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Abstract

When subspace identification methods for finite closed loop data sets are pre-
sented they are often compared to poor subspace identification methods. The
methods presented in this thesis are always compared to the results from the
prediction error method implemented in Matlab 6.5.

The advantage of the subspace identification methods is the computational effi-
ciency and the ability to estimate the system order, or alternatively help the user
to choose the correct system order. One of the assumptions in subspace identi-
fication is that the input is uncorrelated to the noise at the output. In closed
loop systems this assumption is not necessarily fulfilled. This can lead to a bias
problem. Only the performance with finite data sets is considered in this thesis.

The thesis also presents the classic subspace identification algorithms DSR and
N4SID together with an error-in-variable based subspace identification algorithm
using the notation used in the outline of the DSR algorithm. The projections
used in DSR to estimate the extended observability matrix, and the eigenvalues,
are compared to the projections used in the other algorithms.

The effect of the parameter choice in DSR when used on finite closed loop data
sets is presented. It is especially the estimation of the zeros which is hard using
the classic subspace identification algorithms for direct closed loop identification.
Solutions to help reducing the bias on the zeros are presented.

The closed loop can be modified to either reduce the noise in the feedback or
make the noise through the feedback uncorrelated to the noise on the output.
The effect of using different types of filters in the feedback loop is considered.
The optimal filter used in the feedback is not the noise free output or a 1°* order
low-pass filter rather the Kalman filter.

This leads to a new three-step closed loop subspace identifications algorithm
based on the DSR algorithm and the Kalman filter properties. In an initial step
DSR is used for identification of the process model, including the Kalman filter
gain. The next step is to implement the Kalman filter in the feedback in such
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a way that the controller uses the filtered output from the filter, not the actual
process measurement. The final step is to use DSR to identify the process model
when the feedback is filtered through the Kalman filter.

The goal for closed loop subspace identification algorithms is to be as easy to use
for direct identification on finite closed loop data sets as the original subspace
identification algorithms are on finite open loop data sets. In addition the closed
loop subspace identification algorithms are to provide results comparable to the
results from PEM in closed loop. The DSR_e algorithm is a modification of the
existing DSR algorithm fulfilling these requirements. The algorithm is based on
the fact that the noise innovation process can be identified directly from the data
in a first step.

The system identification process is considered in two different ways. The first
way is when all information regarding the process is considered as known and a
benchmark is performed to see how good the performance can be. In this case
DSR_e is comparable to PEM. The other is when the system order has to be
estimated from the process data.

Methods to estimate the system order of systems operating in a closed loop by
subspace identification are presented. The methods are meant to help users with-
out experience in using subspace identification algorithms.

In addition a procedure is suggested combining the visual inspection of singular
values from DSR_e and the search for the minimum prediction error. Visual
inspection of the singular values gave the correct estimate of system order every
time, independent of the choice of past and future horizons in DSR_e. The
parameter settings for DSR_e found by searching for the minimum prediction
error resulted in estimates comparable to the estimates from PEM. This indicates
that this is a good practical approach for the use of DSR_e for direct closed loop
system identification.
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Chapter 1

Introduction

The reason for the problems that can occur when applying subspace identification
(SID) algorithms for direct identification of closed loop data is the projection of
the future outputs onto the future inputs. Future inputs and the noise on future
outputs are assumed to be uncorrelated. In closed loop operation this assumption
is not necessarily fulfilled. This is the cause of the bias. Solutions to overcome
the problems that can occur when subspace methods are used on closed loop data
have been suggested. Van Overschee and De Moor (1996), (1997) are using the
Markov parameters of the controller in the algorithm to avoid the problem. The
controller is assumed to be linear. Chou and Verhaegen (1997) have developed a
SID algorithm for error-in-variable (EIV) problems. They have shown that this
algorithm will give consistent estimates on closed loop data, if a persistence of
excitation requirement is satisfied. This leads to the use of signals with relatively
high order of persistent excitation in the reference. Gustafsson (2001) has pro-
posed an Instrument Variable (IV) approach SID algorithm as an improvement
of the already existing EIV algorithm of Chou and Verhaegen (1997). The mod-
ified algorithm is named SIV (Subspace-based Identification using instrumental
Variables). Katayama et al. (2005b), Katayama (2005a) have developed a SID
algorithm utilizing orthogonal projections.

There is no reason to state that these algorithms have solved the problems con-
cerning using SID algorithms on closed loop data. The need for having knowledge
about the controller and assuming it to be linear, like in Van Overschee and De
Moor (1996), (1997), limits the applicability. Forssell and Ljung (1997) have com-
mented that in industrial practice very few controllers are linear. Functions like
the anti-windup function will introduce nonlinearities in the controller. Gustafs-
son (2001) argues that future inputs should not be used as one of the instruments
in SIV. The argument is that if future inputs are included in the EIV case, the
influence of noise will not vanish when the number of data points turns to infinity.
In order to avoid the input being correlated with the output it is assumed that
there is at least a delay in the controller. This will make the algorithm consistent

1



2 CHAPTER 1. INTRODUCTION

with the closed loop data. The SID algorithms for EIV problems need a high
order of persistent excitation to give estimates with acceptable variance. One of
the main causes of this need for signals with high order of persistent excitation
is that the future inputs are not used in the instrument variables. The method
developed by Katayama et al. (2005b) utilizes the references explicit in the algo-
rithm in addition to the input and output data that the other methods utilizes.
The references are assumed known and are limited to white noise only. This
assumption limits the applicability.

This thesis is divided into six main chapters. Throughout the thesis only the
performance on finite data sets will be considered. Chapter 2 contains the basic
theory to understand the properties of the SID algorithms presented in Chapter
4. The examples used throughout the thesis are presented in Chapter 3.

Some of the classic SID algorithms are presented in Chapter 4 using the notation
used in the outline of the SID algorithm DSR, Aoki and Havenner (1997), Di
Ruscio (1995)-(2004). The projections used in DSR to estimate the extended
observability matrix, and the eigenvalues, are compared to the projections used
in other SID algorithms in Section 4.4. A special case is presented in Section 4.5
where a special choice of parameters eliminates the bias when DSR is used on
closed loop data sets.

It is especially the estimation of the zeros which is hard using the classic SID al-
gorithms for direct closed loop identification. The parameter choice in DSR when
used on finite closed loop data sets is treated in Section 4.6. Dithering signals
with different order of persistent excitation are used. Both dithering signals in
the reference and on the input are considered.

An other approach to reduce the bias problem is to modify the closed loop, Chap-
ter 5, to either reduce the noise in the feedback or make the noise through the
feedback uncorrelated to the noise on the output. Di Ruscio (2003a) has already
shown that using a filter in the feedback loop is a solution to reduce the bias
on the estimated eigenvalues from SID algorithms caused by the error term that
occur when the future inputs are correlated with the future noise on the output.
The effect of using different types of filters in the feedback loop is investigated.
A new three-step algorithm based on the DSR algorithm and the Kalman filter
properties is introduced in Section 5.4.

A closed loop SID algorithm named DSR_e, Di Ruscio (2004), and simulation
studies of it are treated in Chapter 6. The DSR_e algorithm is a modification of
the existing DSR algorithm which gives consistent estimates on finite closed loop
data sets. Jansson (2003) has introduced a SID algorithm which first estimates
a higher order ARX model to get estimates of the impulse response coefficients.



Then projections are performed and the matrices in the state space model are
estimated. A system identification method based on model reduction of a higher
order ARX model is presented in Section 6.1. The method shows that when a
higher order ARX model is identified there is no need for additional projections to
estimate the system matrices. It is sufficient to perform a model reduction step.
This means that the method presented in Section 6.1 is not a SID algorithm and
therefore the method by Jansson (2003) can hardly be called a SID algorithm
either.

Throughout this thesis there is no focus on how well the presented SID algorithms
perform compared to the poorest SID algorithms. Instead it is focused on how
well the algorithms perform compared to PEM (Prediction Error Method) in the
system identification toolbox in Matlab. A description of prediction error meth-
ods in general and their properties can be found in Ljung (1999). The reason
for using this benchmark is that the goal for developers of closed loop SID algo-
rithms must be to introduce algorithms for direct identification which are as easy
to use on finite closed loop data sets as the original SID algorithms are to use on
finite open loop data sets, with estimates comparable to the estimates from PEM.

Software utilizing DSR _e for automatic identification of system order is presented
in Section 6.4. A practical approach to subspace identification of systems oper-
ating in closed loop is presented in Section 6.5.

The main contributions in the thesis are as follows. The development of rules for
the parameter choice in DSR when used on finite closed loop data sets in Section
4.6. The three-step algorithm based on the DSR algorithm and the Kalman filter
properties presented in Section 5.4. The simulation studies in Section 6.3.1 -
Section 6.3.5 comparing DSR_e with PEM. The development of software utilizing
DSR_e for automatic identification of system order presented in Section 6.4. And
the suggested practical approach to subspace identification of systems operating
in closed loop presented in Section 6.5.
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Chapter 2

Basic theory

2.1 Basic projections

Subspace-based identification methods are based on projections. The basic pro-
jections used are orthogonal projection and oblique projection. These projections
are used in different ways in the different methods. By using the definition of the
Moore-Penrose pseudo inverse of a matrix this makes the definition of the pro-
jections easier. The Moore-Penrose pseudo inverse of a matrix A € R**¥ where
k > i is defined as AT = AT(AAT)" 1.

2.1.1 Orthogonal projections

The orthogonal projection of the row space of A € R™** onto the row space of
B € RI** ig defined as

A/B d:efABT(BBT)TB. (2.1)

The orthogonal projection of the row space of A onto the orthogonal complement
of the row space of B is defined as
1 def T T\t
AB- = A—A/B=A- AB" (BB")'B. (2.2)

Consistent with Equation (2.2) the definition

pt I, — BT(BBT)'B (2.3)

is introduced where [} is the k = k identity matrix.
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Frequently used properties are

[3]- »
8] =0 29
(B =B 26)
BB B 27

Proof of Equations (2.4) and (2.5) can be found in Di Ruscio (1997b).

2.1.2 Oblique projections

The oblique projection of the row space of A € R** along the row space of
B € R** on the row space of C' € R*¥ is defined as

a).c Y ahyc/Bhic (2.8)

Some properties of the oblique projection, van Overschee (1996), are

B/,C =0 (2.9)

c/,C=C. (2.10)

2.2 State space model

A time invariant linear dynamic system can be described by a linear discrete time
invariant state space model given by

Tpt1 — A.%‘k + Buk —+ Vi, (211)
Ye = Dy + Euy + wy, (2.12)
where, x, € R" is the state vector, uy € R" is the input vector, y, € R™ is the

output vector, vy is the process noise and wy is the measurement noise at dis-
crete time k. Introducing v, = C'v}, makes it easier to reconstruct the simulation
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examples presented throughout the thesis.

Subspace-based identification methods identify and realize a dynamic state space
model direct from measured data, including the system order. Therefore the
methods are computationally efficient. The model identified by the subspace-
based identification methods is the discrete time Kalman filter in innovation
form

i‘]ﬁ_l = A!fk + Buk + Cek, (213)
Y — ka—i—EuquFek, (214)

where, e, € R™ is the innovation with covariance matrix F(ezel) = I and Ty €
R™ is the predicted state vector. A is the the state transition matrix, B is the
the input matrix, C' is the external input matrix, D is the output matrix, E is
the direct input to output matrix and F' is the direct external input to output
matrix. The prediction of yy is given by yx = D%+ Euy. An alternate expression
is

-'Ek-i-l = A!fk + Buk + Ké‘k, (215)
yr = Dz + Euy + ey, (2.16)

where, £, € R™ is the innovation, F(grei) = FFT is the covariance matrix of
the innovation and K = CF~! is the Kalman filter gain.

As an alternative to using state space presentation, the model can also be ex-
pressed by transfer functions. Introducing the forward shift operator, z, given by
2up = Ugy1, the model can be presented by

yr = H(2)ur + H*(2)ey, (2.17)

where, H%(2) is the transfer function from the input, uy, to the output, yx, given
by

H%2)=D(2I — A)"'B + E, (2.18)

and H®(z) is the transfer function from the innovation, £, to the output, vy,
given by

H*(2) = D(2I — A) 'K + 1. (2.19)

In case of multiple input multiple output systems H%(z) and H*(z) are matrices
of transfer functions.
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Throughout the thesis the following notation will be used: the eigenvalues of
the system matrix A, A(A), the eigenvalues of the Kalman filter A(A — K D),
the deterministic transition zeros of the system p(H%(z)) or p(A, B, D, E), the
deterministic steady state gain matrix H%(1) and the stochastic steady state gain
matrix H*(1).

2.3 Quality criteria

A set of quality criteria has to be defined to evaluate the quality of the estimated
model. Some basic properties have to be defined before the criteria can be defined.
The squared Frobenius norm of a matrix A € R™*" is equal to the trace of the
product AT A, and defined as follows

d
A1 4 = Y, (2.20)

i=1 j=1

For a complex number ¢ = a + j - b the following definitions are used

def def ,

Re(c) = a and Im(c) = (2.21)

where j is the imaginary unit j = /—1.

A quadratic criterion on the eigenvalues of the estimated model is defined. The
criterion, V! Equation (2.22), sums up the square of the deviation between the
eigenvalues of the estimated model and the actual eigenvalues, the Squared Eigen-
value Error (SEE).

v LS RO — ReO(A) I +

a7 2imy ImACA:)) — Im(A(A))][7. (2.22)

The quality criterion (2.22) is presented using Matlab notation where A\(A4) € R"
is the vector of the eigenvalues of the true state transition matrix and A(4;) € R
is the vector of the estimated eigenvalues of the state transition matrix at Monte
Carlo run number i. M is the total number of Monte Carlo runs.

A quadratic criterion on the zeros of the estimated model is defined. The criterion,
V2 Equation (2.23), sums up the square of the deviation between the zeros of the
estimated model and the actual zeros, the Squared Zero Error (SZE).

def

V2= 5355 IRe(p(4i By, Dy, i) — Re( (A,B,D, )i +
B, D,

2 2im [Tm(p(A;, i) — Im(p(A, B, D, E))|[i.  (2.23)
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The quality criterion (2.23) is presented using Matlab notation where p(A, B, D, F)
is the vector of the zeros of the true system and p(A;, B;, D;, E;) is the vector
of the estimated zeros of the estimated state space model at Monte Carlo run
number z. M is the total number of Monte Carlo runs.
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Chapter 3

Examples

All the examples that will be used throughout the thesis are presented in this
chapter in order to make the thesis easier to read. If physical systems are pre-
sented the frequency is converted to unit-less frequency.

3.1 Example 1

A single input single output system introduced by Di Ruscio (2003b) given by

AZ{—S.? 1%5]’32[00.62255}’62{8:2]’192[1 0]’E:{8}(3‘1)

and controlled by a PI-controller with K, = 2 and 7; = 5 is used as an example.
The Pl-controller in discrete form is given by

U = Kp6k+zk7 (32)
K
Zk+1 — zk—i—%ek, (33)
)
where ¢ is given by
€ =T — Yk- (34)
The process noise variance used is F(9;07) = 0.01 and the measuring noise

variance used is F(w?) = 0.01. Time series of N=1000 discrete data points,
k=0,1,...,N — 1, are generated.

11
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3.2 Example 2

In order to generate closed loop data, a model of a chemical reactor operating in
closed loop is seleced. The reaction mechanism of the reactor is given by

Ay plEc (3.5)
24 5 D (3.6)

The reaction from body A to body D is of order two, while the other reactions
are of order 1. The body B is controlled by a Pl-controller with K, = 50 and
T; = =. The manipulated variable is the feed flow (flow rate) u [;——]. The
concentration of body A in the feed flow, u, is #. The concentration of body
A and body B in the tank is respectively x; and x,. The connection from u to

Yy = @9 is then given by the model

. 2
r = —klfL’l — kgl'l + (9 - IL’1)’LL,
Zt'g = kll'l — kglb'% — T2U,

Yy = g,

where the reaction rate constants are given by ky; = 50, ks = 100 and k3 = 10.
The stationary values of the states, disturbances, parameters and manipulated
variable are given: x{ = 2.5, x5 =1, ° = 10 and »® = 25. We assume that 6 is
constant and known.

Defining
Sy, def uy — u’, (3.10)
dxy, def xp — T°, (3.11)
d
OYk tef Ye — Y’ (3.12)
56, def 0, — 6%, (3.13)

a linearized discrete model can be expressed in the form
0xpy1 = Adxg + Bouy + Co0y + vy, (3.14)

oy, = Déxy + Eduy + wy, (315)

where in addition the additive process and measurement noise, v, and wy, are
added respectively.
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After linearization and discretization the system is expressed by

L [08750 0 5_ [ 00075
~ 1 0.0500 0.8750 |~ ~ | —0.0010

02{0'00250},92[0 1] (3.16)

and the matrix F is the zero matrix. The linearization is done at the stationary
point. The discretization is done by explicit Euler with uniform sampling inter-
val 6t = 0.001. A time series from 0 to 1, with N=1000 discrete data points,
k=0,1,...,N — 1, is considered.

The linearized reactor model, (3.14) and (3.15), and the Pl-controller, (3.2) and
(3.3), are used in order to generate closed loop data. The reference will be con-
stant r, = 1 at each time instant k, superposed with a dithering signal. The
process noise variance used is E(vivl) = 0.0001 - I and the measuring noise vari-
ance used is F(w?) = 0.00001. The reason for using a linearized discrete model
of the chemical reactor is to have the ability to compare the estimated eigenval-
ues of the system, zeros of the system and the zeros of the Kalman filter to the
respective values of the linearized discrete model.

The stationary values in both inputs and outputs will be removed prior to iden-
tification.

3.3 Example 3
A single input single output system introduced by Quin and Ljung (2003) is given
by

Yk + ayp—1 = bug_1 + ex + cep—1 (3.17)

with a feedback controller

up = — Ky + 1 (318)

where, a = —0.9, b = 1, ¢ = 0.9 and K = 0.6, is used as an example. The
standard deviation for e, is one and the standard deviation for r; is two. Both
of the signals are Gaussian white noise.

The discrete process model can be transformed to a state space model Equations
(2.11) - (2.12) where A=09,B=1,C=18 D=1, E=0and F = 1. In the
simulation time series of N=2000 discrete data points are collected and 20 Monte
Carlo simulations are performed.
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3.4 Example 4

A single input single output system introduced by Chiuso and Picci (2004) is
described in Figure 3.1

e 5 r u A& Y
I K(z) F(z) +
T

Figure 3.1: System operating in closed loop in Example 4.

H(z)

where

F(z) = G(z) =25 H(z) = -1, (3.19)

z—a’ z

and a = 3, b = 2.5, ¢ = 0.999 which is an unstable system.

Using F'(z) and G(z) to describe the system, the noise model may lead the reader
to consider this as a first order system, which is false. Expressing F'(z) and G(z)
as an augmented state space model, Equations (2.11) - (2.12), where the matrices
are

A:[‘OL(1)],3:{8],0:[_26},0:[1 0], (3.20)

where in addition F is the zero matrix and F' is the identity matrix. This is a
second order system.
The reference r used is generated from the transfer function K(z) = %
driven by a white noise input, unless something else is specified. When trans-
forming to state space model, Equations (2.11) and (2.12), the transfer function
can be expressed by

A, =099, B,=1, C, =0, D, =0.3978, E, =0.2, F, =0, (3.21)

where subscript r indicates the system matrices used to generate the reference
signal from a white noise input.
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3.5 Example 5

A multiple input multiple output system is given by

1.5 1.0 0.1 007 0.0 0.1
A=|-07 00 01 |,B=|0 1|,C=]01 0 |,
0 0 085 10 0 02
30 —0.6 0 0
p= [0 0] po [0 0], 520

Input 1 is used to control output 1 using a Pl-controller with K, = 0.02 and
T; = 2. Input 2 is used to control output 2 using a PI-controller with K, = —0.02
and T; = 2. The PlI-controllers used to control the outputs are given by Equations

(3.2) and (3.3). The process noise variance used is E(9;0}) = [ 0'%01 0 801 }
and the measuring noise variance used is E(w,w]) = 0.001 0 Time
Pk 0 0.0005 |

series are generated of N=1000 discrete data points, kK =0,1,..., N — 1.
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Chapter 4

Classic Subspace Identification

Before the specific projections used in subspace identifications methods are pre-
sented some frequently used notation and definitions have to be presented.

Definition 4.1 (Hankel matrix) Given a (vector or matriz) sequence of data
StERnrxnCvt:0,1,2,...,t0,t0—|—1,..., (41)

where nr is the number of rows in s; and nc is the number of columns in sy.
Define integer numbers ty, © and K and define the matriz S; as follows

St0 Sto+1  St0+2 cee o S0+K-—1
def | Sto+1  Swo+2  St043 .- St0+K ,
i inrx Kne
Stli = : : : . : eR (4.2)
Sto+i—1  Sto+i  Sto+i+1 - - - St0+i+K—2

which is defined as a Hankel matriz because of the special structure. The integer
numbers ty, © and K are defined as follows

e ty start index or initial time in the sequence sy which is the upper-left block
in the Hankel matriz.

e i is the number of nr-block rows in Syy;.

o K is the number of ne-block columns in Sy|;.

The elements, are constant across the anti-diagonals in the Hankel matrix and
are symmetrical along the diagonal. The Hankel matix is not symmetrical when
it is rectangular. Vector sequences are used in subspace system identification.
Then s; is a vector nc=1. Consider the measured process outputs, i, € R™, and
possibly known inputs, u; € R". Given a number ¢ known output vectors and
a number ¢ known input vectors the extended output vector Equation (4.3) and
the extended output vector Equation (4.4) can be made

17
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Yk

def |  Yk+1

Ykli = c R™ (4.3)

Yk+i-1 |

Uk

d U .
Ui fef T erm, (4.4)

Uk+i—1 |

In similar ways extended data matrices can be defined. Define the following
output data matrix with ¢ block rows and K columns.

Yk Ye+1  Ye+2 -+ Yk+K-1
de Ye+1  Yk+2 Yk Yk+ K .
Yiji kef ’ N .+3 . ! € R K (4.5)
Yk+i-1 Yk+i Yk+i+1l -+ Yk+itr K2

Define the following input data matrix with ¢ block rows and K columns.

Uk Uk+1  Ug+2 --. UgtK-—1
def | Uk+1  Uk42  Uk43 ... Uk+K '
K
Ui = . : . , e R"™ (4.6)
Uk4i—1  Uk4+i Uktit1 -+ UkpitK—2

The extended data matrix Yy; is a known data matrix of output variables. The
extended data matrix Uy); is a known data matrix of input variables.

Associated with the state space model Equations (2.11) and (2.12), the following
definitions are introduced

e The extended observability matrix (O;) for the pair (D, A) is defined as

D
DA .
0; def : e R (4.7)
DAifl

where the subscript i denotes the number of block rows.
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e The reverse extended controllability matrix C¢ for the pair (A, B) is defined
as

(o5 d:ef

)

[A™'B A"™?B ... B]eR™" (4.8)
where the subscript ¢ denotes the number of block columns.

e The reverse extended controllability matrix C{ for the pair (A, C) is defined
as

Cs d:ef[Ai—lo A0 .. C) e R (4.9)

)

where the subscript i denotes the number of block columns.

e The lower block triangular Toeplitz matrix (H¢) for the quadruple matrices
(D, A, B, E) is defined as

[ E 0 0 . 0]
DB E 0 ... 0
ni® | paB DB E ... 0| ermxG-0r (410)
| DA?B DA™*B DA-'B ... B |

where the subscript ¢ denotes the number of block rows and i — 1 is the
number of block columns.

e The lower block triangular Toeplitz matrix (H?) for the quadruple matrices
(D, A,C, F) is defined as

F 0 0 ... 0
DC F 0 ... 0
H d:ef DAC DC F o 0 [ e RimXim o (4.11)

i DA=2C DA3C DA—*C ... F |
where the subscript ¢ denotes the number of block rows and i — 1 is the
number of block columns.

Estimation of the extended observability matrix Opy; and the system order n
from the column space of a known data matrix is the first step in subspace
identification algorithms. The idea is to estimate Oy, by computing a special
projection matrix from known data. When Op, is estimated the system matrix
A can be found using the shift invariant property, Di Ruscio (1995).
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4.1 DSR

In this section the basic equations in DSR will be presented. The subspace system
identification of the Kalman filter performed in DSR will not be treated. The
theory can be found in Di Ruscio (2003a) and Di Ruscio (2004).

4.1.1 The parameters to be chosen in DSR

In DSR there are four parameters g, n, L and .J that can be chosen by the user.
If the structure parameter ¢ is 1, which is the default in DSR, the data matrix E
in the state space model is identified. If g is set to zero, the matrix E is forced to
be the zero matrix. Parameter n specifies the model order. Parameter L is the
number of block rows in the extended observability matrix. L can be interpreted
as the identification horizon used to predict the number of states. This again lim-
its the maximal system order which can be identified. The order must be chosen
in the interval 1 < n < L -m, where m is the number of outputs. Parameter .J
is the number of time instants in the past horizon which is used for defining the
instrument variable matrix which are used to remove noise.

The experience so far in open loop cases is that the parameter L should be chosen
to be as small as possible in order to reduce the variance of the estimates. This is
especially important in case of poorly excitating input signals. Choosing a large
numeric value for the parameter .J improves the estimates of the Kalman filter
gain. The parameter .J is usually chosen as J = L or J = L + 1. It is normally
not crucial which of these two alternatives are chosen.

4.1.2 The Extended State Space Model, elimination of
the states

The state space model Equations (2.11)-(2.12) contains the states. By using the
fact that the Extended Output Matrix Equation can be written as follows:

Vi = Or Xy + HiUgjr4g-1 + Hi By (4.12)
where
de
X Zf [l‘k Thyl .- l‘k,+[{_1] e RVK (413)

it is possible to get an expression where the states are eliminated. By replacing
the index k& by £+ 1 in Equation (4.12) and using the equations in the state space
model Equations (2.13)-(2.14) and finding an expression for X from Equation
(4.12) we get the Extended State Space Model (ESSM). The ESSM is given by

Yiqir = ALYML + BLUk|L+g + éLEk|L+1 (4.14)
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where
i @ 0,4(070.)7'0F = 0,40] € R (41
B, Y (0,8 HY - AH 0] € RV EH0r (4.16)
& Y 0,0 HY) - ALHY O] e REVWHIML (417)

Note that when the states are eliminated the number of unknowns is reduced.

4.1.3 Relationship between past and future data matrices

By using the Extended Output Matrix Equation (4.12) with index k replaced by
index J and using the following relation between future states X; and historic
states X

X;=A"Xy + CUy 5 + C5Ep) s (4.18)

it is possible to eliminate X ;. X, can then be eliminated by rewriting the Ex-
tended Output Matrix Equation (4.12) with index k replaced by index 0. By
using these properties we get

U
Yy = [HY,, PY., Al Uor | +1H3 Pi] | P ] g
seer = [Hp o Pryy Az 017 +[Hip Prl Eo s (4.19)
Yoz

which shows the relationship between past and future data matrices where

def

Ai—l—l == OL+1AJOT] (420)

P, Yot - a700 (4.21)
de

P Y oua(cs - a0l (4.22)

4.1.4 The projections used in DSR

There are two ways to explain the choice of projections in DSR. One is by consid-
ering the Extended State Space Model Equation (4.14). The other is presented
here, considering the relationship between past and future data matrices Equa-
tion (4.19).

The terms defined by the future inputs and future noise, H}fHUﬂLH and Hj Ejyr41
respectively, do not have the same column space as the extended observability
matrix. Therefore, these terms have to be removed. To do this future outputs
are projected onto the matrix of instrumental variables to remove the effect of
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future noise, F;;4;. The instrumental variables have to be uncorrelated with
the future noise Ej ;.1 and sufficiently correlated with the informative part in
the ESSM in order not to destroy information about the system order, for in-
stance. An intuitive choice of instrumental variables are past data (past inputs
and outputs). This choice ensures that the instruments are sufficiently correlated
with the informative part of the signals and sufficiently uncorrelated with future
noise. If only past inputs are used as instruments only the deterministic part
of the model can be identified, Verhaegen (1994). By incorporating past out-
puts as instruments the stochastic part of the model can be identified too. The
instrumental variables used in DSR are

Uos | - (4.23)

Projecting Equation (4.19) onto Equation (4.23) gives

Ujln+g . P Ujln+g
YJ\L+1/ UOIJ = [HL-H PL+1 AL-H] UOIJ
[ Yois J { Yois J
UJ|L+g
+ Pl Eogy| Uys | +dE; (4.24)
Yo
where
d@f UJ|L+g
dE1 - Hz+1EJ|L+1/ U0|] . (425)
Yo

The error term Equation (4.25) turns to zero when K turns to infinity. Rear-
ranging Equation (4.24) and get

Uo|s
Usrsg P Yo
YJ\L+1/ Uojs = [PL+1 Al PLS+1] UJL+g
Yo You/ | Uy
Yoir
+ H}, Uy +dE;. (4.26)
By using the projection
Uinrg = Tioxx = Ul gUiiagUl 11 g) UkiLg (4.27)

the effect of future inputs Ujz4,4 is removed and
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Uo|s
UsLtg ; J Yo N
(Yoiz41/ Uoys )UJ|L+g [Py Az Pryd] UsiL+g Uliz+g
Yoir Yos/ | Uy
Yors
+ dE, (4.28)
where
de
dE, lef dEUgL, (4.29)

The error term Equation (4.29) turns to zero when K turns to infinity just like
Equation (4.25) if U144 is uncorrelated with £z 4;.

4.1.5 The extended observability matrix

As mentioned in Chapter 4 the estimation of the extended observability matrix
Ory1 and the system order n from the column space of a known data matrix
are the first step in subspace identification algorithms. The idea is to estimate
Or.4+1 by computing a special projection matrix from known data. When Oy, is
estimated the system matrix A can be found using the shift invariant property,
Di Ruscio (1995). Considering Equation (4.28) together with Equations (4.20)-
(4.22) it is clear that the left-hand side of Equation (4.28) is proportional to the
extended observability matrix. Then left-hand side of Equation (4.28) is such a
special projection matrix. Defining the left-hand side of Equation (4.28) gives

def Usir+g N
Ziper = Yo/ | Uop DUjjpg (4.30)
Yo

ZjL+1 is related to the extended observability matrix as

ZJ\L+1 = OL+1X3 (431)
where
Yoir
adef JNOT d It pd s JN T rrs U0|J L
xe Y a0t ¢t — ATOTHE 03 — ATOTH?) Usinrg | | Uinsfd32)
Eos/ | Uos

Yo
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The column space of the matrix Z; ;4 coincides with the column space of the
extended observability matrix Op 1. The system order n of the state space model
is given as the dimension of the column space. X§ can be interpreted as a state
sequence of an autonomous system. The rank of Z; 1, is equal to the rank of
X% when the pair (A, D) is observable.

An alternative expression of X9 is

UJ\L-;—g
Xo/ UO\J
Yo
Xe=[47 04 O3] Uo\s UliL g (4.33)
UJ\LJrg
E0|J/ UO\J
Yoz

The expression relates X% to the reverse extended controllability matrix C'¢ for
the pair (A, B) and the reverse extended controllability matrix C'% for the pair
(A, C). Tt is stated that rank(X9) = n if

e the pair (A, [B, C]) is controllable,

e the state X is sufficiently correlated with the instruments (past inputs and
outputs) Up|; and Yy,

e the input is persistently exciting with a sufficient high order,

e the past noise Ey; is sufficient correlated with the instruments (past inputs
and outputs) Uy ; and Y.

In the DSR software the system matrices are computed using QR-decomposition.
The principal methods to estimate the system matrices are presented in the next
section.

4.1.6 The basic steps in the DSR algorithm

1. Calculate the orthogonal projections

UJ\L-i—g
Ziw= e/ | Uy VUi, (4.34)
Yoir
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and

UJ\LJrg
Zyp = Y/ | Uopy )UJL‘LJFQ (4.35)
Yoz

satisfying the autonomous matrix equation
Ziy = ALZJ|L (4.36)

where the positive integer parameters L and .J are given.

. Find the system order, n

Compute the Singular Value Decomposition (SVD)
Zyr, =USVT (4.37)

where, U € RLmxLm G ¢ RLmx(m+1) and V' e R™H7)x(m41) are given by

Sy 0

U:[Ul U2] S:|:0 52

] V- v (4.38)

where, S, € R and n is the number is the number of "non-zero” singular
values of Z; 1, which is equal to the system order. The system order, n,
is determined by inspection of the diagonal elements of S or SST and is
equal to the number of "non-zero” elements. The term US>V, represents
the error by estimating the system order as the n first principal singular
values.

. The extended observability matrix O, for the pair (D,A)

The (extended) observability matrix can be taken directly as the first left-
hand part in U, i.e U;. Then we have

Op=U(1:Lm,1:n)="U,. (4.39)

. The system matrix A

The system matrix A can be computed from

-1

S _
A=0]Z;V { 5 ] = U ZynVAS; (4.40)
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5. The system output matrix D

The matrix D can be computed as the m x n upper sub-matrix in the
observability matrix Oy, like

D=U(l:m,1:n).

(4.41)
6. The extended system matrix A;
This is computed from
Ap = 0LAOY0L) PO = Z; L ViS, tUT. (4.42)
7. The system matrices B and E
Define
UL
de |L+g
251111 —fYJ+1\L/ Uoys (4.43)
Yoir
The matrix can be partitioned into the matrices Z§+1\L and Z§|L which
satisfy the deterministic model
25 = ALZ?\L + BrUj|n4g- (4.44)
Define from the linear Equation (4.44)
def -
v pu (4.45)
where
de <
y :f ZLt]l+1‘L - ALZ;I‘L (446)
de
124 / UjiL+g- (4.47)

Solve the least squares problem

min ||y — By (B, E)JU|[%. (4.48)
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8. Compute the Kalman filter gain
The Kalman filter gain is not found by solving a Riccati equation, but by
projections. The theory can be found in Di Ruscio (2003a) and Di Ruscio
(2004).

Note that it may be difficult to estimate the system order as the non-zero or large
singular values of the matrix Zj;, when the signal-to-noise ratio is "small”. Very
often both physical knowledge about the process and validation have to be used
to find the correct model order.

4.2 NA4SID

The basic steps in the robust version of N4SID, Van Overschee and De Moor
(1996) are presented here. The notation introduced by Di Ruscio (1995)-(2004)
will be used. Note that compared to DSR, it is not possible to choose the past
horizon to be different from the future horizon. Comparing the notation used
in the description of DSR and N4SID ¢ = L + 1, this because N4SID does not
have the structure parameter g like DSR. Hence the smallest ¢ to be chosen in
N4SID to identify a first order system is 2, unlike DSR where smallest value of
the parameter L to be used for a first order system is 1.

1. Calculate the oblique and orthogonal projections

U
Opy1 = YL+1\L+1/UL+HL+1 [ Ys:z: ] ; (4.49)
[ U0|L+1 -|
Zrsyr+r = Yoo/ Yoir41 ; (4.50)
[ Ury1jn+1 J
UO\L+2
Zpvor = Yoo/ | Yorse |- (4.51)
ULt2|L

2. Calculate the SVD of the so-called weighted oblique projection
which actually is one oblique projection and one orthogonal projection

OpUp iy =USVT. (4.52)

The projection UL{FHLJrl is not included in the original version of N4SID,
but is added later in the robust version to remove the effect of future inputs
on future outputs.

3. Determine the system order
by inspecting the singular values in S and partition the SVD to obtain U,
and S;.
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. Calculate O, and Oy,

OL+1 - Ulsf, (453)
OL == OL+1(1:Lm,:). (454)

. Solve the set of linear equations for A and D

Wi =[5]o ]
= O;. Zp+1 — KU + 4.55
{ Yo p | Yi+a14ra L+1|L+1 0 (4.55)

where

def

E 0] -DO},Hi.,

. Recompute Oy, and Oy, from A and D

. Solve B and E from

. [olz A
B, E = arg min|| { ;Lif ] — { D ] 0L Zp 1 — K(B, B)Upyyp41|%4.57)

. Compute the covariance matrices (), S and R as

ERAEE IS (4.58)

where by definition

E;(e) def lim (o). (4.59)

J—00

. Compute the Kalman filter gain

A Riccati equation is solved to compute the Kalman filter gain.

A more detailed description of the N4SID algorithm can be found in Van Over-
schee and De Moor (1996). The implementation of N4SID algorithm is based on
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QR-decomposition just like DSR.

The main differences between the robust N4SID algorithm and DSR is that the
computation of the extended observability matrix is done by one oblique pro-
jection and one orthogonal projection in N4SID but in DSR only orthogonal
projections are used. In N4SID, the Kalman filter gain is found by solving a
Riccati equation. In DSR, projections are used in such a way that there is no
need for solving Riccati equations to compute the Kalman filter gain, Di Ruscio
(2003a).

The implementation of the robust N4SID done in the Matlab script subid.m.,
Van Overschee and De Moor (1996), differs from the N4SID implemented in
Matlab 6.5. The implementations in Matlab 6.5 are an improvement. Therefore
when methods are compared, the N4SID implementation in Matlab 6.5 will be
used, even though it is not clear which modifications have been done. The only
exception is in Section 4.4 where the different projections are compared. There
the implementation of the robust N4SID, subid.m, is used, Van Overschee and
De Moor (1996).

4.3 Error-in-variable based subspace identifica-
tion

Subspace identification methods have also been presented that are supposed to
work on systems operating in open loop and in addition handle error-in-variable
(EIV) problems and systems operating in a closed loop. Here these kinds of
methods will be referred to as EIV-based subspace identification methods. The
reason for this name is that the EIV property is one of the main goals when
the projections are chosen. The only one of these methods which is presented
here is the Subspace based Identification using instrumental Variables (SIV) by
Gustafsson (2001). The paper only handles the estimation of the extended ob-
servability matrix. SIV is an improvement of the MOESP variant proposed by
Chou and Verhaegen (1997) which is supposed to be applicable to a closed loop
and error-in-variable identification in addition to the open loop case.

In subspace identification, [Ug), YT, UJ,,,]" is considered a good choice of in-
strumental variable matrix. But both Chou and Verhaegen (1997) and Gustafs-

son (2001) choose to use [Ug; Yif;]". The argument by Gustafsson (2001) is that

when the future inputs UJT‘ r+1 are included in the instrumental variable matrix

the influence of noise does not vanish when the number of samples tend towards
infinity in the EIV case. The reason for this is that the noise on the input
is correlated to the the other noise terms on the states and the outputs. This
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choice of instrumental variable is applicable to systems operating in a closed loop,
Chou and Verhaegen (1997), assuming that the controller is causal, that there is
at least a delay in the controller and that the closed loop is asymptotically stable.

The following presentation of the SIV estimate of the extended observability
matrix is done using the notation in Di Ruscio (1995)-(2004). The projection is
given by

U T 7+
7 —-Y 0l U 0} W 4.60
J|L+1 J|IL+1 [ Yoz ] [ J|IL+1 Yoz R ( )

where W5 is a weighting matrix which has to have full rank. It is also shown
that in the SIV framework the weighting matrix W can be removed and replaced
by a ”pre-whitening” of the instrumental variable matrix. This means that the
matrix [Ug; Yif;]" has to be replaced by

™ -
sl
Yoir Yo
This ”pre-whitening” of the instrumental variables is the difference between the
algorithm by Chou and Verhaegen (1997) and Gustafsson (2001).

M

{ Yous ] : (4.61)

Yo

When SIV is used in the succeeding sections an implementation of the following
steps is used

1. Calculate the orthogonal projection

3| Uys g
Zyp+1 = Yo | Bpp You

where

def Uo|s } [ Uols ]T
R, = . 4.63
| [ (4.63)

2. Calculate the SVD of 7,

Zr =USVT, (4.64)

3. Determine the system order by inspecting the singular values in S and
partition the SVD accordingly to obtain U; and S
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4. Calculate Oyp

OL+1 - Ul. (465)

5. The system matrix A
The system matrix A can be computed from

A=0p(1:Lm,) Opp(m+1:(L+1)m,:) (4.66)

using the shift invariance properties of Op ;.

4.4 Test of Projections

In this section the quality of the projections used in DSR, N4SID and SIV will be
compared to the estimates found by using the Prediction Error Method (PEM)
implemented in Matlab 6.5. To do this, there will be a comparison of the abil-
ity to estimate the eigenvalues of the system presented in Section 3.1 from data
from Monte Carlo simulations. All the projections are implemented by using the
definitions. The state transition matrix A is found by using the shift invariance
properties of the extended observability matrix. The system order n = 2 and the
fact that the matrix E is the zero matrix is assumed known. PEM is used with
default parameters and nk = 1. The horizons chosen in the rest of the methods
are those that minimize the Squared Eigenvalue Error criterion, V!, in each case.

A (Pseudo Random Binary Signal) PRBS of length N is constant for a random
interval of T samples. The random interval 7" is bounded by a specified band,
Thin <= T <= Ty With 7high frequent” PRBS it means that the signal
changes rapidly. With "low frequent” PRBS it means that the signal changes
slowly, here T,,;, = 250 and T},,. = 300 are chosen. To illustrate the noise level
the ”low frequent” PRBS signal used as input, u; is plotted in Figure 4.1 with

the corresponding output, y, for one particular noise realization.

DSR is used with ¢ = 0, L = 5 and J = 6 to estimate the eigenvalues when u;,
is used as input on the system operating in an open loop . N4SID is used with
a horizon that corresponds to L = 5 and g = 0. SIV is used with horizons that
corresponds to L =8, J =9 and g = 0.

The eigenvalue estimates shown in Figure 4.2 indicate that there is no reason to
state that the projections used in N4SID are superior to the ones used in DSR.
Therefore, so far in the open loop case, there is no argument to use the oblique
projection used in N4SID instead of the orthogonal projection used in DSR. SIV
gives unbiased estimates like N4STID and DSR with open loop data, but there
is marginally larger variance. The crucial test is the test on closed loop data.
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Figure 4.1: Input u,, and corresponding output y, for Example 1, Section 3.1.
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Figure 4.2: FEigenvalue estimates from a Monte Carlo simulation using a low
frequent PRBS, uy, as input signal in Example 1, Section 3.1.
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Then the signal introduced earlier as u, is used as reference. Figure 4.3 shows
the reference 7, and corresponding input u; and output yy.

1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

1 1 1 1 1 1 1 1
o 100 200 300 400 500 600 700 800 900 1000

i i i i i i i i i
6] 100 200 300 400 500 600 700 800 900 1000
Discrete time

Figure 4.3: Reference r; and corresponding input u;, and output y, for Example
1, Section 3.1.

DSR is used with ¢ =0, L =4 and J = 5 to estimate the eigenvalues when r} is
used as reference for the system operating in a closed loop. N4SID is used with
a horizon that corresponds to L =5 and g = 0. SIV is used with horizons that
corresponds to L = 5, J = 6 and g = 0. The eigenvalue estimates are shown in
Figure 4.4.

Even though the estimates from SIV do not have noticeable larger bias than
N4SID or DSR the variance is considerable when r} is used as reference for the
system operating in a closed loop. To check if the problem is that the reference
signal does not have high enough order of persistent excitation a white noise se-
quence with unit variance is used as reference in the closed loop system. The
estimated eigenvalues shown in Figure 4.5 are found by using DSR with g = 0,
L =4 and J = 5. N4SID is used with a horizon that corresponds to L = 5 and
g = 0. SIV is used with horizons that correspond to L =5, .J =6 and g = 0.

There is quite an improvement in the eigenvalue estimates presented in Figure
4.5 compared to Figure 4.4. Now all the methods are unbiased, but still SIV has
estimates with much larger variance than the rest. All methods have estimates
with reduced variance. What will happen when the process noise and measure-
ment noise are 50 times higher? The eigenvalue estimates in this case are shown
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Figure 4.4: Eigenvalue estimates from a Monte Carlo simulation using a low
frequent PRBS, r}, as reference signal in the closed loop system, Example 1,
Section 3.1.
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Figure 4.5: Eigenvalue estimates from a Monte Carlo simulation using a white
noise sequence with unit variance as reference signal in the closed loop system,
Example 1, Section 3.1.
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in Figure 4.6.

MA) PEM MA) DSR
0.5 : : 0.5 :
ﬁ ot
0 o
X
x
-0.5 -0.5
0.6 0.8 1 1.2 0.6 0.8 1 1.2
A(A) N4SID AMA) SIV
0.5 ‘ : 0.5

ﬁ fﬁwii—g 5.

0 0 &% 5 X;( X%
e XX X Xos ™ x
% PR
X335 XX =
% % =
x X
-0.5 -0.5 x
0.6 0.8 1 1.2 0.6 0.8 1 1.2

Figure 4.6: Eigenvalue estimates from a Monte Carlo simulation using a white
noise sequence with unit variance as reference signal in the closed loop system
when the noise level is increased 50 times, Example 1, Section 3.1.

The estimated eigenvalues shown in Figure 4.6 are found by using DSR with
g=0,L==6andJ=7. N4SID is used with a horizon that corresponds to L =7
and g = 0. SIV is used with horizons that correspond to L = 15, .J = 16 and
g = 0. All the methods give estimates with increased variance when the noise
level is increased. Now both N4SID and DSR have got a small bias. SIV gives
estimates with a considerable bias and variance.

The simulations so far have shown that the EIV-based subspace identification
method SIV might be used like N4SID or DSR in open loop cases. In closed
loop cases SIV is not applicable even though the opposite is stated, and shown,
by Chou and Verhaegen (1997) and Gustafsson (2001). One problem is that the
assumption that the number of samples N — oo, but the data sets will always
be finite. The requirement to persistence of excitation of the input signal is not
clear either. But the fact that the term ULLJFHLJrl is "missing” as a projection
indicates that the method will require white noise as a reference. This is similar
to the comments by Di Ruscio (2003a) on the N4SID and the robust version of

N4SID.

Since no reason has been found to apply the oblique projection used in N4SID
instead of the orthogonal projections used in DSR, all further work will be based
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on the DSR algorithm. The simulations done in this section show that with rea-
sonable noise and an input signal with a high order of persistent excitation, like
white noise, both N4SID and DSR give unbiased eigenvalue estimates from these
finite closed loop data sets. Therefore it is interesting to evaluate how it is pos-
sible to improve the estimates when only signals with a low level of persistence
of excitations are available.

4.5 A lucky parameter choice

The example in Section 3.3, Example 3, is a single input single output system in-
troduced by Quin and Ljung (2003) to show that the PARSIM-E algorithm gives
consistent eigenvalue estimates with closed loop data. The goal in this section is
to show that when simulation results, like those in Quin and Ljung (2003), are
presented without the appropriate parameter settings for the algorithm it may
be suspected to be a lucky parameter choice, like the ones suggested later in this
section when using DSR.

A simulation with a PRBS (Pseudo Random Binary Signal) as reference is car-
ried out to get an indication of how much noise is superposed in the system. The
result is shown in Figure 4.7.

o zo00 aoco 600 800 1000 1200 1400 1600 1800 2000

o 200 aoo 600 s00 1000 1200 1400 1600 1800 2000

o zoo aoo 600 800 1000 1200 1400 1600 1800 2000
Discrete time

Figure 4.7: The reference signal, r2 and the corresponding input, u;, and output,
Yk, for a particular noise realization e;, Example 3, Section 3.3.

Figure 4.7 shows that the control system is not effective and there is very much
noise. Using the Gaussian white noise with variance 4 as reference and perform-
ing a Monte Carlo simulation with 20 runs we get the eigenvalue estimates shown
in Figure 4.8. The axes used are the same as in Quin and Ljung (2003).

Here DSR gives a bias that cannot be neglected. When the simulations are per-
formed in Quin and Ljung (2003) the parameter settings used in the method
are not presented. Knowing that the PARSIM-P algorithm by Quin and Ljung
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A PEM AA) DSR

Figure 4.8: The eigenvalue estimates from DSR with n = 1, ¢ = 0, L =1
and J = L + 1 when using a Gaussian white noise with variance 4 as reference,
Example 3, Section 3.3.

(2003) is biased for finite past horizon p it is chosen to use DSR with a larger .J,
in this case J = 250. The eigenvalue estimates are shown in Figure 4.9.

A PEM A DSR

Figure 4.9: The eigenvalue estimates from DSR with n =1, ¢ = 0,L = 1 and
J = 250 when using a Gaussian white noise with variance 4 as reference, Example
3, Section 3.3.

Now the bias is marginal, and hard to spot by visual inspection of Figure 4.9.

It has been stated by Di Ruscio (2003a) that using white noise as reference is not
necessarily an optimal experiment for DSR when used on open loop data sets.
With this in mind a search is performed to find a sinusoid signal with frequency w
and the corresponding parameters in DSR that minimize the Squared Eigenvalue
Error criterion, V!, when J = L + 1. When using DSR for identification, the
reference signal r, = sin(wk) with w = 0.4750 and the parameters n =1, g = 0,
L =10 and J = 11 minimize the Squared Eigenvalue Error criterion, V. The
eigenvalue estimates are shown in Figure 4.10.

In this case by choosing an appropriate sinusoid signal as reference together with
an optimal parameter choice the eigenvalue estimates from DSR are unbiased like
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Figure 4.10: The eigenvalue estimates from the Monte Carlo simulation using
rr = sin(wk) with w = 0.4750 as reference signal when PEM is used with n; =1
and default parameters and DSR is used withn=1,¢=0, L =10and J =11
for identification, Example 3, Section 3.3.

the estimates from PEM. Which is quite remarkable. What is even more remark-
able is that the variance of the eigenvalue estimates from DSR is smaller than
the ones from PEM. The choice of reference signals will be investigated further
in Section 4.6 together with the choice of parameter settings in DSR when used
on closed loop data.

When results are presented it is of great importance that the parameter setting
used are presented too. In addition, there ought to be an explanation of why
the parameter setting are chosen, alternatively how they are found. The Monte
Carlo simulations performed here consists of only 20 runs, which is the number
used by Quin and Ljung (2003). Normally if 100 runs are used in the Monte
Carlo simulations it is more likely to detect potential problems using the algo-
rithm. In addition to this it is troublesome that methods like PARSIM-E are
not implemented as software. Even though all the basic steps are presented in a
publication the performance of a Matlab script implemented using the available
publications is not guaranteed to work as well as the Matlab code used by the
authors.

4.6 Dithering signals to improve the estimates

It has to be examined if an external dithering signal used in the reference or
the input of a system operating in closed loop can lead to improved parameter
estimates. This idea is presented in Di Ruscio (2003a). To do this the ability to
estimate the eigenvalues of the system presented in Section 3.2 will be compared.
The estimates from DSR will be compared to estimates from PEM (Prediction
Error Method) in the system identification toolbox in Matlab 6.5. Dithering sig-
nals with little excitation will be used. With little excitation we do not only
mean little excitation in the sense of persistent excitation but also in the level
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of excitation. Throughout this section the stationary values in both inputs and
outputs will be removed prior to identification. Initial parameter estimates to
PEM are provided by using PEM on one extra initial run prior to the Monte
Carlo simulation. This section is based on Nilsen and Di Ruscio (2004a) and
Nilsen and Di Ruscio (2004b), and extended.

It is believed that DSR will be able to provide eigenvalue estimates with small
variance and reasonable bias which is comparable to PEM if the parameter set-
tings and the dithering signal are reasonable.

To get an indication of how much noise is superposed in the system, a simulation
with a constant reference of value one superposed a PRBS (Pseudo Random Bi-
nary Signal) is carried out. The noise level is considered to be reasonable. The
result is shown in Figure 4.11.

' i
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() 100 zoo 300 aoo s00 600 700 s00 200 1000
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Figure 4.11: The reference signal, r; and the corresponding input, u, and output,
Yk, for two particular noise realizations v, and wy, Example 2, Section 3.2.

4.6.1 Using a sinusoid signal as a dithering signal in the
reference

Closed loop eigenvalue estimates

A sinusoid signal with frequency w = 0.725 and with magnitude +0.1 is chosen
as a dithering signal. The reference at time instant k is given by:

ri =1+0.1-sin(wk). (4.67)

The system was simulated 100 times. The same reference was used each time but
the noise realization was changed each time. Figure 4.12 shows the estimated
eigenvalues from the Monte Carlo simulation. The linearized discrete system has
multiple poles, actually two real eigenvalues at 0.875. The parameters in DSR are



40 CHAPTER 4. CLASSIC SUBSPACE IDENTIFICATION

chosen as: n =2, g =0, L =11 and .J = 12. PEM is used with default parame-
ters and n; = 1. Figure 4.12 shows that by using an appropriate dithering signal
DSR can provide eigenvalue estimates comparable to PEM on data from a system
operating in closed loop. Both estimates are unbiased but DSR has the largest
variance on the imaginary part and PEM has the largest variance on the real part.
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Figure 4.12: Monte Carlo simulation using a constant reference superposed a
sinusoid signal as a dithering signal, 7} =1+ 0.1 - sin(wk) with w = 0.725, using
DSR withn =2, g =0, L =11 and J = 12 and PEM with default parameters
and ny = 1 for identification in Example 2, Section 3.2.

Table 4.1 contains the mean and the standard deviation (Std) of the eigenvalues
of the estimated system matrices from the Monte Carlo simulation when using
DSR. Table 4.2 contains corresponding data from PEM. The data in Table 4.1
and Table 4.2 support the conclusion from the visual inspection of Figure 4.12,
that DSR gives estimates which are comparable to PEM in this case.

Table 4.1: Mean and standard deviation from the Monte Carlo simulation using
a constant reference superposed a sinusoid signal as a dithering signal, r} =
1+ 0.1-sin(wk) with w = 0.725, and using DSR with n =2, ¢ =0, L = 11 and
J = 12 for identification in Example 2, Section 3.2.

‘ DSR ‘ Pole 1 ‘ Pole 2 ‘

[Re Im] [Re Im]
Mean | [0.8829 0.0118 ] | [0.8583 -0.0118]
Std [0.0119 0.0148] | [0.0152 0.0148]

The parameter estimates from DSR as a function of the prediction
horizon and the frequency of the sinusoid signal used as a dithering
signal in the reference

The experience so far in open loop cases is that the parameter L in DSR should
be chosen as small as possible in order to reduce the variance of the estimates.
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Table 4.2: Mean and standard deviation from the Monte Carlo simulation using
a constant reference superposed a sinusoid signal as a dithering signal, r} =
1+ 0.1 -sin(wk) with w = 0.725, and using PEM with default parameters and
ng, = 1 for identification in Example 2, Section 3.2.

‘ PEM ‘ Pole 1 ‘ Pole 2 ‘

[Re Im] [Re  Im]

Mean | [0.9033 0.0013] | [0.8405 -0.0013 ]
Std [0.0198 0.0035] | [0.0253 0.0035]

This is especially important in cases of poorly excited input signals. The param-
eter J is usually chosen as J = L or J = L + 1. It is normally not crucial which
of these two alternatives are chosen.

Related to this it is interesting to consider the quality of the parameter esti-
mates from DSR as a function of the frequency, w, of the dithering signal and the
identification horizon, L, in the algorithm when data is collected from a system
operating in a closed loop. The parameter .J is chosen as J = L + 1. The system
used is still the chemical reactor operating in the closed loop introduced in Sec-
tion 3.2. Now we do not only consider a Monte Carlo simulation at one frequency
but Monte Carlo simulations in 0.25 steps from 0.25 up to the Nyquist frequency,
which is the half of the sampling frequency. In order to evaluate the quality of
the estimated model parameters we choose to use a quadratic criterion on the
eigenvalues of the estimated model, the Squared Eigenvalue Error criterion, V1.

Figure 4.13 shows V! as a function of w and L. Each point in the figure is the
sum given by V! from a Monte Carlo simulation at a specific w with a specific L.

From Figure 4.13 it is obvious that the choice of w is the most crucial parameter.
Figure 4.13 shows that in this closed loop data set it is not favourable to choose
L as small as possible as in open loop cases.

Comparing the parameter estimates from DSR and PEM as functions
of the frequency of the sinusoid signal used as a dithering signal in the
reference

In Figure 4.14, PEM and DSR are compared as functions of w of the sinusoid
signal used as a dithering signal in the reference. DSR is used with L = 11 and
J = L+ 1. Tt has to be noted that DSR. is only comparable to PEM in a low
frequent area.
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Figure 4.13: The Squared Eigenvalue Error criterion, V!, as a function of w and
L when using a constant reference superposed a sinusoid signal as a dithering
signal, 73 = 1+ 0.1 - sin(wk), and DSR with n = 2, g =0 and J = L + 1 for
identification in Example 2, Section 3.2.

Alternative closed loop quality measures

Transforming the state space model to observable canonical form gives system
matrices with the following structure

A:[O 1],3:[6“]@:[1 0] (4.68)

Q21 A22 b2y

and E is still the zero matrix. The parameters to be estimated in the observable
canonical form are collected in a parameter vector

0= [agl 929 b11 bgl]. (469)
The true parameter vector is
0 = [—0.7656 1.7500 — 0.0010 — 0.0005]. (4.70)

In Figure 4.15 the estimated parameters in the parameter vector from DSR and
PEM are compared as a function of the runs in the Monte Carlo simulation. The
reference is given by Equation (4.67) with w = 0.725. DSR is used with the pa-
rameters n = 2, g =0, L = 11 and J = 12. The parameter estimates from DSR
all have small variance. The estimated parameters b;; and by; have a bias, which
also would have been detected if the estimated zeros had been considered. The
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Figure 4.14: The Squared Eigenvalue Error criterion, V!, as a function of w,
when using a constant reference superposed a sinusoid signal as a dithering signal
r3 =1+ 0.1 -sin(wk) in Example 2, Section 3.2, and the estimates from PEM
with default parameters and ny = 1, and DSR with n = 2, ¢ = 0, L = 11 and
J =12. PEM is illustrated by the solid line and DSR is illustrated by the broken
line.
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parameter estimates of as; and asy from PEM are characterized by large variance
compared to the estimates from DSR, which coincide with our observation of the
estimated eigenvalues. The mean and standard deviation of the parameters in
the parameter vector are listed in Table 4.3 and Table 4.4 for DSR and PEM,

respectively.
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Figure 4.15: The parameter vector, Equation (4.69), as a function of the runs in
the Monte Carlo simulation of Example 2, Section 3.2, using a constant reference
superposed a sinusoid signal as a dithering signal, 7} = 1 + 0.1 - sin(wk) with
w = 0.725, using DSR with n =2, ¢ =0, L = 11 and J = 12 and PEM with
default parameters and nj, = 1 for identification. PEM is illustrated by the solid
line, DSR is illustrated by the broken line and the true value is illustrated by the
dash dotted line.

Table 4.3: Mean and standard deviation from the Monte Carlo simulation of
Example 2, Section 3.2, using a constant reference superposed a sinusoid signal
as a dithering signal, 7§ =1+ 0.1 - sin(wk) with w = 0.725, and using DSR with
n=2,¢g=0,L=11and J = 12 for identification.

‘ DSR ‘ az1 ‘ a2 ‘ biy ‘ b1 ‘

Mean | -0.7580 | 1.7412 | -0.0013 | -0.0007
Std 0.0062 | 0.0066 | 0.0001 | 0.0001
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Table 4.4: Mean and standard deviation from the Monte Carlo simulation of
Example 2, Section 3.2, using a constant reference superposed a sinusoid signal
as a dithering signal, r} = 1+ 0.1 - sin(wk) with w = 0.725, and using PEM with
default parameters for identification.

‘ PEM ‘ Q21 ‘ a22 ‘ buy ‘ ba1 ‘

Mean | -0.7589 | 1.7438 | -0.0010 | -0.0005
Std 0.0167 | 0.0185 | 0.0001 | 0.0001

4.6.2 Using a PRBS as a dithering signal in the reference
Closed loop eigenvalue estimates

A PRBS (Pseudo Random Binary Signal) generated from idinput(IN,’prbs’,[0
B]) is chosen as dithering signal. This function is a part of the system identifica-
tion toolbox in Matlab. When choosing B = 0.15 in the idinput command line,
as we choose here, the signal is constant over intervals of length ﬁ (the clock
period). An increase in B will therefore give a signal with higher frequency. The
term higher frequency means that the signal is kept at respectively high or low
level for shorter periods of time, and therefore is changing more frequently. The

reference, R* € RV, at time instant 1 < k < N is generated by

R" = ones(N, 1) + 0.1 - idinput(N, prbs’, [0 B]). (4.71)

The system was simulated 100 times. The same reference was used each time but
the noise realization was changed each time. Figure 4.16 shows the estimated
eigenvalues from the Monte Carlo simulation. The linearized discrete system has
multiple poles, actually two real eigenvalues at 0.875. The parameters in DSR
are chosen as: n =2, ¢ =0, L = 11 and J = 12. PEM is used with default
parameters and n; = 1. Figure 4.16 shows that by using an appropriate PRBS as
a dithering signal DSR can provide an eigenvalue estimate comparable to PEM
on data from a system operating in a closed loop.

The mean and standard deviation are presented in Table 4.5 for DSR and Table
4.6 for PEM.

The parameter estimates from DSR as a function of the prediction
horizon and the frequency of the PRBS used as a dithering signal in
the reference

It is interesting to consider the quality of the parameter estimates from DSR
as a function of the frequency, B, of the dithering signal and the identification
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Figure 4.16: Monte Carlo simulation of Example 2, Section 3.2, using a con-
stant reference superposed a PRBS as a dithering signal generated from R* =
ones(N,1) + 0.1 - idinput(N, prbs’, [0 B]) with B = 0.2, using DSR with n = 2,
g =0, L =11 and J = 12 and PEM with default parameters and n, = 1 for
identification.

Table 4.5: Mean and standard deviation from the Monte Carlo simulation of
Example 2, Section 3.2, using a constant reference superposed a PRBS as a
dithering signal generated from R* = ones(N, 1) + 0.1 - idinput(N,’ prbs’,[0 B])
with B = 0.2, using DSR withn =2, g =0, L = 11 and J = 12 for identification.
‘ DSR ‘ Pole 1 ‘ Pole 2 ‘

[Re Im] [Re  Im]
Mean | [0.8878 0.0338] | [0.8751 -0.0338]
Std [0.01030.0223] | [0.0201 0.0223]

horizon, L, in the algorithm when data is collected from a system operating in a
closed loop. The parameter J is chosen as J = L + 1. The system used is still
the chemical reactor operating in a closed loop introduced in Section 3.2. Let us
not only consider a Monte Carlo simulation at one constant B, using idinput to
generate PRBS, but Monte Carlo simulations at 99 different frequencies. Actu-
ally 99 different B’s, 0.01 < B < 0.99. The Squared Eigenvalue Error criterion
V!, a quadratic criterion on the eigenvalues of the estimated model, is chosen to
evaluate the quality of the estimated model parameters.

Figure 4.17 shows V! as a function of B and L. Each point in the figure is the
sum given by V! from a Monte Carlo simulation at a specific B with a specific
L.

From Figure 4.17 it is obvious that the choice of B is the most crucial parameter
if the parameter L is chosen ”large enough”. This coincides with the observa-
tions made when a sinusoid signal was used as a dithering signal. Therefore the
rule for choosing the prediction horizon L in DSR when performing closed loop
identification will be to choose a horizon which is larger than when performing
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Table 4.6: Mean and standard deviation from the Monte Carlo simulation of
Example 2, Section 3.2, using a constant reference superposed a PRBS as a
dithering signal generated from R* = ones(N, 1) + 0.1 - idinput(N,’ prbs’, [0 B])
with B = 0.2, using PEM with default parameters and n; = 1 for identification.
‘ PEM ‘ Pole 1 ‘ Pole 2 ‘

[Re Im] [Re  Im]
Mean | [0.8903 0.0171] | [0.8590 -0.0171]
Std [0.0134 0.0210] | [0.0236 0.0210]

open loop identification.

Comparing the parameter estimates from DSR and PEM as functions
of the frequency of the PRBS used as a dithering signal in the reference

In Figure 4.18, PEM and DSR are compared when a PRBS is used as a dithering
signal in the reference. The criterion V! is plotted as a function of B, in idinput.
DSR is used with L =11 and J = L + 1. PEM is used with default parameters
and ny = 1. There is no specific frequency area where DSR is much poorer than
PEM. This differs from the case where a sinusoid signal was used as a dithering
signal where a low frequent signal ought to be chosen as a dithering signal.

Alternative closed loop quality measures

For the system in observable canonical form the parameters in Equation (4.69)
are considered with the values given by Equation (4.70). In Figure 4.19 the esti-
mated parameters in the parameter vector from DSR and PEM are compared as
a function of the runs in the Monte Carlo simulation. The reference is given by
Equation (4.71) with B = 0.2. DSR is used with the parameters n = 2, g = 0,
L = 11 and J = 12. The mean and standard deviation of the parameters in
the parameter vector are listed in Table 4.15 and Table 4.16 for DSR and PEM,
respectively.

Table 4.7: Mean and standard deviation from the Monte Carlo simulation of
Example 2, Section 3.2, using a constant reference superposed a PRBS as a
dithering signal, R* = ones(N, 1) + 0.1 - idinput(N,’' pros’, [0 B]) with B = 0.2,
and using DSR with n =2, ¢ =0, L = 12 and J = 13 for identification

‘ DSR ‘ a21 ‘ a22 ‘ b1y ‘ ba1 ‘

Mean | -0.7784 | 1.7629 | -0.0010 | -0.0005
Std 0.0157 | 0.0161 | 0.0001 | 0.0001
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Figure 4.17: The Squared Eigenvalue Error criterion, V!, as a function of B
and L when using a constant reference superposed a PRBS as a dithering signal,
R* = ones(N,1) + 0.1 - idinput(N,' prbs’, [0 B]) in Example 2, Section 3.2, and
DSR with n =2, g =0 and J = L + 1 for identification.

Table 4.8: Mean and standard deviation from the Monte Carlo simulation of
Example 2, Section 3.2, using a constant reference superposed a PRBS as a
dithering signal, R* = ones(N,1) + 0.1 - idinput(N,' prbs’, [0 B]) with B = 0.2,
and using PEM with default parameters and n; = 1 for identification.

‘ PEM ‘ az1 ‘ a2 ‘ biy ‘ b1 ‘

Mean | -0.7652 | 1.7492 | -0.0010 | -0.0005
Std 0.0142 | 0.0146 | 0.0001 | 0.0001

Now the parameter estimates from DSR are directly comparable to the estimates
from PEM. The most important difference from using a sinusoid as a dithering
signal is that the estimation of the parameters b;; and by; by DSR are now
unbiased. The reason for this is that the level of persistent excitation is increased.

4.6.3 Using a sinusoid signal as a dithering signal in the
input

The previous sections have shown that when using a dithering signal in the refer-
ence of a chemical reactor operating in closed loop, DSR gives unbiased eigenvalue
estimates if the parameter settings are reasonable. If the level of persistent exci-
tation is sufficiently high the estimates of the zeros are unbiased too. Therefore
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Figure 4.18: The Squared Eigenvalue Error criterion, V!, as a function of B,
when using a constant reference superposed a PRBS as a dithering signal R* =
ones(N,1) 4+ 0.1 - idinput(N,' prbs’, [0 B]) in Example 2, Section 3.2, and the
estimates from PEM with default parameters and n, = 1, and DSR with n = 2,
g =20, L =11 and J = 12. PEM is illustrated by the solid line and DSR is
illustrated by the broken line.
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Figure 4.19: The parameter vector Equation (4.69) as a function of the runs
in the Monte Carlo simulation of Example 2, Section 3.2, using a constant
reference superposed a PRBS as a dithering signal, R* = ones(N,1) + 0.1 -
idinput(N,' prbs’, [0 B]) with B = 0.2, using DSR with n =2, ¢ =0, L = 11 and
J =12 and PEM with default parameters and n, = 1 for identification. PEM is
illustrated by the solid line, DSR is illustrated by the broken line and the true
value is illustrated by the dash dotted line.
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it is interesting to consider the same system as used in the previous sections, the
system presented in Section 3.2, to investigate if the same results occur when a
constant reference is used and a dithering signal is added on the input.

Now the reference is a constant value given by
rp=1. (4.72)

To make it easier to compare the results, the same dithering signal will be used
as when the dithering signal is used in the reference. But to make the influence
of the dithering signal on the output approximately equal, the dithering signal
now has to be scaled by the inverse of the discrete DC gain. The discrete DC
gain is given by Equation (2.18) with z = 1. In this case H%(1) = 0.0160.

Closed loop eigenvalue estimates

A sinusoid signal with frequency w = 0.725 and with magnitude +6.25 is chosen
as a dithering signal. The dithering signal in the input at time instant £ is given
by

dU} = 6.25 - sin(wk). (4.73)

The system was simulated 100 times. The same reference and dithering signal in
the input was used each time but the noise realization was changed each time.
Figure 4.20 shows the estimated eigenvalues from the Monte Carlo simulation.
The parameters in DSR, are chosen as: n = 2, ¢ = 0, L = 11 and J = 12.
PEM is used with default parameters and ny = 1. Figure 4.20 shows that by
using an appropriate dithering signal on the input DSR can provide eigenvalue
estimates comparable to PEM on data from a system operating in closed loop.
Both methods give unbiased estimates. In this case DSR has smaller variance
than PEM. This was not the case in Section 4.6.1, when the dithering signal was
used in the reference, then DSR had the largest variance on the imaginary part
and PEM had the largest variance on the real part. Using the dithering signal
in the input of the system instead of in the reference does not affect the ability
of DSR to estimate the eigenvalues of the system. Regarding PEM, the variance
of the imaginary part of the eigenvalue estimates is increased when the dithering
signal is used in the input of the system instead of in the reference.

Table 4.9 contains the mean and the standard deviation (Std) of the eigenvalues
of the estimated system matrices from the Monte Carlo simulation when using
DSR. Table 4.10 contains corresponding data from PEM. The data in Table 4.9
and Table 4.10 support the conclusion from the visual inspection of Figure 4.20,
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Figure 4.20: Monte Carlo simulation of Example 2, Section 3.2, using a constant
reference, ry = 1, and the input superposed a sinusoid signal as a dithering signal,
dU} = 6.25 - sin(wk) with w = 0.725, using DSR with n =2, ¢ =0, L = 11 and
J =12 and PEM with default parameters and n; = 1 for identification.

that DSR gives estimates which are comparable to PEM, or slightly better, in
this case.

Table 4.9: Mean and standard deviation from the Monte Carlo simulation of Ex-
ample 2, Section 3.2, using a constant reference, rj = 1, and the input superposed
a sinusoid signal as a dithering signal, dU} = 6.25 - sin(wk) with w = 0.725, and
using DSR with n =2, ¢ =0, L = 11 and J = 12 for identification.

‘ DSR ‘ Pole 1 ‘ Pole 2 ‘

[Re Im] [Re Im]
Mean | [0.8827 0.0121 ] | [0.8585 -0.0121]
Std [0.0119 0.0151] | [0.0152 0.0151]

The parameter estimates from DSR as a function of the prediction
horizon and the frequency of the sinusoid signal used as a dithering
signal in the input

Like in Section 4.6.1 it is interesting to consider the quality of the parameter esti-
mates from DSR as a function of the frequency, w, of the dithering signal and the
identification horizon, L, in the algorithm when data is collected from a system
operating in closed loop. The parameter .J is chosen as J = L 4+ 1. Monte Carlo
simulations were performed in 0.25 steps from 0.25 up to the Nyquist frequency.
The Squared Eigenvalue Error criterion, V!, is used to evaluate the quality of the
estimated model parameters.

Figure 4.21 shows V! as a function of w and L. Each point in the figure is the
sum given by V! from a Monte Carlo simulation at a specific w with a specific L.
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Table 4.10: Mean and standard deviation from the Monte Carlo simulation of
Example 2, Section 3.2, using a constant reference, rp = 1, and the input super-
posed a sinusoid signal as a dithering signal, dU}! = 6.25-sin(wk) with w = 0.725,
and using PEM with default parameters and n, = 1 for identification

‘ PEM ‘ Pole 1 ‘ Pole 2 ‘

[Re Im] [Re  Im]

Mean | [0.8888 0.0177] | [0.8390 -0.0177 ]
Std [0.0210 0.0248] | [0.1220 0.0248]

Visual inspection of Figure 4.21 shows that it is similar to Figure 4.13. Therefore
the conclusion is the same. The choice of w is the most crucial parameter. Figure
4.21 shows, as in Figure 4.13, that in this closed loop data set it is not favourable
to choose L as small as possible as in open loop cases.

Comparing the parameter estimates from DSR and PEM as functions
of the frequency of the sinusoid signal used as a dithering signal in the
input

In Figure 4.22 PEM and DSR are compared as functions of w of the sinusoid signal
used as a dithering signal in the input. DSR is used with L =11 and J = L + 1.
It has to be noted that DSR is only comparable to PEM in a low frequent area,
just like when the dithering signal is used in the reference as shown in Figure 4.14.

Alternative closed loop quality measures

When the state space model of the system is transformed to observable canonical
form the parameters to be estimated can be collected in the parameter vector,
Equation (4.69), with the true value given by Equation (4.70).

In Figure 4.23 the estimated parameters in the parameter vector from DSR and
PEM are compared as a function of the runs in the Monte Carlo simulation.
The reference is given by Equation (4.72) and the dithering signal on the input
is given by Equation (4.73) with w = 0.725. DSR is used with the parameters
n=2¢g=0,L=11and J = 12.

Like in the case when the dithering signal is used in the reference, Figure 4.15,
the parameter estimates from DSR all have small variance. The difference is that
now the estimated parameters by; and by, are unbiased. The parameter estimates
of as; and ag from PEM are characterized by large variance compared to the es-
timates from DSR, which of course coincide with our observation of the estimated
eigenvalues. The mean and standard deviation of the parameters in the param-
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Figure 4.21: The Squared Eigenvalue Error criterion, V', as a function of w and
L when using a constant reference, 7} = 1, and the input superposed a sinusoid
signal as a dithering signal, dU} = 6.25 - sin(wk) in Example 2, Section 3.2, and
DSR with n =2, g =0 and J = L + 1 for identification.

eter vector are listed in Table 4.11 and Table 4.12 for DSR and PEM, respectively.

Table 4.11: Mean and standard deviation from the Monte Carlo simulation of
Example 2, Section 3.2, using a constant reference, rp = 1, and the input super-
posed a sinusoid signal as a dithering signal, dU} = 6.25-sin(wk) with w = 0.725,
and using DSR with n =2, ¢ =0, L = 11 and J = 12 for identification.

‘ DSR ‘ az1 ‘ a2 ‘ biy ‘ b1 ‘

Mean | -0.7580 | 1.7412 | -0.0011 | -0.0006
Std 0.0062 | 0.0066 | 0.0001 | 0.0000

4.6.4 Using a PRBS as a dithering signal in the input

When a sinusoid signal was used as a dithering signal in the reference the eigen-
value estimates from DSR were unbiased and the estimates of the zeros were
biased. If a PRBS is used as a dithering signal in the reference instead, the es-
timates of the eigenvalues and the zeros are unbiased. When a sinusoid signal is
used as a dithering signal in the input the estimates of the eigenvalues and the
zeros are unbiased. Therefore it is interesting to investigate if using a PRBS as
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Figure 4.22: The Squared Eigenvalue Error criterion, V!, as a function of w, when
using a constant reference, r; = 1, and the input superposed a sinusoid signal
as a dithering signal, dU} = 6.25 - sin(wk) in Example 2, Section 3.2, and the
estimates from PEM with default parameters and n, = 1, and DSR with n = 2,
g =0, L =11and J = 12. PEM is illustrated by the solid line and DSR is

illustrated by the broken line
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Figure 4.23: The parameter vector, Equation (4.69), as a function of the runs in
the Monte Carlo simulation of Example 2, Section 3.2, using a constant reference,
r? = 1, and the input superposed a sinusoid signal as a dithering signal, dU} =
6.25 - sin(wk) with w = 0.725, using DSR with n = 2, ¢ = 0, L = 11 and
J =12 and PEM with default parameters and n, = 1 for identification. PEM is
illustrated by the solid line, DSR is illustrated by the broken line and the true
value is illustrated by the dash dotted line.
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Table 4.12: Mean and standard deviation from the Monte Carlo simulation of
Example 2, Section 3.2, using a constant reference, rp = 1, and the input super-
posed a sinusoid signal as a dithering signal, dU}! = 6.25-sin(wk) with w = 0.725,
and using PEM with default parameters for identification.

‘ PEM ‘ Q21 ‘ a22 ‘ buy ‘ ba1 ‘

Mean | -0.7472 | 1.7278 | -0.0011 | -0.0005
Std 0.1077 | 0.1285 | 0.0001 | 0.0001

the dithering signal in the input will reduce the variance compared to when a
sinusoid signal is used as the dithering signal in the input.

Closed loop eigenvalue estimates

The reference is still given by Equation (4.72) but the dithering signal on the
input, dU? € RV, at time instant 1 < k& < N is generated by

dU? = 6.25 - idinput(N, prbs’, [0 B]). (4.74)

The system was simulated 100 times. The same reference and dithering signal on
the input was used each time but the noise realization was changed each time.
Figure 4.24 shows the estimated eigenvalues from the Monte Carlo simulation.
The parameters in DSR are chosen as: n =2, g =0, L =11 and J = 12. PEM
is used with default parameters and n, = 1. Figure 4.16 shows that by using an
appropriate PRBS as the dithering signal, DSR can provide eigenvalue estimates
comparable to PEM on data from a system operating in a closed loop, but the
variance in the eigenvalue estimates from DSR is not reduced compared to when
a sinusoid signal is used as the dithering signal in the input, Figure 4.20.

The mean and standard deviations are presented in Table 4.13 for DSR and Table
4.14 for PEM.

The parameter estimates from DSR as a function of the prediction
horizon and the frequency of the PRBS used as the dithering signal in
the input

Like in Section 4.6.1 it is interesting to consider the quality of the parameter
estimates from DSR as a function of the frequency, B, of the PRBS used as the
dithering signal and the identification horizon, L, in the algorithm when data is
collected from a system operating in a closed loop. The parameter .J is chosen
as J = L+ 1. Monte Carlo simulations at 99 different frequencies are performed
with 0.01 < B < 0.99. The Squared Eigenvalue Error criterion, V!, is used to
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Figure 4.24: Monte Carlo simulation of Example 2, Section 3.2, using a constant
reference, r; = 1, and the input superposed a PRBS as the dithering signal
generated from dU? = 6.25 - idinput(N, prbs’,[0 B]) with B = 0.2, using DSR
withn =2, ¢ =0, L =11 and J = 12 and PEM with default parameters and

ng = 1 for identification.

Table 4.13: Mean and standard deviation from the Monte Carlo simulation
of Example 2, Section 3.2, using a constant reference, r; = 1, and the in-
put superposed a PRBS as the dithering signal generated from dU? = 6.25 -
idinput(N,' prbs’, [0 B]) with B = 0.2, using DSR withn =2, ¢ =0, L = 11 and
J = 12 for identification.

‘ DSR | Pole 1 ‘ Pole 2 ‘

[Re Im] [Re Im]
Mean | [0.8865 0.0349] | [0.8748 -0.0349)]
Std | [0.0111 0.0239] | [0.0170 0.0239)]

evaluate the quality of the estimated model parameters.

Figure 4.25 shows V! as a function of w and L. Each point in the figure is the
sum given by V! from a Monte Carlo simulation at a specific w with a specific L.

Figure 4.25 shows that the choice of B is the most crucial parameter if the param-
eter L is chosen ”large enough”, just as when a PRBS is used as a dithering signal
in the reference Figure 4.17. This coincides with the observations made when a
sinusoid signal was used as a dithering signal. Therefore the rule for choosing the
prediction horizon L in DSR when performing closed loop identification will be to
choose a horizon which is larger than when performing open loop identification.

Comparing the parameter estimates from DSR and PEM as functions
of the frequency of the PRBS used as a dithering signal on the input

In Figure 4.26, PEM and DSR are compared as functions of B of the PRBS used
as a dithering signal on the input. DSR is used with L = 11 and J = L+ 1. There
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Table 4.14: Mean and standard deviation from the Monte Carlo simulation
of Example 2, Section 3.2, using a constant reference, r; = 1, and the in-
put superposed a PRBS as the dithering signal generated from dU? = 6.25 -
idinput(N,' prbs’, [0 B]) with B = 0.2, using PEM with default parameters and
ng = 1 for identification.

‘ PEM ‘ Pole 1 ‘ Pole 2 ‘

[Re Im] [Re Im]
Mean | [0.8907 0.0178] | [0.8589 -0.0178]
Std [0.0158 0.0210] | [0.0228 0.0210]

is no specific frequency area where DSR is much poorer than PEM. This is the
same observation as when the PRBS is used as a dithering signal, but it differs
from the cases where a sinusoid signal was used as a dithering signal, Figure 4.13
and Figure 4.25, respectively in the reference and on the input. But in all cases
a low frequent signal ought to be chosen as a dithering signal.

Alternative closed loop quality measures

When the state space model of the system is transformed to observable canonical
form the parameters to be estimated can be collected in the parameter vector,
Equation (4.69), with the true value given by Equation (4.70).

In Figure 4.27 the estimated parameters in the parameter vector from DSR and
PEM are compared as a function of the runs in the Monte Carlo simulation. The
reference is given by Equation (4.72) and the dithering signal on the input is
given by Equation (4.74) with B = 0.2. DSR is used with the parameters n = 2,
g=0, L =11and J = 12. The mean and standard deviation of the parameters
in the parameter vector are listed in Table 4.15 and Table 4.16 for DSR and PEM,
respectively. All the estimates are unbiased. The variance on the estimates of by
and bg; is reduced compared to when a sinusoid signal is used as dithering signal
on the input, Figure 4.23.

4.7 DSR with two sets of horizons

In Section 4.6.1 a sinusoid signal was used as a dithering signal in the reference.
When an appropriate frequency was chosen in the dithering signal the eigenvalue
estimates were unbiased if the identification horizon, L, was chosen large enough.
Unfortunately the estimates of the parameters in the matrix B in the state space
model were biased and therefore the estimates of the zeros were biased too. It is
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Figure 4.25: The Squared Eigenvalue Error criterion, V!, as a function of B and
L when using a constant reference, 77 = 1, and the input superposed a PRBS as a
dithering signal generated from dU? = 6.25 - idinput(N,' prbs’, [0 B]) in Example
2, Section 3.2, and DSR with n =2, g =0 and J = L + 1 for identification.

well known that in open loop cases with a low level of persistent excitation on
the input signal it is favourable to choose the identification, L, as small as possi-
ble. Combining this knowledge with the simulation results from Section 4.6.1 it
is interesting to investigate if there will be an improvement in the estimation of
the zeros if DSR is implemented with two sets of horizons. Long horizons for the
identification of eigenvalues and short horizons for the identification of zeros.

For simplicity the method is named DSR_2LJ. One set of horizons, L. and .J.,
is used for identification of the extended observability matrix and therefore the
matrices A and D. The other set of horizons, L, and .J,, is used for identifica-
tion of matrix B and will have an effect on the identification of the zeros. This

Table 4.15: Mean and standard deviation from the Monte Carlo simulation of Ex-
ample 2, Section 3.2, using a constant reference, rj = 1, and the input superposed
a PRBS as a dithering signal generated from dU? = 6.25-idinput(N,’ prbs’, [0 B]),
with B = 0.2, and using DSR with n =2, g =0, L =12 and J = 13 for identifi-
cation

‘ DSR ‘ az1 ‘ a2 ‘ biy ‘ b1 ‘

Mean | -0.7772 | 1.7613 | -0.0010 | -0.0005
Std 0.0134 | 0.0136 | 0.0001 | 0.0000
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Figure 4.26: The Squared Eigenvalue Error criterion, V!, as a function of B,
when using a constant reference, rp = 1, and the input superposed a PRBS as a
dithering signal generated from dU? = 6.25 - idinput(N, prbs’, [0 B]) in Example
2, Section 3.2, and the estimates from PEM with default parameters and n, =1,
and DSR with n =2, g =0, L =11 and J = 12. PEM is illustrated by the solid
line and DSR is illustrated by the broken line.
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Figure 4.27: The parameter vector, Equation (4.69), as a function of the runs in
the Monte Carlo simulation of Example 2, Section 3.2, using a constant reference,
r? = 1, and the input superposed a PRBS as a dithering signal generated from
dU? = 6.25 - idinput(N, prbs’, [0 B]), with B = 0.2, using DSR with n = 2,
g =0, L =11 and J = 12 and PEM with default parameters and n, = 1 for
identification. PEM is illustrated by the solid line, DSR is illustrated by the
broken line and the true value is illustrated by the dash dotted line.
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Table 4.16: Mean and standard deviation from the Monte Carlo simulation of Ex-
ample 2, Section 3.2, using a constant reference, 7 = 1, and the input superposed
a PRBS as a dithering signal generated from dU? = 6.25-idinput(N,’ prbs’, [0 B]),
with B = 0.2, and using PEM with default parameters and n; = 1 for identifica-

tion.

‘ PEM ‘ a21 ‘ a22 ‘ b1y ‘ ba1 ‘
Mean | -0.7655 | 1.7496 | -0.0010 | -0.0005
Std 0.0117 | 0.0119 | 0.0001 | 0.0000

algorithm needs approximately twice as many computations as the original DSR
because two sets of data matrices have to be defined and a large amount of the
computations have to be performed twice.

4.7.1 The estimation of the parameters in matrix B as a
function of the identification horizon of the zeros

In order to evaluate if the use of two sets of horizons in the algorithm named
DSR_2LJ leads to improved estimates of the zeros the ability to estimate the
zeros of the system presented in Section 3.2 has to be considered as a function of
the horizons, L, and .J,, used for identification of the matrix B. When using a
constant reference superposed a sinusoid signal as the dithering signal, Equation
(4.67) with w = 0.725, the estimation of the zeros is biased if DSR is used with
the horizons L and J needed to get unbiased eigenvalue estimates. Figure 4.28
shows the Squared Zero Error criterion, V?2, as a function of the identification
horizon, L,, when .J, = L,+1 and a constant reference superposed a sinusoid sig-
nal is used as a dithering signal, Equation (4.67) with w = 0.725, using DSR_2LJ
withn =2, g =0, Le =11 and Je = 12.

The assumption that the horizon, L,, for identification of zeros has to be chosen
as small as possible when inputs with a low level of persistent excitation are used
is wrong. Choosing the horizon L, smaller than L, gives an improvement in the
estimation of the zeros.

4.7.2 Alternative closed loop quality measures

In the previous sections it has not been focused directly on the estimation of
zeros, rather indirectly by considering the parameters to be estimated when the
state space model of the system is transformed to observable canonical form. The
parameters to be estimated can be collected in the parameter vector, Equation
(4.69), with the true value given by Equation (4.70).
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Figure 4.28: The Squared Zero Error criterion, V2, as a function of the identifica-
tion horizon, L,, when using a constant reference superposed a sinusoid signal as
the dithering signal, 7} = 1+ 0.1 - sin(wk) with w = 0.725 in Example 2, Section
3.2, using DSR_2LJ with n =2, ¢g =0, Le = 11 and Je = 12.

In Figure 4.29 the estimated parameters in the parameter vector from DSR and
DSR_2LLJ are compared as a function of the 100 runs in the Monte Carlo simu-
lation. The reference is given by Equation (4.67) with w = 0.725. DSR is used
with the parameters n = 2, ¢ = 0, L = 11 and J = 12. DSR_2LJ is used with
the parameters n =2, ¢9=0, L, =11, J, =12, L, =6 and J, = 7.

Using DSR_2LJ for identification, the estimated parameters by; and by; are unbi-
ased and therefore also the zeros, if the eigenvalues estimates are unbiased. The
estimates of the zeros are not unbiased when DSR is used. The parameter esti-
mates of as; and asy are the same in both methods due to the implementation of
DSR_2LJ. The mean and standard deviation of the parameters in the parameter
vector are listed in Table 4.3 and Table 4.17 for DSR and DSR_2LJ, respectively.

The simulations so far indicate that the DSR_2LLJ method is a good alternative
for closed loop data sets. But unfortunately when the level of persistent exci-
tation of the dithering signal in the reference is increased the estimate of the
parameters in the matrix B is biased, Figure 4.30.

This indicates that the choice L, depends on the dithering signal. Figure 4.31
shows the Squared Zero Error criterion, V2, as a function of the identification
horizon, L,, when .J, = L, 4+ 1 and a constant reference superposed a PRBS used
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Figure 4.29: The parameter vector, Equation (4.69), as a function of the runs in
the Monte Carlo simulation of Example 2, Section 3.2, using a constant reference
superposed a sinusoid signal as the dithering signal, 7} = 1 + 0.1 - sin(wk) with
w = 0.725. DSR is used with the parameters n =2, g =0, L =11 and J = 12.
DSR_2LJ is used with the parametersn =2, ¢ =0, L, =11, J, =12, L, = 6 and
J, = 7. PEM is used with default parameters and n; = 1 for identification. PEM
is illustrated by the solid line, DSR is illustrated by the broken line, DSR_2LJ is
illustrated by the dotted line and the true value is illustrated by the dash dotted

line.
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Figure 4.30: The parameter vector, Equation (4.69), as a function of the runs in
the Monte Carlo simulation of Example 2, Section 3.2, using a constant reference
superposed a PRBS as the dithering signal generated from R* = ones(NN,1)+0.1-
idinput(N,' prbs’, [0 B]) with B = 0.2. DSR is used with the parameters n = 2,
g=0,L=11and J =12. DSR_2LJ is used with the parameters n = 2, g = 0,
L,=11,J,=12, L, =6 and J, = 7. PEM is used with default parameters and
ng, = 1 for identification. PEM is illustrated by the solid line, DSR is illustrated
by the broken line, DSR_2LJ is illustrated by the dotted line and the true value
is illustrated by the dash dotted line.
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Table 4.17: Mean and standard deviation from the Monte Carlo simulation of
Example 2, Section 3.2, using a constant reference superposed a sinusoid signal
as the dithering signal, rj = 14 0.1 -sin(wk) with w = 0.725, and using DSR_2L]J
with the parameters n =2, ¢ =0, L, = 11, J. =12, L, = 6 and .J, = 7 for
identification

‘ DSR ‘ a21 ‘ a22 ‘ b1y ‘ ba1 ‘

Mean | -0.7580 | 1.7412 | -0.0010 | -0.0005
Std 0.0062 | 0.0066 | 0.0001 | 0.0001

as dithering signal, Equation (4.71) with B = 0.2, using DSR_2LJ with n = 2,
g=0,Le=11and Je =12.
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Figure 4.31: The Squared Zero Error criterion, V2, as a function of the identifi-
cation horizon, L,, when using a constant reference superposed a PRBS as the
dithering signal generated from R* = ones(N, 1) + 0.1 - idinput(N,’ prbs’,[0 B])
with B = 0.2 in Example 2 Section 3.2, using DSR_2LJ with n = 2, ¢ = 0,
Le =11 and Je = 12.

Comparing Figure 4.31 with Figure 4.28 shows that when a dithering signal with
high order of persistent is used in the reference the lower limit of the choice of
L, is higher than when a dithering signal with low order of persistent excitation
is used. This is the opposite of what is the intuitive choice, than when the level
of persistent excitation is reduced the horizon can be reduced. This means that
the method can be difficult to use on real data.



68

CHAPTER 4. CLASSIC SUBSPACE IDENTIFICATION



Chapter 5

Modification of the control loop

Consider once more the reason for the problems that can occur when applying
subspace identification (SID) algorithms for direct identification of closed loop
data. Future inputs and the noise on the outputs are assumed to be uncorre-
lated. If future inputs and the noise on the outputs are correlated the projection
of the future outputs onto the future inputs will cause a bias. The simulations
performed in Chapter 4 have shown that when an appropriate dithering signal is
chosen the eigenvalue estimates are unbiased if the identification horizon, L, is
chosen large enough. Identification of zeros is a harder task. Two solutions to
help reduce the bias in the zeros was found. An increase in the level of persistent
excitation of the dithering signal helped to reduce the bias in the zeros. Using a
dithering signal on the input instead of the reference also helped to reduce the
bias.

Another approach to reduce the bias problem will be considered in this chapter.
Here the closed loop will be modified to either reduce the noise in the feedback
or make the noise through the feedback uncorrelated to the noise on the output.
Di Ruscio (2003a) has already shown that using a filter in the feedback loop is
a solution to reduce the bias on the estimated eigenvalues from SID algorithms
caused by the error term that occur when the future inputs are correlated with
the future noise on the output.

In this section the effect of using different types of filters in the feedback loop
will be investigated. The example used in Section 4.4, which is introduced in
Section 3.1, will be used in this section. DSR will be compared to PEM and
N4SID. The system order n = 2 and the fact that the matrix E is the zero
matrix is assumed known. PEM and N4SID are used with default parameters
and nk = 1. The parameter L chosen in DSR is the value which minimizes the
Squared Eigenvalue Error criterion, V!, when J = L+ 1 and g = 0. Monte Carlo
simulations with 100 runs will be performed in each case. Focus will be placed on
the following properties of the estimates: the eigenvalues of the system matrix A,
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A(A), the deterministic steady state gain H%(1), the eigenvalues of the Kalman
filter A\(A — K D) and the stochastic steady state gain H*(1).

5.1 Feedback from the noise free output

An intuitive thought is that an optimal filter will remove all the noise on the
output. This means that the measurement equation, Equation (2.14), in the
Kalman filter in innovation form is replaced by

Y — Dl'k. (51)

In this section the feedback to the Pl-controller will come from the ”filtered”
output found by Equation (5.1). The system will be identified from the input
and output data as before, and the system will still be affected by both process
noise and measurement noise.

When using the ”low frequent” PRBS, shown in Figure 4.3 page 33, as reference
the eigenvalue estimates from DSR shown in Figure 4.4, page 34, are biased.
The estimates from PEM, DSR and N4SID when the feedback to the regulator
is calculated from Equation (5.1) are shown in Figure 5.1. PEM and N4SID are
used with default parameters and nk = 1. DSR is used with ¢ = 0, L = 4 and
J =5.

In Figure 5.1 the bias is so small that the estimates can be considered as unbi-
ased. The estimates from DSR are comparable to the estimates from PEM. The
estimates from N4SID have considerably larger variance than the ones from PEM
and DSR. To investigate what happens when the noise is increased the simulation
is repeated with 50 times larger noise variance. Figure 5.2 shows the estimates
when PEM and N4SID are used with default parameters and nk = 1. DSR is
used with ¢ =0, L =13 and J = 14.

Now both the bias and variance of the eigenvalue estimates from all the meth-
ods are considerable. This should not happen according to the thought that the
output used in the feedback is noise free. This means that the problem is more
complex than initially assumed. Factors that may have influence are that there
is still noise on the outputs which is used for identification. It is necessary to con-
sider what happens if a reference signal with higher order of persistent excitation
is used. Figure 5.3 shows a more ”high frequent” PRBS, r{, used as reference
and the corresponding input, ux, and output, y;, when the system is operating
in a closed loop without a filter in the feedback.
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Figure 5.1: Estimates using low frequent PRBS, 7} page 33, as a reference signal
and noise-free feedback in the closed loop system Example 1, Section 3.1. PEM
and N4SID are used with default parameters and nk = 1. DSR is used with
g=0,L=4and J=5.
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Figure 5.2: Estimates using low frequent PRBS, r} page 33, as a reference signal
and noise-free feedback in the closed loop system, Example 1, Section 3.1, when
noise variance is increased by 50 times. PEM and N4SID are used with default
parameters and nk = 1. DSR is used with ¢ =0, L =13 and J = 14.
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Figure 5.3: Reference rp and corresponding input, ug, and output, y, when the
system in Example 1, Section 3.1, is operating in a closed loop without a filter
in the feedback and the noise variance is increased 50 times

Figure 5.4 shows the estimates when r} is used as a reference. PEM and N4SID
are used with default parameters and nk = 1. DSR is used with ¢ =0, L = 4
and J = 5.

It must be noted that all three methods give biased estimates here, but N4SID
has the largest variance on the estimates. The bias is reduced when r¢ is used
as the reference signal instead of r}, page 33, but it does not give unbiased esti-
mates. It is no surprise that an increase in the order of persistent excitation of

the reference signal can compensate for an increase in the noise level.

Comparing Figure 5.4 and Figure 5.5 where the feedback is from a noise-free
output and the actual output, respectively, it has to be noted that for PEM it is
not favourable to have the feedback from the noise free output. This coincides
with the fact that for PEM the variance on the parameter estimates from direct
closed loop identification is reduced when the variance on the measurement noise
is increased, Forssell et al. (1997).

It is also important to be aware that when using the noise-free feedback the noise
is only removed from the feedback and not from the output data which is used
for modelling. This means that the noise level on the output is the same but the
correlation between the input and the noise on the output is removed. Another
effect from using the noise-free feedback is that the noise on the output does not
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Figure 5.4: Estimates using high frequent PRBS, ¥, as a reference signal and
noise-free feedback in the closed loop system, Example 1, Section 3.1, when the
noise variance is increased 50 times. PEM and N4SID are used with default
parameters and nk = 1. DSR is used with ¢ =0, L =4 and J = 5.
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Figure 5.5: Estimates using high frequent PRBS, %, as a reference signal when

the system is operating in closed loop, Example 1, Section 3.1, without a filter
in the feedback when the noise variance is increased 50 times. PEM and N4SID
are used with default parameters and nk = 1. DSR is used with ¢ =0, L = 4
and .J = 5.
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help to excite the input.

5.2 Feedback from a customized filter

The intuitive thought presented in Section 5.1 that an optimal filter will remove
all the noise on the output has to be modified. Let us use the fact that for PEM
the variance on the parameter estimates from direct closed loop identification is
reduced when the variance on the measurement noise is increased, Forssell et al.
(1997). Assume that some of the reason for this is that the noise helps to excite
the input. For SID algorithms future inputs and the noise on the outputs are
assumed to be uncorrelated, therefore there is no direct connection. But if the
noise level is reduced sufficiently or the future inputs and the noise on the outputs
are sufficiently uncorrelated, the noise on the output will help to excite the input
without interfering with the assumptions for the SID algorithms. Therefore a 15
order low-pass filter is introduced in the feedback. The question is therefore: Will
the choice of filter constant in the low-pass filter in the feedback reduce the noise
on the output, or make the input sufficiently uncorrelated with the noise on the
output, in a suitable way such that the bias is reduced or preferably removed?
The filter used is a 1% order low-pass filter given by

Uk+1 = Yk + K7 (Yx — Yi)- (5.2)

The parameter L chosen in DSR and the filter constant K is the values which
minimize the Squared Eigenvalue Error criterion, V!, when J = L+1 and ¢ = 0.

When using the ”low frequent” PRBS, shown in Figure 4.3 page 33, as reference
the eigenvalue estimates from DSR shown in Figure 4.4, page 34, are biased.
When using a "noise free” feedback the bias is not observable with visual inspec-
tion, Figure 5.1. The estimates from PEM, DSR and N4SID when the feedback
to the regulator is filtered through a 1% order low-pass filter, Equation (5.2), is
shown in Figure 5.6. PEM and N4SID are used with default parameters and
nk = 1. DSR is used with ¢ =0, L. = 7 and .J = 8. The filter constant used is
K; =0.05.

In Figure 5.6 the bias is so small that it is not observable with visual inspection,
just like when the noise-free feedback is used, Figure 5.1. The bias and variance
of the estimates from DSR is comparable to the estimates from PEM. N4SID also
gives unbiased estimates, but the variance is larger. To investigate what happens
when the noise is increased the simulation is repeated with 50 times larger noise
variance. Figure 5.7 shows the eigenvalue estimates when PEM and N4SID are
used with default parameters and nk = 1. DSR is used with ¢ = 0, L. = 6 and
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Figure 5.6: Estimates using low frequent PRBS, r} page 33, as a reference signal
and low-pass filtered feedback in the closed loop system, Example 1, Section 3.1.
PEM and N4SID are used with default parameters and nk = 1. DSR is used
with ¢ =0, L = 7 and J = 8. The filter constant used is Ky = 0.05.

J = 7. The filter constant is Ky = 0.05.

Now the estimates from DSR have a bias, but PEM still provides estimates with
a bias which is so small that it is not observable by visual inspection. The es-
timates from N4SID are now considerably poorer than the ones from DSR. The
results when the feedback is filtered through the customized filter, Figure 5.7, is
considerable better than when the noise-free output is used as feedback, Figure
5.2, when the same reference and noise level is used. However, it is necessary to
consider what happens if a reference signal rl, page 72, with a higher order of
persistent excitation is used.

Figure 5.8 shows the estimates when PEM and N4SID are used with default pa-
rameters and nk = 1. DSR is used with ¢ = 0, L = 6 and J = 7 and the filter
constant used is Ky = 0.05.

An increase in the order of persistent excitation of the reference signal can com-
pensate for an increase in the noise level. Comparing Figure 5.8 and Figure 5.5
where the feedback is filtered through a filter and the actual output, respectively,
it has to be noted that for PEM it is not necessarily favourable to have the feed-
back from the output filtered. This coincides with the the properties presented
by Forssell et al. (1997), that for PEM the variance on the parameter estimates
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Figure 5.7: Estimates using low frequent PRBS, r} page 33, as a reference signal
and low-pass filtered feedback in the closed loop system, Example 1, Section 3.1,
when the noise variance is increased 50 times, PEM and N4SID are used with
default parameters and DSR is used with ¢ =0, L = 6 and J = 7 and the filter
constant used is Ky = 0.05.
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Figure 5.8: Estimates using high frequent PRBS, r$ page 72, as a reference signal
and low-pass filtered feedback in the closed loop system, Example 1, Section 3.1,
when the noise variance is increased 50 times. PEM and N4SID are used with
default parameters and nk = 1. DSR is used with ¢ =0, L =6 and J = 7. The
filter constant used is K = 0.05.
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from direct closed loop is reduced when the variance on the measurement noise
is increased.

5.3 Feedback from the Kalman filter output

The Kalman filter is known to be the optimal filter and the minimum variance
estimator. Since the use of a 1% order low-pass filter in the feedback in Section 5.2
gave such an improvement in the estimates from the SID algorithms compared
to not using a filter, or using a noise free feedback, it is interesting to check if the
use of a Kalman filter instead can give even better results.

Figure 5.9 shows the estimates from PEM, DSR and N4SID when the feedback
to the regulator is filtered through a Kalman filter and the ”low frequent” PRBS,
shown in Figure 4.3 page 33, is used as a reference. PEM and N4SID are used
with default parameters and nk = 1. DSR is used with ¢ =0, L =5 and J = 6.
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Figure 5.9: Estimates using low frequent PRBS, r} page 33, as a reference signal
and feedback from a Kalman filter in the closed loop system, Example 1, Section
3.1. PEM and N4SID are used with default parameters and nk = 1. DSR is used
with ¢ =0, L =5 and J = 6.

In Figure 5.9 the bias on the estimates from PEM and DSR is so small that it
is not observable with visual inspection, just like in Figure 5.1 and Figure 5.6.
The exception is N4SID which gives estimates with bias and larger variance than
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DSR and PEM. To investigate what happens when the noise is increased the
simulation is repeated with 50 times larger noise variance. Figure 5.10 shows the
estimates when PEM and N4SID are used with default parameters and nk = 1.
DSR is used with ¢ =0, L =5 and J = 6.
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Figure 5.10: Estimates using low frequent PRBS, 7, page 33, as a reference signal
and feedback from a Kalman filter in the closed loop system, Example 1, Section
3.1, when the noise variance is increased 50 times. PEM and N4SID are used
with default parameters and nk = 1. DSR is used with ¢ =0, L =5 and J = 6.

The estimates from DSR shown in Figure 5.10 only have a small bias, except the
stochastic steady state gain H*(1) which has got an increase in the bias. All the
estimates from DSR have reduced variance compared to the case when the feed-
back is filtered through a low-pass filter, Figure 5.7. This has to be considered
as an improvement compared to the case when the feedback is filtered through
a low-pass filter when the same reference and noise are used. When using the
Kalman filter in the feedback PEM seems to have a larger bias than DSR, Fig-
ure 5.10. Also in this case N4SID gives the poorest results. It is also necessary
to consider what happens if a reference signal, r§ page 72, with higher order of
persistent excitation is used. Figure 5.11 shows the estimates when PEM and
N4SID are used with default parameters and nk = 1. DSR is used with ¢ = 0,
L=6and J=T1.

The variance is considerably reduced in Figure 5.11 where r¢ is used as the ref-
erence compared to Figure 5.10 where 7, is used as the reference, except of the
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Figure 5.11: Estimates using high frequent PRBS, 7 page 72, as a reference
signal and feedback from a Kalman filter in the closed loop system, Example 1,
Section 3.1, when the noise variance is increased 50 times. PEM and N4SID are
used with default parameters and nk = 1. DSR is used with ¢ = 0, L = 6 and
J=T.

deterministic steady state gain H¢(1). Once again, N4SID gives the poorest re-
sults. Now the bias on the estimates from both PEM and DSR are so small that
the estimates can be considered as unbiased.

The simulations performed in Section 5 showed that using a filter in the feedback
to the controller can reduce and in some cases remove the bias when DSR is
used for estimation. The optimal filter used in the feedback is not the noise-free
output or a 1! order low-pass filter but the Kalman filter. The reason for this is
that the Kalman filter gives an estimate of the output which contains the optimal
amount of information. There is also reason to believe that measurement noise
can lead to an increased excitation of the input of the system and in this way
help to reduce bias and variance on the estimates from SID methods, if the input
and the noise on the output are uncorrelated.

The simulations done so far using the Kalman filter are based on knowledge of all
the system matrices and the noise variance. If these parameters are known it is no
use of a performing a system identification procedure. Therefore a Monte Carlo
simulation is performed where all the inputs to the calculations in the Kalman
filter are reduced by 10%. Figure 5.12 shows the estimates when PEM and N4SID
are used with default parameters and ny = 1. DSR is used with ¢ =0, L =6
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and J = 7.
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Figure 5.12: Estimates using high frequent PRBS, 7 page 72, as a reference
signal and feedback from a Kalman filter, with 10% deviation, in the closed loop
system, Example 1, Section 3.1, when noise variance is increased 50 times. PEM
and N4SID are used with default parameters and nk = 1. DSR is used with
g=0,L=6and J=T71.

The estimates shown in Figure 5.12 are comparable to the case where the Kalman
filter is correct, Figure 5.11.

5.3.1 Subspace identification and feedback from an ana-
lytic point of view

Di Ruscio (2003a) has shown that when the extended observability matrix Opq
is estimated from the column space of the projection matrix Z; 14, as defined in
Equation (4.31) there is an error term in the projection

ZJ\L—}-I — OL+1X; —|— dZ (53)
where the error term dZ is given by
UJ\L+1

dZ = Hj | Ejp+1/ Uy UJLIL+g
Yo
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= HZHEJ\LHUJL|L+gW;T(WpUJL|L+gW;T)71WpUJL\LJrg (5.4)
~ _HISHrIEJ\LJFI/UJ\LJFQWZJT(WPU}\LJrgWE)ilWPUj_\LJrg
where
Uols ]
W, = ) 5.5
o= | (5:5)

In the last expression in Equation (5.4) it is made use of the fact that E W, /K
0 when the number of columns K tends towards infinity. The remaining projec-
tion in the error term is then EJ‘LH/UJ‘LJFQ. This term is approximately zero
for open loop problems. The term Ej;41/Uy1 44 in some closed loop problems
is non-zero and causes biased estimates. This is the problem in feedback systems
where the control is directly proportional to the innovation noise. It is stated
by Di Ruscio (2003a) that It is believed that SID of the systems with state feed-
back or feedback from Kalman filter states would work well, provided an external
dither signal is introduced in the loop. The reason for this is that the states are
"noise-free” and not correlated with the innovation noise. There are no problems
using subspace identification methods in these cases.

The key is to make the term EJ|L+1/U]‘L+9 small, which is equivalent to making
the error term Equation (4.25) small. The statements by Di Ruscio are exactly
what is observed here. There is no difference if there is feedback from the ”noise-
free” state x in the Kalman filter or the the "noise-free” output y = Dz of the
Kalman filter from the SID point of view. From the SID point of view the goal
is to have a feedback without innovation noise. This is also the reason why the
simulations where the Kalman filter is not correct works so well.

5.4 Feedback from a Kalman filter estimated by
DSR

In Section 5.3 a Kalman filter was used in the feedback to reduce, and preferably
eliminate, the bias when DSR is used for closed loop system identification. A
simulation study was also performed where all the inputs to the calculation of
the Kalman filter were reduced by 10%. The results were comparable to when
the correct Kalman filter was used. This leads to the idea of a new three-step al-
gorithm based on the DSR algorithm and the Kalman filter properties, Jazwinski
(1970). The results in this section are published in Modeling, Identification and
Control, Nilsen and Di Ruscio (2006).

By definition the minimum variance estimator (Kalman filter) minimizes the
error norm F((xy—7,)(x,—Tk)"). The Orthogonal Projection Lemma, Jazwinski

~
~
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(1970), gives a condition that is equivalent to the minimization of the error norm.
The Orthogonal Projection Lemma states that the error is orthogonal to the
approximation space Y. In the Kalman filter problem the approximation space
is Y = {space spanned by yi,...,yr}. This means that

E(giey,) = 0. (5.6)

Therefore we want to suggest a new closed loop subspace identification algorithm
based on feedback from a Kalman filter found by DSR from closed loop data.

Algorithm 5.4.1
e Step 1. Identification of the Kalman filter using DSR
o Step 2. Implementation of the Kalman filter identified in Step 1
e Step 3. Identification of an unbiased model using DSR

The model found by DSR in Step 1 may have a bias, when the system is operating
in a closed loop and there is noise present. The output, y;, from a non-optimal
Kalman filter will have some level of correlation to the innovation, ;. The idea
is that the Kalman filter found by DSR in Step 1 will give an output, g, which is
sufficiently uncorrelated with the noise on the output of the actual process, and
in this way reduce or eliminate the bias problem.

A block diagram of the algorithm is shown in Figure 5.13. In Step 1 the switch
in the figure is in position 1. In all other cases the switch is in position 2.

5.4.1 Single Input Single Output simulation example

Example 1 introduced in Section 3.1 is still used as an example. The "low fre-
quent” PRBS, r; shown in Figure 4.3 page 33, is used as a reference. The results
from direct open loop closed loop identification is shown in Figure 5.14, where
DSR is used with ¢ = 0, L = 5 and J = 6. PEM and N4SID are used with default
parameters and nk = 1. Figure 5.14 shows the eigenvalues of the system A(A),
the deterministic steady state gain H¢(1), the eigenvalues of the Kalman filter
A(A — K D) and the stochastic steady state gain H*(1), which are the properties
of the estimates that will be focused on in this section.

The estimates from PEM are unbiased and the estimates from the SID algo-
rithms are biased. Comparing the SID algorithms it is clear that the estimates
from N4SID have a much larger bias than the estimates from DSR. Therefore it
is not advisable to use N4SID in Step 1 in the algorithm introduced in Section 5.4.
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Figure 5.13: Block diagram of the algorithm. The switch is in position 1 in Step
1, else the switch is in position 2.
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Figure 5.14: Estimates from closed loop Monte Carlo simulation using r}, page
33, as a reference in Example 1, Section 3.1. PEM and N4SID are used with
default parameters and nk = 1. DSR is used with ¢ =0, L =5 and J = 6.



5.4. FEEDBACK FROM A KALMAN FILTER ESTIMATED BY DSR 85

In order to evaluate the quality of the algorithm introduced in Section 5.4, Step
1 is performed by a single simulation using r, as a reference to identify a (biased)
model using DSR. The Kalman filter found by DSR with ¢ =0, L=5and J =6
is given by

0 1 0.9134
A= —06508 15257 } B = { 0.8175 } ’
D=[10],K=[03634 0.2675]" . (5.7)

The reference 7 is plotted in Figure 5.15 with the corresponding input, wuy, and
the output, y, for two particular noise realizations with the same noise level as
in the previous simulations, to illustrate the effect on the noise level when using
feedback filtered through the Kalman filter found by DSR, Equation (5.7).
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Figure 5.15: The reference signal, r},, with corresponding input, u;, and output,
Yk, for two particular noise realizations, vy and w; in Example 1 Section 3.1,
when the feedback is filtered through a Kalman filter found by DSR, Equation
(5.7), in an initial step. PEM and N4SID are used with default parameters and
nk = 1. DSR is used with ¢ =0, L =5 and .J = 6.

The noise level in Figure 5.15 is reduced compared to Figure 4.3. The reason is
that the input is a function of the filtered output, but this was not the main goal.
The main goal was to generate an input, u,, which is uncorrelated with the noise
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on the output, y;.

Steps 2 and 3 of the algorithm introduced in Section 5.4 are evaluated by a Monte
Carlo simulation with 100 runs with a different noise realization in each run car-
ried out using rj, as a reference signal, when the feedback is filtered through the
Kalman filter found by DSR, Equation (5.7), in an initial simulation. As in pre-
vious simulations the system order n = 2 is assumed known. PEM and N4SID
are used with default parameters and nk = 1. DSR is used with ¢ =0, L = 5 and
J = 6. Figure 5.16 shows the estimates with no iterations performed to improve
the Kalman filter.
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Figure 5.16: Estimates from closed loop Monte Carlo simulation using r,i, page 33,
as a reference when the feedback is filtered through a Kalman filter found by DSR,
Equation (5.7), in an initial step. For direct closed loop system identification
PEM and N4SID are used with default parameters and nk = 1. DSR is used
with ¢ =0, L =5 and J = 6.

Now when the feedback is filtered through the Kalman filter found by DSR,
Equation (5.7), all the methods give unbiased estimates, but the estimates from
N4SID have considerable larger variance than the others. It is quite satisfactory
that the estimates from PEM do not have any observable increase in variance
when the feedback is filtered through the Kalman filter found by DSR, Figure
5.16, is compared to direct closed loop identification, Figure 5.14. It indicates
that the Kalman filter estimated in Step 1 in the algorithm does not have to be
very accurate to have the desired effect.
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We are pleased to observe that the control function shown in Figure 5.15 is still
satisfactory when the feedback is filtered through the Kalman filter found by
DSR in the initial step.

Figure 5.9 shows the reference r; with the corresponding input, uy, and the out-
put, yi, for two particular noise realizations with the same noise level as in the
previous simulations when the feedback is filtered through the correct Kalman
filter. The performance is not significantly better compared to when the feedback
is filtered through the Kalman filter found by DSR in an initial step, Figure 5.16.
Like in the previous sections the simulation is repeated with 50 times larger noise
variance to investigate what happens when the noise level is increased.

Step 1 is performed by a single simulation using r} as a reference to identify a
(biased) model using DSR. The Kalman filter found by DSR with ¢ =0, L =6
and J = 7 is given by:

0 1 1.0056
A= | —05784 14607 } B = { 0.9373 } ’
D=[10],K=[01374 01201 ]". (5.8)

PEM and N4SID are used with default parameters and nk = 1. DSR is used
with ¢ =0, L =6 and J = 7. Figure 5.17 shows the estimates with no iterations
performed to improve the Kalman filter.

The increase in noise level leads to an increase in the variance of the estimates.
This increase makes it hard to state if a bias is present by visual inspection. Com-
pared to when the correct Kalman filter is used in the feedback, Figure 5.10, the
variance is increased when a Kalman filter found by DSR is used in the feedback,
Figure 5.17. Here it is also necessary to investigate the effect of using a reference
signal, r$ page 72, with a higher order of persistent excitation.

Step 1 is performed by a single simulation using r$, page 72, as a reference to
identify a (biased) model using DSR. The Kalman filter found by DSR with g = 0,
L =6 and J =7 is given by

0 1 1.0873
A=1 06102 1.4983 ] B = [ 1.1306 ] ’

D=[10],K=[02694 0.2239]". (5.9)

PEM and N4SID are used with default parameters and nk = 1. DSR is used
with ¢ =0, L =6 and J = 7. Figure 5.18 shows the estimates with no iterations
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Figure 5.17: Estimates from closed loop Monte Carlo simulation of Example 1,
Section 3.1, using low frequent PRBS, r} page 33 , as a reference when the noise
variance is increased 50 times and the feedback is filtered through a Kalman filter
found by DSR, Equation (5.8), in an initial step. PEM and N4SID are used with
default parameters and nk = 1. DSR is used with ¢ =0, L =6 and J = T7.
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Figure 5.18: Estimates from closed loop Monte Carlo simulation of Example 1,
Section 3.1, using a high frequent PRBS, 7§ page 72, as a reference when the noise
variance is increased 50 times and the feedback is filtered through a Kalman filter
found by DSR, Equation (5.9), in an initial step. PEM and N4SID are used with
default parameters and nk = 1. DSR is used with ¢ =0, L =6 and J = T7.
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performed to improve the Kalman filter.

Using a reference signal, r® page 72, with a higher order of persistent excitation
reduces the variance. PEM is unbiased and DSR has an insignificant bias on the
estimates of the stochastic steady state gain of the Kalman filter. The rest of
the estimates from DSR are unbiased. Compared to the case where the correct
Kalman filter is used in the feedback, Figure 5.11, the use of the Kalman filter
identified by DSR, Figure 5.18, leads to an increase in variance.

5.4.2 Multiple Input Multiple Output simulation example

The system introduced in Section 3.5 is used as a multiple input multiple output
example. Time series of N=1000 discrete data points, £k = 0,1,..., N — 1, are
generated. 7] and r$ are used as reference signals for output 1 and output 2,
respectively. Figure 5.19 shows the reference signals, r{ and 7}, plotted together
with the corresponding outputs for two particular noise realizations, v, and wy,

when the system is operating in a closed loop.
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Figure 5.19: The reference signals, 7/ and rf, plotted together with the cor-
responding outputs for two particular noise realizations, vy and wy, when the
system, Example 5, Section 3.5, is operating in a closed loop.

In this example we assume that the system order n = 3 is known and that there
is no direct feedthrough term from input to output. Figure 5.20 shows the es-
timates from a Monte Carlo simulation with 100 runs where r] and 7§ are used
as the reference signals with different noise realizations in each run where direct
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closed loop identification is performed. As in the single input single output case
we observe that PEM gives unbiased estimates and both the SID algorithms give
biased estimates. Regarding the estimation of the zeros two comments have to be
made. The first is that when the eigenvalue estimates from the SID algorithms
are so poor, as they are here, it is just a coincidence that the estimation of the
zeros, compared to PEM, is so good. The second is that when PEM has one or
more estimates which seem like ”outliers”, the zeros are hard to estimate.
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Figure 5.20: Estimates from closed loop Monte Carlo simulation of Example 5,
Section 3.5, using r} and r, page 90, as references. PEM and N4SID are used
with default parameters and nk = 1. DSR is used with ¢ =0, L =8 and J = 9.

In order to evaluate the quality of the algorithm introduced in Section 5.4, Step
1 is performed by a single simulation using r] and r$, page 90, as references
to identify a (biased) model using DSR. The Kalman filter found by DSR, with

g=0,L=8and J=9is given by

0.7872 0.4514 0.2434 —4.1692 —8.9423
A= 0.0435 0.6936 —0.0203 | ,B= | —2.2756 2.6672 |,
0.0184 0.1157 0.1970 1.7208 —0.5849

—0.7383 —0.30191
D= _00(')%?;%1 _065;??7 ggégi]ffz —0.0802 —0.1532 | . (5.10)
' ' ' {—0.0350 0.2059 J

The references 7 and r§ are plotted in Figure 5.21 with the corresponding out-
puts, for two particular noise realizations with unchanged noise level, to illustrate



92 CHAPTER 5. MODIFICATION OF THE CONTROL LOOP

the effect on the noise level when using feedback filtered through the Kalman fil-
ter found by DSR, Equation (5.10). There is no significant reduction in the noise
level. This is not a problem because the goal is to generate a feedback which is
sufficiently uncorrelated with the noise on the output of the actual process.
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1 | | | | | | | |
100 200 300 400 500 600 700 800 900 1000
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Figure 5.21: The reference signals, r{ and 7}, with corresponding outputs from
Example 5, Section 3.5, for two particular noise realizations, v, and wy, when
the feedback is filtered through a Kalman filter found by DSR, Equation (5.10),
in an initial step.

Now when the feedback is filtered through the Kalman filter found by DSR,
Equation (5.10), all the methods give unbiased estimates, but the estimates from
N4SID have considerably larger variance than the others. It is quite satisfactory
that the estimates from PEM do not have any observable increase in variance,
except the zeros, when the feedback is filtered through the Kalman filter found
by DSR, Figure 5.21, compared to direct closed loop identification, Figure 5.20.
It supports the observations in the single input single output example, Section
5.4.1, that the Kalman filter estimated in Step 1 in the algorithm does not have
to be very accurate to have the desired effect.

As in the example in Section 5.4.1 we observe that the control function still is
satisfactory when the feedback is filtered through the Kalman filter found by
DSR in the initial step.

Figure 5.23 shows the references 7} and ry with the corresponding outputs for
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Figure 5.22: Estimates from closed loop Monte Carlo simulation of Example 5,
Section 3.5, using r] and rf, page 90, as references when the feedback is filtered
through a Kalman filter found by DSR, Equation (5.10), in an initial step. PEM
and N4SID are used with default parameters and nk = 1. DSR is used with
g=0,L=8and J=09.
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two particular noise realizations with the same noise level as in the previous
simulations when the feedback is filtered through the correct Kalman filter.
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Figure 5.23: The reference signals, r{ and 7§, with corresponding outputs from
Example 5, Section 3.5, for two particular noise realizations, v and wy, when the
feedback is filtered through the correct Kalman filter.

Figure 5.24 shows the estimates when the feedback is filtered through the correct
Kalman filter. As in Section 5.4.1 it has to be noted that there is no signifi-
cant improvement of the performance compared to when the feedback is filtered
through the Kalman filter found by DSR in an initial step, Figure 5.22.

5.4.3 Comments on the algorithm

A new three-step closed loop subspace identification algorithm based on the DSR
algorithm and the Kalman filter properties is presented. In an initial step DSR
is used for identification of the process model, including the Kalman filter gain.
This model may have a bias when the system is operating in closed loop and
there is noise present. The next step is to implement the Kalman filter in the
feedback in such a way that the controller uses the filtered output from the filter,
not the actual process measurement. The idea is that the Kalman filter found
by DSR will give an output which is sufficiently uncorrelated with the noise on
the output of the actual process, and in this way reduce or eliminate the bias
problem. The final step is to use DSR to identify the process model when the
feedback is filtered through the Kalman filter. This model will be unbiased if the
Kalman filter is correct.



5.4. FEEDBACK FROM A KALMAN FILTER ESTIMATED BY DSR 95

PEM DSR
0.5 0.5 q 0.5
_ %
<C
L o - 0 +ﬁ+k 0
-05 -05 ‘ -05
0 0.5 1 0 05 1 0
1 1 1
0.5 0.5 0.5
=
=Y
-05 -05 -05
-1 = -1
“500 o 500 -500 0 500 -500 0 500
0.5 j 0.5 ‘ 0.5 *
X
g
<
*
-05 -05 -05

Figure 5.24: Estimates from closed loop Monte Carlo simulation of Example 5,
Section 3.5, using r] and r} as references when the feedback is filtered through
the correct Kalman filter. PEM and N4SID are used with default parameters
and nk = 1. DSR is used with ¢ =0, L =8 and J = 9.

Our simulation studies have shown that even when a Kalman filter with a bias is
used the estimated model in the final step is unbiased.

The initial idea was that any subspace identification algorithm which estimates
the full state space model, inclusive of the Kalman filter gain, should be applicable
for this algorithm. The simulation study performed showed that it is not advisable
to use N4SID in the initial step in the algorithm due to poor results. N4SID can
be used in the final step in the algorithm, but it is not advisable because the
variance is much larger than when DSR is used.
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Chapter 6

Closed Loop Subspace
Identification

So far when considering SID algorithms for closed loop system identification it
has been focused on the existing algorithm DSR, and compared to N4SID and
PEM. Two main topics have been treated, the use of DSR on finite closed loop
data sets and how to modify the control loop to avoid the possible bias problem
using DSR for direct closed loop SID.

The projections used in DSR to estimate the extended observability matrix, and
the eigenvalues, have been compared to the projections used in other SID algo-
rithms. The results shown in Section 4.4 give no indications that any of the other
projections should be used instead of the ones used in DSR, both for use with
open and closed loop data sets. A special case has been presented in Section 4.5
where a special choice of parameters eliminates the bias. When DSR is used for
closed loop SID the optimal parameter choice is different from the open loop case,
Section 4.6. When using a dithering signal in the reference, or on the input, of
a system operating in closed loop it is favourable to use a signal with high order
of persistent excitation if there is significant noise present. It is especially the
estimation of the zeros which is hard using the classic SID algorithms for direct
closed loop identification. When using a dithering signal on the input, instead of
in the reference, the bias is reduced.

The modification of the control loop that has been considered is filtering the
feedback. Different filter types have been tried. The best effect was obtained by
using a Kalman filter in the feedback. A three-step algorithm based on the DSR
algorithm and the Kalman filter properties was introduced.

The goal for closed loop SID algorithms must be to introduce algorithms for di-

rect identification which is as easy to use on finite closed loop data sets as the
original SID algorithms are used on finite open loop data sets. In this Chapter

97
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two methods will be presented. Jansson (2003) has introduced a SID algorithm
which first estimates a higher order ARX model to get estimates of the impulse
response coefficients. Then projections are performed and the matrices in the
state space model are estimated. In Section 6.1 a system identification method
based on model reduction of a higher order ARX model is presented. The method
is presented to show that when a higher order ARX model is identified there is no
need for additional projections to estimate the system matrices. It is sufficient to
perform a model reduction step. This also means that the method presented in
Section 6.1 is not a SID algorithm and therefore the method by Jansson (2003)
can hardly be called a SID algorithm either. The main part of this section will
treat a new closed loop SID algorithm named DSR_e, Di Ruscio (2004), and sim-
ulation studies of it. The DSR_e algorithm is a modification of the existing DSR
algorithm.

6.1 A simple algorithm

A method to identify a state space model from given inputs and outputs can
be described by the following three steps. The first step is to identify a higher
order ARX model by for instance using the ARX function in Matlab. The sec-
ond step is to convert the ARX model to a state space model. The third step
is a model reduction technique based on the properties of (block) Hankel ma-
trices constructed from the impulse responses. The model reduction technique
is described in Di Ruscio (2003b). Only the equations needed to do the model
reduction are presented here. The impulse responses are given by

H; = DA™ '[B K]. (6.1)

The submatrices needed to form the (block) Hankel matrix constructed from the
impulse responses are given by

H, H, H; ... H;
H, H;y Hy ... Hjp,
Hyp = Hy Hy Hs ... Hj |R™E, (6.2)
_HL HL+1 HL+J_1_
Where L is the future horizon and J is the past horizon.
[ H2 H3 H4 HJ+1 ]
H; H, Hs ... Hjy.,
Hyp=| Hde Hs He ... Hypy | RmIXT (6.3)
Hpyw Hpyo Hpyy |
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The singular value decomposition (SVD) of the finite (block) Hankel matrix Hy;,
have to be computed to obtain the system matrices

Hy,=USVT =[U, U] { %1 ;)2 ] { “2 } . (6.4)

The order of the state space model is equal to the number of the non-zero singular
values in the singular value decomposition of Hyr,, Equation (6.4).

Utilizing that
HI\L = OLO] (65)

where Oy, is given by Equation (4.7) and

i

[B K] AB K] ... A’7YB K]] € R™Li+m (6.6)
and choosing output normal equation

OL — U1
c; = S\v&

the following system matrices can be found by

D = Og(1:m,:) (6.9)
B = C;(:1:71) (6.10)
K = C;(,r+1:r+m). (6.11)
Utilizing that
Hy, = OLAC, (6.12)
gives
A= (0T0,) 0T Hy,OF (C,CT)1 (6.13)

where T denotes the Moore-Penrose pseudo inverse.

This method does not have its own name, to my knowledge. For simplicity it will
be presented as h_arx_mr (Higher order ARX model with Model Reduction).
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6.2 The DSR _e algorithm

A SID algorithm for open and closed loop systems is presented in Di Ruscio
(2004) and implemented in the DSR_e Matlab function in the DSR Toolbox for
Matlab. In this section the algorithm will be analysed further. The algorithm
is based on the fact that the noise innovation process can be identified directly
from the data in a first step, Di Ruscio (1995), Di Ruscio (2001). The estimation
of the noise innovation process is consistent, both in the case of open and closed

loop data. This section, section 6.1 and section 6.3 is an extended version of
Nilsen and Di Ruscio (2004c).

Before introducing the method some basic definitions used in Di Ruscio (2003a)
and Di Ruscio (2004) have to be introduced. When describing the fundamentals
of the DSR algorithm, Section 4.1, a necessary assumption is that the states are a
function of the past, Section 4.1.3. Let us consider the discrete time Kalman filter
in innovation form, Equations (2.15) and (2.16). Given a number of N data points

Yy k=0,1,2,...,N—1 (6.14)
Yk
a matrix equation of the predicted state at time k£ + .J of a Kalman filter with
the initial predicted state at time £ is

Xpyg = C5Yyys + CUy s + (A — KD)' X (6.15)

C% = Cj(A— KD, K) is the reversed extended controllability matrix of the pair
(A- KD,K). C% = C,;(A— KD,B — KE) is the reversed extended control-
lability matrix of the pair (A — KD, B — KE). The definition of the extended
controllability matrix is given by Equation (4.8). X is the initial predicted state
(estimate) at the initial discrete time k. The past horizon, .J, is introduced in
Section 4.1.1. For simplicity of notation the following definition is introduced
X = X which gives

X; = C3Yy + C4Uy s + (A — KD)' X, (6.16)

when the initial discrete time £ = 0. By using the the extended output matrix
Equation (4.12) and setting the initial discrete time to J gives

YJ|L =0LX; + HzUL|L+g_1 + HZEJ‘L- (617)
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Combining Equations (6.16) and (6.17) gives the relationship between the past
and the future

N N UJ|L+gfl
Yy = [Hf 01C% 0,.C%) Uo)s +Or(A— KD)' Xo+ H{Ey. (6.18)

This equation describes the same properties as Equation (4.19), the relationship
between the past and the future, and is the main equation needed to understand
the DSR_e algorithm. It is important to note which terms which are propor-
tional with the extended observability matrix Or. Both Equations (4.19) and
(6.18) show that the effect of the future inputs, Ujjp44—1, and the future noise,
Ej 1, have to be removed from the future outputs, Yz, in order to recover the
subspace spanned by the extended observability matrix. The choice of projec-
tions used in DSR have already been presented in Section 4.1.4.

In the following it will be assumed that there is no direct feedthrough term in
the closed loop systems considered, which gives E' = 0, which also is the case in
closed loop control systems due to process dynamics. Using Equation (6.18) with
g =0, L =1 and letting J — oo gives

Y = D[CT CY] [ ] + FEj. (6.19)

Hence, the innovation is given by

s de U
Zin :fFEJu =Y — Y/ o (6.20)
Yoir
and the innovations sequence in Equations (2.15)-(2.16) is given by
[6] EJ41 - -- 6N,1] = Z;H € Rmx(N*li]). (621)

This approach is valid for both open and closed loop systems since the past data,
Up|s and Yy, are uncorrelated with the future noise Ej;.

When the innovation is known the remaining problem is to solve a deterministic
SID problem to obtain the system order, n, and the system matrices A, B, K
and D. The problem is solved by using the DSR algorithm directly to identify
the following model

thy = Az, + (B K]{gz] (6.22)

Ye —€k = Duwy. (6.23)
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Note that, when the data matrices are formed the right-hand side of Equation
(6.23) equals DX ;, which also can be found on the right-hand side of Equation
(6.20). Defining

de U,
z5 s | ] (6.24)
0.
gives
DXJ = [DIJ D.’L'J+1 ce D.’L'N_l] = Zf;“ (625)
This gives
s —€5 Yrr1—€r41 - YN—1 —EN-1] = Z?\l- (6.26)

The theory presented in Section 4.1 can be used directly on deterministic systems
by zeroing out the matrices Uy ; and Yp; from the projections. This gives that
the extended observability matrix, O, and thus matrices A and D, can be
found from the projection equation

Usr

1
~ O, 1X4. 6.27
Enra ] Lty (6:27)

Znp+v1 =Yy [

Using the theory in Section 4.1, matrices B and K can be found from the pro-
jection equation

- R
Yipr =AYy + [Br O] [ JIE ] : (6.28)

6.2.1 The basic steps in the DSR _e algorithm

1. Estimate the future innovation matrix

The future innovation matrix is estimated from Equation (6.20)

Uo|s ]

Zy=FE;p =Y =Y/ [ You

where a large past horizon, J, has to be chosen.

2. Form the block Hankel matrix F;4,

The block Hankel matrix Ejr4; is formed directly from the innovation
sequence ¢, ¥V k= J,J+1,..., N—1 in the Kalman filter, Equation (6.21).
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3. Form the block Hankel matrices U, and Y4,

The block Hankel matrices Uy, and Yj 41 are formed directly from the
known input and output data sequence u, and y, V k= J, J+1,...,N—1.

4. Estimate the extended observability matrix
The extended observability matrix Oy is estimated from Equation (6.27)

Zap+1 =Yy {

The matrices A and D are found from the extended observability matrix
as described in Section 4.1.

5. Estimate the matrices B and K
Matrices B and K are estimated from Equation (6.28)

Y= ALYJ|L + [BL éL] [

6. Compute the initial state X

6.3 Simulation examples

This section contains simulation examples to test the performance of the DSR_e
algorithm, introduced in Section 6.2, and the algorithm named h_arx_mr, intro-
duced in Section 6.1. The algorithms will be compared to PEM implemented in
Matlab. The reason for this is that the results from a closed loop SID algorithm
have to be comparable to the results from PEM in order to be considered as an
alternative to PEM. The results using the classic SID algorithms DSR, N4SID
and MOESP, Verhaegen (1994), are presented to show the improvement in DSR e
compared to the classic SID algorithms.

The examples used have been presented in Section 3. The estimates presented are
the eigenvalue of the system matrix A, \(A), the deterministic transition zeros of
the system, p(A, B, D, E), and the eigenvalues of the Kalman filter, A(A — K D).
Focus is placed on reference signals with a low level of persistent excitation. The
reason for this is that poor projections are revealed by the need of rich excitation
signals and sensitivity to noise.

The system order and the fact that the matrix E is the zero matrix is assumed
known. PEM and N4SID are used with default parameters and nk = 1. The
parameter chosen for the rest of the methods are the values which minimize the
Squared Eigenvalue Error criterion, V!, unless other values specified.
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6.3.1 Example 1
Using a low frequent PRBS as reference signal

The example used in this section was introduced in Section 3.1. The noise level
used is the noise variance presented in Section 3.1. The reference used is the low
frequent PRBS introduced in Section 4.4, Figure 4.3 page 33. PEM and N4SID
are used with default parameters and n, = 1. DSR_e is used with ¢ =0, L =5
and J = 7. In h_arx_mr the model order of the higher order ARX model used is
6 together with L = 6 and J = 6. MOESP is used with s = 10. DSR is used
with ¢ =0, L = 4 and J = 4. The estimated eigenvalues are shown in Figure 6.1.
The estimated zeros are presented in Figure 6.2 and the estimated eigenvalues of
the Kalman filter are shown in Figure 6.3.

AMA) PEM AMA) DSR_e A(A) h_arx_mr
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Figure 6.1: Eigenvalue estimates using low frequent PRBS, r} page 33, as the
reference signal in the closed loop system, Example 1, Section 3.1. PEM and
N4SID are used with default parameters and nk = 1. DSR_e is used with ¢ = 0,
L =5 and J =7. In h_arx_mr the model order of the higher order ARX model
used is 6 together with L = 6 and J = 6. MOESP is used with s = 10. DSR is
used with ¢ =0, L =4 and J = 4.

The only methods that give unbiased eigenvalue estimates are PEM and DSR_e.
The methods h_arx_mr, MOESP and DSR all have a bias, but h_arx_mr has larger
variance than the others. The reason for this is that the methods need excitation
with a higher order of persistent excitation to give unbiased results with reason-
able variance. N4SID gives the poorest eigenvalue estimates.



6.3. SIMULATION EXAMPLES 105
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Figure 6.2: Estimated zeros using low frequent PRBS, r;, page 33, as the reference
signal in the closed loop system, Example 1, Section 3.1. PEM and N4SID are
used with default parameters and nk = 1. DSR_e is used with ¢ =0, L =5 and
J = 7. In h_arx_mr the model order of the higher order ARX model used is 6
together with L = 6 and J = 6. MOESP is used with s = 10. DSR is used with
g=0,L=4and J=4.
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A(A-KD) PEM MA-KD) DSR_e AMA-KD) h_arx_mr
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Figure 6.3: Estimated eigenvalues of the Kalman filter using low frequent PRBS,
ri page 33, as the reference signal in the closed loop system, Example 1, Section
3.1. PEM and N4SID are used with default parameters and nk = 1. DSR_e is
used with ¢ =0, L =5 and J = 7. In h_arx_mr the model order of the higher
order ARX model used is 6 together with L = 6 and .J = 6. MOESP is used with
s = 10. DSR is used with ¢ =0, L =4 and J = 4.
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Regarding the estimates of the zeros all methods have a bias. But the only
method which is comparable to PEM, which is to be considered as the bench-
mark, is DSR_e. The only method with large variance is h_arx_mr. It has to
be commented on that when N4SID, or any other SID algorithm, gives good a
estimation of the zeros when the estimates of the eigenvalues are poor it is just
pure luck. The reason for this argument is that in SID algorithms projections
to estimate the extended observability matrix, and thereby the eigenvalues, are
performed first. These results are used later when the rest of the state space
model is identified. Therefore it is not possible to estimate zeros in a proper way
if the estimates of the eigenvalues are poor.

The only methods that give proper estimates of the eigenvalues of the Kalman
filter are PEM and DSR_e. Also here DSR_e is comparable to PEM. The classic
SID algorithms suffer from large bias and h_arx_mr suffers from large variance
and also has a small bias.

Using a low frequently PRBS as reference signal when the noise vari-
ance is increased

The low frequently PRBS is still used as reference signal but the variance of the
noise is increased 50 times. PEM and N4SID are used with default parameters
and ny = 1. DSR_e is used with ¢ = 0, L = 5 and J = 7. In h_arx_mr the
model order of the higher order ARX model used is 3 together with L = 3 and
J = 3. MOESP is used with s = 15. DSR is used with ¢ = 0, L = 6 and
J = 7. The estimated eigenvalues are shown in Figure 6.4. The estimated zeros
are presented in Figure 6.5 and the estimated eigenvalues of the Kalman filter
are shown in Figure 6.6.

PEM and DSR_e are the only methods which give reasonable estimates of the
eigenvalues. The estimates from both methods are considered unbiased. The
increased variance is the result of the increased noise variance. The rest of the
methods give such poor results that they will not be commented on further.

The transition zero of the system has the value 1. The mean value of the esti-
mated zeros found by PEM is approximately 6.5. The corresponding value for
DSR_e is 1.2. The standard deviation of the estimates found by PEM is approx-
imately 36 and the corresponding value for DSR _e is 18. This means that in this
simulation DSR_e provides better estimates of the zeros than PEM.

The estimates of the eigenvalues of the Kalman filter from PEM are unbiased,
but the estimates from DSR_e are not. The reason for this can be the parame-
ter choice in DSR_e. The parameters chosen are the values which minimize the
Squared Eigenvalue Error criterion, V. So far no other criteria have been con-
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Figure 6.4: Eigenvalue estimates using low frequent PRBS, 7, page 33, as the
reference signal in the closed loop system, Example 1, Section 3.1, when the
variance of the noise is increased 50 times. PEM and N4SID are used with
default parameters and n, = 1. DSR_e is used with ¢ =0, L =5 and J =7. In
h_arx_mr the model order of the higher order ARX model used is 3 together with
L =3 and J = 3. MOESP is used with s = 15. DSR is used with ¢ =0, L =6
and J =T.
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Figure 6.5: Estimated zeros using low frequent PRBS, r;, page 33, as the reference
signal in the closed loop system, Example 1, Section 3.1, when the variance of the
noise is increased 50 times. PEM and N4SID are used with default parameters
and nk = 1. PEM and N4SID are used with default parameters and n, = 1.
DSR_e is used with ¢ =0, L =5 and J = 7. In h_arx_mr the model order of the
higher order ARX model used is 3 together with L = 3 and J = 3. MOESP is
used with s = 15. DSR is used with ¢ =0, L=6 and J =T.
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Figure 6.6: Estimated eigenvalues of the Kalman filter using low frequent PRBS,
. page 33, as the reference signal in the closed loop system, Example 1, Section
3.1, when the variance of the noise is increased 50 times. PEM and N4SID are
used with default parameters and ny = 1. DSR_e is used with ¢ =0, L =5 and
J = 7. In h_arx_mr the model order of the higher order ARX model used is 3
together with L = 3 and J = 3. MOESP is used with s = 15. DSR is used with
g=0,L=6and J=T71.
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sidered. Functions for identification of system order will be presented in Section
6.4. These functions together with DSR_e can be considered as an automatic
version of DSR_e where no parameters have to be set. A procedure based on
visual inspection of the singular value plot from DSR._e to identify the system or-
der succeeded by a search for the parameter settings which provide the smallest
squared prediction error is presented in Section 6.5.

Using a high frequently PRBS as reference signal when the noise vari-
ance is increased

Now the high frequently PRBS r¢, introduced in Section 5.1 Figure 5.3 page 72,
is chosen as the reference signal. The variance of the noise is 50 times larger
than the level described in Section 3.1. PEM and N4SID are used with default
parameters and n, = 1. DSR_e is used with ¢ =0, L =6 and J = 7. In h_arx_mr
the model order of the higher order ARX model used is 3 together with L = 3
and J = 3. MOESP is used with s = 10. DSR is used with ¢ = 0, L = 4 and
J = 5. The estimated eigenvalues are shown in Figure 6.4. The estimated zeros
are presented in Figure 6.5 and the estimated eigenvalues of the Kalman filter
are shown in Figure 6.6.

The increase in the order of persistent excitation has led to eigenvalue estimates
from PEM and DSR_e with smaller variance. The estimates from PEM and
DSR_e are also comparable here. DSR has got reduced variance and bias, but is
still biased. A question is if the bias on the estimates from DSR is of any practical
interest, but that kind of consideration will not be treated in this work. The rest
of the methods give poor results and will not be commented on any further.

Regarding the estimates of the transition zeros of the systems both PEM and
DSR_e have a small bias, but DSR_e still has smaller variance than PEM. The
increase in the order of persistent excitation has also led to improved estimates
here.

The estimates of the eigenvalues of the Kalman filter are comparable for the PEM
and DSR_e methods. This is an improvement for DSR_e since the estimates now
are unbiased.

Using two sinusoid signals as the reference signal when the noise vari-
ance is increased

Now a reference signal consisting of two sinusoid signals is used. The reference
signal is given by
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Figure 6.7: Eigenvalue estimates using high frequent PRBS, r¢ page 72, as the
reference signal in the closed loop system, Example 1, Section 3.1, when the
variance of the noise is increased by 50 times. PEM and N4SID are used with
default parameters and n, = 1. DSR_e is used with ¢ =0, L =6 and J = 7. In
h_arx_mr the model order of the higher order ARX model used is 3 together with
L =3 and J = 3. MOESP is used with s = 10. DSR is used with ¢ =0, L = 4
and J = 5.
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Figure 6.8: Estimated zeros using high frequent PRBS, 7 page 72, as the refer-
ence signal in the closed loop system, Example 1, Section 3.1, when the variance
of the noise is increased 50 times. PEM and N4SID are used with default param-
eters and ny = 1. DSR_e is used with ¢ =0, L =6 and J = 7. In h_arx_mr the
model order of the higher order ARX model used is 3 together with L = 3 and
J = 3. MOESP is used with s = 10. DSR is used with ¢ =0, L =4 and J = 5.
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Figure 6.9: Estimated eigenvalues of the Kalman filter using high frequent PRBS,
rd page 72, as the reference signal in the closed loop system, Example 1, Section
3.1, when the variance of the noise is increased 50 times. PEM and N4SID are
used with default parameters and ny = 1. DSR_e is used with ¢ =0, L = 6 and
J = 7. In h_arx_mr the model order of the higher order ARX model used is 3
together with L = 3 and J = 3. MOESP is used with s = 10. DSR is used with
g=0,L=4and J=5.
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ry = sin(k) + sin (g) : (6.29)

The variance of the noise is 50 times larger than the level described in Section 3.1.
PEM and N4SID are used with default parameters and ny = 1. DSR_e is used
with ¢ =0, L =3 and J = 7. In h_arx_mr the model order of the higher order
ARX model used is 14 together with L = 14 and J = 14. MOESP is used with
s = 10. DSR is used with ¢ = 0, L =5 and J = 6. The estimated eigenvalues
are shown in Figure 6.10. The estimated zeros are presented in Figure 6.11 and
the estimated eigenvalues of the Kalman filter are shown in Figure 6.12.
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Figure 6.10: Eigenvalue estimates using a reference signal consisting of two sinu-
soid signals, rj page 115, in the closed loop system, Example 1, Section 3.1, when
the variance of the noise is increased 50 times. PEM and N4SID are used with
default parameters and n, = 1. DSR_e is used with ¢ = 0, L =3 and J = 7.
In h_arx_mr the model order of the higher order ARX model used is 14 together
with L = 14 and J = 14. MOESP is used with s = 10. DSR is used with ¢ =0,
L=5and J=6.

Now the variance of the estimated eigenvalues is reduced for all the methods.
PEM and DSR_e are still the only methods that give unbiased estimates, but the
estimates from h_arx_ mr, MOESP and DSR only have a small bias. MOESP and
DSR are the methods with the smallest variance. The estimates from N4SID are
still poor and will not be commented on any further.
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Figure 6.11: Estimated zeros using a reference signal consisting of two sinusoid
signals, r} page 115, in the closed loop system, Example 1, Section 3.1, when
the variance of the noise is increased 50 times. PEM and N4SID are used with
default parameters and n, = 1. DSR_e is used with ¢ = 0, L =3 and J = 7.
In h_arx_mr the model order of the higher order ARX model used is 14 together
with L = 14 and J = 14. MOESP is used with s = 10. DSR is used with ¢ = 0,

L =5and J=6.

-5 [0} 5

-5 (0] 5



6.3. SIMULATION EXAMPLES

A(A-KD) PEM

0.5
0
)
-0.5
o 05
A(A—KD) MOESP
05 v
0
-0.5 %
o 0.5

1

0.5

-0.5

0.5

-0.5

MA—-KD) D

SR_e

MA-KD) h_arx_mr

0.5
o * X
§><i %x
-0.5
0.5 1 (0] 0.5
AMA-KD) DSR AMA-KD) N4SID
0.5

»

»

o

0.5

1

-0.5

(0]

1

117

Figure 6.12: Estimated eigenvalues of the Kalman filter using a reference signal
consisting of two sinusoid signals, rj page 115, in the closed loop system, Example
1, Section 3.1, when the variance of the noise is increased 50 times. PEM and
N4SID are used with default parameters and n, = 1. DSR_e is used with g = 0,
L =3 and J = 7. In h_arx_mr the model order of the higher order ARX model
used is 14 together with L = 14 and J = 14. MOESP is used with s = 10. DSR
is used with ¢ =0, L =5 and J = 6.
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All methods, except of MOESP and N4SID, have reduced variance on the esti-
mated transition zeros. PEM, DSR_e and DSR only have a small bias.

Regarding the estimated eigenvalues of the Kalman filter, PEM has a reduction in
the variance of the estimates. DSR_e is still comparable to PEM. The estimates
from h_arx_mr are now unbiased, but still with a variance which is larger than

for PEM and DSR_e. The estimates from MOESP and DSR are still biased, but
the variance is small.

6.3.2 Example 2

Example 2 used in this section was introduced in Section 3.2. The noise level used
is the noise variance presented in Section 3.2. The references used are the same
as used in Section 4.6 with very little excitation, both in the level of persistent
excitation and in the size of the amplitude.

The estimated eigenvalues of the system, the estimated zeros of the system and
the estimated eigenvalues of the Kalman filter will also here be focused on. For
this system the eigenvalues of the Kalman filter are hard to estimate. The Kalman
filter gain has a very small numerical value, K = [0.0043 0.0021]7. The deter-
ministic steady state gain also has a small numerical value, H%(1) = 0.0160, and
the stochastic steady state gain is H*(1) = 1.0304. Therefore this example is not
a good example for considering its ability to estimate a full Kalman filter. This is
also a system where DSR gives unbiased estimates of both eigenvalues and zeros,
if used with the appropriate parameter setting and with an appropriate refer-
ence signal. But it is the goal to test both DSR_e and h_arx_mr on all examples
introduced in this work to have a variety of examples for comparison.

Using a constant reference superposed with a sinusoid signal

The reference used is a constant value superposed with a sinusoid signal, with
frequency w = 0.725 and with magnitude +0.1, introduced in Section 4.6.1,
Equation (4.67). PEM and N4SID are used with default parameters and n; = 1.
DSR_e is used with ¢ =0, L = 9 and J = 11. In h_arx_mr the model order of
the higher order ARX model used is 9 together with L =9 and J =9. MOESP
is used with s = 11. DSR is used with ¢ =0, L = 11 and J = 12. The estimated
eigenvalues are shown in Figure 6.13. The estimated zeros are presented in Figure
6.14 and the estimated eigenvalues of the Kalman filter are shown in Figure 6.15.

The methods that give eigenvalue estimates with considerable bias are h_arx_mr
and N4SID, this is due to the need for input with a high order of persistent ex-
citation. In this case DSR_e is not directly comparable to PEM.



6.3. SIMULATION EXAMPLES 119

MA) PEM MA) DSR_e MA) h_arx_mr
0.1 . 0.1
0.05 0.05
0] (0]
-0.05 —-0.05
-0.1 -0.1
0.7 0.8 0.9 1 1.1 0.7 0.8 0.9 1 1.1
A(A) MOESP A(A) DSR A(A) N4SID
0.1 0.1 0.1
0.05 0.05 0.05
(0] [0] 0 30 300
-0.05 -0.05 -0.05
-0.1 -0.1 -0.1
0.7 0.8 0.9 1 1.1 0.7 0.8 0.9 1 1.1 0.7 0.8 0.9 1 1.1

Figure 6.13: Eigenvalue estimates using a constant reference superposed with a
sinusoid signal, r; = 1 + 0.1sin(wk) with w = 0.725, in the closed loop system,
Example 2, Section 3.2. PEM and N4SID are used with default parameters and
ny = 1. DSR_e is used with ¢ =0, L = 9 and .J = 11. In h_arx_mr the model
order of the higher order ARX model used is 9 together with L =9 and .J = 9.
MOESP is used with s = 11. DSR is used with ¢ =0, L =11 and J = 12.
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Figure 6.14: Estimated zeros using a constant reference superposed with a si-
nusoid signal, 7} = 1 + 0.1sin(wk) with w = 0.725, in the closed loop system,
Example 2, Section 3.2. PEM and N4SID are used with default parameters and
ny = 1. DSR_e is used with ¢ =0, L = 9 and .J = 11. In h_arx_mr the model
order of the higher order ARX model used is 9 together with L =9 and J = 9.
MOESP is used with s = 11. DSR is used with ¢ =0, L =11 and J = 12.
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Figure 6.15: Estimated eigenvalues of the Kalman filter using a constant reference
superposed with a sinusoid signal, r} = 1 + 0.1sin(wk) with w = 0.725, in the
closed loop system, Example 2, Section 3.2. PEM and N4SID are used with
default parameters and n, = 1. DSR_e is used with ¢ = 0, L = 9 and J = 11.
In h_arx_mr the model order of the higher order ARX model used is 9 together
with L = 9 and J = 9. MOESP is used with s = 11. DSR is used with ¢ = 0,
L=11and J =12.
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The methods that give the best estimates of the transition zeros of the system
are PEM and DSR. The reason for this is the need for signals with a higher order
of persistent excitation in the other methods. The good results from DSR must
also be connected to the fact that the frequency used for the sinusoid signal is
the frequency which is optimal for DSR.

DSR also gives a reasonable estimate of the eigenvalues of the Kalman filter. It
is not possible to state if this is random or due to the fact that the frequency
used for the sinusoid signal is the frequency which is optimal for DSR.

Using a constant reference superposed with a PRBS

The use of a reference signal consisting of a constant value superposed with a si-
nusoid signal leads to the assumption that except for PEM and DSR_e, the other
methods needed a signal with higher order of persistent excitation. Therefore the
reference used now is a constant value superposed with a PRBS generated from
Equation (4.71) with B = 0.2, introduced in Section 4.6.1.

PEM and N4SID are used with default parameters and ny = 1. DSR_e is used
with ¢ =0, L =6 and J = 15. In h_arx_mr the model order of the higher order
ARX model used is 6 together with L = 6 and J = 6. MOESP is used with
s = 13. DSR is used with ¢ =0, L = 9 and J = 10. The estimated eigenvalues
are shown in Figure 6.16. The estimated zeros are presented in Figure 6.17 and
the estimated eigenvalues of the Kalman filter are shown in Figure 6.18.

In this case all the methods give unbiased estimates of the eigenvalues, but N4STD
gives estimates with larger variance than the other methods. The estimates
of the transition zeros from all the methods, except MOESP, are considered
unbiased but PEM and DSR._e give the best estimates. None of the methods give
a reasonable estimate of the eigenvalues of the Kalman filter.

6.3.3 Example 3

Example 3 used in this section was introduced in Section 3.3 together with the
noise level, unit variance, and the reference consisting of white noise with vari-
ance 4. PEM and N4SID are used with default parameters and n, = 1. DSR_e
is used with ¢ =0, L = 1 and J = 10. In h_arx_mr the model order of the higher
order ARX model used is 3 together with L = 3 and J = 3. MOESP is used with
s = 3. DSR is used with ¢ = 0, L = 2 and J = 3. The estimated eigenvalues
are shown in Figure 6.19. There are no zeros in this process. The estimated
eigenvalues of the Kalman filter are shown in Figure 6.20.
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Figure 6.16: Eigenvalue estimates using a constant reference superposed with
a PRBS, R* = ones(N, 1) + 0.1 - idinput(N,' pros’, [0 B]) with B = 0.2, in the
closed loop system, Example 2 Section 3.2. PEM and N4SID are used with
default parameters and n, = 1. DSR_e is used with ¢ = 0, L = 6 and J = 15.
In h_arx_mr the model order of the higher order ARX model used is 6 together
with L = 6 and J = 6. MOESP is used with s = 13. DSR is used with ¢ = 0,
L =9and J = 10.
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Figure 6.17: Estimated zeros using a constant reference superposed with a PRBS,
R* = omnes(N, 1) + 0.1 - idinput(N,' pros’, [0 B]) with B = 0.2, in the closed
loop system, Example 2 Section 3.2. PEM and N4SID are used with default
parameters and n, = 1. DSR_e is used with ¢ = 0, L = 6 and J = 15. In
h_arx_mr the model order of the higher order ARX model used is 6 together with
L =6 and J = 6. MOESP is used with s = 13. DSR is used with ¢ =0, L =9
and J = 10.
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Figure 6.18: Estimated eigenvalues of the Kalman filter using a constant reference
superposed with a PRBS, R* = ones(N, 1) + 0.1 - idinput(N,' prbs’,[0 B]) with
B = 0.2, in the closed loop system, Example 2 Section 3.2. PEM and N4SID are
used with default parameters and ny = 1. DSR_e is used with ¢ =0, L = 6 and
J = 15. In h_arx_mr the model order of the higher order ARX model used is 6
together with L = 6 and J = 6. MOESP is used with s = 13. DSR is used with
g=0,L=9and J=10.
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Figure 6.19: Eigenvalue estimates using a white noise reference with variance 4 in
the closed loop system, Example 3, Section 3.3. PEM and N4SID are used with
default parameters and n, = 1. DSR_e is used with ¢ = 0, L = 1 and J = 10.
In h_arx_mr the model order of the higher order ARX model used is 3 together
with L = 3 and J = 3. MOESP is used with s = 3. DSR is used with ¢ = 0,
L=2and J=3.
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Figure 6.20: Estimated eigenvalues of the Kalman filter using a white noise ref-
erence with variance 4 in the closed loop system, Example 3, Section 3.3. PEM
and N4SID are used with default parameters and n; = 1. DSR_e is used with
g=0,L=1and J=10. In h_.arx_mr the model order of the higher order ARX
model used is 3 together with L = 3 and J = 3. MOESP is used with s = 3.
DSR is used with ¢ =0, L = 2 and .J = 3.
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PEM, DSR_e and h_arx_mr give unbiased estimates of the eigenvalues. The clas-
sic SID algorithms MOESP, DSR, and N4SID all give biased estimates. In Section
4.5 it was shown that by using ¢ = 0, L = 1 and J = 250 the eigenvalue estimates
from DSR would be unbiased. The parameter setting is a special case and will
not be used here.

PEM is the only method which gives unbiased estimates of the eigenvalues of the
Kalman filter. DSR_e gives estimates of the eigenvalues of the Kalman filter that
can be considered as unbiased. The classic SID algorithms MOESP, DSR and
N4SID all give estimates with smaller bias than h_arx_mr. Since the classic SID
algorithms give biased estimates of the eigenvalues of the system it is a coinci-
dence that the estimates of the eigenvalues of the Kalman filter have smaller bias
than the estimates from h_arx_mr.

6.3.4 Example 4

Example 4 used in this section was introduced in Section 3.4 together with the
noise level. The reference, r.°, used is generated from Equation (3.21) with a
white noise input with unit variance. Figure 6.21 shows the reference, r,°, with

the corresponding input, uy, and output, y,, for a particular noise realization.

10 T T T T T T T T T

aSx 0OF -
-5 . . . -

~10 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

1 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000

-50 1 1 1 1 1 1 1 1 1
(0] 100 200 300 400 500 600 700 800 900 1000

Discrete time

Figure 6.21: The reference, r;°, with the corresponding input, u, and output,
Yi, for a particular noise realization in Example 4, Section 3.4

Choosing the parameter values which minimize the Squared Eigenvalue Error
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criterion, V!, gives poor estimation of the transition zeros of the system and the
eigenvalues of the Kalman filter. An alternative is to consider the augmented
state space model of the system, Equations (2.11) - (2.12), given by the matrices
in Equation (3.20). The system to be estimated may be considered in innova-
tion form. On observable canonical form the system matrices have the following
structure

A:{O 1],3:{1’”],1(:{’“”],0:[1 0]. (6.30)

G21 a22 ba1 ko

The parameters to be estimated in the observable canonical form are collected in
a parameter vector

0 = [a21 929 b11 bgl kll le]. (631)
The true parameter vector is
6 =1[03 25 7.5 3.6657 10.6640]. (6.32)

The parameter settings used in DSR_e, h_arx_mr, MOESP and DSR are the values
which minimize the squared deviation from the true parameter vector, Equation
(6.32). PEM and N4SID are used with default parameters and n, = 1. DSR_e
is used with ¢ =0, L = 2 and J = 3. In h_arx_mr the model order of the higher
order ARX model used is 2 together with L = 2 and J = 2. MOESP is used with
s = 6. DSR is used with ¢ = 0, L = 11 and J = 12. The estimated eigenvalues
are shown in Figure 6.22. Figure 6.23 shows the estimated transition zeros of the
system. The estimated eigenvalues of the Kalman filter are shown in Figure 6.24.

PEM, DSR_e and h_arx_mr give unbiased estimates of the eigenvalues. The esti-
mates from h_arx_mr and DSR_e have smaller variance than the estimates from
PEM. The reason for this is that PEM is used with default parameters and DSR_e
and h_arx_mr are used with a parameter which minimizes the squared deviation
from the parameter vector Equation (6.32). The eigenvalue estimates from the
ordinary SID algorithms have considerable bias. PEM and DSR_e are the only
methods with unbiased estimates of the transition zeros. The estimates from
h_arx_mr have a small bias and the ordinary SID algorithms give biased esti-
mates. All the methods give biased estimates of the eigenvalues of the Kalman
filter. PEM does not perform well which may lead to the conclusion that when
PEM has problems estimating the eigenvalues of the Kalman filter there is no
reason to believe that other methods will perform well. Another possibility is to
again consider the capability to estimate the parameters in the parameter vector
Equation (6.32) of the Kalman filter.

The plots of the estimated parameter vector for the respective methods are shown
in Appendix A. The mean and standard deviation of the estimated parameter
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Figure 6.22: Eigenvalue estimates using a reference r.°, page 128, in the closed
loop system, Example 4, Section 3.4. PEM and N4SID are used with default
parameters and ny = 1. DSR_e is used with ¢ =0, L = 2 and J = 3. In h_arx_mr
the model order of the higher order ARX model used is 2 together with L = 2
and J = 2. MOESP is used with s = 6. DSR is used with ¢ = 0, L = 11 and
J =12.
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Figure 6.23: Estimated zeros using a reference r,°, page 128, in the closed loop
system, Example 4, Section 3.4. PEM and N4SID are used with default param-
eters and ny = 1. DSR_e is used with ¢ =0, L = 2 and J = 3. In h_arx_mr the
model order of the higher order ARX model used is 2 together with . = 2 and
J = 2. MOESP is used with s = 6. DSR is used with ¢ =0, L =11 and J = 12.
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Figure 6.24: Estimated eigenvalues of the Kalman filter using a reference r.°,

page 128, in the closed loop system, Example 4, Section 3.4. PEM and N4SID
are used with default parameters and n, = 1. DSR_e is used with ¢ =0, L = 2
and J = 3. In h_arx_mr the model order of the higher order ARX model used is
2 together with L = 2 and J = 2. MOESP is used with s = 6. DSR is used with
g=0,L=11and J =12.
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Table 6.1: Mean values from the Monte Carlo simulation of Example 4, Section
3.4, using the reference ri°, page 128. PEM is used with default parameters,
except n = 2 and n, = 1, for identification. DSR_e is used with n = 2, g = 0,
L =2 and J = 3. The model order of the higher order ARX model in h_arx_mr
is 2 together with L = 2 and J = 2. MOESP is used with n = 2 and s = 6.
DSR is used with n =2, g =0, L = 11 and J = 12. N4SID is used with default
parameters, except n = 2 and n; = 1.

a21 ‘ a22 ‘ b1y ‘ ba1 ‘ k11 ‘ ko1 ‘

PEM 0.4012 | 2.9216 | 2.5245 | 7.8787 | 3.6884 | 11.0685
DSR._e -0.4546 | 3.1332 | 2.3965 | 7.3511 | 3.3089 | 9.8089
h_arx_mr | 0.0355 | 2.9466 | 2.1385 | 6.7643 | 2.9466 | 8.8394
MOESP | -1.0916 | 2.1399 | -0.1936 | -0.1607 | 2.0718 | 2.8077
DSR -1.4932 | 2.6524 | -0.2310 | -0.1850 | 0.1096 | 0.0876
N4SID -1.1761 | 2.2151 | 1.3442 | 59.2547 | 2.7317 | 62.6588

vector are shown in Table 6.1 and Table 6.2.

PEM and DSR_e are the only methods that give estimates of the parameters in
the parameter vector Equation (6.31) which can be considered as unbiased. The
estimates from h_arx_mr have a small bias. The ordinary SID algorithms all have
a considerable bias. This is very clear in the plots in Appendix A where only
PEM, DSR_e and h_arx_mr are plotted using the same axes. When plotting the
results from the rest of the methods other axes have to be used.

By considering the estimates of the parameter vector Equation (6.32) of the full
Kalman filter it is clear that the estimates from PEM and DSR_e are unbiased,
even if the estimated eigenvalues of the Kalman filter indicate the opposite. Even
if the methods gives consistent estimates of the parameter vector, Equation (6.32),
small changes in the parameters can lead to large deviations in the calculations
of the eigenvalues, the transition zeros or the eigenvalues of the Kalman filter.
The estimates of the parameter vector Equation (6.32) also shows that h_arx_mr
provides good estimates with a small bias.

If the system had been analysed by considering the frequency response of the
estimated deterministic transfer function Equation (2.18) from input to output
of the system, like in Chiuso et al. (2004), the problems regarding the Kalman
filter would never been revealed or discussed. In addition when a closed loop SID
algorithm is analysed the capability to estimate the full Kalman filter has to be
considered to evaluate whether the method is comparable to PEM.
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Table 6.2: Standard deviation from the Monte Carlo simulation of Example 4,
Section 3.4, using the reference r}°, page 128. PEM is used with default param-
eters, except n = 2 and n, = 1, for identification. DSR_e is used with n = 2,
g =0, L =2andJ = 3. The model order of the higher order ARX model in
h_arx_mr is 2 together with L = 2 and J = 2. MOESP is used with n = 2 and
s = 6. DSR is used with n =2, g =0, L =11 and J = 12. N4SID is used with
default parameters, except n = 2 and n; = 1.

‘ ‘ a21 ‘ a22 ‘ bi1 ‘ ba1 ‘ k11 ‘ ko1 ‘

PEM 0.9656 | 0.4038 | 0.3749 | 1.7457 0.3871 | 2.2365
DSR_e 0.6989 | 0.4027 | 0.3686 | 1.6246 0.3680 | 1.9524
h_arx_mr | 0.3734 | 0.3506 | 0.3515 | 1.4379 0.3506 | 1.7154
MOESP | 0.1592 | 0.1744 | 0.0527 | 0.0400 0.2723 | 0.8480
DSR 0.3868 | 0.4576 | 0.0361 | 0.0243 0.0077 | 0.0135
N4SID 7.4122 | 7.6741 | 7.5801 | 370.2546 | 7.6516 | 385.7195

6.3.5 Example 5

Example 5 used in this section was introduced in Section 3.5 together with the
corresponding noise level. The reference was presented in Section 5.4.2, Figure
5.19. Like in the previous examples a Monte Carlo simulation with 100 runs with
different noise realization in each run is carried out. The system order n = 3
and the fact that the matrix E is the zero matrix is assumed to be known. PEM
and N4SID are used with default parameters and nk = 1. It is not possible to
find a parameter choice for the classic SID algorithms, or h_arx_mr, which results
in unbiased estimates. For simplicity the following parameter settings are used.
DSR_e is used with ¢ = 0, L = 10 and J = 10. In h_arx_mr the model order
of the higher order ARX model used is 10 together with L = 10 and J = 10.
MOESP is used with s = 10. DSR is used with ¢ = 0, L = 10 and J = 10.
Figure 6.25 shows the estimated eigenvalues.

PEM and DSR_e give unbiased eigenvalue estimates with comparable variance.
The eigenvalue estimates from h_arx_mr, MOESP, DSR and N4SID are of no use.

Figure 6.26 shows the estimated zeros. All the methods give biased estimates of
the zeros. The bias is not visible in the figure due to the axes used. DSR_e is
comparable to PEM. MOESP, DSR, N4SID and h_arx_mr estimate the zeros with
smaller bias and variance than PEM and DSR_e. This has to be a coincidence
since the eigenvalues are needed to estimate the zeros in these subspace methods.

Figure 6.27 shows the estimated eigenvalues of the Kalman filter.

PEM and DSR_e give unbiased estimates of the eigenvalues of the Kalman filter.
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Figure 6.25: The estimated eigenvalues when 7 and 7}, page 90, are used as
reference in the closed loop simulation, Example 5, Section 3.5. PEM and N4SID
are used with default parameters and nk = 1. DSR_e is used with ¢ =0, L = 10
and J = 10. In h_arx_mr the model order of the higher order ARX model used is
10 together with L = 10 and J = 10. MOESP is used with s = 10. DSR is used
with ¢g =0, L =10 and J =10 .
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Figure 6.26: The estimated zeros when 7/ and 7}, page 90, are used as reference
in the closed loop simulation, Example 5, Section 3.5. PEM and N4SID are used
with default parameters and nk = 1. DSR_e is used with ¢ = 0, L = 10 and
J =10. In h_arx_mr the model order of the higher order ARX model used is 10
together with . = 10 and J = 10. MOESP is used with s = 10. DSR is used
with ¢ =0, L = 10 and J = 10.
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Figure 6.27: The estimated eigenvalues of the Kalman filter when r and r}, page
90, are used as reference in the closed loop simulation, Example 5, Section 3.5.
PEM and N4SID are used with default parameters and nk = 1. DSR_e is used
with ¢ =0, L = 10 and J = 10. In h_arx_mr the model order of the higher order
ARX model used is 10 together with L = 10 and J = 10. MOESP is used with
s = 10. DSR is used with ¢ =0, L = 10 and .J = 10.
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The rest of the methods give biased estimates.

Also in this case DSR_e is comparable to PEM. In previous sections a reasonable
parameter choice have been to choose a small future horizon, L, when there is
considerable noise. The past horizon J has to be chosen larger than when DSR is
used on open loop data. In this case a large .J has been chosen. If a small L, for
instance L = 3, is chosen a small bias is introduced in the eigenvalue estimates.
The estimated zeros and the estimated eigenvalues of the Kalman filter are still
unbiased. If L = 5 is used the results are unbiased as when L = 10. The plots
for the cases where I, = 3 and L = 5 are shown in Appendix B. This indicates
that choosing a minimum value of L can lead to a small bias.

In this case h_arx_mr does not work. The method needs inputs with a consider-
ably higher order of persistent excitation than PEM and DSR_e. The reason for
this is the large number of parameters to be estimated in the high order ARX
model.

6.4 Automatic identification of system order

In the previous sections the parameter choice in both DSR and DSR_e has been
based on knowledge regarding the eigenvalues or the full state space model of the
system. This section presents different methods to estimate the system order.
The methods are meant as help for users without experience in using SID algo-
rithms. The methods will be compared to each other and PEM. The model found
by PEM implemented in Matlab 6.5 is initialized by N4SID, and then further ad-
justed by optimizing the prediction error fit if the system order is not specified.
The system order is assumed to be lower than 10.

Some basic assumptions have to be stated before the methods can be presented.
The first assumption is that when there is no knowledge regarding the process,
a model of higher order than 10 will not be chosen. The past horizon will be
chosen larger than the future horizon, but never larger than 20. If two mod-
els have approximately the same performance, the model with the lowest order
is preferred. This is inspired by Akaike’s Information Criterion, Ljung (1999),
which gives a tradeoff between performance and model complexity. All methods
are programmed for both DSR and DSR_e, but only the functionality related to
DSR_e will be discussed due to the focus on closed loop functionality.

It is natural to use the built-in functionality in DSR_e. A search is performed
on the logarithm of the singular values to identify the the first significant drop
in numeric value. This drop indicates the system order. When this functionality
is used it is referred to as DSR_e. In all examples the future horizon chosen is
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L =5 and the past horizon chosen is .J = 10.

An alternative approach is to utilize the squared prediction error when DSR_e
is used for system identification. Appendix C contains the Matlab function or-
derfindPE.m. The parameters which can be chosen by the user are meth, g, val
and n. If meth = 0, DSR is used for identification. When meth = 1, DSR_e is
used for identification. The parameter g is the structure parameter, which has to
be zero when DSR_e is used on closed loop data. If val = 0, all data points are
used for identification. If val = 1, 75% of the data points are used for identifica-
tion and 25% of the data points are used for validation. A search is performed for
the future horizon in the interval % < L <10 and the past horizon in the interval
10 < J <20 to find the system with the smallest squared prediction error. Then
the systems with up to 1% larger squared prediction error are evaluated, and the
system with lowest system order is chosen. If the user has chosen the system
order n, the past and future horizon which give the smallest squared prediction
error are chosen. The parameters used in this thesis are meth = 1, val = 1 and
the system order is not chosen, unless something else is specified.

The squared simulated error when DSR_e is used for system identification can
also be utilized. Appendix D contains the Matlab function orderfindSE.m. The
parameters in orderfindSE.m are the same as in orderfindPE.m. The parameters
used in this thesis are meth = 1, val = 1 and the system order is not chosen,
unless something else is specified. A search is performed for the future horizon in
the interval % < L <10 and the past horizon in the interval 10 < J < 20 to find
the system with the smallest squared simulated error. Then the systems with up
to 1% larger squared simulated error are evaluated, and the system with lowest
system order is chosen. If the user has chosen the system order n, the past and
future horizons which give the smallest squared simulated error are chosen. The
parameters used in this thesis are meth = 1, val = 1 and the system order is not
chosen, unless something else is specified.

The methods are tested on all the five examples that were introduced. The fact
that there is no direct feedthrough from input to output, the matrix E is the
zero matrix, is assumed known. Table 6.3 contains the results from the different
methods used on data from a Monte Carlo simulation performed on the model
introduced in Example 1, Section 3.1, using the low frequent PRBS, r; page 33,
as reference.

DSR_e estimates the system order correct 100% of the times. Also orderfindSE.m
and orderfindPE.m performs well with correctly estimated system order respec-

tively 83% and 68% of the time. PEM only estimates the system order correctly
14% of the time.
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Table 6.3: The results from the methods used on data from a Monte Carlo
simulation performed on the model introduced in Example 1, Section 3.1, using
the low frequent PRBS, r} page 33, as reference.

‘Method ‘nzl‘n:2‘n:3‘n:4‘n25‘
DSR_e 0 100 0 0 0
orderfindPE | 0 68 19 10 3
orderfindSE | 5 83 12 0 0
PEM 0 14 42 14 30

Table 6.4 contains the results from the different methods used on data from a
Monte Carlo simulation performed on the model introduced in Example 1, Sec-
tion 3.1, using the high frequent PRBS, r{ page 72, as reference.

Table 6.4: The results from the methods used on data from a Monte Carlo
simulation performed on the model introduced in Example 1, Section 3.1, using
the high frequent PRBS, r{ page 72, as reference.

‘Method ‘nzl‘n:2‘n:3‘n:4‘n25‘
DSR_e 0 100 0 0 0
orderfindPE | 0 75 13 9 3
orderfindSE | 0 95 5 0 0
PEM 0 82 9 6 3

The system order is estimated correct 100% of the time by DSR_e. Also or-
derfindSE.m and orderfindPE.m perform well with correctly estimated system
order respectively 95% and 75% of the time. PEM estimates the system order
correctly 82% of the time.

Table 6.5 contains the results from the different methods used on data from a
Monte Carlo simulation performed on the model introduced in Example 2, Sec-
tion 3.2, using a constant reference superposed a low frequent PRBS. Figure 4.11,
page 39, shows the reference signal, r, and the corresponding input, u, and out-
put, yi, for two particular noise realizations vy and wy.

DSR_e was not able to estimate the system order correctly. The function or-
derfindPE.m performs well with correct estimated system order 70% of the time.
Here orderfindSE.m only estimates the system order correct 1% of the time. PEM
estimates the system order correctly 87% of the times. It has to be mentioned
that if DSR_e had been used with L = 10 and J = 15 the system order would
have been estimated correct 94% of the time.
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Table 6.5: The results from the methods used on data from a Monte Carlo
simulation performed on the model introduced in Example 2, Section 3.2, using
a constant reference superposed a low frequent PRBS, Figure 4.11 page 39.

‘Method ‘nzl‘n:2‘n:3‘n:4‘n25‘
DSR_e 100 0 0 0 0
orderfindPE | 1 70 11 12 6
orderfindSE | 24 1 47 12 16
PEM 9 87 4 0 0

Table 6.6 contains the results from the different methods used on data from a
Monte Carlo simulation performed on the model introduced in Example 2, Sec-
tion 3.2, using a constant reference superposed a high frequent PRBS. Figure 6.28
shows the reference signal, 7!, and the corresponding input, uy, and output, y,
for two particular noise realizations v, and wy.
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Figure 6.28: The reference signal, r;!, using a constant reference superposed a
high frequent PRBS and the corresponding input, u,, and output, yz, for two
particular noise realizations vy and wy.

Table 6.6: The results from the methods used on data from a Monte Carlo
simulation performed on the model introduced in Example 2, Section 3.2, using
a constant reference superposed a high frequent PRBS, Figure 6.28 page 141.

‘Method ‘nzl‘n:2‘n:3‘n:4‘n25‘
DSR_e 4 96 0 0 0
orderfindPE | 0 68 18 10 4
orderfindSE | 0 9 61 6 24
PEM 0 93 0 6 1

The system order is estimated correct 96% of the time when DSR_e is used. Here
orderfindPE.m performs well with correct estimated system order 68% of the
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time. But orderfindSE.m only estimates the system order correct 9% of the time.
PEM estimates the system order correctly 93% of the time.

Table 6.7 contains the results from the different methods used on data from a
Monte Carlo simulation performed on the 1% order model introduced in Example
3, Section 3.3, using a Gaussian white noise with variance 4 as reference.

Table 6.7: The results from the methods used on data from a Monte Carlo
simulation performed on the 1% order model introduced in Example 3, Section
3.3, using a Gaussian white noise with variance 4 as reference.

‘Method ‘nzl‘n:2‘n:3‘n:4‘n25‘
DSR_e 78 22 0 0 0
orderfindPE | 80 6 9 5) 0
orderfindSE | 0 100 0 0 0
PEM 0 0 0 4 96

DSR_e estimates the system order correct 78% of the time. Here orderfindPE.m
estimates the system order correct 80% of the time. But orderfindSE.m is not
able to estimate the system order correctly. PEM never estimates the system
order correctly.

Table 6.8 contains the results from the different methods used on data from a
Monte Carlo simulation performed on the model introduced in Example 4, Sec-
tion 3.4, using r,° as reference.

Table 6.8: The results from the methods used on data from a Monte Carlo
simulation performed on the model introduced in Example 4, Section 3.4, using
.0, page 128, as reference.

‘Method ‘nzl‘nz?‘n:3‘n:4‘n25‘
DSR_e 15 48 37 0 0
orderfindPE | 10 69 12 4 5
orderfindSE | 73 24 3 0 0
PEM 0 0 0 15 85

DSR_e estimates the system order correct 48% of the time. Here orderfindPE.m
performs well with correct estimated system order 69% of the time. But or-
derfindSE.m only estimates the system order correctly 24% of the time. PEM
never estimates the system order correctly.
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Table 6.9 contains the results from the different methods used on data from a
Monte Carlo simulation performed on the 3"¢ order multiple input multiple out-
put model introduced in Example 5, Section 3.5, using r] and r¥ as references.

Table 6.9: The results from the methods used on data from a Monte Carlo simula-
tion performed on the 3"¢ order multiple input multiple output model introduced
in Example 5, Section 3.5, using r/ and 7%, page 90, as references.

‘Method ‘nzl‘nz?‘n:3‘n:4‘n25‘
DSR_e 4 96 0 0 0
orderfindPE | 0 6 68 15 11
orderfindSE | 0 20 23 25 32
PEM 0 1 18 53 28

DSR_e was not able to estimate the system order correctly. Here orderfindPE.m
performs well with correct estimated system order 68% of the time. But or-
derfindSE.m only estimates the system order correct 23% of the time. PEM
estimates the system order correct 18% of the time. It has to be mentioned that
if DSR_e had been used with L = 10 and .J = 15 the system order would have
been estimated correct 67% of the time.

The function orderfind PE.m has the best overall performance in the simulations
so far. It had never less than 68% correct estimates of the system order. DSR_e
worked well in most cases, except for the multiple input multiple output case
where it failed totally. The results where DSR_e is used with other horizons
than the horizons chosen initially cannot be used in this comparison because the
results are based on knowledge of using SID algorithms. It has to be mentioned
that there are only one case where PEM performs best. This simulation study
indicates that the solutions presented here are not suitable to replace inspection
of singular values and validation. But the function orderfindPE.m may be a help
for users who are not familiar with the use of SID algorithms.

6.5 A closed loop system identification proce-
dure

The simulations using the functions introduced in Section 6.4 show that none of
the functions work perfectly. Therefore a direct closed loop system identification
procedure combining the visual inspection of the singular values and the search
for the minimum prediction error is suggested.
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The procedure can be described by the following three steps:
e Step 1. Identify the system order using the singular value plot from DSR e

e Step 2. Use the orderfindPE.m function with val = 1 to find the parameter
setting in DSR_e which gives the minimum squared prediction error on
validation data

e Step 3. Use DSR_e to identify the full state space model inclusive of the
Kalman filter gain.

The singular values are stochastic variables. That is the reason why the estimated
system order is not the same in all the simulations in the Monte Carlo simulations
performed in Section 6.4. Therefore the estimated system order is not necessarily
the same in each run of a Monte Carlo simulation. This is illustrated in Figure
6.29 which shows the distribution of the singular values from DSR_e with L =5
and J = 10 when used on Example 1, Section 3.1, when a low frequent PRBS,
ri page 33, is used as reference.

Singular Values
10°

107" - + |

10° ; ‘ ‘ ‘ ‘ ‘ f ‘ ‘

0.5 1 1.5 2 25 3 3.5 4 4.5 5 55
System order

Figure 6.29: The distribution of the singular values from DSR_e with L = 5 and

J = 10 when used on Example 1, Section 3.1, when a low frequent PRBS, 7,

page 33, is used as reference.

Appendix F contains the singular value distribution for the rest of the inputs and
examples used in the previous sections.
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When the procedure is tested, only the singular value plot of the first run of the
Monte Carlo simulation is inspected for identification of the system order. The
reason for this is that in a practical approach a Monte Carlo simulation will not
be available.

The procedure is tested on all the five examples introduced. The fact that there
is no direct feedthrough from input to output, the matrix £ is the zero matrix,
is assumed known. For DSR_e it is also assumed that the correct system order is
estimated from the singular value plot in Step 1. It is assumed that the correct
order is found for PEM by validation. All singular value plots used are with
L =5 and J = 10. Appendix E contains the corresponding plots with L = 10
and J = 20 to show that the choice of future and past horizons is not that signif-
icant when identifying the system order. The choice of past and future horizons
found in step 2 and used in step 3 will not be listed.

Figure 6.30 shows the singular value plot from DSR_e with L = 5 and J = 10
when used on Example 1, Section 3.1, when a low frequent PRBS, r; page 33, is
used as reference.
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Figure 6.30: Singular value plot from DSR_e with L =5 and J = 10 when used
on Example 1, Section 3.1, when a low frequent PRBS, r; page 33, is used as
reference.

The singular value plot indicates that this is a 2"¢ order system. It is assumed
that the correct model order, n = 2, is chosen. Figure E.1 gives the same result
where I = 10 and J = 20 are chosen. The parameter estimates are visualized in
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Figure 6.31.
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Figure 6.31: Estimates from DSR_e and PEM when used on Example 1, Section
3.1, when a low frequent PRBS, r} page 33, is used as reference.

All the estimates are unbiased and comparable to the results from PEM.

Figure 6.32 shows the singular value plot from DSR_e with L = 5 and J = 10
when used on Example 1, Section 3.1, when a high frequent PRBS, r$ page 72,
is used as reference.

The singular value plot also here indicates that this is a 2" order system. It is
assumed that the correct model order, n = 2, is chosen. Figure E.2 gives the
same result where L = 10 and J = 20 are chosen. The parameter estimates are
visualized in Figure 6.33.

Also here all the estimates are unbiased and comparable to the results from PEM.

Figure 6.34 shows the singular value plot from DSR_e with L = 5 and J = 10
when used on Example 2, Section 3.2, using a constant reference superposed a
low frequent PRBS, Figure 4.11 page 39.

The singular value plot indicates that this is a 15 or 2"? order system. It is
assumed that the correct model order, n = 2, is chosen. Figure E.3 gives the
same result where . = 10 and .J = 20 are chosen. The parameter estimates are
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o Singular Values 5 Condition Numbers
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Figure 6.32: Singular value plot from DSR_e with L =5 and J = 10 when used
on Example 1, Section 3.1, when a high frequent PRBS, r{ page 72, is used as
reference.
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Figure 6.33: Estimates from DSR_e and PEM when used on Example 1, Section
3.1, when a high frequent PRBS, rf page 72, is used as reference.
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o Singular Values 5 Condition Numbers
10" ¢ T 10 T T
10 E 4
*
*
10°F B
*
10721 E
* *
10+
*
10° £ * =
F ?6
1074 L L L 100 L L L
1 2 3 4 5 1 2 3 4 5
System order System order

Figure 6.34: Singular value plot from DSR_e with L = 5 and J = 10 when used
on Example 2, Section 3.2, with a constant reference superposed a low frequent
PRBS, Figure 4.11 page 39.

visualized in Figure 6.35.

The results coincide with the results found in Section 6.3.2. The estimates of
the eigenvalues are unbiased. In this case there is a small bias in the estimated
zeros from DSR_e. The bias may be caused by the fact that the reference signal
used here has a lower level of persistent excitation than the PRBS signal used
in Section 6.3.2. In both cases the estimation of the eigenvalues of the Kalman
filter failed.

Figure 6.36 shows the singular value plot from DSR_e with L = 5 and J = 10
when used on Example 2, Section 3.2, using a constant reference superposed a
high frequent PRBS, Figure 6.28 page 141.

The singular value plot here also indicates that this is a 1°¢ or 2"¢ order system.
It is assumed that the correct model order, n = 2, is chosen. Figure E.4 gives
the same result where L = 10 and J = 20 are chosen. The parameter estimates
are visualized in Figure 6.37.

The results coincide with the results found in Section 6.3.2. The estimates of
the eigenvalues are unbiased. In this case there is a small bias in the estimated
zeros from DSR_e. The reference signal used here has a lower level of persistent
excitation than the PRBS signal used in Section 6.3.2. Since the bias is reduced
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Figure 6.35: Estimates from DSR_e and PEM when used on Example 2, Section

3.2, when a low frequent PRBS, r} page 33, is used as reference.
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Figure 6.36: Singular value plot from DSR_e with L = 5 and J = 10 when used
on Example 2, Section 3.2, with a constant reference superposed a high frequent

PRBS, Figure 6.28 page 141.
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Figure 6.37: Estimates from DSR_e and PEM when used on Example 2, Section
3.2, with a constant reference superposed a high frequent PRBS, Figure 6.28 page
141.

compared to Figure 6.35 the low order of persistent excitation is assumed to be
the cause of the bias in the zeros. Also here the estimation of the eigenvalues of
the Kalman filter failed.

Figure 6.38 shows the singular value plot from DSR_e with L = 5 and J = 10
when used on Example 3, Section 3.3, when a Gaussian white noise with variance
4 is used as reference.

The singular value plot indicates that this is a 1** or 3" order system. It is as-
sumed that the correct model order, n = 1, is chosen. Figure E.5 where L = 10
and .J = 20 also indicates that this is a 1°* or 3" order system. The parameter
estimates are visualized in Figure 6.39.

The estimates of the eigenvalues are unbiased. In this case there is a small bias
on the estimated eigenvalues of the Kalman filter from DSR_e. In Section 6.3.3
the estimated eigenvalues of the Kalman filter was unbiased for both DSR_e and
PEM.

Figure 6.40 shows the singular value plot from DSR_e with L = 5 and J = 10
when used on Example 4, Section 3.4, using r;°, page 128, as reference.

The singular value plot indicates that this is a 1% or 2" order system. It is
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Figure 6.38: Singular value plot from DSR_e with L = 5 and J = 10 when used
on Example 3, Section 3.3, when a Gaussian white noise with variance 4 is used
as reference.
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Figure 6.39: Estimates from DSR_e and PEM when used on Example 3, Section
3.3, when a Gaussian white noise with variance 4 is used as reference.
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Figure 6.40: Singular value plot from DSR_e with L = 5 and J = 10 when used
on Example 4, Section 3.4, when 7%, page 128, is used as reference.

assumed that the correct model order, n = 2, is chosen. Figure E.6 where L = 10
and J = 20 are chosen gives a clearer indication of the system order. The pa-
rameter estimates are visualized in Figure 6.41.

In this case the results coincide with the results in Section 6.3.4. The estimates
of the eigenvalues are unbiased. The estimates of the zeros are unbiased. The
estimation of the eigenvalues of the Kalman filter fails totally for both methods.

Figure 6.42 shows the singular value plot from DSR_e with L = 5 and J = 10
when used on Example 5, Section 3.5, using r} and r¥, page 90, as references.

The singular value plot indicates that this is a system with system order 3, or
less. It is assumed that the correct model order, n = 3, is chosen. Figure E.7
where L = 10 and J = 20 are chosen gives a clearer indication of the system
order. The parameter estimates are visualized in Figure 6.43.

In this case the results are slightly different than the results in Section 6.3.5. Now
a small bias is introduced in the estimates of the eigenvalues from DSR_e. There
is also an increase in the variance. The estimates of the zeros are still unbiased
and the variance is reduced. The estimation of the eigenvalues of the Kalman
filter is still unbiased, but with an increase in the variance.

The simulations show that the procedure combining the visual inspection of sin-
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when used on Example 4, Section

Condition Numbers
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Figure 6.42: Singular value plot from DSR_e with L = 5 and J = 10 when used

on Example 5, Section 3.5, when 7] and 7}, page 90, are used as references.
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Figure 6.43: Estimates from DSR_e and PEM when used on Example 5, Section

3.5, when r[ and r§, page 90, are used as references.

gular values and the search for the minimum prediction error suggested is a good

practical approach to the use of DSR_e.




Chapter 7

Concluding remarks

The projections used in DSR to estimate the extended observability matrix, and
the eigenvalues, have been compared to the projections used in other SID algo-
rithms. There were no indications of that any of the other projections should be
used instead of the ones used in DSR, both for use on finite open and closed loop
data sets.

When an appropriate dithering signal is chosen in closed loop identification the
eigenvalue estimates from DSR are unbiased if the identification horizon, L, is
chosen large enough. Identification of zeros is a harder task. Two solutions were
found to help reducing the bias in the zeros. An increase in the level of persistent
excitation of the dithering signal helped to reduce the bias in the zeros. Using a
dithering signal on the input instead of the reference also helped to reduce the
bias in the zeros.

It is well known that in open loop cases with a low level of persistent excitation
on the input signal it is favourable to choose the identification, L, as small as
possible. Therefore a version of DSR. is implemented with two sets of horizons.
Long horizons for identification of eigenvalues and short horizons for identifica-
tion of zeros. For simplicity the method is named DSR_2LJ. The assumption is
wrong that the horizon, L,, for identification of zeros has to be chosen as small as
possible when inputs with a low level of persistent excitation are used. Choosing
the horizon L, smaller than L. gives an improvement in the estimation of the
7eros.

Another approach to reduce the bias in closed loop identification is to modify the
closed loop to either reduce the noise in the feedback or make the noise through
the feedback uncorrelated to the noise on the output. The effect of using different
types of filters in the feedback loop have been investigated. Using a filter in the
feedback to the controller can reduce and in some cases remove the bias when
DSR is used for estimation. The optimal filter used in the feedback is not the

155



156 CHAPTER 7. CONCLUDING REMARKS

noise free output or a 1% order low-pass filter but the Kalman filter. The reason
for this is that the Kalman filter gives an estimate of the output which contains
the optimal amount of information. There is also reason to believe that measure-
ment noise can lead to an increased excitation of the input of the system and in
this way help to reduce bias and variance of the estimates from SID methods if
the input and the noise on the output are uncorrelated.

A new three-step closed loop subspace identifications algorithm based on the
DSR algorithm and the Kalman filter properties is presented. In an initial step
DSR is used for identification of the process model, including the Kalman filter
gain. This model may have a bias when the system is operating in closed loop
and there is noise present. The next step is to implement the Kalman filter in the
feedback in such a way that the controller uses the filtered output from the filter,
not the actual process measurement. The idea is that the Kalman filter found
by DSR will give an output which is sufficiently uncorrelated with the noise on
the output of the actual process, and in this way reduce or eliminate the bias
problem. The final step is to use DSR to identify the process model when the
feedback is filtered through the Kalman filter. This model will be unbiased if the
Kalman filter is correct.

The simulation studies have shown that even when a Kalman filter with a bias is
used in the closed loop the estimated model in the final step seems to be unbiased
from visual inspection.

It is stated that the goal for closed loop SID algorithms is to be as easy to use for
direct identification on finite closed loop data sets as the original SID algorithms
are to use on finite open loop data sets and in addition provide results compara-
ble to the results from PEM. The closed loop SID algorithm named DSR_e is a
solution fulfilling these requirements. The DSR_e algorithm is a modification of
the existing DSR algorithm. The algorithm is based on the fact that the noise
innovation process can be identified directly from the data in a first step. The
estimation of the noise innovation process is consistent, both in the case of open
and closed loop data.

The system identification process have been considered in two different ways. One
approach is when all information regarding the process is known and a bench-
mark is performed to see how good the performance can be. The other is when
the system order has to be estimated from the process data. In both cases DSR_e
is an alternative comparable to PEM.

Methods to estimate the system order by subspace identification have been pre-
sented. The methods are meant to help users without experience in using SID
algorithms. The method with the best results was the function orderfindPE.m
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utilizing the squared prediction error when DSR_e is used for system identifica-
tion. The method identified the system order correctly 68% of the times, or better.
A search was performed for the future horizon in the interval % < L <10, where
m is the number of outputs, and the past horizon in the interval 10 < J < 20
to find the system with the smallest squared prediction error. Then the systems
with up to 1% larger squared prediction error were evaluated, and the system
with lowest system order was chosen.

The simulation studies showed that none of the functions for identification of
system order worked perfectly. Therefore a procedure combining the visual in-
spection of singular values from DSR_e and the search for the minimum prediction
error is suggested. Visual inspection of the singular values gave the correct es-
timate of system order every time, independent of the choice of past and future
horizons. The parameter settings for DSR_e found searching for the minimum
prediction error resulted in estimates that were comparable to the estimates from
PEM. This indicates that it is good practical approach for the use of DSR_e for
direct closed loop system identification.

If further work is to be done it should be a test on real data where the model
selection is from the validation of real data. Models must always be evaluated on
validation data and compared to alternative models. It would also be of interest
to compare the results to PEM and closed loop subspace identification software
when used on real data.
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Plots Example 4
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Figure A.1: Parameter vector, Equation (6.31), in Example 4 identified using
PEM with n = 2 and nk = 1.
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Figure A.2: Parameter vector, Equation (6.31), in Example 4 identified using
DSR.e withn=2,9g=0, L =2and J = 3.
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Figure A.3: Parameter vector, Equation (6.31), in Example 4 identified using
h_arx_mr with n = 2 and the model order of the higher order ARX model used
is 2 together with L = 2 and J = 2.
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Figure A.4: Parameter vector, Equation (6.31), in Example 4 identified using
MOESP with n =2 and s = 6.
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Figure A.5: Parameter vector, Equation (6.31), in Example 4 identified using
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Figure A.6: Parameter vector, Equation (6.31), in Example 4 identified using
N4SID with n = 2 and nk = 1.



Appendix B

Plots Example 5
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Figure B.1: The estimated eigenvalues when 7} and 7}, page 90, are used as
reference in the closed loop simulation, Example 5 Section 3.5. PEM and N4SID
are used with default parameters and nk = 1. DSR_e is used with ¢ =0, L =5
and J = 10. In h_arx_mr the model order of the higher order ARX model used is
10 together with L = 10 and J = 10. MOESP is used with s = 10. DSR is used
with g =0, L =10 and J =10 .
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Figure B.2: The estimated zeros when r] and 7§, page 90, are used as reference
in the closed loop simulation, Example 5 Section 3.5. PEM and N4SID are used
with default parameters and nk = 1. DSR_e is used with ¢ = 0, L = 5 and
J =10. In h_arx_mr the model order of the higher order ARX model used is 10
together with . = 10 and J = 10. MOESP is used with s = 10. DSR is used
with ¢ =0, L = 10 and J = 10.
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Figure B.3: The estimated eigenvalues of the Kalman filter when ] and 7%, page
90, are used as reference in the closed loop simulation, Example 5 Section 3.5.
PEM and N4SID are used with default parameters and nk = 1. DSR_e is used
with ¢ =0, L =5 and J = 10. In h_arx_mr the model order of the higher order
ARX model used is 10 together with L = 10 and J = 10. MOESP is used with
s = 10. DSR is used with ¢ =0, L = 10 and .J = 10.
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Figure B.4: The estimated eigenvalues when r} and r}, page 90, are used as
reference in the closed loop simulation, Example 5 Section 3.5. PEM and N4SID
are used with default parameters and nk = 1. DSR_e is used with ¢ =0, L = 3
and J = 10. In h_arx_mr the model order of the higher order ARX model used is
10 together with L = 10 and J = 10. MOESP is used with s = 10. DSR is used
with ¢g =0, L =10 and J =10 .
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Figure B.5: The estimated zeros when r] and 7§, page 90, are used as reference
in the closed loop simulation, Example 5 Section 3.5. PEM and N4SID are used
with default parameters and nk = 1. DSR_e is used with ¢ = 0, L = 3 and
J =10. In h_arx_mr the model order of the higher order ARX model used is 10
together with . = 10 and J = 10. MOESP is used with s = 10. DSR is used
with ¢ =0, L = 10 and J = 10.
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Figure B.6: The estimated eigenvalues of the Kalman filter when ] and 7%, page
90, are used as reference in the closed loop simulation, Example 5 Section 3.5.
PEM and N4SID are used with default parameters and nk = 1. DSR_e is used
with ¢ =0, L = 3 and J = 10. In h_arx_mr the model order of the higher order
ARX model used is 10 together with L = 10 and J = 10. MOESP is used with
s = 10. DSR is used with ¢ =0, L = 10 and .J = 10.



Appendix C

Matlab code orderfindPE.m

function [n,L,J]=orderfindPE(Y,U,meth,g,val,n);
%[n,L,J]=orderfindPE(Y,U,meth,g,val,n);

%A function to find the system order (n), the future horizon (L) and the
%» past horizon (J) that is optimal from a prediction error point of view.
yA

%If val==0 all data points are used for identification. If val==1 75} of the data
hpoints are used for identification and 25% of the data points

%are used for validation.

yA

%If meth==0 DSR is used for identification. If meth==1 DSR_e is used for
%identification (recommended if there is a feedback in the data)

if nargin < 2
disp(’Wrong number of inputs’); return
end

if nargin > 6
disp(’Wrong number of inputs’);return
end

if exist(’Y’)==0; disp(’Output Y is missing’); end if
exist(’U’)==0; disp(’Input U is missing’); end if
exist(’meth’)==0; meth=1; end if exist(’g’)==0; g=0; end if
exist(’val’)==0; val=1; end if exist(’n’)==0; n_mesh=1:1:6; end
if exist(’n’)==1; n_mesh=n; end

N=size(U,1); m=size(Y,2); Nid=ceil(0.75%N); L_mesh=1:1:ceil(10/m);
J_mesh=1:1:20; n_size=size(n_mesh,2); L_size=size(L_mesh,2);
J_size=size(J_mesh,2); if val==0

Yid=Y; Uid=U; Yval=Y; Uval=U;
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elseif val==
Yid=Y(1:Nid,:); Uid=U(1:Nid,:); Yval=Y(Nid+1:end,:); Uval=U(Nid+1:end,:);
end

it=1; for itl=1:n_size;
for it2=n_mesh(itl):L_size
for it3=L_mesh(it2):J_size
if meth ==0 %%%DSR
(A,B,D,E,CF,F,x0]
=dsr(Yid,Uid,L_mesh(it2),g,J_mesh(it3),1,n_mesh(itl));
if val==0
[Ypred_val,Vpred_val,Xpred_vall
= dsropt(A,B,D,E,CF,F,Yid,Uid,x0);
elseif val==
[Ypred_id,Vpred_id,Xpred_id]
= dsropt(A,B,D,E,CF,F,Yid,Uid,x0);
x0_val=Xpred_id(end,:)’;
[Ypred_val,Vpred_val,Xpred_val]
= dsropt(A,B,D,E,CF,F,Yval,Uval,x0_val);
end

elseif meth==1 %%%DSR_e
(A,B,D,E,K,F,x0,Ef1]
=dsr_e(Yid,Uid,L_mesh(it2),g,J_mesh(it3) ,n_mesh(itl));
CF=K*F; Jto make it possible to use dsropt
if val==0
[Ypred_val,Vpred_val,Xpred_vall
= dsropt(A,B,D,E,CF,F,Yid,Uid,x0);
elseif val==
[Ypred_id,Vpred_id,Xpred_id]
= dsropt(A,B,D,E,CF,F,Yid,Uid,x0);
x0_val=Xpred_id(end,:)’;
[Ypred_val,Vpred_val,Xpred_vall
= dsropt(A,B,D,E,CF,F,Yval,Uval,x0);
end
end
Re_sqgpe_val(it,:)=1/N*xtrace((Yval-Ypred_val) ’*(Yval-Ypred_val));
Re_init_it(it,:)=[n_mesh(itl) L_mesh(it2) J_mesh(it3)];
it=it+1;
end
end
end
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[opt_Re_sqgpe_val,ind_Re_sqpe_vall=sort(Re_sqpe_val);
PEcrit_min=opt_Re_sqpe_val(l,:);

PEcrit_min=PEcrit_minx*1.01;

if exist(’n’)==1; n_mesh=n;
n=n;
L=Re_init_it(ind_Re_sqpe_val(1,:),2);
J=Re_init_it(ind_Re_sqgpe_val(1,:),3);

else
for it4=1:50
if opt_Re_sqgpe_val(it4, :)<=PEcrit_min
tmp(it4,:)=[Re_init_it(ind_Re_sqpe_val(it4,:),:)];
end
end

[tmp2,Ind2] = sortrows(tmp,[1 2 3]);
n=tmp2(1,1); L=tmp2(1,2); J=tmp2(1,3);
end
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Appendix D

Matlab code orderfindSE.m

function [n,L,J,tmp4]l=orderfindSE(Y,U,meth,g,val,n);
%[n,L,J]=orderfindSE(Y,U,meth,g,val,n);

%A function to find the system order (n), the future horizon (L) and the

% past horizon (J) that is optimal from a simulation error point of view.

yA

%If val==0 all data points are used for identification. If val==1 75} of the data
hpoints are used for identification and 25} of the data points are used for
%validation

yA

%If meth==0 DSR is used for identification. If meth==1 DSR_e is used for
%identification (recommended if there is a feedback in the data)

if nargin < 2
disp(’Wrong number of inputs’); return
end

if nargin > 6
disp(’Wrong number of inputs’);return
end

if exist(’Y’)==0; disp(’Output Y is missing’); end if
exist(’U’)==0; disp(’Input U is missing’); end if
exist(’meth’)==0; meth=1; end if exist(’g’)==0; g=0; end if
exist(’val’)==0; val=1; end if exist(’n’)==0; n_mesh=1:1:6; end
if exist(’n’)==1; n_mesh=n; end

N=size(U,1); m=size(Y,2); Nid=ceil(0.75%N); L_mesh=1:1:ceil(10/m);
J_mesh=1:1:20; n_size=size(n_mesh,2); L_size=size(L_mesh,2);
J_size=size(J_mesh,2); if val==0

Yid=Y; Uid=U; Yval=Y; Uval=U;
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elseif val==
Yid=Y(1:Nid,:); Uid=U(1:Nid,:); Yval=Y(Nid+1:end,:); Uval=U(Nid+1:end,:);
end

it=1; for itl=1:n_size;
for it2=n_mesh(itl):L_size
for it3=L_mesh(it2):J_size
if meth ==0 %%/%DSR
(A,B,D,E,CF,F,x0]
=dsr(Yid,Uid,L_mesh(it2),g,J_mesh(it3),1,n_mesh(itl));
if val==0
[Ysim_val,Vsim_val,Xsim_val] = dsrsim(A,B,D,E,Uid,x0);
elseif val==
[Ysim_id,Vsim_id,Xsim_id] = dsrsim(A,B,D,E,Uid,x0);
x0_val=Xsim_id(end,:)’;
[Ysim_val,Vsim_val,Xsim_val] = dsrsim(A,B,D,E,Uval,x0_val);
end

elseif meth==1 %J/DSR_e
[A,B,D,E,K,F,x0,Ef1]
=dsr_e(Yid,Uid,L_mesh(it2),g,J_mesh(it3) ,n_mesh(itl));
CF=K#*F; Jto make it possible to use dsropt
if val==0
[Ysim_val] = dsrsim(A,B,D,E,Uid,x0);
elseif val==
[Ysim_id] = dsrsim(A,B,D,E,Uid,x0);
x0_val = x0id(Yval,Uval,A,B,D,E,zeros(size(K)),1);
[Ysim_val] = dsrsim(A,B,D,E,Uval,x0_val);
end
end
Re_sqgse_val(it,:)=1/N*trace((Yval-Ysim_val) ’*(Yval-Ysim_val));
Re_init_it(it,:)=[n_mesh(itl) L_mesh(it2) J_mesh(it3)];
it=it+1;
end
end
end

[opt_Re_sqgse_val,ind_Re_sqse_vall=sort(Re_sqgse_val);
SEcrit_min=opt_Re_sqgse_val(l,:);

SEcrit_min=SEcrit_min%*1.01;

if exist(’n’)==1; n_mesh=n;
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n=n;
L=Re_init_it(ind_Re_sqgse_val(1,:),2);
J=Re_init_it(ind_Re_sqgse_val(1,:),3);
else
for it4=1:50
if opt_Re_sqse_val(it4,:)<=SEcrit_min

tmp(it4,:)=[Re_init_it(ind_Re_sqgse_val(it4,:),:)];
end

end

[tmp2,Ind2] = sortrows(tmp,[1 2 31);

n=tmp2(1,1); L=tmp2(1,2); J=tmp2(1,3);
end
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Appendix E

Alternative Singular Value plots,

Section 6.5
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Figure E.1: Singular value plot from DSR_e with L = 10 and J = 20 when used
on Example 1, Section 3.1, when a low frequent PRBS, r, page 33, is used as

reference.
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Figure E.2: Singular value plot from DSR_e with L = 10 and J = 20 when used
on Example 1, Section 3.1, when a high frequent PRBS, 7 page 72, is used as
reference.
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Figure E.3: Singular value plot from DSR_e with L = 10 and J = 20 when used
on Example 2, Section 3.2, when a low frequent PRBS superposed a constant
reference , Figure 4.11 page 39, is used as reference.
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Figure E.4: Singular value plot from DSR_e with L = 10 and J = 20 when used
on Example 2, Section 3.2, when a high frequent PRBS, Figure 6.28 page 141, is
used as reference.
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Figure E.5: Singular value plot from DSR_e with L = 10 and J = 20 when used
on Example 3, Section 3.3, when a Gaussian white noise with variance 4 is used
as reference.
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Figure E.6: Singular value plot from DSR_e with L = 10 and J = 20 when used
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Figure E.7: Singular value plot from DSR_e with L = 10 and J = 20 when used
on Example 5, Section 3.5, when 7] and 7}, page 90, are used as references.
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Appendix F

Singular Value distribution,
Section 6.5
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Figure F.1: The distribution of the singular values from DSR_e with L = 5 and
J =10 when used on Example 1, Section 3.1, when a high frequent PRBS, r¢, is
used as reference.
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Figure F.2: The distribution of the singular values from DSR_e with L = 5
and J = 10 when used on Example 2, Section 3.2, with a constant reference
superposed with a low frequent PRBS, Figure 4.11 page 39.
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Figure F.3: The distribution of the singular values from DSR_e with L = 5
and J = 10 when used on Example 2, Section 3.2, with a constant reference
superposed with a high frequent PRBS, Figure 6.28.
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Figure F.4: The distribution of the singular values from DSR_e with L = 5 and
J = 10 when used on Example 3, Section 3.3, when a Gaussian white noise with

variance 4 is used as reference.
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Figure F.5: The distribution of the singular values from DSR_e with L = 5 and

J =10 when used on Example 4, Section 3.4, when 7,°

is used as reference.
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Figure F.6: Singular value plot from DSR_e with L = 5 and J = 10 when used
on Example 5, Section 3.5, when 7] and r} are used as references.



