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Abstract

The topic of this thesis is streamline-based integration of dynamic data for porous media
systems, particularly in petroleum reservoirs. In the petroleum industry the integration of
dynamic data is usually referred to as history matching. The thesis starts out by giving an
introduction to streamline-based history-matching methods. Implementations and extensions
of two existing methods for streamline-based history matching are then presented.

The first method pursued is based on obtaining modifications for streamline-effective prop-
erties, which subsequently are propagated to the underlying simulation grid for further itera-
tions. For this method, two improvements are proposed to the original existing method. First,
the improved approach involves less approximations, enables matching of porosity, and can
account for gravity. Second, a multiscale approach is applied for which the data integration is
performed on a hierarchy of coarsened grids. The approach proved robust, and gave a faster
and better match to the data.

The second method pursued is the so-called generalized travel-time inversion (GTTI)
method, which earlier has proven very robust and efficient for history matching. The key
to the efficiency of this method is the quasilinear convergence properties and the use of an-
alytic streamline-based sensitivity coefficients. GTTI is applied together with an efficient
multiscale-streamline simulator, where the pressure solver is based on a multiscale mixed
finite-element method (MsMFEM). To make the history matching more efficient, a selec-
tive work-reduction strategy, based on the sensitivities provided by the inversion method, is
proposed for the pressure solver. In addition, a method for improved mass conservation in
streamline simulation is applied, which requires much fewer streamlines to obtain accurate
production-response curves. For a reservoir model with more than one million grid blocks,
69 producers and 32 injectors, the data integration took less than twenty minutes on a stan-
dard desktop computer. Finally, we propose an extension of GTTI to fully unstructured grids,
where we in particular address issues regarding regularization and computation of sensitivities
on unstructured grids with large differences in cell sizes.
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Preface

The following thesis is submitted for the degree of philosophiae doctor (PhD) at the Nor-
wegian University of Science and Technology (NTNU), Trondheim, Norway. The thesis is
part of the Uncertainty in Reservoir Evaluation (URE) initiative at NTNU, financed by the
Research Council of Norway and petroleum companies.

Content
For prediction of future reservoir performance, it is important that all available data, such as
geological or geostatistical as well as production data, are properly and consistently incorpo-
rated. This thesis focuses on the incorporation/inversion of dynamic production data, such
as water cuts, flow rates, and well pressures. In the petroleum industry this process is often
referred to as history matching, which usually consists of modifying the grid parameters of
the 3D reservoir model. This is a particularly difficult task because of the nonlinearity of the
flow model, the general lack of data compared to the number of parameters to be modified,
the general high degree of uncertainty involved, and the need for a large number of computa-
tionally demanding flow simulations for evaluation of the modifications. Traditionally history
matching has been performed by manual or semi-automated approaches with a great deal of
subjective trial and error by the reservoir engineers. Moreover, the required flow simulations
have traditionally been performed by finite-difference/finite-volume reservoir simulators. All
over, history matching has been a very time consuming and challenging task. However, over
the last ten years streamline simulation has become a strong rival to traditional simulation
methods, in particular for flow cases dominated by reservoir heterogeneity, well rates and
placement, mobility ratios, etc. Depending on the flow physics of the reservoir, streamline
simulation can be orders of magnitude faster than traditional flow simulators. In addition to
generally faster flow simulation by streamlines, the streamline formulation itself can be taken
advantage of in history matching. In particular, the access to analytic production-response
sensitivities and the explicit determination of flow paths, can speed up and improve history
matching considerably.

This thesis consists of an introduction to streamline-based history matching and a collec-
tion of four research papers on this topic.

Introduction: Streamline-Based History Matching: A Review.
The purpose of the introduction is two-fold. First, to give an introduction and a review of
streamline-based history matching methods. Second, to put the research conducted in the
research papers into a scientific context.

Paper I: A Multiscale Streamline Method for Inversion of Production Data.
We propose two improvements to a recent streamline-based history matching method by
Wang and Kovscek [2000]. This method first obtains modifications in streamline-effective
permeability, based on fractional-flow curves (water-cut), total well rate, and pressure drops
for injector–producer pairs. The modifications are then propagated to the simulation grid for
further iterations.

The first improvement concerns the part of the method that relates the breakthrough
of individual streamlines/streamline-bundles to increments in the fractional-flow curve at a
producer. Instead of using the Dykstra–Parsons’ algorithm to represent the relative movement
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of displacement fronts in all streamlines connected to an injector–producer pair, we represent
the displacement fronts explicitly in real time using the same mathematical model underlying
Dykstra–Parsons’ algorithm. By this approach, the streamlines can be treated individually,
and approximations made in the original Wang-Kovscek method are avoided. Further, we
also extend the method to enable history matching of porosity and to account for gravity in
the expressions for the modifications in streamline-effective properties.

The second improvement is to incorporate a multiscale approach in the inversion, where
the reservoir parameters are matched on a hierarchy of coarsened grids. The improved ability
to capture large-scale structures for this approach is demonstrated by two synthetic examples.

In the introduction of the thesis we point out two possible extensions to Paper I. First,
the assumption of piston-like displacement in each streamline can be relaxed to assume a
Buckley–Leverett profile instead. Second, we outline a fully analytic Bayesian approach for
mapping streamline-effective properties back and forth between the simulation grid and the
streamlines; i.e. an up- and downscaling approach.

Papers II and III: Adaptive Multiscale Streamline Simulation and Inversion for High-
Resolution Geomodels / Multiscale-Streamline Simulation and Dynamic Data Integration for
High-Resolution Subsurface Models.
Through these two works we propose a very efficient approach for incorporating production
data, based on the combination of a multiscale-streamline flow simulator [Aarnes et al., 2005]
and the so-called generalized travel-time inversion (GTTI) method [He et al., 2002]. The
multiscale-streamline simulator used a pressure/velocity solver based on a multiscale mixed
finite-element method (MsMFEM), for which local flow problems are solved to obtain basis
functions for the global coarse pressure/velocity solutions. The resulting velocity field is given
on the fine scale accounting for the fine-scale heterogeneities. An advantage of the MsMFEM
pressure solver is that for small or smooth changes in the parameters of the local flow prob-
lems, all basis functions do not necessarily have to be recalculated for every pressure step.
This can give drastic reductions in simulation time.

The GTTI method is a promising approach for history matching large reservoir models.
Analytic streamline-based sensitivities, requiring a single flow simulation to be evaluated, are
used in a constrained minimization of the time deviation of production responses. The method
has proved applicable to several field cases and exhibits quasilinear properties resulting in fast
convergence even if the prior model is not close to the solution.

To speed up the combination of the multiscale-streamline simulator and the inversion
method we propose two approaches. First, in Paper II we propose to use the production-
response sensitivities from the inversion method to decide which basis functions to reuse and
update during the consecutive flow simulations. Second, in Paper III we propose a method
for improved mass balance in streamline simulation, which allows for a drastic reduction in
the number of streamlines required in the forward simulations to obtain accurate production-
response curves.

The proposed approaches are extensively tested for different flow scenarios involving infill
drilling, different mobility ratios, and different permeability structures. Further, the entire
approach is applied to a 3D field-scale example with more than one million active grid blocks,
69 production wells, and 32 injection wells. For this case, seven years of production data was
incorporated in less than twenty minutes on an ordinary desktop computer.
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Paper IV: Generalized Travel-Time Inversion on Unstructured Grids.
In this work, the generalized travel-time inversion (GTTI) method [He et al., 2002] is extended
to fully unstructured grids. The framework for the inversion method extends directly to fully
unstructured grids. However, the smoothing operator involved in the regularization has to
be generalized. Moreover, a rescaling of the sensitivities is suggested to avoid grid effects for
grids with great heterogeneity in grid-cell sizes. The applicability is verified through three
examples involving a comparison of history matching on Cartesian and triangular grid, high
degree of heterogeneity in grid-cell sizes, and faults with non-neighboring connections.

Es ist nicht genug, zu wissen, man muß auch anwenden1

Johann Wolfgang von Goethe,
Wilhelm Meisters Wanderjahre

oder Die Entsagenden (1821)

Suggested follow-up research: Part of the motivation behind Paper IV is the potential
applicability of the promising history-matching approach proposed in Papers II and III to fully
unstructured grids, in particular involving faults with non-neighboring connections. Thus,
the obvious continuation of this work is to continue towards application to real field cases to
really verify the applicability of the history-matching approach. However, the applicability to
a real field case may require several extensions to the forward simulator of Papers II and III:
handling of different production constraints, three-phase flow, gravity, and compressibility,
etc.. Theoretically, the forward simulator can handle most of these extensions directly; some
of these extensions have already been addressed elsewhere, but other will require further
research. Even tough the simulator does not include all physical effects for the moment,
it has the ability of consistently capturing more small-scale heterogeneities in the geologic
representation, and can in that sense be considered less approximative. An application of the
history-matching methodology to a semi-real field case, involving at least real and complex
grid geometry, would be a first step towards real field cases. The ultimate goal would be to
properly simulate and history-match directly on the geomodel.

The very efficient forward simulator of Papers II and III has a great potential for appli-
cation to other history-matching methods that require flow simulation on multiple reservoir-
model realizations for assessment of uncertainty, e.g. ensemble Kalman filter, McMC, and
the Bayesian version of GTTI.

Contributions: Parts of this work have to be credited to my co-authors. In particular
Vegard Kippe, who has implemented the flow simulators used in Papers II–IV and is the
main architect of the method for improved mass conservation in Paper III. However, the ex-
tensions made to the simulators for linking them with the history-matching methods is joint
work. Moreover, I got an implementation of the GTTI method from Akhil Datta-Gupta and
his research group at Texas A&M University. However, this code has been improved and
extended considerably. It should also be mentioned that the introduction is based on a earlier
review of streamline-based history-matching methods [Lie, 2002]. The review is updated and
extended to better reflect the current situation and challenges in streamline-based history

1Knowing is not enough; we must apply.
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matching. The rest of this thesis is my own work, but of course under influence of and in
collaboration with my supervisors and co-authors.
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STREAMLINE-BASED HISTORY MATCHING: A REVIEW

VEGARD RØINE STENERUD AND KNUT–ANDREAS LIE

Abstract. In recent years, several methods for streamline-based history matching have been
developed. These methods have proved to be efficient for three reasons: First, streamlines
delineate flow patterns and can therefore be used to define reduced inverse models. Second,
streamline methods provide fast forward simulation. Third, streamline-based sensitivities
can be evaluated directly based on one flow simulation for different reservoir responses. We
here give a literature review of streamline-based sensitivities and streamline methods used
for history matching.

Man skal ej læse for at sluge,
men for at se, hvad man kan bruge.1

Henrik Ibsen, Peer Gynt (1876)

1. Introduction

A reservoir model typically consists of a differential equation of the type

(1) F
(
y,x, t,p,

∂ny
∂xn

,
∂y
∂t

)
= 0,

equipped with appropriate initial and boundary conditions. Here y denotes responses of the
system, x the spatial coordinates, t time, and p the set of rock and fluid parameters. The
forward problem consists of solving (1) to compute y(x, t) for a given set of parameters p.
The inverse problem consists of finding a set of reservoir parameters m ⊆ p(x) such that the
calculated responses dcal ⊆ y(x, t) match a set of observations dobs from the actual system.
For the purpose of the inverse problem we will denote the forward model, based on the actual
numerical grid-implementation of (1), by d = g(m).

The primary parameters in a reservoir model are the rock porosity φ and the absolute
permeability K, which are defined over a grid model. These parameters describe the void
volume fraction of the rock and the ability of the rock to transmit a single fluid and are
therefore the parameter that often have the largest influence on the fluid flow in a reservoir.
Permeability and porosity have considerable spatial variability (especially permeability) and
are typically strongly correlated. Unfortunately, they are difficult to measure: direct measure-
ments are only available at a few spatial locations (e.g., from core samples) and one therefore
generally has to rely on geostatistical algorithms for generating plausible realizations that
can be adjusted using indirect measurements and inverse estimation methods. There are also
a large number of other parameters that are not necessarily directly related to the spatial
grid. Examples include fluid parameters (e.g., viscosities and densities), rock-fluid parame-
ters (end-point relative permeabilities, residual saturations), well indices, water aquifer size,
fault multipliers, and permeability multipliers (Kv/Kh). In this paper we will mainly present
methods for adjusting permeability (or porosity) based on fluid production data observed in
wells.

The data available about a reservoir are often classified as two types depending on their
association with fluid movement. Static data or a priori (prior) data, come from core analysis,
well logs, seismics, outcrops, and so on. Dynamic data or a posteriori (posterior) data,
primarily come from production history, e.g., rate, fractional flow (water-cut), well pressure,
well testing, tracer testing, and so on. Common for all dynamic data is that they originate
from dynamic processes in the reservoir. Therefore time-lapse seismics can also indirectly be

1One should not read for the sake of reading, but rather, to seek what may be useful.
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2 VEGARD RØINE STENERUD AND KNUT–ANDREAS LIE

considered as dynamic data. In this review, the term ‘history matching’ will be used for the
process of integrating data to match dynamic observations of the reservoir in the past.

History matching has traditionally been a manual and time-consuming task for the reser-
voir engineer, consisting of iteratively modifying the reservoir description and running flow
simulations for evaluating the resulting reservoir responses. The most common approaches
for automated estimation of reservoir parameters, e.g., permeability and porosity, are based
on minimization of an objective function (sometimes called a misfit function), which typically
has the following form

(2) O =
Nd∑
j=1

wj
(
dobs
j − dcal

j

)2
.

Here the scalars wj have been introduced to weight the influence of the individual observations.
Algorithms used for minimizing the objective function can be classified as two types: gradient
and nongradient methods. Gradient methods use the gradient of the objective function, where
the gradient is defined as ∇O = ∂O/∂m. This gradient is in turn given by the sensitivity
matrix, which is the gradient of the calculated responses dcal = g(m) with respect to the
parameters m,

G =
∂dcal

∂m
, Gji =

∂dcal
j

∂mi
.

The sensitivity coefficients Gji measure how a perturbation in the parameter vector effects
the responses of the system. Efficient computation of these quantities is a crucial point when
developing an efficient parameter-estimation method. Commonly used gradient algorithms
include Gauss–Newton, quasi-Newton, steepest descent, conjugate gradients, and Levenberg–
Marquardt, see e.g., [10, 125]. Gradient methods converge relatively fast, but may easily fail if
the objective function is nonsmooth, in which case the solution may get stuck in a local mini-
mum. Nongradient methods, as the name says, do not use gradients to minimize the objective
function. Common algorithms of this group include simulated annealing, genetic algorithms,
neighborhood algorithms, etc. [118, 125]. These methods are fairly simple to implement, are
always able to reach a global minimum, but may have relatively slow convergence and thus
require a large number of forward simulations, which are usually the most computationally
expensive part of a history-matching algorithm.

History-matching is usually an ill-posed problem, for which a unique solution seldom exists.
Indeed, the number of data points d to be matched is typically much lower than the number
of parameters m to be modified. Further, there may be redundancy in the information
represented in the data. The inverse problem is therefore usually strongly under-determined,
so a lot of possible reservoir parameters m can potentially match the data d. Moreover, there
are strong nonlinearities, model errors, and numerical errors involved in the forward model.
In addition, there are uncertainties associated with the measured data. Thus, constraints
are required to guide the descent towards the inverse solution and make it more stable. In
practice this is often done by adding regularization terms to the objective function, e.g., by
constraining to prior geological information. Moreover, the non-uniqueness and all the errors
involved make uncertainty assessments important.

History-matching methods can be divided into deterministic and stochastic methods. A
deterministic method can be described as a function m = f(mp,d, . . .) that takes a single prior
reservoir model mp to a single updated reservoir model m that accounts for the production
data. In other words, deterministic methods intend to obtain an inverse/backward solution
m = g−1(d) for the deterministic forward model d = g(m). As discussed above, this is a very
hard problem that requires some kind of constraining.

Stochastic methods are often referred to as geostatistical methods, and are sometimes (as
we will see) coupled in some sense with deterministic methods. Geostatistical methods de-
scribe the reservoir model, more or less formally, by a probability distribution f(m), for which
a realization is denoted by [m] ∼ f(m). Rather than having an analytic representation, prob-
ability distributions are often represented by an ensemble of realizations said to be sampled
from or span the probability distribution. The initial probability distribution is often referred
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to as the prior distribution, and should incorporate the static data in a geostatistical manner.
The spatial covariance structure of the reservoir properties can be incorporated via a vari-
ogram or covariance function. This is referred to as two-point statistics (variogram based),
but multi-point statistics are needed to describe complex structures like fractures and chan-
nels [25, 129]. Conditioning on the dynamic data can be done by specifying a likelihood model
f(d|m) that relates the reservoir parameters m of interest to the dynamic data d through
the forward model plus observation error. The prior model and forward model fully specify
the posterior model f(m|d) via Bayes’ rule

(3) f(m|d) =
f(d|m)f(m)

f(d)
∝ f(d|m)f(m).

Although the posterior distribution is generally only known up to a constant, it is possible
to sample from the distribution to obtain realizations denoted by [m|d] ∼ f(m|d). Meth-
ods intended to sample from the posterior distribution, by some kind of simulation-based
interference, are referred to as Monte Carlo methods. Commonly used Monte Carlo methods
are Markov-chain Monte Carlo (McMC) [44, 119], ensemble Kalman filter (EnKF) [50, 51],
particle filter [47], randomized maximum likelihood [87, 107], SIR-algorithm [70], pilot-point
(PP) methods [93, 115], and sequential self-calibration (SSC) [28, 62]. The main advantages
of geostatistical methods are that small-scale geological variability is incorporated and that
uncertainty can be assessed from the realizations. However, history matching of multiple
realizations is often very computationally expensive. Therefore, the number of realizations
are often kept low or reduced, which may cause poor uncertainty estimates. The selection
of a subset of realizations to be pursued for further uncertainty assessments is referred to as
ranking, and is usually based on some criteria intended to preserve the information sought to
the maximum extent [108]. Comparative studies of geostatistical history-matching methods
are reported in the literature [see e.g. 14, 56, 96, 151].

This paper is meant as a review of history-matching methods that are based on a streamline
formulation. Streamline simulation has experienced a revival in recent years and has proved
to be an effective tools for fast reservoir simulation. Streamline simulators are most efficiently
applied to injection-dominated cases and cases where the fluid flow is governed by hetero-
geneities in the rock properties, well positions and rates, fluid mobilities, etc. Streamlines are
well suited for history-matching of reservoir properties to fit dynamic data due to three main
reasons: (i) streamline methods are relatively fast compared with traditional finite-difference
methods for forward simulation, and (ii) by nature streamline methods give precise informa-
tion about the geometries of the flow pattern and can be used to define reduced models, for
instance injector-producer pairs. (iii) streamline-based sensitivities can be evaluated directly
from analytic expressions after a single flow simulation. In this paper we will focus on the
latter two points. To this end, we start out by giving a review of streamline-based sensitivities
in Section 4, after having introduced the model equations most commonly used in streamline-
based history matching in Section 2 and given a quick introduction to streamline simulation
in Section 3.

Streamline sensitivities are defined as analytical integrals along streamlines and can be
computed very efficiently based on a single flow simulation. First, time-of-flight sensitivities
[67, 135, 143] with respect to common reservoir parameters are presented. The time-of-
flight sensitivities are the basic building blocks for obtaining streamline-based sensitivities for
different dynamic data. Further, we describe streamline-based sensitivities for arrival-time,
time-shift, saturation, tracer concentration, fractional flow, and gas-oil ratio. Moreover, we
briefly discuss streamline-derived sensitivities for time-lapse amplitudes [136] and sensitivities
for pressure interference tests [69, 92]. Finally, we briefly describe sensitivities with respect
to the parameters of the gradual deformation method [117].

Section 5 constitutes the main part of this paper and in this section we give a survey of
history-matching methods based on streamlines. Rather than discussing methods (or papers)
where streamline simulation has been applied merely to provide fast forward simulation, we
focus on different uses of streamline methods to modify the geological/reservoir simulation
models throughout the history-matching process. However, we will neither go into great
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details about different formulations of the history-matching problem as an inverse problem
nor will we discuss methods for solving the corresponding inverse problems in great detail. The
reference list of this review is quite extensive and will hopefully guide the reader to sources
for further reading. In picking references we have tried to cite papers where a complete
and/or mature presentation is given, which means that we are not always referring to the
first occurrence of an idea. Further, we have prioritized, whenever possible, referring to
peer-reviewed papers. Short reviews of streamline-based history matching are also given in
[40, 126, 127]. A preliminary version of this paper has also been published as a technical
report [95].

The surveyed methods for history matching based upon streamlines can roughly be divided
into four different categories:

• The Assisted History Matching (AHM) approach was introduced by Emanuel and
Milliken [49] and is outlined in Section 5.1. This method defines sub-regions associated
with wells in which subsequent targeted changes of grid parameters can be performed
manually (or semi-automatic) by a reservoir engineer.

• Travel-Time Inversion (TTI) methods were introduced by Vasco, Datta-Gupta and
coworkers [135] based upon an analogy with seismic ray inversion. Streamlines are
used to estimate sensitivity coefficients analytically, thereby speeding up the opti-
mization on the grid-cell level. The first approach is a two-step approach with a
travel-time matching followed by an amplitude matching. Later, so-called Gener-
alized Travel-Time Inversion (GTTI) has been introduced to combine travel-time
matching and amplitude matching while keeping the desirable convergence properties
of travel-time inversion [67]. For the GTTI method time-shifts for the production
curves, minimizing the misfit, are jointly propagated to necessary modifications in the
reservoir parameters. The methods in this category are described in Section 5.2.

• Methods for matching streamline effective properties (SLEP) were first introduced by
Wang and Kovscek [141] and have later been extended by others. The key idea of
these methods is to relate the mismatch between observed and calculated production
data to a mismatch in effective properties along streamlines or streamline bundles, and
adjust the effective properties to obtain a satisfactory match. Then the perturbations
in effective properties are propagated to individual grid cells (by direct mapping or
by a geostatistical algorithm). These methods are described in Section 5.3.

• The final category consists of geostatistical history-matching methods that take ad-
vantage of streamline-defined regions or streamline-derived sensitivities. Methods dis-
cussed herein include Markov chain Monte Carlo [98], ensemble Kalman filter [9, 45],
sequential self-calibration [143], and the gradual deformation method [58, 59]. The
methods in this category are described in Section 5.4.

Moreover, in Section 6 we describe some methods for streamline-based ranking of geostatis-
tical realizations of reservoir models [75, 142]. Finally, Section 7 contains a discussion and
comparison of some of the methods introduced earlier in the paper.

2. Simplified Flow Models

Almost all the history-matching methods to be surveyed later in the paper are based on
simplified flow models. For completeness, we will therefore introduce these models in some
detail and specify the accompanying simplifying assumptions.

The fundamental equation describing flow in a porous media is the continuity equation
which states that the mass is conserved for phase α

∂

∂t

(
φραSα

)
+∇ ·

(
ραuα

)
= qα.

Here φ denotes porosity, ρα is density, Sα is saturation, uα is the phase velocity, and qα
models fluid sources and sinks. The saturations are volume fractions and must therefore add
up to unity, i.e.,

∑
α Sα = 1. For the phase velocity, we use the semi-empirical Darcy’s law,
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which relates the phase velocity to the gradient of the phase pressure pα,

(4) uα = −λαK
(
∇pα − ραg

)
,

where λ is the relative fluid mobility, K is the tensor of absolute permeability, and g is the
gravity vector (pointing downwards). The relative mobility is defined as λα = krα/µα, where
krα is the relative permeability, generally a function of the concentrations/saturations of other
present phases, and µα is the viscosity of phase α.

For two-phase flow of oil and water (α = o, w) this gives three equations and a set of
constitutive relations, for which it is common to choose a pressure and the water saturation as
the primary unknowns. By manipulating continuity equations and Darcy’s law, one can derive
the so-called fractional formulation consisting of an equation for the pressure and an equation
describing fluid transport, which is referred to as the saturation equation. The pressure
equation has more or less elliptic characteristics depending on the compressibility of the rock
and fluids, and the saturation equation is more or less hyperbolic, depending on capillary
pressures. Most of the methods discussed later assume incompressible and immiscible flow.
Using these assumptions and introducing the total velocity u = uo+uw and a so-called global
pressure p (see e.g., [2]) as primary unknowns, the coupled system can be written as,

∇ · u = q, u = −K
[
λt∇p− (λwρw + λoρo)g

]
,(5)

φ
∂Sw
∂t

+∇ ·
[
fw

(
u + Kλo∇pcow + Kλog∆ρ

)]
=
qw
ρw
.(6)

Here we have introduced the total mobility λt = λw+λo, the fractional-flow function of water
fw = λw/λt, the capillary pressure pcow = po − pw, the density difference ∆ρ = ρw − ρo, and
the total contribution from the wells q = qw/ρw + qo/ρo. The two equations are coupled since
the mobilities λα depend on the water saturation. We will refer to (5) and (6) as the pressure-
and the transport equation, respectively.

The majority of the history-matching methods also assume negligible gravity and capillary
forces, i.e., that the terms involving g and pcow vanish, and we can define p = pw = po.
Further, for incompressible flow ∇ · u = 0 away from the wells, so ∇ · (fwu) = u · ∇fw.
Moreover, when discussing oil-water systems, we drop the subscript ‘w’. Hence, the system
is considerably simplified

∇ · u = q, u = −Kλt∇p,(7)

φ
∂S

∂t
+ u · ∇f = q̃.(8)

Unless stated otherwise, this will therefore be our flow model in the following sections and
the dynamic data observed will typically be the fractional flow (or water cut) in wells.

For streamline methods, the coupled system (7)–(8) is solved using a sequential splitting:
First, the current saturation field is used to evaluate the mobilities λt(S) in (7), and the
equation is solved for the pressure and velocity. Then the velocity field u is held fixed for a
given time step while the saturation is advanced forward in time according to (8). How this is
done, will be explained in the next section. After the saturation has been advanced forward
in time, the new values are used to update the mobilities in (7), an so on.

In the above model, the permeability has been assumed to be a tensor. Within streamline-
based history matching, permeability usually is considered as isotropic and can therefore
be described by a scalar function. Using anisotropic permeability will make the inversion
problem much more under-determined. Moreover, the dynamic well data to be matched are
often noisy and spatially convoluted, and therefore contain limited spatial and small-scale
information. To adjust the permeabilities in other directions, multipliers or correlations are
usually applied, for which the involved parameters may also be history-matched. However,
some of the derivations presented later in this paper may in principle apply directly to a
diagonal or full permeability tensors as well.
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3. Streamline methods

For the sake of completeness we give a very brief introduction to streamline simulation.
For a given velocity field u, a streamline is a line that is everywhere tangential to u, that is,

dx
dr

=
u
|u|

, x(0) = x0.

Rather than using the arc length r to parameterize streamlines, it is common to introduce
the so-called time-of-flight τ , which takes into account the reduced volume available for flow,
i.e., the porosity φ. Time-of-flight is defined by the following integral

(9) τ(R) =
∫ R

0

φ(x(r))
|u(x(r))|

dr =
∫ R

0
s(x(r)) dr,

where τ expresses the time it takes a passive particle to travel a distance R along a streamline
(in the interstitial velocity field v = u/φ). The function s(x) is often referred to as the
slowness function. Alternatively, by the fundamental theorem of calculus and the directional
derivative, τ can be expressed by the following differential equation [41]

(10)
φ

|u|
=
dτ

dr
=

u
|u|

· ∇τ ⇒ u · ∇τ = φ,

which we, in lack of a better name, will refer to as the time-of-flight equation. We will denote
the time-of-flight increment over grid cell i by ∆τi. Hence, the time-of-flight at the well can be
written as the sum of the traversal times for all the Nc grid cells intersected by the streamline;
τ =

∑Nc
i=1 ∆τi. (Regarding subscripts, we will henceforth use indices i, j, k and ` to denote

grid cells, times, wells and streamlines, respectively. Moreover, we use the expression ‘grid
cell’, rather than ‘grid block’, when a method in theory can be applicable to more general
grid cells than non-degenerated quadrilateral or hexahedral grid blocks.)

Streamlines and time-of-flight can be used to define an alternative curvilinear and flow-
based coordinate system in three dimensions. To this end, we introduce the bi-streamfunctions
ψ and χ [18], for which u = ∇ψ ×∇χ. In the streamline coordinates (τ, ψ, χ), the gradient
operator is expressed as

(11) ∇(τ,ψ,χ) = (∇τ) ∂
∂τ

+ (∇ψ)
∂

∂ψ
+ (∇χ)

∂

∂χ
.

Moreover, a streamline Ψ is defined by the intersection of a constant value for ψ and a constant
value for χ. Because u is orthogonal to ∇ψ and ∇χ, it follows that

(12) u · ∇(τ,ψ,χ) = (u · ∇τ) ∂
∂τ

= φ
∂

∂τ
.

Therefore the coordinate transformation (x, y, z) → (τ, ψ, χ) will reduce the three-dimensional
transport equation

φ
∂S

∂t
+ u · ∇f(S) = 0.

to a family of one-dimensional transport equations along each streamline [41, 85],

(13)
∂S

∂t
+
∂f(S)
∂τ

= 0.

In other words, there is no exchange of the quantity S between streamlines and each streamline
can be viewed as an isolated flow system.

For each streamline a constant volumetric flux q` is associated. Quantities like the total
water rate, tracer concentration, fractional flow and gas-oil ratio (GOR) at a well can be ob-
tained by in some sense summing the quantities of the contributing streamlines. For instance
the fractional flow and total rate at a producer at time t are given by [17]

(14) f(t) =
1
q

Nsl∑
`=1

q`f`(t), q =
Nsl∑
`=1

q`,

where Nsl is the number of streamlines connected to the well, q` is the total flux assigned to
streamline `, and f`(t) is the fractional flow associated with streamline ` at time t.
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In modern streamline methods one does not need to represent the path of a streamline ex-
plicitly in three-dimensional space to perform the mapping back and forth between physical
space and streamlines. Instead, the parameterization, i.e., the integral in (9), can be com-
puted numerically on a cell-by-cell basis. The one-dimensional time-of-flight grid is obtained
by tracing a streamline forward and/or backward towards a sink/source (wells) [17]. Most
commonly used is a semi-analytical tracing algorithm introduced by Pollock [112], which uses
analytical expressions of the streamline paths inside each cell based on the assumption that
the velocity field is piecewise linear locally. Although Pollock’s method is only valid for regular
grids, it is often used also for highly skewed and irregular grids. Other approaches for tracing
on unstructured grids and the associated accuracy are discussed in [38, 66, 79, 102, 103, 113].

As mentioned above, (13) is solved numerically forward in time on a sequence of steady-
state approximations for the velocity field, just as done for an IMPES formulation in a finite-
difference simulator. In general, the streamline trajectories will change for unsteady flow
cases, for instance for non-unit mobility ratios (especially favorable) or because of changes
in the well configuration (e.g., infill drilling or temporal rates/pressure constraints). For
unsteady flow the changes in streamline trajectories are accounted for by regenerating the
streamlines periodically through pressure/velocity updates. The saturations/concentrations
are then mapped back and forth between the pressure grid and the streamlines for each update
(described below). The efficiency of streamline simulation compared to conventional finite-
difference simulators is traditionally primarily caused by the ability of taking longer pressure
steps within the sequential splitting formulation [86].

The streamline formulation can also be applied to describe flow including more physical
effects than those described in the simple two-phase model (7)–(8). A similar decomposition
of the 3D transport equation can also be performed for compressible flow [36], in which
case the one-dimensional transport equation will have a source term on the right-hand side.
Further, the decomposition has been extended to compositional flow with compressibility
effects [109]. Moreover, it is possible to include gravity and capillary forces by operator
splitting, as discussed in [22, 60, 61, 86]. However, gravity and capillary forces may enforce
fluxes traverse to the direction defined by the total velocities, and therefore separate sets
of streamlines have to be used for the gravity and capillary steps. Extensions to fractured
reservoir flow have also been reported [6, 46, 88], also resulting in source terms in the 1D
transport equations.

3.1. Linear Transport. For the special case of piston-like displacement, which will be a key
assumption in several of the history-matching methods discussed below, the flux function is
linear. Similarly, for the neutral advection of a passive tracer, (13) reads

(15)
∂C

∂t
+
∂C

∂τ
= 0.

The injector has a concentration history C0(t), which gives a time-dependent boundary-value
problem for (15). The response at the producer reads [41],

(16) C(t) = C0(t− τ) = C0

(
t−

∫
Ψ
s(x) dr

)
,

which is easily verified by inserting the expression into (15) and the fact that the solution is
unique [73]. For the special case of continuous and constant injection (which is equivalent to
piston-like displacement), the solution is particularly simple

C(t) =

{
0, t < τ,

C0, t > τ.

Dispersion is not accounted for in (15) or (16), but this can also be accounted for [see e.g. 76].
Further, for instance for a partitioning tracer being partially absorbed into the oil phase the
travel time along a streamline will be increased in the presence of oil saturation. This can be
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accounted for by increasing the slowness s(x) by the partitioning properties of the tracer [76]

(17) s(x) =
φ(x)
|u(x)|

(Sw + PoSo).

Here, So and Sw are the oil and water saturations, respectively, and Po is the partitioning
coefficient of the tracer defined as the ratio of tracer concentration in the oil phase to that in
the water phase. Hence, P0 will take on unity for a neutral tracer.

3.2. Buckley–Leverett Displacement. A common assumption in many history-matching
methods is to assume a so-called Buckley–Leverett profile along each streamline. That is,
one considers the one-dimensional transport equation in (13) and assumes constant initial
saturation S0 along each streamline and a constant injection state Si. Mathematically, this
corresponds to a so-called Riemann problem with initial data

S(0, τ) =

{
Si for τ < 0,
S0 for τ ≥ 0.

Since both the one-dimensional transport equation and the initial data are scale-invariant
or self-similar—that is, invariant under the map τ → kτ and t → kt—the solution should
also have that property, i.e., S(t, τ) = S(τ/t). More specifically, for Riemann initial data the
solution of the one-dimensional transport equation is given by the analytic Buckley–Leverett
solution (Riemann solution) [73]

(18) S(t, τ) =


Si for τ ≤ tf̃ ′(Si),
(f̃ ′)−1( τt ) for tf̃ ′(Si) ≤ τ ≤ tf̃ ′(S0),
S0 for τ ≥ tf̃ ′(S0).

Here f̃ denotes the upper concave envelope of f if Si > S0, and the lower convex envelope of
f if Si < S0. The front saturation S̃ can be determined by solving the equation [73]

f ′(S̃) =
f(S̃)− f(S0)

S̃ − S0

,

and the injection front will arrive at the well at time τ/f ′(S̃).

3.3. General Displacement. For cases where the injection problem is not a simple Riemann
problem, the one-dimensional transport equation (13) must generally be solved numerically.
The standard approach for solving the scalar problems numerically along streamlines is to
use a finite-difference or finite volume method. The simplest such scheme is the first-order
upwind scheme,

Sj+1
i = Sji −

∆t
∆τ

[
f(Sji )− f(Sji−1)

]
.

For explicit schemes a so-called CFL condition has to be fulfilled with respect to time step size
to keep the numerical solution stable. The CFL condition usually puts a severe restriction on
the time-step size compared to what is required with respect to accuracy. To make the critical
time-step size less restrictive, the time-of-flight grid is often mapped to a more regular grid
for these schemes. For multi-phase and compositional flow with strong nonlinear couplings
in the system of flow equations, the sharpness and the accuracy of the propagation speeds
need to be accurately represented, which may require more accurate schemes for solving along
streamlines. We here confine ourself with just listing a few recent related works [90, 99, 111,
128, 131].

Alternatively, one may use an implicit scheme of the form

Sj+1
i = Sji −

∆t
∆τ

[
f(Sj+1

i )− f(Sj+1
i−1 )

]
.

to escape the stability restrictions. However, numerical diffusion is often associated with
these schemes and a system of Nc equations, where Nc is the number of unknowns along the
streamline, has to be solved. To reduce the numerical diffusion, it is therefore customary to
use implicit time steps that are smaller than the pressure steps. In other words, there are
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two different time steps involved in streamline simulation: the pressure step of the sequential
splitting, and the local time step used in the transport solve.

For two-phase (and other scalar problems), a much better approach is to use front tracking
[73] as discussed in [19–21]. This grid-independent method is based on an entirely different
approach than finite-difference schemes and is unconditionally stable and devoid of numerical
diffusion. Instead of discretizing the problem spatially, the initial data S0 and the flux function
f are approximated by piecewise constant and piecewise linear functions, respectively. The
resulting approximated problem consists of a set of Riemann problems that can be solved exact
analytically forward in time given an exact Riemann-solution for the given equation. During
the forward solves the different Riemann solutions will interact and create new Riemann
problems, and so on. The solution of each Riemann problem is given by the Buckley–Leverett
construction discussed in the previous section, which for a linear flux function simplifies to a
step-function with discontinuities propagating along space-time rays, see [73] for more details.
Extensions to miscible and 3-phase flow for front tracking are addressed in [83, 84].

3.4. Mapping Between Pressure Grid and Streamlines. A crucial step in streamline
methods is the mapping of saturations from the pressure grid to streamlines, and vice versa.
Mapping from pressure grid to streamlines is usually performed by simply picking up the
piecewise-constant saturation values from the grid cells that are intersected by the streamline.
Alternatively, higher accuracy is obtained if one first makes a piecewise linear reconstruction
on the pressure grid before mapping to streamlines, as suggested by Mallison et al. [100].
Contrary, mapping the saturations from streamlines to grid cells is done by

(19) Si =
∑

` S`,iV`,i∑
` V`,i

,

where V`,i = q`∆τ`,i is the pore volume associated with streamline ` over grid cell i [17].
Unfortunately, this mapping may potentially introduce large errors in the mass balance of the
reservoir. Commercial streamline solvers therefore use some kind of correction to counteract
the lack of mass balance. One such simple approach is discussed by Stenerud et al. [122],
who suggest to adjust the time-of-flight locally to preserve the local pore volume for both
the mappings. Doing so reduces significantly the number of streamlines required to obtain
accurate production curves, which is more important within history matching than obtaining
high local accuracy in space. Mallison et al. [100] suggest another, and entirely different,
approach based on a geostatistical kriging mapping in which streamlines are no longer seen
as fluid carriers but rather as an unstructured, flow-based grid for computing fluid transport.

Finally, we mention that spatial errors and convergence in streamline simulation have been
studied by Jimenez et al. [79]. For further details on streamline simulation, we refer to the
upcoming textbook by Datta-Gupta and King [40].

4. Streamline-Based Computation of Sensitivities

One of the benefits of applying streamlines for history-matching is the possibility of fast
evaluation of reservoir-response sensitivities. These sensitivities can be evaluated analytically
after a single forward simulation. Using streamlines to compute sensitivities is thus an optimal
approach. We will here review the current literature on streamline-based sensitivity compu-
tations, starting by discussing the computational cost and applicability of streamline-based
relative to traditional methods for computing sensitivities.

4.1. Efficiency and Applicability. Traditional methods for computing sensitivities of multi-
phase production data with respect to reservoir parameters can be divided into three cate-
gories: perturbation methods, gradient-simulator methods [8, 62], and adjoint or optimal
control methods [30, 32, 94, 148, 149]. We will not go into much details about these methods,
but we will briefly discuss the computational costs and compare them with the streamline-
based approaches.

The perturbation method is the brute force approach for obtaining sensitivities. Each
parameter is perturbed followed by a flow simulation to evaluate the resulting perturbations in
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the production responses. ForN parameters this approach therefore requiresN+1 simulations
and is thus very expensive. Both the gradient-simulator method and the adjoint method
require one forward simulation and one or more solutions of a system of linear equations of
the same size as the discretized system for the flow equations (different right-hand sides).
The gradient-simulator method requires the solution of a linear system to obtain sensitivities
for the state variables with respect to a parameter of interest. The linear system is obtained
by differentiating a discretized version of the flow equations with respect to the parameter of
interest. For instance, consider a pressure system Ap = b. By differentiating this equation
with respect to a parameter m we obtain

∂A
∂m

p + A
∂p
∂m

=
∂b
∂m

,

which can be solved to obtain ∂p/∂m. Hence, a linear system has to be solved one time for
each reservoir parameter of interest for each simulator step. The gradient-simulator method
is usually not as expensive as the perturbation method because the sensitivities are not
necessarily needed for all steps. For the adjoint method, one needs to solve an adjoint linear
system for every gradient needed. Therefore, one solution is needed to obtain the gradient of
an objective function, while the number of solutions to obtain the sensitivity matrix is equal
to the number of data points to be integrated. The adjoint systems are solved backward
in time from the end of the last pressure step, and this requires storage of the intermediate
saturation and pressure information for the pressure steps. For a more thorough presentation
of the adjoint method see for instance [148], where it is described in the appendix how the
adjoint method can be used to obtain time-shift sensitivities, cf. Section 4.4. An alternative
to the adjoint method for obtaining the gradient of an objective function is the stochastic
gradient approach used in the SPSA algorithm [57, 120], which requires two evaluations of
the objective function (two flow simulations) to obtain a realization of the gradient. This
approach thus has similar computational complexity as the adjoint method, but can easily be
implemented on top of any flow simulator because mainly evaluations of the objective function
are required. The theoretical foundation for this approach is that at least for a quadratic
objective function the expectation value of the stochastic gradient is the true gradient [57].
However, the stochastic nature of the gradient may slow down the convergence of the history
matching as demonstrated in [57].

The streamline-based approaches described below are superior with respect to efficiency
for obtaining the sensitivity matrix for large systems because they only require one forward
simulation and a post-processing step which basically boils down to bookkeeping of analytic
arithmetic computations.

Sensitivities describe how calculated reservoir responses will react to a small perturbation
in the reservoir description. The sensitivities depend, in principle, on the way the reservoir
responses are calculated, e.g., by a flow simulator, by an inverse seismics-to-saturation model,
etc., and should account for errors made in the calculation. However, highly accurate sensi-
tivities are seldom needed for applications in inverse modeling of petroleum reservoirs, since
sensitivities are mostly used within an iterative inversion algorithm to determine in which
direction one should perturb the solution in the next iteration. Moreover, large uncertainties
in the reservoir description will in general mask errors made in the calculation of sensitivities.
In practice, sensitivities obtained by one reservoir response simulator may perform well for
another simulator too. For instance, streamline sensitivities may be obtained by using the
velocity fields of a finite-difference simulator, even though streamlines are not used for the
actual flow simulation, see e.g., [35]. This extends the applicability of fast streamline-based
sensitivity calculations considerably.

4.2. Time-of-Flight Sensitivities. The sensitivity of the time-of-flight with respect to
reservoir parameters is the basic building block used to obtain streamline-based sensitivi-
ties for reservoir responses. We will therefore start out by presenting two different approaches
for deriving time-of-flight sensitivities.

The first approach is used in particular by Datta-Gupta and coworkers. By Darcy’s law
(7) for the total velocity u and the time-of-flight definition in (9), the time-of-flight is related
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to reservoir properties by

(20) τ =
∫

Ψ

φ(x)
λtK(x)|∇p|

dr =
∫

Ψ

φ(x)A(x)
q

dr =
∫

Ψ
s(x) dr.

Here φ is the porosity, K is the absolute permeability, p is the pressure, λt is the total mobility,
A is the streamtube cross sectional area, and q is the total volumetric streamline rate.

The sensitivity of τ with respect to a reservoir parameter m can then be defined by [135]

(21)
∂τ

∂m
=

∫
Ψ

∂s(x)
∂m(x)

dr,

where ∂s(x)/∂m(x) typically is given by, for instance

∂s

∂K
= − φ

λtK2|∇p|
= − s

K
,(22)

∂s

∂φ
=

1
λtK|∇p|

=
s

φ
,(23)

∂s

∂|∇p|
= − φ

λtK|∇p|2
= − s

|∇p|
,(24)

∂s

∂λt
= − φ

λ2
tK|∇p|

= − s

λt
,(25)

∂s

∂q
= −φA

q2
= −s

q
.(26)

Similar expressions for various relative permeability parameters are described in Appendix A.
We now assume that each reservoir parameter mi is constant inside grid cell i. Then a time-
of-flight sensitivity can be associated with each grid cell: The sensitivity with respect to
permeability, for instance, is given by

(27)
∂τ

∂Ki
=
∂∆τi
∂Ki

=
∫

Ψi

∂s(x)
∂Ki

dr =
∫

Ψi

−s(x)
Ki

dr = −∆τi
Ki

.

The sensitivities are calculated under the assumption that the streamlines do not shift as a
result of a small perturbation in the reservoir properties. Further, it is assumed that the
different reservoir properties are independent in the sense that a small perturbation in one
property does not perturb any of the other properties. However, especially the pressure will
generally depend on the permeability distribution, but this dependence is usually neglected.

Tracer partitioning can be accounted for by defining the slowness function s(x) as in (17)
[43, 76]. Illiassov and Datta-Gupta [76] also use this formulation to compute time-of-flight
sensitivities with respect to saturations. Further, we remark that it may be possible to account
for gravity and capillary pressure in the time-of-flight sensitivities by using the total Darcy
velocity (5) accounting for these effects in the slowness function s(x).

Wen et al. [143] present a more general approach to account for the pressure impact on the
time-of-flight and the spatial correlation for permeability. These sensitivities were derived
for application to the sequential self-calibration (SSC) method, which will be discussed in
Section 5.4.3. For the SSC method, the sensitivities are associated with master points rather
than grid cells, and therefore the spatial correlations between grid cells and the master points
are important. We will here index master points by subscript d. The time-of-flight in each cell
i is a function of the transmissibilities {Ti,n} associated with the cell faces and the pressures
{pi,n} in the cell and its surrounding neighbors. A straightforward differentiation, applying
the chain rule along a streamline intersecting Nc grid cells gives

(28)
∂τ

∂Kd
=

Nc∑
i=1

[∑
n

∂∆τi
∂Ti,n

∂Ti,n
∂Kd

+
∑
n

∂∆τi
∂pi,n

∂pi,n
∂Kd

]
.

To obtain ∂∆τi/∂Ti,n and ∂∆τi/∂pi,n analytically, Wen et al. [143] differentiate the expres-
sions for ∆τi used in the Pollock’s tracing algorithm. Further, the pressure sensitivities
∂pi,n/∂Kd are obtained by the gradient-simulator method described above [62, 143] and are
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not streamline based, and thus more expensive. Finally, using the harmonic average to cal-
culate the transmissibility between two cells gives [62]

(29) ∂Ti,n/∂Kd =
T 2
i,n

2

(ωd,i
Ki

+
ωd,n
Kn

)
,

where ωd,i and ωd,n are the kriging weights associated with master point d, cell i, and face n
(adjacent cell). Hence, the spatial correlations of permeability perturbations are accounted
for through the kriging weights in (29).

If one assumes that the pressure (the gradient) is independent of a small perturbation in
the permeability, like assumed in (27), the sensitivities are reduced to

(30)
∂τ

∂Kd
=

Nc∑
i=1

∂∆τi
∂Kd

=
Nc∑
i=1

∂∆τi
∂Ki

∂Ki

∂Kd
= −

Nc∑
i=1

∆τi
Ki

∂Ki

∂Kd
= −

Nc∑
i=1

∆τi
Ki

ωd,i,

where ωd,i is the kriging weight of master point d and cell i. For given kriging weights, this
is a fully analytic approximation to the sensitivity coefficients that should apply directly to
the same reservoir parameters as (21) does, given that appropriate covariance structures can
be defined for the parameters.

The kriging weights involved in (29) and (30) can be obtained by solving an ordinary
kriging system [62]. Further, the kriging weights only depend on the spatial locations of the
master points and the locations being interpolated, so the kriging system only need to be
solved once for a fixed set of master points, interpolation points, and covariance structure.
The same weights may also be used to propagate the updated permeabilities of the master
locations in the inverse problem, see Section 5.4.3.

If a master point coincides with a cell j and we assume that a perturbation of the perme-
ability Kj only contribute to a perturbation of ∆τj , i.e.,

(31) ωj,i =
{

0, for i 6= j,
1, for i = j,

then (30) reduces to (27).

In choosing between the two approach introduced above, we note that calculating the time-
of-flight sensitivities by (21) is the fastest approach because the approach mainly boils down
to bookkeeping of time-of-flights over each grid cell. Moreover, we remark that for the purpose
of history matching, it often turns out in practice (see [67, 146]) to be sufficient to apply the
cell-based approximations (27) and (30), which are the less computationally expensive (but
also more approximate).

4.3. Arrival-Time Sensitivities. An arrival time measures the time it takes a quantity to
propagate from one point in the reservoir to another, e.g., the time it takes from one starts
injecting water in at an injector to the water front break through in a producer. In this
subsection we will present an approach for computing the sensitivity ∂tj/∂mi of an arrival
time tj with respect to reservoir parameter mi of grid cell i. This sensitivity is also sometimes
referred to as a travel-time sensitivity [67] (analogy to ray-tracing in seismics). Consider a
system of two-phase flow given in the time-of-flight coordinate along each streamline by the
one-dimensional transport equation (13). If the streamlines are assumed to be invariant under
the perturbation in reservoir parameters, the shift in the saturation at the outlet nodes is
given by

δS =
∂S

∂t
δt+

∂S

∂τ

[ ∂τ
∂m

]T
δm.

Let us consider the propagation of a fixed saturation, i.e., δS ≡ 0, or in other words

0 =
∂S

∂t
δt+

∂S

∂τ

[ ∂τ
∂m

]T
δm.

If we now perturb m only in the ith component and solve for δt/δmi, we obtain

(32)
∂t

∂mi
= −∂S

∂τ

∂τ

∂mi
·
(∂S
∂t

)−1
=

1
f ′(S)

∂τ

∂mi
.
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Here time-of-flight derivative ∂τ/∂mi is computed analytically as described in Section 4.2. In
deriving (32) we have tacitly assumed that the fixed saturation propagates with a constant
wave-speed f ′(S) from its ‘release’ (at an injector) to its ‘arrival’ at a well. Whereas this is
true for a piston-like displacement or for a neutral tracer flow, for which f(S) = S and we
obtain ∂t/∂mi = ∂τ/∂mi as expected, it will generally not be true for a general nonlinear
displacement. For a pure Buckley–Leverett displacement, f ′(S) should be replaced by the
derivative of the convex envelope of the flux f̃ ′(S), see Section 3.2. (Alternatively, this can
be derived directly by direct differentiation of the self-similar Buckley–Leverett solution, for
which f̃ ′(S) = τ/t.) In other words, df/dS is evaluated at the saturation of outlet node of
the streamline for streamlines with breakthrough (i.e., having outlet saturation larger than
the front saturation), and for the front saturation for streamlines without breakthrough. For
other flow cases where the initial boundary-value problem along each streamline does not
consist of a single Riemann problem, the accuracy of (32) depends on how well f ′(S) (or
f̃ ′(S)) approximates the true wave-speed of the fixed saturation during the time interval
from release to arrival.

He et al. [67] also extend the arrival-time sensitivity to account for changing saturation
distribution along streamlines due to changes in the streamline geometry, pressure updates,
and mapping of saturations between streamlines as part of an operator splitting algorithm to
account for gravity and/or capillary forces. The change in the saturation in the outlet cell
will now also be a function of the initial saturation distribution S0 along the streamline (i.e.,
the saturation after the previous pressure update)

δS =
∂S

∂t
δt+

∂S

∂τ

[ ∂τ
∂m

]T
δm +

[ ∂S
∂S0

]T
δS0.

If we now assume that the change in the water saturation in the outlet cell is primarily a
function of the initial saturation S0,j in the same cell (which is true for a small time due to
finite speed of propagation in hyperbolic equations), the last term becomes[ ∂S

∂S0

]T
δS0 =

∂S

∂S0,j
δS0,j =

∂S

∂S0,j

[∂S0,j

∂m

]T
δm.

Hence, the overall sensitivity reads [67]

∂t

∂mi
= −

(∂S
∂τ

∂τ

∂mi
+

∂S

∂S0,j

∂S0,j

∂mi

)
·
(∂S
∂t

)−1
=

1
f ′(S)

∂τ

∂mi
+

∂t0j
∂mi

.

where ∂t0j/∂mi denotes the travel-time sensitivity at the beginning of the update (i.e., the
sensitivity at the end of the previous time step). If operator splitting is applied in the
transport solve, e.g., to account for matrix-fracture exchange for fractured systems and/or
gravity, f ′(S) is evaluated after the corrector steps of the operator splitting [5].

Using the compressible conservation equation for water saturation [36], we can generalize
the sensitivity calculations presented above to compressible flow. The sensitivity of arrival
time of a water saturation with respect to a reservoir parameter mi is given by [37]

(33)
∂t

∂mi
=

∂τ

∂mi

∂

∂τ

(Sw
Bw

)
∂

∂τ

( fw
Bw

)
+
fw
Bw

c

φ

,

where Bw is the volume formation factor of water, and c represents the divergence of flux
(c = ∇ · ~u) along the streamline, which can be estimated from the velocity field. Again, the
time-of-flight derivative ∂τ/∂mi is computed analytically as described above. The rest of
the derivatives can be computed by (backward) finite-differences along the streamlines. For
incompressible flow, c ≡ 0 and Bw is constant, so (33) reduces to (32). Similarly, for gas-oil
ratio (GOR), using the compressible conservation equation for gas [36], we can obtain the
arrival time sensitivities [37].

As the primary example of an arrival time, we use the arrival of a fixed fractional-flow (fixed
saturation) in both the well and along the streamlines. A common arrival-time sensitivity for
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each producer is then obtained by a flux-weighted average

(34)
∂tj
∂mi

=
1
q

Nsl∑
`=1

q`
∂tj,`
∂mi

, q =
Nsl∑
`=1

q`.

Here, q` is the total flux of each streamline, and Nsl is the number of streamlines connected
to the well.

Finally, we mention that Al-Huthali et al. [7] use (14), (21), (26), and (32) to derive arrival-
time sensitivities with respect to injection and production rate. These sensitivities are not
used for history matching, but rather for optimal waterflood management by rate control. To
compute the arrival-time sensitivities for the producers, the authors only consider a fraction
of the streamlines (fastest). Moreover, they also consider sensitivities for a group of producers
with a common contributing injector.

4.4. Time-Shift Sensitivities. A time-shift is a measure for how much a simulated pro-
duction response curve should be shifted in time to maximize the cross correlation with an
observed production-response curve. The time-shift is described and used with the generalized
travel-time inversion method described in Section 5.2.

Consider a small perturbation δm in the reservoir parameters with an accompanying shift
δt in the computed production response. In each data point tj there will be a corresponding
shift δtj , where

δt = δtj =
[ ∂tj
∂m

]T
δm, j = 1, . . . , Nd.

Since a perturbation δmi will lead to the same time-shift in all data points, we sum over all
data points and define the sensitivity of the travel time-shift with respect to parameter mi as
the average of the above equations

(35)
∂t

∂mi
=

1
Nd

Nd∑
j=1

∂tj
∂mi

.

By convention, one defines ∂∆t̃/∂mi = −∂t/∂mi. Now, the arrival-time sensitivities given
above can be used to obtain travel-time shift sensitivities, e.g., for fractional flow, gas-oil
ratio, or tracer concentration [37].

Practical experience indicates that more robust history matching is achieved by making
the sensitivities dimensionless by applying log-sensitivities [67]:

∂ log(|∆t̃|)
∂ logmi

=
mi

∆t̃
∂∆t̃
∂mi

.

For the generalized travel-time inversion described in Section 5.2, it is therefore common to
use logarithmic modifications for the reservoir parameters.

4.5. Saturation Sensitivities. By differentiating the expression used for the streamline-to-
grid mapping of saturation (see (19)), the sensitivities of saturation with respect to a reservoir
parameter mi at a given time can be calculated by [130]

(36)
∂Si
∂mi

=
Nsl,i∑
`=1

∂S`
∂mi

β` =
Nsl,i∑
`=1

∂S`
∂τ`

· ∂τ`
∂mi

β`,

where β` is the weight assigned to streamline ` in the mapping, ∂τ`/∂mi is the time-of-flight
sensitivity specified above, and ∂S/∂τ` is the derivative of the 1D saturation solution along
the streamline. Here we have assumed that β` is independent of a perturbation in mi.

For Riemann initial data the solution is self-similar S(t, τ) = S(τ/t) and analytically known,
as described in Section 3.2. The sensitivity of the saturation in streamline ` at a particular
(t, τ) with respect to the reservoir parameter mi in grid cell i is then given analytically by

(37)
∂S`
∂mi

=
∂S`
∂ξ

∂ξ

∂τ

∂τ

∂mi
=

1
t

∂S`
∂ξ

∂τ

∂mi
, ξ =

τ

t
.
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Hence, if the reservoir parameter mi is not located upstream, the sensitivity will be zero.
Further, this expression may be used as an approximation in (36).

4.6. Production Data Sensitivities (Amplitude Sensitivities). Differentiating (14),
the sensitivity of fractional flow at a producer with respect to a perturbation in reservoir
parameter mi is obtained by [143, 147]

∂f(t)
∂mi

=
1
q

Nsl∑
`=1

q`
∂f`(t)
∂mi

.

This expression also applies to tracer concentration for which f(C) = C, and a similar result
applies to gas-oil ratios.

We now need to evaluate ∂f`(t)/∂mi for the connected streamlines. This can be done by
the chain rule, using an expansion involving either time-of-flight sensitivities [135, 143, 147]

(38)
∂f`
∂mi

=
∂f`
∂τ`

∂τ`
∂mi

,

arrival-time sensitivities [45]

(39)
∂f`
∂mi

=
∂f`
∂t

∂t

∂mi
,

or the saturation sensitivities

(40)
∂f`
∂mi

=
df`
dS

∂S

∂mi
.

Expressions for the the time-of-flight, the arrival-time, and the saturation sensitivities for
each streamline have been introduced in the previous subsections. The derivatives of the
fractional flow (∂f`/∂τ , ∂f`/∂t, or df`/dS) can be obtained either analytically or by using
finite-differences.

Another possibility for obtaining fractional-flow sensitivities directly is to apply the chain
rule to the production response (at the well), which yields

∂f

∂mi
=
∂f

∂tj

∂tj
∂mi

.

Here ∂tj/∂mi is given by (34), and ∂f/∂tj can be evaluated numerically from the production
response curve at the given time. A smoothed approximation to the generally noisy production
curve might then be needed.

Below we will present two approaches for determining the fractional-flow derivative along
streamlines, starting out by tracer concentration (or piston-like displacement). Following
Vasco and Datta-Gupta [132, 133], we start by observing that the transport of tracer con-
centration along a streamline can be described by (16). Assume an initial distribution of
reservoir properties along a streamline Ψ0. To compute sensitivities, we give the underlying
parameters a small perturbation, reflected as a single perturbation in the slowness function

(41) s(x) = s0(x) + δs(x)

and seek to find the corresponding change in tracer production δC. According to Vasco and
Datta-Gupta [134]2, the perturbation in the streamline is of second order in δs. One can
therefore assume that the change in the streamlines is so small that the integral over the new
streamline Ψ equals that over the old streamline Ψ0, that is

τ =
∫

Ψ
s(x) dr ≈

∫
Ψ0

s0(x) dr +
∫

Ψ0

δ(x) dr = τ0 + δτ0.

2Vasco and Datta-Gupta [134] refer to King and Datta-Gupta [85]. Unfortunately, we have so far not been
able to locate the proof in [85] of the fact that the change in streamlines is second order in δs.
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Using the notation from Section 3.1, we may hence write

δC`(x) = C`,0
(
t− τ

)
− C`,0

(
t− τ0

)
≈ C`,0

(
t− τ0 − δτ0

)
− C`,0

(
t− τ0

) Taylor
≈ −C ′

`,0

(
t− τ0

)
δτ0

as a first-order approximation. It now remains to determine δτ0, i.e., the integral of δs over
Ψ0. The variation in s(x) due to variation in all properties is given as

(42) δs(x) =
∂s(x)
∂K

δK +
∂s(x)
∂φ

δφ+
∂s(x)
∂|∇p|

δ|∇p|+ . . . ,

where the expressions for the partial derivatives were given in Section 4.2. For instance, the
sensitivity of the concentration due to changes in the reservoir parameter mi at time t is given
by

∂C`
∂mi

= −C ′
`,0

(
t− τ0

) ∫
Ψ0i

∂s(x)
∂mi

dr = −C ′
`,0

(
t− τ0

)︸ ︷︷ ︸
≈ ∂C`

∂τ`

∂τ`
∂mi

.

Notice that the same expression could have been obtained directly by differentiating (16) un-
der the assumption of no shift in streamlines due to the perturbation in reservoir parameters.

Wen et al. [143] present another approach to analytic calculation of ∂C`(t)/∂mi for tracer
flow. We start by assuming a tracer flow with a monotone flow profile, where the analytical
solution is given by (see Section 3.1)

C`(t) =

{
1, if τ` ≤ t,

0, otherwise.

Here τ` denotes the time-of-flight of streamline ` at the well. To be able to differentiate this
discontinuous profile, the authors use an approximation in terms of an error function Eσ for
some small parameter σ,

C`(t) ≈ 1− Eσ

(τ`
t
− 1

)
, t ≤ τ`,

and hence
∂C`(t)
∂mi

=
∂C`(t)
∂τ`

∂τ`
∂mi

= −1
t
Gσ

(τ`
t

) ∂τ`
∂mi

, Gσ(r) =
1√
2πσ

e−
(r−1)2

2σ2 .

The same approach can be extended to two-phase incompressible flow [135, 147] described
by transport equation (13). The analytic Buckley–Leverett solution for Riemann initial data
(see Section 3.2), consisting of a shock followed by a rarefaction wave, can be used to calculate
analytic fractional-flow sensitivities by

∂f`
∂mi

=
df`
dS

∂S

∂τ

∂τ

∂mi
=
τ

t

∂S

∂τ

∂τ

∂mi

since f ′`(S) = τ/t for a self-similar profile.
As mentioned above, ∂f`/∂t and ∂f`/∂τ can be evaluated by finite-differences along the

streamlines, which is the most general approach. However, the fully analytic approximations
may often be sufficiently accurate.

Finally, we remark that gravity and capillary forces can be accounted for in the fractional
flow derivative by defining the fractional flow function from Darcy’s law incorporating gravity
and capillary forces; i.e., [39]

(43) fw(S) =
qw · n
qt · n

=
λw + λwλo

u·n K(∇pcow + (ρw − ρo)g) · n
λw + λo

.

Here n is the unit vector in the flow direction that easily can be estimated from the streamline
geometry; i.e. by n = u/|u|. Hence, gravity and capillary forces will only be fully accounted
for if both (43) is applied and the forward simulator accounts for these effects.
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In [150] an argument is given for the spatial additivity of production response sensi-
tivities. We will here outline this argument by a small example. Let g(m) be the pro-
duction response at a well, and let there be N grid cells {1, 2, . . . , N}, with correspond-
ing grid parameters {m1,m2, . . . ,mN}. The set of production-response sensitivities is then
{∂g/∂m1, ∂g/∂m2, . . . , ∂g/∂mN}. By perturbing a subset of the reservoir parameters, e.g.,
{m4,m5,m6,m7}, we obtain the following differential for the resulting perturbation in the
production response

δg =
∂g

∂m4
δm4 +

∂g

∂m5
δm5 +

∂g

∂m6
δm6 +

∂g

∂m7
δm7.

By assuming the same modification or perturbation δmc = δm4 = δm5 = δm6 = δm7 in all
cells, the differential is

δg =
( ∂g

∂m4
+

∂g

∂m5
+

∂g

∂m6
+

∂g

∂m7

)
︸ ︷︷ ︸

∂g
∂mc

δmc.

Hence, it is reasonable to approximate the sensitivities of the production response with respect
to a coarse-cell reservoir parameter mc by the sum of the sub-cell sensitivities. Further, it
should be noted that small cells then in general will have smaller sensitivities than large cells.

4.7. Miscellaneous. In this last subsection we will briefly comment on a few other uses
of streamlines to calculate various sensitivity coefficients that fall in neither of the above
categories.

Vasco et al. [136] derive sensitivities for amplitudes from time-lapse seismic with respect
to changes in reservoir parameters. We will not go into the details, but the key to obtaining
the sensitivities is to relate perturbations in the amplitudes to perturbations in the upstream
saturations along streamline trajectories. Further, the perturbations in the upstream satu-
rations can be related to perturbations in the reservoir parameters via the perturbations in
time-of-flight by (37).

Kulkarni et al. [92] derive streamline-based sensitivities for the arrival time of a ’pressure
front’ for use in pressure interference tests, see Section 5.2.3 for details about streamline-based
integration of transient pressure data. The arrival time is related to the so-called diffusive
time-of-flight by (51) in Section 5.2.3. Similar calculations as used for ordinary time-of-flight
and arrival-time sensitivities can then be applied. In [69], sensitivities for the amplitude of
the ’pressure front’ of a pressure interference test are derived by simply differentiating (49)
in Section 5.2.3 in the time domain (inverse Fourier transformed).

In [58, 59] sensitivities of fractional flow and well pressure with respect to the parameters of
the gradual deformation method (GDM) are derived by direct differentiation of the discrete
equations of a streamline method. Numerical values for the gradients are computed in a
two-step procedure (corresponding to the two steps in the fractional step solution method):

(1) Given boundary conditions, the pressure and its gradient are computed on a 3D grid.
The pressure gradients with respect to a parameter are obtained by the gradient-
simulator method discussed in Section 4.1. This is therefore not a streamline-based
approach, but the saturation derivatives involved in the derivation of the linear equa-
tion system are streamline based. The pressure gradients are calculated based on
information from the previous pressure step.

(2) Then velocities are computed from Darcy’s law and streamlines are traced from in-
jectors to producers. The one-dimensional saturation/transport equation is solved
along each streamline, and saturation gradients with respect to reservoir properties
are computed. Finally, the streamline gradients are mapped back onto the 3D grid to
obtain grid-block saturation gradients.

Part of the intermediate derivations are similar or identical to derivations presented above.
The entire derivations are too technical to give a condensed presentation here. One should
therefore instead read the paper in full [59].
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We will just remark that the derivations presented involve a specific streamline simulator
implementation involving expressions used in the Pollock’s tracing algorithm, the Peaceman
well model, and the standard first-order upwind finite-difference scheme. The calculations
may therefore need to be adapted for other implementations. Currently, there are two com-
peting streamline technologies: (i) the 3DSL technology of StreamSim, which uses finite
differences along each streamline; and (ii) the FrontSim technology by Schlumberger, which
also uses front-tracking along each streamline. The results from [59] are based upon the
3DSL-type streamline simulator, and may therefore not be applied directly to FrontSim-type
streamline simulators. By using the front-tracking method, one avoids the mapping back
and forth between an irregular and a regular discretization along streamlines. This simplifies
the calculations of the sensitivities, since the terms arising from equations (22) and (25) in
[59] are not needed. On the other hand, an equation for the saturation gradients cannot be
obtained by simply differentiating the discretized saturation equation. Instead, one could try
to use the approach of Vignes [139], in which saturation gradients are computed ‘recursively’
as part of the front-tracking algorithm.

As the authors point out in [59], including gravity in the computations should be straight-
forward. It may also be possible to generalize the computations to obtain sensitivities of
other parameters than the gradual deformation parameters. However, for the gradual defor-
mation method, only a few tens of parameters are usually employed [59], which keeps the
number of linear solves for the gradient-simulator method down. The streamline-assisted
gradual-deformation approach of Gautier et al. [59] is discusses in Section 5.4.4.

Caers [25] and Ravalec-Dupin and Fenwick [116] present analytic sensitivities for the partic-
ular gradual deformation approach presented in Section 5.3.4 in the case of Gaussian perme-
ability field. i.e. sensitivities for streamline-effective permeability with respect to the gradual
deformation parameters.

5. History-Matching Methods

In this section, which forms the core of the paper, we will review methods for streamline-
based history matching. The methods will be sorted into four categories as outlined in the in-
troduction: assisted history matching, (generalized) travel-time inversion, streamline-effective
properties, and miscellaneous. The main emphasize will be put on travel-time inversion meth-
ods and methods using streamline-effective properties.

5.1. The Assisted History Matching Approach. Emanuel and Milliken [49] describe
what they call an assisted history matching (AHM) approach, where streamline methods are
used to assist in the matching of conventional finite-difference reservoir simulation models.
The key idea in the AHM approach is to alter “geologic properties along the flow paths
connecting a producing well and its flow source” [49]. A 3D streamline method is used to
define these flow paths. Once the streamlines are computed, all streamlines are traversed
and the grid cells are assigned to the producer at which the particular streamline terminates.
This way, the AHM approach identifies bundles of streamlines where the reservoir engineer
later must change the reservoir properties, either manually or by some algorithm, in the grid-
cells containing the identified streamlines. Rock properties (permeabilities and porosities)
are changed on a well-by-well basis through traditional multipliers, or the heterogeneity is
changed through a renormalization based upon the Dykstra–Parsons coefficient for controlling
the spatial heterogeneity. The manual work typically amounts to targeted adjustments of a
few parameter for each well. Emanuel and Milliken [49] illustrate that by using AHM one is
often able to reveal nonintuitive connections between grid cells and wells. In [104], the AHM
approach is extended to placement of shale bodies between well pairs and the utility of the
method is demonstrated for three field cases.

The streamline distribution is generated based on average well conditions over the produc-
tion period. However, several streamline distributions may be used if there are significant
changes in the well configuration [49]. The AHM method changes properties along flow paths
derived from the initial geological model and thus relies upon a well-constructed initial model.
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The history match is obtained through relatively minor local changes of the initial model un-
der the assumption of invariant streamlines. Thus, the AHM approach is different from
automated approaches that come in the form of a computer algorithm for minimizing a mis-
match functional. In particular, since the AHM approach uses no gradient-based minimizing
technique, the method does not provide any means for sensitivity computations.

The AHM method has been applied with success to a number of real fields [13, 29, 97, 101].
In particular, Cheng et al. [33] present two field cases for which both AHM and the generalized
travel-time inversion to be introduced in Section 5.2 are applied.

5.2. (Generalized) Travel-Time Inversion. In a series of papers Datta-Gupta, Vasco,
and coworkers have developed methods for integrating dynamic data, using a combination of
streamline methods and streamline-based sensitivities. The travel-time approach for match-
ing production data is basically motivated by an analogy between seismic ray inversion and
streamlines, which will be outlined briefly below. This initial approach consists of travel-time
matching at each well of breakthrough time, a distinct peak in tracer concentration, etc.,
followed by an amplitude matching [135]. An approach built on the same principles is pro-
posed for incorporating transient pressure data [92]. Later a so-called generalized travel-time
inversion (GTTI) approach was introduced [67], which can be considered as a combination
of travel-time matching and amplitude matching into one step. In contrast to traditional
amplitude matching, both the travel-time matching and GTTI have quasilinear properties
[34]. Therefore, (generalized) travel-time history matching proceeds rapidly even if the initial
model is not close to the global minimum. The original travel time matching and the gen-
eralized approach are both deterministic algorithms, but a geostatistical version of GTTI is
introduced in [138, 148].

5.2.1. The Analogy with Seismic Ray Inversion. For a neutral tracer, the transport is de-
scribed by the time-of-flight equation, see (10):

(44) v · ∇τ(x) = 1 ⇔ u · ∇τ(x) = φ.

Here v = u/φ is the interstitial velocity. A key point in [135] is the observation that the time-
of-flight equation has certain properties in common with the Eikonal equation describing
(seismic) travel time tomography,

(45) ∇T (x) · ∇T (x) = 1/c(x)2.

Here T is the travel time and c is the propagation speed. (A common form of the Eikonal
equation is to write |∇T | = 1/c). The Eikonal equation allows for wave propagation in both
directions along ∇T , whereas the time-of-flight equation only allows for particles traversing in
the positive direction of ∇τ , i.e., toward increasing values of τ along the streamline. Equation
(44) can be thought of as the square root of (45) with the positive sign.

5.2.2. A Two-Step Travel-Time/Amplitude Matching Method. Motivated by inversion meth-
ods for seismic travel times, a two-step inversion method for tracer and fractional-flow data
is developed in [135]. In the first step, one chooses a certain characteristic feature of the
production curves, e.g., time to breakthrough or a distinct peak. Then the observed and
calculated responses are lined up in all wells such that the characteristic features coincide
in time. during this stage the dominant features of the permeability field will be matched
and the majority of the misfit reduced. In the second step, the ‘amplitude’ of the production
responses are matched.

Cheng et al. [34] give a systematic investigation and comparison of the nonlinearity of
travel-time matching, amplitude matching, and generalized travel-time inversion (described
below). Their investigations demonstrate quasilinear properties for travel-time matching,
while amplitude matching can be order of magnitudes more nonlinear. Travel-time matching
generally has fewer local minima and is therefore more robust and has better convergence
characteristics. Further, Cheng et al. [34] report that travel-time sensitivities are more uni-
formly distributed between the wells, in contrast to amplitude sensitivities that tend to be
localized near the wells. This contributes to the good robustness and convergence properties
of the travel-time matching.
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Apart from the two-step methodology, a central ingredient in the method is the use of an
efficient method for computing analytic streamline-based sensitivities. The arrival time and
fractional-flow sensitivities described in Sections 4.2, 4.3, and 4.6 are used for the travel-time
and the amplitude matching, respectively.

The inverse problem is formulated as a minimization of the misfit function defined over a
set of Nd observations dj ,

Nd∑
j=1

(
dj − gj(m)

)2
,

where m denotes the reservoir parameters (permeability, porosity, etc) and gj(m) the forward
model (streamline simulator). If we now use a Taylor series expansion of gj(m) about some
initial model mp, we can linearize the residuals as follows

dj − gj(mp) = δdj =
∑
i

Gji δmi, Gji =
∂gj
∂mi

.

Here {Gji} are sensitivity coefficients. Since the number of parameters usually is very large
compared to the amount of data, the corresponding minimization problem is numerically
unstable. The authors therefore add two regularizing terms and seek the modification δm
that minimizes the following function [135]

(46) ‖δd−Gδm‖22 + β1‖δm‖22 + β2‖Lδm‖22.

The first regularization term tends to keep the modifications made to the reservoir parameters
small, while the second term tends to make the modifications smooth; see the discussion of
ill-posedness and regularization in Section 1. The minimum of the regularized function in
(46) is obtained as a least-squares solution to the following augmented linear system

(47)

 G
β1I
β1L

 δm =

δd0
0

 ,

and may for instance be computed by an iterative sparse least-squares solver, for instance,
LSQR [110].

The travel-time step is faster than the amplitude matching step [34]. In the travel-time
inversion a single parameter is matched in each well, giving a total number of Nw parameters
to be matched using (47). In the amplitude step, all Nk

d observations per well are matched,
giving a total of Nw ×Nk

d parameters to be matched in (47).
Finally, we mention that an overview of the framework under which the two-step approach,

and some related approaches, have been developed is given by Vasco and Datta-Gupta [132].

5.2.3. Inversion of Pressure Interference Tests. Extensions to compressible flow and integra-
tion of dynamic pressure data from pressure interference tests are considered in [42, 92]. A
pressure interference test is an important source of dynamic data. The pressure responses
from injecting or producing wells are observed in surrounding distant wells. An advantage
of pressure interference tests is that the transient pressure responses can be obtained more
quickly than tracer and fractional-flow responses, so that the data integration can take place
at an earlier stage.

As in the previous papers, the central idea is to draw upon the analogy between propagating
waves and propagating fronts and apply the inversion algorithm to a propagating pressure
front. The pressure front is obtained by studying high-frequency asymptotic solutions of the
diffusivity equation

(48) µctφ(x)
∂p

∂t
= ∇

(
K(x)∇p

)
.

Applying a Fourier transformation to (48) one obtains an equation in the frequency domain

(−iω)
φ(x)µct
K(x)

p̃(x, ω) = ∇2p̃(x, ω) +
∇K(x)
K(x)

· ∇p̃(x, ω).
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One can now define a phase function τ(x) and seek approximations in terms of a series of
inverse powers in

√
−iω, where the ’pressure front’ would correspond to the zeroth order term

(49) p̃(x, ω) = A0(x)e−
√
−iωτ(x).

By inserting this term and equating the coefficients with highest order in
√
−iω, i.e., (

√
−iω)2,

the following phase function for a propagating pressure front is obtained√
α(x)|∇τ(x)| = 1, α(x) =

K(x)
φ(x)µct

.

Based on the similarity with the time-of-flight equation (see (44)), the authors define what
they call the ‘diffusive time-of-flight’ by

(50) τ(x) =
∫

Ψ

√
φ(x)µct
K(x)

dr =
∫

Ψ

dr√
α(x)

.

The values of
√
α(x) at the cell faces are used to generate streamlines along which the

pressure front will propagate. Hence, these streamlines will not coincide with the velocity-
based streamlines, but will be similar. It is also showed that the arrival time of the ’pressure
front’ in a 3D medium is related to the diffusive time-of-flight by

(51) tmax =
τ2(x)

6
.

Using this association, the authors derive a travel-time inversion method for the transient
pressure data by applying the sensitivities discussed in Section 4.7. Moreover, Kulkarni et al.
[92] present a relation between the drainage radius of a well and the diffusive time-of-flight.

The derivation above is performed for a sharp pressure impulse (a propagating peak). In
practice, the source function is more like the Heaviside function. Observing that the time
derivative of the Heaviside function is an impulse function, the travel-time analysis should
instead be carried out with respect to the time derivative of the pressure response at the well
[92]. In [23] the relation between a Heaviside source and an impulse source is discussed in
more detail, and a conversion factor is derived.

Datta-Gupta et al. [42] compares history matches obtained by travel-time matching of
transient pressure, tracer, and fractional-flow data. Further, in [69] both travel-time and
amplitude matching of transient pressure responses from pressure interference tests were per-
formed in a similar manner as for the two-step method presented in Section 5.2.2.

5.2.4. Generalized Travel-Time Inversion. He et al. [67] introduce an alternative single-step
version of the above two-step travel-time inversion method. Assume for simplicity that there
are Nk

d observations y(tk1), . . . , y(t
k
Nk

d

) that are to be matched for well k. A traditional ampli-
tude matching would try to minimize a misfit function of the type

J =
Nk

d∑
j=1

(
yobs(tkj )− ycal(tkj )

)2
,

for each well k. The GTTI method, on the other hand, proceeds by selecting an optimal time
shift ∆t̃k in the observed data that minimizes the misfit function

J(∆t̃k) =
Nk

d∑
j=1

(
yobs(tkj + ∆t̃k)− ycal(tkj )

)2
,

or alternatively maximizes the coefficient of determination

R2(∆t̃k) = 1−
∑Nk

d
j=1

[
yobs(tkj + ∆t̃k)− ycal(tkj )

]2∑Nk
d

j=1

[
yobs(tkj )− yobs(tkj )

]2
.

In other words, we seek a time-shift ∆t̃k in each well that maximizes the correlation between
the observed and calculated production curves. These time-shifts are then used to match the
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reservoir properties for all wells jointly; i.e., by setting δd = ∆t = {∆t̃k} in the minimization
system in (47). As for the two-step inversion method, a central part of the algorithm is the
calculation of analytic sensitivities as discussed in Section 4.4.

It can be shown that GTTI reduces to the traditional least-square amplitude matching as
the match is getting close to the observed data [67]. Thus, GTTI combines travel-time and
amplitude matching to some extent, while preserving most of the quasilinear properties of
the travel-time matching [34].

Field case studies for GTTI are presented in e.g., [72, 114]. Further, in [33] the performance
of GTTI and AHM (described in Section 5.1) is compared.

5.2.5. Bayesian Generalized Travel-Time Inversion. In [138, 148] a stochastic version of GTTI
is developed, based on Bayesian statistics. Again, let m and d denote the reservoir parameters
and observed data, respectively. By assuming a Gaussian prior distribution

[m] ∼ f(m) = NN (mp,Σm) = constA · exp
[
− 1

2
(m−mp)TΣ−1

m (m−mp)
]
,

and a Gaussian likelihood model for the observations

[d|m] = g(m) + u ∼ f(d|m) = NNd
(g(m),Σd)

= constB · exp
[
− 1

2
(d− g(m))TΣ−1

d (d− g(m))
]
,

(52)

the posterior distribution is, by Bayes’ rule (3), given by

[m|d] ∼ f(m|d) = constC · exp
[
− 1

2
(
(d− g(m))TΣ−1

d (d− g(m))

+ (m−mp)TΣ−1
m (m−mp)

)]
.

(53)

Here mp is the prior mean for the reservoir parameters, g(m) is a forward model, [u] ∼
NNd

(0,Σd) represents the measurement errors, Σd is the covariance matrix for the measure-
ment errors, and Σm is the (prior) covariance matrix for the reservoir parameters. If the
forward model is represented by a linear relation g(m) = A ·m, the posterior distribution is
Gaussian and can be determined analytically, see Appendix B. However, g(m) is generally
nonlinear, so we only know the posterior distribution up to a constant. Still, it is possible to
obtain an estimate for a m that maximizes the a posterior distribution given by

(54) arg min
m

(
d− g(m)

)TΣ−1
d

(
d− g(m)

)
+

(
m−mp

)TΣ−1
m

(
m−mp

)
.

This maximum a posteriori (MAP) estimate gives in general a too smooth reservoir description
(‘regression toward the mean’). However, the large-scale structures of the reservoir may be
discerned from the MAP estimate. The Gauss–Newton algorithm for the minimization of
(54) leads to the following iterative scheme

(55) ml+1 = mp −ΣmGT
l

[
Σd + GlΣmGT

l

]−1[(
g(ml)− d

)
−Gl

(
ml −mp

)]
,

where G is the sensitivity matrix for data misfit with respect to a perturbation in the reser-
voir parameters. Wu and Datta-Gupta [148] apply g(m) − d = ∆t̃ = {∆t̃k} to obtain a
Bayesian version of GTTI, where ∆t̃k is the time-shift described above. If the data misfits
are represented by the time-shifts ∆t̃, then the inverse matrix on the right hand side of (55)
has dimension Nw × Nw, where Nw is the number of wells. In conventional methods the
inverse matrix is usually of dimension Nd×Nd, where Nd is the total number of observations.
Hence, Nd is usually orders of magnitude larger than Nw, so the inversion of the matrix is
therefore a minor issue.

Finally, we mention that conditional realizations can be obtained by a similar minimization
problem, referred to as randomized maximum likelihood, see e.g., [96]

arg min
m

(duc − g(m))TΣ−1
d (duc − g(m)) + (m−muc)TΣ−1

m (m−muc),
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in which the prior mean and the observed data have been replaced by unconditioned (uc)
realizations muc and duc, respectively: that is, random error have been added to the observed
data.

Vega et al. [138] investigate the computational scalability of the deterministic and the
Bayesian version of GTTI. They demonstrate that the deterministic version scales almost lin-
early with problem size and that the Bayesian version scales almost quadraticly (as expected).
However, by reformulating the Bayesian method Vega et al. [138] were able to obtain an al-
most linear scaling for the computational cost and results with the same quality as for the
deterministic approach, while preserving the statistical foundation of the Bayesian approach.
Hence, conditioned realizations can also for this formulation be obtained by the randomized
maximum likelihood approach.

To reformulate the Bayesian approach, Vega et al. [138] start by rewriting the minimization
problem (54) to obtain an alternative minimization formulation. Further, they approximate
the Hessian H by JTJ, where J is the Jacobian. This approximation is the same that is used
in the Gauss–Newton algorithm, and is accurate near the solution or for quasilinear problems.
The reformulated system reads

(56)

[
Σ−1/2
d G
Σ−1/2
m

]
δm =

[
Σ−1/2
d [d− g(m)]

Σ−1/2
m [mp −m]

]
.

This system is analogous to the deterministic formulation in (47). Here Σ−1/2
m [mp−m] plays

an equivalent role as the regularization terms in (47), where the covariance matrix Σm imposes
smoothing and the difference mp−m tends to keep the modifications small. Further, by using
this formulation, we can thus solve iteratively for a least-square solution by, for instance, the
LSQR algorithm. Here, Σm is generally a matrix of dimension N × N , where N is the
number of model parameters. Obtaining Σ−1/2

m is therefore very computationally expensive
if Σ1/2

m is to be computed numerically. Vega et al. [138] therefore rely on a semi-analytical
computation of Σ1/2

m . The key observation to this end is that the inverse of the covariance of
the model parameters can be identified with the differential operator (the smoothing operator)
in the deterministic approach. They therefore apply a computational stencil based on an
approximation of the differential operator associated with Σ1/2

m , for which they assume an
exponential covariance model [138]. The extension to other covariance models is presented in
[137].

5.2.6. Other Extensions. Barman et al. [15] suggest a procedure for applying two-step inver-
sion approach described above for fractured reservoirs. The idea is to use effective permeability
representations for the inversion, obtained based on production based indicators (details not
given), while the forward simulations are performed for fractured reservoir representations.
Similarly, Al-Harbi et al. [5] also apply the Bayesian version of GTTI fractured reservoir
models.

Kulkarni and Datta-Gupta [91] extend the two-step inversion approach to history-matching
relative permeability curves. The sensitivities with respect to the parameters used in the rel-
ative permeability functions are specified in Appendix A. Further, appropriate regularization
terms for (46) are specified in [91].

Illiassov and Datta-Gupta [76] present an extension of the two-step inversion to multiwell,
multitracer partitioning interwell tracer tests, applied to a large oil field in Texas. Partitioning
tracer sensitivities are described in Section 4 (in particular Section 4.2). They use the two-
step inversion approach twice: first for matching permeability and then for matching oil
saturation. This procedure is iterated if necessary. A similar work related to ground water
transport is found in [43].

Although all the above methods have been based upon streamlines, they all amount more
or less to matching the properties in all the grid cells in the reservoir model. To improve
the convergence properties of the inversion process, a multiscale approach is proposed by
Yoon et al. [150]. The central idea here is to use a hierarchy of coarsened grids to match
the dynamic production data. The matching is first performed on the coarser scales, where
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the inversion problem is less under-determined, to reduce the ill-posedness of the problem.
Moreover, the number of local minima is reduced on the coarser scales and this will speed
up the iterative minimizing techniques. The inversion may be aborted before reaching the
fine grid to prevent over-parameterization. Finally, the solution is downscaled to fine-grid
realizations by sequential simulation, conditioning to well data. The multiscale idea was
applied to the two-step inversion method, but the multiscale matching may be applied to
other inversion approaches as well, e.g., as done by Stenerud and Lie [121] for matching
streamline-effective properties using the Wang–Kovseck formulation to be discussed in the
next section.

He et al. [68] propose a manual approach, using the relationship between the diffusive
time-of-flight and the drainage radius outlined by Kulkarni et al. [92] to identify reservoir
compartmentalizations and flow barriers during primary production. First, the drainage
volumes and communications for the different wells are estimated by traditional decline-type-
curve analysis of the primary production data. Second, starting from the geologic model,
the drainage volumes are recalculated by the diffusive time-of-flight from a streamline-based
flow simulation. Finally, reservoir compartmentalization and flow barriers are inferred by
matching of the two estimates for the drainage volumes.

An approach for reconciling time-lapse amplitude changes using (47) with the time-lapse
amplitude sensitivities discussed in Section 4.7 is proposed in [136].

As noticed in Section 4, any simulator can in theory be used to calculate streamline-based
sensitivities, as long as intermediate velocity fields can be outputed during the simulation and
streamlines can be traced on the cell geometry, see discussion in Section 4.1. Cheng et al. [35]
demonstrate the applicability of a finite-difference simulator to the GTTI method.

In [124] and [122] the deterministic version of GTTI is combined with a very efficient
multiscale-streamline simulator. A mixed multiscale finite-element pressure solver [1, 31] is
combined with a transport solver based on streamlines and the unconditionally stable front-
tracking method [73]. High efficiency of the forward simulator is obtained by selectively
reusing the multiscale basis functions based on the spatial sensitivity distribution obtained
from GTTI. In addition, a method for improved mass conservation in streamline simulation
[122] is applied , which allows for a considerable reduction in the number of streamlines used
in the forward simulations. For this combination of forward and backward methodology, a
reservoir model with more than one million grid blocks was history-matched in less than
twenty minutes on an ordinary desktop PC.

In [123], GTTI is applied to two-dimensional fully unstructured grids. A generalized
smoothing operator for L in (47) is proposed for fully unstructured grids. Further, sensi-
tivities on unstructured grids with varying grid-cell sizes are discussed. Because of spatial
additivity (as discussed in Section 4), the sensitivities will scale with cell sizes. Consequently,
larger modifications will be induced in large cells and small modifications in small cells, given
the same conditions. The regularization involved in (47) can only to a small extent counteract
this undesired effect. To remedy grid effects for cases with large variances in grid-cell sizes,
Stenerud et al. [123] propose to rescale the sensitivities with the grid-cell volumes. The paper
focuses on 2D numerical examples to investigate principal effects of performing GTTI on fully
unstructured grids, and contains examples with large cell-size heterogeneities and faults with
non-neighboring connections. The framework established in [123] is general and should there-
fore also apply in 3D, although some care should probably be taken when matching strongly
layered structures.

5.3. Methods Based on Streamline-Effective Properties. For the methods within this
category modifications to effective properties along either streamlines or bundles of streamlines
are obtained to match dynamic production data. The modifications in effective properties
are then propagated back to the underlying simulation grid by either a deterministic or a
geostatistical method. In the following M refers to a grid-cell property and m refers to a
streamline-effective property. Similarly we use K and k for a grid and a streamline-effective
permeability, respectively.
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5.3.1. Streamline-Effective Properties. It is not necessary to actually compute the streamline-
effective properties for all the methods described below, because it is often only the relative
modifications to these properties that are needed. Nevertheless, we will here present and
discuss a few approaches for obtaining streamline effective properties; in particular for per-
meability.

Obtaining effective properties along streamlines or streamline-bundles is simply an upscal-
ing problem. For uni-directional one-phase flow in a medium with constant permeability
values perpendicular to the flow direction (serial flow), it can be shown that the correct av-
erage is a harmonic average, see Appendix C. This makes sense because for the harmonic
average is dominated by the lowest permeability value, which is the bottleneck for the flow.
Further, it can also be shown that for uni-directional one-phase flow in a medium with con-
stant permeability values along the flow direction (parallel flow), the correct average is an
arithmetic average, see Appendix C. At a first glance, upscaling permeability along stream-
lines may seem like a 1D upscaling problem, but streamlines are not truly one-dimensional.
The different cases of serial and parallel flow indicate that the correct streamline upscaling
will depend on the underlying spatial structures in the permeability and thus not be a simple
1D upscaling problem. A one-dimensional streamline represents the flow in a 3D streamtube.
Hence, even though streamlines are supposed to be aligned with the flow directions (total ve-
locity), the actual flow may locally escape bottlenecks caused by low-permeable rock (traverse
fluxes).

Unweighted arithmetic (A), geometric (G), and harmonic (H) averages are the three clas-
sical Pythagorean averages. For x = {x1, x2, . . . , xn} with all elements positive, the following
relation holds

max(x) ≥ A(x) ≥ G(x) ≥ H(x) ≥ min(x),

with equality if and only if x1 = x2 = . . . = xn. The geometric average is therefore also a
reasonable candidate to calculate the effective permeabilities.

Based on this discussion, it seems reasonable to apply a harmonic or a geometric average
to obtain effective permeabilities along streamlines (serial flow), and then an arithmetic or
a geometric average of the streamline-effective permeabilities to obtain effective sensitivities
for streamline bundles (parallel flow).

Wang and Kovscek [141], among others, suggest to represent the effective streamline per-
meability by the following weighted harmonic average

(57) keff
` =

∑N`
c

i=1 ∆τ`,i∑N`
c

i=1

∆τ`,i
Ki

,

where N `
c is the number of grid cells intersected by streamline `, ∆τ`,i is the time-of-flight

increment of streamline ` across grid cell i, and Ki is the permeability in grid cell i. Hence,
(57) can be considered a variant of (A-3).

Further, Ravalec-Dupin and Fenwick [116] suggest to use the following harmonic average
for the effective permeability of a streamline bundle

(58) keff
` =

∑Nsl
`=1

∑N`
c

i=1 q`∆τ`,i∑Nsl
`=1

∑N`
c

i=1

q`∆τ`,i
Ki

.

Here q` is the volumetric flux assigned to streamline `.

5.3.2. The Wang–Kovscek Method. The idea of using effective properties along streamlines
for history matching was first introduced by Wang and Kovscek [141]. Their basic idea was to
relate the fractional-flow curve at a producer to the water breakthrough of individual stream-
lines. Then by adjusting the effective permeability along streamlines, one can determine the
breakthrough time of each streamline that reproduces the reference producer fractional-flow
curve. This is realized through the following simple algorithm

(1) Start with an initial permeability field
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(2) Run a simulation and check match with observed data: fractional-flow, well rate
and/or well pressure (drops).

(3) Obtain modifications in effective streamline permeability along each streamline to
match the data, as discussed below.

(4) Propagate modifications in streamline permeabilities back to the grid.
(5) Iterate steps 2–4 until a satisfactory match is achieved.

The derivation of the original method assumes two-phase incompressible flow, piston-like
displacement along each streamline, no capillary forces, and no gravity. Moreover, we here
present the modifications obtained for the data associated with one single producer, but the
extension to several producers is straightforward

The ordered streamlines are used to discretize the observed fractional flow in the wells.
Since each individual streamline will contribute equal amounts to the total fractional flow
for piston-like displacement, the fractional flow increases a fixed amount each time a stream-
line breaks through. Implicitly, we assume that the fractional-flow curve at the producer is
monotone. When a mismatch between observed and calculated fractional flows arises, the
streamlines responsible for the mismatch are identified by examining the breakthrough times
and the effective permeabilities of the streamlines are adjusted.

The history match along streamlines is obtained as follows. Assuming equal flow rates, the
streamlines are ordered with respect to their dimensionless breakthrough times. Let there be
N streamlines, each having a length L`, an average porosity φ`, and an average cross-sectional
area A`. Then the dimensionless breakthrough time of streamline ` is defined as

(59) T̃` =

∑Nsl
j=1(AφL)j x̃`j∑Nsl
j=1(AφL)j

=
Nsl∑
j=1

Ṽj x̃
`
j ,

where x̃`j is the position in dimensionless units of the displacing phase front in the jth stream-
line as streamline ` breaks through, and Ṽj is the ratio of the pore volume of streamline j
over the total pore volume. Since the streamlines are considered as independent flow systems
with piston-like displacement, the relative positions x̃`j can be approximated using Dykstra–
Parsons method for non-communicating layers, see e.g., [48, 121]. The expression for the
relative position of the front in streamline j as streamline ` breaks through, is a function of
the effective permeabilities in streamline ` and j, that is, x̃`j = f(k`, kj). Now, since the sum
in the numerator of (59) runs over all streamlines, the breakthrough time T̃` is a function of
the permeabilities of all streamlines connected to the producer. In vector notation this can
be written T̃ = B(k). Using a Taylor expansion, the mismatch in breakthrough times can be
written:

(60) ∆T̃ = T̃obs − T̃cal = B(kobs)−B(kcal) ≈ A(kobs − kcal) = A∆k.

Here the derivatives A`,j = ∂T̃`/∂kj are obtained by differentiating (59). The system is
simplified by defining normalized parameters [141], which makes the system (60) strongly
diagonally dominant for unit mobility ratio so that it approximately decouples. By neglecting
off-diagonal entries, the relative modifications can then be obtained by

(61) rt` =
∆kt`
kold
`

≈
T̃ cal
` − T̃ obs

`

T̃ obs
`

.

This approximation is only valid for unit mobility ratios. For non-unit mobility ratios, the
modifications must generally be obtained by solving the full system (60). Moreover, stream-
lines will generally evolve during a dynamic displacement (as discussed in the introduction),
so an accurate inversion would require the use of several different streamline distributions in
time to match different segments of the fractional-flow curve. Altogether, this is computa-
tionally intensive. Rather than inverting the matrix A, Wang and Kovscek [141] therefore
suggest to use (61) for a representative set of streamlines as an approximation also in the
non-unit mobility case.
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Similarly, a match of pressure drop and total well rate is calculated by

(62) rp,q` =
∆kp,q`
kold
`

=
∆pcal qobs −∆pobs qcal

∆pobs qcal
,

which can be derived under the same assumptions as for the Dykstra–Parsons method from
Darcy’s law for an effective streamline permeability [121, 141]. The superscripts p and q
indicate that the corresponding modification is due to mismatch in pressure drop and total
well rate, respectively.

The two modifications (61) and (62) are then combined to define a total correction factor α`
for each streamline, so that knew = α`kold. To this end, one should in general use a weighted
geometric average

α` =
[(

1 + rt`

)w1

·
(
1 + rp,q`

)w2
]1/(w1+w2)

.

In practice it turns out that equal weighting is acceptable [141].
Once the relative modifications to effective permeabilities are obtained for each streamline,

they must be propagated back to the underlying grid. Then a forward simulation is run and
the above process is repeated until the data are satisfactory matched.

To map the modification in effective permeability of a streamline back to grid-cell perme-
abilities, the simplest procedure would be to modify all grid cells along the streamline with
the same amount as the modification in the effective property of the streamline that passes
through it; that is, simply multiplying by α` so that Knew = α`Kold. If more than one stream-
line pass through a grid cell, Wang and Kovscek [141] suggest to use a geometric average of
the correction factors. This may be a crude method if the lengths of different streamlines
passing through the same cell are not equal. Instead, one can use a sensitivity-weighted ap-
proach [26, 140]. The sensitivity of the effective permeability of streamline ` with respect to
the permeability change in grid cell i is defined by direct differentiation of an expression for
the effective permeability

(63) g`,i =
∂k`
∂Ki

.

For instance, if (57) is used for the streamline-effective permeability, the following sensitivity
is obtained

g`,i =
τ`ik

2
`

τ`K
2
i

, τ` =
∑
i

∆τ`,i.

This sensitivity is weighted by the incremental time-of-flight for the streamline through the
cell to obtain a weighted sensitivity

G`,i = g`,i
∆τ`,i∑
` ∆τ`,i

.

The current approach requires no computation of sensitivity coefficients in the traditional
sense.

An advantage of obtaining relative modifications, like in Eqs. 61 and 62, is that it results
in cancellation of potential proportionality errors. Therefore, the real time or the time-of-
flight is commonly used instead of the dimensionless PVI time defined by (59). Moreover,
the proposed approach, using modifications (61) and (62), is independent of how the effective
streamline permeabilities are defined; except if the sensitivities in (63) are used.

The original method of Wang and Kovscek [141] was later modified by Stenerud and Lie
[121] to avoid some of the approximations inherent in the original method and bypass the
need for solving a linear system for non-unit mobility ratios. In the modified method, one
obtains the following expression for the relative modifications with respect to mismatch in
breakthrough time and effective pressure drop

(64) rt,p` =
∆kt,p`
kcal
`

=
tcal` ∆pcal − tobs

` ∆pobs

tobs
` ∆pobs

.
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In addition, the method was extended to match porosity or permeability–porosity ratio, and
to account for gravity along streamlines. Finally, a multiscale strategy was proposed, inspired
by a work of Yoon et al. [150], see Section 5.2.6.

In Appendix D we show that under the same assumptions as used in [121, 141], but by
relaxing the assumption of piston-like displacement to Buckley–Leverett profile, the same
expressions for the relative modifications can be obtained: that is, (61) and (64). However,
relaxing the assumption of piston-like displacement may make it harder to relate the break-
through of individual streamlines to increments in the fractional-flow curve. The relaxation
of the assumption of piston-like displacement is facilitated by the proportionality relation be-
tween the time-of-flight and the breakthrough time for the analytic Buckley–Leverett solution,
see Section 3.2. This observation has also been made by other authors, see e.g., [3].

5.3.3. The Agarwal–Blunt Method. Agarwal and Blunt [3] extend the Wang–Kovseck method
to compressible black-oil systems with gravity by using ‘full physics’ in the forward simulation
that determines the match. As in [141], the key idea is to use a piston-like approach to
sort streamlines with respect to breakthrough times and match permeability values along
individual streamlines. To avoid inverting a matrix system, Agarwal and Blunt [3] use an
alternative method to adjust effective permeability values. Assume that the permeability
along a streamline is modified by a fixed amount α so that knew = αkold. By (20) the time-of-
flight along a streamline is proportional to an effective permeability–porosity ratio; i.e., τ ∝ φ

k .
Therefore, the new time-of-flight is given as τnew = τold/α. For piston-like displacement (or
tracer-like flow), the time-of-flight and the arrival time of a saturation contour will coincide.
For non-piston flow, the time-of-flight may be a good enough approximation to the arrival
time, because a proportionality factor will anyway cancel out in the correction factor specified
above. For instance, for the analytic Buckley–Leverett solution presented in Section 3.2, the
arrival time of a saturation contour is proportional to the time-of-flight

(65) t ∝ τ ∝ φ

k
,

where the proportionality factor depends on the saturation value. To match a calculated
breakthrough time tcali with the observed time tobs

i one may therefore modify the permeability
by a factor α = tcali /tobs

i .
In the first case, there is a fixed pressure drops between wells. Now, if the average perme-

ability of the region is incorrect, the well rate at late times may be erroneous. The calculated
water rate qw is therefore first rescaled. We let tmax denote the latest time for which an
observed rate is available and introduce an overall modification α0 of the permeability field
(i.e., a modification for all streamlines connected to the producer). To match the end-point
we require that

α0 = qobs
w (tmax)/qcalw (α0tmax) ≈ qobs

w (tmax)/qcalw (tmax).

This gives a rescaling of the calculated water-rate curve. Then the water-rate axis is divided
into increments α0q`. To match water rate qw = α0

∑`
j=1 qj at time tcal` /α0, we determine the

corresponding time tobs
` from the data qobs

w (tobs
` ). To align the two times, we must modify the

permeability by a factor α̃` = (tcal` /α0)/tobs
` . Thus the overall modification along streamline

` becomes
α` = α0 α̃` = tcal` /tobs

` .

If the total rate changes, a rescaling of the water rate is done by multiplying the observed and
calculated water rates by q∗/qt(t), where q∗ is the water rate when the streamline pattern
was taken, and qt(t) is the time-varying total rate. The method described for fixed rates is
then applied to the rescaled water rate. This is similar to matching fractional flow.

A similar modification is proposed for the case where the wells are constrained by total
rate. Based on Darcy’s law for effective permeability for streamline bundles between two
wells, we can define the modification

α0 =
∆pcal

∆pobs
,
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where ∆pcal and ∆pobs are the calculated and observed pressure drops between an injector–
producer pair when the streamline pattern was computed (e.g., at water breakthrough). For
compressible flow, streamlines may originate and terminate away from the wells. Such stream-
lines are neglected by defining α0 = 1. The total modification along streamline ` is then

α` = α0 ·
tcal`

tobs
`

.

To map the modified streamline properties back to the underlying grid, Agarwal and Blunt
[3] use the following volume-weighted average in each grid cell

(66) Knew
i =

∑Nsl,i

`=1 q` ∆τ`,i α`∑Nsl,i

`=1 q` ∆τ`,i︸ ︷︷ ︸
ᾱ

Kold
i .

Here Nsl,i is the number of streamlines crossing grid cell i, ∆τ`i is the time-of-flight increment
of streamline ` across grid cell i, and q` is the total flux of streamline `.

Jang and Choe [78] apply the method of Agarwal and Blunt [3] as the second step of a two-
step approach. The first step is a gradient-based minimization incorporating well pressures
and permeability samples, where the necessary sensitivities are calculated by the adjoint
method. The motivation of the first step is to get the order in which the streamlines break
through more correct prior to the second step, which is intended to make the location of the
permeability modifications more accurate. The two steps are iterated if necessary.

In [4] the prior method of Agarwal and Blunt [3] is extended to include modifications to
the permeability histogram and the porosity of each well-pair. The first part of the method
is as in [3]. Then, water rates at a fractional flow of 10% are matched by adjusting the
porosity. Because breakthrough times scale with the effective porosity along the streamlines,
the porosities in each producer-region are modified by

φnew = φold t
obs

tcal
.

Finally, the histogram of the permeability is also modified to match the spread in the water
rate. To preserve the rank order of the permeability values in a well-region, the following
relation is applied

(67) Knew = Kold ·
[
Kold

K̄

]ξ
,

where K̄ is a geometric average of the permeability for the well-region. To determine the
exponents ξ for capturing heterogeneity, Agarwal and Blunt suggest the following approach:
First the time spread ∆t between 10% and 90% water rate or fractional flow is determined for
both the observed and calculated curves, i.e., ∆tobs and ∆tcal, respectively. The ’fast’ and the
’slow’ streamlines are identified. The fast streamlines are the streamlines with breakthrough
at 10% or lower fractional flow, and the slow streamlines have breakthrough at 90% or higher
fractional flow. Streamline-effective permeabilities k̄f and k̄s are calculated by harmonic
averaging for the ’fast’ and the ’slow’ streamlines bundles, respectively. It is then required
that

k̄new
f

k̄new
s

=
k̄old

f

k̄old
s

· ∆tobs

∆tcal
.

By assuming that K̄ is representative for the ’fast’ and the ’slow’ streamline bundles and
applying (67) one obtains that[

k̄old
f

K̄

]ξ
·
[
K̄

k̄old
s

]ξ
=

∆tobs

∆tcal
⇔ ξ =

ln
(

∆tobs

∆tcal

)
ln

( k̄old
f

k̄old
s

) .
When ξ is determined, a new permeability distribution is calculated for each well region. The
approach to modify the histogram is only applied at the first iteration of the history-matching
procedure. Further, the other modifications for porosity and permeability described above
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are performed for the two first iterations. For the subsequent iterations Agarwal and Blunt
instead use the Newton iteration

mn+2 = mn+1 − Jn+1mn+1 −mn

Jn+1 − Jn
,

where J is an objective function and m is the reservoir parameters to be modified.
In [3] the method presented above is applied to a portion of the Ekofisk field in the North

Sea. Further, in [4] the extended methodology presented above is applied to an Arabian Gulf
field.

Kretz et al. [89] matched the time-of-flight from an injector to the fluid front. The location
of the fluid front (saturation front) is intended to be localized by 4D seismics, but only
synthetic examples are presented in this paper. Motivated by the relation between time-of-
flight and effective permeability, the correction factor for the first permeability modification
is obtained by

α1
` =

τ1
4D

τ1
cal

.

By this correction factor the permeability is modified between the injector and the fluid front.
For the consecutive iterations the following modification factor is applied between the previous
front and the current front

αn` =
τn4D − τn−1

4D

τncal − τn−1
cal

.

To propagate the modifications to the underlying grid (66) is applied, i.e., the same approach
as suggested by Agarwal and Blunt [3].

5.3.4. Adding Geostatistics. Caers et al. [26] present an extended version of the method in
[141] in two spatial dimensions consisting of a two-step mapping of the effective streamline per-
meabilities back to grid-cell permeabilities. The first step consists of obtaining modifications
of effective streamline permeabilities, and to propagate the modifications to the underlying
grid by the same deterministic approach as described above [26, 141]. In the second step, the
updated grid permeability is used as an initial seed for a Gauss–Markov iteration (McMC).
This two-step mapping is iterated until the history match is converged. The overall method
thus consists of an outer iteration and an inner geostatistical iteration. Flow simulations are
only needed in the iterations of the outer loop. Through the use of this geostatistical frame-
work, the authors are able to match streamline-effective permeabilities to the production data
and at the same time honor prior geological information.

In [25] a similar method is presented, where gradual deformation [74] (see Section 5.4.4) is
used instead of the Gauss–Markov random function method. Because the gradual-deformation
method can be used with any sequential simulation algorithm [25], the assumption of a Gauss-
ian random permeability field can be relaxed and the approach can be extended to include
multi-point geostatistics to match more complex geological structures like fractures and chan-
nels. A straightforward application of gradual deformation would seek to minimize the misfit
in the production data. A key point in Caers’ method is to instead apply gradual deformation
to minimize an objective function measuring the misfit with respect to the effective streamline
permeabilities derived by the original Wang–Kovscek method described above:

(68) E(Knew) =
Nsl∑
`=1

(
kold
` − k`(Knew)

)2
.

According to Caers [25], the required number of forward simulations is dramatically reduced
(convergence typically requires only 5-10 flow simulations). However, a number of sequential
simulations from a multivariate probability distribution have to be conducted in the inner
loop that minimizes (68), but for large reservoir models the forward simulation will dominate
the computational cost [25]. To apply this gradual-deformation approach for multi-well pat-
terns, streamline-defined regions and a method for global optimization are required [25]. If
a gradient-based method is used for the optimization, sensitivities for the objective function
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in (68) with respect to the gradual-deformation parameters are required. Caers [25] presents
analytic sensitivities for this approach, in the case of Gaussian permeability field, by assuming
that the streamline-effective permeability is given by the harmonic average in (57).

The overall methods in [25, 26] allow for drastic changes in the geological model as opposed
to for instance the AHM method of Emanuel and Milliken [49] and the travel-time methods
of He et al. [67], Vasco et al. [135], which seek minor changes to the model. Moreover, it
should be mentioned that only synthetic two-dimensional cases are presented in [25, 26].

Ravalec-Dupin and Fenwick [116] present an alternative two-step method based upon the
same ideas as Caers [25]. In the first step, the method of Agarwal and Blunt [3] is used
to estimate corrections along bundles of streamlines (as opposed to individual streamlines
in [3]). The effective permeability along a streamline bundle ` is here defined by (58); see
the discussion in Section 5.3.1. The streamline bundles are identified by first sorting the
streamlines according to breakthrough time and then segmenting the fractional flow curves
so that all streamlines responsible for each given fractional flow increment are identified in a
corresponding bundle. In the second step, the desired streamline-effective permeabilities are
propagated back onto the underlying grid. To this end, the gradual-deformation method is
used to minimize the misfit between the desired effective streamline permeabilities and those
calculated for the given permeability field as above.

In [27, 53] Caers, Fenwick and coworkers present another extended version of the Wang–
Kovscek method. Again, by the approximation in (65) a correction factor is defined by

α =
(φk )new

sl

(φk )oldsl

=
τnew

τold
,

where (φ/k)sl represents an effective permeability–porosity ratio for each streamline-bundle.
The correction factor above can be used to modify the porosity, the permeability, or the
permeability–porosity ratio in the effective region (along streamline, streamline-bundle, or
producer zone)

Inspired by [141], the piston-like breakthrough in each streamline is related to the fractional-
flow curve. The relative modification for a time-average producer zone is of amplitude type
and defined by [27]

(69) α = 1− 1
Nd

Nd∑
j=1

(
qcalw (tj)
qcalt (tj)

− qobs
w (tj)
qobs
t (tj)

)
= 1 +

1
Nd

Nd∑
j=1

(
fobs
w (tj)− f cal

w (tj)
)
.

Here, qw(tj) and qt(tj) are the water and total production rate at time tj . This modification
is equivalent to considering the whole flow zone as a single effective streamline bundle. To
propagate the permeability modifications back to the underlying grid, direct sequential sim-
ulation (DSSIM) [81] with locally varying mean is applied. In contrast to common methods
for sequential simulation, like sequential Gaussian simulation, that require transformation
into a standard Gaussian space, DSSIM can be performed directly in data space. Journel [82]
showed that the sequential simulation algorithm, without any prior transformation, succeeded
in reproducing a covariance model, provided that the simulated values are drawn from local
conditional distributions identifying the simple kriging mean and variance derived from that
covariance model. This fundamental result is known as DSSIM; for more details on DSSIM
see e.g., [24]. However, DSSIM does not honor the prior histogram, which is not necessarily
a disadvantage if the histogram is not known with sufficient accuracy. Further, the fact that
the histogram is allowed to change, while at the same time honoring the covariance structure,
gives flexibility to for instance perturb the local mean [27]. Application of the approach to a
real field case is presented in [65].

In [53] the method of locally varying mean (LVM) presented in [27, 65] is extended, and
combined with the probability perturbation method (PPM) of Hoffman and Caers [71]. While
LVM perturbs large scale structures, PPM perturbs the small-scale variations, and in this
manner the combination of the methodologies is considered a multiscale approach. The
combination of LVM and PPM was first proposed in [27], but without any implementation.
The two methodologies are applied sequentially. However, for the examples presented, PPM
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did not give any substantial contribution to the history matching. We will therefore not give
any further description of PPM.

Under the assumption of piston-like displacement along each streamline, the correction
factor for a bundle of streamlines with water breakthrough in the time interval from tj−1 to
tj is given by [53]

(70) α = 1−

∫ tj
tj−1

qcalw dt∫ tj
tj−1

qcalt dt
+

∫ tj
tj−1

qobs
w dt∫ tj

tj−1
qobs
t dt

= 1 +
∫ tj

tj−1

fobs
w − f cal

w dt.

This equation is derived by assuming fixed streamlines for the time interval from tj−1 to tj ,
and can be considered as an extension of (69). To account for non-piston-like displacement
in the streamlines and that streamlines going through a single grid cell can be connected to
multiple producers, the following weighting is applied

(71) ᾱ∆t =
∑N∆t

w,p

k=1

(
αkq

k
w + qkt − qkw

)
∑N∆t

w,p

k=1 qkt

.

Here N∆t
w,p is the number of production wells connected to the streamlines in a grid cell. The

correction factor is calculated for each grid cell exclusively using rate information from the
streamlines intersecting the cell. For piston-like displacement, qkw = qkt , so that the correction
factor simply reduces to simple weighting by the total flow rate. If in addition a streamline
formulation with equal total rate for each streamline is used the correction factor reduces
to an arithmetic average. To average the correction factor over N∆t sets of streamlines, a
time-weighted average is used

(72) ᾱ =

∑N∆t
j=1 ∆tjᾱ∆t

tN∆t
− t1

, ∆tj = tj − tj−1.

Gross [63, 64] presents another version of the LVM method. First, modifications in
streamline-effective permeability are obtained and propagated to the pressure grid by a version
of the methods presented above. Second, the permeability modifications are propagated to
other reservoir properties accounting for prior cross-property correlations. Like in [27, 65] the
modifications to streamline-effective permeability give locally varying means that are prop-
agated to the underlying grid by direct sequential simulation (DSSIM). The permeability
modifications are then propagated to the other properties by a kind of Monte Carlo sam-
pling. The prior probability distribution for the reservoir properties is arranged into discrete
classes. The properties can for instance be permeability (horizontal,vertical), porosity, facies,
net-to-gross, etc. For continuous properties, the ranges of the properties have to be carefully
subdivided into ‘bins’ (classes). The prior model can be computed in two manners: by direct
user specification after pore-network studies, or by scanning a set of training models to estab-
lish frequencies for the different classes in local control volumes [64]. The latter approach is
applied here. The probability distribution needed in the cross-property propagation is simply

P (cnew) = P (cprior|Knew),

where c is a class configuration. This posterior distribution is simple to obtain from a prior
distribution by extracting the configurations with the correct permeability bin. A renormal-
ization is then necessary by summing over the extracted classes. Further, it is also possible
to keep other properties fixed, which will shrink the total number of classes to be extracted.

To obtain the correction factor αti with respect to the fractional-flow data, an approach
similar to the original Wang–Kovscek approach is used [63, 64]. Relative modifications ∆kti,R
are obtained by a time-streamline-average of relative modifications of type given in (61) for
all streamlines contributing to a producer and intersecting a grid cell i. Correction factors
for fractional flow are then obtained by

αti = 10∆kt
i,R .
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To account for mismatch in the total production rate qk at producer k and the pressure drop
∆pk,l between an injector l and producer k, the following correction factor is used

αp,qi =
1
|Ωi|

∑
(k,l)∈Ωj

[ qk
∆pk,l

]obs
·
[∆pk,l
qk

]cal
.

Here Ωi is the set of injector-producer pairs for the streamlines intersecting grid cell i.
Jang [77] adds geostatistics to the method of Agarwal and Blunt [3] described above,

by a simple approach. A two-step approach is proposed, where the first step consists of the
method of Agarwal and Blunt [3]. The second step consists of generating Gaussian realizations
conditioned to randomly selected grid-cell permeabilities of the resulting permeability field
of the first step. If a flow simulation reveals a sufficient decrease in the objective function, a
realization is accepted. The two steps are iterated if necessary.

Finally, we outline an idea for a fully analytic Bayesian approach for propagating/downscaling
the modifications in streamline effective properties to the simulation grid. This approach relies
on two assumptions. The first assumption is that the streamline effective properties can be
obtained by weighted arithmetic averages of the reservoir properties (possibly transformed,
e.g., by the logarithm). Hence, the weighted geometric average for a set of parameters is
equivalent to a weighted arithmetic average for the logarithm of the parameters. The sec-
ond assumption is that the (possibly transformed) reservoir properties can be considered
Gaussian. Then, there is a linear relation between the streamline-effective properties and the
(possibly transformed) reservoir properties, which enables analytic determination of the pos-
terior Gaussian distribution of the reservoir properties, conditioned on the history-matched
streamline-effective properties. Details are given in Appendix E.

5.4. Miscellaneous Methods. In this section we describe how streamline-defined regions
or streamline-derived sensitivities have been used to boost the performance of existing geosta-
tistical methods that were originally introduced without any connection to streamlines. The
methods we here pursue are within the realm of: Markov chain Monte Carlo (McMC), en-
semble Kalman filter (EnKF), sequential self-calibration (SSC), and the gradual deformation
method (GDM).

5.4.1. Markov chain Monte Carlo. In [98] a two-stage Markov chain Monte Carlo (McMC)
approach is proposed. McMC is a sampling approach for sampling rigorously from the poste-
rior distribution. The sampling consists of iterations over a two-step algorithm. In the first
proposal step modifications to the reservoir parameters are drawn from a proposal distribu-
tion. In the second acceptance/rejection step one determines if the proposal should be kept
based on the resulting simulated reservoir responses. The algorithm is shown to converge in
probability distribution in the limit of infinitely many iterations. Thus, an extensive number
of iterations may be required to get close to convergence to the posterior distribution. More-
over, rigorous sampling also requires a full flow simulation to be performed for each proposal
step. Consequently, the accurate sampling has a high computational demand.

The two-stage approach proposed by Ma et al. [98] is intended to speed-up the McMC
approach considerably without reducing the accuracy. The first stage consists of obtaining
approximate production responses analytically for the proposed modified reservoir configura-
tion by applying streamline-derived sensitivities. The approximate production responses are
obtained by a linear approximation in the vicinity of the current production response:

g∗(m) = g(mp) + Gδm.

Here g(·) denote a forward model (i.e., the reservoir simulator), G is the sensitivity matrix,
and δm = m −mp is the proposed modifications to the reservoir parameters. Only if the
approximate production responses achieve acceptance for the proposed reservoir parameter
field, a full reservoir simulation is performed to really check for actual acceptance/rejection.
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5.4.2. Ensemble Kalman Filter. Among the geostatistical methods discussed in this section,
the ensemble Kalman filter (EnKF) [51] has gained the most interest lately. EnKF is very
flexible with respect to the type of data incorporated, can do sequential data integration and
state updates during the production period, assessment of uncertainty is available from the
ensemble representing the posterior, and it has recently been applied to several field cases,
see e.g., [52, 105].

The ensemble Kalman filter is a Monte Carlo approach for sequentially integrating data
into a reservoir model represented by an ensemble of realizations. The method utilizes cross-
covariances between measurements and model parameters estimated from the ensemble to up-
date the ensemble members. It is advantageous to keep the ensemble size low for high compu-
tational efficiency. However, this will increase the error in the estimated cross-covariances and
the updated model parameters. To speed up the estimation of covariances, Arroyo-Negrete
et al. [9] used streamlines and Devegowda et al. [45] used streamline-based sensitivities. Both
the streamline trajectories and the production-response sensitivities include information about
spatial correlations between production responses and model parameters. Therefore, in [9, 45]
it is suggested to rescale the estimated cross-covariances by streamline-based influence weights
using two slightly different approaches. The first approach is a streamline-trajectory assisted
approach where the authors investigate the simple choice of a binary weighting based on
streamline-defined regions [9]. For measurements of fractional-flow type it is possible to fur-
ther condition based on information of water-front movement, which is easy to keep track of
for streamlines. The second approach is sensitivity assisted [45], where the weights consist
of rescaled production-response sensitivities, for which the smallest sensitivity values are ne-
glected. For both approaches the ’regions of influence’ from all the ensemble members are
stacked to obtain a ’common region of influence’ for each well.

5.4.3. Sequential Self-Calibration. In a series of papers [130, 143, 144, 146, 147], Wen and
coworkers extended the so-called sequential self-calibration (SSC) method [62, 145] by apply-
ing and deriving streamline-based sensitivities. Streamlines are used for two purposes: (i)
fast forward flow solution and (ii) fast calculation of sensitivity coefficients.

The SSC method is used for inversion of dynamic data and is an iterative geostatistically-
based method coupled with an optimization procedure. Key points in the SSC method are: (i)
the concept of master points to reduce the degrees of freedom in the optimization problem; (ii)
propagation of perturbations at master points to the permeability field by kriging to account
for spatial correlations; and (iii) computation of sensitivities by a combined streamline-based
and gradient-simulator approach as described in Sections 4.2 and 4.6. The SSC algorithm
starts with a set of initial realizations generated by a geostatistical algorithm and then per-
forms the following steps:

(1) Solve flow equations and calculate sensitivities
(2) Evaluate the objective function and exit if satisfactory match is obtained.
(3) Select master points
(4) Optimization: find optimal perturbation at master points
(5) Propagate the perturbations back to the entire field by kriging.
(6) Iterate Steps 1–5 until a satisfactory match is achieved.

Let us assume that the observations to be used in the history match are the pressures and
fractional flow in production wells. Then the history match is obtained by minimizing the
following objective function

(73) O =
Np

w∑
k=1

Np
d∑

j=1

W p
k,j

(
pobs
k,j − pcal

k,j

)2
+

Nf
w∑

k=1

Nf
d∑

j=1

W f
k,j

(
fobs
k,j − f cal

k,j

)2
.

Here pk,j and fk,j denote pressure and fractional flow, respectively, at well k at time t, and
Wk,j are weights. A gradient based-method is used to minimize the objective function O.
This requires the sensitivity coefficients of well pressure and fractional flow.

In [130], the SSC method is extended to include inversion of spatially distributed saturation
data, e.g., from 4D-seismics. To include the saturation data, the following term is added to
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the objective function: ∑
x

NS
d∑

j=1

WS
j (x)

(
Sobs
j (x)− Scal

j (x)
)2
.

Here S is the saturation field, Wj are weights, and x are the observation points in the reservoir
domain. The calculation of analytic streamline-based saturation sensitivities is described in
Section 4.5. A synthetic 3D example is presented where saturation data is incorporated,
but where most weight is given to the fractional-flow data based on an assumption of less
uncertainty.

In [130, 144] a two-stage multiscale approach is used. The first stage consists of using
the method outlined above on an upscaled initial geostatistical realization. Then the coarse-
scale history-matched model is geostatistically downscaled to obtain fine-scale realizations.
Simulated annealing and sequential Gaussian simulation is used for the downscaling in [144]
and [130], respectively. This approach is less CPU-intensive than simulated annealing, and
should remedy features of the SA approach like the tendency of fuzziness (high nugget effect)
[130]. Part of the motivation for the upscaling in Tran et al. [130] is that the saturation data,
e.g., from 4D-seismics, often have lower resolution.

5.4.4. Gradual Deformation Methods. Gradual deformation [74, 117] is a parameterization
method that reduces the number of unknown parameters considerably by seeking new real-
izations as linear combinations of independent or dependent [106] realizations drawn from
a geostatistical probability distribution. The method is motivated by the fact that linear
combinations of multi-Gaussian random functions remain multi-Gaussian random functions.
The gradual deformation method (GDM) does not necessarily rely on a Gaussian probability
distribution, but a sequential simulation algorithm is required [74]. Further, the gradual de-
formation can also be performed with respect to structural parameters like mean, variance,
and correlation range [74].

Gautier et al. [58, 59] develop a GDM-based history-matching method for two-phase in-
compressible flows, where they use a Gauss–Newton method equipped with partly streamline-
based sensitivity coefficients to minimize the objective function (or misfit functional). Further,
the use of gradual deformation incorporates geostatistics and reduces the number of parame-
ters. The sensitivity calculations are discussed in Section 4.7. Gautier et al. [59] present the
method and preliminary results on synthetic examples. The objective function obtained by
this approach is highly irregular with many local minima, which makes the optimization prob-
lem harder. In [58] the optimization problem is discussed in more detail and some methods
for smoothing the objective function are presented.

Barthelemy et al. [16] investigate a methodology for local gradual deformation with regions
defined by streamlines. Rather than solving a global minimization problem, the authors
investigate the applicability of gradual deformation for the local independent streamline-
defined regions in parallel. Further, the authors propose a definition of an objective function,
inspired by the travel-time matching described in Section 5.2, based on temporal moments of
the production data. The proposed objective function was consistent with the conventional
amplitude based objective function, but did not remove the irregularity considerably.

Finally, we remark that two gradual-deformation approaches for history-matching effec-
tive permeabilities along streamlines and streamline-bundles [25, 116] were presented in Sec-
tion 5.3.4.

6. Streamline-based ranking of geostatistical realizations

Ranking is the process of reducing the number of realizations of a reservoir model, while
spanning the probability space to a maximum extent. To rank the realizations a criterion
correlated to production/economical outcome is typically used. Ranking is closely related to
history-matching because it can be performed both before, during, and/or after the history
matching itself. It is therefore natural to briefly describe two streamline-based methods for
ranking.
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Wang and Kovscek [142] present a method for ranking geostatistical models with respect
to production data. First, a single model is history-matched with respect to production data.
Then, multiple realizations are ranked with regard to streamline properties like time-of-flight,
flow rate etc., by comparing with the history-matched model. According to the authors, this
gives a fast method for generating multiple models that incorporate production data.

Idrobo et al. [75] investigate and discuss the use of an approximation for the swept vol-
ume based on the streamline coordinates (τ, ψ, χ) introduced in Section 3. Calculations of
the swept volume are facilitated by the fact that the Jacobian with respect to the spatial
coordinates (x, y, z) takes a simple form [41, 85]∥∥∥∥∂(τ, ψ, χ)

∂(x, y, z)

∥∥∥∥ = ∇τ · (∇ψ ×∇χ) = ∇τ · u = φ.

Here the time-of-flight equation (10) and the property u = ∇ψ ×∇χ are applied. Thus, the
time-of-flight coordinates preserve the pore volume by φ dx dy dz = dτ dψ dχ. Further, the
volume swept at a time t can be approximated by [41, 85]

(74) Vswept(t) =
∫ ∫ ∫

θ
(
t− τ(x, y, z)

)
φ dx dy dz =

∫ ∫ ∫
θ
(
t− τ(ψ, χ)

)
dτ dψ dχ,

where θ is the Heaviside function. Notice in particular, that this derivation is exact for
piston-like displacement. Now the integral in (74) can be approximated by [75]

Vswept =
∑
`

∫
Ψ`

θ(t− τ)q`dτ,

where q` is the volumetric flux assigned to streamline Ψ`. Considering a 3D grid, an indicator
variable can be defined at each cell based on the time-of-flight. A cell is marked ’unswept’ if
the time-of-flight at the cell is greater than the time of interest, and ’swept’ if the time-of-flight
is less than or equal to the time of interest. Summing the pore volumes of the ’swept’ cells, an
approximation for the total swept volume at the time of interest can be obtained, and thereby
also the sweep efficiency by dividing by the total pore volume. To account for changing well
conditions, the time-of-flight distribution is calculated for the different well-configurations.

An indicator for recovery can be used for ranking stochastic reservoir models, because
realizations in the range from pessimistic to optimistic can be chosen for closer studies and
determination of uncertainty. In [75] it is demonstrated that the proposed swept volume
indicator is strongly correlated with waterflood recovery, and is thus proposed as a ranking
criteria. However, it is not specified for which mobility ratios the numerical experiments are
conducted. In [11] the above swept-volume indicator for ranking and uncertainty is used for
analysis of a Middle Eastern carbonate reservoir.

7. Discussion

In the last section, we discuss and compare the different methods for streamline-based
history-matching and point out similarities and differences, and discuss some potential prob-
lems, restrictions, advantages, etc. The history-matching methods presented in this review
are the assisted history matching (AHM), (generalized) travel-time inversion ((G)TTI) meth-
ods, and methods for matching streamline effective properties (SLEP). In addition, we have
discussed streamline-based sensitivity calculations and reviewed various geostatistical history-
matching methods where streamlines have been used to boost the performance. The discussion
in this section is mainly focused on the three streamline-based approaches: AHM, (G)TTI,
and SLEP.

Simplicity. The AHM approach [49, 104] is in many aspects the least sophisticated in the
sense that it merely provides useful functionality to reservoir engineers that perform manual
or semi-automated history matches. AHM appears to be fairly simple to implement on top of
any existing streamline simulator, as this would not imply changing the flow solver itself, and
would very likely offer useful functionality to reservoir engineers, see the histories of success
in e.g., [29, 97]. However, the approach is manual, and as such not particularly suited to form
the basis for an automated history-matching approach. An advantage of AHM, compared
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with traditional manual history-matching methods, is that the modifications made to the
reservoir parameters seem to be more targeted, and thus results in a better preservation of
prior geologic information.

Modifications to Reservoir Parameters. An obvious similarity for the three methods is that
they more or less explicitly impose targeted modifications to the reservoir parameters along
streamline paths. This is a general feature of all streamline methods, which both can be
considered a strength and a weakness. The strength is that making targeted modifications
along the streamlines is what is sought when the principal physical effects are aligned with the
streamlines, which is the conditions for which streamline simulation is particularly well suited.
In reality, however, traverse physical effects may be important in the forward simulation, but
these effects are strongly convoluted in the production data, and may thus be hard to account
for by any history-matching method.

The GTTI and SLEP methods are similar in the sense that the mismatches ∆t̃ and α`,
respectively, are propagated to modifications in the reservoir parameters. However, the ap-
proaches for propagating the mismatch in data for the SLEP and the GTT methods are quite
different. Even for methods within the SLEP class, there are large variations in how the
modifications are propagated. Still, the two methods can theoretically be defined in terms of
the propagation approach of the other method, see Appendix F.

The GTTI method tends, like the AHM method, to keep the modifications small, smooth,
and targeted to preserve the prior geology description and the geologic realism. As discussed
above, this is motivated by the general low spatial resolution of the production data and the
need for stabilizing the under-determined inversion process. Some of the SLEP methods are
constrained to geostatistical information. On the other hand, the approaches presented in
[25, 26], for instance, are claimed to allow for quite drastic alterations to the reservoir model.
The key to enable small targeted modifications for GTTI is the application of production-
response sensitivities, which are not applied for AHM and SLEP.

Complexity of Flow Model. The streamline-based sensitivities for the travel-time inversion
methods are derived assuming the analytical Buckley–Leverett profile described in Section 3.2
along each streamline. However, the minimization problem of the travel-time inversion meth-
ods is general without any assumptions on the flow profile. The methods for adjusting effective
streamline properties (SLEP) are mainly derived by assuming piston-like displacement. How-
ever, in Appendix D we show that similar (or sometimes identical) expressions can be derived
by replacing the piston-like displacement front by an analytic Buckley–Leverett profile. Gen-
erally, the application of the analytic Buckley–Leverett solution is only an approximation,
because pressure updates, varying saturation along streamlines, and transverse flow effects
are not explicitly accounted for. However, this approximation often turns out to be sufficiently
accurate in practice to perturb the iteration in the correct direction. (If necessary, some of
the inversion methods can be accompanied by more accurate forward simulations using ‘full
physics’ to evaluate the quality of the match derived in each iteration).

To a certain extent, both GTTI and the SLEP methods account for changing pressure/velocity
distribution during the forward simulation, and thereby changing streamline distribution. For
GTTI, pressure updates are implicitly accounted for because an optimal time-shift for the
whole production curve is obtained, and because the sensitivities are calculated for the dif-
ferent pressure steps by the respective streamline distributions. For the early SLEP methods
one or a few representative streamline distributions are used. However, for the association of
the breakthrough of individual streamlines to increments in fractional-flow curves, it is im-
plicitly assumed that the streamline trajectories are fixed in time. Exactly how information
from more than one streamline distribution should be used seems to be a subjective imple-
mentation issue in the earlier approaches of SLEP. On the other hand, the more recent SLEP
approach of Fenwick et al. [53] uses different streamline distributions to match different parts
of the production curve (see (72)), which is similar to how sensitivities are obtained in GTTI.
Moreover, multiple streamline distribution can be used in the AHM approach to guide the
manual modifications.
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Assessment of uncertainties in history-matching is particularly important for the purpose
of predictions. This often requires a vast number of realizations and forward simulations.
Properly implemented streamline simulators can be much faster than conventional finite-
difference simulators, see e.g., [122], and is therefore well suited for this purpose. However,
streamline simulators are under some conditions considered approximate simulators, even
though the physics to be accounted for and the robustness of streamline simulators have
improved considerably recently [40]. An alternative may then be to run a vast number of
forward runs with a fast “approximate” simulator (i.e., streamline simulator), and a small
number with the slower trusted simulator for calibration [108].

Convergence Properties. Both the original and the generalized travel-time inversion have
shown quasilinear properties, while traditional amplitude matching exhibits orders of mag-
nitude more non-linear behavior [34]. Most of the SLEP approaches are of travel-time type
since the mismatch in arrival time of saturation fronts (breakthrough) are matched. However,
multiple data points are usually incorporated for SLEP. On the other hand, the modifications
in (69) and (70) are of amplitude type. Whether the different SLEP approaches share simi-
lar convergence properties or not, has not yet been addressed systematically. However, fast
convergence is at least observed for the very simple test examples in the early travel-time-like
SLEP approaches [121, 141].

Types of Data to be Matched. What kind of data can be incorporate and what kind of reservoir
parameters can be modified by the different methods? For SLEP methods, water-cut, total
well rate, pressure drops, and saturation-front (from seismics) have been incorporated. The
parameters matched, are so far restricted to permeability, porosity, or permeability-porosity
ratio, mainly because the approximation t ∝ τ ∝ φ/k is heavily exploited in the SLEP
methods. However, other quantities involved in the expressions relating streamline-effective
properties with the data, like the end-point mobility ratio or residual saturations (see e.g.,
Eq. 13 in [121]), may be matched for each producer region.

For GTTI, on the other hand, tracer concentration, fractional-flow, and gas-oil ratio data
have been incorporated. For these quantities, arrival-time sensitivities of some contributing
quantity can be computed and related to the time-of-flight. Thus, it is the time-of-flight
sensitivities that determine which reservoir parameters that can be modified: permeability,
porosity, and relative permeability curves (mobility ratios), see Section 4.2. The matrix
system in (47) is quite general, so as long as sensitivities relating mismatch in data and
perturbations in reservoir parameters can be computed, any data type can potentially be
incorporated. The Bayesian system in (56) is also general, but requires in addition a spec-
ification of a covariance structure for the reservoir parameters. A weakness of the current
GTTI formulation is that well pressure has not yet been incorporated. It may be especially
important to constrain jointly on pressure observations and other dynamic data when free
gas is present. Streamline-based sensitivities can be obtain analytically for several reservoir
responses, based on a single forward simulation, but streamline-based well/grid-pressure sen-
sitivities have not been derived. However, sensitivities for the response of the propagation of
a sharp ’pressure front’ is derived, see Section 4.7. In Appendix G we outline two potential
approaches for obtaining well-pressure sensitivities, which will allow for incorporating well
pressures in GTTI.

Finally, the literature contains three papers that discuss how time-lapse seismics can be
incorporated. The method in [130] is within the sequential self-calibration scope, the method
described in [89] is inspired by the SLEP methods, while the method described in [136] is
derived within the TTI scope.

Finally, we will just refer to a few papers [12, 54, 55] presenting streamline-based history-
matching work flows applied to real field cases.
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Appendix A. Sensitivities for Relative Permeability

In Section 4.2 we presented time-of-flight sensitivities for various reservoir parameters.
Kulkarni and Datta-Gupta [91] derived similar sensitivities for parameters involved in describ-
ing relative permeability curves. They present sensitivities for two different representations
of the relative permeability curves.

In the first case, the oil and water relative permeability are represented by power functions
(Corey curves)

kro = koroS
αo
no , krw = korwS

αw
nw .

Here Snα is the normalized saturation and korα is the end-point relative permeability.
Alternatively, one may use a B-spline expansion for each curve. This gives more flexibility

to the function representation because the assumption of a particular shape of the function
is relaxed. For oil, the B-spline expansion is given by

kro =
N∑
j=1

co,jB
m
o,j(Sno),

where co,j is the jth B-spline coefficient and Bm
wj

(Sno) is the jth B-spline of polynomial order
m. A similar B-spline representation is used for the relative permeability functions of water.

Considering the relative permeability functions for oil we obtain the following sensitivities
for slowness s(x), given by (20), with respect to koro, αo and co,j

∂s

∂koro
=

∂s

∂λt

∂λt
∂koro

= − s

λt

Sαo
no

µo
,

∂s

∂αo
=

∂s

∂λt

∂λt
∂αo

= − s

λt

koroS
αo
no lnSno
µo

,

∂s

∂co,j
=

∂s

∂λt

∂λt
∂co,j

= − s

λt

Bm
o,j

µo
,

where µo is the oil viscosity. Similarly, sensitivities are obtained with respect to the parameters
for the water relative permeability. Time-of-flight sensitivities can now be obtained by (21).
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Appendix B. Gaussian Linearity and Analytic Conditional Distribution

In this section we will show how a conditional Gaussian distribution can be determined
analytically for a linear model. To this end, we start by considering a stochastic variable
m ∈ Rp from a multivariate Gaussian distribution

(A-1) [m] ∼ Np(µm,Σmm).

Further, we assume a linear relation d = Am+u between m and another stochastic variable
d ∈ Rk, where [u] ∼ Nk(0,Σu) is an error term that is assumed to be independent of m.
Standard Gaussian theory then gives [80]

[d] ∼ Nk(µd,Σdd),(A-2)

where the expectation and covariance are

µd = Aµm, Σdd = AΣmmAT + Σu.

Further, a combination of (A-1) and (A-2) gives the joint probability distribution[
m
d

]
∼ Np+k

([
µm
µd

]
,

[
Σmm Σmd

Σdm Σdd

])
,

where Σdm describes the covariance between d and m,

Σdm = Cov{d,m} = AΣmm,

and Σmd is the transpose of Σdm. Finally, from the joint distribution, the posterior distribu-
tion for m given d can be derived:

[m|d] ∼ Np(µm|d,Σm|d),

where the conditional expectation and covariance are

µm|d = µm + (AΣmm)T [AΣmmAT + Σu]−1(d−Aµm),

Σm|d = Σmm − (AΣmm)T [AΣmmAT + Σu]−1AΣmm.

Computing the inverse of the (k × k) matrix can be very costly for large k.

Appendix C. One-dimensional upscaling

Assume one-phase flow in a uni-directional system partitioned by N+1 nodes into N (sub)
cells, with a total length of ∆x and a pressure drop of ∆p. Further, assume no gravity. For
each node there is associated a pressure pi. The distance between node i and node i + 1 is
denoted ∆xi. The pressure drop over the reservoir is equal to the sum of the pressure drops
between two consecutive nodes, i.e., ∆p = ∆p1 + ∆p2 + . . . + ∆pN , and the total length is
∆x = ∆x1 + ∆x2 + . . .+ ∆xN . An average/effective Darcy velocity over the one-dimensional
system is then given by Darcy’s law:

ū = −K
µ

∆p
∆x

.

Summing the contributions of the subintervals gives

− ū∆x
K

=
1
µ

∆p =
1
µ

(
∆p1 + ∆p2 + . . .+ ∆pN

)
= −

(
u1∆x1

K1
+
u2∆x2

K2
+ . . .+

uN∆xN
KN

)
.

Hence the upscaled/effective permeability is given by the following weighted harmonic average

K =
ū∆x

u1∆x1
K1

+ u2∆x2
K2

+ . . .+ uN∆xN
KN

.

For uni-directional without internal sinks/sources the flow equations state that the velocity
is constant (∇ · u = du/dx = 0), i.e., ū = u1 = u2 = . . . = uN , which gives

(A-3) K =
∆x

∆x1
K1

+ ∆x2
K2

+ . . .+ ∆xN
KN

.
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Assume instead a set of parallel one-dimensional uni-directional flow systems with a single
permeability each (like homogeneous layers or streamlines). The parallel layers are numbered
by i ∈ {1, 2, . . . , N} and have a common pressure drop ∆p and length ∆x. Similarly as above,
Darcy’s law over all layers then reads

−KA
µ

∆p
∆x

= q̄ = q1 + q2 + . . .+ qN = − 1
µ

∆p
∆x

(
K1A1 +K2A2 + . . .+KNAN

)
.

The upscaled/effective permeability is therefor given by the weighted arithmetic average

K =
1
A

(
K1A1 +K2A2 + . . .+KNAN

)
.

Appendix D. Modifications for 1D Buckley–Leverett Displacement

In this section we will derive the effective permeability modifications for a 1D Buckley–
Leverett displacement. Assuming Riemann initial data, the arrival time t` of a saturation
front Swf is discussed in Section 3.2, that is,

t` =
τ`

f̃ ′(Swf )
.

Inserting (20) for the time-of-flight and assuming a streamline effective permeability k` gives

(A-4) t` =
1

f̃ ′

∫
Ψ

φ(x)
λtk`|∇p|

dr ⇔ k` =
1

t`f̃ ′

∫
Ψ

φ(x)
λt|∇p|

dr.

By assuming that the streamline paths of the prior permeability field and the quantities
involved in the integral are exact (also assumed in [141]), the relative modifications are then
given by

rt` =
∆kt`
kcal
`

=
kobs
` − kcal

`

kcal
`

=
tcal` − tobs

`

tobs
`

.

Hence, (61) is recovered. If also the effective pressure drop ∆p for an injector–producer pair
is to be matched, we can use an effective pressure gradient of ∆p/L` ≈ |∇p|, where L` is
the length of streamline `. The relative modification of (64) is then obtained by the same
approach.

Appendix E. Analytic Gaussian Upscaling/Downscaling

Assume there are N grid parameters M = {Mi} (possibly transformed) contributing to s
effective/upscaled parameters m = {m`}. Further, assume that the effective parameter m`

can be calculated by the weighted arithmetic average

(A-5) m` =
1∑
iw`i

[
w`1M1 + w`2M2 + . . .+ w`NMN

]
+ u`,

where u` is a random error term that will be described below. Hence, the weights are zero if a
grid parameter does not contribute to the effective parameter. All the s effective parameters
can then be calculated by

(A-6) m = AM + u,

where

A =
{
A`i =

w`i∑
iw`i

}
and u = {u`}.

Assuming multivariate Gaussian reservoir parameters [M] ∼ NN (µM ,ΣM ) and Gaussian
noise error [u] ∼ Ns(0,Σu), it follows from Gaussian linearity that also the effective param-
eters m are Gaussian, see Appendix B. Following the derivation given in Appendix B the
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conditional distribution for M|m is Gaussian and given analytically by

[M|m] ∼ NN (µM |m,ΣM |m),(A-7)

µM |m = µM + (AΣMM )T [AΣMMAT + Σu]−1(m−AµM ),(A-8)

ΣM |m = ΣMM − (AΣMM )T [AΣMMAT + Σu]−1AΣMM .(A-9)

The computation of the inverse (s × s) matrix may be computer intensive. However, some
kind of sequential local downscaling (e.g., for streamline-based regions) may be applied to
reduce the dimension s.

For permeability it is sometimes assumed a log-Gaussian model, which entails that Mi =
logKi is Gaussian. The approach outlined above can then be applied if the effective perme-
ability for streamline/coarse cell ` can be represented by the weighted geometric average (see
discussion in Section 5.3.1)

k` = u` ·
(
ΠiK

w`i
i

)1/
P

i w`i

,

where u` is a log-Gaussian approximation error. Because taking the logarithm on each side
of the geometric average gives

log k` =
1∑
iw`i

log(ΠiK
w`i
i ) + log u`

=
1∑
iw`i

[
w`1 logK1 + w`2 logK2 + . . .+ w`N logKN

]
+ log u`,

which is on a linear form equivalent to (A-5). Further, applying the logarithm of the per-
meability ensures a positive permeability. For porosity it is sometimes assumed a Gaussian
distribution directly, i.e., Mi = φi, but a porosity within the interval [0, 1] is then not guar-
anteed. However, the variability in porosity is usually much smaller than for permeability. In
addition, it is possible to use some transformation that ensures a porosity within range, e.g.,
a logit transformation.

Appendix F. Equivalence Between SLEP and GTTI

First, we consider GTTI propagation of the SLEP modifications. For SLEP modifications
δk are obtained (as described above). Further, sensitivities with respect to grid permeability
G = ∂k/∂K are given by for instance (63). Hence, the streamline-effective permeabilities
can be propagated to obtain grid-permeability modifications δK by the minimization system
in (47) or (56) that were originally used for the deterministic and the Bayesian version of
the GTTI, respectively. We may also normalize the modifications and the sensitivities to
obtain relative modifications instead. Further, it should be noted that the size of the inverse
system generally is larger than for GTTI, unless only one streamline-bundle is used for each
production well.

Second, we consider SLEP propagation of the GTTI modifications. The time-shift ∆t̃ prop-
agated in GTTI can be propagated by the same methodology as used in SLEP by specifying
the modifications along a streamline-bundle ` by α` = f(∆t̃, . . .). Here f is some function of
the time-shift and possibly other variables. Inspired by (61), an example of a modification
factor would be α` = f(∆t̃, t̄obs) = 1 + ∆t̃/t̄obs. To obtain a time-shift for each streamline-
bundle it is possible to partition the fractional-flow curve into several segments vertically, like
done in SLEP, to obtain one time-shift for each segment (streamline-bundle).

Appendix G. Potential Strategies for Incorporating Well Pressures in GTTI

For streamline-effective properties, the effective pressure drop can be explicitly related to
the permeability/porosity as shown in Appendix D above. Therefore, sensitivities are not
really needed in this case, but can of course be obtained by differentiation of the explicit
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expressions; i.e. to obtain ∂∆p/∂k`. By the chain rule we obtain

∂∆p
∂Ki

=
N i

sl∑
`=1

∂∆p
∂k`

· ∂k`
∂Ki

,

which makes it possible to define GTTI also to match effective pressure drops. Here ∂k`/∂Ki

is given by for instance (63). Ideally, however, compressibility should also have been incorpo-
rated in the expressions for the relation between the permeability and the pressure drop, but
it may be better with an approximate pressure constraint than no constraint at all.

Another potential approach for incorporating well pressure (or well rate) in GTTI is to use
∂p

∂mi
=
∂p

∂q
· ∂q
∂t
· ∂t

∂mi
=
∂p

∂q
· ∂q
∂mi

.

Here ∂p/∂q can potentially be obtained by differentiating a well model (e.g., the Peacemann
well model like in [59]). The term (∂q/∂t)−1 is discussed in [7] and Section 4.3 and the
arrival-time sensitivity ∂t/∂mi is discussed in Section 4.3. Again, it may be better with an
approximate pressure constraint than no constraint at all.

Appendix H. Nomenclature

Symbols:
• reservoir property: m
• absolute grid permeability: K
• streamline effective permeability: k
• porosity: φ
• pressure: p
• flow rate: q
• total mobility: λt
• viscosity: µ
• density: ρ
• time-of-flight: τ
• bi-streamfunctions: ψ, χ
• streamline: Ψ
• fractional flow function: f
• sensitivity matrix: G
• number of grid cells: N
• number of streamlines: Nsl

• number of data: Nd

• number of wells: Nw

• constant: const

Indices:
• streamline: `
• grid cell: i
• time step: j
• well: k
• master point: d
• total: t
• phase: α

Sub/super scripts:
• water: w
• oil: o
• gas: g
• calculated: cal
• observed: obs
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Abstract

We propose two improvements to a recent streamline method by Wang and Kovscek for inversion of production data. The key
idea of the Wang–Kovseck method is to associate increments in fractional flow curves (water-cut) with breakthrough of individual
streamlines and match breakthrough times of each streamline by adjusting the effective streamline permeabilities. The perturbations
in effective streamline permeabilities are given by a linear system, which can be solved in a decoupled fashion under additional
simplifying assumptions. Finally, the permeability perturbations defined along streamlines are mapped onto the underlying
simulation grid, typically using a geostatistical algorithm to constrain the corresponding corrections to the geological model to prior
geological data.

Our first improvement is to model the flow in each streamline independently using real time, instead of using Dykstra–Parsons'
algorithm for all streamlines connected to a producer–injector pair. This way, there is no coupling between individual streamlines,
and permeability modifications can be obtained directly. Our approach uses less approximations, enables extension of the
formulation to include gravity, and enables history matching of porosity. Three synthetic test cases show that this approach gives a
better match and faster convergence.

Our second point is to use a multiscale inversion process, where the reservoir parameters are matched on a hierarchy of
recursively coarsened grids. Two synthetic test cases demonstrate that this approach captures the large-scale trends of the reservoir
parameters more accurately. The proposed approach has proven robust in the sense that it is able to capture structures of the
permeability field on the basis of limited information.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Obtaining a reliable history match is an ill-posed and
time-consuming exercise for reservoir engineers. In this

paper we consider one component of history matching,
namely how to modify permeabilities (and/or porosities)
to match observed production data. The process for
history matching permeabilities typically consists of two
basic steps: (1) modification of grid-block permeabil-
ities, and (2) forward simulation of fluid responses to
validate the accuracy/correctness of a given permeabil-
ity distribution. History matching real-life reservoirs
typically requires numerous flow simulations, which
often makes forward simulation the most time-consum-
ing part of a history match.

Journal of Petroleum Science and Engineering 54 (2006) 79–92
www.elsevier.com/locate/petrol

⁎ Corresponding author. Fax: +47 73593524.
E-mail addresses: vegarste@math.ntnu.no (V.R. Stenerud),

Knut-Andreas.Lie@sintef.no (K.-A. Lie).
URL's: http://www.math.ntnu.no/vegarste (V.R. Stenerud),

http://www.folk.uio.no/kalie (K.-A. Lie).

0920-4105/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.petrol.2006.08.003



Streamline simulation (Datta-Gupta and King, 1995;
Thiele, 2005) is a complementary technology for flow
simulation in petroleum reservoirs. Compared to tradi-
tional finite-difference simulators, streamline simulation
offers unparallelled computational efficiency for simu-
lating reservoir responses for large and complex geo-
models and for flow scenarios dominated by wells, fluid
mobilities, and heterogeneity in the rock properties.
Replacing a conventional finite-difference solver by a
much faster streamline solver may therefore drastically
reduce the computational time, thereby allowing more
frequent model updates and possibly also models with a
larger number of gridblocks.

However, the most promising use of streamlines in
history matching has come from their ability to locate
regions in the reservoir that may contain potential
sources for mismatch in production data. Several authors
have exploited streamlines to develop efficient inversion
methods using a sensitivity approach, in which one
needs to compute gradients of production characteristics
with respect to the geological parameters; see e.g.,
Gautier et al. (2001, 2004), Vasco and Datta-Gupta
(1999), Vasco et al. (1999), Wen et al. (2003).

As an alternative, novel inversion methods can be
developed using two types of data that are not offered in
conventional simulators: flow paths (the streamlines)
and time-of-flight. The streamlines give a natural way to
delineate the reservoir volume to be matched. Emanuel
and Milliken (1998) and Milliken et al. (2000) use
streamlines to define subregions, in which subsequent
changes in grid properties can be performedmanually (or
semi-automatically) by the reservoir engineer to match
production data.

Wang and Kovscek (2000) use streamlines as a natural
parameterisation of the reservoir and modify effective
properties along streamlines to increase/decrease break-
through times (computed from the time-of-flights),
thereby reducing the mismatch between observed and
calculated fractional flows, pressure drops, and total flow
rates. The modified effective properties is then mapped
back to individual grid cells in the underlying geological
grid model and a flow simulation performed to check the
match for the new permeability estimate. This procedure
is repeated until the history match is converged. Although
this approach is quite robust in the sense that a reasonable
history match can be obtained from a small data set,
modifying grid properties directly along flow paths may
introduce artifacts and violate geological constraints. To
improve the predictive powers and impose geological
consistency in every step of the inversion, Caers and
coworkers apply the modified effective streamline
properties to constrain geostatistical algorithms; see

Caers (2003), Caers et al. (2002, 2004), Gross et al.
(2004). Moreover, as an alternative to perturbing effective
properties associated with a single streamline, streamlines
and time-of-flight can be used to perform corrections on
all streamlines associated with a single well, an injector–
producer pair, or on all wells in a reservoir.

In this paper, we go back to the original method of
Wang and Kovscek (2000) and present two possible
improvements. Our first point is that one can simplify the
calculation of modified streamline permeabilities. Rather
than using Dykstra–Parsons' algorithm to model all
streamlines connected to a well as the relative motion of
saturation fronts in a set of non-communicating layers,
resulting in a linear system for the perturbations in effec-
tive permeabilities, we model each streamline indepen-
dently using real time and obtain directly a set of (simple)
algebraic relations between the effective parameters of the
streamline and the mismatch in production data. This
approach generally gives a better match and faster
convergence and uses less approximations and assump-
tions on the mobility ratios than Wang and Kovscek in
their inversion method. Moreover, our new formulation is
more flexible and can easily be extended to include
gravity (and possibly also more complex flow physics).
Finally, since the new formulation only changes the way
the modified streamline permeabilities are calculated, the
method can immediately be applied within the geostatis-
tical framework developed by Caers (2003), Caers et al.
(2002, 2004), Gross et al. (2004).

Our second point is that the use of a multiscale
inversion process may speed up the convergence and
improve the quality of the history match.We use a family
of hierarchically refined grids that are formed by
coarsening an underlying fine geogrid for the desired
permeability. Starting with the coarsest grid, we match
production data using effective permeabilities and map
the perturbed streamline permeabilities back onto the
coarse grid. Next, an interpolation of the coarse-grid
permeabilities is used as initial value for a new match on
the next hierarchically refined grid, and so on until the
finest grid is reached or a sufficiently good match is
obtained. There are several advantages to this approach.
First, the refinement level of the inverted permeability
field will correspond to the resolution of the production
data, and one reduces spurious effects due to over-para-
meterisation. Second, decomposing the inverse problem
by scale will generally improve the identification of
large-scale heterogeneity structures. Finally, since only a
few parameters are matched on the coarser grids, the
inversion process will be much faster than using a direct
fine-scale streamline inversion. A similar approach has
previously been introduced by Yoon et al. (1999) to
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regularise and accelerate an inversion method based on
analytical streamline sensitivities.

The outline of the paper is as follows: Section 2
presents a simplified model for flow along streamlines
underlying the original method of Wang and Kovscek
(2000), which is presented in Section 3, and our alterna-
tive method, which is presented in Section 4. The two
methods are compared in Section 5 using three synthetic
examples. Finally, in Section 6 we present the multiscale
inversion method and make a few comparisons.

2. Basic flow model

The original method of Wang and Kovscek (2000)
and the alternative inversion method we present in
Section 4 are both derived from the same simplified flow
model for incompressible flow of two fluids (oil and
water) in a single horizontal rock layer. For simplicity we
assume piston-like displacement with no capillary
forces, where the injected water displaces the in-situ oil
instantaneously at the water front. The front position is
located at x and the total length of the streamline is L.
The pressure drops behind and ahead of the front are
denoted Δpw and Δpo, respectively. Finally, we assume
(for the moment) that gravity can be neglected.

The average Darcy velocities for oil and water are
given by

uo ¼ −kko
Dpo
L−x

; uw ¼ −kkw
Dpw
x

; ð1Þ
where k represents the effective permeability and λo and
λw the oil- and water end-point mobilities. The total
pressure drop over the flow region is given by

Dp ¼ Dpw þ Dpo: ð2Þ
For an incompressible system, the two velocities are

equal, i.e.,
u ¼ uo ¼ uw:

The actual front velocity v, derived by mass
conservation over the front, is given by

v ¼ dx
dt

¼ u
DSd/

; ð3Þ

where ΔS=1−Sor−Swir is the difference in end-point
saturation and ϕ is the effective porosity.

Combining the above equations, we wind up with the
following ordinary differential equation for the front
position

dx
dt

¼ −
Dp
/DS

k
x
kw
þ L−x

ko

¼ −
kwDp
/DS

k
MLþ ð1−MÞx ; ð4Þ

where M=λw /λo is the end-point mobility ratio.

The effective streamline permeabilities are calculated
based on the permeabilities of the underlying simulation
grid. More precisely, the effective permeability of a
streamline is given by the harmonic average, weighted
by the time-of-flight through grid blocks,

k ¼
P

j sjP
j
sj
Kj

; jaNb:

Here Nb is the set of indices of the grid blocks the
streamline intersects, Kj is the permeability of grid block
j, and τj is the associated increment in time-of-flight.

Because we regard an incompressible system, each
streamline can only originate from an injection well and
terminate at a production well. In other words, each
streamline will connect an injector to a producer. If qi
denotes the flow rate of streamline i, the total flow rate
of a well with N streamlines connected is given by

q ¼
XN
i¼1

qi:

In the next section we will derive the Wang–Kovscek
inversion method, assuming that all streamlines con-
necting an injector and a producer can be modelled as a
set of non-communicating (horizontal) layers, where the
flow in each layer is described as outlined above.

3. The Wang–Kovscek method

Wang and Kovscek (2000) introduced an iterative
method for modifying permeabilities defined on a grid to
match calculated with observed production data. The
method is based upon two ideas: (i) the flow in an
injector–producer pair can be represented by a set of N
streamlines, where each streamline contributes a given
amount (rate, pressure drop) to the production data; and
(ii) each increment in the fractional-flow curve of the
producer can be associated with the breakthrough of the
injected fluid in a single streamline. By aligning the
streamlines according to breakthrough times, one can
identify the streamline causing a certain increment in the
production data. Assuming that the streamlines in the
estimated model are approximately the same as in the
true model, the effective properties (here permeability)
of the streamline can then be adjusted to match the
corresponding increment in the observed fractional flow.

Each iteration of the Wang–Kovscek method requires
one flow simulation and consists of two steps: First,
modifications of the effective streamline permeabilities are
identified in accordance with the mismatch in fractional-
flow, well pressures, and well rates. Second, the perturbed
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effective permeabilities are propagated to the underlying
grid in physical space and a flow simulation is performed
to check the match. Although we here only present the
method for a single injector–producer pair, the extension
to multiple wells is straightforward.

Next we will outline how to obtain the permeability
modifications for fractional flow and for pressure drop
and flow rate.

3.1. Match of fractional-flow

The fractional-flow at a producer is not matched
directly, but is used to align observed and calculated
breakthrough times for the streamlines terminating at the
producer. By assuming that the order of breakthroughs
is approximately the same for the estimated and the true
permeability fields, the mismatches in breakthrough
times for the streamlines can then be applied to modify
the streamline permeability.

If we assume piston-like displacement and apply a
streamline formulation with equal total flow-rate for all
streamlines, each streamline will contribute equally to
the total fractional-flow curve at the producer. Observed
and calculated breakthrough times can therefore easily
be obtained from the corresponding fractional-flow
curves, see Fig. 1. The assumption of equal flow rate for
the streamlines is a simplifying assumption and is not
crucial for the derivation of the method. However, if the
streamlines have different flow rates, each streamline
will contribute differently to the fractional-flow curve
when breaking through, and the order in which the
streamlines break through may be more important.

To derive an expression for the breakthrough times in
each of theN individual streamlines connecting an injector
to a producer, Wang and Kovscek model the flow alongN
streamlines as the flow in N non-communicating (hori-
zontal) layers. This means changing perspective from

streamlines to streamtubes, such that each “streamline” is
assigned a certain flow volume. Suppose now that each
layer has lengthLi, average cross-sectional areaAi, average
porosity ϕi and permeability ki, and end-point saturation
difference ΔSi=1−Swir−Sor. Expressed in terms of pore-
volumes injected (PVI) for the injector–producer pair, the
breakthrough time T̃i of streamline i can now be written

T̃i ¼
PN

j¼1ðA/LÞj x̃ijPN
j¼1ðA/LÞj

: ð5Þ

Here x̃j
i represents the relative front position along

streamline j when streamline i breaks through, and is
provided by Dykstra–Parsons' method (Dykstra and
Parsons, 1950). The relative front position can be derived
from the differential Eq. (4) for the front position in a single
layer. Dividing the expressions for layers j and i, we obtain

d x̃ j
d x̃ i

¼ Fi
j

Mi þ ð1−MiÞ x̃ i
Mj þ ð1−MjÞ x̃ j ; Fi

j ¼
kj/iDSikwjL

2
i

ki/jDSjkwiL
2
j
;

x̃ ¼ x
L
:

Integrating this differential equation over the stream-
lines and evaluating x̃j at breakthrough for streamline i
(x̃i=1) gives x̃j

i.
The next step is to use this simplified flow model to

relate the discrepancies in breakthrough times to discre-
pancies in effective streamline permeabilities ki. Because
the sum in the numerator of Eq. (5) runs over all stream-
lines, the breakthrough time T̃i is a function of the
permeabilities of all streamlines. Linear approximation
therefore gives

D T̃i ¼ A T̃i

Ak1
Dk1 þ A T̃i

Ak2
Dk2 þ A T̃i

Ak3
Dk3 þ N

þ A T̃i

Akn
Dkn; ð6Þ

where

Dki ¼ kobsi −kcali and D T̃i ¼ T̃
obs
i − T̃

cal
i :

This equation gives a relation between the mismatch in
breakthrough times for streamline i and the permeability
modifications for all streamlines. The derivatives aij=∂T̃i /
∂kj are obtained by differentiating Eq. (5). Applying the
same linear approximation for all streamlines results in the
following system

a11 a12 N a1N
a21 a22 N a2N
v v O v

aN1 aN2 N aNN

2
664

3
775

Dk1
Dk2
v

DkN

2
664

3
775 ¼

D T̃1

D T̃2

v
D T̃N

2
664

3
775: ð7Þ

Fig. 1. Observed and calculated fractional-flow curves are used to
obtain breakthrough times.
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The system is simplified by defining relative or
normal parameters (Wang and Kovscek, 2000). For unit
mobility ratios, the system is strongly diagonally
dominant and approximately decouples so that

Dkti
kcali

c
T̃
cal
i − T̃

obs
i

T̃
obs
i

: ð8Þ

The superscript t indicates that the modification is
due to mismatch in break through time. As explained by
Wang and Kovscek (2000), the approximation Eq. (8)
becomes better the more streamlines are involved,
because off-diagonal elements scale like 1/N. The
approximation Eq. (8) is used for practical applications
(even for nonunit mobility ratios) to obtain the modi-
fications; see Wang and Kovscek (2000), Caers et al.
(2002), Caers (2003).

3.2. Match of pressure drop and rate

The description in Wang and Kovscek (2000) is a bit
ambiguous as to how the modifications due to pressure
drop and rate are calculated. In this section we describe
how we understood the derivation of pressure and rate
modifications. Further, these derivations create a founda-
tion for parts of the derivation of our improved method.

If we assume that all streamlines have the same flow
rate, the error in flow rate of an injector–producer pair is
distributed equally among all streamlines. If a stream-
line formulation with varying streamline rate is used, the
error in flow rate may instead be distributed by
weighting. The error in pressure drop is common to all
streamlines of an injector–producer pair.

To modify the permeability due to mismatch in
pressure drop and rate, an expression relating these three
quantities is used. To derive this expression we start out
by Eq. (4), reading

vi ¼ kwDp
/iDS

ki
MLi þ ð1−MÞxi :

We regard Δp as the effective pressure drop for the
streamline, possibly obtained by temporal averaging
over the depletion period. Averaging the velocity over
the streamline then gives

v̄i ¼ −
lnM
M−1

kikwDp
Li/iDS

: ð9Þ

The average actual front velocity can be estimated by

v̄i ¼ qi
/iDSAi

: ð10Þ

Here Ai is the average cross-sectional area of a
streamline/streamtube and qi is the effective streamline
rate derived by distributing the well rate among all
streamlines connected to a well. Having an explicit
expression for Ai is not important, since it will cancel
out later in the derivation. Finally, rearranging Eq. (9)
gives the permeability by

ki ¼ −
M−1
lnM

v̄iLi/iDS
kwDp

: ð11Þ

In the limit of unit mobility ratio, the last expression
can be obtained directly from the averaged Darcy's law
(Eq. (1)).

Evaluating Eq. (11) for calculated and observed data,
with v̄ i estimated by Eq. (10), we obtain

Dkp;qi

kcali

¼ Dpcalqobsi −Dpobsqcali

Dpobsqcali

: ð12Þ

The superscripts p and q indicate that the corres-
ponding modification is due to mismatch in pressure
drop and rate. If there are no observations of the pressure
drop or the rate, it would be natural to assume that the
calculated response for the quantity is correct, i.e.,
calculated and observed responses coincide. This will
make the quantity cancel out from the expression for the
modification.

3.3. Updating grid permeability

To obtain a total correction factor ri for streamline i,
geometric averaging is used to combine the relative
modifications, Eqs. (8) and (12):

ri ¼ ð1þ Dkti=k
cal
i Þdð1þ Dk p;q

i =kcali Þ� �1=2
:

If the streamline distribution is updated during the
forward simulation, one or several of the temporary
streamline distributions are used for the inversion; see
the discussion in Section 4.4.

For simplicity, and to focus on the improved quality of
the streamline permeability corrections, we will in the
following only use a simple deterministic method to
propagate the modifications for the streamline perme-
abilities onto the underlying geological grid; see Wang
and Kovscek (2000). More sophisticated geostatistical
mappingmethods incorporating e.g., prior information on
the permeability distribution have been developed by
Caers et al. (2002), Caers (2003), Caers et al. (2004). In
Caers et al. (2002) the grid permeabilities are described by
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a Gauss–Markov random function. The grid permeabil-
ities are modified by sampling from the random function
conditioning on the updated streamline effective perme-
abilities ki

new. This approach honors the variogram and the
histogram and may therefore result in permeability fields
that better preserve geologic realism. In Caers (2003) the
mapping is performed using gradual deformation, which
preserves the geological continuity. Further, the use of
multiple-point geostatistics may enable history matching
of complex heterogeneous geological structures, like
fractures and channels, which is beyond the scope of
variogram-based methods. Finally, in Caers et al. (2004)
the effective permeability modifications are obtained for
the flow zone associated with each producer. The
mapping to the grid is performed with Direct Sequential
Simulation (DSSIM) to honor the variogram while
allowing the histogram to change.

4. Improved inversion of effective streamline
permeabilities

In this section we present an alternative inversion
method that is not based upon the Dykstra–Parson
algorithm. Instead, our method solves the differential
Eq. (4) for the front position in each streamline and uses
these solutions to relate the discrepancies in observed
and calculated breakthrough times to perturbations of
the effective streamline permeabilities. There are several
advantages to this approach: (i) we avoid solving the
linear system (7) or making further approximations by
decoupling to Eq. (8); (ii) our new formulation is easier
to generalise; and (iii) we generally obtain faster
convergence and a better history match.

In the Dykstra–Parsons method, Eq. (4) is used to
relate positions of saturation fronts in different stream-
lines. This eliminates real time and pressure, and
couples the streamlines. We propose to avoid this
coupling by using Eq. (4) directly to model absolute
front positions in real time for each streamline.
Integrating Eq. (4) over streamline i

Z Li

0
½MLi þ ð1−MÞxi�dxi ¼ −

Z Ti

0

kikwDpðtÞ
/iDS

d t;

1
2
ðM þ 1ÞL2i ¼ −

kikw
/iDS

Z Ti

0
DpðtÞdt;

and solving for the effective permeability ki gives

ki ¼ −
M þ 1

2
L2i /iDS

kw
R Ti
0 DpðtÞdt

¼ −
M þ 1

2
L2i /iDS

kw

1

Dp
P

Ti
:

ð13Þ

Here Dp
P

is the temporal average of the pressure drop
over [0, Ti].

Evaluating the permeability for observed and calcu-
lated data gives the relative modification

Dkt;pi
ki

¼ kobsi −kcali

kcali

¼ Dp
Pcal T cal

i −Dp
Pobs T obs

i

Dp
Pobs Tobs

i

; ð14Þ

for streamline i. If v̄ i is estimated by

v̄i ¼ Li=Ti; ð15Þ
the permeability modifications Eqs. (13) and (11) only
differ by the mobility factors (M−1) / ln M and (M+1)/2.
However, for unit mobility ratio the two expressions
coincide.

Notice that no mathematical approximations were
made in the derivation of Eq. (14) from Eq. (4). Under
the same physical assumptions, the modifications Eq.
(14) should therefore be more accurate than those
obtained by Eqs. (7) and (8). Further, notice that we also
could have solved for ϕi, or for (ki/ϕi), instead of ki in
Eq. (13), and thereby obtained expressions for relative
modifications in effective porosity or permeability–
porosity ratios.

4.1. Accounting for gravity along streamlines

Using the new inversion method introduced above, it
is straightforward to account for gravity in the flow
direction. To this end, consider the Darcy velocities for
oil and water in the presence of gravity

uoi ¼ −kiko
Dpo
Li−xi

þ qo g sin ai

� �
;

uwi ¼ −kikw
Dpw
xi

þ qw g sin ai

� �
:

ð16Þ

Here αi is the streamline effective dip angle, g ¼ jYg j
the acceleration of gravity, and ρα the density of phase α.
The effective dip angle of a streamline Ψi is given by the
time-of-flight weighted average of the local dip angle α(τ),

ai ¼
R
Wi
aðsÞdsR
Wi
ds

:

Combining Eqs. (2) and (3) with Eq. (16), we can
now extend the differential Eq. (4) for the front position
to account for gravity

dxi
dt

¼ −
kikw
/iDS

d
½Dpþ qo g Lisinai þ xiðqw−qoÞgsinai�

MLi þ ð1−MÞxi :

ð17Þ
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For constant pressure drop, the same procedure as
above gives

Dki
ki

¼ T cal
i Iobs−T obs

i I cal

Tobs
i I cal

; ð18Þ

where

In ¼
Z Li

0

MLi þ ð1−MÞxi
Dpn þ qo g Lisinai þ ðqw−qoÞg xisinai

dxi;

n ¼ cal; obs:

ð19Þ
The integral has the following analytic solution

In ¼ c−2ðac−bdÞd lnðjd þ c Lij=jdjÞ þ bc−1Li;

where a=Li M, b=1−M, c=(ρw−ρo) g sin αi, and
d=Δpξ+ρo g Li sin αi. For unit mobility ratios the
integral simplifies considerably. Letting the effective dip
angle turn to zero in Eq. (19), Eq. (18) simplifies to Eq.
(14).

4.1.1. Time-dependent pressure drops
Allowing for a time-dependent pressure drop in Eq.

(17) and rearranging terms we obtain the following first-
order differential equation

eðaþ bxiÞ x�i þkicxi ¼ −kidðtÞ; ð20Þ

where e=(ϕi ·ΔS /λw), while a, b, c and d are as
given above, except that the pressure drop in d is now
time-dependent. This equation generally has a nonlin-
earity in the first term. However, for unit mobility
ratios it is linear and can be solved for the special case
of ρo=ρw

ki ¼ −
L2i /iDS

k
1

ðDpPþq g LisinaiÞTi
: ð21Þ

In the limit αi→0, Eq. (21) simplifies to Eq. (13).
In the general case we will proceed as in Section

3.2 and rely on spatial averaging rather than trying to
solve Eq. (20) explicitly for ki. The front velocity vi=
dxi / dt is given by Eq. (17), where we regard Δp as
effective pressure drop for the streamline, possibly
obtained by temporal averaging over the depletion
period. Spatial averaging of the front velocity over the
streamline gives

v̄i ¼ −
kikw

Li/iDS
1

ðM−1Þ2 dðaðMÞDp−ðbðMÞqo−cðMÞqwÞg LisinaiÞ;

where a(M)= (M−1) ln M, b(M)= ln M−M+1, and c
(M)=M ln M−M+1. For unit mobility ratios the
average front velocity is

v̄i ¼ −
kikw

Li/iDS
Dpþ 1

2
ðqo þ qwÞg Lisinai

� �
:

Similarly to Eq. (11), we wind up with

ki ¼ −
v̄iLi/iDSðM−1Þ2

kw½aðMÞDp−ðbðMÞqo−cðMÞqwÞg Lisinai�
ð22Þ

for nonunit mobility ratio, while for unit mobility ratio
we get

ki ¼ −
v̄iLi/iDS

kw Dpþ 1
2 ðqo þ qwÞg Lisinai

� � : ð23Þ

These two expressions, with v̄ i estimated by Eq. (10)
or Eq. (15), can be used to obtain streamline modifica-
tions. An advantage of these expressions is that the
streamline rate can be included. As expected, letting αi
tend to zero in Eqs. (22) and (23) results in Eq. (11). For
the case with constant pressure drop, equal densities
ρo=ρw, and v̄ i estimated by Eq. (15), one can show that
the modification Eq. (23) coincides with the exact
modification Eq. (21).

4.2. Match of rate

For several injectors and/or producers, it may be
necessary to match the error in the total flow rate of the
wells considered. The rate can be matched similarly to
how it is done for the Wang–Kovscek method.
Combining the permeability expressions Eqs. (11),
(22) or (23) with Eq. (10), relates the permeability and
the streamline rate. By using these permeability
expressions, relative modifications Δki

p,q/ki
cal for rate

and pressure can be obtained (see Eq. (12)).

4.3. Total modifications

If breakthrough times and pressure drops are
matched, the correction factor becomes

rt;pi ¼ 1þ Dkt;pi =kcali :

This modification factor can be combined with the
modification due to rate and pressure drop Δki

p,q/ki
cal to
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give a total correction factor by the geometric average
(possibly weighted)

ri ¼ ð1þ Dkt;pi =kcali Þdð1þ Dkp;qi =kcali Þ� �1=2
:

Since the mismatch in pressure drop contributes to
both the relative modifications, the mismatch in pressure
drop may be distributed between the two expressions.
The modification factors can be propagated to the
underlying simulation grid by any of the geostatistical
approaches described in Section 3.3. However, we will
for our implementations use the simple deterministic
approach proposed in Wang and Kovscek (2000). The
breakthrough times are obtained by the approach
described in Section 3.1.

4.4. Evolving streamlines

A general problem for streamline-based history
matching is the fact that the streamlines only exist
during a single pressure time step. If streamlines are
evolving, one should ideally compose effective stream-
lines by adding one segment for each time step. This
requires that one is able to keep track of each streamline
from one time step to the next. This means that the
number of streamlines for each injector–producer pair
must be constant, which is a hard constraint to fulfil for a
general streamline implementation. To deal with the
problem of streamlines existing for a single pressure
step, Wang and Kovscek (2000) suggest to pick one of
the temporary streamline distributions as a representative
streamline distribution. The geometry and time-of-flight
information is therefore not correct for the whole
streamline, so the calculations of effective properties
may be inaccurate. However, this is not critical, because
effective properties are only used to perturb the history

match in a given direction and the quality of this
perturbation is estimated in the consecutive forward flow
simulation.

5. Numerical examples

In this section we assess the new inversion methods
introduced in the previous section. To make the
comparison with the original Wang–Kovseck method
as clean as possible, we focus on simple and idealised
test cases with a small number of parameters. Applica-
tions of the Wang–Kovseck method to more realistic
test cases and real reservoirs can be found in Gross et al.
(2004), Caers et al. (2004).

We consider three synthetic reservoirs with dimen-
sions 200×200×10 m3, where pure water (ρw=1000 kg/
m3, μw=1 cp) is injected at a rate of 300 STB/day into a
reservoir initially filled with pure oil (ρo=700 kg/m3,
μo=1 cp). Further, we assume a zero residual oil satura-
tion after depletion.

5.1. Case 1: quarter five-spot

We first consider a quarter five-spot example with no
flow over the outer boundaries and one injector in the
lower-left corner and a producer in the upper-right
corner. Because the total flow rate at the wells is
preserved, only data from fractional flow and pressure
drop are matched for this example. For the flow model
we assume linear relative permeabilities, λw(s) = s and
λo(s) =1− s.

The true permeability is represented on a 20×20×1
uniform grid and consists of a low-permeable back-
ground with an ellipsoidal high-permeability region
imposed along the diagonal; see Fig. 2. Matching the
main permeability trends should be rather easy for any

Fig. 2. The true permeability field in mD for Cases 1 and 2 (left) and Case 3 (right).
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streamline-based method, since the high permeable
region is aligned with the major flow direction (from
injector to producer). For both methods we start the
iterations from a homogeneous permeability field of
150 mD (no prior information).

Fig. 3 shows inferred permeability fields, matched
fractional flow curves, and relative errors obtained using
nine iterations with the original Wang–Kovscek inver-
sion method, (8) and (12), and with our improved

method, Eq. (14). Both methods match the fractional
flow and pressure drop, but whereas the Wang–Kovscek
method has not converged fully after nine iterations, our
method has converged after five. The inferred perme-
ability fields for the two methods are qualitatively
similar; both methods capture the high-permeable
region, but the estimated permeability is too low in
both the ellipsoidal region and in the low-permeable
background. On the other hand, the permeabilities close

Fig. 3. Case 1. Comparison of inferred permeability fields, matched fractional-flow curves, and relative errors for the originalWang–Kovseck method (left)
and our newmethod (right). In the middle plot, the observed fractional flow is given by a solid line, the calculated curve by a dotted line, andmatched curves
by dashed lines.
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to the wells are too high, which makes the effective
streamline permeabilities consistent with the effective
permeabilities of the true permeability field.

If 5% white noise is added to the observed fractional-
flow curve, our method is still able to match the frac-
tional flow (see Fig. 4) if we avoid using the streamlines
contributing to approximately the upper 5% of the
fractional-flow curve. Due to the flatness in this part of
the curve, the calculated breakthrough times are more
sensitive to noise.

5.2. Case 2: tilted quarter five-spot

We now tilt the reservoir from Case 1, such that the
edges of the reservoir are aligned with the vectors
[0.9539, 0, 0.3] and [−0.0943, 0.9493, 0.3]. We compare
the inversion obtained using two different formulas from
Section 4: Eq. (18) accounts for gravity along stream-
lines, and Eq. (14) does not.

Fig. 5 shows inferred permeability fields andmatched
fractional flow curves for six iterations. By accounting

Fig. 4. Case 1. Matched fractional-flow curves (dashed lines) with 5% white noise added to the observed fractional-flow curve (solid line).

Fig. 5. Case 2. Comparison of inferred permeability fields and matched fractional-flow curves with and without accounting for gravity (left and right,
respectively).
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for gravity we observe a bit faster match for the pressure
drops, but apart from this, there is little difference in the
matching process. We obtain essentially the same result
as for Case 1, both with and without accounting for
gravity in the inversion. The reason is that we calculate
relative modifications, for which proportionality errors
cancel out. Although gravity does not give a pure
proportionality error, it has the same impact on calcu-
lating both Ical and Iobs for each streamline; see Eqs. (18)
and (19). This example demonstrates the robustness of
using relative modifications.

5.3. Case 3: five-spot with nonunit mobility ratio

Finally, we consider a five-spot pattern in a square
domain, but now with an injector in the centre and one

producer in each of the four corners. The reference
permeability is given on a 32×32 grid as shown in Fig.
2. We assume quadratic relative permeabilities, λw(s)
= s2 /μw and λo(s)= (1− s)2 /μo and μo=0.4 cp, which
gives a nonunit end-point mobility ratio of M=0.4. As
in the previous example, we match fractional flows and
pressure drops using the original Wang–Kovscek me-
thod and our improved method from Section 4. We
start the iterations by a homogeneous initial perme-
ability field of 700 mD (no prior information), and 5%
white noise is added to the observed fractional-flow
curve.

Fig. 6 shows the inferred permeability fields and
relative errors for the two methods. The error bars show
the sum of the relative errors for fractional flow and
pressure drop for all producers. As above, our method

Fig. 6. Case 3. Comparison of inferred permeability fields and relative errors for the originalWang–Kovseckmethod (left) and our newmethod (right).

Fig. 7. Illustration of the hierarchically coarsened grids used in the multiscale inversion process.
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converges faster, especially for the pressure drop. We
observe that both methods capture the mean permeabil-
ity correctly in the four injector–producer sectors, but
fail to capture permeability structures within each sector
properly. In particular we notice the artifacts along
streamline paths, caused by the direct mapping of
effective properties and the lack of a prior (geostatis-
tical) model. In the next section we propose a multiscale
approach that will improve the resolution of large-scale
permeability structures that affect several injector–
producer pairs.

6. A multiscale method

Many inversion methods are based upon minimisa-
tion of an objective functional using a gradient descent
method. Inverse problems are generally underdeter-
mined in the sense that one has a few observations and a
large number of unknown parameters. Moreover, since
the inversion process is highly nonlinear, the objective
functionals tend to have a large number of local minima
that must be avoided. Multiscale inversion has been
suggested by several authors as a means to stabilise the

Fig. 8. Case 4. Comparison of inferred permeability fields and relative errors with and without the multiscale approach. The true permeability field in
mD (upper left). The four next plots (from left to right) show the inferred permeability fields on the 4×4, 8×8, 16×16, and 32×32 grids. The last plot
in the second row shows the inferred permeability field obtained by a direct inversion on the 32×32 grid. The two plots in the last row show the
relative error with (left) and without (right) the multiscale approach.
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inversion and avoid local minima; see e.g., Yoon et al.
(1999) for a multiscale inversion method based on
analytical streamline sensitivities.

Although our streamline approach is not based upon
minimisation of an error functional, we here suggest to use
a similar approach to speed up and stabilise the inversion.
To this end we introduce a family of hierarchically coar-
sened grids, as illustrated in Fig. 7, where the finest grid
coincides with the geogrid on which we seek to match
permeabilities. Given the family of grids, the idea is quite
simple: Starting with a small set of streamlines, wemodify
the effective streamline permeabilities to match observed
production data as described in Section 4 and map the
perturbed streamline permeabilities back onto the coarsest
grid. Depending on the complexity of the reservoir, one or
more iterations can be performed. The resulting perme-
abilities on the coarsest grid are then interpolated (linearly)
onto the next grid in the family and used as initial values
for the match on the next scale. The process is continued
until the finest grid is reached, or can be terminatedwhen a
sufficiently good match is obtained or if no improvement
in the misfit is observed from one level to the next.
By allowing for early termination, the resolution of
the resulting permeability field will correspond to the
information content in the production data, and spurious
effects from over-parameterisation are reduced. On the

coarser grid levels, the ratio between the number of grid
permeabilities to be history-matched and the number of
streamlines/data-points can be more favourable, and
therefore the inversion problem may be less under-
determined. Even though we modify the permeability on
different coarse grids, the streamlines can be traced and
fluid simulation can be performed on a much finer grid
(e.g., the underlying geogrid) to avoid problems with loss
of accuracy and representation of wells.

We will present two simple synthetic cases to
illustrate the multiscale approach. For simplicity, we
assume that the reservoir is square, start with a uniform
4×4 grid as the coarsest grid, and recursively refine by
subdividing each grid block into four square grid blocks;
see Fig. 7. The dimensions of the grids thus become
4×4, 8×8, 16×16, 32×32, etc. In the inversion, we
perform only one iteration on all grids, except for the
finest grid, where we iterate until convergence. More
iterations could have been performed on each refine-
ment level, but we only want to capture the trends of the
large-scale permeability structures on each level. The
reservoir and fluid parameters (except permeability and
the mobility ratio) used in these examples are as
described in Section 5. For the two examples we assume
quadratic relative permeabilities like for Case 3 and add
5% white noise to the fractional-flow observations.

Fig. 9. Case 5. Comparison of inferred permeability fields and relative errors with and without the multiscale approach. The true permeability field in
mD (upper left). The four next plots (from left to right) show the inferred permeability field on the 4×4, 8×8, 16×16, and 32×32 grids. The last plot
in the second row shows the relative errors for the multiscale approach.
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6.1. Case 4: quarter five-spot

This example is similar to Case 1 from Section 5,
except that the true permeability field is represented on a
32×32 grid (see Fig. 8). Besides, for this example the oil
viscosity is 2.5 cp, which gives an end-point mobility
ratio of M=2.5.

Fig. 8 shows the inferred permeability field on each
refinement level compared with the permeability field
inferred after seven iterations of the inversion algorithm
directly on the 32×32 grid. The high permeable region
is located already on the 4×4 grid. Even though the
inferred permeability field of the multiscale approach
seems smoother, the location of the high-permeable
region is more accurately positioned and is less smeared
out between the wells. On the plot for the final match on
the fine grid, the streamline pattern is clearly visible.
This effect appears during the last few iterations and
seems to be a consequence of an over-parameterisation
that could have been avoided if we had terminated the
iteration earlier.

Fig. 8 also shows the error reduction with and without
the multiscale approach. Although the error reduction is
slightly slower for the multiscale approach, the same
number of iterations are necessary for convergence for
both approaches, and therefore the computational effort
for the multiscale method is smaller since fewer iter-
ations are performed on the finest scale.

6.2. Case 5: five-spot

In the next example we revisit Case 3. Fig. 9 shows
the inferred permeability field on each refinement level
and the inferred field after five iterations directly on the
finest grid. Already on the 4×4 grid some of the large-
scale structures of the permeability field are located.
Compared with the inversion in Case 3, the multiscale
approach captures more of the large-scale structures in
the reference permeability field and avoids the artificial
streamline-induced zonation structure observed in Fig. 6.
Moreover, the multiscale approach is faster, because
fewer iterations are necessary on the fine scale.

7. Concluding remarks

We have suggested two improvements to the stream-
line inversion method introduced by Wang and Kovscek
(2000). The resulting inversion method is able to match
production data and capture large-scale permeability
structures, but fails to incorporate the (a priori) variability
of the permeability field. Combining the inversion
method with existing geostatistical inversion methods,

the method can be extended to yield inferred permeability
fields that also satisfy geological constraints.
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Abstract 
A particularly efficient reservoir simulator can be obtained by 
combining a recent multiscale mixed finite-element flow 
solver with a streamline method for computing fluid transport. 
This multiscale-streamline method has shown to be a 
promising approach for fast flow simulations on high-
resolution geologic models with multimillion grid cells. The 
multiscale method solves the pressure equation on a coarse 
grid while preserving important fine-scale details in the 
velocity field. Fine-scale heterogeneity is accounted for 
through a set of generalized, heterogeneous basis functions 
that are computed numerically by solving local flow problems. 
When included in the coarse-grid equations, the basis 
functions ensure that the global equations are consistent with 
the local properties of the underlying differential operators. 
The multiscale method offers a substantial gain in 
computation speed, without significant loss of accuracy, when 
basis functions are updated infrequently throughout a dynamic 
simulation.  

In this paper we propose to combine the multiscale-
streamline method with a recent ‘generalized travel-time 
inversion’ method to derive a fast and robust method for 
history matching high-resolution geo-cellular models. A key 
point in the new method is the use of sensitivities that are 
calculated analytically along streamlines with little 
computational overhead.  The sensitivities are used in the 
travel-time inversion formulation to give a robust quasilinear 
method that typically converges in a few iterations and 
generally avoids much of the time-consuming trial-and-errors 
seen in manual history matching.  Moreover, the sensitivities 
are used to enforce basis functions to be adaptively updated 
only in areas with relatively large sensitivity to the production 
response. The sensitivity-based adaptive approach allows us to 
selectively update only a fraction of the total number of basis 

functions, which gives substantial savings in computation time 
for the forward flow simulations.  

We demonstrate the power and utility of our approach 
using a simple 2D model and a highly detailed 3D geomodel. 
The 3D simulation model consists of more than one million 
cells with 69 producing wells. Using our proposed approach, 
history matching over a period of seven years is accomplished 
in less than twenty minutes on an ordinary workstation PC. 
 
Introduction 
It is well known that geomodels derived from static data only 
– such as geological, seismic, well-log and core data – often 
fail to reproduce the production history. Reconciling 
geomodels to the dynamic response of the reservoir is critical 
for building reliable reservoir models. In the past few years, 
there have been significant developments in the area of 
dynamic data integration through the use of inverse modeling. 
Streamline methods have shown great promise in this regard 
(Vasco et al. 1999; Wang and Kovscek 2000; Milliken et al. 
2001; He et al. 2002; Al-Harbi et al. 2005; Cheng et al. 2006). 
Streamline-based methods have the advantages that they are 
highly efficient “forward” simulators and allow production-
response sensitivities to be computed analytically using a 
single flow simulation (Vasco et al. 1999; He et al. 2002; Al-
Harbi et al. 2005; Cheng et al. 2006). Sensitivities describe the 
change in production responses due to small perturbations in 
reservoir properties such as porosity and permeability and are 
a vital part of many methods for integrating dynamic data. 

Even though streamline simulators provide fast forward 
simulation compared with a full finite-difference simulation in 
3D, the forward simulation is still the most time-consuming 
part of the history-matching process. A streamline simulation 
consists of two steps that are repeated: (i) solution of a 3D 
pressure equation to compute flow velocities; and (ii) solution 
of 1D transport equations for evolving fluid compositions 
along representative sets of streamlines, followed by a 
mapping back to the underlying pressure grid. The first step is 
referred to as the pressure step and is often the most time-
consuming. Consequently, history matching and flow 
simulation are usually performed on upscaled simulation 
models, which imposes the need for a subsequent downscaling 
if the dynamic data are to be integrated in the geomodel. 
Upscaling and downscaling may result in loss of important 
fine-scale information.  
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Recently, so-called multiscale methods have proven to be a 
promising alternative to standard upscaling, both with respect 
to accuracy and efficiency (Gautier et al. 1999; Arbogast and 
Bryant 2002; Jenny et al. 2004; Aarnes et al. 2005). These 
methods are specially designed to perform well when the 
underlying parameters exhibit a multiscale structure; that is, 
when the parameter values span several orders of magnitude 
or the correlation lengths of the heterogeneity structures vary 
over several orders. Like standard upscaling methods, the 
multiscale methods compute pressure and/or velocities by 
solving the global flow problem on a coarsened grid. 
However, whereas upscaling methods use local decoupled 
flow problems to derive upscaled permeabilities or 
transmissibilities, and thus only preserve the local flow in an 
averaged sense, multiscale methods use the solutions of these 
localized flow problems as building blocks to form a global 
flow solution that is correct in an averaged sense on the coarse 
grid and at the same time contains representative subscale 
variations on the original fine grid. 

Multiscale methods are primarily targeted at dynamic 
flows where the pressure needs to be computed repeatedly. 
Since temporal changes in the coefficients of the pressure 
equation are typically moderate compared to the spatial 
variability, it is seldom necessary to recompute the local flow 
problems each time the pressure is updated. Instead, local flow 
problems are computed initially as part of a preprocessing step 
(that is embarrassingly simple to parallelize) and typically 
only updated if the local domain is swept by a strong front in 
the fluid compositions or the global flow pattern changes 
significantly due to shut-in of wells, infill drilling, well 
conversion, etc. Hence, a pressure update typically consists of 
recomputing a few local flow problems and then solving a 
global flow problem on the coarse grid. This means that one 
can obtain an approximate solution on the original grid at the 
cost of solving the same problem on a much coarser grid. 

In this paper, we combine multiscale-streamline simulation 
and streamline-based history matching in one efficient 
approach. As a flow solver we apply the multiscale mixed 
finite-element method (MsMFEM) (Chen and Hou 2002; 
Aarnes 2004). MsMFEM produces mass-conservative 
solutions both on the coarse grid and on the underlying fine 
grid, is flexible with respect to grid representation 
(geometry/topology), and has a rigorous mathematical 
framework.  

For the history matching we use the generalized travel-
time inversion method (Vasco et al. 1999; He et al. 2002), 
which has previously been successfully applied to many field 
cases. There are several advantages associated with travel-
time inversion of production data. First, it is robust and 
computationally efficient. Unlike conventional ‘amplitude’ 
matching, which can be highly nonlinear, it has been shown 
that the travel-time inversion has quasilinear properties (Vasco 
et al. 1999; Wu and Datta-Gupta 2002). As a result; the 
minimization proceeds rapidly even if the initial model is not 
close to the solution. Second, travel-time sensitivities are 
typically distributed more uniform between wells compared to 
‘amplitude’ sensitivities that tend to be localized near the 
wells. This prevents over-correction in the near-well regions 
(Wu and Datta-Gupta 2002). Finally, in practical field 
applications, production data are often characterized by 

multiple peaks. Under such conditions, the travel-time 
inversion can prevent the solution from converging to 
secondary peaks in the production response (Vasco et al. 
1999). 

Central in the inversion method is the computation of 
analytic streamline sensitivities in terms of simple 1-D 
integrals along streamlines. The sensitivities can be computed 
using a single streamline simulation. The second novel idea in 
this paper is a strategy based on sensitivity thresholding for 
reducing the workload for the forward simulation and for the 
inversion process. Altogether, the analytic sensitivities are 
used for three purposes: (i) in the inversion method, (ii) to 
reduce the computational complexity of the forward 
simulations by reducing the number of local flow solves, and 
(iii) to reduce computational complexity of the inversion 
process. 

The outline of our paper is as follows. First, we discuss the 
basic steps in our proposed approach and illustrate the history-
matching procedure using a simple synthetic example. Second, 
we describe the multiscale-streamline flow simulation and the 
history-matching procedure. Third, we discuss and 
demonstrate the impact of selective sensitivity-based workload 
reduction. Finally, we present a high-resolution history-
matching example to demonstrate the efficiency and the 
practical applicability of our method. 

 
Background and Illustration of the Procedure 
Streamline-based history matching utilizes streamline-derived 
sensitivities to calibrate geomodels to dynamic data. The 
major steps involved in the proposed process are: (i) 
Multiscale-streamline flow simulation to compute production 
responses at the wells. (ii) Quantification of the mismatch 
between observed and computed production responses via a 
generalized travel time. An optimal ‘travel-time shift’ is 
computed by systematically shifting the computed production 
responses towards the observed data until the cross-correlation 
between the two is maximized (He et al. 2002). (iii) 
Computation of streamline-based analytic sensitivities of the 
production responses (water-cuts) to reservoir parameters, 
specifically permeability. (iv) Updating of reservoir properties 
to match the production history via inverse modeling. We 
propose a sensitivity-based thresholding strategy to reduce the 
computational work for this step.  

This four-step process is repeated until a satisfactory match 
in production data is obtained. To reduce the computational 
workload for the forward simulation, we propose to reuse 
basis functions in regions with low sensitivity to the 
production responses. 

In the next sections we will discuss the details of the 
mathematical formulation behind the multiscale mixed finite-
element formulation and the inversion method, and propose a 
sensitivity-based strategy for selective work reduction. 
However, for clarity of exposition, we first illustrate the 
history-matching procedure using a synthetic 2-D example. 

 
A Synthetic Example. This synthetic case (Case 1) 
involves reconstruction of a reference permeability 
distribution on a uniform 21×21 grid, based on the observed 
water-cut production history from a 9-spot pattern. For the 
forward simulation we apply the multiscale-streamline 
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simulator (to be described below), with the 21×21 grid as the 
underlying fine grid. We construct a uniform coarse grid of 
dimension 7×7 so that each block in the coarse grid consists of 
3×3 subcells. Figure 1 illustrates the two-grid approach for a 
slightly more general case with nonmatching blocks in the 
coarse grid. The multiscale simulator basically works as 
follows: For each pair of adjacent blocks in the coarse grid, a 
local flow problem is solved to obtain a local (multiscale) 
basis function associated with the corresponding internal face 
in the coarse grid (see Fig. 2). The local basis functions are 
then incorporated into a global system of equations defined on 
the coarse grid, which is solved to obtain a flux for each face 
in the coarse grid. Fine-scale flow velocities are then obtained 
by multiplying the coarse-grid fluxes with the corresponding 
multiscale basis function and summing over all faces in the 
coarse grid. 

The flow is described using quadratic relative permeability 
curves with zero residual oil and water saturations and end-
point mobility ratio Mend = µo/µw. We consider three flow 
cases: two with favorable mobility ratios (Mend=0.2 and 
Mend=0.5) and one with unfavorable mobility ratio (Mend=10). 
Synthetic dynamic data were generated by adding 5% white 
noise to the water-cut responses obtained from the reference 
permeability field using the streamline method with a standard 
two-point pressure solver. We treat these as the observed data. 
Next, starting from a homogenous initial permeability field, 
we match the water-cut data via the generalized travel-time 
inversion. To demonstrate the robustness of this method, we 
match the observed data for Mend=0.2, 0.5, 10 starting from a 
homogeneous initial permeability field. Here the permeability 
in each cell is treated as an adjustable parameter, giving a total 
of 441 unknown parameters to be estimated.  

Plots of the time-shift and amplitude residuals in Fig. 3 
show that the iteration converges very fast (after 3-4 
iterations).  Figure 4 shows a comparison of the initial and 
final match of the water-cut curves for Mend=0.5 for the three 
wells with lowest initial, highest initial, and highest final 
mismatch after six iterations. Overall, the match to the 
production data is quite satisfactory for all three mobility 
ratios. The corresponding permeability fields after six 
iterations are shown in Fig. 5. The three permeability models 
clearly capture the large-scale trends of the reference 
permeability field; a unique solution is not obtained since the 
data integration is ill-posed.  

 
Mathematical Formulation 
Multiscale Flow Simulation. An important aspect of the 
proposed history-matching algorithm is the use of a multiscale 
mixed finite-element method (MsMFEM) for the pressure 
equation. This method belongs to a family of multiscale finite-
element methods, first introduced by Hou and Wu (1997). The 
basic idea of the methods is to construct special finite-element 
basis functions that are adaptive to the local properties of the 
elliptic differential operator. To ensure local mass 
conservation on the coarse and fine grid, Chen and Hou (2002) 
introduced a multiscale method based on a mixed finite-
element discretization. The method was later modified by 
Aarnes (2004) to ensure local mass conservation also for  
 

 
 
Fig. 1 -  A general coarse grid overlying a uniform fine grid with 

the gray area giving support of basis function Ψij, which is 
associated with the edge/face indicated by the red line. 

 

 
Fig. 2 – The x-component of the velocity basis function 

associated with an edge/face between two blocks of different 
size for a homogeneous and a heterogeneous permeability 
field, respectively. 
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Fig. 3 - Case 1:  Reduction of residuals for all producers for 

mobility ratios Mend=0.2, 0.5, and 10. 
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Fig. 4 - Case 1: Water-cut curves for water for producers P2 
(north-west), P4 (south-east), and P8 (east). These wells had 
lowest initial, highest initial, and highest final mismatch, 
respectively. 
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Fig. 5 –  Case 1: The plots show, from upper left to lower right, 

reference permeability field and matches obtained after six 
iterations for mobility ratios Mend=0.2, 0.5 and 10. 

 
blocks containing source terms. In the current paper, we use a 
slightly different formulation due to Aarnes and Lie (2004). 

Governing Equations. We consider incompressible two-
phase flow of oil and water in a non-deformable permeable 
medium. For simplicity, we neglect the effects of gravity, 
compressibility and capillary forces. For simplicity, we also 
assume no-flow boundary conditions. The flow equations can 
be formulated as an elliptic equation for the pressure p and the 
total velocity u, 

, .tu k p u qλ= − ∇ ∇⋅ = .......................…………..………….......... (1) 

Here q is a source term representing injection and production 
wells, k is the absolute permeability, and λt= λt(Sw) is the total 
mobility. We will solve Eq. 1 for the fine-scale velocity field u 
using MsMFEM, for which the details will be described in the 
next subsections. 

The velocity field is used to obtain a streamline 
distribution. Along each streamline the 3D transport equation 
reduces to a 1D transport equation with the time-of-flight τ as 
the spatial coordinate 

.0)(
=

∂
∂

+
∂

∂
τ

www Sf
t

S ……………………………………………...... (2)  

The time-of-flight is defined as  

0

( )( )
| ( ) |

r

r d
u
φ ξτ ξ

ξ
= ∫ ,…………………..……………………...…….(3) 

and expresses the time it takes a passive particle to travel a 
distance r along the streamline. Equation 2 is solved forward 
in time along each streamline using front tracking (Holden and 
Risebro 2002). This method is unconditionally stable and 
therefore avoids the usual CFL-constraint that would 
otherwise have put a severe limitation on the size of the time 
step.    

Mixed Finite Elements. The mixed finite-element 
formulation of the flow equation (Eq. 1) in a domain Ω seeks a 
pair (u,p) in U×V, such that 

1( ) 0, ,u k v dx p v dx v Uλ −

Ω Ω

⋅ − ∇ ⋅ = ∀ ∈∫ ∫ ……......... (4) 

     , .l u dx ql dx l V
Ω Ω

∇ ⋅ = ∀ ∈∫ ∫ ………... (5) 

Here U and V are (finite-dimensional) function spaces for 
pressure and velocity, respectively. Now, letting {Ψi} and 
{Φk} be bases for U and V, respectively, we obtain 
approximations u=ΣuiΨi and p=ΣpkΦk, where the coefficients 
u= {ui} and p= {pk} solve a linear system of the form 

,T

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

B C u 0
C 0 p q

….………………………………..……. (6) 

where B={bij}, C={cik} and q={qk} are defined by 

∫
Ω

− Ψ⋅Ψ= ,)( 1 dxkb jiij λ  ...………………………………......... (7) 

∫
Ω

Ψ⋅∇Φ= ,dxc ikik
………………………………...……..…....... (8) 

.dxqq kk ∫
Ω

Φ= …………………………………….……………..... (9) 

Multiscale Basis Functions. In a standard discretization, 
the spaces U and V typically consist of low-order piecewise 
polynomials. In multiscale methods, U and V are given by the 
solution of local flow problems. For incompressible flows, the 
actual pressure solution is immaterial for the flow simulation, 
and so only the velocity field is needed. We will therefore 
only construct an accurate multiscale approximation space Ums 
for the velocity and use a standard approximation space V for 
pressure consisting of piecewise constant functions. 

Let {Km} be a partitioning of Ω into mutually disjoint 
(fine) grid cells. Furthermore, let {Ti} be a coarse partitioning 
of Ω, in such a way that whenever Km∩Ti≠0, then Km⊂Ti (see 
Fig. 1). Let Γij denote the non-degenerate interfaces 
Γij=∂Ti∩∂Tj. For each Γij, we assign a basis function Ψij in 
Ums, and for each Ti we assign a basis function Φi in V. The 
basis function Ψij is obtained by forcing a unit flow from block 
Ti to Tj; that is, by solving a local flow problem in Ωij=Ti∪Tj  

⎩
⎨
⎧

∈−
∈

=Ψ⋅∇Φ∇−=Ψ
,),(

,),(
,

jj

ii
ijijtij Txxw

Txxw
kλ …………. (10) 

with Ψ·n=0 on the boundary of Ωij. Here  the total mobility 
λt= λt(Sw) is given on the underlying fine grid Km. To give a 
unit flow from Ti to Tj, the source terms wi(x) are normalized 

.)()()(
1−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅= ∫

iT
iii dWxWxw ξξ ……………………………. (11) 

To ensure a conservative approximation of v on the fine grid, 
we choose Wi=q for coarse blocks containing a well (Aarnes 
2004). For coarse blocks where q=0, we scale Wi according to 
the trace of the permeability tensor (Arnes et al. 2006); i.e., we 
use 
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⎨
⎧ =

=
.otherwise,
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xq

xqxkxW iT
i

………….………... (12) 

The local flow problems in Eq. 10 can be solved numerically 
by any consistent and conservative method; here we use the 
standard two-point flux-approximation (TPFA) scheme. The 
corresponding basis functions can be seen as generalizations 
of the lowest-order Raviart-Thomas basis functions in a 
standard mixed method (Raviart and Thomas 1975). Figure 2 
illustrates the x-velocity basis functions in two different cases.  

Implementation of MsMFEM. We will briefly describe 
some implementation aspects related to the efficiency and 
generality of MsMFEM. The mixed formulation leads to an 
indefinite global system (Eq. 6), which may be more difficult 
to solve efficiently than the symmetric positive-definite (SPD) 
systems that typically arise from standard discretization 
methods. However, it is possible to obtain an SPD system also 
for MsMFEM by reformulating Eq. 4 and Eq. 5 to an 
equivalent (so-called) hybrid system.  Like the indefinite 
system in Eq. 6, the hybrid system will be sparse because the 
basis functions have local support, and the solution can be 
obtained using one of the efficient linear solvers specialized 
for sparse SPD systems. The hybrid formulation is described 
in more detail by Aarnes et al. (to appear). We note that in our 
current implementation, we solve the global system in Eq. 6 
using a direct sparse solver, since we only deal with 
moderately sized coarse systems. 

Most of the computational work in MsMFEM is associated 
with solving the local flow problems defined by Eqs. 10 to 12, 
and the choice of solution strategy for these equations is 
crucial to the overall performance of the method. The local 
problems are usually small to moderately sized, and the 
resulting systems can be solved using iterative or direct sparse 
linear solvers. The optimal choice of linear solver typically 
depends on the problem size, and we recommend having 
available a range of solvers tuned to different system sizes. 
Alternatively, if one has access to a highly efficient solver for 
large sparse systems, it may be beneficial to lump together 
several local problems to form a larger system. Solving larger 
systems may be advantageous because the most efficient 
linear solvers typically require an initial setup phase. 
Regardless of the choice of solution strategy, efficient 
parallelization is easy, since the local flow problems are 
completely decoupled. 

In the examples presented in this paper, we only use 
Cartesian grids. However, MsMFEM is flexible with respect 
to the choice of both fine and coarse grids. Given a fine-grid 
solver, basis functions can be defined for almost any 
collection of connected fine-grid cells (Aarnes et al. 2006). 
Recently, the method has been implemented for (matching) 
corner-point and tetrahedral grids in 3D (Aarnes et al., to 
appear), and based on this experience we are confident that the 
methodology presented in the current paper is easily extended 
to corner-point grid models. 

 
Integration of Production Data. In our approach, 
integration of production data is carried out using a 
‘generalized travel-time inversion’ as described by He et al. 
(2002). First, the production-data mismatch is determined by 
computing a ‘generalized travel-time misfit’ for the water-cut 

at each producing well. This is accomplished by shifting the 
computed water-cuts towards the observed data until the 
correlation between the two is maximized. The inversion 
algorithm simultaneously minimizes the travel-time misfit for 
all the wells using an iterative least-square minimization 
algorithm (LSQR) (Vasco et al. 1999; He et al. 2002). The 
basic underlying principles behind the history-matching 
algorithm are briefly as follows: 

• Match the field-production history within a specified 
tolerance. This is accomplished by minimizing the travel-
time misfit for water-cut. 

• Preserve geological realism by keeping changes to the 
prior geological model minimal, if possible. The prior 
model already incorporates static data (well and seismic 
data) and available geological information. 

• Only allow for smooth and large-scale changes; the 
production data has low resolution and cannot be used to 
infer small-scale variations in reservoir properties. 

Formulation of Inverse Problem. Mathematically, this 
algorithm leads to the minimization of a penalized misfit 
function consisting of the following three terms (Vasco et al. 
1999; He et al. 2002): 

1 2δ β δ β δ− + +Δt G m m L m .…………..…………..(13) 

Here tΔ~ is the vector of generalized travel-time shifts at the 
wells, G is the sensitivity matrix containing the sensitivities of 
the generalized travel time with respect to changes mδ in the 
reservoir properties, and L is a second-order spatial difference 
operator. The first term ensures that the difference between the 
observed and calculated production response is minimized. 
The two remaining terms are standard regularization terms. 
The second term is a norm constraint that penalizes deviations 
from the initial (prior) geological model and as such helps to 
preserve the geological realism in the history match. The third 
term, which is a ‘roughness’ constraint that measures the 
regularity of the changes, is introduced to stabilize the 
inversion. Physically, it only allows for large-scale changes 
that are consistent with the low resolution of the production 
data. The weights β1 and β2 determine the relative strengths of 
the prior model and the roughness term.  

The minimum in Eq. 13 can be obtained by an iterative 
least-squares solution to the augmented linear system 

1

2

.β δ
β

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

G Δt
I m 0
L 0

…...……………………………………..… (14) 

This system is solved with the iterative least-square 
minimization algorithm, LSQR (Paige and Saunders 1982), for 
which the computational cost scales linearly with respect to 
the number of degrees-of-freedom (Vega et al. 2004). Fine-
grid sensitivities close to zero are eliminated, which makes the 
system more sparse and reduces the number of arithmetic 
operations for the LSQR-iterations. In the next section we will 
discuss an approach to further reduce the number of nonzero 
sensitivities based on thresholding of coarse-grid sensitivities. 

In our implementations we focus on inverting water-cut 
data. However, the generalized travel-time inversion method 
has earlier been extended to compressible three-phase flow, so 
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that water-cut and gas-oil ratios are incorporated jointly 
(Cheng et al. 2006). 

Water-Cut Sensitivities. A unique feature of streamline 
methods is that the parameter sensitivities can be computed 
using a single flow simulation, leading to very fast history-
matching or inverse-modeling algorithms. Moreover, because 
the sensitivities are simple integrals along streamlines, the 
runtime scales very favorable with respect to the number of 
grid cells, thus making streamlines the preferred approach for 
history matching highly-detailed geological models.  

To derive the desired streamline-based sensitivities, we 
consider the velocity of propagation for a given saturation 
contour Sw along a streamline, 

 
w

w

Sw dS
df

t
=

∂
∂τ , .............................................................................. ..(15) 

from which it follows that the arrival time ta of the saturation 
contour will be, 

 w
a

w

dft
dS

τ= …………………………………………………….. (16) 

We use the above relationship to compute the sensitivity of the 
arrival time of the saturation contour based on the sensitivity 
of the time-of-flight (Vasco et al. 1999; He et al. 2002). 
Specifically, the sensitivity of the arrival time of the saturation 
front with respect to reservoir parameter m is computed as, 

 a

w

w

t m
dfm
dS

τ∂
∂ ∂=
∂

. ................................................................................... ..(17) 

Here the sensitivity of the time-of-flight is computed 
analytically from a single streamline simulation under the 
assumption that the streamlines do not shift because of small 
perturbations in reservoir properties. For example, the time-of-
flight sensitivity with respect to permeability in grid cell i, 
under the assumption of the same permeability for the whole 
grid cell, will be given by (Vasco et al. 1999) 

( ) ( ) ,
i i

i i

i i i i i

s sd d
k k k k k

τ ττ ξ ξξ ξ
Σ Σ

∂Δ Δ∂ ∂
= = = − = −

∂ ∂ ∂∫ ∫ ……...(18) 

where the integral is along the streamline trajectory Σ and s(x) 
is the ‘slowness’ defined as the reciprocal of the total 
interstitial velocity 

( ) ( )( ) .
( ) ( )t

x xs x
u x k x p
φ φ

λ
= =

∇
……………………………………(19) 

Similarly, the time-of-flight sensitivities can be calculated 
with respect to mobility or to the product of mobility and 
permeability. 

Finally, the sensitivity of the shift tΔ  in the generalized 
travel time with respect to reservoir parameters is given by 

,
1

~ 1
∑
= ∂

∂
−=

∂

Δ∂ dN

d a m
at

m

t

N
……………...………………………….(20) 

where Nd represents the number of observed data for a well. 
Worth mentioning here is an important practical aspect. Our 

experience indicates that the selective work reduction and the 
data integration are more robust if the sensitivities are made 
dimensionless by calculating the sensitivities of the logarithm 
of the time shifts as described by He et al. (2002). 

Finally, we remark that the streamline-based sensitivity 
computation has also been addressed for cases including 
gravity, changing field conditions, and fractured reservoirs 
(He et al. 2002; Al-Harbi et al. 2005). 
 
Sensitivity-Based Selective Work Reduction 
In this section, we discuss how the sensitivities introduced 
above can be used to reduce the computational complexity of 
the history matching with negligible loss in quality of the 
derived match. To this end, we compute a sensitivity 
coefficient for each coarse block by summing the 
corresponding fine-grid sensitivities (Yoon et al. 2001). Based 
on these sensitivity coefficients, we decide when to update and 
when to not update the corresponding basis functions. 
Similarly, we will reduce the inverse system by only including 
fine-scale  sensitivities from coarse blocks having a 
sufficiently high sensitivity coefficient as described in more 
detail below. 
Selective Updating of Basis Functions. We propose to 
reduce the computational work for MsMFEM by only 
updating basis functions in areas with large production-
response sensitivities. To determine which basis functions to 
update, one can either: (i) use a predefined threshold for the 
sensitivity values, or (ii) update a predefined fraction of the 
basis functions. The first approach is fully adaptive in the 
sense that the number of updated basis functions may change 
from iteration to iteration. However, this approach requires 
(general) guidelines for setting the threshold. The second 
approach requires us to sort the sensitivities. This is a minor 
concern since the number of operations for sorting N numbers 
scales like N·logN and the number of basis functions scales 
with the number of coarse blocks. For our implementations we 
therefore stick to the second approach. 

By inspecting Eq. 10, we notice that there are three factors 
that may require the basis functions to be updated before a 
new pressure solve. First of all, we notice that if the absolute 
permeability k(x) changes, the basis functions will change, too. 
In history matching, the absolute permeability will typically 
change in certain regions from one forward simulation to the 
next. Secondly, if the well rate q changes, the source terms 
wi(x) will change and hence basis functions with support in 
well-blocks will change. Finally, if the total mobility λt 
changes, due to changes in saturation (or viscosities), the basis 
functions will change.  

In the first flow simulation of the history-matching 
procedure, we update all basis functions in every pressure 
step, because no sensitivities are yet available. (In a more 
sophisticated implementation, one would typically have used 
another kind of indicator to ensure that basis functions are 
only updated near the saturation front (Aarnes 2004; Jenny et 
al. 2004) ).  After the first simulation, the permeability field is 
updated by the inversion method. Since the permeability field 
has changed, we should, at least in principle, recalculate all 
basis functions for the first pressure step of the next flow 
simulation. For the subsequent pressure steps of the 
simulation, we apply the proposed selective updating strategy. 
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For the subsequent simulations we repeat the strategy of the 
second simulation. The approach described in this paragraph, 
when x% of the basis functions are updated dynamically each 
time step, is referred to as x% DU (dynamical update). Finally, 
we remark that for 0% DU, sensitivities are not really needed. 
Therefore, if we for this strategy choose to not update basis 
functions during the first flow simulation, we will denote the 
strategy 0% DU*. This special case deviates from what we 
specified above. 

An extended approach would be to reuse basis functions 
from the previous forward simulation in the coarse blocks 
where the absolute permeability has undergone small or no 
changes in the last inversion step, or generally in coarse blocks 
that have little effect on the overall production characteristics. 
We will refer to this strategy, where x% of the basis functions 
are updated initially and the remaining (100-x)% are kept from 
the previous flow simulation, as x% IU (initial update). 
 
Selective Reduction of the Inversion System. Since the 
water-cut data contain limited information about fine-scale 
variations, it can be advantageous to avoid involving areas of 
low sensitivity in the inversion, and instead focus on resolving 
large-scale structures in areas with higher sensitivities. We 
therefore propose to eliminate fine-scale sensitivities from the 
LSQR-system (Eq. 14) in areas of low sensitivity to reduce the 
computational work in the inversion process. To determine the 
areas of low and high sensitivity, we use the sensitivity 
coefficients of the coarse grid-blocks. That is, we introduce a 
threshold and only include fine-scale sensitivities associated 
with cells inside coarse blocks having a summed sensitivity 
above the given threshold. The coarse blocks that are 
eliminated in this process will usually mainly contain cells 
with zero or low sensitivity. 

The constraints involved in Eq. 13 are important for the 
elimination of coarse blocks to work. As for the thresholding 
of basis functions, we can either use a predefined threshold for 
the sensitivity values or a predefined fraction of coarse blocks; 
here we use the second approach. Henceforth, keeping y% of 
the coarse blocks is referred to as y% CB. It should be noted 
that eliminating fine cells for a fraction of the coarse blocks 
having low sensitivity will not necessarily decrease the 
number of fine-grid sensitivities in the inverse system by the 
same fraction. The reason is cells with zero or small sensitivity 
are already eliminated, and such fine-grid sensitivities are 
more likely represented in coarse blocks with low sensitivity. 
 
Impact of Selective Work Reduction To investigate the 
accuracy of the proposed selective work reduction, we apply it 
to the synthetic 9-spot case presented earlier in this paper 
(Case 1). We will still refer to this case as Case 1 even though 
we will vary some parameters and strategies for selective work 
reduction. To further assess the quality of the data integration, 
we will in the following also report the average discrepancy 
between the reference and matched permeability field 
measured by 

reference derived
1

1log | log( ) log( ) |N
i i ik k k

N =Δ = −∑ ...……....(21) 

Further, we also report time-shift and amplitude residuals 
measured by 

2
Δ t and 

 ( ) ( )
1
22obs calk k

w j w j
k j

f t f t
⎛ ⎞⎡ ⎤−⎜ ⎟⎣ ⎦⎝ ⎠
∑∑ ,……...……………..…….…(22) 

respectively. Here f obs and f cal are the observed and calculated 
water-cut data, respectively, in well k at time j. 

To test our work reduction strategy we use a 5×5 test 
matrix with x% dynamical update and y% initial update for 
x,y=0,25,…,100. Figure 6 shows the reduction of time-shift 
and amplitude residuals after six iterations, as well as the 
discrepancy between matched and reference permeability 
fields, compared with similar results obtained by using the full 
method with a TPFA pressure solver. Judging from the 
amplitude residual and the permeability discrepancy, the data 
are well matched for all parameters x and y, and the quality of 
the history match does not seem to decline dramatically 
compared with the TPFA solver. For the time-shift residual, 
the use of the multiscale pressure solver gives better match 
than for the TPFA solver. On the other hand, this measure is 
also more sensitive to the choice of parameters for the 
selective work reduction. The quality of the match generally 
decays with decreasing percentage of cells being dynamically 
updated, except for the time-residual for Mend=0.5, which 
somewhat surprisingly shows the opposite trend. 

The derived permeability fields for the unfavorable 
mobility ratio do not seem to change much when reducing the 
number of dynamically updated basis functions. Following 
Aarnes (2004), one can argue that it is in general quite safe to 
reduce the number of dynamically updated basis functions for 
unfavorable flow cases, since these are characterized by weak 
shocks and mostly smooth variations in the total mobility.  For 
the favorable mobility ratio (Mend=0.2), the derived 
permeability fields seem to change more by reducing the 
fraction of basis functions updated; see Fig. 7.  In this case, 
the flow will generally have strong saturation fronts, which 
induce major changes in the basis functions as the leading 
water fronts move through the corresponding grid blocks. 
      Finally, we investigate the effect of the proposed strategy 
for selective reduction of the inverse system.  To this end, we  
keep the fine-grid sensitivities corresponding to 100%, 75%, 
and 50% of the coarse blocks, selected by thresholding the 
summed sensitivities in the coarse grid. This strategy was 
tested in combination with x% dynamical update for 
x=0,25,…,100. Reducing the number of parameters in the 
inversion had little influence on the convergence of the 
inversion and small effect on the quality of the final match 
(see Fig. 8 and Table 1). Some derived permeability fields for 
Mend=0.5 are shown in Fig. 9. On the other hand, the inverse 
system could not be reduced much further than 50%. For 
lower values, we typically observed lack of convergence 
and/or (highly) non-realistic final matches. We also note that 
for some cases, the selective reduction of the inverse system 
resulted in a slightly slower convergence for the inversion. 
The method converged to the same residual level as without 
selective work reduction, but the inversion required one or two 
additional iterations, thus resulting in increased total 
computation time. Even though the selective reduction of the 
inversion system can result in a slightly slower convergence, 
our experiments demonstrate robustness for the generalized 
travel-time inversion.  
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Fig. 6 – Case 1: Robustness of selective work reduction for basis function updates. 
 

Fig. 7 – Case 1: Derived permeability field updating (from upper left to lower right) 100%, 75%, 50%, and 25% of the basis functions 
dynamically for mobility ratio Mend=0.2. The reference permeability field is shown in Fig. 5. 
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Fig. 8 – Case 1: Robustness of selective work reduction of inverse system for mobility ratio Mend=0.5. 
 

 
        a) 100% DU + 75% CB                       b) 100% DU + 50% CB                      c) 50% DU + 75% CB                         d) 50% DU + 50% CB 

 
Fig 9 – Case 1: Derived permeability field using selective work reduction also for the inversion system. Mobility ratio Mend=0.5. The reference 

permeability field is shown in Fig. 5. 
 

 
History Matching a Full 3D Geomodel  
In this section we demonstrate the feasibility of the approach 
for field studies by application to a high-resolution 3-D 
example (Case 2). As mentioned before, streamlines and the 
time-of-flight are used to compute the sensitivity of the 
production data with respect to reservoir parameters as 
described above. In this synthetic field-scale example, water-
cuts were matched to update the reservoir permeability 
distribution using the multiscale-streamline simulator for the 
forward simulation. 
 
Model Description. The geomodel consists of a fine grid 
with 256×128×32 cells, which gives a total of 1,048,576 grid 
cells, each of size 10×10×2 m. The fine-grid cells are collected 
into a uniform 32×16×8 coarse grid, so that each coarse block 
consists of 8×8×4 cells in the fine grid. All the cells are treated 
as active. 

The permeability is log-normally distributed in the range 
0.017 mD to 79.5 mD with mean 2.2 mD (see Fig. 10b). The 
correlation length is about 270 meters in the horizontal 
direction and about 90 meters in the vertical direction. For our 
purposes, this permeability field was used as a true model, 
from which we generated our synthetic production data using 
the standard TPFA method directly on the fine grid.  

A total number of 32 injectors and 69 producers were 
included in the simulation model (see Fig. 11). All the wells 
are vertical and intersect all layers. The production history 
consists of 2475 days of water-cut data from the 69 producers 
(Fig. 12). The water injectors were injecting at constant total 
reservoir volume rate of 1609 bbl/day, and each producer was 
producing with constant reservoir volume rate fulfilling the 
total voidage rate. For each simulation, we used 15 pressure 
steps of length 165 days, quadratic relative permeability 
curves, and end-point mobility ratio of Mend=5.

 
 

TABLE 1 – Case 1:  REDUCTION OF MISFIT FOR SELECTIVE WORK REDUCTION OF INVERSE SYSTEM 

             Method 
  DU         IU           CB 

Mend=0.2 
   T (res. %)    A (res. %)         Δlog(k) 

                      Mend=0.5 
  T (res. %)     A (res. %)         Δlog(k) 

Mend=10      
  T (res. %)    A (res. %)         Δlog(k) 

Initial 100.0 100.0 1.045 100.0 100.0 1.045 100.0 100.0      1.045 
  100%   100%   100%     6.0   13.5 0.581     5.6   13.5 0.572     5.9   23.1      0.527 

  100%   100%     75%     5.8   13.6 0.602     5.7   14.1 0.602    7.4   23.1      0.564 

  100%   100%     50%      8.1   17.3 0.623     5.3   14.6 0.698     7.0   27.5      0.695 

    50%   100%     75%      4.8   16.3 0.672     2.9   15.3 0.629     6.8   23.3      0.572 

    50%   100%     50%      3.8   13.7 0.670     3.5   18.3 0.741   19.1   29.4      0.638 
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   (a) Initial permeability                                                                              (b) Reference permeability 

 
(c) Derived permeability (MsMFEM [full])            (d) Derived permeability (MsMFEM [reduced])            (e) Derived permeability (TPFA) 
 
Fig. 10 – Case 2: Initial, reference and derived permeability fields. 

 
Fig. 11 – Case 2: Well configuration for the geologic model example. The symbol x represents a producer while the symbol o represents an 

injector. 
 
Integration of Production Data. To generate an initial 
permeability model, we treat the permeability values in the 
well-blocks of the reference model as known data. By 
conditioning on the well blocks, sequential Gaussian 
simulation was used to generate multiple realizations of the 
permeability model (Deutsch and Journel 1998). 

In the following we will mainly consider three approaches: 
MsMFEM [full], MsMFEM [reduced], and TPFA. The two 
first approaches are multiscale approaches, while the last one 
simulates directly on the fine grid. Further, for the first and the 
last approach no selective work reduction occurs. For 
MsMFEM [reduced], the extended approach for reducing the 
computations of basis functions is applied. For each new 
forward simulation, the basis functions are sorted according to 
summed sensitivities and the basis functions having the lowest 
50% sensitivites are kept from the previous flow simulation. 
The remaining 50% of the basis functions are updated once 
before the first pressure solve. Moreover, selective reduction 
of the inverse system is used to keep fine-grid sensitivities 
only for 50% of the coarse blocks. In other words:  

• MsMFEM [full] =  100% DU + 100% IU + 100% CB, 
• MsMFEM [reduced] = 0% DU* + 50% IU + 50% CB. 

Figure 13 and Table 2 show the convergence of the 
inversion algorithm (residuals given by Eq. 22). In six 
iterations, all misfits in time-shift and amplitude for the water-
cut dropped appreciably for all three approaches. Reference, 
initial, and matched water-cut curves are shown in Fig. 12 for 
a few selected producers. Some of the wells had a quite good 
match initially, and at the end of the history matching all wells 
had a quite satisfactory match.  

Figure 10 compares the initial and reference permeability 
models with the updated (derived) models. The scale is 
logarithmic and the minimum permeability is 0.017 mD and 
the maximum is 110.3 mD. The three approaches gave almost 
identical derived permeability fields. Therefore, just one of the 
derived permeability fields (for MsMFEM [full]) is picked for 
closer inspections. From a casual look, it is hard to discern the 
changes made to the initial model. This is because the 
inversion algorithm is designed to preserve the geologic 
continuity and the initial geologic features to the maximum 
possible extent. However, a careful comparison reveals many 
differences between the initial and the updated geologic 
models. 
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Next, we examine if the changes made to the initial model 
are consistent with the ‘reference’ permeability model. Figure 
14 shows the differences between the updated and initial 
permeability model. These differences represent ‘changes 
made’. This is to be compared with the ‘changes needed’, 
which is the difference between the reference and the initial 
permeability model. We see that there is clearly close 
agreement, particularly in regions where the permeability 
needs to be reduced (negative changes). As might be expected, 
there are also some discrepancies. Many of the wells had a 
good match initially even though the permeability fields differ. 
Because the water-cut data curves are a result of the total flow 
pattern between a producer and one or more injectors, this data 
source may have limited spatial information. Some of the 
changes occur in correct horizontal position, but incorrect 
vertical position. This can occur because the water-cut data 
has no vertical spatial resolution. Finally, it is worth pointing 

out that this inversion problem is highly ill-posed, and 
therefore a variety of possible solutions exist. Table 2 shows 
average discrepancies between the reference and the derived 
permeability fields (see Eq. 21) for TPFA, MsMFEM [full], 
MsMFEM [reduced]. The average discrepancies indicate that 
the history-matching procedure is stable with respect to the 
selective work-reduction strategies. We have also investigated 
some other selective work-reduction strategies, and the results 
with respect to both misfit and average discrepancies turned 
out to be as stable as for Case 1. 

To sum up, the changes made to the permeability field 
preserved the geologic realism, were mostly in accordance 
with the ‘changes needed’ (see Fig. 14), and resulted in 
satisfactory match of the water-cut data. Further, the different 
strategies for selective work-reduction turned out to give 
stable results with respect to ‘changes made’ and misfit (see 
Table 2). 
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Fig. 12 – Case 2: Water-cut match for 12 of the 69 production wells included in the history match of the geologic model (MsMFEM [full]). For 

each plot the solid line, the dashed and the dash-dotted line represents the reference, the initial and the updated water-cut curve, 
respectively. 
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                                                               (a) Shift-time residuals (days).                     (b) Amplitude residuals.  
 
Fig. 13 – Case 2: Reduction of residuals for all producers. Forward simulation: MsMFEM [full] (solid curve), MsMFEM [reduced] (dashed 

curve) and TPFA (dash-dotted curve). 
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             a) Derived-Initial Permeability Difference (Layer 5-8)                                  b) True-Initial Permeability Difference (Layer 5-8) 
 

 
              c) Derived-Initial Permeability Difference (Layer 29-32)                             d) True-Initial Permeability Difference (Layer 29-32) 
 
Fig. 14 – Case 2: Comparison of the “derived-initial” permeability difference and the “true-initial” permeability (MsMFEM [full]). 

 

 
 
 
 
 

 
 
 
 
 

TABLE 2 – Case 2: REDUCTION OF MISFIT AND EFFICIENCY FOR HISTORY-MATCHING PROCEDURE 
Total CPU-time:  T 

(res. %) 
A 

(res. %) 
Δlog(k) Total simulation time 

(Wall clock) 
     PC1              PC2 

               Pressure 
       PC1               PC2 

            Transport 
       PC1                PC2 

Initial      100.0     100.0 0.821        - - - - - - 

 TPFA         8.9       53.5 0.806   2h 12min 1h 04min   1h 02min      33min       54min  28min 
 MsMFEM [full]       10.3      53.1 0.796   2h 42min 2h 29min   1h 17min 1h 54min  1h 06min  32min 
MsMFEM [reduced]         7.8      53.7 0.823    1h 34min       43min          9min       7min  1h 07min  32min 

 MsMFEM [reduced - SL]         7.6      48.7 0.808            36min        17min          9min        7min       12min    6min 
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Computational Efficiency. Finally, we will assess the 
efficiency of our multiscale method compared to a standard 
streamline method using a TPFA pressure solver.  To this end, 
we consider two different computers running Linux: PC 1 is a 
laptop PC with a 1.7 GHz Intel Dothan Pentium M processor, 
2Mb cache and 1.5 Gb memory. PC 2 is a workstation with a 
2.4 GHz Intel Core 2 Duo, 4Mb cache, and 3 Gb memory. 

Table 2 reports simulation times observed on the two 
computers. Here the total simulation time includes time for 
inversion, IO, and seven forward simulations, each with 
fifteen pressure steps. Similarly, we report the total time for 
the pressure solves and the transport solves (including 
mappings and tracing of streamlines). 

When all basis functions are updated in all steps, the 
multiscale solver is, as expected, about 25% slower than 
TPFA with an optimal algebraic multigrid (AMG) solver on 
the laptop (PC1). On the other hand, the memory requirements 
for MsMFEM are quite low and this solver could easily have 
been run on larger models, as opposed to the TPFA solver, for 
which AMG almost exceeded the available memory.  
Moreover, on highly skewed, non-Cartesian grids (e.g., 
corner-point grids), MsMFEM uses a much better spatial 
discretization (Aarnes et al., to appear) and will therefore give 
more accurate predictions of flow. 

The comparison of TPFA and MsMFEM [full] is not very 
interesting on the workstation (PC2). Due to an immature 
compiler for the particular hardware, we were not able to 
optimize the direct solver used to compute basis functions, 
while AMG could be (almost) fully optimized by using a 
vendor-specific compiler. The runtimes for the pressure solves 
(and the total runtime) on PC2 are therefore somewhat higher 
than expected, and will probably improve significantly when a 
more mature compiler becomes available in a few months.  

By MsMFEM [reduced], we were able to reduce time for 
pressure solves by about 80% on both computers. In 
MsMFEM [reduced] the basis functions to be reused were 
read from file. Slow disc access on the laptop therefore 
prevented a further reduction in runtime. The workstation, on 
the other hand, had a faster disc, but further reductions in 
runtime were prevented by the unoptimized linear solver (as 
discussed above).  

Reduction of the inverse system was expected to have a 
very small effect on the runtime, since a fully optimized 
compilation on a GHz processor gives a floating-point 
performance that would make the reduced number of 
arithmetic operations insignificant compared to other kinds of 
operations, which indeed is consistent with what we observe 
in Table 2. However, the results from the reduction of the 
inverse system indicate robustness for the generalized travel-
time inversion method. 

Finally, to speed the method further up, and to make our 
simulations comparable to state-of-the-art commercial 
streamline solvers, we apply a method for improved mass 
conservation for streamline simulation proposed by Kippe et 
al. (2007). Using this method, the total number of streamlines 
could be reduced from 500 000 to 50 000, thereby reducing 
the time for the transport solves by 80%. Altogether, this 
meant that the full history match could be performed in an 
impressive runtime of 17 minutes on the workstation (PC2) 
and 36 minutes on the laptop (PC1)!  

For the workstation there is an obvious potential for further 
improvements by using a better compiler. Moreover, on the 
Core 2 Duo processor one should also exploit the natural 
parallelism in updating basis functions and in the streamline 
computations.  
 
Summary and Conclusions 
A novel approach to history matching using multiscale-
streamline simulation and analytic sensitivities is presented. 
The power and utility of our proposed approach is 
demonstrated using both a synthetic and a field-scale example. 
The synthetic case includes matching of water-cut from a 9-
spot pattern and is used to validate the method. The field-scale 
example consists of more than a million grid cells. Starting 
with a prior geomodel, production data were integrated using a 
generalized travel time inversion. The entire history matching 
process took less than 40 minutes using a laptop PC and about 
17 minutes using an ordinary workstation PC. The 
permeability changes were found to be reasonable and 
geologically realistic. 

Some specific conclusions from this paper can be summarized 
as follows. 

1. A multiscale-streamline flow simulator was used for 
history matching by generalized travel-time 
inversion.   

2. By utilizing the production-response sensitivities 
provided by the generalized travel-time inversion, we 
were able to reduce the total workload for the 
multiscale simulator considerably and still preserve 
the accuracy of the flow simulation. 

3. By utilizing the production-response sensitivities, we 
were able to selectively reduce the number of non-
zero sensitivities in the inverse system considerably 
without reducing the accuracy of the production data 
integration. This demonstrates robustness for the 
generalized travel-time inversion. 

4. The approach proved applicable and efficient for a 
high-resolution reservoir model.  
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Nomenclature 
u = total Darcy velocity 
p = pressure  
l,v = test functions 
V,U = function spaces 
K = fine grid cells/elements 
T = coarse grid blocks/elements 
Ω = domain 
Γ = coarse block interface 
n = unit normal vector 
Ψ = basis function velocity 
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Φ = basis function pressure 
q = total rate (source/sink) 
fw= fractional flow function (water) 
Sw = saturation of water 
k = absolute permeability 
λt = total mobility 
Mend = end-point mobility ratio 
m = reservoir parameter 
Nd= number of data points 
N = number of grid cells 
ta = arrival time 
τ = time-of-flight 
 
Subscripts 
ms = multiscale 
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Multiscale-Streamline Simulation and Dynamic Data

Integration for High-Resolution Subsurface Models

V.R. Stenerud, V. Kippe, K.–A. Lie, and A. Datta–Gupta

Abstract. We discuss an efficient method for integrating dynamic data in high-resolution
subsurface models. The method consists of two key technologies: (i) a very fast multiscale-
streamline flow simulator, and (ii) a fast and robust ’generalized travel-time inversion’
method. The travel-time inversion is based on sensitivities computed analytically along
streamlines using only one forward simulation. The sensitivities are also used to selectively
reduce the updating of basis functions in the multiscale mixed finite-element pressure solver.
Moreover, we propose a new streamline formulation that improves the accuracy of produc-
tion curves and allows a drastic reduction in the number of streamlines required to calculate
accurate dynamic data responses.

The accuracy and robustness of our method is discussed using two 2-D test cases. Fur-
thermore, we demonstrate the efficiency and utility of our approach using a highly detailed
3-D subsurface model consisting of more than one million cells and 69 producing wells, for
which seven years of dynamic data are integrated in less than twenty minutes on a standard
workstation PC.

1. Introduction

Subsurface models are usually built based on static date that are either confined in space
or have low spatial resolution. Dynamic data must therefore be integrated into the subsurface
model in order to give reliable predictions of future dynamic flow responses. In recent years it
has become common to formulate the integration of dynamic data as an inverse problem and
inversion methods based on a streamline formulation have shown to be particularly promising
in this regard. In a recent paper (Stenerud et al., to appear), we introduced a particularly ef-
ficient inversion strategy designed especially for integrating dynamic data into high-resolution
subsurface models with millions of cells. The strategy consists of two technologies: a gener-
alized travel-time inversion method (Vasco et al., 1999; He et al., 2002) based on sensitivi-
ties computed analytically along streamlines and a highly efficient multiscale-streamline flow
solver (Aarnes et al., 2005).

The generalized travel-time inversion method (Vasco et al., 1999; He et al., 2002) has
previously been successfully applied to many field cases from the petroleum industry (see
e.g., Qassab et al., 2003; Hohl et al., 2006). The method was chosen primarily because it
is robust, computationally efficient, and tends to conserve geological realism in the inverted
model. Unlike conventional amplitude inversion, which can be highly nonlinear, the travel-
time inversion has been shown to have quasilinear properties (Vasco et al., 1999; Cheng et al.,
2005). The minimization therefore proceeds rapidly even if the initial model is not close to the
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global minimum, avoids over-corrections near fluid sources and sinks, and does not converge
to secondary peaks that are typically seen in dynamic data from real-field cases, e.g., tracer
data.

Each iteration in the inversion method must be accompanied by a forward simulation,
which typically will be the most time-consuming part of the inversion process. Stream-
line methods are particularly suitable for simulating flow in large and geologically complex
models, where the fluid flow is dictated primarily by heterogeneity in rock properties, posi-
tions of fluid sinks/sources, and phase mobilities. In general, streamline simulators have low
memory requirements, high computational efficiency, and scale (almost) linearly with model
size. Therefore, streamline simulation offers the opportunity to solve outstanding engineering
queries that might otherwise be difficult or impossible to address using other approaches.
Within the petroleum industry, streamline simulators are progressively being used more by
operating companies as an alternative to traditional reservoir simulators in several reservoir
engineering workflows, including: screening of enhanced recovery projects, rapid sensitivity
studies, history matching, uncertainty assessment, upscaling, flood optimization, or simula-
tion studies of sector or full-field models.

Even though streamline simulation provides fast forward simulation compared with a full
finite-difference simulation in 3-D, computing pressure and fluid velocities still remains an
expensive part of the inversion algorithm. As a result, the inversion process is therefore usually
performed on upscaled subsurface models, although this may result in loss of important fine-
scale information. In (Stenerud et al., to appear), we proposed to replace the conventional
pressure solver used in current streamline simulators by a much faster multiscale pressure
solver (Aarnes et al., 2005). The multiscale solver can be seen as a method that upscales and
downscales the flow equations in a single step. In an upscaling method, the fine grid of the
subsurface model is coarsened to form a simulation grid, on which the global flow equation is
solved. To this end, one typically solves local flow problems inside each (pair of) grid block(s)
and computes the effective permeability (or transmissibility) value that preserves this flow in
an averaged sense. Similarly, the multiscale mixed finite-element method (MsMFEM) used
herein solves a local flow problem for each pair of neighboring grid blocks in the coarse grid
and uses the local flow solution as a basic building block (basis function) on the coarse grid. As
other multiscale methods, MsMFEM is primarily targeted at dynamic flow simulations, where
the pressure needs to be computed repeatedly. High efficiency is achieved since most basis
functions can be reused from the previous pressure solve and updating reduces to solving
a global equation on the coarse grid. In (Stenerud et al., to appear) we proposed to use
sensitivity coefficients to locate basis functions that need to be updated from one pressure
solve to the next. The resulting pressure solver is robust and produces mass-conservative flow
velocities both on the coarse grid and on the underlying fine grid.

The purpose of the current paper is two-fold: First, we present a modified streamline
formulation that allows us to drastically reduce the number of streamlines needed to compute
accurate production curves from the flow simulation. Second, we present a more in-depth anal-
ysis of the efficiency and robustness of the multiscale-streamline data-integration method, and
in particular for the associated strategy for work reduction based on sensitivity coefficients.

To achieve high efficiency in the streamline simulation, it is clearly desirable to use as few
streamlines as possible. On the other hand, the set of streamlines should be representative
and sufficiently dense to ensure accurate prediction of flow patterns and production responses,
and to limit errors in the mass balance. Lack of mass conservation is a problem of particular
concern to reservoir engineers, and in this paper we will try to analyze the lack of mass
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conservation and suggest methodological improvements that will strongly improve the quality
of measured production curves (dynamical responses). This will in turn allow a significant
reduction in the number of streamlines required to ensure highly accurate production curves.

The outline of the paper is as follows. Section 2 presents the multiscale-streamline solver.
In Section 3 we discuss mass-balance errors and present a strategy to obtain accurate pro-
duction curves using a small number of streamlines. Section 4 presents our approach for data
integration and discusses its practical applicability using several numerical examples. Finally,
our results are summarized in Section 5.

2. Multiscale-Streamline Simulation

We consider incompressible two-phase flow of oil and water in a non-deformable permeable
medium and neglect the effects of gravity, compressibility and capillary forces. Further, we
also assume for simplicity no-flow boundary conditions for the reservoir. Our flow model then
consists of an elliptic pressure equation

(1) ~u = −λt(S)k∇p, ∇ · ~u = qt

and a quasilinear hyperbolic transport equation

(2) φ
∂S

∂t
+∇ · (fw(S)~u) = qw.

The primary unknowns in the coupled system Eqs. 1 and 2 are the pressure p, the total
(Darcy) velocity ~u, and the water saturation S. The underlying porous rock formation is
modeled in terms of the absolute permeability k and the porosity φ, which henceforth are
assumed to depend on the spatial variable only. Further, qt and qw represent volumetric fluid
sources and sinks (e.g., injection and production wells). Finally, λt = λw + λo denotes the
total mobility, where the mobility of each phase λj is given as the relative permeability krj
of phase j divided by the phase viscosity µj (j = o, w) and fw = λw/λt is the fractional-flow
function of water.

Streamline solvers are based on a sequential time-stepping procedure. First the known
initial saturation distribution is used to compute the mobilities λt(S) in Eq. 1, after which
the pressure equation can be solved to give total velocity ~u and pressure distribution p. Next,
the total velocity ~u is kept fixed in Eq. 2, while the saturation is advanced a given time step.
The new saturation values are used to update the mobilities in Eq. 1, the pressure equation
is solved again, and so on.

2.1. Multiscale Pressure Solver. Our multiscale method is based on a mixed finite-
element formulation of the flow equation Eq. 1 in which one computes an approximation to
the pressure and velocity simultaneously. That is, one seeks a pair (~u, p) in U × V, such that

∫

Ω
~u · (λtk)−1 ~w dx−

∫

Ω
p∇ · ~w dx = 0, ∀~w ∈ U ,(3)

∫

Ω
l∇ · ~u dx =

∫

Ω
ql dx, ∀l ∈ V.(4)

In a standard discretization, the finite-dimensional function spaces U and V for velocity and
pressure, respectively consist of low-order piecewise polynomials. In the multiscale mixed
finite-element method (MsMFEM) (Chen and Hou, 2002; Aarnes, 2004), the approximation
space Ums for velocity has a multiscale structure, whereas V is chosen simply as the space of
of piecewise constant functions, since the pressure is immaterial for the incompressible flows
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Figure 1. A coarse grid overlying a fine grid with the gray area giving support

of basis function ~Ψij , which is associated with the edge/face indicated by the
thick.

considered herein. If the pressure solution is needed, a more accurate pressure distribution
can be constructed either by adaptively gridding around fluid sources and sinks, or by locally
extracting a subgrid pressure distribution from the multiscale approximation space.

Basis Functions. Although MsMFEM can be defined for general unstructured grids
(Aarnes et al., 2006, to appear), we only consider Cartesian grids herein. Let {Km} be a
(uniform) partitioning of Ω into mutually disjoint grid cells. Furthermore, let {Ci} be a
coarse partitioning of Ω, defined in such a way that each fine cell Km overlaps with a single
coarse block Ci, see Fig. 1. The multiscale approximation space Ums is defined by assigning

a ~Ψij to each non-degenerate interface between two coarse blocks, Γij = ∂Ci∩∂Cj. The basis

functions ~Ψij are computed numerically by forcing unit flow from block Ci to Cj; that is, by
solving a local flow problem in each pair of blocks Ωij = Ci ∪ Cj

(5) ~Ψij = −λtk∇Φij, ∇ · ~Ψij =

{

wi(x), x ∈ Ci,
−wj(x), x ∈ Cj,

with ~Ψ · ~n = 0 on the boundary of Ωij. To solve Eq. 5 we can use any consistent and
mass-conservative method; here we use the standard two-point flux-approximation (TPFA)
scheme. By choosing wi ∝ q for coarse blocks containing sources or sinks, we ensure a
conservative approximation to ~u on the fine grid. In all other blocks, we set wi ∝ trace(k(x)).
Moreover, to give a unit flow from Ci to Cj , the source terms wi(x) are normalized such that
∫

Ci
wi(x) dx = 1; this is discussed in more detail by Aarnes (2004) and Aarnes et al. (2006).

The corresponding basis functions can be seen as generalizations of the lowest-order Raviart–
Thomas basis functions in a standard mixed method. Figure 2 illustrates the x-component
of the basis function for a homogeneous and a heterogeneous medium.

Selective Updating of Basis Functions. Solving local flow problems is typically the most
expensive step in a multiscale method, and the overall computational cost of generating basis
functions. Computing basis functions and solving the coarse-grid system is comparable to
solving the pressure equation directly on the fine grid using a highly efficient linear solver,
like e.g., algebraic multigrid (Stüben, 2000); a more detailed discussion is given by Kippe et al.
(to appear). Huge computational savings can be obtained if basis functions can be computed
only initially or recomputed infrequently throughout the simulation. From Eq. 5, we see that
~Ψij depends on three quantities that may change from one pressure solve to the next: the
total mobility λt, the absolute permeability k, and the forcing terms w(x), which again are
determined by k and q.
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Figure 2. The x-component of the velocity basis function associated with an
edge/face between two coarse blocks for a homogeneous and a heterogeneous
permeability field, respectively.

Changes in fluid sources q may have a strong impact both on the local and global flow
patterns, in particular if the changes are due to large changes in well rates, shut-in of wells,
infill drilling, etc. Basis functions containing a well within their support should therefore be
recomputed whenever the well configuration changes significantly.

The absolute permeability k may in principle change from one forward simulation to the
next. Changes in k are accounted for on the coarse scale (Eq. 3), but not in the local
basis functions (Eq. 5) unless these are updated. However, using a ‘wrong’ basis function
may not have a significant impact on the calculated dynamic data. As a simple means for
detecting changes in the permeability that significantly affect calculated dynamic data, we
suggest to use the production-response sensitivities to be introduced in Section 4. A single
sensitivity coefficient can be assigned to each coarse block by summing the sensitivities over
the underlying fine grid; see Yoon et al. (2001). Due to the low resolution of dynamic data
and the use of spatial regularization terms in the inversion process, changes in absolute
permeability k from one inversion step to the next will mainly appear in regions of high
sensitivity. Basis functions should therefore be recomputed initially in regions with high
sensitivity; in the rest of the reservoir, reasonable accuracy is obtained by reusing basis
functions from the previous forward simulation.

Changes in total relative mobility λt(S) are relatively smooth, unless a strong saturation
front passes through the block, and can be accounted for on the coarse scale (Eq. 3) with
reasonable accuracy. Moreover, changes in total mobility in high-sensitivity regions will have
a stronger influence on the dynamic reservoir responses, indicating that basis functions in
these regions should be updated dynamically throughout the simulation. The errors induced
by not updating basis functions in low-sensitivity regions will have a limited effect on the
dynamical reservoir responses, and one may therefore avoid updates there.

Our selective updating strategy is summarized as follows (Stenerud et al., to appear): In
the first forward simulation of the inversion procedure, we typically update all basis functions
in every pressure step, because no sensitivities are yet available. After the first forward
simulation, we sort the sensitivity coefficients of the coarse blocks in ascending order and
mark a predefined fraction to be updated. We will refer to the strategy where x% of the
basis functions are updated initially and the remaining (100−x)% are kept from the previous
flow simulation, as x% initial update. Similarly, the coarse-grid sensitivities are used to pick
blocks in which we may avoid dynamic updates of basis functions from one pressure step
to the next. We refer to this as x% dynamical update when x% of the basis functions are
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updated dynamically each time step. We will assess the efficiency and robustness of this
strategy in Section 4.

2.2. Streamline Solver. Instead of discretizing and solving the transport directly on
the given grid, a streamline method decouples the 3-D equation, Eq. 2, into multiple 1-D
equations along streamlines. To parameterize the streamlines, we introduce the time-of-flight
variable τ defined by,

(6) τ(r) =

∫ r

0

φ(ζ)

|~u(ζ)| dζ =

∫ r

0
s(ζ) dζ,

which expresses the time it takes a passive particle to travel a distance r along a streamline.
In differential form Eq. 6 reads ~u · ∇τ = φ. Using the bi-streamfunctions ψ and χ (Bear ,
1972), for which ~u = ∇ψ×∇χ, we can define an alternative 3-D curvilinear coordinate system
(τ, ψ, χ), where the velocity ~u and hence the streamlines are orthogonal to the ψ and χ axes.
In the streamline coordinates (τ, ψ, χ), the gradient operator is expressed as

(7) ∇(τ,ψ,χ) = (∇τ) ∂
∂τ

+ (∇ψ)
∂

∂ψ
+ (∇χ)

∂

∂χ
.

Because ~u is orthogonal to ∇ψ and ∇χ, it follows that ~u · ∇ = φ ∂
∂τ

, which together with
the incompressibility condition ∇ · ~u = 0 can be used to rewrite Eq. 2 as a family of one-
dimensional transport equations along streamlines

(8)
∂S

∂t
+
∂fw
∂τ

= 0.

The solution of Eq. 2 is obtained by tracing numerous streamlines, mapping the initial
saturations from the 3-D pressure grid to 1-D streamlines, and then solving Eq. 8 along each
streamline. Afterwards, the new streamline saturations are mapped (or averaged) back to the
underlying 3-D grid to update mobilities before the pressure equation is solved to recompute
the velocity field.

To trace streamlines, most streamline solvers use a simple semi-analytical procedure due
to Pollock (1988), by which each streamline is traced numerically cell-by-cell, either from
injector to producer, or vice versa, or from an arbitrary point in the reservoir and forward to
fluid sinks and backward to fluid sources. After the tracing, each streamline ` is given as the
indices of the cells the streamline traverses, the entry and exit points, and the incremental
time-of-flights {∆τ`,i} for each cell i. These increments form the cells in the streamline grid,
on which Eq. 8 will be solved. Initial values for Eq. 8 are obtained by picking up the
piecewise constant values from the underlying (pressure) grid,

(9) Ssl,i = Si.

To solve Eq. 8, we will herein use a front-tracking method (Holden and Risebro, 2002)
that is unconditionally stable and can directly utilize the time-of-flight grid resulting from the
streamline trace. This makes the method very efficient and devoid of numerical diffusion. In
contrast, solvers based on a finite-volume formulation typically need to map the initial data
to a more regular grid.

To map values from the streamlines back to the underlying 3-D grid, we use volumetric
averaging. Volumes are associated with streamlines by considering each streamline as a
representation of the cross-section of a streamtube with an associated constant volumetric
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flux q` = |~u(ζ)|A(ζ). This gives the volume of the streamline as

(10)
V` =

∫ s

0
φ(ζ)A(ζ) dζ

= q`

∫ s

0

φ(ζ)

|~u(ζ)| dζ = q` τ`.

The volume of a streamline in grid cell i is then V`,i = q`∆τ`,i, and the precise definition of
the streamline-to-grid volumetric averaging is,

(11) Si =

∑

` S`,iV`,i
∑

` V`,i
.

We note that considering streamlines as fluid carriers also makes it natural to define pro-
duction characteristics simply by summing the outflow fluxes during time step ∆t from all
streamlines connected to each well

(12) PRD∆t =
∑

`

q`

∫

∆t
fw,`(t) dt.

To associate fluxes to each streamline, we generate equally spaced starting points on the
faces of grid cells containing injection wells. The number of starting points on each face
is proportional to the volumetric flux across the face; i.e., streamlines carry approximately
equal amounts of fluids, q` ≈ C. An advantage of this approach is that the sums in Eqs. 11

and 12 can be computed incrementally as streamlines are traced (Batycky , 1997) without
knowing the associated volumetric flux, thus allowing completely independent processing of
streamlines.

For the volumetric mapping Eq. 11 to make sense, each grid cell should in principle
be traversed by at least one streamline. In general, there will be a number of grid cells
that are not traversed by any of the streamlines traced from the faces of injector-cells. One
can therefore perform an additional tracing process, where one picks a point inside one of
the untraced cells and traces a streamline from this point and backward/forward to a fluid
source/sink or to a cell that has been traversed by another streamline (Batycky , 1997). This is
repeated until there are no untraced cells. Alternatively, one may simply ignore the untraced
cells, as these often are in regions that contribute little to the production characteristics. To
keep the amount of streamline tracing at a minimum, we here employ the latter approach.

3. Improving Local and Global Mass Balance

Lack of mass conservation is a well-known problem for streamline simulators and may
lead to both incorrect saturation distributions and incorrect production curves. To illustrate
typical errors observed as the number of streamlines is reduced, we consider a large 3-D
reservoir model of a Brent sequence consisting of 60 × 220 × 85 grid cells, see (Christie
and Blunt , 2001) for more details. The reservoir is produced using a five-spot pattern of
vertical wells; the central injector has a constant rate of 5 000 bbl/day (reservoir conditions),
and the four producers operate at 4 000 psi bottom-hole pressure. We assume quadratic
relative permeability curves with Swc = Sor = 0.2. The initial saturation is S0 ≡ Swc,
and the viscosities are µo = 3.0 cP and µw = 0.3 cP, respectively. We neglect gravity and
compressibility, since these have smaller impact on the production curves than the numerical
diffusion inherent in any numerical scheme. Moreover, for the pressure equation we use a
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Figure 3. Fractional flow (left) and relative mass-balance errors (right) for
Producer 1 from Model 2, SPE 10 for various number of streamlines (1K =
1 000).

standard two-point discretization with an AMG linear solver (Stüben, 2000). The time-steps
are those reported for the commercial streamline simulator used in the study.

Figure 3 shows fractional-flow curves in Producer 1 for simulations with various number
of streamlines. The water production is clearly underestimated when the number of stream-
lines is too small. Since the correct total amount of injected water is distributed among
streamlines at the injecting end of each streamline, there must effectively be a loss of mass in
the method. We can quantify this loss by the relative global mass-balance error for water in
each time-step,

(13) ε∆t =
INJ∆t − PRD∆t + FIPt − FIPt+∆t

INJ∆t
,

which is equivalent to an error in the volume balance, since we have assumed incompressibility.
Figure 3 also shows that the errors increase rapidly in the beginning of the simulation and
decay slowly as the fractional-flow curves increase. Notice that since production curves are
calculated directly from the individual streamlines using Eq. 12, inaccurate production curves
do not necessarily imply inaccurate saturation distributions, and vice versa.

3.1. Global Mass-Balance Errors. Viewing streamlines as fluid carriers introduces a
fundamental problem in that the pore volume represented by a finite number of streamlines
does not necessarily match the pore volume of the original grid (in physical space); in other
words, the two grids are not automatically compatible. This will generally lead to mass-
balance errors when mapping saturation between the streamlines and the pressure grid. From
Eq. 10 we have that the streamline pore volume is given by,

(14) Vsl =
∑

`

q` τ`.

Thus, the flux q` and the total time-of-flight τ` associated with streamline ` are two parameters
we can play with to improve the mass-balance properties of our streamline discretization. Both
parameters are generally subject to approximation errors.

Using the semi-analytical streamline tracing method introduces errors in τ`, even for
Cartesian grids with given analytical fluxes on the faces, see (Matringe and Gerritsen, 2004).
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Figure 4. Time-of-flight in grid cell (200, 36) of Layer 76 in Model 2 of SPE 10
sampled in 2000 × 2000 evenly distributed points inside each cell. Here the
variation of τ is of the same order as the values of τ .

However, for the Cartesian geometries considered herein, careful numerical studies revealed
that Pollock’s method was sufficiently accurate.

Errors in the fluxes q` correspond to errors in the transversal discretization in (ψ, χ),
which is determined implicitly by the distribution of streamlines and association of fluxes.
The fluxes q` represent velocity integrals over the cross-section of the associated streamtubes.
Assigning equal fluxes q` = C to all streamlines at the injector may be inaccurate and will
in particular mean that the total flux of all streamlines passing through a particular cell face
elsewhere in the reservoir will not necessarily match the corresponding flux in the pressure
grid. However, only minor improvements in the mass conservation were observed when using
more accurate assignment of fluxes, e.g., by scaling q` according to the interpolated velocity
at the starting point and the cross-section area of the associated streamtube as discussed by
Ponting (1998) and Pallister and Ponting (2000). Lifting the restriction of equal streamline
fluxes also makes it possible to apply other streamline distribution schemes. For instance,
in situations where there is a large variation in total fluid rates between different fluid sinks
(producers), it may be beneficial to start streamlines also on the faces of cells containing sinks
to ensure that sufficient accuracy is achieved for sinks with small rates. Similarly, streamline
fluxes may be assigned at the faces of producers or as a weighted averages of the flux at the
injector and the producer. None of these ideas had a significant effect for the applications
considered herein, see (Kippe et al., 2007) for more details.

In our experience, the global mass-balance errors we observe as the number of streamlines
is reduced are primarily caused by the fact that τ` may not be a good approximation to
the average time-of-flight over cross-sections of the associated streamtube. This is illustrated
in Fig. 4, which shows the time-of-flight sampled at 2000 × 2000 evenly distributed points
within a single cell of Layer 76 in the SPE 10 data set. Here the variation of τ is of the
same order as the values of τ itself. Increasing the number of streamlines decreases the
streamtube cross-sections and hence reduces this error. However, considering the very large
variation in τ shown in Fig. 4, it is evident that a large number of streamlines is necessary to
obtain accurate streamline volumes and thereby low error in the global mass balance. On the
other hand, if we insist on keeping the number of streamlines low, we can use the fact that
mass should be conserved, and correct the computed values of τ` to enforce the mass-balance
constraint.
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3.2. Improved Accuracy of Production Curves. Exact global conservation of mass
is guaranteed if the streamline volume matches the true pore volume, i.e.,

∑

` V`,i = Vi,
in every grid-block touched by streamlines. In this case, the mappings back-and-forth be-
tween streamlines and the pressure grid preserve mass. Indeed, for the mapping from grid to
streamlines, Eq. 9, we have,

(15)

V w
grid =

∑

i

ViSi =
∑

i

(

∑

`

V`,i

)

Si

=
∑

`

∑

i

V`,iS`,i = V w
sl ,

and similarly for the mapping from streamlines to grid, Eq. 11,

(16)

V w
sl =

∑

`

∑

i

V`,iS`,i =
∑

i

∑

`

Vi
∑

` V`,i
V`,iS`,i

=
∑

i

ViSi = V w
grid.

Here V w
grid and V w

sl are the total volumes of water on the pressure and streamline grids,
respectively. Since the streamline flux is constant along each streamline, our only option for
ensuring

∑

` V`,i = Vi is to modify the local time-of-flight increments, ∆τ`,i. Specifically, prior
to solving the one-dimensional saturation equation Eq. 8 along streamlines, we propose to
scale the time-of-flight values τi,` in block i by a factor αi = Vi/

∑

` V`,i. This means that
streamlines can no longer be processed independently, and we need to store streamlines in
memory, or alternatively perform the complete tracing procedure twice; once to compute the
values of αi, and then a second time for the solution of the one-dimensional problems. The
memory required to store streamlines is usually (significantly) less than the memory required
to solve the pressure equation Eq. 1. Hence, we prefer storing rather than retracing, since
tracing is an expensive process.

Scaling the time-of-flight amounts to locally stretching or shrinking the grid on which
Eq. 8 is solved. By enforcing mass conservation we thus introduce local errors in the satura-
tion distribution, but as we demonstrate below, the global properties of the resulting solutions
are better. However, special care must be taken to not ruin important (local) characteristics
like the breakthrough-time for producers, which e.g., will be important in the inversion pro-
cedure discussed below. To make sure breakthrough is estimated correctly, we only apply the
scaling along streamlines after breakthrough has occurred.

In Fig. 5 we have recomputed the simulation reported in Fig. 3, but now correcting
for incorrect streamline volumes. The mass-balance errors are still large initially since the
time-of-flight scaling is only applied after breakthrough, but the errors decrease rapidly. The
improvement of the fractional-flow curves is significant, to say the least, with as few as 5 000
streamlines giving acceptable results. Table 1 reports the errors in the fractional-flow curves
w(t) for all four producers, as measured by

(17) δ(w) = ‖w − wref‖2/‖wref‖2.

For completeness, Table 1 also shows the corresponding results for the standard streamline
approach, where we have started streamlines in both injectors and producers and used weights
given by the area of the perpendicular bisection of the cell faces to assign fluxes to streamlines
(since this gives slightly better results for the original method). Moreover, the table reports
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Table 1. Errors in fractional flow δ(w) for producers P1 to P4 and average
saturation error δ(S) for the original (O) and modified (M) streamline methods
on Model 2, SPE 10 for various number of streamlines (NSL). Columns Tsl
and Ttot report the total computational time for the streamline solves and the
overall simulation, respectively, measured on a workstation PC with a 2.4 GHz
Intel Core 2 Duo processor with 4 Mb cache and 3 Gb memory.

NSL O/M P1 P2 P3 P4 δ(S) Tsl (s) Ttot (s)

100 000
O 8.91e-03 6.24e-03 2.44e-03 2.99e-03 2.75e-02 508.92 974.94
M 9.86e-03 4.61e-03 1.97e-03 3.67e-03 2.83e-02 508.20 979.03

50 000
O 2.53e-02 1.72e-02 6.42e-03 9.38e-03 4.00e-02 266.48 728.42
M 1.66e-02 7.88e-03 3.72e-03 7.03e-03 3.81e-02 265.87 727.79

25 000
O 6.49e-02 4.85e-02 1.74e-02 2.28e-02 5.89e-02 147.36 608.46
M 1.43e-02 1.47e-02 8.12e-03 7.12e-03 5.27e-02 146.23 613.00

10 000
O 1.78e-01 1.29e-01 5.53e-02 7.30e-02 9.54e-02 75.65 541.17
M 3.26e-02 1.94e-02 1.56e-02 1.38e-02 8.06e-02 75.33 545.09

5 000
O 3.20e-01 2.30e-01 1.02e-01 1.30e-01 1.29e-01 50.91 512.75
M 4.25e-02 2.19e-02 1.86e-02 2.37e-02 1.12e-01 51.74 516.63
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Figure 5. Fractional flow (left) and relative mass-balance errors (right) for
Producer 1 from Model 2, SPE 10 for various number of streamlines when
using the modified streamline method (1K = 1 000).

saturation errors in the the porosity-weighted L1-norm,

(18) δ(S) = ‖φ(S − Sref)‖1/‖φSref‖1,

averaged over all time steps of the simulation. Altogether, these results show that although
scaling the time-of-flight values has limited effect on the accuracy of the saturation fields, the
accuracy of the corresponding production curves is improved significantly. For instance, if
one is primarily interested in the fractional-flow curves and allows an error of about 5%, it is
sufficient to use only 5 000 streamlines for the modified method, whereas 25–50 000 streamlines
would be required in the original method. This yields a significant speedup for the transport
part of the simulation, since the computation time associated with transport in theory scales
linearly with the number of streamlines. The timing results in Table 1 show that the actual
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Figure 6. Fractional flow in Producer 1 for the modified streamline with
5 000 streamlines, using a standard two-point and the MsMFEM pressure
solver.

scaling is not truly linear as the number of streamlines becomes very small. However, this
is to be expected since our simulator is optimized for relatively large numbers of streamlines
and otherwise negligible overhead associated with streamline distribution, flux computations,
and saturation mappings may become significant when using a small number of streamlines.
Still, we see that going from 50 000 to 5 000 streamlines gives at least five times speedup for
the transport step.

As the number of streamlines is reduced, the total simulation time in Table 1 is dominated
by the solution of the pressure equation, Eq. 1. To obtain a more substantial speedup for
the overall simulation, we use the multiscale pressure solver introduced in Section 2.1 on
a 5 × 11 × 17 coarse grid. The fractional-flow curves shown in Fig. 6 demonstrate that
utilizing MsMFEM for the pressure equation does not yield a significantly reduced accuracy
in the production curves for the case with 5 000 streamlines, but the overall simulation time
is reduced from 8 minutes and 36 seconds to an impressive 2 minutes and 22 seconds.

Finally, we emphasize that scaling the time-of-flight is primarily aimed at improving the
global mass balance by increasing the accuracy of measuring reservoir production (i.e., global,
low-resolution flow responses). In the next section we will look at another technique more
aimed at improving local, high-resolution flow responses (pointwise saturation distributions).

3.3. Improving Local Mass Balance – Adaptive Streamline Coverage. The cor-
rection strategy introduced above is no guarantee for producing accurate saturation curves or
fractional-flow curves. Indeed, insufficient streamline coverage may still induce large errors
(for piston-like displacements) if we do not ensure that all grid cells are traversed by stream-
lines. This leads to errors in the computed pressure and velocity fields, thus shifting the
predicted time of breakthrough. For scenarios with high mobility ratios, the pressure/velocity
solutions are less sensitive to errors in the underlying saturation field, because the satura-
tion variation is generally much smoother. On the other hand, our correction strategy never
performs significantly worse than the original method, and can therefore always be applied
safely.

To alleviate the accuracy problems for favorable displacement conditions, we could trace
streamlines through every cell, using, e.g., the approach of Batycky (1997). However, many
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Table 2. Errors in fractional flows (δ(w)) and average number of streamlines
(NSL) on the homogeneous model for the original and the adaptive streamline
tracing for end-point mobility ratio Mend = 0.1.

β NSL P1 P2 P3 P4
— 2000 4.43e-02 9.30e-02 8.97e-02 9.47e-02
— 1500 5.27e-02 1.13e-01 8.96e-02 1.04e-01
— 1000 1.39e-01 1.62e-01 1.76e-01 1.67e-01
— 500 4.25e-01 4.34e-01 4.64e-01 4.61e-01
1.0 873 1.17e-02 7.52e-03 2.44e-02 1.37e-02
0.9 701 3.28e-02 2.95e-02 4.82e-02 2.17e-02
0.8 560 2.40e-01 2.31e-01 2.72e-01 2.43e-01
0.7 500 3.34e-01 3.85e-01 3.99e-01 3.90e-01
0.6 500 3.60e-01 3.78e-01 3.98e-01 3.86e-01

Table 3. Errors in fractional flow (δ(w)) and average number of streamlines
(NSL) on the homogeneous model for the original and the adaptive streamline
tracing for end-point mobility ratio Mend = 10.

β NSL P1 P2 P3 P4
— 2000 2.58e-02 2.45e-02 2.33e-02 8.44e-03
— 1500 3.14e-02 1.00e-02 3.88e-02 9.23e-03
— 1000 6.68e-02 2.29e-02 5.79e-02 4.14e-02
— 500 7.42e-02 9.58e-02 1.20e-01 8.96e-02
1.0 873 3.45e-02 2.21e-02 2.26e-02 2.04e-02
0.9 722 3.42e-02 2.39e-02 2.41e-02 2.79e-02
0.8 616 2.69e-02 2.44e-02 3.35e-02 2.77e-02
0.7 519 2.19e-02 2.50e-02 5.94e-02 2.43e-02
0.6 500 2.39e-02 3.60e-02 6.80e-02 3.49e-02

cells will typically be located in low-flow regions that do not significantly affect the solution.
We therefore propose an adaptive approach to streamline coverage, where we only demand
that a given fraction β of the pore volume should be traversed by streamlines. Before the
tracing starts, the cells are sorted in descending order by absolute velocity |~u|, and we trace
back from untouched blocks in sorted order until the given pore-volume target has been
met. We also ensure that each well is properly covered by starting a specified number of
streamlines from fluid sources/sinks, with the distribution of streamlines on the faces of grid
cells containing fluid sources/sinks given according to the fluxes, as before.

To demonstrate the effect of the adaptive tracing, we consider a homogeneous 32× 32× 8
model of aspect ratio 1 : 1 : 0.1, with wells placed in a five-spot pattern, where the four
producers operate at equal bottom-hole pressures. We assume quadratic relative permeability
curves with zero residual oil and water saturations, and perform simulations for two different
values of the end-point mobility ratio Mend = µo/µw; favorable displacement (Mend = 0.1)
and unfavorable displacement (Mend = 10). The dimensionless simulation time is 2.0 PVI,
and for both displacement scenarios we verified that the chosen number of time-steps was
sufficient for stability of the sequential time-stepping scheme.

Tables 2 and 3 show the average number of streamlines and errors in the fractional-flow
curves when applying the adaptive approach in combination with the modified streamline
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method. Initially we trace 100 streamlines from each well, which is why the minimum num-
ber of streamlines is 500. Compared with the non-adaptive version, the adaptive method
gives significantly more accurate production curves using fewer streamlines. As expected,
the optimal value of β depends on the displacement conditions, with favorable piston-like
displacement requiring a larger fraction of the pore volume to be covered. In the unfavorable
case, the production curves are good even without the adaptivity. In fact, we could actually
have used even fewer streamlines. This helps explain why we obtained accurate results using
very few streamlines for the SPE 10 model above.

4. Integration of Dynamic Data

In this section we present the inversion method in more detail and discuss its efficiency
and robustness using three numerical test cases. In the following we assume that the subsur-
face model has been conditioned to static data and available geological information, such that
the model already gives a reasonable description of the reservoir geology. Dynamic produc-
tion data generally have low resolution and cannot be used to infer small-scale variations in
reservoir properties. It is therefore important that changes to the subsurface model inferred
from the dynamic data are kept as minimal as possible to preserve geological realism.

4.1. Generalized Travel-Time Inversion. Our method for integrating fractional-flow
data utilizes approximate sensitivities calculated analytically along streamlines to update the
heterogeneous subsurface model based on observed dynamic data (Vasco et al., 1999; He
et al., 2002). The sensitivities quantify the influence of reservoir parameters on dynamical
responses of the reservoir. As such, these sensitivities provide the fundamental relationships
that allow us to integrate the dynamic reservoir responses. The major steps in our method
are:

(1) Multiscale-streamline simulation to compute production responses at the observation
points (wells) as discussed in Section 2.

(2) Quantification of the mismatch between observed and computed dynamic responses
via a generalized travel-time formulation. An optimal travel-time shift is computed
for each observation point (e.g., production well) by systematically shifting the com-
puted production responses towards the observed data until the cross-correlation
between the two is maximized (He et al., 2002).

(3) Computation of streamline-based analytic sensitivities of the production responses
(fractional-flow curves) to reservoir parameters, specifically permeability.

(4) Updating of reservoir properties to match the dynamical reservoir responses (pro-
duction data) via inverse modeling. To this end, we will use an iterative least-square
minimization algorithm (LSQR) (Vasco et al., 1999; He et al., 2002) to simultane-
ously minimize the travel-time misfit for all observation points, thereby matching all
dynamic data within a specified tolerance.

This four-step process is repeated until a satisfactory match is obtained. Next, we describe
the three last steps in more detail, starting with the formulation of a generalized travel-time
misfit to quantify mismatch in dynamic data.

Misfit in dynamic data is commonly represented by a least-squares functional of the form:

(19) E =
∑

k

∑

j

[

wobs
k (tkj )− wcalc

k (tkj )
]2
,
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where wobs
k (tkj ) and wcalc

k (tkj ) are the observed and calculated data, respectively, in well k at

time tkj . Direct minimization of Eq. 19 is called amplitude inversion, in which the observation
times are fixed and one seeks to match the amplitudes. Travel-time inversion, on the other
hand, chooses a specific point on the dynamic data curve (e.g., the breakthrough time or a
distinct peak) and adjusts the model parameters so that a similar point is obtained in the
computed reservoir response. Although crude, this approach has an important advantage:
whereas amplitude inversion is highly nonlinear, travel-time inversion has quasilinear proper-
ties (Cheng et al., 2005) and is thus more robust and less likely to be stuck in local minima.
However, the resulting overall data match of dynamic data may not be satisfactory since only
a single data point is matched (per well).

The generalized travel-time inversion combines the desirable properties of travel-time and
amplitude inversion into one step (He et al., 2002) by seeking a set of optimal time-shifts
∆t = {∆tk} that minimize the following misfit at each well:

(20) Ek(∆tk) =
∑

j

[

wobs
k (tkj + ∆tk)− wcalc

k (tkj )
]2
.

Hence we can match multiple data points as in the amplitude inversion, while retaining the
attractive quasilinear properties of the travel-time inversion. Computing time-shifts does
not require any new flow simulation, but can be done using data from the single forward
simulation used to evaluate the data mismatch.

Having determined the optimal time-shifts, the next step is to propagate them into changes
in the reservoir parameters. Mathematically, the inversion of the time-shifts ∆t leads to the
minimization of a penalized misfit function (Vasco et al., 1999; He et al., 2002):

(21) ‖∆t−Gδm‖ + β1‖δm‖+ β2‖L δm‖.

Here δm denotes the changes in the reservoir properties m, G contains the sensitivities of
the time shifts with respect to the reservoir parameters m, and L is a second-order (Laplace)
difference operator. The first term ensures that the difference between the observed and cal-
culated dynamic responses is minimized. The second term is a norm constraint that penalizes
deviations from the initial (prior) subsurface model and as such helps to preserve the geo-
logical realism of the inversion. The third term is a roughness constraint that measures the
regularity of the changes and is introduced to stabilize the inversion by only allowing large-
scale changes that are consistent with the low resolution of the production data. The weights
β1 and β2 determine the relative strengths of the two regularization terms. The minimum in
Eq. 21 can be obtained by the iterative least-square minimization algorithm, LSQR (Paige
and Saunders, 1982), for which the computational cost scales linearly with respect to the
number of degrees-of-freedom (Vega et al., 2004).

4.2. Time-Shift Sensitivities. For the sake of completeness, we briefly describe the
analytical calculation of streamline-based sensitivities, which can be computed using a single
flow simulation, leading to very fast algorithms for data integration or inverse modeling.
Because the sensitivities are simple integrals along streamlines, the computation time scales
very favorable with respect to the number of grid cells, thus making streamlines the preferred
approach for integrating dynamic data into highly-detailed subsurface models.
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The sensitivity of the shift in travel time ∆tk with respect to reservoir parameter m is
given by (Vasco et al., 1999; He et al., 2002)

(22)
∂∆tk
∂m

= − 1

Nd

Nd
∑

j=1

∂taj
∂m

,

where Nd represents the number of observed data for the associated well and taj is the common

(or average) arrival time at the well for the connected streamlines. The sensitivity of the
common arrival time with respect to a reservoir parameter m, is calculated by a flux-weighted
average of the arrival-time sensitivities of the connected streamlines. The arrival-time in each
streamline is related to the streamline time-of-flight by assuming a Buckley–Leverett profile

(23) τ` = taj,` · f̃ ′w(S).

Here f̃ denotes the convex hull of the fractional flow curve, and the derivative f̃ ′w is evaluated
using the saturation at the outlet of streamline ` for streamlines with breakthrough, and
using the front saturation for streamlines without breakthrough. In other words, ∂taj,`/∂m is
proportional to the sensitivity of the time-of-flight, which can be computed analytically from
a single streamline simulation under the assumption that the streamlines do not shift because
of small perturbations in reservoir properties. For example, the sensitivity with respect to
permeability ki in cell Ki is given by

(24)
∂τ

∂ki
=

∫

Σi

∂s(ζ)

∂ki
dζ = −

∫

Σi

s(ζ)

ki
dζ = −∆τi

ki
,

where the integral is along the streamline trajectory Σi through Ki and ∆τi is the associated
incremental time-of-flight. Similarly, sensitivities can be calculated with respect to mobility
or to the product of mobility and permeability. Worth mentioning here is an important
practical aspect. Our experience indicates that the selective work-reduction strategy and
the data-integration process are more robust if the sensitivities are made dimensionless as
described by He et al. (2002).

We are now fully equipped to integrate dynamic data into high-resolution subsurface
models. In (Stenerud et al., to appear), the accuracy and robustness of our inversion method
were investigated for a small 2-D case with isotropic lognormal permeability and flow with
end-point mobility ratios (Mend = 0.2, 0.5, 10). In the next two subsections, we investigate the
accuracy and robustness of the proposed selective updating of basis functions more thoroughly
using two 2-D test cases that involve dynamic well configuration and multiple realizations,
respectively. To pose a further challenge for our multiscale simulator, both cases involve
anisotropic permeability structures with long streaks of high permeability aligned exactly with
the diagonal direction of the grid. As noted by Kippe et al. (to appear), this particular
permeability structure is a worst-case scenario for MsMFEM, where the solver may exhibit
loss of accuracy. For all other cases, the solver is generally very robust and accurate (Kippe
et al., to appear).

To measure the quality of the data integration, we use the amplitude residual
√
E (see

Eq. 19) and the time-shift residual ‖∆t‖2. We also report the average discrepancy between
the reference and matched permeability field measured by

(25) ∆ ln k =
1

N

N
∑

i=1

∣

∣ lnkref
i − ln kmatch

i

∣

∣.
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Figure 7. The plots show, from upper left to lower right, ln(k) for the refer-
ence permeability field, the initial permeability field, and the match obtained
after eight iterations with and without updating basis functions.

4.3. Changing Well Conditions. We first consider a 2-D reservoir model with diagonal
permeability streaks and a dynamic well configuration. The lognormal permeability field is
given in terms of 50 × 50 uniform cells and has a diagonal structure with long correlation
length, see Fig. 7. As above, we assume quadratic relative permeability curves with zero
residual oil and water saturations and end-point mobility ratio Mend = µo/µw = 0.5. The
forward simulator is run with pressure steps of 80 days, and for the MsMFEM pressure solver
we construct a uniform 10× 10 coarse where each block contains 5× 5 fine cells.

Synthetic dynamic data were generated by adding 5% white noise to the fractional-flow
curves computed from the reference permeability using a streamline simulator with a two-
point pressure solver. Initially, the well configuration is a five-spot configuration, where the
four producers operate with equal constant rate. The producer in the south-west corner has
early breakthrough and is therefore converted to an injector after 640 days. Simultaneously,
two new producers are introduced in the middle of each opposite boundary (north and east).
After conversion and infill drilling, the south-west well is injecting 75% of the total injection
rate and all producers are producing at equal constant rate. The motivation for the updated
well configuration is to introduce an additional sweep from the south-west corner towards
the opposite boundaries. The updated well configuration is kept throughout the rest of
the production period. Hence, we wish to integrate 2000 days of production data from six
producers in total.

To match observed data, we start from the prior permeability field shown in Fig. 7 and
treat the permeability in each cell as an adjustable parameter, giving a total of 2500 unknown
parameters to be estimated. The time-shift sensitivities for each well are plotted in Fig. 8.
The sensitivities are quite distinct and localized in channels due to the diagonal permeability
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Figure 8. Streamline-based travel-time shift sensitivities for the six producers.
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Figure 9. Reduction of residuals for all producers.

streaks. Plots of the residuals with respect to time-shift and amplitude in Fig. 9 show that
the iteration converges very fast (after 4–5 iterations). Results after eight iterations, updating
all basis functions, are shown in Fig. 7. The updated permeability field is in general closer to
the reference, and the realism of the permeability field is not degraded by the data integration
process. Figure 10 shows a comparison of the initial and final match of the fractional-flow
curves for the wells with lowest initial, highest initial, and highest final mismatch (wells P3,
P6, and P6, respectively). Overall, the match to the production data is quite satisfactory.

To test the robustness of our work reduction strategy we use a 5× 5 test matrix with x%
dynamical and y% initial update for x, y = 0, 25, . . . , 100. Figure 11 shows the reduction
in residuals and permeability discrepancy after eight iterations. Judging from the amplitude
residual and the permeability discrepancy, the data are well matched for all parameters x, y >
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Figure 10. Fractional-flow curves for water for producers P3 (north-east),
and P6 (east).
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Figure 11. Robustness of selective work reduction.

0, and the quality of the match does not seem to decline dramatically compared with the TPFA
solver. The time-shift residuals for MsMFEM are somewhat higher than for TPFA. The
exception is (x, y) = (0, 0), for which there is a significant decay in the quality of the match,
in particular for the time-shift residual. Figure 7 shows the resulting permeability field for
(x, y) = (0, 0) and (100, 100). Even though the reduction in the residuals is significantly lower
with no updating, the realism of the resulting permeability field seems as good as for full
updating.

To explain the variations with respect to x and y, we consider the sensitivities. As seen
in Fig. 12, the sensitivities are quite distinct and localized in channels (see also Fig. 8).
The permeability field will typically change significantly from one iteration to the next in
these channels, and failing to update the corresponding basis functions will lead to inaccurate
results. However, for x, y > 0, our method seems to be able to select and update the basis
functions contributing most to the production curves, see Fig. 12. The localized nature of the
sensitivities makes it easier to cover the high-sensitivity areas with updated basis functions for
quite low percentage values for x and y. In addition, the smoothing of permeability changes
induced by the regularization in Eq. 21 will also counteract the effect of sharp changes.

Finally, we emphasize that the reduction in runtime mainly will result from reducing the
percentage of dynamically updated basis functions. It is therefore row (x, 100) in the matrix
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Figure 12. Stacked time-shift sensitivities (upper left). The three last figures
show the coverage of updated basis functions for 25%, 50% and 75% updating.
The four different levels of gray indicate the number of updated basis functions
that cover each coarse grid block (brightest = 1, darkest = 4).

in Fig. 11 that is of main interest when considering efficiency. In other words, we can avoid
strategies in the matrix that give less stable results, and still get the intended speedup of the
inversion process.

4.4. Multiple Equiprobable Realizations. We assume a multivariate Gaussian prior
distribution for a 2-D reservoir model given on a 50 × 50 grid. As in the previous example,
the prior distribution has long diagonal correlation length. The reference permeability field
for this case is drawn from a slightly different multi-Gaussian distribution, see Fig. 13. The
reservoir is produced from a five-spot pattern with an injector in the center and producers in
the corners. As above, we assume quadratic relative permeability curves with zero residual oil
and water saturations and end-point mobility ratio Mend = 0.5. For the MsMFEM pressure
solver we construct a uniform 10× 10 coarse grid such that each coarse block contains 5× 5
fine cells.

Synthetic dynamic data were given by the fractional-flow curves obtained from the ref-
erence permeability field using the streamline method with a standard two-point pressure
solver. To demonstrate the robustness of the generalized travel-time inversion, we match
the observed data starting from a set of 25 permeability realizations of the assumed prior
distribution. Here the permeability in each cell is treated as an adjustable parameter, giving
a total of 2500 unknown parameters to be estimated for each realization.

Figure 13 shows three of the initial realizations and the corresponding matches after
six iterations. The three matched permeability realizations are in closer agreement with the
reference permeability field; a unique solution is not obtained since the data integration is
ill-posed. Figure 14 shows a comparison of the initial and final match of the fractional-flow
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Figure 13. The plots show ln(k) for the reference permeability field (top)
and initial (second row) and matched (third row) permeability fields for three
different realizations.

Table 4. Mean and standard deviation of percentage reduction in misfit for
time-shift residual (T) and amplitude residual (A).

Misfit mean % Std.dev. %
Solver T A T A
Initial 100.0 100.0 100.0 100.0
TPFA 8.5 39.9 5.0 16.5
MsMFEM 7.8 38.9 4.6 17.6

curves for the set of permeability realizations for the four production wells. The time-shifts are
obviously reduced considerably, and the amplitude is to some extent improved; also indicated
in Table 4. Overall, the match to the production data is quite satisfactory.

Next we apply the same 5× 5 test matrix for the set of realizations described above and
measure the mean and standard deviations in the permeability discrepancy (Eq. 25) and
the reduction in time-shift and amplitude residuals. Figure 15 shows the result of the test
matrix compared with results obtained with the TPFA solver. The data are well matched
for all parameters x and y, and the quality of the history match does not seem to decline
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Figure 14. Fractional-flow curves prior and post data integration.

significantly compared with the TPFA solver even though a slight increase is observed by
updating fewer basis functions.

4.5. History Matching a Full 3-D Geomodel. In (Stenerud et al., to appear) we
demonstrated the integration of dynamic fractional-flow data into a high-resolution 3-D ge-
omodel with more than one million cells. We will now revisit this example and discuss the
accuracy, robustness, and efficiency of our data-integration strategy in some more detail. In
particular, we show that by combining generalized travel-time inversion with our modified
streamline formulation and the selective work reduction, the computational challenging task
of integrating data into a million-cell model can be surmounted in remarkable short time
using a standard desktop or laptop computer.
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Figure 15. Mean (upper row) and standard deviation (lower row) of the
reduction in time residuals, amplitude residuals and permeability discrepancies
for a set of 25 permeability realizations.

Figure 16. Permeability field and streamlines for the million-cell 3-D model.

The geomodel consists of a Cartesian fine grid with 256 × 128 × 32 cells, which gives a
total of 1 048 576 active cells, each of size 10×10×2 m. We form a uniform 32×16×8 coarse
grid in which each block consists of 8 × 8 × 4 fine cells. The permeability is log-normally
distributed with a mean of 2.2 mD, a minimum of 0.017 mD and a maximum of 79.5 mD (see
Fig. 16). The correlation length in the x- and y-directions is about 270 meters, and about
90 meters in the z-direction. The flow is described by the standard two-phase model with
quadratic relative permeability curves and an end-point mobility ratio of Mend = 5.

The production history consists of 2475 days of fractional-flow data from the 69 pro-
ducers, each operating with a constant rate fulfilling the total voidage rate induced by 32
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Figure 17. Match of fractional-flow curves for four of the 69 production wells
included in the history match of the geologic model using the MsMFEM pres-
sure solver.

water injectors operating with constant total reservoir-volume rate of 1609 bbl/day. For all
simulations we used 15 pressure steps of 165 days. Good accuracy of the production curves
required about 500 000 in the original streamlines method and about 50 000 streamlines for
the modified formulation. Compared with the million-cell SPE 10 model in Section 3.2 this
is a modest reduction. However, the current model has twenty times as many wells and is
less dominated by heterogeneity structures compared with the SPE 10 model, in particular
the bottom fifty fluvial layers.

An initial permeability model was generated using sequential Gaussian simulation (Deutsch
and Journel , 1998) and conditioning on the permeability values in the well-blocks of the refer-
ence model. As reported in (Stenerud et al., to appear), the misfit in time shift and amplitude
had dropped appreciably after 5–6 iterations and the two pressure solvers gave almost identi-
cal derived permeability fields that both reserve the geologic continuity and the initial geologic
features to the maximum possible extent. Figure 17 shows initial and matched production
curves for four producers.

First, we investigate to what extent the use of the modified streamline formulation and
the multiscale pressure solver improves the computational efficiency of the data integration.
As an example of a personal workstation, we use a recent commodity PC with a 2.4 GHz
Intel Core 2 Duo processor with 4 Mb cache and 3 Gb memory. The TPFA pressure solver
was compiled with full optimization and with multicore support for the underlying AMG
linear solver. For MsMFEM, we were not able to optimize the underlying direct solver used
to compute basis functions, nor did we exploit the parallelism of the Core 2 Duo processor.
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Table 5. Reduction in percent in time-shift (T) and amplitude (A) residuals,
and reduction in average discrepancy in log permeability (∆ ln k). Runtimes
are measured on a workstation PC with a 2.4 GHz Intel Core 2 Duo processor
with 4 Mb cache and 3 Gb memory.

Misfit CPU-time (wall clock)
Solver O/M T A ∆ lnk Total Pressure Transport
Initial — 100.0 100.0 0.821 — — —
TPFA O 8.9 53.5 0.806 64 min 33 min 28 min
TPFA M 9.6 50.4 0.806 39 min 30 min 5 min
MsMFEM O 11.2 47.3 0.812 43 min 7 min 32 min
MsMFEM M 10.4 45.4 0.828 17 min 7 min 6 min

Table 5 reports computational times (and reduction in misfit) using the TPFA and the
MsMFEM pressure solvers in combination with the original and the modified streamline
method. Here the total simulation time includes time for inversion, input/output, and seven
forward simulations, each with fifteen pressure steps. Similarly, we report the total time for
the pressure solves and the transport solves (including mappings and tracing of streamlines).
Using the modified streamline method to reduce the number of streamlines from 500 000 to
50 000 reduced the time for the transport solves by 80% with negligible loss in accuracy. In
(Stenerud et al., to appear), we showed that reducing (or eliminating) the dynamical updates
has almost no effect on the quality of the derived match for unfavorable mobility ratios. For
MsMFEM, we used no initial and no dynamical updates and were thereby able to reduce
time for pressure solves by about 80%, giving a significant reduction in the total runtime.
Altogether, this meant that the full data integration could be performed in an impressive
runtime of 17 minutes on a workstation PC!

To test the robustness of our selective work reduction, we apply the same 5×5 test matrix
as in the two previous examples. For the strategies involving x = 0% dynamical update, no
sensitivities are required to determine which basis functions to update. We therefore present
results for both full dynamic update and no update during the first flow simulation for x = 0%.
Figure 18 shows the reduction in residuals and permeability discrepancy after six iterations.
Judging from the residuals and the permeability discrepancy, the data are well matched for
all parameters, and the quality of the match is similar as for the TPFA solver. Altogether,
the results indicate that the history-matching procedure is stable with respect to the selective
work-reduction strategies.

Finally, we have tested how the speed-up for pressure solves for MsMFEM versus TPFA
scales for the different work reduction strategies. To compare both solvers on more equal
terms, we apply a somewhat older laptop PC with a 1.7 GHz Intel Pentium M processor
so that both TPFA and the MsMFEM pressure solvers can be run with full optimization.
Further, we are running all strategies with full dynamical update for the first flow simulation
(because no sensitivities are available yet), except the strategies involving 0% dynamical
update. Those strategies are run both with no and full dynamic updating during the first
flow simulation. Figure 19 shows the speed-up for the different combinations of updating
strategies. The corresponding reduction in residuals and permeability discrepancy are shown
in Fig. 18. As expected, the reduction in dynamic updates gives the greatest contribution
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Figure 18. Robustness of selective work reduction. For 0% dynamical up-
date, the first row corresponds no dynamic update during the first forward
simulation and the second row to full update during the first simulation.

0   
25  

50  
75  

100 
TPFA

0   
0   

25  
50  

75  
100 

TPFA

0

2

4

6

8

10

% Initial Update

% Dynamic Update

S
pe

ed
−u

p

Figure 19. Speed-up matrix for time spent on pressure solves during the data
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update during the first forward simulation and the second row to full update
during the first simulation. Runtimes are measured on a 1.7 GHz Intel Dothan
Pentium M processor with 2 Mb cache and 1.5 Gb memory

to the speed-up. With no updates, what so ever, the total data integration took 36 minutes
on the laptop PC.

Finally, we notice that the memory requirements for the MsMFEM pressure solver are
quite low and this solver could easily have been run on far larger models, as opposed to TPFA,
for which the memory requirements of the AMG linear solver will rapidly limit the model
sizes that can be run on a workstation or laptop PC.

5. Summary and Conclusions

A novel approach to data integration using multiscale-streamline simulation and analytic
sensitivities is presented. There are four key components in our proposed approach:
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(1) Inverse modeling by generalized travel-time inversion with quasilinear properties.
(2) Production-response sensitivities calculated analytically along streamlines.
(3) A modified streamline method that greatly reduces the mass-balance errors when

simulating large and complex reservoir models using few streamlines.
(4) An efficient multiscale mixed finite-element method is applied as pressure solver,

where the multiscale basis functions are recomputed selectively based on sensitivities.

The power and utility of our proposed approach was demonstrated using two 2-D models
and a full field-scale geomodel consisting of more than a million grid cells. Starting with
a prior subsurface model, production data were integrated using a generalized travel time
inversion. The resulting permeability changes were found to be reasonable and geologically
realistic (i.e., consistent with the initial geological model). For the one-million 3-D problem,
the entire inversion process took about seventeen minutes using a commodity workstation
PC. The very efficient forward simulation and sensitivity computations may generally enable
history-matching of models with a large number of cells and/or a large number of (plausible)
model realizations.

Altogether, we have presented very versatile method for integrating dynamic data into
high-resolution subsurface models. The inversion method is applicable, with small modifica-
tions, to more general grid formats, as will be reported in (Stenerud et al., submitted). We
believe that using a MsMFEM pressure solver will prove particularly useful on complex grids,
since the multiscale formulation gives a natural and automatic way of upscaling the grid in
the pressure solver to speed up the forward simulation. Moreover, on highly skewed grids
(e.g., corner-point grids), MsMFEM uses an accurate multipoint flux-approximation scheme
to compute basis functions and therefore gives better spatial accuracy and more accurate
predictions of flow than for a standard two-point method, see (Aarnes et al., to appear).

Finally, we remark that the generalized travel-time inversion method has been extended
to compressible three-phase flow, so that fractional-flow curves and gas-oil ratios are jointly
incorporated (Cheng et al., 2006). Moreover, data integration using streamline sensitivities
has also been addressed for cases including gravity, changing field conditions, and fractured
reservoirs (He et al., 2002; Al-Harbi et al., 2005).
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Abstract

We propose an extension to fully unstructured grids for the so-called generalized
travel-time inversion method for inversion of production data. The framework of
the inversion method applies directly to fully unstructured grids, but there are
aspects regarding sensitivities and regularization that have to be addressed. First, we
propose a generalized smoothing operator for the regularization to impose smooth
modification on reservoir parameters. Second, to handle reservoir models with great
heterogeneity in cell sizes, we investigate the use of rescaled sensitivities (average
cell volume multiplied by local sensitivity density) in the inversion.

We demonstrate the utility of our extensions by three numerical examples. First,
we validate the inversion method by applying it to a reservoir model represented
both on a Cartesian and on a refined triangular grid. Second, we apply the method
for a highly unstructured grid with large differences in cell sizes. Finally, we con-
sider an example with faults and non-neighboring connections. All examples show
that our method is able to match the data with the same quality as has been ob-
tained earlier on structured grids and without degrading the realism of the reservoir
parameters.
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1 Introduction

The generalized travel-time (GTT) inversion method was introduced by Vasco
et al. (1999) and He et al. (2002) and has been successfully applied to several
field cases; see e.g., Qassab et al. (2003) and Hohl et al. (2006). Although the
inversion method itself does not require a streamline simulator (Cheng et al.,
2005b), it is most efficient if the required production-response sensitivities are
approximated by analytical integrals streamlines and a streamline simulator
is used for the forward simulation. However, the inversion method can be
implemented on top of any simulator on a Cartesian grid that outputs velocity
fields during the forward simulation (Cheng et al., 2005b). In this paper we
discuss how to extend the GTT inversion method to fully unstructured grids.

Although the framework of the inversion method in principle can be gener-
alized to unstructured grids, the method has not yet been applied to fully
unstructured grids in practice, and there are issues to address regarding regu-
larization and the use of sensitivities. First, the smoothing operator involved
in the regularization has to be generalized to unstructured grids. For moder-
ately skewed, logically Cartesian grids, finite-difference approximations for the
Laplacian is used to measure the smoothness. The key question is therefore
whether this stencil is directly generalizable or if one has to introduce some
sort of spatial weighting. Second, the computation of production-response sen-
sitivities on unstructured grids has to be investigated and verified. In addition,
non-neighboring connections that can occur in connection with faults and fully
unstructured grids have to be addressed.

In two recent papers (Stenerud et al., to appear,s) we proposed to combine
GTT inversion with a highly efficient multiscale-streamline solver on Carte-
sian grids. In particular, we demonstrated how the sensitivities from the in-
version method can be used to make certain simplifications in the multiscale
flow solver in regions of low sensitivity, thereby reducing the total simulation
time considerably with negligible loss in accuracy compared with a standard
finite-difference simulator. The underlying multiscale mixed finite-element for-
mulation (Chen and Hou, 2002; Aarnes, 2004) has later been extended as a
very efficient flow solver for highly heterogeneous reservoirs on unstructured
grids (Aarnes et al., to appear). We are confident that the combination of a
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multiscale-streamline simulator and sensitivity-based work-reduction strategy
of (Stenerud et al., to appear) can easily be extended to unstructured grids,
thereby giving significant speedup of the forward simulations. Herein, how-
ever, we only use a standard mixed finite-element method (MFEM) as our
flow solver. Moreover, we implicitly assume that the grid has adequate mesh
quality to provide forward simulations of sufficient accuracy. Mesh quality is
often determined by the smallest angles in the grid and a grid with quite equi-
lateral cells therefore indicates good mesh quality. Hence, grids with high mesh
quality can still have large differences in cell sizes, used to refine important
regions of the reservoir, for instance in the near-well regions or near channels,
flow barriers, etc.

The outline of the paper is as follows: First, we present the forward model and
the inversion method and describe how to compute analytical approximations
to the sensitivities. Then, we propose smoothing operators which are intended
to be robust and avoid grid effects for fully unstructured 3-D grids with large
differences in cell sizes. Finally, the applicability of our method is discussed
in terms of a few numerical examples. In particular, we compare the new
smoothing operator(s) with the standard finite-difference approximations for
the Laplacian. In addition, we address aspects related to grid heterogeneity,
sensitivities, robustness, and non-neighboring connections. For simplicity, we
only consider two-dimensional triangular and quadrilateral grids.

2 Flow Model

We consider incompressible two-phase flow of oil and water in a non-deformable
and permeable medium. For simplicity, we neglect the effects of gravity, com-
pressibility, and capillary forces and assume no-flow boundary conditions. Our
flow model then consists of an elliptic pressure equation

∇ · ~u = qt, ~u = −λt(S)K∇p, (1)

and a quasilinear hyperbolic transport equation

φ
∂S

∂t
+∇ · (fw(S)~u) = qw. (2)

The primary unknowns in the coupled system (1)–(2) are the pressure p, the
total Darcy velocity ~u, and the water saturation S. The underlying porous
rock formation is modeled in terms of the absolute permeability K and the
porosity φ, which henceforth are assumed to depend on the spatial variable
only. Further, qt and qw represent fluid sources and sinks (e.g., injection and
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production wells). Finally, λt = λw + λo denotes the total mobility, where
the mobility λj of each phase (j = o, w) is given as the relative permeability
krj divided by the phase viscosity µj, and fw = λw/λt is the fractional-flow
function of water.

By making a coordinate transformation, the three-dimensional transport equa-
tion can be decoupled into a family of one-dimensional transport equations.
Rather than using the arc length along the streamline as a spatial coordinate,
we use the time-of-flight defined by,

τ =
∫
Σ

φ(ξ)

|~u(ξ)|
dξ =:

∫
Σ

s(ξ) dξ,

where Σ denotes the streamline trajectory and s denotes the so-called slow-
ness function φ/|~u|. The operator identity ~u · ∇ = φ ∂

∂τ
together with the

incompressibility condition ∇ · ~u = 0 can be used to rewrite (2) as a family of
one-dimensional transport equations along streamlines

∂S

∂t
+

∂fw

∂τ
= 0. (3)

The solution of (2) is obtained by tracing a set of streamlines, mapping the ini-
tial saturations from the 3-D pressure grid to 1-D streamlines, and then solving
(3) along each streamline forward in time. Afterwards, the new streamline sat-
urations are mapped (or averaged) back to the underlying 3-D grid to update
mobilities before the pressure equation (1) is solved to recompute the pressure
and velocity field. This solution process continues forward in time, alternating
between a pressure step and a transport step for fluid saturation.

3 The Inversion Method

The heart of the inversion method is to determine perturbations δm that
minimize the following function on a given simulation grid

arg min
δm

‖δd−Gδm‖+ β1‖δm‖︸ ︷︷ ︸
norm

+ β2‖L δm‖︸ ︷︷ ︸
smoothing

. (4)

The first term of (4) is the data-misfit term, where d denotes the observed

data points, m the reservoir parameters, and G = { ∂dj

∂mi
} is the sensitivity

matrix. The other two terms are regularization terms used to stabilize the
under-determined inversion problem and β1 and β2 are scalars used to weight
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the importance of each regularization term. The norm constraint ‖δm‖ mea-
sures the magnitude of δm and seeks to minimize the modifications made to
the reservoir parameter m. In the last term, L is a smoothing operator that
measures the local roughness of δm. This term therefore tends to keep the
modifications made to the reservoir parameter m as smooth as possible. In
other words, changes in the reservoir parameters are induced by size and sign
of the data shifts δd and the magnitude and distribution of sensitivities G,
diminished by the norm regularization, and smeared out by the smoothing
term.

A minimum for (4) can be obtained by a least-square solution of the augmented
linear system

G

β1I

β2L

 δm =


δd

0

0

 . (5)

This system is typically solved with the iterative least-square minimization
algorithm, LSQR (Paige and Saunders, 1982). This minimization method has
proven to be robust and applicable for permeability fields on non-deformable
logically Cartesian grids; see e.g., Qassab et al. (2003) and Hohl et al. (2006).
Even though each grid cell in a logically Cartesian grid is identified by an
ijk-triple, it is often convenient to give the grid cells a natural numbering
G = {1, 2, . . . , N}. Hence, the framework can be applied directly to fully un-
structured grids (e.g., triangular or tetrahedral grids). However, as mentioned
above there are issues to rule out to verify the applicability for fully unstruc-
tured grids.

3.1 Quantification of Data Misfit

Misfit in dynamic data is commonly represented by a least-squares functional
of the form:

E =
Nw∑
k=1

Nk
d∑

j=1

wkj

[
yobs

k (tkj )− ycalc
k (tkj )

]2
. (6)

Here yobs
k and ycalc

k are the observed and calculated production responses in
well k at time tkj ; Nw and Nk

d denote the number of wells and the number
of observed data per well, respectively; and wkj represent data weights. The
production responses can for instance be dynamic pressure, water cut, and/or
gas-oil ratio. Henceforth we only consider water cut data.
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Rather than minimizing (6) directly, we will use a one-step generalized travel-
time (GTT) inversion (He et al., 2002), for which we seek a set of time-shifts
∆t = {∆tk} for the calculated production responses. A time-shift simply
expresses how much a calculated production curve should be shifted in time
to maximize the cross-correlation with the observed curve. To determine the
optimal time-shifts, we minimize the following misfit at each well:

Ek(∆tk) =

Nk
d∑

j=1

[
yobs

k (tkj + ∆tk)− ycalc
k (tkj )

]2
. (7)

Using the GTT inversion, we can match multiple data points as in amplitude
inversion, while retaining the attractive quasilinear properties of travel-time
inversion (Cheng et al., 2005a). We emphasize that computing time-shifts does
not require new flow simulations, but can be done using data from the single
forward simulation used to evaluate the data mismatch.

In practice, we do not use (7) directly. Instead we maximize the coefficient of
determination:

R2
k(∆tk) = 1−

∑Nk
d

j=1

[
yobs

k (tkj + ∆tk)− ycalc
k (tkj )

]2
∑Nk

d
j=1

[
yobs

k (tkj )− yobs
k

]2 , (8)

where yobs
k is the average over all Nk

d data points at well k. Having determined
the optimal time-shifts ∆t, the next step is to propagate them into changes
in the reservoir parameters. For this we apply (5) with δd = ∆t.

Finally, to measure the misfit in water cut during the inversion process we will
use the amplitude and time-shift residuals (wkj = 1 in (6))

Eamplitude =
√

E, Etime−shift =
( N∑

k=1

(∆tk)
2
)1/2

.

3.2 Sensitivities on Unstructured Grids

For the sake of completeness, we briefly describe the analytical calculation of
streamline-based approximate sensitivities. To this end, we consider a pertur-
bation δm in the reservoir parameters, which will result in a time-shift δt in
the calculated production curve for a given well. Thus, for each observation
we have that (Vasco et al., 1999; He et al., 2002)

δt = δtj =
[ ∂tj
∂m

]
· δm. (9)

6



Summing this equation over all data points Nd, we obtain an expression for
the overall time-shift δt of the calculated production curve. By convention,
∆t = −δt (see (7)) and the sensitivity of the shift in the generalized travel
time ∆t with respect to reservoir parameter mi is given by

∂∆t

∂mi

= − 1

Nd

Nd∑
j=1

∂tj
∂mi

. (10)

Production data are calculated by averaging the flow rates of each connected
streamline. Now we fix the water cut ycalc

k and the fractional flow contribu-
tions from each streamline. Then, by assuming a Buckley–Leverett profile
along each streamline, the fractional flow at the outlet can be related to the
streamline time-of-flight using the expression f̃ ′w(So,`) = τ`/tj, where f̃w is the
convex hull of fw and So,` is the saturation at the outlet of streamline `. Since
f̃ ′w(So,`) is fixed, it follows that ∂tj/∂mi is proportional to the sensitivity of
the time-of-flight, which can be computed analytically from a single streamline
simulation under the assumption that the streamlines do not shift because of
small perturbations in reservoir properties. For example, the sensitivity of τ`

with respect to permeability Ki in cell i is given by

∂τ`

∂Ki

=
∂∆τ`,i

∂Ki

=
∫

Σ`,i

∂s(ξ)

∂Ki

dξ = −
∫

Σ`,i

s(ξ)

Ki

dξ = −∆τ`,i

Ki

, (11)

where the integral is along the streamline trajectory Σ`,i through cell i and
∆τ`,i is the associated incremental time-of-flight. Because the sensitivities are
simple integrals along streamlines, the computation time scales very favor-
ably with respect to the number of grid cells, thus making streamline-based
sensitivities the preferred approach for integrating dynamic data into highly-
detailed subsurface models.

As seen above, the parameter sensitivities in G can be computed as analytical
integrals along streamlines and be obtained by post-processing output from a
single flow simulation As such, the sensitivities are independent of the underly-
ing grid geometry, which is accounted for in the tracing process. In the current
paper, the tracing is performed by subdividing general polyhedral cells into
triangles in 2-D and tetrahedra in 3-D and then computing the incremental
streamline path analytically on each subcell. The sensitivity for an aggregated
cell consisting of a collection of subcells can be obtained by summing the
sensitivities of the subcells (Yoon et al., 2001). This follows from specifying
a differential for the production response based on an equal perturbation of
each subcell parameter. Further, from (11) it is observed that the time-of-flight
sensitivities can be computed for any convex grid cell as long as one is able
to trace the streamline to obtain the time-of-flight over the cell. Hence, the
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volume of the cell is implicitly accounted for through the time-of-flight over
the cell, which is in agreement with the additivity.

A problem with defining sensitivities this way is that small cells will in general
have smaller sensitivities, and contrary large cells will in general have larger
sensitivities. Thus, smaller modifications will in general be imposed on small
cells, and grid effects may therefore occur if there are (large) variations in
cell sizes in the underlying unstructured grid. This effect will, to a certain
extent, be counteracted by the smoothing regularization if there are other
cells with potential for greater modifications in the vicinity of a small cell.
One way to remedy these grid effects is to apply rescaled sensitivities defined
as the local sensitivity density (sensitivity per area/volume) multiplied by
the average cell volume. Since the sensitivities are spatially additive, applying
these rescaled sensitivities should therefore give a distribution more equal
to the sensitivity distribution obtained on a equisized grid. Another way to
remedy the problem is to lump together small cells to larger cells, to get a more
uniform grid for the history matching. However, this will in general require
some kind of upscaling/downscaling of the reservoir parameters m and will
not be considered herein. We will return to a discussion of grid effects due to
variations in cell sizes in the numerical examples below.

4 Generalized Smoothing Stencil

The smoothing operator L has to be generalized for fully unstructured grids.
For Cartesian grids the smoothing operator L was constructed by applying
a finite-difference approximation for the Laplacian. More precisely, the well-
known five-point and seven-point stencils were used for 2-D and 3-D grids,
respectively. Four-point and five-point finite-difference approximations for the
Laplacian can also be derived on uniform triangular and tetrahedral grids
(Iserles, 1996) (possibly also for non-uniform grids). Equivalent stencils for
the Laplacian can also be derived as finite-volume stencils using two-point
approximations. These stencils only involve the nearest neighbors and may be
less robust because the triangles and tetrahedra have fewer nearest neighbors
than the quadrilaterals and hexahedra, respectively. In 3-D, it is sometimes
appropriate to use a separate stencil in the z-direction (vertical), because
parameters in different layers are usually less correlated. In that way it is
possible to match each layer more independently.

All the stencils discussed above can be written on the following general form

Li m ∝
( ∑

j∈N (i)

wjmj

)
− wimi, wi =

∑
j∈N (i)

wj. (12)
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Here the neighborhood N (i) contains other cells sufficiently spatially close
that will contribute to the smoothing stencil of a given cell i. Notice that cell
i is not included in N (i).

A naive direct generalization of the finite-difference stencils applied for logi-
cally Cartesian grids (using the nearest neighbors) may work fine for grids with
quite equisized and equilateral grid cells. However, the generalized stencil will
lack robustness and result in grid effects for the smoothing of fully unstruc-
tured grid that possibly has large variations in cell sizes. On the other hand,
the smoothing operator does not necessarily have to accurately approximate
the Laplacian; it is most important is that the operator results in a proper
smoothing. Indeed, a good smoothing operator for unstructured grids should
try to fulfill the following criteria:

(1) The operator should coincide with the five-point (or seven-point) stencil
for uniform 2-D (or 3-D) Cartesian grids.

(2) The operator should give the same smoothing effect independently of the
local grid density (unless some spatially varying smoothing parameter is
incorporated).

(3) The smoothing of each grid cell i should be influenced by an appropriate
neighborhood N (i).

(4) The influence of each neighbor should decay (or stay constant) by the
distance ζ(i, j), and be zero outside some range.

(5) The influence of a neighbor should be bounded as the distance ζ(i, j) goes
to zero.

To meet these criteria, we propose a generalized smoothing stencil on the form

wj = wnorm · ρ(ζ(i, j); R, . . .), for j ∈ N (i), (13)

where N is either the radius or k-ring neighborhood, ρ(ζ; R, . . .) is a standard
correlation function from geostatistics, and wnorm is a normalization weight
used to ensure that the influence of each neighborhood is approximately the
same. The generalized correlation length R is used to control the range of
influence for ρ.

4.1 Neighborhood

The k-ring neighborhoodNk(i) includes all cells that can be reached by k edges
or less in the connectivity graph in which the centroids of each cell is a ver-
tex; see Figure 1. The centroids can be precomputed efficiently by decomposing
polyhedral cells into triangles/tetrahedra and using area/volume-weighted av-
erage of the centroids of the resulting subcells. The 1-ring neighborhood of cell
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Cell i

1 1

1

2 2

2 2

2 2

3 3 3

3 3

3 3

3 3

Fig. 1. (Left) An example of the connectivity graph, where the centroids of the
triangles represent the vertices of the graph. (Right) An example of a k-ring neigh-
borhood Nk(i) for k = 1, 2, 3.

i will be the collection of all cells adjacent to cell i. Figure 1 illustrates the 1-
ring, 2-ring, and 3-ring neighborhood for grid cell i in a regular triangular grid.
Note that in general N1(i) ⊆ N2(i) ⊆ N3(i) ⊆ . . .. The k-ring neighborhood
is sometimes referred to as a kth order neighborhood.

Second, the radius neighborhood, with a radius of x length units, is denoted
by Nr=x(i). The radius neighborhood include all (i, j) that are reachable by a
search in the connectivity graph without violating ζ(i, j) ≤ x. As our distance
function, we will use the standard Euclidean distance between the cell cen-
troids. To account for anisotropy, one may alternatively use a non-Euclidean
distance measure

ζK(i, j) = ‖~ζ‖K =
√

~ζtK~ζ,

where ~ζ(i, j) = [ζx, ζy, ζz] is the vector containing the Euclidean distance in
each coordinate direction and K is positive semi-definite.

Both the k-ring neighborhood and the radius neighborhood give symmetric
neighborhood configurations in the sense that if i ∈ N (j) then j ∈ N (i). For
the k-ring neighborhood, the number of cells are bounded so that

|Nk(i)| ≤ k × (#edges/faces per cell).

The more equisized and equilateral the grid cells are, the closer to the upper
bound will in general the number of cells in the k-ring neighborhood be. In
general the number of cells in the different k-ring neighborhoods will not
vary much over the grid (for a fixed k). On the other hand, for a radius
neighborhood the number of cells in a neighborhood can have great variations
over the grid. By a proper weighting, we expect the radius neighborhood
to give a more robust and less grid-dependent smoothing since the area of
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influence does not vary much over the grid. Nevertheless, when defining the
neighborhood radius one should take some considerations. The radius should
be chosen so that the neighborhood of all cells at least includes the nearest
neighboring cells, i.e.,N1(i) ⊆ Nr=x(i). The radius neighborhood will therefore
in general have a greater extent, so a smoothing stencil where the weights decay
by distance may therefore be reasonable.

For a grid with non-neighboring connections it is not obvious how to define
the neighborhood. For instance, close to a fault the grid cells on each side do
not necessarily have faces that overlap completely, and consequently a grid
cell can have several neighbors with partial overlap of faces. A simple solution
is to define the ”partial” neighbors as ordinary neighbors. Consequently, the
connectivity graph can be defined, and thereby the neighborhood. A more
thorough approach would be to in some sense weigh the partial neighbor con-
nections in the stencil. However, in the numerical examples in this paper we
will apply the simple approach without weighting.

4.2 Correlation Function

Correlation functions (Abrahamsen, 1997) are used to model the covariance
structure of a random spatial quantity and are usually designed to be positive
definite by satisfying the following criteria:

ρ(0) = 1, |ρ(ζ)| ≤ 1 ∀ζ, ρ(ζ) ∈ C0 for ζ > 0, lim
ζ→∞

ρ(ζ) = 0. (14)

Positive definiteness is not an issue for our smoothing stencil, and we are there-
fore free in general to choose from a broader range of functions. However, even
though there are higher-order finite-difference stencils for the Laplacian with
weights alternating sign based on distance (Iserles, 1996), we will henceforth
stick to positive correlation functions. Hence, the first relation in (14) fulfills
Requirement 5 above.

A correlation function usually has a parameter R called correlation length
or range, which is often considered as the distance ζ for which ρ ≈ 0.05, i.e.,
|ρ(ζ)| . 0.05 for ζ > R. Moreover, some readers may be more familiar with the
variogram function γ(ζ; R) than the correlation function, which for stationary
Gaussian random fields are given by γ(ζ; R) = σ2(1 − ρ(ζ; R)), where σ2 is
the variance.
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Fig. 2. Exponential correlation functions for R = 1 plotted as solid curves for
ν = 1.0, 2.0 (indicated on plot) and as dashed curves for ν =0.50, 0.75, 1.25, 1.50,
and 1.75.

In the following we consider either the constant correlation function,

ρconst(ζ; R) =

 1 , for 0 ≤ ζ ≤ R,

0 , else,

which is discontinuous and thus violates (14), and the exponential correlation
function

ρexp,ν(ζ; R, ν) = e−3(ζ/R)ν

, 0 < ν ≤ 2,

which decays with increasing distance. For ν = 2 the corresponding correla-
tion function is sometimes referred to as the Gaussian correlation function.
Figure 2 depicts some exponential correlation functions for different values of
the parameter ν. To fulfill Requirement 4 and because positive definiteness is
not an issue for our purpose, we set ρ(ζ) to zero for ζ > R.

In spatial statistics it is common to replace ( ζ
R
) with ‖[ ζx

Rx
, ζy

Ry
, ζz

Rz
]‖2 in the

correlation functions ρ to account for anisotropy in the principal coordinate
directions. For Rx = Ry = Rz = R the two representations will coincide.
If the anisotropy directions are not aligned with the principal directions, a
coordinate transformation may be required. This can be performed by mea-
suring ζ through ‖ · ‖K as described above. Another possibility to account
for anisotropy, which is applied in geostatistics, is to construct the correla-
tion function as a product of correlation functions related to different spatial
directions, e.g., ρ(ζ) = ρxy(ζ) · ρz(ζ).
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4.3 Normalization Weights

For wnorm we seek a normalization weight such that the influence of each neigh-
borhood is approximately the same. Inspired by Taubin (1995) we therefore
propose the following choices:

wnorm =
( ∑

j∈N (i)

ρ(ζ(i, j))
)−1

, (15)

wnorm =
(
ρ̄ · |N (i)|

)−1
. (16)

Here ρ̄ is the average correlation over all neighborhoods of the grid:

ρ̄ =
1

|G| |N (i)|
∑
i∈G

∑
j∈N (i)

ρ(ζ(i, j)).

The ρ̄ function can be preprocessed or computed when the neighborhoods
are traversed. The evaluation of ρ̄ only involves arithmetic operations and is
thus very fast. Further, since ρ̄ can be accumulated, it does not increase the
memory requirements.

The weight(15) multiplied by ρ sums to unity for all j ∈ N (i) and therefore
gives the same weight to all neighborhoods. Further, (16) will also give a
normalization on average over all neighborhoods, but (16) adaptively gives
more weight to a neighborhood based on the average generalized correlation
for the neighborhood. Further, both (16) and (15) will ensure that the total
weight given to the smoothing in (4) does not vary much by changing the
particular form of the ρ function. We will stick to (16), because it gives an
adaptive weighting. Hence, in our weighting operator we have not taken any
specific actions to account for boundary effects.

A natural question is if there should be a correspondence between the correla-
tion length in the different directions of the permeability field and the correla-
tion length used in the generalized stencil. In general it should not. The reason
is that we assume the basic structure of the permeability field is incorporated
into the prior/initial permeability field. The main task of the smoothing sten-
cil is therefore just to preserve the structure by enforcing smooth changes in
the inversion process, so the correlation length for the smoothing stencil is
therefore more dependent on the grid density. However, it can for instance
be advantageous to let the permeabilities change more independently in the
different layers, and possibly also on each side of faults. This can partially be
incorporated by the approach for anisotropic correlation functions described in
Section 4.2. However, the layers and faults are not necessarily aligned with spe-
cific coordinate axes. A more advanced generalized correlation function that
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incorporates not only the distance function, but also layer information may
therefore be required. In other words, spatially varying stencil/neighborhood
parameters are required.

For a uniform Cartesian grid, the standard five-point stencil can be represented
by our definition by letting the neighborhood be N1 or Nr=h, and wnorm be
given by either (16) or (15). Further, ρ(ζ) will have the same value for the
different adjacent grid cells for any positive bounded real function. Hence,
Requirement 1 can be fulfilled for the generalized smoothing stencil.

In the next section we apply the proposed generalized smoothing stencil to a
few numerical examples and discuss its utility.

5 Numerical Examples

For simplicity, we will in the following only focus on 2-D test cases using
the simplified flow model for an incompressible, immiscible oil-water system
as described in Section 2. First, we compare the performance of the general-
ized travel-time inversion on uniform Cartesian and uniform triangular grids
(Case 1). Second, we investigate the applicability of the generalized travel-time
inversion on a non-uniform, highly unstructured triangular grid (Case 2). Fi-
nally, we try to apply the generalized stencil to a corner-point grid with faults
and non-neighboring connections at the faults (Case 3).

For all cases the flow is described using quadratic relative permeability curves
with individually specified end-point mobility ratios. Further, for the forward
simulations are performed with a streamline simulator where the pressure
solver is a standard two-point flux-approximation (TPFA) scheme for Carte-
sian grids and a mixed finite-element method (MFEM) for triangular grids. For
MFEM we apply the lowest-order Raviart–Thomas basis functions (Raviart
and Thomas, 1977). Moreover, for all cases we match synthetic water-cut data
obtained from a flow simulation on a reference permeability field. The perme-
ability for each grid cell is treated as an adjustable parameter. Next, starting
from an initial (prior) permeability field, we match the water-cut data via the
generalized travel-time inversion method.

5.1 Case 1: Cartesian versus Triangular Grid

This synthetic case involves reconstruction of a reference permeability field
given on a uniform 21×21 Cartesian grid (see Figure 3) based on the observed
water-cut production history from a 9-spot pattern on the Cartesian grid (see
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reference rectangular triangular

Fig. 3. Case 1: Reference and derived permeability fields on the rectangular grid
with Laplacian smoothing and on the triangular grid with smoothing Stencil 3. In
the top row Mend = 0.2, and in the bottom rowMend = 10.

Figure 4) with 5% white noise added. The permeability is reconstructed both
on the rectangular grid and on a triangular grid obtained by subdividing each
cell in the rectangular grid into two triangles. Hence, the history-matching
problem will be more under-determined for the triangular grid, because twice
as many parameters have to be matched by the same number of data points
(a total of 441 and 882 parameters, respectively).

The dimension of the reservoir is 420× 420 meters, and the flow is described
by two different end-point mobility ratios, Mend = 0.2 and Mend = 10. We
use a homogeneous permeability as the initial model and apply a standard
five-point Laplacian regularization on the rectangular grid. For the triangular
grid we apply four different generalized stencils described in Table 1, of which
Stencil 1 corresponds with the five-point stencil on the rectangular grid.

The derived permeability fields are shown in Figure 3. Further, Table 1 reports
the average discrepancy between the reference and derived permeability field
measured by

∆ ln K =
1

Ā

N∑
i=1

Ai| ln Kref
i − ln Kmatch

i |. (17)

Here Ai is the area of cell i and Ā =
∑

i Ai is the total area for all cells. Clearly,
the final permeability models capture the large-scale trends of the reference
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Table 1
Case 1: Reduction in percent in residual for time-shift (T) and amplitude (A), and
reduction in permeability discrepancy (∆ lnK) on the Cartesian grid with Laplacian
smoothing and on the triangular grid with four different stencils.

Mend = 0.2 Mend = 10

Strategy Nbh ρ T A ∆ lnK T A ∆ lnK

Initial - - 100.0 100.0 1.045 100.0 100.0 1.045

Cartesian - - 6.8 12.7 0.570 7.5 21.7 0.548

Stencil 1 N1 ρconst 5.5 13.7 0.614 7.5 23.0 0.599

Stencil 2 N2 ρexp,2 (R = 30) 6.0 13.7 0.601 8.8 23.2 0.590

Stencil 3 Nr=30 ρexp,2 (R = 30) 6.2 13.6 0.595 9.5 22.9 0.575

Stencil 4 Nr=30 ρexp,2 (R = 50) 6.5 13.4 0.572 12.0 23.1 0.558
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Fig. 4. Case 1: Water-cut curves for Stencil 3 on the triangular grid for producers
P2 (North West), P4 (South East), and P8 (East). Mobility ratio Mend = 0.2.

permeability field on both grids. Figure 4 shows a comparison of the initial
and final match of the water-cut curves for Mend = 0.2 for three wells with
lowest initial (P2), highest initial (P4), and highest final mismatch (P8) for
Stencil 3. Figure 5 shows the reduction in time-shift and amplitude residuals
for each iteration using Stencil 3. Further, the reduction in water-cut residuals
is also reported in Table 1 for the different stencils. Overall, the match to the
production data is quite satisfactory.

The quality of the derived match is similar for all stencils reported in Ta-
ble 1. The permeability discrepancy is slightly smaller for stencils with radius
neighborhood. Conversely, using k-ring neighborhood gives a somewhat lower
time-shift residual. A plausible explanation is that the radius neighborhoods
usually involve couplings with more distant grid cells, causing the permeabil-
ity modifications to be more spatially distributed. In other words, more of the
modifications occur away from the high sensitivity regions where they would
have the greatest impact. This tendency can be controlled by varying the
neighborhood radius, the ρ function, and the R parameter.
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Fig. 5. Case 1: Reduction of residuals for all producers using Stencil 3 for mobility
ratios Mend = 0.2 and Mend = 10.

Grid and wells Stencil 1 Stencil 2

Reference Stencil 3 Stencil 4

Fig. 6. Case 2: Grid and well-configuration, reference permeability field, and derived
permeability fields for Stencils 1 to 4 using sensitivity.

5.2 Case 2: Nine-Spot with a Highly Unstructured Grid

Next we consider the reconstruction of a reference permeability field on an un-
structured triangular grid with 581 grid cells. The dimensions of the bounding
box for the reservoir is 322× 318 meters. Further, the grid is highly unstruc-
tured with a ring of high grid density; see Figure 6. This grid is not very
realistic for a real reservoir, but was chosen to investigate the effect of vary-
ing cell sizes. The initial permeability field for this case is homogeneous with
a permeability mean of 7.0 mD. Moreover, the end-point mobility ratio is
Mend = 0.5.
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Table 2
Case 2: Reduction in percent in residual for time-shift (T) and amplitude (A), and
reduction in permeability discrepancy (∆ lnK) with four different stencils using
sensitivity (Rows 3–6) and rescaled sensitivity (Rows 7–10).

Strategy Nbh ρ T A ∆ lnK

Initial - - 100.0 100.0 1.165

Stencil 1 N1 ρconst 6.0 14.2 0.771

Stencil 2 N2 ρconst 8.2 18.9 0.612

Stencil 3 Nr=30 ρexp2 (R = 50) 9.5 18.6 0.585

Stencil 4 Nr=40 ρexp2 (R = 50) 12.0 20.9 0.555

Stencil 1 N1 ρconst 7.0 16.1 0.631

Stencil 2 N2 ρconst 12.6 22.5 0.525

Stencil 3 Nr=30 ρexp2 (R = 50) 12.1 20.8 0.546

Stencil 4 Nr=40 ρexp2 (R = 50) 12.4 21.7 0.568

Synthetic production data are obtained by simulating 1200 days of produc-
tion from a 9-spot pattern (see Figure 7) with 5% white noise added. In the
inversion we only use data from the first 800 days. Data from the remaining
400 days are used to assess the predictive ability of our inversion methods.

Table 2 reports the reduction in time-shift and amplitude residuals for four dif-
ferent stencils and Figure 6 shows the derived permeability fields. All four sten-
cils capture the large-scale trends of the reference permeability, even though
the derived permeability fields, especially for the radius neighborhood, are a
bit too smooth. This is to be expected since there is no heterogeneity to pre-
serve from the initial (prior) permeability field. As in the previous example,
the time-shift residuals are lowest for the k-ring neighborhoods. On the other
hand, Stencils 1 and 2 give undesired grid effects inside the ring with small
cells, in which the initial homogeneous permeability field is still visible, in
particular for Stencil 1 in the quadrant bounded by the injector and wells P6,
P4 and P4. Stencils 3 and 4 are more able to capture the large-scale perme-
ability structures, as seen in Figure 6 and from the permeability discrepancy.
However, small artifact are also visible for these stencils, especially for Sten-
cil 3. Without smoothing, small cells with small sensitivity will in general get
smaller modifications than larger cells. However, the smoothing will tend to
distribute the modifications. For the 1- and 2-ring neighborhoods, the stencils
were not able to span over the ring with small cells and therefore resulted in
too small modifications in this high-density band. For the radius neighbor-
hood, on the other hand, the region of influence crosses over the high-density
band and therefore distributed the modifications more properly.
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Fig. 7. Case 2: Water-cut match for Stencil 4 for the wells P1–P8. The time span
0–800 days is the matching period, while the time span 800–1200 days is prediction.

Figure 7 shows a comparison of the initial and final match of the water-cuts
for Stencil 4. The overall match to the production data is satisfactory, and
the prediction in the period from 800 to 1200 days shows good agreement. In
particular, the prediction for well P4 is good, given that this well had almost
no significant water responses during the matching period.

In Section 3.2 we proposed to use rescaled sensitivities rather than sensitivities
in the inversion process to counteract effects from heterogeneous cell sizes.
The rescaled sensitivity of a cell i is computed by GiV̄ /Vi, where Gi is the
sensitivity and Vi is the volume for cell i and V̄ is the average volume of all
cells. Figure 8 shows sensitivities Gi and sensitivity densities Gi/Vi for wells
P4 and P6. As expected, the sensitivities for small cells are in general smaller
than for large cells. The sensitivity densities, on the other hand, do not show
any grid effects and are similar to those computed on an (almost) equisized
grid. However, as seen in Figure 8, the sensitivities and sensitivity densities
are of different magnitude. We therefore suggest to multiply the sensitivity
densities by the average volume of all cells V̄ to obtain what we will refer to
as rescaled sensitivities. Hence, the sensitivities and the rescaled sensitivities
will be more of the same magnitude and will coincide on uniform grids. The
drawback with using rescaled sensitivities is that it might be harder to match
the data, because rescaled sensitivities will enforce greater modifications in
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sensitivity sensitivity density equisized grid

Fig. 8. Case 2: Time-shift sensitivity and sensitivity density (not rescaled) computed
for a homogeneous permeability field for wells P4 (top) and P6 (bottom).

reference sensitivity rescaled sensitivity

Fig. 9. Case 2: Permeability field derived using Stencil 1 with sensitivity and rescaled
sensitivity.

cells that are less important with respect to shifting the production curves
(less sensitivity).

Figure 9 shows a comparison of the derived permeabilities for Stencil 1 using
sensitivities and rescaled sensitivities, respectively. The resulting permeability
field applying the rescaled sensitivities does not show indications of grid effects
from the high-density band. Further, Table 2 shows the reduction in residuals
and average permeability discrepancies for both applying the sensitivities and
the rescaled sensitivities for different stencils. The permeability discrepancies
seems to improve by applying rescaled sensitivities. Especially the k-ring sten-
cils seem to improve the quality of the derived permeability fields. Even so,
the reduction in the residuals is in general slightly degraded, as expected.

To test the robustness of the generalized stencil, the neighborhood, and the
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Fig. 10. Case 2: Robustness of stencil parameter R and neighborhood radius r.

Fig. 11. Case 2: Altered well-configuration.

application of rescaled sensitivities, we have systematically performed the in-
version for different stencil parameters for the stencil (ρexp2,Nr=x). The results
are presented in three 7 × 7 test matrices with the correlation length R and
the neighborhood radius r as parameters. The correlation length takes the
values R ∈ {20, 30, 40, 50, 60, 70,∞}, while the the neighborhood radius takes
the values r ∈ {10, 20, 30, 40, 50, 60, 70}; both measured in meters. Hence, by
letting R go to infinity the exponential correlation function will approach the
constant correlation function. Figure 10 shows the reduction of time-shift and
amplitude residuals after eight iterations, as well as the average discrepancy
between matched and reference permeability fields. Judging from the residual
plots, it seems like the more weight is given to the smoothing stencil away from
the center cell, the harder it is to match the data. In other words, more of the
modifications are made away from where they would have the greatest impact
on the simulated production responses. Even so, the quality of the match is
not degraded considerably. The permeability discrepancy is very robust with
respect to the smoothing parameters. There seems to be a lower and upper
limit for the stability region with respect to the neighborhood extent, but the
radius of the stable region is quite large given the dimension of the reservoir.

Finally, we test the predictive abilities of the derived permeability fields for the
altered well-configuration shown in Figure 11. Table 3 reports the reduction
in amplitude and time-shift residuals compared with a simulation using the
prior homogeneous model. Here the best results, by far, are obtained using
the radius neighborhood.
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Table 3
Case 2: Reduction in percent for misfit in time-shift (T) and amplitude (A) by
applying the derived permeability fields for the altered well-configuration.

Strategy Nbh ρ T A

Initial - - 100.0 100.0

Stencil 1 N1 ρconst 47.1 50.4

Stencil 2 N2 ρconst 33.4 38.3

Stencil 3 Nr=30 ρexp2 (R = 50) 27.8 33.0

Stencil 4 Nr=40 ρexp2 (R = 50) 27.0 32.0

5.3 Case 3: Faulted Corner-Point Grid

We consider a 2-D corner-point reservoir model with diagonal permeability
streaks, dynamic well configuration and non-sealing faults that induce non-
neighboring connections; see Figure 12. The lognormal permeability field has
a 50×50 logical structure, but because of the faults, the grid has three shifted
sections. Further, the dimensions of bounding box for the reservoir is 646×605
meters, and the end-point mobility ratio is Mend = 0.5.

The history-matching will be performed on the corner-point grid, but to be
able to trace streamlines over the non-neighboring connections, we simulate
the flow on a triangular grid where we have subdivided each corner-point cell
into two triangles and in addition refined the grid by triangles close to the
faults to obtain a matching grid. Hence, no upscaling/downscaling is required
between the simulation grid and the history-matching grid because the perme-
ability field originally is given on the coarsest grid. For each forward simulation
we use a pressure steps of 100 days. In Section 4.1 we discussed how to handle
the non-matching cell faces at the faults when defining the neighborhood.

Synthetic production data were generated by adding 15% white noise to the
water-cut curves computed from the reference permeability. Initially, the well-
configuration is a kind of five-spot configuration, with an injector in the center
and four producers in the corners; see Figure 12. Further, the producers op-
erate at equal constant rate. Producer P4 in the south-west corner has an
early breakthrough and is therefore converted to an injector after 900 days.
Simultaneously, a new producer (P5) is introduced in the lower-left corner
of the section in the middle (south). This part of the reservoir has not been
depleted at all yet. The new injector is injecting 3/5 of the total injection
rate. The motivation for the updated well-configuration is also to introduce
an additional sweep from the south-west corner. After the well conversion, all
producers operate at constant equal rate. The updated well-configuration is
kept throughout the rest of the production period. Thus, we wish to integrate
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Fig. 12. Case 3: Grid and well-configuration (upper left), reference permeability field
(upper right), initial (prior) permeability field (lower left) and derived permeability
field by Stencil 3 (lower right).

2500 days of production data from five producers in total.

To match observed data, we start from the prior permeability field shown in
Figure 12 and treat the permeability in each corner-point cell as an adjustable
parameter, giving a total of 2500 unknown parameters to be estimated. The
corner-point sensitivities are obtained by summing the sub-cell sensitivities;
see Figure 13. Table 4 reports the reduction in residuals with respect to time-
shift and amplitude. The resulting permeability field for Stencil 3 after eight
iterations is shown in Figure 12. The updated permeability field is in general
closer to the reference, and the realism of the permeability field is not degraded
by the history matching. This is also confirmed by the average permeability
discrepancies in Table 4. In the derived permeability fields there was no in-
dications of smearing across the faults. This is caused by the regularization
that keeps the modifications small and smooth, and the localization of the
sensitivities; see Figure 13. Figure 14 shows a comparison of the initial and
the final match of the water-cut curves for the production wells obtained with
Stencil 3. Overall, the match to the production data and the quality of the
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Fig. 13. Case 3: Time-shift sensitivities for the five producers.

Table 4
Case 3: Reduction in percent for misfit in time-shift (T) and amplitude (A), and
reduction in average discrepancy in log permeability ∆ lnK).

Strategy Nbh ρ T A ∆ lnK

Initial - - 100.0 100.0 0.421

Stencil 1 N1 ρconst 5.5 35.0 0.334

Stencil 2 N2 ρconst 4.9 35.0 0.332

Stencil 3 Nr=30 ρexp2 (R = 50) 5.8 35.2 0.334

Stencil 4 Nr=40 ρexp2 (R = 50) 5.7 35.8 0.332

derived permeability fields are satisfactory.

Concluding Remarks

The generalized travel-time method for inversion of production data has been
successfully applied to unstructured grids. For equisized grids, the original
framework developed previously by Vasco et al. (1999) and He et al. (2002)
can be applied almost directly, as has previously been done for grids that
are logically Cartesian and quite uniform. For fully unstructured grids that
may have (large) differences in cell sizes and in the number of connections,
our investigations revealed that a generalized smoothing operator should be
introduced to obtain a good match. Our new smoothing stencils introduce
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Fig. 14. Case 3: Water-cut match for the Stencil 3 for wells P1–P5. The time span
0–2500 days is the matching period, while the time span 2500–3000 days is predic-
tion.

a few extra regularization parameters, but the inversion is robust to these
parameter values and it is easy to make a good choice by considering the cell
sizes of the grid.

Similarly, we found that rescaled sensitivities should be incorporated to give
permeability fields without undesired heterogeneities induced by grid effects.
The magnitude of potential modifications of the reservoir parameters are de-
termined by the sensitivities and data misfits. Since small grid cells generally
have smaller sensitivities than larger cells, the magnitude of the induced pa-
rameter modifications will depend on heterogeneity of the grid. Because the
production-response sensitivities are spatially additive, it will often be better
to use rescaled sensitivities instead of sensitivities in the inversion to obtain re-
alistic modifications, even though this can make it slightly harder to match the
observed data. For uniform grids the sensitivities and the rescaled sensitivities
will coincide.

In the current paper we have only investigated two-dimensional numerical ex-
amples, including non-neighboring connections. This is partly because 2-D ex-
amples are well suited for visualization and for detecting the principal effects.
Real 3-D reservoir models are, of course, much more challenging. Although
the framework we have proposed for applying the generalized travel-time in-
version on fully unstructured grids is general and should apply to 3-D grids as
well, additional effects like layering and various grid-degeneracies may prove
important in 3-D. Extensions to real-life 3-D models is therefore a topic of
future research.
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