpolation method will not handle the discontinuity well, therefore
consider a local (subdomain) method. Since the system is symmetric, the PDF should be
the same at the two points (x, y) and (−x,−y), it suffices to focus on just one half plane.
Note that the deterministic trajectories of the system are ellipses in all four quadrants of
the grid. There is no additional damping, so the accuracy of the final PDF will depend on
how well the nonlinearity at x = 0 is modelled.

It seems reasonable that there should be no grid points at x = 0, since the PDF is
discontinuous there. So the first positive gridpoint is located at x = ξ < ∆x. Assume
first that we use very small time steps. The trajectories backwards from the grid points
x = ξ will then never reach x = 0. The only interpolated values we get, will be based
on an extrapolation of the grid values at ξ, ξ + ∆x etc. However, all these values will
eventually depend on the extrapolated values again. The splitting of the domain into
different interpolation areas hence breaks the dynamics at x = ξ. So a slight under-
estimation in the extrapolation, will give too little flow from x ≈ 0 to x = ξ, and all grid
points along or close to the following elliptic curve will be affected. The path integral for
a given grid point will follow a line in the x′, y′ domain almost parallell to the x′-axis.
This means that all the contributions to the integral will be based on basically the same
extrapolation. Similarly, if the density is slightly over-estimated, the result is a globally
extra mass.
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For each trajectory crossing x = 0, section 4.4 has shown that the Jacobian delta-
correction term would multiply the interpolated value by (1+R)/(1−R). When R is close
to one, this factor will be huge. If trajectories crossing x = 0 occurs only for grid points
where y > η for some η > 0, the (1 + R)/(1 − R) would cause the PDF to turn into the
shape of a discontinuous doughnut or torus with half-axis η in the y-direction. A slightly
larger time step could similarly make the hole in the resulting torus smaller. With a long
time step, the trajectory ends up in the other part of the domain. Again, extrapolation
will be a problem unless the trajectory ends up at an x-value x < ξ − ∆x, i.e. passes the
largest negative grid point in x.

Of course, all the trajectories will hit the nonlinearity at some point and get the
“boosted” effect. One solution is to make two separate domains, one with the first grid
point at x = 0+, the next at x = ∆x etc., and one grid where x = 0− is the highest grid
value, then x = −∆x etc. That is, the grid values represent the left and right limits at
x → 0, respectively. The problem with this method is the endpoint condition. The not-a-
knot condition from section 3.3.1 gives a polynomial spanning two intervals, interpolating
at three points in the x grid. This easily causes oscillations in this area, and switching to
a linear approximation did not give good results either. Again, the main difficulty is that
the system is so dependent on high accuracy in the interpolant around the discontinuity.

Another solution, that worked surprisingly well, was to make the grid non-uniform with
high density of grid points around x = 0, and ignore that the PDF is discontinuous. The
grid with M gridpoints from xmin to xmax, xmin = −xmax, with M even, was initialized
with the following algorithm:

• Choose the grid value closest to the discontinuity, ∆minx.

• Calculate α = (log(xmax) − log(∆minx))/ log(M/2).

• Grid point number k above M/2 is xM/2+k = ∆minxkα, k = 1, . . . , M/2.

• The grid is made symmetric by xM/2−k+1 = −xM/2+k, k = 1, . . . , M/2.

To clearify, one could also write

xM/2+k = ∆minx

(
xmax

∆minx

)log(k)/ log(M/2)

. (5.11)

Equation (5.11) easily verifies that xM/2+1 = ∆minx and xM = xmax. The advantage of
using the power law kα for the grid is that the transition from a coarse to a fine grid is
smooth, for a sufficiently large M . This seems to be an advantage for obtaining a stable
interpolant.

Similar adjustments are also important for systems consisting of piecewise systems that
are not discontinuous. One should consider to improve the grid resolution where the vector
field is not smooth, and also use a divided time step to handle the dynamics across this
area properly. However, the Jacobian is not an issue in that case.
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5.9 Reliability and hard impact problems

A special case of discontinuity is typically obtained when one studies the reliability of
a system, which here is the probability that the response stays within some domain U
in the state space. To partly avoid the discontinuity, the author recommends to always
calculate the conditional density for time t; f(x|X∆t,X2∆t, . . . ,X

′ ∈ U), which allows
P (Xt /∈ U) > 0 and is smooth. If the stationary PDF f(x) is small at x ∈ ∂U , i.e. on
the boundary, the author’s experience is that no specific adjustment is needed to ensure a
stable interpolation. More on reliability, the numerical implementation, and examples can
be found in appendix D.

The same situation occurs for impact problems without penetration. That is, at some
place in the state space, every trajectory is reflected - typically at some value of the
displacement, with an immediate change of sign in the velocity. Also here, if this rarely
happens and the probability density has a low value at the impact boundary, one might be
able to neglect this for the interpolation. Otherwise, a not-a-knot end condition would be
reasonable. Also here, one should consider using a method to split the time step to obtain
accurate results. One such impact problem is studied in appendix E.

5.10 Example: The Rayleigh Process

The Rayleigh process, equation (1.21), is a simple but illustrative one-dimensional SDE
which has been studied by PI in [23] and [20], and it’s used in the modelling of the force
from random sea-way and wind. For simpler reading, the SDE can be repeated:

dXt = −γ2

2

(
Xt −

κ

Xt

)
dt + γ dWt, Xt > 0, κ > 0. (5.12)

For this system, the exact TPD is known and reads with q = exp(−γ∆t/2)

p(x, t|x′, t′) =
x

κ(1 − q2)
I0

(
qxx′

κ(1 − q2)

)
exp

(
− x2 + q2x′2

2κ(1 − q2)

)
, (5.13)

where I0 is the modified Bessel function of the first kind. Using the exact TPD, PI performs
well, as shown in the references [23] and [20]. Hans Christian Karlsen [23] worked together
with the author to solve this system with a normal approximation for the TPD as earlier.
The motivation was to solve higher-dimensional systems where one or two possibly coupled
systems as in equation (5.12) works together on some structure. Karlsen showed that the
method that gives equation (5.13) could not be used to construct a higher-dimensional
TPD.

John-Magne Johnsen [20] showed that a characteristic time as he defined it, see sec-
tion 2.1.1, cannot be found for this system. The problem is that as X → 0, dX → ∞, so
the deterministic term will always dominate over the stochastic term in some region close
to zero. This is also the reason that the response X never actually will become negative. A
discrete-step simulation with fixed time steps that does not exploit equation (5.13) could
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give negative values. This is basically the first challenge with PI; the approximated TPD
must be truncated in some way at x = 0 and x′ = 0.

The deterministic part of equation (5.12) can be solved analytically. Thereby, the
time stepping can be performed as described in section (2.1.2). Euler and Runge-Kutta
schemes are based on the value of the rhs of the system in some points. However, this
changes rapidly as X → 0, so these methods easily diverge from the correct deterministic
path.

Unfortunately, the problem caused by the deterministic time step dominating over the
random term could not be efficiently and accurately solved by simple truncation of the
normal TPD, variable transformation, or scaling. [23] Some good results were obtained
by using very short time steps and very high grid resolution and a few other “tricks” like
truncation at x = 0, but a stable method has not been found.

The PDF of the system has f(x) = 0, but a non-zero gradient, at x = 0. This
causes problems for the zero-side interpolant from section 3.3.2. Also the not-a-knot from
section 3.3.1 had instabilities, and local linear interpolants seemed to steadily shift the
PDF to higher values of x, basically by under-estimating important parts of the left tail.
In one dimension, an option was to estimate the left tail by a local exponential function or
polynomial function, requiring f(0) = 0 and f(x) > 0 for x > 0. In the higher dimensional
systems, Karlsen concluded that the shift of the PDF was sufficiently small that the effect
on the other state-space variables could be neglected.

5.11 Six-dimensional path integration

Basically every numerical method solving SDEs to find a probability density is based on
some discretization of time and space. Here the so-called “curse of dimensionality” comes
into play. If M grid points or cells are needed in each dimension to obtain a sufficient
accuracy, the number needed just to represent the PDF a system with n dimensions is
Mn, so the total CPU time will at least be of this order multiplied by the CPU time for
each grid point, and usually the number of iterations or time steps. This will be the case
for methods using finite differences, finite element techniques, and cell-to-cell mapping, to
mention a few.

It should be mentioned that statistics based on realizations of the process, such as
Monte-Carlo methods, does not suffer from this curse of dimensionality, as long as the
objective function is of lower dimension and can be evaluated in all or most parts of the
state space. So a mean value or variance could be very easily estimated even for a high
dimensional system with such methods, while a conditional density or the probability in a
specific part of the tail of the PDF cannot be found.

With the continuous increase of computer power, both in terms of speed and memory,
one would still expect that each new numerical method proposed would be able to han-
dle systems of higher dimensionality than the older, or that well-known methods would
continuously be extended in this direction. However, this does not seem to happen very
quickly, indicating that the curse of dimensionality is a serious limitation for every numer-
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ical method. One reason is simply that the complexity of the computer code needed is
too high, and that the power law of increasing dimension is much higher than any power
law of increasing computer capabilities. The FPK equation gives a linear combination of
partial derivatives in all dimensions that has to be solved.

This section presents an approach to overcome the problem of programming PI code
to solve a six-dimensional SDE, as well as the first response PDFs for such systems. To
manage this, an “extra” computer interface has been implemented, in short a computer
program producing the PI code based on the general structure of the interpolation, the
time steps and the integral. The resulting PI code has then been compiled and run. To
verify that this very complex program actually solves six-dimensional SDEs, it has been
applied to simple test cases with known analytical solutions, and a nonlinear system of
two coupled oscillators with filtered noise input. This does not mean that the program
is limited to such simple systems, as the theory and numerical implementation otherwise
does not differ from what has been presented earlier.

5.11.1 Numerical implementation in n dimensions

Of course, many parts of a code is easily extended to higher dimensions by simple copy
and paste and the addition of extra loops around central parts of the program. However,
some features of the code is more complex.

One of the key elements of this version of PI is the spline interpolation routine. The
choice of end-point condition requires special handling of each of the domain boundaries.
In one dimension the spline method will have three forms; one for each of the two end points
and one for the middle segment. In two dimensions, there are nine cases; four corners, four
sides, and the remaining main part of the domain. Similarly, in n dimensions one needs to
consider 3n different cases to avoid out-of-bounds errors and include any given boundary
conditions. In six dimensions, this alone results in 36 = 728 cases in an if-statement,
which is difficult to keep track of without the assistance of a computer. In principle, every
point on a one-dimensional cubic spline interpolant is the result of a linear combination
of four basis splines with their respective coefficients. In two dimensions, there are 16
such neighbours contributing to each point, and in general, there are 4n contributing basis
splines for each point. Going down to rectangular splines in all directions, this number is
3n. With 3n cases for boundary control and approximately 3n neighbours to evalute for
each case, a direct coding of the linear interpolation will contain the order of 32n array
evaluations.

The relative error caused by the approximations at the computational boundary in-
creases with dimension. The reason is basically that the boundary and the low-probability
areas of the PDF represent a larger and more important part of the dynamics and the
numerical representation with the increase in dimensionality. To show this, first count the
number of grid points that does not have a full set of neighbours, and assume for sim-
plicity that there are M gridpoints in each direction. In one dimension, there are then
2 end points, and M − 2 inner points. In n dimensions with Mn gridpoints in total,
the number of boundary points is found from the formula 2

∑n−1
j=0 Mn−j(M − 2)j. This
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is shown in table 5.1 for the first eight dimensions, which clearly shows that boundary
points consitutes a large relative part of the computational domain. If also the grid points
neighbouring the bounday points were included, this effect would be even stronger. The
dependence on tail behaviour is similarly important for the dynamics. The total probabil-
ity mass within regions with low probability will also normally increase with dimension.
To illustrate this, consider a set of n independent zero-mean Gaussian variables with unit
variance, Z1, Z2, . . . , Zn. If one truncates the PDF of one variable Z1 at the quantiles −zα/2

and zα/2, the probability mass remaining is 1 − α. If the same truncation limits are used
for both variables in a joint PDF of Z1 and Z2, the probability mass remaining is smaller,
namely

P (−zα/2 < Z1, Z2 < zα/2) = P (−zα/2 < Z1 < zα/2)P (−zα/2 < Z2 < zα/2) = (1 − α)2.

Correspondingly, the fixed truncation limit gives a probability mass (1−α)n for n random
variables, a decreasing figure for increasing values of n. This means that a truncation of
the computational domain at e.g. some fixed number of standard deviations would affect
the PDF more for a high-dimensional case than for a low-dimensional.

Dim Ratio of border points M = 16 M = 32 M = 64
1 2

M
0.1250 0.0625 0.0312

2 4M−4
M2 0.2344 0.1211 0.0615

3 6M2−12M+8
M3 0.3301 0.1760 0.0909

4 8M3−24M2+32M−16
M4 0.4138 0.2275 0.1193

5 10M4−40M3+80M2−80M+32
M5 0.4871 0.2758 0.1468

6 12M5−60M4+160M3−240M2+192M−64
M6 0.5512 0.3211 0.1734

7 14M6−84M5+280M4−560M3+672M2−448M+128
M7 0.6073 0.3635 0.1993

8 16M7−112M6+448M5−1120M4+1792M3−1792M2+1024M−256
M8 0.6564 0.4033 0.2243

Table 5.1: Number of grid points at the border of the domain for different equally partitioned
dimensions and for different grid sizes.

There are also other methods to perform the integral with different or no interpolation,
i.e. by representing or approximating the PDF or parts of it by a parametric model as
proposed in section 5.6, or using moment equations to estimate a non-degenerated TPD
that can be integrated without interpolation, though these methods have some additional
drawbacks. Such methods might prove to be necessary for problems of even higher order
than 6.

Another important aspect to consider for such complex programs is the possibility of
reducing CPU time by intelligent programming. One example is the n-dimensional time
step method. If the time step in some of the variables are independent of the state of the
others, these could be taken out of the innermost loop(s), thereby significantly reducing
the number of times these variables are computed. One typical example is a filter equation
producing coloured input noise to an oscillator. The state of the oscillator does not affect
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the filter. Hence, the different states and time steps of the filter should be computed first,
then for each of these all possible oscillator states are included. This of course affects the
order of which nested loops should appear in the code.

Scaling of variables also becomes an important issue to ensure numerical stability, or
special considerations must be taken. As an example, say the grid is uniform between
−0.01 and 0.01 in all six state space variables. The values of the PDF at the grid points
must then be in the order of 64 · 1012 in average to obtain a mass of one. If the PI code
for rescaling first adds the PDF values, and then mulitiplies with the increments, numbers
really start to be large. With, say, 20 grid points in each direction, there are 64 · 106 grid
points in total. The sum of the PDF values before multiplication with the grid increments
would then be 4.096 · 1018. This is still far below the maximal range of a single precision
real, which is about 1038, but without scaling one could end up with overflow or underflow.
Another issue is that adding many numbers the direct way requires high precision to be
stable. In six or more dimensions, a large part of the grid is close to the boundaries of the
domain where the PDF value is small. Each number here could be too small to increment
the sum, but the total contribution could still be signficant. Inaccurate methods or low
precision arithmetic could then underestimate the total mass just by roundoff error.

As always, the time step must be sufficiently small to ensure both that the dynamics
is followed properly, and that the deterministic and stochastic terms are balanced through
the characteristic time step discussed by Johnsen [20]. In many dimensions, there will be
more requirements on the length of the time step. At the same time, choosing a very short
time step will cause long time to reach stationarity, and increase the risk of accumulating
errors from the interpolation. This problem also increases with dimension.

Finally, spatial resolution is a major concern in PI, and especially difficult when the
number of dimensions is high. If two variables are strongly correlated, the marginal PDF
in these two variables will be a thin structure, difficult to represent in a coarse grid. This
problem cannot be seen by the one-dimensional marginal densities. Similarly, the two-
dimensional marginal PDFs might not reveal that the structure of the PDF is thin in a
four-dimensional grid and so on. This requires careful planning when finding SDEs that
are possible to solve with PI when grid resolution is limited. To illustrate this, consider
two coupled oscillators driven by a slowly varying random process. They will typically be
highly correlated in displacement and velocity. An illustration is shown in Figure 5.1, where
only a few grid points actually is inside the interesting part of the joint PDF, although the
grid is reasonable in both variables. This could be resolved by a linear transformation, but
still the variables could be strongly correlated with the filter equation. In many nonlinear
systems, the structure of the response PDF could be skinny along other seemingly arbitrary
directions. An example is the Lorenz attractor discussed in section 6.15. In such cases, it
is typically no way of eliminating this resolution problem by variable transformation.

5.11.2 6D results

For the numerical computations, 16 grid points were used in each direction, giving a total
of about 16.8 ·106 grid points. The PI method used FFT and a rectangular spline method.



5.11. SIX-DIMENSIONAL PATH INTEGRATION 75

Displacement 1

D
is

pl
ac

em
en

t 2

 

 

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.5

0

0.5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Figure 5.1: Joint displacement PDF of two coupled oscillators, shown for illustration. A grid
discretized in 16 points in each direction could seem reasonable when only regarding the marginal
densities. Unfortunately, only a few grid poins actually intersect the interesting part of the joint
response PDF.

From table 5.1 it is seen that more than half of the gridpoints actually are located at the
boundary of the domain, which potentially could cause numerical errors. Since they con-
tribute significantly to the results, it should be clearly specified which method is used there.
The boundary approximation used is the one described in section 3.3.2 with extrapolation
extending out to the support of all non-zero basis functions. This choice is mostly due to
the low number of grid points. With few grid points and a uniform grid, the outermost
gridpoint cannot be too far out in the tail. A significant probability mass could be just
outside this gridpoint, and assuming the derivative to be zero (or any other fixed value)
could be very misleading. The not-a-knot endpoint method is not available for rectangular
splines. For cubic splines, this would result in a quite large interval approximated by a
single cubic polynomial, which could be too crude for valuable results.

The PI programs are written in FORTRAN 90, and compiled with a Sun Studio 10
Compiler using the “-fast -O5” optimization to be run in the background on an 6 × 1.2
GHz UltraSPARC-IV computer. 120 iterations took 9 hours for this toy example.

It is very clear from the authors’ experience that both CPU time, computer memory
and the complexity of the computer programming has made an extension to even more
dimensions almost unthinkable. However, a higher grid resolution in six dimensions should
be possible with a more powerful computer.

A six-dimensional PDF cannot be represented with ease, neither on paper nor on a
computer screen. So one is practically forced to plot marginal densities or conditional
densities, or to refer scalar statistics of the final distribution. As stated in the introduction,
many such statistics would be more easily obtained using Monte-Carlo simulations. So the
presentation of resulting response PDFs will here mainly be based on some conditional
densities.

Three identical independent oscillators are modelled as a six-dimensional SDE based
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Figure 5.2: Displacement PDF of the linear oscillator (line) with the numerically obtained
response PDFs for the three oscillators that were computed as a joint 6D system by PI. The
three oscillators are marked with symbols x, circle, and diamond, respectively. The diamond
corresponds to the forcing filter. The left plot is in a normal scale, the right plot has a logarithmic
scale on the second axis.

on equation (1.23) with three independent Gaussian white noise processes W1, W2, and
W3;

dXj = Yj dt,

dYj = (−αXj − 2κYj) dt + γ dWj, α, κ > 0, j = 1, . . . , 3.

The parameter values used are α = 0.01, κ = 0.5, and γ = 0.2.
This should from the definition of independent variables and equation (1.24) give a

joint PDF

f(x1, x2, x3, y1, y2, y3) = K3 exp

(
2κ

γ2

3∑

j=1

αx2
j + y2

j

)
.

The time step for the numerical simulation was ∆t = 0.03. The fact that the three oscilla-
tors were independent or that they were all linear and identical was not used to optimize
the 6D PI code. The code was written to handle two coupled nonlinear oscillators driven by
a filtered noise process. In the grid, the six variables are not completely identically repre-
sented. That is, loops for tensor product interpolation and time stepping are performed in
a specific sequence that could affect the numerical stability of the variables differently. In
addition, the grid in each variable was set using limits of 3.6 times the standard deviation
of the variable in a short Monte-Carlo simulation, which means that the grid points are
not identically located in each direction.

Figure 5.2 shows the numerically obtained response PDFs for displacement for the
three oscillators, together with the analytical solution computed from equation (1.24) by
integrating the y variable from −∞ to ∞. Similarly, Figure 5.3 shows the velocity PDFs of
the three oscillators obtained by PI together with the analytical PDF in the y variable. The
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Figure 5.3: Velocity PDF of the linear oscillator (line) with the numerically obtained response
PDFs for the three oscillators that were computed as a joint 6D system by PI. The symbols
correspond to the previous figure. The left and right plot use linear and logarithmic scale,
respectively.

peaks and the grid values at the boundaries are under-estimated, an effect that is typical
for this implementation of PI with cubic or rectangular B-splines and the assumption that
the PDF is zero outside of the domain. With the very low grid resolution, the results are
promising. The fact that there are only small deviations between the PDFs for the three
oscillators and that all PDFs are symmetric down to machine precision, indicate that the
code does not have serious indexing mistakes. With the limitations of the grid resolution,
a more detailed verification of the code accuracy is difficult, and extensions to coupled or
non-linear systems did not seem to be feasable.

5.12 Example: Locally adjusted grid for a Toda oscil-

lator

Also smooth systems might require an adapted grid to work well with PI. An example is
a chaotic system described in [27]. It is developed from a nonlinear driven RLC circuit,
where the variable is the electric charge on the capacitor. This system is also studied exper-
imentically, verifying that period doubling and chaotic behaviour exist when the system is
parametrically tuned. After normalization, the system is described in dimensionless form
as

ẍ + κẋ + (ex − 1) = α cos(ωt). (5.14)

To study equation (5.14) as an SDE with PI, a small noise term is added to the right hand
side, and the system rewritten as

dXt = Yt dt,

dYt = (1 − exp(Xt) − κYt + α cos(ωt)) dt + γ dWt.
(5.15)
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For this numerical calculation, the parameters used are κ =
√

0.0018, α = 10/3, ω = 0.905,
and γ = 0.005, and there were 80 time steps per period.

Before trying to implement such a system in PI, one should try to get a picture of the
dynamics of the system. For equation (5.15), Figure 5.4 shows plots of the response in
the variables Xt and Yt, respectively, from an arbitrary initial point (X0, Y0) = (0.0, 0.3), a
specific realization of the noise process, and time running from t = 0 to 520. The realization
is obtained by a standard Monte Carlo simulation. Figure 5.4 indicates that the variability
in the local maxima are much smaller than that of the local minima, and that the grid
clearly should not be chosen symmetric around zero in the x direction. Figure 5.5 shows
the same transient, this time plotting Xt against Yt. The trivial observation is that the
density is very high in a small area where 0 < x < 4. More important is to observe
that this area exhibit some structure shown in the zoomed image that one should expect
is important for the global structure of the system. Further, the trajectories bend quite
sharply from almost horizontal to vertical in this region, which also indicates that one
should be especially aware of the dynamics here.
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Figure 5.4: Response in the X and Y variables of the Toda oscillator, left and right plots,
respectively. The plots are based on one Monte Carlo simulation.

In this example, PI fails to give a reasonable result with 101 grid points in X and Y with
a uniform grid, and the mass after each iteration is only between 0.70 and 0.85. Instead
of running this system with a very high resolution, the grid in the x direction should have
high resolution in the region above zero. Figure 5.6 shows the PDF of system (5.15) at
two time instances. These plots are split in two, one part for the PDF for x below zero
and one for x above zero. Both use the same grid in the y direction, and the same number
of grid points in x. In the PI implementation, there is only one grid, where 0 is grid
point number 50 out of 101, and the grid is uniform on each side of 0. This choice makes
it simple to compute probability mass and moments and other expectation values. The
interpolation generally would be more stable if the grid density changed more gradually.
Note that even though the grid is piecewise uniform, the basis functions for a uniform grid
like equation (3.6) and (3.7) are not valid - in any interval.

In [27], this system is studied for a range of parameter values for the frequency and
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Figure 5.5: Response in the X and Y variables of the Toda oscillator, plotted against each other.
The right plot is a zoom-in on the rightmost part of the left plot.

amplitude of the harmonic forcing. In this parameter space, many subharmonic periods
of the response are found, including chaotic regions. A visual inspection of the response
PDF for this system for the same parameter values does not give the same insight, as
the PDF does not show how the dynamics affects individual points. Also for a chaotic
system, the PDF can be stationary or periodic. The PDF for equation (5.15) is periodic
with the same period as the forcing. However, a detailed study of the PDF over one period
can indicate the subharmonic period of the system. Figure 5.7 shows one period for four
different simulations, all of them sampled at 16 equi-distant time steps. When studying
the “finger” shapes on the left of the PDF, one can see that they move from one snapshot
to the next, so that the bottom “finger” takes the position of the second lowest after one
period. Since the number of “fingers” are different for the different cases, the rotation
speed of the PDF can be measured, which for the first to cases is 2π/(5ω), and for the
two last 2π/(6ω). The deterministic oscillator has a very complicated parameter space
distribution of different stable periodic solutions and chaotic behaviour [27]. Here it is just
a toy example, so the behaviour for varying parameters is not studied further.

One important comment here, is that knowledge of symmetries and periods in the
response PDF of a system can be useful to obtain faster convergence rates or more stable
results. An example of this is studied in detail in appendix F.

The next chapter will discuss chaos, and the study of some chaotic systems.
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Figure 5.6: Four plots showing the response PDF of the Toda oscillator in x and y at two
different time instances. The top is obtained after ten full periods, the bottom a quarter period
later. Note that the resolution in the horizontal direction is very different in the left and right
images, while the colourbar and the y axis is the same in all the four plots.
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A: ω = 0.905.

B: ω = 1.205.

C: ω = 1.505.

D: ω = 1.805.

Figure 5.7: One period of the response PDF of the oscillator from equation (5.15) for four
different values of ω. The vertical lines indicate x = 0, and are included because the grid is much
denser for positive x than for negative x, similarly to the split PDFs in the previous figure.
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Chapter 6

Chaos

6.1 Chaotic and stochastic response of nonlinear SDEs

The study of nonlinear SDEs with noise and chaos could be persued in many directions.
One motivation could be to examine the properties of the underlying deterministic system,
where the noise acts as a perturbation to study the system’s stability, or as a means to
apply stochastic methods to the system. In that case, the question is how results from
studies of the stochastic system relates to the deterministic system, and to what extent
these systems are comparable. Another related question is whether the introduction of
noise terms to the deterministic system could lead to a radical change of the system’s
behaviour, i.e. introduction or removal of chaotic response or completely new response
patterns.

Investigations of deterministic systems with chaotic response has showed that tuning of
parameters often leads to bifurcations and sudden appearance of chaos. Similar behaviour
is seen for stochastic systems, though the noise to some extent could be said to smear out
the abrupt changes.

The comparisons to the stochastic system can be thought of as throwing a “stochastic
blanket” over the deterministic attractor, so that the noise level potentially smears out
some of the finest structure. However, this requires that no abrupt changes of the system
behaviour occurs in the introduction of noise.

A general discussion of the effect of noise on chaotic systems is difficult, since the
number of possible systems, noise processes and outcomes is infinite. This is illustrated
in sections 6.17 and 6.18, which follow up on the general comments on effects of noise in
section 1.3.9. As for the PI method in general, it is much more illustrative to focus the
analysis on some specific systems. Note that the objective is to indicate the possibilities the
PI method provides for such a study, rather than actually analysing the example systems
in detail.

83
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Figure 6.1: Illustration of a few iterations of the Smale horsehoe map, from left to right. In every
iteration the right half of the square is cut off and folded over, as the arrows indicate. The two
pieces are streached horisontally to twice the length, and shrinked horisontally to half the width,
which directly relates to the Lyapunov exponents, ln 2 and ln(1/2) = − ln 2. The illustration also
shows three points and a line connecting two of them, and how these objects are propagated by
the map.

6.2 The definition of chaos

First let a deterministic dynamical system define a diffeomorfism on the state space φ(x, t) :
X × R → X for every t ≥ 0, where φ(·, 0) is the identity operator. That is, a deterministic
version of the φ defined in section 1.3.4.

The dynamical system is said to be chaotic if the collection of points with periodic
orbits is dense, it is topologically transitive, and sensitive to perturbations of the initial
condition. Points with periodic orbits fulfills x = φ(x, nτ) for all n ∈ N for some value τ ,
which will depend on x. The chaotic attractor for the system is the closure of the dense
set of points with periodic orbits, and the measure of the set of periodic points is zero.

The criterion “topologically transitive” means that if for any two intervals U and V
on the system’s attractor, there exist a t such that φ(U, t) ∩ V 6= ∅. This means both
that the attractor cannot be separated into disjoint parts that never meets, and roughly
that every starting interval will “fill up” the attractor when evolved for a long time by
φ. This is equivalent to the term mixing. To illustrate this point, consider the so-called
Smale’s Horseshoe Map. This is a map that streches a rectangle horisontally, then breaks
and folds it (or bends it into a horse-shoe shape, hence the name). This is illustrated by
the first few iterations in Figure 6.1. The shaded region occupies the same area after every
iteration, however, its gradually more complicated structure will seem to fill the square.
In other words, the maximal distance from a point inside the square to the shaded region
will constantly decrease.

Finally, sensitivity to perturbations is really a consequence of the two first criteria,
which is proven in [2]. This is maybe the most practical way of determining if a physical
system could be chaotic, and is well known as the butterfly effect.

In popularizations of chaos, e.g. [15], a typical conclusion is that chaotic systems are sen-
sitive to perturbations always and everywhere, hence they cannot be controlled. Otherwise,
one should be able to perturb the system at the right time and place by an infinitesimal
amount – almost without effort – and this way ensure a specific outcome much later. A
tantilizing idea, however not possible in practice. One should clearify that the statement
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that this is impossible is a practical observation, especially observed for weather models,
but not a mathematical condition. For constructed systems and some mechanical mod-
els, chaos can be controlled or reduced by artificial damping or controlled perturbations
in some parts of the state space. Such control requires some specific knowledge of the
system’s behaviour in both space and time, which has been difficult to obtain by sampling
from specific realizations.

Transitions from periodic to chaotic behaviour, through period doubling and other
phenomena, is not discussed in this text. To investigate such behaviour with PI, one would
choose some parameter values, study the system with these parameters, and compare the
results. A simpler way to compare a system’s behaviour under many values of a parameter
has not been found.

6.3 Qualitative study of chaotic attractors by PI

6.3.1 Motivation

A few papers have been published the last years with studies of nonlinear or chaotic systems
under the influence of noise – or other kinds of perturbations, and a variety of phenomena
has been discovered. There are however many ways noise can be introduced, and very little
has been done to look at differences between the response under various noise models.

The aim of this section is to show some of the possibilities of using path integration
for systems where the noise is filtered, increasing the dimensionality of the problem to
four, when a state-space variable is an angle. Although the systems considered have some
very basic properties in common, the notion of convergence and how the attractor finally
appears are very different for the different cases. This paper also extends Âprevious work
[39, 42] where a single-degree of freedom ODE with chaotic response is studied by the
addition of noise using path integration.

The Duffing oscillator has been studied extensively for many years because of its in-
teresting dynamics combined with its simplicity, and it is still recognized that the Duffing
class of oscillators plays a central role among harmonically excitated systems that ex-
hibit chaotic behaviour [18]. Parameter ranges for different structure levels have been
mapped quite detailed, e.g. in [14], and the Duffing model is also used to model more
complicated structures of coupled nonlinear oscillators [38]. As the deterministic single-
degree-of-freedom oscillator is more understood, the interest is turned to stochastic models
and higher-dimensional problems.

To the authors’ knowledge, no other methods have been used to produce full PDFs of
four-dimensional nonlinear systems with this complexity, at least by the time this work
was performed in 2003.
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6.4 System description

A nonlinear single-degree-of-freedom (SDOF) system subject to periodic excitation is the
basis for this analysis. This system is a Duffing oscillator where the response process X(t)
satisfies the following equation

Ẍt +
1

25
Ẋt −

1

5
Xt +

8

15
X3

t = F (t), (6.1)

where F (t) is the stochastic excitation, with some specific properties. The motivation for
this study is the corresponding deterministic ODE with Y (t) = (2/5) cos(ωt), which has
been studied extensively in [49] for various frequencies ω.

This system is separated into displacement X and velocity Y as

Ẋt = Yt (6.2)

Ẏt = − 1

25
Yt +

1

5
Xt −

8

15
X3

t + F (t) (6.3)

The four kinds of excitation studied here, denoted A through D are

FA(t) =
2

5
cos(ωt) + γANt, (6.4)

FB(t) =
2

5
cos(ωt + Φt), Φ̇t = −κBΦt + γBNt, (6.5)

FC(t) =
2

5
cos(Θt), Θ̇t = ω + γCNt, (6.6)

FD(t) = Zt, Z̈t + κDωŻt + ω2Zt = γDNt. (6.7)

Here, Nt is the standard zero-mean white noise process or Gaussian white noise, also
described as the formal derivative of a standard one-dimensional Brownian motion. This
process has uncorrelated increments E[NtNt+τ ] = δ(τ), where δ(·) is a Dirac measure at
zero. The noise levels γA, γB, γC, and γD will be chosen so that the mean input energy is
the same for all the four cases, according to the choice of the other parameters.

As in equation 6.2, the filter in case D will be split into two first-order SDEs by intro-
ducing the filter velocity Υ = Ż.

From here on, X will be the vector of state space variables, which for the four cases
read

XA = [X, Y ]> ∈ R
2 (6.8)

XB = [X, Y, Φ]> ∈ R
3 (6.9)

XC = [X, Y, Θ]> ∈ R
2 × S (6.10)

XD = [X, Y, Z, Υ]> ∈ R
4. (6.11)

The differences between the two three-dimensional systems B and C require a com-
ment. Both are models where there is a perturbation in the frequency of the forcing, while
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preserving the mean angular velocity around ω. In case B, the system is almost locked to
a fixed phase at every time t, perturbed by Φ. Although Φ is strictly an angle, the noise
variance is set small enough that the perturbation is much less than 2π. By this, it is
reasonable to model this variable and the Brownian motion as a one-dimensional process
on the real line. This also ensures that the forcing cannot stay a full period behind or
ahead of the pre-set phase. In a realization of the system, any random delay compared to
that phase at a specific time would make the damping effect try to “speed up” the angle,
and the more the angle is ahead of the phase due to the random fluctuations, the larger
the probability is for dominating lower frequencies. In case C, the filter does not inherit
this kind of memory. The angle can be seen as a standard zero-mean Brownian motion
on a circle superimposed on a fixed rotation, or a Brownian motion on the circle with a
mean angular velocity, or say drift, ω. As the variance of the Brownian motion on the
real line is increasing with time, the distribution on the circle converges towards a uniform
distribution, which means that the phase for system C after a long time is impossible to
predict with any accuracy, in contrast to system B. However, the value of Θ is the current
phase value.

The spectrum of FC in equation (6.6) is, according to [54],

S(ω) =
1

2

(2/5)2γ2
D(ω2 + ω2 + γ4

D/4)

(ω2 − ω2 + γ4
D/4)2 + ω2γ4

D

. (6.12)

This also shows the fairly obvious result that γD → 0 gives harmonic excitation.
The fourth filter, D, is an oscillator that also gives a mean frequency ω. As in case C,

the phase will be distributed over the joint PDF, but can be retained from the values of
the two last state variables. Here, the amplitude will also be heavily affected by the noise.
The output of a linear filter with Gaussian noise is Gaussian, so the forcing spectrum is
clearly different from the sinusoidal in the three first cases. To find a relevant comparizon,
one could look at the resulting PDF conditioned on values of Z and Υ that corresponds
to the harmonic forcing, which is an ellipse in the Z, Υ-space centered in the origin.

It is known that the purely deterministic system with harmonic forcing, γA = 0 in
equation (6.4), gives rise to a chaotic attractor. With all the noise models, it is expected
that the response should be similar to this attractor, more so for noise with low intensity.
As the noise makes a probability density, i.e. a surface, some of the fine structure of the
chaotic attractor must dissappear, like a ”stochastic blanket” is thrown over the attractor.

To be a relevant comparison, approximately the same amplitude should be delivered
from the stochastic forcing models. This is clearly a question of definition, e.g. would the
addition of zero-mean noise in case A give an addition in energy and mean amplitude, but
a time average around the peaks would give the correct amplitude. For cases B and C,
the amplitude is fixed, but the frequency variation would give a slight increase in energy
to the system. In the last case D, a choice has to be made, as the force is just quasi-
harmonic without a maximum amplitude. Here, the variance was chosen as the reference.
The variance in Z of the system D is from equation (6.7) γ2

D/(2ω3κD). The variance of
the deterministic forcing (2/5)cos(ωt) is 2/25. If these two are set equal to each other, a
given damping κD implies a noise level γ2

D = 4ω3κD/25. This is equivalent to scaling the
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forcing in equation (6.2). As the damping and noise intensity goes to zero, the response Z
becomes more and more harmonic, as shown in Figure 6.2.

0 100 200 300
−0.5

0

0.5

t

Z

kappa=0.1

0 100 200 300
−0.5

0

0.5

t

Z

kappa=0.01

0 100 200 300
−0.5

0

0.5

t

Z

kappa=0.001

0 100 200 300
−0.5

0

0.5

t

Z

kappa=0.0001

Figure 6.2: Four realizations of the two-dimensional filter with damping κD varying from 0.1
down to 0.0001, and noise level chosen correspondingly.

The concept of convergence for SDEs driven by harmonic excitation has been discussed
in [42]. For the two first excitation models A and B, the response is directly depending on
the value of the time t. Since the damping is positive, it can be assumed that the density
becomes periodic after transients have died out, and the period will be 2π/ω. Existence
and uniqueness of such a periodic attractor for the response PDF is difficult to prove for
a nonlinear system. However, if a PDF f † at time t0 is found to be periodic with period
2πn/ω, then the density f ‡ obtained at time t1 = t2 +2π/ω also has the same period. The
average over all the obtained PDFs at t1, t2, . . . , tn, tj = t1 + 2πj/ω must then have period
2π/ω.

For the third and fourth cases, there is no explicit time dependence; the system is
autonomous, and a stationary distribution could exist.

6.5 Implementation: conditional PI with cubic splines

For case B, the stationary density of the Φt process is Gaussian with density f(φ) =
K exp(−κBx2/γ2

B), i.e. zero mean and variance γ2
B/2κB. (K is just the constant scaling.)

The marginal PDF of Φ from X, Y, Φ must also be the same Gaussian distribution, as the
three-dimensional system only has introduced “auxilliary” variables X and Y and then
they are integrated out for the marginal. In case D, the joint stationary - and marginal
- PDF of Z, Υ is bivariate Gaussian with density f(z, w) = C exp(−κDω/γ2

D[ω2z2 + w2]).
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That is, zero-mean, zero covariance, and variances γ2
D/(2ω3κD) and γ2

D/(2ωκD) for the
response of Z and Υ respectively.

The question is whether this knowledge could be utilized to reduce both the grid resolu-
tion and the interpolation cost. A proposed solution is to consider the conditional densities
f(x, y|φ) and f(x, y|z, υ) for these two cases respectively, and just interpolate linearly in
the conditional variables. This will work well if the conditional density f(φ|x, y) for fixed
x, y has a sufficiently similar shape to f(φ) in case B, and similarly for case D.

Let us go through the procedure for case B in detail. Assume that the PDF fj∆t(x) is
already calculated in every grid point xk1,k2,k3, and denote this for short by fj(x). Write
fj(xk1, yk2|φk3) = fj(xk1,k2,k3)/f(φk3) for every grid point. For each fixed k3, represent fj by

the cubic spline interpolant f̂k3(x, y) = (I4,xyfj)(x, y|φk3). For each point in the integration

domain, the density is evaluated as fj(x, y, φ) =
[
(1 − λk3)f̂k3(x, y) + λk3 f̂k3+1(x, y)

]
f(φ),

where λk3 = λk3(φ) = (φ− φk3)/(φk3+1 − φk3), and k3 is chosen such that φk3 ≤ φ < φk3+1.
In case D, the method is the same, except more indices, and the final linear interpolation

becomes

fi(x, y, z, υ) =
[
(1 − λk3)(1 − λk4)f̂k3,k4(x, y) + λk3(1 − λk4)f̂k3+1,k4(x, y)

+(1 − λk3)λk4 f̂k3,k4+1(x, y) + λk3λk4 f̂k3+1,k4+1(x, y)
]
f(z, υ).

(6.13)

A challenge with this four-dimensional system is that the filter has a very long transient
time for low noise levels. The main attempt to reduce this is by starting with the correct
marginal density in Z and Ż.

A final remark on conditional PI is that the procedure could also work for systems
where the marginal density of the filter variables is unknown or not stationary, as this
PDF can also be found for each time step with fair accuracy using the PI method.

6.6 Numerical solution for response PDF by the PI

method

A Poincaré section of the chaotic attractor obtained for the deterministic system, case A
with γA = 0 in equation (6.4) is shown in Figure 6.3. This is a well studied example,
using ω = 0.32, and this choice has been made for all the simulations with results shown
in this paper. The sampling time is 2πk/ω, k = 1, 2, . . ., i.e. after every full period of the
harmonic forcing.

Snapshots of the PDF of the additive noise model A, equation (6.4), after 30 periods are
shown in Figures 6.4 and 6.6, for experiments with varying amount of noise. As expected,
the higher noise levels give less fine structure and more spreading of the PDF. There is
hardly any difference between the estimated response for the two lowest noise levels. This
could indicate that for these results, at least for the lowest noise level, the interpolation is
the main source of smearing out the attractor, and the limit of structure detail obtainable
has been reached. It is also interesting to see that the strongest peak at the upper left tip
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Figure 6.3: Poincaret section of the chaotic attractor.

of the structure gradually becomes lower with increasing noise, while the vertical structure
around x = 1.5 remains strong. Similarly, one of two peaks near the center of the figures
gradually dissappear with increasing noise, while the other remains a maxima.
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Figure 6.4: PDF of the response of the 2D system, additive noise, at time 60π/ω, i.e. 30 full
periods from the initial distribution. The noise level is γA = 0.005 and γA = 0.010 in the left and
right image, respectively.

Similar snapshots are shown for system B in Figures 6.7 and 6.8. In spite of the fact
that the phase is varying and the amplitude is constant, while case A is opposite, the
increasing noise seem to have the same effect on the system.

For the filtered noise version, case D, the results are shown in Figure 6.11.Even for
the low damping, and hence low noise, one cannot see the same level of detail as in the
previous results. This indicates that some averaging process is dominant for this system
much more than for the previous cases. The location and size of the maxima is similar to
what is seen for high noise levels in the other models. When studying the left and center
images in Figure 6.11, it is quite surprising that the PDF doesn’t seem to change when
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Figure 6.5: PDF of the response of the 2D system, additive noise, at time 60π/ω, i.e. 30 full
periods from the initial distribution. The noise level is γA = 0.025 and γA = 0.050 in the left and
right image, respectively.
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Figure 6.6: PDF of the response of the 2D system, additive noise, at time 60π/ω, i.e. 30 full
periods from the initial distribution. The noise level is γA = 0.100 and γA = 0.250 in the left and
right image, respectively.

the damping is increased from 10−4 to 10−1, as the realizations of the forcing shown in
Figure 6.2 are so different. Simulations were performed with a grid of 81 × 81 × 44 × 45
grid points over the state space. In the z-direction, the grid was from −0.8 to 0.8, i.e. twice
the value of interest, 0.4. The grid for the w-direction was chosen correspondingly based
on the maximal velocity (0.4ω). As discussed above, the deterministic harmonic forcing
corresponds to an ellipse in the z, w-space. With the choice of computational grid, this
ellipse crosses 22 gridlines in each direction - twice, so the interpolation was expected to
be fairly good. It is possible that interpolation in four dimensions smears out the structure
much more than in the previous cases, also since just two points on the ellipse actually
intersects grid points. Also note that the separation between the two peaks is clearly
decreased as the noise increases, while the main shape is preserved. For the case with
highest damping and noise, the right image in Figure 6.11, very little shape is preserved,
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Figure 6.7: PDF of the response of the first 3D system, damped noise in the phase, at time
60π/ω, i.e. 30 full periods from the initial distribution. The noise level is γB = 0.005 and
γB = 0.010 in the left and right image, respectively.

the maxima is almost circular, although the total variation is about the same as the bottom
image in Figure 6.10 and the right image in Figure 6.6, and not much larger than in the
bottom image in Figure 6.8, all of which has a clearly non-circular maximum. However,
the added noise model A is much more similar to the 4D case D than the two 3D models B
and C. This clearly indicates that the filtered noise model and the added noise model affect
the oscillator in a very different way than the phase perturbation for high noise values.

6.7 The Lyapunov exponents – based on the flow of

the system

The term Lyapunov exponents (LEs) is used both for local Lyapunov exponents (LLEs) and
global LEs. Unless clearly stated otherwise, LEs here only refers to the global kind. This
is further a finite set of numbers, i.e. a discrete spectrum, with size equal to the number
of state-space variables (i.e. the dimension), and sometimes plus one for the time variable.
An important statistic for dynamical systems is the maximal Lyapunov exponent (MLE),
also denoted the largest LE (LLE), or the Lyapunov characteristic exponent (LCE). The
MLE is said to be the averaged rate of divergence (or convergence) of two trajectories that
are close to each other. As for chaos, the LE is defined for deterministic systems, and then
extended to stochastic systems. This extension will be discussed below, but first assume
that the system considered is deterministic.

A system of ODEs determines a flow; xt = ϕ(x0, t)x0, when written formally as a (non-
linear) matrix-vector product. The LE can then be defined through the eigenvalues mj(t),
j = 1, . . . , n, m1(t) ≥ m2(t) ≥ . . . ≥ mn(t) of the flow matrix ϕ(·, t);

λj = lim
t→∞

1

t
ln |mj(t)|. (6.14)

Often in the litterature, it is stated that to estimate the Lyapunov exponent, one should
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Figure 6.8: PDF of the response of the first 3D system, damped noise in the phase, at time
60π/ω, i.e. 30 full periods from the initial distribution. The left, right and bottom images have
γB = 0.050, γB = 0.100, and γB = 0.500, respectively.

start with two points x0 and x̃0 = x0 + ∆x that are very close, follow their paths forward
in time while measuring the distance between them. The definition should then be written

λ1 = lim
t→∞,∆x→0

1

t
ln

( ||φ(x0 + ∆x, t) − φ(x0, t)||
||∆x||

)
, (6.15)

for almost every ∆x, where the limit in t and ∆x should be taken so that for some fixed
constants K1 and K2, 0 < K1 ≤ ||φ(x0 +∆x, t)−φ(x0, t)|| ≤ K2 < ∞. Many presentations
of the Lyapunov exponent use a more sloppy definition, i.e.

λ1 = lim
t→∞

1

t
ln

( ||xt − x̃t||
||x0 − x̃0||

)
. (6.16)

This is correct only for systems that are linear, diverge to infinity, or converge to a fixed
point. Equation 6.15 is not a good definition for all purposes, it’s rather the first part of
an approach to give meaning to equation (6.14).

First, the relative location of the initial points affects the result. If the two points are
on the same trajectory, the distance will remain constant, and λ is zero. So there are many
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Figure 6.9: PDF of the response of the second 3D system, free noise in the phase, with γC = 0.005.
The number of grid points in Θ is 22 in the left image, 44 in the right image, both have 121 grid
points in x and y.

Lyapunov exponents, the same number as the dimension of the phase space and at least
one will be zero.

Reconsider the Smale horseshoe map discussed in the beginning of this chapter, and
illustrated in Figure 6.1. When applying the map several times, points aligned vertically
will move closer to each other, while the distance between two points separated horisontally
will be doubled every iteration, until one of them reaches the part of the structure that
is broken. When the break is between the points, a longer vertical distance between the
points is obtained, while the horisontal distance could be doubled, set to zero or anything
in between, depending on the placement of the points before the iteration. With n iterates,
the discance between two points increase by 2n at most. In fact, one should measure the
distance along the dotted line shown in the figure, and this line length asymptotically
approaces 2n. This means that the largest Lyapunov exponent is n ln 2. 1 Because of the
contraction in the other direction, the other Lyapunov exponent must be negative, in fact
−n ln 2 to make the system globally stable and area perserving.

Returning back to the continuous case, consider a small n-dimensional compact ball
B%(x0) centered in a point x0 with radius %. Assume that every point in the ball is
propagated forward in time by a flow, i.e. consider φ(B%(x0), t). The short-time dynamics
will deform this ball into an ellipsoid. That is, after a finite short time t all orbits which
have started in that ball will be in the ellipsoid. The jth Lyapunov exponent is then

λj = lim
t→∞

1

t
ln

(
dlj(t)

d%

)
, (6.17)

where dlj(t) is the radius of the ellipsoid along its jth principal axis. If the largest principal
axis typically is larger than %, the MLE is positive.

1The Lyapunov exponent equals 1 if 2 is used as the cardinal number instead of e. This is just a different
convention than what is used here, giving the LE spectrum in bits per second or bits per iteration.
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Figure 6.10: PDF of the response of the second 3D system, free noise in the phase, with γC =
0.050, 0.100, and 0.500 in the left, right, and bottom image, respectively. The number of grid
points in Θ is 88, while the number of grid points in x and y is reduced by 2/3 to 81.

The limit t → ∞ in equations (6.15) and (6.17) must then be interpreted correctly. If λ1

is positive from those definitions, the distance between the paths must diverge exponentially
to infinity, i.e. at least one of them must diverge. For chaotic systems, the definition is only
valid as long as the points are sufficiently close, i.e. that one by time t in equation (6.17)
has an ellipsoid. In general, this cannot be guaranteed. A practical interpretation of
equations (6.15) and (6.17) is then to perform a rescaling sufficiently often, and use the
products of the rescaling factors to compute the Lyapunov exponent. Even this method
suffers from lack of accuracy, as one cannot even for a short time propagation ensure
linear behaviour of the system. Therefore, this method is not discussed in detail here, but
interested readers can find a further discussion in [47] that has many references to methods
using rescaling and orhogonalization.

Generally, for a nonlinear system, the shape of φ(B%(x0), t) will not be an ellipsoid,
or any other simple geometric figure. However, since the flow is continuous, compactness
should be preserved, and basic properties such as (hyper)volume and surface area could
then be computed. One could then define

λ1 = lim
t→∞

1

t
ln

(
1

2%
max
p0,p1

min
ς

||ς(p0, p1)||
)

, (6.18)
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Figure 6.11: PDF of the response of the 4D system, filtered noise, with κD = 0.0001, 0.10, and
1.0 in the left, right, and bottom image.

where the points p0, p1 ∈ φ(B%(x0), t), each curve ς ∈ φ(B%(x0), t) is completely inside the
deformed ball, and all the curves ς have p0 and p1 as end points. The factor 1/2% can
be neglected, as it dissappears in the limit. Similarly, the second largest exponent can be
defined by

λ2 = lim
t→∞

1

λ1t
ln

(
max

p0,p1,p2

min
δA

||A(p0, p1, p2)||
)

, (6.19)

where p0, p1, p2 ∈ φ(B%(x0), t), and A ∈ φ(B%(x0), t) is some 2D surface with p0, p1, p2 ∈ A,
and the minimum is taken so that only such surfaces with minimal boundary length are
considered.

Chaos is often defined by λ1. It is stated that if it is positive, the system is chaotic, and
the LE is therefore also the number that determines how far into the future the system can
be predicted, i.e. the prediction horizon. The nature of chaotic systems is the trajectories’
sensitivity to initial conditions, and hence also to the numerically inevitable round-off
errors. A high Lyapunov exponent means that the divergence of neighbouring points is
high, and the system can only be predicted for a short time. However, these are dynamical
systems with sufficient damping, so the trajectories will remain within certain bounds, and
can therefore not diverge more than a certain degree.
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The reason for this seemingly contradiction is that after some time, the two trajectories
will not be close any more, and the basic assumption of linearity is no longer correct. I.e.
the separation of the trajectories is no longer exponential. For the definition to work, the
original distance between the points have to be chosen sufficiently small for a computation
based on a certain length of time. Cartwright [6] defines a local Lyapunov exponent based
on lj(t) the jth principal axis of the ellipsoidal ball evolving in time the state space, in a
similar manner as in equation (6.17);

λj(τ, t) = lim
lj(τ)→0

1

τ
ln

lj(t + τ)

lj(t)
. (6.20)

Then, the global Lyapunov exponent is the limit as τ goes to infinity;

λj = lim
τ→∞

λj(τ, t). (6.21)

Theoretically, the distance should be measured in some sense “along the attractor”, like
in equation (6.18), however this equation will be very difficult to implement numerically.
If one for the horseshoe map imagine the horisontal distance between points is measured
by a thin thread, the thread itself is also broken, and then it is continuously stretched (or
shrunk) at a rate given by the LE. This is the same way the MLE should be interpreted
for a dynamical system. The stretching of a line element is shown for the Duffing oscillator
in Figure 6.15, and for the Lorenz attractor in the right of Figure 6.18, Mathematically,
this could be expressed

x0(τ) = x0 + τξξξ0, τ ∈ [0, 1],

λ1 = lim
t→∞

1

t
ln




∫ 1

0

√(
∂φ(x0(τ),t)

∂τ

)> (
∂φ(x0(τ),t)

∂τ

)

√
ξξξ>0 ξξξ0

dτ




= lim
t→∞

1

t
ln



∫ 1

0

√(
∂φ(x0(τ), t)

∂τ

)>(
∂φ(x0(τ), t)

∂τ

)
dτ


 .

(6.22)

Here, ξξξ0 is an initial perturbation vector of x0. So the difference from the above formulas is
that the whole line segment is considered, rescaling is not strictly necessary, as long as the
curve is well represented e.g. by an interpolation scheme, and the limit to infinity exists.
Numerically, this method requires addition of points when the line grows longer to ensure
constant accuracy. Otherwise, as the line segment curves, the loops between points on the
cure will not be seen by the numerical algorithm, and hence the length of the curve will
be under-estimated. Similarly to this line method, one could define the second largest LE
from the evolution of an initial area, which should be proportional to λ1λ2, the third by
considering a volume proportional to λ1λ2λ3 etc. Also this will require a large number of
points for a numerical method, even if the area or volume tends to zero. This is due to the
complex structure of the propagated object, and the need for an accurate estimation of its



98 CHAPTER 6. CHAOS

area or volume to get a reliable Lyapunov spectrum. Hence, this method will in practice
be quite complicated.

In [30], the local Lyapunov exponent is defined as the jth largest eigenvalue of the
iterated Jacobian

λj(x) = lim
t→∞

1

t
ln(eigj(e

J(x))). (6.23)

In [12], an even more simple, but not generally correct, form is presented;

λj(x) = ln(eigj(e
J(x))) = eigj(J(x)). (6.24)

Here, one should let eigj be the jth largest eigenvalue measured by the real part only. If a
local LE λ(x) can be computed for all x (or at least for all x along a sample path,) instead
of the limit in equation (6.21), one could compute

λ1 = lim
t→∞

1

t
ln

(∫ t

0

λj(xτ ) dτ

)
, (6.25)

for the moving trajectory xt. In one dimension equations (6.23) and (6.24) works. If the
local LE is estimated taking m steps or iterations, this converges as m → ∞. However,
these are unfortunately incorrect definitions of a local Lyapunov exponent for this purpose,
except for some very few exceptions. The problem is that each eigenvalue is associated to
an eigenvector, and the composition above requires all eigenvectors to be parallell, which
is only trivial in one dimension. I.e. equation (6.24) is valid for 1D systems. Secondly,
a system could have a local LE larger than zero from the previous definitions without a
positive real part of any eigenvalue of the Jacobian. Streching of line elements could also
happen at boundaries between domains with different dynamics, e.g. by grazing bifurcation
as in [31].

For the methods discussed above, one would in practice restart the simulation after
some time, and estimate the Lyapunov exponent by averaging, which is basically the same
as averaging the local Lyapunov exponents over the attractor, weighted by the time spent in
each part of the space. Lim and Hamill [30] discusses renormalization and various numerical
techniques to handle practical problems like discontinuities, numerical integration error,
values below machine precision etc.

If the result of equation (6.25) is zero or negative, the result will be the same as for
equations (6.15), and correspondingly for the stochastic versions. It is only if λ from
equation (6.25) is positive, and if the system does not diverge exponentially to infinity,
that there is a difference. The following argument is often used in discussing Lyapunov
exponents;

λ = lim
t→∞

1

t
ln

( ||xt − x̃t||
||x0 − x̃0||

)

= lim
t→∞

1

t
(ln(||xt − x̃t||) − ln(||x0 − x̃0||))

= lim
t→∞

1

t
ln(||xt − x̃t||).

(6.26)
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This requries a “true” limit to ∞ and a fixed ||x0 − x̃0||. For linear systems, exponential
separation between trajectories is equivalent to exponential behaviour, so then

λ = lim
t→∞

1

t
ln(||xt||). (6.27)

The largest Lyapunov exponent for a system can only be calculated from a probability
density function in some special cases. One such example is given by Wedig [54], who
separates amplitude and phase for a system with exponential behaviour (non-chaotic), and
finds the exponential (non-stationary) divergence of the amplitude from the stationary
distribution of the phase.

6.8 Other strange attractors

Strange Nonchaotic Attractors (SNAs) have complicated or fractal attractors, but the
largest Lyapunov exponent is not positive. They are observed in dissipative systems driven
by incommensurate frequencies [59]. Without the Lyapunov exponent, it is impossible to
distinguish SNAs from true chaotic attractors. This also means that the PDF is itself not
enough to classify a system as chaotic.

Indeed, a system could also have a strong sensitivity to the initial value and a compli-
cated map of the basins of attraction without being chaotic. This feature has been described
for the deterministic gear problem [56], which will also be discussed in section E. When
noise is added to such systems, the periodic solutions could dissappear, and realizations
could also be very sensitive to initial conditions and round-off errors. This phenomenon is
related to the discussion in section 1.3.9. However, the attractor could still have a quite
simple structure, as section E shows.

6.9 Stochastic Lyapunov Exponent

The definition of stochastic Lyapunov exponents SLEs could be given by taking an expec-
tation value over all time realizations of the process. So equation (6.15) would read

λ̃ = E

[
lim
t→∞

1

t
ln

(
||Xt − X̃t||
||X0 − X̃0||

)]
. (6.28)

As above, one should rather use the definition of a local Lyapunov exponent, as equa-
tion (6.23) and define the SLE

λ̃ = E[λ(X)] =

∫

Rn

λ(x)f(x) dx, (6.29)

if a stationary density f(x) exist.
The interpretation is more difficult. There exist systems where the LE is negative,

while the SLE is positive when noise is included [12], see section 6.17 for a brief discussion,
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and opposite; addition of noise to some chaotic systems with a positive LE could result
in a negative SLE, as is briefly discussed in section 6.18. In stochastic systems, periodic
orbits doesn’t really make sense, and the criterion of a topologically transitive attractor
must be extended to the (possibly non-stationary) PDF and a probability measure.

However, when the noise level goes to zero and the response PDF narrows around the
deterministic attractor, the SLE will converge to the LE. This way of estimating the LE
could be valuable, as it provides information about the contributions of the local LEs and
the sensitivity to perturbations, as the PDF indicates the amount of time spent in various
parts of the attractor.

6.10 Lyapunov exponents from the tangent space

This subsection will basically follow Baxendale [5] and Wihstutz [55], which extensively
builds on L. Arnold, 1998 [1] and R.Z. Khas’minskii, 1967 [24]. Although this work only
will consider additive noise, Baxendale’s more general formulation will be followed initially.

The linearization of equation (1.12) is written using the differential operator D, where
Da also is referred to as the Jacobian of a(x).

dYt = Da(Xt)Yt dt +

r∑

j=1

Dbj(Xt)Yt dW j
t Y0 = y0. (6.30)

While Baxendale and others usually refers to this as linearization along trajectories, this
text will also consider equation (6.30) as an extension of equation (1.12), so that an SDE
system over R2n is obtained.

Note that while it is assumed that equation (1.12) is bounded in the state space,
the Yt variable could diverge to infinity with probability 1, i.e. for any fixed K < ∞,
limt→∞ P (||Yt|| < K) = 0.

Now, the MLE is defined

λ1 = lim
t→∞

E ln

( ||Yt||
||y0||

)
. (6.31)

The requirements for the Lyapunov exponents to be globally well-defined will not be
discussed in detail here, but are found in e.g. [5] and [1]. Basically, the system must
be non-explosive, the Stratonovich-version of the SDE (1.12) must be full rank, and the
projection of the solution of equation (1.12) onto Sn−1 must be dense.

Khasminskii [24] studies a linear system, where Da(x) and the Dbj(x) are constant
matrices in x for every j. For this case, the discussion is more simplified, and only Da(0)
and Dbj(0) need to be evaluated.

Define the operator Q(x, θθθ) : Rn × Sn−1 → R by

Q(x, θθθ) = 〈Da(x)θθθ,θθθ〉 +
1

2

r∑

j=1

{
||Dbj(x)θθθ||2 − 2〈Dbj(x)θθθ,θθθ〉2

}
. (6.32)
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Theorem 3. Assume that the martingale

Mt =

r∑

j=1

∫ t

0

〈Dbj(Xs)θs, θs〉 dW j
s

is an L2 martingale, and (1/t)E〈M〉t is bounded. Assume further that Q ∈ L1(ν), i.e. that
Q is integrable with respect to the probability measure. Then the MLE λ1 can be computed
by

λ1 =

∫

Rn×Sn−1

Q dν almost surely, (6.33)

with ν as the invariant probability measure for (x, θθθ).

Proof. Dividing equation (6.30) by ||Yt|| and integrating by Itô’s formula gives

ln(||Yt||) − ln(||y0||) =

∫ t

0

Q(xτ , θθθτ ) dτ + Mt. (6.34)

In the limit t → ∞, Mt → 0 almost surely. When the function Q is integrable, and the
system is ergodic, the long-term time integral of the process can be exchanged with a
spatial integral with respect to the stationary probability measure almost surely according
to the ergodicity. In the limit t → ∞, the lhs of equation (6.34) equals λ1 almost surely.

Khasminskii’s result is similar, except that the dependence on x dissappears since Da(x)
and Dbj(x) are constant. This again makes it possible to only consider the probability
measure over Sn−1 instead of Rn×Sn−1. However, numerically, a method like PI would still
need to calculate the higher-dimensional PDF unless the SDE also could be separated. A
practical or visual interpretation of the Q operator in equation (6.33), is that this describes
the rate of change in the radial variable over a time step ∆t. That is, with ρt = ||Yt||,

λ1 ≈ lim
t→∞

1

∆t
E

[
ρt+∆t

ρt

]
. (6.35)

The dynamics, and hence ρt+∆t is determined from the position in the state space at time
t, so it makes sense to write it as a function ρ(x′, θθθ′, ∆t). Since this is a linearized system
with dYt = Da(Xt)Yt dt, it can be scaled arbitrarily, which basically means that one can
choose ρt = 1, which implies

λ1 ≈
1

∆t
E [ρ(xxx,θθθ′, ∆t)] =

1

∆t

∫ ∫

Rn×Sn−1

f(x′, θθθ′, t′) ln(ρ(xxx,θθθ′, ∆t) dx′ dθθθ′. (6.36)

Note that when integrating this over many time steps, only the expectation operator sep-
arates this from equation (6.17). The expectation could also be taken with respect to the
probability measure over θ′ and x. As stated earlier, one will in the limit t → ∞ observe %
as the largest principal axis with probability one. The probability measure over θθθ captures
this behaviour. For additive white noise processes E(Mt) = 0, Dbj(x) ≡ 0 for j > 0, and
one obtains

λ1 =

∫

Rn×Sn−1

〈Da(x)θθθ,θθθ〉 dν almost surely. (6.37)
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6.11 Time pattern of MLE for time-dependent SDEs

The Lyapunov theory has been based on the assumption that the divergence of nearby
trajectories and change of length for the curve discussed above follows an exponential law
exp(λ1t). For an autonomous system, this will be true in the limit. However, if there is time
dependence, the long term observation could also be time dependent, typically exp(λ1(t)t),
where λ1(t) now varies with time. If the time-dependent term is periodic, λ1(t) will have
the same periodicity. When exp(λ1(t)t) is observed, λ1(t) is recovered by

λ1(t) ≈
1

∆t
(log(exp[λ1(t + ∆t)(t + ∆t)]) − log(exp[λ1(t)t])). (6.38)

This should then be compared to E(Q(t)) where Q(t) is the now time-dependent operator
from equation (6.32), and the expectation follows equation (6.33), where the measure is
also time-dependent. In figures, the function λ1(t) is, in lack of a proper term, denoted
the time pattern of the MLE. The long term averaged MLE will equal the time average
of the time pattern, and it suffices to average over one period after reaching steady state
behaviour. When using this method to classify a system as chaotic or non-chaotic, one
must determine if this time average is positive or negative, respectively.

One could also eliminate the time variable by replacing it by a state-space variable
z with ż ≡ 1. It is trivial that two starting points in this space placed on the same
trajectory, will follow each other with constant distance, hence one Lyapunov exponent
must be zero. Further, assume that the system is chaotic or diverging. Consider two
trajectories starting in nearby points p and q, and that these points are also separated
by ∆t in the auxillary z variable. Then φ(p, t) cannot diverge more per time unit from
φ(q, t) than from φ(q, t + ∆t). This is shown by the triangle inequality together with the
knowledge that the separation in z is constantly equal to ∆t. Hence, there is no need for
introducing the auxillary variable z for time-dependent systems to find the MLE, unless
the MLE one would like to find is zero.

6.12 Calculating Lyapunov exponents through response

PDF

Using the extended system, equation (1.12) together with equation (6.30), the response
PDF in 2n dimensions can be computed with the PI method described earlier. However,
since ||Yt|| → ∞ with probability one if λ1 > 0, the direct method requires a grid in y

that grows as exp(λ1t) with sufficient accuracy. To avoid this, and to reduce the number of
state-space variables and save CPU time, y is replaced with θθθ, and the radial component
% = ||y|| is ignored. This change of variables is possible by adjusting the time stepping
method to end up with angle and radius, assuming the initial value %t = 1 everywhere at
the beginning of a time step. For a deterministic system, there is no path integral, just a
propagation of points, and then this assumption would not cause any errors. Therefore, it
is assumed to hold fairly well also for small noise levels.
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In fact, since this implementation of PI calculates the time steps backwards, one should
rather use the assumption %t+∆t = 1, calculate θθθ′ from grid points in θθθ and interpolate the
PDF over Rn × Sn−1. The problem is that this surface is very hard to interpolate due to
singular points and closed loops where the angle always increases in one direction (due to
the modulo 2π). To avoid these problems, use the coarse nearest neighbour interpolation
method on Sn−1.

To calculate the MLE numerically, any of equations (6.33), (6.35), (6.36), or (6.37) can
be chosen. Numerical experiments gave practically identical results, which just indicates
that the time step ∆t is sufficiently small and the time stepping method is sufficiently
accurate that the approximations in the latter equations hold.

In this project, the full PDF method has only been implemented for two-dimensional
systems, due to the complexity of the code. For the Duffing equation (6.1), which will
be discussed more in section 6.14, the result was that the conditional PDFs f(θθθ|x) at
almost every point x were ellipses with high eccentricity. This is illustrated in Figure 6.12.
Again, the symmetry is no surprise since the system is linear, so −Yt should have the same
statistical properties as Yt. With small noise level, it is no surprise that the angle giving
the MLE dominates.
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Figure 6.12: Snapshot of the response PDF for the chaotic Duffing equation. The angular
probability distribution of the perturbation variables f(θ|x, y) is indicated at three points by
aligned ellipses.

This observation leads to at least two new approximations. One is to assume that there
is only one dominant angle θθθ, try to compute this and ignore working with Sn−1. This
“dominant angle” method would again be exact for a deterministic system, except for the
spatial discretization and time stepping error, and can be used if one chooses some value
for the initial angles and angles for points x outside the grid. Here, the dominant angle
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is stored separately from the probability density. For each point in the state space, one
approximates the angle at x′ by the nearest neighbour method, and uses a simple time-
stepping algorithm to propagate this angle, represented by an n-dimensional point on Sn−1

forward in time to x. The idea will be explained more in detail in sections 6.14 and 6.15.
Figure 6.12 illustrates how the “dominant angle”changes with the dynamics over the first
period.
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Figure 6.13: Estimated dominant angle through the first period of the Duffing oscillator.
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Figure 6.14: Estimated dominant angle after ten full periods of the Duffing oscillator. In the left
image plotted with scale from −π to π, as calculated by the numerical routine in parallell with
PI. To the right, the same plot except that every angle θ is identified with θ ± π, so a scale from
0 to π is sufficient.

The second, more sophisticated version, is to parametrically represent the ellipses or
ellipsoids by the length and direction of the principal axes, which still should reduce the
need of computer memory, and possibly also the CPU-time. This is a direct application of
the idea from section 5.6. Here, one just evaluates the ellipse at each step backwards. The
challenge is to find the principal axes, this has here been done in a crude manner by just
propagating the angle of the axes forwards separately, and then re-orthogonalize. Here,
the probability density values are found implicitly by integrating the values over all the
ellipsoids. However, for scaling of the PDF and control, it makes sense to store the total
probability at each state-space point separately. The implementation of this idea worked
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well, but the programming code became extremely complicated. So additional ideas are
needed to make this a practical approach for future work.

6.13 Projective space

The projective space, Πn−1, is obtained by associating all opposite angles in the hyper-
sphere Sn−1.

Using the dominant angle idea, the angular distribution quickly becomes entangled and
very complicated, as shown for the Duffing equation in Figure 6.12 for the first period, and
in the left of Figure 6.14 after ten full periods. Remembering that θθθ and −θθθ could be
identified through the linearity of the extended half part of the SDE system, one could
change Sn−1 into the projective space Πn−1, the left and right image of Figure 6.14 are
identical, where the latter is a remarkable smooth picture in comparizon. Remember that
the nearest neighbour interpolation method does not introduce any smoothing of the PDF,
but many possibilities of numerical errors. This result clearly indicates that Πn−1 is the
correct space to consider for this study.

6.14 Example: MLE in smooth two-dimensional SDEs

A system with two variables x and y would be extended to

ẋ = a1(x, y, t),

ẏ = a2(x, y, t),

ξ̇ =
∂a1

∂x
ξ +

∂a1

∂y
η = a3(x, y, ξ, η, t),

η̇ =
∂a2

∂x
ξ +

∂a2

∂y
η = a4(x, y, ξ, η, t).

The original system does not depend on the perturbations ξ and η. Therefore, these
arguments will not be introduced in the functions a1 and a2 or the discretized schemes ã1

and ã2. On the other hand, a3 and a4 and the discretized approximations will generally
depend on all the variables in the extended state space, as shown above.

When propagating this system forward in time, or if possible, solving the system for
some appropriate initial condition, one can calculate the MLE by

λ1 = lim
t→∞

1

t
ln

(√
ξ2
t + η2

t

ξ2
0 + η2

0

)
. (6.39)

This limit should again be correct for almost every initial value (ξ0, η0). Again, the problem
with this approach is that the system is generally not bounded in ξ and η. If λ1 > 0 these
variables can become arbitrarily large in absolute value as time increses. For the PI method,
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some problems of this kind can be treated, but generally a bounded behaviour would be
simpler.

The angle θt = tan−1(ηt/ξt) is clearly bounded to the circle. For a deterministic system,
the following holds. Given the angle θ′ at time t′, the angle θ after a time t can be found
by

tan(θ) =
φ3(x

′, y′, cos θ′, sin θ′, ∆t)

φ4(x′, y′, cos θ′, sin θt′ , ∆t)
. (6.40)

This means that the state space can be extended from two (x, y) to three (x, y, θ) variables,
instead of the four above. Given a stationary PDF for the system over this increased state-
space, the MLE can be found through either

λ1 =

∫

R2×S

f(x, y, θ)ρ(x, y, cos θ, sin θ, ∆t) dx dy dθ (6.41)

with a numerical estimation of ρ, or with equation (6.33) inserted for Q,

λ1 =

∫

R2×S

f(x, y, θ)

(
∂a1

∂x
cos2 θ +

(
∂a1

∂y

∂a2

∂x

)
cos θ sin θ +

∂a2

∂y
sin2 θ

)
dx dy dθ. (6.42)

In the PI method, the extended system is written on the standard form with TPD

p(x, y, θ|x′, y′, θ′) = δ(x − ã1(x
′, y′, t′)∆t)

exp
(
−1

2
(y−ea2(x′,y′,t′)∆t

γ2∆t

)

√
2πγ2∆t

δ

(
θ − tan−1

(
ã3(x

′, y′, cos θ′, sin θ′, t′)

ã4(x′, y′, cos θ′, sin θ′, t′)

))
,

where the final δ-function is based on expression (6.40).
First, an arbitrary line segment is propagated forward in time by the Duffing oscillator.

The effect is illustrated in Figure 6.15 for the first iterations, slightly more than a period.

Figure 6.15: Propagation of a line segment by the Duffing oscillator. The scale in each image
is the same as in Figure 6.14. The red curve is in each plot the last to emphasize the dynamical
behaviour, the black curves are from the previous time steps.

The next figure, Figure 6.16, shows log of the length of a line segment propagated by
the Duffing oscillator, and the according time pattern calculated using equation (6.38). As
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the attractor for this system is known, one could start with a small line segment placed on
the attractor, which seems to give the same long-term effect, but with a slightly shorter
transient, also shown in Figure 6.16. The full PI method with the Q operator and based on
the dominant angle gives, as stated above, similar results. These are shown in Figure 6.17.
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Figure 6.16: Log of the length of a line propagated in time by the Duffing oscillator to the left,
and the time pattern for the MLE it generates to the right. The line segments position at t = 0
was chosen to be vertical, parallell to the y-axis. The right plot also shows the time pattern for
a line segment initially placed vertically at x = 1.5 at t = 0, which should be on the attractor.
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Figure 6.17: Time pattern of the MLE for the Duffing oscillator, computed with three different
methods. The left plot shows the transient, illustrating the number of time steps required for
convergence, the right plot zooms in on the more steady state behaviour.

6.15 Example: MLE in smooth three-dimensional SDEs

In a general case, the extended system could be expressed by 2n− 1 state-space variables,
where the last n−1 corresponds to a space angle. This again introduces new challenges, as
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spheres and hyper-spheres are more difficult to represent by an interpolated grid. Although
a uniform rectangular grid is not applicable, uniform triangularizations exist. It should
also be possible to represent the PDF as ellipsoids, storing the length and direction for the
n principal axis. This has not been investigated for this project, basically because even
n = 3 gives a five-dimensional system that currently cannot be solved in short time and
high accuracy. Instead, the dominant angle idea has been persued a bit.

Consider the following Lorenz system

dXt = (−10Xt + 10Yt) dt,

dYt = (28Xt − Yt − XtZt) dt,

dZt = (−8

3
Zt + XtYt) dt + γ dWt,

(6.43)

and its linearization

dξ1 = (−10ξ1 + 10ξ2) dt,

dξ2 = (28ξ1 − ξ2 − Ztξ1 − Xtξ3) dt,

dξ3 = (−8

3
ξ3 + Ytξ1 + Xtξ2) dt.

(6.44)

This system is autonomous, so one should expect that the time pattern of the MLE con-
verges to one value. Running the MC simulation with the program from [57] with γ = 0
gave λ1 = 0.906 ln 2 = 0.628. The results of the propagated line segment method and the
dominant angle method with a noise level γ = 0.005 are shown in the left plot of Fig-
ure 6.18. The line segment method takes a long time to converge. In fact, the simulation
tool stopped when the curve was represented by more than two hundred thousand points,
since each time step then becomes very calculation intensive with the simple implemen-
tation. The dominant angle method on the other hand, converged very rapidly. Here the
grid size was 128 × 128 × 128, the interpolation was performed with cubic splines with a
truncation for negative values, and FFT was used for the path integral. The space angle
is represented by two variables, say θ and ϑ, such that

x = cos θ sin ϑ,

y = sin θ sin ϑ,

z = cos ϑ.

Initially θ and ϑ was set to an arbitrary value, constant for the whole grid. The propagation
of the angles then basically followed and the MLE was computed to be 0.58. The three-
dimensional attractor for this system has a very thin structure, with two butterfly-like
wings. This structure also appears directly from the line length method, illustrated in the
right hand image in Figure 6.18. Such plots from different realizations clearly indicate that
the angle the line traverses at specific points will be almost deterministic. The angle also
follows the attractor, which is also shown in [57]. This is not generally the case, [57] also
shows a Rössler system where the perturbation direction is nearly orthogonal to the flow.
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The main reason for the discrepancy in results is assumed bo be the grid resolution. The
thin structure of the attractor is hard to represent well, even with 128 grid points in each
direction.
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Figure 6.18: Left: Time pattern of the MLE for the Lorenz attractor, computed by length of a
propagated line segment and by PI and dominant angle. Right: The line segment after the first
few seconds indicates the spatial structure of the Lorenz attractor.

6.16 MLE in nonsmooth systems

First, chaotic behaviour can be found in nonsmooth systems, e.g. shown by Kahraman,
[22], and studied phenomenologically in appendix F and [33]. For such systems, it is already
mentioned that one might need to take special care of time stepping and interpolaton, see
section 5.8.

For such systems, the propagated line segment method should work to compute the
MLE, or one could try running simulations with two points, rescaling and orthogonaliza-
tion. Other methods fail, because a nonsmooth system cannot be differentiated everywhere.
It might be tempting to study an approximated system where the shifts between the do-
mains are smoothened out, e.g. by a function like equation (6.47) used in the next two
sections. However, such systems exhibit an important phenomenon called grazing bifurca-
tions that is not preserved under smoothening. At the points where the vector field is not
smooth, trajectories that come in with a suitable angle can either cross the boundary or be
reflected. Thus, an instantaneous, nonlinear deviation of nearby trajectories is obtained.
This was also strongly pointed out by John Hogan in [17].
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6.17 Positive stochastic Lyapunov exponent due to

noise

This is a continued discussion of a simple analytical example from Dennis et al 2003 [12].
Consider the system

dXt = (αXt − βX2
t ) dt, α, β, X0 > 0. (6.45)

The Jacobian is the derivative, and also its own local LE, and equals α − 2βXt. So for
X < α/(2β), the local LE is positive, and trajectories diverge in this area. It is shown that
all trajectories end up in the stable point X∞ = α/β, so this is the stable attractor, and
the LE is λ = −α.

Now add a multiplicative noise term to equation (6.45)

dXt = (αXt − βX2
t ) dt + γXt dWt, γ2 < 2α. (6.46)

The PDF for this system is known to be a gamma distribution

f(x) =
pq

Γ(p)
xp−1e−qx, p =

2α

γ2
− 1, q =

2β

γ2
.

The expectation value is E(X) = p/q, which gives the SLE

λ̃ = E(α − 2βX) = γ2 − α.

If γ2 < α, there is no confusion that the system is stable and non-chaotic, and as γ → 0,
λ̃ → λ as stated above. If α < γ2 < 2α, the SLE is positive. Most of the time the response
has values close to zero, and there is an overall or averaged sensitivity to initial conditions.
However, it is not clear if this behaviour really qualifies to be denoted chaotic. If a noise
level γ2 > 2α is used, the system will end up in the absorbing state zero in finite time
with probability one, and the only reasonable value for the SLE is 2α. So two nearby
trajectories subjected to the same realization of the noise process will diverge from each
other, and almost surely spend very different amount of time before being absorbed at
zero. This kind of behaviour cannot be seen in deterministic systems.

Theoretically, it should be possible to construct a vector field a(x, t) such that a region
with large positive LLEs is close to a globally stable deterministic attractor with negative
LLEs on its support. In such a case, noise could push the system off the attractor and
into the region with diverging paths. With sufficiently high noise and sufficiently small
damping towards the deterministic attractor, the system could become chaotic. A trivial
example would be to implement a weakly damped oscillator inside a chaotic system

dX = Y dt,

dY = γ dW+




−(ω2X + αY ) dt, X2 + Y 2 < ρ2,

(ζ(X, Y )a2(X, Y, t) − (1 − ζ(X, Y ))(ω2X + αY )) dt, ρ2 ≤ X2 + Y 2 < R2,

a2(X, Y, t) dt R2 ≤ X2 + Y 2.
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Here, dY = a2(X, Y, t) dt would make the system chaotic with an attractor that overlaps
the ball centered in the origin with radius ρ. This way, the deterministic system will
spiral down to the origin in finite time with probability one. The weighting function
ζ(x, y, t) ∈ [0, 1] is constructed to smooth the vector field, e.g. linearly

ζ(x, y) =
x2 + y2 − ρ2

R2 − ρ2
(6.47)

The parameters should be chosen such that R > ρ > 0 with R and ρ small, and α > 0
sufficiently small so that noise easily can throw a realization out of the balls with radius ρ
and R. However, this would be a very special construction, and the author has not seen
such examples in other places.

The system from equation (6.17) deserves to be studied by MC and PI, since it illus-
trates some of the considerations one should make for such special cases. Using the chaotic
Duffing equation,

a2(x, y, t) =
1

5
x − 8

15
x3 − 1

25
y +

2

5
cos(0.32t),

and parameters α = 1/2, ω2 = 1/5, ρ2 = 0.007, R2 = 0.01, MC simulations show that
a noise level γ = 0.005 seemingly after a few cycles pushes any realization to stay within
the ball with radius ρ, while γ = 0.05 does not seem to have this behaviour. There should
always be a small probability of leaving the inner radius ρ ball and spend a cycle or more
in the chaotic region, but this phenomenon was not seen for the lowest noise level for the
MC simulations, in spite of many trials and fairly long runs. One realization with MC
for each of the two noise levels are shown in Figures 6.19 and 6.20, respectively. The
initial condition was (x0, y0) = (1.03,−0.041). For the MC and PI simulations, a time
step ∆t = 2π/(400 · 0.32) was used. The PI simulation used FFT on a 256 × 256 grid,
using cubic B-splines for the interpolation. The high grid resolution was needed to ensure
that a few grid points were inside the ball of radius ρ. At the same time, this high grid
resolution partly eliminates the need of removing artificial numerical oscillations, it suffices
to truncating interpolated values at zero to avoid the PDF of being negative some places.
A snapshot of the response PDFs for the two simulations after 12 periods are shown in
Figure 6.21. Qualitatively, it would be easy to conclude that the noise level just reduces the
image resolution by smearing out the finest structure. However, the system with γ = 0.005
has not reached stationarity. It has an extremely long transient, where probability mass
gradually accumulates at the origin like the black holes in the universe. The (almost)
stationary PDF after 30 periods is basically a spiked distribution in the origin with a
small variance, but looking carefully, the structure seen in the left side of Figure 6.21 does
not dissappear. The long transient is a challenge with PI. As the final result is generally
unknown, only the difference between iterations can be studied. When convergence is slow,
it is difficult to determine if parts of the structure is just part of the transient, or if the
structure seen will ultimately be stable. Another warning is that determining the grid
based on the MC simulation in this case could cause a grid just covering e.g. the ball of
radius R. Then the possibility of entering the chaotic region, although this is very small,
is ignored.
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Figure 6.19: Monte Carlo realization of the system in equation (6.17) with noise level γ =
0.005. The left plot shows just the response in x, plotted against time, the second illustrates the
realization’s movement in the state space within the same timeframe.
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Figure 6.20: Monte Carlo realization of the system in equation (6.17) with noise level γ = 0.05,
all other parameters are the same as in the previous figure.

As a final remark to this system, the correction factor in the integral from section 4.2
must be found. Due to the ζ weighting function from equation (6.47), this is not a constant,
but becomes

|Jg| =





exp(α∆t), for x2 + y2 < ρ2,

exp

(
[2y(ω2x+αy−a2(x,y,t))+0.04(x2+y2−ρ2)+α(R2−x2−y2)]∆t

R2−ρ2

)
, for ρ2 ≤ x2 + y2 < R2,

exp(0.04∆t), for R2 ≤ x2 + y2.

(6.48)
Since the vector field is constructed to be continuous, there is no need for corrections at
the boundaries of the inserted circles. With a more smooth weighting function than ζ from
equation (6.47), equation (6.48) would become even more complicated and nonlinear.
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Figure 6.21: Snapshots of path integration solution of the system in equation (6.17). The left
image for noise level γ = 0.005, the right image for γ = 0.05. First, the system was run for five
periods with Ẏ = a2(X,Y, t), i.e. without the damped system around the origin, then 12 periods
with the combined system.

6.18 Negative stocastic Lyapunov exponent caused by

added noise

It is generally assumed that sufficient amounts of noise should cause the MLE to become
negative for many chaotic systems. However, the author has not seen any general proof or
requirements, and it does not seem to be intuitive. Such discussions is also a bit beyond the
scope of this work. Instead, like in the previous section, an example is constructed where
high noise levels should give a negative SLE, while the unperturbed system is chaotic.

Assume a system where the sensitivity to small perturbations is confined to some do-
main around the origin in the coordinate system of the state-space variables, and outside
this domain, the system has the form of a damped linear oscillator. Such a system can
simply be constructed by gluing together two different systems to an arbitrary smoothness.
Say we use the chaotic Duffing equation discussed earlier, choose two radiuses R > ρ such
that the deterministic system never passes outside a ball in the state space centered in the
origin with radius ρ, (ρ = 10 is sufficient), and write:

dX = Y dt,

dY = γ dW +





a2(X, Y, t), for X2 + Y 2 < ρ2,

ζ(X, Y )a2(X, Y ) − (1 − ζ(X, Y ))(ω2X + αY ), for ρ2 ≤ X2 + Y 2 < R2,

−(ω2X + αY ), for R2 ≤ X2 + Y 2,

a2(x, y) =
1

5
x − 8

15
x3 − 1

25
y +

2

5
cos(0.32t),

(6.49)

This again uses a crude linear overlap between the chaotic system and the damped oscil-
lator, with the same weight function ζ(x, y) from equation (6.47) in the previous section.
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However, the overlap can be constructed to be k times differentiable for any k ∈ N.
As γ → ∞, the noise will eventually push a significant part of the probability density

out to the damped oscillator where Q is negative. At some point, the total variation
due to noise will be much larger than R, much time will be spent oscillating around the
chaotic domain without entering it, and the behaviour inside the radius R ball can be
neglected. Then the PDF will approach a Gaussian shape with a standard deviation
proportional to the noise level. As the PDF of the stochastic system increases its support
in all directions, the increasing contributions from Q outside R must at some point make
λ1 in equation (6.33) negative.

If the individual realizations are easier to visualize, the following argument might help.
Trajectories will diverge in the chaotic region. However, due to the noise, they are some-
times diverted out to the non-chaotic region due to the random perturbations, where they
are brought closer together before re-entering to the chaotic region. If the time spent in
the chaotic region typically is short, and they will on average be pushed together.

For the MC and PI simulations, α = 0.04, ω2 = 1/5, ρ2 = 3.25, R2 = 3.5, and
∆t = 2π/(400 · 0.32). With a sufficiently small noise level, e.g. γ = 0.005, the system in
equation (6.49) has a behaviour indistinguishable from the pure chaotic Duffing oscillator.
With γ = 1.0, the system is not chaotic any longer. MC realizations for this system
are shown in Figures 6.22 and Figure 6.23 for γ = 0.005 and γ = 1.0, accordingly. The
corresponding PI results are shown in Figure 6.24. For this system, it is not obvious that
the system indeed is non-chaotic for the high noise level, but this is verified by calculating
the MLE. Because the vector field is not differentiable everywhere and to save CPU-time,
the curve length method is used. Results for the time derivative of the MLE, averaged
over four different noise realizations, but with the same initial line segment, are shown in
Figure 6.25. Careful investigation of the plot should convince that the time average for the
highest noise is negative, which is also verified numerically.
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Figure 6.22: Monte Carlo realization of the system in equation (6.49) with noise level γ = 0.005.
The left plot shows just the response in x, plotted against time, the right image illustrates the
realization’s movement in the state space within the same timeframe.
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Figure 6.23: Monte Carlo realization of the system in equation (6.49) with noise level γ = 1.0,
all other parameters are the same as in the previous figure.

Displacement

V
el

oc
ity

 

 

−2 −1 0 1 2

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Displacement

V
el

oc
ity

 

 

−2 −1 0 1 2

−1

−0.5

0

0.5

1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Figure 6.24: Snapshots of path integration solution of the system in equation (6.49). The left
image for noise level γ = 0.005, the right image for γ = 1.0. First, the system was run for five
periods with Ẏ = a2(X,Y, t), i.e. without the damped system around the origin, then 12 periods
with the combined system.
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Figure 6.25: The time pattern for the MLE for equation (6.49) for the two noise levels γ = 0.005
and γ = 1.0. The average over one period for these two curves gives the MLE, which is positive
for the first case, negative for the second. The curves are found using the propagated line segment
approach.



Chapter 7

Summary and concluding remarks

The objective of this thesis has been twofold. One is to present some resent developments
in PI and tries to give a more structured presentation of the method than earlier work,
the other is to answer some specific questions regarding the possibility of studying highly
nonlinear systems, and chaos in particular, with PI. The following two sections summarize
these two perspectives in brief.

7.1 New developments

7.1.1 Improving the path integral

In cooperation with Professor Arvid Naess, the PI method has been refined and more
properly described as a Markov operator.

Implementing a variable transformation to properly perform the path integral might not
be new, but it has not been described earlier. This thesis explores this from a phenomeno-
logical, an algebraical, and a numerical perspective. The implementation of PI differs
from earlier work in that the variable transformation is performed on all the state-space
variables, which also proved to be important for the development of a more time-efficient
implementation by FFT.

Through the implementation of PI by FFT, the CPU-time has been reduced by a factor
of about 50N−r, where N is the number of dimensions, and r the number of equations
where noise does not enter directly. However, one must observe that there are additional
requirements for this FFT-based method to work well within PI.

7.1.2 Improved interpolation

Numerical stability of PI has been a challenge mentioned by Johnsen [20], Moe [34], and
Skaug [50], and probably seen by anyone trying to implement PI numerically. There are
basically two different problems.

• One could see convergence to an incorrect, but seemingly fairly reasonable PDF.

117
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• The PDF would attain very high or very small (negative) values in just a few grid
points, typically near the boundaries of the domain where the PDF should be close
to zero.

Linear interpolation does not possess the latter error, but typically under-estimates peaks,
giving too high variance for mono-spaced PDFs. Cubic splines work well for some systems,
but for other systems show the second behaviour. These problems have been observed and
explained in this work, and several different approaches to reduce these erraneous effects
have been proposed and tested. Earlier, the main stabilizing method was to exchange
all negative interpolated values by zeroes, and filter the PDF after every iteration to
remove the unlikely high delta-shaped spikes. This was unsatisfactory, especially since
the cause of the problem was not well known, and neither the problem nor this work-
around was documented. The method that most consistently avoids this problem is a
new kind of interpolation scheme which combines Bézier curves and linear interpolation.
This method retains the positive stability and non-negativity of the linear interpolant,
while highly reducing the problem of systematic error in peaks and tails. However, the
drawbacks are longer CPU-time and that this method cannot be represented as a linear
matrix multiplication so convergence is not guaranteed and optimization is difficult or
impossible. Another well-functioning method is based on using linear interpolation in just
some intervals where the cubic or rectangular spline could be unstable. This also gives
good results for most systems, it is faster, and in spite of not being a complete linear
matrix interpolation, it allows for efficient programming. One could probably find many
indicators for when the higher-order interpolant should be substituted by a straight line.
Doing this for grid points where the spline coefficient is negative, and all its neighbours
seems to work well, so this is recommended for future work.

A few other methods developed aiming to improve interpolation has been presented,
namely conditional PI, tension splines, and rectangular B-splines. All of these are slightly
less likely to cause the most dramatic interpolation error, but the improvement is not
convincing. The downside is that the (iterative and total) interpolation error is higher
than for cubic splines where the cubic spline is stable. Conditional PI and/or rectangular
B-splines is recommended for high dimensional systems to reduce CPU-time, otherwise
these methods have too little effect to be recommendable.

7.1.3 Extended usability

To adapt to some specific systems, PI has been implemented to handle signum-kind non-
linearities, vibro-impact problems, and angular state-space variables. Further, PI can now
handle noise in several variables, and solve the extended system obtained by including the
Jacobian matrix. Finally, by implementing a programming tool for PI, different methods for
time-stepping and interpolation can be combined arbitrarily, and efficient high-dimensional
code can be generated, which should be of help for future work. This tool also includes
binomial white noise to approximate the compound Poisson noise process with uniform or
Gaussian increments, and multiplicative/parametric noise.
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One proposal for future work to improve the PI method further has also been mentioned,
denoted parametric PI. For at least some problems, it should be possible to partly represent
the PDF by parametrized functions rather than just a discretized grid. Some simple trials
with representing angular densities as ellipsoids look promising.

7.2 Studying chaos and nonlinear systems by PI

Basically three questions was raised when starting this project, based on a short study
of a chaotic Duffing system by Naess and Skaug in 2002 [42]. One was simply if chaotic
systems could be studied by adding noise, the second if, and in what sense, the results by
PI could give insight in the system’s behaviour, especially if a system could be classified as
chaotic based on its PDF. This classification question was later modified to ask how far the
Lyapunov spectrum, or especially the largest Lyapunov exponent, could be found with PI.
These questions haven’t been fully answered, but the main points are summarized below.

7.2.1 Adding noise to study a deterministic systems

With a range of different references to other work, it has been shown that adding noise
could introduce qualitatively new effects to a system. This also includes transitions from
chaotic to non-chaotic and vice versa. However, it seems that these transitions occur in
very special systems, constructed to obtain this effect, or very gradually with increasing
noise level. Hence, for most systems and most parameter values a low-level added noise
should not cause problems.

Chaotic systems, and also some other systems, are sensitive to initial values. For a
specific realization, the added noise would then cause a radical change in the response at a
specific time instant. However, in the probability density setting, the added noise has little
effect on the dynamics. So for a specific problem, one should not expect such transitions.

7.2.2 Qualitatively studying chaos by PI and resulting PDF

Both early and later simulations showed that the PDF does preserve a lot of the fine-level
structure that many chaotic systems exhibit. Further, it was clear that the addition of
noise had the effect of “smearing out” the structure, popularly illustrated as “throwing a
stochastic blanket” over the deterministic response structure seen in Poincaré maps and
averaged densities. Another effect that should be stressed, is that this “smearing out”
also is caused by the smoothening of the interpolation method. For a specific study, one
would have to use a very high grid resolution to avoid this effect, and the high resolution
is needed in all the state-space variables. With the improvements of PI discussed above
and the increase of computer speed and memory, high resolution simulation is now possible
within acceptable time.

Simulations from 2003 [41], included in section 6.3, showed that the structure from
the Poincaré maps of the deterministic system could also be found in the stationary PDF
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of the SDE obtained by exchanging the harmonic forcing function by a stochastic linear
filter equation. It was also shown how random phase could be implemented numerically,
and that the structure is more resistant to high noise in the phase than high noise in
the amplitude. Filter equations, noisy phase, and more complicated systems require more
dimensions. Again, code up to six dimensions is now available, and with improved computer
capacity also advanced systems should be possible to solve up to six dimensions with higher
resolution.

In later studies, especially while working on the paper [40], included in appendix E,
it has been shown that PI has a great advantage in calculating transient behaviour and
periodic PDFs, especially compared to Monte-Carlo simulations.

7.2.3 Classification of chaotic SDEs by PI

Due to the existence of strange non-chaotic attractors, and because the PDF itself does not
carry sufficient information about the underlying process, the top Lyapunov exponent is
needed to classify chaos. This requires an extension of the state space, and currently also
some additional numerical approximations. For the few systems studied here, PI seems to
be able to estimate the MLE. However, simulation time is long, and the computer code is
quite complicated, especially compared to standard methods based on realizations, espe-
cially Monte-Carlo methods. Therefore, using PI for calculating the Lyapunov exponent
can only be recommended if the joint PDF in all state-space variables and space angle is
of particular interest, e.g. for control problems or further analysis.

The extension of the state space will also, presumably for many years, be limited to six
dimensions, unless the proposed parametric PI method or similar techniques could lift the
curse of dimensionality.

Therefore, the main recommendation is that PI should be used for qualitative studies
mainly, especially non-autonomous systems where the gain is especially high compared to
Monte-Carlo methods, and that a lot of care needs to be put on the interpolation method
and the path integral, in addition to ensuring a stable time-stepping method.

7.3 Future work

Many of the ideas and techniques described here are developed at the end of the PhD
work. The studies are hence just preliminary, and many examples can be persued further.
This especially includes high-dimensional path integration and calculation of the MLE,
and detailed studies of specific systems. Some of the ideas presented here, like parametric
PI, have not even been implemented - except for the very special case of ellipse shaped
perturbation angles.

After this project, PI code is available in a general form through an internet interface,
and some specialized code can be distributed by request. This should be of help for future
research.
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For a specific SDE, the choice of grid, time step, and interpolation method requires
some insight in how the numerical algorithm works. So PI cannot be run completely as a
black-box algorithm. However, with the work to develop very stable interpolation routines
and automatic code generation, the author would think that also under-graduate students
could do exercises with PI. There are a lot of possible improvements for making the code
available, e.g. as library functions in numerical software.
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[8] M. Grigoriu Ç. Kafali, E. Mo. Seismic fragility of linear systems subjected to non-
Gaussian ground acceleration processes. In Proceedings of the Eight U.S. National
Conference on Earthquake Engineering, 8NCEE, 2006.

[9] Y.F. Chang. ATOMFT User Manual ver. 3.11. Lake of the Woods, California, March
1993.

[10] C. de Boor. A Practical Guide to Splines, volume 27. Springer-Verlag New York INC.,
1978.

[11] C. de Boor. Convergence of cubic spline interpolation with the not-a-knot condition.
Technical report, University of Wisconsin-Madison, Mathematics Research Center,
October 1985.

219



220 BIBLIOGRAPHY

[12] B. Dennis, R.A. Desharnais, J.M. Cushing, S.M. Henson, and R.F. Costantino. Can
noise induce chaos? OIKOS, 102:329–339, 2003.

[13] T.C. Gard. Introduction to stochastic differential equations. Monographs and text-
books in pure and applied mathematics 114. Marcel Dekker, New York, 1988.

[14] R. Gilmore and J.W.L. McCallum. Structure in the bifurcation diagram of the Duffing
oscillator. Physical Review E, 51(2):935–956, 1995.

[15] J. Gleick. Chaos. Minerva, 1997.

[16] G.H. Golub and C.F. van Loan. Matrix Computations. Johns Hopkins University
Press, 3 edition, 1996.

[17] J. Hogan. Nonsmooth systems: Challenges and unsolved problems. Presented at the
SIAM Conference on Applications of Dynamical Systems, Snowbird, Utah, May 2007.

[18] Ph. Holmes. A nonlinear oscillator with a strange attractor. Phil. Trans. of the Royal
Society, London, A292:419–448, 1979.

[19] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes.
North-Holland/Kodansha, 1981.

[20] J.M. Johnsen. Response statistics of nonlinear dynamic systems. PhD thesis, NTH,
August 1992.
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