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1 Introduction 

Research on aluminium foam accelerated at the end of the 1990s. Aluminium foam  
is a structural material where the density of the foam directly controls the  
mechanical properties, such as strength. A number of production processes exists,  
see Banhart (2001). 

The Al-foam filling of thin-walled tubes, such as sections made from steel sheets or 
aluminium extrusions, presents practical as well as finite-element simulation related 
challenges. Practical challenges comprise ease of manufacture, joining technology, 
tolerances and repeatability in material properties, among others. Here, the need for 
practical easy-to-use design formulas may also be imminent. On the other hand, the 
following questions are usually addressed for finite element simulations: What material 
model should be used for the aluminium foam? How should the bonding between foam 
and tube be modelled? How can the thin layer of skin on the foam be modelled? Even if 
the relevant modelling techniques are close at hand, the identification can be a problem 
due to lack of material data. In many cases, a full validation test programme may be the 
best solution in order to obtain a reliable model, Figure 1.  
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Figure 1 Challenges in modelling of foam-filled tubes 

 

The following sections will focus on the description of mechanical properties of 
aluminium foam, design formulas for foam-based structural components and 
recommendations for finite element simulations. All aspects are given from an engineer’s 
point-of-view. Section 2 presents simple formulas for predicting the strength of 
aluminium foam from the foam density and shows how surface skin of foam can be taken 
into account in bending of a foam-based member. Section 3 recapitulates design formulas 
which may be used for energy absorbing applications, such as axial crushing and oblique 
loading of foam-filled extrusions and behaviour of foam-filled sections in pure bending. 
Section 4 gives an overview of finite element modelling of foam-based components. 

2 Description of foam properties 

2.1 Uniaxial static crushing 

Aluminium foams are presently being regarded with interest concerning the controlled 
absorption of kinetic energy, i.e. for crashworthiness applications. An explanation to this 
can be sought in Figure 2, where generalised compressive as well as tensile properties of 
a cube of aluminium foam are depicted. The compressive behaviour is characterised by 
an initial elastic region followed by what is commonly referred to as the plateau region, 
identified by a more or less constant stress level for strains up to 50–80%. The average 
stress level of this region is referred to as the plateau stress σf. Further compression of the 
foam will lead to compaction, quantified by the densification strain εD, Figure 2. In 
addition, due to the low weight of the foam, it is the constant stress levels in the plateau 
region that promotes the use of the foam for energy absorption purposes. Hence, kinetic 
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energy can be absorbed at specified force levels, ensuring the integrity of valuable goods 
as well as the people in the passenger cell of a colliding car. 

Figure 2 Generalised compressive and tensile properties of aluminium foam 

 

Another characteristic of the aluminium foam is the dependency of mechanical properties 
on the density of the foam. This is referred to as power law relationships, Figure 2, and 
for the plateau stress σf can be approximated by 
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where ρf is the foam density and ρf 0 the density of the base material (2.7 g/cm3). Cp and n 
are material constants found by model calibration with uniaxial compression tests of 
foam cubes. For the continuously casted aluminium foam produced by Hydro Aluminium 
(now called SAF – Stabilised aluminium foam, produced by CYMAT), typical values of 
Cp and n are 450 MPa and 2.0 respectively. The corresponding density range of this foam 
is from 0.15 to 0.50 g/cm3. 

In tension, the behaviour is quite different from that in compression. The initial 
elastic region is followed by brittle failure, characterised by the tensile failure stress σs. 
The tensile capacity σs of the Hydro foam is approximately equal to the plateau stress σf, 
i.e. they both have roughly the same foam density dependency. 

Dividing equation (1) by the foam density ρf yields the mass specific energy 
absorption EM (destroyed mass) 
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An important consequence of this expression is that the mass specific energy absorption 
of the foam increases with the foam density as long as n > 1. Hence, solely from this 
point of view, high foam densities are preferable when minimum weight designs are 
considered. 
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2.2 Uniaxial dynamic crushing 

For crashworthiness applications it is relevant to assess the influence of dynamic loading 
conditions on the mechanical properties. Several papers address this issue, among them 
are Tan and Reid (2000), Deshpande and Fleck (2000a) and Lopatnikov et al. (2003). Tan 
and Reid (2000) showed that the maximum dynamic enhancement of the plateau stress of 
aluminium foam could be approximated by a shock wave theory, giving 

2fD
f f

D

v
ρ

σ σ
ε

= +  (3) 

where D
fσ is the dynamic plateau stress and v is the loading velocity. 

2.3 Three-point bending and the effect of surface skin 

The manufacturing process of aluminium foam generates a surface layer of dense 
aluminium, generally referred to as the surface skin. It may be important to take into 
account the thickness of this skin for design and finite element simulations.  
Hanssen et al. (2003) suggested to use three-point-bending tests on IFAM foam blocks to 
find the computational-equivalent skin (CES) thickness of such components. Here, three 
types of tests were prepared for the three-point-bending set-up, 

• foam blocks with no surface skin 

• foam blocks with surface skin on all sides 

• foam blocks where the skin on the tensile flange was removed. 

These components are referred to as 0S, 4S and 3S respectively, see Figure 3. The surface 
skin was removed by machining. Three parallel tests were done for each class of 
component. Figure 4 shows the tests results. The pure foam block (0S) has the lowest 
capacity as opposed to the block with surface skin on all four sides (4S). Scatter is 
evident both in ultimate capacity and ductility. This is probably related to the 
inhomogeneous nature of the surface skin. 

Figure 3 Samples for three-point-bending tests and schematic of test-set up 

 
0S: skin totally removed; 3S: skin removed on the tensile flange; 4S: as produced. 
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Figure 4 Results from three-point-bending tests, punch force F vs. punch displacement w 

 

Moreover, Hanssen et al. (2003) used the following procedure in order to obtain a value 
for the CES thickness. Consider a square, foam-filled cross section of width b and skin 
thickness equal to h (CES). The material of the surface skin is fitted to a bilinear 
hardening curve defined by 
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where σ is the nominal stress, σ02 is the yield stress, E is the Young’s modulus, Et is the 
tangent modulus and ε is the nominal strain. Let M = Me + Msf be the total moment 
capacity of the cross section, where Me is the moment capacity of the surface skin and Msf 
the contribution from the foam core. The moment contribution from the surface skin as a 
function of the cross-section curvature κ can be simplified as (Hanssen et al., 2003) 
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The beam curvature at surface skin yielding κ02 is given by 
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The section shape factor f is written as 
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M
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where the elastic limit moment M02 as well as the perfect-plastic reference moment  
Mpl are given by 
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Let σs be the tensile foam strength. The simple linear-elastic bending resistance of the 
quadratic foam block Mf is then readily written in the form 

3( 2 )
6f sf s

s

b hM M κ σ
κ

−= =  (9) 

where the last term represents the maximum capacity of the foam block. The curvature κs 
that corresponds to the failure strain εs in the foam core can be expressed by 
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Adding the expressions of Me and Mf (and finally normalising with respect to Msf) gives 
the total bending moment capacity M of the foam-filled beams as function of curvature κ: 

M = Me + Mf, i.e. 
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Assuming that the maximum capacity of the cross section is obtained at foam failure, 
the maximum bending moment Ms is found from equation (11) when κ = κs. From 
Hanssen et al. (2003), the following parameters were approximated for the skin material; 
σ02 = 115 MPa and Et = 2100 MPa (linear from ε02 to 6% strain). In addition 
E = 70000 MPa. The outer width of the cross section is b = 53 mm. From Figure 4 it can 
be shown that the average ultimate force for component 0S (no skin) is 0SF = 6.8 kN and 
for component 4S (skin all sides) the same value is 4SF = 11.2 kN. Now, since 

4 0/ /sf S SM M F F=  we have that M/Msf = 1.6. The only unknown in the above given 
equations to produce this moment ratio is h. It can be shown that h = 0.15 mm satisfies 
the set of equations; hence the CES thickness is 0.15 mm for this component. 

3 Experimental investigations and design formulas 

3.1 Pure axial crushing 

The sections in Figure 5 are of a statically crushed non-filled extrusion and a similar 
foam-filled extrusion. As observed, the number of lobes in the sidewalls of the extrusions 
is increased due to the foam filling. In general, the number of lobes is an increasing 
function with respect to the foam density. The foam filler causes the initial buckling of 
the sidewalls to take place on an elastic foundation, thus reducing the buckling length and 
increasing the number of lobes created. For circular extrusions, an effect of increasing 
foam density may also be to change the deformation mode, Figure 6. 
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Figure 5 Non-filled vs. foam-filled square extrusion, quasi-static loading 

 

Figure 6 Axial crushing of non-filled and foam-filled circular and square extrusions, 
quasi-static loading 

 

The dynamic loading condition does not significantly alter the apparent deformation 
behaviour of the square and circular extrusions, although there are some differences. 
However, a difference between static and dynamic loading conditions can be observed by 
studying the force vs. deformation curves of tested foam-filled extrusions. Figures 7–9 
compare the static with the corresponding dynamic force vs. deformation behaviour of 
foam alone (Figure 7), a non-filled extrusion (Figure 8) and finally a foam-filled 
extrusion (Figure 9). A simple means of determining the effect of the loading condition is 
the ratio between dynamic and static energy absorption. This ratio is referred to as the 
‘energy ratio’ in Figures 7–9 and is plotted as a function of axial deformation.  
As illustrated in Figure 7, a loading velocity of 15 m/s appears to have no significant 
effect on the force-deformation behaviour of aluminium foam alone. The contrary is 
observed when studying the crushing of non-filled extrusions, Figure 8. Here, the force 
levels are increased significantly. Experiments on the extrusion material discovered 
no significant strain rate sensitivity; hence the increase in force is likely to be due to 
transverse inertia forces arising in the extrusion walls during crushing. It was observed 
that the energy ratio generally was a decreasing function of deformation. Since the 
strength of the extrusion material can become greater without increasing the material 
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density, an increase in material strength will lead to a reduction of the relative importance 
of the dynamic inertia effects (reduced energy ratio). The same effect is observed when 
filling the extrusion with the rate insensitive foam, Figure 9. The increase in the total 
force level compared with the non-filled extrusion diminishes the relative importance of 
the inertia effects of the extrusion sidewalls, leading to a lower energy ratio. 

Figure 7 Static and dynamic force deformation curves of circular foam specimens.  
Specimen diameter: 79 mm; foam density: 0.38 g/cm3; impact velocity: 15 m/s 

 

Figure 8 Static and dynamic force deformation curves of square non-filled extrusions.  
Outer width, b: 80 mm; wall thickness, t: 1.95 mm; foam density, ρf: 0 g/cm3; 
characteristic stress, σ0: 151 MPa; impact velocity, v0: 14 m/s 
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Figure 9 Static and dynamic force deformation curves of square foam-filled extrusions.  
Outer width, b: 80 mm; wall thickness, t: 1.95 mm; foam density, ρf: 0.34 g/cm3; 
characteristic stress, σ0: 151 MPa; impact velocity, v0: 23 m/s 

 

The following empirical design formula has been found to represent the average crush 
force Favg of both square and circular foam-filled extrusions with satisfactory accuracy 

avg avg 1 0 .f f fF F A C Aσ σ σ= + +  (12) 

The first term is simply the average crush force of the corresponding non-filled extrusion, 
whereas the second term constitutes the uniaxial resistance of the foam filler.  
As observed experimentally, the average crush force of foam-filled extrusions always 
exceeds that of the sum of these two terms, see Figure 10. This increase in capacity is 
referred to as an interaction effect and is represented by the third term in equation (12). 
The parameters involved are: 

Figure 10 Illustration of interaction effect 
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avgF  average crush force of corresponding non-filled extrusion 
σf foam plateau stress, see Figure 2 
Af foam core cross-sectional area 
C1 cross-section dependent dimensionless constant, (Table 1) 

0σ  characteristic stress of extrusion material, see Figure 15 
A cross-sectional area of extrusion. 

In order to make the design formula complete, an expression for the average crush force 
of non-filled extrusions has been included, see Jones (1989). 

2/3
avg 0 0F C Aφ σ=  (13) 

This equation is represented by the following parameters 
C0 cross-section dependent dimensionless constant (Table 1) 
φ A /Af : solidity ratio. 

Table 1 Parameters needed for properties of foam-filled tubes. The constants given are based 
on experimental data 

 Square Circular 
Af (b – 2t)2 π(d – 2t)2/4 
A 4t(b – t) πt(d – t) 
φ 4t(b – t)/(b – 2t)2 4t(d – t)/(d – 2t)2 
C0 1.30 2.15 
C1 1.4 0.9 
C2 0.5 0.9 
C3 1.7 17 
AE0 0.40 – 0.65* 0.55 – 0.75* 
AEf 0.85 0.85 
m 0.8 2 

0
ES  0.76 0.76 

*initial peak force neglected. 

 

Equation (13) assumes that there is a symmetric deformation pattern for the square 
extrusions and diamond modes for the circular ones. 
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By substituting equation (13) into equation (12), the normalised average crush force 
of foam-filled extrusions can be written as 

avg 2 / 3
0 1

0 0 0

1 .f fF
C C

A
σ σ

φ
σ φ σ σ

= + +  (14) 

The maximum force level Fmax occurring during crushing can be approximated by the 
following expression 

2 / 3max
0 2

0 0 0 0

1 1 1 f f

E Ef

F C C
A A A

σ σ
φ

σ φ σ σ
= + +  (15) 

where three new parameters have been introduced: 
AE0: ratio between average and maximum force, non-filled extrusion (Table 1) 
AEf: ratio between average and maximum force, foam alone (Table 1) 
C2: cross-section dependent dimensionless constant (Table 1). 

AE0 and AEf are referred to as crush force efficiencies, and they can be determined from 
compression tests on non-filled extrusions and foam alone respectively. If the  
foam-filled extrusion has a trigger in order to reduce the peak force and initiate folding, 
see Figure 11, tests on the corresponding triggered non-filled extrusion will yield a value 
of AE0 for use with equation (15). The maximum force of non-filled extrusions is usually 
related to the initial peak force, even if the extrusions are triggered. Table 1 gives the 
values of AE0 if the initial peak force is neglected, being the equivalent of designing a 
‘perfect’ trigger. Table 1 also gives the minimum value of AE0 found for the triggered 
non-filled components. If tests on the triggered non-filled extrusions are not available for 
the determination of AE0, it should be possible to utilise the results in Table 1 as a rough 
guideline for estimation of the maximum force. The crush force efficiency of the foam 
filler AEf should be set to 0.85. 

Figure 11 Triggers used 
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A summary of all the parameters involved in equations (14) and (15) is given in Table 1. 
Here b is the outer width of the square cross section, d is the outer diameter of the 
circular extrusion, whereas t represents the wall thickness. It must be noted that the 
dimensionless constants C1 and C2 were found to increase slightly with deformation, 
Figure 12. The values given in Table 1 correspond to an approximate deformation  
of 50%. All the constants of Table 1 are based on experimental data and subsequent curve 
fitting. 

Figure 12 Development of C1 and C2 

 

The corresponding correlation plots for equations (14) and (15) vs. experiments are 
shown in Figures 13 and 14. The diamond and square symbols in Figure 13 represent 
tests from different series. For most tests, the accuracy of the proposed design formula for 
the average force is within an error margin of ±10%. The maximum force level is 
predicted with somewhat less accuracy. 

Figure 13 Correlation, average force 
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Figure 14 Correlation, maximum force 

 

In Table 1, the dimensionless constant C0 for determination of the average crushing 
forces of non-filled extrusions is based upon the definition of the characteristic extrusion 
material stress 0σ as given in Figure 15. Here 0σ  is defined as the average of the yield 
stress σ02 (0.2% plastic strain) and ultimate stress σu. Using this definition, the values of 
C0 in Table 1 were determined from correlation with experiments on non-filled 
aluminium extrusions. 

Figure 15 Definition of 0 0.21/ 2( )uσ σ σ= +  

 

The final design parameter of interest is the effective crushing length of the components, 
wmax = SE × L. Here SE is referred to as the stroke efficiency, whereas L is the total length 
of the component. For a square non-filled extrusion, SE is approximately 73%, meaning 
that the component can be crushed three-quarters of its original length before bottoming 
up occurs (leading to rapidly increasing force levels). When filling foam inside tubes, the 
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effective crushing length is generally reduced. This has implications for practical design 
cases, since the total capacity for energy absorption is given by E = Favg × SE × L. 

The stroke efficiency SE for a foam-filled extrusion is given by 

2 / 3
0 1

0 0

2 / 3
0 1

0 0

1

1

f fF
E D

E
f f

C C S

S

C C

σ σ
φ ε

σ φ σ

σ σ
φ

φ σ σ

 
+ ⋅ + ⋅   =

+ +

 (16) 

where 
0

3 0 D 0(1 ( / ) ) and 1 1.5( / ).F m
E E f f f fS S C ρ ρ ε ρ ρ= − = −  (17) 

Here εD denotes the densification strain of the foam filler. The constants 0
ES , C3 and m 

are given in Table 1 for both square and circular extrusions. Figure 16 shows the 
correlation between this model and experiments. 

Figure 16 Correlation, stroke efficiency 

 

Finally, the total mass of the foam-filled tube is 

M = (ρ0A + ρfAf).L. (18) 

The increase in force levels due to dynamic loading conditions is yet to be discussed.  
For square foam-filled extrusions Hanssen et al. (2000a) assumed that the average force 
levels of dynamically loaded specimens could be described by modification of  
equation (12) above. Here, the dynamic effects are accounted for by using the average 
force term of a dynamically loaded non-filled tube, i.e. avgF  in equation (12) is replaced 

by avg
DF . 

avg avg 1 0
D

f f fF F A C Aσ σ σ= + +  (19) 
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The increase in force levels of the foam-filled component was related to the average 
crush force of the non-filled extrusion in the following way 

1 / 2
2 / 3 20

avg 0 0 4 0
0

11 .DF C A C v
ρ

φ σ
φ σ

  
 = +  
   

 (20) 

Here, the following parameters have been introduced: 
ρ0: density of extrusion material 
v0: initial impact velocity 
C4: factor describing the dynamic effect. 

The C4 parameter was found to be a decreasing function of the relative deformation 
measure w/l where w and l are defined as 

w: deformation 
l: half the relative plastic lobe length of a non-filled tube, l = 0.99b2/3t1/3. 

Hence, the complete formula giving the average crush force for square foam-filled 
extrusions subjected to dynamic loading conditions is 

1 / 2
avg 2 / 3 20

0 4 0 1
0 0 0 0

1 11 .f fF
C C v C

A
σ σρ

φ
σ φ σ φ σ σ

  
 = + + + 
   

 (21) 

The C4 factor as a function of w/l was found experimentally (Hanssen et al., 2000a) and 
is given in Figure 17. 

Figure 17 Development of dynamic amplification factor C4 (square extrusions) 

 

3.2 Oblique loading of axial components 

Reyes et al. (2004a) did oblique loading tests on non-filled and foam-filled aluminium 
AA6060 hollow sections, see Figure 18 for test set-up. 
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Figure 18 Oblique loading of non- and foam-filled hollow extrusions. Test set-up (left) and typical 
force-deformation curves for pure axial crushing compared to oblique loading (right) of 
non-filled components 

 

The foam-filled and empty columns developed similar deformation modes in oblique 
loading. Figure 19 shows three specimens with various foam filler in temper T4 with load 
angle 5°. Here, the compression flange buckled outward, while the two sidewalls buckled 
inward. Although the specimens in Figure 19 have the same deformation mode in the 
sense that the compression wall buckled outward, one can see that there are some 
differences in the extent of the lobe, which can be considered as a plastic hinge.  
The lobes in the foam-filled columns are somewhat more localised than in the empty 
columns, in agreement with the findings of Hanssen et al. (2000a). The foam acts as an 
elastic-plastic foundation for the sidewalls and reduces their buckling length. A detail of 
the tube with high-density (0.3 g/cm3) foam is shown in Figure 20. It is possible to see an 
indication of a second lobe above the initial lobe. This was also observed for some of the 
other tubes with high-density foam. 

Figure 19 Deformation modes for experiment θ = 5°, temper T4. Empty and foam densities 
0.1 g/cm3 and 0.3 g/cm3 
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Figure 20 Details of foam filled extrusion S-T4-5-1.7-2-1 

 

As given in Figure 18 for non-filled extrusions, the force-deformation curve rapidly drops 
compared to pure axial crushing. This was also observed for foam filling. Figure 21 
shows how the mean crushing force drops as a function of loading angle (θ = 0° refers to 
pure axial crushing) for tempers T4 and T6. 

Figure 21 Mean load at d = 50 mm vs. load angle. The calculated mean crushing force for an 
axially loaded column is also included 

 

The plastic hinge over the cross section of obliquely loaded members will be subjected to 
both axial force N and bending moment M. Reyes et al. (2004a) plotted the axial force 
and bending moment occurring in the plastic hinge for the same rotation and obtained 
interaction curves, see Figure 22 for foam filled T4 and T6 extrusions. Note how the 
interaction envelopes shrink as the deformation proceeds, reflecting the softening 
behaviour of the obliquely loading member as given in Figure 18. 
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Figure 22 Interaction plots for obliquely loaded foam-filled extrusions 

 

3.3 Three-point bending 

Hanssen et al. (2000b) did three-point-bending tests on three different aluminium 
extrusions with foam filler. The extrusions were square-hollow sections of alloy AA6060. 
Figure 23 shows what happens to an AA6060 temper T6 beam when increasing the foam 
filler density. The graphs show the moment vs. rotation M-ϕ plots corresponding with the 
photos. Two parallels were carried out (test a and b). The top test B10 refers to the  
non-filled extrusion. Foam filler density increases downwards in the figure. 

Introducing the lightest foam filler to the beam significantly altered the deformation 
behaviour, as shown by the photographs in Figure 23. First of all, the plastic hinge in the 
middle of the beams has become less influenced by the geometry of the indenter.  
For comparison, the deformation pattern of the non-filled beams was clearly determined 
by the rather large, inward bulge generated by the blunt nose of the testing machine. 
Another observation is that the plastic hinge is very concentrated when applying the low 
density foam filler ρ1. 

The foam filler also had a pronounced effect on the initial peak moment Ms of the 
beams, resulting in increased capacity, see Figure 23. The explanation to this observation 
is twofold. First, the foam filler itself has a structural capacity that increases 
nonlinearly with the density of the foam, see Figure 2. Secondly, the foam filler acts as a 
support for the sidewalls of the extrusions, significantly increasing the local buckling 
load. This was also observed in Section 3.1 for the axial crushing of foam filled columns. 
Comparing the photographs of the beams with the highest densities (B12 and B13) with 
the low-density filler beams (B11) shows that the sidewall lobe size is reduced by 
increasing the foam filler density. This is a direct result of the initial buckling taking 
place on a semi-elastic foundation, leading to reduced buckling lengths as the stiffness of 
the foundation is increased. 

The initial drop in capacity appears to increase as the foam filler density increases. 
The reason is that the initial peak load now is determined by the failure strain in tension 
of the foam filler. When this failure strain is reached, the fracture propagates and divides 
the entire cross section of the foam filler. Hence, the drop in capacity should more or less 
equal the load bearing capacity of the foam filler. 
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Figure 23 Test results, beam B1 (Temper T6, h = 1.76 mm) 
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As seen from the photographs in Figure 23, the medium and high-density foam beams (ρ2 
and ρ3) eventually failed due to ductile failure in the tensile flange of the extrusions. 
When pure bending occurs, as for the specimens tested herein, the compressive flange 
has to balance the stresses in the tensile flange, otherwise axial forces would be present. 
For the non-filled and low density filled beams ρ1, rather mature lobes are generated in 
the compressive zone as a result of the initial local buckling. The compressive force 
required to develop these lobes are so low that the balancing stresses in the tensile zone 
of the extrusion do not exceed the stress corresponding to the failure strain. As explained 
above, the local buckling forces increase as the buckling length gets smaller, as is the 
case for the high-density foam fillers. This again requires higher stresses in the balancing 
tensile flange, which eventually may lead to ductile failure. 

All in all, the foam filler helps the extruded beams to retain their initial cross sectional 
shape before and after local buckling has occurred. In addition, the bending resistance of 
the foam core itself contributes significantly to the initial, elastic capacity of the beams. 
In the following, simple models predicting the load bearing capacity of the beams will be 
developed and correlated with the experimental data. Three different stages in the loading 
path will be considered: 

• initial peak load 

• load bearing capacity after tensile failure in foam 

• ultimate cross section capacity of the extrusion. 

The following strategy is applied in order to develop a simple design formula valid for 
the initial peak load of foam-filled beams. Assume that the foam core helps the cross 
section to retain its shape during the initial stages of bending, that is: initial buckling is 
prevented. Hence, for the present case of foam filling, we may assume that buckling only 
takes place after the foam core fails in tension, a failure that most likely propagates 
through the whole cross section. Hence, if the failure strain of the foam is known, the 
corresponding strains in the extrusion can easily be determined and applied for the 
determination of the moment resistance of the extrusion (based on initial cross section 
geometry). When added to the moment resistance of the foam core immediately before 
failure, the total initial peak load may be determined. 

Following classical beam theory, the cross section moment M is found by integrating 
moment contributions from a given stress distribution σ (z) over initial cross section 
geometry 

.
e f

e f
A A

M zdA zdAσ σ= +∫ ∫  (22) 

The stress distribution is determined from the corresponding strain distribution.  
Equation (22) has been divided into two parts, being integration over the extrusion area 
Ae as well as integration over the foam core area Af. Following the same approach as in 
Section 2.3 and using identical notation (substituting the thickness of the surface skin 
with the thickness of the extrusion here), this leads to the following design formula for 
the total bending moment capacity M of the foam filled beams as function of curvature: 
M = Me + Mf (Me is moment contribution from extrusion, Mf is contribution from  
foam core) 
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Assuming that the maximum initial capacity of the cross section is obtained at foam 
failure, the maximum bending moment is found from equation (23) when κ = κs.  
For non-filled beams, the elastic capacity is defined herein by inserting κ = κ02 and 
Msf = 0 in equation (23). Just after the foam core has failed, the moment capacity can be 
found from equation (23) by inserting Msf = 0. 

The results by using this formula before (‘initial peak capacity’) and after  
foam failure (‘capacity after foam failure’) are shown in Figure 23. The predicted 
capacities are plotted for beam rotations determined by additional formulas given in 
Hanssen et al. (2000b). 

Even after foam failure, the cross section may build up a new maximum moment 
capacity, generating large plastic strains in the extrusion walls. Assume that such a strain 
distribution can be represented by a stress-strain curve on the form σ = σu(ε /εu)n. 
Hanssen et al. (2000b) wrote the ultimate bending moment capacity Mu for a square foam 
filled extrusion on the form 

3 3
1

1 ( ( 2 ) ) , 2
( 2)2

n n nu u
u u un

u

M b b t
bn

σ εκ κ
ε

+ +
+= − − =

+
. (24) 

As seen in Figure 23 (‘ultimate extrusion cross section capacity’) this formula works well 
for high foam densities when the foam filler enables the cross section to retain its shape 
for large rotations. 

4 Finite-element modelling 

Finite element modelling of foam-based components requires robust constitutive models. 
Several material models exist that can be applied for foam. Section 4.1 focuses on one 
model only, but several others are fully applicable; see Hanssen et al. (2002). One of the 
most important requirements to a material model for aluminium foam is the model’s 
ability to predict material failure. For many applications, such as crash, failure of foam in 
tension will lead to rearrangement of the structural forces, which again may lead to 
failure elsewhere. Section 4.2 will use the model described in Section 4.1 to simulate the 
three-point-bending tests and failure of the pure foam beams described in Section 2.3. 
The surface skin (and its failure) is also included in the model. Section 4.3 shows 
simulations of the obliquely loaded foam-filled extrusions described in Section 3.2. 
Section 4.4 gives results when using the foam model for representing the three-point 
bending tests described in Section 3.3. The material model for the hollow extrusion was 
also able to take into account failure. This foam-filled beam is an interesting example, as 
it shows the interaction between the failure in the foam core and the failure in the tensile 
flange of the extrusion. 



   

 

   

   
 

   

   

 

   

   148 A.G. Hanssen, A. Reyes, O.S. Hopperstad and M. Langseth    
 

    
 
 

   

   
 

   

   

 

   

       
 

4.1 The Deshpande-Fleck model 

The foam model of Dehspande and Fleck (2000b) has been implemented as a user 
subroutine in LS-DYNA, see details in Reyes et al. (2003), and is also found as material 
model 154 in LS-DYNA version 970 (2003). The implemented model includes a simple 
fracture criterion, and reasonable results have been obtained when this model was applied 
for verification tests on foam alone, Reyes et al. (2003). The anisotropy of the foam is not 
taken into account in the foam model. 

The yield criterion of the material model is given as 

ˆ 0YσΦ = − ≤  (25) 

where 

2 2 2 2
2

1ˆ ( ).
1 ( / 3) e mσ σ α σ

α
= +

+
 (26) 

Here, σm is the mean stress and the parameter α defines the shape of the yield surface. α 
is a function of the plastic coefficient of contraction, ν p: 

2 (1 2 )9 .
2 (1 )

p

p

να
ν

−
=

+
 (27) 

Since ν p can be assumed to be zero for the aluminium foams considered in the current 
study, Reyes et al. (2003), α is equal to 9 / 2 2.12≈ . 

The material model includes the following isotropic strain-hardening rule: 

2

ˆ 1ˆ( ) ln .
ˆ1 ( / )p p

D D

Y R β

εσ ε σ γ α
ε ε ε

 
= + = + +  

− 
 (28) 

Here, ε̂ is the equivalent plastic strain, while σp, α2, γ, εD, and β are material parameters. 
If the strain hardening rule is calibrated to a uniaxial compression test, the compaction 
strain εD can be expressed as, Reyes et al. (2003) 
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where ρf is the foam density and ρf0 is the density of the base material, which is 2.7 g/cm3 
for aluminum. The other material properties, σp, α2, γ, and β, can also be expressed as a 
function of the foam density: 

2 0 1
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1, , ,
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f
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f

C C
ρ

σ α γ
β ρ

  
= +        

 (30) 

where C0, C1, and n are constants, Hanssen et al. (2002). 
Material tests were used to determine the power-law relationship between foam 

density, ρf, and foam plateau stress, σp, which is expressed in equation (30) with C0 = 0. 
Furthermore, the values of C0, C1, and n in equation (30) for the other material 
parameters, were assumed to be the same as in previous studies, Reyes et al. (2003). 
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Fracture is modelled by eroding elements when a fracture criterion is satisfied.  
One strain-based and one stress-based criterion were implemented in the model. 

The strain-based criterion is controlled by the volumetric strain, i.e. 

εm ≥ εcr. (31) 

The second criterion is based on erosion of elements when the maximum principal stress 
reaches a critical value: 

σ1 ≥ σcr (32) 

where σcr is the critical stress. However, because of spurious noise produced by contact 
forces and elastic stress waves initiated when an element is eroded, the stress levels in the 
elements can at times be higher than the critical stress, although these should not 
necessarily cause fracture. To avoid erosion of elements due to spurious noise, an  
energy-based criterion was established from equation (31) motivated by Cockcroft and 
Latham (1968). An element is eroded when the ‘energy’ 

ˆ

1 10
ˆ( )crH d

ε
σ σ σ ε−∫  is larger 

than a user-defined critical value C, i.e. 
ˆ

1 10
ˆ( ) .crH d C

ε
σ σ σ ε− ≥∫  (33) 

Here, H(x) is defined as 
1 if 0

( ) .
0 if 0

x
H x

x
≥

=  <
 

The simulation results on development of failure and subsequent removal of rather 
large elements should always be checked for mesh sensitivity. 

4.2 Modelling failure in foam and surface skin 

This section models the three-point-bending tests of IFAM foam beams presented in 
Section 2.3. Here the foam blocks were modelled by brick elements and the surface skin 
represented by shell elements with nodes merged to the nodes of the brick elements in the 
foam core. For this study tensile properties of the foam’s surface skin as well as 
compression curves of foam samples were needed. The tensile stress-strain curve of the 
foam skin is difficult to achieve. Attempts to separate the foam skin from a foam sample 
for tensile testing failed due to pores/holes in the prepared foam skin. Thus the 
mechanical properties have been approximated by the tensile properties of cast AlSi7 
from Dørum et al. (2003), Figure 24 (left). Following this work, the foam skin was 
modelled with von Mises’ yield criterion, associated flow rule and non-linear isotropic 
strain hardening represented by a generalised Voce hardening rule. Model 104 of  
LS-DYNA (*MAT_DAMAGE_1) was used to represent the skin. The input card was 
defined so as to give a failure after 6% effective plastic strain, see Figure 24. The 
thickness of the surface skin was taken to be 0.15 mm as found analytically in Section 
2.3. The compression curve of the investigated foam was generated for square cross-
section samples (approximately 53 × 53 mm) with a length of 100 mm without surface 
skin. The density of the foam (without skin) was approximately 560 kg/m3. The 
compression curve was used to identify the hardening model of material model 154 of 
LS-DYNA as described in Section 4.1. The LS-DYNA version of this work also includes 
material failure based on an upper limit of the plastic part of the volumetric strain, 
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equation (31). The fit of the hardening curve to the experimental tests is given in  
Figure 24 (right). 

Figure 24 Identified material models for surface skin (left) and foam (right) 

 

A numerical model of the three-point-bending test set-up was made using the non-linear 
finite element code LS-DYNA, see Figure 25. The results are given in Figure 26 
compared with the experimental curves. A volumetric failure strain of 0.05 was found to 
comply well with the tests on the pure foam beam (0S), see Section 2.3. Considering the 
experimental scatter, the CES thickness found by the simple procedure above appears to 
comply well with the results from simulation of components 3S and 4S. 

Figure 25 Finite element model of three-point-bending test set-up 

 

Figure 26 Comparison of num. simulations (LS-DYNA) with exp. results 
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4.3 Simulation of obliquely loaded specimens 

Upon simulating the obliquely loaded specimens, all the components collapsed globally, 
just as in the experiments. In the experiments, quite a number of different deformation 
modes were seen, but in the analyses mainly two modes occurred, see Figure 27. 
Deformation mode A** occurred for the columns filled with the high-density foam, while 
the others experienced mechanism C. Fracture in the foam core occurred for many of the 
tubes. Figure 27 depicts how the two main deformation modes influence the extrusion 
and the foam core, and shows how the fracture in the foam is developed close to the 
clamping. The foam also fractured in the corners where the lobes in the extrusions were 
created in all analyses, see Figure 28. 

Figure 27 Pictures from the analyses: extrusion, foam core and fracture 

 

Figure 28 The development of fracture in the foam, in the corner where the lobes in the extrusions 
were created 

 

Typical force-deformation curves from the simulations are given in Figure 29 for 
different foam-filler densities. A correlation plot is also given here, showing that the 
numerical simulations on overall underpredicted the experiments somewhat. 
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Figure 29 Numerical force-deformation curves (left) and correlation plot (right) 

 

Figure 30 shows that modelling the fracture and statistical variation of foam density had 
little influence on the results. Initial imperfections in the extrusion walls lowered the peak 
loads by a small amount only. 

Figure 30 Difference between analyses with and without initial imperfections, and the analyses 
with statistical variation and with or without fracture 

 
The symbol  indicates where the analyses were stopped due to numerical problems 

4.4 Three-point bending of foam-filled extrusion 

The finite element model of the test set-up and section view of the specimens can be seen 
in Figure 31, based on Reyes et al. (2004b). In the experiments, wooden blocks were 
placed in the beam ends to prevent the foam filler to move axially when loaded.  
The wooden inserts were jointed to the beam ends by bolts, but in some tests the joints 
failed and the inserts were pushed outwards by the foam. In order to take this into 
account in the analyses, two simulations were always carried out for each beam type.  
In the first, the foam was completely free to move out of the extrusion ends, in the second 
the foam’s movement was restricted by the introduction of end covers. It was found that 
when the foam was free to move out of the beam in the model, there was no initiation of 
fracture in the extrusion material. Furthermore, all the foam-filled beams with covers at 
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the ends were analysed using two fracture criteria for the extrusion material and two 
fracture criteria for the foam (equations (31–33)). For the extrusion the fracture criteria 
used were 

• a criterion based on thickness strain, here referred to as CFS* (Reyes et al., 2004b) 

• the Cockcroft-Latham criterion abbreviated by CL (Reyes et al., 2004b). 

For the foam, the strain- and stress-based criteria are called ‘fr1’ (equation (31)) and ‘fr2’ 
(equation (33)) respectively. 

Figure 31 FE model of the three-point-bending tests. Half of the beam was modeled (top)  
and symmetry conditions applied. The meshes of the foam (middle) and the extrusion 
(bottom) 

 

Figures 32 and 33 show force-displacement curves and representative pictures from 
experiments and analyses of the lowest and highest density foam-filled beams of  
Figure 23 (Section 3.3). Most of the pictures from the analyses are taken at approximately 
the time that corresponds to the maximum deformation from the experiments. Sections of 
the beam from the analyses are also shown so the foam behaviour can be observed. In the 
pictures, the foam is coloured lightly, while the dark colour represents the extrusion. 

Figure 32 FE simulations of three-point bending of AA6060 T6 beam with low-density foam filler 
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Figure 33 FE simulations of three-point bending of AA6060 T6 beam with high-density foam 
filler 

 

As can be seen from the simulations, the foam fractures for the low-density beams, but 
fracture does not develop in the extrusion, as observed experimentally. For the  
high-density beams, fracture occurs in the tensile flange of the extrusion subsequent to 
the failure of the foam core. This is also in agreement with experimental results. 
However, as seen from the force-deformation curve of Figure 33, failure of the extrusion 
material in the high-density foam beams occurs much later than in the experiments. There 
is also little difference between the various material failure criteria used. 

5 Conclusions 

A general summary of existing work on generic foam-based components for 
crashworthiness applications have been given. Where available, design formulas have 
been added. Several of the experimental results presented have been the basis for 
comparison with finite element simulations. It appears that foam-filled structures pose a 
considerable challenge when it comes to finite element modelling as the foam filler will 
directly influence the behavior of the surrounding material. Here, the paper has 
demonstrated by several examples that failure of aluminum foam in parts subjected to 
tensile stresses must be captured in order to predict the overall response of the structure 
well. 
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